1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
23 #include <trace/events/block.h>
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
28 #define ALLOC_CACHE_THRESHOLD 16
29 #define ALLOC_CACHE_MAX 256
31 struct bio_alloc_cache {
32 struct bio *free_list;
33 struct bio *free_list_irq;
38 static struct biovec_slab {
41 struct kmem_cache *slab;
42 } bvec_slabs[] __read_mostly = {
43 { .nr_vecs = 16, .name = "biovec-16" },
44 { .nr_vecs = 64, .name = "biovec-64" },
45 { .nr_vecs = 128, .name = "biovec-128" },
46 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
49 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
52 /* smaller bios use inline vecs */
54 return &bvec_slabs[0];
56 return &bvec_slabs[1];
58 return &bvec_slabs[2];
59 case 129 ... BIO_MAX_VECS:
60 return &bvec_slabs[3];
68 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
69 * IO code that does not need private memory pools.
71 struct bio_set fs_bio_set;
72 EXPORT_SYMBOL(fs_bio_set);
75 * Our slab pool management
78 struct kmem_cache *slab;
79 unsigned int slab_ref;
80 unsigned int slab_size;
83 static DEFINE_MUTEX(bio_slab_lock);
84 static DEFINE_XARRAY(bio_slabs);
86 static struct bio_slab *create_bio_slab(unsigned int size)
88 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
93 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
94 bslab->slab = kmem_cache_create(bslab->name, size,
95 ARCH_KMALLOC_MINALIGN,
96 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
101 bslab->slab_size = size;
103 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
106 kmem_cache_destroy(bslab->slab);
113 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
115 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
118 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
120 unsigned int size = bs_bio_slab_size(bs);
121 struct bio_slab *bslab;
123 mutex_lock(&bio_slab_lock);
124 bslab = xa_load(&bio_slabs, size);
128 bslab = create_bio_slab(size);
129 mutex_unlock(&bio_slab_lock);
136 static void bio_put_slab(struct bio_set *bs)
138 struct bio_slab *bslab = NULL;
139 unsigned int slab_size = bs_bio_slab_size(bs);
141 mutex_lock(&bio_slab_lock);
143 bslab = xa_load(&bio_slabs, slab_size);
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
147 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
149 WARN_ON(!bslab->slab_ref);
151 if (--bslab->slab_ref)
154 xa_erase(&bio_slabs, slab_size);
156 kmem_cache_destroy(bslab->slab);
160 mutex_unlock(&bio_slab_lock);
163 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
165 BUG_ON(nr_vecs > BIO_MAX_VECS);
167 if (nr_vecs == BIO_MAX_VECS)
168 mempool_free(bv, pool);
169 else if (nr_vecs > BIO_INLINE_VECS)
170 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
174 * Make the first allocation restricted and don't dump info on allocation
175 * failures, since we'll fall back to the mempool in case of failure.
177 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
179 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
180 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
183 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
186 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
188 if (WARN_ON_ONCE(!bvs))
192 * Upgrade the nr_vecs request to take full advantage of the allocation.
193 * We also rely on this in the bvec_free path.
195 *nr_vecs = bvs->nr_vecs;
198 * Try a slab allocation first for all smaller allocations. If that
199 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
200 * The mempool is sized to handle up to BIO_MAX_VECS entries.
202 if (*nr_vecs < BIO_MAX_VECS) {
205 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
206 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
208 *nr_vecs = BIO_MAX_VECS;
211 return mempool_alloc(pool, gfp_mask);
214 void bio_uninit(struct bio *bio)
216 #ifdef CONFIG_BLK_CGROUP
218 blkg_put(bio->bi_blkg);
222 if (bio_integrity(bio))
223 bio_integrity_free(bio);
225 bio_crypt_free_ctx(bio);
227 EXPORT_SYMBOL(bio_uninit);
229 static void bio_free(struct bio *bio)
231 struct bio_set *bs = bio->bi_pool;
237 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
238 mempool_free(p - bs->front_pad, &bs->bio_pool);
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
246 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
247 unsigned short max_vecs, blk_opf_t opf)
255 bio->bi_iter.bi_sector = 0;
256 bio->bi_iter.bi_size = 0;
257 bio->bi_iter.bi_idx = 0;
258 bio->bi_iter.bi_bvec_done = 0;
259 bio->bi_end_io = NULL;
260 bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
263 bio->bi_issue.value = 0;
265 bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 bio->bi_iocost_cost = 0;
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 bio->bi_crypt_context = NULL;
273 #ifdef CONFIG_BLK_DEV_INTEGRITY
274 bio->bi_integrity = NULL;
278 atomic_set(&bio->__bi_remaining, 1);
279 atomic_set(&bio->__bi_cnt, 1);
280 bio->bi_cookie = BLK_QC_T_NONE;
282 bio->bi_max_vecs = max_vecs;
283 bio->bi_io_vec = table;
286 EXPORT_SYMBOL(bio_init);
289 * bio_reset - reinitialize a bio
291 * @bdev: block device to use the bio for
292 * @opf: operation and flags for bio
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
300 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
303 memset(bio, 0, BIO_RESET_BYTES);
304 atomic_set(&bio->__bi_remaining, 1);
307 bio_associate_blkg(bio);
310 EXPORT_SYMBOL(bio_reset);
312 static struct bio *__bio_chain_endio(struct bio *bio)
314 struct bio *parent = bio->bi_private;
316 if (bio->bi_status && !parent->bi_status)
317 parent->bi_status = bio->bi_status;
322 static void bio_chain_endio(struct bio *bio)
324 bio_endio(__bio_chain_endio(bio));
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
336 * The caller must not set bi_private or bi_end_io in @bio.
338 void bio_chain(struct bio *bio, struct bio *parent)
340 BUG_ON(bio->bi_private || bio->bi_end_io);
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
346 EXPORT_SYMBOL(bio_chain);
348 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
349 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
351 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
360 EXPORT_SYMBOL_GPL(blk_next_bio);
362 static void bio_alloc_rescue(struct work_struct *work)
364 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
368 spin_lock(&bs->rescue_lock);
369 bio = bio_list_pop(&bs->rescue_list);
370 spin_unlock(&bs->rescue_lock);
375 submit_bio_noacct(bio);
379 static void punt_bios_to_rescuer(struct bio_set *bs)
381 struct bio_list punt, nopunt;
384 if (WARN_ON_ONCE(!bs->rescue_workqueue))
387 * In order to guarantee forward progress we must punt only bios that
388 * were allocated from this bio_set; otherwise, if there was a bio on
389 * there for a stacking driver higher up in the stack, processing it
390 * could require allocating bios from this bio_set, and doing that from
391 * our own rescuer would be bad.
393 * Since bio lists are singly linked, pop them all instead of trying to
394 * remove from the middle of the list:
397 bio_list_init(&punt);
398 bio_list_init(&nopunt);
400 while ((bio = bio_list_pop(¤t->bio_list[0])))
401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 current->bio_list[0] = nopunt;
404 bio_list_init(&nopunt);
405 while ((bio = bio_list_pop(¤t->bio_list[1])))
406 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
407 current->bio_list[1] = nopunt;
409 spin_lock(&bs->rescue_lock);
410 bio_list_merge(&bs->rescue_list, &punt);
411 spin_unlock(&bs->rescue_lock);
413 queue_work(bs->rescue_workqueue, &bs->rescue_work);
416 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
420 /* cache->free_list must be empty */
421 if (WARN_ON_ONCE(cache->free_list))
424 local_irq_save(flags);
425 cache->free_list = cache->free_list_irq;
426 cache->free_list_irq = NULL;
427 cache->nr += cache->nr_irq;
429 local_irq_restore(flags);
432 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
433 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
436 struct bio_alloc_cache *cache;
439 cache = per_cpu_ptr(bs->cache, get_cpu());
440 if (!cache->free_list) {
441 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
442 bio_alloc_irq_cache_splice(cache);
443 if (!cache->free_list) {
448 bio = cache->free_list;
449 cache->free_list = bio->bi_next;
453 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
459 * bio_alloc_bioset - allocate a bio for I/O
460 * @bdev: block device to allocate the bio for (can be %NULL)
461 * @nr_vecs: number of bvecs to pre-allocate
462 * @opf: operation and flags for bio
463 * @gfp_mask: the GFP_* mask given to the slab allocator
464 * @bs: the bio_set to allocate from.
466 * Allocate a bio from the mempools in @bs.
468 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
469 * allocate a bio. This is due to the mempool guarantees. To make this work,
470 * callers must never allocate more than 1 bio at a time from the general pool.
471 * Callers that need to allocate more than 1 bio must always submit the
472 * previously allocated bio for IO before attempting to allocate a new one.
473 * Failure to do so can cause deadlocks under memory pressure.
475 * Note that when running under submit_bio_noacct() (i.e. any block driver),
476 * bios are not submitted until after you return - see the code in
477 * submit_bio_noacct() that converts recursion into iteration, to prevent
480 * This would normally mean allocating multiple bios under submit_bio_noacct()
481 * would be susceptible to deadlocks, but we have
482 * deadlock avoidance code that resubmits any blocked bios from a rescuer
485 * However, we do not guarantee forward progress for allocations from other
486 * mempools. Doing multiple allocations from the same mempool under
487 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
488 * for per bio allocations.
490 * Returns: Pointer to new bio on success, NULL on failure.
492 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
493 blk_opf_t opf, gfp_t gfp_mask,
496 gfp_t saved_gfp = gfp_mask;
500 /* should not use nobvec bioset for nr_vecs > 0 */
501 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
504 if (opf & REQ_ALLOC_CACHE) {
505 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
506 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
511 * No cached bio available, bio returned below marked with
512 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
515 opf &= ~REQ_ALLOC_CACHE;
520 * submit_bio_noacct() converts recursion to iteration; this means if
521 * we're running beneath it, any bios we allocate and submit will not be
522 * submitted (and thus freed) until after we return.
524 * This exposes us to a potential deadlock if we allocate multiple bios
525 * from the same bio_set() while running underneath submit_bio_noacct().
526 * If we were to allocate multiple bios (say a stacking block driver
527 * that was splitting bios), we would deadlock if we exhausted the
530 * We solve this, and guarantee forward progress, with a rescuer
531 * workqueue per bio_set. If we go to allocate and there are bios on
532 * current->bio_list, we first try the allocation without
533 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
534 * blocking to the rescuer workqueue before we retry with the original
537 if (current->bio_list &&
538 (!bio_list_empty(¤t->bio_list[0]) ||
539 !bio_list_empty(¤t->bio_list[1])) &&
540 bs->rescue_workqueue)
541 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
543 p = mempool_alloc(&bs->bio_pool, gfp_mask);
544 if (!p && gfp_mask != saved_gfp) {
545 punt_bios_to_rescuer(bs);
546 gfp_mask = saved_gfp;
547 p = mempool_alloc(&bs->bio_pool, gfp_mask);
551 if (!mempool_is_saturated(&bs->bio_pool))
552 opf &= ~REQ_ALLOC_CACHE;
554 bio = p + bs->front_pad;
555 if (nr_vecs > BIO_INLINE_VECS) {
556 struct bio_vec *bvl = NULL;
558 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
559 if (!bvl && gfp_mask != saved_gfp) {
560 punt_bios_to_rescuer(bs);
561 gfp_mask = saved_gfp;
562 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
567 bio_init(bio, bdev, bvl, nr_vecs, opf);
568 } else if (nr_vecs) {
569 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
571 bio_init(bio, bdev, NULL, 0, opf);
578 mempool_free(p, &bs->bio_pool);
581 EXPORT_SYMBOL(bio_alloc_bioset);
584 * bio_kmalloc - kmalloc a bio
585 * @nr_vecs: number of bio_vecs to allocate
586 * @gfp_mask: the GFP_* mask given to the slab allocator
588 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
589 * using bio_init() before use. To free a bio returned from this function use
590 * kfree() after calling bio_uninit(). A bio returned from this function can
591 * be reused by calling bio_uninit() before calling bio_init() again.
593 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
594 * function are not backed by a mempool can fail. Do not use this function
595 * for allocations in the file system I/O path.
597 * Returns: Pointer to new bio on success, NULL on failure.
599 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
603 if (nr_vecs > UIO_MAXIOV)
605 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
607 EXPORT_SYMBOL(bio_kmalloc);
609 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
612 struct bvec_iter iter;
614 __bio_for_each_segment(bv, bio, iter, start)
617 EXPORT_SYMBOL(zero_fill_bio_iter);
620 * bio_truncate - truncate the bio to small size of @new_size
621 * @bio: the bio to be truncated
622 * @new_size: new size for truncating the bio
625 * Truncate the bio to new size of @new_size. If bio_op(bio) is
626 * REQ_OP_READ, zero the truncated part. This function should only
627 * be used for handling corner cases, such as bio eod.
629 static void bio_truncate(struct bio *bio, unsigned new_size)
632 struct bvec_iter iter;
633 unsigned int done = 0;
634 bool truncated = false;
636 if (new_size >= bio->bi_iter.bi_size)
639 if (bio_op(bio) != REQ_OP_READ)
642 bio_for_each_segment(bv, bio, iter) {
643 if (done + bv.bv_len > new_size) {
647 offset = new_size - done;
650 zero_user(bv.bv_page, bv.bv_offset + offset,
659 * Don't touch bvec table here and make it really immutable, since
660 * fs bio user has to retrieve all pages via bio_for_each_segment_all
661 * in its .end_bio() callback.
663 * It is enough to truncate bio by updating .bi_size since we can make
664 * correct bvec with the updated .bi_size for drivers.
666 bio->bi_iter.bi_size = new_size;
670 * guard_bio_eod - truncate a BIO to fit the block device
671 * @bio: bio to truncate
673 * This allows us to do IO even on the odd last sectors of a device, even if the
674 * block size is some multiple of the physical sector size.
676 * We'll just truncate the bio to the size of the device, and clear the end of
677 * the buffer head manually. Truly out-of-range accesses will turn into actual
678 * I/O errors, this only handles the "we need to be able to do I/O at the final
681 void guard_bio_eod(struct bio *bio)
683 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
689 * If the *whole* IO is past the end of the device,
690 * let it through, and the IO layer will turn it into
693 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
696 maxsector -= bio->bi_iter.bi_sector;
697 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
700 bio_truncate(bio, maxsector << 9);
703 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
709 while ((bio = cache->free_list) != NULL) {
710 cache->free_list = bio->bi_next;
719 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
722 nr -= __bio_alloc_cache_prune(cache, nr);
723 if (!READ_ONCE(cache->free_list)) {
724 bio_alloc_irq_cache_splice(cache);
725 __bio_alloc_cache_prune(cache, nr);
729 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
733 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
735 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
737 bio_alloc_cache_prune(cache, -1U);
742 static void bio_alloc_cache_destroy(struct bio_set *bs)
749 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
750 for_each_possible_cpu(cpu) {
751 struct bio_alloc_cache *cache;
753 cache = per_cpu_ptr(bs->cache, cpu);
754 bio_alloc_cache_prune(cache, -1U);
756 free_percpu(bs->cache);
760 static inline void bio_put_percpu_cache(struct bio *bio)
762 struct bio_alloc_cache *cache;
764 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
765 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
773 if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
774 bio->bi_next = cache->free_list;
776 cache->free_list = bio;
781 local_irq_save(flags);
782 bio->bi_next = cache->free_list_irq;
783 cache->free_list_irq = bio;
785 local_irq_restore(flags);
791 * bio_put - release a reference to a bio
792 * @bio: bio to release reference to
795 * Put a reference to a &struct bio, either one you have gotten with
796 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
798 void bio_put(struct bio *bio)
800 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
801 BUG_ON(!atomic_read(&bio->__bi_cnt));
802 if (!atomic_dec_and_test(&bio->__bi_cnt))
805 if (bio->bi_opf & REQ_ALLOC_CACHE)
806 bio_put_percpu_cache(bio);
810 EXPORT_SYMBOL(bio_put);
812 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
814 bio_set_flag(bio, BIO_CLONED);
815 bio->bi_ioprio = bio_src->bi_ioprio;
816 bio->bi_iter = bio_src->bi_iter;
819 if (bio->bi_bdev == bio_src->bi_bdev &&
820 bio_flagged(bio_src, BIO_REMAPPED))
821 bio_set_flag(bio, BIO_REMAPPED);
822 bio_clone_blkg_association(bio, bio_src);
825 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
827 if (bio_integrity(bio_src) &&
828 bio_integrity_clone(bio, bio_src, gfp) < 0)
834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
835 * @bdev: block_device to clone onto
836 * @bio_src: bio to clone from
837 * @gfp: allocation priority
838 * @bs: bio_set to allocate from
840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
841 * bio, but not the actual data it points to.
843 * The caller must ensure that the return bio is not freed before @bio_src.
845 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
846 gfp_t gfp, struct bio_set *bs)
850 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
854 if (__bio_clone(bio, bio_src, gfp) < 0) {
858 bio->bi_io_vec = bio_src->bi_io_vec;
862 EXPORT_SYMBOL(bio_alloc_clone);
865 * bio_init_clone - clone a bio that shares the original bio's biovec
866 * @bdev: block_device to clone onto
867 * @bio: bio to clone into
868 * @bio_src: bio to clone from
869 * @gfp: allocation priority
871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
872 * The caller owns the returned bio, but not the actual data it points to.
874 * The caller must ensure that @bio_src is not freed before @bio.
876 int bio_init_clone(struct block_device *bdev, struct bio *bio,
877 struct bio *bio_src, gfp_t gfp)
881 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
882 ret = __bio_clone(bio, bio_src, gfp);
887 EXPORT_SYMBOL(bio_init_clone);
890 * bio_full - check if the bio is full
892 * @len: length of one segment to be added
894 * Return true if @bio is full and one segment with @len bytes can't be
895 * added to the bio, otherwise return false
897 static inline bool bio_full(struct bio *bio, unsigned len)
899 if (bio->bi_vcnt >= bio->bi_max_vecs)
901 if (bio->bi_iter.bi_size > UINT_MAX - len)
906 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
907 unsigned int len, unsigned int off, bool *same_page)
909 size_t bv_end = bv->bv_offset + bv->bv_len;
910 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
911 phys_addr_t page_addr = page_to_phys(page);
913 if (vec_end_addr + 1 != page_addr + off)
915 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
917 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
920 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
922 if (IS_ENABLED(CONFIG_KMSAN))
924 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
933 * Try to merge a page into a segment, while obeying the hardware segment
934 * size limit. This is not for normal read/write bios, but for passthrough
935 * or Zone Append operations that we can't split.
937 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
938 struct page *page, unsigned len, unsigned offset,
941 unsigned long mask = queue_segment_boundary(q);
942 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
943 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
945 if ((addr1 | mask) != (addr2 | mask))
947 if (bv->bv_len + len > queue_max_segment_size(q))
949 return bvec_try_merge_page(bv, page, len, offset, same_page);
953 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
954 * @q: the target queue
955 * @bio: destination bio
957 * @len: vec entry length
958 * @offset: vec entry offset
959 * @max_sectors: maximum number of sectors that can be added
960 * @same_page: return if the segment has been merged inside the same page
962 * Add a page to a bio while respecting the hardware max_sectors, max_segment
963 * and gap limitations.
965 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
966 struct page *page, unsigned int len, unsigned int offset,
967 unsigned int max_sectors, bool *same_page)
969 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
972 if (((bio->bi_iter.bi_size + len) >> SECTOR_SHIFT) > max_sectors)
975 if (bio->bi_vcnt > 0) {
976 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
978 if (bvec_try_merge_hw_page(q, bv, page, len, offset,
980 bio->bi_iter.bi_size += len;
985 min(bio->bi_max_vecs, queue_max_segments(q)))
989 * If the queue doesn't support SG gaps and adding this segment
990 * would create a gap, disallow it.
992 if (bvec_gap_to_prev(&q->limits, bv, offset))
996 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
998 bio->bi_iter.bi_size += len;
1003 * bio_add_pc_page - attempt to add page to passthrough bio
1004 * @q: the target queue
1005 * @bio: destination bio
1006 * @page: page to add
1007 * @len: vec entry length
1008 * @offset: vec entry offset
1010 * Attempt to add a page to the bio_vec maplist. This can fail for a
1011 * number of reasons, such as the bio being full or target block device
1012 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1013 * so it is always possible to add a single page to an empty bio.
1015 * This should only be used by passthrough bios.
1017 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1018 struct page *page, unsigned int len, unsigned int offset)
1020 bool same_page = false;
1021 return bio_add_hw_page(q, bio, page, len, offset,
1022 queue_max_hw_sectors(q), &same_page);
1024 EXPORT_SYMBOL(bio_add_pc_page);
1027 * bio_add_zone_append_page - attempt to add page to zone-append bio
1028 * @bio: destination bio
1029 * @page: page to add
1030 * @len: vec entry length
1031 * @offset: vec entry offset
1033 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1034 * for a zone-append request. This can fail for a number of reasons, such as the
1035 * bio being full or the target block device is not a zoned block device or
1036 * other limitations of the target block device. The target block device must
1037 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1040 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1042 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1043 unsigned int len, unsigned int offset)
1045 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1046 bool same_page = false;
1048 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1051 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1054 return bio_add_hw_page(q, bio, page, len, offset,
1055 queue_max_zone_append_sectors(q), &same_page);
1057 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1060 * __bio_add_page - add page(s) to a bio in a new segment
1061 * @bio: destination bio
1062 * @page: start page to add
1063 * @len: length of the data to add, may cross pages
1064 * @off: offset of the data relative to @page, may cross pages
1066 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1067 * that @bio has space for another bvec.
1069 void __bio_add_page(struct bio *bio, struct page *page,
1070 unsigned int len, unsigned int off)
1072 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1073 WARN_ON_ONCE(bio_full(bio, len));
1075 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
1076 bio->bi_iter.bi_size += len;
1079 EXPORT_SYMBOL_GPL(__bio_add_page);
1082 * bio_add_page - attempt to add page(s) to bio
1083 * @bio: destination bio
1084 * @page: start page to add
1085 * @len: vec entry length, may cross pages
1086 * @offset: vec entry offset relative to @page, may cross pages
1088 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1089 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1091 int bio_add_page(struct bio *bio, struct page *page,
1092 unsigned int len, unsigned int offset)
1094 bool same_page = false;
1096 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1098 if (bio->bi_iter.bi_size > UINT_MAX - len)
1101 if (bio->bi_vcnt > 0 &&
1102 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1103 page, len, offset, &same_page)) {
1104 bio->bi_iter.bi_size += len;
1108 if (bio->bi_vcnt >= bio->bi_max_vecs)
1110 __bio_add_page(bio, page, len, offset);
1113 EXPORT_SYMBOL(bio_add_page);
1115 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1118 WARN_ON_ONCE(len > UINT_MAX);
1119 WARN_ON_ONCE(off > UINT_MAX);
1120 __bio_add_page(bio, &folio->page, len, off);
1124 * bio_add_folio - Attempt to add part of a folio to a bio.
1125 * @bio: BIO to add to.
1126 * @folio: Folio to add.
1127 * @len: How many bytes from the folio to add.
1128 * @off: First byte in this folio to add.
1130 * Filesystems that use folios can call this function instead of calling
1131 * bio_add_page() for each page in the folio. If @off is bigger than
1132 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1133 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1135 * Return: Whether the addition was successful.
1137 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1140 if (len > UINT_MAX || off > UINT_MAX)
1142 return bio_add_page(bio, &folio->page, len, off) > 0;
1144 EXPORT_SYMBOL(bio_add_folio);
1146 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1148 struct folio_iter fi;
1150 bio_for_each_folio_all(fi, bio) {
1155 folio_lock(fi.folio);
1156 folio_mark_dirty(fi.folio);
1157 folio_unlock(fi.folio);
1159 page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
1161 bio_release_page(bio, page++);
1163 } while (done < fi.length);
1166 EXPORT_SYMBOL_GPL(__bio_release_pages);
1168 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1170 size_t size = iov_iter_count(iter);
1172 WARN_ON_ONCE(bio->bi_max_vecs);
1174 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1175 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1176 size_t max_sectors = queue_max_zone_append_sectors(q);
1178 size = min(size, max_sectors << SECTOR_SHIFT);
1181 bio->bi_vcnt = iter->nr_segs;
1182 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1183 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1184 bio->bi_iter.bi_size = size;
1185 bio_set_flag(bio, BIO_CLONED);
1188 static int bio_iov_add_page(struct bio *bio, struct page *page,
1189 unsigned int len, unsigned int offset)
1191 bool same_page = false;
1193 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1196 if (bio->bi_vcnt > 0 &&
1197 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1198 page, len, offset, &same_page)) {
1199 bio->bi_iter.bi_size += len;
1201 bio_release_page(bio, page);
1204 __bio_add_page(bio, page, len, offset);
1208 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1209 unsigned int len, unsigned int offset)
1211 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1212 bool same_page = false;
1214 if (bio_add_hw_page(q, bio, page, len, offset,
1215 queue_max_zone_append_sectors(q), &same_page) != len)
1218 bio_release_page(bio, page);
1222 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1225 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1226 * @bio: bio to add pages to
1227 * @iter: iov iterator describing the region to be mapped
1229 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1230 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1231 * For a multi-segment *iter, this function only adds pages from the next
1232 * non-empty segment of the iov iterator.
1234 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1236 iov_iter_extraction_t extraction_flags = 0;
1237 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1238 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1239 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1240 struct page **pages = (struct page **)bv;
1242 unsigned len, i = 0;
1247 * Move page array up in the allocated memory for the bio vecs as far as
1248 * possible so that we can start filling biovecs from the beginning
1249 * without overwriting the temporary page array.
1251 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1252 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1254 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1255 extraction_flags |= ITER_ALLOW_P2PDMA;
1258 * Each segment in the iov is required to be a block size multiple.
1259 * However, we may not be able to get the entire segment if it spans
1260 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1261 * result to ensure the bio's total size is correct. The remainder of
1262 * the iov data will be picked up in the next bio iteration.
1264 size = iov_iter_extract_pages(iter, &pages,
1265 UINT_MAX - bio->bi_iter.bi_size,
1266 nr_pages, extraction_flags, &offset);
1267 if (unlikely(size <= 0))
1268 return size ? size : -EFAULT;
1270 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1273 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1274 iov_iter_revert(iter, trim);
1278 if (unlikely(!size)) {
1283 for (left = size, i = 0; left > 0; left -= len, i++) {
1284 struct page *page = pages[i];
1286 len = min_t(size_t, PAGE_SIZE - offset, left);
1287 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1288 ret = bio_iov_add_zone_append_page(bio, page, len,
1293 bio_iov_add_page(bio, page, len, offset);
1298 iov_iter_revert(iter, left);
1300 while (i < nr_pages)
1301 bio_release_page(bio, pages[i++]);
1307 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1308 * @bio: bio to add pages to
1309 * @iter: iov iterator describing the region to be added
1311 * This takes either an iterator pointing to user memory, or one pointing to
1312 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1313 * map them into the kernel. On IO completion, the caller should put those
1314 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1315 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1316 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1317 * completed by a call to ->ki_complete() or returns with an error other than
1318 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1319 * on IO completion. If it isn't, then pages should be released.
1321 * The function tries, but does not guarantee, to pin as many pages as
1322 * fit into the bio, or are requested in @iter, whatever is smaller. If
1323 * MM encounters an error pinning the requested pages, it stops. Error
1324 * is returned only if 0 pages could be pinned.
1326 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1330 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1333 if (iov_iter_is_bvec(iter)) {
1334 bio_iov_bvec_set(bio, iter);
1335 iov_iter_advance(iter, bio->bi_iter.bi_size);
1339 if (iov_iter_extract_will_pin(iter))
1340 bio_set_flag(bio, BIO_PAGE_PINNED);
1342 ret = __bio_iov_iter_get_pages(bio, iter);
1343 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1345 return bio->bi_vcnt ? 0 : ret;
1347 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1349 static void submit_bio_wait_endio(struct bio *bio)
1351 complete(bio->bi_private);
1355 * submit_bio_wait - submit a bio, and wait until it completes
1356 * @bio: The &struct bio which describes the I/O
1358 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1359 * bio_endio() on failure.
1361 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1362 * result in bio reference to be consumed. The caller must drop the reference
1365 int submit_bio_wait(struct bio *bio)
1367 DECLARE_COMPLETION_ONSTACK_MAP(done,
1368 bio->bi_bdev->bd_disk->lockdep_map);
1369 unsigned long hang_check;
1371 bio->bi_private = &done;
1372 bio->bi_end_io = submit_bio_wait_endio;
1373 bio->bi_opf |= REQ_SYNC;
1376 /* Prevent hang_check timer from firing at us during very long I/O */
1377 hang_check = sysctl_hung_task_timeout_secs;
1379 while (!wait_for_completion_io_timeout(&done,
1380 hang_check * (HZ/2)))
1383 wait_for_completion_io(&done);
1385 return blk_status_to_errno(bio->bi_status);
1387 EXPORT_SYMBOL(submit_bio_wait);
1389 void __bio_advance(struct bio *bio, unsigned bytes)
1391 if (bio_integrity(bio))
1392 bio_integrity_advance(bio, bytes);
1394 bio_crypt_advance(bio, bytes);
1395 bio_advance_iter(bio, &bio->bi_iter, bytes);
1397 EXPORT_SYMBOL(__bio_advance);
1399 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1400 struct bio *src, struct bvec_iter *src_iter)
1402 while (src_iter->bi_size && dst_iter->bi_size) {
1403 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1404 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1405 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1406 void *src_buf = bvec_kmap_local(&src_bv);
1407 void *dst_buf = bvec_kmap_local(&dst_bv);
1409 memcpy(dst_buf, src_buf, bytes);
1411 kunmap_local(dst_buf);
1412 kunmap_local(src_buf);
1414 bio_advance_iter_single(src, src_iter, bytes);
1415 bio_advance_iter_single(dst, dst_iter, bytes);
1418 EXPORT_SYMBOL(bio_copy_data_iter);
1421 * bio_copy_data - copy contents of data buffers from one bio to another
1423 * @dst: destination bio
1425 * Stops when it reaches the end of either @src or @dst - that is, copies
1426 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1428 void bio_copy_data(struct bio *dst, struct bio *src)
1430 struct bvec_iter src_iter = src->bi_iter;
1431 struct bvec_iter dst_iter = dst->bi_iter;
1433 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1435 EXPORT_SYMBOL(bio_copy_data);
1437 void bio_free_pages(struct bio *bio)
1439 struct bio_vec *bvec;
1440 struct bvec_iter_all iter_all;
1442 bio_for_each_segment_all(bvec, bio, iter_all)
1443 __free_page(bvec->bv_page);
1445 EXPORT_SYMBOL(bio_free_pages);
1448 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1449 * for performing direct-IO in BIOs.
1451 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1452 * because the required locks are not interrupt-safe. So what we can do is to
1453 * mark the pages dirty _before_ performing IO. And in interrupt context,
1454 * check that the pages are still dirty. If so, fine. If not, redirty them
1455 * in process context.
1457 * Note that this code is very hard to test under normal circumstances because
1458 * direct-io pins the pages with get_user_pages(). This makes
1459 * is_page_cache_freeable return false, and the VM will not clean the pages.
1460 * But other code (eg, flusher threads) could clean the pages if they are mapped
1463 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1464 * deferred bio dirtying paths.
1468 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1470 void bio_set_pages_dirty(struct bio *bio)
1472 struct folio_iter fi;
1474 bio_for_each_folio_all(fi, bio) {
1475 folio_lock(fi.folio);
1476 folio_mark_dirty(fi.folio);
1477 folio_unlock(fi.folio);
1480 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1483 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1484 * If they are, then fine. If, however, some pages are clean then they must
1485 * have been written out during the direct-IO read. So we take another ref on
1486 * the BIO and re-dirty the pages in process context.
1488 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1489 * here on. It will unpin each page and will run one bio_put() against the
1493 static void bio_dirty_fn(struct work_struct *work);
1495 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1496 static DEFINE_SPINLOCK(bio_dirty_lock);
1497 static struct bio *bio_dirty_list;
1500 * This runs in process context
1502 static void bio_dirty_fn(struct work_struct *work)
1504 struct bio *bio, *next;
1506 spin_lock_irq(&bio_dirty_lock);
1507 next = bio_dirty_list;
1508 bio_dirty_list = NULL;
1509 spin_unlock_irq(&bio_dirty_lock);
1511 while ((bio = next) != NULL) {
1512 next = bio->bi_private;
1514 bio_release_pages(bio, true);
1519 void bio_check_pages_dirty(struct bio *bio)
1521 struct folio_iter fi;
1522 unsigned long flags;
1524 bio_for_each_folio_all(fi, bio) {
1525 if (!folio_test_dirty(fi.folio))
1529 bio_release_pages(bio, false);
1533 spin_lock_irqsave(&bio_dirty_lock, flags);
1534 bio->bi_private = bio_dirty_list;
1535 bio_dirty_list = bio;
1536 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1537 schedule_work(&bio_dirty_work);
1539 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1541 static inline bool bio_remaining_done(struct bio *bio)
1544 * If we're not chaining, then ->__bi_remaining is always 1 and
1545 * we always end io on the first invocation.
1547 if (!bio_flagged(bio, BIO_CHAIN))
1550 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1552 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1553 bio_clear_flag(bio, BIO_CHAIN);
1561 * bio_endio - end I/O on a bio
1565 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1566 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1567 * bio unless they own it and thus know that it has an end_io function.
1569 * bio_endio() can be called several times on a bio that has been chained
1570 * using bio_chain(). The ->bi_end_io() function will only be called the
1573 void bio_endio(struct bio *bio)
1576 if (!bio_remaining_done(bio))
1578 if (!bio_integrity_endio(bio))
1581 rq_qos_done_bio(bio);
1583 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1584 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1585 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1589 * Need to have a real endio function for chained bios, otherwise
1590 * various corner cases will break (like stacking block devices that
1591 * save/restore bi_end_io) - however, we want to avoid unbounded
1592 * recursion and blowing the stack. Tail call optimization would
1593 * handle this, but compiling with frame pointers also disables
1594 * gcc's sibling call optimization.
1596 if (bio->bi_end_io == bio_chain_endio) {
1597 bio = __bio_chain_endio(bio);
1601 blk_throtl_bio_endio(bio);
1602 /* release cgroup info */
1605 bio->bi_end_io(bio);
1607 EXPORT_SYMBOL(bio_endio);
1610 * bio_split - split a bio
1611 * @bio: bio to split
1612 * @sectors: number of sectors to split from the front of @bio
1614 * @bs: bio set to allocate from
1616 * Allocates and returns a new bio which represents @sectors from the start of
1617 * @bio, and updates @bio to represent the remaining sectors.
1619 * Unless this is a discard request the newly allocated bio will point
1620 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1621 * neither @bio nor @bs are freed before the split bio.
1623 struct bio *bio_split(struct bio *bio, int sectors,
1624 gfp_t gfp, struct bio_set *bs)
1628 BUG_ON(sectors <= 0);
1629 BUG_ON(sectors >= bio_sectors(bio));
1631 /* Zone append commands cannot be split */
1632 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1635 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1639 split->bi_iter.bi_size = sectors << 9;
1641 if (bio_integrity(split))
1642 bio_integrity_trim(split);
1644 bio_advance(bio, split->bi_iter.bi_size);
1646 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1647 bio_set_flag(split, BIO_TRACE_COMPLETION);
1651 EXPORT_SYMBOL(bio_split);
1654 * bio_trim - trim a bio
1656 * @offset: number of sectors to trim from the front of @bio
1657 * @size: size we want to trim @bio to, in sectors
1659 * This function is typically used for bios that are cloned and submitted
1660 * to the underlying device in parts.
1662 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1664 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1665 offset + size > bio_sectors(bio)))
1669 if (offset == 0 && size == bio->bi_iter.bi_size)
1672 bio_advance(bio, offset << 9);
1673 bio->bi_iter.bi_size = size;
1675 if (bio_integrity(bio))
1676 bio_integrity_trim(bio);
1678 EXPORT_SYMBOL_GPL(bio_trim);
1681 * create memory pools for biovec's in a bio_set.
1682 * use the global biovec slabs created for general use.
1684 int biovec_init_pool(mempool_t *pool, int pool_entries)
1686 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1688 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1692 * bioset_exit - exit a bioset initialized with bioset_init()
1694 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1697 void bioset_exit(struct bio_set *bs)
1699 bio_alloc_cache_destroy(bs);
1700 if (bs->rescue_workqueue)
1701 destroy_workqueue(bs->rescue_workqueue);
1702 bs->rescue_workqueue = NULL;
1704 mempool_exit(&bs->bio_pool);
1705 mempool_exit(&bs->bvec_pool);
1707 bioset_integrity_free(bs);
1710 bs->bio_slab = NULL;
1712 EXPORT_SYMBOL(bioset_exit);
1715 * bioset_init - Initialize a bio_set
1716 * @bs: pool to initialize
1717 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1718 * @front_pad: Number of bytes to allocate in front of the returned bio
1719 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1720 * and %BIOSET_NEED_RESCUER
1723 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1724 * to ask for a number of bytes to be allocated in front of the bio.
1725 * Front pad allocation is useful for embedding the bio inside
1726 * another structure, to avoid allocating extra data to go with the bio.
1727 * Note that the bio must be embedded at the END of that structure always,
1728 * or things will break badly.
1729 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1730 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1731 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1732 * to dispatch queued requests when the mempool runs out of space.
1735 int bioset_init(struct bio_set *bs,
1736 unsigned int pool_size,
1737 unsigned int front_pad,
1740 bs->front_pad = front_pad;
1741 if (flags & BIOSET_NEED_BVECS)
1742 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1746 spin_lock_init(&bs->rescue_lock);
1747 bio_list_init(&bs->rescue_list);
1748 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1750 bs->bio_slab = bio_find_or_create_slab(bs);
1754 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1757 if ((flags & BIOSET_NEED_BVECS) &&
1758 biovec_init_pool(&bs->bvec_pool, pool_size))
1761 if (flags & BIOSET_NEED_RESCUER) {
1762 bs->rescue_workqueue = alloc_workqueue("bioset",
1764 if (!bs->rescue_workqueue)
1767 if (flags & BIOSET_PERCPU_CACHE) {
1768 bs->cache = alloc_percpu(struct bio_alloc_cache);
1771 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1779 EXPORT_SYMBOL(bioset_init);
1781 static int __init init_bio(void)
1785 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1787 bio_integrity_init();
1789 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1790 struct biovec_slab *bvs = bvec_slabs + i;
1792 bvs->slab = kmem_cache_create(bvs->name,
1793 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1794 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1797 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1800 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1801 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1802 panic("bio: can't allocate bios\n");
1804 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1805 panic("bio: can't create integrity pool\n");
1809 subsys_initcall(init_bio);