1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/blk-crypto.h>
21 #include <linux/xarray.h>
23 #include <trace/events/block.h>
25 #include "blk-rq-qos.h"
26 #include "blk-cgroup.h"
28 struct bio_alloc_cache {
29 struct bio *free_list;
33 static struct biovec_slab {
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
47 /* smaller bios use inline vecs */
49 return &bvec_slabs[0];
51 return &bvec_slabs[1];
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
70 * Our slab pool management
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
81 static struct bio_slab *create_bio_slab(unsigned int size)
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 bslab->slab_size = size;
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
101 kmem_cache_destroy(bslab->slab);
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
123 bslab = create_bio_slab(size);
124 mutex_unlock(&bio_slab_lock);
131 static void bio_put_slab(struct bio_set *bs)
133 struct bio_slab *bslab = NULL;
134 unsigned int slab_size = bs_bio_slab_size(bs);
136 mutex_lock(&bio_slab_lock);
138 bslab = xa_load(&bio_slabs, slab_size);
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
144 WARN_ON(!bslab->slab_ref);
146 if (--bslab->slab_ref)
149 xa_erase(&bio_slabs, slab_size);
151 kmem_cache_destroy(bslab->slab);
155 mutex_unlock(&bio_slab_lock);
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
160 BUG_ON(nr_vecs > BIO_MAX_VECS);
162 if (nr_vecs == BIO_MAX_VECS)
163 mempool_free(bv, pool);
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
183 if (WARN_ON_ONCE(!bvs))
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
190 *nr_vecs = bvs->nr_vecs;
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
197 if (*nr_vecs < BIO_MAX_VECS) {
200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
203 *nr_vecs = BIO_MAX_VECS;
206 return mempool_alloc(pool, gfp_mask);
209 void bio_uninit(struct bio *bio)
211 #ifdef CONFIG_BLK_CGROUP
213 blkg_put(bio->bi_blkg);
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
220 bio_crypt_free_ctx(bio);
222 EXPORT_SYMBOL(bio_uninit);
224 static void bio_free(struct bio *bio)
226 struct bio_set *bs = bio->bi_pool;
232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
235 * If we have front padding, adjust the bio pointer before freeing
240 mempool_free(p, &bs->bio_pool);
242 /* Bio was allocated by bio_kmalloc() */
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
269 bio->bi_issue.value = 0;
271 bio_associate_blkg(bio);
272 #ifdef CONFIG_BLK_CGROUP_IOCOST
273 bio->bi_iocost_cost = 0;
276 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
277 bio->bi_crypt_context = NULL;
279 #ifdef CONFIG_BLK_DEV_INTEGRITY
280 bio->bi_integrity = NULL;
284 atomic_set(&bio->__bi_remaining, 1);
285 atomic_set(&bio->__bi_cnt, 1);
286 bio->bi_cookie = BLK_QC_T_NONE;
288 bio->bi_max_vecs = max_vecs;
289 bio->bi_io_vec = table;
292 EXPORT_SYMBOL(bio_init);
295 * bio_reset - reinitialize a bio
297 * @bdev: block device to use the bio for
298 * @opf: operation and flags for bio
301 * After calling bio_reset(), @bio will be in the same state as a freshly
302 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
303 * preserved are the ones that are initialized by bio_alloc_bioset(). See
304 * comment in struct bio.
306 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
309 memset(bio, 0, BIO_RESET_BYTES);
310 atomic_set(&bio->__bi_remaining, 1);
313 bio_associate_blkg(bio);
316 EXPORT_SYMBOL(bio_reset);
318 static struct bio *__bio_chain_endio(struct bio *bio)
320 struct bio *parent = bio->bi_private;
322 if (bio->bi_status && !parent->bi_status)
323 parent->bi_status = bio->bi_status;
328 static void bio_chain_endio(struct bio *bio)
330 bio_endio(__bio_chain_endio(bio));
334 * bio_chain - chain bio completions
335 * @bio: the target bio
336 * @parent: the parent bio of @bio
338 * The caller won't have a bi_end_io called when @bio completes - instead,
339 * @parent's bi_end_io won't be called until both @parent and @bio have
340 * completed; the chained bio will also be freed when it completes.
342 * The caller must not set bi_private or bi_end_io in @bio.
344 void bio_chain(struct bio *bio, struct bio *parent)
346 BUG_ON(bio->bi_private || bio->bi_end_io);
348 bio->bi_private = parent;
349 bio->bi_end_io = bio_chain_endio;
350 bio_inc_remaining(parent);
352 EXPORT_SYMBOL(bio_chain);
354 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
355 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
357 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
366 EXPORT_SYMBOL_GPL(blk_next_bio);
368 static void bio_alloc_rescue(struct work_struct *work)
370 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
374 spin_lock(&bs->rescue_lock);
375 bio = bio_list_pop(&bs->rescue_list);
376 spin_unlock(&bs->rescue_lock);
381 submit_bio_noacct(bio);
385 static void punt_bios_to_rescuer(struct bio_set *bs)
387 struct bio_list punt, nopunt;
390 if (WARN_ON_ONCE(!bs->rescue_workqueue))
393 * In order to guarantee forward progress we must punt only bios that
394 * were allocated from this bio_set; otherwise, if there was a bio on
395 * there for a stacking driver higher up in the stack, processing it
396 * could require allocating bios from this bio_set, and doing that from
397 * our own rescuer would be bad.
399 * Since bio lists are singly linked, pop them all instead of trying to
400 * remove from the middle of the list:
403 bio_list_init(&punt);
404 bio_list_init(&nopunt);
406 while ((bio = bio_list_pop(¤t->bio_list[0])))
407 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
408 current->bio_list[0] = nopunt;
410 bio_list_init(&nopunt);
411 while ((bio = bio_list_pop(¤t->bio_list[1])))
412 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
413 current->bio_list[1] = nopunt;
415 spin_lock(&bs->rescue_lock);
416 bio_list_merge(&bs->rescue_list, &punt);
417 spin_unlock(&bs->rescue_lock);
419 queue_work(bs->rescue_workqueue, &bs->rescue_work);
423 * bio_alloc_bioset - allocate a bio for I/O
424 * @bdev: block device to allocate the bio for (can be %NULL)
425 * @nr_vecs: number of bvecs to pre-allocate
426 * @opf: operation and flags for bio
427 * @gfp_mask: the GFP_* mask given to the slab allocator
428 * @bs: the bio_set to allocate from.
430 * Allocate a bio from the mempools in @bs.
432 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
433 * allocate a bio. This is due to the mempool guarantees. To make this work,
434 * callers must never allocate more than 1 bio at a time from the general pool.
435 * Callers that need to allocate more than 1 bio must always submit the
436 * previously allocated bio for IO before attempting to allocate a new one.
437 * Failure to do so can cause deadlocks under memory pressure.
439 * Note that when running under submit_bio_noacct() (i.e. any block driver),
440 * bios are not submitted until after you return - see the code in
441 * submit_bio_noacct() that converts recursion into iteration, to prevent
444 * This would normally mean allocating multiple bios under submit_bio_noacct()
445 * would be susceptible to deadlocks, but we have
446 * deadlock avoidance code that resubmits any blocked bios from a rescuer
449 * However, we do not guarantee forward progress for allocations from other
450 * mempools. Doing multiple allocations from the same mempool under
451 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
452 * for per bio allocations.
454 * Returns: Pointer to new bio on success, NULL on failure.
456 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
457 unsigned int opf, gfp_t gfp_mask,
460 gfp_t saved_gfp = gfp_mask;
464 /* should not use nobvec bioset for nr_vecs > 0 */
465 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
469 * submit_bio_noacct() converts recursion to iteration; this means if
470 * we're running beneath it, any bios we allocate and submit will not be
471 * submitted (and thus freed) until after we return.
473 * This exposes us to a potential deadlock if we allocate multiple bios
474 * from the same bio_set() while running underneath submit_bio_noacct().
475 * If we were to allocate multiple bios (say a stacking block driver
476 * that was splitting bios), we would deadlock if we exhausted the
479 * We solve this, and guarantee forward progress, with a rescuer
480 * workqueue per bio_set. If we go to allocate and there are bios on
481 * current->bio_list, we first try the allocation without
482 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
483 * blocking to the rescuer workqueue before we retry with the original
486 if (current->bio_list &&
487 (!bio_list_empty(¤t->bio_list[0]) ||
488 !bio_list_empty(¤t->bio_list[1])) &&
489 bs->rescue_workqueue)
490 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
492 p = mempool_alloc(&bs->bio_pool, gfp_mask);
493 if (!p && gfp_mask != saved_gfp) {
494 punt_bios_to_rescuer(bs);
495 gfp_mask = saved_gfp;
496 p = mempool_alloc(&bs->bio_pool, gfp_mask);
501 bio = p + bs->front_pad;
502 if (nr_vecs > BIO_INLINE_VECS) {
503 struct bio_vec *bvl = NULL;
505 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
506 if (!bvl && gfp_mask != saved_gfp) {
507 punt_bios_to_rescuer(bs);
508 gfp_mask = saved_gfp;
509 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
514 bio_init(bio, bdev, bvl, nr_vecs, opf);
515 } else if (nr_vecs) {
516 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
518 bio_init(bio, bdev, NULL, 0, opf);
525 mempool_free(p, &bs->bio_pool);
528 EXPORT_SYMBOL(bio_alloc_bioset);
531 * bio_kmalloc - kmalloc a bio for I/O
532 * @gfp_mask: the GFP_* mask given to the slab allocator
533 * @nr_iovecs: number of iovecs to pre-allocate
535 * Use kmalloc to allocate and initialize a bio.
537 * Returns: Pointer to new bio on success, NULL on failure.
539 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
543 if (nr_iovecs > UIO_MAXIOV)
546 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
549 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
554 EXPORT_SYMBOL(bio_kmalloc);
556 void zero_fill_bio(struct bio *bio)
559 struct bvec_iter iter;
561 bio_for_each_segment(bv, bio, iter)
564 EXPORT_SYMBOL(zero_fill_bio);
567 * bio_truncate - truncate the bio to small size of @new_size
568 * @bio: the bio to be truncated
569 * @new_size: new size for truncating the bio
572 * Truncate the bio to new size of @new_size. If bio_op(bio) is
573 * REQ_OP_READ, zero the truncated part. This function should only
574 * be used for handling corner cases, such as bio eod.
576 static void bio_truncate(struct bio *bio, unsigned new_size)
579 struct bvec_iter iter;
580 unsigned int done = 0;
581 bool truncated = false;
583 if (new_size >= bio->bi_iter.bi_size)
586 if (bio_op(bio) != REQ_OP_READ)
589 bio_for_each_segment(bv, bio, iter) {
590 if (done + bv.bv_len > new_size) {
594 offset = new_size - done;
597 zero_user(bv.bv_page, bv.bv_offset + offset,
606 * Don't touch bvec table here and make it really immutable, since
607 * fs bio user has to retrieve all pages via bio_for_each_segment_all
608 * in its .end_bio() callback.
610 * It is enough to truncate bio by updating .bi_size since we can make
611 * correct bvec with the updated .bi_size for drivers.
613 bio->bi_iter.bi_size = new_size;
617 * guard_bio_eod - truncate a BIO to fit the block device
618 * @bio: bio to truncate
620 * This allows us to do IO even on the odd last sectors of a device, even if the
621 * block size is some multiple of the physical sector size.
623 * We'll just truncate the bio to the size of the device, and clear the end of
624 * the buffer head manually. Truly out-of-range accesses will turn into actual
625 * I/O errors, this only handles the "we need to be able to do I/O at the final
628 void guard_bio_eod(struct bio *bio)
630 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
636 * If the *whole* IO is past the end of the device,
637 * let it through, and the IO layer will turn it into
640 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
643 maxsector -= bio->bi_iter.bi_sector;
644 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
647 bio_truncate(bio, maxsector << 9);
650 #define ALLOC_CACHE_MAX 512
651 #define ALLOC_CACHE_SLACK 64
653 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
659 while ((bio = cache->free_list) != NULL) {
660 cache->free_list = bio->bi_next;
668 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
672 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
674 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
676 bio_alloc_cache_prune(cache, -1U);
681 static void bio_alloc_cache_destroy(struct bio_set *bs)
688 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
689 for_each_possible_cpu(cpu) {
690 struct bio_alloc_cache *cache;
692 cache = per_cpu_ptr(bs->cache, cpu);
693 bio_alloc_cache_prune(cache, -1U);
695 free_percpu(bs->cache);
699 * bio_put - release a reference to a bio
700 * @bio: bio to release reference to
703 * Put a reference to a &struct bio, either one you have gotten with
704 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
706 void bio_put(struct bio *bio)
708 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
709 BUG_ON(!atomic_read(&bio->__bi_cnt));
710 if (!atomic_dec_and_test(&bio->__bi_cnt))
714 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
715 struct bio_alloc_cache *cache;
718 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
719 bio->bi_next = cache->free_list;
720 cache->free_list = bio;
721 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
722 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
728 EXPORT_SYMBOL(bio_put);
730 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
732 bio_set_flag(bio, BIO_CLONED);
733 if (bio_flagged(bio_src, BIO_THROTTLED))
734 bio_set_flag(bio, BIO_THROTTLED);
735 if (bio->bi_bdev == bio_src->bi_bdev &&
736 bio_flagged(bio_src, BIO_REMAPPED))
737 bio_set_flag(bio, BIO_REMAPPED);
738 bio->bi_ioprio = bio_src->bi_ioprio;
739 bio->bi_iter = bio_src->bi_iter;
741 bio_clone_blkg_association(bio, bio_src);
742 blkcg_bio_issue_init(bio);
744 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
746 if (bio_integrity(bio_src) &&
747 bio_integrity_clone(bio, bio_src, gfp) < 0)
753 * bio_alloc_clone - clone a bio that shares the original bio's biovec
754 * @bdev: block_device to clone onto
755 * @bio_src: bio to clone from
756 * @gfp: allocation priority
757 * @bs: bio_set to allocate from
759 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
760 * bio, but not the actual data it points to.
762 * The caller must ensure that the return bio is not freed before @bio_src.
764 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
765 gfp_t gfp, struct bio_set *bs)
769 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
773 if (__bio_clone(bio, bio_src, gfp) < 0) {
777 bio->bi_io_vec = bio_src->bi_io_vec;
781 EXPORT_SYMBOL(bio_alloc_clone);
784 * bio_init_clone - clone a bio that shares the original bio's biovec
785 * @bdev: block_device to clone onto
786 * @bio: bio to clone into
787 * @bio_src: bio to clone from
788 * @gfp: allocation priority
790 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
791 * The caller owns the returned bio, but not the actual data it points to.
793 * The caller must ensure that @bio_src is not freed before @bio.
795 int bio_init_clone(struct block_device *bdev, struct bio *bio,
796 struct bio *bio_src, gfp_t gfp)
800 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
801 ret = __bio_clone(bio, bio_src, gfp);
806 EXPORT_SYMBOL(bio_init_clone);
809 * bio_full - check if the bio is full
811 * @len: length of one segment to be added
813 * Return true if @bio is full and one segment with @len bytes can't be
814 * added to the bio, otherwise return false
816 static inline bool bio_full(struct bio *bio, unsigned len)
818 if (bio->bi_vcnt >= bio->bi_max_vecs)
820 if (bio->bi_iter.bi_size > UINT_MAX - len)
825 static inline bool page_is_mergeable(const struct bio_vec *bv,
826 struct page *page, unsigned int len, unsigned int off,
829 size_t bv_end = bv->bv_offset + bv->bv_len;
830 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
831 phys_addr_t page_addr = page_to_phys(page);
833 if (vec_end_addr + 1 != page_addr + off)
835 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
838 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
841 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
845 * __bio_try_merge_page - try appending data to an existing bvec.
846 * @bio: destination bio
847 * @page: start page to add
848 * @len: length of the data to add
849 * @off: offset of the data relative to @page
850 * @same_page: return if the segment has been merged inside the same page
852 * Try to add the data at @page + @off to the last bvec of @bio. This is a
853 * useful optimisation for file systems with a block size smaller than the
856 * Warn if (@len, @off) crosses pages in case that @same_page is true.
858 * Return %true on success or %false on failure.
860 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
861 unsigned int len, unsigned int off, bool *same_page)
863 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
866 if (bio->bi_vcnt > 0) {
867 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
869 if (page_is_mergeable(bv, page, len, off, same_page)) {
870 if (bio->bi_iter.bi_size > UINT_MAX - len) {
875 bio->bi_iter.bi_size += len;
883 * Try to merge a page into a segment, while obeying the hardware segment
884 * size limit. This is not for normal read/write bios, but for passthrough
885 * or Zone Append operations that we can't split.
887 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
888 struct page *page, unsigned len,
889 unsigned offset, bool *same_page)
891 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
892 unsigned long mask = queue_segment_boundary(q);
893 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
894 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
896 if ((addr1 | mask) != (addr2 | mask))
898 if (bv->bv_len + len > queue_max_segment_size(q))
900 return __bio_try_merge_page(bio, page, len, offset, same_page);
904 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
905 * @q: the target queue
906 * @bio: destination bio
908 * @len: vec entry length
909 * @offset: vec entry offset
910 * @max_sectors: maximum number of sectors that can be added
911 * @same_page: return if the segment has been merged inside the same page
913 * Add a page to a bio while respecting the hardware max_sectors, max_segment
914 * and gap limitations.
916 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
917 struct page *page, unsigned int len, unsigned int offset,
918 unsigned int max_sectors, bool *same_page)
920 struct bio_vec *bvec;
922 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
925 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
928 if (bio->bi_vcnt > 0) {
929 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
933 * If the queue doesn't support SG gaps and adding this segment
934 * would create a gap, disallow it.
936 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
937 if (bvec_gap_to_prev(q, bvec, offset))
941 if (bio_full(bio, len))
944 if (bio->bi_vcnt >= queue_max_segments(q))
947 bvec = &bio->bi_io_vec[bio->bi_vcnt];
948 bvec->bv_page = page;
950 bvec->bv_offset = offset;
952 bio->bi_iter.bi_size += len;
957 * bio_add_pc_page - attempt to add page to passthrough bio
958 * @q: the target queue
959 * @bio: destination bio
961 * @len: vec entry length
962 * @offset: vec entry offset
964 * Attempt to add a page to the bio_vec maplist. This can fail for a
965 * number of reasons, such as the bio being full or target block device
966 * limitations. The target block device must allow bio's up to PAGE_SIZE,
967 * so it is always possible to add a single page to an empty bio.
969 * This should only be used by passthrough bios.
971 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
972 struct page *page, unsigned int len, unsigned int offset)
974 bool same_page = false;
975 return bio_add_hw_page(q, bio, page, len, offset,
976 queue_max_hw_sectors(q), &same_page);
978 EXPORT_SYMBOL(bio_add_pc_page);
981 * bio_add_zone_append_page - attempt to add page to zone-append bio
982 * @bio: destination bio
984 * @len: vec entry length
985 * @offset: vec entry offset
987 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
988 * for a zone-append request. This can fail for a number of reasons, such as the
989 * bio being full or the target block device is not a zoned block device or
990 * other limitations of the target block device. The target block device must
991 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
994 * Returns: number of bytes added to the bio, or 0 in case of a failure.
996 int bio_add_zone_append_page(struct bio *bio, struct page *page,
997 unsigned int len, unsigned int offset)
999 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1000 bool same_page = false;
1002 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1005 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1008 return bio_add_hw_page(q, bio, page, len, offset,
1009 queue_max_zone_append_sectors(q), &same_page);
1011 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1014 * __bio_add_page - add page(s) to a bio in a new segment
1015 * @bio: destination bio
1016 * @page: start page to add
1017 * @len: length of the data to add, may cross pages
1018 * @off: offset of the data relative to @page, may cross pages
1020 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1021 * that @bio has space for another bvec.
1023 void __bio_add_page(struct bio *bio, struct page *page,
1024 unsigned int len, unsigned int off)
1026 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1028 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1029 WARN_ON_ONCE(bio_full(bio, len));
1032 bv->bv_offset = off;
1035 bio->bi_iter.bi_size += len;
1038 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1039 bio_set_flag(bio, BIO_WORKINGSET);
1041 EXPORT_SYMBOL_GPL(__bio_add_page);
1044 * bio_add_page - attempt to add page(s) to bio
1045 * @bio: destination bio
1046 * @page: start page to add
1047 * @len: vec entry length, may cross pages
1048 * @offset: vec entry offset relative to @page, may cross pages
1050 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1051 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1053 int bio_add_page(struct bio *bio, struct page *page,
1054 unsigned int len, unsigned int offset)
1056 bool same_page = false;
1058 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1059 if (bio_full(bio, len))
1061 __bio_add_page(bio, page, len, offset);
1065 EXPORT_SYMBOL(bio_add_page);
1068 * bio_add_folio - Attempt to add part of a folio to a bio.
1069 * @bio: BIO to add to.
1070 * @folio: Folio to add.
1071 * @len: How many bytes from the folio to add.
1072 * @off: First byte in this folio to add.
1074 * Filesystems that use folios can call this function instead of calling
1075 * bio_add_page() for each page in the folio. If @off is bigger than
1076 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1077 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1079 * Return: Whether the addition was successful.
1081 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1084 if (len > UINT_MAX || off > UINT_MAX)
1086 return bio_add_page(bio, &folio->page, len, off) > 0;
1089 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1091 struct bvec_iter_all iter_all;
1092 struct bio_vec *bvec;
1094 bio_for_each_segment_all(bvec, bio, iter_all) {
1095 if (mark_dirty && !PageCompound(bvec->bv_page))
1096 set_page_dirty_lock(bvec->bv_page);
1097 put_page(bvec->bv_page);
1100 EXPORT_SYMBOL_GPL(__bio_release_pages);
1102 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1104 size_t size = iov_iter_count(iter);
1106 WARN_ON_ONCE(bio->bi_max_vecs);
1108 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1109 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1110 size_t max_sectors = queue_max_zone_append_sectors(q);
1112 size = min(size, max_sectors << SECTOR_SHIFT);
1115 bio->bi_vcnt = iter->nr_segs;
1116 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1117 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1118 bio->bi_iter.bi_size = size;
1119 bio_set_flag(bio, BIO_NO_PAGE_REF);
1120 bio_set_flag(bio, BIO_CLONED);
1123 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1125 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1127 for (i = 0; i < nr; i++)
1131 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1134 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1135 * @bio: bio to add pages to
1136 * @iter: iov iterator describing the region to be mapped
1138 * Pins pages from *iter and appends them to @bio's bvec array. The
1139 * pages will have to be released using put_page() when done.
1140 * For multi-segment *iter, this function only adds pages from the
1141 * next non-empty segment of the iov iterator.
1143 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1145 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1146 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1147 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1148 struct page **pages = (struct page **)bv;
1149 bool same_page = false;
1155 * Move page array up in the allocated memory for the bio vecs as far as
1156 * possible so that we can start filling biovecs from the beginning
1157 * without overwriting the temporary page array.
1159 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1160 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1162 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1163 if (unlikely(size <= 0))
1164 return size ? size : -EFAULT;
1166 for (left = size, i = 0; left > 0; left -= len, i++) {
1167 struct page *page = pages[i];
1169 len = min_t(size_t, PAGE_SIZE - offset, left);
1171 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1175 if (WARN_ON_ONCE(bio_full(bio, len))) {
1176 bio_put_pages(pages + i, left, offset);
1179 __bio_add_page(bio, page, len, offset);
1184 iov_iter_advance(iter, size);
1188 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1190 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1191 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1192 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1193 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1194 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1195 struct page **pages = (struct page **)bv;
1201 if (WARN_ON_ONCE(!max_append_sectors))
1205 * Move page array up in the allocated memory for the bio vecs as far as
1206 * possible so that we can start filling biovecs from the beginning
1207 * without overwriting the temporary page array.
1209 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1210 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1212 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1213 if (unlikely(size <= 0))
1214 return size ? size : -EFAULT;
1216 for (left = size, i = 0; left > 0; left -= len, i++) {
1217 struct page *page = pages[i];
1218 bool same_page = false;
1220 len = min_t(size_t, PAGE_SIZE - offset, left);
1221 if (bio_add_hw_page(q, bio, page, len, offset,
1222 max_append_sectors, &same_page) != len) {
1223 bio_put_pages(pages + i, left, offset);
1232 iov_iter_advance(iter, size - left);
1237 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1238 * @bio: bio to add pages to
1239 * @iter: iov iterator describing the region to be added
1241 * This takes either an iterator pointing to user memory, or one pointing to
1242 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1243 * map them into the kernel. On IO completion, the caller should put those
1244 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1245 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1246 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1247 * completed by a call to ->ki_complete() or returns with an error other than
1248 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1249 * on IO completion. If it isn't, then pages should be released.
1251 * The function tries, but does not guarantee, to pin as many pages as
1252 * fit into the bio, or are requested in @iter, whatever is smaller. If
1253 * MM encounters an error pinning the requested pages, it stops. Error
1254 * is returned only if 0 pages could be pinned.
1256 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1257 * responsible for setting BIO_WORKINGSET if necessary.
1259 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1263 if (iov_iter_is_bvec(iter)) {
1264 bio_iov_bvec_set(bio, iter);
1265 iov_iter_advance(iter, bio->bi_iter.bi_size);
1270 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1271 ret = __bio_iov_append_get_pages(bio, iter);
1273 ret = __bio_iov_iter_get_pages(bio, iter);
1274 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1276 /* don't account direct I/O as memory stall */
1277 bio_clear_flag(bio, BIO_WORKINGSET);
1278 return bio->bi_vcnt ? 0 : ret;
1280 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1282 static void submit_bio_wait_endio(struct bio *bio)
1284 complete(bio->bi_private);
1288 * submit_bio_wait - submit a bio, and wait until it completes
1289 * @bio: The &struct bio which describes the I/O
1291 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1292 * bio_endio() on failure.
1294 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1295 * result in bio reference to be consumed. The caller must drop the reference
1298 int submit_bio_wait(struct bio *bio)
1300 DECLARE_COMPLETION_ONSTACK_MAP(done,
1301 bio->bi_bdev->bd_disk->lockdep_map);
1302 unsigned long hang_check;
1304 bio->bi_private = &done;
1305 bio->bi_end_io = submit_bio_wait_endio;
1306 bio->bi_opf |= REQ_SYNC;
1309 /* Prevent hang_check timer from firing at us during very long I/O */
1310 hang_check = sysctl_hung_task_timeout_secs;
1312 while (!wait_for_completion_io_timeout(&done,
1313 hang_check * (HZ/2)))
1316 wait_for_completion_io(&done);
1318 return blk_status_to_errno(bio->bi_status);
1320 EXPORT_SYMBOL(submit_bio_wait);
1322 void __bio_advance(struct bio *bio, unsigned bytes)
1324 if (bio_integrity(bio))
1325 bio_integrity_advance(bio, bytes);
1327 bio_crypt_advance(bio, bytes);
1328 bio_advance_iter(bio, &bio->bi_iter, bytes);
1330 EXPORT_SYMBOL(__bio_advance);
1332 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1333 struct bio *src, struct bvec_iter *src_iter)
1335 while (src_iter->bi_size && dst_iter->bi_size) {
1336 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1337 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1338 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1341 src_buf = bvec_kmap_local(&src_bv);
1342 memcpy_to_bvec(&dst_bv, src_buf);
1343 kunmap_local(src_buf);
1345 bio_advance_iter_single(src, src_iter, bytes);
1346 bio_advance_iter_single(dst, dst_iter, bytes);
1349 EXPORT_SYMBOL(bio_copy_data_iter);
1352 * bio_copy_data - copy contents of data buffers from one bio to another
1354 * @dst: destination bio
1356 * Stops when it reaches the end of either @src or @dst - that is, copies
1357 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1359 void bio_copy_data(struct bio *dst, struct bio *src)
1361 struct bvec_iter src_iter = src->bi_iter;
1362 struct bvec_iter dst_iter = dst->bi_iter;
1364 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1366 EXPORT_SYMBOL(bio_copy_data);
1368 void bio_free_pages(struct bio *bio)
1370 struct bio_vec *bvec;
1371 struct bvec_iter_all iter_all;
1373 bio_for_each_segment_all(bvec, bio, iter_all)
1374 __free_page(bvec->bv_page);
1376 EXPORT_SYMBOL(bio_free_pages);
1379 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1380 * for performing direct-IO in BIOs.
1382 * The problem is that we cannot run set_page_dirty() from interrupt context
1383 * because the required locks are not interrupt-safe. So what we can do is to
1384 * mark the pages dirty _before_ performing IO. And in interrupt context,
1385 * check that the pages are still dirty. If so, fine. If not, redirty them
1386 * in process context.
1388 * We special-case compound pages here: normally this means reads into hugetlb
1389 * pages. The logic in here doesn't really work right for compound pages
1390 * because the VM does not uniformly chase down the head page in all cases.
1391 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1392 * handle them at all. So we skip compound pages here at an early stage.
1394 * Note that this code is very hard to test under normal circumstances because
1395 * direct-io pins the pages with get_user_pages(). This makes
1396 * is_page_cache_freeable return false, and the VM will not clean the pages.
1397 * But other code (eg, flusher threads) could clean the pages if they are mapped
1400 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1401 * deferred bio dirtying paths.
1405 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1407 void bio_set_pages_dirty(struct bio *bio)
1409 struct bio_vec *bvec;
1410 struct bvec_iter_all iter_all;
1412 bio_for_each_segment_all(bvec, bio, iter_all) {
1413 if (!PageCompound(bvec->bv_page))
1414 set_page_dirty_lock(bvec->bv_page);
1419 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1420 * If they are, then fine. If, however, some pages are clean then they must
1421 * have been written out during the direct-IO read. So we take another ref on
1422 * the BIO and re-dirty the pages in process context.
1424 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1425 * here on. It will run one put_page() against each page and will run one
1426 * bio_put() against the BIO.
1429 static void bio_dirty_fn(struct work_struct *work);
1431 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1432 static DEFINE_SPINLOCK(bio_dirty_lock);
1433 static struct bio *bio_dirty_list;
1436 * This runs in process context
1438 static void bio_dirty_fn(struct work_struct *work)
1440 struct bio *bio, *next;
1442 spin_lock_irq(&bio_dirty_lock);
1443 next = bio_dirty_list;
1444 bio_dirty_list = NULL;
1445 spin_unlock_irq(&bio_dirty_lock);
1447 while ((bio = next) != NULL) {
1448 next = bio->bi_private;
1450 bio_release_pages(bio, true);
1455 void bio_check_pages_dirty(struct bio *bio)
1457 struct bio_vec *bvec;
1458 unsigned long flags;
1459 struct bvec_iter_all iter_all;
1461 bio_for_each_segment_all(bvec, bio, iter_all) {
1462 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1466 bio_release_pages(bio, false);
1470 spin_lock_irqsave(&bio_dirty_lock, flags);
1471 bio->bi_private = bio_dirty_list;
1472 bio_dirty_list = bio;
1473 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1474 schedule_work(&bio_dirty_work);
1477 static inline bool bio_remaining_done(struct bio *bio)
1480 * If we're not chaining, then ->__bi_remaining is always 1 and
1481 * we always end io on the first invocation.
1483 if (!bio_flagged(bio, BIO_CHAIN))
1486 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1488 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1489 bio_clear_flag(bio, BIO_CHAIN);
1497 * bio_endio - end I/O on a bio
1501 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1502 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1503 * bio unless they own it and thus know that it has an end_io function.
1505 * bio_endio() can be called several times on a bio that has been chained
1506 * using bio_chain(). The ->bi_end_io() function will only be called the
1509 void bio_endio(struct bio *bio)
1512 if (!bio_remaining_done(bio))
1514 if (!bio_integrity_endio(bio))
1517 rq_qos_done_bio(bio);
1519 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1520 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1521 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1525 * Need to have a real endio function for chained bios, otherwise
1526 * various corner cases will break (like stacking block devices that
1527 * save/restore bi_end_io) - however, we want to avoid unbounded
1528 * recursion and blowing the stack. Tail call optimization would
1529 * handle this, but compiling with frame pointers also disables
1530 * gcc's sibling call optimization.
1532 if (bio->bi_end_io == bio_chain_endio) {
1533 bio = __bio_chain_endio(bio);
1537 blk_throtl_bio_endio(bio);
1538 /* release cgroup info */
1541 bio->bi_end_io(bio);
1543 EXPORT_SYMBOL(bio_endio);
1546 * bio_split - split a bio
1547 * @bio: bio to split
1548 * @sectors: number of sectors to split from the front of @bio
1550 * @bs: bio set to allocate from
1552 * Allocates and returns a new bio which represents @sectors from the start of
1553 * @bio, and updates @bio to represent the remaining sectors.
1555 * Unless this is a discard request the newly allocated bio will point
1556 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1557 * neither @bio nor @bs are freed before the split bio.
1559 struct bio *bio_split(struct bio *bio, int sectors,
1560 gfp_t gfp, struct bio_set *bs)
1564 BUG_ON(sectors <= 0);
1565 BUG_ON(sectors >= bio_sectors(bio));
1567 /* Zone append commands cannot be split */
1568 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1571 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1575 split->bi_iter.bi_size = sectors << 9;
1577 if (bio_integrity(split))
1578 bio_integrity_trim(split);
1580 bio_advance(bio, split->bi_iter.bi_size);
1582 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1583 bio_set_flag(split, BIO_TRACE_COMPLETION);
1587 EXPORT_SYMBOL(bio_split);
1590 * bio_trim - trim a bio
1592 * @offset: number of sectors to trim from the front of @bio
1593 * @size: size we want to trim @bio to, in sectors
1595 * This function is typically used for bios that are cloned and submitted
1596 * to the underlying device in parts.
1598 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1600 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1601 offset + size > bio_sectors(bio)))
1605 if (offset == 0 && size == bio->bi_iter.bi_size)
1608 bio_advance(bio, offset << 9);
1609 bio->bi_iter.bi_size = size;
1611 if (bio_integrity(bio))
1612 bio_integrity_trim(bio);
1614 EXPORT_SYMBOL_GPL(bio_trim);
1617 * create memory pools for biovec's in a bio_set.
1618 * use the global biovec slabs created for general use.
1620 int biovec_init_pool(mempool_t *pool, int pool_entries)
1622 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1624 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1628 * bioset_exit - exit a bioset initialized with bioset_init()
1630 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1633 void bioset_exit(struct bio_set *bs)
1635 bio_alloc_cache_destroy(bs);
1636 if (bs->rescue_workqueue)
1637 destroy_workqueue(bs->rescue_workqueue);
1638 bs->rescue_workqueue = NULL;
1640 mempool_exit(&bs->bio_pool);
1641 mempool_exit(&bs->bvec_pool);
1643 bioset_integrity_free(bs);
1646 bs->bio_slab = NULL;
1648 EXPORT_SYMBOL(bioset_exit);
1651 * bioset_init - Initialize a bio_set
1652 * @bs: pool to initialize
1653 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1654 * @front_pad: Number of bytes to allocate in front of the returned bio
1655 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1656 * and %BIOSET_NEED_RESCUER
1659 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1660 * to ask for a number of bytes to be allocated in front of the bio.
1661 * Front pad allocation is useful for embedding the bio inside
1662 * another structure, to avoid allocating extra data to go with the bio.
1663 * Note that the bio must be embedded at the END of that structure always,
1664 * or things will break badly.
1665 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1666 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1667 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1668 * to dispatch queued requests when the mempool runs out of space.
1671 int bioset_init(struct bio_set *bs,
1672 unsigned int pool_size,
1673 unsigned int front_pad,
1676 bs->front_pad = front_pad;
1677 if (flags & BIOSET_NEED_BVECS)
1678 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1682 spin_lock_init(&bs->rescue_lock);
1683 bio_list_init(&bs->rescue_list);
1684 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1686 bs->bio_slab = bio_find_or_create_slab(bs);
1690 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1693 if ((flags & BIOSET_NEED_BVECS) &&
1694 biovec_init_pool(&bs->bvec_pool, pool_size))
1697 if (flags & BIOSET_NEED_RESCUER) {
1698 bs->rescue_workqueue = alloc_workqueue("bioset",
1700 if (!bs->rescue_workqueue)
1703 if (flags & BIOSET_PERCPU_CACHE) {
1704 bs->cache = alloc_percpu(struct bio_alloc_cache);
1707 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1715 EXPORT_SYMBOL(bioset_init);
1718 * Initialize and setup a new bio_set, based on the settings from
1721 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1726 if (src->bvec_pool.min_nr)
1727 flags |= BIOSET_NEED_BVECS;
1728 if (src->rescue_workqueue)
1729 flags |= BIOSET_NEED_RESCUER;
1731 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1733 EXPORT_SYMBOL(bioset_init_from_src);
1736 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1737 * @kiocb: kiocb describing the IO
1738 * @bdev: block device to allocate the bio for (can be %NULL)
1739 * @nr_vecs: number of iovecs to pre-allocate
1740 * @opf: operation and flags for bio
1741 * @bs: bio_set to allocate from
1744 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1745 * used to check if we should dip into the per-cpu bio_set allocation
1746 * cache. The allocation uses GFP_KERNEL internally. On return, the
1747 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1748 * MUST be done from process context, not hard/soft IRQ.
1751 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1752 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1754 struct bio_alloc_cache *cache;
1757 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1758 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1760 cache = per_cpu_ptr(bs->cache, get_cpu());
1761 if (cache->free_list) {
1762 bio = cache->free_list;
1763 cache->free_list = bio->bi_next;
1766 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1769 bio_set_flag(bio, BIO_PERCPU_CACHE);
1773 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1774 bio_set_flag(bio, BIO_PERCPU_CACHE);
1777 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1779 static int __init init_bio(void)
1783 bio_integrity_init();
1785 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1786 struct biovec_slab *bvs = bvec_slabs + i;
1788 bvs->slab = kmem_cache_create(bvs->name,
1789 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1790 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1793 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1796 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1797 panic("bio: can't allocate bios\n");
1799 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1800 panic("bio: can't create integrity pool\n");
1804 subsys_initcall(init_bio);