2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
24 * See Documentation/block/as-iosched.txt
28 * max time before a read is submitted.
30 #define default_read_expire (HZ / 8)
33 * ditto for writes, these limits are not hard, even
34 * if the disk is capable of satisfying them.
36 #define default_write_expire (HZ / 4)
39 * read_batch_expire describes how long we will allow a stream of reads to
40 * persist before looking to see whether it is time to switch over to writes.
42 #define default_read_batch_expire (HZ / 2)
45 * write_batch_expire describes how long we want a stream of writes to run for.
46 * This is not a hard limit, but a target we set for the auto-tuning thingy.
47 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
48 * a short amount of time...
50 #define default_write_batch_expire (HZ / 8)
53 * max time we may wait to anticipate a read (default around 6ms)
55 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
58 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
59 * however huge values tend to interfere and not decay fast enough. A program
60 * might be in a non-io phase of operation. Waiting on user input for example,
61 * or doing a lengthy computation. A small penalty can be justified there, and
62 * will still catch out those processes that constantly have large thinktimes.
64 #define MAX_THINKTIME (HZ/50UL)
66 /* Bits in as_io_context.state */
68 AS_TASK_RUNNING=0, /* Process has not exited */
69 AS_TASK_IOSTARTED, /* Process has started some IO */
70 AS_TASK_IORUNNING, /* Process has completed some IO */
73 enum anticipation_status {
74 ANTIC_OFF=0, /* Not anticipating (normal operation) */
75 ANTIC_WAIT_REQ, /* The last read has not yet completed */
76 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
77 last read (which has completed) */
78 ANTIC_FINISHED, /* Anticipating but have found a candidate
87 struct request_queue *q; /* the "owner" queue */
90 * requests (as_rq s) are present on both sort_list and fifo_list
92 struct rb_root sort_list[2];
93 struct list_head fifo_list[2];
95 struct request *next_rq[2]; /* next in sort order */
96 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
98 unsigned long exit_prob; /* probability a task will exit while
100 unsigned long exit_no_coop; /* probablility an exited task will
101 not be part of a later cooperating
103 unsigned long new_ttime_total; /* mean thinktime on new proc */
104 unsigned long new_ttime_mean;
105 u64 new_seek_total; /* mean seek on new proc */
106 sector_t new_seek_mean;
108 unsigned long current_batch_expires;
109 unsigned long last_check_fifo[2];
110 int changed_batch; /* 1: waiting for old batch to end */
111 int new_batch; /* 1: waiting on first read complete */
112 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
113 int write_batch_count; /* max # of reqs in a write batch */
114 int current_write_count; /* how many requests left this batch */
115 int write_batch_idled; /* has the write batch gone idle? */
117 enum anticipation_status antic_status;
118 unsigned long antic_start; /* jiffies: when it started */
119 struct timer_list antic_timer; /* anticipatory scheduling timer */
120 struct work_struct antic_work; /* Deferred unplugging */
121 struct io_context *io_context; /* Identify the expected process */
122 int ioc_finished; /* IO associated with io_context is finished */
126 * settings that change how the i/o scheduler behaves
128 unsigned long fifo_expire[2];
129 unsigned long batch_expire[2];
130 unsigned long antic_expire;
137 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
138 AS_RQ_QUEUED, /* In the request queue. It belongs to the
140 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
142 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
145 AS_RQ_POSTSCHED, /* when they shouldn't be */
148 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
149 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
150 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
152 static atomic_t ioc_count = ATOMIC_INIT(0);
153 static struct completion *ioc_gone;
155 static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
156 static void as_antic_stop(struct as_data *ad);
159 * IO Context helper functions
162 /* Called to deallocate the as_io_context */
163 static void free_as_io_context(struct as_io_context *aic)
166 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
170 static void as_trim(struct io_context *ioc)
173 free_as_io_context(ioc->aic);
177 /* Called when the task exits */
178 static void exit_as_io_context(struct as_io_context *aic)
180 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
181 clear_bit(AS_TASK_RUNNING, &aic->state);
184 static struct as_io_context *alloc_as_io_context(void)
186 struct as_io_context *ret;
188 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
190 ret->dtor = free_as_io_context;
191 ret->exit = exit_as_io_context;
192 ret->state = 1 << AS_TASK_RUNNING;
193 atomic_set(&ret->nr_queued, 0);
194 atomic_set(&ret->nr_dispatched, 0);
195 spin_lock_init(&ret->lock);
196 ret->ttime_total = 0;
197 ret->ttime_samples = 0;
200 ret->seek_samples = 0;
202 atomic_inc(&ioc_count);
209 * If the current task has no AS IO context then create one and initialise it.
210 * Then take a ref on the task's io context and return it.
212 static struct io_context *as_get_io_context(void)
214 struct io_context *ioc = get_io_context(GFP_ATOMIC);
215 if (ioc && !ioc->aic) {
216 ioc->aic = alloc_as_io_context();
225 static void as_put_io_context(struct request *rq)
227 struct as_io_context *aic;
229 if (unlikely(!RQ_IOC(rq)))
232 aic = RQ_IOC(rq)->aic;
234 if (rq_is_sync(rq) && aic) {
235 spin_lock(&aic->lock);
236 set_bit(AS_TASK_IORUNNING, &aic->state);
237 aic->last_end_request = jiffies;
238 spin_unlock(&aic->lock);
241 put_io_context(RQ_IOC(rq));
245 * rb tree support functions
247 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
249 static void as_add_rq_rb(struct as_data *ad, struct request *rq)
251 struct request *alias;
253 while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
254 as_move_to_dispatch(ad, alias);
259 static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
261 elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
265 * IO Scheduler proper
268 #define MAXBACK (1024 * 1024) /*
269 * Maximum distance the disk will go backward
273 #define BACK_PENALTY 2
276 * as_choose_req selects the preferred one of two requests of the same data_dir
277 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
279 static struct request *
280 as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
283 sector_t last, s1, s2, d1, d2;
284 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
285 const sector_t maxback = MAXBACK;
287 if (rq1 == NULL || rq1 == rq2)
292 data_dir = rq_is_sync(rq1);
294 last = ad->last_sector[data_dir];
298 BUG_ON(data_dir != rq_is_sync(rq2));
301 * Strict one way elevator _except_ in the case where we allow
302 * short backward seeks which are biased as twice the cost of a
303 * similar forward seek.
307 else if (s1+maxback >= last)
308 d1 = (last - s1)*BACK_PENALTY;
311 d1 = 0; /* shut up, gcc */
316 else if (s2+maxback >= last)
317 d2 = (last - s2)*BACK_PENALTY;
323 /* Found required data */
324 if (!r1_wrap && r2_wrap)
326 else if (!r2_wrap && r1_wrap)
328 else if (r1_wrap && r2_wrap) {
329 /* both behind the head */
336 /* Both requests in front of the head */
350 * as_find_next_rq finds the next request after @prev in elevator order.
351 * this with as_choose_req form the basis for how the scheduler chooses
352 * what request to process next. Anticipation works on top of this.
354 static struct request *
355 as_find_next_rq(struct as_data *ad, struct request *last)
357 struct rb_node *rbnext = rb_next(&last->rb_node);
358 struct rb_node *rbprev = rb_prev(&last->rb_node);
359 struct request *next = NULL, *prev = NULL;
361 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
364 prev = rb_entry_rq(rbprev);
367 next = rb_entry_rq(rbnext);
369 const int data_dir = rq_is_sync(last);
371 rbnext = rb_first(&ad->sort_list[data_dir]);
372 if (rbnext && rbnext != &last->rb_node)
373 next = rb_entry_rq(rbnext);
376 return as_choose_req(ad, next, prev);
380 * anticipatory scheduling functions follow
384 * as_antic_expired tells us when we have anticipated too long.
385 * The funny "absolute difference" math on the elapsed time is to handle
386 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
388 static int as_antic_expired(struct as_data *ad)
392 delta_jif = jiffies - ad->antic_start;
393 if (unlikely(delta_jif < 0))
394 delta_jif = -delta_jif;
395 if (delta_jif < ad->antic_expire)
402 * as_antic_waitnext starts anticipating that a nice request will soon be
403 * submitted. See also as_antic_waitreq
405 static void as_antic_waitnext(struct as_data *ad)
407 unsigned long timeout;
409 BUG_ON(ad->antic_status != ANTIC_OFF
410 && ad->antic_status != ANTIC_WAIT_REQ);
412 timeout = ad->antic_start + ad->antic_expire;
414 mod_timer(&ad->antic_timer, timeout);
416 ad->antic_status = ANTIC_WAIT_NEXT;
420 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
421 * until the request that we're anticipating on has finished. This means we
422 * are timing from when the candidate process wakes up hopefully.
424 static void as_antic_waitreq(struct as_data *ad)
426 BUG_ON(ad->antic_status == ANTIC_FINISHED);
427 if (ad->antic_status == ANTIC_OFF) {
428 if (!ad->io_context || ad->ioc_finished)
429 as_antic_waitnext(ad);
431 ad->antic_status = ANTIC_WAIT_REQ;
436 * This is called directly by the functions in this file to stop anticipation.
437 * We kill the timer and schedule a call to the request_fn asap.
439 static void as_antic_stop(struct as_data *ad)
441 int status = ad->antic_status;
443 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
444 if (status == ANTIC_WAIT_NEXT)
445 del_timer(&ad->antic_timer);
446 ad->antic_status = ANTIC_FINISHED;
447 /* see as_work_handler */
448 kblockd_schedule_work(&ad->antic_work);
453 * as_antic_timeout is the timer function set by as_antic_waitnext.
455 static void as_antic_timeout(unsigned long data)
457 struct request_queue *q = (struct request_queue *)data;
458 struct as_data *ad = q->elevator->elevator_data;
461 spin_lock_irqsave(q->queue_lock, flags);
462 if (ad->antic_status == ANTIC_WAIT_REQ
463 || ad->antic_status == ANTIC_WAIT_NEXT) {
464 struct as_io_context *aic = ad->io_context->aic;
466 ad->antic_status = ANTIC_FINISHED;
467 kblockd_schedule_work(&ad->antic_work);
469 if (aic->ttime_samples == 0) {
470 /* process anticipated on has exited or timed out*/
471 ad->exit_prob = (7*ad->exit_prob + 256)/8;
473 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
474 /* process not "saved" by a cooperating request */
475 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
478 spin_unlock_irqrestore(q->queue_lock, flags);
481 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
484 /* fixed point: 1.0 == 1<<8 */
485 if (aic->ttime_samples == 0) {
486 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
487 ad->new_ttime_mean = ad->new_ttime_total / 256;
489 ad->exit_prob = (7*ad->exit_prob)/8;
491 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
492 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
493 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
496 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
501 if (aic->seek_samples == 0) {
502 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
503 ad->new_seek_mean = ad->new_seek_total / 256;
507 * Don't allow the seek distance to get too large from the
508 * odd fragment, pagein, etc
510 if (aic->seek_samples <= 60) /* second&third seek */
511 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
513 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
515 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
516 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
517 total = aic->seek_total + (aic->seek_samples/2);
518 do_div(total, aic->seek_samples);
519 aic->seek_mean = (sector_t)total;
523 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
524 * updates @aic->ttime_mean based on that. It is called when a new
527 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
530 int data_dir = rq_is_sync(rq);
531 unsigned long thinktime = 0;
537 if (data_dir == REQ_SYNC) {
538 unsigned long in_flight = atomic_read(&aic->nr_queued)
539 + atomic_read(&aic->nr_dispatched);
540 spin_lock(&aic->lock);
541 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
542 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
543 /* Calculate read -> read thinktime */
544 if (test_bit(AS_TASK_IORUNNING, &aic->state)
546 thinktime = jiffies - aic->last_end_request;
547 thinktime = min(thinktime, MAX_THINKTIME-1);
549 as_update_thinktime(ad, aic, thinktime);
551 /* Calculate read -> read seek distance */
552 if (aic->last_request_pos < rq->sector)
553 seek_dist = rq->sector - aic->last_request_pos;
555 seek_dist = aic->last_request_pos - rq->sector;
556 as_update_seekdist(ad, aic, seek_dist);
558 aic->last_request_pos = rq->sector + rq->nr_sectors;
559 set_bit(AS_TASK_IOSTARTED, &aic->state);
560 spin_unlock(&aic->lock);
565 * as_close_req decides if one request is considered "close" to the
566 * previous one issued.
568 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
571 unsigned long delay; /* milliseconds */
572 sector_t last = ad->last_sector[ad->batch_data_dir];
573 sector_t next = rq->sector;
574 sector_t delta; /* acceptable close offset (in sectors) */
577 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
580 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
584 else if (delay <= 20 && delay <= ad->antic_expire)
585 delta = 8192 << delay;
589 if ((last <= next + (delta>>1)) && (next <= last + delta))
597 if (aic->seek_samples == 0) {
599 * Process has just started IO. Use past statistics to
600 * gauge success possibility
602 if (ad->new_seek_mean > s) {
603 /* this request is better than what we're expecting */
608 if (aic->seek_mean > s) {
609 /* this request is better than what we're expecting */
618 * as_can_break_anticipation returns true if we have been anticipating this
621 * It also returns true if the process against which we are anticipating
622 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
623 * dispatch it ASAP, because we know that application will not be submitting
626 * If the task which has submitted the request has exited, break anticipation.
628 * If this task has queued some other IO, do not enter enticipation.
630 static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
632 struct io_context *ioc;
633 struct as_io_context *aic;
635 ioc = ad->io_context;
638 if (rq && ioc == RQ_IOC(rq)) {
639 /* request from same process */
643 if (ad->ioc_finished && as_antic_expired(ad)) {
645 * In this situation status should really be FINISHED,
646 * however the timer hasn't had the chance to run yet.
655 if (atomic_read(&aic->nr_queued) > 0) {
656 /* process has more requests queued */
660 if (atomic_read(&aic->nr_dispatched) > 0) {
661 /* process has more requests dispatched */
665 if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
667 * Found a close request that is not one of ours.
669 * This makes close requests from another process update
670 * our IO history. Is generally useful when there are
671 * two or more cooperating processes working in the same
674 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
675 if (aic->ttime_samples == 0)
676 ad->exit_prob = (7*ad->exit_prob + 256)/8;
678 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
681 as_update_iohist(ad, aic, rq);
685 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
686 /* process anticipated on has exited */
687 if (aic->ttime_samples == 0)
688 ad->exit_prob = (7*ad->exit_prob + 256)/8;
690 if (ad->exit_no_coop > 128)
694 if (aic->ttime_samples == 0) {
695 if (ad->new_ttime_mean > ad->antic_expire)
697 if (ad->exit_prob * ad->exit_no_coop > 128*256)
699 } else if (aic->ttime_mean > ad->antic_expire) {
700 /* the process thinks too much between requests */
708 * as_can_anticipate indicates whether we should either run rq
709 * or keep anticipating a better request.
711 static int as_can_anticipate(struct as_data *ad, struct request *rq)
715 * Last request submitted was a write
719 if (ad->antic_status == ANTIC_FINISHED)
721 * Don't restart if we have just finished. Run the next request
725 if (as_can_break_anticipation(ad, rq))
727 * This request is a good candidate. Don't keep anticipating,
733 * OK from here, we haven't finished, and don't have a decent request!
734 * Status is either ANTIC_OFF so start waiting,
735 * ANTIC_WAIT_REQ so continue waiting for request to finish
736 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
743 * as_update_rq must be called whenever a request (rq) is added to
744 * the sort_list. This function keeps caches up to date, and checks if the
745 * request might be one we are "anticipating"
747 static void as_update_rq(struct as_data *ad, struct request *rq)
749 const int data_dir = rq_is_sync(rq);
751 /* keep the next_rq cache up to date */
752 ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
755 * have we been anticipating this request?
756 * or does it come from the same process as the one we are anticipating
759 if (ad->antic_status == ANTIC_WAIT_REQ
760 || ad->antic_status == ANTIC_WAIT_NEXT) {
761 if (as_can_break_anticipation(ad, rq))
767 * Gathers timings and resizes the write batch automatically
769 static void update_write_batch(struct as_data *ad)
771 unsigned long batch = ad->batch_expire[REQ_ASYNC];
774 write_time = (jiffies - ad->current_batch_expires) + batch;
778 if (write_time > batch && !ad->write_batch_idled) {
779 if (write_time > batch * 3)
780 ad->write_batch_count /= 2;
782 ad->write_batch_count--;
783 } else if (write_time < batch && ad->current_write_count == 0) {
784 if (batch > write_time * 3)
785 ad->write_batch_count *= 2;
787 ad->write_batch_count++;
790 if (ad->write_batch_count < 1)
791 ad->write_batch_count = 1;
795 * as_completed_request is to be called when a request has completed and
796 * returned something to the requesting process, be it an error or data.
798 static void as_completed_request(request_queue_t *q, struct request *rq)
800 struct as_data *ad = q->elevator->elevator_data;
802 WARN_ON(!list_empty(&rq->queuelist));
804 if (RQ_STATE(rq) != AS_RQ_REMOVED) {
805 printk("rq->state %d\n", RQ_STATE(rq));
810 if (ad->changed_batch && ad->nr_dispatched == 1) {
811 kblockd_schedule_work(&ad->antic_work);
812 ad->changed_batch = 0;
814 if (ad->batch_data_dir == REQ_SYNC)
817 WARN_ON(ad->nr_dispatched == 0);
821 * Start counting the batch from when a request of that direction is
822 * actually serviced. This should help devices with big TCQ windows
823 * and writeback caches
825 if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
826 update_write_batch(ad);
827 ad->current_batch_expires = jiffies +
828 ad->batch_expire[REQ_SYNC];
832 if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
833 ad->antic_start = jiffies;
834 ad->ioc_finished = 1;
835 if (ad->antic_status == ANTIC_WAIT_REQ) {
837 * We were waiting on this request, now anticipate
840 as_antic_waitnext(ad);
844 as_put_io_context(rq);
846 RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
850 * as_remove_queued_request removes a request from the pre dispatch queue
851 * without updating refcounts. It is expected the caller will drop the
852 * reference unless it replaces the request at somepart of the elevator
853 * (ie. the dispatch queue)
855 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
857 const int data_dir = rq_is_sync(rq);
858 struct as_data *ad = q->elevator->elevator_data;
859 struct io_context *ioc;
861 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
864 if (ioc && ioc->aic) {
865 BUG_ON(!atomic_read(&ioc->aic->nr_queued));
866 atomic_dec(&ioc->aic->nr_queued);
870 * Update the "next_rq" cache if we are about to remove its
873 if (ad->next_rq[data_dir] == rq)
874 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
877 as_del_rq_rb(ad, rq);
881 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
882 * 1 otherwise. It is ratelimited so that we only perform the check once per
883 * `fifo_expire' interval. Otherwise a large number of expired requests
884 * would create a hopeless seekstorm.
886 * See as_antic_expired comment.
888 static int as_fifo_expired(struct as_data *ad, int adir)
893 delta_jif = jiffies - ad->last_check_fifo[adir];
894 if (unlikely(delta_jif < 0))
895 delta_jif = -delta_jif;
896 if (delta_jif < ad->fifo_expire[adir])
899 ad->last_check_fifo[adir] = jiffies;
901 if (list_empty(&ad->fifo_list[adir]))
904 rq = rq_entry_fifo(ad->fifo_list[adir].next);
906 return time_after(jiffies, rq_fifo_time(rq));
910 * as_batch_expired returns true if the current batch has expired. A batch
911 * is a set of reads or a set of writes.
913 static inline int as_batch_expired(struct as_data *ad)
915 if (ad->changed_batch || ad->new_batch)
918 if (ad->batch_data_dir == REQ_SYNC)
919 /* TODO! add a check so a complete fifo gets written? */
920 return time_after(jiffies, ad->current_batch_expires);
922 return time_after(jiffies, ad->current_batch_expires)
923 || ad->current_write_count == 0;
927 * move an entry to dispatch queue
929 static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
931 const int data_dir = rq_is_sync(rq);
933 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
936 ad->antic_status = ANTIC_OFF;
939 * This has to be set in order to be correctly updated by
942 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
944 if (data_dir == REQ_SYNC) {
945 struct io_context *ioc = RQ_IOC(rq);
946 /* In case we have to anticipate after this */
947 copy_io_context(&ad->io_context, &ioc);
949 if (ad->io_context) {
950 put_io_context(ad->io_context);
951 ad->io_context = NULL;
954 if (ad->current_write_count != 0)
955 ad->current_write_count--;
957 ad->ioc_finished = 0;
959 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
962 * take it off the sort and fifo list, add to dispatch queue
964 as_remove_queued_request(ad->q, rq);
965 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
967 elv_dispatch_sort(ad->q, rq);
969 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
970 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
971 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
976 * as_dispatch_request selects the best request according to
977 * read/write expire, batch expire, etc, and moves it to the dispatch
978 * queue. Returns 1 if a request was found, 0 otherwise.
980 static int as_dispatch_request(request_queue_t *q, int force)
982 struct as_data *ad = q->elevator->elevator_data;
983 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
984 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
987 if (unlikely(force)) {
989 * Forced dispatch, accounting is useless. Reset
990 * accounting states and dump fifo_lists. Note that
991 * batch_data_dir is reset to REQ_SYNC to avoid
992 * screwing write batch accounting as write batch
993 * accounting occurs on W->R transition.
997 ad->batch_data_dir = REQ_SYNC;
998 ad->changed_batch = 0;
1001 while (ad->next_rq[REQ_SYNC]) {
1002 as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
1005 ad->last_check_fifo[REQ_SYNC] = jiffies;
1007 while (ad->next_rq[REQ_ASYNC]) {
1008 as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
1011 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1016 /* Signal that the write batch was uncontended, so we can't time it */
1017 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1018 if (ad->current_write_count == 0 || !writes)
1019 ad->write_batch_idled = 1;
1022 if (!(reads || writes)
1023 || ad->antic_status == ANTIC_WAIT_REQ
1024 || ad->antic_status == ANTIC_WAIT_NEXT
1025 || ad->changed_batch)
1028 if (!(reads && writes && as_batch_expired(ad))) {
1030 * batch is still running or no reads or no writes
1032 rq = ad->next_rq[ad->batch_data_dir];
1034 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1035 if (as_fifo_expired(ad, REQ_SYNC))
1038 if (as_can_anticipate(ad, rq)) {
1039 as_antic_waitreq(ad);
1045 /* we have a "next request" */
1046 if (reads && !writes)
1047 ad->current_batch_expires =
1048 jiffies + ad->batch_expire[REQ_SYNC];
1049 goto dispatch_request;
1054 * at this point we are not running a batch. select the appropriate
1055 * data direction (read / write)
1059 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1061 if (writes && ad->batch_data_dir == REQ_SYNC)
1063 * Last batch was a read, switch to writes
1065 goto dispatch_writes;
1067 if (ad->batch_data_dir == REQ_ASYNC) {
1068 WARN_ON(ad->new_batch);
1069 ad->changed_batch = 1;
1071 ad->batch_data_dir = REQ_SYNC;
1072 rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
1073 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1074 goto dispatch_request;
1078 * the last batch was a read
1083 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1085 if (ad->batch_data_dir == REQ_SYNC) {
1086 ad->changed_batch = 1;
1089 * new_batch might be 1 when the queue runs out of
1090 * reads. A subsequent submission of a write might
1091 * cause a change of batch before the read is finished.
1095 ad->batch_data_dir = REQ_ASYNC;
1096 ad->current_write_count = ad->write_batch_count;
1097 ad->write_batch_idled = 0;
1098 rq = ad->next_rq[ad->batch_data_dir];
1099 goto dispatch_request;
1107 * If a request has expired, service it.
1110 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1112 rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1115 if (ad->changed_batch) {
1116 WARN_ON(ad->new_batch);
1118 if (ad->nr_dispatched)
1121 if (ad->batch_data_dir == REQ_ASYNC)
1122 ad->current_batch_expires = jiffies +
1123 ad->batch_expire[REQ_ASYNC];
1127 ad->changed_batch = 0;
1131 * rq is the selected appropriate request.
1133 as_move_to_dispatch(ad, rq);
1139 * add rq to rbtree and fifo
1141 static void as_add_request(request_queue_t *q, struct request *rq)
1143 struct as_data *ad = q->elevator->elevator_data;
1146 RQ_SET_STATE(rq, AS_RQ_NEW);
1148 data_dir = rq_is_sync(rq);
1150 rq->elevator_private = as_get_io_context();
1153 as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1154 atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1157 as_add_rq_rb(ad, rq);
1160 * set expire time (only used for reads) and add to fifo list
1162 rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1163 list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1165 as_update_rq(ad, rq); /* keep state machine up to date */
1166 RQ_SET_STATE(rq, AS_RQ_QUEUED);
1169 static void as_activate_request(request_queue_t *q, struct request *rq)
1171 WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1172 RQ_SET_STATE(rq, AS_RQ_REMOVED);
1173 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1174 atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1177 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1179 WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1180 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1181 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1182 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1186 * as_queue_empty tells us if there are requests left in the device. It may
1187 * not be the case that a driver can get the next request even if the queue
1188 * is not empty - it is used in the block layer to check for plugging and
1189 * merging opportunities
1191 static int as_queue_empty(request_queue_t *q)
1193 struct as_data *ad = q->elevator->elevator_data;
1195 return list_empty(&ad->fifo_list[REQ_ASYNC])
1196 && list_empty(&ad->fifo_list[REQ_SYNC]);
1200 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1202 struct as_data *ad = q->elevator->elevator_data;
1203 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1204 struct request *__rq;
1207 * check for front merge
1209 __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1210 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1212 return ELEVATOR_FRONT_MERGE;
1215 return ELEVATOR_NO_MERGE;
1218 static void as_merged_request(request_queue_t *q, struct request *req, int type)
1220 struct as_data *ad = q->elevator->elevator_data;
1223 * if the merge was a front merge, we need to reposition request
1225 if (type == ELEVATOR_FRONT_MERGE) {
1226 as_del_rq_rb(ad, req);
1227 as_add_rq_rb(ad, req);
1229 * Note! At this stage of this and the next function, our next
1230 * request may not be optimal - eg the request may have "grown"
1231 * behind the disk head. We currently don't bother adjusting.
1236 static void as_merged_requests(request_queue_t *q, struct request *req,
1237 struct request *next)
1240 * if next expires before rq, assign its expire time to arq
1241 * and move into next position (next will be deleted) in fifo
1243 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1244 if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1245 struct io_context *rioc = RQ_IOC(req);
1246 struct io_context *nioc = RQ_IOC(next);
1248 list_move(&req->queuelist, &next->queuelist);
1249 rq_set_fifo_time(req, rq_fifo_time(next));
1251 * Don't copy here but swap, because when anext is
1252 * removed below, it must contain the unused context
1254 swap_io_context(&rioc, &nioc);
1259 * kill knowledge of next, this one is a goner
1261 as_remove_queued_request(q, next);
1262 as_put_io_context(next);
1264 RQ_SET_STATE(next, AS_RQ_MERGED);
1268 * This is executed in a "deferred" process context, by kblockd. It calls the
1269 * driver's request_fn so the driver can submit that request.
1271 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1272 * state before calling, and don't rely on any state over calls.
1274 * FIXME! dispatch queue is not a queue at all!
1276 static void as_work_handler(void *data)
1278 struct request_queue *q = data;
1279 unsigned long flags;
1281 spin_lock_irqsave(q->queue_lock, flags);
1282 if (!as_queue_empty(q))
1284 spin_unlock_irqrestore(q->queue_lock, flags);
1287 static int as_may_queue(request_queue_t *q, int rw)
1289 int ret = ELV_MQUEUE_MAY;
1290 struct as_data *ad = q->elevator->elevator_data;
1291 struct io_context *ioc;
1292 if (ad->antic_status == ANTIC_WAIT_REQ ||
1293 ad->antic_status == ANTIC_WAIT_NEXT) {
1294 ioc = as_get_io_context();
1295 if (ad->io_context == ioc)
1296 ret = ELV_MQUEUE_MUST;
1297 put_io_context(ioc);
1303 static void as_exit_queue(elevator_t *e)
1305 struct as_data *ad = e->elevator_data;
1307 del_timer_sync(&ad->antic_timer);
1310 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1311 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1313 put_io_context(ad->io_context);
1318 * initialize elevator private data (as_data).
1320 static void *as_init_queue(request_queue_t *q, elevator_t *e)
1324 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1327 memset(ad, 0, sizeof(*ad));
1329 ad->q = q; /* Identify what queue the data belongs to */
1331 /* anticipatory scheduling helpers */
1332 ad->antic_timer.function = as_antic_timeout;
1333 ad->antic_timer.data = (unsigned long)q;
1334 init_timer(&ad->antic_timer);
1335 INIT_WORK(&ad->antic_work, as_work_handler, q);
1337 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1338 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1339 ad->sort_list[REQ_SYNC] = RB_ROOT;
1340 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1341 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1342 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1343 ad->antic_expire = default_antic_expire;
1344 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1345 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1347 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1348 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1349 if (ad->write_batch_count < 2)
1350 ad->write_batch_count = 2;
1360 as_var_show(unsigned int var, char *page)
1362 return sprintf(page, "%d\n", var);
1366 as_var_store(unsigned long *var, const char *page, size_t count)
1368 char *p = (char *) page;
1370 *var = simple_strtoul(p, &p, 10);
1374 static ssize_t est_time_show(elevator_t *e, char *page)
1376 struct as_data *ad = e->elevator_data;
1379 pos += sprintf(page+pos, "%lu %% exit probability\n",
1380 100*ad->exit_prob/256);
1381 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1382 "cooperating process submitting IO\n",
1383 100*ad->exit_no_coop/256);
1384 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1385 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1386 (unsigned long long)ad->new_seek_mean);
1391 #define SHOW_FUNCTION(__FUNC, __VAR) \
1392 static ssize_t __FUNC(elevator_t *e, char *page) \
1394 struct as_data *ad = e->elevator_data; \
1395 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1397 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1398 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1399 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1400 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1401 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1402 #undef SHOW_FUNCTION
1404 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1405 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1407 struct as_data *ad = e->elevator_data; \
1408 int ret = as_var_store(__PTR, (page), count); \
1409 if (*(__PTR) < (MIN)) \
1411 else if (*(__PTR) > (MAX)) \
1413 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1416 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1417 STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1418 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1419 STORE_FUNCTION(as_read_batch_expire_store,
1420 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1421 STORE_FUNCTION(as_write_batch_expire_store,
1422 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1423 #undef STORE_FUNCTION
1425 #define AS_ATTR(name) \
1426 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1428 static struct elv_fs_entry as_attrs[] = {
1429 __ATTR_RO(est_time),
1430 AS_ATTR(read_expire),
1431 AS_ATTR(write_expire),
1432 AS_ATTR(antic_expire),
1433 AS_ATTR(read_batch_expire),
1434 AS_ATTR(write_batch_expire),
1438 static struct elevator_type iosched_as = {
1440 .elevator_merge_fn = as_merge,
1441 .elevator_merged_fn = as_merged_request,
1442 .elevator_merge_req_fn = as_merged_requests,
1443 .elevator_dispatch_fn = as_dispatch_request,
1444 .elevator_add_req_fn = as_add_request,
1445 .elevator_activate_req_fn = as_activate_request,
1446 .elevator_deactivate_req_fn = as_deactivate_request,
1447 .elevator_queue_empty_fn = as_queue_empty,
1448 .elevator_completed_req_fn = as_completed_request,
1449 .elevator_former_req_fn = elv_rb_former_request,
1450 .elevator_latter_req_fn = elv_rb_latter_request,
1451 .elevator_may_queue_fn = as_may_queue,
1452 .elevator_init_fn = as_init_queue,
1453 .elevator_exit_fn = as_exit_queue,
1457 .elevator_attrs = as_attrs,
1458 .elevator_name = "anticipatory",
1459 .elevator_owner = THIS_MODULE,
1462 static int __init as_init(void)
1466 ret = elv_register(&iosched_as);
1469 * don't allow AS to get unregistered, since we would have
1470 * to browse all tasks in the system and release their
1471 * as_io_context first
1473 __module_get(THIS_MODULE);
1480 static void __exit as_exit(void)
1482 DECLARE_COMPLETION(all_gone);
1483 elv_unregister(&iosched_as);
1484 ioc_gone = &all_gone;
1485 /* ioc_gone's update must be visible before reading ioc_count */
1487 if (atomic_read(&ioc_count))
1488 wait_for_completion(ioc_gone);
1492 module_init(as_init);
1493 module_exit(as_exit);
1495 MODULE_AUTHOR("Nick Piggin");
1496 MODULE_LICENSE("GPL");
1497 MODULE_DESCRIPTION("anticipatory IO scheduler");