1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007, 2008
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
28 BFD tries to maintain as much symbol information as it can when
29 it moves information from file to file. BFD passes information
30 to applications though the <<asymbol>> structure. When the
31 application requests the symbol table, BFD reads the table in
32 the native form and translates parts of it into the internal
33 format. To maintain more than the information passed to
34 applications, some targets keep some information ``behind the
35 scenes'' in a structure only the particular back end knows
36 about. For example, the coff back end keeps the original
37 symbol table structure as well as the canonical structure when
38 a BFD is read in. On output, the coff back end can reconstruct
39 the output symbol table so that no information is lost, even
40 information unique to coff which BFD doesn't know or
41 understand. If a coff symbol table were read, but were written
42 through an a.out back end, all the coff specific information
43 would be lost. The symbol table of a BFD
44 is not necessarily read in until a canonicalize request is
45 made. Then the BFD back end fills in a table provided by the
46 application with pointers to the canonical information. To
47 output symbols, the application provides BFD with a table of
48 pointers to pointers to <<asymbol>>s. This allows applications
49 like the linker to output a symbol as it was read, since the ``behind
50 the scenes'' information will be still available.
56 @* symbol handling functions::
60 Reading Symbols, Writing Symbols, Symbols, Symbols
64 There are two stages to reading a symbol table from a BFD:
65 allocating storage, and the actual reading process. This is an
66 excerpt from an application which reads the symbol table:
68 | long storage_needed;
69 | asymbol **symbol_table;
70 | long number_of_symbols;
73 | storage_needed = bfd_get_symtab_upper_bound (abfd);
75 | if (storage_needed < 0)
78 | if (storage_needed == 0)
81 | symbol_table = xmalloc (storage_needed);
84 | bfd_canonicalize_symtab (abfd, symbol_table);
86 | if (number_of_symbols < 0)
89 | for (i = 0; i < number_of_symbols; i++)
90 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw ("foo","a.out-sunos-big");
118 | bfd_set_format (abfd, bfd_object);
119 | new = bfd_make_empty_symbol (abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way (abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
128 | bfd_set_symtab (abfd, ptrs, 1);
135 | 00012345 A dummy_symbol
137 Many formats cannot represent arbitrary symbol information; for
138 instance, the <<a.out>> object format does not allow an
139 arbitrary number of sections. A symbol pointing to a section
140 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
144 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
148 Mini symbols provide read-only access to the symbol table.
149 They use less memory space, but require more time to access.
150 They can be useful for tools like nm or objdump, which may
151 have to handle symbol tables of extremely large executables.
153 The <<bfd_read_minisymbols>> function will read the symbols
154 into memory in an internal form. It will return a <<void *>>
155 pointer to a block of memory, a symbol count, and the size of
156 each symbol. The pointer is allocated using <<malloc>>, and
157 should be freed by the caller when it is no longer needed.
159 The function <<bfd_minisymbol_to_symbol>> will take a pointer
160 to a minisymbol, and a pointer to a structure returned by
161 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162 The return value may or may not be the same as the value from
163 <<bfd_make_empty_symbol>> which was passed in.
170 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
177 An <<asymbol>> has the form:
185 .typedef struct bfd_symbol
187 . {* A pointer to the BFD which owns the symbol. This information
188 . is necessary so that a back end can work out what additional
189 . information (invisible to the application writer) is carried
192 . This field is *almost* redundant, since you can use section->owner
193 . instead, except that some symbols point to the global sections
194 . bfd_{abs,com,und}_section. This could be fixed by making
195 . these globals be per-bfd (or per-target-flavor). FIXME. *}
196 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
198 . {* The text of the symbol. The name is left alone, and not copied; the
199 . application may not alter it. *}
202 . {* The value of the symbol. This really should be a union of a
203 . numeric value with a pointer, since some flags indicate that
204 . a pointer to another symbol is stored here. *}
207 . {* Attributes of a symbol. *}
208 .#define BSF_NO_FLAGS 0x00
210 . {* The symbol has local scope; <<static>> in <<C>>. The value
211 . is the offset into the section of the data. *}
212 .#define BSF_LOCAL (1 << 0)
214 . {* The symbol has global scope; initialized data in <<C>>. The
215 . value is the offset into the section of the data. *}
216 .#define BSF_GLOBAL (1 << 1)
218 . {* The symbol has global scope and is exported. The value is
219 . the offset into the section of the data. *}
220 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
222 . {* A normal C symbol would be one of:
223 . <<BSF_LOCAL>>, <<BSF_COMMON>>, <<BSF_UNDEFINED>> or
226 . {* The symbol is a debugging record. The value has an arbitrary
227 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
228 .#define BSF_DEBUGGING (1 << 2)
230 . {* The symbol denotes a function entry point. Used in ELF,
231 . perhaps others someday. *}
232 .#define BSF_FUNCTION (1 << 3)
234 . {* The symbol is an indirect code object. Unrelated to BSF_INDIRECT.
235 . Relocations against a symbol with this flag have to evaluated at
236 . run-time, where the function pointed to by this symbol is invoked
237 . in order to determine the value to be used in the relocation.
238 . BSF_FUNCTION must also be set for symbols with this flag. *}
239 .#define BSF_INDIRECT_FUNCTION (1 << 4)
241 . {* Used by the linker. *}
242 .#define BSF_KEEP (1 << 5)
243 .#define BSF_KEEP_G (1 << 6)
245 . {* A weak global symbol, overridable without warnings by
246 . a regular global symbol of the same name. *}
247 .#define BSF_WEAK (1 << 7)
249 . {* This symbol was created to point to a section, e.g. ELF's
250 . STT_SECTION symbols. *}
251 .#define BSF_SECTION_SYM (1 << 8)
253 . {* The symbol used to be a common symbol, but now it is
255 .#define BSF_OLD_COMMON (1 << 9)
257 . {* In some files the type of a symbol sometimes alters its
258 . location in an output file - ie in coff a <<ISFCN>> symbol
259 . which is also <<C_EXT>> symbol appears where it was
260 . declared and not at the end of a section. This bit is set
261 . by the target BFD part to convey this information. *}
262 .#define BSF_NOT_AT_END (1 << 10)
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR (1 << 11)
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING (1 << 12)
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT (1 << 13)
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE (1 << 14)
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC (1 << 15)
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
286 .#define BSF_OBJECT (1 << 16)
288 . {* This symbol is a debugging symbol. The value is the offset
289 . into the section of the data. BSF_DEBUGGING should be set
291 .#define BSF_DEBUGGING_RELOC (1 << 17)
293 . {* This symbol is thread local. Used in ELF. *}
294 .#define BSF_THREAD_LOCAL (1 << 18)
296 . {* This symbol represents a complex relocation expression,
297 . with the expression tree serialized in the symbol name. *}
298 .#define BSF_RELC (1 << 19)
300 . {* This symbol represents a signed complex relocation expression,
301 . with the expression tree serialized in the symbol name. *}
302 .#define BSF_SRELC (1 << 20)
304 . {* This symbol was created by bfd_get_synthetic_symtab. *}
305 .#define BSF_SYNTHETIC (1 << 21)
309 . {* A pointer to the section to which this symbol is
310 . relative. This will always be non NULL, there are special
311 . sections for undefined and absolute symbols. *}
312 . struct bfd_section *section;
314 . {* Back end special data. *}
329 #include "safe-ctype.h"
331 #include "aout/stab_gnu.h"
336 symbol handling functions, , typedef asymbol, Symbols
338 Symbol handling functions
343 bfd_get_symtab_upper_bound
346 Return the number of bytes required to store a vector of pointers
347 to <<asymbols>> for all the symbols in the BFD @var{abfd},
348 including a terminal NULL pointer. If there are no symbols in
349 the BFD, then return 0. If an error occurs, return -1.
351 .#define bfd_get_symtab_upper_bound(abfd) \
352 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
361 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
364 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
365 a compiler generated local label, else return FALSE.
369 bfd_is_local_label (bfd *abfd, asymbol *sym)
371 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
372 starts with '.' is local. This would accidentally catch section names
373 if we didn't reject them here. */
374 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
376 if (sym->name == NULL)
378 return bfd_is_local_label_name (abfd, sym->name);
383 bfd_is_local_label_name
386 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
389 Return TRUE if a symbol with the name @var{name} in the BFD
390 @var{abfd} is a compiler generated local label, else return
391 FALSE. This just checks whether the name has the form of a
394 .#define bfd_is_local_label_name(abfd, name) \
395 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
401 bfd_is_target_special_symbol
404 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
407 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
408 special to the particular target represented by the BFD. Such symbols
409 should normally not be mentioned to the user.
411 .#define bfd_is_target_special_symbol(abfd, sym) \
412 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
418 bfd_canonicalize_symtab
421 Read the symbols from the BFD @var{abfd}, and fills in
422 the vector @var{location} with pointers to the symbols and
424 Return the actual number of symbol pointers, not
427 .#define bfd_canonicalize_symtab(abfd, location) \
428 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
437 bfd_boolean bfd_set_symtab
438 (bfd *abfd, asymbol **location, unsigned int count);
441 Arrange that when the output BFD @var{abfd} is closed,
442 the table @var{location} of @var{count} pointers to symbols
447 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
449 if (abfd->format != bfd_object || bfd_read_p (abfd))
451 bfd_set_error (bfd_error_invalid_operation);
455 bfd_get_outsymbols (abfd) = location;
456 bfd_get_symcount (abfd) = symcount;
462 bfd_print_symbol_vandf
465 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
468 Print the value and flags of the @var{symbol} supplied to the
472 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 flagword type = symbol->flags;
478 if (symbol->section != NULL)
479 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
481 bfd_fprintf_vma (abfd, file, symbol->value);
483 /* This presumes that a symbol can not be both BSF_DEBUGGING and
484 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
486 fprintf (file, " %c%c%c%c%c%c%c",
488 ? (type & BSF_GLOBAL) ? '!' : 'l'
489 : (type & BSF_GLOBAL) ? 'g' : ' '),
490 (type & BSF_WEAK) ? 'w' : ' ',
491 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
492 (type & BSF_WARNING) ? 'W' : ' ',
493 (type & BSF_INDIRECT) ? 'I' : (type & BSF_INDIRECT_FUNCTION) ? 'i' : ' ',
494 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
495 ((type & BSF_FUNCTION)
499 : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 bfd_make_empty_symbol
507 Create a new <<asymbol>> structure for the BFD @var{abfd}
508 and return a pointer to it.
510 This routine is necessary because each back end has private
511 information surrounding the <<asymbol>>. Building your own
512 <<asymbol>> and pointing to it will not create the private
513 information, and will cause problems later on.
515 .#define bfd_make_empty_symbol(abfd) \
516 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
522 _bfd_generic_make_empty_symbol
525 asymbol *_bfd_generic_make_empty_symbol (bfd *);
528 Create a new <<asymbol>> structure for the BFD @var{abfd}
529 and return a pointer to it. Used by core file routines,
530 binary back-end and anywhere else where no private info
535 _bfd_generic_make_empty_symbol (bfd *abfd)
537 bfd_size_type amt = sizeof (asymbol);
538 asymbol *new = bfd_zalloc (abfd, amt);
546 bfd_make_debug_symbol
549 Create a new <<asymbol>> structure for the BFD @var{abfd},
550 to be used as a debugging symbol. Further details of its use have
551 yet to be worked out.
553 .#define bfd_make_debug_symbol(abfd,ptr,size) \
554 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
558 struct section_to_type
564 /* Map section names to POSIX/BSD single-character symbol types.
565 This table is probably incomplete. It is sorted for convenience of
566 adding entries. Since it is so short, a linear search is used. */
567 static const struct section_to_type stt[] =
570 {"code", 't'}, /* MRI .text */
573 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
574 {".drectve", 'i'}, /* MSVC's .drective section */
575 {".edata", 'e'}, /* MSVC's .edata (export) section */
576 {".fini", 't'}, /* ELF fini section */
577 {".idata", 'i'}, /* MSVC's .idata (import) section */
578 {".init", 't'}, /* ELF init section */
579 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
580 {".rdata", 'r'}, /* Read only data. */
581 {".rodata", 'r'}, /* Read only data. */
582 {".sbss", 's'}, /* Small BSS (uninitialized data). */
583 {".scommon", 'c'}, /* Small common. */
584 {".sdata", 'g'}, /* Small initialized data. */
586 {"vars", 'd'}, /* MRI .data */
587 {"zerovars", 'b'}, /* MRI .bss */
591 /* Return the single-character symbol type corresponding to
592 section S, or '?' for an unknown COFF section.
594 Check for any leading string which matches, so .text5 returns
595 't' as well as .text */
598 coff_section_type (const char *s)
600 const struct section_to_type *t;
602 for (t = &stt[0]; t->section; t++)
603 if (!strncmp (s, t->section, strlen (t->section)))
609 /* Return the single-character symbol type corresponding to section
610 SECTION, or '?' for an unknown section. This uses section flags to
613 FIXME These types are unhandled: c, i, e, p. If we handled these also,
614 we could perhaps obsolete coff_section_type. */
617 decode_section_type (const struct bfd_section *section)
619 if (section->flags & SEC_CODE)
621 if (section->flags & SEC_DATA)
623 if (section->flags & SEC_READONLY)
625 else if (section->flags & SEC_SMALL_DATA)
630 if ((section->flags & SEC_HAS_CONTENTS) == 0)
632 if (section->flags & SEC_SMALL_DATA)
637 if (section->flags & SEC_DEBUGGING)
639 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
650 Return a character corresponding to the symbol
651 class of @var{symbol}, or '?' for an unknown class.
654 int bfd_decode_symclass (asymbol *symbol);
657 bfd_decode_symclass (asymbol *symbol)
661 if (symbol->section && bfd_is_com_section (symbol->section))
663 if (bfd_is_und_section (symbol->section))
665 if (symbol->flags & BSF_WEAK)
667 /* If weak, determine if it's specifically an object
668 or non-object weak. */
669 if (symbol->flags & BSF_OBJECT)
677 if (bfd_is_ind_section (symbol->section))
679 if (symbol->flags & BSF_INDIRECT_FUNCTION)
681 if (symbol->flags & BSF_WEAK)
683 /* If weak, determine if it's specifically an object
684 or non-object weak. */
685 if (symbol->flags & BSF_OBJECT)
690 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
693 if (bfd_is_abs_section (symbol->section))
695 else if (symbol->section)
697 c = coff_section_type (symbol->section->name);
699 c = decode_section_type (symbol->section);
703 if (symbol->flags & BSF_GLOBAL)
707 /* We don't have to handle these cases just yet, but we will soon:
719 bfd_is_undefined_symclass
722 Returns non-zero if the class symbol returned by
723 bfd_decode_symclass represents an undefined symbol.
724 Returns zero otherwise.
727 bfd_boolean bfd_is_undefined_symclass (int symclass);
731 bfd_is_undefined_symclass (int symclass)
733 return symclass == 'U' || symclass == 'w' || symclass == 'v';
741 Fill in the basic info about symbol that nm needs.
742 Additional info may be added by the back-ends after
743 calling this function.
746 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
750 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
752 ret->type = bfd_decode_symclass (symbol);
754 if (bfd_is_undefined_symclass (ret->type))
757 ret->value = symbol->value + symbol->section->vma;
759 ret->name = symbol->name;
764 bfd_copy_private_symbol_data
767 bfd_boolean bfd_copy_private_symbol_data
768 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
771 Copy private symbol information from @var{isym} in the BFD
772 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
773 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
776 o <<bfd_error_no_memory>> -
777 Not enough memory exists to create private data for @var{osec}.
779 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
780 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
781 . (ibfd, isymbol, obfd, osymbol))
785 /* The generic version of the function which returns mini symbols.
786 This is used when the backend does not provide a more efficient
787 version. It just uses BFD asymbol structures as mini symbols. */
790 _bfd_generic_read_minisymbols (bfd *abfd,
796 asymbol **syms = NULL;
800 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
802 storage = bfd_get_symtab_upper_bound (abfd);
808 syms = bfd_malloc (storage);
813 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
815 symcount = bfd_canonicalize_symtab (abfd, syms);
820 *sizep = sizeof (asymbol *);
824 bfd_set_error (bfd_error_no_symbols);
830 /* The generic version of the function which converts a minisymbol to
831 an asymbol. We don't worry about the sym argument we are passed;
832 we just return the asymbol the minisymbol points to. */
835 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
836 bfd_boolean dynamic ATTRIBUTE_UNUSED,
838 asymbol *sym ATTRIBUTE_UNUSED)
840 return *(asymbol **) minisym;
843 /* Look through stabs debugging information in .stab and .stabstr
844 sections to find the source file and line closest to a desired
845 location. This is used by COFF and ELF targets. It sets *pfound
846 to TRUE if it finds some information. The *pinfo field is used to
847 pass cached information in and out of this routine; this first time
848 the routine is called for a BFD, *pinfo should be NULL. The value
849 placed in *pinfo should be saved with the BFD, and passed back each
850 time this function is called. */
852 /* We use a cache by default. */
854 #define ENABLE_CACHING
856 /* We keep an array of indexentry structures to record where in the
857 stabs section we should look to find line number information for a
858 particular address. */
865 char *directory_name;
870 /* Compare two indexentry structures. This is called via qsort. */
873 cmpindexentry (const void *a, const void *b)
875 const struct indexentry *contestantA = a;
876 const struct indexentry *contestantB = b;
878 if (contestantA->val < contestantB->val)
880 else if (contestantA->val > contestantB->val)
886 /* A pointer to this structure is stored in *pinfo. */
888 struct stab_find_info
890 /* The .stab section. */
892 /* The .stabstr section. */
894 /* The contents of the .stab section. */
896 /* The contents of the .stabstr section. */
899 /* A table that indexes stabs by memory address. */
900 struct indexentry *indextable;
901 /* The number of entries in indextable. */
904 #ifdef ENABLE_CACHING
905 /* Cached values to restart quickly. */
906 struct indexentry *cached_indexentry;
907 bfd_vma cached_offset;
908 bfd_byte *cached_stab;
909 char *cached_file_name;
912 /* Saved ptr to malloc'ed filename. */
917 _bfd_stab_section_find_nearest_line (bfd *abfd,
922 const char **pfilename,
923 const char **pfnname,
927 struct stab_find_info *info;
928 bfd_size_type stabsize, strsize;
929 bfd_byte *stab, *str;
930 bfd_byte *last_stab = NULL;
931 bfd_size_type stroff;
932 struct indexentry *indexentry;
934 char *directory_name;
936 bfd_boolean saw_line, saw_func;
939 *pfilename = bfd_get_filename (abfd);
943 /* Stabs entries use a 12 byte format:
944 4 byte string table index
946 1 byte stab other field
947 2 byte stab desc field
949 FIXME: This will have to change for a 64 bit object format.
951 The stabs symbols are divided into compilation units. For the
952 first entry in each unit, the type of 0, the value is the length
953 of the string table for this unit, and the desc field is the
954 number of stabs symbols for this unit. */
961 #define STABSIZE (12)
966 if (info->stabsec == NULL || info->strsec == NULL)
968 /* No stabs debugging information. */
972 stabsize = (info->stabsec->rawsize
973 ? info->stabsec->rawsize
974 : info->stabsec->size);
975 strsize = (info->strsec->rawsize
976 ? info->strsec->rawsize
977 : info->strsec->size);
981 long reloc_size, reloc_count;
982 arelent **reloc_vector;
986 bfd_size_type amt = sizeof *info;
988 info = bfd_zalloc (abfd, amt);
992 /* FIXME: When using the linker --split-by-file or
993 --split-by-reloc options, it is possible for the .stab and
994 .stabstr sections to be split. We should handle that. */
996 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
997 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
999 if (info->stabsec == NULL || info->strsec == NULL)
1001 /* Try SOM section names. */
1002 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1003 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1005 if (info->stabsec == NULL || info->strsec == NULL)
1007 /* No stabs debugging information. Set *pinfo so that we
1008 can return quickly in the info != NULL case above. */
1014 stabsize = (info->stabsec->rawsize
1015 ? info->stabsec->rawsize
1016 : info->stabsec->size);
1017 strsize = (info->strsec->rawsize
1018 ? info->strsec->rawsize
1019 : info->strsec->size);
1021 info->stabs = bfd_alloc (abfd, stabsize);
1022 info->strs = bfd_alloc (abfd, strsize);
1023 if (info->stabs == NULL || info->strs == NULL)
1026 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1028 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1032 /* If this is a relocatable object file, we have to relocate
1033 the entries in .stab. This should always be simple 32 bit
1034 relocations against symbols defined in this object file, so
1035 this should be no big deal. */
1036 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1039 reloc_vector = bfd_malloc (reloc_size);
1040 if (reloc_vector == NULL && reloc_size != 0)
1042 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1044 if (reloc_count < 0)
1046 if (reloc_vector != NULL)
1047 free (reloc_vector);
1050 if (reloc_count > 0)
1054 for (pr = reloc_vector; *pr != NULL; pr++)
1061 /* Ignore R_*_NONE relocs. */
1062 if (r->howto->dst_mask == 0)
1065 if (r->howto->rightshift != 0
1066 || r->howto->size != 2
1067 || r->howto->bitsize != 32
1068 || r->howto->pc_relative
1069 || r->howto->bitpos != 0
1070 || r->howto->dst_mask != 0xffffffff)
1072 (*_bfd_error_handler)
1073 (_("Unsupported .stab relocation"));
1074 bfd_set_error (bfd_error_invalid_operation);
1075 if (reloc_vector != NULL)
1076 free (reloc_vector);
1080 val = bfd_get_32 (abfd, info->stabs + r->address);
1081 val &= r->howto->src_mask;
1082 sym = *r->sym_ptr_ptr;
1083 val += sym->value + sym->section->vma + r->addend;
1084 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1088 if (reloc_vector != NULL)
1089 free (reloc_vector);
1091 /* First time through this function, build a table matching
1092 function VM addresses to stabs, then sort based on starting
1093 VM address. Do this in two passes: once to count how many
1094 table entries we'll need, and a second to actually build the
1097 info->indextablesize = 0;
1099 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1101 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1103 /* N_SO with null name indicates EOF */
1104 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1107 /* if we did not see a function def, leave space for one. */
1109 ++info->indextablesize;
1113 /* two N_SO's in a row is a filename and directory. Skip */
1114 if (stab + STABSIZE < info->stabs + stabsize
1115 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1120 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1123 ++info->indextablesize;
1128 ++info->indextablesize;
1130 if (info->indextablesize == 0)
1132 ++info->indextablesize;
1134 amt = info->indextablesize;
1135 amt *= sizeof (struct indexentry);
1136 info->indextable = bfd_alloc (abfd, amt);
1137 if (info->indextable == NULL)
1141 directory_name = NULL;
1144 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1145 i < info->indextablesize && stab < info->stabs + stabsize;
1148 switch (stab[TYPEOFF])
1151 /* This is the first entry in a compilation unit. */
1152 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1155 stroff = bfd_get_32 (abfd, stab + VALOFF);
1159 /* The main file name. */
1161 /* The following code creates a new indextable entry with
1162 a NULL function name if there were no N_FUNs in a file.
1163 Note that a N_SO without a file name is an EOF and
1164 there could be 2 N_SO following it with the new filename
1168 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1169 info->indextable[i].stab = last_stab;
1170 info->indextable[i].str = str;
1171 info->indextable[i].directory_name = directory_name;
1172 info->indextable[i].file_name = file_name;
1173 info->indextable[i].function_name = NULL;
1178 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1179 if (*file_name == '\0')
1181 directory_name = NULL;
1188 if (stab + STABSIZE >= info->stabs + stabsize
1189 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1191 directory_name = NULL;
1195 /* Two consecutive N_SOs are a directory and a
1198 directory_name = file_name;
1199 file_name = ((char *) str
1200 + bfd_get_32 (abfd, stab + STRDXOFF));
1206 /* The name of an include file. */
1207 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1211 /* A function name. */
1213 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1218 function_name = name;
1223 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1224 info->indextable[i].stab = stab;
1225 info->indextable[i].str = str;
1226 info->indextable[i].directory_name = directory_name;
1227 info->indextable[i].file_name = file_name;
1228 info->indextable[i].function_name = function_name;
1236 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1237 info->indextable[i].stab = last_stab;
1238 info->indextable[i].str = str;
1239 info->indextable[i].directory_name = directory_name;
1240 info->indextable[i].file_name = file_name;
1241 info->indextable[i].function_name = NULL;
1245 info->indextable[i].val = (bfd_vma) -1;
1246 info->indextable[i].stab = info->stabs + stabsize;
1247 info->indextable[i].str = str;
1248 info->indextable[i].directory_name = NULL;
1249 info->indextable[i].file_name = NULL;
1250 info->indextable[i].function_name = NULL;
1253 info->indextablesize = i;
1254 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1260 /* We are passed a section relative offset. The offsets in the
1261 stabs information are absolute. */
1262 offset += bfd_get_section_vma (abfd, section);
1264 #ifdef ENABLE_CACHING
1265 if (info->cached_indexentry != NULL
1266 && offset >= info->cached_offset
1267 && offset < (info->cached_indexentry + 1)->val)
1269 stab = info->cached_stab;
1270 indexentry = info->cached_indexentry;
1271 file_name = info->cached_file_name;
1279 /* Cache non-existent or invalid. Do binary search on
1284 high = info->indextablesize - 1;
1287 mid = (high + low) / 2;
1288 if (offset >= info->indextable[mid].val
1289 && offset < info->indextable[mid + 1].val)
1291 indexentry = &info->indextable[mid];
1295 if (info->indextable[mid].val > offset)
1301 if (indexentry == NULL)
1304 stab = indexentry->stab + STABSIZE;
1305 file_name = indexentry->file_name;
1308 directory_name = indexentry->directory_name;
1309 str = indexentry->str;
1313 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1320 switch (stab[TYPEOFF])
1323 /* The name of an include file. */
1324 val = bfd_get_32 (abfd, stab + VALOFF);
1327 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1335 /* A line number. If the function was specified, then the value
1336 is relative to the start of the function. Otherwise, the
1337 value is an absolute address. */
1338 val = ((indexentry->function_name ? indexentry->val : 0)
1339 + bfd_get_32 (abfd, stab + VALOFF));
1340 /* If this line starts before our desired offset, or if it's
1341 the first line we've been able to find, use it. The
1342 !saw_line check works around a bug in GCC 2.95.3, which emits
1343 the first N_SLINE late. */
1344 if (!saw_line || val <= offset)
1346 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1348 #ifdef ENABLE_CACHING
1349 info->cached_stab = stab;
1350 info->cached_offset = val;
1351 info->cached_file_name = file_name;
1352 info->cached_indexentry = indexentry;
1362 if (saw_func || saw_line)
1374 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1375 || directory_name == NULL)
1376 *pfilename = file_name;
1381 dirlen = strlen (directory_name);
1382 if (info->filename == NULL
1383 || strncmp (info->filename, directory_name, dirlen) != 0
1384 || strcmp (info->filename + dirlen, file_name) != 0)
1388 if (info->filename != NULL)
1389 free (info->filename);
1390 len = strlen (file_name) + 1;
1391 info->filename = bfd_malloc (dirlen + len);
1392 if (info->filename == NULL)
1394 memcpy (info->filename, directory_name, dirlen);
1395 memcpy (info->filename + dirlen, file_name, len);
1398 *pfilename = info->filename;
1401 if (indexentry->function_name != NULL)
1405 /* This will typically be something like main:F(0,1), so we want
1406 to clobber the colon. It's OK to change the name, since the
1407 string is in our own local storage anyhow. */
1408 s = strchr (indexentry->function_name, ':');
1412 *pfnname = indexentry->function_name;