1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Cygnus Support.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
54 @* symbol handling functions::
58 Reading Symbols, Writing Symbols, Symbols, Symbols
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 | if (storage_needed < 0)
76 | if (storage_needed == 0) {
79 | symbol_table = (asymbol **) xmalloc (storage_needed);
82 | bfd_canonicalize_symtab (abfd, symbol_table);
84 | if (number_of_symbols < 0)
87 | for (i = 0; i < number_of_symbols; i++) {
88 | process_symbol (symbol_table[i]);
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
171 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
178 An <<asymbol>> has the form:
186 .typedef struct symbol_cache_entry
188 . {* A pointer to the BFD which owns the symbol. This information
189 . is necessary so that a back end can work out what additional
190 . information (invisible to the application writer) is carried
193 . This field is *almost* redundant, since you can use section->owner
194 . instead, except that some symbols point to the global sections
195 . bfd_{abs,com,und}_section. This could be fixed by making
196 . these globals be per-bfd (or per-target-flavor). FIXME. *}
198 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
200 . {* The text of the symbol. The name is left alone, and not copied; the
201 . application may not alter it. *}
204 . {* The value of the symbol. This really should be a union of a
205 . numeric value with a pointer, since some flags indicate that
206 . a pointer to another symbol is stored here. *}
209 . {* Attributes of a symbol: *}
211 .#define BSF_NO_FLAGS 0x00
213 . {* The symbol has local scope; <<static>> in <<C>>. The value
214 . is the offset into the section of the data. *}
215 .#define BSF_LOCAL 0x01
217 . {* The symbol has global scope; initialized data in <<C>>. The
218 . value is the offset into the section of the data. *}
219 .#define BSF_GLOBAL 0x02
221 . {* The symbol has global scope and is exported. The value is
222 . the offset into the section of the data. *}
223 .#define BSF_EXPORT BSF_GLOBAL {* no real difference *}
225 . {* A normal C symbol would be one of:
226 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
229 . {* The symbol is a debugging record. The value has an arbitary
231 .#define BSF_DEBUGGING 0x08
233 . {* The symbol denotes a function entry point. Used in ELF,
234 . perhaps others someday. *}
235 .#define BSF_FUNCTION 0x10
237 . {* Used by the linker. *}
238 .#define BSF_KEEP 0x20
239 .#define BSF_KEEP_G 0x40
241 . {* A weak global symbol, overridable without warnings by
242 . a regular global symbol of the same name. *}
243 .#define BSF_WEAK 0x80
245 . {* This symbol was created to point to a section, e.g. ELF's
246 . STT_SECTION symbols. *}
247 .#define BSF_SECTION_SYM 0x100
249 . {* The symbol used to be a common symbol, but now it is
251 .#define BSF_OLD_COMMON 0x200
253 . {* The default value for common data. *}
254 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
256 . {* In some files the type of a symbol sometimes alters its
257 . location in an output file - ie in coff a <<ISFCN>> symbol
258 . which is also <<C_EXT>> symbol appears where it was
259 . declared and not at the end of a section. This bit is set
260 . by the target BFD part to convey this information. *}
262 .#define BSF_NOT_AT_END 0x400
264 . {* Signal that the symbol is the label of constructor section. *}
265 .#define BSF_CONSTRUCTOR 0x800
267 . {* Signal that the symbol is a warning symbol. The name is a
268 . warning. The name of the next symbol is the one to warn about;
269 . if a reference is made to a symbol with the same name as the next
270 . symbol, a warning is issued by the linker. *}
271 .#define BSF_WARNING 0x1000
273 . {* Signal that the symbol is indirect. This symbol is an indirect
274 . pointer to the symbol with the same name as the next symbol. *}
275 .#define BSF_INDIRECT 0x2000
277 . {* BSF_FILE marks symbols that contain a file name. This is used
278 . for ELF STT_FILE symbols. *}
279 .#define BSF_FILE 0x4000
281 . {* Symbol is from dynamic linking information. *}
282 .#define BSF_DYNAMIC 0x8000
284 . {* The symbol denotes a data object. Used in ELF, and perhaps
286 .#define BSF_OBJECT 0x10000
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
295 . {* Back end special data. *}
309 #include "aout/stab_gnu.h"
311 static char coff_section_type PARAMS ((const char *));
316 symbol handling functions, , typedef asymbol, Symbols
318 Symbol handling functions
323 bfd_get_symtab_upper_bound
326 Return the number of bytes required to store a vector of pointers
327 to <<asymbols>> for all the symbols in the BFD @var{abfd},
328 including a terminal NULL pointer. If there are no symbols in
329 the BFD, then return 0. If an error occurs, return -1.
331 .#define bfd_get_symtab_upper_bound(abfd) \
332 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
341 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
344 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
345 a compiler generated local label, else return false.
349 bfd_is_local_label (abfd, sym)
353 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
355 if (sym->name == NULL)
357 return bfd_is_local_label_name (abfd, sym->name);
362 bfd_is_local_label_name
365 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
368 Return true if a symbol with the name @var{name} in the BFD
369 @var{abfd} is a compiler generated local label, else return
370 false. This just checks whether the name has the form of a
373 .#define bfd_is_local_label_name(abfd, name) \
374 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
379 bfd_canonicalize_symtab
382 Read the symbols from the BFD @var{abfd}, and fills in
383 the vector @var{location} with pointers to the symbols and
385 Return the actual number of symbol pointers, not
389 .#define bfd_canonicalize_symtab(abfd, location) \
390 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
401 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
404 Arrange that when the output BFD @var{abfd} is closed,
405 the table @var{location} of @var{count} pointers to symbols
410 bfd_set_symtab (abfd, location, symcount)
413 unsigned int symcount;
415 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
417 bfd_set_error (bfd_error_invalid_operation);
421 bfd_get_outsymbols (abfd) = location;
422 bfd_get_symcount (abfd) = symcount;
428 bfd_print_symbol_vandf
431 void bfd_print_symbol_vandf(PTR file, asymbol *symbol);
434 Print the value and flags of the @var{symbol} supplied to the
438 bfd_print_symbol_vandf (arg, symbol)
442 FILE *file = (FILE *) arg;
443 flagword type = symbol->flags;
444 if (symbol->section != (asection *) NULL)
446 fprintf_vma (file, symbol->value + symbol->section->vma);
450 fprintf_vma (file, symbol->value);
453 /* This presumes that a symbol can not be both BSF_DEBUGGING and
454 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
456 fprintf (file, " %c%c%c%c%c%c%c",
458 ? (type & BSF_GLOBAL) ? '!' : 'l'
459 : (type & BSF_GLOBAL) ? 'g' : ' '),
460 (type & BSF_WEAK) ? 'w' : ' ',
461 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
462 (type & BSF_WARNING) ? 'W' : ' ',
463 (type & BSF_INDIRECT) ? 'I' : ' ',
464 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
465 ((type & BSF_FUNCTION)
469 : ((type & BSF_OBJECT) ? 'O' : ' '))));
475 bfd_make_empty_symbol
478 Create a new <<asymbol>> structure for the BFD @var{abfd}
479 and return a pointer to it.
481 This routine is necessary because each back end has private
482 information surrounding the <<asymbol>>. Building your own
483 <<asymbol>> and pointing to it will not create the private
484 information, and will cause problems later on.
486 .#define bfd_make_empty_symbol(abfd) \
487 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
492 bfd_make_debug_symbol
495 Create a new <<asymbol>> structure for the BFD @var{abfd},
496 to be used as a debugging symbol. Further details of its use have
497 yet to be worked out.
499 .#define bfd_make_debug_symbol(abfd,ptr,size) \
500 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
503 struct section_to_type
509 /* Map section names to POSIX/BSD single-character symbol types.
510 This table is probably incomplete. It is sorted for convenience of
511 adding entries. Since it is so short, a linear search is used. */
512 static CONST struct section_to_type stt[] =
516 {"zerovars", 'b'}, /* MRI .bss */
518 {"vars", 'd'}, /* MRI .data */
519 {".rdata", 'r'}, /* Read only data. */
520 {".rodata", 'r'}, /* Read only data. */
521 {".sbss", 's'}, /* Small BSS (uninitialized data). */
522 {".scommon", 'c'}, /* Small common. */
523 {".sdata", 'g'}, /* Small initialized data. */
525 {"code", 't'}, /* MRI .text */
526 {".drectve", 'i'}, /* MSVC's .drective section */
527 {".idata", 'i'}, /* MSVC's .idata (import) section */
528 {".edata", 'e'}, /* MSVC's .edata (export) section */
529 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
530 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
534 /* Return the single-character symbol type corresponding to
535 section S, or '?' for an unknown COFF section.
537 Check for any leading string which matches, so .text5 returns
538 't' as well as .text */
541 coff_section_type (s)
544 CONST struct section_to_type *t;
546 for (t = &stt[0]; t->section; t++)
547 if (!strncmp (s, t->section, strlen (t->section)))
554 #define islower(c) ((c) >= 'a' && (c) <= 'z')
557 #define toupper(c) (islower(c) ? ((c) & ~0x20) : (c))
565 Return a character corresponding to the symbol
566 class of @var{symbol}, or '?' for an unknown class.
569 int bfd_decode_symclass(asymbol *symbol);
572 bfd_decode_symclass (symbol)
577 if (bfd_is_com_section (symbol->section))
579 if (bfd_is_und_section (symbol->section))
581 if (symbol->flags & BSF_WEAK)
586 if (bfd_is_ind_section (symbol->section))
588 if (symbol->flags & BSF_WEAK)
590 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
593 if (bfd_is_abs_section (symbol->section))
595 else if (symbol->section)
596 c = coff_section_type (symbol->section->name);
599 if (symbol->flags & BSF_GLOBAL)
603 /* We don't have to handle these cases just yet, but we will soon:
618 Fill in the basic info about symbol that nm needs.
619 Additional info may be added by the back-ends after
620 calling this function.
623 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
627 bfd_symbol_info (symbol, ret)
631 ret->type = bfd_decode_symclass (symbol);
632 if (ret->type != 'U' && ret->type != 'w')
633 ret->value = symbol->value + symbol->section->vma;
636 ret->name = symbol->name;
641 bfd_copy_private_symbol_data
644 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
647 Copy private symbol information from @var{isym} in the BFD
648 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
649 Return <<true>> on success, <<false>> on error. Possible error
652 o <<bfd_error_no_memory>> -
653 Not enough memory exists to create private data for @var{osec}.
655 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
656 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
657 . (ibfd, isymbol, obfd, osymbol))
661 /* The generic version of the function which returns mini symbols.
662 This is used when the backend does not provide a more efficient
663 version. It just uses BFD asymbol structures as mini symbols. */
666 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
673 asymbol **syms = NULL;
677 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
679 storage = bfd_get_symtab_upper_bound (abfd);
683 syms = (asymbol **) bfd_malloc ((size_t) storage);
688 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
690 symcount = bfd_canonicalize_symtab (abfd, syms);
694 *minisymsp = (PTR) syms;
695 *sizep = sizeof (asymbol *);
704 /* The generic version of the function which converts a minisymbol to
705 an asymbol. We don't worry about the sym argument we are passed;
706 we just return the asymbol the minisymbol points to. */
710 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
711 bfd *abfd ATTRIBUTE_UNUSED;
712 boolean dynamic ATTRIBUTE_UNUSED;
714 asymbol *sym ATTRIBUTE_UNUSED;
716 return *(asymbol **) minisym;
719 /* Look through stabs debugging information in .stab and .stabstr
720 sections to find the source file and line closest to a desired
721 location. This is used by COFF and ELF targets. It sets *pfound
722 to true if it finds some information. The *pinfo field is used to
723 pass cached information in and out of this routine; this first time
724 the routine is called for a BFD, *pinfo should be NULL. The value
725 placed in *pinfo should be saved with the BFD, and passed back each
726 time this function is called. */
728 /* We use a cache by default. */
730 #define ENABLE_CACHING
732 /* We keep an array of indexentry structures to record where in the
733 stabs section we should look to find line number information for a
734 particular address. */
741 char *directory_name;
746 /* Compare two indexentry structures. This is called via qsort. */
753 const struct indexentry *contestantA = (const struct indexentry *) a;
754 const struct indexentry *contestantB = (const struct indexentry *) b;
756 if (contestantA->val < contestantB->val)
758 else if (contestantA->val > contestantB->val)
764 /* A pointer to this structure is stored in *pinfo. */
766 struct stab_find_info
768 /* The .stab section. */
770 /* The .stabstr section. */
772 /* The contents of the .stab section. */
774 /* The contents of the .stabstr section. */
777 /* A table that indexes stabs by memory address. */
778 struct indexentry *indextable;
779 /* The number of entries in indextable. */
782 #ifdef ENABLE_CACHING
783 /* Cached values to restart quickly. */
784 struct indexentry *cached_indexentry;
785 bfd_vma cached_offset;
786 bfd_byte *cached_stab;
787 char *cached_file_name;
790 /* Saved ptr to malloc'ed filename. */
795 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
796 pfilename, pfnname, pline, pinfo)
802 const char **pfilename;
803 const char **pfnname;
807 struct stab_find_info *info;
808 bfd_size_type stabsize, strsize;
809 bfd_byte *stab, *str;
810 bfd_byte *last_stab = NULL;
811 bfd_size_type stroff;
812 struct indexentry *indexentry;
813 char *directory_name, *file_name;
817 *pfilename = bfd_get_filename (abfd);
821 /* Stabs entries use a 12 byte format:
822 4 byte string table index
824 1 byte stab other field
825 2 byte stab desc field
827 FIXME: This will have to change for a 64 bit object format.
829 The stabs symbols are divided into compilation units. For the
830 first entry in each unit, the type of 0, the value is the length
831 of the string table for this unit, and the desc field is the
832 number of stabs symbols for this unit. */
839 #define STABSIZE (12)
841 info = (struct stab_find_info *) *pinfo;
844 if (info->stabsec == NULL || info->strsec == NULL)
846 /* No stabs debugging information. */
850 stabsize = info->stabsec->_raw_size;
851 strsize = info->strsec->_raw_size;
855 long reloc_size, reloc_count;
856 arelent **reloc_vector;
860 char *directory_name;
863 info = (struct stab_find_info *) bfd_zalloc (abfd, sizeof *info);
867 /* FIXME: When using the linker --split-by-file or
868 --split-by-reloc options, it is possible for the .stab and
869 .stabstr sections to be split. We should handle that. */
871 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
872 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
874 if (info->stabsec == NULL || info->strsec == NULL)
876 /* No stabs debugging information. Set *pinfo so that we
877 can return quickly in the info != NULL case above. */
882 stabsize = info->stabsec->_raw_size;
883 strsize = info->strsec->_raw_size;
885 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
886 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
887 if (info->stabs == NULL || info->strs == NULL)
890 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 0,
892 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 0,
896 /* If this is a relocateable object file, we have to relocate
897 the entries in .stab. This should always be simple 32 bit
898 relocations against symbols defined in this object file, so
899 this should be no big deal. */
900 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
903 reloc_vector = (arelent **) bfd_malloc (reloc_size);
904 if (reloc_vector == NULL && reloc_size != 0)
906 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
910 if (reloc_vector != NULL)
918 for (pr = reloc_vector; *pr != NULL; pr++)
925 if (r->howto->rightshift != 0
926 || r->howto->size != 2
927 || r->howto->bitsize != 32
928 || r->howto->pc_relative
929 || r->howto->bitpos != 0
930 || r->howto->dst_mask != 0xffffffff)
932 (*_bfd_error_handler)
933 (_("Unsupported .stab relocation"));
934 bfd_set_error (bfd_error_invalid_operation);
935 if (reloc_vector != NULL)
940 val = bfd_get_32 (abfd, info->stabs + r->address);
941 val &= r->howto->src_mask;
942 sym = *r->sym_ptr_ptr;
943 val += sym->value + sym->section->vma + r->addend;
944 bfd_put_32 (abfd, val, info->stabs + r->address);
948 if (reloc_vector != NULL)
951 /* First time through this function, build a table matching
952 function VM addresses to stabs, then sort based on starting
953 VM address. Do this in two passes: once to count how many
954 table entries we'll need, and a second to actually build the
957 info->indextablesize = 0;
959 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
961 if (stab[TYPEOFF] == N_SO)
963 /* N_SO with null name indicates EOF */
964 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
967 /* if we did not see a function def, leave space for one. */
969 ++info->indextablesize;
973 /* two N_SO's in a row is a filename and directory. Skip */
974 if (stab + STABSIZE < info->stabs + stabsize
975 && *(stab + STABSIZE + TYPEOFF) == N_SO)
980 else if (stab[TYPEOFF] == N_FUN)
983 ++info->indextablesize;
988 ++info->indextablesize;
990 if (info->indextablesize == 0)
992 ++info->indextablesize;
994 info->indextable = ((struct indexentry *)
996 (sizeof (struct indexentry)
997 * info->indextablesize)));
998 if (info->indextable == NULL)
1002 directory_name = NULL;
1005 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1006 i < info->indextablesize && stab < info->stabs + stabsize;
1009 switch (stab[TYPEOFF])
1012 /* This is the first entry in a compilation unit. */
1013 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1016 stroff = bfd_get_32 (abfd, stab + VALOFF);
1020 /* The main file name. */
1022 /* The following code creates a new indextable entry with
1023 a NULL function name if there were no N_FUNs in a file.
1024 Note that a N_SO without a file name is an EOF and
1025 there could be 2 N_SO following it with the new filename
1029 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1030 info->indextable[i].stab = last_stab;
1031 info->indextable[i].str = str;
1032 info->indextable[i].directory_name = directory_name;
1033 info->indextable[i].file_name = file_name;
1034 info->indextable[i].function_name = NULL;
1039 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1040 if (*file_name == '\0')
1042 directory_name = NULL;
1049 if (stab + STABSIZE >= info->stabs + stabsize
1050 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1052 directory_name = NULL;
1056 /* Two consecutive N_SOs are a directory and a
1059 directory_name = file_name;
1060 file_name = ((char *) str
1061 + bfd_get_32 (abfd, stab + STRDXOFF));
1067 /* The name of an include file. */
1068 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1072 /* A function name. */
1074 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1079 function_name = name;
1084 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1085 info->indextable[i].stab = stab;
1086 info->indextable[i].str = str;
1087 info->indextable[i].directory_name = directory_name;
1088 info->indextable[i].file_name = file_name;
1089 info->indextable[i].function_name = function_name;
1097 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1098 info->indextable[i].stab = last_stab;
1099 info->indextable[i].str = str;
1100 info->indextable[i].directory_name = directory_name;
1101 info->indextable[i].file_name = file_name;
1102 info->indextable[i].function_name = NULL;
1106 info->indextable[i].val = (bfd_vma) -1;
1107 info->indextable[i].stab = info->stabs + stabsize;
1108 info->indextable[i].str = str;
1109 info->indextable[i].directory_name = NULL;
1110 info->indextable[i].file_name = NULL;
1111 info->indextable[i].function_name = NULL;
1114 info->indextablesize = i;
1115 qsort (info->indextable, i, sizeof (struct indexentry), cmpindexentry);
1117 *pinfo = (PTR) info;
1120 /* We are passed a section relative offset. The offsets in the
1121 stabs information are absolute. */
1122 offset += bfd_get_section_vma (abfd, section);
1124 #ifdef ENABLE_CACHING
1125 if (info->cached_indexentry != NULL
1126 && offset >= info->cached_offset
1127 && offset < (info->cached_indexentry + 1)->val)
1129 stab = info->cached_stab;
1130 indexentry = info->cached_indexentry;
1131 file_name = info->cached_file_name;
1136 /* Cache non-existant or invalid. Do binary search on
1145 high = info->indextablesize - 1;
1148 mid = (high + low) / 2;
1149 if (offset >= info->indextable[mid].val
1150 && offset < info->indextable[mid + 1].val)
1152 indexentry = &info->indextable[mid];
1156 if (info->indextable[mid].val > offset)
1162 if (indexentry == NULL)
1165 stab = indexentry->stab + STABSIZE;
1166 file_name = indexentry->file_name;
1169 directory_name = indexentry->directory_name;
1170 str = indexentry->str;
1172 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1179 switch (stab[TYPEOFF])
1182 /* The name of an include file. */
1183 val = bfd_get_32 (abfd, stab + VALOFF);
1186 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1194 /* A line number. The value is relative to the start of the
1195 current function. */
1196 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1199 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1201 #ifdef ENABLE_CACHING
1202 info->cached_stab = stab;
1203 info->cached_offset = val;
1204 info->cached_file_name = file_name;
1205 info->cached_indexentry = indexentry;
1224 if (file_name[0] == '/' || directory_name == NULL)
1225 *pfilename = file_name;
1230 dirlen = strlen (directory_name);
1231 if (info->filename == NULL
1232 || strncmp (info->filename, directory_name, dirlen) != 0
1233 || strcmp (info->filename + dirlen, file_name) != 0)
1235 if (info->filename != NULL)
1236 free (info->filename);
1237 info->filename = (char *) bfd_malloc (dirlen +
1240 if (info->filename == NULL)
1242 strcpy (info->filename, directory_name);
1243 strcpy (info->filename + dirlen, file_name);
1246 *pfilename = info->filename;
1249 if (indexentry->function_name != NULL)
1253 /* This will typically be something like main:F(0,1), so we want
1254 to clobber the colon. It's OK to change the name, since the
1255 string is in our own local storage anyhow. */
1257 s = strchr (indexentry->function_name, ':');
1261 *pfnname = indexentry->function_name;