1 /* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 Written by Cygnus Support.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
54 @* symbol handling functions::
58 Reading Symbols, Writing Symbols, Symbols, Symbols
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
66 | long storage_needed;
67 | asymbol **symbol_table;
68 | long number_of_symbols;
71 | storage_needed = bfd_get_symtab_upper_bound (abfd);
73 | if (storage_needed < 0)
76 | if (storage_needed == 0)
79 | symbol_table = xmalloc (storage_needed);
82 | bfd_canonicalize_symtab (abfd, symbol_table);
84 | if (number_of_symbols < 0)
87 | for (i = 0; i < number_of_symbols; i++)
88 | process_symbol (symbol_table[i]);
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
108 | #include "sysdep.h"
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
127 | bfd_set_symtab (abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct bfd_symbol
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL (1 << 0)
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL (1 << 1)
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
224 . {* The symbol is a debugging record. The value has an arbitrary
225 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226 .#define BSF_DEBUGGING (1 << 2)
228 . {* The symbol denotes a function entry point. Used in ELF,
229 . perhaps others someday. *}
230 .#define BSF_FUNCTION (1 << 3)
232 . {* Used by the linker. *}
233 .#define BSF_KEEP (1 << 5)
234 .#define BSF_KEEP_G (1 << 6)
236 . {* A weak global symbol, overridable without warnings by
237 . a regular global symbol of the same name. *}
238 .#define BSF_WEAK (1 << 7)
240 . {* This symbol was created to point to a section, e.g. ELF's
241 . STT_SECTION symbols. *}
242 .#define BSF_SECTION_SYM (1 << 8)
244 . {* The symbol used to be a common symbol, but now it is
246 .#define BSF_OLD_COMMON (1 << 9)
248 . {* In some files the type of a symbol sometimes alters its
249 . location in an output file - ie in coff a <<ISFCN>> symbol
250 . which is also <<C_EXT>> symbol appears where it was
251 . declared and not at the end of a section. This bit is set
252 . by the target BFD part to convey this information. *}
253 .#define BSF_NOT_AT_END (1 << 10)
255 . {* Signal that the symbol is the label of constructor section. *}
256 .#define BSF_CONSTRUCTOR (1 << 11)
258 . {* Signal that the symbol is a warning symbol. The name is a
259 . warning. The name of the next symbol is the one to warn about;
260 . if a reference is made to a symbol with the same name as the next
261 . symbol, a warning is issued by the linker. *}
262 .#define BSF_WARNING (1 << 12)
264 . {* Signal that the symbol is indirect. This symbol is an indirect
265 . pointer to the symbol with the same name as the next symbol. *}
266 .#define BSF_INDIRECT (1 << 13)
268 . {* BSF_FILE marks symbols that contain a file name. This is used
269 . for ELF STT_FILE symbols. *}
270 .#define BSF_FILE (1 << 14)
272 . {* Symbol is from dynamic linking information. *}
273 .#define BSF_DYNAMIC (1 << 15)
275 . {* The symbol denotes a data object. Used in ELF, and perhaps
277 .#define BSF_OBJECT (1 << 16)
279 . {* This symbol is a debugging symbol. The value is the offset
280 . into the section of the data. BSF_DEBUGGING should be set
282 .#define BSF_DEBUGGING_RELOC (1 << 17)
284 . {* This symbol is thread local. Used in ELF. *}
285 .#define BSF_THREAD_LOCAL (1 << 18)
287 . {* This symbol represents a complex relocation expression,
288 . with the expression tree serialized in the symbol name. *}
289 .#define BSF_RELC (1 << 19)
291 . {* This symbol represents a signed complex relocation expression,
292 . with the expression tree serialized in the symbol name. *}
293 .#define BSF_SRELC (1 << 20)
295 . {* This symbol was created by bfd_get_synthetic_symtab. *}
296 .#define BSF_SYNTHETIC (1 << 21)
298 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
299 . The dynamic linker will compute the value of this symbol by
300 . calling the function that it points to. BSF_FUNCTION must
301 . also be also set. *}
302 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
303 . {* This symbol is a globally unique data object. The dynamic linker
304 . will make sure that in the entire process there is just one symbol
305 . with this name and type in use. BSF_OBJECT must also be set. *}
306 .#define BSF_GNU_UNIQUE (1 << 23)
310 . {* A pointer to the section to which this symbol is
311 . relative. This will always be non NULL, there are special
312 . sections for undefined and absolute symbols. *}
313 . struct bfd_section *section;
315 . {* Back end special data. *}
330 #include "safe-ctype.h"
332 #include "aout/stab_gnu.h"
337 symbol handling functions, , typedef asymbol, Symbols
339 Symbol handling functions
344 bfd_get_symtab_upper_bound
347 Return the number of bytes required to store a vector of pointers
348 to <<asymbols>> for all the symbols in the BFD @var{abfd},
349 including a terminal NULL pointer. If there are no symbols in
350 the BFD, then return 0. If an error occurs, return -1.
352 .#define bfd_get_symtab_upper_bound(abfd) \
353 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
362 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
366 a compiler generated local label, else return FALSE.
370 bfd_is_local_label (bfd *abfd, asymbol *sym)
372 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
373 starts with '.' is local. This would accidentally catch section names
374 if we didn't reject them here. */
375 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
377 if (sym->name == NULL)
379 return bfd_is_local_label_name (abfd, sym->name);
384 bfd_is_local_label_name
387 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390 Return TRUE if a symbol with the name @var{name} in the BFD
391 @var{abfd} is a compiler generated local label, else return
392 FALSE. This just checks whether the name has the form of a
395 .#define bfd_is_local_label_name(abfd, name) \
396 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
402 bfd_is_target_special_symbol
405 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
409 special to the particular target represented by the BFD. Such symbols
410 should normally not be mentioned to the user.
412 .#define bfd_is_target_special_symbol(abfd, sym) \
413 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
419 bfd_canonicalize_symtab
422 Read the symbols from the BFD @var{abfd}, and fills in
423 the vector @var{location} with pointers to the symbols and
425 Return the actual number of symbol pointers, not
428 .#define bfd_canonicalize_symtab(abfd, location) \
429 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
438 bfd_boolean bfd_set_symtab
439 (bfd *abfd, asymbol **location, unsigned int count);
442 Arrange that when the output BFD @var{abfd} is closed,
443 the table @var{location} of @var{count} pointers to symbols
448 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
450 if (abfd->format != bfd_object || bfd_read_p (abfd))
452 bfd_set_error (bfd_error_invalid_operation);
456 bfd_get_outsymbols (abfd) = location;
457 bfd_get_symcount (abfd) = symcount;
463 bfd_print_symbol_vandf
466 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469 Print the value and flags of the @var{symbol} supplied to the
473 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
475 FILE *file = (FILE *) arg;
477 flagword type = symbol->flags;
479 if (symbol->section != NULL)
480 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
482 bfd_fprintf_vma (abfd, file, symbol->value);
484 /* This presumes that a symbol can not be both BSF_DEBUGGING and
485 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
487 fprintf (file, " %c%c%c%c%c%c%c",
489 ? (type & BSF_GLOBAL) ? '!' : 'l'
490 : (type & BSF_GLOBAL) ? 'g'
491 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
492 (type & BSF_WEAK) ? 'w' : ' ',
493 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
494 (type & BSF_WARNING) ? 'W' : ' ',
495 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
496 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
497 ((type & BSF_FUNCTION)
501 : ((type & BSF_OBJECT) ? 'O' : ' '))));
506 bfd_make_empty_symbol
509 Create a new <<asymbol>> structure for the BFD @var{abfd}
510 and return a pointer to it.
512 This routine is necessary because each back end has private
513 information surrounding the <<asymbol>>. Building your own
514 <<asymbol>> and pointing to it will not create the private
515 information, and will cause problems later on.
517 .#define bfd_make_empty_symbol(abfd) \
518 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
524 _bfd_generic_make_empty_symbol
527 asymbol *_bfd_generic_make_empty_symbol (bfd *);
530 Create a new <<asymbol>> structure for the BFD @var{abfd}
531 and return a pointer to it. Used by core file routines,
532 binary back-end and anywhere else where no private info
537 _bfd_generic_make_empty_symbol (bfd *abfd)
539 bfd_size_type amt = sizeof (asymbol);
540 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
542 new_symbol->the_bfd = abfd;
548 bfd_make_debug_symbol
551 Create a new <<asymbol>> structure for the BFD @var{abfd},
552 to be used as a debugging symbol. Further details of its use have
553 yet to be worked out.
555 .#define bfd_make_debug_symbol(abfd,ptr,size) \
556 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
560 struct section_to_type
566 /* Map section names to POSIX/BSD single-character symbol types.
567 This table is probably incomplete. It is sorted for convenience of
568 adding entries. Since it is so short, a linear search is used. */
569 static const struct section_to_type stt[] =
572 {"code", 't'}, /* MRI .text */
575 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
576 {".drectve", 'i'}, /* MSVC's .drective section */
577 {".edata", 'e'}, /* MSVC's .edata (export) section */
578 {".fini", 't'}, /* ELF fini section */
579 {".idata", 'i'}, /* MSVC's .idata (import) section */
580 {".init", 't'}, /* ELF init section */
581 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
582 {".rdata", 'r'}, /* Read only data. */
583 {".rodata", 'r'}, /* Read only data. */
584 {".sbss", 's'}, /* Small BSS (uninitialized data). */
585 {".scommon", 'c'}, /* Small common. */
586 {".sdata", 'g'}, /* Small initialized data. */
588 {"vars", 'd'}, /* MRI .data */
589 {"zerovars", 'b'}, /* MRI .bss */
593 /* Return the single-character symbol type corresponding to
594 section S, or '?' for an unknown COFF section.
596 Check for any leading string which matches, so .text5 returns
597 't' as well as .text */
600 coff_section_type (const char *s)
602 const struct section_to_type *t;
604 for (t = &stt[0]; t->section; t++)
605 if (!strncmp (s, t->section, strlen (t->section)))
611 /* Return the single-character symbol type corresponding to section
612 SECTION, or '?' for an unknown section. This uses section flags to
615 FIXME These types are unhandled: c, i, e, p. If we handled these also,
616 we could perhaps obsolete coff_section_type. */
619 decode_section_type (const struct bfd_section *section)
621 if (section->flags & SEC_CODE)
623 if (section->flags & SEC_DATA)
625 if (section->flags & SEC_READONLY)
627 else if (section->flags & SEC_SMALL_DATA)
632 if ((section->flags & SEC_HAS_CONTENTS) == 0)
634 if (section->flags & SEC_SMALL_DATA)
639 if (section->flags & SEC_DEBUGGING)
641 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
652 Return a character corresponding to the symbol
653 class of @var{symbol}, or '?' for an unknown class.
656 int bfd_decode_symclass (asymbol *symbol);
659 bfd_decode_symclass (asymbol *symbol)
663 if (symbol->section && bfd_is_com_section (symbol->section))
665 if (bfd_is_und_section (symbol->section))
667 if (symbol->flags & BSF_WEAK)
669 /* If weak, determine if it's specifically an object
670 or non-object weak. */
671 if (symbol->flags & BSF_OBJECT)
679 if (bfd_is_ind_section (symbol->section))
681 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
683 if (symbol->flags & BSF_WEAK)
685 /* If weak, determine if it's specifically an object
686 or non-object weak. */
687 if (symbol->flags & BSF_OBJECT)
692 if (symbol->flags & BSF_GNU_UNIQUE)
694 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
697 if (bfd_is_abs_section (symbol->section))
699 else if (symbol->section)
701 c = coff_section_type (symbol->section->name);
703 c = decode_section_type (symbol->section);
707 if (symbol->flags & BSF_GLOBAL)
711 /* We don't have to handle these cases just yet, but we will soon:
723 bfd_is_undefined_symclass
726 Returns non-zero if the class symbol returned by
727 bfd_decode_symclass represents an undefined symbol.
728 Returns zero otherwise.
731 bfd_boolean bfd_is_undefined_symclass (int symclass);
735 bfd_is_undefined_symclass (int symclass)
737 return symclass == 'U' || symclass == 'w' || symclass == 'v';
745 Fill in the basic info about symbol that nm needs.
746 Additional info may be added by the back-ends after
747 calling this function.
750 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
754 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
756 ret->type = bfd_decode_symclass (symbol);
758 if (bfd_is_undefined_symclass (ret->type))
761 ret->value = symbol->value + symbol->section->vma;
763 ret->name = symbol->name;
768 bfd_copy_private_symbol_data
771 bfd_boolean bfd_copy_private_symbol_data
772 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
775 Copy private symbol information from @var{isym} in the BFD
776 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
777 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
780 o <<bfd_error_no_memory>> -
781 Not enough memory exists to create private data for @var{osec}.
783 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
784 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
785 . (ibfd, isymbol, obfd, osymbol))
789 /* The generic version of the function which returns mini symbols.
790 This is used when the backend does not provide a more efficient
791 version. It just uses BFD asymbol structures as mini symbols. */
794 _bfd_generic_read_minisymbols (bfd *abfd,
800 asymbol **syms = NULL;
804 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
806 storage = bfd_get_symtab_upper_bound (abfd);
812 syms = (asymbol **) bfd_malloc (storage);
817 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
819 symcount = bfd_canonicalize_symtab (abfd, syms);
824 *sizep = sizeof (asymbol *);
829 bfd_set_error (bfd_error_no_symbols);
835 /* The generic version of the function which converts a minisymbol to
836 an asymbol. We don't worry about the sym argument we are passed;
837 we just return the asymbol the minisymbol points to. */
840 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
841 bfd_boolean dynamic ATTRIBUTE_UNUSED,
843 asymbol *sym ATTRIBUTE_UNUSED)
845 return *(asymbol **) minisym;
848 /* Look through stabs debugging information in .stab and .stabstr
849 sections to find the source file and line closest to a desired
850 location. This is used by COFF and ELF targets. It sets *pfound
851 to TRUE if it finds some information. The *pinfo field is used to
852 pass cached information in and out of this routine; this first time
853 the routine is called for a BFD, *pinfo should be NULL. The value
854 placed in *pinfo should be saved with the BFD, and passed back each
855 time this function is called. */
857 /* We use a cache by default. */
859 #define ENABLE_CACHING
861 /* We keep an array of indexentry structures to record where in the
862 stabs section we should look to find line number information for a
863 particular address. */
870 char *directory_name;
875 /* Compare two indexentry structures. This is called via qsort. */
878 cmpindexentry (const void *a, const void *b)
880 const struct indexentry *contestantA = (const struct indexentry *) a;
881 const struct indexentry *contestantB = (const struct indexentry *) b;
883 if (contestantA->val < contestantB->val)
885 else if (contestantA->val > contestantB->val)
891 /* A pointer to this structure is stored in *pinfo. */
893 struct stab_find_info
895 /* The .stab section. */
897 /* The .stabstr section. */
899 /* The contents of the .stab section. */
901 /* The contents of the .stabstr section. */
904 /* A table that indexes stabs by memory address. */
905 struct indexentry *indextable;
906 /* The number of entries in indextable. */
909 #ifdef ENABLE_CACHING
910 /* Cached values to restart quickly. */
911 struct indexentry *cached_indexentry;
912 bfd_vma cached_offset;
913 bfd_byte *cached_stab;
914 char *cached_file_name;
917 /* Saved ptr to malloc'ed filename. */
922 _bfd_stab_section_find_nearest_line (bfd *abfd,
927 const char **pfilename,
928 const char **pfnname,
932 struct stab_find_info *info;
933 bfd_size_type stabsize, strsize;
934 bfd_byte *stab, *str;
935 bfd_byte *nul_fun, *nul_str;
936 bfd_size_type stroff;
937 struct indexentry *indexentry;
939 char *directory_name;
940 bfd_boolean saw_line, saw_func;
943 *pfilename = bfd_get_filename (abfd);
947 /* Stabs entries use a 12 byte format:
948 4 byte string table index
950 1 byte stab other field
951 2 byte stab desc field
953 FIXME: This will have to change for a 64 bit object format.
955 The stabs symbols are divided into compilation units. For the
956 first entry in each unit, the type of 0, the value is the length
957 of the string table for this unit, and the desc field is the
958 number of stabs symbols for this unit. */
965 #define STABSIZE (12)
967 info = (struct stab_find_info *) *pinfo;
970 if (info->stabsec == NULL || info->strsec == NULL)
972 /* No stabs debugging information. */
976 stabsize = (info->stabsec->rawsize
977 ? info->stabsec->rawsize
978 : info->stabsec->size);
979 strsize = (info->strsec->rawsize
980 ? info->strsec->rawsize
981 : info->strsec->size);
985 long reloc_size, reloc_count;
986 arelent **reloc_vector;
989 bfd_size_type amt = sizeof *info;
991 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
995 /* FIXME: When using the linker --split-by-file or
996 --split-by-reloc options, it is possible for the .stab and
997 .stabstr sections to be split. We should handle that. */
999 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1000 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1002 if (info->stabsec == NULL || info->strsec == NULL)
1004 /* Try SOM section names. */
1005 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1006 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1008 if (info->stabsec == NULL || info->strsec == NULL)
1010 /* No stabs debugging information. Set *pinfo so that we
1011 can return quickly in the info != NULL case above. */
1017 stabsize = (info->stabsec->rawsize
1018 ? info->stabsec->rawsize
1019 : info->stabsec->size);
1020 stabsize = (stabsize / STABSIZE) * STABSIZE;
1021 strsize = (info->strsec->rawsize
1022 ? info->strsec->rawsize
1023 : info->strsec->size);
1025 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1026 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1027 if (info->stabs == NULL || info->strs == NULL)
1030 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1032 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1036 /* If this is a relocatable object file, we have to relocate
1037 the entries in .stab. This should always be simple 32 bit
1038 relocations against symbols defined in this object file, so
1039 this should be no big deal. */
1040 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1043 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1044 if (reloc_vector == NULL && reloc_size != 0)
1046 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1048 if (reloc_count < 0)
1050 if (reloc_vector != NULL)
1051 free (reloc_vector);
1054 if (reloc_count > 0)
1058 for (pr = reloc_vector; *pr != NULL; pr++)
1065 /* Ignore R_*_NONE relocs. */
1066 if (r->howto->dst_mask == 0)
1069 if (r->howto->rightshift != 0
1070 || r->howto->size != 2
1071 || r->howto->bitsize != 32
1072 || r->howto->pc_relative
1073 || r->howto->bitpos != 0
1074 || r->howto->dst_mask != 0xffffffff)
1076 (*_bfd_error_handler)
1077 (_("Unsupported .stab relocation"));
1078 bfd_set_error (bfd_error_invalid_operation);
1079 if (reloc_vector != NULL)
1080 free (reloc_vector);
1084 val = bfd_get_32 (abfd, info->stabs + r->address);
1085 val &= r->howto->src_mask;
1086 sym = *r->sym_ptr_ptr;
1087 val += sym->value + sym->section->vma + r->addend;
1088 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1092 if (reloc_vector != NULL)
1093 free (reloc_vector);
1095 /* First time through this function, build a table matching
1096 function VM addresses to stabs, then sort based on starting
1097 VM address. Do this in two passes: once to count how many
1098 table entries we'll need, and a second to actually build the
1101 info->indextablesize = 0;
1103 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1105 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1107 /* if we did not see a function def, leave space for one. */
1108 if (nul_fun != NULL)
1109 ++info->indextablesize;
1111 /* N_SO with null name indicates EOF */
1112 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1118 /* two N_SO's in a row is a filename and directory. Skip */
1119 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1120 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1124 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1125 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1128 ++info->indextablesize;
1132 if (nul_fun != NULL)
1133 ++info->indextablesize;
1135 if (info->indextablesize == 0)
1137 ++info->indextablesize;
1139 amt = info->indextablesize;
1140 amt *= sizeof (struct indexentry);
1141 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1142 if (info->indextable == NULL)
1146 directory_name = NULL;
1150 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1151 i < info->indextablesize && stab < info->stabs + stabsize;
1154 switch (stab[TYPEOFF])
1157 /* This is the first entry in a compilation unit. */
1158 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1161 stroff = bfd_get_32 (abfd, stab + VALOFF);
1165 /* The main file name. */
1167 /* The following code creates a new indextable entry with
1168 a NULL function name if there were no N_FUNs in a file.
1169 Note that a N_SO without a file name is an EOF and
1170 there could be 2 N_SO following it with the new filename
1172 if (nul_fun != NULL)
1174 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1175 info->indextable[i].stab = nul_fun;
1176 info->indextable[i].str = nul_str;
1177 info->indextable[i].directory_name = directory_name;
1178 info->indextable[i].file_name = file_name;
1179 info->indextable[i].function_name = NULL;
1183 directory_name = NULL;
1184 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1185 if (file_name == (char *) str)
1194 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1196 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1197 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1199 /* Two consecutive N_SOs are a directory and a
1202 directory_name = file_name;
1203 file_name = ((char *) str
1204 + bfd_get_32 (abfd, stab + STRDXOFF));
1205 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1212 /* The name of an include file. */
1213 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1214 /* PR 17512: file: 0c680a1f. */
1215 /* PR 17512: file: 5da8aec4. */
1216 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1221 /* A function name. */
1222 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1223 if (function_name == (char *) str)
1225 if (function_name >= (char *) info->strs + strsize)
1226 function_name = NULL;
1229 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1230 info->indextable[i].stab = stab;
1231 info->indextable[i].str = str;
1232 info->indextable[i].directory_name = directory_name;
1233 info->indextable[i].file_name = file_name;
1234 info->indextable[i].function_name = function_name;
1240 if (nul_fun != NULL)
1242 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1243 info->indextable[i].stab = nul_fun;
1244 info->indextable[i].str = nul_str;
1245 info->indextable[i].directory_name = directory_name;
1246 info->indextable[i].file_name = file_name;
1247 info->indextable[i].function_name = NULL;
1251 info->indextable[i].val = (bfd_vma) -1;
1252 info->indextable[i].stab = info->stabs + stabsize;
1253 info->indextable[i].str = str;
1254 info->indextable[i].directory_name = NULL;
1255 info->indextable[i].file_name = NULL;
1256 info->indextable[i].function_name = NULL;
1259 info->indextablesize = i;
1260 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1266 /* We are passed a section relative offset. The offsets in the
1267 stabs information are absolute. */
1268 offset += bfd_get_section_vma (abfd, section);
1270 #ifdef ENABLE_CACHING
1271 if (info->cached_indexentry != NULL
1272 && offset >= info->cached_offset
1273 && offset < (info->cached_indexentry + 1)->val)
1275 stab = info->cached_stab;
1276 indexentry = info->cached_indexentry;
1277 file_name = info->cached_file_name;
1285 /* Cache non-existent or invalid. Do binary search on
1290 high = info->indextablesize - 1;
1293 mid = (high + low) / 2;
1294 if (offset >= info->indextable[mid].val
1295 && offset < info->indextable[mid + 1].val)
1297 indexentry = &info->indextable[mid];
1301 if (info->indextable[mid].val > offset)
1307 if (indexentry == NULL)
1310 stab = indexentry->stab + STABSIZE;
1311 file_name = indexentry->file_name;
1314 directory_name = indexentry->directory_name;
1315 str = indexentry->str;
1319 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1326 switch (stab[TYPEOFF])
1329 /* The name of an include file. */
1330 val = bfd_get_32 (abfd, stab + VALOFF);
1333 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1334 if (file_name >= (char *) info->strs + strsize || file_name < (char *) str)
1343 /* A line number. If the function was specified, then the value
1344 is relative to the start of the function. Otherwise, the
1345 value is an absolute address. */
1346 val = ((indexentry->function_name ? indexentry->val : 0)
1347 + bfd_get_32 (abfd, stab + VALOFF));
1348 /* If this line starts before our desired offset, or if it's
1349 the first line we've been able to find, use it. The
1350 !saw_line check works around a bug in GCC 2.95.3, which emits
1351 the first N_SLINE late. */
1352 if (!saw_line || val <= offset)
1354 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1356 #ifdef ENABLE_CACHING
1357 info->cached_stab = stab;
1358 info->cached_offset = val;
1359 info->cached_file_name = file_name;
1360 info->cached_indexentry = indexentry;
1370 if (saw_func || saw_line)
1382 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1383 || directory_name == NULL)
1384 *pfilename = file_name;
1389 dirlen = strlen (directory_name);
1390 if (info->filename == NULL
1391 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1392 || filename_cmp (info->filename + dirlen, file_name) != 0)
1396 /* Don't free info->filename here. objdump and other
1397 apps keep a copy of a previously returned file name
1399 len = strlen (file_name) + 1;
1400 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1401 if (info->filename == NULL)
1403 memcpy (info->filename, directory_name, dirlen);
1404 memcpy (info->filename + dirlen, file_name, len);
1407 *pfilename = info->filename;
1410 if (indexentry->function_name != NULL)
1414 /* This will typically be something like main:F(0,1), so we want
1415 to clobber the colon. It's OK to change the name, since the
1416 string is in our own local storage anyhow. */
1417 s = strchr (indexentry->function_name, ':');
1421 *pfnname = indexentry->function_name;