1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2007
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
55 @* symbol handling functions::
59 Reading Symbols, Writing Symbols, Symbols, Symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
77 | if (storage_needed == 0)
80 | symbol_table = xmalloc (storage_needed);
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
88 | for (i = 0; i < number_of_symbols; i++)
89 | process_symbol (symbol_table[i]);
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
127 | bfd_set_symtab (abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct bfd_symbol
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . {* The symbol is a debugging record. The value has an arbitrary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
245 . {* The symbol used to be a common symbol, but now it is
247 .#define BSF_OLD_COMMON 0x200
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
281 .#define BSF_OBJECT 0x10000
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
286 .#define BSF_DEBUGGING_RELOC 0x20000
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
291 . {* This symbol represents a complex relocation expression,
292 . with the expression tree serialized in the symbol name. *}
293 .#define BSF_RELC 0x80000
295 . {* This symbol represents a signed complex relocation expression,
296 . with the expression tree serialized in the symbol name. *}
297 .#define BSF_SRELC 0x100000
301 . {* A pointer to the section to which this symbol is
302 . relative. This will always be non NULL, there are special
303 . sections for undefined and absolute symbols. *}
304 . struct bfd_section *section;
306 . {* Back end special data. *}
321 #include "safe-ctype.h"
323 #include "aout/stab_gnu.h"
328 symbol handling functions, , typedef asymbol, Symbols
330 Symbol handling functions
335 bfd_get_symtab_upper_bound
338 Return the number of bytes required to store a vector of pointers
339 to <<asymbols>> for all the symbols in the BFD @var{abfd},
340 including a terminal NULL pointer. If there are no symbols in
341 the BFD, then return 0. If an error occurs, return -1.
343 .#define bfd_get_symtab_upper_bound(abfd) \
344 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
353 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
356 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
357 a compiler generated local label, else return FALSE.
361 bfd_is_local_label (bfd *abfd, asymbol *sym)
363 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
364 starts with '.' is local. This would accidentally catch section names
365 if we didn't reject them here. */
366 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
368 if (sym->name == NULL)
370 return bfd_is_local_label_name (abfd, sym->name);
375 bfd_is_local_label_name
378 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
381 Return TRUE if a symbol with the name @var{name} in the BFD
382 @var{abfd} is a compiler generated local label, else return
383 FALSE. This just checks whether the name has the form of a
386 .#define bfd_is_local_label_name(abfd, name) \
387 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
393 bfd_is_target_special_symbol
396 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
399 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
400 special to the particular target represented by the BFD. Such symbols
401 should normally not be mentioned to the user.
403 .#define bfd_is_target_special_symbol(abfd, sym) \
404 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
410 bfd_canonicalize_symtab
413 Read the symbols from the BFD @var{abfd}, and fills in
414 the vector @var{location} with pointers to the symbols and
416 Return the actual number of symbol pointers, not
419 .#define bfd_canonicalize_symtab(abfd, location) \
420 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
429 bfd_boolean bfd_set_symtab
430 (bfd *abfd, asymbol **location, unsigned int count);
433 Arrange that when the output BFD @var{abfd} is closed,
434 the table @var{location} of @var{count} pointers to symbols
439 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
441 if (abfd->format != bfd_object || bfd_read_p (abfd))
443 bfd_set_error (bfd_error_invalid_operation);
447 bfd_get_outsymbols (abfd) = location;
448 bfd_get_symcount (abfd) = symcount;
454 bfd_print_symbol_vandf
457 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
460 Print the value and flags of the @var{symbol} supplied to the
464 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
468 flagword type = symbol->flags;
470 if (symbol->section != NULL)
471 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
473 bfd_fprintf_vma (abfd, file, symbol->value);
475 /* This presumes that a symbol can not be both BSF_DEBUGGING and
476 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
478 fprintf (file, " %c%c%c%c%c%c%c",
480 ? (type & BSF_GLOBAL) ? '!' : 'l'
481 : (type & BSF_GLOBAL) ? 'g' : ' '),
482 (type & BSF_WEAK) ? 'w' : ' ',
483 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
484 (type & BSF_WARNING) ? 'W' : ' ',
485 (type & BSF_INDIRECT) ? 'I' : ' ',
486 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
487 ((type & BSF_FUNCTION)
491 : ((type & BSF_OBJECT) ? 'O' : ' '))));
496 bfd_make_empty_symbol
499 Create a new <<asymbol>> structure for the BFD @var{abfd}
500 and return a pointer to it.
502 This routine is necessary because each back end has private
503 information surrounding the <<asymbol>>. Building your own
504 <<asymbol>> and pointing to it will not create the private
505 information, and will cause problems later on.
507 .#define bfd_make_empty_symbol(abfd) \
508 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
514 _bfd_generic_make_empty_symbol
517 asymbol *_bfd_generic_make_empty_symbol (bfd *);
520 Create a new <<asymbol>> structure for the BFD @var{abfd}
521 and return a pointer to it. Used by core file routines,
522 binary back-end and anywhere else where no private info
527 _bfd_generic_make_empty_symbol (bfd *abfd)
529 bfd_size_type amt = sizeof (asymbol);
530 asymbol *new = bfd_zalloc (abfd, amt);
538 bfd_make_debug_symbol
541 Create a new <<asymbol>> structure for the BFD @var{abfd},
542 to be used as a debugging symbol. Further details of its use have
543 yet to be worked out.
545 .#define bfd_make_debug_symbol(abfd,ptr,size) \
546 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
550 struct section_to_type
556 /* Map section names to POSIX/BSD single-character symbol types.
557 This table is probably incomplete. It is sorted for convenience of
558 adding entries. Since it is so short, a linear search is used. */
559 static const struct section_to_type stt[] =
562 {"code", 't'}, /* MRI .text */
565 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
566 {".drectve", 'i'}, /* MSVC's .drective section */
567 {".edata", 'e'}, /* MSVC's .edata (export) section */
568 {".fini", 't'}, /* ELF fini section */
569 {".idata", 'i'}, /* MSVC's .idata (import) section */
570 {".init", 't'}, /* ELF init section */
571 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
572 {".rdata", 'r'}, /* Read only data. */
573 {".rodata", 'r'}, /* Read only data. */
574 {".sbss", 's'}, /* Small BSS (uninitialized data). */
575 {".scommon", 'c'}, /* Small common. */
576 {".sdata", 'g'}, /* Small initialized data. */
578 {"vars", 'd'}, /* MRI .data */
579 {"zerovars", 'b'}, /* MRI .bss */
583 /* Return the single-character symbol type corresponding to
584 section S, or '?' for an unknown COFF section.
586 Check for any leading string which matches, so .text5 returns
587 't' as well as .text */
590 coff_section_type (const char *s)
592 const struct section_to_type *t;
594 for (t = &stt[0]; t->section; t++)
595 if (!strncmp (s, t->section, strlen (t->section)))
601 /* Return the single-character symbol type corresponding to section
602 SECTION, or '?' for an unknown section. This uses section flags to
605 FIXME These types are unhandled: c, i, e, p. If we handled these also,
606 we could perhaps obsolete coff_section_type. */
609 decode_section_type (const struct bfd_section *section)
611 if (section->flags & SEC_CODE)
613 if (section->flags & SEC_DATA)
615 if (section->flags & SEC_READONLY)
617 else if (section->flags & SEC_SMALL_DATA)
622 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 if (section->flags & SEC_SMALL_DATA)
629 if (section->flags & SEC_DEBUGGING)
631 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
642 Return a character corresponding to the symbol
643 class of @var{symbol}, or '?' for an unknown class.
646 int bfd_decode_symclass (asymbol *symbol);
649 bfd_decode_symclass (asymbol *symbol)
653 if (bfd_is_com_section (symbol->section))
655 if (bfd_is_und_section (symbol->section))
657 if (symbol->flags & BSF_WEAK)
659 /* If weak, determine if it's specifically an object
660 or non-object weak. */
661 if (symbol->flags & BSF_OBJECT)
669 if (bfd_is_ind_section (symbol->section))
671 if (symbol->flags & BSF_WEAK)
673 /* If weak, determine if it's specifically an object
674 or non-object weak. */
675 if (symbol->flags & BSF_OBJECT)
680 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
683 if (bfd_is_abs_section (symbol->section))
685 else if (symbol->section)
687 c = coff_section_type (symbol->section->name);
689 c = decode_section_type (symbol->section);
693 if (symbol->flags & BSF_GLOBAL)
697 /* We don't have to handle these cases just yet, but we will soon:
709 bfd_is_undefined_symclass
712 Returns non-zero if the class symbol returned by
713 bfd_decode_symclass represents an undefined symbol.
714 Returns zero otherwise.
717 bfd_boolean bfd_is_undefined_symclass (int symclass);
721 bfd_is_undefined_symclass (int symclass)
723 return symclass == 'U' || symclass == 'w' || symclass == 'v';
731 Fill in the basic info about symbol that nm needs.
732 Additional info may be added by the back-ends after
733 calling this function.
736 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
740 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
742 ret->type = bfd_decode_symclass (symbol);
744 if (bfd_is_undefined_symclass (ret->type))
747 ret->value = symbol->value + symbol->section->vma;
749 ret->name = symbol->name;
754 bfd_copy_private_symbol_data
757 bfd_boolean bfd_copy_private_symbol_data
758 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
761 Copy private symbol information from @var{isym} in the BFD
762 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
763 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
766 o <<bfd_error_no_memory>> -
767 Not enough memory exists to create private data for @var{osec}.
769 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
770 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
771 . (ibfd, isymbol, obfd, osymbol))
775 /* The generic version of the function which returns mini symbols.
776 This is used when the backend does not provide a more efficient
777 version. It just uses BFD asymbol structures as mini symbols. */
780 _bfd_generic_read_minisymbols (bfd *abfd,
786 asymbol **syms = NULL;
790 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
792 storage = bfd_get_symtab_upper_bound (abfd);
798 syms = bfd_malloc (storage);
803 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
805 symcount = bfd_canonicalize_symtab (abfd, syms);
810 *sizep = sizeof (asymbol *);
814 bfd_set_error (bfd_error_no_symbols);
820 /* The generic version of the function which converts a minisymbol to
821 an asymbol. We don't worry about the sym argument we are passed;
822 we just return the asymbol the minisymbol points to. */
825 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
826 bfd_boolean dynamic ATTRIBUTE_UNUSED,
828 asymbol *sym ATTRIBUTE_UNUSED)
830 return *(asymbol **) minisym;
833 /* Look through stabs debugging information in .stab and .stabstr
834 sections to find the source file and line closest to a desired
835 location. This is used by COFF and ELF targets. It sets *pfound
836 to TRUE if it finds some information. The *pinfo field is used to
837 pass cached information in and out of this routine; this first time
838 the routine is called for a BFD, *pinfo should be NULL. The value
839 placed in *pinfo should be saved with the BFD, and passed back each
840 time this function is called. */
842 /* We use a cache by default. */
844 #define ENABLE_CACHING
846 /* We keep an array of indexentry structures to record where in the
847 stabs section we should look to find line number information for a
848 particular address. */
855 char *directory_name;
860 /* Compare two indexentry structures. This is called via qsort. */
863 cmpindexentry (const void *a, const void *b)
865 const struct indexentry *contestantA = a;
866 const struct indexentry *contestantB = b;
868 if (contestantA->val < contestantB->val)
870 else if (contestantA->val > contestantB->val)
876 /* A pointer to this structure is stored in *pinfo. */
878 struct stab_find_info
880 /* The .stab section. */
882 /* The .stabstr section. */
884 /* The contents of the .stab section. */
886 /* The contents of the .stabstr section. */
889 /* A table that indexes stabs by memory address. */
890 struct indexentry *indextable;
891 /* The number of entries in indextable. */
894 #ifdef ENABLE_CACHING
895 /* Cached values to restart quickly. */
896 struct indexentry *cached_indexentry;
897 bfd_vma cached_offset;
898 bfd_byte *cached_stab;
899 char *cached_file_name;
902 /* Saved ptr to malloc'ed filename. */
907 _bfd_stab_section_find_nearest_line (bfd *abfd,
912 const char **pfilename,
913 const char **pfnname,
917 struct stab_find_info *info;
918 bfd_size_type stabsize, strsize;
919 bfd_byte *stab, *str;
920 bfd_byte *last_stab = NULL;
921 bfd_size_type stroff;
922 struct indexentry *indexentry;
924 char *directory_name;
926 bfd_boolean saw_line, saw_func;
929 *pfilename = bfd_get_filename (abfd);
933 /* Stabs entries use a 12 byte format:
934 4 byte string table index
936 1 byte stab other field
937 2 byte stab desc field
939 FIXME: This will have to change for a 64 bit object format.
941 The stabs symbols are divided into compilation units. For the
942 first entry in each unit, the type of 0, the value is the length
943 of the string table for this unit, and the desc field is the
944 number of stabs symbols for this unit. */
951 #define STABSIZE (12)
956 if (info->stabsec == NULL || info->strsec == NULL)
958 /* No stabs debugging information. */
962 stabsize = (info->stabsec->rawsize
963 ? info->stabsec->rawsize
964 : info->stabsec->size);
965 strsize = (info->strsec->rawsize
966 ? info->strsec->rawsize
967 : info->strsec->size);
971 long reloc_size, reloc_count;
972 arelent **reloc_vector;
976 bfd_size_type amt = sizeof *info;
978 info = bfd_zalloc (abfd, amt);
982 /* FIXME: When using the linker --split-by-file or
983 --split-by-reloc options, it is possible for the .stab and
984 .stabstr sections to be split. We should handle that. */
986 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
987 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
989 if (info->stabsec == NULL || info->strsec == NULL)
991 /* No stabs debugging information. Set *pinfo so that we
992 can return quickly in the info != NULL case above. */
997 stabsize = (info->stabsec->rawsize
998 ? info->stabsec->rawsize
999 : info->stabsec->size);
1000 strsize = (info->strsec->rawsize
1001 ? info->strsec->rawsize
1002 : info->strsec->size);
1004 info->stabs = bfd_alloc (abfd, stabsize);
1005 info->strs = bfd_alloc (abfd, strsize);
1006 if (info->stabs == NULL || info->strs == NULL)
1009 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1011 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1015 /* If this is a relocatable object file, we have to relocate
1016 the entries in .stab. This should always be simple 32 bit
1017 relocations against symbols defined in this object file, so
1018 this should be no big deal. */
1019 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1022 reloc_vector = bfd_malloc (reloc_size);
1023 if (reloc_vector == NULL && reloc_size != 0)
1025 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1027 if (reloc_count < 0)
1029 if (reloc_vector != NULL)
1030 free (reloc_vector);
1033 if (reloc_count > 0)
1037 for (pr = reloc_vector; *pr != NULL; pr++)
1044 /* Ignore R_*_NONE relocs. */
1045 if (r->howto->dst_mask == 0)
1048 if (r->howto->rightshift != 0
1049 || r->howto->size != 2
1050 || r->howto->bitsize != 32
1051 || r->howto->pc_relative
1052 || r->howto->bitpos != 0
1053 || r->howto->dst_mask != 0xffffffff)
1055 (*_bfd_error_handler)
1056 (_("Unsupported .stab relocation"));
1057 bfd_set_error (bfd_error_invalid_operation);
1058 if (reloc_vector != NULL)
1059 free (reloc_vector);
1063 val = bfd_get_32 (abfd, info->stabs + r->address);
1064 val &= r->howto->src_mask;
1065 sym = *r->sym_ptr_ptr;
1066 val += sym->value + sym->section->vma + r->addend;
1067 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1071 if (reloc_vector != NULL)
1072 free (reloc_vector);
1074 /* First time through this function, build a table matching
1075 function VM addresses to stabs, then sort based on starting
1076 VM address. Do this in two passes: once to count how many
1077 table entries we'll need, and a second to actually build the
1080 info->indextablesize = 0;
1082 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1084 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1086 /* N_SO with null name indicates EOF */
1087 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1090 /* if we did not see a function def, leave space for one. */
1092 ++info->indextablesize;
1096 /* two N_SO's in a row is a filename and directory. Skip */
1097 if (stab + STABSIZE < info->stabs + stabsize
1098 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1103 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1106 ++info->indextablesize;
1111 ++info->indextablesize;
1113 if (info->indextablesize == 0)
1115 ++info->indextablesize;
1117 amt = info->indextablesize;
1118 amt *= sizeof (struct indexentry);
1119 info->indextable = bfd_alloc (abfd, amt);
1120 if (info->indextable == NULL)
1124 directory_name = NULL;
1127 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1128 i < info->indextablesize && stab < info->stabs + stabsize;
1131 switch (stab[TYPEOFF])
1134 /* This is the first entry in a compilation unit. */
1135 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1138 stroff = bfd_get_32 (abfd, stab + VALOFF);
1142 /* The main file name. */
1144 /* The following code creates a new indextable entry with
1145 a NULL function name if there were no N_FUNs in a file.
1146 Note that a N_SO without a file name is an EOF and
1147 there could be 2 N_SO following it with the new filename
1151 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1152 info->indextable[i].stab = last_stab;
1153 info->indextable[i].str = str;
1154 info->indextable[i].directory_name = directory_name;
1155 info->indextable[i].file_name = file_name;
1156 info->indextable[i].function_name = NULL;
1161 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1162 if (*file_name == '\0')
1164 directory_name = NULL;
1171 if (stab + STABSIZE >= info->stabs + stabsize
1172 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1174 directory_name = NULL;
1178 /* Two consecutive N_SOs are a directory and a
1181 directory_name = file_name;
1182 file_name = ((char *) str
1183 + bfd_get_32 (abfd, stab + STRDXOFF));
1189 /* The name of an include file. */
1190 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1194 /* A function name. */
1196 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1201 function_name = name;
1206 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1207 info->indextable[i].stab = stab;
1208 info->indextable[i].str = str;
1209 info->indextable[i].directory_name = directory_name;
1210 info->indextable[i].file_name = file_name;
1211 info->indextable[i].function_name = function_name;
1219 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1220 info->indextable[i].stab = last_stab;
1221 info->indextable[i].str = str;
1222 info->indextable[i].directory_name = directory_name;
1223 info->indextable[i].file_name = file_name;
1224 info->indextable[i].function_name = NULL;
1228 info->indextable[i].val = (bfd_vma) -1;
1229 info->indextable[i].stab = info->stabs + stabsize;
1230 info->indextable[i].str = str;
1231 info->indextable[i].directory_name = NULL;
1232 info->indextable[i].file_name = NULL;
1233 info->indextable[i].function_name = NULL;
1236 info->indextablesize = i;
1237 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1243 /* We are passed a section relative offset. The offsets in the
1244 stabs information are absolute. */
1245 offset += bfd_get_section_vma (abfd, section);
1247 #ifdef ENABLE_CACHING
1248 if (info->cached_indexentry != NULL
1249 && offset >= info->cached_offset
1250 && offset < (info->cached_indexentry + 1)->val)
1252 stab = info->cached_stab;
1253 indexentry = info->cached_indexentry;
1254 file_name = info->cached_file_name;
1262 /* Cache non-existent or invalid. Do binary search on
1267 high = info->indextablesize - 1;
1270 mid = (high + low) / 2;
1271 if (offset >= info->indextable[mid].val
1272 && offset < info->indextable[mid + 1].val)
1274 indexentry = &info->indextable[mid];
1278 if (info->indextable[mid].val > offset)
1284 if (indexentry == NULL)
1287 stab = indexentry->stab + STABSIZE;
1288 file_name = indexentry->file_name;
1291 directory_name = indexentry->directory_name;
1292 str = indexentry->str;
1296 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1303 switch (stab[TYPEOFF])
1306 /* The name of an include file. */
1307 val = bfd_get_32 (abfd, stab + VALOFF);
1310 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1318 /* A line number. If the function was specified, then the value
1319 is relative to the start of the function. Otherwise, the
1320 value is an absolute address. */
1321 val = ((indexentry->function_name ? indexentry->val : 0)
1322 + bfd_get_32 (abfd, stab + VALOFF));
1323 /* If this line starts before our desired offset, or if it's
1324 the first line we've been able to find, use it. The
1325 !saw_line check works around a bug in GCC 2.95.3, which emits
1326 the first N_SLINE late. */
1327 if (!saw_line || val <= offset)
1329 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1331 #ifdef ENABLE_CACHING
1332 info->cached_stab = stab;
1333 info->cached_offset = val;
1334 info->cached_file_name = file_name;
1335 info->cached_indexentry = indexentry;
1345 if (saw_func || saw_line)
1357 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1358 || directory_name == NULL)
1359 *pfilename = file_name;
1364 dirlen = strlen (directory_name);
1365 if (info->filename == NULL
1366 || strncmp (info->filename, directory_name, dirlen) != 0
1367 || strcmp (info->filename + dirlen, file_name) != 0)
1371 if (info->filename != NULL)
1372 free (info->filename);
1373 len = strlen (file_name) + 1;
1374 info->filename = bfd_malloc (dirlen + len);
1375 if (info->filename == NULL)
1377 memcpy (info->filename, directory_name, dirlen);
1378 memcpy (info->filename + dirlen, file_name, len);
1381 *pfilename = info->filename;
1384 if (indexentry->function_name != NULL)
1388 /* This will typically be something like main:F(0,1), so we want
1389 to clobber the colon. It's OK to change the name, since the
1390 string is in our own local storage anyhow. */
1391 s = strchr (indexentry->function_name, ':');
1395 *pfnname = indexentry->function_name;