1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
55 @* symbol handling functions::
59 Reading Symbols, Writing Symbols, Symbols, Symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
77 | if (storage_needed == 0) {
80 | symbol_table = (asymbol **) xmalloc (storage_needed);
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
88 | for (i = 0; i < number_of_symbols; i++) {
89 | process_symbol (symbol_table[i]);
92 All storage for the symbols themselves is in an objalloc
93 connected to the BFD; it is freed when the BFD is closed.
96 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
100 Writing of a symbol table is automatic when a BFD open for
101 writing is closed. The application attaches a vector of
102 pointers to pointers to symbols to the BFD being written, and
103 fills in the symbol count. The close and cleanup code reads
104 through the table provided and performs all the necessary
105 operations. The BFD output code must always be provided with an
106 ``owned'' symbol: one which has come from another BFD, or one
107 which has been created using <<bfd_make_empty_symbol>>. Here is an
108 example showing the creation of a symbol table with only one element:
117 | abfd = bfd_openw("foo","a.out-sunos-big");
118 | bfd_set_format(abfd, bfd_object);
119 | new = bfd_make_empty_symbol(abfd);
120 | new->name = "dummy_symbol";
121 | new->section = bfd_make_section_old_way(abfd, ".text");
122 | new->flags = BSF_GLOBAL;
123 | new->value = 0x12345;
126 | ptrs[1] = (asymbol *)0;
128 | bfd_set_symtab(abfd, ptrs, 1);
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
176 An <<asymbol>> has the form:
184 .typedef struct symbol_cache_entry
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct _bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
225 . {* The symbol is a debugging record. The value has an arbitary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
245 . {* The symbol used to be a common symbol, but now it is
247 .#define BSF_OLD_COMMON 0x200
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
281 .#define BSF_OBJECT 0x10000
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
286 .#define BSF_DEBUGGING_RELOC 0x20000
290 . {* A pointer to the section to which this symbol is
291 . relative. This will always be non NULL, there are special
292 . sections for undefined and absolute symbols. *}
293 . struct sec *section;
295 . {* Back end special data. *}
310 #include "safe-ctype.h"
312 #include "aout/stab_gnu.h"
314 static char coff_section_type PARAMS ((const char *));
315 static int cmpindexentry PARAMS ((const PTR, const PTR));
320 symbol handling functions, , typedef asymbol, Symbols
322 Symbol handling functions
327 bfd_get_symtab_upper_bound
330 Return the number of bytes required to store a vector of pointers
331 to <<asymbols>> for all the symbols in the BFD @var{abfd},
332 including a terminal NULL pointer. If there are no symbols in
333 the BFD, then return 0. If an error occurs, return -1.
335 .#define bfd_get_symtab_upper_bound(abfd) \
336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
345 boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
348 Return true if the given symbol @var{sym} in the BFD @var{abfd} is
349 a compiler generated local label, else return false.
353 bfd_is_local_label (abfd, sym)
357 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
358 starts with '.' is local. This would accidentally catch section names
359 if we didn't reject them here. */
360 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
362 if (sym->name == NULL)
364 return bfd_is_local_label_name (abfd, sym->name);
369 bfd_is_local_label_name
372 boolean bfd_is_local_label_name(bfd *abfd, const char *name);
375 Return true if a symbol with the name @var{name} in the BFD
376 @var{abfd} is a compiler generated local label, else return
377 false. This just checks whether the name has the form of a
380 .#define bfd_is_local_label_name(abfd, name) \
381 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
387 bfd_canonicalize_symtab
390 Read the symbols from the BFD @var{abfd}, and fills in
391 the vector @var{location} with pointers to the symbols and
393 Return the actual number of symbol pointers, not
396 .#define bfd_canonicalize_symtab(abfd, location) \
397 . BFD_SEND (abfd, _bfd_canonicalize_symtab,\
407 boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
410 Arrange that when the output BFD @var{abfd} is closed,
411 the table @var{location} of @var{count} pointers to symbols
416 bfd_set_symtab (abfd, location, symcount)
419 unsigned int symcount;
421 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
423 bfd_set_error (bfd_error_invalid_operation);
427 bfd_get_outsymbols (abfd) = location;
428 bfd_get_symcount (abfd) = symcount;
434 bfd_print_symbol_vandf
437 void bfd_print_symbol_vandf(bfd *abfd, PTR file, asymbol *symbol);
440 Print the value and flags of the @var{symbol} supplied to the
444 bfd_print_symbol_vandf (abfd, arg, symbol)
449 FILE *file = (FILE *) arg;
450 flagword type = symbol->flags;
451 if (symbol->section != (asection *) NULL)
453 bfd_fprintf_vma (abfd, file,
454 symbol->value + symbol->section->vma);
458 bfd_fprintf_vma (abfd, file, symbol->value);
461 /* This presumes that a symbol can not be both BSF_DEBUGGING and
462 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
464 fprintf (file, " %c%c%c%c%c%c%c",
466 ? (type & BSF_GLOBAL) ? '!' : 'l'
467 : (type & BSF_GLOBAL) ? 'g' : ' '),
468 (type & BSF_WEAK) ? 'w' : ' ',
469 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
470 (type & BSF_WARNING) ? 'W' : ' ',
471 (type & BSF_INDIRECT) ? 'I' : ' ',
472 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
473 ((type & BSF_FUNCTION)
477 : ((type & BSF_OBJECT) ? 'O' : ' '))));
482 bfd_make_empty_symbol
485 Create a new <<asymbol>> structure for the BFD @var{abfd}
486 and return a pointer to it.
488 This routine is necessary because each back end has private
489 information surrounding the <<asymbol>>. Building your own
490 <<asymbol>> and pointing to it will not create the private
491 information, and will cause problems later on.
493 .#define bfd_make_empty_symbol(abfd) \
494 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
500 _bfd_generic_make_empty_symbol
503 asymbol *_bfd_generic_make_empty_symbol (bfd *);
506 Create a new <<asymbol>> structure for the BFD @var{abfd}
507 and return a pointer to it. Used by core file routines,
508 binary back-end and anywhere else where no private info
513 _bfd_generic_make_empty_symbol (abfd)
516 bfd_size_type amt = sizeof (asymbol);
517 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
525 bfd_make_debug_symbol
528 Create a new <<asymbol>> structure for the BFD @var{abfd},
529 to be used as a debugging symbol. Further details of its use have
530 yet to be worked out.
532 .#define bfd_make_debug_symbol(abfd,ptr,size) \
533 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
537 struct section_to_type
543 /* Map section names to POSIX/BSD single-character symbol types.
544 This table is probably incomplete. It is sorted for convenience of
545 adding entries. Since it is so short, a linear search is used. */
546 static const struct section_to_type stt[] =
549 {"code", 't'}, /* MRI .text */
552 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
553 {".drectve", 'i'}, /* MSVC's .drective section */
554 {".edata", 'e'}, /* MSVC's .edata (export) section */
555 {".fini", 't'}, /* ELF fini section */
556 {".idata", 'i'}, /* MSVC's .idata (import) section */
557 {".init", 't'}, /* ELF init section */
558 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
559 {".rdata", 'r'}, /* Read only data. */
560 {".rodata", 'r'}, /* Read only data. */
561 {".sbss", 's'}, /* Small BSS (uninitialized data). */
562 {".scommon", 'c'}, /* Small common. */
563 {".sdata", 'g'}, /* Small initialized data. */
565 {"vars", 'd'}, /* MRI .data */
566 {"zerovars", 'b'}, /* MRI .bss */
570 /* Return the single-character symbol type corresponding to
571 section S, or '?' for an unknown COFF section.
573 Check for any leading string which matches, so .text5 returns
574 't' as well as .text */
577 coff_section_type (s)
580 const struct section_to_type *t;
582 for (t = &stt[0]; t->section; t++)
583 if (!strncmp (s, t->section, strlen (t->section)))
594 Return a character corresponding to the symbol
595 class of @var{symbol}, or '?' for an unknown class.
598 int bfd_decode_symclass(asymbol *symbol);
601 bfd_decode_symclass (symbol)
606 if (bfd_is_com_section (symbol->section))
608 if (bfd_is_und_section (symbol->section))
610 if (symbol->flags & BSF_WEAK)
612 /* If weak, determine if it's specifically an object
613 or non-object weak. */
614 if (symbol->flags & BSF_OBJECT)
622 if (bfd_is_ind_section (symbol->section))
624 if (symbol->flags & BSF_WEAK)
626 /* If weak, determine if it's specifically an object
627 or non-object weak. */
628 if (symbol->flags & BSF_OBJECT)
633 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
636 if (bfd_is_abs_section (symbol->section))
638 else if (symbol->section)
639 c = coff_section_type (symbol->section->name);
642 if (symbol->flags & BSF_GLOBAL)
646 /* We don't have to handle these cases just yet, but we will soon:
658 bfd_is_undefined_symclass
661 Returns non-zero if the class symbol returned by
662 bfd_decode_symclass represents an undefined symbol.
663 Returns zero otherwise.
666 boolean bfd_is_undefined_symclass (int symclass);
670 bfd_is_undefined_symclass (symclass)
673 return symclass == 'U' || symclass == 'w' || symclass == 'v';
681 Fill in the basic info about symbol that nm needs.
682 Additional info may be added by the back-ends after
683 calling this function.
686 void bfd_symbol_info(asymbol *symbol, symbol_info *ret);
690 bfd_symbol_info (symbol, ret)
694 ret->type = bfd_decode_symclass (symbol);
696 if (bfd_is_undefined_symclass (ret->type))
699 ret->value = symbol->value + symbol->section->vma;
701 ret->name = symbol->name;
706 bfd_copy_private_symbol_data
709 boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
712 Copy private symbol information from @var{isym} in the BFD
713 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
714 Return <<true>> on success, <<false>> on error. Possible error
717 o <<bfd_error_no_memory>> -
718 Not enough memory exists to create private data for @var{osec}.
720 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
721 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
722 . (ibfd, isymbol, obfd, osymbol))
726 /* The generic version of the function which returns mini symbols.
727 This is used when the backend does not provide a more efficient
728 version. It just uses BFD asymbol structures as mini symbols. */
731 _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
738 asymbol **syms = NULL;
742 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
744 storage = bfd_get_symtab_upper_bound (abfd);
750 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
755 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
757 symcount = bfd_canonicalize_symtab (abfd, syms);
761 *minisymsp = (PTR) syms;
762 *sizep = sizeof (asymbol *);
771 /* The generic version of the function which converts a minisymbol to
772 an asymbol. We don't worry about the sym argument we are passed;
773 we just return the asymbol the minisymbol points to. */
777 _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
778 bfd *abfd ATTRIBUTE_UNUSED;
779 boolean dynamic ATTRIBUTE_UNUSED;
781 asymbol *sym ATTRIBUTE_UNUSED;
783 return *(asymbol **) minisym;
786 /* Look through stabs debugging information in .stab and .stabstr
787 sections to find the source file and line closest to a desired
788 location. This is used by COFF and ELF targets. It sets *pfound
789 to true if it finds some information. The *pinfo field is used to
790 pass cached information in and out of this routine; this first time
791 the routine is called for a BFD, *pinfo should be NULL. The value
792 placed in *pinfo should be saved with the BFD, and passed back each
793 time this function is called. */
795 /* We use a cache by default. */
797 #define ENABLE_CACHING
799 /* We keep an array of indexentry structures to record where in the
800 stabs section we should look to find line number information for a
801 particular address. */
808 char *directory_name;
813 /* Compare two indexentry structures. This is called via qsort. */
820 const struct indexentry *contestantA = (const struct indexentry *) a;
821 const struct indexentry *contestantB = (const struct indexentry *) b;
823 if (contestantA->val < contestantB->val)
825 else if (contestantA->val > contestantB->val)
831 /* A pointer to this structure is stored in *pinfo. */
833 struct stab_find_info
835 /* The .stab section. */
837 /* The .stabstr section. */
839 /* The contents of the .stab section. */
841 /* The contents of the .stabstr section. */
844 /* A table that indexes stabs by memory address. */
845 struct indexentry *indextable;
846 /* The number of entries in indextable. */
849 #ifdef ENABLE_CACHING
850 /* Cached values to restart quickly. */
851 struct indexentry *cached_indexentry;
852 bfd_vma cached_offset;
853 bfd_byte *cached_stab;
854 char *cached_file_name;
857 /* Saved ptr to malloc'ed filename. */
862 _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
863 pfilename, pfnname, pline, pinfo)
869 const char **pfilename;
870 const char **pfnname;
874 struct stab_find_info *info;
875 bfd_size_type stabsize, strsize;
876 bfd_byte *stab, *str;
877 bfd_byte *last_stab = NULL;
878 bfd_size_type stroff;
879 struct indexentry *indexentry;
881 char *directory_name;
885 *pfilename = bfd_get_filename (abfd);
889 /* Stabs entries use a 12 byte format:
890 4 byte string table index
892 1 byte stab other field
893 2 byte stab desc field
895 FIXME: This will have to change for a 64 bit object format.
897 The stabs symbols are divided into compilation units. For the
898 first entry in each unit, the type of 0, the value is the length
899 of the string table for this unit, and the desc field is the
900 number of stabs symbols for this unit. */
907 #define STABSIZE (12)
909 info = (struct stab_find_info *) *pinfo;
912 if (info->stabsec == NULL || info->strsec == NULL)
914 /* No stabs debugging information. */
918 stabsize = info->stabsec->_raw_size;
919 strsize = info->strsec->_raw_size;
923 long reloc_size, reloc_count;
924 arelent **reloc_vector;
928 bfd_size_type amt = sizeof *info;
930 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
934 /* FIXME: When using the linker --split-by-file or
935 --split-by-reloc options, it is possible for the .stab and
936 .stabstr sections to be split. We should handle that. */
938 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
939 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
941 if (info->stabsec == NULL || info->strsec == NULL)
943 /* No stabs debugging information. Set *pinfo so that we
944 can return quickly in the info != NULL case above. */
949 stabsize = info->stabsec->_raw_size;
950 strsize = info->strsec->_raw_size;
952 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
953 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
954 if (info->stabs == NULL || info->strs == NULL)
957 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
958 (bfd_vma) 0, stabsize)
959 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
960 (bfd_vma) 0, strsize))
963 /* If this is a relocateable object file, we have to relocate
964 the entries in .stab. This should always be simple 32 bit
965 relocations against symbols defined in this object file, so
966 this should be no big deal. */
967 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
970 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
971 if (reloc_vector == NULL && reloc_size != 0)
973 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
977 if (reloc_vector != NULL)
985 for (pr = reloc_vector; *pr != NULL; pr++)
992 if (r->howto->rightshift != 0
993 || r->howto->size != 2
994 || r->howto->bitsize != 32
995 || r->howto->pc_relative
996 || r->howto->bitpos != 0
997 || r->howto->dst_mask != 0xffffffff)
999 (*_bfd_error_handler)
1000 (_("Unsupported .stab relocation"));
1001 bfd_set_error (bfd_error_invalid_operation);
1002 if (reloc_vector != NULL)
1003 free (reloc_vector);
1007 val = bfd_get_32 (abfd, info->stabs + r->address);
1008 val &= r->howto->src_mask;
1009 sym = *r->sym_ptr_ptr;
1010 val += sym->value + sym->section->vma + r->addend;
1011 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1015 if (reloc_vector != NULL)
1016 free (reloc_vector);
1018 /* First time through this function, build a table matching
1019 function VM addresses to stabs, then sort based on starting
1020 VM address. Do this in two passes: once to count how many
1021 table entries we'll need, and a second to actually build the
1024 info->indextablesize = 0;
1026 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1028 if (stab[TYPEOFF] == N_SO)
1030 /* N_SO with null name indicates EOF */
1031 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1034 /* if we did not see a function def, leave space for one. */
1036 ++info->indextablesize;
1040 /* two N_SO's in a row is a filename and directory. Skip */
1041 if (stab + STABSIZE < info->stabs + stabsize
1042 && *(stab + STABSIZE + TYPEOFF) == N_SO)
1047 else if (stab[TYPEOFF] == N_FUN)
1050 ++info->indextablesize;
1055 ++info->indextablesize;
1057 if (info->indextablesize == 0)
1059 ++info->indextablesize;
1061 amt = info->indextablesize;
1062 amt *= sizeof (struct indexentry);
1063 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1064 if (info->indextable == NULL)
1068 directory_name = NULL;
1071 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1072 i < info->indextablesize && stab < info->stabs + stabsize;
1075 switch (stab[TYPEOFF])
1078 /* This is the first entry in a compilation unit. */
1079 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1082 stroff = bfd_get_32 (abfd, stab + VALOFF);
1086 /* The main file name. */
1088 /* The following code creates a new indextable entry with
1089 a NULL function name if there were no N_FUNs in a file.
1090 Note that a N_SO without a file name is an EOF and
1091 there could be 2 N_SO following it with the new filename
1095 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1096 info->indextable[i].stab = last_stab;
1097 info->indextable[i].str = str;
1098 info->indextable[i].directory_name = directory_name;
1099 info->indextable[i].file_name = file_name;
1100 info->indextable[i].function_name = NULL;
1105 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1106 if (*file_name == '\0')
1108 directory_name = NULL;
1115 if (stab + STABSIZE >= info->stabs + stabsize
1116 || *(stab + STABSIZE + TYPEOFF) != N_SO)
1118 directory_name = NULL;
1122 /* Two consecutive N_SOs are a directory and a
1125 directory_name = file_name;
1126 file_name = ((char *) str
1127 + bfd_get_32 (abfd, stab + STRDXOFF));
1133 /* The name of an include file. */
1134 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1138 /* A function name. */
1140 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1145 function_name = name;
1150 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1151 info->indextable[i].stab = stab;
1152 info->indextable[i].str = str;
1153 info->indextable[i].directory_name = directory_name;
1154 info->indextable[i].file_name = file_name;
1155 info->indextable[i].function_name = function_name;
1163 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1164 info->indextable[i].stab = last_stab;
1165 info->indextable[i].str = str;
1166 info->indextable[i].directory_name = directory_name;
1167 info->indextable[i].file_name = file_name;
1168 info->indextable[i].function_name = NULL;
1172 info->indextable[i].val = (bfd_vma) -1;
1173 info->indextable[i].stab = info->stabs + stabsize;
1174 info->indextable[i].str = str;
1175 info->indextable[i].directory_name = NULL;
1176 info->indextable[i].file_name = NULL;
1177 info->indextable[i].function_name = NULL;
1180 info->indextablesize = i;
1181 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1184 *pinfo = (PTR) info;
1187 /* We are passed a section relative offset. The offsets in the
1188 stabs information are absolute. */
1189 offset += bfd_get_section_vma (abfd, section);
1191 #ifdef ENABLE_CACHING
1192 if (info->cached_indexentry != NULL
1193 && offset >= info->cached_offset
1194 && offset < (info->cached_indexentry + 1)->val)
1196 stab = info->cached_stab;
1197 indexentry = info->cached_indexentry;
1198 file_name = info->cached_file_name;
1203 /* Cache non-existant or invalid. Do binary search on
1212 high = info->indextablesize - 1;
1215 mid = (high + low) / 2;
1216 if (offset >= info->indextable[mid].val
1217 && offset < info->indextable[mid + 1].val)
1219 indexentry = &info->indextable[mid];
1223 if (info->indextable[mid].val > offset)
1229 if (indexentry == NULL)
1232 stab = indexentry->stab + STABSIZE;
1233 file_name = indexentry->file_name;
1236 directory_name = indexentry->directory_name;
1237 str = indexentry->str;
1239 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1241 boolean done, saw_line, saw_func;
1248 switch (stab[TYPEOFF])
1251 /* The name of an include file. */
1252 val = bfd_get_32 (abfd, stab + VALOFF);
1255 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1263 /* A line number. The value is relative to the start of the
1264 current function. */
1265 val = indexentry->val + bfd_get_32 (abfd, stab + VALOFF);
1266 /* If this line starts before our desired offset, or if it's
1267 the first line we've been able to find, use it. The
1268 !saw_line check works around a bug in GCC 2.95.3, which emits
1269 the first N_SLINE late. */
1270 if (!saw_line || val <= offset)
1272 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1274 #ifdef ENABLE_CACHING
1275 info->cached_stab = stab;
1276 info->cached_offset = val;
1277 info->cached_file_name = file_name;
1278 info->cached_indexentry = indexentry;
1288 if (saw_func || saw_line)
1300 if (IS_ABSOLUTE_PATH(file_name) || directory_name == NULL)
1301 *pfilename = file_name;
1306 dirlen = strlen (directory_name);
1307 if (info->filename == NULL
1308 || strncmp (info->filename, directory_name, dirlen) != 0
1309 || strcmp (info->filename + dirlen, file_name) != 0)
1311 if (info->filename != NULL)
1312 free (info->filename);
1313 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen
1314 + strlen (file_name) + 1);
1315 if (info->filename == NULL)
1317 strcpy (info->filename, directory_name);
1318 strcpy (info->filename + dirlen, file_name);
1321 *pfilename = info->filename;
1324 if (indexentry->function_name != NULL)
1328 /* This will typically be something like main:F(0,1), so we want
1329 to clobber the colon. It's OK to change the name, since the
1330 string is in our own local storage anyhow. */
1332 s = strchr (indexentry->function_name, ':');
1336 *pfnname = indexentry->function_name;