1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
23 /* Most of this hacked by Steve Chamberlain,
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
29 /* Hey look, some documentation [and in a place you expect to find it]!
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
67 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
78 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
92 struct bfd_in_memory * bim;
96 unsigned int relcount;
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
111 unsigned int sec_index;
115 char * end_string_ptr;
120 struct internal_reloc * int_reltab;
123 #endif /* COFF_IMAGE_WITH_PE */
125 const bfd_target *coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
128 #ifndef NO_COFF_RELOCS
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
161 #endif /* not NO_COFF_RELOCS */
163 #ifdef COFF_IMAGE_WITH_PE
165 #define FILHDR struct external_PEI_IMAGE_hdr
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
181 /* Other people's tools sometimes generate headers with an nsyms but
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
205 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
218 /* MS handles overflow of line numbers by carrying into the reloc
219 field (it appears). Since it's supposed to be zero for PE
220 *IMAGE* format, that's safe. This is still a bit iffy. */
221 #ifdef COFF_IMAGE_WITH_PE
222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224 scnhdr_int->s_nreloc = 0;
226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
230 if (scnhdr_int->s_vaddr != 0)
232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233 /* Do not cut upper 32-bits for 64-bit vma. */
234 #ifndef COFF_WITH_pex64
235 scnhdr_int->s_vaddr &= 0xffffffff;
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240 /* If this section holds uninitialized data and is from an object file
241 or from an executable image that has not initialized the field,
242 or if the image is an executable file and the physical size is padded,
243 use the virtual size (stored in s_paddr) instead. */
244 if (scnhdr_int->s_paddr > 0
245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248 /* This code used to set scnhdr_int->s_paddr to 0. However,
249 coff_set_alignment_hook stores s_paddr in virt_size, which
250 only works if it correctly holds the virtual size of the
252 scnhdr_int->s_size = scnhdr_int->s_paddr;
257 pe_mkobject (bfd * abfd)
260 bfd_size_type amt = sizeof (pe_data_type);
262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
264 if (abfd->tdata.pe_obj_data == 0)
271 /* in_reloc_p is architecture dependent. */
272 pe->in_reloc_p = in_reloc_p;
274 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
278 /* Create the COFF backend specific information. */
281 pe_mkobject_hook (bfd * abfd,
283 void * aouthdr ATTRIBUTE_UNUSED)
285 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
288 if (! pe_mkobject (abfd))
292 pe->coff.sym_filepos = internal_f->f_symptr;
293 /* These members communicate important constants about the symbol
294 table to GDB's symbol-reading code. These `constants'
295 unfortunately vary among coff implementations... */
296 pe->coff.local_n_btmask = N_BTMASK;
297 pe->coff.local_n_btshft = N_BTSHFT;
298 pe->coff.local_n_tmask = N_TMASK;
299 pe->coff.local_n_tshift = N_TSHIFT;
300 pe->coff.local_symesz = SYMESZ;
301 pe->coff.local_auxesz = AUXESZ;
302 pe->coff.local_linesz = LINESZ;
304 pe->coff.timestamp = internal_f->f_timdat;
306 obj_raw_syment_count (abfd) =
307 obj_conv_table_size (abfd) =
310 pe->real_flags = internal_f->f_flags;
312 if ((internal_f->f_flags & F_DLL) != 0)
315 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
316 abfd->flags |= HAS_DEBUG;
318 #ifdef COFF_IMAGE_WITH_PE
320 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
324 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
325 coff_data (abfd) ->flags = 0;
332 pe_print_private_bfd_data (bfd *abfd, void * vfile)
334 FILE *file = (FILE *) vfile;
336 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
339 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
344 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
347 /* Copy any private info we understand from the input bfd
348 to the output bfd. */
351 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
353 /* PR binutils/716: Copy the large address aware flag.
354 XXX: Should we be copying other flags or other fields in the pe_data()
356 if (pe_data (obfd) != NULL
357 && pe_data (ibfd) != NULL
358 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
359 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
361 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
364 if (pe_saved_coff_bfd_copy_private_bfd_data)
365 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
370 #define coff_bfd_copy_private_section_data \
371 _bfd_XX_bfd_copy_private_section_data
373 #define coff_get_symbol_info _bfd_XX_get_symbol_info
375 #ifdef COFF_IMAGE_WITH_PE
377 /* Code to handle Microsoft's Image Library Format.
378 Also known as LINK6 format.
379 Documentation about this format can be found at:
381 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
383 /* The following constants specify the sizes of the various data
384 structures that we have to create in order to build a bfd describing
385 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
386 and SIZEOF_IDATA7 below is to allow for the possibility that we might
387 need a padding byte in order to ensure 16 bit alignment for the section's
390 The value for SIZEOF_ILF_STRINGS is computed as follows:
392 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
393 per symbol for their names (longest section name is .idata$x).
395 There will be two symbols for the imported value, one the symbol name
396 and one with _imp__ prefixed. Allowing for the terminating nul's this
397 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
399 The strings in the string table must start STRING__SIZE_SIZE bytes into
400 the table in order to for the string lookup code in coffgen/coffcode to
402 #define NUM_ILF_RELOCS 8
403 #define NUM_ILF_SECTIONS 6
404 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
406 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
407 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
408 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
409 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
410 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
411 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
412 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
413 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
414 + 21 + strlen (source_dll) \
415 + NUM_ILF_SECTIONS * 9 \
417 #define SIZEOF_IDATA2 (5 * 4)
419 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
420 #ifdef COFF_WITH_pex64
421 #define SIZEOF_IDATA4 (2 * 4)
422 #define SIZEOF_IDATA5 (2 * 4)
424 #define SIZEOF_IDATA4 (1 * 4)
425 #define SIZEOF_IDATA5 (1 * 4)
428 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
429 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
430 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
432 #define ILF_DATA_SIZE \
434 + SIZEOF_ILF_SYM_TABLE \
435 + SIZEOF_ILF_NATIVE_SYMS \
436 + SIZEOF_ILF_SYM_PTR_TABLE \
437 + SIZEOF_ILF_EXT_SYMS \
438 + SIZEOF_ILF_RELOCS \
439 + SIZEOF_ILF_INT_RELOCS \
440 + SIZEOF_ILF_STRINGS \
446 + SIZEOF_ILF_SECTIONS \
447 + MAX_TEXT_SECTION_SIZE
449 /* Create an empty relocation against the given symbol. */
452 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
454 bfd_reloc_code_real_type reloc,
455 struct bfd_symbol ** sym,
456 unsigned int sym_index)
459 struct internal_reloc * internal;
461 entry = vars->reltab + vars->relcount;
462 internal = vars->int_reltab + vars->relcount;
464 entry->address = address;
466 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
467 entry->sym_ptr_ptr = sym;
469 internal->r_vaddr = address;
470 internal->r_symndx = sym_index;
471 internal->r_type = entry->howto->type;
475 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
478 /* Create an empty relocation against the given section. */
481 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
483 bfd_reloc_code_real_type reloc,
486 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
487 coff_section_data (vars->abfd, sec)->i);
490 /* Move the queued relocs into the given section. */
493 pe_ILF_save_relocs (pe_ILF_vars * vars,
496 /* Make sure that there is somewhere to store the internal relocs. */
497 if (coff_section_data (vars->abfd, sec) == NULL)
498 /* We should probably return an error indication here. */
501 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
502 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
504 sec->relocation = vars->reltab;
505 sec->reloc_count = vars->relcount;
506 sec->flags |= SEC_RELOC;
508 vars->reltab += vars->relcount;
509 vars->int_reltab += vars->relcount;
512 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
515 /* Create a global symbol and add it to the relevant tables. */
518 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
520 const char * symbol_name,
521 asection_ptr section,
522 flagword extra_flags)
524 coff_symbol_type * sym;
525 combined_entry_type * ent;
527 unsigned short sclass;
529 if (extra_flags & BSF_LOCAL)
535 if (vars->magic == THUMBPEMAGIC)
537 if (extra_flags & BSF_FUNCTION)
538 sclass = C_THUMBEXTFUNC;
539 else if (extra_flags & BSF_LOCAL)
540 sclass = C_THUMBSTAT;
546 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
549 ent = vars->native_ptr;
550 esym = vars->esym_ptr;
552 /* Copy the symbol's name into the string table. */
553 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
556 section = bfd_und_section_ptr;
558 /* Initialise the external symbol. */
559 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
561 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
562 esym->e_sclass[0] = sclass;
564 /* The following initialisations are unnecessary - the memory is
565 zero initialised. They are just kept here as reminders. */
567 /* Initialise the internal symbol structure. */
568 ent->u.syment.n_sclass = sclass;
569 ent->u.syment.n_scnum = section->target_index;
570 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym;
573 sym->symbol.the_bfd = vars->abfd;
574 sym->symbol.name = vars->string_ptr;
575 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
576 sym->symbol.section = section;
579 * vars->table_ptr = vars->sym_index;
580 * vars->sym_ptr_ptr = sym;
582 /* Adjust pointers for the next symbol. */
585 vars->sym_ptr_ptr ++;
589 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
591 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
594 /* Create a section. */
597 pe_ILF_make_a_section (pe_ILF_vars * vars,
600 flagword extra_flags)
605 sec = bfd_make_section_old_way (vars->abfd, name);
609 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
611 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
613 (void) bfd_set_section_alignment (vars->abfd, sec, 2);
615 /* Check that we will not run out of space. */
616 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
618 /* Set the section size and contents. The actual
619 contents are filled in by our parent. */
620 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
621 sec->contents = vars->data;
622 sec->target_index = vars->sec_index ++;
624 /* Advance data pointer in the vars structure. */
627 /* Skip the padding byte if it was not needed.
628 The logic here is that if the string length is odd,
629 then the entire string length, including the null byte,
630 is even and so the extra, padding byte, is not needed. */
634 # if (GCC_VERSION >= 3000)
635 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we
636 preserve host alignment requirements. We test 'size' rather than
637 vars.data as we cannot perform binary arithmetic on pointers. We assume
638 that vars.data was sufficiently aligned upon entry to this function.
639 The BFD_ASSERTs in this functions will warn us if we run out of room,
640 but we should already have enough padding built in to ILF_DATA_SIZE. */
642 unsigned int alignment = __alignof__ (struct coff_section_tdata);
644 if (size & (alignment - 1))
645 vars->data += alignment - (size & (alignment - 1));
648 /* Create a coff_section_tdata structure for our use. */
649 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
650 vars->data += sizeof (struct coff_section_tdata);
652 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
654 /* Create a symbol to refer to this section. */
655 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
657 /* Cache the index to the symbol in the coff_section_data structure. */
658 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
663 /* This structure contains the code that goes into the .text section
664 in order to perform a jump into the DLL lookup table. The entries
665 in the table are index by the magic number used to represent the
666 machine type in the PE file. The contents of the data[] arrays in
667 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
668 The SIZE field says how many bytes in the DATA array are actually
669 used. The OFFSET field says where in the data array the address
670 of the .idata$5 section should be placed. */
671 #define MAX_TEXT_SECTION_SIZE 32
675 unsigned short magic;
676 unsigned char data[MAX_TEXT_SECTION_SIZE];
682 static jump_table jtab[] =
686 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
693 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
700 { /* XXX fill me in */ },
705 #ifdef MIPS_ARCH_MAGIC_WINCE
706 { MIPS_ARCH_MAGIC_WINCE,
707 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
708 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
713 #ifdef SH_ARCH_MAGIC_WINCE
714 { SH_ARCH_MAGIC_WINCE,
715 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
716 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
723 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
724 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
731 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
732 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
740 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
743 /* Build a full BFD from the information supplied in a ILF object. */
746 pe_ILF_build_a_bfd (bfd * abfd,
750 unsigned int ordinal,
755 struct internal_filehdr internal_f;
756 unsigned int import_type;
757 unsigned int import_name_type;
758 asection_ptr id4, id5, id6 = NULL, text = NULL;
759 coff_symbol_type ** imp_sym;
760 unsigned int imp_index;
762 /* Decode and verify the types field of the ILF structure. */
763 import_type = types & 0x3;
764 import_name_type = (types & 0x1c) >> 2;
773 /* XXX code yet to be written. */
774 /* xgettext:c-format */
775 _bfd_error_handler (_("%pB: unhandled import type; %x"),
780 /* xgettext:c-format */
781 _bfd_error_handler (_("%pB: unrecognized import type; %x"),
786 switch (import_name_type)
790 case IMPORT_NAME_NOPREFIX:
791 case IMPORT_NAME_UNDECORATE:
795 /* xgettext:c-format */
796 _bfd_error_handler (_("%pB: unrecognized import name type; %x"),
797 abfd, import_name_type);
801 /* Initialise local variables.
803 Note these are kept in a structure rather than being
804 declared as statics since bfd frowns on global variables.
806 We are going to construct the contents of the BFD in memory,
807 so allocate all the space that we will need right now. */
809 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
810 if (vars.bim == NULL)
813 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
814 vars.bim->buffer = ptr;
815 vars.bim->size = ILF_DATA_SIZE;
819 /* Initialise the pointers to regions of the memory and the
820 other contents of the pe_ILF_vars structure as well. */
821 vars.sym_cache = (coff_symbol_type *) ptr;
822 vars.sym_ptr = (coff_symbol_type *) ptr;
824 ptr += SIZEOF_ILF_SYMS;
826 vars.sym_table = (unsigned int *) ptr;
827 vars.table_ptr = (unsigned int *) ptr;
828 ptr += SIZEOF_ILF_SYM_TABLE;
830 vars.native_syms = (combined_entry_type *) ptr;
831 vars.native_ptr = (combined_entry_type *) ptr;
832 ptr += SIZEOF_ILF_NATIVE_SYMS;
834 vars.sym_ptr_table = (coff_symbol_type **) ptr;
835 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
836 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
838 vars.esym_table = (SYMENT *) ptr;
839 vars.esym_ptr = (SYMENT *) ptr;
840 ptr += SIZEOF_ILF_EXT_SYMS;
842 vars.reltab = (arelent *) ptr;
844 ptr += SIZEOF_ILF_RELOCS;
846 vars.int_reltab = (struct internal_reloc *) ptr;
847 ptr += SIZEOF_ILF_INT_RELOCS;
849 vars.string_table = (char *) ptr;
850 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
851 ptr += SIZEOF_ILF_STRINGS;
852 vars.end_string_ptr = (char *) ptr;
854 /* The remaining space in bim->buffer is used
855 by the pe_ILF_make_a_section() function. */
856 # if (GCC_VERSION >= 3000)
857 /* PR 18758: Make sure that the data area is sufficiently aligned for
858 pointers on the host. __alignof__ is a gcc extension, hence the test
859 above. For other compilers we will have to assume that the alignment is
860 unimportant, or else extra code can be added here and in
861 pe_ILF_make_a_section.
863 Note - we cannot test 'ptr' directly as it is illegal to perform binary
864 arithmetic on pointers, but we know that the strings section is the only
865 one that might end on an unaligned boundary. */
867 unsigned int alignment = __alignof__ (char *);
869 if (SIZEOF_ILF_STRINGS & (alignment - 1))
870 ptr += alignment - (SIZEOF_ILF_STRINGS & (alignment - 1));
879 /* Create the initial .idata$<n> sections:
880 [.idata$2: Import Directory Table -- not needed]
881 .idata$4: Import Lookup Table
882 .idata$5: Import Address Table
884 Note we do not create a .idata$3 section as this is
885 created for us by the linker script. */
886 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
887 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
888 if (id4 == NULL || id5 == NULL)
891 /* Fill in the contents of these sections. */
892 if (import_name_type == IMPORT_ORDINAL)
895 /* See PR 20907 for a reproducer. */
898 #ifdef COFF_WITH_pex64
899 ((unsigned int *) id4->contents)[0] = ordinal;
900 ((unsigned int *) id4->contents)[1] = 0x80000000;
901 ((unsigned int *) id5->contents)[0] = ordinal;
902 ((unsigned int *) id5->contents)[1] = 0x80000000;
904 * (unsigned int *) id4->contents = ordinal | 0x80000000;
905 * (unsigned int *) id5->contents = ordinal | 0x80000000;
913 /* Create .idata$6 - the Hint Name Table. */
914 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
918 /* If necessary, trim the import symbol name. */
919 symbol = symbol_name;
921 /* As used by MS compiler, '_', '@', and '?' are alternative
922 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
923 '@' used for fastcall (in C), '_' everywhere else. Only one
924 of these is used for a symbol. We strip this leading char for
925 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
926 PE COFF 6.0 spec (section 8.3, Import Name Type). */
928 if (import_name_type != IMPORT_NAME)
932 /* Check that we don't remove for targets with empty
933 USER_LABEL_PREFIX the leading underscore. */
934 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
935 || c == '@' || c == '?')
939 len = strlen (symbol);
940 if (import_name_type == IMPORT_NAME_UNDECORATE)
942 /* Truncate at the first '@'. */
943 char *at = strchr (symbol, '@');
949 id6->contents[0] = ordinal & 0xff;
950 id6->contents[1] = ordinal >> 8;
952 memcpy ((char *) id6->contents + 2, symbol, len);
953 id6->contents[len + 2] = '\0';
956 if (import_name_type != IMPORT_ORDINAL)
958 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
959 pe_ILF_save_relocs (&vars, id4);
961 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
962 pe_ILF_save_relocs (&vars, id5);
965 /* Create an import symbol. */
966 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
967 imp_sym = vars.sym_ptr_ptr - 1;
968 imp_index = vars.sym_index - 1;
970 /* Create extra sections depending upon the type of import we are dealing with. */
976 /* CODE functions are special, in that they get a trampoline that
977 jumps to the main import symbol. Create a .text section to hold it.
978 First we need to look up its contents in the jump table. */
979 for (i = NUM_ENTRIES (jtab); i--;)
981 if (jtab[i].size == 0)
983 if (jtab[i].magic == magic)
986 /* If we did not find a matching entry something is wrong. */
990 /* Create the .text section. */
991 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
995 /* Copy in the jump code. */
996 memcpy (text->contents, jtab[i].data, jtab[i].size);
998 /* Create a reloc for the data in the text section. */
999 #ifdef MIPS_ARCH_MAGIC_WINCE
1000 if (magic == MIPS_ARCH_MAGIC_WINCE)
1002 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1003 (struct bfd_symbol **) imp_sym,
1005 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1006 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1007 (struct bfd_symbol **) imp_sym,
1013 if (magic == AMD64MAGIC)
1015 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1016 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1021 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1022 BFD_RELOC_32, (asymbol **) imp_sym,
1025 pe_ILF_save_relocs (& vars, text);
1032 /* XXX code not yet written. */
1036 /* Initialise the bfd. */
1037 memset (& internal_f, 0, sizeof (internal_f));
1039 internal_f.f_magic = magic;
1040 internal_f.f_symptr = 0;
1041 internal_f.f_nsyms = 0;
1042 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1044 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1045 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1048 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1051 coff_data (abfd)->pe = 1;
1053 if (vars.magic == THUMBPEMAGIC)
1054 /* Stop some linker warnings about thumb code not supporting interworking. */
1055 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1058 /* Switch from file contents to memory contents. */
1059 bfd_cache_close (abfd);
1061 abfd->iostream = (void *) vars.bim;
1062 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1063 abfd->iovec = &_bfd_memory_iovec;
1066 obj_sym_filepos (abfd) = 0;
1068 /* Now create a symbol describing the imported value. */
1069 switch (import_type)
1072 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1073 BSF_NOT_AT_END | BSF_FUNCTION);
1078 /* Nothing to do here. */
1082 /* XXX code not yet written. */
1086 /* Create an import symbol for the DLL, without the .dll suffix. */
1087 ptr = (bfd_byte *) strrchr (source_dll, '.');
1090 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1094 /* Point the bfd at the symbol table. */
1095 obj_symbols (abfd) = vars.sym_cache;
1096 bfd_get_symcount (abfd) = vars.sym_index;
1098 obj_raw_syments (abfd) = vars.native_syms;
1099 obj_raw_syment_count (abfd) = vars.sym_index;
1101 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1102 obj_coff_keep_syms (abfd) = TRUE;
1104 obj_convert (abfd) = vars.sym_table;
1105 obj_conv_table_size (abfd) = vars.sym_index;
1107 obj_coff_strings (abfd) = vars.string_table;
1108 obj_coff_keep_strings (abfd) = TRUE;
1110 abfd->flags |= HAS_SYMS;
1115 if (vars.bim->buffer != NULL)
1116 free (vars.bim->buffer);
1121 /* We have detected a Image Library Format archive element.
1122 Decode the element and return the appropriate target. */
1124 static const bfd_target *
1125 pe_ILF_object_p (bfd * abfd)
1127 bfd_byte buffer[14];
1131 unsigned int machine;
1133 unsigned int ordinal;
1137 /* Upon entry the first six bytes of the ILF header have
1138 already been read. Now read the rest of the header. */
1139 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1144 machine = H_GET_16 (abfd, ptr);
1147 /* Check that the machine type is recognised. */
1152 case IMAGE_FILE_MACHINE_UNKNOWN:
1153 case IMAGE_FILE_MACHINE_ALPHA:
1154 case IMAGE_FILE_MACHINE_ALPHA64:
1155 case IMAGE_FILE_MACHINE_IA64:
1158 case IMAGE_FILE_MACHINE_I386:
1164 case IMAGE_FILE_MACHINE_AMD64:
1170 case IMAGE_FILE_MACHINE_R3000:
1171 case IMAGE_FILE_MACHINE_R4000:
1172 case IMAGE_FILE_MACHINE_R10000:
1174 case IMAGE_FILE_MACHINE_MIPS16:
1175 case IMAGE_FILE_MACHINE_MIPSFPU:
1176 case IMAGE_FILE_MACHINE_MIPSFPU16:
1177 #ifdef MIPS_ARCH_MAGIC_WINCE
1178 magic = MIPS_ARCH_MAGIC_WINCE;
1182 case IMAGE_FILE_MACHINE_SH3:
1183 case IMAGE_FILE_MACHINE_SH4:
1184 #ifdef SH_ARCH_MAGIC_WINCE
1185 magic = SH_ARCH_MAGIC_WINCE;
1189 case IMAGE_FILE_MACHINE_ARM:
1195 case IMAGE_FILE_MACHINE_THUMB:
1198 extern const bfd_target TARGET_LITTLE_SYM;
1200 if (abfd->xvec == & TARGET_LITTLE_SYM)
1201 magic = THUMBPEMAGIC;
1206 case IMAGE_FILE_MACHINE_POWERPC:
1207 /* We no longer support PowerPC. */
1210 /* xgettext:c-format */
1211 (_("%pB: unrecognised machine type (0x%x)"
1212 " in Import Library Format archive"),
1214 bfd_set_error (bfd_error_malformed_archive);
1223 /* xgettext:c-format */
1224 (_("%pB: recognised but unhandled machine type (0x%x)"
1225 " in Import Library Format archive"),
1227 bfd_set_error (bfd_error_wrong_format);
1232 /* We do not bother to check the date.
1233 date = H_GET_32 (abfd, ptr); */
1236 size = H_GET_32 (abfd, ptr);
1242 (_("%pB: size field is zero in Import Library Format header"), abfd);
1243 bfd_set_error (bfd_error_malformed_archive);
1248 ordinal = H_GET_16 (abfd, ptr);
1251 types = H_GET_16 (abfd, ptr);
1254 /* Now read in the two strings that follow. */
1255 ptr = (bfd_byte *) bfd_alloc (abfd, size);
1259 if (bfd_bread (ptr, size, abfd) != size)
1261 bfd_release (abfd, ptr);
1265 symbol_name = (char *) ptr;
1266 /* See PR 20905 for an example of where the strnlen is necessary. */
1267 source_dll = symbol_name + strnlen (symbol_name, size - 1) + 1;
1269 /* Verify that the strings are null terminated. */
1270 if (ptr[size - 1] != 0
1271 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1274 (_("%pB: string not null terminated in ILF object file"), abfd);
1275 bfd_set_error (bfd_error_malformed_archive);
1276 bfd_release (abfd, ptr);
1280 /* Now construct the bfd. */
1281 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1282 source_dll, ordinal, types))
1284 bfd_release (abfd, ptr);
1292 pe_bfd_read_buildid (bfd *abfd)
1294 pe_data_type *pe = pe_data (abfd);
1295 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1298 bfd_size_type dataoff;
1300 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1301 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1306 addr += extra->ImageBase;
1308 /* Search for the section containing the DebugDirectory. */
1309 for (section = abfd->sections; section != NULL; section = section->next)
1311 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1315 if (section == NULL)
1318 if (!(section->flags & SEC_HAS_CONTENTS))
1321 dataoff = addr - section->vma;
1323 /* PR 20605 and 22373: Make sure that the data is really there.
1324 Note - since we are dealing with unsigned quantities we have
1325 to be careful to check for potential overflows. */
1326 if (dataoff >= section->size
1327 || size > section->size - dataoff)
1330 (_("%pB: error: debug data ends beyond end of debug directory"),
1335 /* Read the whole section. */
1336 if (!bfd_malloc_and_get_section (abfd, section, &data))
1343 /* Search for a CodeView entry in the DebugDirectory */
1344 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1346 struct external_IMAGE_DEBUG_DIRECTORY *ext
1347 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1348 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1350 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1352 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1354 char buffer[256 + 1];
1355 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1358 The debug entry doesn't have to have to be in a section, in which
1359 case AddressOfRawData is 0, so always use PointerToRawData.
1361 if (_bfd_XXi_slurp_codeview_record (abfd,
1362 (file_ptr) idd.PointerToRawData,
1363 idd.SizeOfData, cvinfo))
1365 struct bfd_build_id* build_id = bfd_alloc (abfd,
1366 sizeof (struct bfd_build_id) + cvinfo->SignatureLength);
1369 build_id->size = cvinfo->SignatureLength;
1370 memcpy(build_id->data, cvinfo->Signature,
1371 cvinfo->SignatureLength);
1372 abfd->build_id = build_id;
1380 static const bfd_target *
1381 pe_bfd_object_p (bfd * abfd)
1384 struct external_DOS_hdr dos_hdr;
1385 struct external_PEI_IMAGE_hdr image_hdr;
1386 struct internal_filehdr internal_f;
1387 struct internal_aouthdr internal_a;
1388 file_ptr opt_hdr_size;
1390 const bfd_target *result;
1392 /* Detect if this a Microsoft Import Library Format element. */
1393 /* First read the beginning of the header. */
1394 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1395 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1397 if (bfd_get_error () != bfd_error_system_call)
1398 bfd_set_error (bfd_error_wrong_format);
1402 /* Then check the magic and the version (only 0 is supported). */
1403 if (H_GET_32 (abfd, buffer) == 0xffff0000
1404 && H_GET_16 (abfd, buffer + 4) == 0)
1405 return pe_ILF_object_p (abfd);
1407 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1408 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1409 != sizeof (dos_hdr))
1411 if (bfd_get_error () != bfd_error_system_call)
1412 bfd_set_error (bfd_error_wrong_format);
1416 /* There are really two magic numbers involved; the magic number
1417 that says this is a NT executable (PEI) and the magic number that
1418 determines the architecture. The former is IMAGE_DOS_SIGNATURE, stored in
1419 the e_magic field. The latter is stored in the f_magic field.
1420 If the NT magic number isn't valid, the architecture magic number
1421 could be mimicked by some other field (specifically, the number
1422 of relocs in section 3). Since this routine can only be called
1423 correctly for a PEI file, check the e_magic number here, and, if
1424 it doesn't match, clobber the f_magic number so that we don't get
1426 if (H_GET_16 (abfd, dos_hdr.e_magic) != IMAGE_DOS_SIGNATURE)
1428 bfd_set_error (bfd_error_wrong_format);
1432 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1433 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1434 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1435 != sizeof (image_hdr)))
1437 if (bfd_get_error () != bfd_error_system_call)
1438 bfd_set_error (bfd_error_wrong_format);
1442 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1444 bfd_set_error (bfd_error_wrong_format);
1448 /* Swap file header, so that we get the location for calling
1450 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1452 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1453 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1455 bfd_set_error (bfd_error_wrong_format);
1459 /* Read the optional header, which has variable size. */
1460 opt_hdr_size = internal_f.f_opthdr;
1462 if (opt_hdr_size != 0)
1464 bfd_size_type amt = opt_hdr_size;
1467 /* PR 17521 file: 230-131433-0.004. */
1468 if (amt < sizeof (PEAOUTHDR))
1469 amt = sizeof (PEAOUTHDR);
1471 opthdr = bfd_zalloc (abfd, amt);
1474 if (bfd_bread (opthdr, opt_hdr_size, abfd)
1475 != (bfd_size_type) opt_hdr_size)
1478 bfd_set_error (bfd_error_no_error);
1479 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1480 if (bfd_get_error () != bfd_error_no_error)
1485 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1488 : (struct internal_aouthdr *) NULL));
1493 /* Now the whole header has been processed, see if there is a build-id */
1494 pe_bfd_read_buildid(abfd);
1500 #define coff_object_p pe_bfd_object_p
1501 #endif /* COFF_IMAGE_WITH_PE */