1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
265 Performing the final link
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
297 Information provided by the linker
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
321 Relocating the section contents
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
359 Writing the symbol table
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
424 /* Routine to create an entry in the link hash table. */
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
431 /* Allocate the structure if it has not already been allocated by a
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
465 unsigned int entsize)
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489 struct bfd_link_hash_entry *
490 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
496 struct bfd_link_hash_entry *ret;
498 ret = ((struct bfd_link_hash_entry *)
499 bfd_hash_lookup (&table->table, string, create, copy));
501 if (follow && ret != NULL)
503 while (ret->type == bfd_link_hash_indirect
504 || ret->type == bfd_link_hash_warning)
511 /* Look up a symbol in the main linker hash table if the symbol might
512 be wrapped. This should only be used for references to an
513 undefined symbol, not for definitions of a symbol. */
515 struct bfd_link_hash_entry *
516 bfd_wrapped_link_hash_lookup (bfd *abfd,
517 struct bfd_link_info *info,
525 if (info->wrap_hash != NULL)
531 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
538 #define WRAP "__wrap_"
540 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
543 struct bfd_link_hash_entry *h;
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
548 amt = strlen (l) + sizeof WRAP + 1;
549 n = (char *) bfd_malloc (amt);
557 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
563 #define REAL "__real_"
566 && CONST_STRNEQ (l, REAL)
567 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
568 FALSE, FALSE) != NULL)
571 struct bfd_link_hash_entry *h;
573 /* This is a reference to __real_SYM, where SYM is being
574 wrapped. We want to replace all references to __real_SYM
575 with references to SYM. */
577 amt = strlen (l + sizeof REAL - 1) + 2;
578 n = (char *) bfd_malloc (amt);
584 strcat (n, l + sizeof REAL - 1);
585 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
593 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
597 and the remainder is found in wrap_hash, return the real symbol. */
599 struct bfd_link_hash_entry *
600 unwrap_hash_lookup (struct bfd_link_info *info,
602 struct bfd_link_hash_entry *h)
604 const char *l = h->root.string;
606 if (*l == bfd_get_symbol_leading_char (input_bfd)
607 || *l == info->wrap_char)
610 if (CONST_STRNEQ (l, WRAP))
612 l += sizeof WRAP - 1;
614 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
617 if (l - (sizeof WRAP - 1) != h->root.string)
621 *(char *) l = *h->root.string;
623 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
632 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
633 in the treatment of warning symbols. When warning symbols are
634 created they replace the real symbol, so you don't get to see the
635 real symbol in a bfd_hash_travere. This traversal calls func with
639 bfd_link_hash_traverse
640 (struct bfd_link_hash_table *htab,
641 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
646 htab->table.frozen = 1;
647 for (i = 0; i < htab->table.size; i++)
649 struct bfd_link_hash_entry *p;
651 p = (struct bfd_link_hash_entry *) htab->table.table[i];
652 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
653 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
657 htab->table.frozen = 0;
660 /* Add a symbol to the linker hash table undefs list. */
663 bfd_link_add_undef (struct bfd_link_hash_table *table,
664 struct bfd_link_hash_entry *h)
666 BFD_ASSERT (h->u.undef.next == NULL);
667 if (table->undefs_tail != NULL)
668 table->undefs_tail->u.undef.next = h;
669 if (table->undefs == NULL)
671 table->undefs_tail = h;
674 /* The undefs list was designed so that in normal use we don't need to
675 remove entries. However, if symbols on the list are changed from
676 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
677 bfd_link_hash_new for some reason, then they must be removed from the
678 list. Failure to do so might result in the linker attempting to add
679 the symbol to the list again at a later stage. */
682 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
684 struct bfd_link_hash_entry **pun;
686 pun = &table->undefs;
689 struct bfd_link_hash_entry *h = *pun;
691 if (h->type == bfd_link_hash_new
692 || h->type == bfd_link_hash_undefweak)
694 *pun = h->u.undef.next;
695 h->u.undef.next = NULL;
696 if (h == table->undefs_tail)
698 if (pun == &table->undefs)
699 table->undefs_tail = NULL;
701 /* pun points at an u.undef.next field. Go back to
702 the start of the link_hash_entry. */
703 table->undefs_tail = (struct bfd_link_hash_entry *)
704 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
709 pun = &h->u.undef.next;
713 /* Routine to create an entry in a generic link hash table. */
715 struct bfd_hash_entry *
716 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
717 struct bfd_hash_table *table,
720 /* Allocate the structure if it has not already been allocated by a
724 entry = (struct bfd_hash_entry *)
725 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
730 /* Call the allocation method of the superclass. */
731 entry = _bfd_link_hash_newfunc (entry, table, string);
734 struct generic_link_hash_entry *ret;
736 /* Set local fields. */
737 ret = (struct generic_link_hash_entry *) entry;
738 ret->written = FALSE;
745 /* Create a generic link hash table. */
747 struct bfd_link_hash_table *
748 _bfd_generic_link_hash_table_create (bfd *abfd)
750 struct generic_link_hash_table *ret;
751 bfd_size_type amt = sizeof (struct generic_link_hash_table);
753 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
756 if (! _bfd_link_hash_table_init (&ret->root, abfd,
757 _bfd_generic_link_hash_newfunc,
758 sizeof (struct generic_link_hash_entry)))
767 _bfd_generic_link_hash_table_free (bfd *obfd)
769 struct generic_link_hash_table *ret;
771 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
772 ret = (struct generic_link_hash_table *) obfd->link.hash;
773 bfd_hash_table_free (&ret->root.table);
775 obfd->link.hash = NULL;
776 obfd->is_linker_output = FALSE;
779 /* Grab the symbols for an object file when doing a generic link. We
780 store the symbols in the outsymbols field. We need to keep them
781 around for the entire link to ensure that we only read them once.
782 If we read them multiple times, we might wind up with relocs and
783 the hash table pointing to different instances of the symbol
787 bfd_generic_link_read_symbols (bfd *abfd)
789 if (bfd_get_outsymbols (abfd) == NULL)
794 symsize = bfd_get_symtab_upper_bound (abfd);
797 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
799 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
801 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
804 bfd_get_symcount (abfd) = symcount;
810 /* Indicate that we are only retrieving symbol values from this
811 section. We want the symbols to act as though the values in the
812 file are absolute. */
815 _bfd_generic_link_just_syms (asection *sec,
816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
818 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
819 sec->output_section = bfd_abs_section_ptr;
820 sec->output_offset = sec->vma;
823 /* Copy the symbol type and other attributes for a linker script
824 assignment from HSRC to HDEST.
825 The default implementation does nothing. */
827 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
828 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
829 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
833 /* Generic function to add symbols from an object file to the
834 global hash table. */
837 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
841 switch (bfd_get_format (abfd))
844 ret = generic_link_add_object_symbols (abfd, info);
847 ret = (_bfd_generic_link_add_archive_symbols
848 (abfd, info, generic_link_check_archive_element));
851 bfd_set_error (bfd_error_wrong_format);
858 /* Add symbols from an object file to the global hash table. */
861 generic_link_add_object_symbols (bfd *abfd,
862 struct bfd_link_info *info)
864 bfd_size_type symcount;
865 struct bfd_symbol **outsyms;
867 if (!bfd_generic_link_read_symbols (abfd))
869 symcount = _bfd_generic_link_get_symcount (abfd);
870 outsyms = _bfd_generic_link_get_symbols (abfd);
871 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
874 /* Generic function to add symbols from an archive file to the global
875 hash file. This function presumes that the archive symbol table
876 has already been read in (this is normally done by the
877 bfd_check_format entry point). It looks through the archive symbol
878 table for symbols that are undefined or common in the linker global
879 symbol hash table. When one is found, the CHECKFN argument is used
880 to see if an object file should be included. This allows targets
881 to customize common symbol behaviour. CHECKFN should set *PNEEDED
882 to TRUE if the object file should be included, and must also call
883 the bfd_link_info add_archive_element callback function and handle
884 adding the symbols to the global hash table. CHECKFN must notice
885 if the callback indicates a substitute BFD, and arrange to add
886 those symbols instead if it does so. CHECKFN should only return
887 FALSE if some sort of error occurs. */
890 _bfd_generic_link_add_archive_symbols
892 struct bfd_link_info *info,
893 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
894 struct bfd_link_hash_entry *, const char *,
899 unsigned char *included;
901 if (! bfd_has_map (abfd))
903 /* An empty archive is a special case. */
904 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
906 bfd_set_error (bfd_error_no_armap);
910 amt = bfd_ardata (abfd)->symdef_count;
913 amt *= sizeof (*included);
914 included = (unsigned char *) bfd_zmalloc (amt);
915 if (included == NULL)
924 file_ptr last_ar_offset = -1;
925 bfd_boolean needed = FALSE;
929 arsyms = bfd_ardata (abfd)->symdefs;
930 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
931 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
933 struct bfd_link_hash_entry *h;
934 struct bfd_link_hash_entry *undefs_tail;
938 if (needed && arsym->file_offset == last_ar_offset)
944 h = bfd_link_hash_lookup (info->hash, arsym->name,
948 && info->pei386_auto_import
949 && CONST_STRNEQ (arsym->name, "__imp_"))
950 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
955 if (h->type != bfd_link_hash_undefined
956 && h->type != bfd_link_hash_common)
958 if (h->type != bfd_link_hash_undefweak)
959 /* Symbol must be defined. Don't check it again. */
964 if (last_ar_offset != arsym->file_offset)
966 last_ar_offset = arsym->file_offset;
967 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
969 || !bfd_check_format (element, bfd_object))
973 undefs_tail = info->hash->undefs_tail;
975 /* CHECKFN will see if this element should be included, and
976 go ahead and include it if appropriate. */
977 if (! (*checkfn) (element, info, h, arsym->name, &needed))
984 /* Look backward to mark all symbols from this object file
985 which we have already seen in this pass. */
994 while (arsyms[mark].file_offset == last_ar_offset);
996 if (undefs_tail != info->hash->undefs_tail)
1010 /* See if we should include an archive element. */
1013 generic_link_check_archive_element (bfd *abfd,
1014 struct bfd_link_info *info,
1015 struct bfd_link_hash_entry *h,
1016 const char *name ATTRIBUTE_UNUSED,
1017 bfd_boolean *pneeded)
1019 asymbol **pp, **ppend;
1023 if (!bfd_generic_link_read_symbols (abfd))
1026 pp = _bfd_generic_link_get_symbols (abfd);
1027 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1028 for (; pp < ppend; pp++)
1034 /* We are only interested in globally visible symbols. */
1035 if (! bfd_is_com_section (p->section)
1036 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1039 /* We are only interested if we know something about this
1040 symbol, and it is undefined or common. An undefined weak
1041 symbol (type bfd_link_hash_undefweak) is not considered to be
1042 a reference when pulling files out of an archive. See the
1043 SVR4 ABI, p. 4-27. */
1044 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1047 || (h->type != bfd_link_hash_undefined
1048 && h->type != bfd_link_hash_common))
1051 /* P is a symbol we are looking for. */
1053 if (! bfd_is_com_section (p->section)
1054 || (h->type == bfd_link_hash_undefined
1055 && h->u.undef.abfd == NULL))
1057 /* P is not a common symbol, or an undefined reference was
1058 created from outside BFD such as from a linker -u option.
1059 This object file defines the symbol, so pull it in. */
1061 if (!(*info->callbacks
1062 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1065 /* Potentially, the add_archive_element hook may have set a
1066 substitute BFD for us. */
1067 return bfd_link_add_symbols (abfd, info);
1070 /* P is a common symbol. */
1072 if (h->type == bfd_link_hash_undefined)
1078 /* Turn the symbol into a common symbol but do not link in
1079 the object file. This is how a.out works. Object
1080 formats that require different semantics must implement
1081 this function differently. This symbol is already on the
1082 undefs list. We add the section to a common section
1083 attached to symbfd to ensure that it is in a BFD which
1084 will be linked in. */
1085 symbfd = h->u.undef.abfd;
1086 h->type = bfd_link_hash_common;
1087 h->u.c.p = (struct bfd_link_hash_common_entry *)
1088 bfd_hash_allocate (&info->hash->table,
1089 sizeof (struct bfd_link_hash_common_entry));
1090 if (h->u.c.p == NULL)
1093 size = bfd_asymbol_value (p);
1096 power = bfd_log2 (size);
1099 h->u.c.p->alignment_power = power;
1101 if (p->section == bfd_com_section_ptr)
1102 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1104 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1106 h->u.c.p->section->flags |= SEC_ALLOC;
1110 /* Adjust the size of the common symbol if necessary. This
1111 is how a.out works. Object formats that require
1112 different semantics must implement this function
1114 if (bfd_asymbol_value (p) > h->u.c.size)
1115 h->u.c.size = bfd_asymbol_value (p);
1119 /* This archive element is not needed. */
1123 /* Add the symbols from an object file to the global hash table. ABFD
1124 is the object file. INFO is the linker information. SYMBOL_COUNT
1125 is the number of symbols. SYMBOLS is the list of symbols. */
1128 generic_link_add_symbol_list (bfd *abfd,
1129 struct bfd_link_info *info,
1130 bfd_size_type symbol_count,
1133 asymbol **pp, **ppend;
1136 ppend = symbols + symbol_count;
1137 for (; pp < ppend; pp++)
1143 if ((p->flags & (BSF_INDIRECT
1148 || bfd_is_und_section (bfd_get_section (p))
1149 || bfd_is_com_section (bfd_get_section (p))
1150 || bfd_is_ind_section (bfd_get_section (p)))
1154 struct generic_link_hash_entry *h;
1155 struct bfd_link_hash_entry *bh;
1157 string = name = bfd_asymbol_name (p);
1158 if (((p->flags & BSF_INDIRECT) != 0
1159 || bfd_is_ind_section (p->section))
1163 string = bfd_asymbol_name (*pp);
1165 else if ((p->flags & BSF_WARNING) != 0
1168 /* The name of P is actually the warning string, and the
1169 next symbol is the one to warn about. */
1171 name = bfd_asymbol_name (*pp);
1175 if (! (_bfd_generic_link_add_one_symbol
1176 (info, abfd, name, p->flags, bfd_get_section (p),
1177 p->value, string, FALSE, FALSE, &bh)))
1179 h = (struct generic_link_hash_entry *) bh;
1181 /* If this is a constructor symbol, and the linker didn't do
1182 anything with it, then we want to just pass the symbol
1183 through to the output file. This will happen when
1185 if ((p->flags & BSF_CONSTRUCTOR) != 0
1186 && (h == NULL || h->root.type == bfd_link_hash_new))
1192 /* Save the BFD symbol so that we don't lose any backend
1193 specific information that may be attached to it. We only
1194 want this one if it gives more information than the
1195 existing one; we don't want to replace a defined symbol
1196 with an undefined one. This routine may be called with a
1197 hash table other than the generic hash table, so we only
1198 do this if we are certain that the hash table is a
1200 if (info->output_bfd->xvec == abfd->xvec)
1203 || (! bfd_is_und_section (bfd_get_section (p))
1204 && (! bfd_is_com_section (bfd_get_section (p))
1205 || bfd_is_und_section (bfd_get_section (h->sym)))))
1208 /* BSF_OLD_COMMON is a hack to support COFF reloc
1209 reading, and it should go away when the COFF
1210 linker is switched to the new version. */
1211 if (bfd_is_com_section (bfd_get_section (p)))
1212 p->flags |= BSF_OLD_COMMON;
1216 /* Store a back pointer from the symbol to the hash
1217 table entry for the benefit of relaxation code until
1218 it gets rewritten to not use asymbol structures.
1219 Setting this is also used to check whether these
1220 symbols were set up by the generic linker. */
1228 /* We use a state table to deal with adding symbols from an object
1229 file. The first index into the state table describes the symbol
1230 from the object file. The second index into the state table is the
1231 type of the symbol in the hash table. */
1233 /* The symbol from the object file is turned into one of these row
1238 UNDEF_ROW, /* Undefined. */
1239 UNDEFW_ROW, /* Weak undefined. */
1240 DEF_ROW, /* Defined. */
1241 DEFW_ROW, /* Weak defined. */
1242 COMMON_ROW, /* Common. */
1243 INDR_ROW, /* Indirect. */
1244 WARN_ROW, /* Warning. */
1245 SET_ROW /* Member of set. */
1248 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1251 /* The actions to take in the state table. */
1256 UND, /* Mark symbol undefined. */
1257 WEAK, /* Mark symbol weak undefined. */
1258 DEF, /* Mark symbol defined. */
1259 DEFW, /* Mark symbol weak defined. */
1260 COM, /* Mark symbol common. */
1261 REF, /* Mark defined symbol referenced. */
1262 CREF, /* Possibly warn about common reference to defined symbol. */
1263 CDEF, /* Define existing common symbol. */
1264 NOACT, /* No action. */
1265 BIG, /* Mark symbol common using largest size. */
1266 MDEF, /* Multiple definition error. */
1267 MIND, /* Multiple indirect symbols. */
1268 IND, /* Make indirect symbol. */
1269 CIND, /* Make indirect symbol from existing common symbol. */
1270 SET, /* Add value to set. */
1271 MWARN, /* Make warning symbol. */
1272 WARN, /* Warn if referenced, else MWARN. */
1273 CYCLE, /* Repeat with symbol pointed to. */
1274 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1275 WARNC /* Issue warning and then CYCLE. */
1278 /* The state table itself. The first index is a link_row and the
1279 second index is a bfd_link_hash_type. */
1281 static const enum link_action link_action[8][8] =
1283 /* current\prev new undef undefw def defw com indr warn */
1284 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1285 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1286 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1287 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1288 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1289 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1290 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1291 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1294 /* Most of the entries in the LINK_ACTION table are straightforward,
1295 but a few are somewhat subtle.
1297 A reference to an indirect symbol (UNDEF_ROW/indr or
1298 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1299 symbol and to the symbol the indirect symbol points to.
1301 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1302 causes the warning to be issued.
1304 A common definition of an indirect symbol (COMMON_ROW/indr) is
1305 treated as a multiple definition error. Likewise for an indirect
1306 definition of a common symbol (INDR_ROW/com).
1308 An indirect definition of a warning (INDR_ROW/warn) does not cause
1309 the warning to be issued.
1311 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1312 warning is created for the symbol the indirect symbol points to.
1314 Adding an entry to a set does not count as a reference to a set,
1315 and no warning is issued (SET_ROW/warn). */
1317 /* Return the BFD in which a hash entry has been defined, if known. */
1320 hash_entry_bfd (struct bfd_link_hash_entry *h)
1322 while (h->type == bfd_link_hash_warning)
1328 case bfd_link_hash_undefined:
1329 case bfd_link_hash_undefweak:
1330 return h->u.undef.abfd;
1331 case bfd_link_hash_defined:
1332 case bfd_link_hash_defweak:
1333 return h->u.def.section->owner;
1334 case bfd_link_hash_common:
1335 return h->u.c.p->section->owner;
1340 /* Add a symbol to the global hash table.
1341 ABFD is the BFD the symbol comes from.
1342 NAME is the name of the symbol.
1343 FLAGS is the BSF_* bits associated with the symbol.
1344 SECTION is the section in which the symbol is defined; this may be
1345 bfd_und_section_ptr or bfd_com_section_ptr.
1346 VALUE is the value of the symbol, relative to the section.
1347 STRING is used for either an indirect symbol, in which case it is
1348 the name of the symbol to indirect to, or a warning symbol, in
1349 which case it is the warning string.
1350 COPY is TRUE if NAME or STRING must be copied into locally
1351 allocated memory if they need to be saved.
1352 COLLECT is TRUE if we should automatically collect gcc constructor
1353 or destructor names as collect2 does.
1354 HASHP, if not NULL, is a place to store the created hash table
1355 entry; if *HASHP is not NULL, the caller has already looked up
1356 the hash table entry, and stored it in *HASHP. */
1359 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1367 bfd_boolean collect,
1368 struct bfd_link_hash_entry **hashp)
1371 struct bfd_link_hash_entry *h;
1372 struct bfd_link_hash_entry *inh = NULL;
1375 BFD_ASSERT (section != NULL);
1377 if (bfd_is_ind_section (section)
1378 || (flags & BSF_INDIRECT) != 0)
1381 /* Create the indirect symbol here. This is for the benefit of
1382 the plugin "notice" function.
1383 STRING is the name of the symbol we want to indirect to. */
1384 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1389 else if ((flags & BSF_WARNING) != 0)
1391 else if ((flags & BSF_CONSTRUCTOR) != 0)
1393 else if (bfd_is_und_section (section))
1395 if ((flags & BSF_WEAK) != 0)
1400 else if ((flags & BSF_WEAK) != 0)
1402 else if (bfd_is_com_section (section))
1405 if (!bfd_link_relocatable (info)
1406 && strcmp (name, "__gnu_lto_slim") == 0)
1408 (_("%B: plugin needed to handle lto object"), abfd);
1413 if (hashp != NULL && *hashp != NULL)
1417 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1418 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1420 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1429 if (info->notice_all
1430 || (info->notice_hash != NULL
1431 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1433 if (! (*info->callbacks->notice) (info, h, inh,
1434 abfd, section, value, flags))
1443 enum link_action action;
1446 action = link_action[(int) row][(int) h->type];
1457 /* Make a new undefined symbol. */
1458 h->type = bfd_link_hash_undefined;
1459 h->u.undef.abfd = abfd;
1460 bfd_link_add_undef (info->hash, h);
1464 /* Make a new weak undefined symbol. */
1465 h->type = bfd_link_hash_undefweak;
1466 h->u.undef.abfd = abfd;
1470 /* We have found a definition for a symbol which was
1471 previously common. */
1472 BFD_ASSERT (h->type == bfd_link_hash_common);
1473 (*info->callbacks->multiple_common) (info, h, abfd,
1474 bfd_link_hash_defined, 0);
1479 enum bfd_link_hash_type oldtype;
1481 /* Define a symbol. */
1484 h->type = bfd_link_hash_defweak;
1486 h->type = bfd_link_hash_defined;
1487 h->u.def.section = section;
1488 h->u.def.value = value;
1491 /* If we have been asked to, we act like collect2 and
1492 identify all functions that might be global
1493 constructors and destructors and pass them up in a
1494 callback. We only do this for certain object file
1495 types, since many object file types can handle this
1497 if (collect && name[0] == '_')
1501 /* A constructor or destructor name starts like this:
1502 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1503 the second are the same character (we accept any
1504 character there, in case a new object file format
1505 comes along with even worse naming restrictions). */
1507 #define CONS_PREFIX "GLOBAL_"
1508 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1513 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1517 c = s[CONS_PREFIX_LEN + 1];
1518 if ((c == 'I' || c == 'D')
1519 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1521 /* If this is a definition of a symbol which
1522 was previously weakly defined, we are in
1523 trouble. We have already added a
1524 constructor entry for the weak defined
1525 symbol, and now we are trying to add one
1526 for the new symbol. Fortunately, this case
1527 should never arise in practice. */
1528 if (oldtype == bfd_link_hash_defweak)
1531 (*info->callbacks->constructor) (info, c == 'I',
1532 h->root.string, abfd,
1542 /* We have found a common definition for a symbol. */
1543 if (h->type == bfd_link_hash_new)
1544 bfd_link_add_undef (info->hash, h);
1545 h->type = bfd_link_hash_common;
1546 h->u.c.p = (struct bfd_link_hash_common_entry *)
1547 bfd_hash_allocate (&info->hash->table,
1548 sizeof (struct bfd_link_hash_common_entry));
1549 if (h->u.c.p == NULL)
1552 h->u.c.size = value;
1554 /* Select a default alignment based on the size. This may
1555 be overridden by the caller. */
1559 power = bfd_log2 (value);
1562 h->u.c.p->alignment_power = power;
1565 /* The section of a common symbol is only used if the common
1566 symbol is actually allocated. It basically provides a
1567 hook for the linker script to decide which output section
1568 the common symbols should be put in. In most cases, the
1569 section of a common symbol will be bfd_com_section_ptr,
1570 the code here will choose a common symbol section named
1571 "COMMON", and the linker script will contain *(COMMON) in
1572 the appropriate place. A few targets use separate common
1573 sections for small symbols, and they require special
1575 if (section == bfd_com_section_ptr)
1577 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1578 h->u.c.p->section->flags |= SEC_ALLOC;
1580 else if (section->owner != abfd)
1582 h->u.c.p->section = bfd_make_section_old_way (abfd,
1584 h->u.c.p->section->flags |= SEC_ALLOC;
1587 h->u.c.p->section = section;
1592 /* A reference to a defined symbol. */
1593 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1594 h->u.undef.next = h;
1598 /* We have found a common definition for a symbol which
1599 already had a common definition. Use the maximum of the
1600 two sizes, and use the section required by the larger symbol. */
1601 BFD_ASSERT (h->type == bfd_link_hash_common);
1602 (*info->callbacks->multiple_common) (info, h, abfd,
1603 bfd_link_hash_common, value);
1604 if (value > h->u.c.size)
1608 h->u.c.size = value;
1610 /* Select a default alignment based on the size. This may
1611 be overridden by the caller. */
1612 power = bfd_log2 (value);
1615 h->u.c.p->alignment_power = power;
1617 /* Some systems have special treatment for small commons,
1618 hence we want to select the section used by the larger
1619 symbol. This makes sure the symbol does not go in a
1620 small common section if it is now too large. */
1621 if (section == bfd_com_section_ptr)
1624 = bfd_make_section_old_way (abfd, "COMMON");
1625 h->u.c.p->section->flags |= SEC_ALLOC;
1627 else if (section->owner != abfd)
1630 = bfd_make_section_old_way (abfd, section->name);
1631 h->u.c.p->section->flags |= SEC_ALLOC;
1634 h->u.c.p->section = section;
1639 /* We have found a common definition for a symbol which
1640 was already defined. */
1641 (*info->callbacks->multiple_common) (info, h, abfd,
1642 bfd_link_hash_common, value);
1646 /* Multiple indirect symbols. This is OK if they both point
1647 to the same symbol. */
1648 if (strcmp (h->u.i.link->root.string, string) == 0)
1652 /* Handle a multiple definition. */
1653 (*info->callbacks->multiple_definition) (info, h,
1654 abfd, section, value);
1658 /* Create an indirect symbol from an existing common symbol. */
1659 BFD_ASSERT (h->type == bfd_link_hash_common);
1660 (*info->callbacks->multiple_common) (info, h, abfd,
1661 bfd_link_hash_indirect, 0);
1664 if (inh->type == bfd_link_hash_indirect
1665 && inh->u.i.link == h)
1668 /* xgettext:c-format */
1669 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1670 abfd, name, string);
1671 bfd_set_error (bfd_error_invalid_operation);
1674 if (inh->type == bfd_link_hash_new)
1676 inh->type = bfd_link_hash_undefined;
1677 inh->u.undef.abfd = abfd;
1678 bfd_link_add_undef (info->hash, inh);
1681 /* If the indirect symbol has been referenced, we need to
1682 push the reference down to the symbol we are referencing. */
1683 if (h->type != bfd_link_hash_new)
1685 /* ??? If inh->type == bfd_link_hash_undefweak this
1686 converts inh to bfd_link_hash_undefined. */
1691 h->type = bfd_link_hash_indirect;
1693 /* Not setting h = h->u.i.link here means that when cycle is
1694 set above we'll always go to REFC, and then cycle again
1695 to the indirected symbol. This means that any successful
1696 change of an existing symbol to indirect counts as a
1697 reference. ??? That may not be correct when the existing
1698 symbol was defweak. */
1702 /* Add an entry to a set. */
1703 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1704 abfd, section, value);
1708 /* Issue a warning and cycle, except when the reference is
1710 if (h->u.i.warning != NULL
1711 && (abfd->flags & BFD_PLUGIN) == 0)
1713 (*info->callbacks->warning) (info, h->u.i.warning,
1714 h->root.string, abfd, NULL, 0);
1715 /* Only issue a warning once. */
1716 h->u.i.warning = NULL;
1720 /* Try again with the referenced symbol. */
1726 /* A reference to an indirect symbol. */
1727 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1728 h->u.undef.next = h;
1734 /* Warn if this symbol has been referenced already from non-IR,
1735 otherwise add a warning. */
1736 if ((!info->lto_plugin_active
1737 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1738 || h->non_ir_ref_regular
1739 || h->non_ir_ref_dynamic)
1741 (*info->callbacks->warning) (info, string, h->root.string,
1742 hash_entry_bfd (h), NULL, 0);
1747 /* Make a warning symbol. */
1749 struct bfd_link_hash_entry *sub;
1751 /* STRING is the warning to give. */
1752 sub = ((struct bfd_link_hash_entry *)
1753 ((*info->hash->table.newfunc)
1754 (NULL, &info->hash->table, h->root.string)));
1758 sub->type = bfd_link_hash_warning;
1761 sub->u.i.warning = string;
1765 size_t len = strlen (string) + 1;
1767 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 memcpy (w, string, len);
1771 sub->u.i.warning = w;
1774 bfd_hash_replace (&info->hash->table,
1775 (struct bfd_hash_entry *) h,
1776 (struct bfd_hash_entry *) sub);
1788 /* Generic final link routine. */
1791 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1795 struct bfd_link_order *p;
1797 struct generic_write_global_symbol_info wginfo;
1799 bfd_get_outsymbols (abfd) = NULL;
1800 bfd_get_symcount (abfd) = 0;
1803 /* Mark all sections which will be included in the output file. */
1804 for (o = abfd->sections; o != NULL; o = o->next)
1805 for (p = o->map_head.link_order; p != NULL; p = p->next)
1806 if (p->type == bfd_indirect_link_order)
1807 p->u.indirect.section->linker_mark = TRUE;
1809 /* Build the output symbol table. */
1810 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1811 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1814 /* Accumulate the global symbols. */
1816 wginfo.output_bfd = abfd;
1817 wginfo.psymalloc = &outsymalloc;
1818 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1819 _bfd_generic_link_write_global_symbol,
1822 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1823 shouldn't really need one, since we have SYMCOUNT, but some old
1824 code still expects one. */
1825 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1828 if (bfd_link_relocatable (info))
1830 /* Allocate space for the output relocs for each section. */
1831 for (o = abfd->sections; o != NULL; o = o->next)
1834 for (p = o->map_head.link_order; p != NULL; p = p->next)
1836 if (p->type == bfd_section_reloc_link_order
1837 || p->type == bfd_symbol_reloc_link_order)
1839 else if (p->type == bfd_indirect_link_order)
1841 asection *input_section;
1848 input_section = p->u.indirect.section;
1849 input_bfd = input_section->owner;
1850 relsize = bfd_get_reloc_upper_bound (input_bfd,
1854 relocs = (arelent **) bfd_malloc (relsize);
1855 if (!relocs && relsize != 0)
1857 symbols = _bfd_generic_link_get_symbols (input_bfd);
1858 reloc_count = bfd_canonicalize_reloc (input_bfd,
1863 if (reloc_count < 0)
1865 BFD_ASSERT ((unsigned long) reloc_count
1866 == input_section->reloc_count);
1867 o->reloc_count += reloc_count;
1870 if (o->reloc_count > 0)
1874 amt = o->reloc_count;
1875 amt *= sizeof (arelent *);
1876 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1877 if (!o->orelocation)
1879 o->flags |= SEC_RELOC;
1880 /* Reset the count so that it can be used as an index
1881 when putting in the output relocs. */
1887 /* Handle all the link order information for the sections. */
1888 for (o = abfd->sections; o != NULL; o = o->next)
1890 for (p = o->map_head.link_order; p != NULL; p = p->next)
1894 case bfd_section_reloc_link_order:
1895 case bfd_symbol_reloc_link_order:
1896 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1899 case bfd_indirect_link_order:
1900 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1904 if (! _bfd_default_link_order (abfd, info, o, p))
1914 /* Add an output symbol to the output BFD. */
1917 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1919 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1924 if (*psymalloc == 0)
1929 amt *= sizeof (asymbol *);
1930 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1931 if (newsyms == NULL)
1933 bfd_get_outsymbols (output_bfd) = newsyms;
1936 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
1938 ++ bfd_get_symcount (output_bfd);
1943 /* Handle the symbols for an input BFD. */
1946 _bfd_generic_link_output_symbols (bfd *output_bfd,
1948 struct bfd_link_info *info,
1954 if (!bfd_generic_link_read_symbols (input_bfd))
1957 /* Create a filename symbol if we are supposed to. */
1958 if (info->create_object_symbols_section != NULL)
1962 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1964 if (sec->output_section == info->create_object_symbols_section)
1968 newsym = bfd_make_empty_symbol (input_bfd);
1971 newsym->name = input_bfd->filename;
1973 newsym->flags = BSF_LOCAL | BSF_FILE;
1974 newsym->section = sec;
1976 if (! generic_add_output_symbol (output_bfd, psymalloc,
1985 /* Adjust the values of the globally visible symbols, and write out
1987 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
1988 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
1989 for (; sym_ptr < sym_end; sym_ptr++)
1992 struct generic_link_hash_entry *h;
1997 if ((sym->flags & (BSF_INDIRECT
2002 || bfd_is_und_section (bfd_get_section (sym))
2003 || bfd_is_com_section (bfd_get_section (sym))
2004 || bfd_is_ind_section (bfd_get_section (sym)))
2006 if (sym->udata.p != NULL)
2007 h = (struct generic_link_hash_entry *) sym->udata.p;
2008 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2010 /* This case normally means that the main linker code
2011 deliberately ignored this constructor symbol. We
2012 should just pass it through. This will screw up if
2013 the constructor symbol is from a different,
2014 non-generic, object file format, but the case will
2015 only arise when linking with -r, which will probably
2016 fail anyhow, since there will be no way to represent
2017 the relocs in the output format being used. */
2020 else if (bfd_is_und_section (bfd_get_section (sym)))
2021 h = ((struct generic_link_hash_entry *)
2022 bfd_wrapped_link_hash_lookup (output_bfd, info,
2023 bfd_asymbol_name (sym),
2024 FALSE, FALSE, TRUE));
2026 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2027 bfd_asymbol_name (sym),
2028 FALSE, FALSE, TRUE);
2032 /* Force all references to this symbol to point to
2033 the same area in memory. It is possible that
2034 this routine will be called with a hash table
2035 other than a generic hash table, so we double
2037 if (info->output_bfd->xvec == input_bfd->xvec)
2040 *sym_ptr = sym = h->sym;
2043 switch (h->root.type)
2046 case bfd_link_hash_new:
2048 case bfd_link_hash_undefined:
2050 case bfd_link_hash_undefweak:
2051 sym->flags |= BSF_WEAK;
2053 case bfd_link_hash_indirect:
2054 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2056 case bfd_link_hash_defined:
2057 sym->flags |= BSF_GLOBAL;
2058 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2059 sym->value = h->root.u.def.value;
2060 sym->section = h->root.u.def.section;
2062 case bfd_link_hash_defweak:
2063 sym->flags |= BSF_WEAK;
2064 sym->flags &=~ BSF_CONSTRUCTOR;
2065 sym->value = h->root.u.def.value;
2066 sym->section = h->root.u.def.section;
2068 case bfd_link_hash_common:
2069 sym->value = h->root.u.c.size;
2070 sym->flags |= BSF_GLOBAL;
2071 if (! bfd_is_com_section (sym->section))
2073 BFD_ASSERT (bfd_is_und_section (sym->section));
2074 sym->section = bfd_com_section_ptr;
2076 /* We do not set the section of the symbol to
2077 h->root.u.c.p->section. That value was saved so
2078 that we would know where to allocate the symbol
2079 if it was defined. In this case the type is
2080 still bfd_link_hash_common, so we did not define
2081 it, so we do not want to use that section. */
2087 /* This switch is straight from the old code in
2088 write_file_locals in ldsym.c. */
2089 if (info->strip == strip_all
2090 || (info->strip == strip_some
2091 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2092 FALSE, FALSE) == NULL))
2094 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2096 /* If this symbol is marked as occurring now, rather
2097 than at the end, output it now. This is used for
2098 COFF C_EXT FCN symbols. FIXME: There must be a
2100 if (bfd_asymbol_bfd (sym) == input_bfd
2101 && (sym->flags & BSF_NOT_AT_END) != 0)
2106 else if (bfd_is_ind_section (sym->section))
2108 else if ((sym->flags & BSF_DEBUGGING) != 0)
2110 if (info->strip == strip_none)
2115 else if (bfd_is_und_section (sym->section)
2116 || bfd_is_com_section (sym->section))
2118 else if ((sym->flags & BSF_LOCAL) != 0)
2120 if ((sym->flags & BSF_WARNING) != 0)
2124 switch (info->discard)
2130 case discard_sec_merge:
2132 if (bfd_link_relocatable (info)
2133 || ! (sym->section->flags & SEC_MERGE))
2137 if (bfd_is_local_label (input_bfd, sym))
2148 else if ((sym->flags & BSF_CONSTRUCTOR))
2150 if (info->strip != strip_all)
2155 else if (sym->flags == 0
2156 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2157 /* LTO doesn't set symbol information. We get here with the
2158 generic linker for a symbol that was "common" but no longer
2159 needs to be global. */
2164 /* If this symbol is in a section which is not being included
2165 in the output file, then we don't want to output the
2167 if (!bfd_is_abs_section (sym->section)
2168 && bfd_section_removed_from_list (output_bfd,
2169 sym->section->output_section))
2174 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2184 /* Set the section and value of a generic BFD symbol based on a linker
2185 hash table entry. */
2188 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2195 case bfd_link_hash_new:
2196 /* This can happen when a constructor symbol is seen but we are
2197 not building constructors. */
2198 if (sym->section != NULL)
2200 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2204 sym->flags |= BSF_CONSTRUCTOR;
2205 sym->section = bfd_abs_section_ptr;
2209 case bfd_link_hash_undefined:
2210 sym->section = bfd_und_section_ptr;
2213 case bfd_link_hash_undefweak:
2214 sym->section = bfd_und_section_ptr;
2216 sym->flags |= BSF_WEAK;
2218 case bfd_link_hash_defined:
2219 sym->section = h->u.def.section;
2220 sym->value = h->u.def.value;
2222 case bfd_link_hash_defweak:
2223 sym->flags |= BSF_WEAK;
2224 sym->section = h->u.def.section;
2225 sym->value = h->u.def.value;
2227 case bfd_link_hash_common:
2228 sym->value = h->u.c.size;
2229 if (sym->section == NULL)
2230 sym->section = bfd_com_section_ptr;
2231 else if (! bfd_is_com_section (sym->section))
2233 BFD_ASSERT (bfd_is_und_section (sym->section));
2234 sym->section = bfd_com_section_ptr;
2236 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2238 case bfd_link_hash_indirect:
2239 case bfd_link_hash_warning:
2240 /* FIXME: What should we do here? */
2245 /* Write out a global symbol, if it hasn't already been written out.
2246 This is called for each symbol in the hash table. */
2249 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2252 struct generic_write_global_symbol_info *wginfo =
2253 (struct generic_write_global_symbol_info *) data;
2261 if (wginfo->info->strip == strip_all
2262 || (wginfo->info->strip == strip_some
2263 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2264 FALSE, FALSE) == NULL))
2271 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2274 sym->name = h->root.root.string;
2278 set_symbol_from_hash (sym, &h->root);
2280 sym->flags |= BSF_GLOBAL;
2282 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2285 /* FIXME: No way to return failure. */
2292 /* Create a relocation. */
2295 _bfd_generic_reloc_link_order (bfd *abfd,
2296 struct bfd_link_info *info,
2298 struct bfd_link_order *link_order)
2302 if (! bfd_link_relocatable (info))
2304 if (sec->orelocation == NULL)
2307 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2311 r->address = link_order->offset;
2312 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2315 bfd_set_error (bfd_error_bad_value);
2319 /* Get the symbol to use for the relocation. */
2320 if (link_order->type == bfd_section_reloc_link_order)
2321 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2324 struct generic_link_hash_entry *h;
2326 h = ((struct generic_link_hash_entry *)
2327 bfd_wrapped_link_hash_lookup (abfd, info,
2328 link_order->u.reloc.p->u.name,
2329 FALSE, FALSE, TRUE));
2333 (*info->callbacks->unattached_reloc)
2334 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2335 bfd_set_error (bfd_error_bad_value);
2338 r->sym_ptr_ptr = &h->sym;
2341 /* If this is an inplace reloc, write the addend to the object file.
2342 Otherwise, store it in the reloc addend. */
2343 if (! r->howto->partial_inplace)
2344 r->addend = link_order->u.reloc.p->addend;
2348 bfd_reloc_status_type rstat;
2353 size = bfd_get_reloc_size (r->howto);
2354 buf = (bfd_byte *) bfd_zmalloc (size);
2355 if (buf == NULL && size != 0)
2357 rstat = _bfd_relocate_contents (r->howto, abfd,
2358 (bfd_vma) link_order->u.reloc.p->addend,
2365 case bfd_reloc_outofrange:
2367 case bfd_reloc_overflow:
2368 (*info->callbacks->reloc_overflow)
2370 (link_order->type == bfd_section_reloc_link_order
2371 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2372 : link_order->u.reloc.p->u.name),
2373 r->howto->name, link_order->u.reloc.p->addend,
2377 loc = link_order->offset * bfd_octets_per_byte (abfd);
2378 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2386 sec->orelocation[sec->reloc_count] = r;
2392 /* Allocate a new link_order for a section. */
2394 struct bfd_link_order *
2395 bfd_new_link_order (bfd *abfd, asection *section)
2397 bfd_size_type amt = sizeof (struct bfd_link_order);
2398 struct bfd_link_order *new_lo;
2400 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2404 new_lo->type = bfd_undefined_link_order;
2406 if (section->map_tail.link_order != NULL)
2407 section->map_tail.link_order->next = new_lo;
2409 section->map_head.link_order = new_lo;
2410 section->map_tail.link_order = new_lo;
2415 /* Default link order processing routine. Note that we can not handle
2416 the reloc_link_order types here, since they depend upon the details
2417 of how the particular backends generates relocs. */
2420 _bfd_default_link_order (bfd *abfd,
2421 struct bfd_link_info *info,
2423 struct bfd_link_order *link_order)
2425 switch (link_order->type)
2427 case bfd_undefined_link_order:
2428 case bfd_section_reloc_link_order:
2429 case bfd_symbol_reloc_link_order:
2432 case bfd_indirect_link_order:
2433 return default_indirect_link_order (abfd, info, sec, link_order,
2435 case bfd_data_link_order:
2436 return default_data_link_order (abfd, info, sec, link_order);
2440 /* Default routine to handle a bfd_data_link_order. */
2443 default_data_link_order (bfd *abfd,
2444 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2446 struct bfd_link_order *link_order)
2454 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2456 size = link_order->size;
2460 fill = link_order->u.data.contents;
2461 fill_size = link_order->u.data.size;
2464 fill = abfd->arch_info->fill (size, bfd_big_endian (abfd),
2465 (sec->flags & SEC_CODE) != 0);
2469 else if (fill_size < size)
2472 fill = (bfd_byte *) bfd_malloc (size);
2477 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2482 memcpy (p, link_order->u.data.contents, fill_size);
2486 while (size >= fill_size);
2488 memcpy (p, link_order->u.data.contents, (size_t) size);
2489 size = link_order->size;
2493 loc = link_order->offset * bfd_octets_per_byte (abfd);
2494 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2496 if (fill != link_order->u.data.contents)
2501 /* Default routine to handle a bfd_indirect_link_order. */
2504 default_indirect_link_order (bfd *output_bfd,
2505 struct bfd_link_info *info,
2506 asection *output_section,
2507 struct bfd_link_order *link_order,
2508 bfd_boolean generic_linker)
2510 asection *input_section;
2512 bfd_byte *contents = NULL;
2513 bfd_byte *new_contents;
2514 bfd_size_type sec_size;
2517 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2519 input_section = link_order->u.indirect.section;
2520 input_bfd = input_section->owner;
2521 if (input_section->size == 0)
2524 BFD_ASSERT (input_section->output_section == output_section);
2525 BFD_ASSERT (input_section->output_offset == link_order->offset);
2526 BFD_ASSERT (input_section->size == link_order->size);
2528 if (bfd_link_relocatable (info)
2529 && input_section->reloc_count > 0
2530 && output_section->orelocation == NULL)
2532 /* Space has not been allocated for the output relocations.
2533 This can happen when we are called by a specific backend
2534 because somebody is attempting to link together different
2535 types of object files. Handling this case correctly is
2536 difficult, and sometimes impossible. */
2538 /* xgettext:c-format */
2539 (_("Attempt to do relocatable link with %s input and %s output"),
2540 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2541 bfd_set_error (bfd_error_wrong_format);
2545 if (! generic_linker)
2550 /* Get the canonical symbols. The generic linker will always
2551 have retrieved them by this point, but we are being called by
2552 a specific linker, presumably because we are linking
2553 different types of object files together. */
2554 if (!bfd_generic_link_read_symbols (input_bfd))
2557 /* Since we have been called by a specific linker, rather than
2558 the generic linker, the values of the symbols will not be
2559 right. They will be the values as seen in the input file,
2560 not the values of the final link. We need to fix them up
2561 before we can relocate the section. */
2562 sympp = _bfd_generic_link_get_symbols (input_bfd);
2563 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2564 for (; sympp < symppend; sympp++)
2567 struct bfd_link_hash_entry *h;
2571 if ((sym->flags & (BSF_INDIRECT
2576 || bfd_is_und_section (bfd_get_section (sym))
2577 || bfd_is_com_section (bfd_get_section (sym))
2578 || bfd_is_ind_section (bfd_get_section (sym)))
2580 /* sym->udata may have been set by
2581 generic_link_add_symbol_list. */
2582 if (sym->udata.p != NULL)
2583 h = (struct bfd_link_hash_entry *) sym->udata.p;
2584 else if (bfd_is_und_section (bfd_get_section (sym)))
2585 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2586 bfd_asymbol_name (sym),
2587 FALSE, FALSE, TRUE);
2589 h = bfd_link_hash_lookup (info->hash,
2590 bfd_asymbol_name (sym),
2591 FALSE, FALSE, TRUE);
2593 set_symbol_from_hash (sym, h);
2598 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2599 && input_section->size != 0)
2601 /* Group section contents are set by bfd_elf_set_group_contents. */
2602 if (!output_bfd->output_has_begun)
2604 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2605 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2608 new_contents = output_section->contents;
2609 BFD_ASSERT (new_contents != NULL);
2610 BFD_ASSERT (input_section->output_offset == 0);
2614 /* Get and relocate the section contents. */
2615 sec_size = (input_section->rawsize > input_section->size
2616 ? input_section->rawsize
2617 : input_section->size);
2618 contents = (bfd_byte *) bfd_malloc (sec_size);
2619 if (contents == NULL && sec_size != 0)
2621 new_contents = (bfd_get_relocated_section_contents
2622 (output_bfd, info, link_order, contents,
2623 bfd_link_relocatable (info),
2624 _bfd_generic_link_get_symbols (input_bfd)));
2629 /* Output the section contents. */
2630 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2631 if (! bfd_set_section_contents (output_bfd, output_section,
2632 new_contents, loc, input_section->size))
2635 if (contents != NULL)
2640 if (contents != NULL)
2645 /* A little routine to count the number of relocs in a link_order
2649 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2651 register unsigned int c;
2652 register struct bfd_link_order *l;
2655 for (l = link_order; l != NULL; l = l->next)
2657 if (l->type == bfd_section_reloc_link_order
2658 || l->type == bfd_symbol_reloc_link_order)
2667 bfd_link_split_section
2670 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2673 Return nonzero if @var{sec} should be split during a
2674 reloceatable or final link.
2676 .#define bfd_link_split_section(abfd, sec) \
2677 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2683 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2684 asection *sec ATTRIBUTE_UNUSED)
2691 bfd_section_already_linked
2694 bfd_boolean bfd_section_already_linked (bfd *abfd,
2696 struct bfd_link_info *info);
2699 Check if @var{data} has been already linked during a reloceatable
2700 or final link. Return TRUE if it has.
2702 .#define bfd_section_already_linked(abfd, sec, info) \
2703 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2708 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2709 once into the output. This routine checks each section, and
2710 arrange to discard it if a section of the same name has already
2711 been linked. This code assumes that all relevant sections have the
2712 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2713 section name. bfd_section_already_linked is called via
2714 bfd_map_over_sections. */
2716 /* The hash table. */
2718 static struct bfd_hash_table _bfd_section_already_linked_table;
2720 /* Support routines for the hash table used by section_already_linked,
2721 initialize the table, traverse, lookup, fill in an entry and remove
2725 bfd_section_already_linked_table_traverse
2726 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2727 void *), void *info)
2729 bfd_hash_traverse (&_bfd_section_already_linked_table,
2730 (bfd_boolean (*) (struct bfd_hash_entry *,
2735 struct bfd_section_already_linked_hash_entry *
2736 bfd_section_already_linked_table_lookup (const char *name)
2738 return ((struct bfd_section_already_linked_hash_entry *)
2739 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2744 bfd_section_already_linked_table_insert
2745 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2748 struct bfd_section_already_linked *l;
2750 /* Allocate the memory from the same obstack as the hash table is
2752 l = (struct bfd_section_already_linked *)
2753 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2757 l->next = already_linked_list->entry;
2758 already_linked_list->entry = l;
2762 static struct bfd_hash_entry *
2763 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2764 struct bfd_hash_table *table,
2765 const char *string ATTRIBUTE_UNUSED)
2767 struct bfd_section_already_linked_hash_entry *ret =
2768 (struct bfd_section_already_linked_hash_entry *)
2769 bfd_hash_allocate (table, sizeof *ret);
2780 bfd_section_already_linked_table_init (void)
2782 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2783 already_linked_newfunc,
2784 sizeof (struct bfd_section_already_linked_hash_entry),
2789 bfd_section_already_linked_table_free (void)
2791 bfd_hash_table_free (&_bfd_section_already_linked_table);
2794 /* Report warnings as appropriate for duplicate section SEC.
2795 Return FALSE if we decide to keep SEC after all. */
2798 _bfd_handle_already_linked (asection *sec,
2799 struct bfd_section_already_linked *l,
2800 struct bfd_link_info *info)
2802 switch (sec->flags & SEC_LINK_DUPLICATES)
2807 case SEC_LINK_DUPLICATES_DISCARD:
2808 /* If we found an LTO IR match for this comdat group on
2809 the first pass, replace it with the LTO output on the
2810 second pass. We can't simply choose real object
2811 files over IR because the first pass may contain a
2812 mix of LTO and normal objects and we must keep the
2813 first match, be it IR or real. */
2814 if (sec->owner->lto_output
2815 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2822 case SEC_LINK_DUPLICATES_ONE_ONLY:
2823 info->callbacks->einfo
2824 /* xgettext:c-format */
2825 (_("%B: ignoring duplicate section `%A'\n"),
2829 case SEC_LINK_DUPLICATES_SAME_SIZE:
2830 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2832 else if (sec->size != l->sec->size)
2833 info->callbacks->einfo
2834 /* xgettext:c-format */
2835 (_("%B: duplicate section `%A' has different size\n"),
2839 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2840 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2842 else if (sec->size != l->sec->size)
2843 info->callbacks->einfo
2844 /* xgettext:c-format */
2845 (_("%B: duplicate section `%A' has different size\n"),
2847 else if (sec->size != 0)
2849 bfd_byte *sec_contents, *l_sec_contents = NULL;
2851 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2852 info->callbacks->einfo
2853 /* xgettext:c-format */
2854 (_("%B: could not read contents of section `%A'\n"),
2856 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2858 info->callbacks->einfo
2859 /* xgettext:c-format */
2860 (_("%B: could not read contents of section `%A'\n"),
2861 l->sec->owner, l->sec);
2862 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2863 info->callbacks->einfo
2864 /* xgettext:c-format */
2865 (_("%B: duplicate section `%A' has different contents\n"),
2869 free (sec_contents);
2871 free (l_sec_contents);
2876 /* Set the output_section field so that lang_add_section
2877 does not create a lang_input_section structure for this
2878 section. Since there might be a symbol in the section
2879 being discarded, we must retain a pointer to the section
2880 which we are really going to use. */
2881 sec->output_section = bfd_abs_section_ptr;
2882 sec->kept_section = l->sec;
2886 /* This is used on non-ELF inputs. */
2889 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2891 struct bfd_link_info *info)
2894 struct bfd_section_already_linked *l;
2895 struct bfd_section_already_linked_hash_entry *already_linked_list;
2897 if ((sec->flags & SEC_LINK_ONCE) == 0)
2900 /* The generic linker doesn't handle section groups. */
2901 if ((sec->flags & SEC_GROUP) != 0)
2904 /* FIXME: When doing a relocatable link, we may have trouble
2905 copying relocations in other sections that refer to local symbols
2906 in the section being discarded. Those relocations will have to
2907 be converted somehow; as of this writing I'm not sure that any of
2908 the backends handle that correctly.
2910 It is tempting to instead not discard link once sections when
2911 doing a relocatable link (technically, they should be discarded
2912 whenever we are building constructors). However, that fails,
2913 because the linker winds up combining all the link once sections
2914 into a single large link once section, which defeats the purpose
2915 of having link once sections in the first place. */
2917 name = bfd_get_section_name (abfd, sec);
2919 already_linked_list = bfd_section_already_linked_table_lookup (name);
2921 l = already_linked_list->entry;
2924 /* The section has already been linked. See if we should
2926 return _bfd_handle_already_linked (sec, l, info);
2929 /* This is the first section with this name. Record it. */
2930 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2931 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2935 /* Choose a neighbouring section to S in OBFD that will be output, or
2936 the absolute section if ADDR is out of bounds of the neighbours. */
2939 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2941 asection *next, *prev, *best;
2943 /* Find preceding kept section. */
2944 for (prev = s->prev; prev != NULL; prev = prev->prev)
2945 if ((prev->flags & SEC_EXCLUDE) == 0
2946 && !bfd_section_removed_from_list (obfd, prev))
2949 /* Find following kept section. Start at prev->next because
2950 other sections may have been added after S was removed. */
2951 if (s->prev != NULL)
2952 next = s->prev->next;
2954 next = s->owner->sections;
2955 for (; next != NULL; next = next->next)
2956 if ((next->flags & SEC_EXCLUDE) == 0
2957 && !bfd_section_removed_from_list (obfd, next))
2960 /* Choose better of two sections, based on flags. The idea
2961 is to choose a section that will be in the same segment
2962 as S would have been if it was kept. */
2967 best = bfd_abs_section_ptr;
2969 else if (next == NULL)
2971 else if (((prev->flags ^ next->flags)
2972 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2974 if (((next->flags ^ s->flags)
2975 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
2976 /* We prefer to choose a loaded section. Section S
2977 doesn't have SEC_LOAD set (it being excluded, that
2978 part of the flag processing didn't happen) so we
2979 can't compare that flag to those of NEXT and PREV. */
2980 || ((prev->flags & SEC_LOAD) != 0
2981 && (next->flags & SEC_LOAD) == 0))
2984 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
2986 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
2989 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
2991 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
2996 /* Flags we care about are the same. Prefer the following
2997 section if that will result in a positive valued sym. */
2998 if (addr < next->vma)
3005 /* Convert symbols in excluded output sections to use a kept section. */
3008 fix_syms (struct bfd_link_hash_entry *h, void *data)
3010 bfd *obfd = (bfd *) data;
3012 if (h->type == bfd_link_hash_defined
3013 || h->type == bfd_link_hash_defweak)
3015 asection *s = h->u.def.section;
3017 && s->output_section != NULL
3018 && (s->output_section->flags & SEC_EXCLUDE) != 0
3019 && bfd_section_removed_from_list (obfd, s->output_section))
3023 h->u.def.value += s->output_offset + s->output_section->vma;
3024 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3025 h->u.def.value -= op->vma;
3026 h->u.def.section = op;
3034 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3036 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3041 bfd_generic_define_common_symbol
3044 bfd_boolean bfd_generic_define_common_symbol
3045 (bfd *output_bfd, struct bfd_link_info *info,
3046 struct bfd_link_hash_entry *h);
3049 Convert common symbol @var{h} into a defined symbol.
3050 Return TRUE on success and FALSE on failure.
3052 .#define bfd_define_common_symbol(output_bfd, info, h) \
3053 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3058 bfd_generic_define_common_symbol (bfd *output_bfd,
3059 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3060 struct bfd_link_hash_entry *h)
3062 unsigned int power_of_two;
3063 bfd_vma alignment, size;
3066 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3069 power_of_two = h->u.c.p->alignment_power;
3070 section = h->u.c.p->section;
3072 /* Increase the size of the section to align the common symbol.
3073 The alignment must be a power of two. */
3074 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3075 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3076 section->size += alignment - 1;
3077 section->size &= -alignment;
3079 /* Adjust the section's overall alignment if necessary. */
3080 if (power_of_two > section->alignment_power)
3081 section->alignment_power = power_of_two;
3083 /* Change the symbol from common to defined. */
3084 h->type = bfd_link_hash_defined;
3085 h->u.def.section = section;
3086 h->u.def.value = section->size;
3088 /* Increase the size of the section. */
3089 section->size += size;
3091 /* Make sure the section is allocated in memory, and make sure that
3092 it is no longer a common section. */
3093 section->flags |= SEC_ALLOC;
3094 section->flags &= ~SEC_IS_COMMON;
3100 bfd_find_version_for_sym
3103 struct bfd_elf_version_tree * bfd_find_version_for_sym
3104 (struct bfd_elf_version_tree *verdefs,
3105 const char *sym_name, bfd_boolean *hide);
3108 Search an elf version script tree for symbol versioning
3109 info and export / don't-export status for a given symbol.
3110 Return non-NULL on success and NULL on failure; also sets
3111 the output @samp{hide} boolean parameter.
3115 struct bfd_elf_version_tree *
3116 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3117 const char *sym_name,
3120 struct bfd_elf_version_tree *t;
3121 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3122 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3126 star_local_ver = NULL;
3127 star_global_ver = NULL;
3129 for (t = verdefs; t != NULL; t = t->next)
3131 if (t->globals.list != NULL)
3133 struct bfd_elf_version_expr *d = NULL;
3135 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3137 if (d->literal || strcmp (d->pattern, "*") != 0)
3140 star_global_ver = t;
3144 /* If the match is a wildcard pattern, keep looking for
3145 a more explicit, perhaps even local, match. */
3154 if (t->locals.list != NULL)
3156 struct bfd_elf_version_expr *d = NULL;
3158 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3160 if (d->literal || strcmp (d->pattern, "*") != 0)
3164 /* If the match is a wildcard pattern, keep looking for
3165 a more explicit, perhaps even global, match. */
3168 /* An exact match overrides a global wildcard. */
3170 star_global_ver = NULL;
3180 if (global_ver == NULL && local_ver == NULL)
3181 global_ver = star_global_ver;
3183 if (global_ver != NULL)
3185 /* If we already have a versioned symbol that matches the
3186 node for this symbol, then we don't want to create a
3187 duplicate from the unversioned symbol. Instead hide the
3188 unversioned symbol. */
3189 *hide = exist_ver == global_ver;
3193 if (local_ver == NULL)
3194 local_ver = star_local_ver;
3196 if (local_ver != NULL)
3207 bfd_hide_sym_by_version
3210 bfd_boolean bfd_hide_sym_by_version
3211 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3214 Search an elf version script tree for symbol versioning
3215 info for a given symbol. Return TRUE if the symbol is hidden.
3220 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3221 const char *sym_name)
3223 bfd_boolean hidden = FALSE;
3224 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3230 bfd_link_check_relocs
3233 bfd_boolean bfd_link_check_relocs
3234 (bfd *abfd, struct bfd_link_info *info);
3237 Checks the relocs in ABFD for validity.
3238 Does not execute the relocs.
3239 Return TRUE if everything is OK, FALSE otherwise.
3240 This is the external entry point to this code.
3244 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3246 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3251 _bfd_generic_link_check_relocs
3254 bfd_boolean _bfd_generic_link_check_relocs
3255 (bfd *abfd, struct bfd_link_info *info);
3258 Stub function for targets that do not implement reloc checking.
3260 This is an internal function. It should not be called from
3261 outside the BFD library.
3265 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3266 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3273 bfd_merge_private_bfd_data
3276 bfd_boolean bfd_merge_private_bfd_data
3277 (bfd *ibfd, struct bfd_link_info *info);
3280 Merge private BFD information from the BFD @var{ibfd} to the
3281 the output file BFD when linking. Return <<TRUE>> on success,
3282 <<FALSE>> on error. Possible error returns are:
3284 o <<bfd_error_no_memory>> -
3285 Not enough memory exists to create private data for @var{obfd}.
3287 .#define bfd_merge_private_bfd_data(ibfd, info) \
3288 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3294 _bfd_generic_verify_endian_match
3297 bfd_boolean _bfd_generic_verify_endian_match
3298 (bfd *ibfd, struct bfd_link_info *info);
3301 Can be used from / for bfd_merge_private_bfd_data to check that
3302 endianness matches between input and output file. Returns
3303 TRUE for a match, otherwise returns FALSE and emits an error.
3307 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3309 bfd *obfd = info->output_bfd;
3311 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3312 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3313 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3315 if (bfd_big_endian (ibfd))
3316 _bfd_error_handler (_("%B: compiled for a big endian system "
3317 "and target is little endian"), ibfd);
3319 _bfd_error_handler (_("%B: compiled for a little endian system "
3320 "and target is big endian"), ibfd);
3321 bfd_set_error (bfd_error_wrong_format);