1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
74 Creating a linker hash table
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
112 Adding symbols to the hash table
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
138 Differing file formats
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
175 Adding symbols from an object file
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
219 Adding symbols from an archive
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table.
228 @findex _bfd_generic_link_add_archive_symbols
229 In most cases the work of looking through the symbols in the
230 archive should be done by the
231 <<_bfd_generic_link_add_archive_symbols>> function. This
232 function builds a hash table from the archive symbol table and
233 looks through the list of undefined symbols to see which
234 elements should be included.
235 <<_bfd_generic_link_add_archive_symbols>> is passed a function
236 to call to make the final decision about adding an archive
237 element to the link and to do the actual work of adding the
238 symbols to the linker hash table.
240 The function passed to
241 <<_bfd_generic_link_add_archive_symbols>> must read the
242 symbols of the archive element and decide whether the archive
243 element should be included in the link. If the element is to
244 be included, the <<add_archive_element>> linker callback
245 routine must be called with the element as an argument, and
246 the elements symbols must be added to the linker hash table
247 just as though the element had itself been passed to the
248 <<_bfd_link_add_symbols>> function.
250 When the a.out <<_bfd_link_add_symbols>> function receives an
251 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 passing <<aout_link_check_archive_element>> as the function
253 argument. <<aout_link_check_archive_element>> calls
254 <<aout_link_check_ar_symbols>>. If the latter decides to add
255 the element (an element is only added if it provides a real,
256 non-common, definition for a previously undefined or common
257 symbol) it calls the <<add_archive_element>> callback and then
258 <<aout_link_check_archive_element>> calls
259 <<aout_link_add_symbols>> to actually add the symbols to the
262 The ECOFF back end is unusual in that it does not normally
263 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 archives already contain a hash table of symbols. The ECOFF
265 back end searches the archive itself to avoid the overhead of
266 creating a new hash table.
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
271 Performing the final link
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 When all the input files have been processed, the linker calls
276 the <<_bfd_final_link>> entry point of the output BFD. This
277 routine is responsible for producing the final output file,
278 which has several aspects. It must relocate the contents of
279 the input sections and copy the data into the output sections.
280 It must build an output symbol table including any local
281 symbols from the input files and the global symbols from the
282 hash table. When producing relocatable output, it must
283 modify the input relocs and write them into the output file.
284 There may also be object format dependent work to be done.
286 The linker will also call the <<write_object_contents>> entry
287 point when the BFD is closed. The two entry points must work
288 together in order to produce the correct output file.
290 The details of how this works are inevitably dependent upon
291 the specific object file format. The a.out
292 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
303 Information provided by the linker
305 Before the linker calls the <<_bfd_final_link>> entry point,
306 it sets up some data structures for the function to use.
308 The <<input_bfds>> field of the <<bfd_link_info>> structure
309 will point to a list of all the input files included in the
310 link. These files are linked through the <<link_next>> field
311 of the <<bfd>> structure.
313 Each section in the output file will have a list of
314 <<link_order>> structures attached to the <<map_head.link_order>>
315 field (the <<link_order>> structure is defined in
316 <<bfdlink.h>>). These structures describe how to create the
317 contents of the output section in terms of the contents of
318 various input sections, fill constants, and, eventually, other
319 types of information. They also describe relocs that must be
320 created by the BFD backend, but do not correspond to any input
321 file; this is used to support -Ur, which builds constructors
322 while generating a relocatable object file.
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
327 Relocating the section contents
329 The <<_bfd_final_link>> function should look through the
330 <<link_order>> structures attached to each section of the
331 output file. Each <<link_order>> structure should either be
332 handled specially, or it should be passed to the function
333 <<_bfd_default_link_order>> which will do the right thing
334 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
336 For efficiency, a <<link_order>> of type
337 <<bfd_indirect_link_order>> whose associated section belongs
338 to a BFD of the same format as the output BFD must be handled
339 specially. This type of <<link_order>> describes part of an
340 output section in terms of a section belonging to one of the
341 input files. The <<_bfd_final_link>> function should read the
342 contents of the section and any associated relocs, apply the
343 relocs to the section contents, and write out the modified
344 section contents. If performing a relocatable link, the
345 relocs themselves must also be modified and written out.
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 The functions <<_bfd_relocate_contents>> and
350 <<_bfd_final_link_relocate>> provide some general support for
351 performing the actual relocations, notably overflow checking.
352 Their arguments include information about the symbol the
353 relocation is against and a <<reloc_howto_type>> argument
354 which describes the relocation to perform. These functions
355 are defined in <<reloc.c>>.
357 The a.out function which handles reading, relocating, and
358 writing section contents is <<aout_link_input_section>>. The
359 actual relocation is done in <<aout_link_input_section_std>>
360 and <<aout_link_input_section_ext>>.
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
365 Writing the symbol table
367 The <<_bfd_final_link>> function must gather all the symbols
368 in the input files and write them out. It must also write out
369 all the symbols in the global hash table. This must be
370 controlled by the <<strip>> and <<discard>> fields of the
371 <<bfd_link_info>> structure.
373 The local symbols of the input files will not have been
374 entered into the linker hash table. The <<_bfd_final_link>>
375 routine must consider each input file and include the symbols
376 in the output file. It may be convenient to do this when
377 looking through the <<link_order>> structures, or it may be
378 done by stepping through the <<input_bfds>> list.
380 The <<_bfd_final_link>> routine must also traverse the global
381 hash table to gather all the externally visible symbols. It
382 is possible that most of the externally visible symbols may be
383 written out when considering the symbols of each input file,
384 but it is still necessary to traverse the hash table since the
385 linker script may have defined some symbols that are not in
386 any of the input files.
388 The <<strip>> field of the <<bfd_link_info>> structure
389 controls which symbols are written out. The possible values
390 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
391 then the <<keep_hash>> field of the <<bfd_link_info>>
392 structure is a hash table of symbols to keep; each symbol
393 should be looked up in this hash table, and only symbols which
394 are present should be included in the output file.
396 If the <<strip>> field of the <<bfd_link_info>> structure
397 permits local symbols to be written out, the <<discard>> field
398 is used to further controls which local symbols are included
399 in the output file. If the value is <<discard_l>>, then all
400 local symbols which begin with a certain prefix are discarded;
401 this is controlled by the <<bfd_is_local_label_name>> entry point.
403 The a.out backend handles symbols by calling
404 <<aout_link_write_symbols>> on each input BFD and then
405 traversing the global hash table with the function
406 <<aout_link_write_other_symbol>>. It builds a string table
407 while writing out the symbols, which is written to the output
408 file at the end of <<NAME(aout,final_link)>>.
411 static bfd_boolean generic_link_add_object_symbols
412 (bfd *, struct bfd_link_info *, bfd_boolean collect);
413 static bfd_boolean generic_link_add_symbols
414 (bfd *, struct bfd_link_info *, bfd_boolean);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416 (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element_collect
418 (bfd *, struct bfd_link_info *, bfd_boolean *);
419 static bfd_boolean generic_link_check_archive_element
420 (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
421 static bfd_boolean generic_link_add_symbol_list
422 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
424 static bfd_boolean generic_add_output_symbol
425 (bfd *, size_t *psymalloc, asymbol *);
426 static bfd_boolean default_data_link_order
427 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
428 static bfd_boolean default_indirect_link_order
429 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
432 /* The link hash table structure is defined in bfdlink.h. It provides
433 a base hash table which the backend specific hash tables are built
436 /* Routine to create an entry in the link hash table. */
438 struct bfd_hash_entry *
439 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
440 struct bfd_hash_table *table,
443 /* Allocate the structure if it has not already been allocated by a
447 entry = (struct bfd_hash_entry *)
448 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
453 /* Call the allocation method of the superclass. */
454 entry = bfd_hash_newfunc (entry, table, string);
457 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
459 /* Initialize the local fields. */
460 h->type = bfd_link_hash_new;
461 memset (&h->u.undef.next, 0,
462 (sizeof (struct bfd_link_hash_entry)
463 - offsetof (struct bfd_link_hash_entry, u.undef.next)));
469 /* Initialize a link hash table. The BFD argument is the one
470 responsible for creating this table. */
473 _bfd_link_hash_table_init
474 (struct bfd_link_hash_table *table,
475 bfd *abfd ATTRIBUTE_UNUSED,
476 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
477 struct bfd_hash_table *,
479 unsigned int entsize)
481 table->undefs = NULL;
482 table->undefs_tail = NULL;
483 table->type = bfd_link_generic_hash_table;
485 return bfd_hash_table_init (&table->table, newfunc, entsize);
488 /* Look up a symbol in a link hash table. If follow is TRUE, we
489 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
492 struct bfd_link_hash_entry *
493 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
499 struct bfd_link_hash_entry *ret;
501 ret = ((struct bfd_link_hash_entry *)
502 bfd_hash_lookup (&table->table, string, create, copy));
504 if (follow && ret != NULL)
506 while (ret->type == bfd_link_hash_indirect
507 || ret->type == bfd_link_hash_warning)
514 /* Look up a symbol in the main linker hash table if the symbol might
515 be wrapped. This should only be used for references to an
516 undefined symbol, not for definitions of a symbol. */
518 struct bfd_link_hash_entry *
519 bfd_wrapped_link_hash_lookup (bfd *abfd,
520 struct bfd_link_info *info,
528 if (info->wrap_hash != NULL)
534 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
541 #define WRAP "__wrap_"
543 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
546 struct bfd_link_hash_entry *h;
548 /* This symbol is being wrapped. We want to replace all
549 references to SYM with references to __wrap_SYM. */
551 amt = strlen (l) + sizeof WRAP + 1;
552 n = (char *) bfd_malloc (amt);
560 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
568 #define REAL "__real_"
571 && CONST_STRNEQ (l, REAL)
572 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
573 FALSE, FALSE) != NULL)
576 struct bfd_link_hash_entry *h;
578 /* This is a reference to __real_SYM, where SYM is being
579 wrapped. We want to replace all references to __real_SYM
580 with references to SYM. */
582 amt = strlen (l + sizeof REAL - 1) + 2;
583 n = (char *) bfd_malloc (amt);
589 strcat (n, l + sizeof REAL - 1);
590 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
598 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
601 /* Traverse a generic link hash table. The only reason this is not a
602 macro is to do better type checking. This code presumes that an
603 argument passed as a struct bfd_hash_entry * may be caught as a
604 struct bfd_link_hash_entry * with no explicit cast required on the
608 bfd_link_hash_traverse
609 (struct bfd_link_hash_table *table,
610 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
613 bfd_hash_traverse (&table->table,
614 (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
618 /* Add a symbol to the linker hash table undefs list. */
621 bfd_link_add_undef (struct bfd_link_hash_table *table,
622 struct bfd_link_hash_entry *h)
624 BFD_ASSERT (h->u.undef.next == NULL);
625 if (table->undefs_tail != NULL)
626 table->undefs_tail->u.undef.next = h;
627 if (table->undefs == NULL)
629 table->undefs_tail = h;
632 /* The undefs list was designed so that in normal use we don't need to
633 remove entries. However, if symbols on the list are changed from
634 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
635 bfd_link_hash_new for some reason, then they must be removed from the
636 list. Failure to do so might result in the linker attempting to add
637 the symbol to the list again at a later stage. */
640 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
642 struct bfd_link_hash_entry **pun;
644 pun = &table->undefs;
647 struct bfd_link_hash_entry *h = *pun;
649 if (h->type == bfd_link_hash_new
650 || h->type == bfd_link_hash_undefweak)
652 *pun = h->u.undef.next;
653 h->u.undef.next = NULL;
654 if (h == table->undefs_tail)
656 if (pun == &table->undefs)
657 table->undefs_tail = NULL;
659 /* pun points at an u.undef.next field. Go back to
660 the start of the link_hash_entry. */
661 table->undefs_tail = (struct bfd_link_hash_entry *)
662 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
667 pun = &h->u.undef.next;
671 /* Routine to create an entry in a generic link hash table. */
673 struct bfd_hash_entry *
674 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
675 struct bfd_hash_table *table,
678 /* Allocate the structure if it has not already been allocated by a
682 entry = (struct bfd_hash_entry *)
683 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
688 /* Call the allocation method of the superclass. */
689 entry = _bfd_link_hash_newfunc (entry, table, string);
692 struct generic_link_hash_entry *ret;
694 /* Set local fields. */
695 ret = (struct generic_link_hash_entry *) entry;
696 ret->written = FALSE;
703 /* Create a generic link hash table. */
705 struct bfd_link_hash_table *
706 _bfd_generic_link_hash_table_create (bfd *abfd)
708 struct generic_link_hash_table *ret;
709 bfd_size_type amt = sizeof (struct generic_link_hash_table);
711 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
714 if (! _bfd_link_hash_table_init (&ret->root, abfd,
715 _bfd_generic_link_hash_newfunc,
716 sizeof (struct generic_link_hash_entry)))
725 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
727 struct generic_link_hash_table *ret
728 = (struct generic_link_hash_table *) hash;
730 bfd_hash_table_free (&ret->root.table);
734 /* Grab the symbols for an object file when doing a generic link. We
735 store the symbols in the outsymbols field. We need to keep them
736 around for the entire link to ensure that we only read them once.
737 If we read them multiple times, we might wind up with relocs and
738 the hash table pointing to different instances of the symbol
742 bfd_generic_link_read_symbols (bfd *abfd)
744 if (bfd_get_outsymbols (abfd) == NULL)
749 symsize = bfd_get_symtab_upper_bound (abfd);
752 bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
754 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
756 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
759 bfd_get_symcount (abfd) = symcount;
765 /* Generic function to add symbols to from an object file to the
766 global hash table. This version does not automatically collect
767 constructors by name. */
770 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
772 return generic_link_add_symbols (abfd, info, FALSE);
775 /* Generic function to add symbols from an object file to the global
776 hash table. This version automatically collects constructors by
777 name, as the collect2 program does. It should be used for any
778 target which does not provide some other mechanism for setting up
779 constructors and destructors; these are approximately those targets
780 for which gcc uses collect2 and do not support stabs. */
783 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
785 return generic_link_add_symbols (abfd, info, TRUE);
788 /* Indicate that we are only retrieving symbol values from this
789 section. We want the symbols to act as though the values in the
790 file are absolute. */
793 _bfd_generic_link_just_syms (asection *sec,
794 struct bfd_link_info *info ATTRIBUTE_UNUSED)
796 sec->output_section = bfd_abs_section_ptr;
797 sec->output_offset = sec->vma;
800 /* Copy the type of a symbol assiciated with a linker hast table entry.
801 Override this so that symbols created in linker scripts get their
802 type from the RHS of the assignment.
803 The default implementation does nothing. */
805 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
806 struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
807 struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
811 /* Add symbols from an object file to the global hash table. */
814 generic_link_add_symbols (bfd *abfd,
815 struct bfd_link_info *info,
820 switch (bfd_get_format (abfd))
823 ret = generic_link_add_object_symbols (abfd, info, collect);
826 ret = (_bfd_generic_link_add_archive_symbols
829 ? generic_link_check_archive_element_collect
830 : generic_link_check_archive_element_no_collect)));
833 bfd_set_error (bfd_error_wrong_format);
840 /* Add symbols from an object file to the global hash table. */
843 generic_link_add_object_symbols (bfd *abfd,
844 struct bfd_link_info *info,
847 bfd_size_type symcount;
848 struct bfd_symbol **outsyms;
850 if (!bfd_generic_link_read_symbols (abfd))
852 symcount = _bfd_generic_link_get_symcount (abfd);
853 outsyms = _bfd_generic_link_get_symbols (abfd);
854 return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
857 /* We build a hash table of all symbols defined in an archive. */
859 /* An archive symbol may be defined by multiple archive elements.
860 This linked list is used to hold the elements. */
864 struct archive_list *next;
868 /* An entry in an archive hash table. */
870 struct archive_hash_entry
872 struct bfd_hash_entry root;
873 /* Where the symbol is defined. */
874 struct archive_list *defs;
877 /* An archive hash table itself. */
879 struct archive_hash_table
881 struct bfd_hash_table table;
884 /* Create a new entry for an archive hash table. */
886 static struct bfd_hash_entry *
887 archive_hash_newfunc (struct bfd_hash_entry *entry,
888 struct bfd_hash_table *table,
891 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
893 /* Allocate the structure if it has not already been allocated by a
896 ret = (struct archive_hash_entry *)
897 bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
901 /* Call the allocation method of the superclass. */
902 ret = ((struct archive_hash_entry *)
903 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
907 /* Initialize the local fields. */
914 /* Initialize an archive hash table. */
917 archive_hash_table_init
918 (struct archive_hash_table *table,
919 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
920 struct bfd_hash_table *,
922 unsigned int entsize)
924 return bfd_hash_table_init (&table->table, newfunc, entsize);
927 /* Look up an entry in an archive hash table. */
929 #define archive_hash_lookup(t, string, create, copy) \
930 ((struct archive_hash_entry *) \
931 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
933 /* Allocate space in an archive hash table. */
935 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
937 /* Free an archive hash table. */
939 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
941 /* Generic function to add symbols from an archive file to the global
942 hash file. This function presumes that the archive symbol table
943 has already been read in (this is normally done by the
944 bfd_check_format entry point). It looks through the undefined and
945 common symbols and searches the archive symbol table for them. If
946 it finds an entry, it includes the associated object file in the
949 The old linker looked through the archive symbol table for
950 undefined symbols. We do it the other way around, looking through
951 undefined symbols for symbols defined in the archive. The
952 advantage of the newer scheme is that we only have to look through
953 the list of undefined symbols once, whereas the old method had to
954 re-search the symbol table each time a new object file was added.
956 The CHECKFN argument is used to see if an object file should be
957 included. CHECKFN should set *PNEEDED to TRUE if the object file
958 should be included, and must also call the bfd_link_info
959 add_archive_element callback function and handle adding the symbols
960 to the global hash table. CHECKFN should only return FALSE if some
961 sort of error occurs.
963 For some formats, such as a.out, it is possible to look through an
964 object file but not actually include it in the link. The
965 archive_pass field in a BFD is used to avoid checking the symbols
966 of an object files too many times. When an object is included in
967 the link, archive_pass is set to -1. If an object is scanned but
968 not included, archive_pass is set to the pass number. The pass
969 number is incremented each time a new object file is included. The
970 pass number is used because when a new object file is included it
971 may create new undefined symbols which cause a previously examined
972 object file to be included. */
975 _bfd_generic_link_add_archive_symbols
977 struct bfd_link_info *info,
978 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
982 register carsym *arsym;
984 struct archive_hash_table arsym_hash;
986 struct bfd_link_hash_entry **pundef;
988 if (! bfd_has_map (abfd))
990 /* An empty archive is a special case. */
991 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
993 bfd_set_error (bfd_error_no_armap);
997 arsyms = bfd_ardata (abfd)->symdefs;
998 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1000 /* In order to quickly determine whether an symbol is defined in
1001 this archive, we build a hash table of the symbols. */
1002 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1003 sizeof (struct archive_hash_entry)))
1005 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1007 struct archive_hash_entry *arh;
1008 struct archive_list *l, **pp;
1010 arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1013 l = ((struct archive_list *)
1014 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1018 for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1024 /* The archive_pass field in the archive itself is used to
1025 initialize PASS, sine we may search the same archive multiple
1027 pass = abfd->archive_pass + 1;
1029 /* New undefined symbols are added to the end of the list, so we
1030 only need to look through it once. */
1031 pundef = &info->hash->undefs;
1032 while (*pundef != NULL)
1034 struct bfd_link_hash_entry *h;
1035 struct archive_hash_entry *arh;
1036 struct archive_list *l;
1040 /* When a symbol is defined, it is not necessarily removed from
1042 if (h->type != bfd_link_hash_undefined
1043 && h->type != bfd_link_hash_common)
1045 /* Remove this entry from the list, for general cleanliness
1046 and because we are going to look through the list again
1047 if we search any more libraries. We can't remove the
1048 entry if it is the tail, because that would lose any
1049 entries we add to the list later on (it would also cause
1050 us to lose track of whether the symbol has been
1052 if (*pundef != info->hash->undefs_tail)
1053 *pundef = (*pundef)->u.undef.next;
1055 pundef = &(*pundef)->u.undef.next;
1059 /* Look for this symbol in the archive symbol map. */
1060 arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1063 /* If we haven't found the exact symbol we're looking for,
1064 let's look for its import thunk */
1065 if (info->pei386_auto_import)
1067 bfd_size_type amt = strlen (h->root.string) + 10;
1068 char *buf = (char *) bfd_malloc (amt);
1072 sprintf (buf, "__imp_%s", h->root.string);
1073 arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1078 pundef = &(*pundef)->u.undef.next;
1082 /* Look at all the objects which define this symbol. */
1083 for (l = arh->defs; l != NULL; l = l->next)
1088 /* If the symbol has gotten defined along the way, quit. */
1089 if (h->type != bfd_link_hash_undefined
1090 && h->type != bfd_link_hash_common)
1093 element = bfd_get_elt_at_index (abfd, l->indx);
1094 if (element == NULL)
1097 /* If we've already included this element, or if we've
1098 already checked it on this pass, continue. */
1099 if (element->archive_pass == -1
1100 || element->archive_pass == pass)
1103 /* If we can't figure this element out, just ignore it. */
1104 if (! bfd_check_format (element, bfd_object))
1106 element->archive_pass = -1;
1110 /* CHECKFN will see if this element should be included, and
1111 go ahead and include it if appropriate. */
1112 if (! (*checkfn) (element, info, &needed))
1116 element->archive_pass = pass;
1119 element->archive_pass = -1;
1121 /* Increment the pass count to show that we may need to
1122 recheck object files which were already checked. */
1127 pundef = &(*pundef)->u.undef.next;
1130 archive_hash_table_free (&arsym_hash);
1132 /* Save PASS in case we are called again. */
1133 abfd->archive_pass = pass;
1138 archive_hash_table_free (&arsym_hash);
1142 /* See if we should include an archive element. This version is used
1143 when we do not want to automatically collect constructors based on
1144 the symbol name, presumably because we have some other mechanism
1145 for finding them. */
1148 generic_link_check_archive_element_no_collect (
1150 struct bfd_link_info *info,
1151 bfd_boolean *pneeded)
1153 return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1156 /* See if we should include an archive element. This version is used
1157 when we want to automatically collect constructors based on the
1158 symbol name, as collect2 does. */
1161 generic_link_check_archive_element_collect (bfd *abfd,
1162 struct bfd_link_info *info,
1163 bfd_boolean *pneeded)
1165 return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1168 /* See if we should include an archive element. Optionally collect
1172 generic_link_check_archive_element (bfd *abfd,
1173 struct bfd_link_info *info,
1174 bfd_boolean *pneeded,
1175 bfd_boolean collect)
1177 asymbol **pp, **ppend;
1181 if (!bfd_generic_link_read_symbols (abfd))
1184 pp = _bfd_generic_link_get_symbols (abfd);
1185 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1186 for (; pp < ppend; pp++)
1189 struct bfd_link_hash_entry *h;
1193 /* We are only interested in globally visible symbols. */
1194 if (! bfd_is_com_section (p->section)
1195 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1198 /* We are only interested if we know something about this
1199 symbol, and it is undefined or common. An undefined weak
1200 symbol (type bfd_link_hash_undefweak) is not considered to be
1201 a reference when pulling files out of an archive. See the
1202 SVR4 ABI, p. 4-27. */
1203 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1206 || (h->type != bfd_link_hash_undefined
1207 && h->type != bfd_link_hash_common))
1210 /* P is a symbol we are looking for. */
1212 if (! bfd_is_com_section (p->section))
1214 bfd_size_type symcount;
1217 /* This object file defines this symbol, so pull it in. */
1218 if (! (*info->callbacks->add_archive_element) (info, abfd,
1219 bfd_asymbol_name (p)))
1221 symcount = _bfd_generic_link_get_symcount (abfd);
1222 symbols = _bfd_generic_link_get_symbols (abfd);
1223 if (! generic_link_add_symbol_list (abfd, info, symcount,
1230 /* P is a common symbol. */
1232 if (h->type == bfd_link_hash_undefined)
1238 symbfd = h->u.undef.abfd;
1241 /* This symbol was created as undefined from outside
1242 BFD. We assume that we should link in the object
1243 file. This is for the -u option in the linker. */
1244 if (! (*info->callbacks->add_archive_element)
1245 (info, abfd, bfd_asymbol_name (p)))
1251 /* Turn the symbol into a common symbol but do not link in
1252 the object file. This is how a.out works. Object
1253 formats that require different semantics must implement
1254 this function differently. This symbol is already on the
1255 undefs list. We add the section to a common section
1256 attached to symbfd to ensure that it is in a BFD which
1257 will be linked in. */
1258 h->type = bfd_link_hash_common;
1259 h->u.c.p = (struct bfd_link_hash_common_entry *)
1260 bfd_hash_allocate (&info->hash->table,
1261 sizeof (struct bfd_link_hash_common_entry));
1262 if (h->u.c.p == NULL)
1265 size = bfd_asymbol_value (p);
1268 power = bfd_log2 (size);
1271 h->u.c.p->alignment_power = power;
1273 if (p->section == bfd_com_section_ptr)
1274 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1276 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1278 h->u.c.p->section->flags = SEC_ALLOC;
1282 /* Adjust the size of the common symbol if necessary. This
1283 is how a.out works. Object formats that require
1284 different semantics must implement this function
1286 if (bfd_asymbol_value (p) > h->u.c.size)
1287 h->u.c.size = bfd_asymbol_value (p);
1291 /* This archive element is not needed. */
1295 /* Add the symbols from an object file to the global hash table. ABFD
1296 is the object file. INFO is the linker information. SYMBOL_COUNT
1297 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1298 is TRUE if constructors should be automatically collected by name
1299 as is done by collect2. */
1302 generic_link_add_symbol_list (bfd *abfd,
1303 struct bfd_link_info *info,
1304 bfd_size_type symbol_count,
1306 bfd_boolean collect)
1308 asymbol **pp, **ppend;
1311 ppend = symbols + symbol_count;
1312 for (; pp < ppend; pp++)
1318 if ((p->flags & (BSF_INDIRECT
1323 || bfd_is_und_section (bfd_get_section (p))
1324 || bfd_is_com_section (bfd_get_section (p))
1325 || bfd_is_ind_section (bfd_get_section (p)))
1329 struct generic_link_hash_entry *h;
1330 struct bfd_link_hash_entry *bh;
1332 string = name = bfd_asymbol_name (p);
1333 if (((p->flags & BSF_INDIRECT) != 0
1334 || bfd_is_ind_section (p->section))
1338 string = bfd_asymbol_name (*pp);
1340 else if ((p->flags & BSF_WARNING) != 0
1343 /* The name of P is actually the warning string, and the
1344 next symbol is the one to warn about. */
1346 name = bfd_asymbol_name (*pp);
1350 if (! (_bfd_generic_link_add_one_symbol
1351 (info, abfd, name, p->flags, bfd_get_section (p),
1352 p->value, string, FALSE, collect, &bh)))
1354 h = (struct generic_link_hash_entry *) bh;
1356 /* If this is a constructor symbol, and the linker didn't do
1357 anything with it, then we want to just pass the symbol
1358 through to the output file. This will happen when
1360 if ((p->flags & BSF_CONSTRUCTOR) != 0
1361 && (h == NULL || h->root.type == bfd_link_hash_new))
1367 /* Save the BFD symbol so that we don't lose any backend
1368 specific information that may be attached to it. We only
1369 want this one if it gives more information than the
1370 existing one; we don't want to replace a defined symbol
1371 with an undefined one. This routine may be called with a
1372 hash table other than the generic hash table, so we only
1373 do this if we are certain that the hash table is a
1375 if (info->output_bfd->xvec == abfd->xvec)
1378 || (! bfd_is_und_section (bfd_get_section (p))
1379 && (! bfd_is_com_section (bfd_get_section (p))
1380 || bfd_is_und_section (bfd_get_section (h->sym)))))
1383 /* BSF_OLD_COMMON is a hack to support COFF reloc
1384 reading, and it should go away when the COFF
1385 linker is switched to the new version. */
1386 if (bfd_is_com_section (bfd_get_section (p)))
1387 p->flags |= BSF_OLD_COMMON;
1391 /* Store a back pointer from the symbol to the hash
1392 table entry for the benefit of relaxation code until
1393 it gets rewritten to not use asymbol structures.
1394 Setting this is also used to check whether these
1395 symbols were set up by the generic linker. */
1403 /* We use a state table to deal with adding symbols from an object
1404 file. The first index into the state table describes the symbol
1405 from the object file. The second index into the state table is the
1406 type of the symbol in the hash table. */
1408 /* The symbol from the object file is turned into one of these row
1413 UNDEF_ROW, /* Undefined. */
1414 UNDEFW_ROW, /* Weak undefined. */
1415 DEF_ROW, /* Defined. */
1416 DEFW_ROW, /* Weak defined. */
1417 COMMON_ROW, /* Common. */
1418 INDR_ROW, /* Indirect. */
1419 WARN_ROW, /* Warning. */
1420 SET_ROW /* Member of set. */
1423 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1426 /* The actions to take in the state table. */
1431 UND, /* Mark symbol undefined. */
1432 WEAK, /* Mark symbol weak undefined. */
1433 DEF, /* Mark symbol defined. */
1434 DEFW, /* Mark symbol weak defined. */
1435 COM, /* Mark symbol common. */
1436 REF, /* Mark defined symbol referenced. */
1437 CREF, /* Possibly warn about common reference to defined symbol. */
1438 CDEF, /* Define existing common symbol. */
1439 NOACT, /* No action. */
1440 BIG, /* Mark symbol common using largest size. */
1441 MDEF, /* Multiple definition error. */
1442 MIND, /* Multiple indirect symbols. */
1443 IND, /* Make indirect symbol. */
1444 CIND, /* Make indirect symbol from existing common symbol. */
1445 SET, /* Add value to set. */
1446 MWARN, /* Make warning symbol. */
1447 WARN, /* Issue warning. */
1448 CWARN, /* Warn if referenced, else MWARN. */
1449 CYCLE, /* Repeat with symbol pointed to. */
1450 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1451 WARNC /* Issue warning and then CYCLE. */
1454 /* The state table itself. The first index is a link_row and the
1455 second index is a bfd_link_hash_type. */
1457 static const enum link_action link_action[8][8] =
1459 /* current\prev new undef undefw def defw com indr warn */
1460 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1461 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1462 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1463 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1464 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1465 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1466 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, NOACT },
1467 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1470 /* Most of the entries in the LINK_ACTION table are straightforward,
1471 but a few are somewhat subtle.
1473 A reference to an indirect symbol (UNDEF_ROW/indr or
1474 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1475 symbol and to the symbol the indirect symbol points to.
1477 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1478 causes the warning to be issued.
1480 A common definition of an indirect symbol (COMMON_ROW/indr) is
1481 treated as a multiple definition error. Likewise for an indirect
1482 definition of a common symbol (INDR_ROW/com).
1484 An indirect definition of a warning (INDR_ROW/warn) does not cause
1485 the warning to be issued.
1487 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1488 warning is created for the symbol the indirect symbol points to.
1490 Adding an entry to a set does not count as a reference to a set,
1491 and no warning is issued (SET_ROW/warn). */
1493 /* Return the BFD in which a hash entry has been defined, if known. */
1496 hash_entry_bfd (struct bfd_link_hash_entry *h)
1498 while (h->type == bfd_link_hash_warning)
1504 case bfd_link_hash_undefined:
1505 case bfd_link_hash_undefweak:
1506 return h->u.undef.abfd;
1507 case bfd_link_hash_defined:
1508 case bfd_link_hash_defweak:
1509 return h->u.def.section->owner;
1510 case bfd_link_hash_common:
1511 return h->u.c.p->section->owner;
1516 /* Add a symbol to the global hash table.
1517 ABFD is the BFD the symbol comes from.
1518 NAME is the name of the symbol.
1519 FLAGS is the BSF_* bits associated with the symbol.
1520 SECTION is the section in which the symbol is defined; this may be
1521 bfd_und_section_ptr or bfd_com_section_ptr.
1522 VALUE is the value of the symbol, relative to the section.
1523 STRING is used for either an indirect symbol, in which case it is
1524 the name of the symbol to indirect to, or a warning symbol, in
1525 which case it is the warning string.
1526 COPY is TRUE if NAME or STRING must be copied into locally
1527 allocated memory if they need to be saved.
1528 COLLECT is TRUE if we should automatically collect gcc constructor
1529 or destructor names as collect2 does.
1530 HASHP, if not NULL, is a place to store the created hash table
1531 entry; if *HASHP is not NULL, the caller has already looked up
1532 the hash table entry, and stored it in *HASHP. */
1535 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1543 bfd_boolean collect,
1544 struct bfd_link_hash_entry **hashp)
1547 struct bfd_link_hash_entry *h;
1550 if (bfd_is_ind_section (section)
1551 || (flags & BSF_INDIRECT) != 0)
1553 else if ((flags & BSF_WARNING) != 0)
1555 else if ((flags & BSF_CONSTRUCTOR) != 0)
1557 else if (bfd_is_und_section (section))
1559 if ((flags & BSF_WEAK) != 0)
1564 else if ((flags & BSF_WEAK) != 0)
1566 else if (bfd_is_com_section (section))
1571 if (hashp != NULL && *hashp != NULL)
1575 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1576 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1578 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1587 if (info->notice_all
1588 || (info->notice_hash != NULL
1589 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1591 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1601 enum link_action action;
1604 action = link_action[(int) row][(int) h->type];
1615 /* Make a new undefined symbol. */
1616 h->type = bfd_link_hash_undefined;
1617 h->u.undef.abfd = abfd;
1618 bfd_link_add_undef (info->hash, h);
1622 /* Make a new weak undefined symbol. */
1623 h->type = bfd_link_hash_undefweak;
1624 h->u.undef.abfd = abfd;
1625 h->u.undef.weak = abfd;
1629 /* We have found a definition for a symbol which was
1630 previously common. */
1631 BFD_ASSERT (h->type == bfd_link_hash_common);
1632 if (! ((*info->callbacks->multiple_common)
1633 (info, h->root.string,
1634 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1635 abfd, bfd_link_hash_defined, 0)))
1641 enum bfd_link_hash_type oldtype;
1643 /* Define a symbol. */
1646 h->type = bfd_link_hash_defweak;
1648 h->type = bfd_link_hash_defined;
1649 h->u.def.section = section;
1650 h->u.def.value = value;
1652 /* If we have been asked to, we act like collect2 and
1653 identify all functions that might be global
1654 constructors and destructors and pass them up in a
1655 callback. We only do this for certain object file
1656 types, since many object file types can handle this
1658 if (collect && name[0] == '_')
1662 /* A constructor or destructor name starts like this:
1663 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1664 the second are the same character (we accept any
1665 character there, in case a new object file format
1666 comes along with even worse naming restrictions). */
1668 #define CONS_PREFIX "GLOBAL_"
1669 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1674 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1678 c = s[CONS_PREFIX_LEN + 1];
1679 if ((c == 'I' || c == 'D')
1680 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1682 /* If this is a definition of a symbol which
1683 was previously weakly defined, we are in
1684 trouble. We have already added a
1685 constructor entry for the weak defined
1686 symbol, and now we are trying to add one
1687 for the new symbol. Fortunately, this case
1688 should never arise in practice. */
1689 if (oldtype == bfd_link_hash_defweak)
1692 if (! ((*info->callbacks->constructor)
1694 h->root.string, abfd, section, value)))
1704 /* We have found a common definition for a symbol. */
1705 if (h->type == bfd_link_hash_new)
1706 bfd_link_add_undef (info->hash, h);
1707 h->type = bfd_link_hash_common;
1708 h->u.c.p = (struct bfd_link_hash_common_entry *)
1709 bfd_hash_allocate (&info->hash->table,
1710 sizeof (struct bfd_link_hash_common_entry));
1711 if (h->u.c.p == NULL)
1714 h->u.c.size = value;
1716 /* Select a default alignment based on the size. This may
1717 be overridden by the caller. */
1721 power = bfd_log2 (value);
1724 h->u.c.p->alignment_power = power;
1727 /* The section of a common symbol is only used if the common
1728 symbol is actually allocated. It basically provides a
1729 hook for the linker script to decide which output section
1730 the common symbols should be put in. In most cases, the
1731 section of a common symbol will be bfd_com_section_ptr,
1732 the code here will choose a common symbol section named
1733 "COMMON", and the linker script will contain *(COMMON) in
1734 the appropriate place. A few targets use separate common
1735 sections for small symbols, and they require special
1737 if (section == bfd_com_section_ptr)
1739 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1740 h->u.c.p->section->flags = SEC_ALLOC;
1742 else if (section->owner != abfd)
1744 h->u.c.p->section = bfd_make_section_old_way (abfd,
1746 h->u.c.p->section->flags = SEC_ALLOC;
1749 h->u.c.p->section = section;
1753 /* A reference to a defined symbol. */
1754 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1755 h->u.undef.next = h;
1759 /* We have found a common definition for a symbol which
1760 already had a common definition. Use the maximum of the
1761 two sizes, and use the section required by the larger symbol. */
1762 BFD_ASSERT (h->type == bfd_link_hash_common);
1763 if (! ((*info->callbacks->multiple_common)
1764 (info, h->root.string,
1765 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1766 abfd, bfd_link_hash_common, value)))
1768 if (value > h->u.c.size)
1772 h->u.c.size = value;
1774 /* Select a default alignment based on the size. This may
1775 be overridden by the caller. */
1776 power = bfd_log2 (value);
1779 h->u.c.p->alignment_power = power;
1781 /* Some systems have special treatment for small commons,
1782 hence we want to select the section used by the larger
1783 symbol. This makes sure the symbol does not go in a
1784 small common section if it is now too large. */
1785 if (section == bfd_com_section_ptr)
1788 = bfd_make_section_old_way (abfd, "COMMON");
1789 h->u.c.p->section->flags = SEC_ALLOC;
1791 else if (section->owner != abfd)
1794 = bfd_make_section_old_way (abfd, section->name);
1795 h->u.c.p->section->flags = SEC_ALLOC;
1798 h->u.c.p->section = section;
1806 /* We have found a common definition for a symbol which
1807 was already defined. FIXME: It would nice if we could
1808 report the BFD which defined an indirect symbol, but we
1809 don't have anywhere to store the information. */
1810 if (h->type == bfd_link_hash_defined
1811 || h->type == bfd_link_hash_defweak)
1812 obfd = h->u.def.section->owner;
1815 if (! ((*info->callbacks->multiple_common)
1816 (info, h->root.string, obfd, h->type, 0,
1817 abfd, bfd_link_hash_common, value)))
1823 /* Multiple indirect symbols. This is OK if they both point
1824 to the same symbol. */
1825 if (strcmp (h->u.i.link->root.string, string) == 0)
1829 /* Handle a multiple definition. */
1830 if (!info->allow_multiple_definition)
1832 asection *msec = NULL;
1837 case bfd_link_hash_defined:
1838 msec = h->u.def.section;
1839 mval = h->u.def.value;
1841 case bfd_link_hash_indirect:
1842 msec = bfd_ind_section_ptr;
1849 /* Ignore a redefinition of an absolute symbol to the
1850 same value; it's harmless. */
1851 if (h->type == bfd_link_hash_defined
1852 && bfd_is_abs_section (msec)
1853 && bfd_is_abs_section (section)
1857 if (! ((*info->callbacks->multiple_definition)
1858 (info, h->root.string, msec->owner, msec, mval,
1859 abfd, section, value)))
1865 /* Create an indirect symbol from an existing common symbol. */
1866 BFD_ASSERT (h->type == bfd_link_hash_common);
1867 if (! ((*info->callbacks->multiple_common)
1868 (info, h->root.string,
1869 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1870 abfd, bfd_link_hash_indirect, 0)))
1874 /* Create an indirect symbol. */
1876 struct bfd_link_hash_entry *inh;
1878 /* STRING is the name of the symbol we want to indirect
1880 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1884 if (inh->type == bfd_link_hash_indirect
1885 && inh->u.i.link == h)
1887 (*_bfd_error_handler)
1888 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1889 abfd, name, string);
1890 bfd_set_error (bfd_error_invalid_operation);
1893 if (inh->type == bfd_link_hash_new)
1895 inh->type = bfd_link_hash_undefined;
1896 inh->u.undef.abfd = abfd;
1897 bfd_link_add_undef (info->hash, inh);
1900 /* If the indirect symbol has been referenced, we need to
1901 push the reference down to the symbol we are
1903 if (h->type != bfd_link_hash_new)
1909 h->type = bfd_link_hash_indirect;
1915 /* Add an entry to a set. */
1916 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1917 abfd, section, value))
1922 /* Issue a warning and cycle. */
1923 if (h->u.i.warning != NULL)
1925 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1926 h->root.string, abfd,
1929 /* Only issue a warning once. */
1930 h->u.i.warning = NULL;
1934 /* Try again with the referenced symbol. */
1940 /* A reference to an indirect symbol. */
1941 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1942 h->u.undef.next = h;
1948 /* Issue a warning. */
1949 if (! (*info->callbacks->warning) (info, string, h->root.string,
1950 hash_entry_bfd (h), NULL, 0))
1955 /* Warn if this symbol has been referenced already,
1956 otherwise add a warning. A symbol has been referenced if
1957 the u.undef.next field is not NULL, or it is the tail of the
1958 undefined symbol list. The REF case above helps to
1960 if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1962 if (! (*info->callbacks->warning) (info, string, h->root.string,
1963 hash_entry_bfd (h), NULL, 0))
1969 /* Make a warning symbol. */
1971 struct bfd_link_hash_entry *sub;
1973 /* STRING is the warning to give. */
1974 sub = ((struct bfd_link_hash_entry *)
1975 ((*info->hash->table.newfunc)
1976 (NULL, &info->hash->table, h->root.string)));
1980 sub->type = bfd_link_hash_warning;
1983 sub->u.i.warning = string;
1987 size_t len = strlen (string) + 1;
1989 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1992 memcpy (w, string, len);
1993 sub->u.i.warning = w;
1996 bfd_hash_replace (&info->hash->table,
1997 (struct bfd_hash_entry *) h,
1998 (struct bfd_hash_entry *) sub);
2010 /* Generic final link routine. */
2013 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2017 struct bfd_link_order *p;
2019 struct generic_write_global_symbol_info wginfo;
2021 bfd_get_outsymbols (abfd) = NULL;
2022 bfd_get_symcount (abfd) = 0;
2025 /* Mark all sections which will be included in the output file. */
2026 for (o = abfd->sections; o != NULL; o = o->next)
2027 for (p = o->map_head.link_order; p != NULL; p = p->next)
2028 if (p->type == bfd_indirect_link_order)
2029 p->u.indirect.section->linker_mark = TRUE;
2031 /* Build the output symbol table. */
2032 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2033 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2036 /* Accumulate the global symbols. */
2038 wginfo.output_bfd = abfd;
2039 wginfo.psymalloc = &outsymalloc;
2040 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2041 _bfd_generic_link_write_global_symbol,
2044 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2045 shouldn't really need one, since we have SYMCOUNT, but some old
2046 code still expects one. */
2047 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2050 if (info->relocatable)
2052 /* Allocate space for the output relocs for each section. */
2053 for (o = abfd->sections; o != NULL; o = o->next)
2056 for (p = o->map_head.link_order; p != NULL; p = p->next)
2058 if (p->type == bfd_section_reloc_link_order
2059 || p->type == bfd_symbol_reloc_link_order)
2061 else if (p->type == bfd_indirect_link_order)
2063 asection *input_section;
2070 input_section = p->u.indirect.section;
2071 input_bfd = input_section->owner;
2072 relsize = bfd_get_reloc_upper_bound (input_bfd,
2076 relocs = (arelent **) bfd_malloc (relsize);
2077 if (!relocs && relsize != 0)
2079 symbols = _bfd_generic_link_get_symbols (input_bfd);
2080 reloc_count = bfd_canonicalize_reloc (input_bfd,
2085 if (reloc_count < 0)
2087 BFD_ASSERT ((unsigned long) reloc_count
2088 == input_section->reloc_count);
2089 o->reloc_count += reloc_count;
2092 if (o->reloc_count > 0)
2096 amt = o->reloc_count;
2097 amt *= sizeof (arelent *);
2098 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2099 if (!o->orelocation)
2101 o->flags |= SEC_RELOC;
2102 /* Reset the count so that it can be used as an index
2103 when putting in the output relocs. */
2109 /* Handle all the link order information for the sections. */
2110 for (o = abfd->sections; o != NULL; o = o->next)
2112 for (p = o->map_head.link_order; p != NULL; p = p->next)
2116 case bfd_section_reloc_link_order:
2117 case bfd_symbol_reloc_link_order:
2118 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2121 case bfd_indirect_link_order:
2122 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2126 if (! _bfd_default_link_order (abfd, info, o, p))
2136 /* Add an output symbol to the output BFD. */
2139 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2141 if (bfd_get_symcount (output_bfd) >= *psymalloc)
2146 if (*psymalloc == 0)
2151 amt *= sizeof (asymbol *);
2152 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2153 if (newsyms == NULL)
2155 bfd_get_outsymbols (output_bfd) = newsyms;
2158 bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2160 ++ bfd_get_symcount (output_bfd);
2165 /* Handle the symbols for an input BFD. */
2168 _bfd_generic_link_output_symbols (bfd *output_bfd,
2170 struct bfd_link_info *info,
2176 if (!bfd_generic_link_read_symbols (input_bfd))
2179 /* Create a filename symbol if we are supposed to. */
2180 if (info->create_object_symbols_section != NULL)
2184 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2186 if (sec->output_section == info->create_object_symbols_section)
2190 newsym = bfd_make_empty_symbol (input_bfd);
2193 newsym->name = input_bfd->filename;
2195 newsym->flags = BSF_LOCAL | BSF_FILE;
2196 newsym->section = sec;
2198 if (! generic_add_output_symbol (output_bfd, psymalloc,
2207 /* Adjust the values of the globally visible symbols, and write out
2209 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2210 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2211 for (; sym_ptr < sym_end; sym_ptr++)
2214 struct generic_link_hash_entry *h;
2219 if ((sym->flags & (BSF_INDIRECT
2224 || bfd_is_und_section (bfd_get_section (sym))
2225 || bfd_is_com_section (bfd_get_section (sym))
2226 || bfd_is_ind_section (bfd_get_section (sym)))
2228 if (sym->udata.p != NULL)
2229 h = (struct generic_link_hash_entry *) sym->udata.p;
2230 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2232 /* This case normally means that the main linker code
2233 deliberately ignored this constructor symbol. We
2234 should just pass it through. This will screw up if
2235 the constructor symbol is from a different,
2236 non-generic, object file format, but the case will
2237 only arise when linking with -r, which will probably
2238 fail anyhow, since there will be no way to represent
2239 the relocs in the output format being used. */
2242 else if (bfd_is_und_section (bfd_get_section (sym)))
2243 h = ((struct generic_link_hash_entry *)
2244 bfd_wrapped_link_hash_lookup (output_bfd, info,
2245 bfd_asymbol_name (sym),
2246 FALSE, FALSE, TRUE));
2248 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2249 bfd_asymbol_name (sym),
2250 FALSE, FALSE, TRUE);
2254 /* Force all references to this symbol to point to
2255 the same area in memory. It is possible that
2256 this routine will be called with a hash table
2257 other than a generic hash table, so we double
2259 if (info->output_bfd->xvec == input_bfd->xvec)
2262 *sym_ptr = sym = h->sym;
2265 switch (h->root.type)
2268 case bfd_link_hash_new:
2270 case bfd_link_hash_undefined:
2272 case bfd_link_hash_undefweak:
2273 sym->flags |= BSF_WEAK;
2275 case bfd_link_hash_indirect:
2276 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2278 case bfd_link_hash_defined:
2279 sym->flags |= BSF_GLOBAL;
2280 sym->flags &=~ BSF_CONSTRUCTOR;
2281 sym->value = h->root.u.def.value;
2282 sym->section = h->root.u.def.section;
2284 case bfd_link_hash_defweak:
2285 sym->flags |= BSF_WEAK;
2286 sym->flags &=~ BSF_CONSTRUCTOR;
2287 sym->value = h->root.u.def.value;
2288 sym->section = h->root.u.def.section;
2290 case bfd_link_hash_common:
2291 sym->value = h->root.u.c.size;
2292 sym->flags |= BSF_GLOBAL;
2293 if (! bfd_is_com_section (sym->section))
2295 BFD_ASSERT (bfd_is_und_section (sym->section));
2296 sym->section = bfd_com_section_ptr;
2298 /* We do not set the section of the symbol to
2299 h->root.u.c.p->section. That value was saved so
2300 that we would know where to allocate the symbol
2301 if it was defined. In this case the type is
2302 still bfd_link_hash_common, so we did not define
2303 it, so we do not want to use that section. */
2309 /* This switch is straight from the old code in
2310 write_file_locals in ldsym.c. */
2311 if (info->strip == strip_all
2312 || (info->strip == strip_some
2313 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2314 FALSE, FALSE) == NULL))
2316 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2318 /* If this symbol is marked as occurring now, rather
2319 than at the end, output it now. This is used for
2320 COFF C_EXT FCN symbols. FIXME: There must be a
2322 if (bfd_asymbol_bfd (sym) == input_bfd
2323 && (sym->flags & BSF_NOT_AT_END) != 0)
2328 else if (bfd_is_ind_section (sym->section))
2330 else if ((sym->flags & BSF_DEBUGGING) != 0)
2332 if (info->strip == strip_none)
2337 else if (bfd_is_und_section (sym->section)
2338 || bfd_is_com_section (sym->section))
2340 else if ((sym->flags & BSF_LOCAL) != 0)
2342 if ((sym->flags & BSF_WARNING) != 0)
2346 switch (info->discard)
2352 case discard_sec_merge:
2354 if (info->relocatable
2355 || ! (sym->section->flags & SEC_MERGE))
2359 if (bfd_is_local_label (input_bfd, sym))
2370 else if ((sym->flags & BSF_CONSTRUCTOR))
2372 if (info->strip != strip_all)
2380 /* If this symbol is in a section which is not being included
2381 in the output file, then we don't want to output the
2383 if (!bfd_is_abs_section (sym->section)
2384 && bfd_section_removed_from_list (output_bfd,
2385 sym->section->output_section))
2390 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2400 /* Set the section and value of a generic BFD symbol based on a linker
2401 hash table entry. */
2404 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2411 case bfd_link_hash_new:
2412 /* This can happen when a constructor symbol is seen but we are
2413 not building constructors. */
2414 if (sym->section != NULL)
2416 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2420 sym->flags |= BSF_CONSTRUCTOR;
2421 sym->section = bfd_abs_section_ptr;
2425 case bfd_link_hash_undefined:
2426 sym->section = bfd_und_section_ptr;
2429 case bfd_link_hash_undefweak:
2430 sym->section = bfd_und_section_ptr;
2432 sym->flags |= BSF_WEAK;
2434 case bfd_link_hash_defined:
2435 sym->section = h->u.def.section;
2436 sym->value = h->u.def.value;
2438 case bfd_link_hash_defweak:
2439 sym->flags |= BSF_WEAK;
2440 sym->section = h->u.def.section;
2441 sym->value = h->u.def.value;
2443 case bfd_link_hash_common:
2444 sym->value = h->u.c.size;
2445 if (sym->section == NULL)
2446 sym->section = bfd_com_section_ptr;
2447 else if (! bfd_is_com_section (sym->section))
2449 BFD_ASSERT (bfd_is_und_section (sym->section));
2450 sym->section = bfd_com_section_ptr;
2452 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2454 case bfd_link_hash_indirect:
2455 case bfd_link_hash_warning:
2456 /* FIXME: What should we do here? */
2461 /* Write out a global symbol, if it hasn't already been written out.
2462 This is called for each symbol in the hash table. */
2465 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2468 struct generic_write_global_symbol_info *wginfo =
2469 (struct generic_write_global_symbol_info *) data;
2472 if (h->root.type == bfd_link_hash_warning)
2473 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2480 if (wginfo->info->strip == strip_all
2481 || (wginfo->info->strip == strip_some
2482 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2483 FALSE, FALSE) == NULL))
2490 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2493 sym->name = h->root.root.string;
2497 set_symbol_from_hash (sym, &h->root);
2499 sym->flags |= BSF_GLOBAL;
2501 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2504 /* FIXME: No way to return failure. */
2511 /* Create a relocation. */
2514 _bfd_generic_reloc_link_order (bfd *abfd,
2515 struct bfd_link_info *info,
2517 struct bfd_link_order *link_order)
2521 if (! info->relocatable)
2523 if (sec->orelocation == NULL)
2526 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2530 r->address = link_order->offset;
2531 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2534 bfd_set_error (bfd_error_bad_value);
2538 /* Get the symbol to use for the relocation. */
2539 if (link_order->type == bfd_section_reloc_link_order)
2540 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2543 struct generic_link_hash_entry *h;
2545 h = ((struct generic_link_hash_entry *)
2546 bfd_wrapped_link_hash_lookup (abfd, info,
2547 link_order->u.reloc.p->u.name,
2548 FALSE, FALSE, TRUE));
2552 if (! ((*info->callbacks->unattached_reloc)
2553 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2555 bfd_set_error (bfd_error_bad_value);
2558 r->sym_ptr_ptr = &h->sym;
2561 /* If this is an inplace reloc, write the addend to the object file.
2562 Otherwise, store it in the reloc addend. */
2563 if (! r->howto->partial_inplace)
2564 r->addend = link_order->u.reloc.p->addend;
2568 bfd_reloc_status_type rstat;
2573 size = bfd_get_reloc_size (r->howto);
2574 buf = (bfd_byte *) bfd_zmalloc (size);
2577 rstat = _bfd_relocate_contents (r->howto, abfd,
2578 (bfd_vma) link_order->u.reloc.p->addend,
2585 case bfd_reloc_outofrange:
2587 case bfd_reloc_overflow:
2588 if (! ((*info->callbacks->reloc_overflow)
2590 (link_order->type == bfd_section_reloc_link_order
2591 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2592 : link_order->u.reloc.p->u.name),
2593 r->howto->name, link_order->u.reloc.p->addend,
2601 loc = link_order->offset * bfd_octets_per_byte (abfd);
2602 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2610 sec->orelocation[sec->reloc_count] = r;
2616 /* Allocate a new link_order for a section. */
2618 struct bfd_link_order *
2619 bfd_new_link_order (bfd *abfd, asection *section)
2621 bfd_size_type amt = sizeof (struct bfd_link_order);
2622 struct bfd_link_order *new_lo;
2624 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2628 new_lo->type = bfd_undefined_link_order;
2630 if (section->map_tail.link_order != NULL)
2631 section->map_tail.link_order->next = new_lo;
2633 section->map_head.link_order = new_lo;
2634 section->map_tail.link_order = new_lo;
2639 /* Default link order processing routine. Note that we can not handle
2640 the reloc_link_order types here, since they depend upon the details
2641 of how the particular backends generates relocs. */
2644 _bfd_default_link_order (bfd *abfd,
2645 struct bfd_link_info *info,
2647 struct bfd_link_order *link_order)
2649 switch (link_order->type)
2651 case bfd_undefined_link_order:
2652 case bfd_section_reloc_link_order:
2653 case bfd_symbol_reloc_link_order:
2656 case bfd_indirect_link_order:
2657 return default_indirect_link_order (abfd, info, sec, link_order,
2659 case bfd_data_link_order:
2660 return default_data_link_order (abfd, info, sec, link_order);
2664 /* Default routine to handle a bfd_data_link_order. */
2667 default_data_link_order (bfd *abfd,
2668 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2670 struct bfd_link_order *link_order)
2678 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2680 size = link_order->size;
2684 fill = link_order->u.data.contents;
2685 fill_size = link_order->u.data.size;
2686 if (fill_size != 0 && fill_size < size)
2689 fill = (bfd_byte *) bfd_malloc (size);
2694 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2699 memcpy (p, link_order->u.data.contents, fill_size);
2703 while (size >= fill_size);
2705 memcpy (p, link_order->u.data.contents, (size_t) size);
2706 size = link_order->size;
2710 loc = link_order->offset * bfd_octets_per_byte (abfd);
2711 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2713 if (fill != link_order->u.data.contents)
2718 /* Default routine to handle a bfd_indirect_link_order. */
2721 default_indirect_link_order (bfd *output_bfd,
2722 struct bfd_link_info *info,
2723 asection *output_section,
2724 struct bfd_link_order *link_order,
2725 bfd_boolean generic_linker)
2727 asection *input_section;
2729 bfd_byte *contents = NULL;
2730 bfd_byte *new_contents;
2731 bfd_size_type sec_size;
2734 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2736 input_section = link_order->u.indirect.section;
2737 input_bfd = input_section->owner;
2738 if (input_section->size == 0)
2741 BFD_ASSERT (input_section->output_section == output_section);
2742 BFD_ASSERT (input_section->output_offset == link_order->offset);
2743 BFD_ASSERT (input_section->size == link_order->size);
2745 if (info->relocatable
2746 && input_section->reloc_count > 0
2747 && output_section->orelocation == NULL)
2749 /* Space has not been allocated for the output relocations.
2750 This can happen when we are called by a specific backend
2751 because somebody is attempting to link together different
2752 types of object files. Handling this case correctly is
2753 difficult, and sometimes impossible. */
2754 (*_bfd_error_handler)
2755 (_("Attempt to do relocatable link with %s input and %s output"),
2756 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2757 bfd_set_error (bfd_error_wrong_format);
2761 if (! generic_linker)
2766 /* Get the canonical symbols. The generic linker will always
2767 have retrieved them by this point, but we are being called by
2768 a specific linker, presumably because we are linking
2769 different types of object files together. */
2770 if (!bfd_generic_link_read_symbols (input_bfd))
2773 /* Since we have been called by a specific linker, rather than
2774 the generic linker, the values of the symbols will not be
2775 right. They will be the values as seen in the input file,
2776 not the values of the final link. We need to fix them up
2777 before we can relocate the section. */
2778 sympp = _bfd_generic_link_get_symbols (input_bfd);
2779 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2780 for (; sympp < symppend; sympp++)
2783 struct bfd_link_hash_entry *h;
2787 if ((sym->flags & (BSF_INDIRECT
2792 || bfd_is_und_section (bfd_get_section (sym))
2793 || bfd_is_com_section (bfd_get_section (sym))
2794 || bfd_is_ind_section (bfd_get_section (sym)))
2796 /* sym->udata may have been set by
2797 generic_link_add_symbol_list. */
2798 if (sym->udata.p != NULL)
2799 h = (struct bfd_link_hash_entry *) sym->udata.p;
2800 else if (bfd_is_und_section (bfd_get_section (sym)))
2801 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2802 bfd_asymbol_name (sym),
2803 FALSE, FALSE, TRUE);
2805 h = bfd_link_hash_lookup (info->hash,
2806 bfd_asymbol_name (sym),
2807 FALSE, FALSE, TRUE);
2809 set_symbol_from_hash (sym, h);
2814 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2815 && input_section->size != 0)
2817 /* Group section contents are set by bfd_elf_set_group_contents. */
2818 if (!output_bfd->output_has_begun)
2820 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2821 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2824 new_contents = output_section->contents;
2825 BFD_ASSERT (new_contents != NULL);
2826 BFD_ASSERT (input_section->output_offset == 0);
2830 /* Get and relocate the section contents. */
2831 sec_size = (input_section->rawsize > input_section->size
2832 ? input_section->rawsize
2833 : input_section->size);
2834 contents = (bfd_byte *) bfd_malloc (sec_size);
2835 if (contents == NULL && sec_size != 0)
2837 new_contents = (bfd_get_relocated_section_contents
2838 (output_bfd, info, link_order, contents,
2840 _bfd_generic_link_get_symbols (input_bfd)));
2845 /* Output the section contents. */
2846 loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2847 if (! bfd_set_section_contents (output_bfd, output_section,
2848 new_contents, loc, input_section->size))
2851 if (contents != NULL)
2856 if (contents != NULL)
2861 /* A little routine to count the number of relocs in a link_order
2865 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2867 register unsigned int c;
2868 register struct bfd_link_order *l;
2871 for (l = link_order; l != NULL; l = l->next)
2873 if (l->type == bfd_section_reloc_link_order
2874 || l->type == bfd_symbol_reloc_link_order)
2883 bfd_link_split_section
2886 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2889 Return nonzero if @var{sec} should be split during a
2890 reloceatable or final link.
2892 .#define bfd_link_split_section(abfd, sec) \
2893 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2899 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2900 asection *sec ATTRIBUTE_UNUSED)
2907 bfd_section_already_linked
2910 void bfd_section_already_linked (bfd *abfd, asection *sec,
2911 struct bfd_link_info *info);
2914 Check if @var{sec} has been already linked during a reloceatable
2917 .#define bfd_section_already_linked(abfd, sec, info) \
2918 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2923 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2924 once into the output. This routine checks each section, and
2925 arrange to discard it if a section of the same name has already
2926 been linked. This code assumes that all relevant sections have the
2927 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2928 section name. bfd_section_already_linked is called via
2929 bfd_map_over_sections. */
2931 /* The hash table. */
2933 static struct bfd_hash_table _bfd_section_already_linked_table;
2935 /* Support routines for the hash table used by section_already_linked,
2936 initialize the table, traverse, lookup, fill in an entry and remove
2940 bfd_section_already_linked_table_traverse
2941 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2942 void *), void *info)
2944 bfd_hash_traverse (&_bfd_section_already_linked_table,
2945 (bfd_boolean (*) (struct bfd_hash_entry *,
2950 struct bfd_section_already_linked_hash_entry *
2951 bfd_section_already_linked_table_lookup (const char *name)
2953 return ((struct bfd_section_already_linked_hash_entry *)
2954 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2959 bfd_section_already_linked_table_insert
2960 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2963 struct bfd_section_already_linked *l;
2965 /* Allocate the memory from the same obstack as the hash table is
2967 l = (struct bfd_section_already_linked *)
2968 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2972 l->next = already_linked_list->entry;
2973 already_linked_list->entry = l;
2977 static struct bfd_hash_entry *
2978 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2979 struct bfd_hash_table *table,
2980 const char *string ATTRIBUTE_UNUSED)
2982 struct bfd_section_already_linked_hash_entry *ret =
2983 (struct bfd_section_already_linked_hash_entry *)
2984 bfd_hash_allocate (table, sizeof *ret);
2995 bfd_section_already_linked_table_init (void)
2997 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2998 already_linked_newfunc,
2999 sizeof (struct bfd_section_already_linked_hash_entry),
3004 bfd_section_already_linked_table_free (void)
3006 bfd_hash_table_free (&_bfd_section_already_linked_table);
3009 /* This is used on non-ELF inputs. */
3012 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
3013 struct bfd_link_info *info)
3017 struct bfd_section_already_linked *l;
3018 struct bfd_section_already_linked_hash_entry *already_linked_list;
3021 if ((flags & SEC_LINK_ONCE) == 0)
3024 /* FIXME: When doing a relocatable link, we may have trouble
3025 copying relocations in other sections that refer to local symbols
3026 in the section being discarded. Those relocations will have to
3027 be converted somehow; as of this writing I'm not sure that any of
3028 the backends handle that correctly.
3030 It is tempting to instead not discard link once sections when
3031 doing a relocatable link (technically, they should be discarded
3032 whenever we are building constructors). However, that fails,
3033 because the linker winds up combining all the link once sections
3034 into a single large link once section, which defeats the purpose
3035 of having link once sections in the first place. */
3037 name = bfd_get_section_name (abfd, sec);
3039 already_linked_list = bfd_section_already_linked_table_lookup (name);
3041 for (l = already_linked_list->entry; l != NULL; l = l->next)
3043 bfd_boolean skip = FALSE;
3044 struct coff_comdat_info *s_comdat
3045 = bfd_coff_get_comdat_section (abfd, sec);
3046 struct coff_comdat_info *l_comdat
3047 = bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3049 /* We may have 3 different sections on the list: group section,
3050 comdat section and linkonce section. SEC may be a linkonce or
3051 comdat section. We always ignore group section. For non-COFF
3052 inputs, we also ignore comdat section.
3054 FIXME: Is that safe to match a linkonce section with a comdat
3055 section for COFF inputs? */
3056 if ((l->sec->flags & SEC_GROUP) != 0)
3058 else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3060 if (s_comdat != NULL
3062 && strcmp (s_comdat->name, l_comdat->name) != 0)
3065 else if (l_comdat != NULL)
3070 /* The section has already been linked. See if we should
3072 switch (flags & SEC_LINK_DUPLICATES)
3077 case SEC_LINK_DUPLICATES_DISCARD:
3080 case SEC_LINK_DUPLICATES_ONE_ONLY:
3081 (*_bfd_error_handler)
3082 (_("%B: warning: ignoring duplicate section `%A'\n"),
3086 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3087 /* FIXME: We should really dig out the contents of both
3088 sections and memcmp them. The COFF/PE spec says that
3089 the Microsoft linker does not implement this
3090 correctly, so I'm not going to bother doing it
3093 case SEC_LINK_DUPLICATES_SAME_SIZE:
3094 if (sec->size != l->sec->size)
3095 (*_bfd_error_handler)
3096 (_("%B: warning: duplicate section `%A' has different size\n"),
3101 /* Set the output_section field so that lang_add_section
3102 does not create a lang_input_section structure for this
3103 section. Since there might be a symbol in the section
3104 being discarded, we must retain a pointer to the section
3105 which we are really going to use. */
3106 sec->output_section = bfd_abs_section_ptr;
3107 sec->kept_section = l->sec;
3113 /* This is the first section with this name. Record it. */
3114 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3115 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3118 /* Convert symbols in excluded output sections to use a kept section. */
3121 fix_syms (struct bfd_link_hash_entry *h, void *data)
3123 bfd *obfd = (bfd *) data;
3125 if (h->type == bfd_link_hash_warning)
3128 if (h->type == bfd_link_hash_defined
3129 || h->type == bfd_link_hash_defweak)
3131 asection *s = h->u.def.section;
3133 && s->output_section != NULL
3134 && (s->output_section->flags & SEC_EXCLUDE) != 0
3135 && bfd_section_removed_from_list (obfd, s->output_section))
3139 h->u.def.value += s->output_offset + s->output_section->vma;
3141 /* Find preceding kept section. */
3142 for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3143 if ((op1->flags & SEC_EXCLUDE) == 0
3144 && !bfd_section_removed_from_list (obfd, op1))
3147 /* Find following kept section. Start at prev->next because
3148 other sections may have been added after S was removed. */
3149 if (s->output_section->prev != NULL)
3150 op = s->output_section->prev->next;
3152 op = s->output_section->owner->sections;
3153 for (; op != NULL; op = op->next)
3154 if ((op->flags & SEC_EXCLUDE) == 0
3155 && !bfd_section_removed_from_list (obfd, op))
3158 /* Choose better of two sections, based on flags. The idea
3159 is to choose a section that will be in the same segment
3160 as S would have been if it was kept. */
3164 op = bfd_abs_section_ptr;
3166 else if (op == NULL)
3168 else if (((op1->flags ^ op->flags)
3169 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3171 if (((op->flags ^ s->flags)
3172 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3173 /* We prefer to choose a loaded section. Section S
3174 doesn't have SEC_LOAD set (it being excluded, that
3175 part of the flag processing didn't happen) so we
3176 can't compare that flag to those of OP and OP1. */
3177 || ((op1->flags & SEC_LOAD) != 0
3178 && (op->flags & SEC_LOAD) == 0))
3181 else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3183 if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3186 else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3188 if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3193 /* Flags we care about are the same. Prefer the following
3194 section if that will result in a positive valued sym. */
3195 if (h->u.def.value < op->vma)
3199 h->u.def.value -= op->vma;
3200 h->u.def.section = op;
3208 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3210 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3215 bfd_generic_define_common_symbol
3218 bfd_boolean bfd_generic_define_common_symbol
3219 (bfd *output_bfd, struct bfd_link_info *info,
3220 struct bfd_link_hash_entry *h);
3223 Convert common symbol @var{h} into a defined symbol.
3224 Return TRUE on success and FALSE on failure.
3226 .#define bfd_define_common_symbol(output_bfd, info, h) \
3227 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3232 bfd_generic_define_common_symbol (bfd *output_bfd,
3233 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3234 struct bfd_link_hash_entry *h)
3236 unsigned int power_of_two;
3237 bfd_vma alignment, size;
3240 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3243 power_of_two = h->u.c.p->alignment_power;
3244 section = h->u.c.p->section;
3246 /* Increase the size of the section to align the common symbol.
3247 The alignment must be a power of two. */
3248 alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3249 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3250 section->size += alignment - 1;
3251 section->size &= -alignment;
3253 /* Adjust the section's overall alignment if necessary. */
3254 if (power_of_two > section->alignment_power)
3255 section->alignment_power = power_of_two;
3257 /* Change the symbol from common to defined. */
3258 h->type = bfd_link_hash_defined;
3259 h->u.def.section = section;
3260 h->u.def.value = section->size;
3262 /* Increase the size of the section. */
3263 section->size += size;
3265 /* Make sure the section is allocated in memory, and make sure that
3266 it is no longer a common section. */
3267 section->flags |= SEC_ALLOC;
3268 section->flags &= ~SEC_IS_COMMON;
3274 bfd_find_version_for_sym
3277 struct bfd_elf_version_tree * bfd_find_version_for_sym
3278 (struct bfd_elf_version_tree *verdefs,
3279 const char *sym_name, bfd_boolean *hide);
3282 Search an elf version script tree for symbol versioning
3283 info and export / don't-export status for a given symbol.
3284 Return non-NULL on success and NULL on failure; also sets
3285 the output @samp{hide} boolean parameter.
3289 struct bfd_elf_version_tree *
3290 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3291 const char *sym_name,
3294 struct bfd_elf_version_tree *t;
3295 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3296 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3300 star_local_ver = NULL;
3301 star_global_ver = NULL;
3303 for (t = verdefs; t != NULL; t = t->next)
3305 if (t->globals.list != NULL)
3307 struct bfd_elf_version_expr *d = NULL;
3309 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3311 if (d->literal || strcmp (d->pattern, "*") != 0)
3314 star_global_ver = t;
3318 /* If the match is a wildcard pattern, keep looking for
3319 a more explicit, perhaps even local, match. */
3328 if (t->locals.list != NULL)
3330 struct bfd_elf_version_expr *d = NULL;
3332 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3334 if (d->literal || strcmp (d->pattern, "*") != 0)
3338 /* If the match is a wildcard pattern, keep looking for
3339 a more explicit, perhaps even global, match. */
3342 /* An exact match overrides a global wildcard. */
3344 star_global_ver = NULL;
3354 if (global_ver == NULL && local_ver == NULL)
3355 global_ver = star_global_ver;
3357 if (global_ver != NULL)
3359 /* If we already have a versioned symbol that matches the
3360 node for this symbol, then we don't want to create a
3361 duplicate from the unversioned symbol. Instead hide the
3362 unversioned symbol. */
3363 *hide = exist_ver == global_ver;
3367 if (local_ver == NULL)
3368 local_ver = star_local_ver;
3370 if (local_ver != NULL)