1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
38 /* Get the ECOFF swapping routines. */
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
46 /* This structure is used to hold .got entries while estimating got
50 /* The input bfd in which the symbol is defined. */
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
57 /* If abfd == NULL, an address that must be stored in the got. */
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
65 struct mips_elf_link_hash_entry *h;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
73 /* This structure is used to hold .got information when linking. */
77 /* The global symbol in the GOT with the lowest index in the dynamic
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
96 /* Map an input bfd to a got in a multi-got link. */
98 struct mips_elf_bfd2got_hash {
100 struct mips_got_info *g;
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
106 struct mips_elf_got_per_bfd_arg
108 /* A hashtable that maps bfds to gots. */
110 /* The output bfd. */
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
130 /* Another structure used to pass arguments for got entries traversal. */
132 struct mips_elf_set_global_got_offset_arg
134 struct mips_got_info *g;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
140 struct _mips_elf_section_data
142 struct bfd_elf_section_data elf;
145 struct mips_got_info *got_info;
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
156 struct mips_elf_hash_sort_data
158 /* The symbol in the global GOT with the lowest dynamic symbol table
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
176 struct mips_elf_link_hash_entry
178 struct elf_link_hash_entry root;
180 /* External symbol information. */
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
185 unsigned int possibly_dynamic_relocs;
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
191 /* The index of the first dynamic relocation (in the .rel.dyn
192 section) against this symbol. */
193 unsigned int min_dyn_reloc_index;
195 /* We must not create a stub for a symbol that has relocations
196 related to taking the function's address, i.e. any but
197 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
199 bfd_boolean no_fn_stub;
201 /* If there is a stub that 32 bit functions should use to call this
202 16 bit function, this points to the section containing the stub. */
205 /* Whether we need the fn_stub; this is set if this symbol appears
206 in any relocs other than a 16 bit call. */
207 bfd_boolean need_fn_stub;
209 /* If there is a stub that 16 bit functions should use to call this
210 32 bit function, this points to the section containing the stub. */
213 /* This is like the call_stub field, but it is used if the function
214 being called returns a floating point value. */
215 asection *call_fp_stub;
217 /* Are we forced local? .*/
218 bfd_boolean forced_local;
221 /* MIPS ELF linker hash table. */
223 struct mips_elf_link_hash_table
225 struct elf_link_hash_table root;
227 /* We no longer use this. */
228 /* String section indices for the dynamic section symbols. */
229 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
231 /* The number of .rtproc entries. */
232 bfd_size_type procedure_count;
233 /* The size of the .compact_rel section (if SGI_COMPAT). */
234 bfd_size_type compact_rel_size;
235 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
236 entry is set to the address of __rld_obj_head as in IRIX5. */
237 bfd_boolean use_rld_obj_head;
238 /* This is the value of the __rld_map or __rld_obj_head symbol. */
240 /* This is set if we see any mips16 stub sections. */
241 bfd_boolean mips16_stubs_seen;
244 /* Structure used to pass information to mips_elf_output_extsym. */
249 struct bfd_link_info *info;
250 struct ecoff_debug_info *debug;
251 const struct ecoff_debug_swap *swap;
255 /* The names of the runtime procedure table symbols used on IRIX5. */
257 static const char * const mips_elf_dynsym_rtproc_names[] =
260 "_procedure_string_table",
261 "_procedure_table_size",
265 /* These structures are used to generate the .compact_rel section on
270 unsigned long id1; /* Always one? */
271 unsigned long num; /* Number of compact relocation entries. */
272 unsigned long id2; /* Always two? */
273 unsigned long offset; /* The file offset of the first relocation. */
274 unsigned long reserved0; /* Zero? */
275 unsigned long reserved1; /* Zero? */
284 bfd_byte reserved0[4];
285 bfd_byte reserved1[4];
286 } Elf32_External_compact_rel;
290 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
291 unsigned int rtype : 4; /* Relocation types. See below. */
292 unsigned int dist2to : 8;
293 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
294 unsigned long konst; /* KONST field. See below. */
295 unsigned long vaddr; /* VADDR to be relocated. */
300 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
301 unsigned int rtype : 4; /* Relocation types. See below. */
302 unsigned int dist2to : 8;
303 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
304 unsigned long konst; /* KONST field. See below. */
312 } Elf32_External_crinfo;
318 } Elf32_External_crinfo2;
320 /* These are the constants used to swap the bitfields in a crinfo. */
322 #define CRINFO_CTYPE (0x1)
323 #define CRINFO_CTYPE_SH (31)
324 #define CRINFO_RTYPE (0xf)
325 #define CRINFO_RTYPE_SH (27)
326 #define CRINFO_DIST2TO (0xff)
327 #define CRINFO_DIST2TO_SH (19)
328 #define CRINFO_RELVADDR (0x7ffff)
329 #define CRINFO_RELVADDR_SH (0)
331 /* A compact relocation info has long (3 words) or short (2 words)
332 formats. A short format doesn't have VADDR field and relvaddr
333 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
334 #define CRF_MIPS_LONG 1
335 #define CRF_MIPS_SHORT 0
337 /* There are 4 types of compact relocation at least. The value KONST
338 has different meaning for each type:
341 CT_MIPS_REL32 Address in data
342 CT_MIPS_WORD Address in word (XXX)
343 CT_MIPS_GPHI_LO GP - vaddr
344 CT_MIPS_JMPAD Address to jump
347 #define CRT_MIPS_REL32 0xa
348 #define CRT_MIPS_WORD 0xb
349 #define CRT_MIPS_GPHI_LO 0xc
350 #define CRT_MIPS_JMPAD 0xd
352 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
353 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
354 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
355 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
357 /* The structure of the runtime procedure descriptor created by the
358 loader for use by the static exception system. */
360 typedef struct runtime_pdr {
361 bfd_vma adr; /* Memory address of start of procedure. */
362 long regmask; /* Save register mask. */
363 long regoffset; /* Save register offset. */
364 long fregmask; /* Save floating point register mask. */
365 long fregoffset; /* Save floating point register offset. */
366 long frameoffset; /* Frame size. */
367 short framereg; /* Frame pointer register. */
368 short pcreg; /* Offset or reg of return pc. */
369 long irpss; /* Index into the runtime string table. */
371 struct exception_info *exception_info;/* Pointer to exception array. */
373 #define cbRPDR sizeof (RPDR)
374 #define rpdNil ((pRPDR) 0)
376 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
377 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
378 static void ecoff_swap_rpdr_out
379 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
380 static bfd_boolean mips_elf_create_procedure_table
381 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
382 struct ecoff_debug_info *));
383 static bfd_boolean mips_elf_check_mips16_stubs
384 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
385 static void bfd_mips_elf32_swap_gptab_in
386 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
387 static void bfd_mips_elf32_swap_gptab_out
388 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
389 static void bfd_elf32_swap_compact_rel_out
390 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
391 static void bfd_elf32_swap_crinfo_out
392 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
394 static void bfd_mips_elf_swap_msym_in
395 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
397 static void bfd_mips_elf_swap_msym_out
398 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
399 static int sort_dynamic_relocs
400 PARAMS ((const void *, const void *));
401 static int sort_dynamic_relocs_64
402 PARAMS ((const void *, const void *));
403 static bfd_boolean mips_elf_output_extsym
404 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
405 static int gptab_compare PARAMS ((const void *, const void *));
406 static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean));
407 static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean));
408 static struct mips_got_info *mips_elf_got_info
409 PARAMS ((bfd *, asection **));
410 static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd));
411 static bfd_vma mips_elf_local_got_index
412 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma));
413 static bfd_vma mips_elf_global_got_index
414 PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *));
415 static bfd_vma mips_elf_got_page
416 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
417 static bfd_vma mips_elf_got16_entry
418 PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean));
419 static bfd_vma mips_elf_got_offset_from_index
420 PARAMS ((bfd *, bfd *, bfd *, bfd_vma));
421 static struct mips_got_entry *mips_elf_create_local_got_entry
422 PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma));
423 static bfd_boolean mips_elf_sort_hash_table
424 PARAMS ((struct bfd_link_info *, unsigned long));
425 static bfd_boolean mips_elf_sort_hash_table_f
426 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
427 static bfd_boolean mips_elf_record_local_got_symbol
428 PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *));
429 static bfd_boolean mips_elf_record_global_got_symbol
430 PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
431 struct mips_got_info *));
432 static const Elf_Internal_Rela *mips_elf_next_relocation
433 PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *,
434 const Elf_Internal_Rela *));
435 static bfd_boolean mips_elf_local_relocation_p
436 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean));
437 static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
438 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
439 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
440 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
441 static bfd_boolean mips_elf_create_compact_rel_section
442 PARAMS ((bfd *, struct bfd_link_info *));
443 static bfd_boolean mips_elf_create_got_section
444 PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean));
445 static asection *mips_elf_create_msym_section
447 static bfd_reloc_status_type mips_elf_calculate_relocation
448 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
449 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
450 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
451 bfd_boolean *, bfd_boolean));
452 static bfd_vma mips_elf_obtain_contents
453 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
454 static bfd_boolean mips_elf_perform_relocation
455 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
456 const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *,
458 static bfd_boolean mips_elf_stub_section_p
459 PARAMS ((bfd *, asection *));
460 static void mips_elf_allocate_dynamic_relocations
461 PARAMS ((bfd *, unsigned int));
462 static bfd_boolean mips_elf_create_dynamic_relocation
463 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
464 struct mips_elf_link_hash_entry *, asection *,
465 bfd_vma, bfd_vma *, asection *));
466 static void mips_set_isa_flags PARAMS ((bfd *));
467 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
468 static void mips_elf_irix6_finish_dynamic_symbol
469 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
470 static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long));
471 static bfd_boolean mips_32bit_flags_p PARAMS ((flagword));
472 static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma));
473 static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR));
474 static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR));
476 static bfd_boolean mips_elf_multi_got
477 PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *,
478 asection *, bfd_size_type));
479 static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR));
480 static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR));
481 static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR));
482 static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR));
483 static int mips_elf_make_got_per_bfd PARAMS ((void **, void *));
484 static int mips_elf_merge_gots PARAMS ((void **, void *));
485 static int mips_elf_set_global_got_offset PARAMS ((void**, void *));
486 static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *));
487 static void mips_elf_resolve_final_got_entries
488 PARAMS ((struct mips_got_info *));
489 static bfd_vma mips_elf_adjust_gp
490 PARAMS ((bfd *, struct mips_got_info *, bfd *));
491 static struct mips_got_info *mips_elf_got_for_ibfd
492 PARAMS ((struct mips_got_info *, bfd *));
494 /* This will be used when we sort the dynamic relocation records. */
495 static bfd *reldyn_sorting_bfd;
497 /* Nonzero if ABFD is using the N32 ABI. */
499 #define ABI_N32_P(abfd) \
500 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
502 /* Nonzero if ABFD is using the N64 ABI. */
503 #define ABI_64_P(abfd) \
504 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
506 /* Nonzero if ABFD is using NewABI conventions. */
507 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
509 /* The IRIX compatibility level we are striving for. */
510 #define IRIX_COMPAT(abfd) \
511 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
513 /* Whether we are trying to be compatible with IRIX at all. */
514 #define SGI_COMPAT(abfd) \
515 (IRIX_COMPAT (abfd) != ict_none)
517 /* The name of the options section. */
518 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
519 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
521 /* The name of the stub section. */
522 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
523 (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub")
525 /* The size of an external REL relocation. */
526 #define MIPS_ELF_REL_SIZE(abfd) \
527 (get_elf_backend_data (abfd)->s->sizeof_rel)
529 /* The size of an external dynamic table entry. */
530 #define MIPS_ELF_DYN_SIZE(abfd) \
531 (get_elf_backend_data (abfd)->s->sizeof_dyn)
533 /* The size of a GOT entry. */
534 #define MIPS_ELF_GOT_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->arch_size / 8)
537 /* The size of a symbol-table entry. */
538 #define MIPS_ELF_SYM_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_sym)
541 /* The default alignment for sections, as a power of two. */
542 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
543 (get_elf_backend_data (abfd)->s->log_file_align)
545 /* Get word-sized data. */
546 #define MIPS_ELF_GET_WORD(abfd, ptr) \
547 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
549 /* Put out word-sized data. */
550 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
552 ? bfd_put_64 (abfd, val, ptr) \
553 : bfd_put_32 (abfd, val, ptr))
555 /* Add a dynamic symbol table-entry. */
557 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
558 (ABI_64_P (elf_hash_table (info)->dynobj) \
559 ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \
560 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
562 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
563 (ABI_64_P (elf_hash_table (info)->dynobj) \
564 ? (abort (), FALSE) \
565 : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val))
568 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
569 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
571 /* Determine whether the internal relocation of index REL_IDX is REL
572 (zero) or RELA (non-zero). The assumption is that, if there are
573 two relocation sections for this section, one of them is REL and
574 the other is RELA. If the index of the relocation we're testing is
575 in range for the first relocation section, check that the external
576 relocation size is that for RELA. It is also assumed that, if
577 rel_idx is not in range for the first section, and this first
578 section contains REL relocs, then the relocation is in the second
579 section, that is RELA. */
580 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
581 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
582 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
583 > (bfd_vma)(rel_idx)) \
584 == (elf_section_data (sec)->rel_hdr.sh_entsize \
585 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
586 : sizeof (Elf32_External_Rela))))
588 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
589 from smaller values. Start with zero, widen, *then* decrement. */
590 #define MINUS_ONE (((bfd_vma)0) - 1)
592 /* The number of local .got entries we reserve. */
593 #define MIPS_RESERVED_GOTNO (2)
595 /* The offset of $gp from the beginning of the .got section. */
596 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
598 /* The maximum size of the GOT for it to be addressable using 16-bit
600 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
602 /* Instructions which appear in a stub. For some reason the stub is
603 slightly different on an SGI system. */
604 #define STUB_LW(abfd) \
606 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
607 : 0x8f998010)) /* lw t9,0x8010(gp) */
608 #define STUB_MOVE(abfd) \
609 (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */
610 #define STUB_JALR 0x0320f809 /* jal t9 */
611 #define STUB_LI16(abfd) \
612 (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */
613 #define MIPS_FUNCTION_STUB_SIZE (16)
615 /* The name of the dynamic interpreter. This is put in the .interp
618 #define ELF_DYNAMIC_INTERPRETER(abfd) \
619 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
620 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
621 : "/usr/lib/libc.so.1")
624 #define MNAME(bfd,pre,pos) \
625 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
626 #define ELF_R_SYM(bfd, i) \
627 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
628 #define ELF_R_TYPE(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
630 #define ELF_R_INFO(bfd, s, t) \
631 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
633 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
634 #define ELF_R_SYM(bfd, i) \
636 #define ELF_R_TYPE(bfd, i) \
638 #define ELF_R_INFO(bfd, s, t) \
639 (ELF32_R_INFO (s, t))
642 /* The mips16 compiler uses a couple of special sections to handle
643 floating point arguments.
645 Section names that look like .mips16.fn.FNNAME contain stubs that
646 copy floating point arguments from the fp regs to the gp regs and
647 then jump to FNNAME. If any 32 bit function calls FNNAME, the
648 call should be redirected to the stub instead. If no 32 bit
649 function calls FNNAME, the stub should be discarded. We need to
650 consider any reference to the function, not just a call, because
651 if the address of the function is taken we will need the stub,
652 since the address might be passed to a 32 bit function.
654 Section names that look like .mips16.call.FNNAME contain stubs
655 that copy floating point arguments from the gp regs to the fp
656 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
657 then any 16 bit function that calls FNNAME should be redirected
658 to the stub instead. If FNNAME is not a 32 bit function, the
659 stub should be discarded.
661 .mips16.call.fp.FNNAME sections are similar, but contain stubs
662 which call FNNAME and then copy the return value from the fp regs
663 to the gp regs. These stubs store the return value in $18 while
664 calling FNNAME; any function which might call one of these stubs
665 must arrange to save $18 around the call. (This case is not
666 needed for 32 bit functions that call 16 bit functions, because
667 16 bit functions always return floating point values in both
670 Note that in all cases FNNAME might be defined statically.
671 Therefore, FNNAME is not used literally. Instead, the relocation
672 information will indicate which symbol the section is for.
674 We record any stubs that we find in the symbol table. */
676 #define FN_STUB ".mips16.fn."
677 #define CALL_STUB ".mips16.call."
678 #define CALL_FP_STUB ".mips16.call.fp."
680 /* Look up an entry in a MIPS ELF linker hash table. */
682 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
683 ((struct mips_elf_link_hash_entry *) \
684 elf_link_hash_lookup (&(table)->root, (string), (create), \
687 /* Traverse a MIPS ELF linker hash table. */
689 #define mips_elf_link_hash_traverse(table, func, info) \
690 (elf_link_hash_traverse \
692 (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
695 /* Get the MIPS ELF linker hash table from a link_info structure. */
697 #define mips_elf_hash_table(p) \
698 ((struct mips_elf_link_hash_table *) ((p)->hash))
700 /* Create an entry in a MIPS ELF linker hash table. */
702 static struct bfd_hash_entry *
703 mips_elf_link_hash_newfunc (entry, table, string)
704 struct bfd_hash_entry *entry;
705 struct bfd_hash_table *table;
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
711 /* Allocate the structure if it has not already been allocated by a
713 if (ret == (struct mips_elf_link_hash_entry *) NULL)
714 ret = ((struct mips_elf_link_hash_entry *)
715 bfd_hash_allocate (table,
716 sizeof (struct mips_elf_link_hash_entry)));
717 if (ret == (struct mips_elf_link_hash_entry *) NULL)
718 return (struct bfd_hash_entry *) ret;
720 /* Call the allocation method of the superclass. */
721 ret = ((struct mips_elf_link_hash_entry *)
722 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
724 if (ret != (struct mips_elf_link_hash_entry *) NULL)
726 /* Set local fields. */
727 memset (&ret->esym, 0, sizeof (EXTR));
728 /* We use -2 as a marker to indicate that the information has
729 not been set. -1 means there is no associated ifd. */
731 ret->possibly_dynamic_relocs = 0;
732 ret->readonly_reloc = FALSE;
733 ret->min_dyn_reloc_index = 0;
734 ret->no_fn_stub = FALSE;
736 ret->need_fn_stub = FALSE;
737 ret->call_stub = NULL;
738 ret->call_fp_stub = NULL;
739 ret->forced_local = FALSE;
742 return (struct bfd_hash_entry *) ret;
746 _bfd_mips_elf_new_section_hook (abfd, sec)
750 struct _mips_elf_section_data *sdata;
751 bfd_size_type amt = sizeof (*sdata);
753 sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt);
756 sec->used_by_bfd = (PTR) sdata;
758 return _bfd_elf_new_section_hook (abfd, sec);
761 /* Read ECOFF debugging information from a .mdebug section into a
762 ecoff_debug_info structure. */
765 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
768 struct ecoff_debug_info *debug;
771 const struct ecoff_debug_swap *swap;
772 char *ext_hdr = NULL;
774 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
775 memset (debug, 0, sizeof (*debug));
777 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
778 if (ext_hdr == NULL && swap->external_hdr_size != 0)
781 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
782 swap->external_hdr_size))
785 symhdr = &debug->symbolic_header;
786 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
788 /* The symbolic header contains absolute file offsets and sizes to
790 #define READ(ptr, offset, count, size, type) \
791 if (symhdr->count == 0) \
795 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
796 debug->ptr = (type) bfd_malloc (amt); \
797 if (debug->ptr == NULL) \
799 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
800 || bfd_bread (debug->ptr, amt, abfd) != amt) \
804 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
805 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
806 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
807 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
808 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
809 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
811 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
812 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
813 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
814 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
815 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
819 debug->adjust = NULL;
826 if (debug->line != NULL)
828 if (debug->external_dnr != NULL)
829 free (debug->external_dnr);
830 if (debug->external_pdr != NULL)
831 free (debug->external_pdr);
832 if (debug->external_sym != NULL)
833 free (debug->external_sym);
834 if (debug->external_opt != NULL)
835 free (debug->external_opt);
836 if (debug->external_aux != NULL)
837 free (debug->external_aux);
838 if (debug->ss != NULL)
840 if (debug->ssext != NULL)
842 if (debug->external_fdr != NULL)
843 free (debug->external_fdr);
844 if (debug->external_rfd != NULL)
845 free (debug->external_rfd);
846 if (debug->external_ext != NULL)
847 free (debug->external_ext);
851 /* Swap RPDR (runtime procedure table entry) for output. */
854 ecoff_swap_rpdr_out (abfd, in, ex)
859 H_PUT_S32 (abfd, in->adr, ex->p_adr);
860 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
861 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
862 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
863 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
864 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
866 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
867 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
869 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
871 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
875 /* Create a runtime procedure table from the .mdebug section. */
878 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
881 struct bfd_link_info *info;
883 struct ecoff_debug_info *debug;
885 const struct ecoff_debug_swap *swap;
886 HDRR *hdr = &debug->symbolic_header;
888 struct rpdr_ext *erp;
890 struct pdr_ext *epdr;
891 struct sym_ext *esym;
896 unsigned long sindex;
900 const char *no_name_func = _("static procedure (no name)");
908 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
910 sindex = strlen (no_name_func) + 1;
914 size = swap->external_pdr_size;
916 epdr = (struct pdr_ext *) bfd_malloc (size * count);
920 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
923 size = sizeof (RPDR);
924 rp = rpdr = (RPDR *) bfd_malloc (size * count);
928 size = sizeof (char *);
929 sv = (char **) bfd_malloc (size * count);
933 count = hdr->isymMax;
934 size = swap->external_sym_size;
935 esym = (struct sym_ext *) bfd_malloc (size * count);
939 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
943 ss = (char *) bfd_malloc (count);
946 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
950 for (i = 0; i < (unsigned long) count; i++, rp++)
952 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
953 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
955 rp->regmask = pdr.regmask;
956 rp->regoffset = pdr.regoffset;
957 rp->fregmask = pdr.fregmask;
958 rp->fregoffset = pdr.fregoffset;
959 rp->frameoffset = pdr.frameoffset;
960 rp->framereg = pdr.framereg;
961 rp->pcreg = pdr.pcreg;
963 sv[i] = ss + sym.iss;
964 sindex += strlen (sv[i]) + 1;
968 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
969 size = BFD_ALIGN (size, 16);
970 rtproc = (PTR) bfd_alloc (abfd, size);
973 mips_elf_hash_table (info)->procedure_count = 0;
977 mips_elf_hash_table (info)->procedure_count = count + 2;
979 erp = (struct rpdr_ext *) rtproc;
980 memset (erp, 0, sizeof (struct rpdr_ext));
982 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
983 strcpy (str, no_name_func);
984 str += strlen (no_name_func) + 1;
985 for (i = 0; i < count; i++)
987 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
989 str += strlen (sv[i]) + 1;
991 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
993 /* Set the size and contents of .rtproc section. */
995 s->contents = (bfd_byte *) rtproc;
997 /* Skip this section later on (I don't think this currently
998 matters, but someday it might). */
999 s->link_order_head = (struct bfd_link_order *) NULL;
1028 /* Check the mips16 stubs for a particular symbol, and see if we can
1032 mips_elf_check_mips16_stubs (h, data)
1033 struct mips_elf_link_hash_entry *h;
1034 PTR data ATTRIBUTE_UNUSED;
1036 if (h->root.root.type == bfd_link_hash_warning)
1037 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1039 if (h->fn_stub != NULL
1040 && ! h->need_fn_stub)
1042 /* We don't need the fn_stub; the only references to this symbol
1043 are 16 bit calls. Clobber the size to 0 to prevent it from
1044 being included in the link. */
1045 h->fn_stub->_raw_size = 0;
1046 h->fn_stub->_cooked_size = 0;
1047 h->fn_stub->flags &= ~SEC_RELOC;
1048 h->fn_stub->reloc_count = 0;
1049 h->fn_stub->flags |= SEC_EXCLUDE;
1052 if (h->call_stub != NULL
1053 && h->root.other == STO_MIPS16)
1055 /* We don't need the call_stub; this is a 16 bit function, so
1056 calls from other 16 bit functions are OK. Clobber the size
1057 to 0 to prevent it from being included in the link. */
1058 h->call_stub->_raw_size = 0;
1059 h->call_stub->_cooked_size = 0;
1060 h->call_stub->flags &= ~SEC_RELOC;
1061 h->call_stub->reloc_count = 0;
1062 h->call_stub->flags |= SEC_EXCLUDE;
1065 if (h->call_fp_stub != NULL
1066 && h->root.other == STO_MIPS16)
1068 /* We don't need the call_stub; this is a 16 bit function, so
1069 calls from other 16 bit functions are OK. Clobber the size
1070 to 0 to prevent it from being included in the link. */
1071 h->call_fp_stub->_raw_size = 0;
1072 h->call_fp_stub->_cooked_size = 0;
1073 h->call_fp_stub->flags &= ~SEC_RELOC;
1074 h->call_fp_stub->reloc_count = 0;
1075 h->call_fp_stub->flags |= SEC_EXCLUDE;
1081 bfd_reloc_status_type
1082 _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1083 relocatable, data, gp)
1086 arelent *reloc_entry;
1087 asection *input_section;
1088 bfd_boolean relocatable;
1093 unsigned long insn = 0;
1096 if (bfd_is_com_section (symbol->section))
1099 relocation = symbol->value;
1101 relocation += symbol->section->output_section->vma;
1102 relocation += symbol->section->output_offset;
1104 if (reloc_entry->address > input_section->_cooked_size)
1105 return bfd_reloc_outofrange;
1107 /* Set val to the offset into the section or symbol. */
1108 val = reloc_entry->addend;
1110 if (reloc_entry->howto->partial_inplace)
1112 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1113 val += insn & 0xffff;
1116 _bfd_mips_elf_sign_extend(val, 16);
1118 /* Adjust val for the final section location and GP value. If we
1119 are producing relocatable output, we don't want to do this for
1120 an external symbol. */
1122 || (symbol->flags & BSF_SECTION_SYM) != 0)
1123 val += relocation - gp;
1125 if (reloc_entry->howto->partial_inplace)
1127 insn = (insn & ~0xffff) | (val & 0xffff);
1128 bfd_put_32 (abfd, (bfd_vma) insn,
1129 (bfd_byte *) data + reloc_entry->address);
1132 reloc_entry->addend = val;
1135 reloc_entry->address += input_section->output_offset;
1136 else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0))
1137 return bfd_reloc_overflow;
1139 return bfd_reloc_ok;
1142 /* Swap an entry in a .gptab section. Note that these routines rely
1143 on the equivalence of the two elements of the union. */
1146 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
1148 const Elf32_External_gptab *ex;
1151 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1152 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1156 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
1158 const Elf32_gptab *in;
1159 Elf32_External_gptab *ex;
1161 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1162 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1166 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
1168 const Elf32_compact_rel *in;
1169 Elf32_External_compact_rel *ex;
1171 H_PUT_32 (abfd, in->id1, ex->id1);
1172 H_PUT_32 (abfd, in->num, ex->num);
1173 H_PUT_32 (abfd, in->id2, ex->id2);
1174 H_PUT_32 (abfd, in->offset, ex->offset);
1175 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1176 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1180 bfd_elf32_swap_crinfo_out (abfd, in, ex)
1182 const Elf32_crinfo *in;
1183 Elf32_External_crinfo *ex;
1187 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1188 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1189 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1190 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1191 H_PUT_32 (abfd, l, ex->info);
1192 H_PUT_32 (abfd, in->konst, ex->konst);
1193 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1197 /* Swap in an MSYM entry. */
1200 bfd_mips_elf_swap_msym_in (abfd, ex, in)
1202 const Elf32_External_Msym *ex;
1203 Elf32_Internal_Msym *in;
1205 in->ms_hash_value = H_GET_32 (abfd, ex->ms_hash_value);
1206 in->ms_info = H_GET_32 (abfd, ex->ms_info);
1209 /* Swap out an MSYM entry. */
1212 bfd_mips_elf_swap_msym_out (abfd, in, ex)
1214 const Elf32_Internal_Msym *in;
1215 Elf32_External_Msym *ex;
1217 H_PUT_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
1218 H_PUT_32 (abfd, in->ms_info, ex->ms_info);
1221 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1222 routines swap this structure in and out. They are used outside of
1223 BFD, so they are globally visible. */
1226 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1228 const Elf32_External_RegInfo *ex;
1231 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1232 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1233 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1234 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1235 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1236 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1240 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1242 const Elf32_RegInfo *in;
1243 Elf32_External_RegInfo *ex;
1245 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1246 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1247 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1248 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1249 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1250 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1253 /* In the 64 bit ABI, the .MIPS.options section holds register
1254 information in an Elf64_Reginfo structure. These routines swap
1255 them in and out. They are globally visible because they are used
1256 outside of BFD. These routines are here so that gas can call them
1257 without worrying about whether the 64 bit ABI has been included. */
1260 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
1262 const Elf64_External_RegInfo *ex;
1263 Elf64_Internal_RegInfo *in;
1265 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1266 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1267 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1268 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1269 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1270 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1271 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1275 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
1277 const Elf64_Internal_RegInfo *in;
1278 Elf64_External_RegInfo *ex;
1280 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1281 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1282 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1283 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1284 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1285 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1286 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1289 /* Swap in an options header. */
1292 bfd_mips_elf_swap_options_in (abfd, ex, in)
1294 const Elf_External_Options *ex;
1295 Elf_Internal_Options *in;
1297 in->kind = H_GET_8 (abfd, ex->kind);
1298 in->size = H_GET_8 (abfd, ex->size);
1299 in->section = H_GET_16 (abfd, ex->section);
1300 in->info = H_GET_32 (abfd, ex->info);
1303 /* Swap out an options header. */
1306 bfd_mips_elf_swap_options_out (abfd, in, ex)
1308 const Elf_Internal_Options *in;
1309 Elf_External_Options *ex;
1311 H_PUT_8 (abfd, in->kind, ex->kind);
1312 H_PUT_8 (abfd, in->size, ex->size);
1313 H_PUT_16 (abfd, in->section, ex->section);
1314 H_PUT_32 (abfd, in->info, ex->info);
1317 /* This function is called via qsort() to sort the dynamic relocation
1318 entries by increasing r_symndx value. */
1321 sort_dynamic_relocs (arg1, arg2)
1325 Elf_Internal_Rela int_reloc1;
1326 Elf_Internal_Rela int_reloc2;
1328 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1329 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1331 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1334 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1337 sort_dynamic_relocs_64 (arg1, arg2)
1341 Elf_Internal_Rela int_reloc1[3];
1342 Elf_Internal_Rela int_reloc2[3];
1344 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1345 (reldyn_sorting_bfd, arg1, int_reloc1);
1346 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1347 (reldyn_sorting_bfd, arg2, int_reloc2);
1349 return (ELF64_R_SYM (int_reloc1[0].r_info)
1350 - ELF64_R_SYM (int_reloc2[0].r_info));
1354 /* This routine is used to write out ECOFF debugging external symbol
1355 information. It is called via mips_elf_link_hash_traverse. The
1356 ECOFF external symbol information must match the ELF external
1357 symbol information. Unfortunately, at this point we don't know
1358 whether a symbol is required by reloc information, so the two
1359 tables may wind up being different. We must sort out the external
1360 symbol information before we can set the final size of the .mdebug
1361 section, and we must set the size of the .mdebug section before we
1362 can relocate any sections, and we can't know which symbols are
1363 required by relocation until we relocate the sections.
1364 Fortunately, it is relatively unlikely that any symbol will be
1365 stripped but required by a reloc. In particular, it can not happen
1366 when generating a final executable. */
1369 mips_elf_output_extsym (h, data)
1370 struct mips_elf_link_hash_entry *h;
1373 struct extsym_info *einfo = (struct extsym_info *) data;
1375 asection *sec, *output_section;
1377 if (h->root.root.type == bfd_link_hash_warning)
1378 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1380 if (h->root.indx == -2)
1382 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1383 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1384 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1385 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1387 else if (einfo->info->strip == strip_all
1388 || (einfo->info->strip == strip_some
1389 && bfd_hash_lookup (einfo->info->keep_hash,
1390 h->root.root.root.string,
1391 FALSE, FALSE) == NULL))
1399 if (h->esym.ifd == -2)
1402 h->esym.cobol_main = 0;
1403 h->esym.weakext = 0;
1404 h->esym.reserved = 0;
1405 h->esym.ifd = ifdNil;
1406 h->esym.asym.value = 0;
1407 h->esym.asym.st = stGlobal;
1409 if (h->root.root.type == bfd_link_hash_undefined
1410 || h->root.root.type == bfd_link_hash_undefweak)
1414 /* Use undefined class. Also, set class and type for some
1416 name = h->root.root.root.string;
1417 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1418 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1420 h->esym.asym.sc = scData;
1421 h->esym.asym.st = stLabel;
1422 h->esym.asym.value = 0;
1424 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1426 h->esym.asym.sc = scAbs;
1427 h->esym.asym.st = stLabel;
1428 h->esym.asym.value =
1429 mips_elf_hash_table (einfo->info)->procedure_count;
1431 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1433 h->esym.asym.sc = scAbs;
1434 h->esym.asym.st = stLabel;
1435 h->esym.asym.value = elf_gp (einfo->abfd);
1438 h->esym.asym.sc = scUndefined;
1440 else if (h->root.root.type != bfd_link_hash_defined
1441 && h->root.root.type != bfd_link_hash_defweak)
1442 h->esym.asym.sc = scAbs;
1447 sec = h->root.root.u.def.section;
1448 output_section = sec->output_section;
1450 /* When making a shared library and symbol h is the one from
1451 the another shared library, OUTPUT_SECTION may be null. */
1452 if (output_section == NULL)
1453 h->esym.asym.sc = scUndefined;
1456 name = bfd_section_name (output_section->owner, output_section);
1458 if (strcmp (name, ".text") == 0)
1459 h->esym.asym.sc = scText;
1460 else if (strcmp (name, ".data") == 0)
1461 h->esym.asym.sc = scData;
1462 else if (strcmp (name, ".sdata") == 0)
1463 h->esym.asym.sc = scSData;
1464 else if (strcmp (name, ".rodata") == 0
1465 || strcmp (name, ".rdata") == 0)
1466 h->esym.asym.sc = scRData;
1467 else if (strcmp (name, ".bss") == 0)
1468 h->esym.asym.sc = scBss;
1469 else if (strcmp (name, ".sbss") == 0)
1470 h->esym.asym.sc = scSBss;
1471 else if (strcmp (name, ".init") == 0)
1472 h->esym.asym.sc = scInit;
1473 else if (strcmp (name, ".fini") == 0)
1474 h->esym.asym.sc = scFini;
1476 h->esym.asym.sc = scAbs;
1480 h->esym.asym.reserved = 0;
1481 h->esym.asym.index = indexNil;
1484 if (h->root.root.type == bfd_link_hash_common)
1485 h->esym.asym.value = h->root.root.u.c.size;
1486 else if (h->root.root.type == bfd_link_hash_defined
1487 || h->root.root.type == bfd_link_hash_defweak)
1489 if (h->esym.asym.sc == scCommon)
1490 h->esym.asym.sc = scBss;
1491 else if (h->esym.asym.sc == scSCommon)
1492 h->esym.asym.sc = scSBss;
1494 sec = h->root.root.u.def.section;
1495 output_section = sec->output_section;
1496 if (output_section != NULL)
1497 h->esym.asym.value = (h->root.root.u.def.value
1498 + sec->output_offset
1499 + output_section->vma);
1501 h->esym.asym.value = 0;
1503 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1505 struct mips_elf_link_hash_entry *hd = h;
1506 bfd_boolean no_fn_stub = h->no_fn_stub;
1508 while (hd->root.root.type == bfd_link_hash_indirect)
1510 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1511 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1516 /* Set type and value for a symbol with a function stub. */
1517 h->esym.asym.st = stProc;
1518 sec = hd->root.root.u.def.section;
1520 h->esym.asym.value = 0;
1523 output_section = sec->output_section;
1524 if (output_section != NULL)
1525 h->esym.asym.value = (hd->root.plt.offset
1526 + sec->output_offset
1527 + output_section->vma);
1529 h->esym.asym.value = 0;
1537 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1538 h->root.root.root.string,
1541 einfo->failed = TRUE;
1548 /* A comparison routine used to sort .gptab entries. */
1551 gptab_compare (p1, p2)
1555 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
1556 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
1558 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1561 /* Functions to manage the got entry hash table. */
1563 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1566 static INLINE hashval_t
1567 mips_elf_hash_bfd_vma (addr)
1571 return addr + (addr >> 32);
1577 /* got_entries only match if they're identical, except for gotidx, so
1578 use all fields to compute the hash, and compare the appropriate
1582 mips_elf_got_entry_hash (entry_)
1585 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1587 return entry->symndx
1588 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1590 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1591 : entry->d.h->root.root.root.hash));
1595 mips_elf_got_entry_eq (entry1, entry2)
1599 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1600 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1602 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1603 && (! e1->abfd ? e1->d.address == e2->d.address
1604 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1605 : e1->d.h == e2->d.h);
1608 /* multi_got_entries are still a match in the case of global objects,
1609 even if the input bfd in which they're referenced differs, so the
1610 hash computation and compare functions are adjusted
1614 mips_elf_multi_got_entry_hash (entry_)
1617 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1619 return entry->symndx
1621 ? mips_elf_hash_bfd_vma (entry->d.address)
1622 : entry->symndx >= 0
1624 + mips_elf_hash_bfd_vma (entry->d.addend))
1625 : entry->d.h->root.root.root.hash);
1629 mips_elf_multi_got_entry_eq (entry1, entry2)
1633 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1634 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1636 return e1->symndx == e2->symndx
1637 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1638 : e1->abfd == NULL || e2->abfd == NULL
1639 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1640 : e1->d.h == e2->d.h);
1643 /* Returns the dynamic relocation section for DYNOBJ. */
1646 mips_elf_rel_dyn_section (dynobj, create_p)
1648 bfd_boolean create_p;
1650 static const char dname[] = ".rel.dyn";
1653 sreloc = bfd_get_section_by_name (dynobj, dname);
1654 if (sreloc == NULL && create_p)
1656 sreloc = bfd_make_section (dynobj, dname);
1658 || ! bfd_set_section_flags (dynobj, sreloc,
1663 | SEC_LINKER_CREATED
1665 || ! bfd_set_section_alignment (dynobj, sreloc,
1666 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1672 /* Returns the GOT section for ABFD. */
1675 mips_elf_got_section (abfd, maybe_excluded)
1677 bfd_boolean maybe_excluded;
1679 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1681 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1686 /* Returns the GOT information associated with the link indicated by
1687 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1690 static struct mips_got_info *
1691 mips_elf_got_info (abfd, sgotp)
1696 struct mips_got_info *g;
1698 sgot = mips_elf_got_section (abfd, TRUE);
1699 BFD_ASSERT (sgot != NULL);
1700 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1701 g = mips_elf_section_data (sgot)->u.got_info;
1702 BFD_ASSERT (g != NULL);
1705 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1710 /* Obtain the lowest dynamic index of a symbol that was assigned a
1711 global GOT entry. */
1713 mips_elf_get_global_gotsym_index (abfd)
1717 struct mips_got_info *g;
1722 sgot = mips_elf_got_section (abfd, TRUE);
1723 if (sgot == NULL || mips_elf_section_data (sgot) == NULL)
1726 g = mips_elf_section_data (sgot)->u.got_info;
1727 if (g == NULL || g->global_gotsym == NULL)
1730 return g->global_gotsym->dynindx;
1733 /* Returns the GOT offset at which the indicated address can be found.
1734 If there is not yet a GOT entry for this value, create one. Returns
1735 -1 if no satisfactory GOT offset can be found. */
1738 mips_elf_local_got_index (abfd, ibfd, info, value)
1740 struct bfd_link_info *info;
1744 struct mips_got_info *g;
1745 struct mips_got_entry *entry;
1747 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1749 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1751 return entry->gotidx;
1756 /* Returns the GOT index for the global symbol indicated by H. */
1759 mips_elf_global_got_index (abfd, ibfd, h)
1761 struct elf_link_hash_entry *h;
1765 struct mips_got_info *g, *gg;
1766 long global_got_dynindx = 0;
1768 gg = g = mips_elf_got_info (abfd, &sgot);
1769 if (g->bfd2got && ibfd)
1771 struct mips_got_entry e, *p;
1773 BFD_ASSERT (h->dynindx >= 0);
1775 g = mips_elf_got_for_ibfd (g, ibfd);
1780 e.d.h = (struct mips_elf_link_hash_entry *)h;
1782 p = (struct mips_got_entry *) htab_find (g->got_entries, &e);
1784 BFD_ASSERT (p->gotidx > 0);
1789 if (gg->global_gotsym != NULL)
1790 global_got_dynindx = gg->global_gotsym->dynindx;
1792 /* Once we determine the global GOT entry with the lowest dynamic
1793 symbol table index, we must put all dynamic symbols with greater
1794 indices into the GOT. That makes it easy to calculate the GOT
1796 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1797 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1798 * MIPS_ELF_GOT_SIZE (abfd));
1799 BFD_ASSERT (index < sgot->_raw_size);
1804 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1805 are supposed to be placed at small offsets in the GOT, i.e.,
1806 within 32KB of GP. Return the index into the GOT for this page,
1807 and store the offset from this entry to the desired address in
1808 OFFSETP, if it is non-NULL. */
1811 mips_elf_got_page (abfd, ibfd, info, value, offsetp)
1813 struct bfd_link_info *info;
1818 struct mips_got_info *g;
1820 struct mips_got_entry *entry;
1822 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1824 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1826 & (~(bfd_vma)0xffff));
1831 index = entry->gotidx;
1834 *offsetp = value - entry->d.address;
1839 /* Find a GOT entry whose higher-order 16 bits are the same as those
1840 for value. Return the index into the GOT for this entry. */
1843 mips_elf_got16_entry (abfd, ibfd, info, value, external)
1845 struct bfd_link_info *info;
1847 bfd_boolean external;
1850 struct mips_got_info *g;
1851 struct mips_got_entry *entry;
1855 /* Although the ABI says that it is "the high-order 16 bits" that we
1856 want, it is really the %high value. The complete value is
1857 calculated with a `addiu' of a LO16 relocation, just as with a
1859 value = mips_elf_high (value) << 16;
1862 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1864 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1866 return entry->gotidx;
1871 /* Returns the offset for the entry at the INDEXth position
1875 mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index)
1883 struct mips_got_info *g;
1885 g = mips_elf_got_info (dynobj, &sgot);
1886 gp = _bfd_get_gp_value (output_bfd)
1887 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1889 return sgot->output_section->vma + sgot->output_offset + index - gp;
1892 /* Create a local GOT entry for VALUE. Return the index of the entry,
1893 or -1 if it could not be created. */
1895 static struct mips_got_entry *
1896 mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value)
1898 struct mips_got_info *gg;
1902 struct mips_got_entry entry, **loc;
1903 struct mips_got_info *g;
1907 entry.d.address = value;
1909 g = mips_elf_got_for_ibfd (gg, ibfd);
1912 g = mips_elf_got_for_ibfd (gg, abfd);
1913 BFD_ASSERT (g != NULL);
1916 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1921 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1923 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1928 memcpy (*loc, &entry, sizeof entry);
1930 if (g->assigned_gotno >= g->local_gotno)
1932 (*loc)->gotidx = -1;
1933 /* We didn't allocate enough space in the GOT. */
1934 (*_bfd_error_handler)
1935 (_("not enough GOT space for local GOT entries"));
1936 bfd_set_error (bfd_error_bad_value);
1940 MIPS_ELF_PUT_WORD (abfd, value,
1941 (sgot->contents + entry.gotidx));
1946 /* Sort the dynamic symbol table so that symbols that need GOT entries
1947 appear towards the end. This reduces the amount of GOT space
1948 required. MAX_LOCAL is used to set the number of local symbols
1949 known to be in the dynamic symbol table. During
1950 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
1951 section symbols are added and the count is higher. */
1954 mips_elf_sort_hash_table (info, max_local)
1955 struct bfd_link_info *info;
1956 unsigned long max_local;
1958 struct mips_elf_hash_sort_data hsd;
1959 struct mips_got_info *g;
1962 dynobj = elf_hash_table (info)->dynobj;
1964 g = mips_elf_got_info (dynobj, NULL);
1967 hsd.max_unref_got_dynindx =
1968 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
1969 /* In the multi-got case, assigned_gotno of the master got_info
1970 indicate the number of entries that aren't referenced in the
1971 primary GOT, but that must have entries because there are
1972 dynamic relocations that reference it. Since they aren't
1973 referenced, we move them to the end of the GOT, so that they
1974 don't prevent other entries that are referenced from getting
1975 too large offsets. */
1976 - (g->next ? g->assigned_gotno : 0);
1977 hsd.max_non_got_dynindx = max_local;
1978 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
1979 elf_hash_table (info)),
1980 mips_elf_sort_hash_table_f,
1983 /* There should have been enough room in the symbol table to
1984 accommodate both the GOT and non-GOT symbols. */
1985 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
1986 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
1987 <= elf_hash_table (info)->dynsymcount);
1989 /* Now we know which dynamic symbol has the lowest dynamic symbol
1990 table index in the GOT. */
1991 g->global_gotsym = hsd.low;
1996 /* If H needs a GOT entry, assign it the highest available dynamic
1997 index. Otherwise, assign it the lowest available dynamic
2001 mips_elf_sort_hash_table_f (h, data)
2002 struct mips_elf_link_hash_entry *h;
2005 struct mips_elf_hash_sort_data *hsd
2006 = (struct mips_elf_hash_sort_data *) data;
2008 if (h->root.root.type == bfd_link_hash_warning)
2009 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2011 /* Symbols without dynamic symbol table entries aren't interesting
2013 if (h->root.dynindx == -1)
2016 /* Global symbols that need GOT entries that are not explicitly
2017 referenced are marked with got offset 2. Those that are
2018 referenced get a 1, and those that don't need GOT entries get
2020 if (h->root.got.offset == 2)
2022 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2023 hsd->low = (struct elf_link_hash_entry *) h;
2024 h->root.dynindx = hsd->max_unref_got_dynindx++;
2026 else if (h->root.got.offset != 1)
2027 h->root.dynindx = hsd->max_non_got_dynindx++;
2030 h->root.dynindx = --hsd->min_got_dynindx;
2031 hsd->low = (struct elf_link_hash_entry *) h;
2037 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2038 symbol table index lower than any we've seen to date, record it for
2042 mips_elf_record_global_got_symbol (h, abfd, info, g)
2043 struct elf_link_hash_entry *h;
2045 struct bfd_link_info *info;
2046 struct mips_got_info *g;
2048 struct mips_got_entry entry, **loc;
2050 /* A global symbol in the GOT must also be in the dynamic symbol
2052 if (h->dynindx == -1)
2054 switch (ELF_ST_VISIBILITY (h->other))
2058 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2061 if (!bfd_elf32_link_record_dynamic_symbol (info, h))
2067 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2069 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2072 /* If we've already marked this entry as needing GOT space, we don't
2073 need to do it again. */
2077 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2083 memcpy (*loc, &entry, sizeof entry);
2085 if (h->got.offset != MINUS_ONE)
2088 /* By setting this to a value other than -1, we are indicating that
2089 there needs to be a GOT entry for H. Avoid using zero, as the
2090 generic ELF copy_indirect_symbol tests for <= 0. */
2096 /* Reserve space in G for a GOT entry containing the value of symbol
2097 SYMNDX in input bfd ABDF, plus ADDEND. */
2100 mips_elf_record_local_got_symbol (abfd, symndx, addend, g)
2104 struct mips_got_info *g;
2106 struct mips_got_entry entry, **loc;
2109 entry.symndx = symndx;
2110 entry.d.addend = addend;
2111 loc = (struct mips_got_entry **)
2112 htab_find_slot (g->got_entries, &entry, INSERT);
2117 entry.gotidx = g->local_gotno++;
2119 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2124 memcpy (*loc, &entry, sizeof entry);
2129 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2132 mips_elf_bfd2got_entry_hash (entry_)
2135 const struct mips_elf_bfd2got_hash *entry
2136 = (struct mips_elf_bfd2got_hash *)entry_;
2138 return entry->bfd->id;
2141 /* Check whether two hash entries have the same bfd. */
2144 mips_elf_bfd2got_entry_eq (entry1, entry2)
2148 const struct mips_elf_bfd2got_hash *e1
2149 = (const struct mips_elf_bfd2got_hash *)entry1;
2150 const struct mips_elf_bfd2got_hash *e2
2151 = (const struct mips_elf_bfd2got_hash *)entry2;
2153 return e1->bfd == e2->bfd;
2156 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2157 be the master GOT data. */
2159 static struct mips_got_info *
2160 mips_elf_got_for_ibfd (g, ibfd)
2161 struct mips_got_info *g;
2164 struct mips_elf_bfd2got_hash e, *p;
2170 p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e);
2171 return p ? p->g : NULL;
2174 /* Create one separate got for each bfd that has entries in the global
2175 got, such that we can tell how many local and global entries each
2179 mips_elf_make_got_per_bfd (entryp, p)
2183 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2184 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2185 htab_t bfd2got = arg->bfd2got;
2186 struct mips_got_info *g;
2187 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2190 /* Find the got_info for this GOT entry's input bfd. Create one if
2192 bfdgot_entry.bfd = entry->abfd;
2193 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2194 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2200 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2201 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2211 bfdgot->bfd = entry->abfd;
2212 bfdgot->g = g = (struct mips_got_info *)
2213 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2220 g->global_gotsym = NULL;
2221 g->global_gotno = 0;
2223 g->assigned_gotno = -1;
2224 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2225 mips_elf_multi_got_entry_eq,
2227 if (g->got_entries == NULL)
2237 /* Insert the GOT entry in the bfd's got entry hash table. */
2238 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2239 if (*entryp != NULL)
2244 if (entry->symndx >= 0 || entry->d.h->forced_local)
2252 /* Attempt to merge gots of different input bfds. Try to use as much
2253 as possible of the primary got, since it doesn't require explicit
2254 dynamic relocations, but don't use bfds that would reference global
2255 symbols out of the addressable range. Failing the primary got,
2256 attempt to merge with the current got, or finish the current got
2257 and then make make the new got current. */
2260 mips_elf_merge_gots (bfd2got_, p)
2264 struct mips_elf_bfd2got_hash *bfd2got
2265 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2266 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2267 unsigned int lcount = bfd2got->g->local_gotno;
2268 unsigned int gcount = bfd2got->g->global_gotno;
2269 unsigned int maxcnt = arg->max_count;
2271 /* If we don't have a primary GOT and this is not too big, use it as
2272 a starting point for the primary GOT. */
2273 if (! arg->primary && lcount + gcount <= maxcnt)
2275 arg->primary = bfd2got->g;
2276 arg->primary_count = lcount + gcount;
2278 /* If it looks like we can merge this bfd's entries with those of
2279 the primary, merge them. The heuristics is conservative, but we
2280 don't have to squeeze it too hard. */
2281 else if (arg->primary
2282 && (arg->primary_count + lcount + gcount) <= maxcnt)
2284 struct mips_got_info *g = bfd2got->g;
2285 int old_lcount = arg->primary->local_gotno;
2286 int old_gcount = arg->primary->global_gotno;
2288 bfd2got->g = arg->primary;
2290 htab_traverse (g->got_entries,
2291 mips_elf_make_got_per_bfd,
2293 if (arg->obfd == NULL)
2296 htab_delete (g->got_entries);
2297 /* We don't have to worry about releasing memory of the actual
2298 got entries, since they're all in the master got_entries hash
2301 BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno);
2302 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2304 arg->primary_count = arg->primary->local_gotno
2305 + arg->primary->global_gotno;
2307 /* If we can merge with the last-created got, do it. */
2308 else if (arg->current
2309 && arg->current_count + lcount + gcount <= maxcnt)
2311 struct mips_got_info *g = bfd2got->g;
2312 int old_lcount = arg->current->local_gotno;
2313 int old_gcount = arg->current->global_gotno;
2315 bfd2got->g = arg->current;
2317 htab_traverse (g->got_entries,
2318 mips_elf_make_got_per_bfd,
2320 if (arg->obfd == NULL)
2323 htab_delete (g->got_entries);
2325 BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno);
2326 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2328 arg->current_count = arg->current->local_gotno
2329 + arg->current->global_gotno;
2331 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2332 fits; if it turns out that it doesn't, we'll get relocation
2333 overflows anyway. */
2336 bfd2got->g->next = arg->current;
2337 arg->current = bfd2got->g;
2339 arg->current_count = lcount + gcount;
2345 /* If passed a NULL mips_got_info in the argument, set the marker used
2346 to tell whether a global symbol needs a got entry (in the primary
2347 got) to the given VALUE.
2349 If passed a pointer G to a mips_got_info in the argument (it must
2350 not be the primary GOT), compute the offset from the beginning of
2351 the (primary) GOT section to the entry in G corresponding to the
2352 global symbol. G's assigned_gotno must contain the index of the
2353 first available global GOT entry in G. VALUE must contain the size
2354 of a GOT entry in bytes. For each global GOT entry that requires a
2355 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2356 marked as not elligible for lazy resolution through a function
2359 mips_elf_set_global_got_offset (entryp, p)
2363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2364 struct mips_elf_set_global_got_offset_arg *arg
2365 = (struct mips_elf_set_global_got_offset_arg *)p;
2366 struct mips_got_info *g = arg->g;
2368 if (entry->abfd != NULL && entry->symndx == -1
2369 && entry->d.h->root.dynindx != -1)
2373 BFD_ASSERT (g->global_gotsym == NULL);
2375 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2376 /* We can't do lazy update of GOT entries for
2377 non-primary GOTs since the PLT entries don't use the
2378 right offsets, so punt at it for now. */
2379 entry->d.h->no_fn_stub = TRUE;
2380 if (arg->info->shared
2381 || (elf_hash_table (arg->info)->dynamic_sections_created
2382 && ((entry->d.h->root.elf_link_hash_flags
2383 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2384 && ((entry->d.h->root.elf_link_hash_flags
2385 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2386 ++arg->needed_relocs;
2389 entry->d.h->root.got.offset = arg->value;
2395 /* Follow indirect and warning hash entries so that each got entry
2396 points to the final symbol definition. P must point to a pointer
2397 to the hash table we're traversing. Since this traversal may
2398 modify the hash table, we set this pointer to NULL to indicate
2399 we've made a potentially-destructive change to the hash table, so
2400 the traversal must be restarted. */
2402 mips_elf_resolve_final_got_entry (entryp, p)
2406 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2407 htab_t got_entries = *(htab_t *)p;
2409 if (entry->abfd != NULL && entry->symndx == -1)
2411 struct mips_elf_link_hash_entry *h = entry->d.h;
2413 while (h->root.root.type == bfd_link_hash_indirect
2414 || h->root.root.type == bfd_link_hash_warning)
2415 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2417 if (entry->d.h == h)
2422 /* If we can't find this entry with the new bfd hash, re-insert
2423 it, and get the traversal restarted. */
2424 if (! htab_find (got_entries, entry))
2426 htab_clear_slot (got_entries, entryp);
2427 entryp = htab_find_slot (got_entries, entry, INSERT);
2430 /* Abort the traversal, since the whole table may have
2431 moved, and leave it up to the parent to restart the
2433 *(htab_t *)p = NULL;
2436 /* We might want to decrement the global_gotno count, but it's
2437 either too early or too late for that at this point. */
2443 /* Turn indirect got entries in a got_entries table into their final
2446 mips_elf_resolve_final_got_entries (g)
2447 struct mips_got_info *g;
2453 got_entries = g->got_entries;
2455 htab_traverse (got_entries,
2456 mips_elf_resolve_final_got_entry,
2459 while (got_entries == NULL);
2462 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2465 mips_elf_adjust_gp (abfd, g, ibfd)
2467 struct mips_got_info *g;
2470 if (g->bfd2got == NULL)
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2477 BFD_ASSERT (g->next);
2481 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2484 /* Turn a single GOT that is too big for 16-bit addressing into
2485 a sequence of GOTs, each one 16-bit addressable. */
2488 mips_elf_multi_got (abfd, info, g, got, pages)
2490 struct bfd_link_info *info;
2491 struct mips_got_info *g;
2493 bfd_size_type pages;
2495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2497 struct mips_got_info *gg;
2498 unsigned int assign;
2500 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2501 mips_elf_bfd2got_entry_eq,
2503 if (g->bfd2got == NULL)
2506 got_per_bfd_arg.bfd2got = g->bfd2got;
2507 got_per_bfd_arg.obfd = abfd;
2508 got_per_bfd_arg.info = info;
2510 /* Count how many GOT entries each input bfd requires, creating a
2511 map from bfd to got info while at that. */
2512 mips_elf_resolve_final_got_entries (g);
2513 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2514 if (got_per_bfd_arg.obfd == NULL)
2517 got_per_bfd_arg.current = NULL;
2518 got_per_bfd_arg.primary = NULL;
2519 /* Taking out PAGES entries is a worst-case estimate. We could
2520 compute the maximum number of pages that each separate input bfd
2521 uses, but it's probably not worth it. */
2522 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2523 / MIPS_ELF_GOT_SIZE (abfd))
2524 - MIPS_RESERVED_GOTNO - pages);
2526 /* Try to merge the GOTs of input bfds together, as long as they
2527 don't seem to exceed the maximum GOT size, choosing one of them
2528 to be the primary GOT. */
2529 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2530 if (got_per_bfd_arg.obfd == NULL)
2533 /* If we find any suitable primary GOT, create an empty one. */
2534 if (got_per_bfd_arg.primary == NULL)
2536 g->next = (struct mips_got_info *)
2537 bfd_alloc (abfd, sizeof (struct mips_got_info));
2538 if (g->next == NULL)
2541 g->next->global_gotsym = NULL;
2542 g->next->global_gotno = 0;
2543 g->next->local_gotno = 0;
2544 g->next->assigned_gotno = 0;
2545 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2546 mips_elf_multi_got_entry_eq,
2548 if (g->next->got_entries == NULL)
2550 g->next->bfd2got = NULL;
2553 g->next = got_per_bfd_arg.primary;
2554 g->next->next = got_per_bfd_arg.current;
2556 /* GG is now the master GOT, and G is the primary GOT. */
2560 /* Map the output bfd to the primary got. That's what we're going
2561 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2562 didn't mark in check_relocs, and we want a quick way to find it.
2563 We can't just use gg->next because we're going to reverse the
2566 struct mips_elf_bfd2got_hash *bfdgot;
2569 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2570 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2577 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2579 BFD_ASSERT (*bfdgotp == NULL);
2583 /* The IRIX dynamic linker requires every symbol that is referenced
2584 in a dynamic relocation to be present in the primary GOT, so
2585 arrange for them to appear after those that are actually
2588 GNU/Linux could very well do without it, but it would slow down
2589 the dynamic linker, since it would have to resolve every dynamic
2590 symbol referenced in other GOTs more than once, without help from
2591 the cache. Also, knowing that every external symbol has a GOT
2592 helps speed up the resolution of local symbols too, so GNU/Linux
2593 follows IRIX's practice.
2595 The number 2 is used by mips_elf_sort_hash_table_f to count
2596 global GOT symbols that are unreferenced in the primary GOT, with
2597 an initial dynamic index computed from gg->assigned_gotno, where
2598 the number of unreferenced global entries in the primary GOT is
2602 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2603 g->global_gotno = gg->global_gotno;
2604 set_got_offset_arg.value = 2;
2608 /* This could be used for dynamic linkers that don't optimize
2609 symbol resolution while applying relocations so as to use
2610 primary GOT entries or assuming the symbol is locally-defined.
2611 With this code, we assign lower dynamic indices to global
2612 symbols that are not referenced in the primary GOT, so that
2613 their entries can be omitted. */
2614 gg->assigned_gotno = 0;
2615 set_got_offset_arg.value = -1;
2618 /* Reorder dynamic symbols as described above (which behavior
2619 depends on the setting of VALUE). */
2620 set_got_offset_arg.g = NULL;
2621 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2622 &set_got_offset_arg);
2623 set_got_offset_arg.value = 1;
2624 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2625 &set_got_offset_arg);
2626 if (! mips_elf_sort_hash_table (info, 1))
2629 /* Now go through the GOTs assigning them offset ranges.
2630 [assigned_gotno, local_gotno[ will be set to the range of local
2631 entries in each GOT. We can then compute the end of a GOT by
2632 adding local_gotno to global_gotno. We reverse the list and make
2633 it circular since then we'll be able to quickly compute the
2634 beginning of a GOT, by computing the end of its predecessor. To
2635 avoid special cases for the primary GOT, while still preserving
2636 assertions that are valid for both single- and multi-got links,
2637 we arrange for the main got struct to have the right number of
2638 global entries, but set its local_gotno such that the initial
2639 offset of the primary GOT is zero. Remember that the primary GOT
2640 will become the last item in the circular linked list, so it
2641 points back to the master GOT. */
2642 gg->local_gotno = -g->global_gotno;
2643 gg->global_gotno = g->global_gotno;
2649 struct mips_got_info *gn;
2651 assign += MIPS_RESERVED_GOTNO;
2652 g->assigned_gotno = assign;
2653 g->local_gotno += assign + pages;
2654 assign = g->local_gotno + g->global_gotno;
2656 /* Take g out of the direct list, and push it onto the reversed
2657 list that gg points to. */
2665 got->_raw_size = (gg->next->local_gotno
2666 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2672 /* Returns the first relocation of type r_type found, beginning with
2673 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2675 static const Elf_Internal_Rela *
2676 mips_elf_next_relocation (abfd, r_type, relocation, relend)
2677 bfd *abfd ATTRIBUTE_UNUSED;
2678 unsigned int r_type;
2679 const Elf_Internal_Rela *relocation;
2680 const Elf_Internal_Rela *relend;
2682 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
2683 immediately following. However, for the IRIX6 ABI, the next
2684 relocation may be a composed relocation consisting of several
2685 relocations for the same address. In that case, the R_MIPS_LO16
2686 relocation may occur as one of these. We permit a similar
2687 extension in general, as that is useful for GCC. */
2688 while (relocation < relend)
2690 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2696 /* We didn't find it. */
2697 bfd_set_error (bfd_error_bad_value);
2701 /* Return whether a relocation is against a local symbol. */
2704 mips_elf_local_relocation_p (input_bfd, relocation, local_sections,
2707 const Elf_Internal_Rela *relocation;
2708 asection **local_sections;
2709 bfd_boolean check_forced;
2711 unsigned long r_symndx;
2712 Elf_Internal_Shdr *symtab_hdr;
2713 struct mips_elf_link_hash_entry *h;
2716 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2717 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2718 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2720 if (r_symndx < extsymoff)
2722 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2727 /* Look up the hash table to check whether the symbol
2728 was forced local. */
2729 h = (struct mips_elf_link_hash_entry *)
2730 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2731 /* Find the real hash-table entry for this symbol. */
2732 while (h->root.root.type == bfd_link_hash_indirect
2733 || h->root.root.type == bfd_link_hash_warning)
2734 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2735 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2742 /* Sign-extend VALUE, which has the indicated number of BITS. */
2745 _bfd_mips_elf_sign_extend (value, bits)
2749 if (value & ((bfd_vma) 1 << (bits - 1)))
2750 /* VALUE is negative. */
2751 value |= ((bfd_vma) - 1) << bits;
2756 /* Return non-zero if the indicated VALUE has overflowed the maximum
2757 range expressable by a signed number with the indicated number of
2761 mips_elf_overflow_p (value, bits)
2765 bfd_signed_vma svalue = (bfd_signed_vma) value;
2767 if (svalue > (1 << (bits - 1)) - 1)
2768 /* The value is too big. */
2770 else if (svalue < -(1 << (bits - 1)))
2771 /* The value is too small. */
2778 /* Calculate the %high function. */
2781 mips_elf_high (value)
2784 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2787 /* Calculate the %higher function. */
2790 mips_elf_higher (value)
2791 bfd_vma value ATTRIBUTE_UNUSED;
2794 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2797 return (bfd_vma) -1;
2801 /* Calculate the %highest function. */
2804 mips_elf_highest (value)
2805 bfd_vma value ATTRIBUTE_UNUSED;
2808 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2811 return (bfd_vma) -1;
2815 /* Create the .compact_rel section. */
2818 mips_elf_create_compact_rel_section (abfd, info)
2820 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2823 register asection *s;
2825 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2830 s = bfd_make_section (abfd, ".compact_rel");
2832 || ! bfd_set_section_flags (abfd, s, flags)
2833 || ! bfd_set_section_alignment (abfd, s,
2834 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2837 s->_raw_size = sizeof (Elf32_External_compact_rel);
2843 /* Create the .got section to hold the global offset table. */
2846 mips_elf_create_got_section (abfd, info, maybe_exclude)
2848 struct bfd_link_info *info;
2849 bfd_boolean maybe_exclude;
2852 register asection *s;
2853 struct elf_link_hash_entry *h;
2854 struct bfd_link_hash_entry *bh;
2855 struct mips_got_info *g;
2858 /* This function may be called more than once. */
2859 s = mips_elf_got_section (abfd, TRUE);
2862 if (! maybe_exclude)
2863 s->flags &= ~SEC_EXCLUDE;
2867 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2868 | SEC_LINKER_CREATED);
2871 flags |= SEC_EXCLUDE;
2873 s = bfd_make_section (abfd, ".got");
2875 || ! bfd_set_section_flags (abfd, s, flags)
2876 || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2879 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2880 linker script because we don't want to define the symbol if we
2881 are not creating a global offset table. */
2883 if (! (_bfd_generic_link_add_one_symbol
2884 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2885 (bfd_vma) 0, (const char *) NULL, FALSE,
2886 get_elf_backend_data (abfd)->collect, &bh)))
2889 h = (struct elf_link_hash_entry *) bh;
2890 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2891 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2892 h->type = STT_OBJECT;
2895 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
2898 amt = sizeof (struct mips_got_info);
2899 g = (struct mips_got_info *) bfd_alloc (abfd, amt);
2902 g->global_gotsym = NULL;
2903 g->local_gotno = MIPS_RESERVED_GOTNO;
2904 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2907 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2908 mips_elf_got_entry_eq,
2910 if (g->got_entries == NULL)
2912 mips_elf_section_data (s)->u.got_info = g;
2913 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2914 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2919 /* Returns the .msym section for ABFD, creating it if it does not
2920 already exist. Returns NULL to indicate error. */
2923 mips_elf_create_msym_section (abfd)
2928 s = bfd_get_section_by_name (abfd, ".msym");
2931 s = bfd_make_section (abfd, ".msym");
2933 || !bfd_set_section_flags (abfd, s,
2937 | SEC_LINKER_CREATED
2939 || !bfd_set_section_alignment (abfd, s,
2940 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2947 /* Calculate the value produced by the RELOCATION (which comes from
2948 the INPUT_BFD). The ADDEND is the addend to use for this
2949 RELOCATION; RELOCATION->R_ADDEND is ignored.
2951 The result of the relocation calculation is stored in VALUEP.
2952 REQUIRE_JALXP indicates whether or not the opcode used with this
2953 relocation must be JALX.
2955 This function returns bfd_reloc_continue if the caller need take no
2956 further action regarding this relocation, bfd_reloc_notsupported if
2957 something goes dramatically wrong, bfd_reloc_overflow if an
2958 overflow occurs, and bfd_reloc_ok to indicate success. */
2960 static bfd_reloc_status_type
2961 mips_elf_calculate_relocation (abfd, input_bfd, input_section, info,
2962 relocation, addend, howto, local_syms,
2963 local_sections, valuep, namep,
2964 require_jalxp, save_addend)
2967 asection *input_section;
2968 struct bfd_link_info *info;
2969 const Elf_Internal_Rela *relocation;
2971 reloc_howto_type *howto;
2972 Elf_Internal_Sym *local_syms;
2973 asection **local_sections;
2976 bfd_boolean *require_jalxp;
2977 bfd_boolean save_addend;
2979 /* The eventual value we will return. */
2981 /* The address of the symbol against which the relocation is
2984 /* The final GP value to be used for the relocatable, executable, or
2985 shared object file being produced. */
2986 bfd_vma gp = MINUS_ONE;
2987 /* The place (section offset or address) of the storage unit being
2990 /* The value of GP used to create the relocatable object. */
2991 bfd_vma gp0 = MINUS_ONE;
2992 /* The offset into the global offset table at which the address of
2993 the relocation entry symbol, adjusted by the addend, resides
2994 during execution. */
2995 bfd_vma g = MINUS_ONE;
2996 /* The section in which the symbol referenced by the relocation is
2998 asection *sec = NULL;
2999 struct mips_elf_link_hash_entry *h = NULL;
3000 /* TRUE if the symbol referred to by this relocation is a local
3002 bfd_boolean local_p, was_local_p;
3003 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3004 bfd_boolean gp_disp_p = FALSE;
3005 Elf_Internal_Shdr *symtab_hdr;
3007 unsigned long r_symndx;
3009 /* TRUE if overflow occurred during the calculation of the
3010 relocation value. */
3011 bfd_boolean overflowed_p;
3012 /* TRUE if this relocation refers to a MIPS16 function. */
3013 bfd_boolean target_is_16_bit_code_p = FALSE;
3015 /* Parse the relocation. */
3016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3017 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3018 p = (input_section->output_section->vma
3019 + input_section->output_offset
3020 + relocation->r_offset);
3022 /* Assume that there will be no overflow. */
3023 overflowed_p = FALSE;
3025 /* Figure out whether or not the symbol is local, and get the offset
3026 used in the array of hash table entries. */
3027 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3028 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3029 local_sections, FALSE);
3030 was_local_p = local_p;
3031 if (! elf_bad_symtab (input_bfd))
3032 extsymoff = symtab_hdr->sh_info;
3035 /* The symbol table does not follow the rule that local symbols
3036 must come before globals. */
3040 /* Figure out the value of the symbol. */
3043 Elf_Internal_Sym *sym;
3045 sym = local_syms + r_symndx;
3046 sec = local_sections[r_symndx];
3048 symbol = sec->output_section->vma + sec->output_offset;
3049 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3050 || (sec->flags & SEC_MERGE))
3051 symbol += sym->st_value;
3052 if ((sec->flags & SEC_MERGE)
3053 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3055 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3057 addend += sec->output_section->vma + sec->output_offset;
3060 /* MIPS16 text labels should be treated as odd. */
3061 if (sym->st_other == STO_MIPS16)
3064 /* Record the name of this symbol, for our caller. */
3065 *namep = bfd_elf_string_from_elf_section (input_bfd,
3066 symtab_hdr->sh_link,
3069 *namep = bfd_section_name (input_bfd, sec);
3071 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3075 /* For global symbols we look up the symbol in the hash-table. */
3076 h = ((struct mips_elf_link_hash_entry *)
3077 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3078 /* Find the real hash-table entry for this symbol. */
3079 while (h->root.root.type == bfd_link_hash_indirect
3080 || h->root.root.type == bfd_link_hash_warning)
3081 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3083 /* Record the name of this symbol, for our caller. */
3084 *namep = h->root.root.root.string;
3086 /* See if this is the special _gp_disp symbol. Note that such a
3087 symbol must always be a global symbol. */
3088 if (strcmp (h->root.root.root.string, "_gp_disp") == 0
3089 && ! NEWABI_P (input_bfd))
3091 /* Relocations against _gp_disp are permitted only with
3092 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3093 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3094 return bfd_reloc_notsupported;
3098 /* If this symbol is defined, calculate its address. Note that
3099 _gp_disp is a magic symbol, always implicitly defined by the
3100 linker, so it's inappropriate to check to see whether or not
3102 else if ((h->root.root.type == bfd_link_hash_defined
3103 || h->root.root.type == bfd_link_hash_defweak)
3104 && h->root.root.u.def.section)
3106 sec = h->root.root.u.def.section;
3107 if (sec->output_section)
3108 symbol = (h->root.root.u.def.value
3109 + sec->output_section->vma
3110 + sec->output_offset);
3112 symbol = h->root.root.u.def.value;
3114 else if (h->root.root.type == bfd_link_hash_undefweak)
3115 /* We allow relocations against undefined weak symbols, giving
3116 it the value zero, so that you can undefined weak functions
3117 and check to see if they exist by looking at their
3120 else if (info->shared
3121 && !info->no_undefined
3122 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3124 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 ||
3125 strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0)
3127 /* If this is a dynamic link, we should have created a
3128 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3129 in in _bfd_mips_elf_create_dynamic_sections.
3130 Otherwise, we should define the symbol with a value of 0.
3131 FIXME: It should probably get into the symbol table
3133 BFD_ASSERT (! info->shared);
3134 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3139 if (! ((*info->callbacks->undefined_symbol)
3140 (info, h->root.root.root.string, input_bfd,
3141 input_section, relocation->r_offset,
3142 (!info->shared || info->no_undefined
3143 || ELF_ST_VISIBILITY (h->root.other)))))
3144 return bfd_reloc_undefined;
3148 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3151 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3152 need to redirect the call to the stub, unless we're already *in*
3154 if (r_type != R_MIPS16_26 && !info->relocatable
3155 && ((h != NULL && h->fn_stub != NULL)
3156 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3157 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3158 && !mips_elf_stub_section_p (input_bfd, input_section))
3160 /* This is a 32- or 64-bit call to a 16-bit function. We should
3161 have already noticed that we were going to need the
3164 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3167 BFD_ASSERT (h->need_fn_stub);
3171 symbol = sec->output_section->vma + sec->output_offset;
3173 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3174 need to redirect the call to the stub. */
3175 else if (r_type == R_MIPS16_26 && !info->relocatable
3177 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3178 && !target_is_16_bit_code_p)
3180 /* If both call_stub and call_fp_stub are defined, we can figure
3181 out which one to use by seeing which one appears in the input
3183 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3188 for (o = input_bfd->sections; o != NULL; o = o->next)
3190 if (strncmp (bfd_get_section_name (input_bfd, o),
3191 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3193 sec = h->call_fp_stub;
3200 else if (h->call_stub != NULL)
3203 sec = h->call_fp_stub;
3205 BFD_ASSERT (sec->_raw_size > 0);
3206 symbol = sec->output_section->vma + sec->output_offset;
3209 /* Calls from 16-bit code to 32-bit code and vice versa require the
3210 special jalx instruction. */
3211 *require_jalxp = (!info->relocatable
3212 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3213 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3215 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3216 local_sections, TRUE);
3218 /* If we haven't already determined the GOT offset, or the GP value,
3219 and we're going to need it, get it now. */
3222 case R_MIPS_GOT_PAGE:
3223 case R_MIPS_GOT_OFST:
3224 /* If this symbol got a global GOT entry, we have to decay
3225 GOT_PAGE/GOT_OFST to GOT_DISP/addend. */
3226 local_p = local_p || ! h
3228 < mips_elf_get_global_gotsym_index (elf_hash_table (info)
3230 if (local_p || r_type == R_MIPS_GOT_OFST)
3236 case R_MIPS_GOT_DISP:
3237 case R_MIPS_GOT_HI16:
3238 case R_MIPS_CALL_HI16:
3239 case R_MIPS_GOT_LO16:
3240 case R_MIPS_CALL_LO16:
3241 /* Find the index into the GOT where this value is located. */
3244 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3245 GOT_PAGE relocation that decays to GOT_DISP because the
3246 symbol turns out to be global. The addend is then added
3248 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3249 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3251 (struct elf_link_hash_entry *) h);
3252 if (! elf_hash_table(info)->dynamic_sections_created
3254 && (info->symbolic || h->root.dynindx == -1)
3255 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3257 /* This is a static link or a -Bsymbolic link. The
3258 symbol is defined locally, or was forced to be local.
3259 We must initialize this entry in the GOT. */
3260 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3261 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3262 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3265 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3266 /* There's no need to create a local GOT entry here; the
3267 calculation for a local GOT16 entry does not involve G. */
3271 g = mips_elf_local_got_index (abfd, input_bfd,
3272 info, symbol + addend);
3274 return bfd_reloc_outofrange;
3277 /* Convert GOT indices to actual offsets. */
3278 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3279 abfd, input_bfd, g);
3284 case R_MIPS16_GPREL:
3285 case R_MIPS_GPREL16:
3286 case R_MIPS_GPREL32:
3287 case R_MIPS_LITERAL:
3288 gp0 = _bfd_get_gp_value (input_bfd);
3289 gp = _bfd_get_gp_value (abfd);
3290 if (elf_hash_table (info)->dynobj)
3291 gp += mips_elf_adjust_gp (abfd,
3293 (elf_hash_table (info)->dynobj, NULL),
3301 /* Figure out what kind of relocation is being performed. */
3305 return bfd_reloc_continue;
3308 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3309 overflowed_p = mips_elf_overflow_p (value, 16);
3316 || (elf_hash_table (info)->dynamic_sections_created
3318 && ((h->root.elf_link_hash_flags
3319 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3320 && ((h->root.elf_link_hash_flags
3321 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3323 && (input_section->flags & SEC_ALLOC) != 0)
3325 /* If we're creating a shared library, or this relocation is
3326 against a symbol in a shared library, then we can't know
3327 where the symbol will end up. So, we create a relocation
3328 record in the output, and leave the job up to the dynamic
3331 if (!mips_elf_create_dynamic_relocation (abfd,
3339 return bfd_reloc_undefined;
3343 if (r_type != R_MIPS_REL32)
3344 value = symbol + addend;
3348 value &= howto->dst_mask;
3353 case R_MIPS_GNU_REL_LO16:
3354 value = symbol + addend - p;
3355 value &= howto->dst_mask;
3358 case R_MIPS_GNU_REL16_S2:
3359 value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p;
3360 overflowed_p = mips_elf_overflow_p (value, 18);
3361 value = (value >> 2) & howto->dst_mask;
3364 case R_MIPS_GNU_REL_HI16:
3365 /* Instead of subtracting 'p' here, we should be subtracting the
3366 equivalent value for the LO part of the reloc, since the value
3367 here is relative to that address. Because that's not easy to do,
3368 we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also
3369 the comment there for more information. */
3370 value = mips_elf_high (addend + symbol - p);
3371 value &= howto->dst_mask;
3375 /* The calculation for R_MIPS16_26 is just the same as for an
3376 R_MIPS_26. It's only the storage of the relocated field into
3377 the output file that's different. That's handled in
3378 mips_elf_perform_relocation. So, we just fall through to the
3379 R_MIPS_26 case here. */
3382 value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3384 value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
3385 value &= howto->dst_mask;
3391 value = mips_elf_high (addend + symbol);
3392 value &= howto->dst_mask;
3396 value = mips_elf_high (addend + gp - p);
3397 overflowed_p = mips_elf_overflow_p (value, 16);
3403 value = (symbol + addend) & howto->dst_mask;
3406 value = addend + gp - p + 4;
3407 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3408 for overflow. But, on, say, IRIX5, relocations against
3409 _gp_disp are normally generated from the .cpload
3410 pseudo-op. It generates code that normally looks like
3413 lui $gp,%hi(_gp_disp)
3414 addiu $gp,$gp,%lo(_gp_disp)
3417 Here $t9 holds the address of the function being called,
3418 as required by the MIPS ELF ABI. The R_MIPS_LO16
3419 relocation can easily overflow in this situation, but the
3420 R_MIPS_HI16 relocation will handle the overflow.
3421 Therefore, we consider this a bug in the MIPS ABI, and do
3422 not check for overflow here. */
3426 case R_MIPS_LITERAL:
3427 /* Because we don't merge literal sections, we can handle this
3428 just like R_MIPS_GPREL16. In the long run, we should merge
3429 shared literals, and then we will need to additional work
3434 case R_MIPS16_GPREL:
3435 /* The R_MIPS16_GPREL performs the same calculation as
3436 R_MIPS_GPREL16, but stores the relocated bits in a different
3437 order. We don't need to do anything special here; the
3438 differences are handled in mips_elf_perform_relocation. */
3439 case R_MIPS_GPREL16:
3440 /* Only sign-extend the addend if it was extracted from the
3441 instruction. If the addend was separate, leave it alone,
3442 otherwise we may lose significant bits. */
3443 if (howto->partial_inplace)
3444 addend = _bfd_mips_elf_sign_extend (addend, 16);
3445 value = symbol + addend - gp;
3446 /* If the symbol was local, any earlier relocatable links will
3447 have adjusted its addend with the gp offset, so compensate
3448 for that now. Don't do it for symbols forced local in this
3449 link, though, since they won't have had the gp offset applied
3453 overflowed_p = mips_elf_overflow_p (value, 16);
3462 /* The special case is when the symbol is forced to be local. We
3463 need the full address in the GOT since no R_MIPS_LO16 relocation
3465 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3466 local_sections, FALSE);
3467 value = mips_elf_got16_entry (abfd, input_bfd, info,
3468 symbol + addend, forced);
3469 if (value == MINUS_ONE)
3470 return bfd_reloc_outofrange;
3472 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3473 abfd, input_bfd, value);
3474 overflowed_p = mips_elf_overflow_p (value, 16);
3480 case R_MIPS_GOT_DISP:
3483 overflowed_p = mips_elf_overflow_p (value, 16);
3486 case R_MIPS_GPREL32:
3487 value = (addend + symbol + gp0 - gp);
3489 value &= howto->dst_mask;
3493 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3494 overflowed_p = mips_elf_overflow_p (value, 16);
3497 case R_MIPS_GOT_HI16:
3498 case R_MIPS_CALL_HI16:
3499 /* We're allowed to handle these two relocations identically.
3500 The dynamic linker is allowed to handle the CALL relocations
3501 differently by creating a lazy evaluation stub. */
3503 value = mips_elf_high (value);
3504 value &= howto->dst_mask;
3507 case R_MIPS_GOT_LO16:
3508 case R_MIPS_CALL_LO16:
3509 value = g & howto->dst_mask;
3512 case R_MIPS_GOT_PAGE:
3513 /* GOT_PAGE relocations that reference non-local symbols decay
3514 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3518 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3519 if (value == MINUS_ONE)
3520 return bfd_reloc_outofrange;
3521 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3522 abfd, input_bfd, value);
3523 overflowed_p = mips_elf_overflow_p (value, 16);
3526 case R_MIPS_GOT_OFST:
3528 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3531 overflowed_p = mips_elf_overflow_p (value, 16);
3535 value = symbol - addend;
3536 value &= howto->dst_mask;
3540 value = mips_elf_higher (addend + symbol);
3541 value &= howto->dst_mask;
3544 case R_MIPS_HIGHEST:
3545 value = mips_elf_highest (addend + symbol);
3546 value &= howto->dst_mask;
3549 case R_MIPS_SCN_DISP:
3550 value = symbol + addend - sec->output_offset;
3551 value &= howto->dst_mask;
3556 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3557 hint; we could improve performance by honoring that hint. */
3558 return bfd_reloc_continue;
3560 case R_MIPS_GNU_VTINHERIT:
3561 case R_MIPS_GNU_VTENTRY:
3562 /* We don't do anything with these at present. */
3563 return bfd_reloc_continue;
3566 /* An unrecognized relocation type. */
3567 return bfd_reloc_notsupported;
3570 /* Store the VALUE for our caller. */
3572 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3575 /* Obtain the field relocated by RELOCATION. */
3578 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
3579 reloc_howto_type *howto;
3580 const Elf_Internal_Rela *relocation;
3585 bfd_byte *location = contents + relocation->r_offset;
3587 /* Obtain the bytes. */
3588 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3590 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3591 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3592 && bfd_little_endian (input_bfd))
3593 /* The two 16-bit words will be reversed on a little-endian system.
3594 See mips_elf_perform_relocation for more details. */
3595 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3600 /* It has been determined that the result of the RELOCATION is the
3601 VALUE. Use HOWTO to place VALUE into the output file at the
3602 appropriate position. The SECTION is the section to which the
3603 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3604 for the relocation must be either JAL or JALX, and it is
3605 unconditionally converted to JALX.
3607 Returns FALSE if anything goes wrong. */
3610 mips_elf_perform_relocation (info, howto, relocation, value, input_bfd,
3611 input_section, contents, require_jalx)
3612 struct bfd_link_info *info;
3613 reloc_howto_type *howto;
3614 const Elf_Internal_Rela *relocation;
3617 asection *input_section;
3619 bfd_boolean require_jalx;
3623 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3625 /* Figure out where the relocation is occurring. */
3626 location = contents + relocation->r_offset;
3628 /* Obtain the current value. */
3629 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3631 /* Clear the field we are setting. */
3632 x &= ~howto->dst_mask;
3634 /* If this is the R_MIPS16_26 relocation, we must store the
3635 value in a funny way. */
3636 if (r_type == R_MIPS16_26)
3638 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3639 Most mips16 instructions are 16 bits, but these instructions
3642 The format of these instructions is:
3644 +--------------+--------------------------------+
3645 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3646 +--------------+--------------------------------+
3648 +-----------------------------------------------+
3650 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3651 Note that the immediate value in the first word is swapped.
3653 When producing a relocatable object file, R_MIPS16_26 is
3654 handled mostly like R_MIPS_26. In particular, the addend is
3655 stored as a straight 26-bit value in a 32-bit instruction.
3656 (gas makes life simpler for itself by never adjusting a
3657 R_MIPS16_26 reloc to be against a section, so the addend is
3658 always zero). However, the 32 bit instruction is stored as 2
3659 16-bit values, rather than a single 32-bit value. In a
3660 big-endian file, the result is the same; in a little-endian
3661 file, the two 16-bit halves of the 32 bit value are swapped.
3662 This is so that a disassembler can recognize the jal
3665 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3666 instruction stored as two 16-bit values. The addend A is the
3667 contents of the targ26 field. The calculation is the same as
3668 R_MIPS_26. When storing the calculated value, reorder the
3669 immediate value as shown above, and don't forget to store the
3670 value as two 16-bit values.
3672 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3676 +--------+----------------------+
3680 +--------+----------------------+
3683 +----------+------+-------------+
3687 +----------+--------------------+
3688 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3689 ((sub1 << 16) | sub2)).
3691 When producing a relocatable object file, the calculation is
3692 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3693 When producing a fully linked file, the calculation is
3694 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3695 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3697 if (!info->relocatable)
3698 /* Shuffle the bits according to the formula above. */
3699 value = (((value & 0x1f0000) << 5)
3700 | ((value & 0x3e00000) >> 5)
3701 | (value & 0xffff));
3703 else if (r_type == R_MIPS16_GPREL)
3705 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3706 mode. A typical instruction will have a format like this:
3708 +--------------+--------------------------------+
3709 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3710 +--------------+--------------------------------+
3711 ! Major ! rx ! ry ! Imm 4:0 !
3712 +--------------+--------------------------------+
3714 EXTEND is the five bit value 11110. Major is the instruction
3717 This is handled exactly like R_MIPS_GPREL16, except that the
3718 addend is retrieved and stored as shown in this diagram; that
3719 is, the Imm fields above replace the V-rel16 field.
3721 All we need to do here is shuffle the bits appropriately. As
3722 above, the two 16-bit halves must be swapped on a
3723 little-endian system. */
3724 value = (((value & 0x7e0) << 16)
3725 | ((value & 0xf800) << 5)
3729 /* Set the field. */
3730 x |= (value & howto->dst_mask);
3732 /* If required, turn JAL into JALX. */
3736 bfd_vma opcode = x >> 26;
3737 bfd_vma jalx_opcode;
3739 /* Check to see if the opcode is already JAL or JALX. */
3740 if (r_type == R_MIPS16_26)
3742 ok = ((opcode == 0x6) || (opcode == 0x7));
3747 ok = ((opcode == 0x3) || (opcode == 0x1d));
3751 /* If the opcode is not JAL or JALX, there's a problem. */
3754 (*_bfd_error_handler)
3755 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3756 bfd_archive_filename (input_bfd),
3757 input_section->name,
3758 (unsigned long) relocation->r_offset);
3759 bfd_set_error (bfd_error_bad_value);
3763 /* Make this the JALX opcode. */
3764 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3767 /* Swap the high- and low-order 16 bits on little-endian systems
3768 when doing a MIPS16 relocation. */
3769 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3770 && bfd_little_endian (input_bfd))
3771 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3773 /* Put the value into the output. */
3774 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3778 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3781 mips_elf_stub_section_p (abfd, section)
3782 bfd *abfd ATTRIBUTE_UNUSED;
3785 const char *name = bfd_get_section_name (abfd, section);
3787 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3788 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3789 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3792 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3795 mips_elf_allocate_dynamic_relocations (abfd, n)
3801 s = mips_elf_rel_dyn_section (abfd, FALSE);
3802 BFD_ASSERT (s != NULL);
3804 if (s->_raw_size == 0)
3806 /* Make room for a null element. */
3807 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3810 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3813 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3814 is the original relocation, which is now being transformed into a
3815 dynamic relocation. The ADDENDP is adjusted if necessary; the
3816 caller should store the result in place of the original addend. */
3819 mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec,
3820 symbol, addendp, input_section)
3822 struct bfd_link_info *info;
3823 const Elf_Internal_Rela *rel;
3824 struct mips_elf_link_hash_entry *h;
3828 asection *input_section;
3830 Elf_Internal_Rela outrel[3];
3836 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3837 dynobj = elf_hash_table (info)->dynobj;
3838 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3839 BFD_ASSERT (sreloc != NULL);
3840 BFD_ASSERT (sreloc->contents != NULL);
3841 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3842 < sreloc->_raw_size);
3845 outrel[0].r_offset =
3846 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3847 outrel[1].r_offset =
3848 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3849 outrel[2].r_offset =
3850 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3853 /* We begin by assuming that the offset for the dynamic relocation
3854 is the same as for the original relocation. We'll adjust this
3855 later to reflect the correct output offsets. */
3856 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3858 outrel[1].r_offset = rel[1].r_offset;
3859 outrel[2].r_offset = rel[2].r_offset;
3863 /* Except that in a stab section things are more complex.
3864 Because we compress stab information, the offset given in the
3865 relocation may not be the one we want; we must let the stabs
3866 machinery tell us the offset. */
3867 outrel[1].r_offset = outrel[0].r_offset;
3868 outrel[2].r_offset = outrel[0].r_offset;
3869 /* If we didn't need the relocation at all, this value will be
3871 if (outrel[0].r_offset == (bfd_vma) -1)
3876 if (outrel[0].r_offset == (bfd_vma) -1
3877 || outrel[0].r_offset == (bfd_vma) -2)
3880 /* If we've decided to skip this relocation, just output an empty
3881 record. Note that R_MIPS_NONE == 0, so that this call to memset
3882 is a way of setting R_TYPE to R_MIPS_NONE. */
3884 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3889 /* We must now calculate the dynamic symbol table index to use
3890 in the relocation. */
3892 && (! info->symbolic || (h->root.elf_link_hash_flags
3893 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3895 indx = h->root.dynindx;
3896 /* h->root.dynindx may be -1 if this symbol was marked to
3903 if (sec != NULL && bfd_is_abs_section (sec))
3905 else if (sec == NULL || sec->owner == NULL)
3907 bfd_set_error (bfd_error_bad_value);
3912 indx = elf_section_data (sec->output_section)->dynindx;
3917 /* Instead of generating a relocation using the section
3918 symbol, we may as well make it a fully relative
3919 relocation. We want to avoid generating relocations to
3920 local symbols because we used to generate them
3921 incorrectly, without adding the original symbol value,
3922 which is mandated by the ABI for section symbols. In
3923 order to give dynamic loaders and applications time to
3924 phase out the incorrect use, we refrain from emitting
3925 section-relative relocations. It's not like they're
3926 useful, after all. This should be a bit more efficient
3931 /* If the relocation was previously an absolute relocation and
3932 this symbol will not be referred to by the relocation, we must
3933 adjust it by the value we give it in the dynamic symbol table.
3934 Otherwise leave the job up to the dynamic linker. */
3935 if (!indx && r_type != R_MIPS_REL32)
3938 /* The relocation is always an REL32 relocation because we don't
3939 know where the shared library will wind up at load-time. */
3940 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3942 /* For strict adherence to the ABI specification, we should
3943 generate a R_MIPS_64 relocation record by itself before the
3944 _REL32/_64 record as well, such that the addend is read in as
3945 a 64-bit value (REL32 is a 32-bit relocation, after all).
3946 However, since none of the existing ELF64 MIPS dynamic
3947 loaders seems to care, we don't waste space with these
3948 artificial relocations. If this turns out to not be true,
3949 mips_elf_allocate_dynamic_relocation() should be tweaked so
3950 as to make room for a pair of dynamic relocations per
3951 invocation if ABI_64_P, and here we should generate an
3952 additional relocation record with R_MIPS_64 by itself for a
3953 NULL symbol before this relocation record. */
3954 outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3955 ABI_64_P (output_bfd)
3958 outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0,
3961 /* Adjust the output offset of the relocation to reference the
3962 correct location in the output file. */
3963 outrel[0].r_offset += (input_section->output_section->vma
3964 + input_section->output_offset);
3965 outrel[1].r_offset += (input_section->output_section->vma
3966 + input_section->output_offset);
3967 outrel[2].r_offset += (input_section->output_section->vma
3968 + input_section->output_offset);
3971 /* Put the relocation back out. We have to use the special
3972 relocation outputter in the 64-bit case since the 64-bit
3973 relocation format is non-standard. */
3974 if (ABI_64_P (output_bfd))
3976 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3977 (output_bfd, &outrel[0],
3979 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3982 bfd_elf32_swap_reloc_out
3983 (output_bfd, &outrel[0],
3984 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3986 /* Record the index of the first relocation referencing H. This
3987 information is later emitted in the .msym section. */
3989 && (h->min_dyn_reloc_index == 0
3990 || sreloc->reloc_count < h->min_dyn_reloc_index))
3991 h->min_dyn_reloc_index = sreloc->reloc_count;
3993 /* We've now added another relocation. */
3994 ++sreloc->reloc_count;
3996 /* Make sure the output section is writable. The dynamic linker
3997 will be writing to it. */
3998 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4001 /* On IRIX5, make an entry of compact relocation info. */
4002 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
4004 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4009 Elf32_crinfo cptrel;
4011 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4012 cptrel.vaddr = (rel->r_offset
4013 + input_section->output_section->vma
4014 + input_section->output_offset);
4015 if (r_type == R_MIPS_REL32)
4016 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4018 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4019 mips_elf_set_cr_dist2to (cptrel, 0);
4020 cptrel.konst = *addendp;
4022 cr = (scpt->contents
4023 + sizeof (Elf32_External_compact_rel));
4024 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4025 ((Elf32_External_crinfo *) cr
4026 + scpt->reloc_count));
4027 ++scpt->reloc_count;
4034 /* Return the MACH for a MIPS e_flags value. */
4037 _bfd_elf_mips_mach (flags)
4040 switch (flags & EF_MIPS_MACH)
4042 case E_MIPS_MACH_3900:
4043 return bfd_mach_mips3900;
4045 case E_MIPS_MACH_4010:
4046 return bfd_mach_mips4010;
4048 case E_MIPS_MACH_4100:
4049 return bfd_mach_mips4100;
4051 case E_MIPS_MACH_4111:
4052 return bfd_mach_mips4111;
4054 case E_MIPS_MACH_4120:
4055 return bfd_mach_mips4120;
4057 case E_MIPS_MACH_4650:
4058 return bfd_mach_mips4650;
4060 case E_MIPS_MACH_5400:
4061 return bfd_mach_mips5400;
4063 case E_MIPS_MACH_5500:
4064 return bfd_mach_mips5500;
4066 case E_MIPS_MACH_SB1:
4067 return bfd_mach_mips_sb1;
4070 switch (flags & EF_MIPS_ARCH)
4074 return bfd_mach_mips3000;
4078 return bfd_mach_mips6000;
4082 return bfd_mach_mips4000;
4086 return bfd_mach_mips8000;
4090 return bfd_mach_mips5;
4093 case E_MIPS_ARCH_32:
4094 return bfd_mach_mipsisa32;
4097 case E_MIPS_ARCH_64:
4098 return bfd_mach_mipsisa64;
4101 case E_MIPS_ARCH_32R2:
4102 return bfd_mach_mipsisa32r2;
4110 /* Return printable name for ABI. */
4112 static INLINE char *
4113 elf_mips_abi_name (abfd)
4118 flags = elf_elfheader (abfd)->e_flags;
4119 switch (flags & EF_MIPS_ABI)
4122 if (ABI_N32_P (abfd))
4124 else if (ABI_64_P (abfd))
4128 case E_MIPS_ABI_O32:
4130 case E_MIPS_ABI_O64:
4132 case E_MIPS_ABI_EABI32:
4134 case E_MIPS_ABI_EABI64:
4137 return "unknown abi";
4141 /* MIPS ELF uses two common sections. One is the usual one, and the
4142 other is for small objects. All the small objects are kept
4143 together, and then referenced via the gp pointer, which yields
4144 faster assembler code. This is what we use for the small common
4145 section. This approach is copied from ecoff.c. */
4146 static asection mips_elf_scom_section;
4147 static asymbol mips_elf_scom_symbol;
4148 static asymbol *mips_elf_scom_symbol_ptr;
4150 /* MIPS ELF also uses an acommon section, which represents an
4151 allocated common symbol which may be overridden by a
4152 definition in a shared library. */
4153 static asection mips_elf_acom_section;
4154 static asymbol mips_elf_acom_symbol;
4155 static asymbol *mips_elf_acom_symbol_ptr;
4157 /* Handle the special MIPS section numbers that a symbol may use.
4158 This is used for both the 32-bit and the 64-bit ABI. */
4161 _bfd_mips_elf_symbol_processing (abfd, asym)
4165 elf_symbol_type *elfsym;
4167 elfsym = (elf_symbol_type *) asym;
4168 switch (elfsym->internal_elf_sym.st_shndx)
4170 case SHN_MIPS_ACOMMON:
4171 /* This section is used in a dynamically linked executable file.
4172 It is an allocated common section. The dynamic linker can
4173 either resolve these symbols to something in a shared
4174 library, or it can just leave them here. For our purposes,
4175 we can consider these symbols to be in a new section. */
4176 if (mips_elf_acom_section.name == NULL)
4178 /* Initialize the acommon section. */
4179 mips_elf_acom_section.name = ".acommon";
4180 mips_elf_acom_section.flags = SEC_ALLOC;
4181 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4182 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4183 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4184 mips_elf_acom_symbol.name = ".acommon";
4185 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4186 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4187 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4189 asym->section = &mips_elf_acom_section;
4193 /* Common symbols less than the GP size are automatically
4194 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4195 if (asym->value > elf_gp_size (abfd)
4196 || IRIX_COMPAT (abfd) == ict_irix6)
4199 case SHN_MIPS_SCOMMON:
4200 if (mips_elf_scom_section.name == NULL)
4202 /* Initialize the small common section. */
4203 mips_elf_scom_section.name = ".scommon";
4204 mips_elf_scom_section.flags = SEC_IS_COMMON;
4205 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4206 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4207 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4208 mips_elf_scom_symbol.name = ".scommon";
4209 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4210 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4211 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4213 asym->section = &mips_elf_scom_section;
4214 asym->value = elfsym->internal_elf_sym.st_size;
4217 case SHN_MIPS_SUNDEFINED:
4218 asym->section = bfd_und_section_ptr;
4221 #if 0 /* for SGI_COMPAT */
4223 asym->section = mips_elf_text_section_ptr;
4227 asym->section = mips_elf_data_section_ptr;
4233 /* Work over a section just before writing it out. This routine is
4234 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4235 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4239 _bfd_mips_elf_section_processing (abfd, hdr)
4241 Elf_Internal_Shdr *hdr;
4243 if (hdr->sh_type == SHT_MIPS_REGINFO
4244 && hdr->sh_size > 0)
4248 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4249 BFD_ASSERT (hdr->contents == NULL);
4252 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4255 H_PUT_32 (abfd, elf_gp (abfd), buf);
4256 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4260 if (hdr->sh_type == SHT_MIPS_OPTIONS
4261 && hdr->bfd_section != NULL
4262 && mips_elf_section_data (hdr->bfd_section) != NULL
4263 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4265 bfd_byte *contents, *l, *lend;
4267 /* We stored the section contents in the tdata field in the
4268 set_section_contents routine. We save the section contents
4269 so that we don't have to read them again.
4270 At this point we know that elf_gp is set, so we can look
4271 through the section contents to see if there is an
4272 ODK_REGINFO structure. */
4274 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4276 lend = contents + hdr->sh_size;
4277 while (l + sizeof (Elf_External_Options) <= lend)
4279 Elf_Internal_Options intopt;
4281 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4283 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4290 + sizeof (Elf_External_Options)
4291 + (sizeof (Elf64_External_RegInfo) - 8)),
4294 H_PUT_64 (abfd, elf_gp (abfd), buf);
4295 if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8)
4298 else if (intopt.kind == ODK_REGINFO)
4305 + sizeof (Elf_External_Options)
4306 + (sizeof (Elf32_External_RegInfo) - 4)),
4309 H_PUT_32 (abfd, elf_gp (abfd), buf);
4310 if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4)
4317 if (hdr->bfd_section != NULL)
4319 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4321 if (strcmp (name, ".sdata") == 0
4322 || strcmp (name, ".lit8") == 0
4323 || strcmp (name, ".lit4") == 0)
4325 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4326 hdr->sh_type = SHT_PROGBITS;
4328 else if (strcmp (name, ".sbss") == 0)
4330 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4331 hdr->sh_type = SHT_NOBITS;
4333 else if (strcmp (name, ".srdata") == 0)
4335 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4336 hdr->sh_type = SHT_PROGBITS;
4338 else if (strcmp (name, ".compact_rel") == 0)
4341 hdr->sh_type = SHT_PROGBITS;
4343 else if (strcmp (name, ".rtproc") == 0)
4345 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4347 unsigned int adjust;
4349 adjust = hdr->sh_size % hdr->sh_addralign;
4351 hdr->sh_size += hdr->sh_addralign - adjust;
4359 /* Handle a MIPS specific section when reading an object file. This
4360 is called when elfcode.h finds a section with an unknown type.
4361 This routine supports both the 32-bit and 64-bit ELF ABI.
4363 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4367 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
4369 Elf_Internal_Shdr *hdr;
4374 /* There ought to be a place to keep ELF backend specific flags, but
4375 at the moment there isn't one. We just keep track of the
4376 sections by their name, instead. Fortunately, the ABI gives
4377 suggested names for all the MIPS specific sections, so we will
4378 probably get away with this. */
4379 switch (hdr->sh_type)
4381 case SHT_MIPS_LIBLIST:
4382 if (strcmp (name, ".liblist") != 0)
4386 if (strcmp (name, ".msym") != 0)
4389 case SHT_MIPS_CONFLICT:
4390 if (strcmp (name, ".conflict") != 0)
4393 case SHT_MIPS_GPTAB:
4394 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4397 case SHT_MIPS_UCODE:
4398 if (strcmp (name, ".ucode") != 0)
4401 case SHT_MIPS_DEBUG:
4402 if (strcmp (name, ".mdebug") != 0)
4404 flags = SEC_DEBUGGING;
4406 case SHT_MIPS_REGINFO:
4407 if (strcmp (name, ".reginfo") != 0
4408 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4410 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4412 case SHT_MIPS_IFACE:
4413 if (strcmp (name, ".MIPS.interfaces") != 0)
4416 case SHT_MIPS_CONTENT:
4417 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4420 case SHT_MIPS_OPTIONS:
4421 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4424 case SHT_MIPS_DWARF:
4425 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4428 case SHT_MIPS_SYMBOL_LIB:
4429 if (strcmp (name, ".MIPS.symlib") != 0)
4432 case SHT_MIPS_EVENTS:
4433 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4434 && strncmp (name, ".MIPS.post_rel",
4435 sizeof ".MIPS.post_rel" - 1) != 0)
4442 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4447 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4448 (bfd_get_section_flags (abfd,
4454 /* FIXME: We should record sh_info for a .gptab section. */
4456 /* For a .reginfo section, set the gp value in the tdata information
4457 from the contents of this section. We need the gp value while
4458 processing relocs, so we just get it now. The .reginfo section
4459 is not used in the 64-bit MIPS ELF ABI. */
4460 if (hdr->sh_type == SHT_MIPS_REGINFO)
4462 Elf32_External_RegInfo ext;
4465 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
4467 (bfd_size_type) sizeof ext))
4469 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4470 elf_gp (abfd) = s.ri_gp_value;
4473 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4474 set the gp value based on what we find. We may see both
4475 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4476 they should agree. */
4477 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4479 bfd_byte *contents, *l, *lend;
4481 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
4482 if (contents == NULL)
4484 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4485 (file_ptr) 0, hdr->sh_size))
4491 lend = contents + hdr->sh_size;
4492 while (l + sizeof (Elf_External_Options) <= lend)
4494 Elf_Internal_Options intopt;
4496 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4498 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4500 Elf64_Internal_RegInfo intreg;
4502 bfd_mips_elf64_swap_reginfo_in
4504 ((Elf64_External_RegInfo *)
4505 (l + sizeof (Elf_External_Options))),
4507 elf_gp (abfd) = intreg.ri_gp_value;
4509 else if (intopt.kind == ODK_REGINFO)
4511 Elf32_RegInfo intreg;
4513 bfd_mips_elf32_swap_reginfo_in
4515 ((Elf32_External_RegInfo *)
4516 (l + sizeof (Elf_External_Options))),
4518 elf_gp (abfd) = intreg.ri_gp_value;
4528 /* Set the correct type for a MIPS ELF section. We do this by the
4529 section name, which is a hack, but ought to work. This routine is
4530 used by both the 32-bit and the 64-bit ABI. */
4533 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
4535 Elf_Internal_Shdr *hdr;
4538 register const char *name;
4540 name = bfd_get_section_name (abfd, sec);
4542 if (strcmp (name, ".liblist") == 0)
4544 hdr->sh_type = SHT_MIPS_LIBLIST;
4545 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4546 /* The sh_link field is set in final_write_processing. */
4548 else if (strcmp (name, ".conflict") == 0)
4549 hdr->sh_type = SHT_MIPS_CONFLICT;
4550 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4552 hdr->sh_type = SHT_MIPS_GPTAB;
4553 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4554 /* The sh_info field is set in final_write_processing. */
4556 else if (strcmp (name, ".ucode") == 0)
4557 hdr->sh_type = SHT_MIPS_UCODE;
4558 else if (strcmp (name, ".mdebug") == 0)
4560 hdr->sh_type = SHT_MIPS_DEBUG;
4561 /* In a shared object on IRIX 5.3, the .mdebug section has an
4562 entsize of 0. FIXME: Does this matter? */
4563 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4564 hdr->sh_entsize = 0;
4566 hdr->sh_entsize = 1;
4568 else if (strcmp (name, ".reginfo") == 0)
4570 hdr->sh_type = SHT_MIPS_REGINFO;
4571 /* In a shared object on IRIX 5.3, the .reginfo section has an
4572 entsize of 0x18. FIXME: Does this matter? */
4573 if (SGI_COMPAT (abfd))
4575 if ((abfd->flags & DYNAMIC) != 0)
4576 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4578 hdr->sh_entsize = 1;
4581 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4583 else if (SGI_COMPAT (abfd)
4584 && (strcmp (name, ".hash") == 0
4585 || strcmp (name, ".dynamic") == 0
4586 || strcmp (name, ".dynstr") == 0))
4588 if (SGI_COMPAT (abfd))
4589 hdr->sh_entsize = 0;
4591 /* This isn't how the IRIX6 linker behaves. */
4592 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4595 else if (strcmp (name, ".got") == 0
4596 || strcmp (name, ".srdata") == 0
4597 || strcmp (name, ".sdata") == 0
4598 || strcmp (name, ".sbss") == 0
4599 || strcmp (name, ".lit4") == 0
4600 || strcmp (name, ".lit8") == 0)
4601 hdr->sh_flags |= SHF_MIPS_GPREL;
4602 else if (strcmp (name, ".MIPS.interfaces") == 0)
4604 hdr->sh_type = SHT_MIPS_IFACE;
4605 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4607 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4609 hdr->sh_type = SHT_MIPS_CONTENT;
4610 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4611 /* The sh_info field is set in final_write_processing. */
4613 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4615 hdr->sh_type = SHT_MIPS_OPTIONS;
4616 hdr->sh_entsize = 1;
4617 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4619 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4620 hdr->sh_type = SHT_MIPS_DWARF;
4621 else if (strcmp (name, ".MIPS.symlib") == 0)
4623 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4624 /* The sh_link and sh_info fields are set in
4625 final_write_processing. */
4627 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4628 || strncmp (name, ".MIPS.post_rel",
4629 sizeof ".MIPS.post_rel" - 1) == 0)
4631 hdr->sh_type = SHT_MIPS_EVENTS;
4632 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4633 /* The sh_link field is set in final_write_processing. */
4635 else if (strcmp (name, ".msym") == 0)
4637 hdr->sh_type = SHT_MIPS_MSYM;
4638 hdr->sh_flags |= SHF_ALLOC;
4639 hdr->sh_entsize = 8;
4642 /* The generic elf_fake_sections will set up REL_HDR using the default
4643 kind of relocations. We used to set up a second header for the
4644 non-default kind of relocations here, but only NewABI would use
4645 these, and the IRIX ld doesn't like resulting empty RELA sections.
4646 Thus we create those header only on demand now. */
4651 /* Given a BFD section, try to locate the corresponding ELF section
4652 index. This is used by both the 32-bit and the 64-bit ABI.
4653 Actually, it's not clear to me that the 64-bit ABI supports these,
4654 but for non-PIC objects we will certainly want support for at least
4655 the .scommon section. */
4658 _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval)
4659 bfd *abfd ATTRIBUTE_UNUSED;
4663 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4665 *retval = SHN_MIPS_SCOMMON;
4668 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4670 *retval = SHN_MIPS_ACOMMON;
4676 /* Hook called by the linker routine which adds symbols from an object
4677 file. We must handle the special MIPS section numbers here. */
4680 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
4682 struct bfd_link_info *info;
4683 const Elf_Internal_Sym *sym;
4685 flagword *flagsp ATTRIBUTE_UNUSED;
4689 if (SGI_COMPAT (abfd)
4690 && (abfd->flags & DYNAMIC) != 0
4691 && strcmp (*namep, "_rld_new_interface") == 0)
4693 /* Skip IRIX5 rld entry name. */
4698 switch (sym->st_shndx)
4701 /* Common symbols less than the GP size are automatically
4702 treated as SHN_MIPS_SCOMMON symbols. */
4703 if (sym->st_size > elf_gp_size (abfd)
4704 || IRIX_COMPAT (abfd) == ict_irix6)
4707 case SHN_MIPS_SCOMMON:
4708 *secp = bfd_make_section_old_way (abfd, ".scommon");
4709 (*secp)->flags |= SEC_IS_COMMON;
4710 *valp = sym->st_size;
4714 /* This section is used in a shared object. */
4715 if (elf_tdata (abfd)->elf_text_section == NULL)
4717 asymbol *elf_text_symbol;
4718 asection *elf_text_section;
4719 bfd_size_type amt = sizeof (asection);
4721 elf_text_section = bfd_zalloc (abfd, amt);
4722 if (elf_text_section == NULL)
4725 amt = sizeof (asymbol);
4726 elf_text_symbol = bfd_zalloc (abfd, amt);
4727 if (elf_text_symbol == NULL)
4730 /* Initialize the section. */
4732 elf_tdata (abfd)->elf_text_section = elf_text_section;
4733 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4735 elf_text_section->symbol = elf_text_symbol;
4736 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4738 elf_text_section->name = ".text";
4739 elf_text_section->flags = SEC_NO_FLAGS;
4740 elf_text_section->output_section = NULL;
4741 elf_text_section->owner = abfd;
4742 elf_text_symbol->name = ".text";
4743 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4744 elf_text_symbol->section = elf_text_section;
4746 /* This code used to do *secp = bfd_und_section_ptr if
4747 info->shared. I don't know why, and that doesn't make sense,
4748 so I took it out. */
4749 *secp = elf_tdata (abfd)->elf_text_section;
4752 case SHN_MIPS_ACOMMON:
4753 /* Fall through. XXX Can we treat this as allocated data? */
4755 /* This section is used in a shared object. */
4756 if (elf_tdata (abfd)->elf_data_section == NULL)
4758 asymbol *elf_data_symbol;
4759 asection *elf_data_section;
4760 bfd_size_type amt = sizeof (asection);
4762 elf_data_section = bfd_zalloc (abfd, amt);
4763 if (elf_data_section == NULL)
4766 amt = sizeof (asymbol);
4767 elf_data_symbol = bfd_zalloc (abfd, amt);
4768 if (elf_data_symbol == NULL)
4771 /* Initialize the section. */
4773 elf_tdata (abfd)->elf_data_section = elf_data_section;
4774 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4776 elf_data_section->symbol = elf_data_symbol;
4777 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4779 elf_data_section->name = ".data";
4780 elf_data_section->flags = SEC_NO_FLAGS;
4781 elf_data_section->output_section = NULL;
4782 elf_data_section->owner = abfd;
4783 elf_data_symbol->name = ".data";
4784 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4785 elf_data_symbol->section = elf_data_section;
4787 /* This code used to do *secp = bfd_und_section_ptr if
4788 info->shared. I don't know why, and that doesn't make sense,
4789 so I took it out. */
4790 *secp = elf_tdata (abfd)->elf_data_section;
4793 case SHN_MIPS_SUNDEFINED:
4794 *secp = bfd_und_section_ptr;
4798 if (SGI_COMPAT (abfd)
4800 && info->hash->creator == abfd->xvec
4801 && strcmp (*namep, "__rld_obj_head") == 0)
4803 struct elf_link_hash_entry *h;
4804 struct bfd_link_hash_entry *bh;
4806 /* Mark __rld_obj_head as dynamic. */
4808 if (! (_bfd_generic_link_add_one_symbol
4809 (info, abfd, *namep, BSF_GLOBAL, *secp,
4810 (bfd_vma) *valp, (const char *) NULL, FALSE,
4811 get_elf_backend_data (abfd)->collect, &bh)))
4814 h = (struct elf_link_hash_entry *) bh;
4815 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4816 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4817 h->type = STT_OBJECT;
4819 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4822 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4825 /* If this is a mips16 text symbol, add 1 to the value to make it
4826 odd. This will cause something like .word SYM to come up with
4827 the right value when it is loaded into the PC. */
4828 if (sym->st_other == STO_MIPS16)
4834 /* This hook function is called before the linker writes out a global
4835 symbol. We mark symbols as small common if appropriate. This is
4836 also where we undo the increment of the value for a mips16 symbol. */
4839 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
4840 bfd *abfd ATTRIBUTE_UNUSED;
4841 struct bfd_link_info *info ATTRIBUTE_UNUSED;
4842 const char *name ATTRIBUTE_UNUSED;
4843 Elf_Internal_Sym *sym;
4844 asection *input_sec;
4846 /* If we see a common symbol, which implies a relocatable link, then
4847 if a symbol was small common in an input file, mark it as small
4848 common in the output file. */
4849 if (sym->st_shndx == SHN_COMMON
4850 && strcmp (input_sec->name, ".scommon") == 0)
4851 sym->st_shndx = SHN_MIPS_SCOMMON;
4853 if (sym->st_other == STO_MIPS16
4854 && (sym->st_value & 1) != 0)
4860 /* Functions for the dynamic linker. */
4862 /* Create dynamic sections when linking against a dynamic object. */
4865 _bfd_mips_elf_create_dynamic_sections (abfd, info)
4867 struct bfd_link_info *info;
4869 struct elf_link_hash_entry *h;
4870 struct bfd_link_hash_entry *bh;
4872 register asection *s;
4873 const char * const *namep;
4875 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4876 | SEC_LINKER_CREATED | SEC_READONLY);
4878 /* Mips ABI requests the .dynamic section to be read only. */
4879 s = bfd_get_section_by_name (abfd, ".dynamic");
4882 if (! bfd_set_section_flags (abfd, s, flags))
4886 /* We need to create .got section. */
4887 if (! mips_elf_create_got_section (abfd, info, FALSE))
4890 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4893 /* Create the .msym section on IRIX6. It is used by the dynamic
4894 linker to speed up dynamic relocations, and to avoid computing
4895 the ELF hash for symbols. */
4896 if (IRIX_COMPAT (abfd) == ict_irix6
4897 && !mips_elf_create_msym_section (abfd))
4900 /* Create .stub section. */
4901 if (bfd_get_section_by_name (abfd,
4902 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4904 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4906 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4907 || ! bfd_set_section_alignment (abfd, s,
4908 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4912 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4914 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4916 s = bfd_make_section (abfd, ".rld_map");
4918 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4919 || ! bfd_set_section_alignment (abfd, s,
4920 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4924 /* On IRIX5, we adjust add some additional symbols and change the
4925 alignments of several sections. There is no ABI documentation
4926 indicating that this is necessary on IRIX6, nor any evidence that
4927 the linker takes such action. */
4928 if (IRIX_COMPAT (abfd) == ict_irix5)
4930 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4933 if (! (_bfd_generic_link_add_one_symbol
4934 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
4935 (bfd_vma) 0, (const char *) NULL, FALSE,
4936 get_elf_backend_data (abfd)->collect, &bh)))
4939 h = (struct elf_link_hash_entry *) bh;
4940 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4941 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4942 h->type = STT_SECTION;
4944 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4948 /* We need to create a .compact_rel section. */
4949 if (SGI_COMPAT (abfd))
4951 if (!mips_elf_create_compact_rel_section (abfd, info))
4955 /* Change alignments of some sections. */
4956 s = bfd_get_section_by_name (abfd, ".hash");
4958 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4959 s = bfd_get_section_by_name (abfd, ".dynsym");
4961 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4962 s = bfd_get_section_by_name (abfd, ".dynstr");
4964 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4965 s = bfd_get_section_by_name (abfd, ".reginfo");
4967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4968 s = bfd_get_section_by_name (abfd, ".dynamic");
4970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4977 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4979 if (!(_bfd_generic_link_add_one_symbol
4980 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr,
4981 (bfd_vma) 0, (const char *) NULL, FALSE,
4982 get_elf_backend_data (abfd)->collect, &bh)))
4985 h = (struct elf_link_hash_entry *) bh;
4986 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4987 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4988 h->type = STT_SECTION;
4990 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
4993 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4995 /* __rld_map is a four byte word located in the .data section
4996 and is filled in by the rtld to contain a pointer to
4997 the _r_debug structure. Its symbol value will be set in
4998 _bfd_mips_elf_finish_dynamic_symbol. */
4999 s = bfd_get_section_by_name (abfd, ".rld_map");
5000 BFD_ASSERT (s != NULL);
5002 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5004 if (!(_bfd_generic_link_add_one_symbol
5005 (info, abfd, name, BSF_GLOBAL, s,
5006 (bfd_vma) 0, (const char *) NULL, FALSE,
5007 get_elf_backend_data (abfd)->collect, &bh)))
5010 h = (struct elf_link_hash_entry *) bh;
5011 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
5012 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5013 h->type = STT_OBJECT;
5015 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
5023 /* Look through the relocs for a section during the first phase, and
5024 allocate space in the global offset table. */
5027 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
5029 struct bfd_link_info *info;
5031 const Elf_Internal_Rela *relocs;
5035 Elf_Internal_Shdr *symtab_hdr;
5036 struct elf_link_hash_entry **sym_hashes;
5037 struct mips_got_info *g;
5039 const Elf_Internal_Rela *rel;
5040 const Elf_Internal_Rela *rel_end;
5043 struct elf_backend_data *bed;
5045 if (info->relocatable)
5048 dynobj = elf_hash_table (info)->dynobj;
5049 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5050 sym_hashes = elf_sym_hashes (abfd);
5051 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5053 /* Check for the mips16 stub sections. */
5055 name = bfd_get_section_name (abfd, sec);
5056 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5058 unsigned long r_symndx;
5060 /* Look at the relocation information to figure out which symbol
5063 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5065 if (r_symndx < extsymoff
5066 || sym_hashes[r_symndx - extsymoff] == NULL)
5070 /* This stub is for a local symbol. This stub will only be
5071 needed if there is some relocation in this BFD, other
5072 than a 16 bit function call, which refers to this symbol. */
5073 for (o = abfd->sections; o != NULL; o = o->next)
5075 Elf_Internal_Rela *sec_relocs;
5076 const Elf_Internal_Rela *r, *rend;
5078 /* We can ignore stub sections when looking for relocs. */
5079 if ((o->flags & SEC_RELOC) == 0
5080 || o->reloc_count == 0
5081 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5082 sizeof FN_STUB - 1) == 0
5083 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5084 sizeof CALL_STUB - 1) == 0
5085 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5086 sizeof CALL_FP_STUB - 1) == 0)
5090 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
5091 (Elf_Internal_Rela *) NULL,
5093 if (sec_relocs == NULL)
5096 rend = sec_relocs + o->reloc_count;
5097 for (r = sec_relocs; r < rend; r++)
5098 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5099 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5102 if (elf_section_data (o)->relocs != sec_relocs)
5111 /* There is no non-call reloc for this stub, so we do
5112 not need it. Since this function is called before
5113 the linker maps input sections to output sections, we
5114 can easily discard it by setting the SEC_EXCLUDE
5116 sec->flags |= SEC_EXCLUDE;
5120 /* Record this stub in an array of local symbol stubs for
5122 if (elf_tdata (abfd)->local_stubs == NULL)
5124 unsigned long symcount;
5128 if (elf_bad_symtab (abfd))
5129 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5131 symcount = symtab_hdr->sh_info;
5132 amt = symcount * sizeof (asection *);
5133 n = (asection **) bfd_zalloc (abfd, amt);
5136 elf_tdata (abfd)->local_stubs = n;
5139 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5141 /* We don't need to set mips16_stubs_seen in this case.
5142 That flag is used to see whether we need to look through
5143 the global symbol table for stubs. We don't need to set
5144 it here, because we just have a local stub. */
5148 struct mips_elf_link_hash_entry *h;
5150 h = ((struct mips_elf_link_hash_entry *)
5151 sym_hashes[r_symndx - extsymoff]);
5153 /* H is the symbol this stub is for. */
5156 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5159 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5160 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5162 unsigned long r_symndx;
5163 struct mips_elf_link_hash_entry *h;
5166 /* Look at the relocation information to figure out which symbol
5169 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5171 if (r_symndx < extsymoff
5172 || sym_hashes[r_symndx - extsymoff] == NULL)
5174 /* This stub was actually built for a static symbol defined
5175 in the same file. We assume that all static symbols in
5176 mips16 code are themselves mips16, so we can simply
5177 discard this stub. Since this function is called before
5178 the linker maps input sections to output sections, we can
5179 easily discard it by setting the SEC_EXCLUDE flag. */
5180 sec->flags |= SEC_EXCLUDE;
5184 h = ((struct mips_elf_link_hash_entry *)
5185 sym_hashes[r_symndx - extsymoff]);
5187 /* H is the symbol this stub is for. */
5189 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5190 loc = &h->call_fp_stub;
5192 loc = &h->call_stub;
5194 /* If we already have an appropriate stub for this function, we
5195 don't need another one, so we can discard this one. Since
5196 this function is called before the linker maps input sections
5197 to output sections, we can easily discard it by setting the
5198 SEC_EXCLUDE flag. We can also discard this section if we
5199 happen to already know that this is a mips16 function; it is
5200 not necessary to check this here, as it is checked later, but
5201 it is slightly faster to check now. */
5202 if (*loc != NULL || h->root.other == STO_MIPS16)
5204 sec->flags |= SEC_EXCLUDE;
5209 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5219 sgot = mips_elf_got_section (dynobj, FALSE);
5224 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5225 g = mips_elf_section_data (sgot)->u.got_info;
5226 BFD_ASSERT (g != NULL);
5231 bed = get_elf_backend_data (abfd);
5232 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5233 for (rel = relocs; rel < rel_end; ++rel)
5235 unsigned long r_symndx;
5236 unsigned int r_type;
5237 struct elf_link_hash_entry *h;
5239 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5240 r_type = ELF_R_TYPE (abfd, rel->r_info);
5242 if (r_symndx < extsymoff)
5244 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5246 (*_bfd_error_handler)
5247 (_("%s: Malformed reloc detected for section %s"),
5248 bfd_archive_filename (abfd), name);
5249 bfd_set_error (bfd_error_bad_value);
5254 h = sym_hashes[r_symndx - extsymoff];
5256 /* This may be an indirect symbol created because of a version. */
5259 while (h->root.type == bfd_link_hash_indirect)
5260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5264 /* Some relocs require a global offset table. */
5265 if (dynobj == NULL || sgot == NULL)
5271 case R_MIPS_CALL_HI16:
5272 case R_MIPS_CALL_LO16:
5273 case R_MIPS_GOT_HI16:
5274 case R_MIPS_GOT_LO16:
5275 case R_MIPS_GOT_PAGE:
5276 case R_MIPS_GOT_OFST:
5277 case R_MIPS_GOT_DISP:
5279 elf_hash_table (info)->dynobj = dynobj = abfd;
5280 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5282 g = mips_elf_got_info (dynobj, &sgot);
5289 && (info->shared || h != NULL)
5290 && (sec->flags & SEC_ALLOC) != 0)
5291 elf_hash_table (info)->dynobj = dynobj = abfd;
5299 if (!h && (r_type == R_MIPS_CALL_LO16
5300 || r_type == R_MIPS_GOT_LO16
5301 || r_type == R_MIPS_GOT_DISP))
5303 /* We may need a local GOT entry for this relocation. We
5304 don't count R_MIPS_GOT_PAGE because we can estimate the
5305 maximum number of pages needed by looking at the size of
5306 the segment. Similar comments apply to R_MIPS_GOT16 and
5307 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5308 R_MIPS_CALL_HI16 because these are always followed by an
5309 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5310 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5320 (*_bfd_error_handler)
5321 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5322 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5323 bfd_set_error (bfd_error_bad_value);
5328 case R_MIPS_CALL_HI16:
5329 case R_MIPS_CALL_LO16:
5332 /* This symbol requires a global offset table entry. */
5333 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5336 /* We need a stub, not a plt entry for the undefined
5337 function. But we record it as if it needs plt. See
5338 elf_adjust_dynamic_symbol in elflink.h. */
5339 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5344 case R_MIPS_GOT_PAGE:
5345 /* If this is a global, overridable symbol, GOT_PAGE will
5346 decay to GOT_DISP, so we'll need a GOT entry for it. */
5351 struct mips_elf_link_hash_entry *hmips =
5352 (struct mips_elf_link_hash_entry *) h;
5354 while (hmips->root.root.type == bfd_link_hash_indirect
5355 || hmips->root.root.type == bfd_link_hash_warning)
5356 hmips = (struct mips_elf_link_hash_entry *)
5357 hmips->root.root.u.i.link;
5359 if ((hmips->root.root.type == bfd_link_hash_defined
5360 || hmips->root.root.type == bfd_link_hash_defweak)
5361 && hmips->root.root.u.def.section
5362 && ! (info->shared && ! info->symbolic
5363 && ! (hmips->root.elf_link_hash_flags
5364 & ELF_LINK_FORCED_LOCAL))
5365 /* If we've encountered any other relocation
5366 referencing the symbol, we'll have marked it as
5367 dynamic, and, even though we might be able to get
5368 rid of the GOT entry should we know for sure all
5369 previous relocations were GOT_PAGE ones, at this
5370 point we can't tell, so just keep using the
5371 symbol as dynamic. This is very important in the
5372 multi-got case, since we don't decide whether to
5373 decay GOT_PAGE to GOT_DISP on a per-GOT basis: if
5374 the symbol is dynamic, we'll need a GOT entry for
5375 every GOT in which the symbol is referenced with
5376 a GOT_PAGE relocation. */
5377 && hmips->root.dynindx == -1)
5383 case R_MIPS_GOT_HI16:
5384 case R_MIPS_GOT_LO16:
5385 case R_MIPS_GOT_DISP:
5386 /* This symbol requires a global offset table entry. */
5387 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5394 if ((info->shared || h != NULL)
5395 && (sec->flags & SEC_ALLOC) != 0)
5399 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5403 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5406 /* When creating a shared object, we must copy these
5407 reloc types into the output file as R_MIPS_REL32
5408 relocs. We make room for this reloc in the
5409 .rel.dyn reloc section. */
5410 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5411 if ((sec->flags & MIPS_READONLY_SECTION)
5412 == MIPS_READONLY_SECTION)
5413 /* We tell the dynamic linker that there are
5414 relocations against the text segment. */
5415 info->flags |= DF_TEXTREL;
5419 struct mips_elf_link_hash_entry *hmips;
5421 /* We only need to copy this reloc if the symbol is
5422 defined in a dynamic object. */
5423 hmips = (struct mips_elf_link_hash_entry *) h;
5424 ++hmips->possibly_dynamic_relocs;
5425 if ((sec->flags & MIPS_READONLY_SECTION)
5426 == MIPS_READONLY_SECTION)
5427 /* We need it to tell the dynamic linker if there
5428 are relocations against the text segment. */
5429 hmips->readonly_reloc = TRUE;
5432 /* Even though we don't directly need a GOT entry for
5433 this symbol, a symbol must have a dynamic symbol
5434 table index greater that DT_MIPS_GOTSYM if there are
5435 dynamic relocations against it. */
5439 elf_hash_table (info)->dynobj = dynobj = abfd;
5440 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5442 g = mips_elf_got_info (dynobj, &sgot);
5443 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5448 if (SGI_COMPAT (abfd))
5449 mips_elf_hash_table (info)->compact_rel_size +=
5450 sizeof (Elf32_External_crinfo);
5454 case R_MIPS_GPREL16:
5455 case R_MIPS_LITERAL:
5456 case R_MIPS_GPREL32:
5457 if (SGI_COMPAT (abfd))
5458 mips_elf_hash_table (info)->compact_rel_size +=
5459 sizeof (Elf32_External_crinfo);
5462 /* This relocation describes the C++ object vtable hierarchy.
5463 Reconstruct it for later use during GC. */
5464 case R_MIPS_GNU_VTINHERIT:
5465 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5469 /* This relocation describes which C++ vtable entries are actually
5470 used. Record for later use during GC. */
5471 case R_MIPS_GNU_VTENTRY:
5472 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5480 /* We must not create a stub for a symbol that has relocations
5481 related to taking the function's address. */
5487 struct mips_elf_link_hash_entry *mh;
5489 mh = (struct mips_elf_link_hash_entry *) h;
5490 mh->no_fn_stub = TRUE;
5494 case R_MIPS_CALL_HI16:
5495 case R_MIPS_CALL_LO16:
5499 /* If this reloc is not a 16 bit call, and it has a global
5500 symbol, then we will need the fn_stub if there is one.
5501 References from a stub section do not count. */
5503 && r_type != R_MIPS16_26
5504 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5505 sizeof FN_STUB - 1) != 0
5506 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5507 sizeof CALL_STUB - 1) != 0
5508 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5509 sizeof CALL_FP_STUB - 1) != 0)
5511 struct mips_elf_link_hash_entry *mh;
5513 mh = (struct mips_elf_link_hash_entry *) h;
5514 mh->need_fn_stub = TRUE;
5522 _bfd_mips_relax_section (abfd, sec, link_info, again)
5525 struct bfd_link_info *link_info;
5528 Elf_Internal_Rela *internal_relocs;
5529 Elf_Internal_Rela *irel, *irelend;
5530 Elf_Internal_Shdr *symtab_hdr;
5531 bfd_byte *contents = NULL;
5532 bfd_byte *free_contents = NULL;
5534 bfd_boolean changed_contents = FALSE;
5535 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5536 Elf_Internal_Sym *isymbuf = NULL;
5538 /* We are not currently changing any sizes, so only one pass. */
5541 if (link_info->relocatable)
5544 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
5545 (Elf_Internal_Rela *) NULL,
5546 link_info->keep_memory);
5547 if (internal_relocs == NULL)
5550 irelend = internal_relocs + sec->reloc_count
5551 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5552 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5553 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5555 for (irel = internal_relocs; irel < irelend; irel++)
5558 bfd_signed_vma sym_offset;
5559 unsigned int r_type;
5560 unsigned long r_symndx;
5562 unsigned long instruction;
5564 /* Turn jalr into bgezal, and jr into beq, if they're marked
5565 with a JALR relocation, that indicate where they jump to.
5566 This saves some pipeline bubbles. */
5567 r_type = ELF_R_TYPE (abfd, irel->r_info);
5568 if (r_type != R_MIPS_JALR)
5571 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5572 /* Compute the address of the jump target. */
5573 if (r_symndx >= extsymoff)
5575 struct mips_elf_link_hash_entry *h
5576 = ((struct mips_elf_link_hash_entry *)
5577 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5579 while (h->root.root.type == bfd_link_hash_indirect
5580 || h->root.root.type == bfd_link_hash_warning)
5581 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5583 /* If a symbol is undefined, or if it may be overridden,
5585 if (! ((h->root.root.type == bfd_link_hash_defined
5586 || h->root.root.type == bfd_link_hash_defweak)
5587 && h->root.root.u.def.section)
5588 || (link_info->shared && ! link_info->symbolic
5589 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5592 sym_sec = h->root.root.u.def.section;
5593 if (sym_sec->output_section)
5594 symval = (h->root.root.u.def.value
5595 + sym_sec->output_section->vma
5596 + sym_sec->output_offset);
5598 symval = h->root.root.u.def.value;
5602 Elf_Internal_Sym *isym;
5604 /* Read this BFD's symbols if we haven't done so already. */
5605 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5607 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5608 if (isymbuf == NULL)
5609 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5610 symtab_hdr->sh_info, 0,
5612 if (isymbuf == NULL)
5616 isym = isymbuf + r_symndx;
5617 if (isym->st_shndx == SHN_UNDEF)
5619 else if (isym->st_shndx == SHN_ABS)
5620 sym_sec = bfd_abs_section_ptr;
5621 else if (isym->st_shndx == SHN_COMMON)
5622 sym_sec = bfd_com_section_ptr;
5625 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5626 symval = isym->st_value
5627 + sym_sec->output_section->vma
5628 + sym_sec->output_offset;
5631 /* Compute branch offset, from delay slot of the jump to the
5633 sym_offset = (symval + irel->r_addend)
5634 - (sec_start + irel->r_offset + 4);
5636 /* Branch offset must be properly aligned. */
5637 if ((sym_offset & 3) != 0)
5642 /* Check that it's in range. */
5643 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5646 /* Get the section contents if we haven't done so already. */
5647 if (contents == NULL)
5649 /* Get cached copy if it exists. */
5650 if (elf_section_data (sec)->this_hdr.contents != NULL)
5651 contents = elf_section_data (sec)->this_hdr.contents;
5654 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
5655 if (contents == NULL)
5658 free_contents = contents;
5659 if (! bfd_get_section_contents (abfd, sec, contents,
5660 (file_ptr) 0, sec->_raw_size))
5665 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5667 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5668 if ((instruction & 0xfc1fffff) == 0x0000f809)
5669 instruction = 0x04110000;
5670 /* If it was jr <reg>, turn it into b <target>. */
5671 else if ((instruction & 0xfc1fffff) == 0x00000008)
5672 instruction = 0x10000000;
5676 instruction |= (sym_offset & 0xffff);
5677 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5678 changed_contents = TRUE;
5681 if (contents != NULL
5682 && elf_section_data (sec)->this_hdr.contents != contents)
5684 if (!changed_contents && !link_info->keep_memory)
5688 /* Cache the section contents for elf_link_input_bfd. */
5689 elf_section_data (sec)->this_hdr.contents = contents;
5695 if (free_contents != NULL)
5696 free (free_contents);
5700 /* Adjust a symbol defined by a dynamic object and referenced by a
5701 regular object. The current definition is in some section of the
5702 dynamic object, but we're not including those sections. We have to
5703 change the definition to something the rest of the link can
5707 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
5708 struct bfd_link_info *info;
5709 struct elf_link_hash_entry *h;
5712 struct mips_elf_link_hash_entry *hmips;
5715 dynobj = elf_hash_table (info)->dynobj;
5717 /* Make sure we know what is going on here. */
5718 BFD_ASSERT (dynobj != NULL
5719 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5720 || h->weakdef != NULL
5721 || ((h->elf_link_hash_flags
5722 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5723 && (h->elf_link_hash_flags
5724 & ELF_LINK_HASH_REF_REGULAR) != 0
5725 && (h->elf_link_hash_flags
5726 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5728 /* If this symbol is defined in a dynamic object, we need to copy
5729 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5731 hmips = (struct mips_elf_link_hash_entry *) h;
5732 if (! info->relocatable
5733 && hmips->possibly_dynamic_relocs != 0
5734 && (h->root.type == bfd_link_hash_defweak
5735 || (h->elf_link_hash_flags
5736 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5738 mips_elf_allocate_dynamic_relocations (dynobj,
5739 hmips->possibly_dynamic_relocs);
5740 if (hmips->readonly_reloc)
5741 /* We tell the dynamic linker that there are relocations
5742 against the text segment. */
5743 info->flags |= DF_TEXTREL;
5746 /* For a function, create a stub, if allowed. */
5747 if (! hmips->no_fn_stub
5748 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5750 if (! elf_hash_table (info)->dynamic_sections_created)
5753 /* If this symbol is not defined in a regular file, then set
5754 the symbol to the stub location. This is required to make
5755 function pointers compare as equal between the normal
5756 executable and the shared library. */
5757 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5759 /* We need .stub section. */
5760 s = bfd_get_section_by_name (dynobj,
5761 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5762 BFD_ASSERT (s != NULL);
5764 h->root.u.def.section = s;
5765 h->root.u.def.value = s->_raw_size;
5767 /* XXX Write this stub address somewhere. */
5768 h->plt.offset = s->_raw_size;
5770 /* Make room for this stub code. */
5771 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5773 /* The last half word of the stub will be filled with the index
5774 of this symbol in .dynsym section. */
5778 else if ((h->type == STT_FUNC)
5779 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5781 /* This will set the entry for this symbol in the GOT to 0, and
5782 the dynamic linker will take care of this. */
5783 h->root.u.def.value = 0;
5787 /* If this is a weak symbol, and there is a real definition, the
5788 processor independent code will have arranged for us to see the
5789 real definition first, and we can just use the same value. */
5790 if (h->weakdef != NULL)
5792 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5793 || h->weakdef->root.type == bfd_link_hash_defweak);
5794 h->root.u.def.section = h->weakdef->root.u.def.section;
5795 h->root.u.def.value = h->weakdef->root.u.def.value;
5799 /* This is a reference to a symbol defined by a dynamic object which
5800 is not a function. */
5805 /* This function is called after all the input files have been read,
5806 and the input sections have been assigned to output sections. We
5807 check for any mips16 stub sections that we can discard. */
5810 _bfd_mips_elf_always_size_sections (output_bfd, info)
5812 struct bfd_link_info *info;
5818 struct mips_got_info *g;
5820 bfd_size_type loadable_size = 0;
5821 bfd_size_type local_gotno;
5824 /* The .reginfo section has a fixed size. */
5825 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5827 bfd_set_section_size (output_bfd, ri,
5828 (bfd_size_type) sizeof (Elf32_External_RegInfo));
5830 if (! (info->relocatable
5831 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5832 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5833 mips_elf_check_mips16_stubs,
5836 dynobj = elf_hash_table (info)->dynobj;
5838 /* Relocatable links don't have it. */
5841 g = mips_elf_got_info (dynobj, &s);
5845 /* Calculate the total loadable size of the output. That
5846 will give us the maximum number of GOT_PAGE entries
5848 for (sub = info->input_bfds; sub; sub = sub->link_next)
5850 asection *subsection;
5852 for (subsection = sub->sections;
5854 subsection = subsection->next)
5856 if ((subsection->flags & SEC_ALLOC) == 0)
5858 loadable_size += ((subsection->_raw_size + 0xf)
5859 &~ (bfd_size_type) 0xf);
5863 /* There has to be a global GOT entry for every symbol with
5864 a dynamic symbol table index of DT_MIPS_GOTSYM or
5865 higher. Therefore, it make sense to put those symbols
5866 that need GOT entries at the end of the symbol table. We
5868 if (! mips_elf_sort_hash_table (info, 1))
5871 if (g->global_gotsym != NULL)
5872 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5874 /* If there are no global symbols, or none requiring
5875 relocations, then GLOBAL_GOTSYM will be NULL. */
5878 /* In the worst case, we'll get one stub per dynamic symbol, plus
5879 one to account for the dummy entry at the end required by IRIX
5881 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5883 /* Assume there are two loadable segments consisting of
5884 contiguous sections. Is 5 enough? */
5885 local_gotno = (loadable_size >> 16) + 5;
5887 g->local_gotno += local_gotno;
5888 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5890 g->global_gotno = i;
5891 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5893 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5894 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5900 /* Set the sizes of the dynamic sections. */
5903 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
5905 struct bfd_link_info *info;
5909 bfd_boolean reltext;
5911 dynobj = elf_hash_table (info)->dynobj;
5912 BFD_ASSERT (dynobj != NULL);
5914 if (elf_hash_table (info)->dynamic_sections_created)
5916 /* Set the contents of the .interp section to the interpreter. */
5919 s = bfd_get_section_by_name (dynobj, ".interp");
5920 BFD_ASSERT (s != NULL);
5922 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5924 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5928 /* The check_relocs and adjust_dynamic_symbol entry points have
5929 determined the sizes of the various dynamic sections. Allocate
5932 for (s = dynobj->sections; s != NULL; s = s->next)
5937 /* It's OK to base decisions on the section name, because none
5938 of the dynobj section names depend upon the input files. */
5939 name = bfd_get_section_name (dynobj, s);
5941 if ((s->flags & SEC_LINKER_CREATED) == 0)
5946 if (strncmp (name, ".rel", 4) == 0)
5948 if (s->_raw_size == 0)
5950 /* We only strip the section if the output section name
5951 has the same name. Otherwise, there might be several
5952 input sections for this output section. FIXME: This
5953 code is probably not needed these days anyhow, since
5954 the linker now does not create empty output sections. */
5955 if (s->output_section != NULL
5957 bfd_get_section_name (s->output_section->owner,
5958 s->output_section)) == 0)
5963 const char *outname;
5966 /* If this relocation section applies to a read only
5967 section, then we probably need a DT_TEXTREL entry.
5968 If the relocation section is .rel.dyn, we always
5969 assert a DT_TEXTREL entry rather than testing whether
5970 there exists a relocation to a read only section or
5972 outname = bfd_get_section_name (output_bfd,
5974 target = bfd_get_section_by_name (output_bfd, outname + 4);
5976 && (target->flags & SEC_READONLY) != 0
5977 && (target->flags & SEC_ALLOC) != 0)
5978 || strcmp (outname, ".rel.dyn") == 0)
5981 /* We use the reloc_count field as a counter if we need
5982 to copy relocs into the output file. */
5983 if (strcmp (name, ".rel.dyn") != 0)
5986 /* If combreloc is enabled, elf_link_sort_relocs() will
5987 sort relocations, but in a different way than we do,
5988 and before we're done creating relocations. Also, it
5989 will move them around between input sections'
5990 relocation's contents, so our sorting would be
5991 broken, so don't let it run. */
5992 info->combreloc = 0;
5995 else if (strncmp (name, ".got", 4) == 0)
5997 /* _bfd_mips_elf_always_size_sections() has already done
5998 most of the work, but some symbols may have been mapped
5999 to versions that we must now resolve in the got_entries
6001 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6002 struct mips_got_info *g = gg;
6003 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6004 unsigned int needed_relocs = 0;
6008 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6009 set_got_offset_arg.info = info;
6011 mips_elf_resolve_final_got_entries (gg);
6012 for (g = gg->next; g && g->next != gg; g = g->next)
6014 unsigned int save_assign;
6016 mips_elf_resolve_final_got_entries (g);
6018 /* Assign offsets to global GOT entries. */
6019 save_assign = g->assigned_gotno;
6020 g->assigned_gotno = g->local_gotno;
6021 set_got_offset_arg.g = g;
6022 set_got_offset_arg.needed_relocs = 0;
6023 htab_traverse (g->got_entries,
6024 mips_elf_set_global_got_offset,
6025 &set_got_offset_arg);
6026 needed_relocs += set_got_offset_arg.needed_relocs;
6027 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6028 <= g->global_gotno);
6030 g->assigned_gotno = save_assign;
6033 needed_relocs += g->local_gotno - g->assigned_gotno;
6034 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6035 + g->next->global_gotno
6036 + MIPS_RESERVED_GOTNO);
6041 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6044 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6046 /* IRIX rld assumes that the function stub isn't at the end
6047 of .text section. So put a dummy. XXX */
6048 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
6050 else if (! info->shared
6051 && ! mips_elf_hash_table (info)->use_rld_obj_head
6052 && strncmp (name, ".rld_map", 8) == 0)
6054 /* We add a room for __rld_map. It will be filled in by the
6055 rtld to contain a pointer to the _r_debug structure. */
6058 else if (SGI_COMPAT (output_bfd)
6059 && strncmp (name, ".compact_rel", 12) == 0)
6060 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
6061 else if (strcmp (name, ".msym") == 0)
6062 s->_raw_size = (sizeof (Elf32_External_Msym)
6063 * (elf_hash_table (info)->dynsymcount
6064 + bfd_count_sections (output_bfd)));
6065 else if (strncmp (name, ".init", 5) != 0)
6067 /* It's not one of our sections, so don't allocate space. */
6073 _bfd_strip_section_from_output (info, s);
6077 /* Allocate memory for the section contents. */
6078 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
6079 if (s->contents == NULL && s->_raw_size != 0)
6081 bfd_set_error (bfd_error_no_memory);
6086 if (elf_hash_table (info)->dynamic_sections_created)
6088 /* Add some entries to the .dynamic section. We fill in the
6089 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6090 must add the entries now so that we get the correct size for
6091 the .dynamic section. The DT_DEBUG entry is filled in by the
6092 dynamic linker and used by the debugger. */
6095 /* SGI object has the equivalence of DT_DEBUG in the
6096 DT_MIPS_RLD_MAP entry. */
6097 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6099 if (!SGI_COMPAT (output_bfd))
6101 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6107 /* Shared libraries on traditional mips have DT_DEBUG. */
6108 if (!SGI_COMPAT (output_bfd))
6110 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6115 if (reltext && SGI_COMPAT (output_bfd))
6116 info->flags |= DF_TEXTREL;
6118 if ((info->flags & DF_TEXTREL) != 0)
6120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6124 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6127 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6139 if (SGI_COMPAT (output_bfd))
6141 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
6145 if (SGI_COMPAT (output_bfd))
6147 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
6151 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
6153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
6156 s = bfd_get_section_by_name (dynobj, ".liblist");
6157 BFD_ASSERT (s != NULL);
6159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
6163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6170 /* Time stamps in executable files are a bad idea. */
6171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6200 if (IRIX_COMPAT (dynobj) == ict_irix5
6201 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6204 if (IRIX_COMPAT (dynobj) == ict_irix6
6205 && (bfd_get_section_by_name
6206 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6207 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6210 if (bfd_get_section_by_name (dynobj, ".msym")
6211 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
6218 /* Relocate a MIPS ELF section. */
6221 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6222 contents, relocs, local_syms, local_sections)
6224 struct bfd_link_info *info;
6226 asection *input_section;
6228 Elf_Internal_Rela *relocs;
6229 Elf_Internal_Sym *local_syms;
6230 asection **local_sections;
6232 Elf_Internal_Rela *rel;
6233 const Elf_Internal_Rela *relend;
6235 bfd_boolean use_saved_addend_p = FALSE;
6236 struct elf_backend_data *bed;
6238 bed = get_elf_backend_data (output_bfd);
6239 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6240 for (rel = relocs; rel < relend; ++rel)
6244 reloc_howto_type *howto;
6245 bfd_boolean require_jalx;
6246 /* TRUE if the relocation is a RELA relocation, rather than a
6248 bfd_boolean rela_relocation_p = TRUE;
6249 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6250 const char * msg = (const char *) NULL;
6252 /* Find the relocation howto for this relocation. */
6253 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6255 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6256 64-bit code, but make sure all their addresses are in the
6257 lowermost or uppermost 32-bit section of the 64-bit address
6258 space. Thus, when they use an R_MIPS_64 they mean what is
6259 usually meant by R_MIPS_32, with the exception that the
6260 stored value is sign-extended to 64 bits. */
6261 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6263 /* On big-endian systems, we need to lie about the position
6265 if (bfd_big_endian (input_bfd))
6269 /* NewABI defaults to RELA relocations. */
6270 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6271 NEWABI_P (input_bfd)
6272 && (MIPS_RELOC_RELA_P
6273 (input_bfd, input_section,
6276 if (!use_saved_addend_p)
6278 Elf_Internal_Shdr *rel_hdr;
6280 /* If these relocations were originally of the REL variety,
6281 we must pull the addend out of the field that will be
6282 relocated. Otherwise, we simply use the contents of the
6283 RELA relocation. To determine which flavor or relocation
6284 this is, we depend on the fact that the INPUT_SECTION's
6285 REL_HDR is read before its REL_HDR2. */
6286 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6287 if ((size_t) (rel - relocs)
6288 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6289 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6290 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6292 /* Note that this is a REL relocation. */
6293 rela_relocation_p = FALSE;
6295 /* Get the addend, which is stored in the input file. */
6296 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6298 addend &= howto->src_mask;
6299 addend <<= howto->rightshift;
6301 /* For some kinds of relocations, the ADDEND is a
6302 combination of the addend stored in two different
6304 if (r_type == R_MIPS_HI16
6305 || r_type == R_MIPS_GNU_REL_HI16
6306 || (r_type == R_MIPS_GOT16
6307 && mips_elf_local_relocation_p (input_bfd, rel,
6308 local_sections, FALSE)))
6311 const Elf_Internal_Rela *lo16_relocation;
6312 reloc_howto_type *lo16_howto;
6315 /* The combined value is the sum of the HI16 addend,
6316 left-shifted by sixteen bits, and the LO16
6317 addend, sign extended. (Usually, the code does
6318 a `lui' of the HI16 value, and then an `addiu' of
6321 Scan ahead to find a matching LO16 relocation. */
6322 if (r_type == R_MIPS_GNU_REL_HI16)
6323 lo = R_MIPS_GNU_REL_LO16;
6326 lo16_relocation = mips_elf_next_relocation (input_bfd, lo,
6328 if (lo16_relocation == NULL)
6331 /* Obtain the addend kept there. */
6332 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE);
6333 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6334 input_bfd, contents);
6335 l &= lo16_howto->src_mask;
6336 l <<= lo16_howto->rightshift;
6337 l = _bfd_mips_elf_sign_extend (l, 16);
6341 /* Compute the combined addend. */
6344 /* If PC-relative, subtract the difference between the
6345 address of the LO part of the reloc and the address of
6346 the HI part. The relocation is relative to the LO
6347 part, but mips_elf_calculate_relocation() doesn't
6348 know its address or the difference from the HI part, so
6349 we subtract that difference here. See also the
6350 comment in mips_elf_calculate_relocation(). */
6351 if (r_type == R_MIPS_GNU_REL_HI16)
6352 addend -= (lo16_relocation->r_offset - rel->r_offset);
6354 else if (r_type == R_MIPS16_GPREL)
6356 /* The addend is scrambled in the object file. See
6357 mips_elf_perform_relocation for details on the
6359 addend = (((addend & 0x1f0000) >> 5)
6360 | ((addend & 0x7e00000) >> 16)
6365 addend = rel->r_addend;
6368 if (info->relocatable)
6370 Elf_Internal_Sym *sym;
6371 unsigned long r_symndx;
6373 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6374 && bfd_big_endian (input_bfd))
6377 /* Since we're just relocating, all we need to do is copy
6378 the relocations back out to the object file, unless
6379 they're against a section symbol, in which case we need
6380 to adjust by the section offset, or unless they're GP
6381 relative in which case we need to adjust by the amount
6382 that we're adjusting GP in this relocatable object. */
6384 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6386 /* There's nothing to do for non-local relocations. */
6389 if (r_type == R_MIPS16_GPREL
6390 || r_type == R_MIPS_GPREL16
6391 || r_type == R_MIPS_GPREL32
6392 || r_type == R_MIPS_LITERAL)
6393 addend -= (_bfd_get_gp_value (output_bfd)
6394 - _bfd_get_gp_value (input_bfd));
6396 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6397 sym = local_syms + r_symndx;
6398 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6399 /* Adjust the addend appropriately. */
6400 addend += local_sections[r_symndx]->output_offset;
6402 if (howto->partial_inplace)
6404 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6405 then we only want to write out the high-order 16 bits.
6406 The subsequent R_MIPS_LO16 will handle the low-order bits.
6408 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16
6409 || r_type == R_MIPS_GNU_REL_HI16)
6410 addend = mips_elf_high (addend);
6411 else if (r_type == R_MIPS_HIGHER)
6412 addend = mips_elf_higher (addend);
6413 else if (r_type == R_MIPS_HIGHEST)
6414 addend = mips_elf_highest (addend);
6417 if (rela_relocation_p)
6418 /* If this is a RELA relocation, just update the addend.
6419 We have to cast away constness for REL. */
6420 rel->r_addend = addend;
6423 /* Otherwise, we have to write the value back out. Note
6424 that we use the source mask, rather than the
6425 destination mask because the place to which we are
6426 writing will be source of the addend in the final
6428 addend >>= howto->rightshift;
6429 addend &= howto->src_mask;
6431 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6432 /* See the comment above about using R_MIPS_64 in the 32-bit
6433 ABI. Here, we need to update the addend. It would be
6434 possible to get away with just using the R_MIPS_32 reloc
6435 but for endianness. */
6441 if (addend & ((bfd_vma) 1 << 31))
6443 sign_bits = ((bfd_vma) 1 << 32) - 1;
6450 /* If we don't know that we have a 64-bit type,
6451 do two separate stores. */
6452 if (bfd_big_endian (input_bfd))
6454 /* Store the sign-bits (which are most significant)
6456 low_bits = sign_bits;
6462 high_bits = sign_bits;
6464 bfd_put_32 (input_bfd, low_bits,
6465 contents + rel->r_offset);
6466 bfd_put_32 (input_bfd, high_bits,
6467 contents + rel->r_offset + 4);
6471 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6472 input_bfd, input_section,
6477 /* Go on to the next relocation. */
6481 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6482 relocations for the same offset. In that case we are
6483 supposed to treat the output of each relocation as the addend
6485 if (rel + 1 < relend
6486 && rel->r_offset == rel[1].r_offset
6487 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6488 use_saved_addend_p = TRUE;
6490 use_saved_addend_p = FALSE;
6492 addend >>= howto->rightshift;
6494 /* Figure out what value we are supposed to relocate. */
6495 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6496 input_section, info, rel,
6497 addend, howto, local_syms,
6498 local_sections, &value,
6499 &name, &require_jalx,
6500 use_saved_addend_p))
6502 case bfd_reloc_continue:
6503 /* There's nothing to do. */
6506 case bfd_reloc_undefined:
6507 /* mips_elf_calculate_relocation already called the
6508 undefined_symbol callback. There's no real point in
6509 trying to perform the relocation at this point, so we
6510 just skip ahead to the next relocation. */
6513 case bfd_reloc_notsupported:
6514 msg = _("internal error: unsupported relocation error");
6515 info->callbacks->warning
6516 (info, msg, name, input_bfd, input_section, rel->r_offset);
6519 case bfd_reloc_overflow:
6520 if (use_saved_addend_p)
6521 /* Ignore overflow until we reach the last relocation for
6522 a given location. */
6526 BFD_ASSERT (name != NULL);
6527 if (! ((*info->callbacks->reloc_overflow)
6528 (info, name, howto->name, (bfd_vma) 0,
6529 input_bfd, input_section, rel->r_offset)))
6542 /* If we've got another relocation for the address, keep going
6543 until we reach the last one. */
6544 if (use_saved_addend_p)
6550 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6551 /* See the comment above about using R_MIPS_64 in the 32-bit
6552 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6553 that calculated the right value. Now, however, we
6554 sign-extend the 32-bit result to 64-bits, and store it as a
6555 64-bit value. We are especially generous here in that we
6556 go to extreme lengths to support this usage on systems with
6557 only a 32-bit VMA. */
6563 if (value & ((bfd_vma) 1 << 31))
6565 sign_bits = ((bfd_vma) 1 << 32) - 1;
6572 /* If we don't know that we have a 64-bit type,
6573 do two separate stores. */
6574 if (bfd_big_endian (input_bfd))
6576 /* Undo what we did above. */
6578 /* Store the sign-bits (which are most significant)
6580 low_bits = sign_bits;
6586 high_bits = sign_bits;
6588 bfd_put_32 (input_bfd, low_bits,
6589 contents + rel->r_offset);
6590 bfd_put_32 (input_bfd, high_bits,
6591 contents + rel->r_offset + 4);
6595 /* Actually perform the relocation. */
6596 if (! mips_elf_perform_relocation (info, howto, rel, value,
6597 input_bfd, input_section,
6598 contents, require_jalx))
6605 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6606 adjust it appropriately now. */
6609 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
6610 bfd *abfd ATTRIBUTE_UNUSED;
6612 Elf_Internal_Sym *sym;
6614 /* The linker script takes care of providing names and values for
6615 these, but we must place them into the right sections. */
6616 static const char* const text_section_symbols[] = {
6619 "__dso_displacement",
6621 "__program_header_table",
6625 static const char* const data_section_symbols[] = {
6633 const char* const *p;
6636 for (i = 0; i < 2; ++i)
6637 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6640 if (strcmp (*p, name) == 0)
6642 /* All of these symbols are given type STT_SECTION by the
6644 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6646 /* The IRIX linker puts these symbols in special sections. */
6648 sym->st_shndx = SHN_MIPS_TEXT;
6650 sym->st_shndx = SHN_MIPS_DATA;
6656 /* Finish up dynamic symbol handling. We set the contents of various
6657 dynamic sections here. */
6660 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
6662 struct bfd_link_info *info;
6663 struct elf_link_hash_entry *h;
6664 Elf_Internal_Sym *sym;
6670 struct mips_got_info *g, *gg;
6672 struct mips_elf_link_hash_entry *mh;
6674 dynobj = elf_hash_table (info)->dynobj;
6675 gval = sym->st_value;
6676 mh = (struct mips_elf_link_hash_entry *) h;
6678 if (h->plt.offset != (bfd_vma) -1)
6681 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6683 /* This symbol has a stub. Set it up. */
6685 BFD_ASSERT (h->dynindx != -1);
6687 s = bfd_get_section_by_name (dynobj,
6688 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6689 BFD_ASSERT (s != NULL);
6691 /* FIXME: Can h->dynindex be more than 64K? */
6692 if (h->dynindx & 0xffff0000)
6695 /* Fill the stub. */
6696 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6697 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6698 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6699 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6701 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6702 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6704 /* Mark the symbol as undefined. plt.offset != -1 occurs
6705 only for the referenced symbol. */
6706 sym->st_shndx = SHN_UNDEF;
6708 /* The run-time linker uses the st_value field of the symbol
6709 to reset the global offset table entry for this external
6710 to its stub address when unlinking a shared object. */
6711 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6712 sym->st_value = gval;
6715 BFD_ASSERT (h->dynindx != -1
6716 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6718 sgot = mips_elf_got_section (dynobj, FALSE);
6719 BFD_ASSERT (sgot != NULL);
6720 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6721 g = mips_elf_section_data (sgot)->u.got_info;
6722 BFD_ASSERT (g != NULL);
6724 /* Run through the global symbol table, creating GOT entries for all
6725 the symbols that need them. */
6726 if (g->global_gotsym != NULL
6727 && h->dynindx >= g->global_gotsym->dynindx)
6733 value = sym->st_value;
6736 /* For an entity defined in a shared object, this will be
6737 NULL. (For functions in shared objects for
6738 which we have created stubs, ST_VALUE will be non-NULL.
6739 That's because such the functions are now no longer defined
6740 in a shared object.) */
6742 if ((info->shared && h->root.type == bfd_link_hash_undefined)
6743 || h->root.type == bfd_link_hash_undefweak)
6746 value = h->root.u.def.value;
6748 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6749 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6752 if (g->next && h->dynindx != -1)
6754 struct mips_got_entry e, *p;
6757 Elf_Internal_Rela rel[3];
6762 e.abfd = output_bfd;
6764 e.d.h = (struct mips_elf_link_hash_entry *)h;
6767 || h->root.type == bfd_link_hash_undefined
6768 || h->root.type == bfd_link_hash_undefweak)
6770 else if (sym->st_value)
6771 value = sym->st_value;
6773 value = h->root.u.def.value;
6775 memset (rel, 0, sizeof (rel));
6776 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6778 for (g = g->next; g->next != gg; g = g->next)
6781 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6785 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6787 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6790 || (elf_hash_table (info)->dynamic_sections_created
6792 && ((p->d.h->root.elf_link_hash_flags
6793 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6794 && ((p->d.h->root.elf_link_hash_flags
6795 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6796 && ! (mips_elf_create_dynamic_relocation
6797 (output_bfd, info, rel,
6798 e.d.h, NULL, value, &addend, sgot)))
6800 BFD_ASSERT (addend == 0);
6805 /* Create a .msym entry, if appropriate. */
6806 smsym = bfd_get_section_by_name (dynobj, ".msym");
6809 Elf32_Internal_Msym msym;
6811 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
6812 /* It is undocumented what the `1' indicates, but IRIX6 uses
6814 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
6815 bfd_mips_elf_swap_msym_out
6817 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
6820 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6821 name = h->root.root.string;
6822 if (strcmp (name, "_DYNAMIC") == 0
6823 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6824 sym->st_shndx = SHN_ABS;
6825 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6826 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6828 sym->st_shndx = SHN_ABS;
6829 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6832 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6834 sym->st_shndx = SHN_ABS;
6835 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6836 sym->st_value = elf_gp (output_bfd);
6838 else if (SGI_COMPAT (output_bfd))
6840 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6841 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6843 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6844 sym->st_other = STO_PROTECTED;
6846 sym->st_shndx = SHN_MIPS_DATA;
6848 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6850 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6851 sym->st_other = STO_PROTECTED;
6852 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6853 sym->st_shndx = SHN_ABS;
6855 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6857 if (h->type == STT_FUNC)
6858 sym->st_shndx = SHN_MIPS_TEXT;
6859 else if (h->type == STT_OBJECT)
6860 sym->st_shndx = SHN_MIPS_DATA;
6864 /* Handle the IRIX6-specific symbols. */
6865 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6866 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6870 if (! mips_elf_hash_table (info)->use_rld_obj_head
6871 && (strcmp (name, "__rld_map") == 0
6872 || strcmp (name, "__RLD_MAP") == 0))
6874 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6875 BFD_ASSERT (s != NULL);
6876 sym->st_value = s->output_section->vma + s->output_offset;
6877 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
6878 if (mips_elf_hash_table (info)->rld_value == 0)
6879 mips_elf_hash_table (info)->rld_value = sym->st_value;
6881 else if (mips_elf_hash_table (info)->use_rld_obj_head
6882 && strcmp (name, "__rld_obj_head") == 0)
6884 /* IRIX6 does not use a .rld_map section. */
6885 if (IRIX_COMPAT (output_bfd) == ict_irix5
6886 || IRIX_COMPAT (output_bfd) == ict_none)
6887 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6889 mips_elf_hash_table (info)->rld_value = sym->st_value;
6893 /* If this is a mips16 symbol, force the value to be even. */
6894 if (sym->st_other == STO_MIPS16
6895 && (sym->st_value & 1) != 0)
6901 /* Finish up the dynamic sections. */
6904 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
6906 struct bfd_link_info *info;
6911 struct mips_got_info *gg, *g;
6913 dynobj = elf_hash_table (info)->dynobj;
6915 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6917 sgot = mips_elf_got_section (dynobj, FALSE);
6922 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6923 gg = mips_elf_section_data (sgot)->u.got_info;
6924 BFD_ASSERT (gg != NULL);
6925 g = mips_elf_got_for_ibfd (gg, output_bfd);
6926 BFD_ASSERT (g != NULL);
6929 if (elf_hash_table (info)->dynamic_sections_created)
6933 BFD_ASSERT (sdyn != NULL);
6934 BFD_ASSERT (g != NULL);
6936 for (b = sdyn->contents;
6937 b < sdyn->contents + sdyn->_raw_size;
6938 b += MIPS_ELF_DYN_SIZE (dynobj))
6940 Elf_Internal_Dyn dyn;
6944 bfd_boolean swap_out_p;
6946 /* Read in the current dynamic entry. */
6947 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6949 /* Assume that we're going to modify it and write it out. */
6955 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6956 BFD_ASSERT (s != NULL);
6957 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6961 /* Rewrite DT_STRSZ. */
6963 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6969 case DT_MIPS_CONFLICT:
6972 case DT_MIPS_LIBLIST:
6975 s = bfd_get_section_by_name (output_bfd, name);
6976 BFD_ASSERT (s != NULL);
6977 dyn.d_un.d_ptr = s->vma;
6980 case DT_MIPS_RLD_VERSION:
6981 dyn.d_un.d_val = 1; /* XXX */
6985 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6988 case DT_MIPS_CONFLICTNO:
6990 elemsize = sizeof (Elf32_Conflict);
6993 case DT_MIPS_LIBLISTNO:
6995 elemsize = sizeof (Elf32_Lib);
6997 s = bfd_get_section_by_name (output_bfd, name);
7000 if (s->_cooked_size != 0)
7001 dyn.d_un.d_val = s->_cooked_size / elemsize;
7003 dyn.d_un.d_val = s->_raw_size / elemsize;
7009 case DT_MIPS_TIME_STAMP:
7010 time ((time_t *) &dyn.d_un.d_val);
7013 case DT_MIPS_ICHECKSUM:
7018 case DT_MIPS_IVERSION:
7023 case DT_MIPS_BASE_ADDRESS:
7024 s = output_bfd->sections;
7025 BFD_ASSERT (s != NULL);
7026 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7029 case DT_MIPS_LOCAL_GOTNO:
7030 dyn.d_un.d_val = g->local_gotno;
7033 case DT_MIPS_UNREFEXTNO:
7034 /* The index into the dynamic symbol table which is the
7035 entry of the first external symbol that is not
7036 referenced within the same object. */
7037 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7040 case DT_MIPS_GOTSYM:
7041 if (gg->global_gotsym)
7043 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7046 /* In case if we don't have global got symbols we default
7047 to setting DT_MIPS_GOTSYM to the same value as
7048 DT_MIPS_SYMTABNO, so we just fall through. */
7050 case DT_MIPS_SYMTABNO:
7052 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7053 s = bfd_get_section_by_name (output_bfd, name);
7054 BFD_ASSERT (s != NULL);
7056 if (s->_cooked_size != 0)
7057 dyn.d_un.d_val = s->_cooked_size / elemsize;
7059 dyn.d_un.d_val = s->_raw_size / elemsize;
7062 case DT_MIPS_HIPAGENO:
7063 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7066 case DT_MIPS_RLD_MAP:
7067 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7070 case DT_MIPS_OPTIONS:
7071 s = (bfd_get_section_by_name
7072 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7073 dyn.d_un.d_ptr = s->vma;
7077 s = (bfd_get_section_by_name (output_bfd, ".msym"));
7078 dyn.d_un.d_ptr = s->vma;
7087 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7092 /* The first entry of the global offset table will be filled at
7093 runtime. The second entry will be used by some runtime loaders.
7094 This isn't the case of IRIX rld. */
7095 if (sgot != NULL && sgot->_raw_size > 0)
7097 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
7098 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
7099 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7103 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7104 = MIPS_ELF_GOT_SIZE (output_bfd);
7106 /* Generate dynamic relocations for the non-primary gots. */
7107 if (gg != NULL && gg->next)
7109 Elf_Internal_Rela rel[3];
7112 memset (rel, 0, sizeof (rel));
7113 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7115 for (g = gg->next; g->next != gg; g = g->next)
7117 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
7119 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents
7120 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7121 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents
7122 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7127 while (index < g->assigned_gotno)
7129 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7130 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7131 if (!(mips_elf_create_dynamic_relocation
7132 (output_bfd, info, rel, NULL,
7133 bfd_abs_section_ptr,
7136 BFD_ASSERT (addend == 0);
7144 Elf32_compact_rel cpt;
7146 /* ??? The section symbols for the output sections were set up in
7147 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
7148 symbols. Should we do so? */
7150 smsym = bfd_get_section_by_name (dynobj, ".msym");
7153 Elf32_Internal_Msym msym;
7155 msym.ms_hash_value = 0;
7156 msym.ms_info = ELF32_MS_INFO (0, 1);
7158 for (s = output_bfd->sections; s != NULL; s = s->next)
7160 long dynindx = elf_section_data (s)->dynindx;
7162 bfd_mips_elf_swap_msym_out
7164 (((Elf32_External_Msym *) smsym->contents)
7169 if (SGI_COMPAT (output_bfd))
7171 /* Write .compact_rel section out. */
7172 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7176 cpt.num = s->reloc_count;
7178 cpt.offset = (s->output_section->filepos
7179 + sizeof (Elf32_External_compact_rel));
7182 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7183 ((Elf32_External_compact_rel *)
7186 /* Clean up a dummy stub function entry in .text. */
7187 s = bfd_get_section_by_name (dynobj,
7188 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7191 file_ptr dummy_offset;
7193 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
7194 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
7195 memset (s->contents + dummy_offset, 0,
7196 MIPS_FUNCTION_STUB_SIZE);
7201 /* We need to sort the entries of the dynamic relocation section. */
7203 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7206 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7208 reldyn_sorting_bfd = output_bfd;
7210 if (ABI_64_P (output_bfd))
7211 qsort ((Elf64_External_Rel *) s->contents + 1,
7212 (size_t) s->reloc_count - 1,
7213 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7215 qsort ((Elf32_External_Rel *) s->contents + 1,
7216 (size_t) s->reloc_count - 1,
7217 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7225 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7228 mips_set_isa_flags (abfd)
7233 switch (bfd_get_mach (abfd))
7236 case bfd_mach_mips3000:
7237 val = E_MIPS_ARCH_1;
7240 case bfd_mach_mips3900:
7241 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7244 case bfd_mach_mips6000:
7245 val = E_MIPS_ARCH_2;
7248 case bfd_mach_mips4000:
7249 case bfd_mach_mips4300:
7250 case bfd_mach_mips4400:
7251 case bfd_mach_mips4600:
7252 val = E_MIPS_ARCH_3;
7255 case bfd_mach_mips4010:
7256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7259 case bfd_mach_mips4100:
7260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7263 case bfd_mach_mips4111:
7264 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7267 case bfd_mach_mips4120:
7268 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7271 case bfd_mach_mips4650:
7272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7275 case bfd_mach_mips5400:
7276 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7279 case bfd_mach_mips5500:
7280 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7283 case bfd_mach_mips5000:
7284 case bfd_mach_mips8000:
7285 case bfd_mach_mips10000:
7286 case bfd_mach_mips12000:
7287 val = E_MIPS_ARCH_4;
7290 case bfd_mach_mips5:
7291 val = E_MIPS_ARCH_5;
7294 case bfd_mach_mips_sb1:
7295 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7298 case bfd_mach_mipsisa32:
7299 val = E_MIPS_ARCH_32;
7302 case bfd_mach_mipsisa64:
7303 val = E_MIPS_ARCH_64;
7306 case bfd_mach_mipsisa32r2:
7307 val = E_MIPS_ARCH_32R2;
7310 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7311 elf_elfheader (abfd)->e_flags |= val;
7316 /* The final processing done just before writing out a MIPS ELF object
7317 file. This gets the MIPS architecture right based on the machine
7318 number. This is used by both the 32-bit and the 64-bit ABI. */
7321 _bfd_mips_elf_final_write_processing (abfd, linker)
7323 bfd_boolean linker ATTRIBUTE_UNUSED;
7326 Elf_Internal_Shdr **hdrpp;
7330 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7331 is nonzero. This is for compatibility with old objects, which used
7332 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7333 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7334 mips_set_isa_flags (abfd);
7336 /* Set the sh_info field for .gptab sections and other appropriate
7337 info for each special section. */
7338 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7339 i < elf_numsections (abfd);
7342 switch ((*hdrpp)->sh_type)
7345 case SHT_MIPS_LIBLIST:
7346 sec = bfd_get_section_by_name (abfd, ".dynstr");
7348 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7351 case SHT_MIPS_GPTAB:
7352 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7353 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7354 BFD_ASSERT (name != NULL
7355 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7356 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7357 BFD_ASSERT (sec != NULL);
7358 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7361 case SHT_MIPS_CONTENT:
7362 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7363 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7364 BFD_ASSERT (name != NULL
7365 && strncmp (name, ".MIPS.content",
7366 sizeof ".MIPS.content" - 1) == 0);
7367 sec = bfd_get_section_by_name (abfd,
7368 name + sizeof ".MIPS.content" - 1);
7369 BFD_ASSERT (sec != NULL);
7370 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7373 case SHT_MIPS_SYMBOL_LIB:
7374 sec = bfd_get_section_by_name (abfd, ".dynsym");
7376 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7377 sec = bfd_get_section_by_name (abfd, ".liblist");
7379 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7382 case SHT_MIPS_EVENTS:
7383 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7384 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7385 BFD_ASSERT (name != NULL);
7386 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7387 sec = bfd_get_section_by_name (abfd,
7388 name + sizeof ".MIPS.events" - 1);
7391 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7392 sizeof ".MIPS.post_rel" - 1) == 0);
7393 sec = bfd_get_section_by_name (abfd,
7395 + sizeof ".MIPS.post_rel" - 1));
7397 BFD_ASSERT (sec != NULL);
7398 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7405 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7409 _bfd_mips_elf_additional_program_headers (abfd)
7415 /* See if we need a PT_MIPS_REGINFO segment. */
7416 s = bfd_get_section_by_name (abfd, ".reginfo");
7417 if (s && (s->flags & SEC_LOAD))
7420 /* See if we need a PT_MIPS_OPTIONS segment. */
7421 if (IRIX_COMPAT (abfd) == ict_irix6
7422 && bfd_get_section_by_name (abfd,
7423 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7426 /* See if we need a PT_MIPS_RTPROC segment. */
7427 if (IRIX_COMPAT (abfd) == ict_irix5
7428 && bfd_get_section_by_name (abfd, ".dynamic")
7429 && bfd_get_section_by_name (abfd, ".mdebug"))
7435 /* Modify the segment map for an IRIX5 executable. */
7438 _bfd_mips_elf_modify_segment_map (abfd)
7442 struct elf_segment_map *m, **pm;
7445 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7447 s = bfd_get_section_by_name (abfd, ".reginfo");
7448 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7450 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7451 if (m->p_type == PT_MIPS_REGINFO)
7456 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7460 m->p_type = PT_MIPS_REGINFO;
7464 /* We want to put it after the PHDR and INTERP segments. */
7465 pm = &elf_tdata (abfd)->segment_map;
7467 && ((*pm)->p_type == PT_PHDR
7468 || (*pm)->p_type == PT_INTERP))
7476 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7477 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7478 PT_OPTIONS segment immediately following the program header
7481 /* On non-IRIX6 new abi, we'll have already created a segment
7482 for this section, so don't create another. I'm not sure this
7483 is not also the case for IRIX 6, but I can't test it right
7485 && IRIX_COMPAT (abfd) == ict_irix6)
7487 for (s = abfd->sections; s; s = s->next)
7488 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7493 struct elf_segment_map *options_segment;
7495 /* Usually, there's a program header table. But, sometimes
7496 there's not (like when running the `ld' testsuite). So,
7497 if there's no program header table, we just put the
7498 options segment at the end. */
7499 for (pm = &elf_tdata (abfd)->segment_map;
7502 if ((*pm)->p_type == PT_PHDR)
7505 amt = sizeof (struct elf_segment_map);
7506 options_segment = bfd_zalloc (abfd, amt);
7507 options_segment->next = *pm;
7508 options_segment->p_type = PT_MIPS_OPTIONS;
7509 options_segment->p_flags = PF_R;
7510 options_segment->p_flags_valid = TRUE;
7511 options_segment->count = 1;
7512 options_segment->sections[0] = s;
7513 *pm = options_segment;
7518 if (IRIX_COMPAT (abfd) == ict_irix5)
7520 /* If there are .dynamic and .mdebug sections, we make a room
7521 for the RTPROC header. FIXME: Rewrite without section names. */
7522 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7523 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7524 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7526 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7527 if (m->p_type == PT_MIPS_RTPROC)
7532 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7536 m->p_type = PT_MIPS_RTPROC;
7538 s = bfd_get_section_by_name (abfd, ".rtproc");
7543 m->p_flags_valid = 1;
7551 /* We want to put it after the DYNAMIC segment. */
7552 pm = &elf_tdata (abfd)->segment_map;
7553 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7563 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7564 .dynstr, .dynsym, and .hash sections, and everything in
7566 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7568 if ((*pm)->p_type == PT_DYNAMIC)
7571 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7573 /* For a normal mips executable the permissions for the PT_DYNAMIC
7574 segment are read, write and execute. We do that here since
7575 the code in elf.c sets only the read permission. This matters
7576 sometimes for the dynamic linker. */
7577 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7579 m->p_flags = PF_R | PF_W | PF_X;
7580 m->p_flags_valid = 1;
7584 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7586 static const char *sec_names[] =
7588 ".dynamic", ".dynstr", ".dynsym", ".hash"
7592 struct elf_segment_map *n;
7596 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7598 s = bfd_get_section_by_name (abfd, sec_names[i]);
7599 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7605 sz = s->_cooked_size;
7608 if (high < s->vma + sz)
7614 for (s = abfd->sections; s != NULL; s = s->next)
7615 if ((s->flags & SEC_LOAD) != 0
7618 + (s->_cooked_size !=
7619 0 ? s->_cooked_size : s->_raw_size)) <= high))
7622 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7623 n = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
7630 for (s = abfd->sections; s != NULL; s = s->next)
7632 if ((s->flags & SEC_LOAD) != 0
7635 + (s->_cooked_size != 0 ?
7636 s->_cooked_size : s->_raw_size)) <= high))
7650 /* Return the section that should be marked against GC for a given
7654 _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym)
7656 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7657 Elf_Internal_Rela *rel;
7658 struct elf_link_hash_entry *h;
7659 Elf_Internal_Sym *sym;
7661 /* ??? Do mips16 stub sections need to be handled special? */
7665 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7667 case R_MIPS_GNU_VTINHERIT:
7668 case R_MIPS_GNU_VTENTRY:
7672 switch (h->root.type)
7674 case bfd_link_hash_defined:
7675 case bfd_link_hash_defweak:
7676 return h->root.u.def.section;
7678 case bfd_link_hash_common:
7679 return h->root.u.c.p->section;
7687 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7692 /* Update the got entry reference counts for the section being removed. */
7695 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7696 bfd *abfd ATTRIBUTE_UNUSED;
7697 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7698 asection *sec ATTRIBUTE_UNUSED;
7699 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7702 Elf_Internal_Shdr *symtab_hdr;
7703 struct elf_link_hash_entry **sym_hashes;
7704 bfd_signed_vma *local_got_refcounts;
7705 const Elf_Internal_Rela *rel, *relend;
7706 unsigned long r_symndx;
7707 struct elf_link_hash_entry *h;
7709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7710 sym_hashes = elf_sym_hashes (abfd);
7711 local_got_refcounts = elf_local_got_refcounts (abfd);
7713 relend = relocs + sec->reloc_count;
7714 for (rel = relocs; rel < relend; rel++)
7715 switch (ELF_R_TYPE (abfd, rel->r_info))
7719 case R_MIPS_CALL_HI16:
7720 case R_MIPS_CALL_LO16:
7721 case R_MIPS_GOT_HI16:
7722 case R_MIPS_GOT_LO16:
7723 case R_MIPS_GOT_DISP:
7724 case R_MIPS_GOT_PAGE:
7725 case R_MIPS_GOT_OFST:
7726 /* ??? It would seem that the existing MIPS code does no sort
7727 of reference counting or whatnot on its GOT and PLT entries,
7728 so it is not possible to garbage collect them at this time. */
7739 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7740 hiding the old indirect symbol. Process additional relocation
7741 information. Also called for weakdefs, in which case we just let
7742 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7745 _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind)
7746 struct elf_backend_data *bed;
7747 struct elf_link_hash_entry *dir, *ind;
7749 struct mips_elf_link_hash_entry *dirmips, *indmips;
7751 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7753 if (ind->root.type != bfd_link_hash_indirect)
7756 dirmips = (struct mips_elf_link_hash_entry *) dir;
7757 indmips = (struct mips_elf_link_hash_entry *) ind;
7758 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7759 if (indmips->readonly_reloc)
7760 dirmips->readonly_reloc = TRUE;
7761 if (dirmips->min_dyn_reloc_index == 0
7762 || (indmips->min_dyn_reloc_index != 0
7763 && indmips->min_dyn_reloc_index < dirmips->min_dyn_reloc_index))
7764 dirmips->min_dyn_reloc_index = indmips->min_dyn_reloc_index;
7765 if (indmips->no_fn_stub)
7766 dirmips->no_fn_stub = TRUE;
7770 _bfd_mips_elf_hide_symbol (info, entry, force_local)
7771 struct bfd_link_info *info;
7772 struct elf_link_hash_entry *entry;
7773 bfd_boolean force_local;
7777 struct mips_got_info *g;
7778 struct mips_elf_link_hash_entry *h;
7780 h = (struct mips_elf_link_hash_entry *) entry;
7781 if (h->forced_local)
7783 h->forced_local = force_local;
7785 dynobj = elf_hash_table (info)->dynobj;
7786 if (dynobj != NULL && force_local)
7788 got = mips_elf_got_section (dynobj, FALSE);
7789 g = mips_elf_section_data (got)->u.got_info;
7793 struct mips_got_entry e;
7794 struct mips_got_info *gg = g;
7796 /* Since we're turning what used to be a global symbol into a
7797 local one, bump up the number of local entries of each GOT
7798 that had an entry for it. This will automatically decrease
7799 the number of global entries, since global_gotno is actually
7800 the upper limit of global entries. */
7805 for (g = g->next; g != gg; g = g->next)
7806 if (htab_find (g->got_entries, &e))
7808 BFD_ASSERT (g->global_gotno > 0);
7813 /* If this was a global symbol forced into the primary GOT, we
7814 no longer need an entry for it. We can't release the entry
7815 at this point, but we must at least stop counting it as one
7816 of the symbols that required a forced got entry. */
7817 if (h->root.got.offset == 2)
7819 BFD_ASSERT (gg->assigned_gotno > 0);
7820 gg->assigned_gotno--;
7823 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7824 /* If we haven't got through GOT allocation yet, just bump up the
7825 number of local entries, as this symbol won't be counted as
7828 else if (h->root.got.offset == 1)
7830 /* If we're past non-multi-GOT allocation and this symbol had
7831 been marked for a global got entry, give it a local entry
7833 BFD_ASSERT (g->global_gotno > 0);
7839 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7845 _bfd_mips_elf_discard_info (abfd, cookie, info)
7847 struct elf_reloc_cookie *cookie;
7848 struct bfd_link_info *info;
7851 bfd_boolean ret = FALSE;
7852 unsigned char *tdata;
7855 o = bfd_get_section_by_name (abfd, ".pdr");
7858 if (o->_raw_size == 0)
7860 if (o->_raw_size % PDR_SIZE != 0)
7862 if (o->output_section != NULL
7863 && bfd_is_abs_section (o->output_section))
7866 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7870 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
7871 (Elf_Internal_Rela *) NULL,
7879 cookie->rel = cookie->rels;
7880 cookie->relend = cookie->rels + o->reloc_count;
7882 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7884 if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie))
7893 mips_elf_section_data (o)->u.tdata = tdata;
7894 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7900 if (! info->keep_memory)
7901 free (cookie->rels);
7907 _bfd_mips_elf_ignore_discarded_relocs (sec)
7910 if (strcmp (sec->name, ".pdr") == 0)
7916 _bfd_mips_elf_write_section (output_bfd, sec, contents)
7921 bfd_byte *to, *from, *end;
7924 if (strcmp (sec->name, ".pdr") != 0)
7927 if (mips_elf_section_data (sec)->u.tdata == NULL)
7931 end = contents + sec->_raw_size;
7932 for (from = contents, i = 0;
7934 from += PDR_SIZE, i++)
7936 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7939 memcpy (to, from, PDR_SIZE);
7942 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7943 (file_ptr) sec->output_offset,
7948 /* MIPS ELF uses a special find_nearest_line routine in order the
7949 handle the ECOFF debugging information. */
7951 struct mips_elf_find_line
7953 struct ecoff_debug_info d;
7954 struct ecoff_find_line i;
7958 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
7959 functionname_ptr, line_ptr)
7964 const char **filename_ptr;
7965 const char **functionname_ptr;
7966 unsigned int *line_ptr;
7970 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7971 filename_ptr, functionname_ptr,
7975 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7976 filename_ptr, functionname_ptr,
7978 (unsigned) (ABI_64_P (abfd) ? 8 : 0),
7979 &elf_tdata (abfd)->dwarf2_find_line_info))
7982 msec = bfd_get_section_by_name (abfd, ".mdebug");
7986 struct mips_elf_find_line *fi;
7987 const struct ecoff_debug_swap * const swap =
7988 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7990 /* If we are called during a link, mips_elf_final_link may have
7991 cleared the SEC_HAS_CONTENTS field. We force it back on here
7992 if appropriate (which it normally will be). */
7993 origflags = msec->flags;
7994 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7995 msec->flags |= SEC_HAS_CONTENTS;
7997 fi = elf_tdata (abfd)->find_line_info;
8000 bfd_size_type external_fdr_size;
8003 struct fdr *fdr_ptr;
8004 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8006 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
8009 msec->flags = origflags;
8013 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8015 msec->flags = origflags;
8019 /* Swap in the FDR information. */
8020 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8021 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
8022 if (fi->d.fdr == NULL)
8024 msec->flags = origflags;
8027 external_fdr_size = swap->external_fdr_size;
8028 fdr_ptr = fi->d.fdr;
8029 fraw_src = (char *) fi->d.external_fdr;
8030 fraw_end = (fraw_src
8031 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8032 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8033 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
8035 elf_tdata (abfd)->find_line_info = fi;
8037 /* Note that we don't bother to ever free this information.
8038 find_nearest_line is either called all the time, as in
8039 objdump -l, so the information should be saved, or it is
8040 rarely called, as in ld error messages, so the memory
8041 wasted is unimportant. Still, it would probably be a
8042 good idea for free_cached_info to throw it away. */
8045 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8046 &fi->i, filename_ptr, functionname_ptr,
8049 msec->flags = origflags;
8053 msec->flags = origflags;
8056 /* Fall back on the generic ELF find_nearest_line routine. */
8058 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8059 filename_ptr, functionname_ptr,
8063 /* When are writing out the .options or .MIPS.options section,
8064 remember the bytes we are writing out, so that we can install the
8065 GP value in the section_processing routine. */
8068 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
8073 bfd_size_type count;
8075 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8079 if (elf_section_data (section) == NULL)
8081 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8082 section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt);
8083 if (elf_section_data (section) == NULL)
8086 c = mips_elf_section_data (section)->u.tdata;
8091 if (section->_cooked_size != 0)
8092 size = section->_cooked_size;
8094 size = section->_raw_size;
8095 c = (bfd_byte *) bfd_zalloc (abfd, size);
8098 mips_elf_section_data (section)->u.tdata = c;
8101 memcpy (c + offset, location, (size_t) count);
8104 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8108 /* This is almost identical to bfd_generic_get_... except that some
8109 MIPS relocations need to be handled specially. Sigh. */
8112 _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order,
8113 data, relocatable, symbols)
8115 struct bfd_link_info *link_info;
8116 struct bfd_link_order *link_order;
8118 bfd_boolean relocatable;
8121 /* Get enough memory to hold the stuff */
8122 bfd *input_bfd = link_order->u.indirect.section->owner;
8123 asection *input_section = link_order->u.indirect.section;
8125 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8126 arelent **reloc_vector = NULL;
8132 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
8133 if (reloc_vector == NULL && reloc_size != 0)
8136 /* read in the section */
8137 if (!bfd_get_section_contents (input_bfd,
8141 input_section->_raw_size))
8144 /* We're not relaxing the section, so just copy the size info */
8145 input_section->_cooked_size = input_section->_raw_size;
8146 input_section->reloc_done = TRUE;
8148 reloc_count = bfd_canonicalize_reloc (input_bfd,
8152 if (reloc_count < 0)
8155 if (reloc_count > 0)
8160 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8163 struct bfd_hash_entry *h;
8164 struct bfd_link_hash_entry *lh;
8165 /* Skip all this stuff if we aren't mixing formats. */
8166 if (abfd && input_bfd
8167 && abfd->xvec == input_bfd->xvec)
8171 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8172 lh = (struct bfd_link_hash_entry *) h;
8179 case bfd_link_hash_undefined:
8180 case bfd_link_hash_undefweak:
8181 case bfd_link_hash_common:
8184 case bfd_link_hash_defined:
8185 case bfd_link_hash_defweak:
8187 gp = lh->u.def.value;
8189 case bfd_link_hash_indirect:
8190 case bfd_link_hash_warning:
8192 /* @@FIXME ignoring warning for now */
8194 case bfd_link_hash_new:
8203 for (parent = reloc_vector; *parent != (arelent *) NULL;
8206 char *error_message = (char *) NULL;
8207 bfd_reloc_status_type r;
8209 /* Specific to MIPS: Deal with relocation types that require
8210 knowing the gp of the output bfd. */
8211 asymbol *sym = *(*parent)->sym_ptr_ptr;
8212 if (bfd_is_abs_section (sym->section) && abfd)
8214 /* The special_function wouldn't get called anyway. */
8218 /* The gp isn't there; let the special function code
8219 fall over on its own. */
8221 else if ((*parent)->howto->special_function
8222 == _bfd_mips_elf32_gprel16_reloc)
8224 /* bypass special_function call */
8225 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8226 input_section, relocatable,
8228 goto skip_bfd_perform_relocation;
8230 /* end mips specific stuff */
8232 r = bfd_perform_relocation (input_bfd,
8236 relocatable ? abfd : (bfd *) NULL,
8238 skip_bfd_perform_relocation:
8242 asection *os = input_section->output_section;
8244 /* A partial link, so keep the relocs */
8245 os->orelocation[os->reloc_count] = *parent;
8249 if (r != bfd_reloc_ok)
8253 case bfd_reloc_undefined:
8254 if (!((*link_info->callbacks->undefined_symbol)
8255 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8256 input_bfd, input_section, (*parent)->address,
8260 case bfd_reloc_dangerous:
8261 BFD_ASSERT (error_message != (char *) NULL);
8262 if (!((*link_info->callbacks->reloc_dangerous)
8263 (link_info, error_message, input_bfd, input_section,
8264 (*parent)->address)))
8267 case bfd_reloc_overflow:
8268 if (!((*link_info->callbacks->reloc_overflow)
8269 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8270 (*parent)->howto->name, (*parent)->addend,
8271 input_bfd, input_section, (*parent)->address)))
8274 case bfd_reloc_outofrange:
8283 if (reloc_vector != NULL)
8284 free (reloc_vector);
8288 if (reloc_vector != NULL)
8289 free (reloc_vector);
8293 /* Create a MIPS ELF linker hash table. */
8295 struct bfd_link_hash_table *
8296 _bfd_mips_elf_link_hash_table_create (abfd)
8299 struct mips_elf_link_hash_table *ret;
8300 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8302 ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt);
8303 if (ret == (struct mips_elf_link_hash_table *) NULL)
8306 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8307 mips_elf_link_hash_newfunc))
8314 /* We no longer use this. */
8315 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8316 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8318 ret->procedure_count = 0;
8319 ret->compact_rel_size = 0;
8320 ret->use_rld_obj_head = FALSE;
8322 ret->mips16_stubs_seen = FALSE;
8324 return &ret->root.root;
8327 /* We need to use a special link routine to handle the .reginfo and
8328 the .mdebug sections. We need to merge all instances of these
8329 sections together, not write them all out sequentially. */
8332 _bfd_mips_elf_final_link (abfd, info)
8334 struct bfd_link_info *info;
8338 struct bfd_link_order *p;
8339 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8340 asection *rtproc_sec;
8341 Elf32_RegInfo reginfo;
8342 struct ecoff_debug_info debug;
8343 const struct ecoff_debug_swap *swap
8344 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8345 HDRR *symhdr = &debug.symbolic_header;
8346 PTR mdebug_handle = NULL;
8352 static const char * const secname[] =
8354 ".text", ".init", ".fini", ".data",
8355 ".rodata", ".sdata", ".sbss", ".bss"
8357 static const int sc[] =
8359 scText, scInit, scFini, scData,
8360 scRData, scSData, scSBss, scBss
8363 /* We'd carefully arranged the dynamic symbol indices, and then the
8364 generic size_dynamic_sections renumbered them out from under us.
8365 Rather than trying somehow to prevent the renumbering, just do
8367 if (elf_hash_table (info)->dynamic_sections_created)
8371 struct mips_got_info *g;
8373 /* When we resort, we must tell mips_elf_sort_hash_table what
8374 the lowest index it may use is. That's the number of section
8375 symbols we're going to add. The generic ELF linker only
8376 adds these symbols when building a shared object. Note that
8377 we count the sections after (possibly) removing the .options
8379 if (! mips_elf_sort_hash_table (info, (info->shared
8380 ? bfd_count_sections (abfd) + 1
8384 /* Make sure we didn't grow the global .got region. */
8385 dynobj = elf_hash_table (info)->dynobj;
8386 got = mips_elf_got_section (dynobj, FALSE);
8387 g = mips_elf_section_data (got)->u.got_info;
8389 if (g->global_gotsym != NULL)
8390 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8391 - g->global_gotsym->dynindx)
8392 <= g->global_gotno);
8396 /* We want to set the GP value for ld -r. */
8397 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8398 include it, even though we don't process it quite right. (Some
8399 entries are supposed to be merged.) Empirically, we seem to be
8400 better off including it then not. */
8401 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8402 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8404 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8406 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8407 if (p->type == bfd_indirect_link_order)
8408 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8409 (*secpp)->link_order_head = NULL;
8410 bfd_section_list_remove (abfd, secpp);
8411 --abfd->section_count;
8417 /* We include .MIPS.options, even though we don't process it quite right.
8418 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8419 to be better off including it than not. */
8420 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8422 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8424 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8425 if (p->type == bfd_indirect_link_order)
8426 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8427 (*secpp)->link_order_head = NULL;
8428 bfd_section_list_remove (abfd, secpp);
8429 --abfd->section_count;
8436 /* Get a value for the GP register. */
8437 if (elf_gp (abfd) == 0)
8439 struct bfd_link_hash_entry *h;
8441 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8442 if (h != (struct bfd_link_hash_entry *) NULL
8443 && h->type == bfd_link_hash_defined)
8444 elf_gp (abfd) = (h->u.def.value
8445 + h->u.def.section->output_section->vma
8446 + h->u.def.section->output_offset);
8447 else if (info->relocatable)
8449 bfd_vma lo = MINUS_ONE;
8451 /* Find the GP-relative section with the lowest offset. */
8452 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8454 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8457 /* And calculate GP relative to that. */
8458 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8462 /* If the relocate_section function needs to do a reloc
8463 involving the GP value, it should make a reloc_dangerous
8464 callback to warn that GP is not defined. */
8468 /* Go through the sections and collect the .reginfo and .mdebug
8472 gptab_data_sec = NULL;
8473 gptab_bss_sec = NULL;
8474 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
8476 if (strcmp (o->name, ".reginfo") == 0)
8478 memset (®info, 0, sizeof reginfo);
8480 /* We have found the .reginfo section in the output file.
8481 Look through all the link_orders comprising it and merge
8482 the information together. */
8483 for (p = o->link_order_head;
8484 p != (struct bfd_link_order *) NULL;
8487 asection *input_section;
8489 Elf32_External_RegInfo ext;
8492 if (p->type != bfd_indirect_link_order)
8494 if (p->type == bfd_data_link_order)
8499 input_section = p->u.indirect.section;
8500 input_bfd = input_section->owner;
8502 /* The linker emulation code has probably clobbered the
8503 size to be zero bytes. */
8504 if (input_section->_raw_size == 0)
8505 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8507 if (! bfd_get_section_contents (input_bfd, input_section,
8510 (bfd_size_type) sizeof ext))
8513 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8515 reginfo.ri_gprmask |= sub.ri_gprmask;
8516 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8517 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8518 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8519 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8521 /* ri_gp_value is set by the function
8522 mips_elf32_section_processing when the section is
8523 finally written out. */
8525 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8526 elf_link_input_bfd ignores this section. */
8527 input_section->flags &= ~SEC_HAS_CONTENTS;
8530 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8531 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8533 /* Skip this section later on (I don't think this currently
8534 matters, but someday it might). */
8535 o->link_order_head = (struct bfd_link_order *) NULL;
8540 if (strcmp (o->name, ".mdebug") == 0)
8542 struct extsym_info einfo;
8545 /* We have found the .mdebug section in the output file.
8546 Look through all the link_orders comprising it and merge
8547 the information together. */
8548 symhdr->magic = swap->sym_magic;
8549 /* FIXME: What should the version stamp be? */
8551 symhdr->ilineMax = 0;
8555 symhdr->isymMax = 0;
8556 symhdr->ioptMax = 0;
8557 symhdr->iauxMax = 0;
8559 symhdr->issExtMax = 0;
8562 symhdr->iextMax = 0;
8564 /* We accumulate the debugging information itself in the
8565 debug_info structure. */
8567 debug.external_dnr = NULL;
8568 debug.external_pdr = NULL;
8569 debug.external_sym = NULL;
8570 debug.external_opt = NULL;
8571 debug.external_aux = NULL;
8573 debug.ssext = debug.ssext_end = NULL;
8574 debug.external_fdr = NULL;
8575 debug.external_rfd = NULL;
8576 debug.external_ext = debug.external_ext_end = NULL;
8578 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8579 if (mdebug_handle == (PTR) NULL)
8583 esym.cobol_main = 0;
8587 esym.asym.iss = issNil;
8588 esym.asym.st = stLocal;
8589 esym.asym.reserved = 0;
8590 esym.asym.index = indexNil;
8592 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8594 esym.asym.sc = sc[i];
8595 s = bfd_get_section_by_name (abfd, secname[i]);
8598 esym.asym.value = s->vma;
8599 last = s->vma + s->_raw_size;
8602 esym.asym.value = last;
8603 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8608 for (p = o->link_order_head;
8609 p != (struct bfd_link_order *) NULL;
8612 asection *input_section;
8614 const struct ecoff_debug_swap *input_swap;
8615 struct ecoff_debug_info input_debug;
8619 if (p->type != bfd_indirect_link_order)
8621 if (p->type == bfd_data_link_order)
8626 input_section = p->u.indirect.section;
8627 input_bfd = input_section->owner;
8629 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8630 || (get_elf_backend_data (input_bfd)
8631 ->elf_backend_ecoff_debug_swap) == NULL)
8633 /* I don't know what a non MIPS ELF bfd would be
8634 doing with a .mdebug section, but I don't really
8635 want to deal with it. */
8639 input_swap = (get_elf_backend_data (input_bfd)
8640 ->elf_backend_ecoff_debug_swap);
8642 BFD_ASSERT (p->size == input_section->_raw_size);
8644 /* The ECOFF linking code expects that we have already
8645 read in the debugging information and set up an
8646 ecoff_debug_info structure, so we do that now. */
8647 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8651 if (! (bfd_ecoff_debug_accumulate
8652 (mdebug_handle, abfd, &debug, swap, input_bfd,
8653 &input_debug, input_swap, info)))
8656 /* Loop through the external symbols. For each one with
8657 interesting information, try to find the symbol in
8658 the linker global hash table and save the information
8659 for the output external symbols. */
8660 eraw_src = input_debug.external_ext;
8661 eraw_end = (eraw_src
8662 + (input_debug.symbolic_header.iextMax
8663 * input_swap->external_ext_size));
8665 eraw_src < eraw_end;
8666 eraw_src += input_swap->external_ext_size)
8670 struct mips_elf_link_hash_entry *h;
8672 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
8673 if (ext.asym.sc == scNil
8674 || ext.asym.sc == scUndefined
8675 || ext.asym.sc == scSUndefined)
8678 name = input_debug.ssext + ext.asym.iss;
8679 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8680 name, FALSE, FALSE, TRUE);
8681 if (h == NULL || h->esym.ifd != -2)
8687 < input_debug.symbolic_header.ifdMax);
8688 ext.ifd = input_debug.ifdmap[ext.ifd];
8694 /* Free up the information we just read. */
8695 free (input_debug.line);
8696 free (input_debug.external_dnr);
8697 free (input_debug.external_pdr);
8698 free (input_debug.external_sym);
8699 free (input_debug.external_opt);
8700 free (input_debug.external_aux);
8701 free (input_debug.ss);
8702 free (input_debug.ssext);
8703 free (input_debug.external_fdr);
8704 free (input_debug.external_rfd);
8705 free (input_debug.external_ext);
8707 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8708 elf_link_input_bfd ignores this section. */
8709 input_section->flags &= ~SEC_HAS_CONTENTS;
8712 if (SGI_COMPAT (abfd) && info->shared)
8714 /* Create .rtproc section. */
8715 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8716 if (rtproc_sec == NULL)
8718 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8719 | SEC_LINKER_CREATED | SEC_READONLY);
8721 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8722 if (rtproc_sec == NULL
8723 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8724 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8728 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8734 /* Build the external symbol information. */
8737 einfo.debug = &debug;
8739 einfo.failed = FALSE;
8740 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8741 mips_elf_output_extsym,
8746 /* Set the size of the .mdebug section. */
8747 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8749 /* Skip this section later on (I don't think this currently
8750 matters, but someday it might). */
8751 o->link_order_head = (struct bfd_link_order *) NULL;
8756 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8758 const char *subname;
8761 Elf32_External_gptab *ext_tab;
8764 /* The .gptab.sdata and .gptab.sbss sections hold
8765 information describing how the small data area would
8766 change depending upon the -G switch. These sections
8767 not used in executables files. */
8768 if (! info->relocatable)
8770 for (p = o->link_order_head;
8771 p != (struct bfd_link_order *) NULL;
8774 asection *input_section;
8776 if (p->type != bfd_indirect_link_order)
8778 if (p->type == bfd_data_link_order)
8783 input_section = p->u.indirect.section;
8785 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8786 elf_link_input_bfd ignores this section. */
8787 input_section->flags &= ~SEC_HAS_CONTENTS;
8790 /* Skip this section later on (I don't think this
8791 currently matters, but someday it might). */
8792 o->link_order_head = (struct bfd_link_order *) NULL;
8794 /* Really remove the section. */
8795 for (secpp = &abfd->sections;
8797 secpp = &(*secpp)->next)
8799 bfd_section_list_remove (abfd, secpp);
8800 --abfd->section_count;
8805 /* There is one gptab for initialized data, and one for
8806 uninitialized data. */
8807 if (strcmp (o->name, ".gptab.sdata") == 0)
8809 else if (strcmp (o->name, ".gptab.sbss") == 0)
8813 (*_bfd_error_handler)
8814 (_("%s: illegal section name `%s'"),
8815 bfd_get_filename (abfd), o->name);
8816 bfd_set_error (bfd_error_nonrepresentable_section);
8820 /* The linker script always combines .gptab.data and
8821 .gptab.sdata into .gptab.sdata, and likewise for
8822 .gptab.bss and .gptab.sbss. It is possible that there is
8823 no .sdata or .sbss section in the output file, in which
8824 case we must change the name of the output section. */
8825 subname = o->name + sizeof ".gptab" - 1;
8826 if (bfd_get_section_by_name (abfd, subname) == NULL)
8828 if (o == gptab_data_sec)
8829 o->name = ".gptab.data";
8831 o->name = ".gptab.bss";
8832 subname = o->name + sizeof ".gptab" - 1;
8833 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8836 /* Set up the first entry. */
8838 amt = c * sizeof (Elf32_gptab);
8839 tab = (Elf32_gptab *) bfd_malloc (amt);
8842 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8843 tab[0].gt_header.gt_unused = 0;
8845 /* Combine the input sections. */
8846 for (p = o->link_order_head;
8847 p != (struct bfd_link_order *) NULL;
8850 asection *input_section;
8854 bfd_size_type gpentry;
8856 if (p->type != bfd_indirect_link_order)
8858 if (p->type == bfd_data_link_order)
8863 input_section = p->u.indirect.section;
8864 input_bfd = input_section->owner;
8866 /* Combine the gptab entries for this input section one
8867 by one. We know that the input gptab entries are
8868 sorted by ascending -G value. */
8869 size = bfd_section_size (input_bfd, input_section);
8871 for (gpentry = sizeof (Elf32_External_gptab);
8873 gpentry += sizeof (Elf32_External_gptab))
8875 Elf32_External_gptab ext_gptab;
8876 Elf32_gptab int_gptab;
8882 if (! (bfd_get_section_contents
8883 (input_bfd, input_section, (PTR) &ext_gptab,
8885 (bfd_size_type) sizeof (Elf32_External_gptab))))
8891 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8893 val = int_gptab.gt_entry.gt_g_value;
8894 add = int_gptab.gt_entry.gt_bytes - last;
8897 for (look = 1; look < c; look++)
8899 if (tab[look].gt_entry.gt_g_value >= val)
8900 tab[look].gt_entry.gt_bytes += add;
8902 if (tab[look].gt_entry.gt_g_value == val)
8908 Elf32_gptab *new_tab;
8911 /* We need a new table entry. */
8912 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8913 new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt);
8914 if (new_tab == NULL)
8920 tab[c].gt_entry.gt_g_value = val;
8921 tab[c].gt_entry.gt_bytes = add;
8923 /* Merge in the size for the next smallest -G
8924 value, since that will be implied by this new
8927 for (look = 1; look < c; look++)
8929 if (tab[look].gt_entry.gt_g_value < val
8931 || (tab[look].gt_entry.gt_g_value
8932 > tab[max].gt_entry.gt_g_value)))
8936 tab[c].gt_entry.gt_bytes +=
8937 tab[max].gt_entry.gt_bytes;
8942 last = int_gptab.gt_entry.gt_bytes;
8945 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8946 elf_link_input_bfd ignores this section. */
8947 input_section->flags &= ~SEC_HAS_CONTENTS;
8950 /* The table must be sorted by -G value. */
8952 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8954 /* Swap out the table. */
8955 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8956 ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt);
8957 if (ext_tab == NULL)
8963 for (j = 0; j < c; j++)
8964 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8967 o->_raw_size = c * sizeof (Elf32_External_gptab);
8968 o->contents = (bfd_byte *) ext_tab;
8970 /* Skip this section later on (I don't think this currently
8971 matters, but someday it might). */
8972 o->link_order_head = (struct bfd_link_order *) NULL;
8976 /* Invoke the regular ELF backend linker to do all the work. */
8977 if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info))
8980 /* Now write out the computed sections. */
8982 if (reginfo_sec != (asection *) NULL)
8984 Elf32_External_RegInfo ext;
8986 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
8987 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
8989 (bfd_size_type) sizeof ext))
8993 if (mdebug_sec != (asection *) NULL)
8995 BFD_ASSERT (abfd->output_has_begun);
8996 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8998 mdebug_sec->filepos))
9001 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9004 if (gptab_data_sec != (asection *) NULL)
9006 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9007 gptab_data_sec->contents,
9009 gptab_data_sec->_raw_size))
9013 if (gptab_bss_sec != (asection *) NULL)
9015 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9016 gptab_bss_sec->contents,
9018 gptab_bss_sec->_raw_size))
9022 if (SGI_COMPAT (abfd))
9024 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9025 if (rtproc_sec != NULL)
9027 if (! bfd_set_section_contents (abfd, rtproc_sec,
9028 rtproc_sec->contents,
9030 rtproc_sec->_raw_size))
9038 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9040 struct mips_mach_extension {
9041 unsigned long extension, base;
9045 /* An array describing how BFD machines relate to one another. The entries
9046 are ordered topologically with MIPS I extensions listed last. */
9048 static const struct mips_mach_extension mips_mach_extensions[] = {
9049 /* MIPS64 extensions. */
9050 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9052 /* MIPS V extensions. */
9053 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9055 /* R10000 extensions. */
9056 { bfd_mach_mips12000, bfd_mach_mips10000 },
9058 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9059 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9060 better to allow vr5400 and vr5500 code to be merged anyway, since
9061 many libraries will just use the core ISA. Perhaps we could add
9062 some sort of ASE flag if this ever proves a problem. */
9063 { bfd_mach_mips5500, bfd_mach_mips5400 },
9064 { bfd_mach_mips5400, bfd_mach_mips5000 },
9066 /* MIPS IV extensions. */
9067 { bfd_mach_mips5, bfd_mach_mips8000 },
9068 { bfd_mach_mips10000, bfd_mach_mips8000 },
9069 { bfd_mach_mips5000, bfd_mach_mips8000 },
9071 /* VR4100 extensions. */
9072 { bfd_mach_mips4120, bfd_mach_mips4100 },
9073 { bfd_mach_mips4111, bfd_mach_mips4100 },
9075 /* MIPS III extensions. */
9076 { bfd_mach_mips8000, bfd_mach_mips4000 },
9077 { bfd_mach_mips4650, bfd_mach_mips4000 },
9078 { bfd_mach_mips4600, bfd_mach_mips4000 },
9079 { bfd_mach_mips4400, bfd_mach_mips4000 },
9080 { bfd_mach_mips4300, bfd_mach_mips4000 },
9081 { bfd_mach_mips4100, bfd_mach_mips4000 },
9082 { bfd_mach_mips4010, bfd_mach_mips4000 },
9084 /* MIPS32 extensions. */
9085 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9087 /* MIPS II extensions. */
9088 { bfd_mach_mips4000, bfd_mach_mips6000 },
9089 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9091 /* MIPS I extensions. */
9092 { bfd_mach_mips6000, bfd_mach_mips3000 },
9093 { bfd_mach_mips3900, bfd_mach_mips3000 }
9097 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9100 mips_mach_extends_p (base, extension)
9101 unsigned long base, extension;
9105 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9106 if (extension == mips_mach_extensions[i].extension)
9107 extension = mips_mach_extensions[i].base;
9109 return extension == base;
9113 /* Return true if the given ELF header flags describe a 32-bit binary. */
9116 mips_32bit_flags_p (flags)
9119 return ((flags & EF_MIPS_32BITMODE) != 0
9120 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9121 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9122 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9123 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9124 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9125 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9129 /* Merge backend specific data from an object file to the output
9130 object file when linking. */
9133 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
9140 bfd_boolean null_input_bfd = TRUE;
9143 /* Check if we have the same endianess */
9144 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9146 (*_bfd_error_handler)
9147 (_("%s: endianness incompatible with that of the selected emulation"),
9148 bfd_archive_filename (ibfd));
9152 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9153 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9156 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9158 (*_bfd_error_handler)
9159 (_("%s: ABI is incompatible with that of the selected emulation"),
9160 bfd_archive_filename (ibfd));
9164 new_flags = elf_elfheader (ibfd)->e_flags;
9165 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9166 old_flags = elf_elfheader (obfd)->e_flags;
9168 if (! elf_flags_init (obfd))
9170 elf_flags_init (obfd) = TRUE;
9171 elf_elfheader (obfd)->e_flags = new_flags;
9172 elf_elfheader (obfd)->e_ident[EI_CLASS]
9173 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9175 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9176 && bfd_get_arch_info (obfd)->the_default)
9178 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9179 bfd_get_mach (ibfd)))
9186 /* Check flag compatibility. */
9188 new_flags &= ~EF_MIPS_NOREORDER;
9189 old_flags &= ~EF_MIPS_NOREORDER;
9191 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9192 doesn't seem to matter. */
9193 new_flags &= ~EF_MIPS_XGOT;
9194 old_flags &= ~EF_MIPS_XGOT;
9196 if (new_flags == old_flags)
9199 /* Check to see if the input BFD actually contains any sections.
9200 If not, its flags may not have been initialised either, but it cannot
9201 actually cause any incompatibility. */
9202 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9204 /* Ignore synthetic sections and empty .text, .data and .bss sections
9205 which are automatically generated by gas. */
9206 if (strcmp (sec->name, ".reginfo")
9207 && strcmp (sec->name, ".mdebug")
9208 && ((!strcmp (sec->name, ".text")
9209 || !strcmp (sec->name, ".data")
9210 || !strcmp (sec->name, ".bss"))
9211 && sec->_raw_size != 0))
9213 null_input_bfd = FALSE;
9222 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9223 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9225 (*_bfd_error_handler)
9226 (_("%s: warning: linking PIC files with non-PIC files"),
9227 bfd_archive_filename (ibfd));
9231 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9232 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9233 if (! (new_flags & EF_MIPS_PIC))
9234 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9236 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9237 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9239 /* Compare the ISAs. */
9240 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9242 (*_bfd_error_handler)
9243 (_("%s: linking 32-bit code with 64-bit code"),
9244 bfd_archive_filename (ibfd));
9247 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9249 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9250 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9252 /* Copy the architecture info from IBFD to OBFD. Also copy
9253 the 32-bit flag (if set) so that we continue to recognise
9254 OBFD as a 32-bit binary. */
9255 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9256 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9257 elf_elfheader (obfd)->e_flags
9258 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9260 /* Copy across the ABI flags if OBFD doesn't use them
9261 and if that was what caused us to treat IBFD as 32-bit. */
9262 if ((old_flags & EF_MIPS_ABI) == 0
9263 && mips_32bit_flags_p (new_flags)
9264 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9265 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9269 /* The ISAs aren't compatible. */
9270 (*_bfd_error_handler)
9271 (_("%s: linking %s module with previous %s modules"),
9272 bfd_archive_filename (ibfd),
9273 bfd_printable_name (ibfd),
9274 bfd_printable_name (obfd));
9279 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9280 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9282 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9283 does set EI_CLASS differently from any 32-bit ABI. */
9284 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9285 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9286 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9288 /* Only error if both are set (to different values). */
9289 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9290 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9291 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9293 (*_bfd_error_handler)
9294 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9295 bfd_archive_filename (ibfd),
9296 elf_mips_abi_name (ibfd),
9297 elf_mips_abi_name (obfd));
9300 new_flags &= ~EF_MIPS_ABI;
9301 old_flags &= ~EF_MIPS_ABI;
9304 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9305 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9307 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9309 new_flags &= ~ EF_MIPS_ARCH_ASE;
9310 old_flags &= ~ EF_MIPS_ARCH_ASE;
9313 /* Warn about any other mismatches */
9314 if (new_flags != old_flags)
9316 (*_bfd_error_handler)
9317 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9318 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9319 (unsigned long) old_flags);
9325 bfd_set_error (bfd_error_bad_value);
9332 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9335 _bfd_mips_elf_set_private_flags (abfd, flags)
9339 BFD_ASSERT (!elf_flags_init (abfd)
9340 || elf_elfheader (abfd)->e_flags == flags);
9342 elf_elfheader (abfd)->e_flags = flags;
9343 elf_flags_init (abfd) = TRUE;
9348 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
9352 FILE *file = (FILE *) ptr;
9354 BFD_ASSERT (abfd != NULL && ptr != NULL);
9356 /* Print normal ELF private data. */
9357 _bfd_elf_print_private_bfd_data (abfd, ptr);
9359 /* xgettext:c-format */
9360 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9362 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9363 fprintf (file, _(" [abi=O32]"));
9364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9365 fprintf (file, _(" [abi=O64]"));
9366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9367 fprintf (file, _(" [abi=EABI32]"));
9368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9369 fprintf (file, _(" [abi=EABI64]"));
9370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9371 fprintf (file, _(" [abi unknown]"));
9372 else if (ABI_N32_P (abfd))
9373 fprintf (file, _(" [abi=N32]"));
9374 else if (ABI_64_P (abfd))
9375 fprintf (file, _(" [abi=64]"));
9377 fprintf (file, _(" [no abi set]"));
9379 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9380 fprintf (file, _(" [mips1]"));
9381 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9382 fprintf (file, _(" [mips2]"));
9383 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9384 fprintf (file, _(" [mips3]"));
9385 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9386 fprintf (file, _(" [mips4]"));
9387 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9388 fprintf (file, _(" [mips5]"));
9389 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9390 fprintf (file, _(" [mips32]"));
9391 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9392 fprintf (file, _(" [mips64]"));
9393 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9394 fprintf (file, _(" [mips32r2]"));
9396 fprintf (file, _(" [unknown ISA]"));
9398 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9399 fprintf (file, _(" [mdmx]"));
9401 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9402 fprintf (file, _(" [mips16]"));
9404 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9405 fprintf (file, _(" [32bitmode]"));
9407 fprintf (file, _(" [not 32bitmode]"));