1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
330 /* Traditional SVR4 stub offset, or -1 if none. */
333 /* Standard PLT entry offset, or -1 if none. */
336 /* Compressed PLT entry offset, or -1 if none. */
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
352 struct mips_elf_link_hash_entry
354 struct elf_link_hash_entry root;
356 /* External symbol information. */
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
364 unsigned int possibly_dynamic_relocs;
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
443 /* True if we can only use 32-bit microMIPS instructions. */
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
452 /* Shortcuts to some dynamic sections, or NULL if they are not
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
462 /* The global symbol in the GOT with the lowest index in the dynamic
464 struct elf_link_hash_entry *global_gotsym;
466 /* The size of the PLT header in bytes. */
467 bfd_vma plt_header_size;
469 /* The size of a standard PLT entry in bytes. */
470 bfd_vma plt_mips_entry_size;
472 /* The size of a compressed PLT entry in bytes. */
473 bfd_vma plt_comp_entry_size;
475 /* The offset of the next standard PLT entry to create. */
476 bfd_vma plt_mips_offset;
478 /* The offset of the next compressed PLT entry to create. */
479 bfd_vma plt_comp_offset;
481 /* The index of the next .got.plt entry to create. */
482 bfd_vma plt_got_index;
484 /* The number of functions that need a lazy-binding stub. */
485 bfd_vma lazy_stub_count;
487 /* The size of a function stub entry in bytes. */
488 bfd_vma function_stub_size;
490 /* The number of reserved entries at the beginning of the GOT. */
491 unsigned int reserved_gotno;
493 /* The section used for mips_elf_la25_stub trampolines.
494 See the comment above that structure for details. */
495 asection *strampoline;
497 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
501 /* A function FN (NAME, IS, OS) that creates a new input section
502 called NAME and links it to output section OS. If IS is nonnull,
503 the new section should go immediately before it, otherwise it
504 should go at the (current) beginning of OS.
506 The function returns the new section on success, otherwise it
508 asection *(*add_stub_section) (const char *, asection *, asection *);
510 /* Small local sym cache. */
511 struct sym_cache sym_cache;
513 /* Is the PLT header compressed? */
514 unsigned int plt_header_is_comp : 1;
517 /* Get the MIPS ELF linker hash table from a link_info structure. */
519 #define mips_elf_hash_table(p) \
520 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
521 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
523 /* A structure used to communicate with htab_traverse callbacks. */
524 struct mips_htab_traverse_info
526 /* The usual link-wide information. */
527 struct bfd_link_info *info;
530 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
534 /* MIPS ELF private object data. */
536 struct mips_elf_obj_tdata
538 /* Generic ELF private object data. */
539 struct elf_obj_tdata root;
541 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
544 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
547 /* The abiflags for this object. */
548 Elf_Internal_ABIFlags_v0 abiflags;
549 bfd_boolean abiflags_valid;
551 /* The GOT requirements of input bfds. */
552 struct mips_got_info *got;
554 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
555 included directly in this one, but there's no point to wasting
556 the memory just for the infrequently called find_nearest_line. */
557 struct mips_elf_find_line *find_line_info;
559 /* An array of stub sections indexed by symbol number. */
560 asection **local_stubs;
561 asection **local_call_stubs;
563 /* The Irix 5 support uses two virtual sections, which represent
564 text/data symbols defined in dynamic objects. */
565 asymbol *elf_data_symbol;
566 asymbol *elf_text_symbol;
567 asection *elf_data_section;
568 asection *elf_text_section;
571 /* Get MIPS ELF private object data from BFD's tdata. */
573 #define mips_elf_tdata(bfd) \
574 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
576 #define TLS_RELOC_P(r_type) \
577 (r_type == R_MIPS_TLS_DTPMOD32 \
578 || r_type == R_MIPS_TLS_DTPMOD64 \
579 || r_type == R_MIPS_TLS_DTPREL32 \
580 || r_type == R_MIPS_TLS_DTPREL64 \
581 || r_type == R_MIPS_TLS_GD \
582 || r_type == R_MIPS_TLS_LDM \
583 || r_type == R_MIPS_TLS_DTPREL_HI16 \
584 || r_type == R_MIPS_TLS_DTPREL_LO16 \
585 || r_type == R_MIPS_TLS_GOTTPREL \
586 || r_type == R_MIPS_TLS_TPREL32 \
587 || r_type == R_MIPS_TLS_TPREL64 \
588 || r_type == R_MIPS_TLS_TPREL_HI16 \
589 || r_type == R_MIPS_TLS_TPREL_LO16 \
590 || r_type == R_MIPS16_TLS_GD \
591 || r_type == R_MIPS16_TLS_LDM \
592 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
593 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GOTTPREL \
595 || r_type == R_MIPS16_TLS_TPREL_HI16 \
596 || r_type == R_MIPS16_TLS_TPREL_LO16 \
597 || r_type == R_MICROMIPS_TLS_GD \
598 || r_type == R_MICROMIPS_TLS_LDM \
599 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
600 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GOTTPREL \
602 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
605 /* Structure used to pass information to mips_elf_output_extsym. */
610 struct bfd_link_info *info;
611 struct ecoff_debug_info *debug;
612 const struct ecoff_debug_swap *swap;
616 /* The names of the runtime procedure table symbols used on IRIX5. */
618 static const char * const mips_elf_dynsym_rtproc_names[] =
621 "_procedure_string_table",
622 "_procedure_table_size",
626 /* These structures are used to generate the .compact_rel section on
631 unsigned long id1; /* Always one? */
632 unsigned long num; /* Number of compact relocation entries. */
633 unsigned long id2; /* Always two? */
634 unsigned long offset; /* The file offset of the first relocation. */
635 unsigned long reserved0; /* Zero? */
636 unsigned long reserved1; /* Zero? */
645 bfd_byte reserved0[4];
646 bfd_byte reserved1[4];
647 } Elf32_External_compact_rel;
651 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
652 unsigned int rtype : 4; /* Relocation types. See below. */
653 unsigned int dist2to : 8;
654 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
655 unsigned long konst; /* KONST field. See below. */
656 unsigned long vaddr; /* VADDR to be relocated. */
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
673 } Elf32_External_crinfo;
679 } Elf32_External_crinfo2;
681 /* These are the constants used to swap the bitfields in a crinfo. */
683 #define CRINFO_CTYPE (0x1)
684 #define CRINFO_CTYPE_SH (31)
685 #define CRINFO_RTYPE (0xf)
686 #define CRINFO_RTYPE_SH (27)
687 #define CRINFO_DIST2TO (0xff)
688 #define CRINFO_DIST2TO_SH (19)
689 #define CRINFO_RELVADDR (0x7ffff)
690 #define CRINFO_RELVADDR_SH (0)
692 /* A compact relocation info has long (3 words) or short (2 words)
693 formats. A short format doesn't have VADDR field and relvaddr
694 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
695 #define CRF_MIPS_LONG 1
696 #define CRF_MIPS_SHORT 0
698 /* There are 4 types of compact relocation at least. The value KONST
699 has different meaning for each type:
702 CT_MIPS_REL32 Address in data
703 CT_MIPS_WORD Address in word (XXX)
704 CT_MIPS_GPHI_LO GP - vaddr
705 CT_MIPS_JMPAD Address to jump
708 #define CRT_MIPS_REL32 0xa
709 #define CRT_MIPS_WORD 0xb
710 #define CRT_MIPS_GPHI_LO 0xc
711 #define CRT_MIPS_JMPAD 0xd
713 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
714 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
715 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
716 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
718 /* The structure of the runtime procedure descriptor created by the
719 loader for use by the static exception system. */
721 typedef struct runtime_pdr {
722 bfd_vma adr; /* Memory address of start of procedure. */
723 long regmask; /* Save register mask. */
724 long regoffset; /* Save register offset. */
725 long fregmask; /* Save floating point register mask. */
726 long fregoffset; /* Save floating point register offset. */
727 long frameoffset; /* Frame size. */
728 short framereg; /* Frame pointer register. */
729 short pcreg; /* Offset or reg of return pc. */
730 long irpss; /* Index into the runtime string table. */
732 struct exception_info *exception_info;/* Pointer to exception array. */
734 #define cbRPDR sizeof (RPDR)
735 #define rpdNil ((pRPDR) 0)
737 static struct mips_got_entry *mips_elf_create_local_got_entry
738 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
739 struct mips_elf_link_hash_entry *, int);
740 static bfd_boolean mips_elf_sort_hash_table_f
741 (struct mips_elf_link_hash_entry *, void *);
742 static bfd_vma mips_elf_high
744 static bfd_boolean mips_elf_create_dynamic_relocation
745 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
746 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
747 bfd_vma *, asection *);
748 static bfd_vma mips_elf_adjust_gp
749 (bfd *, struct mips_got_info *, bfd *);
751 /* This will be used when we sort the dynamic relocation records. */
752 static bfd *reldyn_sorting_bfd;
754 /* True if ABFD is for CPUs with load interlocking that include
755 non-MIPS1 CPUs and R3900. */
756 #define LOAD_INTERLOCKS_P(abfd) \
757 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
758 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
760 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
761 This should be safe for all architectures. We enable this predicate
762 for RM9000 for now. */
763 #define JAL_TO_BAL_P(abfd) \
764 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
766 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
767 This should be safe for all architectures. We enable this predicate for
769 #define JALR_TO_BAL_P(abfd) 1
771 /* True if ABFD is for CPUs that are faster if JR is converted to B.
772 This should be safe for all architectures. We enable this predicate for
774 #define JR_TO_B_P(abfd) 1
776 /* True if ABFD is a PIC object. */
777 #define PIC_OBJECT_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
780 /* Nonzero if ABFD is using the O32 ABI. */
781 #define ABI_O32_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
784 /* Nonzero if ABFD is using the N32 ABI. */
785 #define ABI_N32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
788 /* Nonzero if ABFD is using the N64 ABI. */
789 #define ABI_64_P(abfd) \
790 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
792 /* Nonzero if ABFD is using NewABI conventions. */
793 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
795 /* Nonzero if ABFD has microMIPS code. */
796 #define MICROMIPS_P(abfd) \
797 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
799 /* Nonzero if ABFD is MIPS R6. */
800 #define MIPSR6_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
802 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
804 /* The IRIX compatibility level we are striving for. */
805 #define IRIX_COMPAT(abfd) \
806 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
808 /* Whether we are trying to be compatible with IRIX at all. */
809 #define SGI_COMPAT(abfd) \
810 (IRIX_COMPAT (abfd) != ict_none)
812 /* The name of the options section. */
813 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
814 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
816 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
817 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
818 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
819 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
821 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
822 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.abiflags") == 0)
825 /* Whether the section is readonly. */
826 #define MIPS_ELF_READONLY_SECTION(sec) \
827 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
828 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
830 /* The name of the stub section. */
831 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
833 /* The size of an external REL relocation. */
834 #define MIPS_ELF_REL_SIZE(abfd) \
835 (get_elf_backend_data (abfd)->s->sizeof_rel)
837 /* The size of an external RELA relocation. */
838 #define MIPS_ELF_RELA_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rela)
841 /* The size of an external dynamic table entry. */
842 #define MIPS_ELF_DYN_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_dyn)
845 /* The size of a GOT entry. */
846 #define MIPS_ELF_GOT_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->arch_size / 8)
849 /* The size of the .rld_map section. */
850 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of a symbol-table entry. */
854 #define MIPS_ELF_SYM_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->sizeof_sym)
857 /* The default alignment for sections, as a power of two. */
858 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
859 (get_elf_backend_data (abfd)->s->log_file_align)
861 /* Get word-sized data. */
862 #define MIPS_ELF_GET_WORD(abfd, ptr) \
863 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
865 /* Put out word-sized data. */
866 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
868 ? bfd_put_64 (abfd, val, ptr) \
869 : bfd_put_32 (abfd, val, ptr))
871 /* The opcode for word-sized loads (LW or LD). */
872 #define MIPS_ELF_LOAD_WORD(abfd) \
873 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
875 /* Add a dynamic symbol table-entry. */
876 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
877 _bfd_elf_add_dynamic_entry (info, tag, val)
879 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
880 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
882 /* The name of the dynamic relocation section. */
883 #define MIPS_ELF_REL_DYN_NAME(INFO) \
884 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
886 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
887 from smaller values. Start with zero, widen, *then* decrement. */
888 #define MINUS_ONE (((bfd_vma)0) - 1)
889 #define MINUS_TWO (((bfd_vma)0) - 2)
891 /* The value to write into got[1] for SVR4 targets, to identify it is
892 a GNU object. The dynamic linker can then use got[1] to store the
894 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
895 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
897 /* The offset of $gp from the beginning of the .got section. */
898 #define ELF_MIPS_GP_OFFSET(INFO) \
899 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
901 /* The maximum size of the GOT for it to be addressable using 16-bit
903 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
905 /* Instructions which appear in a stub. */
906 #define STUB_LW(abfd) \
908 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
909 : 0x8f998010)) /* lw t9,0x8010(gp) */
910 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
911 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
912 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
913 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
914 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
915 #define STUB_LI16S(abfd, VAL) \
917 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
918 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
920 /* Likewise for the microMIPS ASE. */
921 #define STUB_LW_MICROMIPS(abfd) \
923 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
924 : 0xff3c8010) /* lw t9,0x8010(gp) */
925 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
926 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
927 #define STUB_LUI_MICROMIPS(VAL) \
928 (0x41b80000 + (VAL)) /* lui t8,VAL */
929 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
930 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
931 #define STUB_ORI_MICROMIPS(VAL) \
932 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
933 #define STUB_LI16U_MICROMIPS(VAL) \
934 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
935 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
937 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
938 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
940 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
941 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
942 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
943 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
944 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
947 /* The name of the dynamic interpreter. This is put in the .interp
950 #define ELF_DYNAMIC_INTERPRETER(abfd) \
951 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
952 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
953 : "/usr/lib/libc.so.1")
956 #define MNAME(bfd,pre,pos) \
957 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
958 #define ELF_R_SYM(bfd, i) \
959 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
960 #define ELF_R_TYPE(bfd, i) \
961 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
962 #define ELF_R_INFO(bfd, s, t) \
963 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
965 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
966 #define ELF_R_SYM(bfd, i) \
968 #define ELF_R_TYPE(bfd, i) \
970 #define ELF_R_INFO(bfd, s, t) \
971 (ELF32_R_INFO (s, t))
974 /* The mips16 compiler uses a couple of special sections to handle
975 floating point arguments.
977 Section names that look like .mips16.fn.FNNAME contain stubs that
978 copy floating point arguments from the fp regs to the gp regs and
979 then jump to FNNAME. If any 32 bit function calls FNNAME, the
980 call should be redirected to the stub instead. If no 32 bit
981 function calls FNNAME, the stub should be discarded. We need to
982 consider any reference to the function, not just a call, because
983 if the address of the function is taken we will need the stub,
984 since the address might be passed to a 32 bit function.
986 Section names that look like .mips16.call.FNNAME contain stubs
987 that copy floating point arguments from the gp regs to the fp
988 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
989 then any 16 bit function that calls FNNAME should be redirected
990 to the stub instead. If FNNAME is not a 32 bit function, the
991 stub should be discarded.
993 .mips16.call.fp.FNNAME sections are similar, but contain stubs
994 which call FNNAME and then copy the return value from the fp regs
995 to the gp regs. These stubs store the return value in $18 while
996 calling FNNAME; any function which might call one of these stubs
997 must arrange to save $18 around the call. (This case is not
998 needed for 32 bit functions that call 16 bit functions, because
999 16 bit functions always return floating point values in both
1002 Note that in all cases FNNAME might be defined statically.
1003 Therefore, FNNAME is not used literally. Instead, the relocation
1004 information will indicate which symbol the section is for.
1006 We record any stubs that we find in the symbol table. */
1008 #define FN_STUB ".mips16.fn."
1009 #define CALL_STUB ".mips16.call."
1010 #define CALL_FP_STUB ".mips16.call.fp."
1012 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1013 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1014 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1016 /* The format of the first PLT entry in an O32 executable. */
1017 static const bfd_vma mips_o32_exec_plt0_entry[] =
1019 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1020 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1021 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1022 0x031cc023, /* subu $24, $24, $28 */
1023 0x03e07825, /* or t7, ra, zero */
1024 0x0018c082, /* srl $24, $24, 2 */
1025 0x0320f809, /* jalr $25 */
1026 0x2718fffe /* subu $24, $24, 2 */
1029 /* The format of the first PLT entry in an N32 executable. Different
1030 because gp ($28) is not available; we use t2 ($14) instead. */
1031 static const bfd_vma mips_n32_exec_plt0_entry[] =
1033 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1034 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1035 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1036 0x030ec023, /* subu $24, $24, $14 */
1037 0x03e07825, /* or t7, ra, zero */
1038 0x0018c082, /* srl $24, $24, 2 */
1039 0x0320f809, /* jalr $25 */
1040 0x2718fffe /* subu $24, $24, 2 */
1043 /* The format of the first PLT entry in an N64 executable. Different
1044 from N32 because of the increased size of GOT entries. */
1045 static const bfd_vma mips_n64_exec_plt0_entry[] =
1047 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1048 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1049 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1050 0x030ec023, /* subu $24, $24, $14 */
1051 0x03e07825, /* or t7, ra, zero */
1052 0x0018c0c2, /* srl $24, $24, 3 */
1053 0x0320f809, /* jalr $25 */
1054 0x2718fffe /* subu $24, $24, 2 */
1057 /* The format of the microMIPS first PLT entry in an O32 executable.
1058 We rely on v0 ($2) rather than t8 ($24) to contain the address
1059 of the GOTPLT entry handled, so this stub may only be used when
1060 all the subsequent PLT entries are microMIPS code too.
1062 The trailing NOP is for alignment and correct disassembly only. */
1063 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1065 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1066 0xff23, 0x0000, /* lw $25, 0($3) */
1067 0x0535, /* subu $2, $2, $3 */
1068 0x2525, /* srl $2, $2, 2 */
1069 0x3302, 0xfffe, /* subu $24, $2, 2 */
1070 0x0dff, /* move $15, $31 */
1071 0x45f9, /* jalrs $25 */
1072 0x0f83, /* move $28, $3 */
1076 /* The format of the microMIPS first PLT entry in an O32 executable
1077 in the insn32 mode. */
1078 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1080 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1081 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1082 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1083 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1084 0x001f, 0x7a90, /* or $15, $31, zero */
1085 0x0318, 0x1040, /* srl $24, $24, 2 */
1086 0x03f9, 0x0f3c, /* jalr $25 */
1087 0x3318, 0xfffe /* subu $24, $24, 2 */
1090 /* The format of subsequent standard PLT entries. */
1091 static const bfd_vma mips_exec_plt_entry[] =
1093 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1094 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1095 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1096 0x03200008 /* jr $25 */
1099 /* In the following PLT entry the JR and ADDIU instructions will
1100 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1101 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1102 static const bfd_vma mipsr6_exec_plt_entry[] =
1104 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1105 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1106 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1107 0x03200009 /* jr $25 */
1110 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1111 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1112 directly addressable. */
1113 static const bfd_vma mips16_o32_exec_plt_entry[] =
1115 0xb203, /* lw $2, 12($pc) */
1116 0x9a60, /* lw $3, 0($2) */
1117 0x651a, /* move $24, $2 */
1119 0x653b, /* move $25, $3 */
1121 0x0000, 0x0000 /* .word (.got.plt entry) */
1124 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1125 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1126 static const bfd_vma micromips_o32_exec_plt_entry[] =
1128 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1129 0xff22, 0x0000, /* lw $25, 0($2) */
1130 0x4599, /* jr $25 */
1131 0x0f02 /* move $24, $2 */
1134 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1135 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1137 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1138 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1139 0x0019, 0x0f3c, /* jr $25 */
1140 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1143 /* The format of the first PLT entry in a VxWorks executable. */
1144 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1146 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1147 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1148 0x8f390008, /* lw t9, 8(t9) */
1149 0x00000000, /* nop */
1150 0x03200008, /* jr t9 */
1151 0x00000000 /* nop */
1154 /* The format of subsequent PLT entries. */
1155 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1157 0x10000000, /* b .PLT_resolver */
1158 0x24180000, /* li t8, <pltindex> */
1159 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1160 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1161 0x8f390000, /* lw t9, 0(t9) */
1162 0x00000000, /* nop */
1163 0x03200008, /* jr t9 */
1164 0x00000000 /* nop */
1167 /* The format of the first PLT entry in a VxWorks shared object. */
1168 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1170 0x8f990008, /* lw t9, 8(gp) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000, /* nop */
1174 0x00000000, /* nop */
1175 0x00000000 /* nop */
1178 /* The format of subsequent PLT entries. */
1179 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1181 0x10000000, /* b .PLT_resolver */
1182 0x24180000 /* li t8, <pltindex> */
1185 /* microMIPS 32-bit opcode helper installer. */
1188 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1190 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1191 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1194 /* microMIPS 32-bit opcode helper retriever. */
1197 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1199 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1202 /* Look up an entry in a MIPS ELF linker hash table. */
1204 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1205 ((struct mips_elf_link_hash_entry *) \
1206 elf_link_hash_lookup (&(table)->root, (string), (create), \
1209 /* Traverse a MIPS ELF linker hash table. */
1211 #define mips_elf_link_hash_traverse(table, func, info) \
1212 (elf_link_hash_traverse \
1214 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1217 /* Find the base offsets for thread-local storage in this object,
1218 for GD/LD and IE/LE respectively. */
1220 #define TP_OFFSET 0x7000
1221 #define DTP_OFFSET 0x8000
1224 dtprel_base (struct bfd_link_info *info)
1226 /* If tls_sec is NULL, we should have signalled an error already. */
1227 if (elf_hash_table (info)->tls_sec == NULL)
1229 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1233 tprel_base (struct bfd_link_info *info)
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1238 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1241 /* Create an entry in a MIPS ELF linker hash table. */
1243 static struct bfd_hash_entry *
1244 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1245 struct bfd_hash_table *table, const char *string)
1247 struct mips_elf_link_hash_entry *ret =
1248 (struct mips_elf_link_hash_entry *) entry;
1250 /* Allocate the structure if it has not already been allocated by a
1253 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1255 return (struct bfd_hash_entry *) ret;
1257 /* Call the allocation method of the superclass. */
1258 ret = ((struct mips_elf_link_hash_entry *)
1259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1263 /* Set local fields. */
1264 memset (&ret->esym, 0, sizeof (EXTR));
1265 /* We use -2 as a marker to indicate that the information has
1266 not been set. -1 means there is no associated ifd. */
1269 ret->possibly_dynamic_relocs = 0;
1270 ret->fn_stub = NULL;
1271 ret->call_stub = NULL;
1272 ret->call_fp_stub = NULL;
1273 ret->global_got_area = GGA_NONE;
1274 ret->got_only_for_calls = TRUE;
1275 ret->readonly_reloc = FALSE;
1276 ret->has_static_relocs = FALSE;
1277 ret->no_fn_stub = FALSE;
1278 ret->need_fn_stub = FALSE;
1279 ret->has_nonpic_branches = FALSE;
1280 ret->needs_lazy_stub = FALSE;
1281 ret->use_plt_entry = FALSE;
1284 return (struct bfd_hash_entry *) ret;
1287 /* Allocate MIPS ELF private object data. */
1290 _bfd_mips_elf_mkobject (bfd *abfd)
1292 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1299 if (!sec->used_by_bfd)
1301 struct _mips_elf_section_data *sdata;
1302 bfd_size_type amt = sizeof (*sdata);
1304 sdata = bfd_zalloc (abfd, amt);
1307 sec->used_by_bfd = sdata;
1310 return _bfd_elf_new_section_hook (abfd, sec);
1313 /* Read ECOFF debugging information from a .mdebug section into a
1314 ecoff_debug_info structure. */
1317 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1318 struct ecoff_debug_info *debug)
1321 const struct ecoff_debug_swap *swap;
1324 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1325 memset (debug, 0, sizeof (*debug));
1327 ext_hdr = bfd_malloc (swap->external_hdr_size);
1328 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1331 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1332 swap->external_hdr_size))
1335 symhdr = &debug->symbolic_header;
1336 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1338 /* The symbolic header contains absolute file offsets and sizes to
1340 #define READ(ptr, offset, count, size, type) \
1341 if (symhdr->count == 0) \
1342 debug->ptr = NULL; \
1345 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1346 debug->ptr = bfd_malloc (amt); \
1347 if (debug->ptr == NULL) \
1348 goto error_return; \
1349 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1350 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1351 goto error_return; \
1354 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1355 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1356 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1357 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1358 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1359 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1361 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1362 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1363 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1364 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1365 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1373 if (ext_hdr != NULL)
1375 if (debug->line != NULL)
1377 if (debug->external_dnr != NULL)
1378 free (debug->external_dnr);
1379 if (debug->external_pdr != NULL)
1380 free (debug->external_pdr);
1381 if (debug->external_sym != NULL)
1382 free (debug->external_sym);
1383 if (debug->external_opt != NULL)
1384 free (debug->external_opt);
1385 if (debug->external_aux != NULL)
1386 free (debug->external_aux);
1387 if (debug->ss != NULL)
1389 if (debug->ssext != NULL)
1390 free (debug->ssext);
1391 if (debug->external_fdr != NULL)
1392 free (debug->external_fdr);
1393 if (debug->external_rfd != NULL)
1394 free (debug->external_rfd);
1395 if (debug->external_ext != NULL)
1396 free (debug->external_ext);
1400 /* Swap RPDR (runtime procedure table entry) for output. */
1403 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1405 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1406 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1407 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1408 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1409 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1410 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1412 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1413 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1415 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1418 /* Create a runtime procedure table from the .mdebug section. */
1421 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1422 struct bfd_link_info *info, asection *s,
1423 struct ecoff_debug_info *debug)
1425 const struct ecoff_debug_swap *swap;
1426 HDRR *hdr = &debug->symbolic_header;
1428 struct rpdr_ext *erp;
1430 struct pdr_ext *epdr;
1431 struct sym_ext *esym;
1435 bfd_size_type count;
1436 unsigned long sindex;
1440 const char *no_name_func = _("static procedure (no name)");
1448 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1450 sindex = strlen (no_name_func) + 1;
1451 count = hdr->ipdMax;
1454 size = swap->external_pdr_size;
1456 epdr = bfd_malloc (size * count);
1460 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1463 size = sizeof (RPDR);
1464 rp = rpdr = bfd_malloc (size * count);
1468 size = sizeof (char *);
1469 sv = bfd_malloc (size * count);
1473 count = hdr->isymMax;
1474 size = swap->external_sym_size;
1475 esym = bfd_malloc (size * count);
1479 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1482 count = hdr->issMax;
1483 ss = bfd_malloc (count);
1486 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1489 count = hdr->ipdMax;
1490 for (i = 0; i < (unsigned long) count; i++, rp++)
1492 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1493 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1494 rp->adr = sym.value;
1495 rp->regmask = pdr.regmask;
1496 rp->regoffset = pdr.regoffset;
1497 rp->fregmask = pdr.fregmask;
1498 rp->fregoffset = pdr.fregoffset;
1499 rp->frameoffset = pdr.frameoffset;
1500 rp->framereg = pdr.framereg;
1501 rp->pcreg = pdr.pcreg;
1503 sv[i] = ss + sym.iss;
1504 sindex += strlen (sv[i]) + 1;
1508 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1509 size = BFD_ALIGN (size, 16);
1510 rtproc = bfd_alloc (abfd, size);
1513 mips_elf_hash_table (info)->procedure_count = 0;
1517 mips_elf_hash_table (info)->procedure_count = count + 2;
1520 memset (erp, 0, sizeof (struct rpdr_ext));
1522 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1523 strcpy (str, no_name_func);
1524 str += strlen (no_name_func) + 1;
1525 for (i = 0; i < count; i++)
1527 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1528 strcpy (str, sv[i]);
1529 str += strlen (sv[i]) + 1;
1531 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1533 /* Set the size and contents of .rtproc section. */
1535 s->contents = rtproc;
1537 /* Skip this section later on (I don't think this currently
1538 matters, but someday it might). */
1539 s->map_head.link_order = NULL;
1568 /* We're going to create a stub for H. Create a symbol for the stub's
1569 value and size, to help make the disassembly easier to read. */
1572 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1573 struct mips_elf_link_hash_entry *h,
1574 const char *prefix, asection *s, bfd_vma value,
1577 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1578 struct bfd_link_hash_entry *bh;
1579 struct elf_link_hash_entry *elfh;
1586 /* Create a new symbol. */
1587 name = concat (prefix, h->root.root.root.string, NULL);
1589 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1590 BSF_LOCAL, s, value, NULL,
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1600 elfh->forced_local = 1;
1602 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1606 /* We're about to redefine H. Create a symbol to represent H's
1607 current value and size, to help make the disassembly easier
1611 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1612 struct mips_elf_link_hash_entry *h,
1615 struct bfd_link_hash_entry *bh;
1616 struct elf_link_hash_entry *elfh;
1622 /* Read the symbol's value. */
1623 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1624 || h->root.root.type == bfd_link_hash_defweak);
1625 s = h->root.root.u.def.section;
1626 value = h->root.root.u.def.value;
1628 /* Create a new symbol. */
1629 name = concat (prefix, h->root.root.root.string, NULL);
1631 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1632 BSF_LOCAL, s, value, NULL,
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1651 section_allows_mips16_refs_p (asection *section)
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 h->fn_stub->output_section = bfd_abs_section_ptr;
1718 if (h->call_stub != NULL
1719 && ELF_ST_IS_MIPS16 (h->root.other))
1721 /* We don't need the call_stub; this is a 16 bit function, so
1722 calls from other 16 bit functions are OK. Clobber the size
1723 to 0 to prevent it from being included in the link. */
1724 h->call_stub->size = 0;
1725 h->call_stub->flags &= ~SEC_RELOC;
1726 h->call_stub->reloc_count = 0;
1727 h->call_stub->flags |= SEC_EXCLUDE;
1728 h->call_stub->output_section = bfd_abs_section_ptr;
1731 if (h->call_fp_stub != NULL
1732 && ELF_ST_IS_MIPS16 (h->root.other))
1734 /* We don't need the call_stub; this is a 16 bit function, so
1735 calls from other 16 bit functions are OK. Clobber the size
1736 to 0 to prevent it from being included in the link. */
1737 h->call_fp_stub->size = 0;
1738 h->call_fp_stub->flags &= ~SEC_RELOC;
1739 h->call_fp_stub->reloc_count = 0;
1740 h->call_fp_stub->flags |= SEC_EXCLUDE;
1741 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1745 /* Hashtable callbacks for mips_elf_la25_stubs. */
1748 mips_elf_la25_stub_hash (const void *entry_)
1750 const struct mips_elf_la25_stub *entry;
1752 entry = (struct mips_elf_la25_stub *) entry_;
1753 return entry->h->root.root.u.def.section->id
1754 + entry->h->root.root.u.def.value;
1758 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 const struct mips_elf_la25_stub *entry1, *entry2;
1762 entry1 = (struct mips_elf_la25_stub *) entry1_;
1763 entry2 = (struct mips_elf_la25_stub *) entry2_;
1764 return ((entry1->h->root.root.u.def.section
1765 == entry2->h->root.root.u.def.section)
1766 && (entry1->h->root.root.u.def.value
1767 == entry2->h->root.root.u.def.value));
1770 /* Called by the linker to set up the la25 stub-creation code. FN is
1771 the linker's implementation of add_stub_function. Return true on
1775 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1776 asection *(*fn) (const char *, asection *,
1779 struct mips_elf_link_hash_table *htab;
1781 htab = mips_elf_hash_table (info);
1785 htab->add_stub_section = fn;
1786 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1787 mips_elf_la25_stub_eq, NULL);
1788 if (htab->la25_stubs == NULL)
1794 /* Return true if H is a locally-defined PIC function, in the sense
1795 that it or its fn_stub might need $25 to be valid on entry.
1796 Note that MIPS16 functions set up $gp using PC-relative instructions,
1797 so they themselves never need $25 to be valid. Only non-MIPS16
1798 entry points are of interest here. */
1801 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 return ((h->root.root.type == bfd_link_hash_defined
1804 || h->root.root.type == bfd_link_hash_defweak)
1805 && h->root.def_regular
1806 && !bfd_is_abs_section (h->root.root.u.def.section)
1807 && !bfd_is_und_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1842 struct mips_elf_link_hash_table *htab;
1844 asection *s, *input_section;
1847 htab = mips_elf_hash_table (info);
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1869 s->size = (1 << align) - 8;
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1876 /* Allocate room for it. */
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1889 struct mips_elf_link_hash_table *htab;
1892 htab = mips_elf_hash_table (info);
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1905 htab->strampoline = s;
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1913 /* Allocate room for it. */
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1946 stub = (struct mips_elf_la25_stub *) *slot;
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1966 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1968 h->la25_stub = stub;
1969 return (use_trampoline_p
1970 ? mips_elf_add_la25_trampoline (stub, info)
1971 : mips_elf_add_la25_intro (stub, info));
1974 /* A mips_elf_link_hash_traverse callback that is called before sizing
1975 sections. DATA points to a mips_htab_traverse_info structure. */
1978 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1980 struct mips_htab_traverse_info *hti;
1982 hti = (struct mips_htab_traverse_info *) data;
1983 if (!bfd_link_relocatable (hti->info))
1984 mips_elf_check_mips16_stubs (hti->info, h);
1986 if (mips_elf_local_pic_function_p (h))
1988 /* PR 12845: If H is in a section that has been garbage
1989 collected it will have its output section set to *ABS*. */
1990 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1993 /* H is a function that might need $25 to be valid on entry.
1994 If we're creating a non-PIC relocatable object, mark H as
1995 being PIC. If we're creating a non-relocatable object with
1996 non-PIC branches and jumps to H, make sure that H has an la25
1998 if (bfd_link_relocatable (hti->info))
2000 if (!PIC_OBJECT_P (hti->output_bfd))
2001 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2003 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2012 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2013 Most mips16 instructions are 16 bits, but these instructions
2016 The format of these instructions is:
2018 +--------------+--------------------------------+
2019 | JALX | X| Imm 20:16 | Imm 25:21 |
2020 +--------------+--------------------------------+
2022 +-----------------------------------------------+
2024 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2025 Note that the immediate value in the first word is swapped.
2027 When producing a relocatable object file, R_MIPS16_26 is
2028 handled mostly like R_MIPS_26. In particular, the addend is
2029 stored as a straight 26-bit value in a 32-bit instruction.
2030 (gas makes life simpler for itself by never adjusting a
2031 R_MIPS16_26 reloc to be against a section, so the addend is
2032 always zero). However, the 32 bit instruction is stored as 2
2033 16-bit values, rather than a single 32-bit value. In a
2034 big-endian file, the result is the same; in a little-endian
2035 file, the two 16-bit halves of the 32 bit value are swapped.
2036 This is so that a disassembler can recognize the jal
2039 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2040 instruction stored as two 16-bit values. The addend A is the
2041 contents of the targ26 field. The calculation is the same as
2042 R_MIPS_26. When storing the calculated value, reorder the
2043 immediate value as shown above, and don't forget to store the
2044 value as two 16-bit values.
2046 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2050 +--------+----------------------+
2054 +--------+----------------------+
2057 +----------+------+-------------+
2061 +----------+--------------------+
2062 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2063 ((sub1 << 16) | sub2)).
2065 When producing a relocatable object file, the calculation is
2066 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 When producing a fully linked file, the calculation is
2068 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2069 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2071 The table below lists the other MIPS16 instruction relocations.
2072 Each one is calculated in the same way as the non-MIPS16 relocation
2073 given on the right, but using the extended MIPS16 layout of 16-bit
2076 R_MIPS16_GPREL R_MIPS_GPREL16
2077 R_MIPS16_GOT16 R_MIPS_GOT16
2078 R_MIPS16_CALL16 R_MIPS_CALL16
2079 R_MIPS16_HI16 R_MIPS_HI16
2080 R_MIPS16_LO16 R_MIPS_LO16
2082 A typical instruction will have a format like this:
2084 +--------------+--------------------------------+
2085 | EXTEND | Imm 10:5 | Imm 15:11 |
2086 +--------------+--------------------------------+
2087 | Major | rx | ry | Imm 4:0 |
2088 +--------------+--------------------------------+
2090 EXTEND is the five bit value 11110. Major is the instruction
2093 All we need to do here is shuffle the bits appropriately.
2094 As above, the two 16-bit halves must be swapped on a
2095 little-endian system.
2097 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2098 relocatable field is shifted by 1 rather than 2 and the same bit
2099 shuffling is done as with the relocations above. */
2101 static inline bfd_boolean
2102 mips16_reloc_p (int r_type)
2107 case R_MIPS16_GPREL:
2108 case R_MIPS16_GOT16:
2109 case R_MIPS16_CALL16:
2112 case R_MIPS16_TLS_GD:
2113 case R_MIPS16_TLS_LDM:
2114 case R_MIPS16_TLS_DTPREL_HI16:
2115 case R_MIPS16_TLS_DTPREL_LO16:
2116 case R_MIPS16_TLS_GOTTPREL:
2117 case R_MIPS16_TLS_TPREL_HI16:
2118 case R_MIPS16_TLS_TPREL_LO16:
2119 case R_MIPS16_PC16_S1:
2127 /* Check if a microMIPS reloc. */
2129 static inline bfd_boolean
2130 micromips_reloc_p (unsigned int r_type)
2132 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2135 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2136 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2137 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2139 static inline bfd_boolean
2140 micromips_reloc_shuffle_p (unsigned int r_type)
2142 return (micromips_reloc_p (r_type)
2143 && r_type != R_MICROMIPS_PC7_S1
2144 && r_type != R_MICROMIPS_PC10_S1);
2147 static inline bfd_boolean
2148 got16_reloc_p (int r_type)
2150 return (r_type == R_MIPS_GOT16
2151 || r_type == R_MIPS16_GOT16
2152 || r_type == R_MICROMIPS_GOT16);
2155 static inline bfd_boolean
2156 call16_reloc_p (int r_type)
2158 return (r_type == R_MIPS_CALL16
2159 || r_type == R_MIPS16_CALL16
2160 || r_type == R_MICROMIPS_CALL16);
2163 static inline bfd_boolean
2164 got_disp_reloc_p (unsigned int r_type)
2166 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2169 static inline bfd_boolean
2170 got_page_reloc_p (unsigned int r_type)
2172 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2175 static inline bfd_boolean
2176 got_lo16_reloc_p (unsigned int r_type)
2178 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2181 static inline bfd_boolean
2182 call_hi16_reloc_p (unsigned int r_type)
2184 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2187 static inline bfd_boolean
2188 call_lo16_reloc_p (unsigned int r_type)
2190 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2193 static inline bfd_boolean
2194 hi16_reloc_p (int r_type)
2196 return (r_type == R_MIPS_HI16
2197 || r_type == R_MIPS16_HI16
2198 || r_type == R_MICROMIPS_HI16
2199 || r_type == R_MIPS_PCHI16);
2202 static inline bfd_boolean
2203 lo16_reloc_p (int r_type)
2205 return (r_type == R_MIPS_LO16
2206 || r_type == R_MIPS16_LO16
2207 || r_type == R_MICROMIPS_LO16
2208 || r_type == R_MIPS_PCLO16);
2211 static inline bfd_boolean
2212 mips16_call_reloc_p (int r_type)
2214 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2217 static inline bfd_boolean
2218 jal_reloc_p (int r_type)
2220 return (r_type == R_MIPS_26
2221 || r_type == R_MIPS16_26
2222 || r_type == R_MICROMIPS_26_S1);
2225 static inline bfd_boolean
2226 b_reloc_p (int r_type)
2228 return (r_type == R_MIPS_PC26_S2
2229 || r_type == R_MIPS_PC21_S2
2230 || r_type == R_MIPS_PC16
2231 || r_type == R_MIPS_GNU_REL16_S2
2232 || r_type == R_MIPS16_PC16_S1
2233 || r_type == R_MICROMIPS_PC16_S1
2234 || r_type == R_MICROMIPS_PC10_S1
2235 || r_type == R_MICROMIPS_PC7_S1);
2238 static inline bfd_boolean
2239 aligned_pcrel_reloc_p (int r_type)
2241 return (r_type == R_MIPS_PC18_S3
2242 || r_type == R_MIPS_PC19_S2);
2245 static inline bfd_boolean
2246 branch_reloc_p (int r_type)
2248 return (r_type == R_MIPS_26
2249 || r_type == R_MIPS_PC26_S2
2250 || r_type == R_MIPS_PC21_S2
2251 || r_type == R_MIPS_PC16
2252 || r_type == R_MIPS_GNU_REL16_S2);
2255 static inline bfd_boolean
2256 mips16_branch_reloc_p (int r_type)
2258 return (r_type == R_MIPS16_26
2259 || r_type == R_MIPS16_PC16_S1);
2262 static inline bfd_boolean
2263 micromips_branch_reloc_p (int r_type)
2265 return (r_type == R_MICROMIPS_26_S1
2266 || r_type == R_MICROMIPS_PC16_S1
2267 || r_type == R_MICROMIPS_PC10_S1
2268 || r_type == R_MICROMIPS_PC7_S1);
2271 static inline bfd_boolean
2272 tls_gd_reloc_p (unsigned int r_type)
2274 return (r_type == R_MIPS_TLS_GD
2275 || r_type == R_MIPS16_TLS_GD
2276 || r_type == R_MICROMIPS_TLS_GD);
2279 static inline bfd_boolean
2280 tls_ldm_reloc_p (unsigned int r_type)
2282 return (r_type == R_MIPS_TLS_LDM
2283 || r_type == R_MIPS16_TLS_LDM
2284 || r_type == R_MICROMIPS_TLS_LDM);
2287 static inline bfd_boolean
2288 tls_gottprel_reloc_p (unsigned int r_type)
2290 return (r_type == R_MIPS_TLS_GOTTPREL
2291 || r_type == R_MIPS16_TLS_GOTTPREL
2292 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2296 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2297 bfd_boolean jal_shuffle, bfd_byte *data)
2299 bfd_vma first, second, val;
2301 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2304 /* Pick up the first and second halfwords of the instruction. */
2305 first = bfd_get_16 (abfd, data);
2306 second = bfd_get_16 (abfd, data + 2);
2307 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2308 val = first << 16 | second;
2309 else if (r_type != R_MIPS16_26)
2310 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2311 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2313 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2314 | ((first & 0x1f) << 21) | second);
2315 bfd_put_32 (abfd, val, data);
2319 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2320 bfd_boolean jal_shuffle, bfd_byte *data)
2322 bfd_vma first, second, val;
2324 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2327 val = bfd_get_32 (abfd, data);
2328 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2330 second = val & 0xffff;
2333 else if (r_type != R_MIPS16_26)
2335 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2336 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2340 second = val & 0xffff;
2341 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2342 | ((val >> 21) & 0x1f);
2344 bfd_put_16 (abfd, second, data + 2);
2345 bfd_put_16 (abfd, first, data);
2348 bfd_reloc_status_type
2349 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2350 arelent *reloc_entry, asection *input_section,
2351 bfd_boolean relocatable, void *data, bfd_vma gp)
2355 bfd_reloc_status_type status;
2357 if (bfd_is_com_section (symbol->section))
2360 relocation = symbol->value;
2362 relocation += symbol->section->output_section->vma;
2363 relocation += symbol->section->output_offset;
2365 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2366 return bfd_reloc_outofrange;
2368 /* Set val to the offset into the section or symbol. */
2369 val = reloc_entry->addend;
2371 _bfd_mips_elf_sign_extend (val, 16);
2373 /* Adjust val for the final section location and GP value. If we
2374 are producing relocatable output, we don't want to do this for
2375 an external symbol. */
2377 || (symbol->flags & BSF_SECTION_SYM) != 0)
2378 val += relocation - gp;
2380 if (reloc_entry->howto->partial_inplace)
2382 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2384 + reloc_entry->address);
2385 if (status != bfd_reloc_ok)
2389 reloc_entry->addend = val;
2392 reloc_entry->address += input_section->output_offset;
2394 return bfd_reloc_ok;
2397 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2398 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2399 that contains the relocation field and DATA points to the start of
2404 struct mips_hi16 *next;
2406 asection *input_section;
2410 /* FIXME: This should not be a static variable. */
2412 static struct mips_hi16 *mips_hi16_list;
2414 /* A howto special_function for REL *HI16 relocations. We can only
2415 calculate the correct value once we've seen the partnering
2416 *LO16 relocation, so just save the information for later.
2418 The ABI requires that the *LO16 immediately follow the *HI16.
2419 However, as a GNU extension, we permit an arbitrary number of
2420 *HI16s to be associated with a single *LO16. This significantly
2421 simplies the relocation handling in gcc. */
2423 bfd_reloc_status_type
2424 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2425 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2426 asection *input_section, bfd *output_bfd,
2427 char **error_message ATTRIBUTE_UNUSED)
2429 struct mips_hi16 *n;
2431 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2432 return bfd_reloc_outofrange;
2434 n = bfd_malloc (sizeof *n);
2436 return bfd_reloc_outofrange;
2438 n->next = mips_hi16_list;
2440 n->input_section = input_section;
2441 n->rel = *reloc_entry;
2444 if (output_bfd != NULL)
2445 reloc_entry->address += input_section->output_offset;
2447 return bfd_reloc_ok;
2450 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2451 like any other 16-bit relocation when applied to global symbols, but is
2452 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2454 bfd_reloc_status_type
2455 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2456 void *data, asection *input_section,
2457 bfd *output_bfd, char **error_message)
2459 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2460 || bfd_is_und_section (bfd_get_section (symbol))
2461 || bfd_is_com_section (bfd_get_section (symbol)))
2462 /* The relocation is against a global symbol. */
2463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2464 input_section, output_bfd,
2467 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd, error_message);
2471 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2472 is a straightforward 16 bit inplace relocation, but we must deal with
2473 any partnering high-part relocations as well. */
2475 bfd_reloc_status_type
2476 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2477 void *data, asection *input_section,
2478 bfd *output_bfd, char **error_message)
2481 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2483 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2484 return bfd_reloc_outofrange;
2486 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2488 vallo = bfd_get_32 (abfd, location);
2489 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2492 while (mips_hi16_list != NULL)
2494 bfd_reloc_status_type ret;
2495 struct mips_hi16 *hi;
2497 hi = mips_hi16_list;
2499 /* R_MIPS*_GOT16 relocations are something of a special case. We
2500 want to install the addend in the same way as for a R_MIPS*_HI16
2501 relocation (with a rightshift of 16). However, since GOT16
2502 relocations can also be used with global symbols, their howto
2503 has a rightshift of 0. */
2504 if (hi->rel.howto->type == R_MIPS_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2508 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2511 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2512 carry or borrow will induce a change of +1 or -1 in the high part. */
2513 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2515 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2516 hi->input_section, output_bfd,
2518 if (ret != bfd_reloc_ok)
2521 mips_hi16_list = hi->next;
2525 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2526 input_section, output_bfd,
2530 /* A generic howto special_function. This calculates and installs the
2531 relocation itself, thus avoiding the oft-discussed problems in
2532 bfd_perform_relocation and bfd_install_relocation. */
2534 bfd_reloc_status_type
2535 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2536 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2537 asection *input_section, bfd *output_bfd,
2538 char **error_message ATTRIBUTE_UNUSED)
2541 bfd_reloc_status_type status;
2542 bfd_boolean relocatable;
2544 relocatable = (output_bfd != NULL);
2546 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2547 return bfd_reloc_outofrange;
2549 /* Build up the field adjustment in VAL. */
2551 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2553 /* Either we're calculating the final field value or we have a
2554 relocation against a section symbol. Add in the section's
2555 offset or address. */
2556 val += symbol->section->output_section->vma;
2557 val += symbol->section->output_offset;
2562 /* We're calculating the final field value. Add in the symbol's value
2563 and, if pc-relative, subtract the address of the field itself. */
2564 val += symbol->value;
2565 if (reloc_entry->howto->pc_relative)
2567 val -= input_section->output_section->vma;
2568 val -= input_section->output_offset;
2569 val -= reloc_entry->address;
2573 /* VAL is now the final adjustment. If we're keeping this relocation
2574 in the output file, and if the relocation uses a separate addend,
2575 we just need to add VAL to that addend. Otherwise we need to add
2576 VAL to the relocation field itself. */
2577 if (relocatable && !reloc_entry->howto->partial_inplace)
2578 reloc_entry->addend += val;
2581 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2583 /* Add in the separate addend, if any. */
2584 val += reloc_entry->addend;
2586 /* Add VAL to the relocation field. */
2587 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2589 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2591 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2594 if (status != bfd_reloc_ok)
2599 reloc_entry->address += input_section->output_offset;
2601 return bfd_reloc_ok;
2604 /* Swap an entry in a .gptab section. Note that these routines rely
2605 on the equivalence of the two elements of the union. */
2608 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2611 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2612 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2616 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2617 Elf32_External_gptab *ex)
2619 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2620 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2624 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2625 Elf32_External_compact_rel *ex)
2627 H_PUT_32 (abfd, in->id1, ex->id1);
2628 H_PUT_32 (abfd, in->num, ex->num);
2629 H_PUT_32 (abfd, in->id2, ex->id2);
2630 H_PUT_32 (abfd, in->offset, ex->offset);
2631 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2632 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2636 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2637 Elf32_External_crinfo *ex)
2641 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2642 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2643 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2644 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2645 H_PUT_32 (abfd, l, ex->info);
2646 H_PUT_32 (abfd, in->konst, ex->konst);
2647 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2650 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2651 routines swap this structure in and out. They are used outside of
2652 BFD, so they are globally visible. */
2655 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2658 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2659 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2660 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2661 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2662 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2663 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2667 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2668 Elf32_External_RegInfo *ex)
2670 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2671 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2672 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2673 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2674 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2675 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2678 /* In the 64 bit ABI, the .MIPS.options section holds register
2679 information in an Elf64_Reginfo structure. These routines swap
2680 them in and out. They are globally visible because they are used
2681 outside of BFD. These routines are here so that gas can call them
2682 without worrying about whether the 64 bit ABI has been included. */
2685 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2686 Elf64_Internal_RegInfo *in)
2688 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2689 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2690 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2691 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2692 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2693 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2694 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2698 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2699 Elf64_External_RegInfo *ex)
2701 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2702 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2703 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2704 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2705 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2706 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2707 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2710 /* Swap in an options header. */
2713 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2714 Elf_Internal_Options *in)
2716 in->kind = H_GET_8 (abfd, ex->kind);
2717 in->size = H_GET_8 (abfd, ex->size);
2718 in->section = H_GET_16 (abfd, ex->section);
2719 in->info = H_GET_32 (abfd, ex->info);
2722 /* Swap out an options header. */
2725 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2726 Elf_External_Options *ex)
2728 H_PUT_8 (abfd, in->kind, ex->kind);
2729 H_PUT_8 (abfd, in->size, ex->size);
2730 H_PUT_16 (abfd, in->section, ex->section);
2731 H_PUT_32 (abfd, in->info, ex->info);
2734 /* Swap in an abiflags structure. */
2737 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2738 const Elf_External_ABIFlags_v0 *ex,
2739 Elf_Internal_ABIFlags_v0 *in)
2741 in->version = H_GET_16 (abfd, ex->version);
2742 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2743 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2744 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2745 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2746 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2747 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2748 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2749 in->ases = H_GET_32 (abfd, ex->ases);
2750 in->flags1 = H_GET_32 (abfd, ex->flags1);
2751 in->flags2 = H_GET_32 (abfd, ex->flags2);
2754 /* Swap out an abiflags structure. */
2757 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2758 const Elf_Internal_ABIFlags_v0 *in,
2759 Elf_External_ABIFlags_v0 *ex)
2761 H_PUT_16 (abfd, in->version, ex->version);
2762 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2763 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2764 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2765 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2766 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2767 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2768 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2769 H_PUT_32 (abfd, in->ases, ex->ases);
2770 H_PUT_32 (abfd, in->flags1, ex->flags1);
2771 H_PUT_32 (abfd, in->flags2, ex->flags2);
2774 /* This function is called via qsort() to sort the dynamic relocation
2775 entries by increasing r_symndx value. */
2778 sort_dynamic_relocs (const void *arg1, const void *arg2)
2780 Elf_Internal_Rela int_reloc1;
2781 Elf_Internal_Rela int_reloc2;
2784 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2787 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2791 if (int_reloc1.r_offset < int_reloc2.r_offset)
2793 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2801 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2802 const void *arg2 ATTRIBUTE_UNUSED)
2805 Elf_Internal_Rela int_reloc1[3];
2806 Elf_Internal_Rela int_reloc2[3];
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg1, int_reloc1);
2810 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2811 (reldyn_sorting_bfd, arg2, int_reloc2);
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2815 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2818 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2820 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2829 /* This routine is used to write out ECOFF debugging external symbol
2830 information. It is called via mips_elf_link_hash_traverse. The
2831 ECOFF external symbol information must match the ELF external
2832 symbol information. Unfortunately, at this point we don't know
2833 whether a symbol is required by reloc information, so the two
2834 tables may wind up being different. We must sort out the external
2835 symbol information before we can set the final size of the .mdebug
2836 section, and we must set the size of the .mdebug section before we
2837 can relocate any sections, and we can't know which symbols are
2838 required by relocation until we relocate the sections.
2839 Fortunately, it is relatively unlikely that any symbol will be
2840 stripped but required by a reloc. In particular, it can not happen
2841 when generating a final executable. */
2844 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2846 struct extsym_info *einfo = data;
2848 asection *sec, *output_section;
2850 if (h->root.indx == -2)
2852 else if ((h->root.def_dynamic
2853 || h->root.ref_dynamic
2854 || h->root.type == bfd_link_hash_new)
2855 && !h->root.def_regular
2856 && !h->root.ref_regular)
2858 else if (einfo->info->strip == strip_all
2859 || (einfo->info->strip == strip_some
2860 && bfd_hash_lookup (einfo->info->keep_hash,
2861 h->root.root.root.string,
2862 FALSE, FALSE) == NULL))
2870 if (h->esym.ifd == -2)
2873 h->esym.cobol_main = 0;
2874 h->esym.weakext = 0;
2875 h->esym.reserved = 0;
2876 h->esym.ifd = ifdNil;
2877 h->esym.asym.value = 0;
2878 h->esym.asym.st = stGlobal;
2880 if (h->root.root.type == bfd_link_hash_undefined
2881 || h->root.root.type == bfd_link_hash_undefweak)
2885 /* Use undefined class. Also, set class and type for some
2887 name = h->root.root.root.string;
2888 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2889 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2891 h->esym.asym.sc = scData;
2892 h->esym.asym.st = stLabel;
2893 h->esym.asym.value = 0;
2895 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2897 h->esym.asym.sc = scAbs;
2898 h->esym.asym.st = stLabel;
2899 h->esym.asym.value =
2900 mips_elf_hash_table (einfo->info)->procedure_count;
2902 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2904 h->esym.asym.sc = scAbs;
2905 h->esym.asym.st = stLabel;
2906 h->esym.asym.value = elf_gp (einfo->abfd);
2909 h->esym.asym.sc = scUndefined;
2911 else if (h->root.root.type != bfd_link_hash_defined
2912 && h->root.root.type != bfd_link_hash_defweak)
2913 h->esym.asym.sc = scAbs;
2918 sec = h->root.root.u.def.section;
2919 output_section = sec->output_section;
2921 /* When making a shared library and symbol h is the one from
2922 the another shared library, OUTPUT_SECTION may be null. */
2923 if (output_section == NULL)
2924 h->esym.asym.sc = scUndefined;
2927 name = bfd_section_name (output_section->owner, output_section);
2929 if (strcmp (name, ".text") == 0)
2930 h->esym.asym.sc = scText;
2931 else if (strcmp (name, ".data") == 0)
2932 h->esym.asym.sc = scData;
2933 else if (strcmp (name, ".sdata") == 0)
2934 h->esym.asym.sc = scSData;
2935 else if (strcmp (name, ".rodata") == 0
2936 || strcmp (name, ".rdata") == 0)
2937 h->esym.asym.sc = scRData;
2938 else if (strcmp (name, ".bss") == 0)
2939 h->esym.asym.sc = scBss;
2940 else if (strcmp (name, ".sbss") == 0)
2941 h->esym.asym.sc = scSBss;
2942 else if (strcmp (name, ".init") == 0)
2943 h->esym.asym.sc = scInit;
2944 else if (strcmp (name, ".fini") == 0)
2945 h->esym.asym.sc = scFini;
2947 h->esym.asym.sc = scAbs;
2951 h->esym.asym.reserved = 0;
2952 h->esym.asym.index = indexNil;
2955 if (h->root.root.type == bfd_link_hash_common)
2956 h->esym.asym.value = h->root.root.u.c.size;
2957 else if (h->root.root.type == bfd_link_hash_defined
2958 || h->root.root.type == bfd_link_hash_defweak)
2960 if (h->esym.asym.sc == scCommon)
2961 h->esym.asym.sc = scBss;
2962 else if (h->esym.asym.sc == scSCommon)
2963 h->esym.asym.sc = scSBss;
2965 sec = h->root.root.u.def.section;
2966 output_section = sec->output_section;
2967 if (output_section != NULL)
2968 h->esym.asym.value = (h->root.root.u.def.value
2969 + sec->output_offset
2970 + output_section->vma);
2972 h->esym.asym.value = 0;
2976 struct mips_elf_link_hash_entry *hd = h;
2978 while (hd->root.root.type == bfd_link_hash_indirect)
2979 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2981 if (hd->needs_lazy_stub)
2983 BFD_ASSERT (hd->root.plt.plist != NULL);
2984 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2985 /* Set type and value for a symbol with a function stub. */
2986 h->esym.asym.st = stProc;
2987 sec = hd->root.root.u.def.section;
2989 h->esym.asym.value = 0;
2992 output_section = sec->output_section;
2993 if (output_section != NULL)
2994 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2995 + sec->output_offset
2996 + output_section->vma);
2998 h->esym.asym.value = 0;
3003 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3004 h->root.root.root.string,
3007 einfo->failed = TRUE;
3014 /* A comparison routine used to sort .gptab entries. */
3017 gptab_compare (const void *p1, const void *p2)
3019 const Elf32_gptab *a1 = p1;
3020 const Elf32_gptab *a2 = p2;
3022 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3025 /* Functions to manage the got entry hash table. */
3027 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3030 static INLINE hashval_t
3031 mips_elf_hash_bfd_vma (bfd_vma addr)
3034 return addr + (addr >> 32);
3041 mips_elf_got_entry_hash (const void *entry_)
3043 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3045 return (entry->symndx
3046 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3047 + (entry->tls_type == GOT_TLS_LDM ? 0
3048 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3049 : entry->symndx >= 0 ? (entry->abfd->id
3050 + mips_elf_hash_bfd_vma (entry->d.addend))
3051 : entry->d.h->root.root.root.hash));
3055 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3060 return (e1->symndx == e2->symndx
3061 && e1->tls_type == e2->tls_type
3062 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3063 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3064 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3065 && e1->d.addend == e2->d.addend)
3066 : e2->abfd && e1->d.h == e2->d.h));
3070 mips_got_page_ref_hash (const void *ref_)
3072 const struct mips_got_page_ref *ref;
3074 ref = (const struct mips_got_page_ref *) ref_;
3075 return ((ref->symndx >= 0
3076 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3077 : ref->u.h->root.root.root.hash)
3078 + mips_elf_hash_bfd_vma (ref->addend));
3082 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3084 const struct mips_got_page_ref *ref1, *ref2;
3086 ref1 = (const struct mips_got_page_ref *) ref1_;
3087 ref2 = (const struct mips_got_page_ref *) ref2_;
3088 return (ref1->symndx == ref2->symndx
3089 && (ref1->symndx < 0
3090 ? ref1->u.h == ref2->u.h
3091 : ref1->u.abfd == ref2->u.abfd)
3092 && ref1->addend == ref2->addend);
3096 mips_got_page_entry_hash (const void *entry_)
3098 const struct mips_got_page_entry *entry;
3100 entry = (const struct mips_got_page_entry *) entry_;
3101 return entry->sec->id;
3105 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3107 const struct mips_got_page_entry *entry1, *entry2;
3109 entry1 = (const struct mips_got_page_entry *) entry1_;
3110 entry2 = (const struct mips_got_page_entry *) entry2_;
3111 return entry1->sec == entry2->sec;
3114 /* Create and return a new mips_got_info structure. */
3116 static struct mips_got_info *
3117 mips_elf_create_got_info (bfd *abfd)
3119 struct mips_got_info *g;
3121 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3125 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3126 mips_elf_got_entry_eq, NULL);
3127 if (g->got_entries == NULL)
3130 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3131 mips_got_page_ref_eq, NULL);
3132 if (g->got_page_refs == NULL)
3138 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3139 CREATE_P and if ABFD doesn't already have a GOT. */
3141 static struct mips_got_info *
3142 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3144 struct mips_elf_obj_tdata *tdata;
3146 if (!is_mips_elf (abfd))
3149 tdata = mips_elf_tdata (abfd);
3150 if (!tdata->got && create_p)
3151 tdata->got = mips_elf_create_got_info (abfd);
3155 /* Record that ABFD should use output GOT G. */
3158 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3160 struct mips_elf_obj_tdata *tdata;
3162 BFD_ASSERT (is_mips_elf (abfd));
3163 tdata = mips_elf_tdata (abfd);
3166 /* The GOT structure itself and the hash table entries are
3167 allocated to a bfd, but the hash tables aren't. */
3168 htab_delete (tdata->got->got_entries);
3169 htab_delete (tdata->got->got_page_refs);
3170 if (tdata->got->got_page_entries)
3171 htab_delete (tdata->got->got_page_entries);
3176 /* Return the dynamic relocation section. If it doesn't exist, try to
3177 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3178 if creation fails. */
3181 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3187 dname = MIPS_ELF_REL_DYN_NAME (info);
3188 dynobj = elf_hash_table (info)->dynobj;
3189 sreloc = bfd_get_linker_section (dynobj, dname);
3190 if (sreloc == NULL && create_p)
3192 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 | SEC_LINKER_CREATED
3200 || ! bfd_set_section_alignment (dynobj, sreloc,
3201 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3207 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3210 mips_elf_reloc_tls_type (unsigned int r_type)
3212 if (tls_gd_reloc_p (r_type))
3215 if (tls_ldm_reloc_p (r_type))
3218 if (tls_gottprel_reloc_p (r_type))
3221 return GOT_TLS_NONE;
3224 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3227 mips_tls_got_entries (unsigned int type)
3244 /* Count the number of relocations needed for a TLS GOT entry, with
3245 access types from TLS_TYPE, and symbol H (or a local symbol if H
3249 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3250 struct elf_link_hash_entry *h)
3253 bfd_boolean need_relocs = FALSE;
3254 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3256 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3260 if ((bfd_link_pic (info) || indx != 0)
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3272 return indx != 0 ? 2 : 1;
3278 return bfd_link_pic (info) ? 1 : 0;
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3293 if (entry->tls_type)
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3298 ? &entry->d.h->root : NULL);
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3303 g->global_gotno += 1;
3306 /* Output a simple dynamic relocation into SRELOC. */
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3311 unsigned long reloc_index,
3316 Elf_Internal_Rela rel[3];
3318 memset (rel, 0, sizeof (rel));
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3323 if (ABI_64_P (output_bfd))
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3345 struct mips_elf_link_hash_table *htab;
3347 asection *sreloc, *sgot;
3348 bfd_vma got_offset, got_offset2;
3349 bfd_boolean need_relocs = FALSE;
3351 htab = mips_elf_hash_table (info);
3355 sgot = htab->root.sgot;
3360 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3362 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3364 && (!bfd_link_pic (info)
3365 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3366 indx = h->root.dynindx;
3369 if (entry->tls_initialized)
3372 if ((bfd_link_pic (info) || indx != 0)
3374 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3375 || h->root.type != bfd_link_hash_undefweak))
3378 /* MINUS_ONE means the symbol is not defined in this object. It may not
3379 be defined at all; assume that the value doesn't matter in that
3380 case. Otherwise complain if we would use the value. */
3381 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3382 || h->root.root.type == bfd_link_hash_undefweak);
3384 /* Emit necessary relocations. */
3385 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3386 got_offset = entry->gotidx;
3388 switch (entry->tls_type)
3391 /* General Dynamic. */
3392 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3396 mips_elf_output_dynamic_relocation
3397 (abfd, sreloc, sreloc->reloc_count++, indx,
3398 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3399 sgot->output_offset + sgot->output_section->vma + got_offset);
3402 mips_elf_output_dynamic_relocation
3403 (abfd, sreloc, sreloc->reloc_count++, indx,
3404 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3405 sgot->output_offset + sgot->output_section->vma + got_offset2);
3407 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3408 sgot->contents + got_offset2);
3412 MIPS_ELF_PUT_WORD (abfd, 1,
3413 sgot->contents + got_offset);
3414 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3415 sgot->contents + got_offset2);
3420 /* Initial Exec model. */
3424 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3425 sgot->contents + got_offset);
3427 MIPS_ELF_PUT_WORD (abfd, 0,
3428 sgot->contents + got_offset);
3430 mips_elf_output_dynamic_relocation
3431 (abfd, sreloc, sreloc->reloc_count++, indx,
3432 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3433 sgot->output_offset + sgot->output_section->vma + got_offset);
3436 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3437 sgot->contents + got_offset);
3441 /* The initial offset is zero, and the LD offsets will include the
3442 bias by DTP_OFFSET. */
3443 MIPS_ELF_PUT_WORD (abfd, 0,
3444 sgot->contents + got_offset
3445 + MIPS_ELF_GOT_SIZE (abfd));
3447 if (!bfd_link_pic (info))
3448 MIPS_ELF_PUT_WORD (abfd, 1,
3449 sgot->contents + got_offset);
3451 mips_elf_output_dynamic_relocation
3452 (abfd, sreloc, sreloc->reloc_count++, indx,
3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3454 sgot->output_offset + sgot->output_section->vma + got_offset);
3461 entry->tls_initialized = TRUE;
3464 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3465 for global symbol H. .got.plt comes before the GOT, so the offset
3466 will be negative. */
3469 mips_elf_gotplt_index (struct bfd_link_info *info,
3470 struct elf_link_hash_entry *h)
3472 bfd_vma got_address, got_value;
3473 struct mips_elf_link_hash_table *htab;
3475 htab = mips_elf_hash_table (info);
3476 BFD_ASSERT (htab != NULL);
3478 BFD_ASSERT (h->plt.plist != NULL);
3479 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3481 /* Calculate the address of the associated .got.plt entry. */
3482 got_address = (htab->root.sgotplt->output_section->vma
3483 + htab->root.sgotplt->output_offset
3484 + (h->plt.plist->gotplt_index
3485 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3489 + htab->root.hgot->root.u.def.section->output_offset
3490 + htab->root.hgot->root.u.def.value);
3492 return got_address - got_value;
3495 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3496 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3497 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3498 offset can be found. */
3501 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3502 bfd_vma value, unsigned long r_symndx,
3503 struct mips_elf_link_hash_entry *h, int r_type)
3505 struct mips_elf_link_hash_table *htab;
3506 struct mips_got_entry *entry;
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3511 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3512 r_symndx, h, r_type);
3516 if (entry->tls_type)
3517 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3518 return entry->gotidx;
3521 /* Return the GOT index of global symbol H in the primary GOT. */
3524 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3525 struct elf_link_hash_entry *h)
3527 struct mips_elf_link_hash_table *htab;
3528 long global_got_dynindx;
3529 struct mips_got_info *g;
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3535 global_got_dynindx = 0;
3536 if (htab->global_gotsym != NULL)
3537 global_got_dynindx = htab->global_gotsym->dynindx;
3539 /* Once we determine the global GOT entry with the lowest dynamic
3540 symbol table index, we must put all dynamic symbols with greater
3541 indices into the primary GOT. That makes it easy to calculate the
3543 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3544 g = mips_elf_bfd_got (obfd, FALSE);
3545 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3546 * MIPS_ELF_GOT_SIZE (obfd));
3547 BFD_ASSERT (got_index < htab->root.sgot->size);
3552 /* Return the GOT index for the global symbol indicated by H, which is
3553 referenced by a relocation of type R_TYPE in IBFD. */
3556 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3557 struct elf_link_hash_entry *h, int r_type)
3559 struct mips_elf_link_hash_table *htab;
3560 struct mips_got_info *g;
3561 struct mips_got_entry lookup, *entry;
3564 htab = mips_elf_hash_table (info);
3565 BFD_ASSERT (htab != NULL);
3567 g = mips_elf_bfd_got (ibfd, FALSE);
3570 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3571 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3572 return mips_elf_primary_global_got_index (obfd, info, h);
3576 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3577 entry = htab_find (g->got_entries, &lookup);
3580 gotidx = entry->gotidx;
3581 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3583 if (lookup.tls_type)
3585 bfd_vma value = MINUS_ONE;
3587 if ((h->root.type == bfd_link_hash_defined
3588 || h->root.type == bfd_link_hash_defweak)
3589 && h->root.u.def.section->output_section)
3590 value = (h->root.u.def.value
3591 + h->root.u.def.section->output_offset
3592 + h->root.u.def.section->output_section->vma);
3594 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 /* Find a GOT page entry that points to within 32KB of VALUE. These
3600 entries are supposed to be placed at small offsets in the GOT, i.e.,
3601 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3602 entry could be created. If OFFSETP is nonnull, use it to return the
3603 offset of the GOT entry from VALUE. */
3606 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3607 bfd_vma value, bfd_vma *offsetp)
3609 bfd_vma page, got_index;
3610 struct mips_got_entry *entry;
3612 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3614 NULL, R_MIPS_GOT_PAGE);
3619 got_index = entry->gotidx;
3622 *offsetp = value - entry->d.address;
3627 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3628 EXTERNAL is true if the relocation was originally against a global
3629 symbol that binds locally. */
3632 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3633 bfd_vma value, bfd_boolean external)
3635 struct mips_got_entry *entry;
3637 /* GOT16 relocations against local symbols are followed by a LO16
3638 relocation; those against global symbols are not. Thus if the
3639 symbol was originally local, the GOT16 relocation should load the
3640 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3642 value = mips_elf_high (value) << 16;
3644 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3645 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3646 same in all cases. */
3647 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3648 NULL, R_MIPS_GOT16);
3650 return entry->gotidx;
3655 /* Returns the offset for the entry at the INDEXth position
3659 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3660 bfd *input_bfd, bfd_vma got_index)
3662 struct mips_elf_link_hash_table *htab;
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3669 sgot = htab->root.sgot;
3670 gp = _bfd_get_gp_value (output_bfd)
3671 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3673 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3676 /* Create and return a local GOT entry for VALUE, which was calculated
3677 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3678 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3681 static struct mips_got_entry *
3682 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3683 bfd *ibfd, bfd_vma value,
3684 unsigned long r_symndx,
3685 struct mips_elf_link_hash_entry *h,
3688 struct mips_got_entry lookup, *entry;
3690 struct mips_got_info *g;
3691 struct mips_elf_link_hash_table *htab;
3694 htab = mips_elf_hash_table (info);
3695 BFD_ASSERT (htab != NULL);
3697 g = mips_elf_bfd_got (ibfd, FALSE);
3700 g = mips_elf_bfd_got (abfd, FALSE);
3701 BFD_ASSERT (g != NULL);
3704 /* This function shouldn't be called for symbols that live in the global
3706 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3708 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3709 if (lookup.tls_type)
3712 if (tls_ldm_reloc_p (r_type))
3715 lookup.d.addend = 0;
3719 lookup.symndx = r_symndx;
3720 lookup.d.addend = 0;
3728 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3731 gotidx = entry->gotidx;
3732 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3739 lookup.d.address = value;
3740 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3744 entry = (struct mips_got_entry *) *loc;
3748 if (g->assigned_low_gotno > g->assigned_high_gotno)
3750 /* We didn't allocate enough space in the GOT. */
3752 (_("not enough GOT space for local GOT entries"));
3753 bfd_set_error (bfd_error_bad_value);
3757 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3761 if (got16_reloc_p (r_type)
3762 || call16_reloc_p (r_type)
3763 || got_page_reloc_p (r_type)
3764 || got_disp_reloc_p (r_type))
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3774 /* These GOT entries need a dynamic relocation on VxWorks. */
3775 if (htab->is_vxworks)
3777 Elf_Internal_Rela outrel;
3780 bfd_vma got_address;
3782 s = mips_elf_rel_dyn_section (info, FALSE);
3783 got_address = (htab->root.sgot->output_section->vma
3784 + htab->root.sgot->output_offset
3787 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3788 outrel.r_offset = got_address;
3789 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3790 outrel.r_addend = value;
3791 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3797 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3798 The number might be exact or a worst-case estimate, depending on how
3799 much information is available to elf_backend_omit_section_dynsym at
3800 the current linking stage. */
3802 static bfd_size_type
3803 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3805 bfd_size_type count;
3808 if (bfd_link_pic (info)
3809 || elf_hash_table (info)->is_relocatable_executable)
3812 const struct elf_backend_data *bed;
3814 bed = get_elf_backend_data (output_bfd);
3815 for (p = output_bfd->sections; p ; p = p->next)
3816 if ((p->flags & SEC_EXCLUDE) == 0
3817 && (p->flags & SEC_ALLOC) != 0
3818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3824 /* Sort the dynamic symbol table so that symbols that need GOT entries
3825 appear towards the end. */
3828 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3830 struct mips_elf_link_hash_table *htab;
3831 struct mips_elf_hash_sort_data hsd;
3832 struct mips_got_info *g;
3834 if (elf_hash_table (info)->dynsymcount == 0)
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3845 hsd.max_unref_got_dynindx
3846 = hsd.min_got_dynindx
3847 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3848 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3850 elf_hash_table (info)),
3851 mips_elf_sort_hash_table_f,
3854 /* There should have been enough room in the symbol table to
3855 accommodate both the GOT and non-GOT symbols. */
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3858 == elf_hash_table (info)->dynsymcount);
3859 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3860 == g->global_gotno);
3862 /* Now we know which dynamic symbol has the lowest dynamic symbol
3863 table index in the GOT. */
3864 htab->global_gotsym = hsd.low;
3869 /* If H needs a GOT entry, assign it the highest available dynamic
3870 index. Otherwise, assign it the lowest available dynamic
3874 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3876 struct mips_elf_hash_sort_data *hsd = data;
3878 /* Symbols without dynamic symbol table entries aren't interesting
3880 if (h->root.dynindx == -1)
3883 switch (h->global_got_area)
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
3894 case GGA_RELOC_ONLY:
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3932 lookup->tls_initialized = FALSE;
3933 lookup->gotidx = -1;
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
3954 using the GOT entry for calls. */
3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
3959 bfd_boolean for_call, int r_type)
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_elf_link_hash_entry *hmips;
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
3966 htab = mips_elf_hash_table (info);
3967 BFD_ASSERT (htab != NULL);
3969 hmips = (struct mips_elf_link_hash_entry *) h;
3971 hmips->got_only_for_calls = FALSE;
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3975 if (h->dynindx == -1)
3977 switch (ELF_ST_VISIBILITY (h->other))
3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3988 tls_type = mips_elf_reloc_tls_type (r_type);
3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3990 hmips->global_got_area = GGA_NORMAL;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4004 struct bfd_link_info *info, int r_type)
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008 struct mips_got_entry entry;
4010 htab = mips_elf_hash_table (info);
4011 BFD_ASSERT (htab != NULL);
4014 BFD_ASSERT (g != NULL);
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4020 return mips_elf_record_got_entry (info, abfd, &entry);
4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
4032 struct mips_elf_link_hash_table *htab;
4033 struct mips_got_info *g1, *g2;
4034 struct mips_got_page_ref lookup, *entry;
4035 void **loc, **bfd_loc;
4037 htab = mips_elf_hash_table (info);
4038 BFD_ASSERT (htab != NULL);
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4058 entry = (struct mips_got_page_ref *) *loc;
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4091 struct mips_elf_link_hash_table *htab;
4093 htab = mips_elf_hash_table (info);
4094 BFD_ASSERT (htab != NULL);
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
4119 mips_elf_check_recreate_got (void **entryp, void *data)
4121 struct mips_got_entry *entry;
4122 struct mips_elf_traverse_got_arg *arg;
4124 entry = (struct mips_got_entry *) *entryp;
4125 arg = (struct mips_elf_traverse_got_arg *) data;
4126 if (entry->abfd != NULL && entry->symndx == -1)
4128 struct mips_elf_link_hash_entry *h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
4142 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
4148 mips_elf_recreate_got (void **entryp, void *data)
4150 struct mips_got_entry new_entry, *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 struct mips_elf_link_hash_entry *h;
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4183 if (entry == &new_entry)
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 /* Return the maximum number of GOT page entries required for RANGE. */
4202 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4207 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4210 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4211 asection *sec, bfd_signed_vma addend)
4213 struct mips_got_info *g = arg->g;
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4248 if (!range || addend < range->min_addend - 0xffff)
4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4279 range->max_addend = addend;
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4293 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4299 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4311 if (ref->symndx < 0)
4313 struct mips_elf_link_hash_entry *h;
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4320 /* Ignore undefined symbols; we'll issue an error later if
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4332 Elf_Internal_Sym *isym;
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4368 addend = isym->st_value + ref->addend;
4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4378 /* If any entries in G->got_entries are for indirect or warning symbols,
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
4384 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4409 htab_delete (oldg.got_entries);
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4424 /* Return true if a GOT entry for H should live in the local rather than
4428 mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
4448 if (bfd_link_executable (info) && h->has_static_relocs)
4454 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
4461 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 struct bfd_link_info *info;
4464 struct mips_elf_link_hash_table *htab;
4465 struct mips_got_info *g;
4467 info = (struct bfd_link_info *) data;
4468 htab = mips_elf_hash_table (info);
4470 if (h->global_got_area != GGA_NONE)
4472 /* Make a final decision about whether the symbol belongs in the
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
4486 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 g->reloc_only_gotno++;
4495 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4499 mips_elf_add_got_entry (void **entryp, void *data)
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
4521 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4525 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4542 arg->g->page_gotno += entry->num_pages;
4547 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4554 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4558 struct mips_elf_traverse_got_arg tga;
4559 unsigned int estimate;
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4566 /* And conservatively estimate how many local and TLS entries
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
4573 conservatively as well. */
4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4575 estimate += arg->global_count;
4577 estimate += from->global_gotno + to->global_gotno;
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4583 /* Transfer the bfd's got information from FROM to TO. */
4584 tga.info = arg->info;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4594 mips_elf_replace_bfd_got (abfd, to);
4598 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4606 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
4609 unsigned int estimate;
4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627 if (estimate <= arg->max_count)
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4637 /* Try merging with the primary GOT. */
4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4643 /* If we can merge with the last-created got, do it. */
4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
4654 g->next = arg->current;
4660 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4665 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 struct mips_got_entry *entry;
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4672 struct mips_got_entry *new_entry;
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4682 entry->gotidx = gotidx;
4686 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
4691 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
4696 /* We're only interested in TLS symbols. */
4697 entry = (struct mips_got_entry *) *entryp;
4698 if (entry->tls_type == GOT_TLS_NONE)
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4708 /* Account for the entries we've just allocated. */
4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4713 /* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
4718 mips_elf_set_global_got_area (void **entryp, void *data)
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4732 /* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
4735 the size of one GOT entry. Set DATA->g to null on failure. */
4738 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4754 arg->g->assigned_low_gotno += 1;
4756 if (bfd_link_pic (arg->info)
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
4766 /* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4771 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4780 BFD_ASSERT (htab != NULL);
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
4784 && entry->d.h->needs_lazy_stub)
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
4793 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4796 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4801 g = mips_elf_bfd_got (ibfd, FALSE);
4805 BFD_ASSERT (g->next);
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
4813 /* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4817 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4818 asection *got, bfd_size_type pages)
4820 struct mips_elf_link_hash_table *htab;
4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4822 struct mips_elf_traverse_got_arg tga;
4823 struct mips_got_info *g, *gg;
4824 unsigned int assign, needed_relocs;
4827 dynobj = elf_hash_table (info)->dynobj;
4828 htab = mips_elf_hash_table (info);
4829 BFD_ASSERT (htab != NULL);
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4838 / MIPS_ELF_GOT_SIZE (abfd))
4839 - htab->reserved_gotno);
4840 got_per_bfd_arg.max_pages = pages;
4841 /* The number of globals that will be included in the primary GOT.
4842 See the calls to mips_elf_set_global_got_area below for more
4844 got_per_bfd_arg.global_count = g->global_gotno;
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4856 /* If we do not find any suitable primary GOT, create an empty one. */
4857 if (got_per_bfd_arg.primary == NULL)
4858 g->next = mips_elf_create_got_info (abfd);
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4863 /* GG is now the master GOT, and G is the primary GOT. */
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4872 mips_elf_replace_bfd_got (abfd, g);
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4878 g->global_gotno = gg->global_gotno;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886 /* Now go through the GOTs assigning them offset ranges.
4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
4907 struct mips_got_info *gn;
4909 assign += htab->reserved_gotno;
4910 g->assigned_low_gotno = assign;
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4913 g->assigned_high_gotno = g->local_gotno - 1;
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4948 unsigned int save_assign;
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
4963 if (bfd_link_pic (info))
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
4969 + htab->reserved_gotno);
4971 needed_relocs += g->relocs;
4973 needed_relocs += g->relocs;
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 /* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986 static const Elf_Internal_Rela *
4987 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993 while (relocation < relend)
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5002 /* We didn't find it. */
5006 /* Return whether an input relocation is against a local symbol. */
5009 mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
5011 asection **local_sections)
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021 if (r_symndx < extsymoff)
5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5029 /* Sign-extend VALUE, which has the indicated number of BITS. */
5032 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5041 /* Return non-zero if the indicated VALUE has overflowed the maximum
5042 range expressible by a signed number with the indicated number of
5046 mips_elf_overflow_p (bfd_vma value, int bits)
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
5061 /* Calculate the %high function. */
5064 mips_elf_high (bfd_vma value)
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5069 /* Calculate the %higher function. */
5072 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 /* Calculate the %highest function. */
5085 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 /* Create the .compact_rel section. */
5098 mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5102 register asection *s;
5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5115 s->size = sizeof (Elf32_External_compact_rel);
5121 /* Create the .got section to hold the global offset table. */
5124 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
5129 struct bfd_link_hash_entry *bh;
5130 struct mips_elf_link_hash_table *htab;
5132 htab = mips_elf_hash_table (info);
5133 BFD_ASSERT (htab != NULL);
5135 /* This function may be called more than once. */
5136 if (htab->root.sgot)
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 || ! bfd_set_section_alignment (abfd, s, 4))
5148 htab->root.sgot = s;
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5159 h = (struct elf_link_hash_entry *) bh;
5162 h->type = STT_OBJECT;
5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5164 elf_hash_table (info)->hgot = h;
5166 if (bfd_link_pic (info)
5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5170 htab->got_info = mips_elf_create_got_info (abfd);
5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174 /* We also need a .got.plt section when generating PLTs. */
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5179 | SEC_LINKER_CREATED);
5182 htab->root.sgotplt = s;
5187 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5192 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 return (mips_elf_hash_table (info)->is_vxworks
5195 && bfd_link_pic (info)
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5200 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5206 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
5231 return !target_is_16_bit_code_p;
5238 /* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242 The result of the relocation calculation is stored in VALUEP.
5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5251 static bfd_reloc_status_type
5252 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
5260 bfd_boolean *cross_mode_jump_p,
5261 bfd_boolean save_addend)
5263 /* The eventual value we will return. */
5265 /* The address of the symbol against which the relocation is
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
5271 /* The place (section offset or address) of the storage unit being
5274 /* The value of GP used to create the relocatable object. */
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
5284 /* TRUE if the symbol referred to by this relocation is a local
5286 bfd_boolean local_p, was_local_p;
5287 /* TRUE if the symbol referred to by this relocation is a section
5289 bfd_boolean section_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
5295 Elf_Internal_Shdr *symtab_hdr;
5297 unsigned long r_symndx;
5299 /* TRUE if overflow occurred during the calculation of the
5300 relocation value. */
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
5304 bfd_boolean target_is_micromips_code_p = FALSE;
5305 struct mips_elf_link_hash_table *htab;
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
5310 BFD_ASSERT (htab != NULL);
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5319 /* Assume that there will be no overflow. */
5320 overflowed_p = FALSE;
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5327 was_local_p = local_p;
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5337 /* Figure out the value of the symbol. */
5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5341 Elf_Internal_Sym *sym;
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5348 symbol = sec->output_section->vma + sec->output_offset;
5349 if (!section_p || (sec->flags & SEC_MERGE))
5350 symbol += sym->st_value;
5351 if ((sec->flags & SEC_MERGE) && section_p)
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5355 addend += sec->output_section->vma + sec->output_offset;
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5366 if (*namep == NULL || **namep == '\0')
5367 *namep = bfd_section_name (input_bfd, sec);
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5383 /* Otherwise just use the regular symbol annotation available. */
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
5407 if (strcmp (*namep, "_gp_disp") == 0
5408 && ! NEWABI_P (input_bfd))
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5413 return bfd_reloc_notsupported;
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5437 symbol = h->root.root.u.def.value;
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5457 BFD_ASSERT (! bfd_link_pic (info));
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5474 (*info->callbacks->undefined_symbol)
5475 (info, h->root.root.root.string, input_bfd,
5476 input_section, relocation->r_offset,
5477 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5478 || ELF_ST_VISIBILITY (h->root.other));
5479 return bfd_reloc_undefined;
5482 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5483 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5486 /* If this is a reference to a 16-bit function with a stub, we need
5487 to redirect the relocation to the stub unless:
5489 (a) the relocation is for a MIPS16 JAL;
5491 (b) the relocation is for a MIPS16 PIC call, and there are no
5492 non-MIPS16 uses of the GOT slot; or
5494 (c) the section allows direct references to MIPS16 functions. */
5495 if (r_type != R_MIPS16_26
5496 && !bfd_link_relocatable (info)
5498 && h->fn_stub != NULL
5499 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5501 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5502 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5503 && !section_allows_mips16_refs_p (input_section))
5505 /* This is a 32- or 64-bit call to a 16-bit function. We should
5506 have already noticed that we were going to need the
5510 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5515 BFD_ASSERT (h->need_fn_stub);
5518 /* If a LA25 header for the stub itself exists, point to the
5519 prepended LUI/ADDIU sequence. */
5520 sec = h->la25_stub->stub_section;
5521 value = h->la25_stub->offset;
5530 symbol = sec->output_section->vma + sec->output_offset + value;
5531 /* The target is 16-bit, but the stub isn't. */
5532 target_is_16_bit_code_p = FALSE;
5534 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5535 to a standard MIPS function, we need to redirect the call to the stub.
5536 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5537 indirect calls should use an indirect stub instead. */
5538 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5539 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5541 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5542 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5543 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5546 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5549 /* If both call_stub and call_fp_stub are defined, we can figure
5550 out which one to use by checking which one appears in the input
5552 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5557 for (o = input_bfd->sections; o != NULL; o = o->next)
5559 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5561 sec = h->call_fp_stub;
5568 else if (h->call_stub != NULL)
5571 sec = h->call_fp_stub;
5574 BFD_ASSERT (sec->size > 0);
5575 symbol = sec->output_section->vma + sec->output_offset;
5577 /* If this is a direct call to a PIC function, redirect to the
5579 else if (h != NULL && h->la25_stub
5580 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5581 target_is_16_bit_code_p))
5583 symbol = (h->la25_stub->stub_section->output_section->vma
5584 + h->la25_stub->stub_section->output_offset
5585 + h->la25_stub->offset);
5586 if (ELF_ST_IS_MICROMIPS (h->root.other))
5589 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5590 entry is used if a standard PLT entry has also been made. In this
5591 case the symbol will have been set by mips_elf_set_plt_sym_value
5592 to point to the standard PLT entry, so redirect to the compressed
5594 else if ((mips16_branch_reloc_p (r_type)
5595 || micromips_branch_reloc_p (r_type))
5596 && !bfd_link_relocatable (info)
5599 && h->root.plt.plist->comp_offset != MINUS_ONE
5600 && h->root.plt.plist->mips_offset != MINUS_ONE)
5602 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5604 sec = htab->root.splt;
5605 symbol = (sec->output_section->vma
5606 + sec->output_offset
5607 + htab->plt_header_size
5608 + htab->plt_mips_offset
5609 + h->root.plt.plist->comp_offset
5612 target_is_16_bit_code_p = !micromips_p;
5613 target_is_micromips_code_p = micromips_p;
5616 /* Make sure MIPS16 and microMIPS are not used together. */
5617 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5618 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5621 (_("MIPS16 and microMIPS functions cannot call each other"));
5622 return bfd_reloc_notsupported;
5625 /* Calls from 16-bit code to 32-bit code and vice versa require the
5626 mode change. However, we can ignore calls to undefined weak symbols,
5627 which should never be executed at runtime. This exception is important
5628 because the assembly writer may have "known" that any definition of the
5629 symbol would be 16-bit code, and that direct jumps were therefore
5631 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5632 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5633 && ((mips16_branch_reloc_p (r_type)
5634 && !target_is_16_bit_code_p)
5635 || (micromips_branch_reloc_p (r_type)
5636 && !target_is_micromips_code_p)
5637 || ((branch_reloc_p (r_type)
5638 || r_type == R_MIPS_JALR)
5639 && (target_is_16_bit_code_p
5640 || target_is_micromips_code_p))));
5642 local_p = (h == NULL || mips_use_local_got_p (info, h));
5644 gp0 = _bfd_get_gp_value (input_bfd);
5645 gp = _bfd_get_gp_value (abfd);
5647 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5652 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5653 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5654 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5655 if (got_page_reloc_p (r_type) && !local_p)
5657 r_type = (micromips_reloc_p (r_type)
5658 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5662 /* If we haven't already determined the GOT offset, and we're going
5663 to need it, get it now. */
5666 case R_MIPS16_CALL16:
5667 case R_MIPS16_GOT16:
5670 case R_MIPS_GOT_DISP:
5671 case R_MIPS_GOT_HI16:
5672 case R_MIPS_CALL_HI16:
5673 case R_MIPS_GOT_LO16:
5674 case R_MIPS_CALL_LO16:
5675 case R_MICROMIPS_CALL16:
5676 case R_MICROMIPS_GOT16:
5677 case R_MICROMIPS_GOT_DISP:
5678 case R_MICROMIPS_GOT_HI16:
5679 case R_MICROMIPS_CALL_HI16:
5680 case R_MICROMIPS_GOT_LO16:
5681 case R_MICROMIPS_CALL_LO16:
5683 case R_MIPS_TLS_GOTTPREL:
5684 case R_MIPS_TLS_LDM:
5685 case R_MIPS16_TLS_GD:
5686 case R_MIPS16_TLS_GOTTPREL:
5687 case R_MIPS16_TLS_LDM:
5688 case R_MICROMIPS_TLS_GD:
5689 case R_MICROMIPS_TLS_GOTTPREL:
5690 case R_MICROMIPS_TLS_LDM:
5691 /* Find the index into the GOT where this value is located. */
5692 if (tls_ldm_reloc_p (r_type))
5694 g = mips_elf_local_got_index (abfd, input_bfd, info,
5695 0, 0, NULL, r_type);
5697 return bfd_reloc_outofrange;
5701 /* On VxWorks, CALL relocations should refer to the .got.plt
5702 entry, which is initialized to point at the PLT stub. */
5703 if (htab->is_vxworks
5704 && (call_hi16_reloc_p (r_type)
5705 || call_lo16_reloc_p (r_type)
5706 || call16_reloc_p (r_type)))
5708 BFD_ASSERT (addend == 0);
5709 BFD_ASSERT (h->root.needs_plt);
5710 g = mips_elf_gotplt_index (info, &h->root);
5714 BFD_ASSERT (addend == 0);
5715 g = mips_elf_global_got_index (abfd, info, input_bfd,
5717 if (!TLS_RELOC_P (r_type)
5718 && !elf_hash_table (info)->dynamic_sections_created)
5719 /* This is a static link. We must initialize the GOT entry. */
5720 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5723 else if (!htab->is_vxworks
5724 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5725 /* The calculation below does not involve "g". */
5729 g = mips_elf_local_got_index (abfd, input_bfd, info,
5730 symbol + addend, r_symndx, h, r_type);
5732 return bfd_reloc_outofrange;
5735 /* Convert GOT indices to actual offsets. */
5736 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5740 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5741 symbols are resolved by the loader. Add them to .rela.dyn. */
5742 if (h != NULL && is_gott_symbol (info, &h->root))
5744 Elf_Internal_Rela outrel;
5748 s = mips_elf_rel_dyn_section (info, FALSE);
5749 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5751 outrel.r_offset = (input_section->output_section->vma
5752 + input_section->output_offset
5753 + relocation->r_offset);
5754 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5755 outrel.r_addend = addend;
5756 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5758 /* If we've written this relocation for a readonly section,
5759 we need to set DF_TEXTREL again, so that we do not delete the
5761 if (MIPS_ELF_READONLY_SECTION (input_section))
5762 info->flags |= DF_TEXTREL;
5765 return bfd_reloc_ok;
5768 /* Figure out what kind of relocation is being performed. */
5772 return bfd_reloc_continue;
5775 if (howto->partial_inplace)
5776 addend = _bfd_mips_elf_sign_extend (addend, 16);
5777 value = symbol + addend;
5778 overflowed_p = mips_elf_overflow_p (value, 16);
5784 if ((bfd_link_pic (info)
5785 || (htab->root.dynamic_sections_created
5787 && h->root.def_dynamic
5788 && !h->root.def_regular
5789 && !h->has_static_relocs))
5790 && r_symndx != STN_UNDEF
5792 || h->root.root.type != bfd_link_hash_undefweak
5793 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5794 && (input_section->flags & SEC_ALLOC) != 0)
5796 /* If we're creating a shared library, then we can't know
5797 where the symbol will end up. So, we create a relocation
5798 record in the output, and leave the job up to the dynamic
5799 linker. We must do the same for executable references to
5800 shared library symbols, unless we've decided to use copy
5801 relocs or PLTs instead. */
5803 if (!mips_elf_create_dynamic_relocation (abfd,
5811 return bfd_reloc_undefined;
5815 if (r_type != R_MIPS_REL32)
5816 value = symbol + addend;
5820 value &= howto->dst_mask;
5824 value = symbol + addend - p;
5825 value &= howto->dst_mask;
5829 /* The calculation for R_MIPS16_26 is just the same as for an
5830 R_MIPS_26. It's only the storage of the relocated field into
5831 the output file that's different. That's handled in
5832 mips_elf_perform_relocation. So, we just fall through to the
5833 R_MIPS_26 case here. */
5835 case R_MICROMIPS_26_S1:
5839 /* Shift is 2, unusually, for microMIPS JALX. */
5840 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5842 if (howto->partial_inplace && !section_p)
5843 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5848 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5849 be the correct ISA mode selector except for weak undefined
5851 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 && (*cross_mode_jump_p
5853 ? (value & 3) != (r_type == R_MIPS_26)
5854 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5855 return bfd_reloc_outofrange;
5858 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5859 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5860 value &= howto->dst_mask;
5864 case R_MIPS_TLS_DTPREL_HI16:
5865 case R_MIPS16_TLS_DTPREL_HI16:
5866 case R_MICROMIPS_TLS_DTPREL_HI16:
5867 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5871 case R_MIPS_TLS_DTPREL_LO16:
5872 case R_MIPS_TLS_DTPREL32:
5873 case R_MIPS_TLS_DTPREL64:
5874 case R_MIPS16_TLS_DTPREL_LO16:
5875 case R_MICROMIPS_TLS_DTPREL_LO16:
5876 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5879 case R_MIPS_TLS_TPREL_HI16:
5880 case R_MIPS16_TLS_TPREL_HI16:
5881 case R_MICROMIPS_TLS_TPREL_HI16:
5882 value = (mips_elf_high (addend + symbol - tprel_base (info))
5886 case R_MIPS_TLS_TPREL_LO16:
5887 case R_MIPS_TLS_TPREL32:
5888 case R_MIPS_TLS_TPREL64:
5889 case R_MIPS16_TLS_TPREL_LO16:
5890 case R_MICROMIPS_TLS_TPREL_LO16:
5891 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5896 case R_MICROMIPS_HI16:
5899 value = mips_elf_high (addend + symbol);
5900 value &= howto->dst_mask;
5904 /* For MIPS16 ABI code we generate this sequence
5905 0: li $v0,%hi(_gp_disp)
5906 4: addiupc $v1,%lo(_gp_disp)
5910 So the offsets of hi and lo relocs are the same, but the
5911 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5912 ADDIUPC clears the low two bits of the instruction address,
5913 so the base is ($t9 + 4) & ~3. */
5914 if (r_type == R_MIPS16_HI16)
5915 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5916 /* The microMIPS .cpload sequence uses the same assembly
5917 instructions as the traditional psABI version, but the
5918 incoming $t9 has the low bit set. */
5919 else if (r_type == R_MICROMIPS_HI16)
5920 value = mips_elf_high (addend + gp - p - 1);
5922 value = mips_elf_high (addend + gp - p);
5928 case R_MICROMIPS_LO16:
5929 case R_MICROMIPS_HI0_LO16:
5931 value = (symbol + addend) & howto->dst_mask;
5934 /* See the comment for R_MIPS16_HI16 above for the reason
5935 for this conditional. */
5936 if (r_type == R_MIPS16_LO16)
5937 value = addend + gp - (p & ~(bfd_vma) 0x3);
5938 else if (r_type == R_MICROMIPS_LO16
5939 || r_type == R_MICROMIPS_HI0_LO16)
5940 value = addend + gp - p + 3;
5942 value = addend + gp - p + 4;
5943 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5944 for overflow. But, on, say, IRIX5, relocations against
5945 _gp_disp are normally generated from the .cpload
5946 pseudo-op. It generates code that normally looks like
5949 lui $gp,%hi(_gp_disp)
5950 addiu $gp,$gp,%lo(_gp_disp)
5953 Here $t9 holds the address of the function being called,
5954 as required by the MIPS ELF ABI. The R_MIPS_LO16
5955 relocation can easily overflow in this situation, but the
5956 R_MIPS_HI16 relocation will handle the overflow.
5957 Therefore, we consider this a bug in the MIPS ABI, and do
5958 not check for overflow here. */
5962 case R_MIPS_LITERAL:
5963 case R_MICROMIPS_LITERAL:
5964 /* Because we don't merge literal sections, we can handle this
5965 just like R_MIPS_GPREL16. In the long run, we should merge
5966 shared literals, and then we will need to additional work
5971 case R_MIPS16_GPREL:
5972 /* The R_MIPS16_GPREL performs the same calculation as
5973 R_MIPS_GPREL16, but stores the relocated bits in a different
5974 order. We don't need to do anything special here; the
5975 differences are handled in mips_elf_perform_relocation. */
5976 case R_MIPS_GPREL16:
5977 case R_MICROMIPS_GPREL7_S2:
5978 case R_MICROMIPS_GPREL16:
5979 /* Only sign-extend the addend if it was extracted from the
5980 instruction. If the addend was separate, leave it alone,
5981 otherwise we may lose significant bits. */
5982 if (howto->partial_inplace)
5983 addend = _bfd_mips_elf_sign_extend (addend, 16);
5984 value = symbol + addend - gp;
5985 /* If the symbol was local, any earlier relocatable links will
5986 have adjusted its addend with the gp offset, so compensate
5987 for that now. Don't do it for symbols forced local in this
5988 link, though, since they won't have had the gp offset applied
5992 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5993 overflowed_p = mips_elf_overflow_p (value, 16);
5996 case R_MIPS16_GOT16:
5997 case R_MIPS16_CALL16:
6000 case R_MICROMIPS_GOT16:
6001 case R_MICROMIPS_CALL16:
6002 /* VxWorks does not have separate local and global semantics for
6003 R_MIPS*_GOT16; every relocation evaluates to "G". */
6004 if (!htab->is_vxworks && local_p)
6006 value = mips_elf_got16_entry (abfd, input_bfd, info,
6007 symbol + addend, !was_local_p);
6008 if (value == MINUS_ONE)
6009 return bfd_reloc_outofrange;
6011 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6012 overflowed_p = mips_elf_overflow_p (value, 16);
6019 case R_MIPS_TLS_GOTTPREL:
6020 case R_MIPS_TLS_LDM:
6021 case R_MIPS_GOT_DISP:
6022 case R_MIPS16_TLS_GD:
6023 case R_MIPS16_TLS_GOTTPREL:
6024 case R_MIPS16_TLS_LDM:
6025 case R_MICROMIPS_TLS_GD:
6026 case R_MICROMIPS_TLS_GOTTPREL:
6027 case R_MICROMIPS_TLS_LDM:
6028 case R_MICROMIPS_GOT_DISP:
6030 overflowed_p = mips_elf_overflow_p (value, 16);
6033 case R_MIPS_GPREL32:
6034 value = (addend + symbol + gp0 - gp);
6036 value &= howto->dst_mask;
6040 case R_MIPS_GNU_REL16_S2:
6041 if (howto->partial_inplace)
6042 addend = _bfd_mips_elf_sign_extend (addend, 18);
6044 /* No need to exclude weak undefined symbols here as they resolve
6045 to 0 and never set `*cross_mode_jump_p', so this alignment check
6046 will never trigger for them. */
6047 if (*cross_mode_jump_p
6048 ? ((symbol + addend) & 3) != 1
6049 : ((symbol + addend) & 3) != 0)
6050 return bfd_reloc_outofrange;
6052 value = symbol + addend - p;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = mips_elf_overflow_p (value, 18);
6055 value >>= howto->rightshift;
6056 value &= howto->dst_mask;
6059 case R_MIPS16_PC16_S1:
6060 if (howto->partial_inplace)
6061 addend = _bfd_mips_elf_sign_extend (addend, 17);
6063 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6064 && (*cross_mode_jump_p
6065 ? ((symbol + addend) & 3) != 0
6066 : ((symbol + addend) & 1) == 0))
6067 return bfd_reloc_outofrange;
6069 value = symbol + addend - p;
6070 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6071 overflowed_p = mips_elf_overflow_p (value, 17);
6072 value >>= howto->rightshift;
6073 value &= howto->dst_mask;
6076 case R_MIPS_PC21_S2:
6077 if (howto->partial_inplace)
6078 addend = _bfd_mips_elf_sign_extend (addend, 23);
6080 if ((symbol + addend) & 3)
6081 return bfd_reloc_outofrange;
6083 value = symbol + addend - p;
6084 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6085 overflowed_p = mips_elf_overflow_p (value, 23);
6086 value >>= howto->rightshift;
6087 value &= howto->dst_mask;
6090 case R_MIPS_PC26_S2:
6091 if (howto->partial_inplace)
6092 addend = _bfd_mips_elf_sign_extend (addend, 28);
6094 if ((symbol + addend) & 3)
6095 return bfd_reloc_outofrange;
6097 value = symbol + addend - p;
6098 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6099 overflowed_p = mips_elf_overflow_p (value, 28);
6100 value >>= howto->rightshift;
6101 value &= howto->dst_mask;
6104 case R_MIPS_PC18_S3:
6105 if (howto->partial_inplace)
6106 addend = _bfd_mips_elf_sign_extend (addend, 21);
6108 if ((symbol + addend) & 7)
6109 return bfd_reloc_outofrange;
6111 value = symbol + addend - ((p | 7) ^ 7);
6112 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6113 overflowed_p = mips_elf_overflow_p (value, 21);
6114 value >>= howto->rightshift;
6115 value &= howto->dst_mask;
6118 case R_MIPS_PC19_S2:
6119 if (howto->partial_inplace)
6120 addend = _bfd_mips_elf_sign_extend (addend, 21);
6122 if ((symbol + addend) & 3)
6123 return bfd_reloc_outofrange;
6125 value = symbol + addend - p;
6126 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6127 overflowed_p = mips_elf_overflow_p (value, 21);
6128 value >>= howto->rightshift;
6129 value &= howto->dst_mask;
6133 value = mips_elf_high (symbol + addend - p);
6134 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6135 overflowed_p = mips_elf_overflow_p (value, 16);
6136 value &= howto->dst_mask;
6140 if (howto->partial_inplace)
6141 addend = _bfd_mips_elf_sign_extend (addend, 16);
6142 value = symbol + addend - p;
6143 value &= howto->dst_mask;
6146 case R_MICROMIPS_PC7_S1:
6147 if (howto->partial_inplace)
6148 addend = _bfd_mips_elf_sign_extend (addend, 8);
6150 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6151 && (*cross_mode_jump_p
6152 ? ((symbol + addend + 2) & 3) != 0
6153 : ((symbol + addend + 2) & 1) == 0))
6154 return bfd_reloc_outofrange;
6156 value = symbol + addend - p;
6157 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6158 overflowed_p = mips_elf_overflow_p (value, 8);
6159 value >>= howto->rightshift;
6160 value &= howto->dst_mask;
6163 case R_MICROMIPS_PC10_S1:
6164 if (howto->partial_inplace)
6165 addend = _bfd_mips_elf_sign_extend (addend, 11);
6167 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6168 && (*cross_mode_jump_p
6169 ? ((symbol + addend + 2) & 3) != 0
6170 : ((symbol + addend + 2) & 1) == 0))
6171 return bfd_reloc_outofrange;
6173 value = symbol + addend - p;
6174 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6175 overflowed_p = mips_elf_overflow_p (value, 11);
6176 value >>= howto->rightshift;
6177 value &= howto->dst_mask;
6180 case R_MICROMIPS_PC16_S1:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 17);
6184 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6185 && (*cross_mode_jump_p
6186 ? ((symbol + addend) & 3) != 0
6187 : ((symbol + addend) & 1) == 0))
6188 return bfd_reloc_outofrange;
6190 value = symbol + addend - p;
6191 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6192 overflowed_p = mips_elf_overflow_p (value, 17);
6193 value >>= howto->rightshift;
6194 value &= howto->dst_mask;
6197 case R_MICROMIPS_PC23_S2:
6198 if (howto->partial_inplace)
6199 addend = _bfd_mips_elf_sign_extend (addend, 25);
6200 value = symbol + addend - ((p | 3) ^ 3);
6201 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6202 overflowed_p = mips_elf_overflow_p (value, 25);
6203 value >>= howto->rightshift;
6204 value &= howto->dst_mask;
6207 case R_MIPS_GOT_HI16:
6208 case R_MIPS_CALL_HI16:
6209 case R_MICROMIPS_GOT_HI16:
6210 case R_MICROMIPS_CALL_HI16:
6211 /* We're allowed to handle these two relocations identically.
6212 The dynamic linker is allowed to handle the CALL relocations
6213 differently by creating a lazy evaluation stub. */
6215 value = mips_elf_high (value);
6216 value &= howto->dst_mask;
6219 case R_MIPS_GOT_LO16:
6220 case R_MIPS_CALL_LO16:
6221 case R_MICROMIPS_GOT_LO16:
6222 case R_MICROMIPS_CALL_LO16:
6223 value = g & howto->dst_mask;
6226 case R_MIPS_GOT_PAGE:
6227 case R_MICROMIPS_GOT_PAGE:
6228 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6229 if (value == MINUS_ONE)
6230 return bfd_reloc_outofrange;
6231 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6235 case R_MIPS_GOT_OFST:
6236 case R_MICROMIPS_GOT_OFST:
6238 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6241 overflowed_p = mips_elf_overflow_p (value, 16);
6245 case R_MICROMIPS_SUB:
6246 value = symbol - addend;
6247 value &= howto->dst_mask;
6251 case R_MICROMIPS_HIGHER:
6252 value = mips_elf_higher (addend + symbol);
6253 value &= howto->dst_mask;
6256 case R_MIPS_HIGHEST:
6257 case R_MICROMIPS_HIGHEST:
6258 value = mips_elf_highest (addend + symbol);
6259 value &= howto->dst_mask;
6262 case R_MIPS_SCN_DISP:
6263 case R_MICROMIPS_SCN_DISP:
6264 value = symbol + addend - sec->output_offset;
6265 value &= howto->dst_mask;
6269 case R_MICROMIPS_JALR:
6270 /* This relocation is only a hint. In some cases, we optimize
6271 it into a bal instruction. But we don't try to optimize
6272 when the symbol does not resolve locally. */
6273 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6274 return bfd_reloc_continue;
6275 value = symbol + addend;
6279 case R_MIPS_GNU_VTINHERIT:
6280 case R_MIPS_GNU_VTENTRY:
6281 /* We don't do anything with these at present. */
6282 return bfd_reloc_continue;
6285 /* An unrecognized relocation type. */
6286 return bfd_reloc_notsupported;
6289 /* Store the VALUE for our caller. */
6291 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6294 /* Obtain the field relocated by RELOCATION. */
6297 mips_elf_obtain_contents (reloc_howto_type *howto,
6298 const Elf_Internal_Rela *relocation,
6299 bfd *input_bfd, bfd_byte *contents)
6302 bfd_byte *location = contents + relocation->r_offset;
6303 unsigned int size = bfd_get_reloc_size (howto);
6305 /* Obtain the bytes. */
6307 x = bfd_get (8 * size, input_bfd, location);
6312 /* It has been determined that the result of the RELOCATION is the
6313 VALUE. Use HOWTO to place VALUE into the output file at the
6314 appropriate position. The SECTION is the section to which the
6316 CROSS_MODE_JUMP_P is true if the relocation field
6317 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6319 Returns FALSE if anything goes wrong. */
6322 mips_elf_perform_relocation (struct bfd_link_info *info,
6323 reloc_howto_type *howto,
6324 const Elf_Internal_Rela *relocation,
6325 bfd_vma value, bfd *input_bfd,
6326 asection *input_section, bfd_byte *contents,
6327 bfd_boolean cross_mode_jump_p)
6331 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6334 /* Figure out where the relocation is occurring. */
6335 location = contents + relocation->r_offset;
6337 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6339 /* Obtain the current value. */
6340 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6342 /* Clear the field we are setting. */
6343 x &= ~howto->dst_mask;
6345 /* Set the field. */
6346 x |= (value & howto->dst_mask);
6348 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6349 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6351 bfd_vma opcode = x >> 26;
6353 if (r_type == R_MIPS16_26 ? opcode == 0x7
6354 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6357 info->callbacks->einfo
6358 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6359 input_bfd, input_section, relocation->r_offset);
6363 if (cross_mode_jump_p && jal_reloc_p (r_type))
6366 bfd_vma opcode = x >> 26;
6367 bfd_vma jalx_opcode;
6369 /* Check to see if the opcode is already JAL or JALX. */
6370 if (r_type == R_MIPS16_26)
6372 ok = ((opcode == 0x6) || (opcode == 0x7));
6375 else if (r_type == R_MICROMIPS_26_S1)
6377 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6382 ok = ((opcode == 0x3) || (opcode == 0x1d));
6386 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6387 convert J or JALS to JALX. */
6390 info->callbacks->einfo
6391 (_("%X%H: Unsupported jump between ISA modes; "
6392 "consider recompiling with interlinking enabled\n"),
6393 input_bfd, input_section, relocation->r_offset);
6397 /* Make this the JALX opcode. */
6398 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6400 else if (cross_mode_jump_p && b_reloc_p (r_type))
6402 bfd_boolean ok = FALSE;
6403 bfd_vma opcode = x >> 16;
6404 bfd_vma jalx_opcode = 0;
6408 if (r_type == R_MICROMIPS_PC16_S1)
6410 ok = opcode == 0x4060;
6414 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6416 ok = opcode == 0x411;
6421 if (bfd_link_pic (info) || !ok)
6423 info->callbacks->einfo
6424 (_("%X%H: Unsupported branch between ISA modes\n"),
6425 input_bfd, input_section, relocation->r_offset);
6429 addr = (input_section->output_section->vma
6430 + input_section->output_offset
6431 + relocation->r_offset
6433 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6435 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6437 info->callbacks->einfo
6438 (_("%X%H: Cannot convert branch between ISA modes "
6439 "to JALX: relocation out of range\n"),
6440 input_bfd, input_section, relocation->r_offset);
6444 /* Make this the JALX opcode. */
6445 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6448 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6450 if (!bfd_link_relocatable (info)
6451 && !cross_mode_jump_p
6452 && ((JAL_TO_BAL_P (input_bfd)
6453 && r_type == R_MIPS_26
6454 && (x >> 26) == 0x3) /* jal addr */
6455 || (JALR_TO_BAL_P (input_bfd)
6456 && r_type == R_MIPS_JALR
6457 && x == 0x0320f809) /* jalr t9 */
6458 || (JR_TO_B_P (input_bfd)
6459 && r_type == R_MIPS_JALR
6460 && x == 0x03200008))) /* jr t9 */
6466 addr = (input_section->output_section->vma
6467 + input_section->output_offset
6468 + relocation->r_offset
6470 if (r_type == R_MIPS_26)
6471 dest = (value << 2) | ((addr >> 28) << 28);
6475 if (off <= 0x1ffff && off >= -0x20000)
6477 if (x == 0x03200008) /* jr t9 */
6478 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6480 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6484 /* Put the value into the output. */
6485 size = bfd_get_reloc_size (howto);
6487 bfd_put (8 * size, input_bfd, x, location);
6489 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6495 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6496 is the original relocation, which is now being transformed into a
6497 dynamic relocation. The ADDENDP is adjusted if necessary; the
6498 caller should store the result in place of the original addend. */
6501 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6502 struct bfd_link_info *info,
6503 const Elf_Internal_Rela *rel,
6504 struct mips_elf_link_hash_entry *h,
6505 asection *sec, bfd_vma symbol,
6506 bfd_vma *addendp, asection *input_section)
6508 Elf_Internal_Rela outrel[3];
6513 bfd_boolean defined_p;
6514 struct mips_elf_link_hash_table *htab;
6516 htab = mips_elf_hash_table (info);
6517 BFD_ASSERT (htab != NULL);
6519 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6520 dynobj = elf_hash_table (info)->dynobj;
6521 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6522 BFD_ASSERT (sreloc != NULL);
6523 BFD_ASSERT (sreloc->contents != NULL);
6524 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6527 outrel[0].r_offset =
6528 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6529 if (ABI_64_P (output_bfd))
6531 outrel[1].r_offset =
6532 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6533 outrel[2].r_offset =
6534 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6537 if (outrel[0].r_offset == MINUS_ONE)
6538 /* The relocation field has been deleted. */
6541 if (outrel[0].r_offset == MINUS_TWO)
6543 /* The relocation field has been converted into a relative value of
6544 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6545 the field to be fully relocated, so add in the symbol's value. */
6550 /* We must now calculate the dynamic symbol table index to use
6551 in the relocation. */
6552 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6554 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6555 indx = h->root.dynindx;
6556 if (SGI_COMPAT (output_bfd))
6557 defined_p = h->root.def_regular;
6559 /* ??? glibc's ld.so just adds the final GOT entry to the
6560 relocation field. It therefore treats relocs against
6561 defined symbols in the same way as relocs against
6562 undefined symbols. */
6567 if (sec != NULL && bfd_is_abs_section (sec))
6569 else if (sec == NULL || sec->owner == NULL)
6571 bfd_set_error (bfd_error_bad_value);
6576 indx = elf_section_data (sec->output_section)->dynindx;
6579 asection *osec = htab->root.text_index_section;
6580 indx = elf_section_data (osec)->dynindx;
6586 /* Instead of generating a relocation using the section
6587 symbol, we may as well make it a fully relative
6588 relocation. We want to avoid generating relocations to
6589 local symbols because we used to generate them
6590 incorrectly, without adding the original symbol value,
6591 which is mandated by the ABI for section symbols. In
6592 order to give dynamic loaders and applications time to
6593 phase out the incorrect use, we refrain from emitting
6594 section-relative relocations. It's not like they're
6595 useful, after all. This should be a bit more efficient
6597 /* ??? Although this behavior is compatible with glibc's ld.so,
6598 the ABI says that relocations against STN_UNDEF should have
6599 a symbol value of 0. Irix rld honors this, so relocations
6600 against STN_UNDEF have no effect. */
6601 if (!SGI_COMPAT (output_bfd))
6606 /* If the relocation was previously an absolute relocation and
6607 this symbol will not be referred to by the relocation, we must
6608 adjust it by the value we give it in the dynamic symbol table.
6609 Otherwise leave the job up to the dynamic linker. */
6610 if (defined_p && r_type != R_MIPS_REL32)
6613 if (htab->is_vxworks)
6614 /* VxWorks uses non-relative relocations for this. */
6615 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6617 /* The relocation is always an REL32 relocation because we don't
6618 know where the shared library will wind up at load-time. */
6619 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6622 /* For strict adherence to the ABI specification, we should
6623 generate a R_MIPS_64 relocation record by itself before the
6624 _REL32/_64 record as well, such that the addend is read in as
6625 a 64-bit value (REL32 is a 32-bit relocation, after all).
6626 However, since none of the existing ELF64 MIPS dynamic
6627 loaders seems to care, we don't waste space with these
6628 artificial relocations. If this turns out to not be true,
6629 mips_elf_allocate_dynamic_relocation() should be tweaked so
6630 as to make room for a pair of dynamic relocations per
6631 invocation if ABI_64_P, and here we should generate an
6632 additional relocation record with R_MIPS_64 by itself for a
6633 NULL symbol before this relocation record. */
6634 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6635 ABI_64_P (output_bfd)
6638 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6640 /* Adjust the output offset of the relocation to reference the
6641 correct location in the output file. */
6642 outrel[0].r_offset += (input_section->output_section->vma
6643 + input_section->output_offset);
6644 outrel[1].r_offset += (input_section->output_section->vma
6645 + input_section->output_offset);
6646 outrel[2].r_offset += (input_section->output_section->vma
6647 + input_section->output_offset);
6649 /* Put the relocation back out. We have to use the special
6650 relocation outputter in the 64-bit case since the 64-bit
6651 relocation format is non-standard. */
6652 if (ABI_64_P (output_bfd))
6654 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6655 (output_bfd, &outrel[0],
6657 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6659 else if (htab->is_vxworks)
6661 /* VxWorks uses RELA rather than REL dynamic relocations. */
6662 outrel[0].r_addend = *addendp;
6663 bfd_elf32_swap_reloca_out
6664 (output_bfd, &outrel[0],
6666 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6669 bfd_elf32_swap_reloc_out
6670 (output_bfd, &outrel[0],
6671 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6673 /* We've now added another relocation. */
6674 ++sreloc->reloc_count;
6676 /* Make sure the output section is writable. The dynamic linker
6677 will be writing to it. */
6678 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6681 /* On IRIX5, make an entry of compact relocation info. */
6682 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6684 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6689 Elf32_crinfo cptrel;
6691 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6692 cptrel.vaddr = (rel->r_offset
6693 + input_section->output_section->vma
6694 + input_section->output_offset);
6695 if (r_type == R_MIPS_REL32)
6696 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6698 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6699 mips_elf_set_cr_dist2to (cptrel, 0);
6700 cptrel.konst = *addendp;
6702 cr = (scpt->contents
6703 + sizeof (Elf32_External_compact_rel));
6704 mips_elf_set_cr_relvaddr (cptrel, 0);
6705 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6706 ((Elf32_External_crinfo *) cr
6707 + scpt->reloc_count));
6708 ++scpt->reloc_count;
6712 /* If we've written this relocation for a readonly section,
6713 we need to set DF_TEXTREL again, so that we do not delete the
6715 if (MIPS_ELF_READONLY_SECTION (input_section))
6716 info->flags |= DF_TEXTREL;
6721 /* Return the MACH for a MIPS e_flags value. */
6724 _bfd_elf_mips_mach (flagword flags)
6726 switch (flags & EF_MIPS_MACH)
6728 case E_MIPS_MACH_3900:
6729 return bfd_mach_mips3900;
6731 case E_MIPS_MACH_4010:
6732 return bfd_mach_mips4010;
6734 case E_MIPS_MACH_4100:
6735 return bfd_mach_mips4100;
6737 case E_MIPS_MACH_4111:
6738 return bfd_mach_mips4111;
6740 case E_MIPS_MACH_4120:
6741 return bfd_mach_mips4120;
6743 case E_MIPS_MACH_4650:
6744 return bfd_mach_mips4650;
6746 case E_MIPS_MACH_5400:
6747 return bfd_mach_mips5400;
6749 case E_MIPS_MACH_5500:
6750 return bfd_mach_mips5500;
6752 case E_MIPS_MACH_5900:
6753 return bfd_mach_mips5900;
6755 case E_MIPS_MACH_9000:
6756 return bfd_mach_mips9000;
6758 case E_MIPS_MACH_SB1:
6759 return bfd_mach_mips_sb1;
6761 case E_MIPS_MACH_LS2E:
6762 return bfd_mach_mips_loongson_2e;
6764 case E_MIPS_MACH_LS2F:
6765 return bfd_mach_mips_loongson_2f;
6767 case E_MIPS_MACH_LS3A:
6768 return bfd_mach_mips_loongson_3a;
6770 case E_MIPS_MACH_OCTEON3:
6771 return bfd_mach_mips_octeon3;
6773 case E_MIPS_MACH_OCTEON2:
6774 return bfd_mach_mips_octeon2;
6776 case E_MIPS_MACH_OCTEON:
6777 return bfd_mach_mips_octeon;
6779 case E_MIPS_MACH_XLR:
6780 return bfd_mach_mips_xlr;
6783 switch (flags & EF_MIPS_ARCH)
6787 return bfd_mach_mips3000;
6790 return bfd_mach_mips6000;
6793 return bfd_mach_mips4000;
6796 return bfd_mach_mips8000;
6799 return bfd_mach_mips5;
6801 case E_MIPS_ARCH_32:
6802 return bfd_mach_mipsisa32;
6804 case E_MIPS_ARCH_64:
6805 return bfd_mach_mipsisa64;
6807 case E_MIPS_ARCH_32R2:
6808 return bfd_mach_mipsisa32r2;
6810 case E_MIPS_ARCH_64R2:
6811 return bfd_mach_mipsisa64r2;
6813 case E_MIPS_ARCH_32R6:
6814 return bfd_mach_mipsisa32r6;
6816 case E_MIPS_ARCH_64R6:
6817 return bfd_mach_mipsisa64r6;
6824 /* Return printable name for ABI. */
6826 static INLINE char *
6827 elf_mips_abi_name (bfd *abfd)
6831 flags = elf_elfheader (abfd)->e_flags;
6832 switch (flags & EF_MIPS_ABI)
6835 if (ABI_N32_P (abfd))
6837 else if (ABI_64_P (abfd))
6841 case E_MIPS_ABI_O32:
6843 case E_MIPS_ABI_O64:
6845 case E_MIPS_ABI_EABI32:
6847 case E_MIPS_ABI_EABI64:
6850 return "unknown abi";
6854 /* MIPS ELF uses two common sections. One is the usual one, and the
6855 other is for small objects. All the small objects are kept
6856 together, and then referenced via the gp pointer, which yields
6857 faster assembler code. This is what we use for the small common
6858 section. This approach is copied from ecoff.c. */
6859 static asection mips_elf_scom_section;
6860 static asymbol mips_elf_scom_symbol;
6861 static asymbol *mips_elf_scom_symbol_ptr;
6863 /* MIPS ELF also uses an acommon section, which represents an
6864 allocated common symbol which may be overridden by a
6865 definition in a shared library. */
6866 static asection mips_elf_acom_section;
6867 static asymbol mips_elf_acom_symbol;
6868 static asymbol *mips_elf_acom_symbol_ptr;
6870 /* This is used for both the 32-bit and the 64-bit ABI. */
6873 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6875 elf_symbol_type *elfsym;
6877 /* Handle the special MIPS section numbers that a symbol may use. */
6878 elfsym = (elf_symbol_type *) asym;
6879 switch (elfsym->internal_elf_sym.st_shndx)
6881 case SHN_MIPS_ACOMMON:
6882 /* This section is used in a dynamically linked executable file.
6883 It is an allocated common section. The dynamic linker can
6884 either resolve these symbols to something in a shared
6885 library, or it can just leave them here. For our purposes,
6886 we can consider these symbols to be in a new section. */
6887 if (mips_elf_acom_section.name == NULL)
6889 /* Initialize the acommon section. */
6890 mips_elf_acom_section.name = ".acommon";
6891 mips_elf_acom_section.flags = SEC_ALLOC;
6892 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6893 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6894 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6895 mips_elf_acom_symbol.name = ".acommon";
6896 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6897 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6898 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6900 asym->section = &mips_elf_acom_section;
6904 /* Common symbols less than the GP size are automatically
6905 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6906 if (asym->value > elf_gp_size (abfd)
6907 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6908 || IRIX_COMPAT (abfd) == ict_irix6)
6911 case SHN_MIPS_SCOMMON:
6912 if (mips_elf_scom_section.name == NULL)
6914 /* Initialize the small common section. */
6915 mips_elf_scom_section.name = ".scommon";
6916 mips_elf_scom_section.flags = SEC_IS_COMMON;
6917 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6918 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6919 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6920 mips_elf_scom_symbol.name = ".scommon";
6921 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6922 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6923 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6925 asym->section = &mips_elf_scom_section;
6926 asym->value = elfsym->internal_elf_sym.st_size;
6929 case SHN_MIPS_SUNDEFINED:
6930 asym->section = bfd_und_section_ptr;
6935 asection *section = bfd_get_section_by_name (abfd, ".text");
6937 if (section != NULL)
6939 asym->section = section;
6940 /* MIPS_TEXT is a bit special, the address is not an offset
6941 to the base of the .text section. So substract the section
6942 base address to make it an offset. */
6943 asym->value -= section->vma;
6950 asection *section = bfd_get_section_by_name (abfd, ".data");
6952 if (section != NULL)
6954 asym->section = section;
6955 /* MIPS_DATA is a bit special, the address is not an offset
6956 to the base of the .data section. So substract the section
6957 base address to make it an offset. */
6958 asym->value -= section->vma;
6964 /* If this is an odd-valued function symbol, assume it's a MIPS16
6965 or microMIPS one. */
6966 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6967 && (asym->value & 1) != 0)
6970 if (MICROMIPS_P (abfd))
6971 elfsym->internal_elf_sym.st_other
6972 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6974 elfsym->internal_elf_sym.st_other
6975 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6979 /* Implement elf_backend_eh_frame_address_size. This differs from
6980 the default in the way it handles EABI64.
6982 EABI64 was originally specified as an LP64 ABI, and that is what
6983 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6984 historically accepted the combination of -mabi=eabi and -mlong32,
6985 and this ILP32 variation has become semi-official over time.
6986 Both forms use elf32 and have pointer-sized FDE addresses.
6988 If an EABI object was generated by GCC 4.0 or above, it will have
6989 an empty .gcc_compiled_longXX section, where XX is the size of longs
6990 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6991 have no special marking to distinguish them from LP64 objects.
6993 We don't want users of the official LP64 ABI to be punished for the
6994 existence of the ILP32 variant, but at the same time, we don't want
6995 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6996 We therefore take the following approach:
6998 - If ABFD contains a .gcc_compiled_longXX section, use it to
6999 determine the pointer size.
7001 - Otherwise check the type of the first relocation. Assume that
7002 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7006 The second check is enough to detect LP64 objects generated by pre-4.0
7007 compilers because, in the kind of output generated by those compilers,
7008 the first relocation will be associated with either a CIE personality
7009 routine or an FDE start address. Furthermore, the compilers never
7010 used a special (non-pointer) encoding for this ABI.
7012 Checking the relocation type should also be safe because there is no
7013 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7017 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7019 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7021 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7023 bfd_boolean long32_p, long64_p;
7025 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7026 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7027 if (long32_p && long64_p)
7034 if (sec->reloc_count > 0
7035 && elf_section_data (sec)->relocs != NULL
7036 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7045 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7046 relocations against two unnamed section symbols to resolve to the
7047 same address. For example, if we have code like:
7049 lw $4,%got_disp(.data)($gp)
7050 lw $25,%got_disp(.text)($gp)
7053 then the linker will resolve both relocations to .data and the program
7054 will jump there rather than to .text.
7056 We can work around this problem by giving names to local section symbols.
7057 This is also what the MIPSpro tools do. */
7060 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7062 return SGI_COMPAT (abfd);
7065 /* Work over a section just before writing it out. This routine is
7066 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7067 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7071 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7073 if (hdr->sh_type == SHT_MIPS_REGINFO
7074 && hdr->sh_size > 0)
7078 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7079 BFD_ASSERT (hdr->contents == NULL);
7082 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7085 H_PUT_32 (abfd, elf_gp (abfd), buf);
7086 if (bfd_bwrite (buf, 4, abfd) != 4)
7090 if (hdr->sh_type == SHT_MIPS_OPTIONS
7091 && hdr->bfd_section != NULL
7092 && mips_elf_section_data (hdr->bfd_section) != NULL
7093 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7095 bfd_byte *contents, *l, *lend;
7097 /* We stored the section contents in the tdata field in the
7098 set_section_contents routine. We save the section contents
7099 so that we don't have to read them again.
7100 At this point we know that elf_gp is set, so we can look
7101 through the section contents to see if there is an
7102 ODK_REGINFO structure. */
7104 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7106 lend = contents + hdr->sh_size;
7107 while (l + sizeof (Elf_External_Options) <= lend)
7109 Elf_Internal_Options intopt;
7111 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7113 if (intopt.size < sizeof (Elf_External_Options))
7116 /* xgettext:c-format */
7117 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7118 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7121 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7128 + sizeof (Elf_External_Options)
7129 + (sizeof (Elf64_External_RegInfo) - 8)),
7132 H_PUT_64 (abfd, elf_gp (abfd), buf);
7133 if (bfd_bwrite (buf, 8, abfd) != 8)
7136 else if (intopt.kind == ODK_REGINFO)
7143 + sizeof (Elf_External_Options)
7144 + (sizeof (Elf32_External_RegInfo) - 4)),
7147 H_PUT_32 (abfd, elf_gp (abfd), buf);
7148 if (bfd_bwrite (buf, 4, abfd) != 4)
7155 if (hdr->bfd_section != NULL)
7157 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7159 /* .sbss is not handled specially here because the GNU/Linux
7160 prelinker can convert .sbss from NOBITS to PROGBITS and
7161 changing it back to NOBITS breaks the binary. The entry in
7162 _bfd_mips_elf_special_sections will ensure the correct flags
7163 are set on .sbss if BFD creates it without reading it from an
7164 input file, and without special handling here the flags set
7165 on it in an input file will be followed. */
7166 if (strcmp (name, ".sdata") == 0
7167 || strcmp (name, ".lit8") == 0
7168 || strcmp (name, ".lit4") == 0)
7169 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7170 else if (strcmp (name, ".srdata") == 0)
7171 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7172 else if (strcmp (name, ".compact_rel") == 0)
7174 else if (strcmp (name, ".rtproc") == 0)
7176 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7178 unsigned int adjust;
7180 adjust = hdr->sh_size % hdr->sh_addralign;
7182 hdr->sh_size += hdr->sh_addralign - adjust;
7190 /* Handle a MIPS specific section when reading an object file. This
7191 is called when elfcode.h finds a section with an unknown type.
7192 This routine supports both the 32-bit and 64-bit ELF ABI.
7194 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7198 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7199 Elf_Internal_Shdr *hdr,
7205 /* There ought to be a place to keep ELF backend specific flags, but
7206 at the moment there isn't one. We just keep track of the
7207 sections by their name, instead. Fortunately, the ABI gives
7208 suggested names for all the MIPS specific sections, so we will
7209 probably get away with this. */
7210 switch (hdr->sh_type)
7212 case SHT_MIPS_LIBLIST:
7213 if (strcmp (name, ".liblist") != 0)
7217 if (strcmp (name, ".msym") != 0)
7220 case SHT_MIPS_CONFLICT:
7221 if (strcmp (name, ".conflict") != 0)
7224 case SHT_MIPS_GPTAB:
7225 if (! CONST_STRNEQ (name, ".gptab."))
7228 case SHT_MIPS_UCODE:
7229 if (strcmp (name, ".ucode") != 0)
7232 case SHT_MIPS_DEBUG:
7233 if (strcmp (name, ".mdebug") != 0)
7235 flags = SEC_DEBUGGING;
7237 case SHT_MIPS_REGINFO:
7238 if (strcmp (name, ".reginfo") != 0
7239 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7241 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7243 case SHT_MIPS_IFACE:
7244 if (strcmp (name, ".MIPS.interfaces") != 0)
7247 case SHT_MIPS_CONTENT:
7248 if (! CONST_STRNEQ (name, ".MIPS.content"))
7251 case SHT_MIPS_OPTIONS:
7252 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7255 case SHT_MIPS_ABIFLAGS:
7256 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7258 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7260 case SHT_MIPS_DWARF:
7261 if (! CONST_STRNEQ (name, ".debug_")
7262 && ! CONST_STRNEQ (name, ".zdebug_"))
7265 case SHT_MIPS_SYMBOL_LIB:
7266 if (strcmp (name, ".MIPS.symlib") != 0)
7269 case SHT_MIPS_EVENTS:
7270 if (! CONST_STRNEQ (name, ".MIPS.events")
7271 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7278 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7283 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7284 (bfd_get_section_flags (abfd,
7290 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7292 Elf_External_ABIFlags_v0 ext;
7294 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7295 &ext, 0, sizeof ext))
7297 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7298 &mips_elf_tdata (abfd)->abiflags);
7299 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7301 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7304 /* FIXME: We should record sh_info for a .gptab section. */
7306 /* For a .reginfo section, set the gp value in the tdata information
7307 from the contents of this section. We need the gp value while
7308 processing relocs, so we just get it now. The .reginfo section
7309 is not used in the 64-bit MIPS ELF ABI. */
7310 if (hdr->sh_type == SHT_MIPS_REGINFO)
7312 Elf32_External_RegInfo ext;
7315 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7316 &ext, 0, sizeof ext))
7318 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7319 elf_gp (abfd) = s.ri_gp_value;
7322 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7323 set the gp value based on what we find. We may see both
7324 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7325 they should agree. */
7326 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7328 bfd_byte *contents, *l, *lend;
7330 contents = bfd_malloc (hdr->sh_size);
7331 if (contents == NULL)
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7340 lend = contents + hdr->sh_size;
7341 while (l + sizeof (Elf_External_Options) <= lend)
7343 Elf_Internal_Options intopt;
7345 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7347 if (intopt.size < sizeof (Elf_External_Options))
7350 /* xgettext:c-format */
7351 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7352 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7355 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7357 Elf64_Internal_RegInfo intreg;
7359 bfd_mips_elf64_swap_reginfo_in
7361 ((Elf64_External_RegInfo *)
7362 (l + sizeof (Elf_External_Options))),
7364 elf_gp (abfd) = intreg.ri_gp_value;
7366 else if (intopt.kind == ODK_REGINFO)
7368 Elf32_RegInfo intreg;
7370 bfd_mips_elf32_swap_reginfo_in
7372 ((Elf32_External_RegInfo *)
7373 (l + sizeof (Elf_External_Options))),
7375 elf_gp (abfd) = intreg.ri_gp_value;
7385 /* Set the correct type for a MIPS ELF section. We do this by the
7386 section name, which is a hack, but ought to work. This routine is
7387 used by both the 32-bit and the 64-bit ABI. */
7390 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7392 const char *name = bfd_get_section_name (abfd, sec);
7394 if (strcmp (name, ".liblist") == 0)
7396 hdr->sh_type = SHT_MIPS_LIBLIST;
7397 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7398 /* The sh_link field is set in final_write_processing. */
7400 else if (strcmp (name, ".conflict") == 0)
7401 hdr->sh_type = SHT_MIPS_CONFLICT;
7402 else if (CONST_STRNEQ (name, ".gptab."))
7404 hdr->sh_type = SHT_MIPS_GPTAB;
7405 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7406 /* The sh_info field is set in final_write_processing. */
7408 else if (strcmp (name, ".ucode") == 0)
7409 hdr->sh_type = SHT_MIPS_UCODE;
7410 else if (strcmp (name, ".mdebug") == 0)
7412 hdr->sh_type = SHT_MIPS_DEBUG;
7413 /* In a shared object on IRIX 5.3, the .mdebug section has an
7414 entsize of 0. FIXME: Does this matter? */
7415 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7416 hdr->sh_entsize = 0;
7418 hdr->sh_entsize = 1;
7420 else if (strcmp (name, ".reginfo") == 0)
7422 hdr->sh_type = SHT_MIPS_REGINFO;
7423 /* In a shared object on IRIX 5.3, the .reginfo section has an
7424 entsize of 0x18. FIXME: Does this matter? */
7425 if (SGI_COMPAT (abfd))
7427 if ((abfd->flags & DYNAMIC) != 0)
7428 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7430 hdr->sh_entsize = 1;
7433 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7435 else if (SGI_COMPAT (abfd)
7436 && (strcmp (name, ".hash") == 0
7437 || strcmp (name, ".dynamic") == 0
7438 || strcmp (name, ".dynstr") == 0))
7440 if (SGI_COMPAT (abfd))
7441 hdr->sh_entsize = 0;
7443 /* This isn't how the IRIX6 linker behaves. */
7444 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7447 else if (strcmp (name, ".got") == 0
7448 || strcmp (name, ".srdata") == 0
7449 || strcmp (name, ".sdata") == 0
7450 || strcmp (name, ".sbss") == 0
7451 || strcmp (name, ".lit4") == 0
7452 || strcmp (name, ".lit8") == 0)
7453 hdr->sh_flags |= SHF_MIPS_GPREL;
7454 else if (strcmp (name, ".MIPS.interfaces") == 0)
7456 hdr->sh_type = SHT_MIPS_IFACE;
7457 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7459 else if (CONST_STRNEQ (name, ".MIPS.content"))
7461 hdr->sh_type = SHT_MIPS_CONTENT;
7462 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7463 /* The sh_info field is set in final_write_processing. */
7465 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7467 hdr->sh_type = SHT_MIPS_OPTIONS;
7468 hdr->sh_entsize = 1;
7469 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7471 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7473 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7474 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7476 else if (CONST_STRNEQ (name, ".debug_")
7477 || CONST_STRNEQ (name, ".zdebug_"))
7479 hdr->sh_type = SHT_MIPS_DWARF;
7481 /* Irix facilities such as libexc expect a single .debug_frame
7482 per executable, the system ones have NOSTRIP set and the linker
7483 doesn't merge sections with different flags so ... */
7484 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7485 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7487 else if (strcmp (name, ".MIPS.symlib") == 0)
7489 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7490 /* The sh_link and sh_info fields are set in
7491 final_write_processing. */
7493 else if (CONST_STRNEQ (name, ".MIPS.events")
7494 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7496 hdr->sh_type = SHT_MIPS_EVENTS;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 /* The sh_link field is set in final_write_processing. */
7500 else if (strcmp (name, ".msym") == 0)
7502 hdr->sh_type = SHT_MIPS_MSYM;
7503 hdr->sh_flags |= SHF_ALLOC;
7504 hdr->sh_entsize = 8;
7507 /* The generic elf_fake_sections will set up REL_HDR using the default
7508 kind of relocations. We used to set up a second header for the
7509 non-default kind of relocations here, but only NewABI would use
7510 these, and the IRIX ld doesn't like resulting empty RELA sections.
7511 Thus we create those header only on demand now. */
7516 /* Given a BFD section, try to locate the corresponding ELF section
7517 index. This is used by both the 32-bit and the 64-bit ABI.
7518 Actually, it's not clear to me that the 64-bit ABI supports these,
7519 but for non-PIC objects we will certainly want support for at least
7520 the .scommon section. */
7523 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7524 asection *sec, int *retval)
7526 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7528 *retval = SHN_MIPS_SCOMMON;
7531 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7533 *retval = SHN_MIPS_ACOMMON;
7539 /* Hook called by the linker routine which adds symbols from an object
7540 file. We must handle the special MIPS section numbers here. */
7543 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7544 Elf_Internal_Sym *sym, const char **namep,
7545 flagword *flagsp ATTRIBUTE_UNUSED,
7546 asection **secp, bfd_vma *valp)
7548 if (SGI_COMPAT (abfd)
7549 && (abfd->flags & DYNAMIC) != 0
7550 && strcmp (*namep, "_rld_new_interface") == 0)
7552 /* Skip IRIX5 rld entry name. */
7557 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7558 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7559 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7560 a magic symbol resolved by the linker, we ignore this bogus definition
7561 of _gp_disp. New ABI objects do not suffer from this problem so this
7562 is not done for them. */
7564 && (sym->st_shndx == SHN_ABS)
7565 && (strcmp (*namep, "_gp_disp") == 0))
7571 switch (sym->st_shndx)
7574 /* Common symbols less than the GP size are automatically
7575 treated as SHN_MIPS_SCOMMON symbols. */
7576 if (sym->st_size > elf_gp_size (abfd)
7577 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7578 || IRIX_COMPAT (abfd) == ict_irix6)
7581 case SHN_MIPS_SCOMMON:
7582 *secp = bfd_make_section_old_way (abfd, ".scommon");
7583 (*secp)->flags |= SEC_IS_COMMON;
7584 *valp = sym->st_size;
7588 /* This section is used in a shared object. */
7589 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7591 asymbol *elf_text_symbol;
7592 asection *elf_text_section;
7593 bfd_size_type amt = sizeof (asection);
7595 elf_text_section = bfd_zalloc (abfd, amt);
7596 if (elf_text_section == NULL)
7599 amt = sizeof (asymbol);
7600 elf_text_symbol = bfd_zalloc (abfd, amt);
7601 if (elf_text_symbol == NULL)
7604 /* Initialize the section. */
7606 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7607 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7609 elf_text_section->symbol = elf_text_symbol;
7610 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7612 elf_text_section->name = ".text";
7613 elf_text_section->flags = SEC_NO_FLAGS;
7614 elf_text_section->output_section = NULL;
7615 elf_text_section->owner = abfd;
7616 elf_text_symbol->name = ".text";
7617 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7618 elf_text_symbol->section = elf_text_section;
7620 /* This code used to do *secp = bfd_und_section_ptr if
7621 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7622 so I took it out. */
7623 *secp = mips_elf_tdata (abfd)->elf_text_section;
7626 case SHN_MIPS_ACOMMON:
7627 /* Fall through. XXX Can we treat this as allocated data? */
7629 /* This section is used in a shared object. */
7630 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7632 asymbol *elf_data_symbol;
7633 asection *elf_data_section;
7634 bfd_size_type amt = sizeof (asection);
7636 elf_data_section = bfd_zalloc (abfd, amt);
7637 if (elf_data_section == NULL)
7640 amt = sizeof (asymbol);
7641 elf_data_symbol = bfd_zalloc (abfd, amt);
7642 if (elf_data_symbol == NULL)
7645 /* Initialize the section. */
7647 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7648 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7650 elf_data_section->symbol = elf_data_symbol;
7651 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7653 elf_data_section->name = ".data";
7654 elf_data_section->flags = SEC_NO_FLAGS;
7655 elf_data_section->output_section = NULL;
7656 elf_data_section->owner = abfd;
7657 elf_data_symbol->name = ".data";
7658 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7659 elf_data_symbol->section = elf_data_section;
7661 /* This code used to do *secp = bfd_und_section_ptr if
7662 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7663 so I took it out. */
7664 *secp = mips_elf_tdata (abfd)->elf_data_section;
7667 case SHN_MIPS_SUNDEFINED:
7668 *secp = bfd_und_section_ptr;
7672 if (SGI_COMPAT (abfd)
7673 && ! bfd_link_pic (info)
7674 && info->output_bfd->xvec == abfd->xvec
7675 && strcmp (*namep, "__rld_obj_head") == 0)
7677 struct elf_link_hash_entry *h;
7678 struct bfd_link_hash_entry *bh;
7680 /* Mark __rld_obj_head as dynamic. */
7682 if (! (_bfd_generic_link_add_one_symbol
7683 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7684 get_elf_backend_data (abfd)->collect, &bh)))
7687 h = (struct elf_link_hash_entry *) bh;
7690 h->type = STT_OBJECT;
7692 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7695 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7696 mips_elf_hash_table (info)->rld_symbol = h;
7699 /* If this is a mips16 text symbol, add 1 to the value to make it
7700 odd. This will cause something like .word SYM to come up with
7701 the right value when it is loaded into the PC. */
7702 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7708 /* This hook function is called before the linker writes out a global
7709 symbol. We mark symbols as small common if appropriate. This is
7710 also where we undo the increment of the value for a mips16 symbol. */
7713 _bfd_mips_elf_link_output_symbol_hook
7714 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7715 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7716 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7718 /* If we see a common symbol, which implies a relocatable link, then
7719 if a symbol was small common in an input file, mark it as small
7720 common in the output file. */
7721 if (sym->st_shndx == SHN_COMMON
7722 && strcmp (input_sec->name, ".scommon") == 0)
7723 sym->st_shndx = SHN_MIPS_SCOMMON;
7725 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7726 sym->st_value &= ~1;
7731 /* Functions for the dynamic linker. */
7733 /* Create dynamic sections when linking against a dynamic object. */
7736 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7738 struct elf_link_hash_entry *h;
7739 struct bfd_link_hash_entry *bh;
7741 register asection *s;
7742 const char * const *namep;
7743 struct mips_elf_link_hash_table *htab;
7745 htab = mips_elf_hash_table (info);
7746 BFD_ASSERT (htab != NULL);
7748 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7749 | SEC_LINKER_CREATED | SEC_READONLY);
7751 /* The psABI requires a read-only .dynamic section, but the VxWorks
7753 if (!htab->is_vxworks)
7755 s = bfd_get_linker_section (abfd, ".dynamic");
7758 if (! bfd_set_section_flags (abfd, s, flags))
7763 /* We need to create .got section. */
7764 if (!mips_elf_create_got_section (abfd, info))
7767 if (! mips_elf_rel_dyn_section (info, TRUE))
7770 /* Create .stub section. */
7771 s = bfd_make_section_anyway_with_flags (abfd,
7772 MIPS_ELF_STUB_SECTION_NAME (abfd),
7775 || ! bfd_set_section_alignment (abfd, s,
7776 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7780 if (!mips_elf_hash_table (info)->use_rld_obj_head
7781 && bfd_link_executable (info)
7782 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7784 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7785 flags &~ (flagword) SEC_READONLY);
7787 || ! bfd_set_section_alignment (abfd, s,
7788 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7792 /* On IRIX5, we adjust add some additional symbols and change the
7793 alignments of several sections. There is no ABI documentation
7794 indicating that this is necessary on IRIX6, nor any evidence that
7795 the linker takes such action. */
7796 if (IRIX_COMPAT (abfd) == ict_irix5)
7798 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7801 if (! (_bfd_generic_link_add_one_symbol
7802 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7803 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7806 h = (struct elf_link_hash_entry *) bh;
7809 h->type = STT_SECTION;
7811 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7815 /* We need to create a .compact_rel section. */
7816 if (SGI_COMPAT (abfd))
7818 if (!mips_elf_create_compact_rel_section (abfd, info))
7822 /* Change alignments of some sections. */
7823 s = bfd_get_linker_section (abfd, ".hash");
7825 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7827 s = bfd_get_linker_section (abfd, ".dynsym");
7829 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7831 s = bfd_get_linker_section (abfd, ".dynstr");
7833 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7836 s = bfd_get_section_by_name (abfd, ".reginfo");
7838 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7840 s = bfd_get_linker_section (abfd, ".dynamic");
7842 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7845 if (bfd_link_executable (info))
7849 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7851 if (!(_bfd_generic_link_add_one_symbol
7852 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7853 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7856 h = (struct elf_link_hash_entry *) bh;
7859 h->type = STT_SECTION;
7861 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7864 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7866 /* __rld_map is a four byte word located in the .data section
7867 and is filled in by the rtld to contain a pointer to
7868 the _r_debug structure. Its symbol value will be set in
7869 _bfd_mips_elf_finish_dynamic_symbol. */
7870 s = bfd_get_linker_section (abfd, ".rld_map");
7871 BFD_ASSERT (s != NULL);
7873 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7875 if (!(_bfd_generic_link_add_one_symbol
7876 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7877 get_elf_backend_data (abfd)->collect, &bh)))
7880 h = (struct elf_link_hash_entry *) bh;
7883 h->type = STT_OBJECT;
7885 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7887 mips_elf_hash_table (info)->rld_symbol = h;
7891 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7892 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7893 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7896 /* Cache the sections created above. */
7897 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7898 if (htab->is_vxworks)
7899 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7901 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7902 || !htab->root.srelplt
7903 || !htab->root.splt)
7906 /* Do the usual VxWorks handling. */
7907 if (htab->is_vxworks
7908 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7914 /* Return true if relocation REL against section SEC is a REL rather than
7915 RELA relocation. RELOCS is the first relocation in the section and
7916 ABFD is the bfd that contains SEC. */
7919 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7920 const Elf_Internal_Rela *relocs,
7921 const Elf_Internal_Rela *rel)
7923 Elf_Internal_Shdr *rel_hdr;
7924 const struct elf_backend_data *bed;
7926 /* To determine which flavor of relocation this is, we depend on the
7927 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7928 rel_hdr = elf_section_data (sec)->rel.hdr;
7929 if (rel_hdr == NULL)
7931 bed = get_elf_backend_data (abfd);
7932 return ((size_t) (rel - relocs)
7933 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7936 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7937 HOWTO is the relocation's howto and CONTENTS points to the contents
7938 of the section that REL is against. */
7941 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7942 reloc_howto_type *howto, bfd_byte *contents)
7945 unsigned int r_type;
7949 r_type = ELF_R_TYPE (abfd, rel->r_info);
7950 location = contents + rel->r_offset;
7952 /* Get the addend, which is stored in the input file. */
7953 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7954 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7955 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7957 addend = bytes & howto->src_mask;
7959 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7961 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7967 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7968 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7969 and update *ADDEND with the final addend. Return true on success
7970 or false if the LO16 could not be found. RELEND is the exclusive
7971 upper bound on the relocations for REL's section. */
7974 mips_elf_add_lo16_rel_addend (bfd *abfd,
7975 const Elf_Internal_Rela *rel,
7976 const Elf_Internal_Rela *relend,
7977 bfd_byte *contents, bfd_vma *addend)
7979 unsigned int r_type, lo16_type;
7980 const Elf_Internal_Rela *lo16_relocation;
7981 reloc_howto_type *lo16_howto;
7984 r_type = ELF_R_TYPE (abfd, rel->r_info);
7985 if (mips16_reloc_p (r_type))
7986 lo16_type = R_MIPS16_LO16;
7987 else if (micromips_reloc_p (r_type))
7988 lo16_type = R_MICROMIPS_LO16;
7989 else if (r_type == R_MIPS_PCHI16)
7990 lo16_type = R_MIPS_PCLO16;
7992 lo16_type = R_MIPS_LO16;
7994 /* The combined value is the sum of the HI16 addend, left-shifted by
7995 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7996 code does a `lui' of the HI16 value, and then an `addiu' of the
7999 Scan ahead to find a matching LO16 relocation.
8001 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8002 be immediately following. However, for the IRIX6 ABI, the next
8003 relocation may be a composed relocation consisting of several
8004 relocations for the same address. In that case, the R_MIPS_LO16
8005 relocation may occur as one of these. We permit a similar
8006 extension in general, as that is useful for GCC.
8008 In some cases GCC dead code elimination removes the LO16 but keeps
8009 the corresponding HI16. This is strictly speaking a violation of
8010 the ABI but not immediately harmful. */
8011 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8012 if (lo16_relocation == NULL)
8015 /* Obtain the addend kept there. */
8016 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8017 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8019 l <<= lo16_howto->rightshift;
8020 l = _bfd_mips_elf_sign_extend (l, 16);
8027 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8028 store the contents in *CONTENTS on success. Assume that *CONTENTS
8029 already holds the contents if it is nonull on entry. */
8032 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8037 /* Get cached copy if it exists. */
8038 if (elf_section_data (sec)->this_hdr.contents != NULL)
8040 *contents = elf_section_data (sec)->this_hdr.contents;
8044 return bfd_malloc_and_get_section (abfd, sec, contents);
8047 /* Make a new PLT record to keep internal data. */
8049 static struct plt_entry *
8050 mips_elf_make_plt_record (bfd *abfd)
8052 struct plt_entry *entry;
8054 entry = bfd_zalloc (abfd, sizeof (*entry));
8058 entry->stub_offset = MINUS_ONE;
8059 entry->mips_offset = MINUS_ONE;
8060 entry->comp_offset = MINUS_ONE;
8061 entry->gotplt_index = MINUS_ONE;
8065 /* Look through the relocs for a section during the first phase, and
8066 allocate space in the global offset table and record the need for
8067 standard MIPS and compressed procedure linkage table entries. */
8070 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8071 asection *sec, const Elf_Internal_Rela *relocs)
8075 Elf_Internal_Shdr *symtab_hdr;
8076 struct elf_link_hash_entry **sym_hashes;
8078 const Elf_Internal_Rela *rel;
8079 const Elf_Internal_Rela *rel_end;
8081 const struct elf_backend_data *bed;
8082 struct mips_elf_link_hash_table *htab;
8085 reloc_howto_type *howto;
8087 if (bfd_link_relocatable (info))
8090 htab = mips_elf_hash_table (info);
8091 BFD_ASSERT (htab != NULL);
8093 dynobj = elf_hash_table (info)->dynobj;
8094 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8095 sym_hashes = elf_sym_hashes (abfd);
8096 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8098 bed = get_elf_backend_data (abfd);
8099 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8101 /* Check for the mips16 stub sections. */
8103 name = bfd_get_section_name (abfd, sec);
8104 if (FN_STUB_P (name))
8106 unsigned long r_symndx;
8108 /* Look at the relocation information to figure out which symbol
8111 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8115 /* xgettext:c-format */
8116 (_("%B: Warning: cannot determine the target function for"
8117 " stub section `%s'"),
8119 bfd_set_error (bfd_error_bad_value);
8123 if (r_symndx < extsymoff
8124 || sym_hashes[r_symndx - extsymoff] == NULL)
8128 /* This stub is for a local symbol. This stub will only be
8129 needed if there is some relocation in this BFD, other
8130 than a 16 bit function call, which refers to this symbol. */
8131 for (o = abfd->sections; o != NULL; o = o->next)
8133 Elf_Internal_Rela *sec_relocs;
8134 const Elf_Internal_Rela *r, *rend;
8136 /* We can ignore stub sections when looking for relocs. */
8137 if ((o->flags & SEC_RELOC) == 0
8138 || o->reloc_count == 0
8139 || section_allows_mips16_refs_p (o))
8143 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8145 if (sec_relocs == NULL)
8148 rend = sec_relocs + o->reloc_count;
8149 for (r = sec_relocs; r < rend; r++)
8150 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8151 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8154 if (elf_section_data (o)->relocs != sec_relocs)
8163 /* There is no non-call reloc for this stub, so we do
8164 not need it. Since this function is called before
8165 the linker maps input sections to output sections, we
8166 can easily discard it by setting the SEC_EXCLUDE
8168 sec->flags |= SEC_EXCLUDE;
8172 /* Record this stub in an array of local symbol stubs for
8174 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8176 unsigned long symcount;
8180 if (elf_bad_symtab (abfd))
8181 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8183 symcount = symtab_hdr->sh_info;
8184 amt = symcount * sizeof (asection *);
8185 n = bfd_zalloc (abfd, amt);
8188 mips_elf_tdata (abfd)->local_stubs = n;
8191 sec->flags |= SEC_KEEP;
8192 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8194 /* We don't need to set mips16_stubs_seen in this case.
8195 That flag is used to see whether we need to look through
8196 the global symbol table for stubs. We don't need to set
8197 it here, because we just have a local stub. */
8201 struct mips_elf_link_hash_entry *h;
8203 h = ((struct mips_elf_link_hash_entry *)
8204 sym_hashes[r_symndx - extsymoff]);
8206 while (h->root.root.type == bfd_link_hash_indirect
8207 || h->root.root.type == bfd_link_hash_warning)
8208 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8210 /* H is the symbol this stub is for. */
8212 /* If we already have an appropriate stub for this function, we
8213 don't need another one, so we can discard this one. Since
8214 this function is called before the linker maps input sections
8215 to output sections, we can easily discard it by setting the
8216 SEC_EXCLUDE flag. */
8217 if (h->fn_stub != NULL)
8219 sec->flags |= SEC_EXCLUDE;
8223 sec->flags |= SEC_KEEP;
8225 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8228 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8230 unsigned long r_symndx;
8231 struct mips_elf_link_hash_entry *h;
8234 /* Look at the relocation information to figure out which symbol
8237 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8241 /* xgettext:c-format */
8242 (_("%B: Warning: cannot determine the target function for"
8243 " stub section `%s'"),
8245 bfd_set_error (bfd_error_bad_value);
8249 if (r_symndx < extsymoff
8250 || sym_hashes[r_symndx - extsymoff] == NULL)
8254 /* This stub is for a local symbol. This stub will only be
8255 needed if there is some relocation (R_MIPS16_26) in this BFD
8256 that refers to this symbol. */
8257 for (o = abfd->sections; o != NULL; o = o->next)
8259 Elf_Internal_Rela *sec_relocs;
8260 const Elf_Internal_Rela *r, *rend;
8262 /* We can ignore stub sections when looking for relocs. */
8263 if ((o->flags & SEC_RELOC) == 0
8264 || o->reloc_count == 0
8265 || section_allows_mips16_refs_p (o))
8269 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8271 if (sec_relocs == NULL)
8274 rend = sec_relocs + o->reloc_count;
8275 for (r = sec_relocs; r < rend; r++)
8276 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8277 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8280 if (elf_section_data (o)->relocs != sec_relocs)
8289 /* There is no non-call reloc for this stub, so we do
8290 not need it. Since this function is called before
8291 the linker maps input sections to output sections, we
8292 can easily discard it by setting the SEC_EXCLUDE
8294 sec->flags |= SEC_EXCLUDE;
8298 /* Record this stub in an array of local symbol call_stubs for
8300 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8302 unsigned long symcount;
8306 if (elf_bad_symtab (abfd))
8307 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8309 symcount = symtab_hdr->sh_info;
8310 amt = symcount * sizeof (asection *);
8311 n = bfd_zalloc (abfd, amt);
8314 mips_elf_tdata (abfd)->local_call_stubs = n;
8317 sec->flags |= SEC_KEEP;
8318 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8320 /* We don't need to set mips16_stubs_seen in this case.
8321 That flag is used to see whether we need to look through
8322 the global symbol table for stubs. We don't need to set
8323 it here, because we just have a local stub. */
8327 h = ((struct mips_elf_link_hash_entry *)
8328 sym_hashes[r_symndx - extsymoff]);
8330 /* H is the symbol this stub is for. */
8332 if (CALL_FP_STUB_P (name))
8333 loc = &h->call_fp_stub;
8335 loc = &h->call_stub;
8337 /* If we already have an appropriate stub for this function, we
8338 don't need another one, so we can discard this one. Since
8339 this function is called before the linker maps input sections
8340 to output sections, we can easily discard it by setting the
8341 SEC_EXCLUDE flag. */
8344 sec->flags |= SEC_EXCLUDE;
8348 sec->flags |= SEC_KEEP;
8350 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8356 for (rel = relocs; rel < rel_end; ++rel)
8358 unsigned long r_symndx;
8359 unsigned int r_type;
8360 struct elf_link_hash_entry *h;
8361 bfd_boolean can_make_dynamic_p;
8362 bfd_boolean call_reloc_p;
8363 bfd_boolean constrain_symbol_p;
8365 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8366 r_type = ELF_R_TYPE (abfd, rel->r_info);
8368 if (r_symndx < extsymoff)
8370 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8373 /* xgettext:c-format */
8374 (_("%B: Malformed reloc detected for section %s"),
8376 bfd_set_error (bfd_error_bad_value);
8381 h = sym_hashes[r_symndx - extsymoff];
8384 while (h->root.type == bfd_link_hash_indirect
8385 || h->root.type == bfd_link_hash_warning)
8386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8388 /* PR15323, ref flags aren't set for references in the
8390 h->root.non_ir_ref = 1;
8394 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8395 relocation into a dynamic one. */
8396 can_make_dynamic_p = FALSE;
8398 /* Set CALL_RELOC_P to true if the relocation is for a call,
8399 and if pointer equality therefore doesn't matter. */
8400 call_reloc_p = FALSE;
8402 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8403 into account when deciding how to define the symbol.
8404 Relocations in nonallocatable sections such as .pdr and
8405 .debug* should have no effect. */
8406 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8411 case R_MIPS_CALL_HI16:
8412 case R_MIPS_CALL_LO16:
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 case R_MICROMIPS_CALL_HI16:
8416 case R_MICROMIPS_CALL_LO16:
8417 call_reloc_p = TRUE;
8421 case R_MIPS_GOT_HI16:
8422 case R_MIPS_GOT_LO16:
8423 case R_MIPS_GOT_PAGE:
8424 case R_MIPS_GOT_OFST:
8425 case R_MIPS_GOT_DISP:
8426 case R_MIPS_TLS_GOTTPREL:
8428 case R_MIPS_TLS_LDM:
8429 case R_MIPS16_GOT16:
8430 case R_MIPS16_TLS_GOTTPREL:
8431 case R_MIPS16_TLS_GD:
8432 case R_MIPS16_TLS_LDM:
8433 case R_MICROMIPS_GOT16:
8434 case R_MICROMIPS_GOT_HI16:
8435 case R_MICROMIPS_GOT_LO16:
8436 case R_MICROMIPS_GOT_PAGE:
8437 case R_MICROMIPS_GOT_OFST:
8438 case R_MICROMIPS_GOT_DISP:
8439 case R_MICROMIPS_TLS_GOTTPREL:
8440 case R_MICROMIPS_TLS_GD:
8441 case R_MICROMIPS_TLS_LDM:
8443 elf_hash_table (info)->dynobj = dynobj = abfd;
8444 if (!mips_elf_create_got_section (dynobj, info))
8446 if (htab->is_vxworks && !bfd_link_pic (info))
8449 /* xgettext:c-format */
8450 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8451 abfd, (unsigned long) rel->r_offset);
8452 bfd_set_error (bfd_error_bad_value);
8455 can_make_dynamic_p = TRUE;
8460 case R_MICROMIPS_JALR:
8461 /* These relocations have empty fields and are purely there to
8462 provide link information. The symbol value doesn't matter. */
8463 constrain_symbol_p = FALSE;
8466 case R_MIPS_GPREL16:
8467 case R_MIPS_GPREL32:
8468 case R_MIPS16_GPREL:
8469 case R_MICROMIPS_GPREL16:
8470 /* GP-relative relocations always resolve to a definition in a
8471 regular input file, ignoring the one-definition rule. This is
8472 important for the GP setup sequence in NewABI code, which
8473 always resolves to a local function even if other relocations
8474 against the symbol wouldn't. */
8475 constrain_symbol_p = FALSE;
8481 /* In VxWorks executables, references to external symbols
8482 must be handled using copy relocs or PLT entries; it is not
8483 possible to convert this relocation into a dynamic one.
8485 For executables that use PLTs and copy-relocs, we have a
8486 choice between converting the relocation into a dynamic
8487 one or using copy relocations or PLT entries. It is
8488 usually better to do the former, unless the relocation is
8489 against a read-only section. */
8490 if ((bfd_link_pic (info)
8492 && !htab->is_vxworks
8493 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8494 && !(!info->nocopyreloc
8495 && !PIC_OBJECT_P (abfd)
8496 && MIPS_ELF_READONLY_SECTION (sec))))
8497 && (sec->flags & SEC_ALLOC) != 0)
8499 can_make_dynamic_p = TRUE;
8501 elf_hash_table (info)->dynobj = dynobj = abfd;
8507 case R_MIPS_PC21_S2:
8508 case R_MIPS_PC26_S2:
8510 case R_MIPS16_PC16_S1:
8511 case R_MICROMIPS_26_S1:
8512 case R_MICROMIPS_PC7_S1:
8513 case R_MICROMIPS_PC10_S1:
8514 case R_MICROMIPS_PC16_S1:
8515 case R_MICROMIPS_PC23_S2:
8516 call_reloc_p = TRUE;
8522 if (constrain_symbol_p)
8524 if (!can_make_dynamic_p)
8525 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8528 h->pointer_equality_needed = 1;
8530 /* We must not create a stub for a symbol that has
8531 relocations related to taking the function's address.
8532 This doesn't apply to VxWorks, where CALL relocs refer
8533 to a .got.plt entry instead of a normal .got entry. */
8534 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8535 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8538 /* Relocations against the special VxWorks __GOTT_BASE__ and
8539 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8540 room for them in .rela.dyn. */
8541 if (is_gott_symbol (info, h))
8545 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8549 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8550 if (MIPS_ELF_READONLY_SECTION (sec))
8551 /* We tell the dynamic linker that there are
8552 relocations against the text segment. */
8553 info->flags |= DF_TEXTREL;
8556 else if (call_lo16_reloc_p (r_type)
8557 || got_lo16_reloc_p (r_type)
8558 || got_disp_reloc_p (r_type)
8559 || (got16_reloc_p (r_type) && htab->is_vxworks))
8561 /* We may need a local GOT entry for this relocation. We
8562 don't count R_MIPS_GOT_PAGE because we can estimate the
8563 maximum number of pages needed by looking at the size of
8564 the segment. Similar comments apply to R_MIPS*_GOT16 and
8565 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8566 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8567 R_MIPS_CALL_HI16 because these are always followed by an
8568 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8569 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8570 rel->r_addend, info, r_type))
8575 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8576 ELF_ST_IS_MIPS16 (h->other)))
8577 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8582 case R_MIPS16_CALL16:
8583 case R_MICROMIPS_CALL16:
8587 /* xgettext:c-format */
8588 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8589 abfd, (unsigned long) rel->r_offset);
8590 bfd_set_error (bfd_error_bad_value);
8595 case R_MIPS_CALL_HI16:
8596 case R_MIPS_CALL_LO16:
8597 case R_MICROMIPS_CALL_HI16:
8598 case R_MICROMIPS_CALL_LO16:
8601 /* Make sure there is room in the regular GOT to hold the
8602 function's address. We may eliminate it in favour of
8603 a .got.plt entry later; see mips_elf_count_got_symbols. */
8604 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8608 /* We need a stub, not a plt entry for the undefined
8609 function. But we record it as if it needs plt. See
8610 _bfd_elf_adjust_dynamic_symbol. */
8616 case R_MIPS_GOT_PAGE:
8617 case R_MICROMIPS_GOT_PAGE:
8618 case R_MIPS16_GOT16:
8620 case R_MIPS_GOT_HI16:
8621 case R_MIPS_GOT_LO16:
8622 case R_MICROMIPS_GOT16:
8623 case R_MICROMIPS_GOT_HI16:
8624 case R_MICROMIPS_GOT_LO16:
8625 if (!h || got_page_reloc_p (r_type))
8627 /* This relocation needs (or may need, if h != NULL) a
8628 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8629 know for sure until we know whether the symbol is
8631 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8633 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8635 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8636 addend = mips_elf_read_rel_addend (abfd, rel,
8638 if (got16_reloc_p (r_type))
8639 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8642 addend <<= howto->rightshift;
8645 addend = rel->r_addend;
8646 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8652 struct mips_elf_link_hash_entry *hmips =
8653 (struct mips_elf_link_hash_entry *) h;
8655 /* This symbol is definitely not overridable. */
8656 if (hmips->root.def_regular
8657 && ! (bfd_link_pic (info) && ! info->symbolic
8658 && ! hmips->root.forced_local))
8662 /* If this is a global, overridable symbol, GOT_PAGE will
8663 decay to GOT_DISP, so we'll need a GOT entry for it. */
8666 case R_MIPS_GOT_DISP:
8667 case R_MICROMIPS_GOT_DISP:
8668 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8673 case R_MIPS_TLS_GOTTPREL:
8674 case R_MIPS16_TLS_GOTTPREL:
8675 case R_MICROMIPS_TLS_GOTTPREL:
8676 if (bfd_link_pic (info))
8677 info->flags |= DF_STATIC_TLS;
8680 case R_MIPS_TLS_LDM:
8681 case R_MIPS16_TLS_LDM:
8682 case R_MICROMIPS_TLS_LDM:
8683 if (tls_ldm_reloc_p (r_type))
8685 r_symndx = STN_UNDEF;
8691 case R_MIPS16_TLS_GD:
8692 case R_MICROMIPS_TLS_GD:
8693 /* This symbol requires a global offset table entry, or two
8694 for TLS GD relocations. */
8697 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8703 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8713 /* In VxWorks executables, references to external symbols
8714 are handled using copy relocs or PLT stubs, so there's
8715 no need to add a .rela.dyn entry for this relocation. */
8716 if (can_make_dynamic_p)
8720 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8724 if (bfd_link_pic (info) && h == NULL)
8726 /* When creating a shared object, we must copy these
8727 reloc types into the output file as R_MIPS_REL32
8728 relocs. Make room for this reloc in .rel(a).dyn. */
8729 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8730 if (MIPS_ELF_READONLY_SECTION (sec))
8731 /* We tell the dynamic linker that there are
8732 relocations against the text segment. */
8733 info->flags |= DF_TEXTREL;
8737 struct mips_elf_link_hash_entry *hmips;
8739 /* For a shared object, we must copy this relocation
8740 unless the symbol turns out to be undefined and
8741 weak with non-default visibility, in which case
8742 it will be left as zero.
8744 We could elide R_MIPS_REL32 for locally binding symbols
8745 in shared libraries, but do not yet do so.
8747 For an executable, we only need to copy this
8748 reloc if the symbol is defined in a dynamic
8750 hmips = (struct mips_elf_link_hash_entry *) h;
8751 ++hmips->possibly_dynamic_relocs;
8752 if (MIPS_ELF_READONLY_SECTION (sec))
8753 /* We need it to tell the dynamic linker if there
8754 are relocations against the text segment. */
8755 hmips->readonly_reloc = TRUE;
8759 if (SGI_COMPAT (abfd))
8760 mips_elf_hash_table (info)->compact_rel_size +=
8761 sizeof (Elf32_External_crinfo);
8765 case R_MIPS_GPREL16:
8766 case R_MIPS_LITERAL:
8767 case R_MIPS_GPREL32:
8768 case R_MICROMIPS_26_S1:
8769 case R_MICROMIPS_GPREL16:
8770 case R_MICROMIPS_LITERAL:
8771 case R_MICROMIPS_GPREL7_S2:
8772 if (SGI_COMPAT (abfd))
8773 mips_elf_hash_table (info)->compact_rel_size +=
8774 sizeof (Elf32_External_crinfo);
8777 /* This relocation describes the C++ object vtable hierarchy.
8778 Reconstruct it for later use during GC. */
8779 case R_MIPS_GNU_VTINHERIT:
8780 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8784 /* This relocation describes which C++ vtable entries are actually
8785 used. Record for later use during GC. */
8786 case R_MIPS_GNU_VTENTRY:
8787 BFD_ASSERT (h != NULL);
8789 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8797 /* Record the need for a PLT entry. At this point we don't know
8798 yet if we are going to create a PLT in the first place, but
8799 we only record whether the relocation requires a standard MIPS
8800 or a compressed code entry anyway. If we don't make a PLT after
8801 all, then we'll just ignore these arrangements. Likewise if
8802 a PLT entry is not created because the symbol is satisfied
8805 && (branch_reloc_p (r_type)
8806 || mips16_branch_reloc_p (r_type)
8807 || micromips_branch_reloc_p (r_type))
8808 && !SYMBOL_CALLS_LOCAL (info, h))
8810 if (h->plt.plist == NULL)
8811 h->plt.plist = mips_elf_make_plt_record (abfd);
8812 if (h->plt.plist == NULL)
8815 if (branch_reloc_p (r_type))
8816 h->plt.plist->need_mips = TRUE;
8818 h->plt.plist->need_comp = TRUE;
8821 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8822 if there is one. We only need to handle global symbols here;
8823 we decide whether to keep or delete stubs for local symbols
8824 when processing the stub's relocations. */
8826 && !mips16_call_reloc_p (r_type)
8827 && !section_allows_mips16_refs_p (sec))
8829 struct mips_elf_link_hash_entry *mh;
8831 mh = (struct mips_elf_link_hash_entry *) h;
8832 mh->need_fn_stub = TRUE;
8835 /* Refuse some position-dependent relocations when creating a
8836 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8837 not PIC, but we can create dynamic relocations and the result
8838 will be fine. Also do not refuse R_MIPS_LO16, which can be
8839 combined with R_MIPS_GOT16. */
8840 if (bfd_link_pic (info))
8847 case R_MIPS_HIGHEST:
8848 case R_MICROMIPS_HI16:
8849 case R_MICROMIPS_HIGHER:
8850 case R_MICROMIPS_HIGHEST:
8851 /* Don't refuse a high part relocation if it's against
8852 no symbol (e.g. part of a compound relocation). */
8853 if (r_symndx == STN_UNDEF)
8856 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8857 and has a special meaning. */
8858 if (!NEWABI_P (abfd) && h != NULL
8859 && strcmp (h->root.root.string, "_gp_disp") == 0)
8862 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8863 if (is_gott_symbol (info, h))
8870 case R_MICROMIPS_26_S1:
8871 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8873 /* xgettext:c-format */
8874 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8876 (h) ? h->root.root.string : "a local symbol");
8877 bfd_set_error (bfd_error_bad_value);
8889 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8890 struct bfd_link_info *link_info,
8893 Elf_Internal_Rela *internal_relocs;
8894 Elf_Internal_Rela *irel, *irelend;
8895 Elf_Internal_Shdr *symtab_hdr;
8896 bfd_byte *contents = NULL;
8898 bfd_boolean changed_contents = FALSE;
8899 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8900 Elf_Internal_Sym *isymbuf = NULL;
8902 /* We are not currently changing any sizes, so only one pass. */
8905 if (bfd_link_relocatable (link_info))
8908 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8909 link_info->keep_memory);
8910 if (internal_relocs == NULL)
8913 irelend = internal_relocs + sec->reloc_count
8914 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8915 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8916 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8918 for (irel = internal_relocs; irel < irelend; irel++)
8921 bfd_signed_vma sym_offset;
8922 unsigned int r_type;
8923 unsigned long r_symndx;
8925 unsigned long instruction;
8927 /* Turn jalr into bgezal, and jr into beq, if they're marked
8928 with a JALR relocation, that indicate where they jump to.
8929 This saves some pipeline bubbles. */
8930 r_type = ELF_R_TYPE (abfd, irel->r_info);
8931 if (r_type != R_MIPS_JALR)
8934 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8935 /* Compute the address of the jump target. */
8936 if (r_symndx >= extsymoff)
8938 struct mips_elf_link_hash_entry *h
8939 = ((struct mips_elf_link_hash_entry *)
8940 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8942 while (h->root.root.type == bfd_link_hash_indirect
8943 || h->root.root.type == bfd_link_hash_warning)
8944 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8946 /* If a symbol is undefined, or if it may be overridden,
8948 if (! ((h->root.root.type == bfd_link_hash_defined
8949 || h->root.root.type == bfd_link_hash_defweak)
8950 && h->root.root.u.def.section)
8951 || (bfd_link_pic (link_info) && ! link_info->symbolic
8952 && !h->root.forced_local))
8955 sym_sec = h->root.root.u.def.section;
8956 if (sym_sec->output_section)
8957 symval = (h->root.root.u.def.value
8958 + sym_sec->output_section->vma
8959 + sym_sec->output_offset);
8961 symval = h->root.root.u.def.value;
8965 Elf_Internal_Sym *isym;
8967 /* Read this BFD's symbols if we haven't done so already. */
8968 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8970 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8971 if (isymbuf == NULL)
8972 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8973 symtab_hdr->sh_info, 0,
8975 if (isymbuf == NULL)
8979 isym = isymbuf + r_symndx;
8980 if (isym->st_shndx == SHN_UNDEF)
8982 else if (isym->st_shndx == SHN_ABS)
8983 sym_sec = bfd_abs_section_ptr;
8984 else if (isym->st_shndx == SHN_COMMON)
8985 sym_sec = bfd_com_section_ptr;
8988 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8989 symval = isym->st_value
8990 + sym_sec->output_section->vma
8991 + sym_sec->output_offset;
8994 /* Compute branch offset, from delay slot of the jump to the
8996 sym_offset = (symval + irel->r_addend)
8997 - (sec_start + irel->r_offset + 4);
8999 /* Branch offset must be properly aligned. */
9000 if ((sym_offset & 3) != 0)
9005 /* Check that it's in range. */
9006 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9009 /* Get the section contents if we haven't done so already. */
9010 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9013 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9015 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9016 if ((instruction & 0xfc1fffff) == 0x0000f809)
9017 instruction = 0x04110000;
9018 /* If it was jr <reg>, turn it into b <target>. */
9019 else if ((instruction & 0xfc1fffff) == 0x00000008)
9020 instruction = 0x10000000;
9024 instruction |= (sym_offset & 0xffff);
9025 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9026 changed_contents = TRUE;
9029 if (contents != NULL
9030 && elf_section_data (sec)->this_hdr.contents != contents)
9032 if (!changed_contents && !link_info->keep_memory)
9036 /* Cache the section contents for elf_link_input_bfd. */
9037 elf_section_data (sec)->this_hdr.contents = contents;
9043 if (contents != NULL
9044 && elf_section_data (sec)->this_hdr.contents != contents)
9049 /* Allocate space for global sym dynamic relocs. */
9052 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9054 struct bfd_link_info *info = inf;
9056 struct mips_elf_link_hash_entry *hmips;
9057 struct mips_elf_link_hash_table *htab;
9059 htab = mips_elf_hash_table (info);
9060 BFD_ASSERT (htab != NULL);
9062 dynobj = elf_hash_table (info)->dynobj;
9063 hmips = (struct mips_elf_link_hash_entry *) h;
9065 /* VxWorks executables are handled elsewhere; we only need to
9066 allocate relocations in shared objects. */
9067 if (htab->is_vxworks && !bfd_link_pic (info))
9070 /* Ignore indirect symbols. All relocations against such symbols
9071 will be redirected to the target symbol. */
9072 if (h->root.type == bfd_link_hash_indirect)
9075 /* If this symbol is defined in a dynamic object, or we are creating
9076 a shared library, we will need to copy any R_MIPS_32 or
9077 R_MIPS_REL32 relocs against it into the output file. */
9078 if (! bfd_link_relocatable (info)
9079 && hmips->possibly_dynamic_relocs != 0
9080 && (h->root.type == bfd_link_hash_defweak
9081 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9082 || bfd_link_pic (info)))
9084 bfd_boolean do_copy = TRUE;
9086 if (h->root.type == bfd_link_hash_undefweak)
9088 /* Do not copy relocations for undefined weak symbols with
9089 non-default visibility. */
9090 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9093 /* Make sure undefined weak symbols are output as a dynamic
9095 else if (h->dynindx == -1 && !h->forced_local)
9097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9104 /* Even though we don't directly need a GOT entry for this symbol,
9105 the SVR4 psABI requires it to have a dynamic symbol table
9106 index greater that DT_MIPS_GOTSYM if there are dynamic
9107 relocations against it.
9109 VxWorks does not enforce the same mapping between the GOT
9110 and the symbol table, so the same requirement does not
9112 if (!htab->is_vxworks)
9114 if (hmips->global_got_area > GGA_RELOC_ONLY)
9115 hmips->global_got_area = GGA_RELOC_ONLY;
9116 hmips->got_only_for_calls = FALSE;
9119 mips_elf_allocate_dynamic_relocations
9120 (dynobj, info, hmips->possibly_dynamic_relocs);
9121 if (hmips->readonly_reloc)
9122 /* We tell the dynamic linker that there are relocations
9123 against the text segment. */
9124 info->flags |= DF_TEXTREL;
9131 /* Adjust a symbol defined by a dynamic object and referenced by a
9132 regular object. The current definition is in some section of the
9133 dynamic object, but we're not including those sections. We have to
9134 change the definition to something the rest of the link can
9138 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9139 struct elf_link_hash_entry *h)
9142 struct mips_elf_link_hash_entry *hmips;
9143 struct mips_elf_link_hash_table *htab;
9145 htab = mips_elf_hash_table (info);
9146 BFD_ASSERT (htab != NULL);
9148 dynobj = elf_hash_table (info)->dynobj;
9149 hmips = (struct mips_elf_link_hash_entry *) h;
9151 /* Make sure we know what is going on here. */
9152 BFD_ASSERT (dynobj != NULL
9154 || h->u.weakdef != NULL
9157 && !h->def_regular)));
9159 hmips = (struct mips_elf_link_hash_entry *) h;
9161 /* If there are call relocations against an externally-defined symbol,
9162 see whether we can create a MIPS lazy-binding stub for it. We can
9163 only do this if all references to the function are through call
9164 relocations, and in that case, the traditional lazy-binding stubs
9165 are much more efficient than PLT entries.
9167 Traditional stubs are only available on SVR4 psABI-based systems;
9168 VxWorks always uses PLTs instead. */
9169 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9171 if (! elf_hash_table (info)->dynamic_sections_created)
9174 /* If this symbol is not defined in a regular file, then set
9175 the symbol to the stub location. This is required to make
9176 function pointers compare as equal between the normal
9177 executable and the shared library. */
9178 if (!h->def_regular)
9180 hmips->needs_lazy_stub = TRUE;
9181 htab->lazy_stub_count++;
9185 /* As above, VxWorks requires PLT entries for externally-defined
9186 functions that are only accessed through call relocations.
9188 Both VxWorks and non-VxWorks targets also need PLT entries if there
9189 are static-only relocations against an externally-defined function.
9190 This can technically occur for shared libraries if there are
9191 branches to the symbol, although it is unlikely that this will be
9192 used in practice due to the short ranges involved. It can occur
9193 for any relative or absolute relocation in executables; in that
9194 case, the PLT entry becomes the function's canonical address. */
9195 else if (((h->needs_plt && !hmips->no_fn_stub)
9196 || (h->type == STT_FUNC && hmips->has_static_relocs))
9197 && htab->use_plts_and_copy_relocs
9198 && !SYMBOL_CALLS_LOCAL (info, h)
9199 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9200 && h->root.type == bfd_link_hash_undefweak))
9202 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9203 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9205 /* If this is the first symbol to need a PLT entry, then make some
9206 basic setup. Also work out PLT entry sizes. We'll need them
9207 for PLT offset calculations. */
9208 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9210 BFD_ASSERT (htab->root.sgotplt->size == 0);
9211 BFD_ASSERT (htab->plt_got_index == 0);
9213 /* If we're using the PLT additions to the psABI, each PLT
9214 entry is 16 bytes and the PLT0 entry is 32 bytes.
9215 Encourage better cache usage by aligning. We do this
9216 lazily to avoid pessimizing traditional objects. */
9217 if (!htab->is_vxworks
9218 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9221 /* Make sure that .got.plt is word-aligned. We do this lazily
9222 for the same reason as above. */
9223 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9224 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9227 /* On non-VxWorks targets, the first two entries in .got.plt
9229 if (!htab->is_vxworks)
9231 += (get_elf_backend_data (dynobj)->got_header_size
9232 / MIPS_ELF_GOT_SIZE (dynobj));
9234 /* On VxWorks, also allocate room for the header's
9235 .rela.plt.unloaded entries. */
9236 if (htab->is_vxworks && !bfd_link_pic (info))
9237 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9239 /* Now work out the sizes of individual PLT entries. */
9240 if (htab->is_vxworks && bfd_link_pic (info))
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9243 else if (htab->is_vxworks)
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9247 htab->plt_mips_entry_size
9248 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9249 else if (!micromips_p)
9251 htab->plt_mips_entry_size
9252 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9253 htab->plt_comp_entry_size
9254 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9256 else if (htab->insn32)
9258 htab->plt_mips_entry_size
9259 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9260 htab->plt_comp_entry_size
9261 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9265 htab->plt_mips_entry_size
9266 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9267 htab->plt_comp_entry_size
9268 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9272 if (h->plt.plist == NULL)
9273 h->plt.plist = mips_elf_make_plt_record (dynobj);
9274 if (h->plt.plist == NULL)
9277 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9278 n32 or n64, so always use a standard entry there.
9280 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9281 all MIPS16 calls will go via that stub, and there is no benefit
9282 to having a MIPS16 entry. And in the case of call_stub a
9283 standard entry actually has to be used as the stub ends with a J
9288 || hmips->call_fp_stub)
9290 h->plt.plist->need_mips = TRUE;
9291 h->plt.plist->need_comp = FALSE;
9294 /* Otherwise, if there are no direct calls to the function, we
9295 have a free choice of whether to use standard or compressed
9296 entries. Prefer microMIPS entries if the object is known to
9297 contain microMIPS code, so that it becomes possible to create
9298 pure microMIPS binaries. Prefer standard entries otherwise,
9299 because MIPS16 ones are no smaller and are usually slower. */
9300 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9303 h->plt.plist->need_comp = TRUE;
9305 h->plt.plist->need_mips = TRUE;
9308 if (h->plt.plist->need_mips)
9310 h->plt.plist->mips_offset = htab->plt_mips_offset;
9311 htab->plt_mips_offset += htab->plt_mips_entry_size;
9313 if (h->plt.plist->need_comp)
9315 h->plt.plist->comp_offset = htab->plt_comp_offset;
9316 htab->plt_comp_offset += htab->plt_comp_entry_size;
9319 /* Reserve the corresponding .got.plt entry now too. */
9320 h->plt.plist->gotplt_index = htab->plt_got_index++;
9322 /* If the output file has no definition of the symbol, set the
9323 symbol's value to the address of the stub. */
9324 if (!bfd_link_pic (info) && !h->def_regular)
9325 hmips->use_plt_entry = TRUE;
9327 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9328 htab->root.srelplt->size += (htab->is_vxworks
9329 ? MIPS_ELF_RELA_SIZE (dynobj)
9330 : MIPS_ELF_REL_SIZE (dynobj));
9332 /* Make room for the .rela.plt.unloaded relocations. */
9333 if (htab->is_vxworks && !bfd_link_pic (info))
9334 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9336 /* All relocations against this symbol that could have been made
9337 dynamic will now refer to the PLT entry instead. */
9338 hmips->possibly_dynamic_relocs = 0;
9343 /* If this is a weak symbol, and there is a real definition, the
9344 processor independent code will have arranged for us to see the
9345 real definition first, and we can just use the same value. */
9346 if (h->u.weakdef != NULL)
9348 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9349 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9350 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9351 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9355 /* Otherwise, there is nothing further to do for symbols defined
9356 in regular objects. */
9360 /* There's also nothing more to do if we'll convert all relocations
9361 against this symbol into dynamic relocations. */
9362 if (!hmips->has_static_relocs)
9365 /* We're now relying on copy relocations. Complain if we have
9366 some that we can't convert. */
9367 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9369 _bfd_error_handler (_("non-dynamic relocations refer to "
9370 "dynamic symbol %s"),
9371 h->root.root.string);
9372 bfd_set_error (bfd_error_bad_value);
9376 /* We must allocate the symbol in our .dynbss section, which will
9377 become part of the .bss section of the executable. There will be
9378 an entry for this symbol in the .dynsym section. The dynamic
9379 object will contain position independent code, so all references
9380 from the dynamic object to this symbol will go through the global
9381 offset table. The dynamic linker will use the .dynsym entry to
9382 determine the address it must put in the global offset table, so
9383 both the dynamic object and the regular object will refer to the
9384 same memory location for the variable. */
9386 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9388 if (htab->is_vxworks)
9389 htab->srelbss->size += sizeof (Elf32_External_Rela);
9391 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9395 /* All relocations against this symbol that could have been made
9396 dynamic will now refer to the local copy instead. */
9397 hmips->possibly_dynamic_relocs = 0;
9399 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9402 /* This function is called after all the input files have been read,
9403 and the input sections have been assigned to output sections. We
9404 check for any mips16 stub sections that we can discard. */
9407 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9408 struct bfd_link_info *info)
9411 struct mips_elf_link_hash_table *htab;
9412 struct mips_htab_traverse_info hti;
9414 htab = mips_elf_hash_table (info);
9415 BFD_ASSERT (htab != NULL);
9417 /* The .reginfo section has a fixed size. */
9418 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9420 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9422 /* The .MIPS.abiflags section has a fixed size. */
9423 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9425 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9428 hti.output_bfd = output_bfd;
9430 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9431 mips_elf_check_symbols, &hti);
9438 /* If the link uses a GOT, lay it out and work out its size. */
9441 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9445 struct mips_got_info *g;
9446 bfd_size_type loadable_size = 0;
9447 bfd_size_type page_gotno;
9449 struct mips_elf_traverse_got_arg tga;
9450 struct mips_elf_link_hash_table *htab;
9452 htab = mips_elf_hash_table (info);
9453 BFD_ASSERT (htab != NULL);
9455 s = htab->root.sgot;
9459 dynobj = elf_hash_table (info)->dynobj;
9462 /* Allocate room for the reserved entries. VxWorks always reserves
9463 3 entries; other objects only reserve 2 entries. */
9464 BFD_ASSERT (g->assigned_low_gotno == 0);
9465 if (htab->is_vxworks)
9466 htab->reserved_gotno = 3;
9468 htab->reserved_gotno = 2;
9469 g->local_gotno += htab->reserved_gotno;
9470 g->assigned_low_gotno = htab->reserved_gotno;
9472 /* Decide which symbols need to go in the global part of the GOT and
9473 count the number of reloc-only GOT symbols. */
9474 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9476 if (!mips_elf_resolve_final_got_entries (info, g))
9479 /* Calculate the total loadable size of the output. That
9480 will give us the maximum number of GOT_PAGE entries
9482 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9484 asection *subsection;
9486 for (subsection = ibfd->sections;
9488 subsection = subsection->next)
9490 if ((subsection->flags & SEC_ALLOC) == 0)
9492 loadable_size += ((subsection->size + 0xf)
9493 &~ (bfd_size_type) 0xf);
9497 if (htab->is_vxworks)
9498 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9499 relocations against local symbols evaluate to "G", and the EABI does
9500 not include R_MIPS_GOT_PAGE. */
9503 /* Assume there are two loadable segments consisting of contiguous
9504 sections. Is 5 enough? */
9505 page_gotno = (loadable_size >> 16) + 5;
9507 /* Choose the smaller of the two page estimates; both are intended to be
9509 if (page_gotno > g->page_gotno)
9510 page_gotno = g->page_gotno;
9512 g->local_gotno += page_gotno;
9513 g->assigned_high_gotno = g->local_gotno - 1;
9515 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9516 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9517 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9519 /* VxWorks does not support multiple GOTs. It initializes $gp to
9520 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9522 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9524 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9529 /* Record that all bfds use G. This also has the effect of freeing
9530 the per-bfd GOTs, which we no longer need. */
9531 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9532 if (mips_elf_bfd_got (ibfd, FALSE))
9533 mips_elf_replace_bfd_got (ibfd, g);
9534 mips_elf_replace_bfd_got (output_bfd, g);
9536 /* Set up TLS entries. */
9537 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9540 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9541 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9544 BFD_ASSERT (g->tls_assigned_gotno
9545 == g->global_gotno + g->local_gotno + g->tls_gotno);
9547 /* Each VxWorks GOT entry needs an explicit relocation. */
9548 if (htab->is_vxworks && bfd_link_pic (info))
9549 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9551 /* Allocate room for the TLS relocations. */
9553 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9559 /* Estimate the size of the .MIPS.stubs section. */
9562 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9564 struct mips_elf_link_hash_table *htab;
9565 bfd_size_type dynsymcount;
9567 htab = mips_elf_hash_table (info);
9568 BFD_ASSERT (htab != NULL);
9570 if (htab->lazy_stub_count == 0)
9573 /* IRIX rld assumes that a function stub isn't at the end of the .text
9574 section, so add a dummy entry to the end. */
9575 htab->lazy_stub_count++;
9577 /* Get a worst-case estimate of the number of dynamic symbols needed.
9578 At this point, dynsymcount does not account for section symbols
9579 and count_section_dynsyms may overestimate the number that will
9581 dynsymcount = (elf_hash_table (info)->dynsymcount
9582 + count_section_dynsyms (output_bfd, info));
9584 /* Determine the size of one stub entry. There's no disadvantage
9585 from using microMIPS code here, so for the sake of pure-microMIPS
9586 binaries we prefer it whenever there's any microMIPS code in
9587 output produced at all. This has a benefit of stubs being
9588 shorter by 4 bytes each too, unless in the insn32 mode. */
9589 if (!MICROMIPS_P (output_bfd))
9590 htab->function_stub_size = (dynsymcount > 0x10000
9591 ? MIPS_FUNCTION_STUB_BIG_SIZE
9592 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9593 else if (htab->insn32)
9594 htab->function_stub_size = (dynsymcount > 0x10000
9595 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9596 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9598 htab->function_stub_size = (dynsymcount > 0x10000
9599 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9600 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9602 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9605 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9606 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9607 stub, allocate an entry in the stubs section. */
9610 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9612 struct mips_htab_traverse_info *hti = data;
9613 struct mips_elf_link_hash_table *htab;
9614 struct bfd_link_info *info;
9618 output_bfd = hti->output_bfd;
9619 htab = mips_elf_hash_table (info);
9620 BFD_ASSERT (htab != NULL);
9622 if (h->needs_lazy_stub)
9624 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9625 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9626 bfd_vma isa_bit = micromips_p;
9628 BFD_ASSERT (htab->root.dynobj != NULL);
9629 if (h->root.plt.plist == NULL)
9630 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9631 if (h->root.plt.plist == NULL)
9636 h->root.root.u.def.section = htab->sstubs;
9637 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9638 h->root.plt.plist->stub_offset = htab->sstubs->size;
9639 h->root.other = other;
9640 htab->sstubs->size += htab->function_stub_size;
9645 /* Allocate offsets in the stubs section to each symbol that needs one.
9646 Set the final size of the .MIPS.stub section. */
9649 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9651 bfd *output_bfd = info->output_bfd;
9652 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9653 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9654 bfd_vma isa_bit = micromips_p;
9655 struct mips_elf_link_hash_table *htab;
9656 struct mips_htab_traverse_info hti;
9657 struct elf_link_hash_entry *h;
9660 htab = mips_elf_hash_table (info);
9661 BFD_ASSERT (htab != NULL);
9663 if (htab->lazy_stub_count == 0)
9666 htab->sstubs->size = 0;
9668 hti.output_bfd = output_bfd;
9670 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9673 htab->sstubs->size += htab->function_stub_size;
9674 BFD_ASSERT (htab->sstubs->size
9675 == htab->lazy_stub_count * htab->function_stub_size);
9677 dynobj = elf_hash_table (info)->dynobj;
9678 BFD_ASSERT (dynobj != NULL);
9679 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9682 h->root.u.def.value = isa_bit;
9689 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9690 bfd_link_info. If H uses the address of a PLT entry as the value
9691 of the symbol, then set the entry in the symbol table now. Prefer
9692 a standard MIPS PLT entry. */
9695 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9697 struct bfd_link_info *info = data;
9698 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9699 struct mips_elf_link_hash_table *htab;
9704 htab = mips_elf_hash_table (info);
9705 BFD_ASSERT (htab != NULL);
9707 if (h->use_plt_entry)
9709 BFD_ASSERT (h->root.plt.plist != NULL);
9710 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9711 || h->root.plt.plist->comp_offset != MINUS_ONE);
9713 val = htab->plt_header_size;
9714 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9717 val += h->root.plt.plist->mips_offset;
9723 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9724 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9727 /* For VxWorks, point at the PLT load stub rather than the lazy
9728 resolution stub; this stub will become the canonical function
9730 if (htab->is_vxworks)
9733 h->root.root.u.def.section = htab->root.splt;
9734 h->root.root.u.def.value = val;
9735 h->root.other = other;
9741 /* Set the sizes of the dynamic sections. */
9744 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9745 struct bfd_link_info *info)
9748 asection *s, *sreldyn;
9749 bfd_boolean reltext;
9750 struct mips_elf_link_hash_table *htab;
9752 htab = mips_elf_hash_table (info);
9753 BFD_ASSERT (htab != NULL);
9754 dynobj = elf_hash_table (info)->dynobj;
9755 BFD_ASSERT (dynobj != NULL);
9757 if (elf_hash_table (info)->dynamic_sections_created)
9759 /* Set the contents of the .interp section to the interpreter. */
9760 if (bfd_link_executable (info) && !info->nointerp)
9762 s = bfd_get_linker_section (dynobj, ".interp");
9763 BFD_ASSERT (s != NULL);
9765 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9767 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9770 /* Figure out the size of the PLT header if we know that we
9771 are using it. For the sake of cache alignment always use
9772 a standard header whenever any standard entries are present
9773 even if microMIPS entries are present as well. This also
9774 lets the microMIPS header rely on the value of $v0 only set
9775 by microMIPS entries, for a small size reduction.
9777 Set symbol table entry values for symbols that use the
9778 address of their PLT entry now that we can calculate it.
9780 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9781 haven't already in _bfd_elf_create_dynamic_sections. */
9782 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9784 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9785 && !htab->plt_mips_offset);
9786 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9787 bfd_vma isa_bit = micromips_p;
9788 struct elf_link_hash_entry *h;
9791 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9792 BFD_ASSERT (htab->root.sgotplt->size == 0);
9793 BFD_ASSERT (htab->root.splt->size == 0);
9795 if (htab->is_vxworks && bfd_link_pic (info))
9796 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9797 else if (htab->is_vxworks)
9798 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9799 else if (ABI_64_P (output_bfd))
9800 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9801 else if (ABI_N32_P (output_bfd))
9802 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9803 else if (!micromips_p)
9804 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9805 else if (htab->insn32)
9806 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9808 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9810 htab->plt_header_is_comp = micromips_p;
9811 htab->plt_header_size = size;
9812 htab->root.splt->size = (size
9813 + htab->plt_mips_offset
9814 + htab->plt_comp_offset);
9815 htab->root.sgotplt->size = (htab->plt_got_index
9816 * MIPS_ELF_GOT_SIZE (dynobj));
9818 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9820 if (htab->root.hplt == NULL)
9822 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9823 "_PROCEDURE_LINKAGE_TABLE_");
9824 htab->root.hplt = h;
9829 h = htab->root.hplt;
9830 h->root.u.def.value = isa_bit;
9836 /* Allocate space for global sym dynamic relocs. */
9837 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9839 mips_elf_estimate_stub_size (output_bfd, info);
9841 if (!mips_elf_lay_out_got (output_bfd, info))
9844 mips_elf_lay_out_lazy_stubs (info);
9846 /* The check_relocs and adjust_dynamic_symbol entry points have
9847 determined the sizes of the various dynamic sections. Allocate
9850 for (s = dynobj->sections; s != NULL; s = s->next)
9854 /* It's OK to base decisions on the section name, because none
9855 of the dynobj section names depend upon the input files. */
9856 name = bfd_get_section_name (dynobj, s);
9858 if ((s->flags & SEC_LINKER_CREATED) == 0)
9861 if (CONST_STRNEQ (name, ".rel"))
9865 const char *outname;
9868 /* If this relocation section applies to a read only
9869 section, then we probably need a DT_TEXTREL entry.
9870 If the relocation section is .rel(a).dyn, we always
9871 assert a DT_TEXTREL entry rather than testing whether
9872 there exists a relocation to a read only section or
9874 outname = bfd_get_section_name (output_bfd,
9876 target = bfd_get_section_by_name (output_bfd, outname + 4);
9878 && (target->flags & SEC_READONLY) != 0
9879 && (target->flags & SEC_ALLOC) != 0)
9880 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9883 /* We use the reloc_count field as a counter if we need
9884 to copy relocs into the output file. */
9885 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9888 /* If combreloc is enabled, elf_link_sort_relocs() will
9889 sort relocations, but in a different way than we do,
9890 and before we're done creating relocations. Also, it
9891 will move them around between input sections'
9892 relocation's contents, so our sorting would be
9893 broken, so don't let it run. */
9894 info->combreloc = 0;
9897 else if (bfd_link_executable (info)
9898 && ! mips_elf_hash_table (info)->use_rld_obj_head
9899 && CONST_STRNEQ (name, ".rld_map"))
9901 /* We add a room for __rld_map. It will be filled in by the
9902 rtld to contain a pointer to the _r_debug structure. */
9903 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9905 else if (SGI_COMPAT (output_bfd)
9906 && CONST_STRNEQ (name, ".compact_rel"))
9907 s->size += mips_elf_hash_table (info)->compact_rel_size;
9908 else if (s == htab->root.splt)
9910 /* If the last PLT entry has a branch delay slot, allocate
9911 room for an extra nop to fill the delay slot. This is
9912 for CPUs without load interlocking. */
9913 if (! LOAD_INTERLOCKS_P (output_bfd)
9914 && ! htab->is_vxworks && s->size > 0)
9917 else if (! CONST_STRNEQ (name, ".init")
9918 && s != htab->root.sgot
9919 && s != htab->root.sgotplt
9920 && s != htab->sstubs
9921 && s != htab->sdynbss)
9923 /* It's not one of our sections, so don't allocate space. */
9929 s->flags |= SEC_EXCLUDE;
9933 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9936 /* Allocate memory for the section contents. */
9937 s->contents = bfd_zalloc (dynobj, s->size);
9938 if (s->contents == NULL)
9940 bfd_set_error (bfd_error_no_memory);
9945 if (elf_hash_table (info)->dynamic_sections_created)
9947 /* Add some entries to the .dynamic section. We fill in the
9948 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9949 must add the entries now so that we get the correct size for
9950 the .dynamic section. */
9952 /* SGI object has the equivalence of DT_DEBUG in the
9953 DT_MIPS_RLD_MAP entry. This must come first because glibc
9954 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9955 may only look at the first one they see. */
9956 if (!bfd_link_pic (info)
9957 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9960 if (bfd_link_executable (info)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9964 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9965 used by the debugger. */
9966 if (bfd_link_executable (info)
9967 && !SGI_COMPAT (output_bfd)
9968 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9971 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9972 info->flags |= DF_TEXTREL;
9974 if ((info->flags & DF_TEXTREL) != 0)
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9979 /* Clear the DF_TEXTREL flag. It will be set again if we
9980 write out an actual text relocation; we may not, because
9981 at this point we do not know whether e.g. any .eh_frame
9982 absolute relocations have been converted to PC-relative. */
9983 info->flags &= ~DF_TEXTREL;
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9989 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9990 if (htab->is_vxworks)
9992 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9993 use any of the DT_MIPS_* tags. */
9994 if (sreldyn && sreldyn->size > 0)
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10008 if (sreldyn && sreldyn->size > 0)
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10041 if (IRIX_COMPAT (dynobj) == ict_irix5
10042 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10045 if (IRIX_COMPAT (dynobj) == ict_irix6
10046 && (bfd_get_section_by_name
10047 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10048 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10051 if (htab->root.splt->size > 0)
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10065 if (htab->is_vxworks
10066 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10073 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10074 Adjust its R_ADDEND field so that it is correct for the output file.
10075 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10076 and sections respectively; both use symbol indexes. */
10079 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10080 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10081 asection **local_sections, Elf_Internal_Rela *rel)
10083 unsigned int r_type, r_symndx;
10084 Elf_Internal_Sym *sym;
10087 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10089 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10090 if (gprel16_reloc_p (r_type)
10091 || r_type == R_MIPS_GPREL32
10092 || literal_reloc_p (r_type))
10094 rel->r_addend += _bfd_get_gp_value (input_bfd);
10095 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10098 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10099 sym = local_syms + r_symndx;
10101 /* Adjust REL's addend to account for section merging. */
10102 if (!bfd_link_relocatable (info))
10104 sec = local_sections[r_symndx];
10105 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10108 /* This would normally be done by the rela_normal code in elflink.c. */
10109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10110 rel->r_addend += local_sections[r_symndx]->output_offset;
10114 /* Handle relocations against symbols from removed linkonce sections,
10115 or sections discarded by a linker script. We use this wrapper around
10116 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10117 on 64-bit ELF targets. In this case for any relocation handled, which
10118 always be the first in a triplet, the remaining two have to be processed
10119 together with the first, even if they are R_MIPS_NONE. It is the symbol
10120 index referred by the first reloc that applies to all the three and the
10121 remaining two never refer to an object symbol. And it is the final
10122 relocation (the last non-null one) that determines the output field of
10123 the whole relocation so retrieve the corresponding howto structure for
10124 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10126 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10127 and therefore requires to be pasted in a loop. It also defines a block
10128 and does not protect any of its arguments, hence the extra brackets. */
10131 mips_reloc_against_discarded_section (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 bfd *input_bfd, asection *input_section,
10134 Elf_Internal_Rela **rel,
10135 const Elf_Internal_Rela **relend,
10136 bfd_boolean rel_reloc,
10137 reloc_howto_type *howto,
10138 bfd_byte *contents)
10140 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10141 int count = bed->s->int_rels_per_ext_rel;
10142 unsigned int r_type;
10145 for (i = count - 1; i > 0; i--)
10147 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10148 if (r_type != R_MIPS_NONE)
10150 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10156 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10157 (*rel), count, (*relend),
10158 howto, i, contents);
10163 /* Relocate a MIPS ELF section. */
10166 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10167 bfd *input_bfd, asection *input_section,
10168 bfd_byte *contents, Elf_Internal_Rela *relocs,
10169 Elf_Internal_Sym *local_syms,
10170 asection **local_sections)
10172 Elf_Internal_Rela *rel;
10173 const Elf_Internal_Rela *relend;
10174 bfd_vma addend = 0;
10175 bfd_boolean use_saved_addend_p = FALSE;
10176 const struct elf_backend_data *bed;
10178 bed = get_elf_backend_data (output_bfd);
10179 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10180 for (rel = relocs; rel < relend; ++rel)
10184 reloc_howto_type *howto;
10185 bfd_boolean cross_mode_jump_p = FALSE;
10186 /* TRUE if the relocation is a RELA relocation, rather than a
10188 bfd_boolean rela_relocation_p = TRUE;
10189 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10191 unsigned long r_symndx;
10193 Elf_Internal_Shdr *symtab_hdr;
10194 struct elf_link_hash_entry *h;
10195 bfd_boolean rel_reloc;
10197 rel_reloc = (NEWABI_P (input_bfd)
10198 && mips_elf_rel_relocation_p (input_bfd, input_section,
10200 /* Find the relocation howto for this relocation. */
10201 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10203 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10205 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10207 sec = local_sections[r_symndx];
10212 unsigned long extsymoff;
10215 if (!elf_bad_symtab (input_bfd))
10216 extsymoff = symtab_hdr->sh_info;
10217 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10218 while (h->root.type == bfd_link_hash_indirect
10219 || h->root.type == bfd_link_hash_warning)
10220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10223 if (h->root.type == bfd_link_hash_defined
10224 || h->root.type == bfd_link_hash_defweak)
10225 sec = h->root.u.def.section;
10228 if (sec != NULL && discarded_section (sec))
10230 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10231 input_section, &rel, &relend,
10232 rel_reloc, howto, contents);
10236 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10238 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10239 64-bit code, but make sure all their addresses are in the
10240 lowermost or uppermost 32-bit section of the 64-bit address
10241 space. Thus, when they use an R_MIPS_64 they mean what is
10242 usually meant by R_MIPS_32, with the exception that the
10243 stored value is sign-extended to 64 bits. */
10244 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10246 /* On big-endian systems, we need to lie about the position
10248 if (bfd_big_endian (input_bfd))
10249 rel->r_offset += 4;
10252 if (!use_saved_addend_p)
10254 /* If these relocations were originally of the REL variety,
10255 we must pull the addend out of the field that will be
10256 relocated. Otherwise, we simply use the contents of the
10257 RELA relocation. */
10258 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10261 rela_relocation_p = FALSE;
10262 addend = mips_elf_read_rel_addend (input_bfd, rel,
10264 if (hi16_reloc_p (r_type)
10265 || (got16_reloc_p (r_type)
10266 && mips_elf_local_relocation_p (input_bfd, rel,
10269 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10270 contents, &addend))
10273 name = h->root.root.string;
10275 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10276 local_syms + r_symndx,
10279 /* xgettext:c-format */
10280 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10281 input_bfd, input_section, name, howto->name,
10286 addend <<= howto->rightshift;
10289 addend = rel->r_addend;
10290 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10291 local_syms, local_sections, rel);
10294 if (bfd_link_relocatable (info))
10296 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10297 && bfd_big_endian (input_bfd))
10298 rel->r_offset -= 4;
10300 if (!rela_relocation_p && rel->r_addend)
10302 addend += rel->r_addend;
10303 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10304 addend = mips_elf_high (addend);
10305 else if (r_type == R_MIPS_HIGHER)
10306 addend = mips_elf_higher (addend);
10307 else if (r_type == R_MIPS_HIGHEST)
10308 addend = mips_elf_highest (addend);
10310 addend >>= howto->rightshift;
10312 /* We use the source mask, rather than the destination
10313 mask because the place to which we are writing will be
10314 source of the addend in the final link. */
10315 addend &= howto->src_mask;
10317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10318 /* See the comment above about using R_MIPS_64 in the 32-bit
10319 ABI. Here, we need to update the addend. It would be
10320 possible to get away with just using the R_MIPS_32 reloc
10321 but for endianness. */
10327 if (addend & ((bfd_vma) 1 << 31))
10329 sign_bits = ((bfd_vma) 1 << 32) - 1;
10336 /* If we don't know that we have a 64-bit type,
10337 do two separate stores. */
10338 if (bfd_big_endian (input_bfd))
10340 /* Store the sign-bits (which are most significant)
10342 low_bits = sign_bits;
10343 high_bits = addend;
10348 high_bits = sign_bits;
10350 bfd_put_32 (input_bfd, low_bits,
10351 contents + rel->r_offset);
10352 bfd_put_32 (input_bfd, high_bits,
10353 contents + rel->r_offset + 4);
10357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10358 input_bfd, input_section,
10363 /* Go on to the next relocation. */
10367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10368 relocations for the same offset. In that case we are
10369 supposed to treat the output of each relocation as the addend
10371 if (rel + 1 < relend
10372 && rel->r_offset == rel[1].r_offset
10373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10374 use_saved_addend_p = TRUE;
10376 use_saved_addend_p = FALSE;
10378 /* Figure out what value we are supposed to relocate. */
10379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10380 input_section, info, rel,
10381 addend, howto, local_syms,
10382 local_sections, &value,
10383 &name, &cross_mode_jump_p,
10384 use_saved_addend_p))
10386 case bfd_reloc_continue:
10387 /* There's nothing to do. */
10390 case bfd_reloc_undefined:
10391 /* mips_elf_calculate_relocation already called the
10392 undefined_symbol callback. There's no real point in
10393 trying to perform the relocation at this point, so we
10394 just skip ahead to the next relocation. */
10397 case bfd_reloc_notsupported:
10398 msg = _("internal error: unsupported relocation error");
10399 info->callbacks->warning
10400 (info, msg, name, input_bfd, input_section, rel->r_offset);
10403 case bfd_reloc_overflow:
10404 if (use_saved_addend_p)
10405 /* Ignore overflow until we reach the last relocation for
10406 a given location. */
10410 struct mips_elf_link_hash_table *htab;
10412 htab = mips_elf_hash_table (info);
10413 BFD_ASSERT (htab != NULL);
10414 BFD_ASSERT (name != NULL);
10415 if (!htab->small_data_overflow_reported
10416 && (gprel16_reloc_p (howto->type)
10417 || literal_reloc_p (howto->type)))
10419 msg = _("small-data section exceeds 64KB;"
10420 " lower small-data size limit (see option -G)");
10422 htab->small_data_overflow_reported = TRUE;
10423 (*info->callbacks->einfo) ("%P: %s\n", msg);
10425 (*info->callbacks->reloc_overflow)
10426 (info, NULL, name, howto->name, (bfd_vma) 0,
10427 input_bfd, input_section, rel->r_offset);
10434 case bfd_reloc_outofrange:
10436 if (jal_reloc_p (howto->type))
10437 msg = (cross_mode_jump_p
10438 ? _("Cannot convert a jump to JALX "
10439 "for a non-word-aligned address")
10440 : (howto->type == R_MIPS16_26
10441 ? _("Jump to a non-word-aligned address")
10442 : _("Jump to a non-instruction-aligned address")));
10443 else if (b_reloc_p (howto->type))
10444 msg = (cross_mode_jump_p
10445 ? _("Cannot convert a branch to JALX "
10446 "for a non-word-aligned address")
10447 : _("Branch to a non-instruction-aligned address"));
10448 else if (aligned_pcrel_reloc_p (howto->type))
10449 msg = _("PC-relative load from unaligned address");
10452 info->callbacks->einfo
10453 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10456 /* Fall through. */
10463 /* If we've got another relocation for the address, keep going
10464 until we reach the last one. */
10465 if (use_saved_addend_p)
10471 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10472 /* See the comment above about using R_MIPS_64 in the 32-bit
10473 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10474 that calculated the right value. Now, however, we
10475 sign-extend the 32-bit result to 64-bits, and store it as a
10476 64-bit value. We are especially generous here in that we
10477 go to extreme lengths to support this usage on systems with
10478 only a 32-bit VMA. */
10484 if (value & ((bfd_vma) 1 << 31))
10486 sign_bits = ((bfd_vma) 1 << 32) - 1;
10493 /* If we don't know that we have a 64-bit type,
10494 do two separate stores. */
10495 if (bfd_big_endian (input_bfd))
10497 /* Undo what we did above. */
10498 rel->r_offset -= 4;
10499 /* Store the sign-bits (which are most significant)
10501 low_bits = sign_bits;
10507 high_bits = sign_bits;
10509 bfd_put_32 (input_bfd, low_bits,
10510 contents + rel->r_offset);
10511 bfd_put_32 (input_bfd, high_bits,
10512 contents + rel->r_offset + 4);
10516 /* Actually perform the relocation. */
10517 if (! mips_elf_perform_relocation (info, howto, rel, value,
10518 input_bfd, input_section,
10519 contents, cross_mode_jump_p))
10526 /* A function that iterates over each entry in la25_stubs and fills
10527 in the code for each one. DATA points to a mips_htab_traverse_info. */
10530 mips_elf_create_la25_stub (void **slot, void *data)
10532 struct mips_htab_traverse_info *hti;
10533 struct mips_elf_link_hash_table *htab;
10534 struct mips_elf_la25_stub *stub;
10537 bfd_vma offset, target, target_high, target_low;
10539 stub = (struct mips_elf_la25_stub *) *slot;
10540 hti = (struct mips_htab_traverse_info *) data;
10541 htab = mips_elf_hash_table (hti->info);
10542 BFD_ASSERT (htab != NULL);
10544 /* Create the section contents, if we haven't already. */
10545 s = stub->stub_section;
10549 loc = bfd_malloc (s->size);
10558 /* Work out where in the section this stub should go. */
10559 offset = stub->offset;
10561 /* Work out the target address. */
10562 target = mips_elf_get_la25_target (stub, &s);
10563 target += s->output_section->vma + s->output_offset;
10565 target_high = ((target + 0x8000) >> 16) & 0xffff;
10566 target_low = (target & 0xffff);
10568 if (stub->stub_section != htab->strampoline)
10570 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10571 of the section and write the two instructions at the end. */
10572 memset (loc, 0, offset);
10574 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10576 bfd_put_micromips_32 (hti->output_bfd,
10577 LA25_LUI_MICROMIPS (target_high),
10579 bfd_put_micromips_32 (hti->output_bfd,
10580 LA25_ADDIU_MICROMIPS (target_low),
10585 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10586 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10591 /* This is trampoline. */
10593 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10595 bfd_put_micromips_32 (hti->output_bfd,
10596 LA25_LUI_MICROMIPS (target_high), loc);
10597 bfd_put_micromips_32 (hti->output_bfd,
10598 LA25_J_MICROMIPS (target), loc + 4);
10599 bfd_put_micromips_32 (hti->output_bfd,
10600 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10601 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10605 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10606 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10607 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10608 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10614 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10615 adjust it appropriately now. */
10618 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10619 const char *name, Elf_Internal_Sym *sym)
10621 /* The linker script takes care of providing names and values for
10622 these, but we must place them into the right sections. */
10623 static const char* const text_section_symbols[] = {
10626 "__dso_displacement",
10628 "__program_header_table",
10632 static const char* const data_section_symbols[] = {
10640 const char* const *p;
10643 for (i = 0; i < 2; ++i)
10644 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10647 if (strcmp (*p, name) == 0)
10649 /* All of these symbols are given type STT_SECTION by the
10651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10652 sym->st_other = STO_PROTECTED;
10654 /* The IRIX linker puts these symbols in special sections. */
10656 sym->st_shndx = SHN_MIPS_TEXT;
10658 sym->st_shndx = SHN_MIPS_DATA;
10664 /* Finish up dynamic symbol handling. We set the contents of various
10665 dynamic sections here. */
10668 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10669 struct bfd_link_info *info,
10670 struct elf_link_hash_entry *h,
10671 Elf_Internal_Sym *sym)
10675 struct mips_got_info *g, *gg;
10678 struct mips_elf_link_hash_table *htab;
10679 struct mips_elf_link_hash_entry *hmips;
10681 htab = mips_elf_hash_table (info);
10682 BFD_ASSERT (htab != NULL);
10683 dynobj = elf_hash_table (info)->dynobj;
10684 hmips = (struct mips_elf_link_hash_entry *) h;
10686 BFD_ASSERT (!htab->is_vxworks);
10688 if (h->plt.plist != NULL
10689 && (h->plt.plist->mips_offset != MINUS_ONE
10690 || h->plt.plist->comp_offset != MINUS_ONE))
10692 /* We've decided to create a PLT entry for this symbol. */
10694 bfd_vma header_address, got_address;
10695 bfd_vma got_address_high, got_address_low, load;
10699 got_index = h->plt.plist->gotplt_index;
10701 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10702 BFD_ASSERT (h->dynindx != -1);
10703 BFD_ASSERT (htab->root.splt != NULL);
10704 BFD_ASSERT (got_index != MINUS_ONE);
10705 BFD_ASSERT (!h->def_regular);
10707 /* Calculate the address of the PLT header. */
10708 isa_bit = htab->plt_header_is_comp;
10709 header_address = (htab->root.splt->output_section->vma
10710 + htab->root.splt->output_offset + isa_bit);
10712 /* Calculate the address of the .got.plt entry. */
10713 got_address = (htab->root.sgotplt->output_section->vma
10714 + htab->root.sgotplt->output_offset
10715 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10717 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10718 got_address_low = got_address & 0xffff;
10720 /* Initially point the .got.plt entry at the PLT header. */
10721 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10722 if (ABI_64_P (output_bfd))
10723 bfd_put_64 (output_bfd, header_address, loc);
10725 bfd_put_32 (output_bfd, header_address, loc);
10727 /* Now handle the PLT itself. First the standard entry (the order
10728 does not matter, we just have to pick one). */
10729 if (h->plt.plist->mips_offset != MINUS_ONE)
10731 const bfd_vma *plt_entry;
10732 bfd_vma plt_offset;
10734 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10736 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10738 /* Find out where the .plt entry should go. */
10739 loc = htab->root.splt->contents + plt_offset;
10741 /* Pick the load opcode. */
10742 load = MIPS_ELF_LOAD_WORD (output_bfd);
10744 /* Fill in the PLT entry itself. */
10746 if (MIPSR6_P (output_bfd))
10747 plt_entry = mipsr6_exec_plt_entry;
10749 plt_entry = mips_exec_plt_entry;
10750 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10751 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10754 if (! LOAD_INTERLOCKS_P (output_bfd))
10756 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10757 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10761 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10767 /* Now the compressed entry. They come after any standard ones. */
10768 if (h->plt.plist->comp_offset != MINUS_ONE)
10770 bfd_vma plt_offset;
10772 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10773 + h->plt.plist->comp_offset);
10775 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10777 /* Find out where the .plt entry should go. */
10778 loc = htab->root.splt->contents + plt_offset;
10780 /* Fill in the PLT entry itself. */
10781 if (!MICROMIPS_P (output_bfd))
10783 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10785 bfd_put_16 (output_bfd, plt_entry[0], loc);
10786 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10787 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10788 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10789 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10790 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10791 bfd_put_32 (output_bfd, got_address, loc + 12);
10793 else if (htab->insn32)
10795 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10797 bfd_put_16 (output_bfd, plt_entry[0], loc);
10798 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10799 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10800 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10801 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10802 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10803 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10804 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10808 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10809 bfd_signed_vma gotpc_offset;
10810 bfd_vma loc_address;
10812 BFD_ASSERT (got_address % 4 == 0);
10814 loc_address = (htab->root.splt->output_section->vma
10815 + htab->root.splt->output_offset + plt_offset);
10816 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10818 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10819 if (gotpc_offset + 0x1000000 >= 0x2000000)
10822 /* xgettext:c-format */
10823 (_("%B: `%A' offset of %ld from `%A' "
10824 "beyond the range of ADDIUPC"),
10826 htab->root.sgotplt->output_section,
10827 htab->root.splt->output_section,
10828 (long) gotpc_offset);
10829 bfd_set_error (bfd_error_no_error);
10832 bfd_put_16 (output_bfd,
10833 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10834 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10835 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10836 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10837 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10838 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10842 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10843 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10844 got_index - 2, h->dynindx,
10845 R_MIPS_JUMP_SLOT, got_address);
10847 /* We distinguish between PLT entries and lazy-binding stubs by
10848 giving the former an st_other value of STO_MIPS_PLT. Set the
10849 flag and leave the value if there are any relocations in the
10850 binary where pointer equality matters. */
10851 sym->st_shndx = SHN_UNDEF;
10852 if (h->pointer_equality_needed)
10853 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10861 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10863 /* We've decided to create a lazy-binding stub. */
10864 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10865 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10866 bfd_vma stub_size = htab->function_stub_size;
10867 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10868 bfd_vma isa_bit = micromips_p;
10869 bfd_vma stub_big_size;
10872 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10873 else if (htab->insn32)
10874 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10876 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10878 /* This symbol has a stub. Set it up. */
10880 BFD_ASSERT (h->dynindx != -1);
10882 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10884 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10885 sign extension at runtime in the stub, resulting in a negative
10887 if (h->dynindx & ~0x7fffffff)
10890 /* Fill the stub. */
10894 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10899 bfd_put_micromips_32 (output_bfd,
10900 STUB_MOVE32_MICROMIPS, stub + idx);
10905 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10908 if (stub_size == stub_big_size)
10910 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10912 bfd_put_micromips_32 (output_bfd,
10913 STUB_LUI_MICROMIPS (dynindx_hi),
10919 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10925 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10929 /* If a large stub is not required and sign extension is not a
10930 problem, then use legacy code in the stub. */
10931 if (stub_size == stub_big_size)
10932 bfd_put_micromips_32 (output_bfd,
10933 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10935 else if (h->dynindx & ~0x7fff)
10936 bfd_put_micromips_32 (output_bfd,
10937 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10940 bfd_put_micromips_32 (output_bfd,
10941 STUB_LI16S_MICROMIPS (output_bfd,
10948 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10950 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10952 if (stub_size == stub_big_size)
10954 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10958 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10961 /* If a large stub is not required and sign extension is not a
10962 problem, then use legacy code in the stub. */
10963 if (stub_size == stub_big_size)
10964 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10966 else if (h->dynindx & ~0x7fff)
10967 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10970 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10974 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10975 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10978 /* Mark the symbol as undefined. stub_offset != -1 occurs
10979 only for the referenced symbol. */
10980 sym->st_shndx = SHN_UNDEF;
10982 /* The run-time linker uses the st_value field of the symbol
10983 to reset the global offset table entry for this external
10984 to its stub address when unlinking a shared object. */
10985 sym->st_value = (htab->sstubs->output_section->vma
10986 + htab->sstubs->output_offset
10987 + h->plt.plist->stub_offset
10989 sym->st_other = other;
10992 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10993 refer to the stub, since only the stub uses the standard calling
10995 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10997 BFD_ASSERT (hmips->need_fn_stub);
10998 sym->st_value = (hmips->fn_stub->output_section->vma
10999 + hmips->fn_stub->output_offset);
11000 sym->st_size = hmips->fn_stub->size;
11001 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11004 BFD_ASSERT (h->dynindx != -1
11005 || h->forced_local);
11007 sgot = htab->root.sgot;
11008 g = htab->got_info;
11009 BFD_ASSERT (g != NULL);
11011 /* Run through the global symbol table, creating GOT entries for all
11012 the symbols that need them. */
11013 if (hmips->global_got_area != GGA_NONE)
11018 value = sym->st_value;
11019 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11020 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11023 if (hmips->global_got_area != GGA_NONE && g->next)
11025 struct mips_got_entry e, *p;
11031 e.abfd = output_bfd;
11034 e.tls_type = GOT_TLS_NONE;
11036 for (g = g->next; g->next != gg; g = g->next)
11039 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11042 offset = p->gotidx;
11043 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11044 if (bfd_link_pic (info)
11045 || (elf_hash_table (info)->dynamic_sections_created
11047 && p->d.h->root.def_dynamic
11048 && !p->d.h->root.def_regular))
11050 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11051 the various compatibility problems, it's easier to mock
11052 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11053 mips_elf_create_dynamic_relocation to calculate the
11054 appropriate addend. */
11055 Elf_Internal_Rela rel[3];
11057 memset (rel, 0, sizeof (rel));
11058 if (ABI_64_P (output_bfd))
11059 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11061 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11062 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11065 if (! (mips_elf_create_dynamic_relocation
11066 (output_bfd, info, rel,
11067 e.d.h, NULL, sym->st_value, &entry, sgot)))
11071 entry = sym->st_value;
11072 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11078 name = h->root.root.string;
11079 if (h == elf_hash_table (info)->hdynamic
11080 || h == elf_hash_table (info)->hgot)
11081 sym->st_shndx = SHN_ABS;
11082 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11083 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11085 sym->st_shndx = SHN_ABS;
11086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11089 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11091 sym->st_shndx = SHN_ABS;
11092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11093 sym->st_value = elf_gp (output_bfd);
11095 else if (SGI_COMPAT (output_bfd))
11097 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11098 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11100 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11101 sym->st_other = STO_PROTECTED;
11103 sym->st_shndx = SHN_MIPS_DATA;
11105 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11107 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11108 sym->st_other = STO_PROTECTED;
11109 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11110 sym->st_shndx = SHN_ABS;
11112 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11114 if (h->type == STT_FUNC)
11115 sym->st_shndx = SHN_MIPS_TEXT;
11116 else if (h->type == STT_OBJECT)
11117 sym->st_shndx = SHN_MIPS_DATA;
11121 /* Emit a copy reloc, if needed. */
11127 BFD_ASSERT (h->dynindx != -1);
11128 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11130 s = mips_elf_rel_dyn_section (info, FALSE);
11131 symval = (h->root.u.def.section->output_section->vma
11132 + h->root.u.def.section->output_offset
11133 + h->root.u.def.value);
11134 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11135 h->dynindx, R_MIPS_COPY, symval);
11138 /* Handle the IRIX6-specific symbols. */
11139 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11140 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11142 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11143 to treat compressed symbols like any other. */
11144 if (ELF_ST_IS_MIPS16 (sym->st_other))
11146 BFD_ASSERT (sym->st_value & 1);
11147 sym->st_other -= STO_MIPS16;
11149 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MICROMIPS;
11158 /* Likewise, for VxWorks. */
11161 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11162 struct bfd_link_info *info,
11163 struct elf_link_hash_entry *h,
11164 Elf_Internal_Sym *sym)
11168 struct mips_got_info *g;
11169 struct mips_elf_link_hash_table *htab;
11170 struct mips_elf_link_hash_entry *hmips;
11172 htab = mips_elf_hash_table (info);
11173 BFD_ASSERT (htab != NULL);
11174 dynobj = elf_hash_table (info)->dynobj;
11175 hmips = (struct mips_elf_link_hash_entry *) h;
11177 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11180 bfd_vma plt_address, got_address, got_offset, branch_offset;
11181 Elf_Internal_Rela rel;
11182 static const bfd_vma *plt_entry;
11183 bfd_vma gotplt_index;
11184 bfd_vma plt_offset;
11186 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11187 gotplt_index = h->plt.plist->gotplt_index;
11189 BFD_ASSERT (h->dynindx != -1);
11190 BFD_ASSERT (htab->root.splt != NULL);
11191 BFD_ASSERT (gotplt_index != MINUS_ONE);
11192 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11194 /* Calculate the address of the .plt entry. */
11195 plt_address = (htab->root.splt->output_section->vma
11196 + htab->root.splt->output_offset
11199 /* Calculate the address of the .got.plt entry. */
11200 got_address = (htab->root.sgotplt->output_section->vma
11201 + htab->root.sgotplt->output_offset
11202 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11204 /* Calculate the offset of the .got.plt entry from
11205 _GLOBAL_OFFSET_TABLE_. */
11206 got_offset = mips_elf_gotplt_index (info, h);
11208 /* Calculate the offset for the branch at the start of the PLT
11209 entry. The branch jumps to the beginning of .plt. */
11210 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11212 /* Fill in the initial value of the .got.plt entry. */
11213 bfd_put_32 (output_bfd, plt_address,
11214 (htab->root.sgotplt->contents
11215 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11217 /* Find out where the .plt entry should go. */
11218 loc = htab->root.splt->contents + plt_offset;
11220 if (bfd_link_pic (info))
11222 plt_entry = mips_vxworks_shared_plt_entry;
11223 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11228 bfd_vma got_address_high, got_address_low;
11230 plt_entry = mips_vxworks_exec_plt_entry;
11231 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11232 got_address_low = got_address & 0xffff;
11234 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11236 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11237 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11238 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11239 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11240 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11241 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243 loc = (htab->srelplt2->contents
11244 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11246 /* Emit a relocation for the .got.plt entry. */
11247 rel.r_offset = got_address;
11248 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11249 rel.r_addend = plt_offset;
11250 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11253 loc += sizeof (Elf32_External_Rela);
11254 rel.r_offset = plt_address + 8;
11255 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11256 rel.r_addend = got_offset;
11257 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11260 loc += sizeof (Elf32_External_Rela);
11262 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11266 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11267 loc = (htab->root.srelplt->contents
11268 + gotplt_index * sizeof (Elf32_External_Rela));
11269 rel.r_offset = got_address;
11270 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11272 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274 if (!h->def_regular)
11275 sym->st_shndx = SHN_UNDEF;
11278 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11280 sgot = htab->root.sgot;
11281 g = htab->got_info;
11282 BFD_ASSERT (g != NULL);
11284 /* See if this symbol has an entry in the GOT. */
11285 if (hmips->global_got_area != GGA_NONE)
11288 Elf_Internal_Rela outrel;
11292 /* Install the symbol value in the GOT. */
11293 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11294 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11296 /* Add a dynamic relocation for it. */
11297 s = mips_elf_rel_dyn_section (info, FALSE);
11298 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11299 outrel.r_offset = (sgot->output_section->vma
11300 + sgot->output_offset
11302 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11303 outrel.r_addend = 0;
11304 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11307 /* Emit a copy reloc, if needed. */
11310 Elf_Internal_Rela rel;
11312 BFD_ASSERT (h->dynindx != -1);
11314 rel.r_offset = (h->root.u.def.section->output_section->vma
11315 + h->root.u.def.section->output_offset
11316 + h->root.u.def.value);
11317 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11319 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11320 htab->srelbss->contents
11321 + (htab->srelbss->reloc_count
11322 * sizeof (Elf32_External_Rela)));
11323 ++htab->srelbss->reloc_count;
11326 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11327 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11328 sym->st_value &= ~1;
11333 /* Write out a plt0 entry to the beginning of .plt. */
11336 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11339 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11340 static const bfd_vma *plt_entry;
11341 struct mips_elf_link_hash_table *htab;
11343 htab = mips_elf_hash_table (info);
11344 BFD_ASSERT (htab != NULL);
11346 if (ABI_64_P (output_bfd))
11347 plt_entry = mips_n64_exec_plt0_entry;
11348 else if (ABI_N32_P (output_bfd))
11349 plt_entry = mips_n32_exec_plt0_entry;
11350 else if (!htab->plt_header_is_comp)
11351 plt_entry = mips_o32_exec_plt0_entry;
11352 else if (htab->insn32)
11353 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11355 plt_entry = micromips_o32_exec_plt0_entry;
11357 /* Calculate the value of .got.plt. */
11358 gotplt_value = (htab->root.sgotplt->output_section->vma
11359 + htab->root.sgotplt->output_offset);
11360 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11361 gotplt_value_low = gotplt_value & 0xffff;
11363 /* The PLT sequence is not safe for N64 if .got.plt's address can
11364 not be loaded in two instructions. */
11365 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11366 || ~(gotplt_value | 0x7fffffff) == 0);
11368 /* Install the PLT header. */
11369 loc = htab->root.splt->contents;
11370 if (plt_entry == micromips_o32_exec_plt0_entry)
11372 bfd_vma gotpc_offset;
11373 bfd_vma loc_address;
11376 BFD_ASSERT (gotplt_value % 4 == 0);
11378 loc_address = (htab->root.splt->output_section->vma
11379 + htab->root.splt->output_offset);
11380 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11382 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11383 if (gotpc_offset + 0x1000000 >= 0x2000000)
11386 /* xgettext:c-format */
11387 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11389 htab->root.sgotplt->output_section,
11390 htab->root.splt->output_section,
11391 (long) gotpc_offset);
11392 bfd_set_error (bfd_error_no_error);
11395 bfd_put_16 (output_bfd,
11396 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11397 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11398 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11399 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11401 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11405 bfd_put_16 (output_bfd, plt_entry[0], loc);
11406 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11407 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11408 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11409 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11410 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11411 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11412 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11416 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11417 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11418 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11419 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11420 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11421 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11422 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11423 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11429 /* Install the PLT header for a VxWorks executable and finalize the
11430 contents of .rela.plt.unloaded. */
11433 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11435 Elf_Internal_Rela rela;
11437 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11438 static const bfd_vma *plt_entry;
11439 struct mips_elf_link_hash_table *htab;
11441 htab = mips_elf_hash_table (info);
11442 BFD_ASSERT (htab != NULL);
11444 plt_entry = mips_vxworks_exec_plt0_entry;
11446 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11447 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11448 + htab->root.hgot->root.u.def.section->output_offset
11449 + htab->root.hgot->root.u.def.value);
11451 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11452 got_value_low = got_value & 0xffff;
11454 /* Calculate the address of the PLT header. */
11455 plt_address = (htab->root.splt->output_section->vma
11456 + htab->root.splt->output_offset);
11458 /* Install the PLT header. */
11459 loc = htab->root.splt->contents;
11460 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11461 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11462 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11463 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11464 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11465 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11467 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11468 loc = htab->srelplt2->contents;
11469 rela.r_offset = plt_address;
11470 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11472 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11473 loc += sizeof (Elf32_External_Rela);
11475 /* Output the relocation for the following addiu of
11476 %lo(_GLOBAL_OFFSET_TABLE_). */
11477 rela.r_offset += 4;
11478 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11479 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11480 loc += sizeof (Elf32_External_Rela);
11482 /* Fix up the remaining relocations. They may have the wrong
11483 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11484 in which symbols were output. */
11485 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11487 Elf_Internal_Rela rel;
11489 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11490 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11491 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492 loc += sizeof (Elf32_External_Rela);
11494 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11495 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11496 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11497 loc += sizeof (Elf32_External_Rela);
11499 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11500 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11502 loc += sizeof (Elf32_External_Rela);
11506 /* Install the PLT header for a VxWorks shared library. */
11509 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11512 struct mips_elf_link_hash_table *htab;
11514 htab = mips_elf_hash_table (info);
11515 BFD_ASSERT (htab != NULL);
11517 /* We just need to copy the entry byte-by-byte. */
11518 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11519 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11520 htab->root.splt->contents + i * 4);
11523 /* Finish up the dynamic sections. */
11526 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11527 struct bfd_link_info *info)
11532 struct mips_got_info *gg, *g;
11533 struct mips_elf_link_hash_table *htab;
11535 htab = mips_elf_hash_table (info);
11536 BFD_ASSERT (htab != NULL);
11538 dynobj = elf_hash_table (info)->dynobj;
11540 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11542 sgot = htab->root.sgot;
11543 gg = htab->got_info;
11545 if (elf_hash_table (info)->dynamic_sections_created)
11548 int dyn_to_skip = 0, dyn_skipped = 0;
11550 BFD_ASSERT (sdyn != NULL);
11551 BFD_ASSERT (gg != NULL);
11553 g = mips_elf_bfd_got (output_bfd, FALSE);
11554 BFD_ASSERT (g != NULL);
11556 for (b = sdyn->contents;
11557 b < sdyn->contents + sdyn->size;
11558 b += MIPS_ELF_DYN_SIZE (dynobj))
11560 Elf_Internal_Dyn dyn;
11564 bfd_boolean swap_out_p;
11566 /* Read in the current dynamic entry. */
11567 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11569 /* Assume that we're going to modify it and write it out. */
11575 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11579 BFD_ASSERT (htab->is_vxworks);
11580 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11584 /* Rewrite DT_STRSZ. */
11586 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11590 s = htab->root.sgot;
11591 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11594 case DT_MIPS_PLTGOT:
11595 s = htab->root.sgotplt;
11596 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11599 case DT_MIPS_RLD_VERSION:
11600 dyn.d_un.d_val = 1; /* XXX */
11603 case DT_MIPS_FLAGS:
11604 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11607 case DT_MIPS_TIME_STAMP:
11611 dyn.d_un.d_val = t;
11615 case DT_MIPS_ICHECKSUM:
11617 swap_out_p = FALSE;
11620 case DT_MIPS_IVERSION:
11622 swap_out_p = FALSE;
11625 case DT_MIPS_BASE_ADDRESS:
11626 s = output_bfd->sections;
11627 BFD_ASSERT (s != NULL);
11628 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11631 case DT_MIPS_LOCAL_GOTNO:
11632 dyn.d_un.d_val = g->local_gotno;
11635 case DT_MIPS_UNREFEXTNO:
11636 /* The index into the dynamic symbol table which is the
11637 entry of the first external symbol that is not
11638 referenced within the same object. */
11639 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11642 case DT_MIPS_GOTSYM:
11643 if (htab->global_gotsym)
11645 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11648 /* In case if we don't have global got symbols we default
11649 to setting DT_MIPS_GOTSYM to the same value as
11650 DT_MIPS_SYMTABNO. */
11651 /* Fall through. */
11653 case DT_MIPS_SYMTABNO:
11655 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11656 s = bfd_get_linker_section (dynobj, name);
11659 dyn.d_un.d_val = s->size / elemsize;
11661 dyn.d_un.d_val = 0;
11664 case DT_MIPS_HIPAGENO:
11665 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11668 case DT_MIPS_RLD_MAP:
11670 struct elf_link_hash_entry *h;
11671 h = mips_elf_hash_table (info)->rld_symbol;
11674 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11675 swap_out_p = FALSE;
11678 s = h->root.u.def.section;
11680 /* The MIPS_RLD_MAP tag stores the absolute address of the
11682 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11683 + h->root.u.def.value);
11687 case DT_MIPS_RLD_MAP_REL:
11689 struct elf_link_hash_entry *h;
11690 bfd_vma dt_addr, rld_addr;
11691 h = mips_elf_hash_table (info)->rld_symbol;
11694 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11695 swap_out_p = FALSE;
11698 s = h->root.u.def.section;
11700 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11701 pointer, relative to the address of the tag. */
11702 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11703 + (b - sdyn->contents));
11704 rld_addr = (s->output_section->vma + s->output_offset
11705 + h->root.u.def.value);
11706 dyn.d_un.d_ptr = rld_addr - dt_addr;
11710 case DT_MIPS_OPTIONS:
11711 s = (bfd_get_section_by_name
11712 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11713 dyn.d_un.d_ptr = s->vma;
11717 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11718 if (htab->is_vxworks)
11719 dyn.d_un.d_val = DT_RELA;
11721 dyn.d_un.d_val = DT_REL;
11725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11726 dyn.d_un.d_val = htab->root.srelplt->size;
11730 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11731 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11732 + htab->root.srelplt->output_offset);
11736 /* If we didn't need any text relocations after all, delete
11737 the dynamic tag. */
11738 if (!(info->flags & DF_TEXTREL))
11740 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11741 swap_out_p = FALSE;
11746 /* If we didn't need any text relocations after all, clear
11747 DF_TEXTREL from DT_FLAGS. */
11748 if (!(info->flags & DF_TEXTREL))
11749 dyn.d_un.d_val &= ~DF_TEXTREL;
11751 swap_out_p = FALSE;
11755 swap_out_p = FALSE;
11756 if (htab->is_vxworks
11757 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11762 if (swap_out_p || dyn_skipped)
11763 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11764 (dynobj, &dyn, b - dyn_skipped);
11768 dyn_skipped += dyn_to_skip;
11773 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11774 if (dyn_skipped > 0)
11775 memset (b - dyn_skipped, 0, dyn_skipped);
11778 if (sgot != NULL && sgot->size > 0
11779 && !bfd_is_abs_section (sgot->output_section))
11781 if (htab->is_vxworks)
11783 /* The first entry of the global offset table points to the
11784 ".dynamic" section. The second is initialized by the
11785 loader and contains the shared library identifier.
11786 The third is also initialized by the loader and points
11787 to the lazy resolution stub. */
11788 MIPS_ELF_PUT_WORD (output_bfd,
11789 sdyn->output_offset + sdyn->output_section->vma,
11791 MIPS_ELF_PUT_WORD (output_bfd, 0,
11792 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11793 MIPS_ELF_PUT_WORD (output_bfd, 0,
11795 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11799 /* The first entry of the global offset table will be filled at
11800 runtime. The second entry will be used by some runtime loaders.
11801 This isn't the case of IRIX rld. */
11802 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11803 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11804 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11807 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11808 = MIPS_ELF_GOT_SIZE (output_bfd);
11811 /* Generate dynamic relocations for the non-primary gots. */
11812 if (gg != NULL && gg->next)
11814 Elf_Internal_Rela rel[3];
11815 bfd_vma addend = 0;
11817 memset (rel, 0, sizeof (rel));
11818 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11820 for (g = gg->next; g->next != gg; g = g->next)
11822 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11823 + g->next->tls_gotno;
11825 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11826 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11827 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11829 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11831 if (! bfd_link_pic (info))
11834 for (; got_index < g->local_gotno; got_index++)
11836 if (got_index >= g->assigned_low_gotno
11837 && got_index <= g->assigned_high_gotno)
11840 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11841 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11842 if (!(mips_elf_create_dynamic_relocation
11843 (output_bfd, info, rel, NULL,
11844 bfd_abs_section_ptr,
11845 0, &addend, sgot)))
11847 BFD_ASSERT (addend == 0);
11852 /* The generation of dynamic relocations for the non-primary gots
11853 adds more dynamic relocations. We cannot count them until
11856 if (elf_hash_table (info)->dynamic_sections_created)
11859 bfd_boolean swap_out_p;
11861 BFD_ASSERT (sdyn != NULL);
11863 for (b = sdyn->contents;
11864 b < sdyn->contents + sdyn->size;
11865 b += MIPS_ELF_DYN_SIZE (dynobj))
11867 Elf_Internal_Dyn dyn;
11870 /* Read in the current dynamic entry. */
11871 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11873 /* Assume that we're going to modify it and write it out. */
11879 /* Reduce DT_RELSZ to account for any relocations we
11880 decided not to make. This is for the n64 irix rld,
11881 which doesn't seem to apply any relocations if there
11882 are trailing null entries. */
11883 s = mips_elf_rel_dyn_section (info, FALSE);
11884 dyn.d_un.d_val = (s->reloc_count
11885 * (ABI_64_P (output_bfd)
11886 ? sizeof (Elf64_Mips_External_Rel)
11887 : sizeof (Elf32_External_Rel)));
11888 /* Adjust the section size too. Tools like the prelinker
11889 can reasonably expect the values to the same. */
11890 elf_section_data (s->output_section)->this_hdr.sh_size
11895 swap_out_p = FALSE;
11900 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11907 Elf32_compact_rel cpt;
11909 if (SGI_COMPAT (output_bfd))
11911 /* Write .compact_rel section out. */
11912 s = bfd_get_linker_section (dynobj, ".compact_rel");
11916 cpt.num = s->reloc_count;
11918 cpt.offset = (s->output_section->filepos
11919 + sizeof (Elf32_External_compact_rel));
11922 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11923 ((Elf32_External_compact_rel *)
11926 /* Clean up a dummy stub function entry in .text. */
11927 if (htab->sstubs != NULL)
11929 file_ptr dummy_offset;
11931 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11932 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11933 memset (htab->sstubs->contents + dummy_offset, 0,
11934 htab->function_stub_size);
11939 /* The psABI says that the dynamic relocations must be sorted in
11940 increasing order of r_symndx. The VxWorks EABI doesn't require
11941 this, and because the code below handles REL rather than RELA
11942 relocations, using it for VxWorks would be outright harmful. */
11943 if (!htab->is_vxworks)
11945 s = mips_elf_rel_dyn_section (info, FALSE);
11947 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11949 reldyn_sorting_bfd = output_bfd;
11951 if (ABI_64_P (output_bfd))
11952 qsort ((Elf64_External_Rel *) s->contents + 1,
11953 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11954 sort_dynamic_relocs_64);
11956 qsort ((Elf32_External_Rel *) s->contents + 1,
11957 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11958 sort_dynamic_relocs);
11963 if (htab->root.splt && htab->root.splt->size > 0)
11965 if (htab->is_vxworks)
11967 if (bfd_link_pic (info))
11968 mips_vxworks_finish_shared_plt (output_bfd, info);
11970 mips_vxworks_finish_exec_plt (output_bfd, info);
11974 BFD_ASSERT (!bfd_link_pic (info));
11975 if (!mips_finish_exec_plt (output_bfd, info))
11983 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11986 mips_set_isa_flags (bfd *abfd)
11990 switch (bfd_get_mach (abfd))
11993 case bfd_mach_mips3000:
11994 val = E_MIPS_ARCH_1;
11997 case bfd_mach_mips3900:
11998 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12001 case bfd_mach_mips6000:
12002 val = E_MIPS_ARCH_2;
12005 case bfd_mach_mips4000:
12006 case bfd_mach_mips4300:
12007 case bfd_mach_mips4400:
12008 case bfd_mach_mips4600:
12009 val = E_MIPS_ARCH_3;
12012 case bfd_mach_mips4010:
12013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12016 case bfd_mach_mips4100:
12017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12020 case bfd_mach_mips4111:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12024 case bfd_mach_mips4120:
12025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12028 case bfd_mach_mips4650:
12029 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12032 case bfd_mach_mips5400:
12033 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12036 case bfd_mach_mips5500:
12037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12040 case bfd_mach_mips5900:
12041 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12044 case bfd_mach_mips9000:
12045 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12048 case bfd_mach_mips5000:
12049 case bfd_mach_mips7000:
12050 case bfd_mach_mips8000:
12051 case bfd_mach_mips10000:
12052 case bfd_mach_mips12000:
12053 case bfd_mach_mips14000:
12054 case bfd_mach_mips16000:
12055 val = E_MIPS_ARCH_4;
12058 case bfd_mach_mips5:
12059 val = E_MIPS_ARCH_5;
12062 case bfd_mach_mips_loongson_2e:
12063 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12066 case bfd_mach_mips_loongson_2f:
12067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12070 case bfd_mach_mips_sb1:
12071 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12074 case bfd_mach_mips_loongson_3a:
12075 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12078 case bfd_mach_mips_octeon:
12079 case bfd_mach_mips_octeonp:
12080 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12083 case bfd_mach_mips_octeon3:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12087 case bfd_mach_mips_xlr:
12088 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12091 case bfd_mach_mips_octeon2:
12092 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12095 case bfd_mach_mipsisa32:
12096 val = E_MIPS_ARCH_32;
12099 case bfd_mach_mipsisa64:
12100 val = E_MIPS_ARCH_64;
12103 case bfd_mach_mipsisa32r2:
12104 case bfd_mach_mipsisa32r3:
12105 case bfd_mach_mipsisa32r5:
12106 val = E_MIPS_ARCH_32R2;
12109 case bfd_mach_mipsisa64r2:
12110 case bfd_mach_mipsisa64r3:
12111 case bfd_mach_mipsisa64r5:
12112 val = E_MIPS_ARCH_64R2;
12115 case bfd_mach_mipsisa32r6:
12116 val = E_MIPS_ARCH_32R6;
12119 case bfd_mach_mipsisa64r6:
12120 val = E_MIPS_ARCH_64R6;
12123 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12124 elf_elfheader (abfd)->e_flags |= val;
12129 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12130 Don't do so for code sections. We want to keep ordering of HI16/LO16
12131 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12132 relocs to be sorted. */
12135 _bfd_mips_elf_sort_relocs_p (asection *sec)
12137 return (sec->flags & SEC_CODE) == 0;
12141 /* The final processing done just before writing out a MIPS ELF object
12142 file. This gets the MIPS architecture right based on the machine
12143 number. This is used by both the 32-bit and the 64-bit ABI. */
12146 _bfd_mips_elf_final_write_processing (bfd *abfd,
12147 bfd_boolean linker ATTRIBUTE_UNUSED)
12150 Elf_Internal_Shdr **hdrpp;
12154 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12155 is nonzero. This is for compatibility with old objects, which used
12156 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12157 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12158 mips_set_isa_flags (abfd);
12160 /* Set the sh_info field for .gptab sections and other appropriate
12161 info for each special section. */
12162 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12163 i < elf_numsections (abfd);
12166 switch ((*hdrpp)->sh_type)
12168 case SHT_MIPS_MSYM:
12169 case SHT_MIPS_LIBLIST:
12170 sec = bfd_get_section_by_name (abfd, ".dynstr");
12172 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12175 case SHT_MIPS_GPTAB:
12176 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12177 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12178 BFD_ASSERT (name != NULL
12179 && CONST_STRNEQ (name, ".gptab."));
12180 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12181 BFD_ASSERT (sec != NULL);
12182 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12185 case SHT_MIPS_CONTENT:
12186 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12187 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12188 BFD_ASSERT (name != NULL
12189 && CONST_STRNEQ (name, ".MIPS.content"));
12190 sec = bfd_get_section_by_name (abfd,
12191 name + sizeof ".MIPS.content" - 1);
12192 BFD_ASSERT (sec != NULL);
12193 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12196 case SHT_MIPS_SYMBOL_LIB:
12197 sec = bfd_get_section_by_name (abfd, ".dynsym");
12199 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12200 sec = bfd_get_section_by_name (abfd, ".liblist");
12202 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12205 case SHT_MIPS_EVENTS:
12206 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12207 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12208 BFD_ASSERT (name != NULL);
12209 if (CONST_STRNEQ (name, ".MIPS.events"))
12210 sec = bfd_get_section_by_name (abfd,
12211 name + sizeof ".MIPS.events" - 1);
12214 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12215 sec = bfd_get_section_by_name (abfd,
12217 + sizeof ".MIPS.post_rel" - 1));
12219 BFD_ASSERT (sec != NULL);
12220 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12227 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12231 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12232 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12237 /* See if we need a PT_MIPS_REGINFO segment. */
12238 s = bfd_get_section_by_name (abfd, ".reginfo");
12239 if (s && (s->flags & SEC_LOAD))
12242 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12243 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12246 /* See if we need a PT_MIPS_OPTIONS segment. */
12247 if (IRIX_COMPAT (abfd) == ict_irix6
12248 && bfd_get_section_by_name (abfd,
12249 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12252 /* See if we need a PT_MIPS_RTPROC segment. */
12253 if (IRIX_COMPAT (abfd) == ict_irix5
12254 && bfd_get_section_by_name (abfd, ".dynamic")
12255 && bfd_get_section_by_name (abfd, ".mdebug"))
12258 /* Allocate a PT_NULL header in dynamic objects. See
12259 _bfd_mips_elf_modify_segment_map for details. */
12260 if (!SGI_COMPAT (abfd)
12261 && bfd_get_section_by_name (abfd, ".dynamic"))
12267 /* Modify the segment map for an IRIX5 executable. */
12270 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12271 struct bfd_link_info *info)
12274 struct elf_segment_map *m, **pm;
12277 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12279 s = bfd_get_section_by_name (abfd, ".reginfo");
12280 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12282 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12283 if (m->p_type == PT_MIPS_REGINFO)
12288 m = bfd_zalloc (abfd, amt);
12292 m->p_type = PT_MIPS_REGINFO;
12294 m->sections[0] = s;
12296 /* We want to put it after the PHDR and INTERP segments. */
12297 pm = &elf_seg_map (abfd);
12299 && ((*pm)->p_type == PT_PHDR
12300 || (*pm)->p_type == PT_INTERP))
12308 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12310 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12311 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12313 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12314 if (m->p_type == PT_MIPS_ABIFLAGS)
12319 m = bfd_zalloc (abfd, amt);
12323 m->p_type = PT_MIPS_ABIFLAGS;
12325 m->sections[0] = s;
12327 /* We want to put it after the PHDR and INTERP segments. */
12328 pm = &elf_seg_map (abfd);
12330 && ((*pm)->p_type == PT_PHDR
12331 || (*pm)->p_type == PT_INTERP))
12339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12341 PT_MIPS_OPTIONS segment immediately following the program header
12343 if (NEWABI_P (abfd)
12344 /* On non-IRIX6 new abi, we'll have already created a segment
12345 for this section, so don't create another. I'm not sure this
12346 is not also the case for IRIX 6, but I can't test it right
12348 && IRIX_COMPAT (abfd) == ict_irix6)
12350 for (s = abfd->sections; s; s = s->next)
12351 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12356 struct elf_segment_map *options_segment;
12358 pm = &elf_seg_map (abfd);
12360 && ((*pm)->p_type == PT_PHDR
12361 || (*pm)->p_type == PT_INTERP))
12364 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12366 amt = sizeof (struct elf_segment_map);
12367 options_segment = bfd_zalloc (abfd, amt);
12368 options_segment->next = *pm;
12369 options_segment->p_type = PT_MIPS_OPTIONS;
12370 options_segment->p_flags = PF_R;
12371 options_segment->p_flags_valid = TRUE;
12372 options_segment->count = 1;
12373 options_segment->sections[0] = s;
12374 *pm = options_segment;
12380 if (IRIX_COMPAT (abfd) == ict_irix5)
12382 /* If there are .dynamic and .mdebug sections, we make a room
12383 for the RTPROC header. FIXME: Rewrite without section names. */
12384 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12385 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12386 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12388 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12389 if (m->p_type == PT_MIPS_RTPROC)
12394 m = bfd_zalloc (abfd, amt);
12398 m->p_type = PT_MIPS_RTPROC;
12400 s = bfd_get_section_by_name (abfd, ".rtproc");
12405 m->p_flags_valid = 1;
12410 m->sections[0] = s;
12413 /* We want to put it after the DYNAMIC segment. */
12414 pm = &elf_seg_map (abfd);
12415 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12425 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12426 .dynstr, .dynsym, and .hash sections, and everything in
12428 for (pm = &elf_seg_map (abfd); *pm != NULL;
12430 if ((*pm)->p_type == PT_DYNAMIC)
12433 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12434 glibc's dynamic linker has traditionally derived the number of
12435 tags from the p_filesz field, and sometimes allocates stack
12436 arrays of that size. An overly-big PT_DYNAMIC segment can
12437 be actively harmful in such cases. Making PT_DYNAMIC contain
12438 other sections can also make life hard for the prelinker,
12439 which might move one of the other sections to a different
12440 PT_LOAD segment. */
12441 if (SGI_COMPAT (abfd)
12444 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12446 static const char *sec_names[] =
12448 ".dynamic", ".dynstr", ".dynsym", ".hash"
12452 struct elf_segment_map *n;
12454 low = ~(bfd_vma) 0;
12456 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12458 s = bfd_get_section_by_name (abfd, sec_names[i]);
12459 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12466 if (high < s->vma + sz)
12467 high = s->vma + sz;
12472 for (s = abfd->sections; s != NULL; s = s->next)
12473 if ((s->flags & SEC_LOAD) != 0
12475 && s->vma + s->size <= high)
12478 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12479 n = bfd_zalloc (abfd, amt);
12486 for (s = abfd->sections; s != NULL; s = s->next)
12488 if ((s->flags & SEC_LOAD) != 0
12490 && s->vma + s->size <= high)
12492 n->sections[i] = s;
12501 /* Allocate a spare program header in dynamic objects so that tools
12502 like the prelinker can add an extra PT_LOAD entry.
12504 If the prelinker needs to make room for a new PT_LOAD entry, its
12505 standard procedure is to move the first (read-only) sections into
12506 the new (writable) segment. However, the MIPS ABI requires
12507 .dynamic to be in a read-only segment, and the section will often
12508 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12510 Although the prelinker could in principle move .dynamic to a
12511 writable segment, it seems better to allocate a spare program
12512 header instead, and avoid the need to move any sections.
12513 There is a long tradition of allocating spare dynamic tags,
12514 so allocating a spare program header seems like a natural
12517 If INFO is NULL, we may be copying an already prelinked binary
12518 with objcopy or strip, so do not add this header. */
12520 && !SGI_COMPAT (abfd)
12521 && bfd_get_section_by_name (abfd, ".dynamic"))
12523 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12524 if ((*pm)->p_type == PT_NULL)
12528 m = bfd_zalloc (abfd, sizeof (*m));
12532 m->p_type = PT_NULL;
12540 /* Return the section that should be marked against GC for a given
12544 _bfd_mips_elf_gc_mark_hook (asection *sec,
12545 struct bfd_link_info *info,
12546 Elf_Internal_Rela *rel,
12547 struct elf_link_hash_entry *h,
12548 Elf_Internal_Sym *sym)
12550 /* ??? Do mips16 stub sections need to be handled special? */
12553 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12555 case R_MIPS_GNU_VTINHERIT:
12556 case R_MIPS_GNU_VTENTRY:
12560 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12563 /* Update the got entry reference counts for the section being removed. */
12566 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12567 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12568 asection *sec ATTRIBUTE_UNUSED,
12569 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12572 Elf_Internal_Shdr *symtab_hdr;
12573 struct elf_link_hash_entry **sym_hashes;
12574 bfd_signed_vma *local_got_refcounts;
12575 const Elf_Internal_Rela *rel, *relend;
12576 unsigned long r_symndx;
12577 struct elf_link_hash_entry *h;
12579 if (bfd_link_relocatable (info))
12582 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12583 sym_hashes = elf_sym_hashes (abfd);
12584 local_got_refcounts = elf_local_got_refcounts (abfd);
12586 relend = relocs + sec->reloc_count;
12587 for (rel = relocs; rel < relend; rel++)
12588 switch (ELF_R_TYPE (abfd, rel->r_info))
12590 case R_MIPS16_GOT16:
12591 case R_MIPS16_CALL16:
12593 case R_MIPS_CALL16:
12594 case R_MIPS_CALL_HI16:
12595 case R_MIPS_CALL_LO16:
12596 case R_MIPS_GOT_HI16:
12597 case R_MIPS_GOT_LO16:
12598 case R_MIPS_GOT_DISP:
12599 case R_MIPS_GOT_PAGE:
12600 case R_MIPS_GOT_OFST:
12601 case R_MICROMIPS_GOT16:
12602 case R_MICROMIPS_CALL16:
12603 case R_MICROMIPS_CALL_HI16:
12604 case R_MICROMIPS_CALL_LO16:
12605 case R_MICROMIPS_GOT_HI16:
12606 case R_MICROMIPS_GOT_LO16:
12607 case R_MICROMIPS_GOT_DISP:
12608 case R_MICROMIPS_GOT_PAGE:
12609 case R_MICROMIPS_GOT_OFST:
12610 /* ??? It would seem that the existing MIPS code does no sort
12611 of reference counting or whatnot on its GOT and PLT entries,
12612 so it is not possible to garbage collect them at this time. */
12623 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12626 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12627 elf_gc_mark_hook_fn gc_mark_hook)
12631 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12633 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12637 if (! is_mips_elf (sub))
12640 for (o = sub->sections; o != NULL; o = o->next)
12642 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12643 (bfd_get_section_name (sub, o)))
12645 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12653 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12654 hiding the old indirect symbol. Process additional relocation
12655 information. Also called for weakdefs, in which case we just let
12656 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12659 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12660 struct elf_link_hash_entry *dir,
12661 struct elf_link_hash_entry *ind)
12663 struct mips_elf_link_hash_entry *dirmips, *indmips;
12665 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12667 dirmips = (struct mips_elf_link_hash_entry *) dir;
12668 indmips = (struct mips_elf_link_hash_entry *) ind;
12669 /* Any absolute non-dynamic relocations against an indirect or weak
12670 definition will be against the target symbol. */
12671 if (indmips->has_static_relocs)
12672 dirmips->has_static_relocs = TRUE;
12674 if (ind->root.type != bfd_link_hash_indirect)
12677 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12678 if (indmips->readonly_reloc)
12679 dirmips->readonly_reloc = TRUE;
12680 if (indmips->no_fn_stub)
12681 dirmips->no_fn_stub = TRUE;
12682 if (indmips->fn_stub)
12684 dirmips->fn_stub = indmips->fn_stub;
12685 indmips->fn_stub = NULL;
12687 if (indmips->need_fn_stub)
12689 dirmips->need_fn_stub = TRUE;
12690 indmips->need_fn_stub = FALSE;
12692 if (indmips->call_stub)
12694 dirmips->call_stub = indmips->call_stub;
12695 indmips->call_stub = NULL;
12697 if (indmips->call_fp_stub)
12699 dirmips->call_fp_stub = indmips->call_fp_stub;
12700 indmips->call_fp_stub = NULL;
12702 if (indmips->global_got_area < dirmips->global_got_area)
12703 dirmips->global_got_area = indmips->global_got_area;
12704 if (indmips->global_got_area < GGA_NONE)
12705 indmips->global_got_area = GGA_NONE;
12706 if (indmips->has_nonpic_branches)
12707 dirmips->has_nonpic_branches = TRUE;
12710 #define PDR_SIZE 32
12713 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12714 struct bfd_link_info *info)
12717 bfd_boolean ret = FALSE;
12718 unsigned char *tdata;
12721 o = bfd_get_section_by_name (abfd, ".pdr");
12726 if (o->size % PDR_SIZE != 0)
12728 if (o->output_section != NULL
12729 && bfd_is_abs_section (o->output_section))
12732 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12736 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12737 info->keep_memory);
12744 cookie->rel = cookie->rels;
12745 cookie->relend = cookie->rels + o->reloc_count;
12747 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12749 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12758 mips_elf_section_data (o)->u.tdata = tdata;
12759 if (o->rawsize == 0)
12760 o->rawsize = o->size;
12761 o->size -= skip * PDR_SIZE;
12767 if (! info->keep_memory)
12768 free (cookie->rels);
12774 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12776 if (strcmp (sec->name, ".pdr") == 0)
12782 _bfd_mips_elf_write_section (bfd *output_bfd,
12783 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12784 asection *sec, bfd_byte *contents)
12786 bfd_byte *to, *from, *end;
12789 if (strcmp (sec->name, ".pdr") != 0)
12792 if (mips_elf_section_data (sec)->u.tdata == NULL)
12796 end = contents + sec->size;
12797 for (from = contents, i = 0;
12799 from += PDR_SIZE, i++)
12801 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12804 memcpy (to, from, PDR_SIZE);
12807 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12808 sec->output_offset, sec->size);
12812 /* microMIPS code retains local labels for linker relaxation. Omit them
12813 from output by default for clarity. */
12816 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12818 return _bfd_elf_is_local_label_name (abfd, sym->name);
12821 /* MIPS ELF uses a special find_nearest_line routine in order the
12822 handle the ECOFF debugging information. */
12824 struct mips_elf_find_line
12826 struct ecoff_debug_info d;
12827 struct ecoff_find_line i;
12831 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12832 asection *section, bfd_vma offset,
12833 const char **filename_ptr,
12834 const char **functionname_ptr,
12835 unsigned int *line_ptr,
12836 unsigned int *discriminator_ptr)
12840 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12841 filename_ptr, functionname_ptr,
12842 line_ptr, discriminator_ptr,
12843 dwarf_debug_sections,
12844 ABI_64_P (abfd) ? 8 : 0,
12845 &elf_tdata (abfd)->dwarf2_find_line_info))
12848 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12849 filename_ptr, functionname_ptr,
12853 msec = bfd_get_section_by_name (abfd, ".mdebug");
12856 flagword origflags;
12857 struct mips_elf_find_line *fi;
12858 const struct ecoff_debug_swap * const swap =
12859 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12861 /* If we are called during a link, mips_elf_final_link may have
12862 cleared the SEC_HAS_CONTENTS field. We force it back on here
12863 if appropriate (which it normally will be). */
12864 origflags = msec->flags;
12865 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12866 msec->flags |= SEC_HAS_CONTENTS;
12868 fi = mips_elf_tdata (abfd)->find_line_info;
12871 bfd_size_type external_fdr_size;
12874 struct fdr *fdr_ptr;
12875 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12877 fi = bfd_zalloc (abfd, amt);
12880 msec->flags = origflags;
12884 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12886 msec->flags = origflags;
12890 /* Swap in the FDR information. */
12891 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12892 fi->d.fdr = bfd_alloc (abfd, amt);
12893 if (fi->d.fdr == NULL)
12895 msec->flags = origflags;
12898 external_fdr_size = swap->external_fdr_size;
12899 fdr_ptr = fi->d.fdr;
12900 fraw_src = (char *) fi->d.external_fdr;
12901 fraw_end = (fraw_src
12902 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12903 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12904 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12906 mips_elf_tdata (abfd)->find_line_info = fi;
12908 /* Note that we don't bother to ever free this information.
12909 find_nearest_line is either called all the time, as in
12910 objdump -l, so the information should be saved, or it is
12911 rarely called, as in ld error messages, so the memory
12912 wasted is unimportant. Still, it would probably be a
12913 good idea for free_cached_info to throw it away. */
12916 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12917 &fi->i, filename_ptr, functionname_ptr,
12920 msec->flags = origflags;
12924 msec->flags = origflags;
12927 /* Fall back on the generic ELF find_nearest_line routine. */
12929 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12930 filename_ptr, functionname_ptr,
12931 line_ptr, discriminator_ptr);
12935 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12936 const char **filename_ptr,
12937 const char **functionname_ptr,
12938 unsigned int *line_ptr)
12941 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12942 functionname_ptr, line_ptr,
12943 & elf_tdata (abfd)->dwarf2_find_line_info);
12948 /* When are writing out the .options or .MIPS.options section,
12949 remember the bytes we are writing out, so that we can install the
12950 GP value in the section_processing routine. */
12953 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12954 const void *location,
12955 file_ptr offset, bfd_size_type count)
12957 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12961 if (elf_section_data (section) == NULL)
12963 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12964 section->used_by_bfd = bfd_zalloc (abfd, amt);
12965 if (elf_section_data (section) == NULL)
12968 c = mips_elf_section_data (section)->u.tdata;
12971 c = bfd_zalloc (abfd, section->size);
12974 mips_elf_section_data (section)->u.tdata = c;
12977 memcpy (c + offset, location, count);
12980 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12984 /* This is almost identical to bfd_generic_get_... except that some
12985 MIPS relocations need to be handled specially. Sigh. */
12988 _bfd_elf_mips_get_relocated_section_contents
12990 struct bfd_link_info *link_info,
12991 struct bfd_link_order *link_order,
12993 bfd_boolean relocatable,
12996 /* Get enough memory to hold the stuff */
12997 bfd *input_bfd = link_order->u.indirect.section->owner;
12998 asection *input_section = link_order->u.indirect.section;
13001 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13002 arelent **reloc_vector = NULL;
13005 if (reloc_size < 0)
13008 reloc_vector = bfd_malloc (reloc_size);
13009 if (reloc_vector == NULL && reloc_size != 0)
13012 /* read in the section */
13013 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13014 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13017 reloc_count = bfd_canonicalize_reloc (input_bfd,
13021 if (reloc_count < 0)
13024 if (reloc_count > 0)
13029 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13032 struct bfd_hash_entry *h;
13033 struct bfd_link_hash_entry *lh;
13034 /* Skip all this stuff if we aren't mixing formats. */
13035 if (abfd && input_bfd
13036 && abfd->xvec == input_bfd->xvec)
13040 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13041 lh = (struct bfd_link_hash_entry *) h;
13048 case bfd_link_hash_undefined:
13049 case bfd_link_hash_undefweak:
13050 case bfd_link_hash_common:
13053 case bfd_link_hash_defined:
13054 case bfd_link_hash_defweak:
13056 gp = lh->u.def.value;
13058 case bfd_link_hash_indirect:
13059 case bfd_link_hash_warning:
13061 /* @@FIXME ignoring warning for now */
13063 case bfd_link_hash_new:
13072 for (parent = reloc_vector; *parent != NULL; parent++)
13074 char *error_message = NULL;
13075 bfd_reloc_status_type r;
13077 /* Specific to MIPS: Deal with relocation types that require
13078 knowing the gp of the output bfd. */
13079 asymbol *sym = *(*parent)->sym_ptr_ptr;
13081 /* If we've managed to find the gp and have a special
13082 function for the relocation then go ahead, else default
13083 to the generic handling. */
13085 && (*parent)->howto->special_function
13086 == _bfd_mips_elf32_gprel16_reloc)
13087 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13088 input_section, relocatable,
13091 r = bfd_perform_relocation (input_bfd, *parent, data,
13093 relocatable ? abfd : NULL,
13098 asection *os = input_section->output_section;
13100 /* A partial link, so keep the relocs */
13101 os->orelocation[os->reloc_count] = *parent;
13105 if (r != bfd_reloc_ok)
13109 case bfd_reloc_undefined:
13110 (*link_info->callbacks->undefined_symbol)
13111 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13112 input_bfd, input_section, (*parent)->address, TRUE);
13114 case bfd_reloc_dangerous:
13115 BFD_ASSERT (error_message != NULL);
13116 (*link_info->callbacks->reloc_dangerous)
13117 (link_info, error_message,
13118 input_bfd, input_section, (*parent)->address);
13120 case bfd_reloc_overflow:
13121 (*link_info->callbacks->reloc_overflow)
13123 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13124 (*parent)->howto->name, (*parent)->addend,
13125 input_bfd, input_section, (*parent)->address);
13127 case bfd_reloc_outofrange:
13136 if (reloc_vector != NULL)
13137 free (reloc_vector);
13141 if (reloc_vector != NULL)
13142 free (reloc_vector);
13147 mips_elf_relax_delete_bytes (bfd *abfd,
13148 asection *sec, bfd_vma addr, int count)
13150 Elf_Internal_Shdr *symtab_hdr;
13151 unsigned int sec_shndx;
13152 bfd_byte *contents;
13153 Elf_Internal_Rela *irel, *irelend;
13154 Elf_Internal_Sym *isym;
13155 Elf_Internal_Sym *isymend;
13156 struct elf_link_hash_entry **sym_hashes;
13157 struct elf_link_hash_entry **end_hashes;
13158 struct elf_link_hash_entry **start_hashes;
13159 unsigned int symcount;
13161 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13162 contents = elf_section_data (sec)->this_hdr.contents;
13164 irel = elf_section_data (sec)->relocs;
13165 irelend = irel + sec->reloc_count;
13167 /* Actually delete the bytes. */
13168 memmove (contents + addr, contents + addr + count,
13169 (size_t) (sec->size - addr - count));
13170 sec->size -= count;
13172 /* Adjust all the relocs. */
13173 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13175 /* Get the new reloc address. */
13176 if (irel->r_offset > addr)
13177 irel->r_offset -= count;
13180 BFD_ASSERT (addr % 2 == 0);
13181 BFD_ASSERT (count % 2 == 0);
13183 /* Adjust the local symbols defined in this section. */
13184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13185 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13186 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13187 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13188 isym->st_value -= count;
13190 /* Now adjust the global symbols defined in this section. */
13191 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13192 - symtab_hdr->sh_info);
13193 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13194 end_hashes = sym_hashes + symcount;
13196 for (; sym_hashes < end_hashes; sym_hashes++)
13198 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13200 if ((sym_hash->root.type == bfd_link_hash_defined
13201 || sym_hash->root.type == bfd_link_hash_defweak)
13202 && sym_hash->root.u.def.section == sec)
13204 bfd_vma value = sym_hash->root.u.def.value;
13206 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13207 value &= MINUS_TWO;
13209 sym_hash->root.u.def.value -= count;
13217 /* Opcodes needed for microMIPS relaxation as found in
13218 opcodes/micromips-opc.c. */
13220 struct opcode_descriptor {
13221 unsigned long match;
13222 unsigned long mask;
13225 /* The $ra register aka $31. */
13229 /* 32-bit instruction format register fields. */
13231 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13232 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13234 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13236 #define OP16_VALID_REG(r) \
13237 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13240 /* 32-bit and 16-bit branches. */
13242 static const struct opcode_descriptor b_insns_32[] = {
13243 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13244 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13245 { 0, 0 } /* End marker for find_match(). */
13248 static const struct opcode_descriptor bc_insn_32 =
13249 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13251 static const struct opcode_descriptor bz_insn_32 =
13252 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13254 static const struct opcode_descriptor bzal_insn_32 =
13255 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13257 static const struct opcode_descriptor beq_insn_32 =
13258 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13260 static const struct opcode_descriptor b_insn_16 =
13261 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13263 static const struct opcode_descriptor bz_insn_16 =
13264 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13267 /* 32-bit and 16-bit branch EQ and NE zero. */
13269 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13270 eq and second the ne. This convention is used when replacing a
13271 32-bit BEQ/BNE with the 16-bit version. */
13273 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13275 static const struct opcode_descriptor bz_rs_insns_32[] = {
13276 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13277 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13278 { 0, 0 } /* End marker for find_match(). */
13281 static const struct opcode_descriptor bz_rt_insns_32[] = {
13282 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13283 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13284 { 0, 0 } /* End marker for find_match(). */
13287 static const struct opcode_descriptor bzc_insns_32[] = {
13288 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13289 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13290 { 0, 0 } /* End marker for find_match(). */
13293 static const struct opcode_descriptor bz_insns_16[] = {
13294 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13295 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13296 { 0, 0 } /* End marker for find_match(). */
13299 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13301 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13302 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13305 /* 32-bit instructions with a delay slot. */
13307 static const struct opcode_descriptor jal_insn_32_bd16 =
13308 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13310 static const struct opcode_descriptor jal_insn_32_bd32 =
13311 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13313 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13314 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13316 static const struct opcode_descriptor j_insn_32 =
13317 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13319 static const struct opcode_descriptor jalr_insn_32 =
13320 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13322 /* This table can be compacted, because no opcode replacement is made. */
13324 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13325 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13327 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13328 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13330 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13331 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13332 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13333 { 0, 0 } /* End marker for find_match(). */
13336 /* This table can be compacted, because no opcode replacement is made. */
13338 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13339 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13341 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13342 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13343 { 0, 0 } /* End marker for find_match(). */
13347 /* 16-bit instructions with a delay slot. */
13349 static const struct opcode_descriptor jalr_insn_16_bd16 =
13350 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13352 static const struct opcode_descriptor jalr_insn_16_bd32 =
13353 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13355 static const struct opcode_descriptor jr_insn_16 =
13356 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13358 #define JR16_REG(opcode) ((opcode) & 0x1f)
13360 /* This table can be compacted, because no opcode replacement is made. */
13362 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13363 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13365 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13366 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13367 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13368 { 0, 0 } /* End marker for find_match(). */
13372 /* LUI instruction. */
13374 static const struct opcode_descriptor lui_insn =
13375 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13378 /* ADDIU instruction. */
13380 static const struct opcode_descriptor addiu_insn =
13381 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13383 static const struct opcode_descriptor addiupc_insn =
13384 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13386 #define ADDIUPC_REG_FIELD(r) \
13387 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13390 /* Relaxable instructions in a JAL delay slot: MOVE. */
13392 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13393 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13394 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13395 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13397 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13398 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13400 static const struct opcode_descriptor move_insns_32[] = {
13401 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13402 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13403 { 0, 0 } /* End marker for find_match(). */
13406 static const struct opcode_descriptor move_insn_16 =
13407 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13410 /* NOP instructions. */
13412 static const struct opcode_descriptor nop_insn_32 =
13413 { /* "nop", "", */ 0x00000000, 0xffffffff };
13415 static const struct opcode_descriptor nop_insn_16 =
13416 { /* "nop", "", */ 0x0c00, 0xffff };
13419 /* Instruction match support. */
13421 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13424 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13426 unsigned long indx;
13428 for (indx = 0; insn[indx].mask != 0; indx++)
13429 if (MATCH (opcode, insn[indx]))
13436 /* Branch and delay slot decoding support. */
13438 /* If PTR points to what *might* be a 16-bit branch or jump, then
13439 return the minimum length of its delay slot, otherwise return 0.
13440 Non-zero results are not definitive as we might be checking against
13441 the second half of another instruction. */
13444 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13446 unsigned long opcode;
13449 opcode = bfd_get_16 (abfd, ptr);
13450 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13451 /* 16-bit branch/jump with a 32-bit delay slot. */
13453 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13454 || find_match (opcode, ds_insns_16_bd16) >= 0)
13455 /* 16-bit branch/jump with a 16-bit delay slot. */
13458 /* No delay slot. */
13464 /* If PTR points to what *might* be a 32-bit branch or jump, then
13465 return the minimum length of its delay slot, otherwise return 0.
13466 Non-zero results are not definitive as we might be checking against
13467 the second half of another instruction. */
13470 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13472 unsigned long opcode;
13475 opcode = bfd_get_micromips_32 (abfd, ptr);
13476 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13477 /* 32-bit branch/jump with a 32-bit delay slot. */
13479 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13480 /* 32-bit branch/jump with a 16-bit delay slot. */
13483 /* No delay slot. */
13489 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13490 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13493 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13495 unsigned long opcode;
13497 opcode = bfd_get_16 (abfd, ptr);
13498 if (MATCH (opcode, b_insn_16)
13500 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13502 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13503 /* BEQZ16, BNEZ16 */
13504 || (MATCH (opcode, jalr_insn_16_bd32)
13506 && reg != JR16_REG (opcode) && reg != RA))
13512 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13513 then return TRUE, otherwise FALSE. */
13516 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13518 unsigned long opcode;
13520 opcode = bfd_get_micromips_32 (abfd, ptr);
13521 if (MATCH (opcode, j_insn_32)
13523 || MATCH (opcode, bc_insn_32)
13524 /* BC1F, BC1T, BC2F, BC2T */
13525 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13527 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13528 /* BGEZ, BGTZ, BLEZ, BLTZ */
13529 || (MATCH (opcode, bzal_insn_32)
13530 /* BGEZAL, BLTZAL */
13531 && reg != OP32_SREG (opcode) && reg != RA)
13532 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13533 /* JALR, JALR.HB, BEQ, BNE */
13534 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13540 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13541 IRELEND) at OFFSET indicate that there must be a compact branch there,
13542 then return TRUE, otherwise FALSE. */
13545 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13546 const Elf_Internal_Rela *internal_relocs,
13547 const Elf_Internal_Rela *irelend)
13549 const Elf_Internal_Rela *irel;
13550 unsigned long opcode;
13552 opcode = bfd_get_micromips_32 (abfd, ptr);
13553 if (find_match (opcode, bzc_insns_32) < 0)
13556 for (irel = internal_relocs; irel < irelend; irel++)
13557 if (irel->r_offset == offset
13558 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13564 /* Bitsize checking. */
13565 #define IS_BITSIZE(val, N) \
13566 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13567 - (1ULL << ((N) - 1))) == (val))
13571 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13572 struct bfd_link_info *link_info,
13573 bfd_boolean *again)
13575 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13576 Elf_Internal_Shdr *symtab_hdr;
13577 Elf_Internal_Rela *internal_relocs;
13578 Elf_Internal_Rela *irel, *irelend;
13579 bfd_byte *contents = NULL;
13580 Elf_Internal_Sym *isymbuf = NULL;
13582 /* Assume nothing changes. */
13585 /* We don't have to do anything for a relocatable link, if
13586 this section does not have relocs, or if this is not a
13589 if (bfd_link_relocatable (link_info)
13590 || (sec->flags & SEC_RELOC) == 0
13591 || sec->reloc_count == 0
13592 || (sec->flags & SEC_CODE) == 0)
13595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13597 /* Get a copy of the native relocations. */
13598 internal_relocs = (_bfd_elf_link_read_relocs
13599 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13600 link_info->keep_memory));
13601 if (internal_relocs == NULL)
13604 /* Walk through them looking for relaxing opportunities. */
13605 irelend = internal_relocs + sec->reloc_count;
13606 for (irel = internal_relocs; irel < irelend; irel++)
13608 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13609 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13610 bfd_boolean target_is_micromips_code_p;
13611 unsigned long opcode;
13617 /* The number of bytes to delete for relaxation and from where
13618 to delete these bytes starting at irel->r_offset. */
13622 /* If this isn't something that can be relaxed, then ignore
13624 if (r_type != R_MICROMIPS_HI16
13625 && r_type != R_MICROMIPS_PC16_S1
13626 && r_type != R_MICROMIPS_26_S1)
13629 /* Get the section contents if we haven't done so already. */
13630 if (contents == NULL)
13632 /* Get cached copy if it exists. */
13633 if (elf_section_data (sec)->this_hdr.contents != NULL)
13634 contents = elf_section_data (sec)->this_hdr.contents;
13635 /* Go get them off disk. */
13636 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13639 ptr = contents + irel->r_offset;
13641 /* Read this BFD's local symbols if we haven't done so already. */
13642 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13644 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13645 if (isymbuf == NULL)
13646 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13647 symtab_hdr->sh_info, 0,
13649 if (isymbuf == NULL)
13653 /* Get the value of the symbol referred to by the reloc. */
13654 if (r_symndx < symtab_hdr->sh_info)
13656 /* A local symbol. */
13657 Elf_Internal_Sym *isym;
13660 isym = isymbuf + r_symndx;
13661 if (isym->st_shndx == SHN_UNDEF)
13662 sym_sec = bfd_und_section_ptr;
13663 else if (isym->st_shndx == SHN_ABS)
13664 sym_sec = bfd_abs_section_ptr;
13665 else if (isym->st_shndx == SHN_COMMON)
13666 sym_sec = bfd_com_section_ptr;
13668 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13669 symval = (isym->st_value
13670 + sym_sec->output_section->vma
13671 + sym_sec->output_offset);
13672 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13676 unsigned long indx;
13677 struct elf_link_hash_entry *h;
13679 /* An external symbol. */
13680 indx = r_symndx - symtab_hdr->sh_info;
13681 h = elf_sym_hashes (abfd)[indx];
13682 BFD_ASSERT (h != NULL);
13684 if (h->root.type != bfd_link_hash_defined
13685 && h->root.type != bfd_link_hash_defweak)
13686 /* This appears to be a reference to an undefined
13687 symbol. Just ignore it -- it will be caught by the
13688 regular reloc processing. */
13691 symval = (h->root.u.def.value
13692 + h->root.u.def.section->output_section->vma
13693 + h->root.u.def.section->output_offset);
13694 target_is_micromips_code_p = (!h->needs_plt
13695 && ELF_ST_IS_MICROMIPS (h->other));
13699 /* For simplicity of coding, we are going to modify the
13700 section contents, the section relocs, and the BFD symbol
13701 table. We must tell the rest of the code not to free up this
13702 information. It would be possible to instead create a table
13703 of changes which have to be made, as is done in coff-mips.c;
13704 that would be more work, but would require less memory when
13705 the linker is run. */
13707 /* Only 32-bit instructions relaxed. */
13708 if (irel->r_offset + 4 > sec->size)
13711 opcode = bfd_get_micromips_32 (abfd, ptr);
13713 /* This is the pc-relative distance from the instruction the
13714 relocation is applied to, to the symbol referred. */
13716 - (sec->output_section->vma + sec->output_offset)
13719 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13720 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13721 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13723 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13725 where pcrval has first to be adjusted to apply against the LO16
13726 location (we make the adjustment later on, when we have figured
13727 out the offset). */
13728 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13730 bfd_boolean bzc = FALSE;
13731 unsigned long nextopc;
13735 /* Give up if the previous reloc was a HI16 against this symbol
13737 if (irel > internal_relocs
13738 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13739 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13742 /* Or if the next reloc is not a LO16 against this symbol. */
13743 if (irel + 1 >= irelend
13744 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13745 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13748 /* Or if the second next reloc is a LO16 against this symbol too. */
13749 if (irel + 2 >= irelend
13750 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13751 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13754 /* See if the LUI instruction *might* be in a branch delay slot.
13755 We check whether what looks like a 16-bit branch or jump is
13756 actually an immediate argument to a compact branch, and let
13757 it through if so. */
13758 if (irel->r_offset >= 2
13759 && check_br16_dslot (abfd, ptr - 2)
13760 && !(irel->r_offset >= 4
13761 && (bzc = check_relocated_bzc (abfd,
13762 ptr - 4, irel->r_offset - 4,
13763 internal_relocs, irelend))))
13765 if (irel->r_offset >= 4
13767 && check_br32_dslot (abfd, ptr - 4))
13770 reg = OP32_SREG (opcode);
13772 /* We only relax adjacent instructions or ones separated with
13773 a branch or jump that has a delay slot. The branch or jump
13774 must not fiddle with the register used to hold the address.
13775 Subtract 4 for the LUI itself. */
13776 offset = irel[1].r_offset - irel[0].r_offset;
13777 switch (offset - 4)
13782 if (check_br16 (abfd, ptr + 4, reg))
13786 if (check_br32 (abfd, ptr + 4, reg))
13793 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13795 /* Give up unless the same register is used with both
13797 if (OP32_SREG (nextopc) != reg)
13800 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13801 and rounding up to take masking of the two LSBs into account. */
13802 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13804 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13805 if (IS_BITSIZE (symval, 16))
13807 /* Fix the relocation's type. */
13808 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13810 /* Instructions using R_MICROMIPS_LO16 have the base or
13811 source register in bits 20:16. This register becomes $0
13812 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13813 nextopc &= ~0x001f0000;
13814 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13815 contents + irel[1].r_offset);
13818 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13819 We add 4 to take LUI deletion into account while checking
13820 the PC-relative distance. */
13821 else if (symval % 4 == 0
13822 && IS_BITSIZE (pcrval + 4, 25)
13823 && MATCH (nextopc, addiu_insn)
13824 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13825 && OP16_VALID_REG (OP32_TREG (nextopc)))
13827 /* Fix the relocation's type. */
13828 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13830 /* Replace ADDIU with the ADDIUPC version. */
13831 nextopc = (addiupc_insn.match
13832 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13834 bfd_put_micromips_32 (abfd, nextopc,
13835 contents + irel[1].r_offset);
13838 /* Can't do anything, give up, sigh... */
13842 /* Fix the relocation's type. */
13843 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13845 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13850 /* Compact branch relaxation -- due to the multitude of macros
13851 employed by the compiler/assembler, compact branches are not
13852 always generated. Obviously, this can/will be fixed elsewhere,
13853 but there is no drawback in double checking it here. */
13854 else if (r_type == R_MICROMIPS_PC16_S1
13855 && irel->r_offset + 5 < sec->size
13856 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13857 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13859 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13860 nop_insn_16) ? 2 : 0))
13861 || (irel->r_offset + 7 < sec->size
13862 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13864 nop_insn_32) ? 4 : 0))))
13868 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13870 /* Replace BEQZ/BNEZ with the compact version. */
13871 opcode = (bzc_insns_32[fndopc].match
13872 | BZC32_REG_FIELD (reg)
13873 | (opcode & 0xffff)); /* Addend value. */
13875 bfd_put_micromips_32 (abfd, opcode, ptr);
13877 /* Delete the delay slot NOP: two or four bytes from
13878 irel->offset + 4; delcnt has already been set above. */
13882 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13883 to check the distance from the next instruction, so subtract 2. */
13885 && r_type == R_MICROMIPS_PC16_S1
13886 && IS_BITSIZE (pcrval - 2, 11)
13887 && find_match (opcode, b_insns_32) >= 0)
13889 /* Fix the relocation's type. */
13890 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13892 /* Replace the 32-bit opcode with a 16-bit opcode. */
13895 | (opcode & 0x3ff)), /* Addend value. */
13898 /* Delete 2 bytes from irel->r_offset + 2. */
13903 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13904 to check the distance from the next instruction, so subtract 2. */
13906 && r_type == R_MICROMIPS_PC16_S1
13907 && IS_BITSIZE (pcrval - 2, 8)
13908 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13909 && OP16_VALID_REG (OP32_SREG (opcode)))
13910 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13911 && OP16_VALID_REG (OP32_TREG (opcode)))))
13915 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13917 /* Fix the relocation's type. */
13918 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13920 /* Replace the 32-bit opcode with a 16-bit opcode. */
13922 (bz_insns_16[fndopc].match
13923 | BZ16_REG_FIELD (reg)
13924 | (opcode & 0x7f)), /* Addend value. */
13927 /* Delete 2 bytes from irel->r_offset + 2. */
13932 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13934 && r_type == R_MICROMIPS_26_S1
13935 && target_is_micromips_code_p
13936 && irel->r_offset + 7 < sec->size
13937 && MATCH (opcode, jal_insn_32_bd32))
13939 unsigned long n32opc;
13940 bfd_boolean relaxed = FALSE;
13942 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13944 if (MATCH (n32opc, nop_insn_32))
13946 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13947 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13951 else if (find_match (n32opc, move_insns_32) >= 0)
13953 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13955 (move_insn_16.match
13956 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13957 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13962 /* Other 32-bit instructions relaxable to 16-bit
13963 instructions will be handled here later. */
13967 /* JAL with 32-bit delay slot that is changed to a JALS
13968 with 16-bit delay slot. */
13969 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13971 /* Delete 2 bytes from irel->r_offset + 6. */
13979 /* Note that we've changed the relocs, section contents, etc. */
13980 elf_section_data (sec)->relocs = internal_relocs;
13981 elf_section_data (sec)->this_hdr.contents = contents;
13982 symtab_hdr->contents = (unsigned char *) isymbuf;
13984 /* Delete bytes depending on the delcnt and deloff. */
13985 if (!mips_elf_relax_delete_bytes (abfd, sec,
13986 irel->r_offset + deloff, delcnt))
13989 /* That will change things, so we should relax again.
13990 Note that this is not required, and it may be slow. */
13995 if (isymbuf != NULL
13996 && symtab_hdr->contents != (unsigned char *) isymbuf)
13998 if (! link_info->keep_memory)
14002 /* Cache the symbols for elf_link_input_bfd. */
14003 symtab_hdr->contents = (unsigned char *) isymbuf;
14007 if (contents != NULL
14008 && elf_section_data (sec)->this_hdr.contents != contents)
14010 if (! link_info->keep_memory)
14014 /* Cache the section contents for elf_link_input_bfd. */
14015 elf_section_data (sec)->this_hdr.contents = contents;
14019 if (internal_relocs != NULL
14020 && elf_section_data (sec)->relocs != internal_relocs)
14021 free (internal_relocs);
14026 if (isymbuf != NULL
14027 && symtab_hdr->contents != (unsigned char *) isymbuf)
14029 if (contents != NULL
14030 && elf_section_data (sec)->this_hdr.contents != contents)
14032 if (internal_relocs != NULL
14033 && elf_section_data (sec)->relocs != internal_relocs)
14034 free (internal_relocs);
14039 /* Create a MIPS ELF linker hash table. */
14041 struct bfd_link_hash_table *
14042 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14044 struct mips_elf_link_hash_table *ret;
14045 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14047 ret = bfd_zmalloc (amt);
14051 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14052 mips_elf_link_hash_newfunc,
14053 sizeof (struct mips_elf_link_hash_entry),
14059 ret->root.init_plt_refcount.plist = NULL;
14060 ret->root.init_plt_offset.plist = NULL;
14062 return &ret->root.root;
14065 /* Likewise, but indicate that the target is VxWorks. */
14067 struct bfd_link_hash_table *
14068 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14070 struct bfd_link_hash_table *ret;
14072 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14075 struct mips_elf_link_hash_table *htab;
14077 htab = (struct mips_elf_link_hash_table *) ret;
14078 htab->use_plts_and_copy_relocs = TRUE;
14079 htab->is_vxworks = TRUE;
14084 /* A function that the linker calls if we are allowed to use PLTs
14085 and copy relocs. */
14088 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14090 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14093 /* A function that the linker calls to select between all or only
14094 32-bit microMIPS instructions. */
14097 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14099 mips_elf_hash_table (info)->insn32 = on;
14102 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14104 struct mips_mach_extension
14106 unsigned long extension, base;
14110 /* An array describing how BFD machines relate to one another. The entries
14111 are ordered topologically with MIPS I extensions listed last. */
14113 static const struct mips_mach_extension mips_mach_extensions[] =
14115 /* MIPS64r2 extensions. */
14116 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14117 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14118 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14119 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14120 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14122 /* MIPS64 extensions. */
14123 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14124 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14125 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14127 /* MIPS V extensions. */
14128 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14130 /* R10000 extensions. */
14131 { bfd_mach_mips12000, bfd_mach_mips10000 },
14132 { bfd_mach_mips14000, bfd_mach_mips10000 },
14133 { bfd_mach_mips16000, bfd_mach_mips10000 },
14135 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14136 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14137 better to allow vr5400 and vr5500 code to be merged anyway, since
14138 many libraries will just use the core ISA. Perhaps we could add
14139 some sort of ASE flag if this ever proves a problem. */
14140 { bfd_mach_mips5500, bfd_mach_mips5400 },
14141 { bfd_mach_mips5400, bfd_mach_mips5000 },
14143 /* MIPS IV extensions. */
14144 { bfd_mach_mips5, bfd_mach_mips8000 },
14145 { bfd_mach_mips10000, bfd_mach_mips8000 },
14146 { bfd_mach_mips5000, bfd_mach_mips8000 },
14147 { bfd_mach_mips7000, bfd_mach_mips8000 },
14148 { bfd_mach_mips9000, bfd_mach_mips8000 },
14150 /* VR4100 extensions. */
14151 { bfd_mach_mips4120, bfd_mach_mips4100 },
14152 { bfd_mach_mips4111, bfd_mach_mips4100 },
14154 /* MIPS III extensions. */
14155 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14156 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14157 { bfd_mach_mips8000, bfd_mach_mips4000 },
14158 { bfd_mach_mips4650, bfd_mach_mips4000 },
14159 { bfd_mach_mips4600, bfd_mach_mips4000 },
14160 { bfd_mach_mips4400, bfd_mach_mips4000 },
14161 { bfd_mach_mips4300, bfd_mach_mips4000 },
14162 { bfd_mach_mips4100, bfd_mach_mips4000 },
14163 { bfd_mach_mips4010, bfd_mach_mips4000 },
14164 { bfd_mach_mips5900, bfd_mach_mips4000 },
14166 /* MIPS32 extensions. */
14167 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14169 /* MIPS II extensions. */
14170 { bfd_mach_mips4000, bfd_mach_mips6000 },
14171 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14173 /* MIPS I extensions. */
14174 { bfd_mach_mips6000, bfd_mach_mips3000 },
14175 { bfd_mach_mips3900, bfd_mach_mips3000 }
14178 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14181 mips_mach_extends_p (unsigned long base, unsigned long extension)
14185 if (extension == base)
14188 if (base == bfd_mach_mipsisa32
14189 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14192 if (base == bfd_mach_mipsisa32r2
14193 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14196 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14197 if (extension == mips_mach_extensions[i].extension)
14199 extension = mips_mach_extensions[i].base;
14200 if (extension == base)
14207 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14209 static unsigned long
14210 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14214 case AFL_EXT_3900: return bfd_mach_mips3900;
14215 case AFL_EXT_4010: return bfd_mach_mips4010;
14216 case AFL_EXT_4100: return bfd_mach_mips4100;
14217 case AFL_EXT_4111: return bfd_mach_mips4111;
14218 case AFL_EXT_4120: return bfd_mach_mips4120;
14219 case AFL_EXT_4650: return bfd_mach_mips4650;
14220 case AFL_EXT_5400: return bfd_mach_mips5400;
14221 case AFL_EXT_5500: return bfd_mach_mips5500;
14222 case AFL_EXT_5900: return bfd_mach_mips5900;
14223 case AFL_EXT_10000: return bfd_mach_mips10000;
14224 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14225 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14226 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14227 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14228 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14229 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14230 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14231 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14232 default: return bfd_mach_mips3000;
14236 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14239 bfd_mips_isa_ext (bfd *abfd)
14241 switch (bfd_get_mach (abfd))
14243 case bfd_mach_mips3900: return AFL_EXT_3900;
14244 case bfd_mach_mips4010: return AFL_EXT_4010;
14245 case bfd_mach_mips4100: return AFL_EXT_4100;
14246 case bfd_mach_mips4111: return AFL_EXT_4111;
14247 case bfd_mach_mips4120: return AFL_EXT_4120;
14248 case bfd_mach_mips4650: return AFL_EXT_4650;
14249 case bfd_mach_mips5400: return AFL_EXT_5400;
14250 case bfd_mach_mips5500: return AFL_EXT_5500;
14251 case bfd_mach_mips5900: return AFL_EXT_5900;
14252 case bfd_mach_mips10000: return AFL_EXT_10000;
14253 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14254 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14255 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14256 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14257 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14258 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14259 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14260 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14261 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14266 /* Encode ISA level and revision as a single value. */
14267 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14269 /* Decode a single value into level and revision. */
14270 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14271 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14273 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14276 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14279 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14281 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14282 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14283 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14284 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14285 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14286 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14287 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14288 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14289 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14290 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14291 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14294 /* xgettext:c-format */
14295 (_("%B: Unknown architecture %s"),
14296 abfd, bfd_printable_name (abfd));
14299 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14301 abiflags->isa_level = ISA_LEVEL (new_isa);
14302 abiflags->isa_rev = ISA_REV (new_isa);
14305 /* Update the isa_ext if ABFD describes a further extension. */
14306 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14307 bfd_get_mach (abfd)))
14308 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14311 /* Return true if the given ELF header flags describe a 32-bit binary. */
14314 mips_32bit_flags_p (flagword flags)
14316 return ((flags & EF_MIPS_32BITMODE) != 0
14317 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14318 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14319 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14320 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14321 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14322 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14323 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14326 /* Infer the content of the ABI flags based on the elf header. */
14329 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14331 obj_attribute *in_attr;
14333 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14334 update_mips_abiflags_isa (abfd, abiflags);
14336 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14337 abiflags->gpr_size = AFL_REG_32;
14339 abiflags->gpr_size = AFL_REG_64;
14341 abiflags->cpr1_size = AFL_REG_NONE;
14343 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14344 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14346 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14347 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14348 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14349 && abiflags->gpr_size == AFL_REG_32))
14350 abiflags->cpr1_size = AFL_REG_32;
14351 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14352 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14353 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14354 abiflags->cpr1_size = AFL_REG_64;
14356 abiflags->cpr2_size = AFL_REG_NONE;
14358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14359 abiflags->ases |= AFL_ASE_MDMX;
14360 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14361 abiflags->ases |= AFL_ASE_MIPS16;
14362 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14363 abiflags->ases |= AFL_ASE_MICROMIPS;
14365 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14366 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14367 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14368 && abiflags->isa_level >= 32
14369 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14370 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14373 /* We need to use a special link routine to handle the .reginfo and
14374 the .mdebug sections. We need to merge all instances of these
14375 sections together, not write them all out sequentially. */
14378 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14381 struct bfd_link_order *p;
14382 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14383 asection *rtproc_sec, *abiflags_sec;
14384 Elf32_RegInfo reginfo;
14385 struct ecoff_debug_info debug;
14386 struct mips_htab_traverse_info hti;
14387 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14388 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14389 HDRR *symhdr = &debug.symbolic_header;
14390 void *mdebug_handle = NULL;
14395 struct mips_elf_link_hash_table *htab;
14397 static const char * const secname[] =
14399 ".text", ".init", ".fini", ".data",
14400 ".rodata", ".sdata", ".sbss", ".bss"
14402 static const int sc[] =
14404 scText, scInit, scFini, scData,
14405 scRData, scSData, scSBss, scBss
14408 /* Sort the dynamic symbols so that those with GOT entries come after
14410 htab = mips_elf_hash_table (info);
14411 BFD_ASSERT (htab != NULL);
14413 if (!mips_elf_sort_hash_table (abfd, info))
14416 /* Create any scheduled LA25 stubs. */
14418 hti.output_bfd = abfd;
14420 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14424 /* Get a value for the GP register. */
14425 if (elf_gp (abfd) == 0)
14427 struct bfd_link_hash_entry *h;
14429 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14430 if (h != NULL && h->type == bfd_link_hash_defined)
14431 elf_gp (abfd) = (h->u.def.value
14432 + h->u.def.section->output_section->vma
14433 + h->u.def.section->output_offset);
14434 else if (htab->is_vxworks
14435 && (h = bfd_link_hash_lookup (info->hash,
14436 "_GLOBAL_OFFSET_TABLE_",
14437 FALSE, FALSE, TRUE))
14438 && h->type == bfd_link_hash_defined)
14439 elf_gp (abfd) = (h->u.def.section->output_section->vma
14440 + h->u.def.section->output_offset
14442 else if (bfd_link_relocatable (info))
14444 bfd_vma lo = MINUS_ONE;
14446 /* Find the GP-relative section with the lowest offset. */
14447 for (o = abfd->sections; o != NULL; o = o->next)
14449 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14452 /* And calculate GP relative to that. */
14453 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14457 /* If the relocate_section function needs to do a reloc
14458 involving the GP value, it should make a reloc_dangerous
14459 callback to warn that GP is not defined. */
14463 /* Go through the sections and collect the .reginfo and .mdebug
14465 abiflags_sec = NULL;
14466 reginfo_sec = NULL;
14468 gptab_data_sec = NULL;
14469 gptab_bss_sec = NULL;
14470 for (o = abfd->sections; o != NULL; o = o->next)
14472 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14474 /* We have found the .MIPS.abiflags section in the output file.
14475 Look through all the link_orders comprising it and remove them.
14476 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14477 for (p = o->map_head.link_order; p != NULL; p = p->next)
14479 asection *input_section;
14481 if (p->type != bfd_indirect_link_order)
14483 if (p->type == bfd_data_link_order)
14488 input_section = p->u.indirect.section;
14490 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14491 elf_link_input_bfd ignores this section. */
14492 input_section->flags &= ~SEC_HAS_CONTENTS;
14495 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14496 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14498 /* Skip this section later on (I don't think this currently
14499 matters, but someday it might). */
14500 o->map_head.link_order = NULL;
14505 if (strcmp (o->name, ".reginfo") == 0)
14507 memset (®info, 0, sizeof reginfo);
14509 /* We have found the .reginfo section in the output file.
14510 Look through all the link_orders comprising it and merge
14511 the information together. */
14512 for (p = o->map_head.link_order; p != NULL; p = p->next)
14514 asection *input_section;
14516 Elf32_External_RegInfo ext;
14519 if (p->type != bfd_indirect_link_order)
14521 if (p->type == bfd_data_link_order)
14526 input_section = p->u.indirect.section;
14527 input_bfd = input_section->owner;
14529 if (! bfd_get_section_contents (input_bfd, input_section,
14530 &ext, 0, sizeof ext))
14533 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14535 reginfo.ri_gprmask |= sub.ri_gprmask;
14536 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14537 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14538 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14539 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14541 /* ri_gp_value is set by the function
14542 mips_elf32_section_processing when the section is
14543 finally written out. */
14545 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14546 elf_link_input_bfd ignores this section. */
14547 input_section->flags &= ~SEC_HAS_CONTENTS;
14550 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14551 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14553 /* Skip this section later on (I don't think this currently
14554 matters, but someday it might). */
14555 o->map_head.link_order = NULL;
14560 if (strcmp (o->name, ".mdebug") == 0)
14562 struct extsym_info einfo;
14565 /* We have found the .mdebug section in the output file.
14566 Look through all the link_orders comprising it and merge
14567 the information together. */
14568 symhdr->magic = swap->sym_magic;
14569 /* FIXME: What should the version stamp be? */
14570 symhdr->vstamp = 0;
14571 symhdr->ilineMax = 0;
14572 symhdr->cbLine = 0;
14573 symhdr->idnMax = 0;
14574 symhdr->ipdMax = 0;
14575 symhdr->isymMax = 0;
14576 symhdr->ioptMax = 0;
14577 symhdr->iauxMax = 0;
14578 symhdr->issMax = 0;
14579 symhdr->issExtMax = 0;
14580 symhdr->ifdMax = 0;
14582 symhdr->iextMax = 0;
14584 /* We accumulate the debugging information itself in the
14585 debug_info structure. */
14587 debug.external_dnr = NULL;
14588 debug.external_pdr = NULL;
14589 debug.external_sym = NULL;
14590 debug.external_opt = NULL;
14591 debug.external_aux = NULL;
14593 debug.ssext = debug.ssext_end = NULL;
14594 debug.external_fdr = NULL;
14595 debug.external_rfd = NULL;
14596 debug.external_ext = debug.external_ext_end = NULL;
14598 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14599 if (mdebug_handle == NULL)
14603 esym.cobol_main = 0;
14607 esym.asym.iss = issNil;
14608 esym.asym.st = stLocal;
14609 esym.asym.reserved = 0;
14610 esym.asym.index = indexNil;
14612 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14614 esym.asym.sc = sc[i];
14615 s = bfd_get_section_by_name (abfd, secname[i]);
14618 esym.asym.value = s->vma;
14619 last = s->vma + s->size;
14622 esym.asym.value = last;
14623 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14624 secname[i], &esym))
14628 for (p = o->map_head.link_order; p != NULL; p = p->next)
14630 asection *input_section;
14632 const struct ecoff_debug_swap *input_swap;
14633 struct ecoff_debug_info input_debug;
14637 if (p->type != bfd_indirect_link_order)
14639 if (p->type == bfd_data_link_order)
14644 input_section = p->u.indirect.section;
14645 input_bfd = input_section->owner;
14647 if (!is_mips_elf (input_bfd))
14649 /* I don't know what a non MIPS ELF bfd would be
14650 doing with a .mdebug section, but I don't really
14651 want to deal with it. */
14655 input_swap = (get_elf_backend_data (input_bfd)
14656 ->elf_backend_ecoff_debug_swap);
14658 BFD_ASSERT (p->size == input_section->size);
14660 /* The ECOFF linking code expects that we have already
14661 read in the debugging information and set up an
14662 ecoff_debug_info structure, so we do that now. */
14663 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14667 if (! (bfd_ecoff_debug_accumulate
14668 (mdebug_handle, abfd, &debug, swap, input_bfd,
14669 &input_debug, input_swap, info)))
14672 /* Loop through the external symbols. For each one with
14673 interesting information, try to find the symbol in
14674 the linker global hash table and save the information
14675 for the output external symbols. */
14676 eraw_src = input_debug.external_ext;
14677 eraw_end = (eraw_src
14678 + (input_debug.symbolic_header.iextMax
14679 * input_swap->external_ext_size));
14681 eraw_src < eraw_end;
14682 eraw_src += input_swap->external_ext_size)
14686 struct mips_elf_link_hash_entry *h;
14688 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14689 if (ext.asym.sc == scNil
14690 || ext.asym.sc == scUndefined
14691 || ext.asym.sc == scSUndefined)
14694 name = input_debug.ssext + ext.asym.iss;
14695 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14696 name, FALSE, FALSE, TRUE);
14697 if (h == NULL || h->esym.ifd != -2)
14702 BFD_ASSERT (ext.ifd
14703 < input_debug.symbolic_header.ifdMax);
14704 ext.ifd = input_debug.ifdmap[ext.ifd];
14710 /* Free up the information we just read. */
14711 free (input_debug.line);
14712 free (input_debug.external_dnr);
14713 free (input_debug.external_pdr);
14714 free (input_debug.external_sym);
14715 free (input_debug.external_opt);
14716 free (input_debug.external_aux);
14717 free (input_debug.ss);
14718 free (input_debug.ssext);
14719 free (input_debug.external_fdr);
14720 free (input_debug.external_rfd);
14721 free (input_debug.external_ext);
14723 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14724 elf_link_input_bfd ignores this section. */
14725 input_section->flags &= ~SEC_HAS_CONTENTS;
14728 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14730 /* Create .rtproc section. */
14731 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14732 if (rtproc_sec == NULL)
14734 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14735 | SEC_LINKER_CREATED | SEC_READONLY);
14737 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14740 if (rtproc_sec == NULL
14741 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14745 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14751 /* Build the external symbol information. */
14754 einfo.debug = &debug;
14756 einfo.failed = FALSE;
14757 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14758 mips_elf_output_extsym, &einfo);
14762 /* Set the size of the .mdebug section. */
14763 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14765 /* Skip this section later on (I don't think this currently
14766 matters, but someday it might). */
14767 o->map_head.link_order = NULL;
14772 if (CONST_STRNEQ (o->name, ".gptab."))
14774 const char *subname;
14777 Elf32_External_gptab *ext_tab;
14780 /* The .gptab.sdata and .gptab.sbss sections hold
14781 information describing how the small data area would
14782 change depending upon the -G switch. These sections
14783 not used in executables files. */
14784 if (! bfd_link_relocatable (info))
14786 for (p = o->map_head.link_order; p != NULL; p = p->next)
14788 asection *input_section;
14790 if (p->type != bfd_indirect_link_order)
14792 if (p->type == bfd_data_link_order)
14797 input_section = p->u.indirect.section;
14799 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14800 elf_link_input_bfd ignores this section. */
14801 input_section->flags &= ~SEC_HAS_CONTENTS;
14804 /* Skip this section later on (I don't think this
14805 currently matters, but someday it might). */
14806 o->map_head.link_order = NULL;
14808 /* Really remove the section. */
14809 bfd_section_list_remove (abfd, o);
14810 --abfd->section_count;
14815 /* There is one gptab for initialized data, and one for
14816 uninitialized data. */
14817 if (strcmp (o->name, ".gptab.sdata") == 0)
14818 gptab_data_sec = o;
14819 else if (strcmp (o->name, ".gptab.sbss") == 0)
14824 /* xgettext:c-format */
14825 (_("%s: illegal section name `%s'"),
14826 bfd_get_filename (abfd), o->name);
14827 bfd_set_error (bfd_error_nonrepresentable_section);
14831 /* The linker script always combines .gptab.data and
14832 .gptab.sdata into .gptab.sdata, and likewise for
14833 .gptab.bss and .gptab.sbss. It is possible that there is
14834 no .sdata or .sbss section in the output file, in which
14835 case we must change the name of the output section. */
14836 subname = o->name + sizeof ".gptab" - 1;
14837 if (bfd_get_section_by_name (abfd, subname) == NULL)
14839 if (o == gptab_data_sec)
14840 o->name = ".gptab.data";
14842 o->name = ".gptab.bss";
14843 subname = o->name + sizeof ".gptab" - 1;
14844 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14847 /* Set up the first entry. */
14849 amt = c * sizeof (Elf32_gptab);
14850 tab = bfd_malloc (amt);
14853 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14854 tab[0].gt_header.gt_unused = 0;
14856 /* Combine the input sections. */
14857 for (p = o->map_head.link_order; p != NULL; p = p->next)
14859 asection *input_section;
14861 bfd_size_type size;
14862 unsigned long last;
14863 bfd_size_type gpentry;
14865 if (p->type != bfd_indirect_link_order)
14867 if (p->type == bfd_data_link_order)
14872 input_section = p->u.indirect.section;
14873 input_bfd = input_section->owner;
14875 /* Combine the gptab entries for this input section one
14876 by one. We know that the input gptab entries are
14877 sorted by ascending -G value. */
14878 size = input_section->size;
14880 for (gpentry = sizeof (Elf32_External_gptab);
14882 gpentry += sizeof (Elf32_External_gptab))
14884 Elf32_External_gptab ext_gptab;
14885 Elf32_gptab int_gptab;
14891 if (! (bfd_get_section_contents
14892 (input_bfd, input_section, &ext_gptab, gpentry,
14893 sizeof (Elf32_External_gptab))))
14899 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14901 val = int_gptab.gt_entry.gt_g_value;
14902 add = int_gptab.gt_entry.gt_bytes - last;
14905 for (look = 1; look < c; look++)
14907 if (tab[look].gt_entry.gt_g_value >= val)
14908 tab[look].gt_entry.gt_bytes += add;
14910 if (tab[look].gt_entry.gt_g_value == val)
14916 Elf32_gptab *new_tab;
14919 /* We need a new table entry. */
14920 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14921 new_tab = bfd_realloc (tab, amt);
14922 if (new_tab == NULL)
14928 tab[c].gt_entry.gt_g_value = val;
14929 tab[c].gt_entry.gt_bytes = add;
14931 /* Merge in the size for the next smallest -G
14932 value, since that will be implied by this new
14935 for (look = 1; look < c; look++)
14937 if (tab[look].gt_entry.gt_g_value < val
14939 || (tab[look].gt_entry.gt_g_value
14940 > tab[max].gt_entry.gt_g_value)))
14944 tab[c].gt_entry.gt_bytes +=
14945 tab[max].gt_entry.gt_bytes;
14950 last = int_gptab.gt_entry.gt_bytes;
14953 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14954 elf_link_input_bfd ignores this section. */
14955 input_section->flags &= ~SEC_HAS_CONTENTS;
14958 /* The table must be sorted by -G value. */
14960 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14962 /* Swap out the table. */
14963 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14964 ext_tab = bfd_alloc (abfd, amt);
14965 if (ext_tab == NULL)
14971 for (j = 0; j < c; j++)
14972 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14975 o->size = c * sizeof (Elf32_External_gptab);
14976 o->contents = (bfd_byte *) ext_tab;
14978 /* Skip this section later on (I don't think this currently
14979 matters, but someday it might). */
14980 o->map_head.link_order = NULL;
14984 /* Invoke the regular ELF backend linker to do all the work. */
14985 if (!bfd_elf_final_link (abfd, info))
14988 /* Now write out the computed sections. */
14990 if (abiflags_sec != NULL)
14992 Elf_External_ABIFlags_v0 ext;
14993 Elf_Internal_ABIFlags_v0 *abiflags;
14995 abiflags = &mips_elf_tdata (abfd)->abiflags;
14997 /* Set up the abiflags if no valid input sections were found. */
14998 if (!mips_elf_tdata (abfd)->abiflags_valid)
15000 infer_mips_abiflags (abfd, abiflags);
15001 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15003 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15004 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15008 if (reginfo_sec != NULL)
15010 Elf32_External_RegInfo ext;
15012 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
15013 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15017 if (mdebug_sec != NULL)
15019 BFD_ASSERT (abfd->output_has_begun);
15020 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15022 mdebug_sec->filepos))
15025 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15028 if (gptab_data_sec != NULL)
15030 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15031 gptab_data_sec->contents,
15032 0, gptab_data_sec->size))
15036 if (gptab_bss_sec != NULL)
15038 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15039 gptab_bss_sec->contents,
15040 0, gptab_bss_sec->size))
15044 if (SGI_COMPAT (abfd))
15046 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15047 if (rtproc_sec != NULL)
15049 if (! bfd_set_section_contents (abfd, rtproc_sec,
15050 rtproc_sec->contents,
15051 0, rtproc_sec->size))
15059 /* Merge object file header flags from IBFD into OBFD. Raise an error
15060 if there are conflicting settings. */
15063 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15065 bfd *obfd = info->output_bfd;
15066 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15067 flagword old_flags;
15068 flagword new_flags;
15071 new_flags = elf_elfheader (ibfd)->e_flags;
15072 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15073 old_flags = elf_elfheader (obfd)->e_flags;
15075 /* Check flag compatibility. */
15077 new_flags &= ~EF_MIPS_NOREORDER;
15078 old_flags &= ~EF_MIPS_NOREORDER;
15080 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15081 doesn't seem to matter. */
15082 new_flags &= ~EF_MIPS_XGOT;
15083 old_flags &= ~EF_MIPS_XGOT;
15085 /* MIPSpro generates ucode info in n64 objects. Again, we should
15086 just be able to ignore this. */
15087 new_flags &= ~EF_MIPS_UCODE;
15088 old_flags &= ~EF_MIPS_UCODE;
15090 /* DSOs should only be linked with CPIC code. */
15091 if ((ibfd->flags & DYNAMIC) != 0)
15092 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15094 if (new_flags == old_flags)
15099 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15100 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15103 (_("%B: warning: linking abicalls files with non-abicalls files"),
15108 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15109 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15110 if (! (new_flags & EF_MIPS_PIC))
15111 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15113 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15114 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15116 /* Compare the ISAs. */
15117 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15120 (_("%B: linking 32-bit code with 64-bit code"),
15124 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15126 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15127 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15129 /* Copy the architecture info from IBFD to OBFD. Also copy
15130 the 32-bit flag (if set) so that we continue to recognise
15131 OBFD as a 32-bit binary. */
15132 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15133 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15134 elf_elfheader (obfd)->e_flags
15135 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15137 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15138 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15140 /* Copy across the ABI flags if OBFD doesn't use them
15141 and if that was what caused us to treat IBFD as 32-bit. */
15142 if ((old_flags & EF_MIPS_ABI) == 0
15143 && mips_32bit_flags_p (new_flags)
15144 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15145 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15149 /* The ISAs aren't compatible. */
15151 /* xgettext:c-format */
15152 (_("%B: linking %s module with previous %s modules"),
15154 bfd_printable_name (ibfd),
15155 bfd_printable_name (obfd));
15160 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15161 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15163 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15164 does set EI_CLASS differently from any 32-bit ABI. */
15165 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15166 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15167 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15169 /* Only error if both are set (to different values). */
15170 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15171 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15172 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15175 /* xgettext:c-format */
15176 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15178 elf_mips_abi_name (ibfd),
15179 elf_mips_abi_name (obfd));
15182 new_flags &= ~EF_MIPS_ABI;
15183 old_flags &= ~EF_MIPS_ABI;
15186 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15187 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15188 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15190 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15191 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15192 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15193 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15194 int micro_mis = old_m16 && new_micro;
15195 int m16_mis = old_micro && new_m16;
15197 if (m16_mis || micro_mis)
15200 /* xgettext:c-format */
15201 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15203 m16_mis ? "MIPS16" : "microMIPS",
15204 m16_mis ? "microMIPS" : "MIPS16");
15208 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15210 new_flags &= ~ EF_MIPS_ARCH_ASE;
15211 old_flags &= ~ EF_MIPS_ARCH_ASE;
15214 /* Compare NaN encodings. */
15215 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15217 /* xgettext:c-format */
15218 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15220 (new_flags & EF_MIPS_NAN2008
15221 ? "-mnan=2008" : "-mnan=legacy"),
15222 (old_flags & EF_MIPS_NAN2008
15223 ? "-mnan=2008" : "-mnan=legacy"));
15225 new_flags &= ~EF_MIPS_NAN2008;
15226 old_flags &= ~EF_MIPS_NAN2008;
15229 /* Compare FP64 state. */
15230 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15232 /* xgettext:c-format */
15233 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15235 (new_flags & EF_MIPS_FP64
15236 ? "-mfp64" : "-mfp32"),
15237 (old_flags & EF_MIPS_FP64
15238 ? "-mfp64" : "-mfp32"));
15240 new_flags &= ~EF_MIPS_FP64;
15241 old_flags &= ~EF_MIPS_FP64;
15244 /* Warn about any other mismatches */
15245 if (new_flags != old_flags)
15247 /* xgettext:c-format */
15249 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15251 ibfd, (unsigned long) new_flags,
15252 (unsigned long) old_flags);
15259 /* Merge object attributes from IBFD into OBFD. Raise an error if
15260 there are conflicting attributes. */
15262 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15264 bfd *obfd = info->output_bfd;
15265 obj_attribute *in_attr;
15266 obj_attribute *out_attr;
15270 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15271 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15272 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15273 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15275 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15277 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15278 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15280 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15282 /* This is the first object. Copy the attributes. */
15283 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15285 /* Use the Tag_null value to indicate the attributes have been
15287 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15292 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15293 non-conflicting ones. */
15294 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15295 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15299 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15300 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15301 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15302 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15303 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15304 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15305 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15306 || in_fp == Val_GNU_MIPS_ABI_FP_64
15307 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15309 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15310 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15312 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15313 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15314 || out_fp == Val_GNU_MIPS_ABI_FP_64
15315 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15316 /* Keep the current setting. */;
15317 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15318 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15320 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15321 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15323 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15324 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15325 /* Keep the current setting. */;
15326 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15328 const char *out_string, *in_string;
15330 out_string = _bfd_mips_fp_abi_string (out_fp);
15331 in_string = _bfd_mips_fp_abi_string (in_fp);
15332 /* First warn about cases involving unrecognised ABIs. */
15333 if (!out_string && !in_string)
15334 /* xgettext:c-format */
15336 (_("Warning: %B uses unknown floating point ABI %d "
15337 "(set by %B), %B uses unknown floating point ABI %d"),
15338 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15339 else if (!out_string)
15341 /* xgettext:c-format */
15342 (_("Warning: %B uses unknown floating point ABI %d "
15343 "(set by %B), %B uses %s"),
15344 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15345 else if (!in_string)
15347 /* xgettext:c-format */
15348 (_("Warning: %B uses %s (set by %B), "
15349 "%B uses unknown floating point ABI %d"),
15350 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15353 /* If one of the bfds is soft-float, the other must be
15354 hard-float. The exact choice of hard-float ABI isn't
15355 really relevant to the error message. */
15356 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15357 out_string = "-mhard-float";
15358 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15359 in_string = "-mhard-float";
15361 /* xgettext:c-format */
15362 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15363 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15368 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15369 non-conflicting ones. */
15370 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15372 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15373 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15374 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15375 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15376 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15378 case Val_GNU_MIPS_ABI_MSA_128:
15380 /* xgettext:c-format */
15381 (_("Warning: %B uses %s (set by %B), "
15382 "%B uses unknown MSA ABI %d"),
15383 obfd, abi_msa_bfd, ibfd,
15384 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15388 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15390 case Val_GNU_MIPS_ABI_MSA_128:
15392 /* xgettext:c-format */
15393 (_("Warning: %B uses unknown MSA ABI %d "
15394 "(set by %B), %B uses %s"),
15395 obfd, abi_msa_bfd, ibfd,
15396 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15401 /* xgettext:c-format */
15402 (_("Warning: %B uses unknown MSA ABI %d "
15403 "(set by %B), %B uses unknown MSA ABI %d"),
15404 obfd, abi_msa_bfd, ibfd,
15405 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15406 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15412 /* Merge Tag_compatibility attributes and any common GNU ones. */
15413 return _bfd_elf_merge_object_attributes (ibfd, info);
15416 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15417 there are conflicting settings. */
15420 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15422 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15423 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15424 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15426 /* Update the output abiflags fp_abi using the computed fp_abi. */
15427 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15429 #define max(a, b) ((a) > (b) ? (a) : (b))
15430 /* Merge abiflags. */
15431 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15432 in_tdata->abiflags.isa_level);
15433 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15434 in_tdata->abiflags.isa_rev);
15435 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15436 in_tdata->abiflags.gpr_size);
15437 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15438 in_tdata->abiflags.cpr1_size);
15439 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15440 in_tdata->abiflags.cpr2_size);
15442 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15443 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15448 /* Merge backend specific data from an object file to the output
15449 object file when linking. */
15452 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15454 bfd *obfd = info->output_bfd;
15455 struct mips_elf_obj_tdata *out_tdata;
15456 struct mips_elf_obj_tdata *in_tdata;
15457 bfd_boolean null_input_bfd = TRUE;
15461 /* Check if we have the same endianness. */
15462 if (! _bfd_generic_verify_endian_match (ibfd, info))
15465 (_("%B: endianness incompatible with that of the selected emulation"),
15470 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15473 in_tdata = mips_elf_tdata (ibfd);
15474 out_tdata = mips_elf_tdata (obfd);
15476 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15479 (_("%B: ABI is incompatible with that of the selected emulation"),
15484 /* Check to see if the input BFD actually contains any sections. If not,
15485 then it has no attributes, and its flags may not have been initialized
15486 either, but it cannot actually cause any incompatibility. */
15487 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15489 /* Ignore synthetic sections and empty .text, .data and .bss sections
15490 which are automatically generated by gas. Also ignore fake
15491 (s)common sections, since merely defining a common symbol does
15492 not affect compatibility. */
15493 if ((sec->flags & SEC_IS_COMMON) == 0
15494 && strcmp (sec->name, ".reginfo")
15495 && strcmp (sec->name, ".mdebug")
15497 || (strcmp (sec->name, ".text")
15498 && strcmp (sec->name, ".data")
15499 && strcmp (sec->name, ".bss"))))
15501 null_input_bfd = FALSE;
15505 if (null_input_bfd)
15508 /* Populate abiflags using existing information. */
15509 if (in_tdata->abiflags_valid)
15511 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15512 Elf_Internal_ABIFlags_v0 in_abiflags;
15513 Elf_Internal_ABIFlags_v0 abiflags;
15515 /* Set up the FP ABI attribute from the abiflags if it is not already
15517 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15518 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15520 infer_mips_abiflags (ibfd, &abiflags);
15521 in_abiflags = in_tdata->abiflags;
15523 /* It is not possible to infer the correct ISA revision
15524 for R3 or R5 so drop down to R2 for the checks. */
15525 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15526 in_abiflags.isa_rev = 2;
15528 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15529 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15531 (_("%B: warning: Inconsistent ISA between e_flags and "
15532 ".MIPS.abiflags"), ibfd);
15533 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15534 && in_abiflags.fp_abi != abiflags.fp_abi)
15536 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15537 ".MIPS.abiflags"), ibfd);
15538 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15540 (_("%B: warning: Inconsistent ASEs between e_flags and "
15541 ".MIPS.abiflags"), ibfd);
15542 /* The isa_ext is allowed to be an extension of what can be inferred
15544 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15545 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15547 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15548 ".MIPS.abiflags"), ibfd);
15549 if (in_abiflags.flags2 != 0)
15551 (_("%B: warning: Unexpected flag in the flags2 field of "
15552 ".MIPS.abiflags (0x%lx)"), ibfd,
15553 (unsigned long) in_abiflags.flags2);
15557 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15558 in_tdata->abiflags_valid = TRUE;
15561 if (!out_tdata->abiflags_valid)
15563 /* Copy input abiflags if output abiflags are not already valid. */
15564 out_tdata->abiflags = in_tdata->abiflags;
15565 out_tdata->abiflags_valid = TRUE;
15568 if (! elf_flags_init (obfd))
15570 elf_flags_init (obfd) = TRUE;
15571 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15572 elf_elfheader (obfd)->e_ident[EI_CLASS]
15573 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15575 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15576 && (bfd_get_arch_info (obfd)->the_default
15577 || mips_mach_extends_p (bfd_get_mach (obfd),
15578 bfd_get_mach (ibfd))))
15580 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15581 bfd_get_mach (ibfd)))
15584 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15585 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15591 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15593 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15595 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15599 bfd_set_error (bfd_error_bad_value);
15606 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15609 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15611 BFD_ASSERT (!elf_flags_init (abfd)
15612 || elf_elfheader (abfd)->e_flags == flags);
15614 elf_elfheader (abfd)->e_flags = flags;
15615 elf_flags_init (abfd) = TRUE;
15620 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15624 default: return "";
15625 case DT_MIPS_RLD_VERSION:
15626 return "MIPS_RLD_VERSION";
15627 case DT_MIPS_TIME_STAMP:
15628 return "MIPS_TIME_STAMP";
15629 case DT_MIPS_ICHECKSUM:
15630 return "MIPS_ICHECKSUM";
15631 case DT_MIPS_IVERSION:
15632 return "MIPS_IVERSION";
15633 case DT_MIPS_FLAGS:
15634 return "MIPS_FLAGS";
15635 case DT_MIPS_BASE_ADDRESS:
15636 return "MIPS_BASE_ADDRESS";
15638 return "MIPS_MSYM";
15639 case DT_MIPS_CONFLICT:
15640 return "MIPS_CONFLICT";
15641 case DT_MIPS_LIBLIST:
15642 return "MIPS_LIBLIST";
15643 case DT_MIPS_LOCAL_GOTNO:
15644 return "MIPS_LOCAL_GOTNO";
15645 case DT_MIPS_CONFLICTNO:
15646 return "MIPS_CONFLICTNO";
15647 case DT_MIPS_LIBLISTNO:
15648 return "MIPS_LIBLISTNO";
15649 case DT_MIPS_SYMTABNO:
15650 return "MIPS_SYMTABNO";
15651 case DT_MIPS_UNREFEXTNO:
15652 return "MIPS_UNREFEXTNO";
15653 case DT_MIPS_GOTSYM:
15654 return "MIPS_GOTSYM";
15655 case DT_MIPS_HIPAGENO:
15656 return "MIPS_HIPAGENO";
15657 case DT_MIPS_RLD_MAP:
15658 return "MIPS_RLD_MAP";
15659 case DT_MIPS_RLD_MAP_REL:
15660 return "MIPS_RLD_MAP_REL";
15661 case DT_MIPS_DELTA_CLASS:
15662 return "MIPS_DELTA_CLASS";
15663 case DT_MIPS_DELTA_CLASS_NO:
15664 return "MIPS_DELTA_CLASS_NO";
15665 case DT_MIPS_DELTA_INSTANCE:
15666 return "MIPS_DELTA_INSTANCE";
15667 case DT_MIPS_DELTA_INSTANCE_NO:
15668 return "MIPS_DELTA_INSTANCE_NO";
15669 case DT_MIPS_DELTA_RELOC:
15670 return "MIPS_DELTA_RELOC";
15671 case DT_MIPS_DELTA_RELOC_NO:
15672 return "MIPS_DELTA_RELOC_NO";
15673 case DT_MIPS_DELTA_SYM:
15674 return "MIPS_DELTA_SYM";
15675 case DT_MIPS_DELTA_SYM_NO:
15676 return "MIPS_DELTA_SYM_NO";
15677 case DT_MIPS_DELTA_CLASSSYM:
15678 return "MIPS_DELTA_CLASSSYM";
15679 case DT_MIPS_DELTA_CLASSSYM_NO:
15680 return "MIPS_DELTA_CLASSSYM_NO";
15681 case DT_MIPS_CXX_FLAGS:
15682 return "MIPS_CXX_FLAGS";
15683 case DT_MIPS_PIXIE_INIT:
15684 return "MIPS_PIXIE_INIT";
15685 case DT_MIPS_SYMBOL_LIB:
15686 return "MIPS_SYMBOL_LIB";
15687 case DT_MIPS_LOCALPAGE_GOTIDX:
15688 return "MIPS_LOCALPAGE_GOTIDX";
15689 case DT_MIPS_LOCAL_GOTIDX:
15690 return "MIPS_LOCAL_GOTIDX";
15691 case DT_MIPS_HIDDEN_GOTIDX:
15692 return "MIPS_HIDDEN_GOTIDX";
15693 case DT_MIPS_PROTECTED_GOTIDX:
15694 return "MIPS_PROTECTED_GOT_IDX";
15695 case DT_MIPS_OPTIONS:
15696 return "MIPS_OPTIONS";
15697 case DT_MIPS_INTERFACE:
15698 return "MIPS_INTERFACE";
15699 case DT_MIPS_DYNSTR_ALIGN:
15700 return "DT_MIPS_DYNSTR_ALIGN";
15701 case DT_MIPS_INTERFACE_SIZE:
15702 return "DT_MIPS_INTERFACE_SIZE";
15703 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15704 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15705 case DT_MIPS_PERF_SUFFIX:
15706 return "DT_MIPS_PERF_SUFFIX";
15707 case DT_MIPS_COMPACT_SIZE:
15708 return "DT_MIPS_COMPACT_SIZE";
15709 case DT_MIPS_GP_VALUE:
15710 return "DT_MIPS_GP_VALUE";
15711 case DT_MIPS_AUX_DYNAMIC:
15712 return "DT_MIPS_AUX_DYNAMIC";
15713 case DT_MIPS_PLTGOT:
15714 return "DT_MIPS_PLTGOT";
15715 case DT_MIPS_RWPLT:
15716 return "DT_MIPS_RWPLT";
15720 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15724 _bfd_mips_fp_abi_string (int fp)
15728 /* These strings aren't translated because they're simply
15730 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15731 return "-mdouble-float";
15733 case Val_GNU_MIPS_ABI_FP_SINGLE:
15734 return "-msingle-float";
15736 case Val_GNU_MIPS_ABI_FP_SOFT:
15737 return "-msoft-float";
15739 case Val_GNU_MIPS_ABI_FP_OLD_64:
15740 return _("-mips32r2 -mfp64 (12 callee-saved)");
15742 case Val_GNU_MIPS_ABI_FP_XX:
15745 case Val_GNU_MIPS_ABI_FP_64:
15746 return "-mgp32 -mfp64";
15748 case Val_GNU_MIPS_ABI_FP_64A:
15749 return "-mgp32 -mfp64 -mno-odd-spreg";
15757 print_mips_ases (FILE *file, unsigned int mask)
15759 if (mask & AFL_ASE_DSP)
15760 fputs ("\n\tDSP ASE", file);
15761 if (mask & AFL_ASE_DSPR2)
15762 fputs ("\n\tDSP R2 ASE", file);
15763 if (mask & AFL_ASE_DSPR3)
15764 fputs ("\n\tDSP R3 ASE", file);
15765 if (mask & AFL_ASE_EVA)
15766 fputs ("\n\tEnhanced VA Scheme", file);
15767 if (mask & AFL_ASE_MCU)
15768 fputs ("\n\tMCU (MicroController) ASE", file);
15769 if (mask & AFL_ASE_MDMX)
15770 fputs ("\n\tMDMX ASE", file);
15771 if (mask & AFL_ASE_MIPS3D)
15772 fputs ("\n\tMIPS-3D ASE", file);
15773 if (mask & AFL_ASE_MT)
15774 fputs ("\n\tMT ASE", file);
15775 if (mask & AFL_ASE_SMARTMIPS)
15776 fputs ("\n\tSmartMIPS ASE", file);
15777 if (mask & AFL_ASE_VIRT)
15778 fputs ("\n\tVZ ASE", file);
15779 if (mask & AFL_ASE_MSA)
15780 fputs ("\n\tMSA ASE", file);
15781 if (mask & AFL_ASE_MIPS16)
15782 fputs ("\n\tMIPS16 ASE", file);
15783 if (mask & AFL_ASE_MICROMIPS)
15784 fputs ("\n\tMICROMIPS ASE", file);
15785 if (mask & AFL_ASE_XPA)
15786 fputs ("\n\tXPA ASE", file);
15788 fprintf (file, "\n\t%s", _("None"));
15789 else if ((mask & ~AFL_ASE_MASK) != 0)
15790 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15794 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15799 fputs (_("None"), file);
15802 fputs ("RMI XLR", file);
15804 case AFL_EXT_OCTEON3:
15805 fputs ("Cavium Networks Octeon3", file);
15807 case AFL_EXT_OCTEON2:
15808 fputs ("Cavium Networks Octeon2", file);
15810 case AFL_EXT_OCTEONP:
15811 fputs ("Cavium Networks OcteonP", file);
15813 case AFL_EXT_LOONGSON_3A:
15814 fputs ("Loongson 3A", file);
15816 case AFL_EXT_OCTEON:
15817 fputs ("Cavium Networks Octeon", file);
15820 fputs ("Toshiba R5900", file);
15823 fputs ("MIPS R4650", file);
15826 fputs ("LSI R4010", file);
15829 fputs ("NEC VR4100", file);
15832 fputs ("Toshiba R3900", file);
15834 case AFL_EXT_10000:
15835 fputs ("MIPS R10000", file);
15838 fputs ("Broadcom SB-1", file);
15841 fputs ("NEC VR4111/VR4181", file);
15844 fputs ("NEC VR4120", file);
15847 fputs ("NEC VR5400", file);
15850 fputs ("NEC VR5500", file);
15852 case AFL_EXT_LOONGSON_2E:
15853 fputs ("ST Microelectronics Loongson 2E", file);
15855 case AFL_EXT_LOONGSON_2F:
15856 fputs ("ST Microelectronics Loongson 2F", file);
15859 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15865 print_mips_fp_abi_value (FILE *file, int val)
15869 case Val_GNU_MIPS_ABI_FP_ANY:
15870 fprintf (file, _("Hard or soft float\n"));
15872 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15873 fprintf (file, _("Hard float (double precision)\n"));
15875 case Val_GNU_MIPS_ABI_FP_SINGLE:
15876 fprintf (file, _("Hard float (single precision)\n"));
15878 case Val_GNU_MIPS_ABI_FP_SOFT:
15879 fprintf (file, _("Soft float\n"));
15881 case Val_GNU_MIPS_ABI_FP_OLD_64:
15882 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15884 case Val_GNU_MIPS_ABI_FP_XX:
15885 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15887 case Val_GNU_MIPS_ABI_FP_64:
15888 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15890 case Val_GNU_MIPS_ABI_FP_64A:
15891 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15894 fprintf (file, "??? (%d)\n", val);
15900 get_mips_reg_size (int reg_size)
15902 return (reg_size == AFL_REG_NONE) ? 0
15903 : (reg_size == AFL_REG_32) ? 32
15904 : (reg_size == AFL_REG_64) ? 64
15905 : (reg_size == AFL_REG_128) ? 128
15910 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15914 BFD_ASSERT (abfd != NULL && ptr != NULL);
15916 /* Print normal ELF private data. */
15917 _bfd_elf_print_private_bfd_data (abfd, ptr);
15919 /* xgettext:c-format */
15920 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15922 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15923 fprintf (file, _(" [abi=O32]"));
15924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15925 fprintf (file, _(" [abi=O64]"));
15926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15927 fprintf (file, _(" [abi=EABI32]"));
15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15929 fprintf (file, _(" [abi=EABI64]"));
15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15931 fprintf (file, _(" [abi unknown]"));
15932 else if (ABI_N32_P (abfd))
15933 fprintf (file, _(" [abi=N32]"));
15934 else if (ABI_64_P (abfd))
15935 fprintf (file, _(" [abi=64]"));
15937 fprintf (file, _(" [no abi set]"));
15939 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15940 fprintf (file, " [mips1]");
15941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15942 fprintf (file, " [mips2]");
15943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15944 fprintf (file, " [mips3]");
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15946 fprintf (file, " [mips4]");
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15948 fprintf (file, " [mips5]");
15949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15950 fprintf (file, " [mips32]");
15951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15952 fprintf (file, " [mips64]");
15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15954 fprintf (file, " [mips32r2]");
15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15956 fprintf (file, " [mips64r2]");
15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15958 fprintf (file, " [mips32r6]");
15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15960 fprintf (file, " [mips64r6]");
15962 fprintf (file, _(" [unknown ISA]"));
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15965 fprintf (file, " [mdmx]");
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15968 fprintf (file, " [mips16]");
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15971 fprintf (file, " [micromips]");
15973 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15974 fprintf (file, " [nan2008]");
15976 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15977 fprintf (file, " [old fp64]");
15979 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15980 fprintf (file, " [32bitmode]");
15982 fprintf (file, _(" [not 32bitmode]"));
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15985 fprintf (file, " [noreorder]");
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15988 fprintf (file, " [PIC]");
15990 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15991 fprintf (file, " [CPIC]");
15993 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15994 fprintf (file, " [XGOT]");
15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15997 fprintf (file, " [UCODE]");
15999 fputc ('\n', file);
16001 if (mips_elf_tdata (abfd)->abiflags_valid)
16003 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16004 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16005 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16006 if (abiflags->isa_rev > 1)
16007 fprintf (file, "r%d", abiflags->isa_rev);
16008 fprintf (file, "\nGPR size: %d",
16009 get_mips_reg_size (abiflags->gpr_size));
16010 fprintf (file, "\nCPR1 size: %d",
16011 get_mips_reg_size (abiflags->cpr1_size));
16012 fprintf (file, "\nCPR2 size: %d",
16013 get_mips_reg_size (abiflags->cpr2_size));
16014 fputs ("\nFP ABI: ", file);
16015 print_mips_fp_abi_value (file, abiflags->fp_abi);
16016 fputs ("ISA Extension: ", file);
16017 print_mips_isa_ext (file, abiflags->isa_ext);
16018 fputs ("\nASEs:", file);
16019 print_mips_ases (file, abiflags->ases);
16020 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16021 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16022 fputc ('\n', file);
16028 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16030 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16031 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16032 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16033 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16034 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16035 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16036 { NULL, 0, 0, 0, 0 }
16039 /* Merge non visibility st_other attributes. Ensure that the
16040 STO_OPTIONAL flag is copied into h->other, even if this is not a
16041 definiton of the symbol. */
16043 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16044 const Elf_Internal_Sym *isym,
16045 bfd_boolean definition,
16046 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16048 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16050 unsigned char other;
16052 other = (definition ? isym->st_other : h->other);
16053 other &= ~ELF_ST_VISIBILITY (-1);
16054 h->other = other | ELF_ST_VISIBILITY (h->other);
16058 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16059 h->other |= STO_OPTIONAL;
16062 /* Decide whether an undefined symbol is special and can be ignored.
16063 This is the case for OPTIONAL symbols on IRIX. */
16065 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16067 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16071 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16073 return (sym->st_shndx == SHN_COMMON
16074 || sym->st_shndx == SHN_MIPS_ACOMMON
16075 || sym->st_shndx == SHN_MIPS_SCOMMON);
16078 /* Return address for Ith PLT stub in section PLT, for relocation REL
16079 or (bfd_vma) -1 if it should not be included. */
16082 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16083 const arelent *rel ATTRIBUTE_UNUSED)
16086 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16087 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16090 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16091 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16092 and .got.plt and also the slots may be of a different size each we walk
16093 the PLT manually fetching instructions and matching them against known
16094 patterns. To make things easier standard MIPS slots, if any, always come
16095 first. As we don't create proper ELF symbols we use the UDATA.I member
16096 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16097 with the ST_OTHER member of the ELF symbol. */
16100 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16101 long symcount ATTRIBUTE_UNUSED,
16102 asymbol **syms ATTRIBUTE_UNUSED,
16103 long dynsymcount, asymbol **dynsyms,
16106 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16107 static const char microsuffix[] = "@micromipsplt";
16108 static const char m16suffix[] = "@mips16plt";
16109 static const char mipssuffix[] = "@plt";
16111 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16113 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16114 Elf_Internal_Shdr *hdr;
16115 bfd_byte *plt_data;
16116 bfd_vma plt_offset;
16117 unsigned int other;
16118 bfd_vma entry_size;
16137 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16140 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16141 if (relplt == NULL)
16144 hdr = &elf_section_data (relplt)->this_hdr;
16145 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16148 plt = bfd_get_section_by_name (abfd, ".plt");
16152 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16153 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16155 p = relplt->relocation;
16157 /* Calculating the exact amount of space required for symbols would
16158 require two passes over the PLT, so just pessimise assuming two
16159 PLT slots per relocation. */
16160 count = relplt->size / hdr->sh_entsize;
16161 counti = count * bed->s->int_rels_per_ext_rel;
16162 size = 2 * count * sizeof (asymbol);
16163 size += count * (sizeof (mipssuffix) +
16164 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16165 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16166 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16168 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16169 size += sizeof (asymbol) + sizeof (pltname);
16171 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16174 if (plt->size < 16)
16177 s = *ret = bfd_malloc (size);
16180 send = s + 2 * count + 1;
16182 names = (char *) send;
16183 nend = (char *) s + size;
16186 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16187 if (opcode == 0x3302fffe)
16191 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16192 other = STO_MICROMIPS;
16194 else if (opcode == 0x0398c1d0)
16198 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16199 other = STO_MICROMIPS;
16203 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16208 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16212 s->udata.i = other;
16213 memcpy (names, pltname, sizeof (pltname));
16214 names += sizeof (pltname);
16218 for (plt_offset = plt0_size;
16219 plt_offset + 8 <= plt->size && s < send;
16220 plt_offset += entry_size)
16222 bfd_vma gotplt_addr;
16223 const char *suffix;
16228 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16230 /* Check if the second word matches the expected MIPS16 instruction. */
16231 if (opcode == 0x651aeb00)
16235 /* Truncated table??? */
16236 if (plt_offset + 16 > plt->size)
16238 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16239 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16240 suffixlen = sizeof (m16suffix);
16241 suffix = m16suffix;
16242 other = STO_MIPS16;
16244 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16245 else if (opcode == 0xff220000)
16249 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16250 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16251 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16253 gotplt_addr = gotplt_hi + gotplt_lo;
16254 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16255 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16256 suffixlen = sizeof (microsuffix);
16257 suffix = microsuffix;
16258 other = STO_MICROMIPS;
16260 /* Likewise the expected microMIPS instruction (insn32 mode). */
16261 else if ((opcode & 0xffff0000) == 0xff2f0000)
16263 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16264 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16265 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16266 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16267 gotplt_addr = gotplt_hi + gotplt_lo;
16268 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16269 suffixlen = sizeof (microsuffix);
16270 suffix = microsuffix;
16271 other = STO_MICROMIPS;
16273 /* Otherwise assume standard MIPS code. */
16276 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16277 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16278 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16279 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16280 gotplt_addr = gotplt_hi + gotplt_lo;
16281 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16282 suffixlen = sizeof (mipssuffix);
16283 suffix = mipssuffix;
16286 /* Truncated table??? */
16287 if (plt_offset + entry_size > plt->size)
16291 i < count && p[pi].address != gotplt_addr;
16292 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16299 *s = **p[pi].sym_ptr_ptr;
16300 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16301 we are defining a symbol, ensure one of them is set. */
16302 if ((s->flags & BSF_LOCAL) == 0)
16303 s->flags |= BSF_GLOBAL;
16304 s->flags |= BSF_SYNTHETIC;
16306 s->value = plt_offset;
16308 s->udata.i = other;
16310 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16311 namelen = len + suffixlen;
16312 if (names + namelen > nend)
16315 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16317 memcpy (names, suffix, suffixlen);
16318 names += suffixlen;
16321 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16330 /* Return the ABI flags associated with ABFD if available. */
16332 Elf_Internal_ABIFlags_v0 *
16333 bfd_mips_elf_get_abiflags (bfd *abfd)
16335 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16337 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16341 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16343 struct mips_elf_link_hash_table *htab;
16344 Elf_Internal_Ehdr *i_ehdrp;
16346 i_ehdrp = elf_elfheader (abfd);
16349 htab = mips_elf_hash_table (link_info);
16350 BFD_ASSERT (htab != NULL);
16352 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16353 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16356 _bfd_elf_post_process_headers (abfd, link_info);
16358 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16359 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16360 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16362 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16363 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16367 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16369 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16372 /* Return the opcode for can't unwind. */
16375 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16377 return COMPACT_EH_CANT_UNWIND_OPCODE;