1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 bfd_size_type max_non_got_dynindx;
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
330 /* Traditional SVR4 stub offset, or -1 if none. */
333 /* Standard PLT entry offset, or -1 if none. */
336 /* Compressed PLT entry offset, or -1 if none. */
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
352 struct mips_elf_link_hash_entry
354 struct elf_link_hash_entry root;
356 /* External symbol information. */
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
364 unsigned int possibly_dynamic_relocs;
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
443 /* True if we can only use 32-bit microMIPS instructions. */
446 /* True if we suppress checks for invalid branches between ISA modes. */
447 bfd_boolean ignore_branch_isa;
449 /* True if we're generating code for VxWorks. */
450 bfd_boolean is_vxworks;
452 /* True if we already reported the small-data section overflow. */
453 bfd_boolean small_data_overflow_reported;
455 /* Shortcuts to some dynamic sections, or NULL if they are not
460 /* The master GOT information. */
461 struct mips_got_info *got_info;
463 /* The global symbol in the GOT with the lowest index in the dynamic
465 struct elf_link_hash_entry *global_gotsym;
467 /* The size of the PLT header in bytes. */
468 bfd_vma plt_header_size;
470 /* The size of a standard PLT entry in bytes. */
471 bfd_vma plt_mips_entry_size;
473 /* The size of a compressed PLT entry in bytes. */
474 bfd_vma plt_comp_entry_size;
476 /* The offset of the next standard PLT entry to create. */
477 bfd_vma plt_mips_offset;
479 /* The offset of the next compressed PLT entry to create. */
480 bfd_vma plt_comp_offset;
482 /* The index of the next .got.plt entry to create. */
483 bfd_vma plt_got_index;
485 /* The number of functions that need a lazy-binding stub. */
486 bfd_vma lazy_stub_count;
488 /* The size of a function stub entry in bytes. */
489 bfd_vma function_stub_size;
491 /* The number of reserved entries at the beginning of the GOT. */
492 unsigned int reserved_gotno;
494 /* The section used for mips_elf_la25_stub trampolines.
495 See the comment above that structure for details. */
496 asection *strampoline;
498 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 /* A function FN (NAME, IS, OS) that creates a new input section
503 called NAME and links it to output section OS. If IS is nonnull,
504 the new section should go immediately before it, otherwise it
505 should go at the (current) beginning of OS.
507 The function returns the new section on success, otherwise it
509 asection *(*add_stub_section) (const char *, asection *, asection *);
511 /* Small local sym cache. */
512 struct sym_cache sym_cache;
514 /* Is the PLT header compressed? */
515 unsigned int plt_header_is_comp : 1;
518 /* Get the MIPS ELF linker hash table from a link_info structure. */
520 #define mips_elf_hash_table(p) \
521 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
522 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
524 /* A structure used to communicate with htab_traverse callbacks. */
525 struct mips_htab_traverse_info
527 /* The usual link-wide information. */
528 struct bfd_link_info *info;
531 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 /* MIPS ELF private object data. */
537 struct mips_elf_obj_tdata
539 /* Generic ELF private object data. */
540 struct elf_obj_tdata root;
542 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 /* The abiflags for this object. */
549 Elf_Internal_ABIFlags_v0 abiflags;
550 bfd_boolean abiflags_valid;
552 /* The GOT requirements of input bfds. */
553 struct mips_got_info *got;
555 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
556 included directly in this one, but there's no point to wasting
557 the memory just for the infrequently called find_nearest_line. */
558 struct mips_elf_find_line *find_line_info;
560 /* An array of stub sections indexed by symbol number. */
561 asection **local_stubs;
562 asection **local_call_stubs;
564 /* The Irix 5 support uses two virtual sections, which represent
565 text/data symbols defined in dynamic objects. */
566 asymbol *elf_data_symbol;
567 asymbol *elf_text_symbol;
568 asection *elf_data_section;
569 asection *elf_text_section;
572 /* Get MIPS ELF private object data from BFD's tdata. */
574 #define mips_elf_tdata(bfd) \
575 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
577 #define TLS_RELOC_P(r_type) \
578 (r_type == R_MIPS_TLS_DTPMOD32 \
579 || r_type == R_MIPS_TLS_DTPMOD64 \
580 || r_type == R_MIPS_TLS_DTPREL32 \
581 || r_type == R_MIPS_TLS_DTPREL64 \
582 || r_type == R_MIPS_TLS_GD \
583 || r_type == R_MIPS_TLS_LDM \
584 || r_type == R_MIPS_TLS_DTPREL_HI16 \
585 || r_type == R_MIPS_TLS_DTPREL_LO16 \
586 || r_type == R_MIPS_TLS_GOTTPREL \
587 || r_type == R_MIPS_TLS_TPREL32 \
588 || r_type == R_MIPS_TLS_TPREL64 \
589 || r_type == R_MIPS_TLS_TPREL_HI16 \
590 || r_type == R_MIPS_TLS_TPREL_LO16 \
591 || r_type == R_MIPS16_TLS_GD \
592 || r_type == R_MIPS16_TLS_LDM \
593 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
594 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
595 || r_type == R_MIPS16_TLS_GOTTPREL \
596 || r_type == R_MIPS16_TLS_TPREL_HI16 \
597 || r_type == R_MIPS16_TLS_TPREL_LO16 \
598 || r_type == R_MICROMIPS_TLS_GD \
599 || r_type == R_MICROMIPS_TLS_LDM \
600 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
601 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
602 || r_type == R_MICROMIPS_TLS_GOTTPREL \
603 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
606 /* Structure used to pass information to mips_elf_output_extsym. */
611 struct bfd_link_info *info;
612 struct ecoff_debug_info *debug;
613 const struct ecoff_debug_swap *swap;
617 /* The names of the runtime procedure table symbols used on IRIX5. */
619 static const char * const mips_elf_dynsym_rtproc_names[] =
622 "_procedure_string_table",
623 "_procedure_table_size",
627 /* These structures are used to generate the .compact_rel section on
632 unsigned long id1; /* Always one? */
633 unsigned long num; /* Number of compact relocation entries. */
634 unsigned long id2; /* Always two? */
635 unsigned long offset; /* The file offset of the first relocation. */
636 unsigned long reserved0; /* Zero? */
637 unsigned long reserved1; /* Zero? */
646 bfd_byte reserved0[4];
647 bfd_byte reserved1[4];
648 } Elf32_External_compact_rel;
652 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
653 unsigned int rtype : 4; /* Relocation types. See below. */
654 unsigned int dist2to : 8;
655 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
656 unsigned long konst; /* KONST field. See below. */
657 unsigned long vaddr; /* VADDR to be relocated. */
662 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
663 unsigned int rtype : 4; /* Relocation types. See below. */
664 unsigned int dist2to : 8;
665 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
666 unsigned long konst; /* KONST field. See below. */
674 } Elf32_External_crinfo;
680 } Elf32_External_crinfo2;
682 /* These are the constants used to swap the bitfields in a crinfo. */
684 #define CRINFO_CTYPE (0x1)
685 #define CRINFO_CTYPE_SH (31)
686 #define CRINFO_RTYPE (0xf)
687 #define CRINFO_RTYPE_SH (27)
688 #define CRINFO_DIST2TO (0xff)
689 #define CRINFO_DIST2TO_SH (19)
690 #define CRINFO_RELVADDR (0x7ffff)
691 #define CRINFO_RELVADDR_SH (0)
693 /* A compact relocation info has long (3 words) or short (2 words)
694 formats. A short format doesn't have VADDR field and relvaddr
695 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
696 #define CRF_MIPS_LONG 1
697 #define CRF_MIPS_SHORT 0
699 /* There are 4 types of compact relocation at least. The value KONST
700 has different meaning for each type:
703 CT_MIPS_REL32 Address in data
704 CT_MIPS_WORD Address in word (XXX)
705 CT_MIPS_GPHI_LO GP - vaddr
706 CT_MIPS_JMPAD Address to jump
709 #define CRT_MIPS_REL32 0xa
710 #define CRT_MIPS_WORD 0xb
711 #define CRT_MIPS_GPHI_LO 0xc
712 #define CRT_MIPS_JMPAD 0xd
714 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
715 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
716 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
717 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
719 /* The structure of the runtime procedure descriptor created by the
720 loader for use by the static exception system. */
722 typedef struct runtime_pdr {
723 bfd_vma adr; /* Memory address of start of procedure. */
724 long regmask; /* Save register mask. */
725 long regoffset; /* Save register offset. */
726 long fregmask; /* Save floating point register mask. */
727 long fregoffset; /* Save floating point register offset. */
728 long frameoffset; /* Frame size. */
729 short framereg; /* Frame pointer register. */
730 short pcreg; /* Offset or reg of return pc. */
731 long irpss; /* Index into the runtime string table. */
733 struct exception_info *exception_info;/* Pointer to exception array. */
735 #define cbRPDR sizeof (RPDR)
736 #define rpdNil ((pRPDR) 0)
738 static struct mips_got_entry *mips_elf_create_local_got_entry
739 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
740 struct mips_elf_link_hash_entry *, int);
741 static bfd_boolean mips_elf_sort_hash_table_f
742 (struct mips_elf_link_hash_entry *, void *);
743 static bfd_vma mips_elf_high
745 static bfd_boolean mips_elf_create_dynamic_relocation
746 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
747 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
748 bfd_vma *, asection *);
749 static bfd_vma mips_elf_adjust_gp
750 (bfd *, struct mips_got_info *, bfd *);
752 /* This will be used when we sort the dynamic relocation records. */
753 static bfd *reldyn_sorting_bfd;
755 /* True if ABFD is for CPUs with load interlocking that include
756 non-MIPS1 CPUs and R3900. */
757 #define LOAD_INTERLOCKS_P(abfd) \
758 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
759 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
761 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
762 This should be safe for all architectures. We enable this predicate
763 for RM9000 for now. */
764 #define JAL_TO_BAL_P(abfd) \
765 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
767 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
768 This should be safe for all architectures. We enable this predicate for
770 #define JALR_TO_BAL_P(abfd) 1
772 /* True if ABFD is for CPUs that are faster if JR is converted to B.
773 This should be safe for all architectures. We enable this predicate for
775 #define JR_TO_B_P(abfd) 1
777 /* True if ABFD is a PIC object. */
778 #define PIC_OBJECT_P(abfd) \
779 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
781 /* Nonzero if ABFD is using the O32 ABI. */
782 #define ABI_O32_P(abfd) \
783 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
785 /* Nonzero if ABFD is using the N32 ABI. */
786 #define ABI_N32_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
789 /* Nonzero if ABFD is using the N64 ABI. */
790 #define ABI_64_P(abfd) \
791 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
793 /* Nonzero if ABFD is using NewABI conventions. */
794 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
796 /* Nonzero if ABFD has microMIPS code. */
797 #define MICROMIPS_P(abfd) \
798 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
800 /* Nonzero if ABFD is MIPS R6. */
801 #define MIPSR6_P(abfd) \
802 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
803 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
805 /* The IRIX compatibility level we are striving for. */
806 #define IRIX_COMPAT(abfd) \
807 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
809 /* Whether we are trying to be compatible with IRIX at all. */
810 #define SGI_COMPAT(abfd) \
811 (IRIX_COMPAT (abfd) != ict_none)
813 /* The name of the options section. */
814 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
815 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
817 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
818 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
819 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
820 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
822 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
823 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
824 (strcmp (NAME, ".MIPS.abiflags") == 0)
826 /* Whether the section is readonly. */
827 #define MIPS_ELF_READONLY_SECTION(sec) \
828 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
829 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
831 /* The name of the stub section. */
832 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
834 /* The size of an external REL relocation. */
835 #define MIPS_ELF_REL_SIZE(abfd) \
836 (get_elf_backend_data (abfd)->s->sizeof_rel)
838 /* The size of an external RELA relocation. */
839 #define MIPS_ELF_RELA_SIZE(abfd) \
840 (get_elf_backend_data (abfd)->s->sizeof_rela)
842 /* The size of an external dynamic table entry. */
843 #define MIPS_ELF_DYN_SIZE(abfd) \
844 (get_elf_backend_data (abfd)->s->sizeof_dyn)
846 /* The size of a GOT entry. */
847 #define MIPS_ELF_GOT_SIZE(abfd) \
848 (get_elf_backend_data (abfd)->s->arch_size / 8)
850 /* The size of the .rld_map section. */
851 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
852 (get_elf_backend_data (abfd)->s->arch_size / 8)
854 /* The size of a symbol-table entry. */
855 #define MIPS_ELF_SYM_SIZE(abfd) \
856 (get_elf_backend_data (abfd)->s->sizeof_sym)
858 /* The default alignment for sections, as a power of two. */
859 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
860 (get_elf_backend_data (abfd)->s->log_file_align)
862 /* Get word-sized data. */
863 #define MIPS_ELF_GET_WORD(abfd, ptr) \
864 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
866 /* Put out word-sized data. */
867 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
869 ? bfd_put_64 (abfd, val, ptr) \
870 : bfd_put_32 (abfd, val, ptr))
872 /* The opcode for word-sized loads (LW or LD). */
873 #define MIPS_ELF_LOAD_WORD(abfd) \
874 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
876 /* Add a dynamic symbol table-entry. */
877 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
878 _bfd_elf_add_dynamic_entry (info, tag, val)
880 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
881 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
883 /* The name of the dynamic relocation section. */
884 #define MIPS_ELF_REL_DYN_NAME(INFO) \
885 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
887 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
888 from smaller values. Start with zero, widen, *then* decrement. */
889 #define MINUS_ONE (((bfd_vma)0) - 1)
890 #define MINUS_TWO (((bfd_vma)0) - 2)
892 /* The value to write into got[1] for SVR4 targets, to identify it is
893 a GNU object. The dynamic linker can then use got[1] to store the
895 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
896 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
898 /* The offset of $gp from the beginning of the .got section. */
899 #define ELF_MIPS_GP_OFFSET(INFO) \
900 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
902 /* The maximum size of the GOT for it to be addressable using 16-bit
904 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
906 /* Instructions which appear in a stub. */
907 #define STUB_LW(abfd) \
909 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
910 : 0x8f998010)) /* lw t9,0x8010(gp) */
911 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
912 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
913 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
914 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
915 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
916 #define STUB_LI16S(abfd, VAL) \
918 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
919 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
921 /* Likewise for the microMIPS ASE. */
922 #define STUB_LW_MICROMIPS(abfd) \
924 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
925 : 0xff3c8010) /* lw t9,0x8010(gp) */
926 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
927 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
928 #define STUB_LUI_MICROMIPS(VAL) \
929 (0x41b80000 + (VAL)) /* lui t8,VAL */
930 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
931 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
932 #define STUB_ORI_MICROMIPS(VAL) \
933 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
934 #define STUB_LI16U_MICROMIPS(VAL) \
935 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
938 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
939 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
941 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
942 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
943 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
944 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
945 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
946 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
948 /* The name of the dynamic interpreter. This is put in the .interp
951 #define ELF_DYNAMIC_INTERPRETER(abfd) \
952 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
953 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
954 : "/usr/lib/libc.so.1")
957 #define MNAME(bfd,pre,pos) \
958 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
959 #define ELF_R_SYM(bfd, i) \
960 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
961 #define ELF_R_TYPE(bfd, i) \
962 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
963 #define ELF_R_INFO(bfd, s, t) \
964 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
966 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
967 #define ELF_R_SYM(bfd, i) \
969 #define ELF_R_TYPE(bfd, i) \
971 #define ELF_R_INFO(bfd, s, t) \
972 (ELF32_R_INFO (s, t))
975 /* The mips16 compiler uses a couple of special sections to handle
976 floating point arguments.
978 Section names that look like .mips16.fn.FNNAME contain stubs that
979 copy floating point arguments from the fp regs to the gp regs and
980 then jump to FNNAME. If any 32 bit function calls FNNAME, the
981 call should be redirected to the stub instead. If no 32 bit
982 function calls FNNAME, the stub should be discarded. We need to
983 consider any reference to the function, not just a call, because
984 if the address of the function is taken we will need the stub,
985 since the address might be passed to a 32 bit function.
987 Section names that look like .mips16.call.FNNAME contain stubs
988 that copy floating point arguments from the gp regs to the fp
989 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
990 then any 16 bit function that calls FNNAME should be redirected
991 to the stub instead. If FNNAME is not a 32 bit function, the
992 stub should be discarded.
994 .mips16.call.fp.FNNAME sections are similar, but contain stubs
995 which call FNNAME and then copy the return value from the fp regs
996 to the gp regs. These stubs store the return value in $18 while
997 calling FNNAME; any function which might call one of these stubs
998 must arrange to save $18 around the call. (This case is not
999 needed for 32 bit functions that call 16 bit functions, because
1000 16 bit functions always return floating point values in both
1003 Note that in all cases FNNAME might be defined statically.
1004 Therefore, FNNAME is not used literally. Instead, the relocation
1005 information will indicate which symbol the section is for.
1007 We record any stubs that we find in the symbol table. */
1009 #define FN_STUB ".mips16.fn."
1010 #define CALL_STUB ".mips16.call."
1011 #define CALL_FP_STUB ".mips16.call.fp."
1013 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1014 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1015 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1017 /* The format of the first PLT entry in an O32 executable. */
1018 static const bfd_vma mips_o32_exec_plt0_entry[] =
1020 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1021 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1022 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1023 0x031cc023, /* subu $24, $24, $28 */
1024 0x03e07825, /* or t7, ra, zero */
1025 0x0018c082, /* srl $24, $24, 2 */
1026 0x0320f809, /* jalr $25 */
1027 0x2718fffe /* subu $24, $24, 2 */
1030 /* The format of the first PLT entry in an N32 executable. Different
1031 because gp ($28) is not available; we use t2 ($14) instead. */
1032 static const bfd_vma mips_n32_exec_plt0_entry[] =
1034 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1035 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1036 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1037 0x030ec023, /* subu $24, $24, $14 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1044 /* The format of the first PLT entry in an N64 executable. Different
1045 from N32 because of the increased size of GOT entries. */
1046 static const bfd_vma mips_n64_exec_plt0_entry[] =
1048 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1049 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1050 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1051 0x030ec023, /* subu $24, $24, $14 */
1052 0x03e07825, /* or t7, ra, zero */
1053 0x0018c0c2, /* srl $24, $24, 3 */
1054 0x0320f809, /* jalr $25 */
1055 0x2718fffe /* subu $24, $24, 2 */
1058 /* The format of the microMIPS first PLT entry in an O32 executable.
1059 We rely on v0 ($2) rather than t8 ($24) to contain the address
1060 of the GOTPLT entry handled, so this stub may only be used when
1061 all the subsequent PLT entries are microMIPS code too.
1063 The trailing NOP is for alignment and correct disassembly only. */
1064 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1066 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1067 0xff23, 0x0000, /* lw $25, 0($3) */
1068 0x0535, /* subu $2, $2, $3 */
1069 0x2525, /* srl $2, $2, 2 */
1070 0x3302, 0xfffe, /* subu $24, $2, 2 */
1071 0x0dff, /* move $15, $31 */
1072 0x45f9, /* jalrs $25 */
1073 0x0f83, /* move $28, $3 */
1077 /* The format of the microMIPS first PLT entry in an O32 executable
1078 in the insn32 mode. */
1079 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1081 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1082 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1083 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1084 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1085 0x001f, 0x7a90, /* or $15, $31, zero */
1086 0x0318, 0x1040, /* srl $24, $24, 2 */
1087 0x03f9, 0x0f3c, /* jalr $25 */
1088 0x3318, 0xfffe /* subu $24, $24, 2 */
1091 /* The format of subsequent standard PLT entries. */
1092 static const bfd_vma mips_exec_plt_entry[] =
1094 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1095 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1096 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1097 0x03200008 /* jr $25 */
1100 /* In the following PLT entry the JR and ADDIU instructions will
1101 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1102 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1103 static const bfd_vma mipsr6_exec_plt_entry[] =
1105 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1106 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1107 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1108 0x03200009 /* jr $25 */
1111 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1112 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1113 directly addressable. */
1114 static const bfd_vma mips16_o32_exec_plt_entry[] =
1116 0xb203, /* lw $2, 12($pc) */
1117 0x9a60, /* lw $3, 0($2) */
1118 0x651a, /* move $24, $2 */
1120 0x653b, /* move $25, $3 */
1122 0x0000, 0x0000 /* .word (.got.plt entry) */
1125 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1126 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1127 static const bfd_vma micromips_o32_exec_plt_entry[] =
1129 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1130 0xff22, 0x0000, /* lw $25, 0($2) */
1131 0x4599, /* jr $25 */
1132 0x0f02 /* move $24, $2 */
1135 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1136 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1138 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1139 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1140 0x0019, 0x0f3c, /* jr $25 */
1141 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1144 /* The format of the first PLT entry in a VxWorks executable. */
1145 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1147 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1148 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1149 0x8f390008, /* lw t9, 8(t9) */
1150 0x00000000, /* nop */
1151 0x03200008, /* jr t9 */
1152 0x00000000 /* nop */
1155 /* The format of subsequent PLT entries. */
1156 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1158 0x10000000, /* b .PLT_resolver */
1159 0x24180000, /* li t8, <pltindex> */
1160 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1161 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1162 0x8f390000, /* lw t9, 0(t9) */
1163 0x00000000, /* nop */
1164 0x03200008, /* jr t9 */
1165 0x00000000 /* nop */
1168 /* The format of the first PLT entry in a VxWorks shared object. */
1169 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1171 0x8f990008, /* lw t9, 8(gp) */
1172 0x00000000, /* nop */
1173 0x03200008, /* jr t9 */
1174 0x00000000, /* nop */
1175 0x00000000, /* nop */
1176 0x00000000 /* nop */
1179 /* The format of subsequent PLT entries. */
1180 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1182 0x10000000, /* b .PLT_resolver */
1183 0x24180000 /* li t8, <pltindex> */
1186 /* microMIPS 32-bit opcode helper installer. */
1189 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1191 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1192 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1195 /* microMIPS 32-bit opcode helper retriever. */
1198 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1200 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1203 /* Look up an entry in a MIPS ELF linker hash table. */
1205 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1206 ((struct mips_elf_link_hash_entry *) \
1207 elf_link_hash_lookup (&(table)->root, (string), (create), \
1210 /* Traverse a MIPS ELF linker hash table. */
1212 #define mips_elf_link_hash_traverse(table, func, info) \
1213 (elf_link_hash_traverse \
1215 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1218 /* Find the base offsets for thread-local storage in this object,
1219 for GD/LD and IE/LE respectively. */
1221 #define TP_OFFSET 0x7000
1222 #define DTP_OFFSET 0x8000
1225 dtprel_base (struct bfd_link_info *info)
1227 /* If tls_sec is NULL, we should have signalled an error already. */
1228 if (elf_hash_table (info)->tls_sec == NULL)
1230 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 tprel_base (struct bfd_link_info *info)
1236 /* If tls_sec is NULL, we should have signalled an error already. */
1237 if (elf_hash_table (info)->tls_sec == NULL)
1239 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1242 /* Create an entry in a MIPS ELF linker hash table. */
1244 static struct bfd_hash_entry *
1245 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1246 struct bfd_hash_table *table, const char *string)
1248 struct mips_elf_link_hash_entry *ret =
1249 (struct mips_elf_link_hash_entry *) entry;
1251 /* Allocate the structure if it has not already been allocated by a
1254 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1256 return (struct bfd_hash_entry *) ret;
1258 /* Call the allocation method of the superclass. */
1259 ret = ((struct mips_elf_link_hash_entry *)
1260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 /* Set local fields. */
1265 memset (&ret->esym, 0, sizeof (EXTR));
1266 /* We use -2 as a marker to indicate that the information has
1267 not been set. -1 means there is no associated ifd. */
1270 ret->possibly_dynamic_relocs = 0;
1271 ret->fn_stub = NULL;
1272 ret->call_stub = NULL;
1273 ret->call_fp_stub = NULL;
1274 ret->global_got_area = GGA_NONE;
1275 ret->got_only_for_calls = TRUE;
1276 ret->readonly_reloc = FALSE;
1277 ret->has_static_relocs = FALSE;
1278 ret->no_fn_stub = FALSE;
1279 ret->need_fn_stub = FALSE;
1280 ret->has_nonpic_branches = FALSE;
1281 ret->needs_lazy_stub = FALSE;
1282 ret->use_plt_entry = FALSE;
1285 return (struct bfd_hash_entry *) ret;
1288 /* Allocate MIPS ELF private object data. */
1291 _bfd_mips_elf_mkobject (bfd *abfd)
1293 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1298 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1300 if (!sec->used_by_bfd)
1302 struct _mips_elf_section_data *sdata;
1303 bfd_size_type amt = sizeof (*sdata);
1305 sdata = bfd_zalloc (abfd, amt);
1308 sec->used_by_bfd = sdata;
1311 return _bfd_elf_new_section_hook (abfd, sec);
1314 /* Read ECOFF debugging information from a .mdebug section into a
1315 ecoff_debug_info structure. */
1318 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1319 struct ecoff_debug_info *debug)
1322 const struct ecoff_debug_swap *swap;
1325 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1326 memset (debug, 0, sizeof (*debug));
1328 ext_hdr = bfd_malloc (swap->external_hdr_size);
1329 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1332 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1333 swap->external_hdr_size))
1336 symhdr = &debug->symbolic_header;
1337 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1339 /* The symbolic header contains absolute file offsets and sizes to
1341 #define READ(ptr, offset, count, size, type) \
1342 if (symhdr->count == 0) \
1343 debug->ptr = NULL; \
1346 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1347 debug->ptr = bfd_malloc (amt); \
1348 if (debug->ptr == NULL) \
1349 goto error_return; \
1350 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1351 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1352 goto error_return; \
1355 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1356 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1357 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1358 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1359 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1360 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1362 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1363 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1364 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1365 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1366 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1374 if (ext_hdr != NULL)
1376 if (debug->line != NULL)
1378 if (debug->external_dnr != NULL)
1379 free (debug->external_dnr);
1380 if (debug->external_pdr != NULL)
1381 free (debug->external_pdr);
1382 if (debug->external_sym != NULL)
1383 free (debug->external_sym);
1384 if (debug->external_opt != NULL)
1385 free (debug->external_opt);
1386 if (debug->external_aux != NULL)
1387 free (debug->external_aux);
1388 if (debug->ss != NULL)
1390 if (debug->ssext != NULL)
1391 free (debug->ssext);
1392 if (debug->external_fdr != NULL)
1393 free (debug->external_fdr);
1394 if (debug->external_rfd != NULL)
1395 free (debug->external_rfd);
1396 if (debug->external_ext != NULL)
1397 free (debug->external_ext);
1401 /* Swap RPDR (runtime procedure table entry) for output. */
1404 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1406 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1407 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1408 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1409 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1410 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1411 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1413 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1414 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1416 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1419 /* Create a runtime procedure table from the .mdebug section. */
1422 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1423 struct bfd_link_info *info, asection *s,
1424 struct ecoff_debug_info *debug)
1426 const struct ecoff_debug_swap *swap;
1427 HDRR *hdr = &debug->symbolic_header;
1429 struct rpdr_ext *erp;
1431 struct pdr_ext *epdr;
1432 struct sym_ext *esym;
1436 bfd_size_type count;
1437 unsigned long sindex;
1441 const char *no_name_func = _("static procedure (no name)");
1449 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1451 sindex = strlen (no_name_func) + 1;
1452 count = hdr->ipdMax;
1455 size = swap->external_pdr_size;
1457 epdr = bfd_malloc (size * count);
1461 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1464 size = sizeof (RPDR);
1465 rp = rpdr = bfd_malloc (size * count);
1469 size = sizeof (char *);
1470 sv = bfd_malloc (size * count);
1474 count = hdr->isymMax;
1475 size = swap->external_sym_size;
1476 esym = bfd_malloc (size * count);
1480 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1483 count = hdr->issMax;
1484 ss = bfd_malloc (count);
1487 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1490 count = hdr->ipdMax;
1491 for (i = 0; i < (unsigned long) count; i++, rp++)
1493 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1494 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1495 rp->adr = sym.value;
1496 rp->regmask = pdr.regmask;
1497 rp->regoffset = pdr.regoffset;
1498 rp->fregmask = pdr.fregmask;
1499 rp->fregoffset = pdr.fregoffset;
1500 rp->frameoffset = pdr.frameoffset;
1501 rp->framereg = pdr.framereg;
1502 rp->pcreg = pdr.pcreg;
1504 sv[i] = ss + sym.iss;
1505 sindex += strlen (sv[i]) + 1;
1509 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1510 size = BFD_ALIGN (size, 16);
1511 rtproc = bfd_alloc (abfd, size);
1514 mips_elf_hash_table (info)->procedure_count = 0;
1518 mips_elf_hash_table (info)->procedure_count = count + 2;
1521 memset (erp, 0, sizeof (struct rpdr_ext));
1523 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1524 strcpy (str, no_name_func);
1525 str += strlen (no_name_func) + 1;
1526 for (i = 0; i < count; i++)
1528 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1529 strcpy (str, sv[i]);
1530 str += strlen (sv[i]) + 1;
1532 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1534 /* Set the size and contents of .rtproc section. */
1536 s->contents = rtproc;
1538 /* Skip this section later on (I don't think this currently
1539 matters, but someday it might). */
1540 s->map_head.link_order = NULL;
1569 /* We're going to create a stub for H. Create a symbol for the stub's
1570 value and size, to help make the disassembly easier to read. */
1573 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1574 struct mips_elf_link_hash_entry *h,
1575 const char *prefix, asection *s, bfd_vma value,
1578 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1579 struct bfd_link_hash_entry *bh;
1580 struct elf_link_hash_entry *elfh;
1587 /* Create a new symbol. */
1588 name = concat (prefix, h->root.root.root.string, NULL);
1590 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1591 BSF_LOCAL, s, value, NULL,
1597 /* Make it a local function. */
1598 elfh = (struct elf_link_hash_entry *) bh;
1599 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1601 elfh->forced_local = 1;
1603 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1652 section_allows_mips16_refs_p (asection *section)
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1749 mips_elf_la25_stub_hash (const void *entry_)
1751 const struct mips_elf_la25_stub *entry;
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1780 struct mips_elf_link_hash_table *htab;
1782 htab = mips_elf_hash_table (info);
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && !bfd_is_und_section (h->root.root.u.def.section)
1809 && (!ELF_ST_IS_MIPS16 (h->root.other)
1810 || (h->fn_stub && h->need_fn_stub))
1811 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1812 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1815 /* Set *SEC to the input section that contains the target of STUB.
1816 Return the offset of the target from the start of that section. */
1819 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1822 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1824 BFD_ASSERT (stub->h->need_fn_stub);
1825 *sec = stub->h->fn_stub;
1830 *sec = stub->h->root.root.u.def.section;
1831 return stub->h->root.root.u.def.value;
1835 /* STUB describes an la25 stub that we have decided to implement
1836 by inserting an LUI/ADDIU pair before the target function.
1837 Create the section and redirect the function symbol to it. */
1840 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1841 struct bfd_link_info *info)
1843 struct mips_elf_link_hash_table *htab;
1845 asection *s, *input_section;
1848 htab = mips_elf_hash_table (info);
1852 /* Create a unique name for the new section. */
1853 name = bfd_malloc (11 + sizeof (".text.stub."));
1856 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1858 /* Create the section. */
1859 mips_elf_get_la25_target (stub, &input_section);
1860 s = htab->add_stub_section (name, input_section,
1861 input_section->output_section);
1865 /* Make sure that any padding goes before the stub. */
1866 align = input_section->alignment_power;
1867 if (!bfd_set_section_alignment (s->owner, s, align))
1870 s->size = (1 << align) - 8;
1872 /* Create a symbol for the stub. */
1873 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1874 stub->stub_section = s;
1875 stub->offset = s->size;
1877 /* Allocate room for it. */
1882 /* STUB describes an la25 stub that we have decided to implement
1883 with a separate trampoline. Allocate room for it and redirect
1884 the function symbol to it. */
1887 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1888 struct bfd_link_info *info)
1890 struct mips_elf_link_hash_table *htab;
1893 htab = mips_elf_hash_table (info);
1897 /* Create a trampoline section, if we haven't already. */
1898 s = htab->strampoline;
1901 asection *input_section = stub->h->root.root.u.def.section;
1902 s = htab->add_stub_section (".text", NULL,
1903 input_section->output_section);
1904 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1906 htab->strampoline = s;
1909 /* Create a symbol for the stub. */
1910 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1911 stub->stub_section = s;
1912 stub->offset = s->size;
1914 /* Allocate room for it. */
1919 /* H describes a symbol that needs an la25 stub. Make sure that an
1920 appropriate stub exists and point H at it. */
1923 mips_elf_add_la25_stub (struct bfd_link_info *info,
1924 struct mips_elf_link_hash_entry *h)
1926 struct mips_elf_link_hash_table *htab;
1927 struct mips_elf_la25_stub search, *stub;
1928 bfd_boolean use_trampoline_p;
1933 /* Describe the stub we want. */
1934 search.stub_section = NULL;
1938 /* See if we've already created an equivalent stub. */
1939 htab = mips_elf_hash_table (info);
1943 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 stub = (struct mips_elf_la25_stub *) *slot;
1950 /* We can reuse the existing stub. */
1951 h->la25_stub = stub;
1955 /* Create a permanent copy of ENTRY and add it to the hash table. */
1956 stub = bfd_malloc (sizeof (search));
1962 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1963 of the section and if we would need no more than 2 nops. */
1964 value = mips_elf_get_la25_target (stub, &s);
1965 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1967 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1969 h->la25_stub = stub;
1970 return (use_trampoline_p
1971 ? mips_elf_add_la25_trampoline (stub, info)
1972 : mips_elf_add_la25_intro (stub, info));
1975 /* A mips_elf_link_hash_traverse callback that is called before sizing
1976 sections. DATA points to a mips_htab_traverse_info structure. */
1979 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1981 struct mips_htab_traverse_info *hti;
1983 hti = (struct mips_htab_traverse_info *) data;
1984 if (!bfd_link_relocatable (hti->info))
1985 mips_elf_check_mips16_stubs (hti->info, h);
1987 if (mips_elf_local_pic_function_p (h))
1989 /* PR 12845: If H is in a section that has been garbage
1990 collected it will have its output section set to *ABS*. */
1991 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1994 /* H is a function that might need $25 to be valid on entry.
1995 If we're creating a non-PIC relocatable object, mark H as
1996 being PIC. If we're creating a non-relocatable object with
1997 non-PIC branches and jumps to H, make sure that H has an la25
1999 if (bfd_link_relocatable (hti->info))
2001 if (!PIC_OBJECT_P (hti->output_bfd))
2002 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2004 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2013 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2014 Most mips16 instructions are 16 bits, but these instructions
2017 The format of these instructions is:
2019 +--------------+--------------------------------+
2020 | JALX | X| Imm 20:16 | Imm 25:21 |
2021 +--------------+--------------------------------+
2023 +-----------------------------------------------+
2025 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2026 Note that the immediate value in the first word is swapped.
2028 When producing a relocatable object file, R_MIPS16_26 is
2029 handled mostly like R_MIPS_26. In particular, the addend is
2030 stored as a straight 26-bit value in a 32-bit instruction.
2031 (gas makes life simpler for itself by never adjusting a
2032 R_MIPS16_26 reloc to be against a section, so the addend is
2033 always zero). However, the 32 bit instruction is stored as 2
2034 16-bit values, rather than a single 32-bit value. In a
2035 big-endian file, the result is the same; in a little-endian
2036 file, the two 16-bit halves of the 32 bit value are swapped.
2037 This is so that a disassembler can recognize the jal
2040 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2041 instruction stored as two 16-bit values. The addend A is the
2042 contents of the targ26 field. The calculation is the same as
2043 R_MIPS_26. When storing the calculated value, reorder the
2044 immediate value as shown above, and don't forget to store the
2045 value as two 16-bit values.
2047 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 +--------+----------------------+
2055 +--------+----------------------+
2058 +----------+------+-------------+
2062 +----------+--------------------+
2063 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2064 ((sub1 << 16) | sub2)).
2066 When producing a relocatable object file, the calculation is
2067 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2068 When producing a fully linked file, the calculation is
2069 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2070 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2072 The table below lists the other MIPS16 instruction relocations.
2073 Each one is calculated in the same way as the non-MIPS16 relocation
2074 given on the right, but using the extended MIPS16 layout of 16-bit
2077 R_MIPS16_GPREL R_MIPS_GPREL16
2078 R_MIPS16_GOT16 R_MIPS_GOT16
2079 R_MIPS16_CALL16 R_MIPS_CALL16
2080 R_MIPS16_HI16 R_MIPS_HI16
2081 R_MIPS16_LO16 R_MIPS_LO16
2083 A typical instruction will have a format like this:
2085 +--------------+--------------------------------+
2086 | EXTEND | Imm 10:5 | Imm 15:11 |
2087 +--------------+--------------------------------+
2088 | Major | rx | ry | Imm 4:0 |
2089 +--------------+--------------------------------+
2091 EXTEND is the five bit value 11110. Major is the instruction
2094 All we need to do here is shuffle the bits appropriately.
2095 As above, the two 16-bit halves must be swapped on a
2096 little-endian system.
2098 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2099 relocatable field is shifted by 1 rather than 2 and the same bit
2100 shuffling is done as with the relocations above. */
2102 static inline bfd_boolean
2103 mips16_reloc_p (int r_type)
2108 case R_MIPS16_GPREL:
2109 case R_MIPS16_GOT16:
2110 case R_MIPS16_CALL16:
2113 case R_MIPS16_TLS_GD:
2114 case R_MIPS16_TLS_LDM:
2115 case R_MIPS16_TLS_DTPREL_HI16:
2116 case R_MIPS16_TLS_DTPREL_LO16:
2117 case R_MIPS16_TLS_GOTTPREL:
2118 case R_MIPS16_TLS_TPREL_HI16:
2119 case R_MIPS16_TLS_TPREL_LO16:
2120 case R_MIPS16_PC16_S1:
2128 /* Check if a microMIPS reloc. */
2130 static inline bfd_boolean
2131 micromips_reloc_p (unsigned int r_type)
2133 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2136 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2137 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2138 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2140 static inline bfd_boolean
2141 micromips_reloc_shuffle_p (unsigned int r_type)
2143 return (micromips_reloc_p (r_type)
2144 && r_type != R_MICROMIPS_PC7_S1
2145 && r_type != R_MICROMIPS_PC10_S1);
2148 static inline bfd_boolean
2149 got16_reloc_p (int r_type)
2151 return (r_type == R_MIPS_GOT16
2152 || r_type == R_MIPS16_GOT16
2153 || r_type == R_MICROMIPS_GOT16);
2156 static inline bfd_boolean
2157 call16_reloc_p (int r_type)
2159 return (r_type == R_MIPS_CALL16
2160 || r_type == R_MIPS16_CALL16
2161 || r_type == R_MICROMIPS_CALL16);
2164 static inline bfd_boolean
2165 got_disp_reloc_p (unsigned int r_type)
2167 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2170 static inline bfd_boolean
2171 got_page_reloc_p (unsigned int r_type)
2173 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2176 static inline bfd_boolean
2177 got_lo16_reloc_p (unsigned int r_type)
2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2182 static inline bfd_boolean
2183 call_hi16_reloc_p (unsigned int r_type)
2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2188 static inline bfd_boolean
2189 call_lo16_reloc_p (unsigned int r_type)
2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2194 static inline bfd_boolean
2195 hi16_reloc_p (int r_type)
2197 return (r_type == R_MIPS_HI16
2198 || r_type == R_MIPS16_HI16
2199 || r_type == R_MICROMIPS_HI16
2200 || r_type == R_MIPS_PCHI16);
2203 static inline bfd_boolean
2204 lo16_reloc_p (int r_type)
2206 return (r_type == R_MIPS_LO16
2207 || r_type == R_MIPS16_LO16
2208 || r_type == R_MICROMIPS_LO16
2209 || r_type == R_MIPS_PCLO16);
2212 static inline bfd_boolean
2213 mips16_call_reloc_p (int r_type)
2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2218 static inline bfd_boolean
2219 jal_reloc_p (int r_type)
2221 return (r_type == R_MIPS_26
2222 || r_type == R_MIPS16_26
2223 || r_type == R_MICROMIPS_26_S1);
2226 static inline bfd_boolean
2227 b_reloc_p (int r_type)
2229 return (r_type == R_MIPS_PC26_S2
2230 || r_type == R_MIPS_PC21_S2
2231 || r_type == R_MIPS_PC16
2232 || r_type == R_MIPS_GNU_REL16_S2
2233 || r_type == R_MIPS16_PC16_S1
2234 || r_type == R_MICROMIPS_PC16_S1
2235 || r_type == R_MICROMIPS_PC10_S1
2236 || r_type == R_MICROMIPS_PC7_S1);
2239 static inline bfd_boolean
2240 aligned_pcrel_reloc_p (int r_type)
2242 return (r_type == R_MIPS_PC18_S3
2243 || r_type == R_MIPS_PC19_S2);
2246 static inline bfd_boolean
2247 branch_reloc_p (int r_type)
2249 return (r_type == R_MIPS_26
2250 || r_type == R_MIPS_PC26_S2
2251 || r_type == R_MIPS_PC21_S2
2252 || r_type == R_MIPS_PC16
2253 || r_type == R_MIPS_GNU_REL16_S2);
2256 static inline bfd_boolean
2257 mips16_branch_reloc_p (int r_type)
2259 return (r_type == R_MIPS16_26
2260 || r_type == R_MIPS16_PC16_S1);
2263 static inline bfd_boolean
2264 micromips_branch_reloc_p (int r_type)
2266 return (r_type == R_MICROMIPS_26_S1
2267 || r_type == R_MICROMIPS_PC16_S1
2268 || r_type == R_MICROMIPS_PC10_S1
2269 || r_type == R_MICROMIPS_PC7_S1);
2272 static inline bfd_boolean
2273 tls_gd_reloc_p (unsigned int r_type)
2275 return (r_type == R_MIPS_TLS_GD
2276 || r_type == R_MIPS16_TLS_GD
2277 || r_type == R_MICROMIPS_TLS_GD);
2280 static inline bfd_boolean
2281 tls_ldm_reloc_p (unsigned int r_type)
2283 return (r_type == R_MIPS_TLS_LDM
2284 || r_type == R_MIPS16_TLS_LDM
2285 || r_type == R_MICROMIPS_TLS_LDM);
2288 static inline bfd_boolean
2289 tls_gottprel_reloc_p (unsigned int r_type)
2291 return (r_type == R_MIPS_TLS_GOTTPREL
2292 || r_type == R_MIPS16_TLS_GOTTPREL
2293 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2298 bfd_boolean jal_shuffle, bfd_byte *data)
2300 bfd_vma first, second, val;
2302 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2305 /* Pick up the first and second halfwords of the instruction. */
2306 first = bfd_get_16 (abfd, data);
2307 second = bfd_get_16 (abfd, data + 2);
2308 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2309 val = first << 16 | second;
2310 else if (r_type != R_MIPS16_26)
2311 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2312 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2314 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2315 | ((first & 0x1f) << 21) | second);
2316 bfd_put_32 (abfd, val, data);
2320 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2321 bfd_boolean jal_shuffle, bfd_byte *data)
2323 bfd_vma first, second, val;
2325 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2328 val = bfd_get_32 (abfd, data);
2329 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2331 second = val & 0xffff;
2334 else if (r_type != R_MIPS16_26)
2336 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2337 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 second = val & 0xffff;
2342 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2343 | ((val >> 21) & 0x1f);
2345 bfd_put_16 (abfd, second, data + 2);
2346 bfd_put_16 (abfd, first, data);
2349 bfd_reloc_status_type
2350 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2351 arelent *reloc_entry, asection *input_section,
2352 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 bfd_reloc_status_type status;
2358 if (bfd_is_com_section (symbol->section))
2361 relocation = symbol->value;
2363 relocation += symbol->section->output_section->vma;
2364 relocation += symbol->section->output_offset;
2366 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2367 return bfd_reloc_outofrange;
2369 /* Set val to the offset into the section or symbol. */
2370 val = reloc_entry->addend;
2372 _bfd_mips_elf_sign_extend (val, 16);
2374 /* Adjust val for the final section location and GP value. If we
2375 are producing relocatable output, we don't want to do this for
2376 an external symbol. */
2378 || (symbol->flags & BSF_SECTION_SYM) != 0)
2379 val += relocation - gp;
2381 if (reloc_entry->howto->partial_inplace)
2383 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2385 + reloc_entry->address);
2386 if (status != bfd_reloc_ok)
2390 reloc_entry->addend = val;
2393 reloc_entry->address += input_section->output_offset;
2395 return bfd_reloc_ok;
2398 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2399 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2400 that contains the relocation field and DATA points to the start of
2405 struct mips_hi16 *next;
2407 asection *input_section;
2411 /* FIXME: This should not be a static variable. */
2413 static struct mips_hi16 *mips_hi16_list;
2415 /* A howto special_function for REL *HI16 relocations. We can only
2416 calculate the correct value once we've seen the partnering
2417 *LO16 relocation, so just save the information for later.
2419 The ABI requires that the *LO16 immediately follow the *HI16.
2420 However, as a GNU extension, we permit an arbitrary number of
2421 *HI16s to be associated with a single *LO16. This significantly
2422 simplies the relocation handling in gcc. */
2424 bfd_reloc_status_type
2425 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2426 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2427 asection *input_section, bfd *output_bfd,
2428 char **error_message ATTRIBUTE_UNUSED)
2430 struct mips_hi16 *n;
2432 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2433 return bfd_reloc_outofrange;
2435 n = bfd_malloc (sizeof *n);
2437 return bfd_reloc_outofrange;
2439 n->next = mips_hi16_list;
2441 n->input_section = input_section;
2442 n->rel = *reloc_entry;
2445 if (output_bfd != NULL)
2446 reloc_entry->address += input_section->output_offset;
2448 return bfd_reloc_ok;
2451 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2452 like any other 16-bit relocation when applied to global symbols, but is
2453 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2455 bfd_reloc_status_type
2456 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2457 void *data, asection *input_section,
2458 bfd *output_bfd, char **error_message)
2460 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2461 || bfd_is_und_section (bfd_get_section (symbol))
2462 || bfd_is_com_section (bfd_get_section (symbol)))
2463 /* The relocation is against a global symbol. */
2464 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2465 input_section, output_bfd,
2468 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2469 input_section, output_bfd, error_message);
2472 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2473 is a straightforward 16 bit inplace relocation, but we must deal with
2474 any partnering high-part relocations as well. */
2476 bfd_reloc_status_type
2477 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2478 void *data, asection *input_section,
2479 bfd *output_bfd, char **error_message)
2482 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2484 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2485 return bfd_reloc_outofrange;
2487 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2489 vallo = bfd_get_32 (abfd, location);
2490 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2493 while (mips_hi16_list != NULL)
2495 bfd_reloc_status_type ret;
2496 struct mips_hi16 *hi;
2498 hi = mips_hi16_list;
2500 /* R_MIPS*_GOT16 relocations are something of a special case. We
2501 want to install the addend in the same way as for a R_MIPS*_HI16
2502 relocation (with a rightshift of 16). However, since GOT16
2503 relocations can also be used with global symbols, their howto
2504 has a rightshift of 0. */
2505 if (hi->rel.howto->type == R_MIPS_GOT16)
2506 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2507 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2508 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2509 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2510 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2512 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2513 carry or borrow will induce a change of +1 or -1 in the high part. */
2514 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2516 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2517 hi->input_section, output_bfd,
2519 if (ret != bfd_reloc_ok)
2522 mips_hi16_list = hi->next;
2526 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2527 input_section, output_bfd,
2531 /* A generic howto special_function. This calculates and installs the
2532 relocation itself, thus avoiding the oft-discussed problems in
2533 bfd_perform_relocation and bfd_install_relocation. */
2535 bfd_reloc_status_type
2536 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2537 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2538 asection *input_section, bfd *output_bfd,
2539 char **error_message ATTRIBUTE_UNUSED)
2542 bfd_reloc_status_type status;
2543 bfd_boolean relocatable;
2545 relocatable = (output_bfd != NULL);
2547 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2548 return bfd_reloc_outofrange;
2550 /* Build up the field adjustment in VAL. */
2552 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2554 /* Either we're calculating the final field value or we have a
2555 relocation against a section symbol. Add in the section's
2556 offset or address. */
2557 val += symbol->section->output_section->vma;
2558 val += symbol->section->output_offset;
2563 /* We're calculating the final field value. Add in the symbol's value
2564 and, if pc-relative, subtract the address of the field itself. */
2565 val += symbol->value;
2566 if (reloc_entry->howto->pc_relative)
2568 val -= input_section->output_section->vma;
2569 val -= input_section->output_offset;
2570 val -= reloc_entry->address;
2574 /* VAL is now the final adjustment. If we're keeping this relocation
2575 in the output file, and if the relocation uses a separate addend,
2576 we just need to add VAL to that addend. Otherwise we need to add
2577 VAL to the relocation field itself. */
2578 if (relocatable && !reloc_entry->howto->partial_inplace)
2579 reloc_entry->addend += val;
2582 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2584 /* Add in the separate addend, if any. */
2585 val += reloc_entry->addend;
2587 /* Add VAL to the relocation field. */
2588 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2590 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2592 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2595 if (status != bfd_reloc_ok)
2600 reloc_entry->address += input_section->output_offset;
2602 return bfd_reloc_ok;
2605 /* Swap an entry in a .gptab section. Note that these routines rely
2606 on the equivalence of the two elements of the union. */
2609 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2612 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2613 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2618 Elf32_External_gptab *ex)
2620 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2621 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2626 Elf32_External_compact_rel *ex)
2628 H_PUT_32 (abfd, in->id1, ex->id1);
2629 H_PUT_32 (abfd, in->num, ex->num);
2630 H_PUT_32 (abfd, in->id2, ex->id2);
2631 H_PUT_32 (abfd, in->offset, ex->offset);
2632 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2633 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2638 Elf32_External_crinfo *ex)
2642 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2643 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2644 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2645 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2646 H_PUT_32 (abfd, l, ex->info);
2647 H_PUT_32 (abfd, in->konst, ex->konst);
2648 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2651 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2652 routines swap this structure in and out. They are used outside of
2653 BFD, so they are globally visible. */
2656 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2660 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2661 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2662 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2663 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2664 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2669 Elf32_External_RegInfo *ex)
2671 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2672 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2673 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2674 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2675 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2676 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2679 /* In the 64 bit ABI, the .MIPS.options section holds register
2680 information in an Elf64_Reginfo structure. These routines swap
2681 them in and out. They are globally visible because they are used
2682 outside of BFD. These routines are here so that gas can call them
2683 without worrying about whether the 64 bit ABI has been included. */
2686 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2687 Elf64_Internal_RegInfo *in)
2689 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2690 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2691 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2692 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2693 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2694 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2695 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2700 Elf64_External_RegInfo *ex)
2702 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2703 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2704 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2705 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2706 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2707 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2708 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2711 /* Swap in an options header. */
2714 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2715 Elf_Internal_Options *in)
2717 in->kind = H_GET_8 (abfd, ex->kind);
2718 in->size = H_GET_8 (abfd, ex->size);
2719 in->section = H_GET_16 (abfd, ex->section);
2720 in->info = H_GET_32 (abfd, ex->info);
2723 /* Swap out an options header. */
2726 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2727 Elf_External_Options *ex)
2729 H_PUT_8 (abfd, in->kind, ex->kind);
2730 H_PUT_8 (abfd, in->size, ex->size);
2731 H_PUT_16 (abfd, in->section, ex->section);
2732 H_PUT_32 (abfd, in->info, ex->info);
2735 /* Swap in an abiflags structure. */
2738 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2739 const Elf_External_ABIFlags_v0 *ex,
2740 Elf_Internal_ABIFlags_v0 *in)
2742 in->version = H_GET_16 (abfd, ex->version);
2743 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2744 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2745 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2746 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2747 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2748 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2749 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2750 in->ases = H_GET_32 (abfd, ex->ases);
2751 in->flags1 = H_GET_32 (abfd, ex->flags1);
2752 in->flags2 = H_GET_32 (abfd, ex->flags2);
2755 /* Swap out an abiflags structure. */
2758 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2759 const Elf_Internal_ABIFlags_v0 *in,
2760 Elf_External_ABIFlags_v0 *ex)
2762 H_PUT_16 (abfd, in->version, ex->version);
2763 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2764 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2765 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2766 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2767 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2768 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2769 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2770 H_PUT_32 (abfd, in->ases, ex->ases);
2771 H_PUT_32 (abfd, in->flags1, ex->flags1);
2772 H_PUT_32 (abfd, in->flags2, ex->flags2);
2775 /* This function is called via qsort() to sort the dynamic relocation
2776 entries by increasing r_symndx value. */
2779 sort_dynamic_relocs (const void *arg1, const void *arg2)
2781 Elf_Internal_Rela int_reloc1;
2782 Elf_Internal_Rela int_reloc2;
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2786 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2788 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (int_reloc1.r_offset < int_reloc2.r_offset)
2794 if (int_reloc1.r_offset > int_reloc2.r_offset)
2799 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2802 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2803 const void *arg2 ATTRIBUTE_UNUSED)
2806 Elf_Internal_Rela int_reloc1[3];
2807 Elf_Internal_Rela int_reloc2[3];
2809 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2810 (reldyn_sorting_bfd, arg1, int_reloc1);
2811 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2812 (reldyn_sorting_bfd, arg2, int_reloc2);
2814 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2816 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2819 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2821 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2830 /* This routine is used to write out ECOFF debugging external symbol
2831 information. It is called via mips_elf_link_hash_traverse. The
2832 ECOFF external symbol information must match the ELF external
2833 symbol information. Unfortunately, at this point we don't know
2834 whether a symbol is required by reloc information, so the two
2835 tables may wind up being different. We must sort out the external
2836 symbol information before we can set the final size of the .mdebug
2837 section, and we must set the size of the .mdebug section before we
2838 can relocate any sections, and we can't know which symbols are
2839 required by relocation until we relocate the sections.
2840 Fortunately, it is relatively unlikely that any symbol will be
2841 stripped but required by a reloc. In particular, it can not happen
2842 when generating a final executable. */
2845 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2847 struct extsym_info *einfo = data;
2849 asection *sec, *output_section;
2851 if (h->root.indx == -2)
2853 else if ((h->root.def_dynamic
2854 || h->root.ref_dynamic
2855 || h->root.type == bfd_link_hash_new)
2856 && !h->root.def_regular
2857 && !h->root.ref_regular)
2859 else if (einfo->info->strip == strip_all
2860 || (einfo->info->strip == strip_some
2861 && bfd_hash_lookup (einfo->info->keep_hash,
2862 h->root.root.root.string,
2863 FALSE, FALSE) == NULL))
2871 if (h->esym.ifd == -2)
2874 h->esym.cobol_main = 0;
2875 h->esym.weakext = 0;
2876 h->esym.reserved = 0;
2877 h->esym.ifd = ifdNil;
2878 h->esym.asym.value = 0;
2879 h->esym.asym.st = stGlobal;
2881 if (h->root.root.type == bfd_link_hash_undefined
2882 || h->root.root.type == bfd_link_hash_undefweak)
2886 /* Use undefined class. Also, set class and type for some
2888 name = h->root.root.root.string;
2889 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2890 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2892 h->esym.asym.sc = scData;
2893 h->esym.asym.st = stLabel;
2894 h->esym.asym.value = 0;
2896 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2898 h->esym.asym.sc = scAbs;
2899 h->esym.asym.st = stLabel;
2900 h->esym.asym.value =
2901 mips_elf_hash_table (einfo->info)->procedure_count;
2903 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2905 h->esym.asym.sc = scAbs;
2906 h->esym.asym.st = stLabel;
2907 h->esym.asym.value = elf_gp (einfo->abfd);
2910 h->esym.asym.sc = scUndefined;
2912 else if (h->root.root.type != bfd_link_hash_defined
2913 && h->root.root.type != bfd_link_hash_defweak)
2914 h->esym.asym.sc = scAbs;
2919 sec = h->root.root.u.def.section;
2920 output_section = sec->output_section;
2922 /* When making a shared library and symbol h is the one from
2923 the another shared library, OUTPUT_SECTION may be null. */
2924 if (output_section == NULL)
2925 h->esym.asym.sc = scUndefined;
2928 name = bfd_section_name (output_section->owner, output_section);
2930 if (strcmp (name, ".text") == 0)
2931 h->esym.asym.sc = scText;
2932 else if (strcmp (name, ".data") == 0)
2933 h->esym.asym.sc = scData;
2934 else if (strcmp (name, ".sdata") == 0)
2935 h->esym.asym.sc = scSData;
2936 else if (strcmp (name, ".rodata") == 0
2937 || strcmp (name, ".rdata") == 0)
2938 h->esym.asym.sc = scRData;
2939 else if (strcmp (name, ".bss") == 0)
2940 h->esym.asym.sc = scBss;
2941 else if (strcmp (name, ".sbss") == 0)
2942 h->esym.asym.sc = scSBss;
2943 else if (strcmp (name, ".init") == 0)
2944 h->esym.asym.sc = scInit;
2945 else if (strcmp (name, ".fini") == 0)
2946 h->esym.asym.sc = scFini;
2948 h->esym.asym.sc = scAbs;
2952 h->esym.asym.reserved = 0;
2953 h->esym.asym.index = indexNil;
2956 if (h->root.root.type == bfd_link_hash_common)
2957 h->esym.asym.value = h->root.root.u.c.size;
2958 else if (h->root.root.type == bfd_link_hash_defined
2959 || h->root.root.type == bfd_link_hash_defweak)
2961 if (h->esym.asym.sc == scCommon)
2962 h->esym.asym.sc = scBss;
2963 else if (h->esym.asym.sc == scSCommon)
2964 h->esym.asym.sc = scSBss;
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968 if (output_section != NULL)
2969 h->esym.asym.value = (h->root.root.u.def.value
2970 + sec->output_offset
2971 + output_section->vma);
2973 h->esym.asym.value = 0;
2977 struct mips_elf_link_hash_entry *hd = h;
2979 while (hd->root.root.type == bfd_link_hash_indirect)
2980 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2982 if (hd->needs_lazy_stub)
2984 BFD_ASSERT (hd->root.plt.plist != NULL);
2985 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2986 /* Set type and value for a symbol with a function stub. */
2987 h->esym.asym.st = stProc;
2988 sec = hd->root.root.u.def.section;
2990 h->esym.asym.value = 0;
2993 output_section = sec->output_section;
2994 if (output_section != NULL)
2995 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2996 + sec->output_offset
2997 + output_section->vma);
2999 h->esym.asym.value = 0;
3004 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3005 h->root.root.root.string,
3008 einfo->failed = TRUE;
3015 /* A comparison routine used to sort .gptab entries. */
3018 gptab_compare (const void *p1, const void *p2)
3020 const Elf32_gptab *a1 = p1;
3021 const Elf32_gptab *a2 = p2;
3023 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3026 /* Functions to manage the got entry hash table. */
3028 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3031 static INLINE hashval_t
3032 mips_elf_hash_bfd_vma (bfd_vma addr)
3035 return addr + (addr >> 32);
3042 mips_elf_got_entry_hash (const void *entry_)
3044 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3046 return (entry->symndx
3047 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3048 + (entry->tls_type == GOT_TLS_LDM ? 0
3049 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3050 : entry->symndx >= 0 ? (entry->abfd->id
3051 + mips_elf_hash_bfd_vma (entry->d.addend))
3052 : entry->d.h->root.root.root.hash));
3056 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3058 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3059 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3061 return (e1->symndx == e2->symndx
3062 && e1->tls_type == e2->tls_type
3063 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3064 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3065 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3066 && e1->d.addend == e2->d.addend)
3067 : e2->abfd && e1->d.h == e2->d.h));
3071 mips_got_page_ref_hash (const void *ref_)
3073 const struct mips_got_page_ref *ref;
3075 ref = (const struct mips_got_page_ref *) ref_;
3076 return ((ref->symndx >= 0
3077 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3078 : ref->u.h->root.root.root.hash)
3079 + mips_elf_hash_bfd_vma (ref->addend));
3083 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3085 const struct mips_got_page_ref *ref1, *ref2;
3087 ref1 = (const struct mips_got_page_ref *) ref1_;
3088 ref2 = (const struct mips_got_page_ref *) ref2_;
3089 return (ref1->symndx == ref2->symndx
3090 && (ref1->symndx < 0
3091 ? ref1->u.h == ref2->u.h
3092 : ref1->u.abfd == ref2->u.abfd)
3093 && ref1->addend == ref2->addend);
3097 mips_got_page_entry_hash (const void *entry_)
3099 const struct mips_got_page_entry *entry;
3101 entry = (const struct mips_got_page_entry *) entry_;
3102 return entry->sec->id;
3106 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3108 const struct mips_got_page_entry *entry1, *entry2;
3110 entry1 = (const struct mips_got_page_entry *) entry1_;
3111 entry2 = (const struct mips_got_page_entry *) entry2_;
3112 return entry1->sec == entry2->sec;
3115 /* Create and return a new mips_got_info structure. */
3117 static struct mips_got_info *
3118 mips_elf_create_got_info (bfd *abfd)
3120 struct mips_got_info *g;
3122 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3127 mips_elf_got_entry_eq, NULL);
3128 if (g->got_entries == NULL)
3131 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3132 mips_got_page_ref_eq, NULL);
3133 if (g->got_page_refs == NULL)
3139 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3140 CREATE_P and if ABFD doesn't already have a GOT. */
3142 static struct mips_got_info *
3143 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3145 struct mips_elf_obj_tdata *tdata;
3147 if (!is_mips_elf (abfd))
3150 tdata = mips_elf_tdata (abfd);
3151 if (!tdata->got && create_p)
3152 tdata->got = mips_elf_create_got_info (abfd);
3156 /* Record that ABFD should use output GOT G. */
3159 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3161 struct mips_elf_obj_tdata *tdata;
3163 BFD_ASSERT (is_mips_elf (abfd));
3164 tdata = mips_elf_tdata (abfd);
3167 /* The GOT structure itself and the hash table entries are
3168 allocated to a bfd, but the hash tables aren't. */
3169 htab_delete (tdata->got->got_entries);
3170 htab_delete (tdata->got->got_page_refs);
3171 if (tdata->got->got_page_entries)
3172 htab_delete (tdata->got->got_page_entries);
3177 /* Return the dynamic relocation section. If it doesn't exist, try to
3178 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3179 if creation fails. */
3182 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3188 dname = MIPS_ELF_REL_DYN_NAME (info);
3189 dynobj = elf_hash_table (info)->dynobj;
3190 sreloc = bfd_get_linker_section (dynobj, dname);
3191 if (sreloc == NULL && create_p)
3193 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3198 | SEC_LINKER_CREATED
3201 || ! bfd_set_section_alignment (dynobj, sreloc,
3202 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3208 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3211 mips_elf_reloc_tls_type (unsigned int r_type)
3213 if (tls_gd_reloc_p (r_type))
3216 if (tls_ldm_reloc_p (r_type))
3219 if (tls_gottprel_reloc_p (r_type))
3222 return GOT_TLS_NONE;
3225 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3228 mips_tls_got_entries (unsigned int type)
3245 /* Count the number of relocations needed for a TLS GOT entry, with
3246 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3251 struct elf_link_hash_entry *h)
3254 bfd_boolean need_relocs = FALSE;
3255 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3257 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3258 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3261 if ((bfd_link_pic (info) || indx != 0)
3263 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3264 || h->root.type != bfd_link_hash_undefweak))
3273 return indx != 0 ? 2 : 1;
3279 return bfd_link_pic (info) ? 1 : 0;
3286 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 mips_elf_count_got_entry (struct bfd_link_info *info,
3291 struct mips_got_info *g,
3292 struct mips_got_entry *entry)
3294 if (entry->tls_type)
3296 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3297 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3299 ? &entry->d.h->root : NULL);
3301 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3302 g->local_gotno += 1;
3304 g->global_gotno += 1;
3307 /* Output a simple dynamic relocation into SRELOC. */
3310 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3312 unsigned long reloc_index,
3317 Elf_Internal_Rela rel[3];
3319 memset (rel, 0, sizeof (rel));
3321 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3322 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3324 if (ABI_64_P (output_bfd))
3326 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3327 (output_bfd, &rel[0],
3329 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3332 bfd_elf32_swap_reloc_out
3333 (output_bfd, &rel[0],
3335 + reloc_index * sizeof (Elf32_External_Rel)));
3338 /* Initialize a set of TLS GOT entries for one symbol. */
3341 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3342 struct mips_got_entry *entry,
3343 struct mips_elf_link_hash_entry *h,
3346 struct mips_elf_link_hash_table *htab;
3348 asection *sreloc, *sgot;
3349 bfd_vma got_offset, got_offset2;
3350 bfd_boolean need_relocs = FALSE;
3352 htab = mips_elf_hash_table (info);
3356 sgot = htab->root.sgot;
3361 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3363 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3365 && (!bfd_link_pic (info)
3366 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3367 indx = h->root.dynindx;
3370 if (entry->tls_initialized)
3373 if ((bfd_link_pic (info) || indx != 0)
3375 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3376 || h->root.type != bfd_link_hash_undefweak))
3379 /* MINUS_ONE means the symbol is not defined in this object. It may not
3380 be defined at all; assume that the value doesn't matter in that
3381 case. Otherwise complain if we would use the value. */
3382 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3383 || h->root.root.type == bfd_link_hash_undefweak);
3385 /* Emit necessary relocations. */
3386 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3387 got_offset = entry->gotidx;
3389 switch (entry->tls_type)
3392 /* General Dynamic. */
3393 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397 mips_elf_output_dynamic_relocation
3398 (abfd, sreloc, sreloc->reloc_count++, indx,
3399 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3400 sgot->output_offset + sgot->output_section->vma + got_offset);
3403 mips_elf_output_dynamic_relocation
3404 (abfd, sreloc, sreloc->reloc_count++, indx,
3405 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3406 sgot->output_offset + sgot->output_section->vma + got_offset2);
3408 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3409 sgot->contents + got_offset2);
3413 MIPS_ELF_PUT_WORD (abfd, 1,
3414 sgot->contents + got_offset);
3415 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3416 sgot->contents + got_offset2);
3421 /* Initial Exec model. */
3425 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3426 sgot->contents + got_offset);
3428 MIPS_ELF_PUT_WORD (abfd, 0,
3429 sgot->contents + got_offset);
3431 mips_elf_output_dynamic_relocation
3432 (abfd, sreloc, sreloc->reloc_count++, indx,
3433 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3434 sgot->output_offset + sgot->output_section->vma + got_offset);
3437 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3438 sgot->contents + got_offset);
3442 /* The initial offset is zero, and the LD offsets will include the
3443 bias by DTP_OFFSET. */
3444 MIPS_ELF_PUT_WORD (abfd, 0,
3445 sgot->contents + got_offset
3446 + MIPS_ELF_GOT_SIZE (abfd));
3448 if (!bfd_link_pic (info))
3449 MIPS_ELF_PUT_WORD (abfd, 1,
3450 sgot->contents + got_offset);
3452 mips_elf_output_dynamic_relocation
3453 (abfd, sreloc, sreloc->reloc_count++, indx,
3454 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3455 sgot->output_offset + sgot->output_section->vma + got_offset);
3462 entry->tls_initialized = TRUE;
3465 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3466 for global symbol H. .got.plt comes before the GOT, so the offset
3467 will be negative. */
3470 mips_elf_gotplt_index (struct bfd_link_info *info,
3471 struct elf_link_hash_entry *h)
3473 bfd_vma got_address, got_value;
3474 struct mips_elf_link_hash_table *htab;
3476 htab = mips_elf_hash_table (info);
3477 BFD_ASSERT (htab != NULL);
3479 BFD_ASSERT (h->plt.plist != NULL);
3480 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3482 /* Calculate the address of the associated .got.plt entry. */
3483 got_address = (htab->root.sgotplt->output_section->vma
3484 + htab->root.sgotplt->output_offset
3485 + (h->plt.plist->gotplt_index
3486 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3488 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3489 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3490 + htab->root.hgot->root.u.def.section->output_offset
3491 + htab->root.hgot->root.u.def.value);
3493 return got_address - got_value;
3496 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3497 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3498 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3499 offset can be found. */
3502 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3503 bfd_vma value, unsigned long r_symndx,
3504 struct mips_elf_link_hash_entry *h, int r_type)
3506 struct mips_elf_link_hash_table *htab;
3507 struct mips_got_entry *entry;
3509 htab = mips_elf_hash_table (info);
3510 BFD_ASSERT (htab != NULL);
3512 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3513 r_symndx, h, r_type);
3517 if (entry->tls_type)
3518 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3519 return entry->gotidx;
3522 /* Return the GOT index of global symbol H in the primary GOT. */
3525 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3526 struct elf_link_hash_entry *h)
3528 struct mips_elf_link_hash_table *htab;
3529 long global_got_dynindx;
3530 struct mips_got_info *g;
3533 htab = mips_elf_hash_table (info);
3534 BFD_ASSERT (htab != NULL);
3536 global_got_dynindx = 0;
3537 if (htab->global_gotsym != NULL)
3538 global_got_dynindx = htab->global_gotsym->dynindx;
3540 /* Once we determine the global GOT entry with the lowest dynamic
3541 symbol table index, we must put all dynamic symbols with greater
3542 indices into the primary GOT. That makes it easy to calculate the
3544 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3545 g = mips_elf_bfd_got (obfd, FALSE);
3546 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3547 * MIPS_ELF_GOT_SIZE (obfd));
3548 BFD_ASSERT (got_index < htab->root.sgot->size);
3553 /* Return the GOT index for the global symbol indicated by H, which is
3554 referenced by a relocation of type R_TYPE in IBFD. */
3557 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3558 struct elf_link_hash_entry *h, int r_type)
3560 struct mips_elf_link_hash_table *htab;
3561 struct mips_got_info *g;
3562 struct mips_got_entry lookup, *entry;
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3568 g = mips_elf_bfd_got (ibfd, FALSE);
3571 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3572 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3573 return mips_elf_primary_global_got_index (obfd, info, h);
3577 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3578 entry = htab_find (g->got_entries, &lookup);
3581 gotidx = entry->gotidx;
3582 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3584 if (lookup.tls_type)
3586 bfd_vma value = MINUS_ONE;
3588 if ((h->root.type == bfd_link_hash_defined
3589 || h->root.type == bfd_link_hash_defweak)
3590 && h->root.u.def.section->output_section)
3591 value = (h->root.u.def.value
3592 + h->root.u.def.section->output_offset
3593 + h->root.u.def.section->output_section->vma);
3595 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3600 /* Find a GOT page entry that points to within 32KB of VALUE. These
3601 entries are supposed to be placed at small offsets in the GOT, i.e.,
3602 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3603 entry could be created. If OFFSETP is nonnull, use it to return the
3604 offset of the GOT entry from VALUE. */
3607 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3608 bfd_vma value, bfd_vma *offsetp)
3610 bfd_vma page, got_index;
3611 struct mips_got_entry *entry;
3613 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3614 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3615 NULL, R_MIPS_GOT_PAGE);
3620 got_index = entry->gotidx;
3623 *offsetp = value - entry->d.address;
3628 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3629 EXTERNAL is true if the relocation was originally against a global
3630 symbol that binds locally. */
3633 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3634 bfd_vma value, bfd_boolean external)
3636 struct mips_got_entry *entry;
3638 /* GOT16 relocations against local symbols are followed by a LO16
3639 relocation; those against global symbols are not. Thus if the
3640 symbol was originally local, the GOT16 relocation should load the
3641 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3643 value = mips_elf_high (value) << 16;
3645 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3646 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3647 same in all cases. */
3648 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3649 NULL, R_MIPS_GOT16);
3651 return entry->gotidx;
3656 /* Returns the offset for the entry at the INDEXth position
3660 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3661 bfd *input_bfd, bfd_vma got_index)
3663 struct mips_elf_link_hash_table *htab;
3667 htab = mips_elf_hash_table (info);
3668 BFD_ASSERT (htab != NULL);
3670 sgot = htab->root.sgot;
3671 gp = _bfd_get_gp_value (output_bfd)
3672 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3674 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3677 /* Create and return a local GOT entry for VALUE, which was calculated
3678 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3679 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3682 static struct mips_got_entry *
3683 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3684 bfd *ibfd, bfd_vma value,
3685 unsigned long r_symndx,
3686 struct mips_elf_link_hash_entry *h,
3689 struct mips_got_entry lookup, *entry;
3691 struct mips_got_info *g;
3692 struct mips_elf_link_hash_table *htab;
3695 htab = mips_elf_hash_table (info);
3696 BFD_ASSERT (htab != NULL);
3698 g = mips_elf_bfd_got (ibfd, FALSE);
3701 g = mips_elf_bfd_got (abfd, FALSE);
3702 BFD_ASSERT (g != NULL);
3705 /* This function shouldn't be called for symbols that live in the global
3707 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3709 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3710 if (lookup.tls_type)
3713 if (tls_ldm_reloc_p (r_type))
3716 lookup.d.addend = 0;
3720 lookup.symndx = r_symndx;
3721 lookup.d.addend = 0;
3729 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3732 gotidx = entry->gotidx;
3733 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3740 lookup.d.address = value;
3741 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 entry = (struct mips_got_entry *) *loc;
3749 if (g->assigned_low_gotno > g->assigned_high_gotno)
3751 /* We didn't allocate enough space in the GOT. */
3753 (_("not enough GOT space for local GOT entries"));
3754 bfd_set_error (bfd_error_bad_value);
3758 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (got16_reloc_p (r_type)
3763 || call16_reloc_p (r_type)
3764 || got_page_reloc_p (r_type)
3765 || got_disp_reloc_p (r_type))
3766 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3768 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3773 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3775 /* These GOT entries need a dynamic relocation on VxWorks. */
3776 if (htab->is_vxworks)
3778 Elf_Internal_Rela outrel;
3781 bfd_vma got_address;
3783 s = mips_elf_rel_dyn_section (info, FALSE);
3784 got_address = (htab->root.sgot->output_section->vma
3785 + htab->root.sgot->output_offset
3788 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3789 outrel.r_offset = got_address;
3790 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3791 outrel.r_addend = value;
3792 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3798 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3799 The number might be exact or a worst-case estimate, depending on how
3800 much information is available to elf_backend_omit_section_dynsym at
3801 the current linking stage. */
3803 static bfd_size_type
3804 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3806 bfd_size_type count;
3809 if (bfd_link_pic (info)
3810 || elf_hash_table (info)->is_relocatable_executable)
3813 const struct elf_backend_data *bed;
3815 bed = get_elf_backend_data (output_bfd);
3816 for (p = output_bfd->sections; p ; p = p->next)
3817 if ((p->flags & SEC_EXCLUDE) == 0
3818 && (p->flags & SEC_ALLOC) != 0
3819 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3825 /* Sort the dynamic symbol table so that symbols that need GOT entries
3826 appear towards the end. */
3829 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3831 struct mips_elf_link_hash_table *htab;
3832 struct mips_elf_hash_sort_data hsd;
3833 struct mips_got_info *g;
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3838 if (htab->root.dynsymcount == 0)
3846 hsd.max_unref_got_dynindx
3847 = hsd.min_got_dynindx
3848 = (htab->root.dynsymcount - g->reloc_only_gotno);
3849 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3856 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3858 /* Now we know which dynamic symbol has the lowest dynamic symbol
3859 table index in the GOT. */
3860 htab->global_gotsym = hsd.low;
3865 /* If H needs a GOT entry, assign it the highest available dynamic
3866 index. Otherwise, assign it the lowest available dynamic
3870 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3872 struct mips_elf_hash_sort_data *hsd = data;
3874 /* Symbols without dynamic symbol table entries aren't interesting
3876 if (h->root.dynindx == -1)
3879 switch (h->global_got_area)
3882 h->root.dynindx = hsd->max_non_got_dynindx++;
3886 h->root.dynindx = --hsd->min_got_dynindx;
3887 hsd->low = (struct elf_link_hash_entry *) h;
3890 case GGA_RELOC_ONLY:
3891 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 h->root.dynindx = hsd->max_unref_got_dynindx++;
3900 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3901 (which is owned by the caller and shouldn't be added to the
3902 hash table directly). */
3905 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3906 struct mips_got_entry *lookup)
3908 struct mips_elf_link_hash_table *htab;
3909 struct mips_got_entry *entry;
3910 struct mips_got_info *g;
3911 void **loc, **bfd_loc;
3913 /* Make sure there's a slot for this entry in the master GOT. */
3914 htab = mips_elf_hash_table (info);
3916 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920 /* Populate the entry if it isn't already. */
3921 entry = (struct mips_got_entry *) *loc;
3924 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3928 lookup->tls_initialized = FALSE;
3929 lookup->gotidx = -1;
3934 /* Reuse the same GOT entry for the BFD's GOT. */
3935 g = mips_elf_bfd_got (abfd, TRUE);
3939 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3948 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3949 entry for it. FOR_CALL is true if the caller is only interested in
3950 using the GOT entry for calls. */
3953 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3954 bfd *abfd, struct bfd_link_info *info,
3955 bfd_boolean for_call, int r_type)
3957 struct mips_elf_link_hash_table *htab;
3958 struct mips_elf_link_hash_entry *hmips;
3959 struct mips_got_entry entry;
3960 unsigned char tls_type;
3962 htab = mips_elf_hash_table (info);
3963 BFD_ASSERT (htab != NULL);
3965 hmips = (struct mips_elf_link_hash_entry *) h;
3967 hmips->got_only_for_calls = FALSE;
3969 /* A global symbol in the GOT must also be in the dynamic symbol
3971 if (h->dynindx == -1)
3973 switch (ELF_ST_VISIBILITY (h->other))
3977 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3980 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3984 tls_type = mips_elf_reloc_tls_type (r_type);
3985 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3986 hmips->global_got_area = GGA_NORMAL;
3990 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3991 entry.tls_type = tls_type;
3992 return mips_elf_record_got_entry (info, abfd, &entry);
3995 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3996 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3999 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4000 struct bfd_link_info *info, int r_type)
4002 struct mips_elf_link_hash_table *htab;
4003 struct mips_got_info *g;
4004 struct mips_got_entry entry;
4006 htab = mips_elf_hash_table (info);
4007 BFD_ASSERT (htab != NULL);
4010 BFD_ASSERT (g != NULL);
4013 entry.symndx = symndx;
4014 entry.d.addend = addend;
4015 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4016 return mips_elf_record_got_entry (info, abfd, &entry);
4019 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4020 H is the symbol's hash table entry, or null if SYMNDX is local
4024 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4025 long symndx, struct elf_link_hash_entry *h,
4026 bfd_signed_vma addend)
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_got_info *g1, *g2;
4030 struct mips_got_page_ref lookup, *entry;
4031 void **loc, **bfd_loc;
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4036 g1 = htab->got_info;
4037 BFD_ASSERT (g1 != NULL);
4042 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4046 lookup.symndx = symndx;
4047 lookup.u.abfd = abfd;
4049 lookup.addend = addend;
4050 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4054 entry = (struct mips_got_page_ref *) *loc;
4057 entry = bfd_alloc (abfd, sizeof (*entry));
4065 /* Add the same entry to the BFD's GOT. */
4066 g2 = mips_elf_bfd_got (abfd, TRUE);
4070 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4080 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4083 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4087 struct mips_elf_link_hash_table *htab;
4089 htab = mips_elf_hash_table (info);
4090 BFD_ASSERT (htab != NULL);
4092 s = mips_elf_rel_dyn_section (info, FALSE);
4093 BFD_ASSERT (s != NULL);
4095 if (htab->is_vxworks)
4096 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 /* Make room for a null element. */
4102 s->size += MIPS_ELF_REL_SIZE (abfd);
4105 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4109 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4110 mips_elf_traverse_got_arg structure. Count the number of GOT
4111 entries and TLS relocs. Set DATA->value to true if we need
4112 to resolve indirect or warning symbols and then recreate the GOT. */
4115 mips_elf_check_recreate_got (void **entryp, void *data)
4117 struct mips_got_entry *entry;
4118 struct mips_elf_traverse_got_arg *arg;
4120 entry = (struct mips_got_entry *) *entryp;
4121 arg = (struct mips_elf_traverse_got_arg *) data;
4122 if (entry->abfd != NULL && entry->symndx == -1)
4124 struct mips_elf_link_hash_entry *h;
4127 if (h->root.root.type == bfd_link_hash_indirect
4128 || h->root.root.type == bfd_link_hash_warning)
4134 mips_elf_count_got_entry (arg->info, arg->g, entry);
4138 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4139 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4140 converting entries for indirect and warning symbols into entries
4141 for the target symbol. Set DATA->g to null on error. */
4144 mips_elf_recreate_got (void **entryp, void *data)
4146 struct mips_got_entry new_entry, *entry;
4147 struct mips_elf_traverse_got_arg *arg;
4150 entry = (struct mips_got_entry *) *entryp;
4151 arg = (struct mips_elf_traverse_got_arg *) data;
4152 if (entry->abfd != NULL
4153 && entry->symndx == -1
4154 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4155 || entry->d.h->root.root.type == bfd_link_hash_warning))
4157 struct mips_elf_link_hash_entry *h;
4164 BFD_ASSERT (h->global_got_area == GGA_NONE);
4165 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4167 while (h->root.root.type == bfd_link_hash_indirect
4168 || h->root.root.type == bfd_link_hash_warning);
4171 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4179 if (entry == &new_entry)
4181 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4190 mips_elf_count_got_entry (arg->info, arg->g, entry);
4195 /* Return the maximum number of GOT page entries required for RANGE. */
4198 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4200 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4203 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4206 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4207 asection *sec, bfd_signed_vma addend)
4209 struct mips_got_info *g = arg->g;
4210 struct mips_got_page_entry lookup, *entry;
4211 struct mips_got_page_range **range_ptr, *range;
4212 bfd_vma old_pages, new_pages;
4215 /* Find the mips_got_page_entry hash table entry for this section. */
4217 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4221 /* Create a mips_got_page_entry if this is the first time we've
4222 seen the section. */
4223 entry = (struct mips_got_page_entry *) *loc;
4226 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4234 /* Skip over ranges whose maximum extent cannot share a page entry
4236 range_ptr = &entry->ranges;
4237 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4238 range_ptr = &(*range_ptr)->next;
4240 /* If we scanned to the end of the list, or found a range whose
4241 minimum extent cannot share a page entry with ADDEND, create
4242 a new singleton range. */
4244 if (!range || addend < range->min_addend - 0xffff)
4246 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4250 range->next = *range_ptr;
4251 range->min_addend = addend;
4252 range->max_addend = addend;
4260 /* Remember how many pages the old range contributed. */
4261 old_pages = mips_elf_pages_for_range (range);
4263 /* Update the ranges. */
4264 if (addend < range->min_addend)
4265 range->min_addend = addend;
4266 else if (addend > range->max_addend)
4268 if (range->next && addend >= range->next->min_addend - 0xffff)
4270 old_pages += mips_elf_pages_for_range (range->next);
4271 range->max_addend = range->next->max_addend;
4272 range->next = range->next->next;
4275 range->max_addend = addend;
4278 /* Record any change in the total estimate. */
4279 new_pages = mips_elf_pages_for_range (range);
4280 if (old_pages != new_pages)
4282 entry->num_pages += new_pages - old_pages;
4283 g->page_gotno += new_pages - old_pages;
4289 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4290 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4291 whether the page reference described by *REFP needs a GOT page entry,
4292 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4295 mips_elf_resolve_got_page_ref (void **refp, void *data)
4297 struct mips_got_page_ref *ref;
4298 struct mips_elf_traverse_got_arg *arg;
4299 struct mips_elf_link_hash_table *htab;
4303 ref = (struct mips_got_page_ref *) *refp;
4304 arg = (struct mips_elf_traverse_got_arg *) data;
4305 htab = mips_elf_hash_table (arg->info);
4307 if (ref->symndx < 0)
4309 struct mips_elf_link_hash_entry *h;
4311 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4313 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4316 /* Ignore undefined symbols; we'll issue an error later if
4318 if (!((h->root.root.type == bfd_link_hash_defined
4319 || h->root.root.type == bfd_link_hash_defweak)
4320 && h->root.root.u.def.section))
4323 sec = h->root.root.u.def.section;
4324 addend = h->root.root.u.def.value + ref->addend;
4328 Elf_Internal_Sym *isym;
4330 /* Read in the symbol. */
4331 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4339 /* Get the associated input section. */
4340 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4347 /* If this is a mergable section, work out the section and offset
4348 of the merged data. For section symbols, the addend specifies
4349 of the offset _of_ the first byte in the data, otherwise it
4350 specifies the offset _from_ the first byte. */
4351 if (sec->flags & SEC_MERGE)
4355 secinfo = elf_section_data (sec)->sec_info;
4356 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4357 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4358 isym->st_value + ref->addend);
4360 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4361 isym->st_value) + ref->addend;
4364 addend = isym->st_value + ref->addend;
4366 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4374 /* If any entries in G->got_entries are for indirect or warning symbols,
4375 replace them with entries for the target symbol. Convert g->got_page_refs
4376 into got_page_entry structures and estimate the number of page entries
4377 that they require. */
4380 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4381 struct mips_got_info *g)
4383 struct mips_elf_traverse_got_arg tga;
4384 struct mips_got_info oldg;
4391 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4395 g->got_entries = htab_create (htab_size (oldg.got_entries),
4396 mips_elf_got_entry_hash,
4397 mips_elf_got_entry_eq, NULL);
4398 if (!g->got_entries)
4401 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4405 htab_delete (oldg.got_entries);
4408 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4409 mips_got_page_entry_eq, NULL);
4410 if (g->got_page_entries == NULL)
4415 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420 /* Return true if a GOT entry for H should live in the local rather than
4424 mips_use_local_got_p (struct bfd_link_info *info,
4425 struct mips_elf_link_hash_entry *h)
4427 /* Symbols that aren't in the dynamic symbol table must live in the
4428 local GOT. This includes symbols that are completely undefined
4429 and which therefore don't bind locally. We'll report undefined
4430 symbols later if appropriate. */
4431 if (h->root.dynindx == -1)
4434 /* Symbols that bind locally can (and in the case of forced-local
4435 symbols, must) live in the local GOT. */
4436 if (h->got_only_for_calls
4437 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4438 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4441 /* If this is an executable that must provide a definition of the symbol,
4442 either though PLTs or copy relocations, then that address should go in
4443 the local rather than global GOT. */
4444 if (bfd_link_executable (info) && h->has_static_relocs)
4450 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4451 link_info structure. Decide whether the hash entry needs an entry in
4452 the global part of the primary GOT, setting global_got_area accordingly.
4453 Count the number of global symbols that are in the primary GOT only
4454 because they have relocations against them (reloc_only_gotno). */
4457 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4459 struct bfd_link_info *info;
4460 struct mips_elf_link_hash_table *htab;
4461 struct mips_got_info *g;
4463 info = (struct bfd_link_info *) data;
4464 htab = mips_elf_hash_table (info);
4466 if (h->global_got_area != GGA_NONE)
4468 /* Make a final decision about whether the symbol belongs in the
4469 local or global GOT. */
4470 if (mips_use_local_got_p (info, h))
4471 /* The symbol belongs in the local GOT. We no longer need this
4472 entry if it was only used for relocations; those relocations
4473 will be against the null or section symbol instead of H. */
4474 h->global_got_area = GGA_NONE;
4475 else if (htab->is_vxworks
4476 && h->got_only_for_calls
4477 && h->root.plt.plist->mips_offset != MINUS_ONE)
4478 /* On VxWorks, calls can refer directly to the .got.plt entry;
4479 they don't need entries in the regular GOT. .got.plt entries
4480 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4481 h->global_got_area = GGA_NONE;
4482 else if (h->global_got_area == GGA_RELOC_ONLY)
4484 g->reloc_only_gotno++;
4491 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4492 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4495 mips_elf_add_got_entry (void **entryp, void *data)
4497 struct mips_got_entry *entry;
4498 struct mips_elf_traverse_got_arg *arg;
4501 entry = (struct mips_got_entry *) *entryp;
4502 arg = (struct mips_elf_traverse_got_arg *) data;
4503 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4512 mips_elf_count_got_entry (arg->info, arg->g, entry);
4517 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4518 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4521 mips_elf_add_got_page_entry (void **entryp, void *data)
4523 struct mips_got_page_entry *entry;
4524 struct mips_elf_traverse_got_arg *arg;
4527 entry = (struct mips_got_page_entry *) *entryp;
4528 arg = (struct mips_elf_traverse_got_arg *) data;
4529 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4538 arg->g->page_gotno += entry->num_pages;
4543 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4544 this would lead to overflow, 1 if they were merged successfully,
4545 and 0 if a merge failed due to lack of memory. (These values are chosen
4546 so that nonnegative return values can be returned by a htab_traverse
4550 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4551 struct mips_got_info *to,
4552 struct mips_elf_got_per_bfd_arg *arg)
4554 struct mips_elf_traverse_got_arg tga;
4555 unsigned int estimate;
4557 /* Work out how many page entries we would need for the combined GOT. */
4558 estimate = arg->max_pages;
4559 if (estimate >= from->page_gotno + to->page_gotno)
4560 estimate = from->page_gotno + to->page_gotno;
4562 /* And conservatively estimate how many local and TLS entries
4564 estimate += from->local_gotno + to->local_gotno;
4565 estimate += from->tls_gotno + to->tls_gotno;
4567 /* If we're merging with the primary got, any TLS relocations will
4568 come after the full set of global entries. Otherwise estimate those
4569 conservatively as well. */
4570 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4571 estimate += arg->global_count;
4573 estimate += from->global_gotno + to->global_gotno;
4575 /* Bail out if the combined GOT might be too big. */
4576 if (estimate > arg->max_count)
4579 /* Transfer the bfd's got information from FROM to TO. */
4580 tga.info = arg->info;
4582 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4586 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4590 mips_elf_replace_bfd_got (abfd, to);
4594 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4595 as possible of the primary got, since it doesn't require explicit
4596 dynamic relocations, but don't use bfds that would reference global
4597 symbols out of the addressable range. Failing the primary got,
4598 attempt to merge with the current got, or finish the current got
4599 and then make make the new got current. */
4602 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4603 struct mips_elf_got_per_bfd_arg *arg)
4605 unsigned int estimate;
4608 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4611 /* Work out the number of page, local and TLS entries. */
4612 estimate = arg->max_pages;
4613 if (estimate > g->page_gotno)
4614 estimate = g->page_gotno;
4615 estimate += g->local_gotno + g->tls_gotno;
4617 /* We place TLS GOT entries after both locals and globals. The globals
4618 for the primary GOT may overflow the normal GOT size limit, so be
4619 sure not to merge a GOT which requires TLS with the primary GOT in that
4620 case. This doesn't affect non-primary GOTs. */
4621 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4623 if (estimate <= arg->max_count)
4625 /* If we don't have a primary GOT, use it as
4626 a starting point for the primary GOT. */
4633 /* Try merging with the primary GOT. */
4634 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4639 /* If we can merge with the last-created got, do it. */
4642 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4647 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4648 fits; if it turns out that it doesn't, we'll get relocation
4649 overflows anyway. */
4650 g->next = arg->current;
4656 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4657 to GOTIDX, duplicating the entry if it has already been assigned
4658 an index in a different GOT. */
4661 mips_elf_set_gotidx (void **entryp, long gotidx)
4663 struct mips_got_entry *entry;
4665 entry = (struct mips_got_entry *) *entryp;
4666 if (entry->gotidx > 0)
4668 struct mips_got_entry *new_entry;
4670 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4674 *new_entry = *entry;
4675 *entryp = new_entry;
4678 entry->gotidx = gotidx;
4682 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4683 mips_elf_traverse_got_arg in which DATA->value is the size of one
4684 GOT entry. Set DATA->g to null on failure. */
4687 mips_elf_initialize_tls_index (void **entryp, void *data)
4689 struct mips_got_entry *entry;
4690 struct mips_elf_traverse_got_arg *arg;
4692 /* We're only interested in TLS symbols. */
4693 entry = (struct mips_got_entry *) *entryp;
4694 if (entry->tls_type == GOT_TLS_NONE)
4697 arg = (struct mips_elf_traverse_got_arg *) data;
4698 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 /* Account for the entries we've just allocated. */
4705 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4709 /* A htab_traverse callback for GOT entries, where DATA points to a
4710 mips_elf_traverse_got_arg. Set the global_got_area of each global
4711 symbol to DATA->value. */
4714 mips_elf_set_global_got_area (void **entryp, void *data)
4716 struct mips_got_entry *entry;
4717 struct mips_elf_traverse_got_arg *arg;
4719 entry = (struct mips_got_entry *) *entryp;
4720 arg = (struct mips_elf_traverse_got_arg *) data;
4721 if (entry->abfd != NULL
4722 && entry->symndx == -1
4723 && entry->d.h->global_got_area != GGA_NONE)
4724 entry->d.h->global_got_area = arg->value;
4728 /* A htab_traverse callback for secondary GOT entries, where DATA points
4729 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4730 and record the number of relocations they require. DATA->value is
4731 the size of one GOT entry. Set DATA->g to null on failure. */
4734 mips_elf_set_global_gotidx (void **entryp, void *data)
4736 struct mips_got_entry *entry;
4737 struct mips_elf_traverse_got_arg *arg;
4739 entry = (struct mips_got_entry *) *entryp;
4740 arg = (struct mips_elf_traverse_got_arg *) data;
4741 if (entry->abfd != NULL
4742 && entry->symndx == -1
4743 && entry->d.h->global_got_area != GGA_NONE)
4745 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4750 arg->g->assigned_low_gotno += 1;
4752 if (bfd_link_pic (arg->info)
4753 || (elf_hash_table (arg->info)->dynamic_sections_created
4754 && entry->d.h->root.def_dynamic
4755 && !entry->d.h->root.def_regular))
4756 arg->g->relocs += 1;
4762 /* A htab_traverse callback for GOT entries for which DATA is the
4763 bfd_link_info. Forbid any global symbols from having traditional
4764 lazy-binding stubs. */
4767 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4769 struct bfd_link_info *info;
4770 struct mips_elf_link_hash_table *htab;
4771 struct mips_got_entry *entry;
4773 entry = (struct mips_got_entry *) *entryp;
4774 info = (struct bfd_link_info *) data;
4775 htab = mips_elf_hash_table (info);
4776 BFD_ASSERT (htab != NULL);
4778 if (entry->abfd != NULL
4779 && entry->symndx == -1
4780 && entry->d.h->needs_lazy_stub)
4782 entry->d.h->needs_lazy_stub = FALSE;
4783 htab->lazy_stub_count--;
4789 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4792 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4797 g = mips_elf_bfd_got (ibfd, FALSE);
4801 BFD_ASSERT (g->next);
4805 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4806 * MIPS_ELF_GOT_SIZE (abfd);
4809 /* Turn a single GOT that is too big for 16-bit addressing into
4810 a sequence of GOTs, each one 16-bit addressable. */
4813 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4814 asection *got, bfd_size_type pages)
4816 struct mips_elf_link_hash_table *htab;
4817 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4818 struct mips_elf_traverse_got_arg tga;
4819 struct mips_got_info *g, *gg;
4820 unsigned int assign, needed_relocs;
4823 dynobj = elf_hash_table (info)->dynobj;
4824 htab = mips_elf_hash_table (info);
4825 BFD_ASSERT (htab != NULL);
4829 got_per_bfd_arg.obfd = abfd;
4830 got_per_bfd_arg.info = info;
4831 got_per_bfd_arg.current = NULL;
4832 got_per_bfd_arg.primary = NULL;
4833 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4834 / MIPS_ELF_GOT_SIZE (abfd))
4835 - htab->reserved_gotno);
4836 got_per_bfd_arg.max_pages = pages;
4837 /* The number of globals that will be included in the primary GOT.
4838 See the calls to mips_elf_set_global_got_area below for more
4840 got_per_bfd_arg.global_count = g->global_gotno;
4842 /* Try to merge the GOTs of input bfds together, as long as they
4843 don't seem to exceed the maximum GOT size, choosing one of them
4844 to be the primary GOT. */
4845 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4847 gg = mips_elf_bfd_got (ibfd, FALSE);
4848 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4852 /* If we do not find any suitable primary GOT, create an empty one. */
4853 if (got_per_bfd_arg.primary == NULL)
4854 g->next = mips_elf_create_got_info (abfd);
4856 g->next = got_per_bfd_arg.primary;
4857 g->next->next = got_per_bfd_arg.current;
4859 /* GG is now the master GOT, and G is the primary GOT. */
4863 /* Map the output bfd to the primary got. That's what we're going
4864 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4865 didn't mark in check_relocs, and we want a quick way to find it.
4866 We can't just use gg->next because we're going to reverse the
4868 mips_elf_replace_bfd_got (abfd, g);
4870 /* Every symbol that is referenced in a dynamic relocation must be
4871 present in the primary GOT, so arrange for them to appear after
4872 those that are actually referenced. */
4873 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4874 g->global_gotno = gg->global_gotno;
4877 tga.value = GGA_RELOC_ONLY;
4878 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4879 tga.value = GGA_NORMAL;
4880 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4882 /* Now go through the GOTs assigning them offset ranges.
4883 [assigned_low_gotno, local_gotno[ will be set to the range of local
4884 entries in each GOT. We can then compute the end of a GOT by
4885 adding local_gotno to global_gotno. We reverse the list and make
4886 it circular since then we'll be able to quickly compute the
4887 beginning of a GOT, by computing the end of its predecessor. To
4888 avoid special cases for the primary GOT, while still preserving
4889 assertions that are valid for both single- and multi-got links,
4890 we arrange for the main got struct to have the right number of
4891 global entries, but set its local_gotno such that the initial
4892 offset of the primary GOT is zero. Remember that the primary GOT
4893 will become the last item in the circular linked list, so it
4894 points back to the master GOT. */
4895 gg->local_gotno = -g->global_gotno;
4896 gg->global_gotno = g->global_gotno;
4903 struct mips_got_info *gn;
4905 assign += htab->reserved_gotno;
4906 g->assigned_low_gotno = assign;
4907 g->local_gotno += assign;
4908 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4909 g->assigned_high_gotno = g->local_gotno - 1;
4910 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4912 /* Take g out of the direct list, and push it onto the reversed
4913 list that gg points to. g->next is guaranteed to be nonnull after
4914 this operation, as required by mips_elf_initialize_tls_index. */
4919 /* Set up any TLS entries. We always place the TLS entries after
4920 all non-TLS entries. */
4921 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4923 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4924 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4927 BFD_ASSERT (g->tls_assigned_gotno == assign);
4929 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4932 /* Forbid global symbols in every non-primary GOT from having
4933 lazy-binding stubs. */
4935 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4939 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4942 for (g = gg->next; g && g->next != gg; g = g->next)
4944 unsigned int save_assign;
4946 /* Assign offsets to global GOT entries and count how many
4947 relocations they need. */
4948 save_assign = g->assigned_low_gotno;
4949 g->assigned_low_gotno = g->local_gotno;
4951 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4953 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4956 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4957 g->assigned_low_gotno = save_assign;
4959 if (bfd_link_pic (info))
4961 g->relocs += g->local_gotno - g->assigned_low_gotno;
4962 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4963 + g->next->global_gotno
4964 + g->next->tls_gotno
4965 + htab->reserved_gotno);
4967 needed_relocs += g->relocs;
4969 needed_relocs += g->relocs;
4972 mips_elf_allocate_dynamic_relocations (dynobj, info,
4979 /* Returns the first relocation of type r_type found, beginning with
4980 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4982 static const Elf_Internal_Rela *
4983 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4984 const Elf_Internal_Rela *relocation,
4985 const Elf_Internal_Rela *relend)
4987 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4989 while (relocation < relend)
4991 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4992 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 /* We didn't find it. */
5002 /* Return whether an input relocation is against a local symbol. */
5005 mips_elf_local_relocation_p (bfd *input_bfd,
5006 const Elf_Internal_Rela *relocation,
5007 asection **local_sections)
5009 unsigned long r_symndx;
5010 Elf_Internal_Shdr *symtab_hdr;
5013 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5014 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5015 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5017 if (r_symndx < extsymoff)
5019 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 /* Sign-extend VALUE, which has the indicated number of BITS. */
5028 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5030 if (value & ((bfd_vma) 1 << (bits - 1)))
5031 /* VALUE is negative. */
5032 value |= ((bfd_vma) - 1) << bits;
5037 /* Return non-zero if the indicated VALUE has overflowed the maximum
5038 range expressible by a signed number with the indicated number of
5042 mips_elf_overflow_p (bfd_vma value, int bits)
5044 bfd_signed_vma svalue = (bfd_signed_vma) value;
5046 if (svalue > (1 << (bits - 1)) - 1)
5047 /* The value is too big. */
5049 else if (svalue < -(1 << (bits - 1)))
5050 /* The value is too small. */
5057 /* Calculate the %high function. */
5060 mips_elf_high (bfd_vma value)
5062 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5065 /* Calculate the %higher function. */
5068 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5071 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5078 /* Calculate the %highest function. */
5081 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5084 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5091 /* Create the .compact_rel section. */
5094 mips_elf_create_compact_rel_section
5095 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5098 register asection *s;
5100 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5102 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5105 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5107 || ! bfd_set_section_alignment (abfd, s,
5108 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5111 s->size = sizeof (Elf32_External_compact_rel);
5117 /* Create the .got section to hold the global offset table. */
5120 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5123 register asection *s;
5124 struct elf_link_hash_entry *h;
5125 struct bfd_link_hash_entry *bh;
5126 struct mips_elf_link_hash_table *htab;
5128 htab = mips_elf_hash_table (info);
5129 BFD_ASSERT (htab != NULL);
5131 /* This function may be called more than once. */
5132 if (htab->root.sgot)
5135 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5136 | SEC_LINKER_CREATED);
5138 /* We have to use an alignment of 2**4 here because this is hardcoded
5139 in the function stub generation and in the linker script. */
5140 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5142 || ! bfd_set_section_alignment (abfd, s, 4))
5144 htab->root.sgot = s;
5146 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5147 linker script because we don't want to define the symbol if we
5148 are not creating a global offset table. */
5150 if (! (_bfd_generic_link_add_one_symbol
5151 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5152 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5155 h = (struct elf_link_hash_entry *) bh;
5158 h->type = STT_OBJECT;
5159 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5160 elf_hash_table (info)->hgot = h;
5162 if (bfd_link_pic (info)
5163 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5166 htab->got_info = mips_elf_create_got_info (abfd);
5167 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5168 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5170 /* We also need a .got.plt section when generating PLTs. */
5171 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5172 SEC_ALLOC | SEC_LOAD
5175 | SEC_LINKER_CREATED);
5178 htab->root.sgotplt = s;
5183 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5184 __GOTT_INDEX__ symbols. These symbols are only special for
5185 shared objects; they are not used in executables. */
5188 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5190 return (mips_elf_hash_table (info)->is_vxworks
5191 && bfd_link_pic (info)
5192 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5193 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5196 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5197 require an la25 stub. See also mips_elf_local_pic_function_p,
5198 which determines whether the destination function ever requires a
5202 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5203 bfd_boolean target_is_16_bit_code_p)
5205 /* We specifically ignore branches and jumps from EF_PIC objects,
5206 where the onus is on the compiler or programmer to perform any
5207 necessary initialization of $25. Sometimes such initialization
5208 is unnecessary; for example, -mno-shared functions do not use
5209 the incoming value of $25, and may therefore be called directly. */
5210 if (PIC_OBJECT_P (input_bfd))
5217 case R_MIPS_PC21_S2:
5218 case R_MIPS_PC26_S2:
5219 case R_MICROMIPS_26_S1:
5220 case R_MICROMIPS_PC7_S1:
5221 case R_MICROMIPS_PC10_S1:
5222 case R_MICROMIPS_PC16_S1:
5223 case R_MICROMIPS_PC23_S2:
5227 return !target_is_16_bit_code_p;
5234 /* Calculate the value produced by the RELOCATION (which comes from
5235 the INPUT_BFD). The ADDEND is the addend to use for this
5236 RELOCATION; RELOCATION->R_ADDEND is ignored.
5238 The result of the relocation calculation is stored in VALUEP.
5239 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5240 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5242 This function returns bfd_reloc_continue if the caller need take no
5243 further action regarding this relocation, bfd_reloc_notsupported if
5244 something goes dramatically wrong, bfd_reloc_overflow if an
5245 overflow occurs, and bfd_reloc_ok to indicate success. */
5247 static bfd_reloc_status_type
5248 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5249 asection *input_section,
5250 struct bfd_link_info *info,
5251 const Elf_Internal_Rela *relocation,
5252 bfd_vma addend, reloc_howto_type *howto,
5253 Elf_Internal_Sym *local_syms,
5254 asection **local_sections, bfd_vma *valuep,
5256 bfd_boolean *cross_mode_jump_p,
5257 bfd_boolean save_addend)
5259 /* The eventual value we will return. */
5261 /* The address of the symbol against which the relocation is
5264 /* The final GP value to be used for the relocatable, executable, or
5265 shared object file being produced. */
5267 /* The place (section offset or address) of the storage unit being
5270 /* The value of GP used to create the relocatable object. */
5272 /* The offset into the global offset table at which the address of
5273 the relocation entry symbol, adjusted by the addend, resides
5274 during execution. */
5275 bfd_vma g = MINUS_ONE;
5276 /* The section in which the symbol referenced by the relocation is
5278 asection *sec = NULL;
5279 struct mips_elf_link_hash_entry *h = NULL;
5280 /* TRUE if the symbol referred to by this relocation is a local
5282 bfd_boolean local_p, was_local_p;
5283 /* TRUE if the symbol referred to by this relocation is a section
5285 bfd_boolean section_p = FALSE;
5286 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5287 bfd_boolean gp_disp_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is
5289 "__gnu_local_gp". */
5290 bfd_boolean gnu_local_gp_p = FALSE;
5291 Elf_Internal_Shdr *symtab_hdr;
5293 unsigned long r_symndx;
5295 /* TRUE if overflow occurred during the calculation of the
5296 relocation value. */
5297 bfd_boolean overflowed_p;
5298 /* TRUE if this relocation refers to a MIPS16 function. */
5299 bfd_boolean target_is_16_bit_code_p = FALSE;
5300 bfd_boolean target_is_micromips_code_p = FALSE;
5301 struct mips_elf_link_hash_table *htab;
5304 dynobj = elf_hash_table (info)->dynobj;
5305 htab = mips_elf_hash_table (info);
5306 BFD_ASSERT (htab != NULL);
5308 /* Parse the relocation. */
5309 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5310 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5311 p = (input_section->output_section->vma
5312 + input_section->output_offset
5313 + relocation->r_offset);
5315 /* Assume that there will be no overflow. */
5316 overflowed_p = FALSE;
5318 /* Figure out whether or not the symbol is local, and get the offset
5319 used in the array of hash table entries. */
5320 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5321 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5323 was_local_p = local_p;
5324 if (! elf_bad_symtab (input_bfd))
5325 extsymoff = symtab_hdr->sh_info;
5328 /* The symbol table does not follow the rule that local symbols
5329 must come before globals. */
5333 /* Figure out the value of the symbol. */
5336 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5337 Elf_Internal_Sym *sym;
5339 sym = local_syms + r_symndx;
5340 sec = local_sections[r_symndx];
5342 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5344 symbol = sec->output_section->vma + sec->output_offset;
5345 if (!section_p || (sec->flags & SEC_MERGE))
5346 symbol += sym->st_value;
5347 if ((sec->flags & SEC_MERGE) && section_p)
5349 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5351 addend += sec->output_section->vma + sec->output_offset;
5354 /* MIPS16/microMIPS text labels should be treated as odd. */
5355 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5358 /* Record the name of this symbol, for our caller. */
5359 *namep = bfd_elf_string_from_elf_section (input_bfd,
5360 symtab_hdr->sh_link,
5362 if (*namep == NULL || **namep == '\0')
5363 *namep = bfd_section_name (input_bfd, sec);
5365 /* For relocations against a section symbol and ones against no
5366 symbol (absolute relocations) infer the ISA mode from the addend. */
5367 if (section_p || r_symndx == STN_UNDEF)
5369 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5370 target_is_micromips_code_p = (addend & 1) && micromips_p;
5372 /* For relocations against an absolute symbol infer the ISA mode
5373 from the value of the symbol plus addend. */
5374 else if (bfd_is_abs_section (sec))
5376 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5377 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5379 /* Otherwise just use the regular symbol annotation available. */
5382 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5383 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5390 /* For global symbols we look up the symbol in the hash-table. */
5391 h = ((struct mips_elf_link_hash_entry *)
5392 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5393 /* Find the real hash-table entry for this symbol. */
5394 while (h->root.root.type == bfd_link_hash_indirect
5395 || h->root.root.type == bfd_link_hash_warning)
5396 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5398 /* Record the name of this symbol, for our caller. */
5399 *namep = h->root.root.root.string;
5401 /* See if this is the special _gp_disp symbol. Note that such a
5402 symbol must always be a global symbol. */
5403 if (strcmp (*namep, "_gp_disp") == 0
5404 && ! NEWABI_P (input_bfd))
5406 /* Relocations against _gp_disp are permitted only with
5407 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5408 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5409 return bfd_reloc_notsupported;
5413 /* See if this is the special _gp symbol. Note that such a
5414 symbol must always be a global symbol. */
5415 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5416 gnu_local_gp_p = TRUE;
5419 /* If this symbol is defined, calculate its address. Note that
5420 _gp_disp is a magic symbol, always implicitly defined by the
5421 linker, so it's inappropriate to check to see whether or not
5423 else if ((h->root.root.type == bfd_link_hash_defined
5424 || h->root.root.type == bfd_link_hash_defweak)
5425 && h->root.root.u.def.section)
5427 sec = h->root.root.u.def.section;
5428 if (sec->output_section)
5429 symbol = (h->root.root.u.def.value
5430 + sec->output_section->vma
5431 + sec->output_offset);
5433 symbol = h->root.root.u.def.value;
5435 else if (h->root.root.type == bfd_link_hash_undefweak)
5436 /* We allow relocations against undefined weak symbols, giving
5437 it the value zero, so that you can undefined weak functions
5438 and check to see if they exist by looking at their
5441 else if (info->unresolved_syms_in_objects == RM_IGNORE
5442 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5444 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5445 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5447 /* If this is a dynamic link, we should have created a
5448 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5449 in in _bfd_mips_elf_create_dynamic_sections.
5450 Otherwise, we should define the symbol with a value of 0.
5451 FIXME: It should probably get into the symbol table
5453 BFD_ASSERT (! bfd_link_pic (info));
5454 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5457 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5459 /* This is an optional symbol - an Irix specific extension to the
5460 ELF spec. Ignore it for now.
5461 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5462 than simply ignoring them, but we do not handle this for now.
5463 For information see the "64-bit ELF Object File Specification"
5464 which is available from here:
5465 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 (*info->callbacks->undefined_symbol)
5471 (info, h->root.root.root.string, input_bfd,
5472 input_section, relocation->r_offset,
5473 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5474 || ELF_ST_VISIBILITY (h->root.other));
5475 return bfd_reloc_undefined;
5478 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5479 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5482 /* If this is a reference to a 16-bit function with a stub, we need
5483 to redirect the relocation to the stub unless:
5485 (a) the relocation is for a MIPS16 JAL;
5487 (b) the relocation is for a MIPS16 PIC call, and there are no
5488 non-MIPS16 uses of the GOT slot; or
5490 (c) the section allows direct references to MIPS16 functions. */
5491 if (r_type != R_MIPS16_26
5492 && !bfd_link_relocatable (info)
5494 && h->fn_stub != NULL
5495 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5497 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5498 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5499 && !section_allows_mips16_refs_p (input_section))
5501 /* This is a 32- or 64-bit call to a 16-bit function. We should
5502 have already noticed that we were going to need the
5506 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5511 BFD_ASSERT (h->need_fn_stub);
5514 /* If a LA25 header for the stub itself exists, point to the
5515 prepended LUI/ADDIU sequence. */
5516 sec = h->la25_stub->stub_section;
5517 value = h->la25_stub->offset;
5526 symbol = sec->output_section->vma + sec->output_offset + value;
5527 /* The target is 16-bit, but the stub isn't. */
5528 target_is_16_bit_code_p = FALSE;
5530 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5531 to a standard MIPS function, we need to redirect the call to the stub.
5532 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5533 indirect calls should use an indirect stub instead. */
5534 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5535 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5537 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5538 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5539 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5542 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5545 /* If both call_stub and call_fp_stub are defined, we can figure
5546 out which one to use by checking which one appears in the input
5548 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5553 for (o = input_bfd->sections; o != NULL; o = o->next)
5555 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5557 sec = h->call_fp_stub;
5564 else if (h->call_stub != NULL)
5567 sec = h->call_fp_stub;
5570 BFD_ASSERT (sec->size > 0);
5571 symbol = sec->output_section->vma + sec->output_offset;
5573 /* If this is a direct call to a PIC function, redirect to the
5575 else if (h != NULL && h->la25_stub
5576 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5577 target_is_16_bit_code_p))
5579 symbol = (h->la25_stub->stub_section->output_section->vma
5580 + h->la25_stub->stub_section->output_offset
5581 + h->la25_stub->offset);
5582 if (ELF_ST_IS_MICROMIPS (h->root.other))
5585 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5586 entry is used if a standard PLT entry has also been made. In this
5587 case the symbol will have been set by mips_elf_set_plt_sym_value
5588 to point to the standard PLT entry, so redirect to the compressed
5590 else if ((mips16_branch_reloc_p (r_type)
5591 || micromips_branch_reloc_p (r_type))
5592 && !bfd_link_relocatable (info)
5595 && h->root.plt.plist->comp_offset != MINUS_ONE
5596 && h->root.plt.plist->mips_offset != MINUS_ONE)
5598 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5600 sec = htab->root.splt;
5601 symbol = (sec->output_section->vma
5602 + sec->output_offset
5603 + htab->plt_header_size
5604 + htab->plt_mips_offset
5605 + h->root.plt.plist->comp_offset
5608 target_is_16_bit_code_p = !micromips_p;
5609 target_is_micromips_code_p = micromips_p;
5612 /* Make sure MIPS16 and microMIPS are not used together. */
5613 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5614 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5617 (_("MIPS16 and microMIPS functions cannot call each other"));
5618 return bfd_reloc_notsupported;
5621 /* Calls from 16-bit code to 32-bit code and vice versa require the
5622 mode change. However, we can ignore calls to undefined weak symbols,
5623 which should never be executed at runtime. This exception is important
5624 because the assembly writer may have "known" that any definition of the
5625 symbol would be 16-bit code, and that direct jumps were therefore
5627 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5628 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5629 && ((mips16_branch_reloc_p (r_type)
5630 && !target_is_16_bit_code_p)
5631 || (micromips_branch_reloc_p (r_type)
5632 && !target_is_micromips_code_p)
5633 || ((branch_reloc_p (r_type)
5634 || r_type == R_MIPS_JALR)
5635 && (target_is_16_bit_code_p
5636 || target_is_micromips_code_p))));
5638 local_p = (h == NULL || mips_use_local_got_p (info, h));
5640 gp0 = _bfd_get_gp_value (input_bfd);
5641 gp = _bfd_get_gp_value (abfd);
5643 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5648 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5649 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5650 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5651 if (got_page_reloc_p (r_type) && !local_p)
5653 r_type = (micromips_reloc_p (r_type)
5654 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5658 /* If we haven't already determined the GOT offset, and we're going
5659 to need it, get it now. */
5662 case R_MIPS16_CALL16:
5663 case R_MIPS16_GOT16:
5666 case R_MIPS_GOT_DISP:
5667 case R_MIPS_GOT_HI16:
5668 case R_MIPS_CALL_HI16:
5669 case R_MIPS_GOT_LO16:
5670 case R_MIPS_CALL_LO16:
5671 case R_MICROMIPS_CALL16:
5672 case R_MICROMIPS_GOT16:
5673 case R_MICROMIPS_GOT_DISP:
5674 case R_MICROMIPS_GOT_HI16:
5675 case R_MICROMIPS_CALL_HI16:
5676 case R_MICROMIPS_GOT_LO16:
5677 case R_MICROMIPS_CALL_LO16:
5679 case R_MIPS_TLS_GOTTPREL:
5680 case R_MIPS_TLS_LDM:
5681 case R_MIPS16_TLS_GD:
5682 case R_MIPS16_TLS_GOTTPREL:
5683 case R_MIPS16_TLS_LDM:
5684 case R_MICROMIPS_TLS_GD:
5685 case R_MICROMIPS_TLS_GOTTPREL:
5686 case R_MICROMIPS_TLS_LDM:
5687 /* Find the index into the GOT where this value is located. */
5688 if (tls_ldm_reloc_p (r_type))
5690 g = mips_elf_local_got_index (abfd, input_bfd, info,
5691 0, 0, NULL, r_type);
5693 return bfd_reloc_outofrange;
5697 /* On VxWorks, CALL relocations should refer to the .got.plt
5698 entry, which is initialized to point at the PLT stub. */
5699 if (htab->is_vxworks
5700 && (call_hi16_reloc_p (r_type)
5701 || call_lo16_reloc_p (r_type)
5702 || call16_reloc_p (r_type)))
5704 BFD_ASSERT (addend == 0);
5705 BFD_ASSERT (h->root.needs_plt);
5706 g = mips_elf_gotplt_index (info, &h->root);
5710 BFD_ASSERT (addend == 0);
5711 g = mips_elf_global_got_index (abfd, info, input_bfd,
5713 if (!TLS_RELOC_P (r_type)
5714 && !elf_hash_table (info)->dynamic_sections_created)
5715 /* This is a static link. We must initialize the GOT entry. */
5716 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5719 else if (!htab->is_vxworks
5720 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5721 /* The calculation below does not involve "g". */
5725 g = mips_elf_local_got_index (abfd, input_bfd, info,
5726 symbol + addend, r_symndx, h, r_type);
5728 return bfd_reloc_outofrange;
5731 /* Convert GOT indices to actual offsets. */
5732 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5736 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5737 symbols are resolved by the loader. Add them to .rela.dyn. */
5738 if (h != NULL && is_gott_symbol (info, &h->root))
5740 Elf_Internal_Rela outrel;
5744 s = mips_elf_rel_dyn_section (info, FALSE);
5745 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5747 outrel.r_offset = (input_section->output_section->vma
5748 + input_section->output_offset
5749 + relocation->r_offset);
5750 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5751 outrel.r_addend = addend;
5752 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5754 /* If we've written this relocation for a readonly section,
5755 we need to set DF_TEXTREL again, so that we do not delete the
5757 if (MIPS_ELF_READONLY_SECTION (input_section))
5758 info->flags |= DF_TEXTREL;
5761 return bfd_reloc_ok;
5764 /* Figure out what kind of relocation is being performed. */
5768 return bfd_reloc_continue;
5771 if (howto->partial_inplace)
5772 addend = _bfd_mips_elf_sign_extend (addend, 16);
5773 value = symbol + addend;
5774 overflowed_p = mips_elf_overflow_p (value, 16);
5780 if ((bfd_link_pic (info)
5781 || (htab->root.dynamic_sections_created
5783 && h->root.def_dynamic
5784 && !h->root.def_regular
5785 && !h->has_static_relocs))
5786 && r_symndx != STN_UNDEF
5788 || h->root.root.type != bfd_link_hash_undefweak
5789 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5790 && (input_section->flags & SEC_ALLOC) != 0)
5792 /* If we're creating a shared library, then we can't know
5793 where the symbol will end up. So, we create a relocation
5794 record in the output, and leave the job up to the dynamic
5795 linker. We must do the same for executable references to
5796 shared library symbols, unless we've decided to use copy
5797 relocs or PLTs instead. */
5799 if (!mips_elf_create_dynamic_relocation (abfd,
5807 return bfd_reloc_undefined;
5811 if (r_type != R_MIPS_REL32)
5812 value = symbol + addend;
5816 value &= howto->dst_mask;
5820 value = symbol + addend - p;
5821 value &= howto->dst_mask;
5825 /* The calculation for R_MIPS16_26 is just the same as for an
5826 R_MIPS_26. It's only the storage of the relocated field into
5827 the output file that's different. That's handled in
5828 mips_elf_perform_relocation. So, we just fall through to the
5829 R_MIPS_26 case here. */
5831 case R_MICROMIPS_26_S1:
5835 /* Shift is 2, unusually, for microMIPS JALX. */
5836 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5838 if (howto->partial_inplace && !section_p)
5839 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5844 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5845 be the correct ISA mode selector except for weak undefined
5847 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5848 && (*cross_mode_jump_p
5849 ? (value & 3) != (r_type == R_MIPS_26)
5850 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5851 return bfd_reloc_outofrange;
5854 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5855 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5856 value &= howto->dst_mask;
5860 case R_MIPS_TLS_DTPREL_HI16:
5861 case R_MIPS16_TLS_DTPREL_HI16:
5862 case R_MICROMIPS_TLS_DTPREL_HI16:
5863 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5867 case R_MIPS_TLS_DTPREL_LO16:
5868 case R_MIPS_TLS_DTPREL32:
5869 case R_MIPS_TLS_DTPREL64:
5870 case R_MIPS16_TLS_DTPREL_LO16:
5871 case R_MICROMIPS_TLS_DTPREL_LO16:
5872 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5875 case R_MIPS_TLS_TPREL_HI16:
5876 case R_MIPS16_TLS_TPREL_HI16:
5877 case R_MICROMIPS_TLS_TPREL_HI16:
5878 value = (mips_elf_high (addend + symbol - tprel_base (info))
5882 case R_MIPS_TLS_TPREL_LO16:
5883 case R_MIPS_TLS_TPREL32:
5884 case R_MIPS_TLS_TPREL64:
5885 case R_MIPS16_TLS_TPREL_LO16:
5886 case R_MICROMIPS_TLS_TPREL_LO16:
5887 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5892 case R_MICROMIPS_HI16:
5895 value = mips_elf_high (addend + symbol);
5896 value &= howto->dst_mask;
5900 /* For MIPS16 ABI code we generate this sequence
5901 0: li $v0,%hi(_gp_disp)
5902 4: addiupc $v1,%lo(_gp_disp)
5906 So the offsets of hi and lo relocs are the same, but the
5907 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5908 ADDIUPC clears the low two bits of the instruction address,
5909 so the base is ($t9 + 4) & ~3. */
5910 if (r_type == R_MIPS16_HI16)
5911 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5912 /* The microMIPS .cpload sequence uses the same assembly
5913 instructions as the traditional psABI version, but the
5914 incoming $t9 has the low bit set. */
5915 else if (r_type == R_MICROMIPS_HI16)
5916 value = mips_elf_high (addend + gp - p - 1);
5918 value = mips_elf_high (addend + gp - p);
5924 case R_MICROMIPS_LO16:
5925 case R_MICROMIPS_HI0_LO16:
5927 value = (symbol + addend) & howto->dst_mask;
5930 /* See the comment for R_MIPS16_HI16 above for the reason
5931 for this conditional. */
5932 if (r_type == R_MIPS16_LO16)
5933 value = addend + gp - (p & ~(bfd_vma) 0x3);
5934 else if (r_type == R_MICROMIPS_LO16
5935 || r_type == R_MICROMIPS_HI0_LO16)
5936 value = addend + gp - p + 3;
5938 value = addend + gp - p + 4;
5939 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5940 for overflow. But, on, say, IRIX5, relocations against
5941 _gp_disp are normally generated from the .cpload
5942 pseudo-op. It generates code that normally looks like
5945 lui $gp,%hi(_gp_disp)
5946 addiu $gp,$gp,%lo(_gp_disp)
5949 Here $t9 holds the address of the function being called,
5950 as required by the MIPS ELF ABI. The R_MIPS_LO16
5951 relocation can easily overflow in this situation, but the
5952 R_MIPS_HI16 relocation will handle the overflow.
5953 Therefore, we consider this a bug in the MIPS ABI, and do
5954 not check for overflow here. */
5958 case R_MIPS_LITERAL:
5959 case R_MICROMIPS_LITERAL:
5960 /* Because we don't merge literal sections, we can handle this
5961 just like R_MIPS_GPREL16. In the long run, we should merge
5962 shared literals, and then we will need to additional work
5967 case R_MIPS16_GPREL:
5968 /* The R_MIPS16_GPREL performs the same calculation as
5969 R_MIPS_GPREL16, but stores the relocated bits in a different
5970 order. We don't need to do anything special here; the
5971 differences are handled in mips_elf_perform_relocation. */
5972 case R_MIPS_GPREL16:
5973 case R_MICROMIPS_GPREL7_S2:
5974 case R_MICROMIPS_GPREL16:
5975 /* Only sign-extend the addend if it was extracted from the
5976 instruction. If the addend was separate, leave it alone,
5977 otherwise we may lose significant bits. */
5978 if (howto->partial_inplace)
5979 addend = _bfd_mips_elf_sign_extend (addend, 16);
5980 value = symbol + addend - gp;
5981 /* If the symbol was local, any earlier relocatable links will
5982 have adjusted its addend with the gp offset, so compensate
5983 for that now. Don't do it for symbols forced local in this
5984 link, though, since they won't have had the gp offset applied
5988 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5989 overflowed_p = mips_elf_overflow_p (value, 16);
5992 case R_MIPS16_GOT16:
5993 case R_MIPS16_CALL16:
5996 case R_MICROMIPS_GOT16:
5997 case R_MICROMIPS_CALL16:
5998 /* VxWorks does not have separate local and global semantics for
5999 R_MIPS*_GOT16; every relocation evaluates to "G". */
6000 if (!htab->is_vxworks && local_p)
6002 value = mips_elf_got16_entry (abfd, input_bfd, info,
6003 symbol + addend, !was_local_p);
6004 if (value == MINUS_ONE)
6005 return bfd_reloc_outofrange;
6007 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6008 overflowed_p = mips_elf_overflow_p (value, 16);
6015 case R_MIPS_TLS_GOTTPREL:
6016 case R_MIPS_TLS_LDM:
6017 case R_MIPS_GOT_DISP:
6018 case R_MIPS16_TLS_GD:
6019 case R_MIPS16_TLS_GOTTPREL:
6020 case R_MIPS16_TLS_LDM:
6021 case R_MICROMIPS_TLS_GD:
6022 case R_MICROMIPS_TLS_GOTTPREL:
6023 case R_MICROMIPS_TLS_LDM:
6024 case R_MICROMIPS_GOT_DISP:
6026 overflowed_p = mips_elf_overflow_p (value, 16);
6029 case R_MIPS_GPREL32:
6030 value = (addend + symbol + gp0 - gp);
6032 value &= howto->dst_mask;
6036 case R_MIPS_GNU_REL16_S2:
6037 if (howto->partial_inplace)
6038 addend = _bfd_mips_elf_sign_extend (addend, 18);
6040 /* No need to exclude weak undefined symbols here as they resolve
6041 to 0 and never set `*cross_mode_jump_p', so this alignment check
6042 will never trigger for them. */
6043 if (*cross_mode_jump_p
6044 ? ((symbol + addend) & 3) != 1
6045 : ((symbol + addend) & 3) != 0)
6046 return bfd_reloc_outofrange;
6048 value = symbol + addend - p;
6049 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6050 overflowed_p = mips_elf_overflow_p (value, 18);
6051 value >>= howto->rightshift;
6052 value &= howto->dst_mask;
6055 case R_MIPS16_PC16_S1:
6056 if (howto->partial_inplace)
6057 addend = _bfd_mips_elf_sign_extend (addend, 17);
6059 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 && (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 0
6062 : ((symbol + addend) & 1) == 0))
6063 return bfd_reloc_outofrange;
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 17);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6072 case R_MIPS_PC21_S2:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 23);
6076 if ((symbol + addend) & 3)
6077 return bfd_reloc_outofrange;
6079 value = symbol + addend - p;
6080 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6081 overflowed_p = mips_elf_overflow_p (value, 23);
6082 value >>= howto->rightshift;
6083 value &= howto->dst_mask;
6086 case R_MIPS_PC26_S2:
6087 if (howto->partial_inplace)
6088 addend = _bfd_mips_elf_sign_extend (addend, 28);
6090 if ((symbol + addend) & 3)
6091 return bfd_reloc_outofrange;
6093 value = symbol + addend - p;
6094 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6095 overflowed_p = mips_elf_overflow_p (value, 28);
6096 value >>= howto->rightshift;
6097 value &= howto->dst_mask;
6100 case R_MIPS_PC18_S3:
6101 if (howto->partial_inplace)
6102 addend = _bfd_mips_elf_sign_extend (addend, 21);
6104 if ((symbol + addend) & 7)
6105 return bfd_reloc_outofrange;
6107 value = symbol + addend - ((p | 7) ^ 7);
6108 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6109 overflowed_p = mips_elf_overflow_p (value, 21);
6110 value >>= howto->rightshift;
6111 value &= howto->dst_mask;
6114 case R_MIPS_PC19_S2:
6115 if (howto->partial_inplace)
6116 addend = _bfd_mips_elf_sign_extend (addend, 21);
6118 if ((symbol + addend) & 3)
6119 return bfd_reloc_outofrange;
6121 value = symbol + addend - p;
6122 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6123 overflowed_p = mips_elf_overflow_p (value, 21);
6124 value >>= howto->rightshift;
6125 value &= howto->dst_mask;
6129 value = mips_elf_high (symbol + addend - p);
6130 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6131 overflowed_p = mips_elf_overflow_p (value, 16);
6132 value &= howto->dst_mask;
6136 if (howto->partial_inplace)
6137 addend = _bfd_mips_elf_sign_extend (addend, 16);
6138 value = symbol + addend - p;
6139 value &= howto->dst_mask;
6142 case R_MICROMIPS_PC7_S1:
6143 if (howto->partial_inplace)
6144 addend = _bfd_mips_elf_sign_extend (addend, 8);
6146 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 && (*cross_mode_jump_p
6148 ? ((symbol + addend + 2) & 3) != 0
6149 : ((symbol + addend + 2) & 1) == 0))
6150 return bfd_reloc_outofrange;
6152 value = symbol + addend - p;
6153 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6154 overflowed_p = mips_elf_overflow_p (value, 8);
6155 value >>= howto->rightshift;
6156 value &= howto->dst_mask;
6159 case R_MICROMIPS_PC10_S1:
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 11);
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6169 value = symbol + addend - p;
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 11);
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6176 case R_MICROMIPS_PC16_S1:
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 17);
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend) & 3) != 0
6183 : ((symbol + addend) & 1) == 0))
6184 return bfd_reloc_outofrange;
6186 value = symbol + addend - p;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 17);
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6193 case R_MICROMIPS_PC23_S2:
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 25);
6196 value = symbol + addend - ((p | 3) ^ 3);
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 25);
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6203 case R_MIPS_GOT_HI16:
6204 case R_MIPS_CALL_HI16:
6205 case R_MICROMIPS_GOT_HI16:
6206 case R_MICROMIPS_CALL_HI16:
6207 /* We're allowed to handle these two relocations identically.
6208 The dynamic linker is allowed to handle the CALL relocations
6209 differently by creating a lazy evaluation stub. */
6211 value = mips_elf_high (value);
6212 value &= howto->dst_mask;
6215 case R_MIPS_GOT_LO16:
6216 case R_MIPS_CALL_LO16:
6217 case R_MICROMIPS_GOT_LO16:
6218 case R_MICROMIPS_CALL_LO16:
6219 value = g & howto->dst_mask;
6222 case R_MIPS_GOT_PAGE:
6223 case R_MICROMIPS_GOT_PAGE:
6224 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6225 if (value == MINUS_ONE)
6226 return bfd_reloc_outofrange;
6227 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6228 overflowed_p = mips_elf_overflow_p (value, 16);
6231 case R_MIPS_GOT_OFST:
6232 case R_MICROMIPS_GOT_OFST:
6234 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6237 overflowed_p = mips_elf_overflow_p (value, 16);
6241 case R_MICROMIPS_SUB:
6242 value = symbol - addend;
6243 value &= howto->dst_mask;
6247 case R_MICROMIPS_HIGHER:
6248 value = mips_elf_higher (addend + symbol);
6249 value &= howto->dst_mask;
6252 case R_MIPS_HIGHEST:
6253 case R_MICROMIPS_HIGHEST:
6254 value = mips_elf_highest (addend + symbol);
6255 value &= howto->dst_mask;
6258 case R_MIPS_SCN_DISP:
6259 case R_MICROMIPS_SCN_DISP:
6260 value = symbol + addend - sec->output_offset;
6261 value &= howto->dst_mask;
6265 case R_MICROMIPS_JALR:
6266 /* This relocation is only a hint. In some cases, we optimize
6267 it into a bal instruction. But we don't try to optimize
6268 when the symbol does not resolve locally. */
6269 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6270 return bfd_reloc_continue;
6271 value = symbol + addend;
6275 case R_MIPS_GNU_VTINHERIT:
6276 case R_MIPS_GNU_VTENTRY:
6277 /* We don't do anything with these at present. */
6278 return bfd_reloc_continue;
6281 /* An unrecognized relocation type. */
6282 return bfd_reloc_notsupported;
6285 /* Store the VALUE for our caller. */
6287 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6290 /* Obtain the field relocated by RELOCATION. */
6293 mips_elf_obtain_contents (reloc_howto_type *howto,
6294 const Elf_Internal_Rela *relocation,
6295 bfd *input_bfd, bfd_byte *contents)
6298 bfd_byte *location = contents + relocation->r_offset;
6299 unsigned int size = bfd_get_reloc_size (howto);
6301 /* Obtain the bytes. */
6303 x = bfd_get (8 * size, input_bfd, location);
6308 /* It has been determined that the result of the RELOCATION is the
6309 VALUE. Use HOWTO to place VALUE into the output file at the
6310 appropriate position. The SECTION is the section to which the
6312 CROSS_MODE_JUMP_P is true if the relocation field
6313 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6315 Returns FALSE if anything goes wrong. */
6318 mips_elf_perform_relocation (struct bfd_link_info *info,
6319 reloc_howto_type *howto,
6320 const Elf_Internal_Rela *relocation,
6321 bfd_vma value, bfd *input_bfd,
6322 asection *input_section, bfd_byte *contents,
6323 bfd_boolean cross_mode_jump_p)
6327 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6330 /* Figure out where the relocation is occurring. */
6331 location = contents + relocation->r_offset;
6333 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6335 /* Obtain the current value. */
6336 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6338 /* Clear the field we are setting. */
6339 x &= ~howto->dst_mask;
6341 /* Set the field. */
6342 x |= (value & howto->dst_mask);
6344 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6345 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6347 bfd_vma opcode = x >> 26;
6349 if (r_type == R_MIPS16_26 ? opcode == 0x7
6350 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6353 info->callbacks->einfo
6354 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6355 input_bfd, input_section, relocation->r_offset);
6359 if (cross_mode_jump_p && jal_reloc_p (r_type))
6362 bfd_vma opcode = x >> 26;
6363 bfd_vma jalx_opcode;
6365 /* Check to see if the opcode is already JAL or JALX. */
6366 if (r_type == R_MIPS16_26)
6368 ok = ((opcode == 0x6) || (opcode == 0x7));
6371 else if (r_type == R_MICROMIPS_26_S1)
6373 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6378 ok = ((opcode == 0x3) || (opcode == 0x1d));
6382 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6383 convert J or JALS to JALX. */
6386 info->callbacks->einfo
6387 (_("%X%H: Unsupported jump between ISA modes; "
6388 "consider recompiling with interlinking enabled\n"),
6389 input_bfd, input_section, relocation->r_offset);
6393 /* Make this the JALX opcode. */
6394 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6396 else if (cross_mode_jump_p && b_reloc_p (r_type))
6398 bfd_boolean ok = FALSE;
6399 bfd_vma opcode = x >> 16;
6400 bfd_vma jalx_opcode = 0;
6404 if (r_type == R_MICROMIPS_PC16_S1)
6406 ok = opcode == 0x4060;
6410 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6412 ok = opcode == 0x411;
6417 if (ok && !bfd_link_pic (info))
6419 addr = (input_section->output_section->vma
6420 + input_section->output_offset
6421 + relocation->r_offset
6423 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6425 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6427 info->callbacks->einfo
6428 (_("%X%H: Cannot convert branch between ISA modes "
6429 "to JALX: relocation out of range\n"),
6430 input_bfd, input_section, relocation->r_offset);
6434 /* Make this the JALX opcode. */
6435 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6437 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6439 info->callbacks->einfo
6440 (_("%X%H: Unsupported branch between ISA modes\n"),
6441 input_bfd, input_section, relocation->r_offset);
6446 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6448 if (!bfd_link_relocatable (info)
6449 && !cross_mode_jump_p
6450 && ((JAL_TO_BAL_P (input_bfd)
6451 && r_type == R_MIPS_26
6452 && (x >> 26) == 0x3) /* jal addr */
6453 || (JALR_TO_BAL_P (input_bfd)
6454 && r_type == R_MIPS_JALR
6455 && x == 0x0320f809) /* jalr t9 */
6456 || (JR_TO_B_P (input_bfd)
6457 && r_type == R_MIPS_JALR
6458 && x == 0x03200008))) /* jr t9 */
6464 addr = (input_section->output_section->vma
6465 + input_section->output_offset
6466 + relocation->r_offset
6468 if (r_type == R_MIPS_26)
6469 dest = (value << 2) | ((addr >> 28) << 28);
6473 if (off <= 0x1ffff && off >= -0x20000)
6475 if (x == 0x03200008) /* jr t9 */
6476 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6478 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6482 /* Put the value into the output. */
6483 size = bfd_get_reloc_size (howto);
6485 bfd_put (8 * size, input_bfd, x, location);
6487 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6493 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6494 is the original relocation, which is now being transformed into a
6495 dynamic relocation. The ADDENDP is adjusted if necessary; the
6496 caller should store the result in place of the original addend. */
6499 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6500 struct bfd_link_info *info,
6501 const Elf_Internal_Rela *rel,
6502 struct mips_elf_link_hash_entry *h,
6503 asection *sec, bfd_vma symbol,
6504 bfd_vma *addendp, asection *input_section)
6506 Elf_Internal_Rela outrel[3];
6511 bfd_boolean defined_p;
6512 struct mips_elf_link_hash_table *htab;
6514 htab = mips_elf_hash_table (info);
6515 BFD_ASSERT (htab != NULL);
6517 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6518 dynobj = elf_hash_table (info)->dynobj;
6519 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6520 BFD_ASSERT (sreloc != NULL);
6521 BFD_ASSERT (sreloc->contents != NULL);
6522 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6525 outrel[0].r_offset =
6526 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6527 if (ABI_64_P (output_bfd))
6529 outrel[1].r_offset =
6530 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6531 outrel[2].r_offset =
6532 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6535 if (outrel[0].r_offset == MINUS_ONE)
6536 /* The relocation field has been deleted. */
6539 if (outrel[0].r_offset == MINUS_TWO)
6541 /* The relocation field has been converted into a relative value of
6542 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6543 the field to be fully relocated, so add in the symbol's value. */
6548 /* We must now calculate the dynamic symbol table index to use
6549 in the relocation. */
6550 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6552 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6553 indx = h->root.dynindx;
6554 if (SGI_COMPAT (output_bfd))
6555 defined_p = h->root.def_regular;
6557 /* ??? glibc's ld.so just adds the final GOT entry to the
6558 relocation field. It therefore treats relocs against
6559 defined symbols in the same way as relocs against
6560 undefined symbols. */
6565 if (sec != NULL && bfd_is_abs_section (sec))
6567 else if (sec == NULL || sec->owner == NULL)
6569 bfd_set_error (bfd_error_bad_value);
6574 indx = elf_section_data (sec->output_section)->dynindx;
6577 asection *osec = htab->root.text_index_section;
6578 indx = elf_section_data (osec)->dynindx;
6584 /* Instead of generating a relocation using the section
6585 symbol, we may as well make it a fully relative
6586 relocation. We want to avoid generating relocations to
6587 local symbols because we used to generate them
6588 incorrectly, without adding the original symbol value,
6589 which is mandated by the ABI for section symbols. In
6590 order to give dynamic loaders and applications time to
6591 phase out the incorrect use, we refrain from emitting
6592 section-relative relocations. It's not like they're
6593 useful, after all. This should be a bit more efficient
6595 /* ??? Although this behavior is compatible with glibc's ld.so,
6596 the ABI says that relocations against STN_UNDEF should have
6597 a symbol value of 0. Irix rld honors this, so relocations
6598 against STN_UNDEF have no effect. */
6599 if (!SGI_COMPAT (output_bfd))
6604 /* If the relocation was previously an absolute relocation and
6605 this symbol will not be referred to by the relocation, we must
6606 adjust it by the value we give it in the dynamic symbol table.
6607 Otherwise leave the job up to the dynamic linker. */
6608 if (defined_p && r_type != R_MIPS_REL32)
6611 if (htab->is_vxworks)
6612 /* VxWorks uses non-relative relocations for this. */
6613 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6615 /* The relocation is always an REL32 relocation because we don't
6616 know where the shared library will wind up at load-time. */
6617 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6620 /* For strict adherence to the ABI specification, we should
6621 generate a R_MIPS_64 relocation record by itself before the
6622 _REL32/_64 record as well, such that the addend is read in as
6623 a 64-bit value (REL32 is a 32-bit relocation, after all).
6624 However, since none of the existing ELF64 MIPS dynamic
6625 loaders seems to care, we don't waste space with these
6626 artificial relocations. If this turns out to not be true,
6627 mips_elf_allocate_dynamic_relocation() should be tweaked so
6628 as to make room for a pair of dynamic relocations per
6629 invocation if ABI_64_P, and here we should generate an
6630 additional relocation record with R_MIPS_64 by itself for a
6631 NULL symbol before this relocation record. */
6632 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6633 ABI_64_P (output_bfd)
6636 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6638 /* Adjust the output offset of the relocation to reference the
6639 correct location in the output file. */
6640 outrel[0].r_offset += (input_section->output_section->vma
6641 + input_section->output_offset);
6642 outrel[1].r_offset += (input_section->output_section->vma
6643 + input_section->output_offset);
6644 outrel[2].r_offset += (input_section->output_section->vma
6645 + input_section->output_offset);
6647 /* Put the relocation back out. We have to use the special
6648 relocation outputter in the 64-bit case since the 64-bit
6649 relocation format is non-standard. */
6650 if (ABI_64_P (output_bfd))
6652 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6653 (output_bfd, &outrel[0],
6655 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6657 else if (htab->is_vxworks)
6659 /* VxWorks uses RELA rather than REL dynamic relocations. */
6660 outrel[0].r_addend = *addendp;
6661 bfd_elf32_swap_reloca_out
6662 (output_bfd, &outrel[0],
6664 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6667 bfd_elf32_swap_reloc_out
6668 (output_bfd, &outrel[0],
6669 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6671 /* We've now added another relocation. */
6672 ++sreloc->reloc_count;
6674 /* Make sure the output section is writable. The dynamic linker
6675 will be writing to it. */
6676 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6679 /* On IRIX5, make an entry of compact relocation info. */
6680 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6682 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6687 Elf32_crinfo cptrel;
6689 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6690 cptrel.vaddr = (rel->r_offset
6691 + input_section->output_section->vma
6692 + input_section->output_offset);
6693 if (r_type == R_MIPS_REL32)
6694 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6696 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6697 mips_elf_set_cr_dist2to (cptrel, 0);
6698 cptrel.konst = *addendp;
6700 cr = (scpt->contents
6701 + sizeof (Elf32_External_compact_rel));
6702 mips_elf_set_cr_relvaddr (cptrel, 0);
6703 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6704 ((Elf32_External_crinfo *) cr
6705 + scpt->reloc_count));
6706 ++scpt->reloc_count;
6710 /* If we've written this relocation for a readonly section,
6711 we need to set DF_TEXTREL again, so that we do not delete the
6713 if (MIPS_ELF_READONLY_SECTION (input_section))
6714 info->flags |= DF_TEXTREL;
6719 /* Return the MACH for a MIPS e_flags value. */
6722 _bfd_elf_mips_mach (flagword flags)
6724 switch (flags & EF_MIPS_MACH)
6726 case E_MIPS_MACH_3900:
6727 return bfd_mach_mips3900;
6729 case E_MIPS_MACH_4010:
6730 return bfd_mach_mips4010;
6732 case E_MIPS_MACH_4100:
6733 return bfd_mach_mips4100;
6735 case E_MIPS_MACH_4111:
6736 return bfd_mach_mips4111;
6738 case E_MIPS_MACH_4120:
6739 return bfd_mach_mips4120;
6741 case E_MIPS_MACH_4650:
6742 return bfd_mach_mips4650;
6744 case E_MIPS_MACH_5400:
6745 return bfd_mach_mips5400;
6747 case E_MIPS_MACH_5500:
6748 return bfd_mach_mips5500;
6750 case E_MIPS_MACH_5900:
6751 return bfd_mach_mips5900;
6753 case E_MIPS_MACH_9000:
6754 return bfd_mach_mips9000;
6756 case E_MIPS_MACH_SB1:
6757 return bfd_mach_mips_sb1;
6759 case E_MIPS_MACH_LS2E:
6760 return bfd_mach_mips_loongson_2e;
6762 case E_MIPS_MACH_LS2F:
6763 return bfd_mach_mips_loongson_2f;
6765 case E_MIPS_MACH_LS3A:
6766 return bfd_mach_mips_loongson_3a;
6768 case E_MIPS_MACH_OCTEON3:
6769 return bfd_mach_mips_octeon3;
6771 case E_MIPS_MACH_OCTEON2:
6772 return bfd_mach_mips_octeon2;
6774 case E_MIPS_MACH_OCTEON:
6775 return bfd_mach_mips_octeon;
6777 case E_MIPS_MACH_XLR:
6778 return bfd_mach_mips_xlr;
6781 switch (flags & EF_MIPS_ARCH)
6785 return bfd_mach_mips3000;
6788 return bfd_mach_mips6000;
6791 return bfd_mach_mips4000;
6794 return bfd_mach_mips8000;
6797 return bfd_mach_mips5;
6799 case E_MIPS_ARCH_32:
6800 return bfd_mach_mipsisa32;
6802 case E_MIPS_ARCH_64:
6803 return bfd_mach_mipsisa64;
6805 case E_MIPS_ARCH_32R2:
6806 return bfd_mach_mipsisa32r2;
6808 case E_MIPS_ARCH_64R2:
6809 return bfd_mach_mipsisa64r2;
6811 case E_MIPS_ARCH_32R6:
6812 return bfd_mach_mipsisa32r6;
6814 case E_MIPS_ARCH_64R6:
6815 return bfd_mach_mipsisa64r6;
6822 /* Return printable name for ABI. */
6824 static INLINE char *
6825 elf_mips_abi_name (bfd *abfd)
6829 flags = elf_elfheader (abfd)->e_flags;
6830 switch (flags & EF_MIPS_ABI)
6833 if (ABI_N32_P (abfd))
6835 else if (ABI_64_P (abfd))
6839 case E_MIPS_ABI_O32:
6841 case E_MIPS_ABI_O64:
6843 case E_MIPS_ABI_EABI32:
6845 case E_MIPS_ABI_EABI64:
6848 return "unknown abi";
6852 /* MIPS ELF uses two common sections. One is the usual one, and the
6853 other is for small objects. All the small objects are kept
6854 together, and then referenced via the gp pointer, which yields
6855 faster assembler code. This is what we use for the small common
6856 section. This approach is copied from ecoff.c. */
6857 static asection mips_elf_scom_section;
6858 static asymbol mips_elf_scom_symbol;
6859 static asymbol *mips_elf_scom_symbol_ptr;
6861 /* MIPS ELF also uses an acommon section, which represents an
6862 allocated common symbol which may be overridden by a
6863 definition in a shared library. */
6864 static asection mips_elf_acom_section;
6865 static asymbol mips_elf_acom_symbol;
6866 static asymbol *mips_elf_acom_symbol_ptr;
6868 /* This is used for both the 32-bit and the 64-bit ABI. */
6871 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6873 elf_symbol_type *elfsym;
6875 /* Handle the special MIPS section numbers that a symbol may use. */
6876 elfsym = (elf_symbol_type *) asym;
6877 switch (elfsym->internal_elf_sym.st_shndx)
6879 case SHN_MIPS_ACOMMON:
6880 /* This section is used in a dynamically linked executable file.
6881 It is an allocated common section. The dynamic linker can
6882 either resolve these symbols to something in a shared
6883 library, or it can just leave them here. For our purposes,
6884 we can consider these symbols to be in a new section. */
6885 if (mips_elf_acom_section.name == NULL)
6887 /* Initialize the acommon section. */
6888 mips_elf_acom_section.name = ".acommon";
6889 mips_elf_acom_section.flags = SEC_ALLOC;
6890 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6891 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6892 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6893 mips_elf_acom_symbol.name = ".acommon";
6894 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6895 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6896 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6898 asym->section = &mips_elf_acom_section;
6902 /* Common symbols less than the GP size are automatically
6903 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6904 if (asym->value > elf_gp_size (abfd)
6905 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6906 || IRIX_COMPAT (abfd) == ict_irix6)
6909 case SHN_MIPS_SCOMMON:
6910 if (mips_elf_scom_section.name == NULL)
6912 /* Initialize the small common section. */
6913 mips_elf_scom_section.name = ".scommon";
6914 mips_elf_scom_section.flags = SEC_IS_COMMON;
6915 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6916 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6917 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6918 mips_elf_scom_symbol.name = ".scommon";
6919 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6920 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6921 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6923 asym->section = &mips_elf_scom_section;
6924 asym->value = elfsym->internal_elf_sym.st_size;
6927 case SHN_MIPS_SUNDEFINED:
6928 asym->section = bfd_und_section_ptr;
6933 asection *section = bfd_get_section_by_name (abfd, ".text");
6935 if (section != NULL)
6937 asym->section = section;
6938 /* MIPS_TEXT is a bit special, the address is not an offset
6939 to the base of the .text section. So substract the section
6940 base address to make it an offset. */
6941 asym->value -= section->vma;
6948 asection *section = bfd_get_section_by_name (abfd, ".data");
6950 if (section != NULL)
6952 asym->section = section;
6953 /* MIPS_DATA is a bit special, the address is not an offset
6954 to the base of the .data section. So substract the section
6955 base address to make it an offset. */
6956 asym->value -= section->vma;
6962 /* If this is an odd-valued function symbol, assume it's a MIPS16
6963 or microMIPS one. */
6964 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6965 && (asym->value & 1) != 0)
6968 if (MICROMIPS_P (abfd))
6969 elfsym->internal_elf_sym.st_other
6970 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6972 elfsym->internal_elf_sym.st_other
6973 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6977 /* Implement elf_backend_eh_frame_address_size. This differs from
6978 the default in the way it handles EABI64.
6980 EABI64 was originally specified as an LP64 ABI, and that is what
6981 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6982 historically accepted the combination of -mabi=eabi and -mlong32,
6983 and this ILP32 variation has become semi-official over time.
6984 Both forms use elf32 and have pointer-sized FDE addresses.
6986 If an EABI object was generated by GCC 4.0 or above, it will have
6987 an empty .gcc_compiled_longXX section, where XX is the size of longs
6988 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6989 have no special marking to distinguish them from LP64 objects.
6991 We don't want users of the official LP64 ABI to be punished for the
6992 existence of the ILP32 variant, but at the same time, we don't want
6993 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6994 We therefore take the following approach:
6996 - If ABFD contains a .gcc_compiled_longXX section, use it to
6997 determine the pointer size.
6999 - Otherwise check the type of the first relocation. Assume that
7000 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7004 The second check is enough to detect LP64 objects generated by pre-4.0
7005 compilers because, in the kind of output generated by those compilers,
7006 the first relocation will be associated with either a CIE personality
7007 routine or an FDE start address. Furthermore, the compilers never
7008 used a special (non-pointer) encoding for this ABI.
7010 Checking the relocation type should also be safe because there is no
7011 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7015 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7017 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7019 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7021 bfd_boolean long32_p, long64_p;
7023 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7024 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7025 if (long32_p && long64_p)
7032 if (sec->reloc_count > 0
7033 && elf_section_data (sec)->relocs != NULL
7034 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7043 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7044 relocations against two unnamed section symbols to resolve to the
7045 same address. For example, if we have code like:
7047 lw $4,%got_disp(.data)($gp)
7048 lw $25,%got_disp(.text)($gp)
7051 then the linker will resolve both relocations to .data and the program
7052 will jump there rather than to .text.
7054 We can work around this problem by giving names to local section symbols.
7055 This is also what the MIPSpro tools do. */
7058 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7060 return SGI_COMPAT (abfd);
7063 /* Work over a section just before writing it out. This routine is
7064 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7065 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7069 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7071 if (hdr->sh_type == SHT_MIPS_REGINFO
7072 && hdr->sh_size > 0)
7076 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7077 BFD_ASSERT (hdr->contents == NULL);
7080 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7083 H_PUT_32 (abfd, elf_gp (abfd), buf);
7084 if (bfd_bwrite (buf, 4, abfd) != 4)
7088 if (hdr->sh_type == SHT_MIPS_OPTIONS
7089 && hdr->bfd_section != NULL
7090 && mips_elf_section_data (hdr->bfd_section) != NULL
7091 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7093 bfd_byte *contents, *l, *lend;
7095 /* We stored the section contents in the tdata field in the
7096 set_section_contents routine. We save the section contents
7097 so that we don't have to read them again.
7098 At this point we know that elf_gp is set, so we can look
7099 through the section contents to see if there is an
7100 ODK_REGINFO structure. */
7102 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7104 lend = contents + hdr->sh_size;
7105 while (l + sizeof (Elf_External_Options) <= lend)
7107 Elf_Internal_Options intopt;
7109 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7111 if (intopt.size < sizeof (Elf_External_Options))
7114 /* xgettext:c-format */
7115 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7116 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7119 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7126 + sizeof (Elf_External_Options)
7127 + (sizeof (Elf64_External_RegInfo) - 8)),
7130 H_PUT_64 (abfd, elf_gp (abfd), buf);
7131 if (bfd_bwrite (buf, 8, abfd) != 8)
7134 else if (intopt.kind == ODK_REGINFO)
7141 + sizeof (Elf_External_Options)
7142 + (sizeof (Elf32_External_RegInfo) - 4)),
7145 H_PUT_32 (abfd, elf_gp (abfd), buf);
7146 if (bfd_bwrite (buf, 4, abfd) != 4)
7153 if (hdr->bfd_section != NULL)
7155 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7157 /* .sbss is not handled specially here because the GNU/Linux
7158 prelinker can convert .sbss from NOBITS to PROGBITS and
7159 changing it back to NOBITS breaks the binary. The entry in
7160 _bfd_mips_elf_special_sections will ensure the correct flags
7161 are set on .sbss if BFD creates it without reading it from an
7162 input file, and without special handling here the flags set
7163 on it in an input file will be followed. */
7164 if (strcmp (name, ".sdata") == 0
7165 || strcmp (name, ".lit8") == 0
7166 || strcmp (name, ".lit4") == 0)
7167 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7168 else if (strcmp (name, ".srdata") == 0)
7169 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7170 else if (strcmp (name, ".compact_rel") == 0)
7172 else if (strcmp (name, ".rtproc") == 0)
7174 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7176 unsigned int adjust;
7178 adjust = hdr->sh_size % hdr->sh_addralign;
7180 hdr->sh_size += hdr->sh_addralign - adjust;
7188 /* Handle a MIPS specific section when reading an object file. This
7189 is called when elfcode.h finds a section with an unknown type.
7190 This routine supports both the 32-bit and 64-bit ELF ABI.
7192 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7196 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7197 Elf_Internal_Shdr *hdr,
7203 /* There ought to be a place to keep ELF backend specific flags, but
7204 at the moment there isn't one. We just keep track of the
7205 sections by their name, instead. Fortunately, the ABI gives
7206 suggested names for all the MIPS specific sections, so we will
7207 probably get away with this. */
7208 switch (hdr->sh_type)
7210 case SHT_MIPS_LIBLIST:
7211 if (strcmp (name, ".liblist") != 0)
7215 if (strcmp (name, ".msym") != 0)
7218 case SHT_MIPS_CONFLICT:
7219 if (strcmp (name, ".conflict") != 0)
7222 case SHT_MIPS_GPTAB:
7223 if (! CONST_STRNEQ (name, ".gptab."))
7226 case SHT_MIPS_UCODE:
7227 if (strcmp (name, ".ucode") != 0)
7230 case SHT_MIPS_DEBUG:
7231 if (strcmp (name, ".mdebug") != 0)
7233 flags = SEC_DEBUGGING;
7235 case SHT_MIPS_REGINFO:
7236 if (strcmp (name, ".reginfo") != 0
7237 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7239 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7241 case SHT_MIPS_IFACE:
7242 if (strcmp (name, ".MIPS.interfaces") != 0)
7245 case SHT_MIPS_CONTENT:
7246 if (! CONST_STRNEQ (name, ".MIPS.content"))
7249 case SHT_MIPS_OPTIONS:
7250 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7253 case SHT_MIPS_ABIFLAGS:
7254 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7256 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7258 case SHT_MIPS_DWARF:
7259 if (! CONST_STRNEQ (name, ".debug_")
7260 && ! CONST_STRNEQ (name, ".zdebug_"))
7263 case SHT_MIPS_SYMBOL_LIB:
7264 if (strcmp (name, ".MIPS.symlib") != 0)
7267 case SHT_MIPS_EVENTS:
7268 if (! CONST_STRNEQ (name, ".MIPS.events")
7269 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7276 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7281 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7282 (bfd_get_section_flags (abfd,
7288 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7290 Elf_External_ABIFlags_v0 ext;
7292 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7293 &ext, 0, sizeof ext))
7295 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7296 &mips_elf_tdata (abfd)->abiflags);
7297 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7299 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7302 /* FIXME: We should record sh_info for a .gptab section. */
7304 /* For a .reginfo section, set the gp value in the tdata information
7305 from the contents of this section. We need the gp value while
7306 processing relocs, so we just get it now. The .reginfo section
7307 is not used in the 64-bit MIPS ELF ABI. */
7308 if (hdr->sh_type == SHT_MIPS_REGINFO)
7310 Elf32_External_RegInfo ext;
7313 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7314 &ext, 0, sizeof ext))
7316 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7317 elf_gp (abfd) = s.ri_gp_value;
7320 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7321 set the gp value based on what we find. We may see both
7322 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7323 they should agree. */
7324 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7326 bfd_byte *contents, *l, *lend;
7328 contents = bfd_malloc (hdr->sh_size);
7329 if (contents == NULL)
7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7338 lend = contents + hdr->sh_size;
7339 while (l + sizeof (Elf_External_Options) <= lend)
7341 Elf_Internal_Options intopt;
7343 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7345 if (intopt.size < sizeof (Elf_External_Options))
7348 /* xgettext:c-format */
7349 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7350 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7353 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7355 Elf64_Internal_RegInfo intreg;
7357 bfd_mips_elf64_swap_reginfo_in
7359 ((Elf64_External_RegInfo *)
7360 (l + sizeof (Elf_External_Options))),
7362 elf_gp (abfd) = intreg.ri_gp_value;
7364 else if (intopt.kind == ODK_REGINFO)
7366 Elf32_RegInfo intreg;
7368 bfd_mips_elf32_swap_reginfo_in
7370 ((Elf32_External_RegInfo *)
7371 (l + sizeof (Elf_External_Options))),
7373 elf_gp (abfd) = intreg.ri_gp_value;
7383 /* Set the correct type for a MIPS ELF section. We do this by the
7384 section name, which is a hack, but ought to work. This routine is
7385 used by both the 32-bit and the 64-bit ABI. */
7388 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7390 const char *name = bfd_get_section_name (abfd, sec);
7392 if (strcmp (name, ".liblist") == 0)
7394 hdr->sh_type = SHT_MIPS_LIBLIST;
7395 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7396 /* The sh_link field is set in final_write_processing. */
7398 else if (strcmp (name, ".conflict") == 0)
7399 hdr->sh_type = SHT_MIPS_CONFLICT;
7400 else if (CONST_STRNEQ (name, ".gptab."))
7402 hdr->sh_type = SHT_MIPS_GPTAB;
7403 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7404 /* The sh_info field is set in final_write_processing. */
7406 else if (strcmp (name, ".ucode") == 0)
7407 hdr->sh_type = SHT_MIPS_UCODE;
7408 else if (strcmp (name, ".mdebug") == 0)
7410 hdr->sh_type = SHT_MIPS_DEBUG;
7411 /* In a shared object on IRIX 5.3, the .mdebug section has an
7412 entsize of 0. FIXME: Does this matter? */
7413 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7414 hdr->sh_entsize = 0;
7416 hdr->sh_entsize = 1;
7418 else if (strcmp (name, ".reginfo") == 0)
7420 hdr->sh_type = SHT_MIPS_REGINFO;
7421 /* In a shared object on IRIX 5.3, the .reginfo section has an
7422 entsize of 0x18. FIXME: Does this matter? */
7423 if (SGI_COMPAT (abfd))
7425 if ((abfd->flags & DYNAMIC) != 0)
7426 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7428 hdr->sh_entsize = 1;
7431 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7433 else if (SGI_COMPAT (abfd)
7434 && (strcmp (name, ".hash") == 0
7435 || strcmp (name, ".dynamic") == 0
7436 || strcmp (name, ".dynstr") == 0))
7438 if (SGI_COMPAT (abfd))
7439 hdr->sh_entsize = 0;
7441 /* This isn't how the IRIX6 linker behaves. */
7442 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7445 else if (strcmp (name, ".got") == 0
7446 || strcmp (name, ".srdata") == 0
7447 || strcmp (name, ".sdata") == 0
7448 || strcmp (name, ".sbss") == 0
7449 || strcmp (name, ".lit4") == 0
7450 || strcmp (name, ".lit8") == 0)
7451 hdr->sh_flags |= SHF_MIPS_GPREL;
7452 else if (strcmp (name, ".MIPS.interfaces") == 0)
7454 hdr->sh_type = SHT_MIPS_IFACE;
7455 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7457 else if (CONST_STRNEQ (name, ".MIPS.content"))
7459 hdr->sh_type = SHT_MIPS_CONTENT;
7460 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7461 /* The sh_info field is set in final_write_processing. */
7463 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7465 hdr->sh_type = SHT_MIPS_OPTIONS;
7466 hdr->sh_entsize = 1;
7467 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7469 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7471 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7472 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7474 else if (CONST_STRNEQ (name, ".debug_")
7475 || CONST_STRNEQ (name, ".zdebug_"))
7477 hdr->sh_type = SHT_MIPS_DWARF;
7479 /* Irix facilities such as libexc expect a single .debug_frame
7480 per executable, the system ones have NOSTRIP set and the linker
7481 doesn't merge sections with different flags so ... */
7482 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7483 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7485 else if (strcmp (name, ".MIPS.symlib") == 0)
7487 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7488 /* The sh_link and sh_info fields are set in
7489 final_write_processing. */
7491 else if (CONST_STRNEQ (name, ".MIPS.events")
7492 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7494 hdr->sh_type = SHT_MIPS_EVENTS;
7495 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7496 /* The sh_link field is set in final_write_processing. */
7498 else if (strcmp (name, ".msym") == 0)
7500 hdr->sh_type = SHT_MIPS_MSYM;
7501 hdr->sh_flags |= SHF_ALLOC;
7502 hdr->sh_entsize = 8;
7505 /* The generic elf_fake_sections will set up REL_HDR using the default
7506 kind of relocations. We used to set up a second header for the
7507 non-default kind of relocations here, but only NewABI would use
7508 these, and the IRIX ld doesn't like resulting empty RELA sections.
7509 Thus we create those header only on demand now. */
7514 /* Given a BFD section, try to locate the corresponding ELF section
7515 index. This is used by both the 32-bit and the 64-bit ABI.
7516 Actually, it's not clear to me that the 64-bit ABI supports these,
7517 but for non-PIC objects we will certainly want support for at least
7518 the .scommon section. */
7521 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7522 asection *sec, int *retval)
7524 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7526 *retval = SHN_MIPS_SCOMMON;
7529 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7531 *retval = SHN_MIPS_ACOMMON;
7537 /* Hook called by the linker routine which adds symbols from an object
7538 file. We must handle the special MIPS section numbers here. */
7541 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7542 Elf_Internal_Sym *sym, const char **namep,
7543 flagword *flagsp ATTRIBUTE_UNUSED,
7544 asection **secp, bfd_vma *valp)
7546 if (SGI_COMPAT (abfd)
7547 && (abfd->flags & DYNAMIC) != 0
7548 && strcmp (*namep, "_rld_new_interface") == 0)
7550 /* Skip IRIX5 rld entry name. */
7555 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7556 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7557 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7558 a magic symbol resolved by the linker, we ignore this bogus definition
7559 of _gp_disp. New ABI objects do not suffer from this problem so this
7560 is not done for them. */
7562 && (sym->st_shndx == SHN_ABS)
7563 && (strcmp (*namep, "_gp_disp") == 0))
7569 switch (sym->st_shndx)
7572 /* Common symbols less than the GP size are automatically
7573 treated as SHN_MIPS_SCOMMON symbols. */
7574 if (sym->st_size > elf_gp_size (abfd)
7575 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7576 || IRIX_COMPAT (abfd) == ict_irix6)
7579 case SHN_MIPS_SCOMMON:
7580 *secp = bfd_make_section_old_way (abfd, ".scommon");
7581 (*secp)->flags |= SEC_IS_COMMON;
7582 *valp = sym->st_size;
7586 /* This section is used in a shared object. */
7587 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7589 asymbol *elf_text_symbol;
7590 asection *elf_text_section;
7591 bfd_size_type amt = sizeof (asection);
7593 elf_text_section = bfd_zalloc (abfd, amt);
7594 if (elf_text_section == NULL)
7597 amt = sizeof (asymbol);
7598 elf_text_symbol = bfd_zalloc (abfd, amt);
7599 if (elf_text_symbol == NULL)
7602 /* Initialize the section. */
7604 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7605 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7607 elf_text_section->symbol = elf_text_symbol;
7608 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7610 elf_text_section->name = ".text";
7611 elf_text_section->flags = SEC_NO_FLAGS;
7612 elf_text_section->output_section = NULL;
7613 elf_text_section->owner = abfd;
7614 elf_text_symbol->name = ".text";
7615 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7616 elf_text_symbol->section = elf_text_section;
7618 /* This code used to do *secp = bfd_und_section_ptr if
7619 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7620 so I took it out. */
7621 *secp = mips_elf_tdata (abfd)->elf_text_section;
7624 case SHN_MIPS_ACOMMON:
7625 /* Fall through. XXX Can we treat this as allocated data? */
7627 /* This section is used in a shared object. */
7628 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7630 asymbol *elf_data_symbol;
7631 asection *elf_data_section;
7632 bfd_size_type amt = sizeof (asection);
7634 elf_data_section = bfd_zalloc (abfd, amt);
7635 if (elf_data_section == NULL)
7638 amt = sizeof (asymbol);
7639 elf_data_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_data_symbol == NULL)
7643 /* Initialize the section. */
7645 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7646 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7648 elf_data_section->symbol = elf_data_symbol;
7649 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7651 elf_data_section->name = ".data";
7652 elf_data_section->flags = SEC_NO_FLAGS;
7653 elf_data_section->output_section = NULL;
7654 elf_data_section->owner = abfd;
7655 elf_data_symbol->name = ".data";
7656 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_data_symbol->section = elf_data_section;
7659 /* This code used to do *secp = bfd_und_section_ptr if
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
7662 *secp = mips_elf_tdata (abfd)->elf_data_section;
7665 case SHN_MIPS_SUNDEFINED:
7666 *secp = bfd_und_section_ptr;
7670 if (SGI_COMPAT (abfd)
7671 && ! bfd_link_pic (info)
7672 && info->output_bfd->xvec == abfd->xvec
7673 && strcmp (*namep, "__rld_obj_head") == 0)
7675 struct elf_link_hash_entry *h;
7676 struct bfd_link_hash_entry *bh;
7678 /* Mark __rld_obj_head as dynamic. */
7680 if (! (_bfd_generic_link_add_one_symbol
7681 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7682 get_elf_backend_data (abfd)->collect, &bh)))
7685 h = (struct elf_link_hash_entry *) bh;
7688 h->type = STT_OBJECT;
7690 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7693 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7694 mips_elf_hash_table (info)->rld_symbol = h;
7697 /* If this is a mips16 text symbol, add 1 to the value to make it
7698 odd. This will cause something like .word SYM to come up with
7699 the right value when it is loaded into the PC. */
7700 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7706 /* This hook function is called before the linker writes out a global
7707 symbol. We mark symbols as small common if appropriate. This is
7708 also where we undo the increment of the value for a mips16 symbol. */
7711 _bfd_mips_elf_link_output_symbol_hook
7712 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7713 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7714 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7716 /* If we see a common symbol, which implies a relocatable link, then
7717 if a symbol was small common in an input file, mark it as small
7718 common in the output file. */
7719 if (sym->st_shndx == SHN_COMMON
7720 && strcmp (input_sec->name, ".scommon") == 0)
7721 sym->st_shndx = SHN_MIPS_SCOMMON;
7723 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7724 sym->st_value &= ~1;
7729 /* Functions for the dynamic linker. */
7731 /* Create dynamic sections when linking against a dynamic object. */
7734 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7736 struct elf_link_hash_entry *h;
7737 struct bfd_link_hash_entry *bh;
7739 register asection *s;
7740 const char * const *namep;
7741 struct mips_elf_link_hash_table *htab;
7743 htab = mips_elf_hash_table (info);
7744 BFD_ASSERT (htab != NULL);
7746 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7747 | SEC_LINKER_CREATED | SEC_READONLY);
7749 /* The psABI requires a read-only .dynamic section, but the VxWorks
7751 if (!htab->is_vxworks)
7753 s = bfd_get_linker_section (abfd, ".dynamic");
7756 if (! bfd_set_section_flags (abfd, s, flags))
7761 /* We need to create .got section. */
7762 if (!mips_elf_create_got_section (abfd, info))
7765 if (! mips_elf_rel_dyn_section (info, TRUE))
7768 /* Create .stub section. */
7769 s = bfd_make_section_anyway_with_flags (abfd,
7770 MIPS_ELF_STUB_SECTION_NAME (abfd),
7773 || ! bfd_set_section_alignment (abfd, s,
7774 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7778 if (!mips_elf_hash_table (info)->use_rld_obj_head
7779 && bfd_link_executable (info)
7780 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7782 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7783 flags &~ (flagword) SEC_READONLY);
7785 || ! bfd_set_section_alignment (abfd, s,
7786 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7790 /* On IRIX5, we adjust add some additional symbols and change the
7791 alignments of several sections. There is no ABI documentation
7792 indicating that this is necessary on IRIX6, nor any evidence that
7793 the linker takes such action. */
7794 if (IRIX_COMPAT (abfd) == ict_irix5)
7796 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7799 if (! (_bfd_generic_link_add_one_symbol
7800 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7801 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7804 h = (struct elf_link_hash_entry *) bh;
7807 h->type = STT_SECTION;
7809 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7813 /* We need to create a .compact_rel section. */
7814 if (SGI_COMPAT (abfd))
7816 if (!mips_elf_create_compact_rel_section (abfd, info))
7820 /* Change alignments of some sections. */
7821 s = bfd_get_linker_section (abfd, ".hash");
7823 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7825 s = bfd_get_linker_section (abfd, ".dynsym");
7827 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7829 s = bfd_get_linker_section (abfd, ".dynstr");
7831 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7834 s = bfd_get_section_by_name (abfd, ".reginfo");
7836 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7838 s = bfd_get_linker_section (abfd, ".dynamic");
7840 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7843 if (bfd_link_executable (info))
7847 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7849 if (!(_bfd_generic_link_add_one_symbol
7850 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7851 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7854 h = (struct elf_link_hash_entry *) bh;
7857 h->type = STT_SECTION;
7859 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7862 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7864 /* __rld_map is a four byte word located in the .data section
7865 and is filled in by the rtld to contain a pointer to
7866 the _r_debug structure. Its symbol value will be set in
7867 _bfd_mips_elf_finish_dynamic_symbol. */
7868 s = bfd_get_linker_section (abfd, ".rld_map");
7869 BFD_ASSERT (s != NULL);
7871 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7873 if (!(_bfd_generic_link_add_one_symbol
7874 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7875 get_elf_backend_data (abfd)->collect, &bh)))
7878 h = (struct elf_link_hash_entry *) bh;
7881 h->type = STT_OBJECT;
7883 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7885 mips_elf_hash_table (info)->rld_symbol = h;
7889 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7890 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7891 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7894 /* Do the usual VxWorks handling. */
7895 if (htab->is_vxworks
7896 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7902 /* Return true if relocation REL against section SEC is a REL rather than
7903 RELA relocation. RELOCS is the first relocation in the section and
7904 ABFD is the bfd that contains SEC. */
7907 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7908 const Elf_Internal_Rela *relocs,
7909 const Elf_Internal_Rela *rel)
7911 Elf_Internal_Shdr *rel_hdr;
7912 const struct elf_backend_data *bed;
7914 /* To determine which flavor of relocation this is, we depend on the
7915 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7916 rel_hdr = elf_section_data (sec)->rel.hdr;
7917 if (rel_hdr == NULL)
7919 bed = get_elf_backend_data (abfd);
7920 return ((size_t) (rel - relocs)
7921 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7924 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7925 HOWTO is the relocation's howto and CONTENTS points to the contents
7926 of the section that REL is against. */
7929 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7930 reloc_howto_type *howto, bfd_byte *contents)
7933 unsigned int r_type;
7937 r_type = ELF_R_TYPE (abfd, rel->r_info);
7938 location = contents + rel->r_offset;
7940 /* Get the addend, which is stored in the input file. */
7941 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7942 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7943 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7945 addend = bytes & howto->src_mask;
7947 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7949 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7955 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7956 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7957 and update *ADDEND with the final addend. Return true on success
7958 or false if the LO16 could not be found. RELEND is the exclusive
7959 upper bound on the relocations for REL's section. */
7962 mips_elf_add_lo16_rel_addend (bfd *abfd,
7963 const Elf_Internal_Rela *rel,
7964 const Elf_Internal_Rela *relend,
7965 bfd_byte *contents, bfd_vma *addend)
7967 unsigned int r_type, lo16_type;
7968 const Elf_Internal_Rela *lo16_relocation;
7969 reloc_howto_type *lo16_howto;
7972 r_type = ELF_R_TYPE (abfd, rel->r_info);
7973 if (mips16_reloc_p (r_type))
7974 lo16_type = R_MIPS16_LO16;
7975 else if (micromips_reloc_p (r_type))
7976 lo16_type = R_MICROMIPS_LO16;
7977 else if (r_type == R_MIPS_PCHI16)
7978 lo16_type = R_MIPS_PCLO16;
7980 lo16_type = R_MIPS_LO16;
7982 /* The combined value is the sum of the HI16 addend, left-shifted by
7983 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7984 code does a `lui' of the HI16 value, and then an `addiu' of the
7987 Scan ahead to find a matching LO16 relocation.
7989 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7990 be immediately following. However, for the IRIX6 ABI, the next
7991 relocation may be a composed relocation consisting of several
7992 relocations for the same address. In that case, the R_MIPS_LO16
7993 relocation may occur as one of these. We permit a similar
7994 extension in general, as that is useful for GCC.
7996 In some cases GCC dead code elimination removes the LO16 but keeps
7997 the corresponding HI16. This is strictly speaking a violation of
7998 the ABI but not immediately harmful. */
7999 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8000 if (lo16_relocation == NULL)
8003 /* Obtain the addend kept there. */
8004 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8005 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8007 l <<= lo16_howto->rightshift;
8008 l = _bfd_mips_elf_sign_extend (l, 16);
8015 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8016 store the contents in *CONTENTS on success. Assume that *CONTENTS
8017 already holds the contents if it is nonull on entry. */
8020 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8025 /* Get cached copy if it exists. */
8026 if (elf_section_data (sec)->this_hdr.contents != NULL)
8028 *contents = elf_section_data (sec)->this_hdr.contents;
8032 return bfd_malloc_and_get_section (abfd, sec, contents);
8035 /* Make a new PLT record to keep internal data. */
8037 static struct plt_entry *
8038 mips_elf_make_plt_record (bfd *abfd)
8040 struct plt_entry *entry;
8042 entry = bfd_zalloc (abfd, sizeof (*entry));
8046 entry->stub_offset = MINUS_ONE;
8047 entry->mips_offset = MINUS_ONE;
8048 entry->comp_offset = MINUS_ONE;
8049 entry->gotplt_index = MINUS_ONE;
8053 /* Look through the relocs for a section during the first phase, and
8054 allocate space in the global offset table and record the need for
8055 standard MIPS and compressed procedure linkage table entries. */
8058 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8059 asection *sec, const Elf_Internal_Rela *relocs)
8063 Elf_Internal_Shdr *symtab_hdr;
8064 struct elf_link_hash_entry **sym_hashes;
8066 const Elf_Internal_Rela *rel;
8067 const Elf_Internal_Rela *rel_end;
8069 const struct elf_backend_data *bed;
8070 struct mips_elf_link_hash_table *htab;
8073 reloc_howto_type *howto;
8075 if (bfd_link_relocatable (info))
8078 htab = mips_elf_hash_table (info);
8079 BFD_ASSERT (htab != NULL);
8081 dynobj = elf_hash_table (info)->dynobj;
8082 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8083 sym_hashes = elf_sym_hashes (abfd);
8084 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8086 bed = get_elf_backend_data (abfd);
8087 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8089 /* Check for the mips16 stub sections. */
8091 name = bfd_get_section_name (abfd, sec);
8092 if (FN_STUB_P (name))
8094 unsigned long r_symndx;
8096 /* Look at the relocation information to figure out which symbol
8099 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8103 /* xgettext:c-format */
8104 (_("%B: Warning: cannot determine the target function for"
8105 " stub section `%s'"),
8107 bfd_set_error (bfd_error_bad_value);
8111 if (r_symndx < extsymoff
8112 || sym_hashes[r_symndx - extsymoff] == NULL)
8116 /* This stub is for a local symbol. This stub will only be
8117 needed if there is some relocation in this BFD, other
8118 than a 16 bit function call, which refers to this symbol. */
8119 for (o = abfd->sections; o != NULL; o = o->next)
8121 Elf_Internal_Rela *sec_relocs;
8122 const Elf_Internal_Rela *r, *rend;
8124 /* We can ignore stub sections when looking for relocs. */
8125 if ((o->flags & SEC_RELOC) == 0
8126 || o->reloc_count == 0
8127 || section_allows_mips16_refs_p (o))
8131 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8133 if (sec_relocs == NULL)
8136 rend = sec_relocs + o->reloc_count;
8137 for (r = sec_relocs; r < rend; r++)
8138 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8139 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8142 if (elf_section_data (o)->relocs != sec_relocs)
8151 /* There is no non-call reloc for this stub, so we do
8152 not need it. Since this function is called before
8153 the linker maps input sections to output sections, we
8154 can easily discard it by setting the SEC_EXCLUDE
8156 sec->flags |= SEC_EXCLUDE;
8160 /* Record this stub in an array of local symbol stubs for
8162 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8164 unsigned long symcount;
8168 if (elf_bad_symtab (abfd))
8169 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8171 symcount = symtab_hdr->sh_info;
8172 amt = symcount * sizeof (asection *);
8173 n = bfd_zalloc (abfd, amt);
8176 mips_elf_tdata (abfd)->local_stubs = n;
8179 sec->flags |= SEC_KEEP;
8180 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8182 /* We don't need to set mips16_stubs_seen in this case.
8183 That flag is used to see whether we need to look through
8184 the global symbol table for stubs. We don't need to set
8185 it here, because we just have a local stub. */
8189 struct mips_elf_link_hash_entry *h;
8191 h = ((struct mips_elf_link_hash_entry *)
8192 sym_hashes[r_symndx - extsymoff]);
8194 while (h->root.root.type == bfd_link_hash_indirect
8195 || h->root.root.type == bfd_link_hash_warning)
8196 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8198 /* H is the symbol this stub is for. */
8200 /* If we already have an appropriate stub for this function, we
8201 don't need another one, so we can discard this one. Since
8202 this function is called before the linker maps input sections
8203 to output sections, we can easily discard it by setting the
8204 SEC_EXCLUDE flag. */
8205 if (h->fn_stub != NULL)
8207 sec->flags |= SEC_EXCLUDE;
8211 sec->flags |= SEC_KEEP;
8213 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8216 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8218 unsigned long r_symndx;
8219 struct mips_elf_link_hash_entry *h;
8222 /* Look at the relocation information to figure out which symbol
8225 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8229 /* xgettext:c-format */
8230 (_("%B: Warning: cannot determine the target function for"
8231 " stub section `%s'"),
8233 bfd_set_error (bfd_error_bad_value);
8237 if (r_symndx < extsymoff
8238 || sym_hashes[r_symndx - extsymoff] == NULL)
8242 /* This stub is for a local symbol. This stub will only be
8243 needed if there is some relocation (R_MIPS16_26) in this BFD
8244 that refers to this symbol. */
8245 for (o = abfd->sections; o != NULL; o = o->next)
8247 Elf_Internal_Rela *sec_relocs;
8248 const Elf_Internal_Rela *r, *rend;
8250 /* We can ignore stub sections when looking for relocs. */
8251 if ((o->flags & SEC_RELOC) == 0
8252 || o->reloc_count == 0
8253 || section_allows_mips16_refs_p (o))
8257 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8259 if (sec_relocs == NULL)
8262 rend = sec_relocs + o->reloc_count;
8263 for (r = sec_relocs; r < rend; r++)
8264 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8265 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8268 if (elf_section_data (o)->relocs != sec_relocs)
8277 /* There is no non-call reloc for this stub, so we do
8278 not need it. Since this function is called before
8279 the linker maps input sections to output sections, we
8280 can easily discard it by setting the SEC_EXCLUDE
8282 sec->flags |= SEC_EXCLUDE;
8286 /* Record this stub in an array of local symbol call_stubs for
8288 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8290 unsigned long symcount;
8294 if (elf_bad_symtab (abfd))
8295 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8297 symcount = symtab_hdr->sh_info;
8298 amt = symcount * sizeof (asection *);
8299 n = bfd_zalloc (abfd, amt);
8302 mips_elf_tdata (abfd)->local_call_stubs = n;
8305 sec->flags |= SEC_KEEP;
8306 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8308 /* We don't need to set mips16_stubs_seen in this case.
8309 That flag is used to see whether we need to look through
8310 the global symbol table for stubs. We don't need to set
8311 it here, because we just have a local stub. */
8315 h = ((struct mips_elf_link_hash_entry *)
8316 sym_hashes[r_symndx - extsymoff]);
8318 /* H is the symbol this stub is for. */
8320 if (CALL_FP_STUB_P (name))
8321 loc = &h->call_fp_stub;
8323 loc = &h->call_stub;
8325 /* If we already have an appropriate stub for this function, we
8326 don't need another one, so we can discard this one. Since
8327 this function is called before the linker maps input sections
8328 to output sections, we can easily discard it by setting the
8329 SEC_EXCLUDE flag. */
8332 sec->flags |= SEC_EXCLUDE;
8336 sec->flags |= SEC_KEEP;
8338 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8344 for (rel = relocs; rel < rel_end; ++rel)
8346 unsigned long r_symndx;
8347 unsigned int r_type;
8348 struct elf_link_hash_entry *h;
8349 bfd_boolean can_make_dynamic_p;
8350 bfd_boolean call_reloc_p;
8351 bfd_boolean constrain_symbol_p;
8353 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8354 r_type = ELF_R_TYPE (abfd, rel->r_info);
8356 if (r_symndx < extsymoff)
8358 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8361 /* xgettext:c-format */
8362 (_("%B: Malformed reloc detected for section %s"),
8364 bfd_set_error (bfd_error_bad_value);
8369 h = sym_hashes[r_symndx - extsymoff];
8372 while (h->root.type == bfd_link_hash_indirect
8373 || h->root.type == bfd_link_hash_warning)
8374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8376 /* PR15323, ref flags aren't set for references in the
8378 h->root.non_ir_ref = 1;
8382 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8383 relocation into a dynamic one. */
8384 can_make_dynamic_p = FALSE;
8386 /* Set CALL_RELOC_P to true if the relocation is for a call,
8387 and if pointer equality therefore doesn't matter. */
8388 call_reloc_p = FALSE;
8390 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8391 into account when deciding how to define the symbol.
8392 Relocations in nonallocatable sections such as .pdr and
8393 .debug* should have no effect. */
8394 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8399 case R_MIPS_CALL_HI16:
8400 case R_MIPS_CALL_LO16:
8401 case R_MIPS16_CALL16:
8402 case R_MICROMIPS_CALL16:
8403 case R_MICROMIPS_CALL_HI16:
8404 case R_MICROMIPS_CALL_LO16:
8405 call_reloc_p = TRUE;
8409 case R_MIPS_GOT_HI16:
8410 case R_MIPS_GOT_LO16:
8411 case R_MIPS_GOT_PAGE:
8412 case R_MIPS_GOT_OFST:
8413 case R_MIPS_GOT_DISP:
8414 case R_MIPS_TLS_GOTTPREL:
8416 case R_MIPS_TLS_LDM:
8417 case R_MIPS16_GOT16:
8418 case R_MIPS16_TLS_GOTTPREL:
8419 case R_MIPS16_TLS_GD:
8420 case R_MIPS16_TLS_LDM:
8421 case R_MICROMIPS_GOT16:
8422 case R_MICROMIPS_GOT_HI16:
8423 case R_MICROMIPS_GOT_LO16:
8424 case R_MICROMIPS_GOT_PAGE:
8425 case R_MICROMIPS_GOT_OFST:
8426 case R_MICROMIPS_GOT_DISP:
8427 case R_MICROMIPS_TLS_GOTTPREL:
8428 case R_MICROMIPS_TLS_GD:
8429 case R_MICROMIPS_TLS_LDM:
8431 elf_hash_table (info)->dynobj = dynobj = abfd;
8432 if (!mips_elf_create_got_section (dynobj, info))
8434 if (htab->is_vxworks && !bfd_link_pic (info))
8437 /* xgettext:c-format */
8438 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8439 abfd, (unsigned long) rel->r_offset);
8440 bfd_set_error (bfd_error_bad_value);
8443 can_make_dynamic_p = TRUE;
8448 case R_MICROMIPS_JALR:
8449 /* These relocations have empty fields and are purely there to
8450 provide link information. The symbol value doesn't matter. */
8451 constrain_symbol_p = FALSE;
8454 case R_MIPS_GPREL16:
8455 case R_MIPS_GPREL32:
8456 case R_MIPS16_GPREL:
8457 case R_MICROMIPS_GPREL16:
8458 /* GP-relative relocations always resolve to a definition in a
8459 regular input file, ignoring the one-definition rule. This is
8460 important for the GP setup sequence in NewABI code, which
8461 always resolves to a local function even if other relocations
8462 against the symbol wouldn't. */
8463 constrain_symbol_p = FALSE;
8469 /* In VxWorks executables, references to external symbols
8470 must be handled using copy relocs or PLT entries; it is not
8471 possible to convert this relocation into a dynamic one.
8473 For executables that use PLTs and copy-relocs, we have a
8474 choice between converting the relocation into a dynamic
8475 one or using copy relocations or PLT entries. It is
8476 usually better to do the former, unless the relocation is
8477 against a read-only section. */
8478 if ((bfd_link_pic (info)
8480 && !htab->is_vxworks
8481 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8482 && !(!info->nocopyreloc
8483 && !PIC_OBJECT_P (abfd)
8484 && MIPS_ELF_READONLY_SECTION (sec))))
8485 && (sec->flags & SEC_ALLOC) != 0)
8487 can_make_dynamic_p = TRUE;
8489 elf_hash_table (info)->dynobj = dynobj = abfd;
8495 case R_MIPS_PC21_S2:
8496 case R_MIPS_PC26_S2:
8498 case R_MIPS16_PC16_S1:
8499 case R_MICROMIPS_26_S1:
8500 case R_MICROMIPS_PC7_S1:
8501 case R_MICROMIPS_PC10_S1:
8502 case R_MICROMIPS_PC16_S1:
8503 case R_MICROMIPS_PC23_S2:
8504 call_reloc_p = TRUE;
8510 if (constrain_symbol_p)
8512 if (!can_make_dynamic_p)
8513 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8516 h->pointer_equality_needed = 1;
8518 /* We must not create a stub for a symbol that has
8519 relocations related to taking the function's address.
8520 This doesn't apply to VxWorks, where CALL relocs refer
8521 to a .got.plt entry instead of a normal .got entry. */
8522 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8523 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8526 /* Relocations against the special VxWorks __GOTT_BASE__ and
8527 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8528 room for them in .rela.dyn. */
8529 if (is_gott_symbol (info, h))
8533 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8537 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8538 if (MIPS_ELF_READONLY_SECTION (sec))
8539 /* We tell the dynamic linker that there are
8540 relocations against the text segment. */
8541 info->flags |= DF_TEXTREL;
8544 else if (call_lo16_reloc_p (r_type)
8545 || got_lo16_reloc_p (r_type)
8546 || got_disp_reloc_p (r_type)
8547 || (got16_reloc_p (r_type) && htab->is_vxworks))
8549 /* We may need a local GOT entry for this relocation. We
8550 don't count R_MIPS_GOT_PAGE because we can estimate the
8551 maximum number of pages needed by looking at the size of
8552 the segment. Similar comments apply to R_MIPS*_GOT16 and
8553 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8554 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8555 R_MIPS_CALL_HI16 because these are always followed by an
8556 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8557 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8558 rel->r_addend, info, r_type))
8563 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8564 ELF_ST_IS_MIPS16 (h->other)))
8565 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8570 case R_MIPS16_CALL16:
8571 case R_MICROMIPS_CALL16:
8575 /* xgettext:c-format */
8576 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8577 abfd, (unsigned long) rel->r_offset);
8578 bfd_set_error (bfd_error_bad_value);
8583 case R_MIPS_CALL_HI16:
8584 case R_MIPS_CALL_LO16:
8585 case R_MICROMIPS_CALL_HI16:
8586 case R_MICROMIPS_CALL_LO16:
8589 /* Make sure there is room in the regular GOT to hold the
8590 function's address. We may eliminate it in favour of
8591 a .got.plt entry later; see mips_elf_count_got_symbols. */
8592 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8596 /* We need a stub, not a plt entry for the undefined
8597 function. But we record it as if it needs plt. See
8598 _bfd_elf_adjust_dynamic_symbol. */
8604 case R_MIPS_GOT_PAGE:
8605 case R_MICROMIPS_GOT_PAGE:
8606 case R_MIPS16_GOT16:
8608 case R_MIPS_GOT_HI16:
8609 case R_MIPS_GOT_LO16:
8610 case R_MICROMIPS_GOT16:
8611 case R_MICROMIPS_GOT_HI16:
8612 case R_MICROMIPS_GOT_LO16:
8613 if (!h || got_page_reloc_p (r_type))
8615 /* This relocation needs (or may need, if h != NULL) a
8616 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8617 know for sure until we know whether the symbol is
8619 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8621 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8623 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8624 addend = mips_elf_read_rel_addend (abfd, rel,
8626 if (got16_reloc_p (r_type))
8627 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8630 addend <<= howto->rightshift;
8633 addend = rel->r_addend;
8634 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8640 struct mips_elf_link_hash_entry *hmips =
8641 (struct mips_elf_link_hash_entry *) h;
8643 /* This symbol is definitely not overridable. */
8644 if (hmips->root.def_regular
8645 && ! (bfd_link_pic (info) && ! info->symbolic
8646 && ! hmips->root.forced_local))
8650 /* If this is a global, overridable symbol, GOT_PAGE will
8651 decay to GOT_DISP, so we'll need a GOT entry for it. */
8654 case R_MIPS_GOT_DISP:
8655 case R_MICROMIPS_GOT_DISP:
8656 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8661 case R_MIPS_TLS_GOTTPREL:
8662 case R_MIPS16_TLS_GOTTPREL:
8663 case R_MICROMIPS_TLS_GOTTPREL:
8664 if (bfd_link_pic (info))
8665 info->flags |= DF_STATIC_TLS;
8668 case R_MIPS_TLS_LDM:
8669 case R_MIPS16_TLS_LDM:
8670 case R_MICROMIPS_TLS_LDM:
8671 if (tls_ldm_reloc_p (r_type))
8673 r_symndx = STN_UNDEF;
8679 case R_MIPS16_TLS_GD:
8680 case R_MICROMIPS_TLS_GD:
8681 /* This symbol requires a global offset table entry, or two
8682 for TLS GD relocations. */
8685 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8691 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8701 /* In VxWorks executables, references to external symbols
8702 are handled using copy relocs or PLT stubs, so there's
8703 no need to add a .rela.dyn entry for this relocation. */
8704 if (can_make_dynamic_p)
8708 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8712 if (bfd_link_pic (info) && h == NULL)
8714 /* When creating a shared object, we must copy these
8715 reloc types into the output file as R_MIPS_REL32
8716 relocs. Make room for this reloc in .rel(a).dyn. */
8717 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8718 if (MIPS_ELF_READONLY_SECTION (sec))
8719 /* We tell the dynamic linker that there are
8720 relocations against the text segment. */
8721 info->flags |= DF_TEXTREL;
8725 struct mips_elf_link_hash_entry *hmips;
8727 /* For a shared object, we must copy this relocation
8728 unless the symbol turns out to be undefined and
8729 weak with non-default visibility, in which case
8730 it will be left as zero.
8732 We could elide R_MIPS_REL32 for locally binding symbols
8733 in shared libraries, but do not yet do so.
8735 For an executable, we only need to copy this
8736 reloc if the symbol is defined in a dynamic
8738 hmips = (struct mips_elf_link_hash_entry *) h;
8739 ++hmips->possibly_dynamic_relocs;
8740 if (MIPS_ELF_READONLY_SECTION (sec))
8741 /* We need it to tell the dynamic linker if there
8742 are relocations against the text segment. */
8743 hmips->readonly_reloc = TRUE;
8747 if (SGI_COMPAT (abfd))
8748 mips_elf_hash_table (info)->compact_rel_size +=
8749 sizeof (Elf32_External_crinfo);
8753 case R_MIPS_GPREL16:
8754 case R_MIPS_LITERAL:
8755 case R_MIPS_GPREL32:
8756 case R_MICROMIPS_26_S1:
8757 case R_MICROMIPS_GPREL16:
8758 case R_MICROMIPS_LITERAL:
8759 case R_MICROMIPS_GPREL7_S2:
8760 if (SGI_COMPAT (abfd))
8761 mips_elf_hash_table (info)->compact_rel_size +=
8762 sizeof (Elf32_External_crinfo);
8765 /* This relocation describes the C++ object vtable hierarchy.
8766 Reconstruct it for later use during GC. */
8767 case R_MIPS_GNU_VTINHERIT:
8768 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8772 /* This relocation describes which C++ vtable entries are actually
8773 used. Record for later use during GC. */
8774 case R_MIPS_GNU_VTENTRY:
8775 BFD_ASSERT (h != NULL);
8777 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8785 /* Record the need for a PLT entry. At this point we don't know
8786 yet if we are going to create a PLT in the first place, but
8787 we only record whether the relocation requires a standard MIPS
8788 or a compressed code entry anyway. If we don't make a PLT after
8789 all, then we'll just ignore these arrangements. Likewise if
8790 a PLT entry is not created because the symbol is satisfied
8793 && (branch_reloc_p (r_type)
8794 || mips16_branch_reloc_p (r_type)
8795 || micromips_branch_reloc_p (r_type))
8796 && !SYMBOL_CALLS_LOCAL (info, h))
8798 if (h->plt.plist == NULL)
8799 h->plt.plist = mips_elf_make_plt_record (abfd);
8800 if (h->plt.plist == NULL)
8803 if (branch_reloc_p (r_type))
8804 h->plt.plist->need_mips = TRUE;
8806 h->plt.plist->need_comp = TRUE;
8809 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8810 if there is one. We only need to handle global symbols here;
8811 we decide whether to keep or delete stubs for local symbols
8812 when processing the stub's relocations. */
8814 && !mips16_call_reloc_p (r_type)
8815 && !section_allows_mips16_refs_p (sec))
8817 struct mips_elf_link_hash_entry *mh;
8819 mh = (struct mips_elf_link_hash_entry *) h;
8820 mh->need_fn_stub = TRUE;
8823 /* Refuse some position-dependent relocations when creating a
8824 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8825 not PIC, but we can create dynamic relocations and the result
8826 will be fine. Also do not refuse R_MIPS_LO16, which can be
8827 combined with R_MIPS_GOT16. */
8828 if (bfd_link_pic (info))
8835 case R_MIPS_HIGHEST:
8836 case R_MICROMIPS_HI16:
8837 case R_MICROMIPS_HIGHER:
8838 case R_MICROMIPS_HIGHEST:
8839 /* Don't refuse a high part relocation if it's against
8840 no symbol (e.g. part of a compound relocation). */
8841 if (r_symndx == STN_UNDEF)
8844 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8845 and has a special meaning. */
8846 if (!NEWABI_P (abfd) && h != NULL
8847 && strcmp (h->root.root.string, "_gp_disp") == 0)
8850 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8851 if (is_gott_symbol (info, h))
8858 case R_MICROMIPS_26_S1:
8859 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8861 /* xgettext:c-format */
8862 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8864 (h) ? h->root.root.string : "a local symbol");
8865 bfd_set_error (bfd_error_bad_value);
8877 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8878 struct bfd_link_info *link_info,
8881 Elf_Internal_Rela *internal_relocs;
8882 Elf_Internal_Rela *irel, *irelend;
8883 Elf_Internal_Shdr *symtab_hdr;
8884 bfd_byte *contents = NULL;
8886 bfd_boolean changed_contents = FALSE;
8887 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8888 Elf_Internal_Sym *isymbuf = NULL;
8890 /* We are not currently changing any sizes, so only one pass. */
8893 if (bfd_link_relocatable (link_info))
8896 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8897 link_info->keep_memory);
8898 if (internal_relocs == NULL)
8901 irelend = internal_relocs + sec->reloc_count
8902 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8903 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8904 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8906 for (irel = internal_relocs; irel < irelend; irel++)
8909 bfd_signed_vma sym_offset;
8910 unsigned int r_type;
8911 unsigned long r_symndx;
8913 unsigned long instruction;
8915 /* Turn jalr into bgezal, and jr into beq, if they're marked
8916 with a JALR relocation, that indicate where they jump to.
8917 This saves some pipeline bubbles. */
8918 r_type = ELF_R_TYPE (abfd, irel->r_info);
8919 if (r_type != R_MIPS_JALR)
8922 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8923 /* Compute the address of the jump target. */
8924 if (r_symndx >= extsymoff)
8926 struct mips_elf_link_hash_entry *h
8927 = ((struct mips_elf_link_hash_entry *)
8928 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8930 while (h->root.root.type == bfd_link_hash_indirect
8931 || h->root.root.type == bfd_link_hash_warning)
8932 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8934 /* If a symbol is undefined, or if it may be overridden,
8936 if (! ((h->root.root.type == bfd_link_hash_defined
8937 || h->root.root.type == bfd_link_hash_defweak)
8938 && h->root.root.u.def.section)
8939 || (bfd_link_pic (link_info) && ! link_info->symbolic
8940 && !h->root.forced_local))
8943 sym_sec = h->root.root.u.def.section;
8944 if (sym_sec->output_section)
8945 symval = (h->root.root.u.def.value
8946 + sym_sec->output_section->vma
8947 + sym_sec->output_offset);
8949 symval = h->root.root.u.def.value;
8953 Elf_Internal_Sym *isym;
8955 /* Read this BFD's symbols if we haven't done so already. */
8956 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8958 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8959 if (isymbuf == NULL)
8960 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8961 symtab_hdr->sh_info, 0,
8963 if (isymbuf == NULL)
8967 isym = isymbuf + r_symndx;
8968 if (isym->st_shndx == SHN_UNDEF)
8970 else if (isym->st_shndx == SHN_ABS)
8971 sym_sec = bfd_abs_section_ptr;
8972 else if (isym->st_shndx == SHN_COMMON)
8973 sym_sec = bfd_com_section_ptr;
8976 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8977 symval = isym->st_value
8978 + sym_sec->output_section->vma
8979 + sym_sec->output_offset;
8982 /* Compute branch offset, from delay slot of the jump to the
8984 sym_offset = (symval + irel->r_addend)
8985 - (sec_start + irel->r_offset + 4);
8987 /* Branch offset must be properly aligned. */
8988 if ((sym_offset & 3) != 0)
8993 /* Check that it's in range. */
8994 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8997 /* Get the section contents if we haven't done so already. */
8998 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9001 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9003 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9004 if ((instruction & 0xfc1fffff) == 0x0000f809)
9005 instruction = 0x04110000;
9006 /* If it was jr <reg>, turn it into b <target>. */
9007 else if ((instruction & 0xfc1fffff) == 0x00000008)
9008 instruction = 0x10000000;
9012 instruction |= (sym_offset & 0xffff);
9013 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9014 changed_contents = TRUE;
9017 if (contents != NULL
9018 && elf_section_data (sec)->this_hdr.contents != contents)
9020 if (!changed_contents && !link_info->keep_memory)
9024 /* Cache the section contents for elf_link_input_bfd. */
9025 elf_section_data (sec)->this_hdr.contents = contents;
9031 if (contents != NULL
9032 && elf_section_data (sec)->this_hdr.contents != contents)
9037 /* Allocate space for global sym dynamic relocs. */
9040 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9042 struct bfd_link_info *info = inf;
9044 struct mips_elf_link_hash_entry *hmips;
9045 struct mips_elf_link_hash_table *htab;
9047 htab = mips_elf_hash_table (info);
9048 BFD_ASSERT (htab != NULL);
9050 dynobj = elf_hash_table (info)->dynobj;
9051 hmips = (struct mips_elf_link_hash_entry *) h;
9053 /* VxWorks executables are handled elsewhere; we only need to
9054 allocate relocations in shared objects. */
9055 if (htab->is_vxworks && !bfd_link_pic (info))
9058 /* Ignore indirect symbols. All relocations against such symbols
9059 will be redirected to the target symbol. */
9060 if (h->root.type == bfd_link_hash_indirect)
9063 /* If this symbol is defined in a dynamic object, or we are creating
9064 a shared library, we will need to copy any R_MIPS_32 or
9065 R_MIPS_REL32 relocs against it into the output file. */
9066 if (! bfd_link_relocatable (info)
9067 && hmips->possibly_dynamic_relocs != 0
9068 && (h->root.type == bfd_link_hash_defweak
9069 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9070 || bfd_link_pic (info)))
9072 bfd_boolean do_copy = TRUE;
9074 if (h->root.type == bfd_link_hash_undefweak)
9076 /* Do not copy relocations for undefined weak symbols with
9077 non-default visibility. */
9078 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9081 /* Make sure undefined weak symbols are output as a dynamic
9083 else if (h->dynindx == -1 && !h->forced_local)
9085 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9092 /* Even though we don't directly need a GOT entry for this symbol,
9093 the SVR4 psABI requires it to have a dynamic symbol table
9094 index greater that DT_MIPS_GOTSYM if there are dynamic
9095 relocations against it.
9097 VxWorks does not enforce the same mapping between the GOT
9098 and the symbol table, so the same requirement does not
9100 if (!htab->is_vxworks)
9102 if (hmips->global_got_area > GGA_RELOC_ONLY)
9103 hmips->global_got_area = GGA_RELOC_ONLY;
9104 hmips->got_only_for_calls = FALSE;
9107 mips_elf_allocate_dynamic_relocations
9108 (dynobj, info, hmips->possibly_dynamic_relocs);
9109 if (hmips->readonly_reloc)
9110 /* We tell the dynamic linker that there are relocations
9111 against the text segment. */
9112 info->flags |= DF_TEXTREL;
9119 /* Adjust a symbol defined by a dynamic object and referenced by a
9120 regular object. The current definition is in some section of the
9121 dynamic object, but we're not including those sections. We have to
9122 change the definition to something the rest of the link can
9126 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9127 struct elf_link_hash_entry *h)
9130 struct mips_elf_link_hash_entry *hmips;
9131 struct mips_elf_link_hash_table *htab;
9134 htab = mips_elf_hash_table (info);
9135 BFD_ASSERT (htab != NULL);
9137 dynobj = elf_hash_table (info)->dynobj;
9138 hmips = (struct mips_elf_link_hash_entry *) h;
9140 /* Make sure we know what is going on here. */
9141 BFD_ASSERT (dynobj != NULL
9143 || h->u.weakdef != NULL
9146 && !h->def_regular)));
9148 hmips = (struct mips_elf_link_hash_entry *) h;
9150 /* If there are call relocations against an externally-defined symbol,
9151 see whether we can create a MIPS lazy-binding stub for it. We can
9152 only do this if all references to the function are through call
9153 relocations, and in that case, the traditional lazy-binding stubs
9154 are much more efficient than PLT entries.
9156 Traditional stubs are only available on SVR4 psABI-based systems;
9157 VxWorks always uses PLTs instead. */
9158 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9160 if (! elf_hash_table (info)->dynamic_sections_created)
9163 /* If this symbol is not defined in a regular file, then set
9164 the symbol to the stub location. This is required to make
9165 function pointers compare as equal between the normal
9166 executable and the shared library. */
9167 if (!h->def_regular)
9169 hmips->needs_lazy_stub = TRUE;
9170 htab->lazy_stub_count++;
9174 /* As above, VxWorks requires PLT entries for externally-defined
9175 functions that are only accessed through call relocations.
9177 Both VxWorks and non-VxWorks targets also need PLT entries if there
9178 are static-only relocations against an externally-defined function.
9179 This can technically occur for shared libraries if there are
9180 branches to the symbol, although it is unlikely that this will be
9181 used in practice due to the short ranges involved. It can occur
9182 for any relative or absolute relocation in executables; in that
9183 case, the PLT entry becomes the function's canonical address. */
9184 else if (((h->needs_plt && !hmips->no_fn_stub)
9185 || (h->type == STT_FUNC && hmips->has_static_relocs))
9186 && htab->use_plts_and_copy_relocs
9187 && !SYMBOL_CALLS_LOCAL (info, h)
9188 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9189 && h->root.type == bfd_link_hash_undefweak))
9191 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9192 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9194 /* If this is the first symbol to need a PLT entry, then make some
9195 basic setup. Also work out PLT entry sizes. We'll need them
9196 for PLT offset calculations. */
9197 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9199 BFD_ASSERT (htab->root.sgotplt->size == 0);
9200 BFD_ASSERT (htab->plt_got_index == 0);
9202 /* If we're using the PLT additions to the psABI, each PLT
9203 entry is 16 bytes and the PLT0 entry is 32 bytes.
9204 Encourage better cache usage by aligning. We do this
9205 lazily to avoid pessimizing traditional objects. */
9206 if (!htab->is_vxworks
9207 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9210 /* Make sure that .got.plt is word-aligned. We do this lazily
9211 for the same reason as above. */
9212 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9213 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9216 /* On non-VxWorks targets, the first two entries in .got.plt
9218 if (!htab->is_vxworks)
9220 += (get_elf_backend_data (dynobj)->got_header_size
9221 / MIPS_ELF_GOT_SIZE (dynobj));
9223 /* On VxWorks, also allocate room for the header's
9224 .rela.plt.unloaded entries. */
9225 if (htab->is_vxworks && !bfd_link_pic (info))
9226 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9228 /* Now work out the sizes of individual PLT entries. */
9229 if (htab->is_vxworks && bfd_link_pic (info))
9230 htab->plt_mips_entry_size
9231 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9232 else if (htab->is_vxworks)
9233 htab->plt_mips_entry_size
9234 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9236 htab->plt_mips_entry_size
9237 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9238 else if (!micromips_p)
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9242 htab->plt_comp_entry_size
9243 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9245 else if (htab->insn32)
9247 htab->plt_mips_entry_size
9248 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9249 htab->plt_comp_entry_size
9250 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9254 htab->plt_mips_entry_size
9255 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9256 htab->plt_comp_entry_size
9257 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9261 if (h->plt.plist == NULL)
9262 h->plt.plist = mips_elf_make_plt_record (dynobj);
9263 if (h->plt.plist == NULL)
9266 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9267 n32 or n64, so always use a standard entry there.
9269 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9270 all MIPS16 calls will go via that stub, and there is no benefit
9271 to having a MIPS16 entry. And in the case of call_stub a
9272 standard entry actually has to be used as the stub ends with a J
9277 || hmips->call_fp_stub)
9279 h->plt.plist->need_mips = TRUE;
9280 h->plt.plist->need_comp = FALSE;
9283 /* Otherwise, if there are no direct calls to the function, we
9284 have a free choice of whether to use standard or compressed
9285 entries. Prefer microMIPS entries if the object is known to
9286 contain microMIPS code, so that it becomes possible to create
9287 pure microMIPS binaries. Prefer standard entries otherwise,
9288 because MIPS16 ones are no smaller and are usually slower. */
9289 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9292 h->plt.plist->need_comp = TRUE;
9294 h->plt.plist->need_mips = TRUE;
9297 if (h->plt.plist->need_mips)
9299 h->plt.plist->mips_offset = htab->plt_mips_offset;
9300 htab->plt_mips_offset += htab->plt_mips_entry_size;
9302 if (h->plt.plist->need_comp)
9304 h->plt.plist->comp_offset = htab->plt_comp_offset;
9305 htab->plt_comp_offset += htab->plt_comp_entry_size;
9308 /* Reserve the corresponding .got.plt entry now too. */
9309 h->plt.plist->gotplt_index = htab->plt_got_index++;
9311 /* If the output file has no definition of the symbol, set the
9312 symbol's value to the address of the stub. */
9313 if (!bfd_link_pic (info) && !h->def_regular)
9314 hmips->use_plt_entry = TRUE;
9316 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9317 htab->root.srelplt->size += (htab->is_vxworks
9318 ? MIPS_ELF_RELA_SIZE (dynobj)
9319 : MIPS_ELF_REL_SIZE (dynobj));
9321 /* Make room for the .rela.plt.unloaded relocations. */
9322 if (htab->is_vxworks && !bfd_link_pic (info))
9323 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9325 /* All relocations against this symbol that could have been made
9326 dynamic will now refer to the PLT entry instead. */
9327 hmips->possibly_dynamic_relocs = 0;
9332 /* If this is a weak symbol, and there is a real definition, the
9333 processor independent code will have arranged for us to see the
9334 real definition first, and we can just use the same value. */
9335 if (h->u.weakdef != NULL)
9337 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9338 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9339 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9340 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9344 /* Otherwise, there is nothing further to do for symbols defined
9345 in regular objects. */
9349 /* There's also nothing more to do if we'll convert all relocations
9350 against this symbol into dynamic relocations. */
9351 if (!hmips->has_static_relocs)
9354 /* We're now relying on copy relocations. Complain if we have
9355 some that we can't convert. */
9356 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9358 _bfd_error_handler (_("non-dynamic relocations refer to "
9359 "dynamic symbol %s"),
9360 h->root.root.string);
9361 bfd_set_error (bfd_error_bad_value);
9365 /* We must allocate the symbol in our .dynbss section, which will
9366 become part of the .bss section of the executable. There will be
9367 an entry for this symbol in the .dynsym section. The dynamic
9368 object will contain position independent code, so all references
9369 from the dynamic object to this symbol will go through the global
9370 offset table. The dynamic linker will use the .dynsym entry to
9371 determine the address it must put in the global offset table, so
9372 both the dynamic object and the regular object will refer to the
9373 same memory location for the variable. */
9375 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9377 s = htab->root.sdynrelro;
9378 srel = htab->root.sreldynrelro;
9382 s = htab->root.sdynbss;
9383 srel = htab->root.srelbss;
9385 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9387 if (htab->is_vxworks)
9388 srel->size += sizeof (Elf32_External_Rela);
9390 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9394 /* All relocations against this symbol that could have been made
9395 dynamic will now refer to the local copy instead. */
9396 hmips->possibly_dynamic_relocs = 0;
9398 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9401 /* This function is called after all the input files have been read,
9402 and the input sections have been assigned to output sections. We
9403 check for any mips16 stub sections that we can discard. */
9406 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9407 struct bfd_link_info *info)
9410 struct mips_elf_link_hash_table *htab;
9411 struct mips_htab_traverse_info hti;
9413 htab = mips_elf_hash_table (info);
9414 BFD_ASSERT (htab != NULL);
9416 /* The .reginfo section has a fixed size. */
9417 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9419 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9421 /* The .MIPS.abiflags section has a fixed size. */
9422 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9424 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9427 hti.output_bfd = output_bfd;
9429 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9430 mips_elf_check_symbols, &hti);
9437 /* If the link uses a GOT, lay it out and work out its size. */
9440 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9444 struct mips_got_info *g;
9445 bfd_size_type loadable_size = 0;
9446 bfd_size_type page_gotno;
9448 struct mips_elf_traverse_got_arg tga;
9449 struct mips_elf_link_hash_table *htab;
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9454 s = htab->root.sgot;
9458 dynobj = elf_hash_table (info)->dynobj;
9461 /* Allocate room for the reserved entries. VxWorks always reserves
9462 3 entries; other objects only reserve 2 entries. */
9463 BFD_ASSERT (g->assigned_low_gotno == 0);
9464 if (htab->is_vxworks)
9465 htab->reserved_gotno = 3;
9467 htab->reserved_gotno = 2;
9468 g->local_gotno += htab->reserved_gotno;
9469 g->assigned_low_gotno = htab->reserved_gotno;
9471 /* Decide which symbols need to go in the global part of the GOT and
9472 count the number of reloc-only GOT symbols. */
9473 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9475 if (!mips_elf_resolve_final_got_entries (info, g))
9478 /* Calculate the total loadable size of the output. That
9479 will give us the maximum number of GOT_PAGE entries
9481 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9483 asection *subsection;
9485 for (subsection = ibfd->sections;
9487 subsection = subsection->next)
9489 if ((subsection->flags & SEC_ALLOC) == 0)
9491 loadable_size += ((subsection->size + 0xf)
9492 &~ (bfd_size_type) 0xf);
9496 if (htab->is_vxworks)
9497 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9498 relocations against local symbols evaluate to "G", and the EABI does
9499 not include R_MIPS_GOT_PAGE. */
9502 /* Assume there are two loadable segments consisting of contiguous
9503 sections. Is 5 enough? */
9504 page_gotno = (loadable_size >> 16) + 5;
9506 /* Choose the smaller of the two page estimates; both are intended to be
9508 if (page_gotno > g->page_gotno)
9509 page_gotno = g->page_gotno;
9511 g->local_gotno += page_gotno;
9512 g->assigned_high_gotno = g->local_gotno - 1;
9514 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9515 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9516 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9518 /* VxWorks does not support multiple GOTs. It initializes $gp to
9519 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9521 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9523 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9528 /* Record that all bfds use G. This also has the effect of freeing
9529 the per-bfd GOTs, which we no longer need. */
9530 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9531 if (mips_elf_bfd_got (ibfd, FALSE))
9532 mips_elf_replace_bfd_got (ibfd, g);
9533 mips_elf_replace_bfd_got (output_bfd, g);
9535 /* Set up TLS entries. */
9536 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9539 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9540 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9543 BFD_ASSERT (g->tls_assigned_gotno
9544 == g->global_gotno + g->local_gotno + g->tls_gotno);
9546 /* Each VxWorks GOT entry needs an explicit relocation. */
9547 if (htab->is_vxworks && bfd_link_pic (info))
9548 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9550 /* Allocate room for the TLS relocations. */
9552 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9558 /* Estimate the size of the .MIPS.stubs section. */
9561 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9563 struct mips_elf_link_hash_table *htab;
9564 bfd_size_type dynsymcount;
9566 htab = mips_elf_hash_table (info);
9567 BFD_ASSERT (htab != NULL);
9569 if (htab->lazy_stub_count == 0)
9572 /* IRIX rld assumes that a function stub isn't at the end of the .text
9573 section, so add a dummy entry to the end. */
9574 htab->lazy_stub_count++;
9576 /* Get a worst-case estimate of the number of dynamic symbols needed.
9577 At this point, dynsymcount does not account for section symbols
9578 and count_section_dynsyms may overestimate the number that will
9580 dynsymcount = (elf_hash_table (info)->dynsymcount
9581 + count_section_dynsyms (output_bfd, info));
9583 /* Determine the size of one stub entry. There's no disadvantage
9584 from using microMIPS code here, so for the sake of pure-microMIPS
9585 binaries we prefer it whenever there's any microMIPS code in
9586 output produced at all. This has a benefit of stubs being
9587 shorter by 4 bytes each too, unless in the insn32 mode. */
9588 if (!MICROMIPS_P (output_bfd))
9589 htab->function_stub_size = (dynsymcount > 0x10000
9590 ? MIPS_FUNCTION_STUB_BIG_SIZE
9591 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9592 else if (htab->insn32)
9593 htab->function_stub_size = (dynsymcount > 0x10000
9594 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9595 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9597 htab->function_stub_size = (dynsymcount > 0x10000
9598 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9599 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9601 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9604 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9605 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9606 stub, allocate an entry in the stubs section. */
9609 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9611 struct mips_htab_traverse_info *hti = data;
9612 struct mips_elf_link_hash_table *htab;
9613 struct bfd_link_info *info;
9617 output_bfd = hti->output_bfd;
9618 htab = mips_elf_hash_table (info);
9619 BFD_ASSERT (htab != NULL);
9621 if (h->needs_lazy_stub)
9623 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9624 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9625 bfd_vma isa_bit = micromips_p;
9627 BFD_ASSERT (htab->root.dynobj != NULL);
9628 if (h->root.plt.plist == NULL)
9629 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9630 if (h->root.plt.plist == NULL)
9635 h->root.root.u.def.section = htab->sstubs;
9636 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9637 h->root.plt.plist->stub_offset = htab->sstubs->size;
9638 h->root.other = other;
9639 htab->sstubs->size += htab->function_stub_size;
9644 /* Allocate offsets in the stubs section to each symbol that needs one.
9645 Set the final size of the .MIPS.stub section. */
9648 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9650 bfd *output_bfd = info->output_bfd;
9651 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9652 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9653 bfd_vma isa_bit = micromips_p;
9654 struct mips_elf_link_hash_table *htab;
9655 struct mips_htab_traverse_info hti;
9656 struct elf_link_hash_entry *h;
9659 htab = mips_elf_hash_table (info);
9660 BFD_ASSERT (htab != NULL);
9662 if (htab->lazy_stub_count == 0)
9665 htab->sstubs->size = 0;
9667 hti.output_bfd = output_bfd;
9669 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9672 htab->sstubs->size += htab->function_stub_size;
9673 BFD_ASSERT (htab->sstubs->size
9674 == htab->lazy_stub_count * htab->function_stub_size);
9676 dynobj = elf_hash_table (info)->dynobj;
9677 BFD_ASSERT (dynobj != NULL);
9678 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9681 h->root.u.def.value = isa_bit;
9688 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9689 bfd_link_info. If H uses the address of a PLT entry as the value
9690 of the symbol, then set the entry in the symbol table now. Prefer
9691 a standard MIPS PLT entry. */
9694 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9696 struct bfd_link_info *info = data;
9697 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9698 struct mips_elf_link_hash_table *htab;
9703 htab = mips_elf_hash_table (info);
9704 BFD_ASSERT (htab != NULL);
9706 if (h->use_plt_entry)
9708 BFD_ASSERT (h->root.plt.plist != NULL);
9709 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9710 || h->root.plt.plist->comp_offset != MINUS_ONE);
9712 val = htab->plt_header_size;
9713 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9716 val += h->root.plt.plist->mips_offset;
9722 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9723 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9726 /* For VxWorks, point at the PLT load stub rather than the lazy
9727 resolution stub; this stub will become the canonical function
9729 if (htab->is_vxworks)
9732 h->root.root.u.def.section = htab->root.splt;
9733 h->root.root.u.def.value = val;
9734 h->root.other = other;
9740 /* Set the sizes of the dynamic sections. */
9743 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9744 struct bfd_link_info *info)
9747 asection *s, *sreldyn;
9748 bfd_boolean reltext;
9749 struct mips_elf_link_hash_table *htab;
9751 htab = mips_elf_hash_table (info);
9752 BFD_ASSERT (htab != NULL);
9753 dynobj = elf_hash_table (info)->dynobj;
9754 BFD_ASSERT (dynobj != NULL);
9756 if (elf_hash_table (info)->dynamic_sections_created)
9758 /* Set the contents of the .interp section to the interpreter. */
9759 if (bfd_link_executable (info) && !info->nointerp)
9761 s = bfd_get_linker_section (dynobj, ".interp");
9762 BFD_ASSERT (s != NULL);
9764 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9766 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9769 /* Figure out the size of the PLT header if we know that we
9770 are using it. For the sake of cache alignment always use
9771 a standard header whenever any standard entries are present
9772 even if microMIPS entries are present as well. This also
9773 lets the microMIPS header rely on the value of $v0 only set
9774 by microMIPS entries, for a small size reduction.
9776 Set symbol table entry values for symbols that use the
9777 address of their PLT entry now that we can calculate it.
9779 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9780 haven't already in _bfd_elf_create_dynamic_sections. */
9781 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9783 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9784 && !htab->plt_mips_offset);
9785 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9786 bfd_vma isa_bit = micromips_p;
9787 struct elf_link_hash_entry *h;
9790 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9791 BFD_ASSERT (htab->root.sgotplt->size == 0);
9792 BFD_ASSERT (htab->root.splt->size == 0);
9794 if (htab->is_vxworks && bfd_link_pic (info))
9795 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9796 else if (htab->is_vxworks)
9797 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9798 else if (ABI_64_P (output_bfd))
9799 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9800 else if (ABI_N32_P (output_bfd))
9801 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9802 else if (!micromips_p)
9803 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9804 else if (htab->insn32)
9805 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9807 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9809 htab->plt_header_is_comp = micromips_p;
9810 htab->plt_header_size = size;
9811 htab->root.splt->size = (size
9812 + htab->plt_mips_offset
9813 + htab->plt_comp_offset);
9814 htab->root.sgotplt->size = (htab->plt_got_index
9815 * MIPS_ELF_GOT_SIZE (dynobj));
9817 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9819 if (htab->root.hplt == NULL)
9821 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9822 "_PROCEDURE_LINKAGE_TABLE_");
9823 htab->root.hplt = h;
9828 h = htab->root.hplt;
9829 h->root.u.def.value = isa_bit;
9835 /* Allocate space for global sym dynamic relocs. */
9836 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9838 mips_elf_estimate_stub_size (output_bfd, info);
9840 if (!mips_elf_lay_out_got (output_bfd, info))
9843 mips_elf_lay_out_lazy_stubs (info);
9845 /* The check_relocs and adjust_dynamic_symbol entry points have
9846 determined the sizes of the various dynamic sections. Allocate
9849 for (s = dynobj->sections; s != NULL; s = s->next)
9853 /* It's OK to base decisions on the section name, because none
9854 of the dynobj section names depend upon the input files. */
9855 name = bfd_get_section_name (dynobj, s);
9857 if ((s->flags & SEC_LINKER_CREATED) == 0)
9860 if (CONST_STRNEQ (name, ".rel"))
9864 const char *outname;
9867 /* If this relocation section applies to a read only
9868 section, then we probably need a DT_TEXTREL entry.
9869 If the relocation section is .rel(a).dyn, we always
9870 assert a DT_TEXTREL entry rather than testing whether
9871 there exists a relocation to a read only section or
9873 outname = bfd_get_section_name (output_bfd,
9875 target = bfd_get_section_by_name (output_bfd, outname + 4);
9877 && (target->flags & SEC_READONLY) != 0
9878 && (target->flags & SEC_ALLOC) != 0)
9879 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9882 /* We use the reloc_count field as a counter if we need
9883 to copy relocs into the output file. */
9884 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9887 /* If combreloc is enabled, elf_link_sort_relocs() will
9888 sort relocations, but in a different way than we do,
9889 and before we're done creating relocations. Also, it
9890 will move them around between input sections'
9891 relocation's contents, so our sorting would be
9892 broken, so don't let it run. */
9893 info->combreloc = 0;
9896 else if (bfd_link_executable (info)
9897 && ! mips_elf_hash_table (info)->use_rld_obj_head
9898 && CONST_STRNEQ (name, ".rld_map"))
9900 /* We add a room for __rld_map. It will be filled in by the
9901 rtld to contain a pointer to the _r_debug structure. */
9902 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9904 else if (SGI_COMPAT (output_bfd)
9905 && CONST_STRNEQ (name, ".compact_rel"))
9906 s->size += mips_elf_hash_table (info)->compact_rel_size;
9907 else if (s == htab->root.splt)
9909 /* If the last PLT entry has a branch delay slot, allocate
9910 room for an extra nop to fill the delay slot. This is
9911 for CPUs without load interlocking. */
9912 if (! LOAD_INTERLOCKS_P (output_bfd)
9913 && ! htab->is_vxworks && s->size > 0)
9916 else if (! CONST_STRNEQ (name, ".init")
9917 && s != htab->root.sgot
9918 && s != htab->root.sgotplt
9919 && s != htab->sstubs
9920 && s != htab->root.sdynbss
9921 && s != htab->root.sdynrelro)
9923 /* It's not one of our sections, so don't allocate space. */
9929 s->flags |= SEC_EXCLUDE;
9933 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9936 /* Allocate memory for the section contents. */
9937 s->contents = bfd_zalloc (dynobj, s->size);
9938 if (s->contents == NULL)
9940 bfd_set_error (bfd_error_no_memory);
9945 if (elf_hash_table (info)->dynamic_sections_created)
9947 /* Add some entries to the .dynamic section. We fill in the
9948 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9949 must add the entries now so that we get the correct size for
9950 the .dynamic section. */
9952 /* SGI object has the equivalence of DT_DEBUG in the
9953 DT_MIPS_RLD_MAP entry. This must come first because glibc
9954 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9955 may only look at the first one they see. */
9956 if (!bfd_link_pic (info)
9957 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9960 if (bfd_link_executable (info)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9964 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9965 used by the debugger. */
9966 if (bfd_link_executable (info)
9967 && !SGI_COMPAT (output_bfd)
9968 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9971 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9972 info->flags |= DF_TEXTREL;
9974 if ((info->flags & DF_TEXTREL) != 0)
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9979 /* Clear the DF_TEXTREL flag. It will be set again if we
9980 write out an actual text relocation; we may not, because
9981 at this point we do not know whether e.g. any .eh_frame
9982 absolute relocations have been converted to PC-relative. */
9983 info->flags &= ~DF_TEXTREL;
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9989 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9990 if (htab->is_vxworks)
9992 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9993 use any of the DT_MIPS_* tags. */
9994 if (sreldyn && sreldyn->size > 0)
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10008 if (sreldyn && sreldyn->size > 0)
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10041 if (IRIX_COMPAT (dynobj) == ict_irix5
10042 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10045 if (IRIX_COMPAT (dynobj) == ict_irix6
10046 && (bfd_get_section_by_name
10047 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10048 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10051 if (htab->root.splt->size > 0)
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10065 if (htab->is_vxworks
10066 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10073 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10074 Adjust its R_ADDEND field so that it is correct for the output file.
10075 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10076 and sections respectively; both use symbol indexes. */
10079 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10080 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10081 asection **local_sections, Elf_Internal_Rela *rel)
10083 unsigned int r_type, r_symndx;
10084 Elf_Internal_Sym *sym;
10087 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10089 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10090 if (gprel16_reloc_p (r_type)
10091 || r_type == R_MIPS_GPREL32
10092 || literal_reloc_p (r_type))
10094 rel->r_addend += _bfd_get_gp_value (input_bfd);
10095 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10098 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10099 sym = local_syms + r_symndx;
10101 /* Adjust REL's addend to account for section merging. */
10102 if (!bfd_link_relocatable (info))
10104 sec = local_sections[r_symndx];
10105 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10108 /* This would normally be done by the rela_normal code in elflink.c. */
10109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10110 rel->r_addend += local_sections[r_symndx]->output_offset;
10114 /* Handle relocations against symbols from removed linkonce sections,
10115 or sections discarded by a linker script. We use this wrapper around
10116 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10117 on 64-bit ELF targets. In this case for any relocation handled, which
10118 always be the first in a triplet, the remaining two have to be processed
10119 together with the first, even if they are R_MIPS_NONE. It is the symbol
10120 index referred by the first reloc that applies to all the three and the
10121 remaining two never refer to an object symbol. And it is the final
10122 relocation (the last non-null one) that determines the output field of
10123 the whole relocation so retrieve the corresponding howto structure for
10124 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10126 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10127 and therefore requires to be pasted in a loop. It also defines a block
10128 and does not protect any of its arguments, hence the extra brackets. */
10131 mips_reloc_against_discarded_section (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 bfd *input_bfd, asection *input_section,
10134 Elf_Internal_Rela **rel,
10135 const Elf_Internal_Rela **relend,
10136 bfd_boolean rel_reloc,
10137 reloc_howto_type *howto,
10138 bfd_byte *contents)
10140 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10141 int count = bed->s->int_rels_per_ext_rel;
10142 unsigned int r_type;
10145 for (i = count - 1; i > 0; i--)
10147 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10148 if (r_type != R_MIPS_NONE)
10150 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10156 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10157 (*rel), count, (*relend),
10158 howto, i, contents);
10163 /* Relocate a MIPS ELF section. */
10166 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10167 bfd *input_bfd, asection *input_section,
10168 bfd_byte *contents, Elf_Internal_Rela *relocs,
10169 Elf_Internal_Sym *local_syms,
10170 asection **local_sections)
10172 Elf_Internal_Rela *rel;
10173 const Elf_Internal_Rela *relend;
10174 bfd_vma addend = 0;
10175 bfd_boolean use_saved_addend_p = FALSE;
10176 const struct elf_backend_data *bed;
10178 bed = get_elf_backend_data (output_bfd);
10179 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10180 for (rel = relocs; rel < relend; ++rel)
10184 reloc_howto_type *howto;
10185 bfd_boolean cross_mode_jump_p = FALSE;
10186 /* TRUE if the relocation is a RELA relocation, rather than a
10188 bfd_boolean rela_relocation_p = TRUE;
10189 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10191 unsigned long r_symndx;
10193 Elf_Internal_Shdr *symtab_hdr;
10194 struct elf_link_hash_entry *h;
10195 bfd_boolean rel_reloc;
10197 rel_reloc = (NEWABI_P (input_bfd)
10198 && mips_elf_rel_relocation_p (input_bfd, input_section,
10200 /* Find the relocation howto for this relocation. */
10201 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10203 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10205 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10207 sec = local_sections[r_symndx];
10212 unsigned long extsymoff;
10215 if (!elf_bad_symtab (input_bfd))
10216 extsymoff = symtab_hdr->sh_info;
10217 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10218 while (h->root.type == bfd_link_hash_indirect
10219 || h->root.type == bfd_link_hash_warning)
10220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10223 if (h->root.type == bfd_link_hash_defined
10224 || h->root.type == bfd_link_hash_defweak)
10225 sec = h->root.u.def.section;
10228 if (sec != NULL && discarded_section (sec))
10230 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10231 input_section, &rel, &relend,
10232 rel_reloc, howto, contents);
10236 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10238 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10239 64-bit code, but make sure all their addresses are in the
10240 lowermost or uppermost 32-bit section of the 64-bit address
10241 space. Thus, when they use an R_MIPS_64 they mean what is
10242 usually meant by R_MIPS_32, with the exception that the
10243 stored value is sign-extended to 64 bits. */
10244 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10246 /* On big-endian systems, we need to lie about the position
10248 if (bfd_big_endian (input_bfd))
10249 rel->r_offset += 4;
10252 if (!use_saved_addend_p)
10254 /* If these relocations were originally of the REL variety,
10255 we must pull the addend out of the field that will be
10256 relocated. Otherwise, we simply use the contents of the
10257 RELA relocation. */
10258 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10261 rela_relocation_p = FALSE;
10262 addend = mips_elf_read_rel_addend (input_bfd, rel,
10264 if (hi16_reloc_p (r_type)
10265 || (got16_reloc_p (r_type)
10266 && mips_elf_local_relocation_p (input_bfd, rel,
10269 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10270 contents, &addend))
10273 name = h->root.root.string;
10275 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10276 local_syms + r_symndx,
10279 /* xgettext:c-format */
10280 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10281 input_bfd, input_section, name, howto->name,
10286 addend <<= howto->rightshift;
10289 addend = rel->r_addend;
10290 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10291 local_syms, local_sections, rel);
10294 if (bfd_link_relocatable (info))
10296 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10297 && bfd_big_endian (input_bfd))
10298 rel->r_offset -= 4;
10300 if (!rela_relocation_p && rel->r_addend)
10302 addend += rel->r_addend;
10303 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10304 addend = mips_elf_high (addend);
10305 else if (r_type == R_MIPS_HIGHER)
10306 addend = mips_elf_higher (addend);
10307 else if (r_type == R_MIPS_HIGHEST)
10308 addend = mips_elf_highest (addend);
10310 addend >>= howto->rightshift;
10312 /* We use the source mask, rather than the destination
10313 mask because the place to which we are writing will be
10314 source of the addend in the final link. */
10315 addend &= howto->src_mask;
10317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10318 /* See the comment above about using R_MIPS_64 in the 32-bit
10319 ABI. Here, we need to update the addend. It would be
10320 possible to get away with just using the R_MIPS_32 reloc
10321 but for endianness. */
10327 if (addend & ((bfd_vma) 1 << 31))
10329 sign_bits = ((bfd_vma) 1 << 32) - 1;
10336 /* If we don't know that we have a 64-bit type,
10337 do two separate stores. */
10338 if (bfd_big_endian (input_bfd))
10340 /* Store the sign-bits (which are most significant)
10342 low_bits = sign_bits;
10343 high_bits = addend;
10348 high_bits = sign_bits;
10350 bfd_put_32 (input_bfd, low_bits,
10351 contents + rel->r_offset);
10352 bfd_put_32 (input_bfd, high_bits,
10353 contents + rel->r_offset + 4);
10357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10358 input_bfd, input_section,
10363 /* Go on to the next relocation. */
10367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10368 relocations for the same offset. In that case we are
10369 supposed to treat the output of each relocation as the addend
10371 if (rel + 1 < relend
10372 && rel->r_offset == rel[1].r_offset
10373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10374 use_saved_addend_p = TRUE;
10376 use_saved_addend_p = FALSE;
10378 /* Figure out what value we are supposed to relocate. */
10379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10380 input_section, info, rel,
10381 addend, howto, local_syms,
10382 local_sections, &value,
10383 &name, &cross_mode_jump_p,
10384 use_saved_addend_p))
10386 case bfd_reloc_continue:
10387 /* There's nothing to do. */
10390 case bfd_reloc_undefined:
10391 /* mips_elf_calculate_relocation already called the
10392 undefined_symbol callback. There's no real point in
10393 trying to perform the relocation at this point, so we
10394 just skip ahead to the next relocation. */
10397 case bfd_reloc_notsupported:
10398 msg = _("internal error: unsupported relocation error");
10399 info->callbacks->warning
10400 (info, msg, name, input_bfd, input_section, rel->r_offset);
10403 case bfd_reloc_overflow:
10404 if (use_saved_addend_p)
10405 /* Ignore overflow until we reach the last relocation for
10406 a given location. */
10410 struct mips_elf_link_hash_table *htab;
10412 htab = mips_elf_hash_table (info);
10413 BFD_ASSERT (htab != NULL);
10414 BFD_ASSERT (name != NULL);
10415 if (!htab->small_data_overflow_reported
10416 && (gprel16_reloc_p (howto->type)
10417 || literal_reloc_p (howto->type)))
10419 msg = _("small-data section exceeds 64KB;"
10420 " lower small-data size limit (see option -G)");
10422 htab->small_data_overflow_reported = TRUE;
10423 (*info->callbacks->einfo) ("%P: %s\n", msg);
10425 (*info->callbacks->reloc_overflow)
10426 (info, NULL, name, howto->name, (bfd_vma) 0,
10427 input_bfd, input_section, rel->r_offset);
10434 case bfd_reloc_outofrange:
10436 if (jal_reloc_p (howto->type))
10437 msg = (cross_mode_jump_p
10438 ? _("Cannot convert a jump to JALX "
10439 "for a non-word-aligned address")
10440 : (howto->type == R_MIPS16_26
10441 ? _("Jump to a non-word-aligned address")
10442 : _("Jump to a non-instruction-aligned address")));
10443 else if (b_reloc_p (howto->type))
10444 msg = (cross_mode_jump_p
10445 ? _("Cannot convert a branch to JALX "
10446 "for a non-word-aligned address")
10447 : _("Branch to a non-instruction-aligned address"));
10448 else if (aligned_pcrel_reloc_p (howto->type))
10449 msg = _("PC-relative load from unaligned address");
10452 info->callbacks->einfo
10453 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10456 /* Fall through. */
10463 /* If we've got another relocation for the address, keep going
10464 until we reach the last one. */
10465 if (use_saved_addend_p)
10471 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10472 /* See the comment above about using R_MIPS_64 in the 32-bit
10473 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10474 that calculated the right value. Now, however, we
10475 sign-extend the 32-bit result to 64-bits, and store it as a
10476 64-bit value. We are especially generous here in that we
10477 go to extreme lengths to support this usage on systems with
10478 only a 32-bit VMA. */
10484 if (value & ((bfd_vma) 1 << 31))
10486 sign_bits = ((bfd_vma) 1 << 32) - 1;
10493 /* If we don't know that we have a 64-bit type,
10494 do two separate stores. */
10495 if (bfd_big_endian (input_bfd))
10497 /* Undo what we did above. */
10498 rel->r_offset -= 4;
10499 /* Store the sign-bits (which are most significant)
10501 low_bits = sign_bits;
10507 high_bits = sign_bits;
10509 bfd_put_32 (input_bfd, low_bits,
10510 contents + rel->r_offset);
10511 bfd_put_32 (input_bfd, high_bits,
10512 contents + rel->r_offset + 4);
10516 /* Actually perform the relocation. */
10517 if (! mips_elf_perform_relocation (info, howto, rel, value,
10518 input_bfd, input_section,
10519 contents, cross_mode_jump_p))
10526 /* A function that iterates over each entry in la25_stubs and fills
10527 in the code for each one. DATA points to a mips_htab_traverse_info. */
10530 mips_elf_create_la25_stub (void **slot, void *data)
10532 struct mips_htab_traverse_info *hti;
10533 struct mips_elf_link_hash_table *htab;
10534 struct mips_elf_la25_stub *stub;
10537 bfd_vma offset, target, target_high, target_low;
10539 stub = (struct mips_elf_la25_stub *) *slot;
10540 hti = (struct mips_htab_traverse_info *) data;
10541 htab = mips_elf_hash_table (hti->info);
10542 BFD_ASSERT (htab != NULL);
10544 /* Create the section contents, if we haven't already. */
10545 s = stub->stub_section;
10549 loc = bfd_malloc (s->size);
10558 /* Work out where in the section this stub should go. */
10559 offset = stub->offset;
10561 /* Work out the target address. */
10562 target = mips_elf_get_la25_target (stub, &s);
10563 target += s->output_section->vma + s->output_offset;
10565 target_high = ((target + 0x8000) >> 16) & 0xffff;
10566 target_low = (target & 0xffff);
10568 if (stub->stub_section != htab->strampoline)
10570 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10571 of the section and write the two instructions at the end. */
10572 memset (loc, 0, offset);
10574 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10576 bfd_put_micromips_32 (hti->output_bfd,
10577 LA25_LUI_MICROMIPS (target_high),
10579 bfd_put_micromips_32 (hti->output_bfd,
10580 LA25_ADDIU_MICROMIPS (target_low),
10585 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10586 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10591 /* This is trampoline. */
10593 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10595 bfd_put_micromips_32 (hti->output_bfd,
10596 LA25_LUI_MICROMIPS (target_high), loc);
10597 bfd_put_micromips_32 (hti->output_bfd,
10598 LA25_J_MICROMIPS (target), loc + 4);
10599 bfd_put_micromips_32 (hti->output_bfd,
10600 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10601 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10605 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10606 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10607 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10608 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10614 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10615 adjust it appropriately now. */
10618 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10619 const char *name, Elf_Internal_Sym *sym)
10621 /* The linker script takes care of providing names and values for
10622 these, but we must place them into the right sections. */
10623 static const char* const text_section_symbols[] = {
10626 "__dso_displacement",
10628 "__program_header_table",
10632 static const char* const data_section_symbols[] = {
10640 const char* const *p;
10643 for (i = 0; i < 2; ++i)
10644 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10647 if (strcmp (*p, name) == 0)
10649 /* All of these symbols are given type STT_SECTION by the
10651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10652 sym->st_other = STO_PROTECTED;
10654 /* The IRIX linker puts these symbols in special sections. */
10656 sym->st_shndx = SHN_MIPS_TEXT;
10658 sym->st_shndx = SHN_MIPS_DATA;
10664 /* Finish up dynamic symbol handling. We set the contents of various
10665 dynamic sections here. */
10668 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10669 struct bfd_link_info *info,
10670 struct elf_link_hash_entry *h,
10671 Elf_Internal_Sym *sym)
10675 struct mips_got_info *g, *gg;
10678 struct mips_elf_link_hash_table *htab;
10679 struct mips_elf_link_hash_entry *hmips;
10681 htab = mips_elf_hash_table (info);
10682 BFD_ASSERT (htab != NULL);
10683 dynobj = elf_hash_table (info)->dynobj;
10684 hmips = (struct mips_elf_link_hash_entry *) h;
10686 BFD_ASSERT (!htab->is_vxworks);
10688 if (h->plt.plist != NULL
10689 && (h->plt.plist->mips_offset != MINUS_ONE
10690 || h->plt.plist->comp_offset != MINUS_ONE))
10692 /* We've decided to create a PLT entry for this symbol. */
10694 bfd_vma header_address, got_address;
10695 bfd_vma got_address_high, got_address_low, load;
10699 got_index = h->plt.plist->gotplt_index;
10701 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10702 BFD_ASSERT (h->dynindx != -1);
10703 BFD_ASSERT (htab->root.splt != NULL);
10704 BFD_ASSERT (got_index != MINUS_ONE);
10705 BFD_ASSERT (!h->def_regular);
10707 /* Calculate the address of the PLT header. */
10708 isa_bit = htab->plt_header_is_comp;
10709 header_address = (htab->root.splt->output_section->vma
10710 + htab->root.splt->output_offset + isa_bit);
10712 /* Calculate the address of the .got.plt entry. */
10713 got_address = (htab->root.sgotplt->output_section->vma
10714 + htab->root.sgotplt->output_offset
10715 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10717 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10718 got_address_low = got_address & 0xffff;
10720 /* Initially point the .got.plt entry at the PLT header. */
10721 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10722 if (ABI_64_P (output_bfd))
10723 bfd_put_64 (output_bfd, header_address, loc);
10725 bfd_put_32 (output_bfd, header_address, loc);
10727 /* Now handle the PLT itself. First the standard entry (the order
10728 does not matter, we just have to pick one). */
10729 if (h->plt.plist->mips_offset != MINUS_ONE)
10731 const bfd_vma *plt_entry;
10732 bfd_vma plt_offset;
10734 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10736 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10738 /* Find out where the .plt entry should go. */
10739 loc = htab->root.splt->contents + plt_offset;
10741 /* Pick the load opcode. */
10742 load = MIPS_ELF_LOAD_WORD (output_bfd);
10744 /* Fill in the PLT entry itself. */
10746 if (MIPSR6_P (output_bfd))
10747 plt_entry = mipsr6_exec_plt_entry;
10749 plt_entry = mips_exec_plt_entry;
10750 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10751 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10754 if (! LOAD_INTERLOCKS_P (output_bfd))
10756 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10757 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10761 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10767 /* Now the compressed entry. They come after any standard ones. */
10768 if (h->plt.plist->comp_offset != MINUS_ONE)
10770 bfd_vma plt_offset;
10772 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10773 + h->plt.plist->comp_offset);
10775 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10777 /* Find out where the .plt entry should go. */
10778 loc = htab->root.splt->contents + plt_offset;
10780 /* Fill in the PLT entry itself. */
10781 if (!MICROMIPS_P (output_bfd))
10783 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10785 bfd_put_16 (output_bfd, plt_entry[0], loc);
10786 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10787 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10788 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10789 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10790 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10791 bfd_put_32 (output_bfd, got_address, loc + 12);
10793 else if (htab->insn32)
10795 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10797 bfd_put_16 (output_bfd, plt_entry[0], loc);
10798 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10799 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10800 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10801 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10802 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10803 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10804 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10808 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10809 bfd_signed_vma gotpc_offset;
10810 bfd_vma loc_address;
10812 BFD_ASSERT (got_address % 4 == 0);
10814 loc_address = (htab->root.splt->output_section->vma
10815 + htab->root.splt->output_offset + plt_offset);
10816 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10818 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10819 if (gotpc_offset + 0x1000000 >= 0x2000000)
10822 /* xgettext:c-format */
10823 (_("%B: `%A' offset of %ld from `%A' "
10824 "beyond the range of ADDIUPC"),
10826 htab->root.sgotplt->output_section,
10827 htab->root.splt->output_section,
10828 (long) gotpc_offset);
10829 bfd_set_error (bfd_error_no_error);
10832 bfd_put_16 (output_bfd,
10833 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10834 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10835 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10836 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10837 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10838 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10842 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10843 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10844 got_index - 2, h->dynindx,
10845 R_MIPS_JUMP_SLOT, got_address);
10847 /* We distinguish between PLT entries and lazy-binding stubs by
10848 giving the former an st_other value of STO_MIPS_PLT. Set the
10849 flag and leave the value if there are any relocations in the
10850 binary where pointer equality matters. */
10851 sym->st_shndx = SHN_UNDEF;
10852 if (h->pointer_equality_needed)
10853 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10861 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10863 /* We've decided to create a lazy-binding stub. */
10864 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10865 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10866 bfd_vma stub_size = htab->function_stub_size;
10867 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10868 bfd_vma isa_bit = micromips_p;
10869 bfd_vma stub_big_size;
10872 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10873 else if (htab->insn32)
10874 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10876 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10878 /* This symbol has a stub. Set it up. */
10880 BFD_ASSERT (h->dynindx != -1);
10882 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10884 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10885 sign extension at runtime in the stub, resulting in a negative
10887 if (h->dynindx & ~0x7fffffff)
10890 /* Fill the stub. */
10894 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10899 bfd_put_micromips_32 (output_bfd,
10900 STUB_MOVE32_MICROMIPS, stub + idx);
10905 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10908 if (stub_size == stub_big_size)
10910 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10912 bfd_put_micromips_32 (output_bfd,
10913 STUB_LUI_MICROMIPS (dynindx_hi),
10919 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10925 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10929 /* If a large stub is not required and sign extension is not a
10930 problem, then use legacy code in the stub. */
10931 if (stub_size == stub_big_size)
10932 bfd_put_micromips_32 (output_bfd,
10933 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10935 else if (h->dynindx & ~0x7fff)
10936 bfd_put_micromips_32 (output_bfd,
10937 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10940 bfd_put_micromips_32 (output_bfd,
10941 STUB_LI16S_MICROMIPS (output_bfd,
10948 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10950 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10952 if (stub_size == stub_big_size)
10954 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10958 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10961 /* If a large stub is not required and sign extension is not a
10962 problem, then use legacy code in the stub. */
10963 if (stub_size == stub_big_size)
10964 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10966 else if (h->dynindx & ~0x7fff)
10967 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10970 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10974 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10975 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10978 /* Mark the symbol as undefined. stub_offset != -1 occurs
10979 only for the referenced symbol. */
10980 sym->st_shndx = SHN_UNDEF;
10982 /* The run-time linker uses the st_value field of the symbol
10983 to reset the global offset table entry for this external
10984 to its stub address when unlinking a shared object. */
10985 sym->st_value = (htab->sstubs->output_section->vma
10986 + htab->sstubs->output_offset
10987 + h->plt.plist->stub_offset
10989 sym->st_other = other;
10992 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10993 refer to the stub, since only the stub uses the standard calling
10995 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10997 BFD_ASSERT (hmips->need_fn_stub);
10998 sym->st_value = (hmips->fn_stub->output_section->vma
10999 + hmips->fn_stub->output_offset);
11000 sym->st_size = hmips->fn_stub->size;
11001 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11004 BFD_ASSERT (h->dynindx != -1
11005 || h->forced_local);
11007 sgot = htab->root.sgot;
11008 g = htab->got_info;
11009 BFD_ASSERT (g != NULL);
11011 /* Run through the global symbol table, creating GOT entries for all
11012 the symbols that need them. */
11013 if (hmips->global_got_area != GGA_NONE)
11018 value = sym->st_value;
11019 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11020 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11023 if (hmips->global_got_area != GGA_NONE && g->next)
11025 struct mips_got_entry e, *p;
11031 e.abfd = output_bfd;
11034 e.tls_type = GOT_TLS_NONE;
11036 for (g = g->next; g->next != gg; g = g->next)
11039 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11042 offset = p->gotidx;
11043 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11044 if (bfd_link_pic (info)
11045 || (elf_hash_table (info)->dynamic_sections_created
11047 && p->d.h->root.def_dynamic
11048 && !p->d.h->root.def_regular))
11050 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11051 the various compatibility problems, it's easier to mock
11052 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11053 mips_elf_create_dynamic_relocation to calculate the
11054 appropriate addend. */
11055 Elf_Internal_Rela rel[3];
11057 memset (rel, 0, sizeof (rel));
11058 if (ABI_64_P (output_bfd))
11059 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11061 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11062 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11065 if (! (mips_elf_create_dynamic_relocation
11066 (output_bfd, info, rel,
11067 e.d.h, NULL, sym->st_value, &entry, sgot)))
11071 entry = sym->st_value;
11072 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11078 name = h->root.root.string;
11079 if (h == elf_hash_table (info)->hdynamic
11080 || h == elf_hash_table (info)->hgot)
11081 sym->st_shndx = SHN_ABS;
11082 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11083 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11085 sym->st_shndx = SHN_ABS;
11086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11089 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11091 sym->st_shndx = SHN_ABS;
11092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11093 sym->st_value = elf_gp (output_bfd);
11095 else if (SGI_COMPAT (output_bfd))
11097 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11098 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11100 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11101 sym->st_other = STO_PROTECTED;
11103 sym->st_shndx = SHN_MIPS_DATA;
11105 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11107 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11108 sym->st_other = STO_PROTECTED;
11109 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11110 sym->st_shndx = SHN_ABS;
11112 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11114 if (h->type == STT_FUNC)
11115 sym->st_shndx = SHN_MIPS_TEXT;
11116 else if (h->type == STT_OBJECT)
11117 sym->st_shndx = SHN_MIPS_DATA;
11121 /* Emit a copy reloc, if needed. */
11127 BFD_ASSERT (h->dynindx != -1);
11128 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11130 s = mips_elf_rel_dyn_section (info, FALSE);
11131 symval = (h->root.u.def.section->output_section->vma
11132 + h->root.u.def.section->output_offset
11133 + h->root.u.def.value);
11134 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11135 h->dynindx, R_MIPS_COPY, symval);
11138 /* Handle the IRIX6-specific symbols. */
11139 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11140 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11142 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11143 to treat compressed symbols like any other. */
11144 if (ELF_ST_IS_MIPS16 (sym->st_other))
11146 BFD_ASSERT (sym->st_value & 1);
11147 sym->st_other -= STO_MIPS16;
11149 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MICROMIPS;
11158 /* Likewise, for VxWorks. */
11161 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11162 struct bfd_link_info *info,
11163 struct elf_link_hash_entry *h,
11164 Elf_Internal_Sym *sym)
11168 struct mips_got_info *g;
11169 struct mips_elf_link_hash_table *htab;
11170 struct mips_elf_link_hash_entry *hmips;
11172 htab = mips_elf_hash_table (info);
11173 BFD_ASSERT (htab != NULL);
11174 dynobj = elf_hash_table (info)->dynobj;
11175 hmips = (struct mips_elf_link_hash_entry *) h;
11177 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11180 bfd_vma plt_address, got_address, got_offset, branch_offset;
11181 Elf_Internal_Rela rel;
11182 static const bfd_vma *plt_entry;
11183 bfd_vma gotplt_index;
11184 bfd_vma plt_offset;
11186 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11187 gotplt_index = h->plt.plist->gotplt_index;
11189 BFD_ASSERT (h->dynindx != -1);
11190 BFD_ASSERT (htab->root.splt != NULL);
11191 BFD_ASSERT (gotplt_index != MINUS_ONE);
11192 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11194 /* Calculate the address of the .plt entry. */
11195 plt_address = (htab->root.splt->output_section->vma
11196 + htab->root.splt->output_offset
11199 /* Calculate the address of the .got.plt entry. */
11200 got_address = (htab->root.sgotplt->output_section->vma
11201 + htab->root.sgotplt->output_offset
11202 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11204 /* Calculate the offset of the .got.plt entry from
11205 _GLOBAL_OFFSET_TABLE_. */
11206 got_offset = mips_elf_gotplt_index (info, h);
11208 /* Calculate the offset for the branch at the start of the PLT
11209 entry. The branch jumps to the beginning of .plt. */
11210 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11212 /* Fill in the initial value of the .got.plt entry. */
11213 bfd_put_32 (output_bfd, plt_address,
11214 (htab->root.sgotplt->contents
11215 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11217 /* Find out where the .plt entry should go. */
11218 loc = htab->root.splt->contents + plt_offset;
11220 if (bfd_link_pic (info))
11222 plt_entry = mips_vxworks_shared_plt_entry;
11223 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11228 bfd_vma got_address_high, got_address_low;
11230 plt_entry = mips_vxworks_exec_plt_entry;
11231 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11232 got_address_low = got_address & 0xffff;
11234 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11236 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11237 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11238 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11239 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11240 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11241 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11243 loc = (htab->srelplt2->contents
11244 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11246 /* Emit a relocation for the .got.plt entry. */
11247 rel.r_offset = got_address;
11248 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11249 rel.r_addend = plt_offset;
11250 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11252 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11253 loc += sizeof (Elf32_External_Rela);
11254 rel.r_offset = plt_address + 8;
11255 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11256 rel.r_addend = got_offset;
11257 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11259 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11260 loc += sizeof (Elf32_External_Rela);
11262 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11266 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11267 loc = (htab->root.srelplt->contents
11268 + gotplt_index * sizeof (Elf32_External_Rela));
11269 rel.r_offset = got_address;
11270 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11272 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274 if (!h->def_regular)
11275 sym->st_shndx = SHN_UNDEF;
11278 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11280 sgot = htab->root.sgot;
11281 g = htab->got_info;
11282 BFD_ASSERT (g != NULL);
11284 /* See if this symbol has an entry in the GOT. */
11285 if (hmips->global_got_area != GGA_NONE)
11288 Elf_Internal_Rela outrel;
11292 /* Install the symbol value in the GOT. */
11293 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11294 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11296 /* Add a dynamic relocation for it. */
11297 s = mips_elf_rel_dyn_section (info, FALSE);
11298 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11299 outrel.r_offset = (sgot->output_section->vma
11300 + sgot->output_offset
11302 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11303 outrel.r_addend = 0;
11304 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11307 /* Emit a copy reloc, if needed. */
11310 Elf_Internal_Rela rel;
11314 BFD_ASSERT (h->dynindx != -1);
11316 rel.r_offset = (h->root.u.def.section->output_section->vma
11317 + h->root.u.def.section->output_offset
11318 + h->root.u.def.value);
11319 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11321 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11322 srel = htab->root.sreldynrelro;
11324 srel = htab->root.srelbss;
11325 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11326 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11327 ++srel->reloc_count;
11330 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11331 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11332 sym->st_value &= ~1;
11337 /* Write out a plt0 entry to the beginning of .plt. */
11340 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11343 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11344 static const bfd_vma *plt_entry;
11345 struct mips_elf_link_hash_table *htab;
11347 htab = mips_elf_hash_table (info);
11348 BFD_ASSERT (htab != NULL);
11350 if (ABI_64_P (output_bfd))
11351 plt_entry = mips_n64_exec_plt0_entry;
11352 else if (ABI_N32_P (output_bfd))
11353 plt_entry = mips_n32_exec_plt0_entry;
11354 else if (!htab->plt_header_is_comp)
11355 plt_entry = mips_o32_exec_plt0_entry;
11356 else if (htab->insn32)
11357 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11359 plt_entry = micromips_o32_exec_plt0_entry;
11361 /* Calculate the value of .got.plt. */
11362 gotplt_value = (htab->root.sgotplt->output_section->vma
11363 + htab->root.sgotplt->output_offset);
11364 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11365 gotplt_value_low = gotplt_value & 0xffff;
11367 /* The PLT sequence is not safe for N64 if .got.plt's address can
11368 not be loaded in two instructions. */
11369 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11370 || ~(gotplt_value | 0x7fffffff) == 0);
11372 /* Install the PLT header. */
11373 loc = htab->root.splt->contents;
11374 if (plt_entry == micromips_o32_exec_plt0_entry)
11376 bfd_vma gotpc_offset;
11377 bfd_vma loc_address;
11380 BFD_ASSERT (gotplt_value % 4 == 0);
11382 loc_address = (htab->root.splt->output_section->vma
11383 + htab->root.splt->output_offset);
11384 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11386 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11387 if (gotpc_offset + 0x1000000 >= 0x2000000)
11390 /* xgettext:c-format */
11391 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11393 htab->root.sgotplt->output_section,
11394 htab->root.splt->output_section,
11395 (long) gotpc_offset);
11396 bfd_set_error (bfd_error_no_error);
11399 bfd_put_16 (output_bfd,
11400 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11401 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11402 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11403 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11405 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11409 bfd_put_16 (output_bfd, plt_entry[0], loc);
11410 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11411 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11412 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11413 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11414 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11415 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11416 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11420 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11421 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11422 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11423 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11424 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11425 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11426 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11427 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11433 /* Install the PLT header for a VxWorks executable and finalize the
11434 contents of .rela.plt.unloaded. */
11437 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11439 Elf_Internal_Rela rela;
11441 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11442 static const bfd_vma *plt_entry;
11443 struct mips_elf_link_hash_table *htab;
11445 htab = mips_elf_hash_table (info);
11446 BFD_ASSERT (htab != NULL);
11448 plt_entry = mips_vxworks_exec_plt0_entry;
11450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11452 + htab->root.hgot->root.u.def.section->output_offset
11453 + htab->root.hgot->root.u.def.value);
11455 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11456 got_value_low = got_value & 0xffff;
11458 /* Calculate the address of the PLT header. */
11459 plt_address = (htab->root.splt->output_section->vma
11460 + htab->root.splt->output_offset);
11462 /* Install the PLT header. */
11463 loc = htab->root.splt->contents;
11464 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11465 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11466 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11467 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11468 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11469 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11471 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11472 loc = htab->srelplt2->contents;
11473 rela.r_offset = plt_address;
11474 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11476 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11477 loc += sizeof (Elf32_External_Rela);
11479 /* Output the relocation for the following addiu of
11480 %lo(_GLOBAL_OFFSET_TABLE_). */
11481 rela.r_offset += 4;
11482 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11483 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11484 loc += sizeof (Elf32_External_Rela);
11486 /* Fix up the remaining relocations. They may have the wrong
11487 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11488 in which symbols were output. */
11489 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11491 Elf_Internal_Rela rel;
11493 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11494 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11496 loc += sizeof (Elf32_External_Rela);
11498 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11499 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11500 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11501 loc += sizeof (Elf32_External_Rela);
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11510 /* Install the PLT header for a VxWorks shared library. */
11513 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11516 struct mips_elf_link_hash_table *htab;
11518 htab = mips_elf_hash_table (info);
11519 BFD_ASSERT (htab != NULL);
11521 /* We just need to copy the entry byte-by-byte. */
11522 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11523 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11524 htab->root.splt->contents + i * 4);
11527 /* Finish up the dynamic sections. */
11530 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11531 struct bfd_link_info *info)
11536 struct mips_got_info *gg, *g;
11537 struct mips_elf_link_hash_table *htab;
11539 htab = mips_elf_hash_table (info);
11540 BFD_ASSERT (htab != NULL);
11542 dynobj = elf_hash_table (info)->dynobj;
11544 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11546 sgot = htab->root.sgot;
11547 gg = htab->got_info;
11549 if (elf_hash_table (info)->dynamic_sections_created)
11552 int dyn_to_skip = 0, dyn_skipped = 0;
11554 BFD_ASSERT (sdyn != NULL);
11555 BFD_ASSERT (gg != NULL);
11557 g = mips_elf_bfd_got (output_bfd, FALSE);
11558 BFD_ASSERT (g != NULL);
11560 for (b = sdyn->contents;
11561 b < sdyn->contents + sdyn->size;
11562 b += MIPS_ELF_DYN_SIZE (dynobj))
11564 Elf_Internal_Dyn dyn;
11568 bfd_boolean swap_out_p;
11570 /* Read in the current dynamic entry. */
11571 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11573 /* Assume that we're going to modify it and write it out. */
11579 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11583 BFD_ASSERT (htab->is_vxworks);
11584 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11588 /* Rewrite DT_STRSZ. */
11590 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11594 s = htab->root.sgot;
11595 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11598 case DT_MIPS_PLTGOT:
11599 s = htab->root.sgotplt;
11600 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11603 case DT_MIPS_RLD_VERSION:
11604 dyn.d_un.d_val = 1; /* XXX */
11607 case DT_MIPS_FLAGS:
11608 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11611 case DT_MIPS_TIME_STAMP:
11615 dyn.d_un.d_val = t;
11619 case DT_MIPS_ICHECKSUM:
11621 swap_out_p = FALSE;
11624 case DT_MIPS_IVERSION:
11626 swap_out_p = FALSE;
11629 case DT_MIPS_BASE_ADDRESS:
11630 s = output_bfd->sections;
11631 BFD_ASSERT (s != NULL);
11632 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11635 case DT_MIPS_LOCAL_GOTNO:
11636 dyn.d_un.d_val = g->local_gotno;
11639 case DT_MIPS_UNREFEXTNO:
11640 /* The index into the dynamic symbol table which is the
11641 entry of the first external symbol that is not
11642 referenced within the same object. */
11643 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11646 case DT_MIPS_GOTSYM:
11647 if (htab->global_gotsym)
11649 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11652 /* In case if we don't have global got symbols we default
11653 to setting DT_MIPS_GOTSYM to the same value as
11654 DT_MIPS_SYMTABNO. */
11655 /* Fall through. */
11657 case DT_MIPS_SYMTABNO:
11659 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11660 s = bfd_get_linker_section (dynobj, name);
11663 dyn.d_un.d_val = s->size / elemsize;
11665 dyn.d_un.d_val = 0;
11668 case DT_MIPS_HIPAGENO:
11669 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11672 case DT_MIPS_RLD_MAP:
11674 struct elf_link_hash_entry *h;
11675 h = mips_elf_hash_table (info)->rld_symbol;
11678 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11679 swap_out_p = FALSE;
11682 s = h->root.u.def.section;
11684 /* The MIPS_RLD_MAP tag stores the absolute address of the
11686 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11687 + h->root.u.def.value);
11691 case DT_MIPS_RLD_MAP_REL:
11693 struct elf_link_hash_entry *h;
11694 bfd_vma dt_addr, rld_addr;
11695 h = mips_elf_hash_table (info)->rld_symbol;
11698 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11699 swap_out_p = FALSE;
11702 s = h->root.u.def.section;
11704 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11705 pointer, relative to the address of the tag. */
11706 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11707 + (b - sdyn->contents));
11708 rld_addr = (s->output_section->vma + s->output_offset
11709 + h->root.u.def.value);
11710 dyn.d_un.d_ptr = rld_addr - dt_addr;
11714 case DT_MIPS_OPTIONS:
11715 s = (bfd_get_section_by_name
11716 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11717 dyn.d_un.d_ptr = s->vma;
11721 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11722 if (htab->is_vxworks)
11723 dyn.d_un.d_val = DT_RELA;
11725 dyn.d_un.d_val = DT_REL;
11729 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11730 dyn.d_un.d_val = htab->root.srelplt->size;
11734 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11735 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11736 + htab->root.srelplt->output_offset);
11740 /* If we didn't need any text relocations after all, delete
11741 the dynamic tag. */
11742 if (!(info->flags & DF_TEXTREL))
11744 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11745 swap_out_p = FALSE;
11750 /* If we didn't need any text relocations after all, clear
11751 DF_TEXTREL from DT_FLAGS. */
11752 if (!(info->flags & DF_TEXTREL))
11753 dyn.d_un.d_val &= ~DF_TEXTREL;
11755 swap_out_p = FALSE;
11759 swap_out_p = FALSE;
11760 if (htab->is_vxworks
11761 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11766 if (swap_out_p || dyn_skipped)
11767 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11768 (dynobj, &dyn, b - dyn_skipped);
11772 dyn_skipped += dyn_to_skip;
11777 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11778 if (dyn_skipped > 0)
11779 memset (b - dyn_skipped, 0, dyn_skipped);
11782 if (sgot != NULL && sgot->size > 0
11783 && !bfd_is_abs_section (sgot->output_section))
11785 if (htab->is_vxworks)
11787 /* The first entry of the global offset table points to the
11788 ".dynamic" section. The second is initialized by the
11789 loader and contains the shared library identifier.
11790 The third is also initialized by the loader and points
11791 to the lazy resolution stub. */
11792 MIPS_ELF_PUT_WORD (output_bfd,
11793 sdyn->output_offset + sdyn->output_section->vma,
11795 MIPS_ELF_PUT_WORD (output_bfd, 0,
11796 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11797 MIPS_ELF_PUT_WORD (output_bfd, 0,
11799 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11803 /* The first entry of the global offset table will be filled at
11804 runtime. The second entry will be used by some runtime loaders.
11805 This isn't the case of IRIX rld. */
11806 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11807 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11808 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11811 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11812 = MIPS_ELF_GOT_SIZE (output_bfd);
11815 /* Generate dynamic relocations for the non-primary gots. */
11816 if (gg != NULL && gg->next)
11818 Elf_Internal_Rela rel[3];
11819 bfd_vma addend = 0;
11821 memset (rel, 0, sizeof (rel));
11822 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11824 for (g = gg->next; g->next != gg; g = g->next)
11826 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11827 + g->next->tls_gotno;
11829 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11830 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11831 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11833 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11835 if (! bfd_link_pic (info))
11838 for (; got_index < g->local_gotno; got_index++)
11840 if (got_index >= g->assigned_low_gotno
11841 && got_index <= g->assigned_high_gotno)
11844 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11845 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11846 if (!(mips_elf_create_dynamic_relocation
11847 (output_bfd, info, rel, NULL,
11848 bfd_abs_section_ptr,
11849 0, &addend, sgot)))
11851 BFD_ASSERT (addend == 0);
11856 /* The generation of dynamic relocations for the non-primary gots
11857 adds more dynamic relocations. We cannot count them until
11860 if (elf_hash_table (info)->dynamic_sections_created)
11863 bfd_boolean swap_out_p;
11865 BFD_ASSERT (sdyn != NULL);
11867 for (b = sdyn->contents;
11868 b < sdyn->contents + sdyn->size;
11869 b += MIPS_ELF_DYN_SIZE (dynobj))
11871 Elf_Internal_Dyn dyn;
11874 /* Read in the current dynamic entry. */
11875 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11877 /* Assume that we're going to modify it and write it out. */
11883 /* Reduce DT_RELSZ to account for any relocations we
11884 decided not to make. This is for the n64 irix rld,
11885 which doesn't seem to apply any relocations if there
11886 are trailing null entries. */
11887 s = mips_elf_rel_dyn_section (info, FALSE);
11888 dyn.d_un.d_val = (s->reloc_count
11889 * (ABI_64_P (output_bfd)
11890 ? sizeof (Elf64_Mips_External_Rel)
11891 : sizeof (Elf32_External_Rel)));
11892 /* Adjust the section size too. Tools like the prelinker
11893 can reasonably expect the values to the same. */
11894 elf_section_data (s->output_section)->this_hdr.sh_size
11899 swap_out_p = FALSE;
11904 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11911 Elf32_compact_rel cpt;
11913 if (SGI_COMPAT (output_bfd))
11915 /* Write .compact_rel section out. */
11916 s = bfd_get_linker_section (dynobj, ".compact_rel");
11920 cpt.num = s->reloc_count;
11922 cpt.offset = (s->output_section->filepos
11923 + sizeof (Elf32_External_compact_rel));
11926 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11927 ((Elf32_External_compact_rel *)
11930 /* Clean up a dummy stub function entry in .text. */
11931 if (htab->sstubs != NULL)
11933 file_ptr dummy_offset;
11935 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11936 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11937 memset (htab->sstubs->contents + dummy_offset, 0,
11938 htab->function_stub_size);
11943 /* The psABI says that the dynamic relocations must be sorted in
11944 increasing order of r_symndx. The VxWorks EABI doesn't require
11945 this, and because the code below handles REL rather than RELA
11946 relocations, using it for VxWorks would be outright harmful. */
11947 if (!htab->is_vxworks)
11949 s = mips_elf_rel_dyn_section (info, FALSE);
11951 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11953 reldyn_sorting_bfd = output_bfd;
11955 if (ABI_64_P (output_bfd))
11956 qsort ((Elf64_External_Rel *) s->contents + 1,
11957 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11958 sort_dynamic_relocs_64);
11960 qsort ((Elf32_External_Rel *) s->contents + 1,
11961 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11962 sort_dynamic_relocs);
11967 if (htab->root.splt && htab->root.splt->size > 0)
11969 if (htab->is_vxworks)
11971 if (bfd_link_pic (info))
11972 mips_vxworks_finish_shared_plt (output_bfd, info);
11974 mips_vxworks_finish_exec_plt (output_bfd, info);
11978 BFD_ASSERT (!bfd_link_pic (info));
11979 if (!mips_finish_exec_plt (output_bfd, info))
11987 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11990 mips_set_isa_flags (bfd *abfd)
11994 switch (bfd_get_mach (abfd))
11997 case bfd_mach_mips3000:
11998 val = E_MIPS_ARCH_1;
12001 case bfd_mach_mips3900:
12002 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12005 case bfd_mach_mips6000:
12006 val = E_MIPS_ARCH_2;
12009 case bfd_mach_mips4000:
12010 case bfd_mach_mips4300:
12011 case bfd_mach_mips4400:
12012 case bfd_mach_mips4600:
12013 val = E_MIPS_ARCH_3;
12016 case bfd_mach_mips4010:
12017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12020 case bfd_mach_mips4100:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12024 case bfd_mach_mips4111:
12025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12028 case bfd_mach_mips4120:
12029 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12032 case bfd_mach_mips4650:
12033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12036 case bfd_mach_mips5400:
12037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12040 case bfd_mach_mips5500:
12041 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12044 case bfd_mach_mips5900:
12045 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12048 case bfd_mach_mips9000:
12049 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12052 case bfd_mach_mips5000:
12053 case bfd_mach_mips7000:
12054 case bfd_mach_mips8000:
12055 case bfd_mach_mips10000:
12056 case bfd_mach_mips12000:
12057 case bfd_mach_mips14000:
12058 case bfd_mach_mips16000:
12059 val = E_MIPS_ARCH_4;
12062 case bfd_mach_mips5:
12063 val = E_MIPS_ARCH_5;
12066 case bfd_mach_mips_loongson_2e:
12067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12070 case bfd_mach_mips_loongson_2f:
12071 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12074 case bfd_mach_mips_sb1:
12075 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12078 case bfd_mach_mips_loongson_3a:
12079 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12082 case bfd_mach_mips_octeon:
12083 case bfd_mach_mips_octeonp:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12087 case bfd_mach_mips_octeon3:
12088 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12091 case bfd_mach_mips_xlr:
12092 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12095 case bfd_mach_mips_octeon2:
12096 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12099 case bfd_mach_mipsisa32:
12100 val = E_MIPS_ARCH_32;
12103 case bfd_mach_mipsisa64:
12104 val = E_MIPS_ARCH_64;
12107 case bfd_mach_mipsisa32r2:
12108 case bfd_mach_mipsisa32r3:
12109 case bfd_mach_mipsisa32r5:
12110 val = E_MIPS_ARCH_32R2;
12113 case bfd_mach_mipsisa64r2:
12114 case bfd_mach_mipsisa64r3:
12115 case bfd_mach_mipsisa64r5:
12116 val = E_MIPS_ARCH_64R2;
12119 case bfd_mach_mipsisa32r6:
12120 val = E_MIPS_ARCH_32R6;
12123 case bfd_mach_mipsisa64r6:
12124 val = E_MIPS_ARCH_64R6;
12127 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12128 elf_elfheader (abfd)->e_flags |= val;
12133 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12134 Don't do so for code sections. We want to keep ordering of HI16/LO16
12135 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12136 relocs to be sorted. */
12139 _bfd_mips_elf_sort_relocs_p (asection *sec)
12141 return (sec->flags & SEC_CODE) == 0;
12145 /* The final processing done just before writing out a MIPS ELF object
12146 file. This gets the MIPS architecture right based on the machine
12147 number. This is used by both the 32-bit and the 64-bit ABI. */
12150 _bfd_mips_elf_final_write_processing (bfd *abfd,
12151 bfd_boolean linker ATTRIBUTE_UNUSED)
12154 Elf_Internal_Shdr **hdrpp;
12158 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12159 is nonzero. This is for compatibility with old objects, which used
12160 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12161 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12162 mips_set_isa_flags (abfd);
12164 /* Set the sh_info field for .gptab sections and other appropriate
12165 info for each special section. */
12166 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12167 i < elf_numsections (abfd);
12170 switch ((*hdrpp)->sh_type)
12172 case SHT_MIPS_MSYM:
12173 case SHT_MIPS_LIBLIST:
12174 sec = bfd_get_section_by_name (abfd, ".dynstr");
12176 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12179 case SHT_MIPS_GPTAB:
12180 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12181 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12182 BFD_ASSERT (name != NULL
12183 && CONST_STRNEQ (name, ".gptab."));
12184 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12185 BFD_ASSERT (sec != NULL);
12186 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12189 case SHT_MIPS_CONTENT:
12190 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12191 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12192 BFD_ASSERT (name != NULL
12193 && CONST_STRNEQ (name, ".MIPS.content"));
12194 sec = bfd_get_section_by_name (abfd,
12195 name + sizeof ".MIPS.content" - 1);
12196 BFD_ASSERT (sec != NULL);
12197 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12200 case SHT_MIPS_SYMBOL_LIB:
12201 sec = bfd_get_section_by_name (abfd, ".dynsym");
12203 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12204 sec = bfd_get_section_by_name (abfd, ".liblist");
12206 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12209 case SHT_MIPS_EVENTS:
12210 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12211 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12212 BFD_ASSERT (name != NULL);
12213 if (CONST_STRNEQ (name, ".MIPS.events"))
12214 sec = bfd_get_section_by_name (abfd,
12215 name + sizeof ".MIPS.events" - 1);
12218 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12219 sec = bfd_get_section_by_name (abfd,
12221 + sizeof ".MIPS.post_rel" - 1));
12223 BFD_ASSERT (sec != NULL);
12224 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12231 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12235 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12236 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12241 /* See if we need a PT_MIPS_REGINFO segment. */
12242 s = bfd_get_section_by_name (abfd, ".reginfo");
12243 if (s && (s->flags & SEC_LOAD))
12246 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12247 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12250 /* See if we need a PT_MIPS_OPTIONS segment. */
12251 if (IRIX_COMPAT (abfd) == ict_irix6
12252 && bfd_get_section_by_name (abfd,
12253 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12256 /* See if we need a PT_MIPS_RTPROC segment. */
12257 if (IRIX_COMPAT (abfd) == ict_irix5
12258 && bfd_get_section_by_name (abfd, ".dynamic")
12259 && bfd_get_section_by_name (abfd, ".mdebug"))
12262 /* Allocate a PT_NULL header in dynamic objects. See
12263 _bfd_mips_elf_modify_segment_map for details. */
12264 if (!SGI_COMPAT (abfd)
12265 && bfd_get_section_by_name (abfd, ".dynamic"))
12271 /* Modify the segment map for an IRIX5 executable. */
12274 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12275 struct bfd_link_info *info)
12278 struct elf_segment_map *m, **pm;
12281 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12283 s = bfd_get_section_by_name (abfd, ".reginfo");
12284 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12286 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12287 if (m->p_type == PT_MIPS_REGINFO)
12292 m = bfd_zalloc (abfd, amt);
12296 m->p_type = PT_MIPS_REGINFO;
12298 m->sections[0] = s;
12300 /* We want to put it after the PHDR and INTERP segments. */
12301 pm = &elf_seg_map (abfd);
12303 && ((*pm)->p_type == PT_PHDR
12304 || (*pm)->p_type == PT_INTERP))
12312 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12314 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12315 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12317 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12318 if (m->p_type == PT_MIPS_ABIFLAGS)
12323 m = bfd_zalloc (abfd, amt);
12327 m->p_type = PT_MIPS_ABIFLAGS;
12329 m->sections[0] = s;
12331 /* We want to put it after the PHDR and INTERP segments. */
12332 pm = &elf_seg_map (abfd);
12334 && ((*pm)->p_type == PT_PHDR
12335 || (*pm)->p_type == PT_INTERP))
12343 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12344 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12345 PT_MIPS_OPTIONS segment immediately following the program header
12347 if (NEWABI_P (abfd)
12348 /* On non-IRIX6 new abi, we'll have already created a segment
12349 for this section, so don't create another. I'm not sure this
12350 is not also the case for IRIX 6, but I can't test it right
12352 && IRIX_COMPAT (abfd) == ict_irix6)
12354 for (s = abfd->sections; s; s = s->next)
12355 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12360 struct elf_segment_map *options_segment;
12362 pm = &elf_seg_map (abfd);
12364 && ((*pm)->p_type == PT_PHDR
12365 || (*pm)->p_type == PT_INTERP))
12368 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12370 amt = sizeof (struct elf_segment_map);
12371 options_segment = bfd_zalloc (abfd, amt);
12372 options_segment->next = *pm;
12373 options_segment->p_type = PT_MIPS_OPTIONS;
12374 options_segment->p_flags = PF_R;
12375 options_segment->p_flags_valid = TRUE;
12376 options_segment->count = 1;
12377 options_segment->sections[0] = s;
12378 *pm = options_segment;
12384 if (IRIX_COMPAT (abfd) == ict_irix5)
12386 /* If there are .dynamic and .mdebug sections, we make a room
12387 for the RTPROC header. FIXME: Rewrite without section names. */
12388 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12389 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12390 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12392 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12393 if (m->p_type == PT_MIPS_RTPROC)
12398 m = bfd_zalloc (abfd, amt);
12402 m->p_type = PT_MIPS_RTPROC;
12404 s = bfd_get_section_by_name (abfd, ".rtproc");
12409 m->p_flags_valid = 1;
12414 m->sections[0] = s;
12417 /* We want to put it after the DYNAMIC segment. */
12418 pm = &elf_seg_map (abfd);
12419 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12429 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12430 .dynstr, .dynsym, and .hash sections, and everything in
12432 for (pm = &elf_seg_map (abfd); *pm != NULL;
12434 if ((*pm)->p_type == PT_DYNAMIC)
12437 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12438 glibc's dynamic linker has traditionally derived the number of
12439 tags from the p_filesz field, and sometimes allocates stack
12440 arrays of that size. An overly-big PT_DYNAMIC segment can
12441 be actively harmful in such cases. Making PT_DYNAMIC contain
12442 other sections can also make life hard for the prelinker,
12443 which might move one of the other sections to a different
12444 PT_LOAD segment. */
12445 if (SGI_COMPAT (abfd)
12448 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12450 static const char *sec_names[] =
12452 ".dynamic", ".dynstr", ".dynsym", ".hash"
12456 struct elf_segment_map *n;
12458 low = ~(bfd_vma) 0;
12460 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12462 s = bfd_get_section_by_name (abfd, sec_names[i]);
12463 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12470 if (high < s->vma + sz)
12471 high = s->vma + sz;
12476 for (s = abfd->sections; s != NULL; s = s->next)
12477 if ((s->flags & SEC_LOAD) != 0
12479 && s->vma + s->size <= high)
12482 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12483 n = bfd_zalloc (abfd, amt);
12490 for (s = abfd->sections; s != NULL; s = s->next)
12492 if ((s->flags & SEC_LOAD) != 0
12494 && s->vma + s->size <= high)
12496 n->sections[i] = s;
12505 /* Allocate a spare program header in dynamic objects so that tools
12506 like the prelinker can add an extra PT_LOAD entry.
12508 If the prelinker needs to make room for a new PT_LOAD entry, its
12509 standard procedure is to move the first (read-only) sections into
12510 the new (writable) segment. However, the MIPS ABI requires
12511 .dynamic to be in a read-only segment, and the section will often
12512 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12514 Although the prelinker could in principle move .dynamic to a
12515 writable segment, it seems better to allocate a spare program
12516 header instead, and avoid the need to move any sections.
12517 There is a long tradition of allocating spare dynamic tags,
12518 so allocating a spare program header seems like a natural
12521 If INFO is NULL, we may be copying an already prelinked binary
12522 with objcopy or strip, so do not add this header. */
12524 && !SGI_COMPAT (abfd)
12525 && bfd_get_section_by_name (abfd, ".dynamic"))
12527 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12528 if ((*pm)->p_type == PT_NULL)
12532 m = bfd_zalloc (abfd, sizeof (*m));
12536 m->p_type = PT_NULL;
12544 /* Return the section that should be marked against GC for a given
12548 _bfd_mips_elf_gc_mark_hook (asection *sec,
12549 struct bfd_link_info *info,
12550 Elf_Internal_Rela *rel,
12551 struct elf_link_hash_entry *h,
12552 Elf_Internal_Sym *sym)
12554 /* ??? Do mips16 stub sections need to be handled special? */
12557 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12559 case R_MIPS_GNU_VTINHERIT:
12560 case R_MIPS_GNU_VTENTRY:
12564 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12567 /* Update the got entry reference counts for the section being removed. */
12570 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12571 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12572 asection *sec ATTRIBUTE_UNUSED,
12573 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12576 Elf_Internal_Shdr *symtab_hdr;
12577 struct elf_link_hash_entry **sym_hashes;
12578 bfd_signed_vma *local_got_refcounts;
12579 const Elf_Internal_Rela *rel, *relend;
12580 unsigned long r_symndx;
12581 struct elf_link_hash_entry *h;
12583 if (bfd_link_relocatable (info))
12586 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12587 sym_hashes = elf_sym_hashes (abfd);
12588 local_got_refcounts = elf_local_got_refcounts (abfd);
12590 relend = relocs + sec->reloc_count;
12591 for (rel = relocs; rel < relend; rel++)
12592 switch (ELF_R_TYPE (abfd, rel->r_info))
12594 case R_MIPS16_GOT16:
12595 case R_MIPS16_CALL16:
12597 case R_MIPS_CALL16:
12598 case R_MIPS_CALL_HI16:
12599 case R_MIPS_CALL_LO16:
12600 case R_MIPS_GOT_HI16:
12601 case R_MIPS_GOT_LO16:
12602 case R_MIPS_GOT_DISP:
12603 case R_MIPS_GOT_PAGE:
12604 case R_MIPS_GOT_OFST:
12605 case R_MICROMIPS_GOT16:
12606 case R_MICROMIPS_CALL16:
12607 case R_MICROMIPS_CALL_HI16:
12608 case R_MICROMIPS_CALL_LO16:
12609 case R_MICROMIPS_GOT_HI16:
12610 case R_MICROMIPS_GOT_LO16:
12611 case R_MICROMIPS_GOT_DISP:
12612 case R_MICROMIPS_GOT_PAGE:
12613 case R_MICROMIPS_GOT_OFST:
12614 /* ??? It would seem that the existing MIPS code does no sort
12615 of reference counting or whatnot on its GOT and PLT entries,
12616 so it is not possible to garbage collect them at this time. */
12627 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12630 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12631 elf_gc_mark_hook_fn gc_mark_hook)
12635 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12637 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12641 if (! is_mips_elf (sub))
12644 for (o = sub->sections; o != NULL; o = o->next)
12646 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12647 (bfd_get_section_name (sub, o)))
12649 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12657 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12658 hiding the old indirect symbol. Process additional relocation
12659 information. Also called for weakdefs, in which case we just let
12660 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12663 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12664 struct elf_link_hash_entry *dir,
12665 struct elf_link_hash_entry *ind)
12667 struct mips_elf_link_hash_entry *dirmips, *indmips;
12669 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12671 dirmips = (struct mips_elf_link_hash_entry *) dir;
12672 indmips = (struct mips_elf_link_hash_entry *) ind;
12673 /* Any absolute non-dynamic relocations against an indirect or weak
12674 definition will be against the target symbol. */
12675 if (indmips->has_static_relocs)
12676 dirmips->has_static_relocs = TRUE;
12678 if (ind->root.type != bfd_link_hash_indirect)
12681 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12682 if (indmips->readonly_reloc)
12683 dirmips->readonly_reloc = TRUE;
12684 if (indmips->no_fn_stub)
12685 dirmips->no_fn_stub = TRUE;
12686 if (indmips->fn_stub)
12688 dirmips->fn_stub = indmips->fn_stub;
12689 indmips->fn_stub = NULL;
12691 if (indmips->need_fn_stub)
12693 dirmips->need_fn_stub = TRUE;
12694 indmips->need_fn_stub = FALSE;
12696 if (indmips->call_stub)
12698 dirmips->call_stub = indmips->call_stub;
12699 indmips->call_stub = NULL;
12701 if (indmips->call_fp_stub)
12703 dirmips->call_fp_stub = indmips->call_fp_stub;
12704 indmips->call_fp_stub = NULL;
12706 if (indmips->global_got_area < dirmips->global_got_area)
12707 dirmips->global_got_area = indmips->global_got_area;
12708 if (indmips->global_got_area < GGA_NONE)
12709 indmips->global_got_area = GGA_NONE;
12710 if (indmips->has_nonpic_branches)
12711 dirmips->has_nonpic_branches = TRUE;
12714 #define PDR_SIZE 32
12717 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12718 struct bfd_link_info *info)
12721 bfd_boolean ret = FALSE;
12722 unsigned char *tdata;
12725 o = bfd_get_section_by_name (abfd, ".pdr");
12730 if (o->size % PDR_SIZE != 0)
12732 if (o->output_section != NULL
12733 && bfd_is_abs_section (o->output_section))
12736 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12740 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12741 info->keep_memory);
12748 cookie->rel = cookie->rels;
12749 cookie->relend = cookie->rels + o->reloc_count;
12751 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12753 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12762 mips_elf_section_data (o)->u.tdata = tdata;
12763 if (o->rawsize == 0)
12764 o->rawsize = o->size;
12765 o->size -= skip * PDR_SIZE;
12771 if (! info->keep_memory)
12772 free (cookie->rels);
12778 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12780 if (strcmp (sec->name, ".pdr") == 0)
12786 _bfd_mips_elf_write_section (bfd *output_bfd,
12787 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12788 asection *sec, bfd_byte *contents)
12790 bfd_byte *to, *from, *end;
12793 if (strcmp (sec->name, ".pdr") != 0)
12796 if (mips_elf_section_data (sec)->u.tdata == NULL)
12800 end = contents + sec->size;
12801 for (from = contents, i = 0;
12803 from += PDR_SIZE, i++)
12805 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12808 memcpy (to, from, PDR_SIZE);
12811 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12812 sec->output_offset, sec->size);
12816 /* microMIPS code retains local labels for linker relaxation. Omit them
12817 from output by default for clarity. */
12820 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12822 return _bfd_elf_is_local_label_name (abfd, sym->name);
12825 /* MIPS ELF uses a special find_nearest_line routine in order the
12826 handle the ECOFF debugging information. */
12828 struct mips_elf_find_line
12830 struct ecoff_debug_info d;
12831 struct ecoff_find_line i;
12835 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12836 asection *section, bfd_vma offset,
12837 const char **filename_ptr,
12838 const char **functionname_ptr,
12839 unsigned int *line_ptr,
12840 unsigned int *discriminator_ptr)
12844 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12845 filename_ptr, functionname_ptr,
12846 line_ptr, discriminator_ptr,
12847 dwarf_debug_sections,
12848 ABI_64_P (abfd) ? 8 : 0,
12849 &elf_tdata (abfd)->dwarf2_find_line_info))
12852 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12853 filename_ptr, functionname_ptr,
12857 msec = bfd_get_section_by_name (abfd, ".mdebug");
12860 flagword origflags;
12861 struct mips_elf_find_line *fi;
12862 const struct ecoff_debug_swap * const swap =
12863 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12865 /* If we are called during a link, mips_elf_final_link may have
12866 cleared the SEC_HAS_CONTENTS field. We force it back on here
12867 if appropriate (which it normally will be). */
12868 origflags = msec->flags;
12869 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12870 msec->flags |= SEC_HAS_CONTENTS;
12872 fi = mips_elf_tdata (abfd)->find_line_info;
12875 bfd_size_type external_fdr_size;
12878 struct fdr *fdr_ptr;
12879 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12881 fi = bfd_zalloc (abfd, amt);
12884 msec->flags = origflags;
12888 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12890 msec->flags = origflags;
12894 /* Swap in the FDR information. */
12895 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12896 fi->d.fdr = bfd_alloc (abfd, amt);
12897 if (fi->d.fdr == NULL)
12899 msec->flags = origflags;
12902 external_fdr_size = swap->external_fdr_size;
12903 fdr_ptr = fi->d.fdr;
12904 fraw_src = (char *) fi->d.external_fdr;
12905 fraw_end = (fraw_src
12906 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12907 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12908 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12910 mips_elf_tdata (abfd)->find_line_info = fi;
12912 /* Note that we don't bother to ever free this information.
12913 find_nearest_line is either called all the time, as in
12914 objdump -l, so the information should be saved, or it is
12915 rarely called, as in ld error messages, so the memory
12916 wasted is unimportant. Still, it would probably be a
12917 good idea for free_cached_info to throw it away. */
12920 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12921 &fi->i, filename_ptr, functionname_ptr,
12924 msec->flags = origflags;
12928 msec->flags = origflags;
12931 /* Fall back on the generic ELF find_nearest_line routine. */
12933 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12934 filename_ptr, functionname_ptr,
12935 line_ptr, discriminator_ptr);
12939 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12940 const char **filename_ptr,
12941 const char **functionname_ptr,
12942 unsigned int *line_ptr)
12945 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12946 functionname_ptr, line_ptr,
12947 & elf_tdata (abfd)->dwarf2_find_line_info);
12952 /* When are writing out the .options or .MIPS.options section,
12953 remember the bytes we are writing out, so that we can install the
12954 GP value in the section_processing routine. */
12957 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12958 const void *location,
12959 file_ptr offset, bfd_size_type count)
12961 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12965 if (elf_section_data (section) == NULL)
12967 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12968 section->used_by_bfd = bfd_zalloc (abfd, amt);
12969 if (elf_section_data (section) == NULL)
12972 c = mips_elf_section_data (section)->u.tdata;
12975 c = bfd_zalloc (abfd, section->size);
12978 mips_elf_section_data (section)->u.tdata = c;
12981 memcpy (c + offset, location, count);
12984 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12988 /* This is almost identical to bfd_generic_get_... except that some
12989 MIPS relocations need to be handled specially. Sigh. */
12992 _bfd_elf_mips_get_relocated_section_contents
12994 struct bfd_link_info *link_info,
12995 struct bfd_link_order *link_order,
12997 bfd_boolean relocatable,
13000 /* Get enough memory to hold the stuff */
13001 bfd *input_bfd = link_order->u.indirect.section->owner;
13002 asection *input_section = link_order->u.indirect.section;
13005 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13006 arelent **reloc_vector = NULL;
13009 if (reloc_size < 0)
13012 reloc_vector = bfd_malloc (reloc_size);
13013 if (reloc_vector == NULL && reloc_size != 0)
13016 /* read in the section */
13017 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13018 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13021 reloc_count = bfd_canonicalize_reloc (input_bfd,
13025 if (reloc_count < 0)
13028 if (reloc_count > 0)
13033 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13036 struct bfd_hash_entry *h;
13037 struct bfd_link_hash_entry *lh;
13038 /* Skip all this stuff if we aren't mixing formats. */
13039 if (abfd && input_bfd
13040 && abfd->xvec == input_bfd->xvec)
13044 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13045 lh = (struct bfd_link_hash_entry *) h;
13052 case bfd_link_hash_undefined:
13053 case bfd_link_hash_undefweak:
13054 case bfd_link_hash_common:
13057 case bfd_link_hash_defined:
13058 case bfd_link_hash_defweak:
13060 gp = lh->u.def.value;
13062 case bfd_link_hash_indirect:
13063 case bfd_link_hash_warning:
13065 /* @@FIXME ignoring warning for now */
13067 case bfd_link_hash_new:
13076 for (parent = reloc_vector; *parent != NULL; parent++)
13078 char *error_message = NULL;
13079 bfd_reloc_status_type r;
13081 /* Specific to MIPS: Deal with relocation types that require
13082 knowing the gp of the output bfd. */
13083 asymbol *sym = *(*parent)->sym_ptr_ptr;
13085 /* If we've managed to find the gp and have a special
13086 function for the relocation then go ahead, else default
13087 to the generic handling. */
13089 && (*parent)->howto->special_function
13090 == _bfd_mips_elf32_gprel16_reloc)
13091 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13092 input_section, relocatable,
13095 r = bfd_perform_relocation (input_bfd, *parent, data,
13097 relocatable ? abfd : NULL,
13102 asection *os = input_section->output_section;
13104 /* A partial link, so keep the relocs */
13105 os->orelocation[os->reloc_count] = *parent;
13109 if (r != bfd_reloc_ok)
13113 case bfd_reloc_undefined:
13114 (*link_info->callbacks->undefined_symbol)
13115 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13116 input_bfd, input_section, (*parent)->address, TRUE);
13118 case bfd_reloc_dangerous:
13119 BFD_ASSERT (error_message != NULL);
13120 (*link_info->callbacks->reloc_dangerous)
13121 (link_info, error_message,
13122 input_bfd, input_section, (*parent)->address);
13124 case bfd_reloc_overflow:
13125 (*link_info->callbacks->reloc_overflow)
13127 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13128 (*parent)->howto->name, (*parent)->addend,
13129 input_bfd, input_section, (*parent)->address);
13131 case bfd_reloc_outofrange:
13140 if (reloc_vector != NULL)
13141 free (reloc_vector);
13145 if (reloc_vector != NULL)
13146 free (reloc_vector);
13151 mips_elf_relax_delete_bytes (bfd *abfd,
13152 asection *sec, bfd_vma addr, int count)
13154 Elf_Internal_Shdr *symtab_hdr;
13155 unsigned int sec_shndx;
13156 bfd_byte *contents;
13157 Elf_Internal_Rela *irel, *irelend;
13158 Elf_Internal_Sym *isym;
13159 Elf_Internal_Sym *isymend;
13160 struct elf_link_hash_entry **sym_hashes;
13161 struct elf_link_hash_entry **end_hashes;
13162 struct elf_link_hash_entry **start_hashes;
13163 unsigned int symcount;
13165 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13166 contents = elf_section_data (sec)->this_hdr.contents;
13168 irel = elf_section_data (sec)->relocs;
13169 irelend = irel + sec->reloc_count;
13171 /* Actually delete the bytes. */
13172 memmove (contents + addr, contents + addr + count,
13173 (size_t) (sec->size - addr - count));
13174 sec->size -= count;
13176 /* Adjust all the relocs. */
13177 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13179 /* Get the new reloc address. */
13180 if (irel->r_offset > addr)
13181 irel->r_offset -= count;
13184 BFD_ASSERT (addr % 2 == 0);
13185 BFD_ASSERT (count % 2 == 0);
13187 /* Adjust the local symbols defined in this section. */
13188 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13189 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13190 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13191 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13192 isym->st_value -= count;
13194 /* Now adjust the global symbols defined in this section. */
13195 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13196 - symtab_hdr->sh_info);
13197 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13198 end_hashes = sym_hashes + symcount;
13200 for (; sym_hashes < end_hashes; sym_hashes++)
13202 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13204 if ((sym_hash->root.type == bfd_link_hash_defined
13205 || sym_hash->root.type == bfd_link_hash_defweak)
13206 && sym_hash->root.u.def.section == sec)
13208 bfd_vma value = sym_hash->root.u.def.value;
13210 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13211 value &= MINUS_TWO;
13213 sym_hash->root.u.def.value -= count;
13221 /* Opcodes needed for microMIPS relaxation as found in
13222 opcodes/micromips-opc.c. */
13224 struct opcode_descriptor {
13225 unsigned long match;
13226 unsigned long mask;
13229 /* The $ra register aka $31. */
13233 /* 32-bit instruction format register fields. */
13235 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13236 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13238 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13240 #define OP16_VALID_REG(r) \
13241 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13244 /* 32-bit and 16-bit branches. */
13246 static const struct opcode_descriptor b_insns_32[] = {
13247 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13248 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13249 { 0, 0 } /* End marker for find_match(). */
13252 static const struct opcode_descriptor bc_insn_32 =
13253 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13255 static const struct opcode_descriptor bz_insn_32 =
13256 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13258 static const struct opcode_descriptor bzal_insn_32 =
13259 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13261 static const struct opcode_descriptor beq_insn_32 =
13262 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13264 static const struct opcode_descriptor b_insn_16 =
13265 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13267 static const struct opcode_descriptor bz_insn_16 =
13268 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13271 /* 32-bit and 16-bit branch EQ and NE zero. */
13273 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13274 eq and second the ne. This convention is used when replacing a
13275 32-bit BEQ/BNE with the 16-bit version. */
13277 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13279 static const struct opcode_descriptor bz_rs_insns_32[] = {
13280 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13281 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13282 { 0, 0 } /* End marker for find_match(). */
13285 static const struct opcode_descriptor bz_rt_insns_32[] = {
13286 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13287 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13288 { 0, 0 } /* End marker for find_match(). */
13291 static const struct opcode_descriptor bzc_insns_32[] = {
13292 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13293 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13294 { 0, 0 } /* End marker for find_match(). */
13297 static const struct opcode_descriptor bz_insns_16[] = {
13298 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13299 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13300 { 0, 0 } /* End marker for find_match(). */
13303 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13305 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13306 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13309 /* 32-bit instructions with a delay slot. */
13311 static const struct opcode_descriptor jal_insn_32_bd16 =
13312 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13314 static const struct opcode_descriptor jal_insn_32_bd32 =
13315 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13317 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13318 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13320 static const struct opcode_descriptor j_insn_32 =
13321 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13323 static const struct opcode_descriptor jalr_insn_32 =
13324 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13326 /* This table can be compacted, because no opcode replacement is made. */
13328 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13329 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13331 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13332 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13334 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13335 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13336 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13337 { 0, 0 } /* End marker for find_match(). */
13340 /* This table can be compacted, because no opcode replacement is made. */
13342 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13343 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13345 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13346 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13347 { 0, 0 } /* End marker for find_match(). */
13351 /* 16-bit instructions with a delay slot. */
13353 static const struct opcode_descriptor jalr_insn_16_bd16 =
13354 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13356 static const struct opcode_descriptor jalr_insn_16_bd32 =
13357 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13359 static const struct opcode_descriptor jr_insn_16 =
13360 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13362 #define JR16_REG(opcode) ((opcode) & 0x1f)
13364 /* This table can be compacted, because no opcode replacement is made. */
13366 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13367 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13369 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13370 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13371 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13372 { 0, 0 } /* End marker for find_match(). */
13376 /* LUI instruction. */
13378 static const struct opcode_descriptor lui_insn =
13379 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13382 /* ADDIU instruction. */
13384 static const struct opcode_descriptor addiu_insn =
13385 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13387 static const struct opcode_descriptor addiupc_insn =
13388 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13390 #define ADDIUPC_REG_FIELD(r) \
13391 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13394 /* Relaxable instructions in a JAL delay slot: MOVE. */
13396 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13397 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13398 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13399 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13401 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13402 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13404 static const struct opcode_descriptor move_insns_32[] = {
13405 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13406 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13407 { 0, 0 } /* End marker for find_match(). */
13410 static const struct opcode_descriptor move_insn_16 =
13411 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13414 /* NOP instructions. */
13416 static const struct opcode_descriptor nop_insn_32 =
13417 { /* "nop", "", */ 0x00000000, 0xffffffff };
13419 static const struct opcode_descriptor nop_insn_16 =
13420 { /* "nop", "", */ 0x0c00, 0xffff };
13423 /* Instruction match support. */
13425 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13428 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13430 unsigned long indx;
13432 for (indx = 0; insn[indx].mask != 0; indx++)
13433 if (MATCH (opcode, insn[indx]))
13440 /* Branch and delay slot decoding support. */
13442 /* If PTR points to what *might* be a 16-bit branch or jump, then
13443 return the minimum length of its delay slot, otherwise return 0.
13444 Non-zero results are not definitive as we might be checking against
13445 the second half of another instruction. */
13448 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13450 unsigned long opcode;
13453 opcode = bfd_get_16 (abfd, ptr);
13454 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13455 /* 16-bit branch/jump with a 32-bit delay slot. */
13457 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13458 || find_match (opcode, ds_insns_16_bd16) >= 0)
13459 /* 16-bit branch/jump with a 16-bit delay slot. */
13462 /* No delay slot. */
13468 /* If PTR points to what *might* be a 32-bit branch or jump, then
13469 return the minimum length of its delay slot, otherwise return 0.
13470 Non-zero results are not definitive as we might be checking against
13471 the second half of another instruction. */
13474 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13476 unsigned long opcode;
13479 opcode = bfd_get_micromips_32 (abfd, ptr);
13480 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13481 /* 32-bit branch/jump with a 32-bit delay slot. */
13483 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13484 /* 32-bit branch/jump with a 16-bit delay slot. */
13487 /* No delay slot. */
13493 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13494 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13497 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13499 unsigned long opcode;
13501 opcode = bfd_get_16 (abfd, ptr);
13502 if (MATCH (opcode, b_insn_16)
13504 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13506 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13507 /* BEQZ16, BNEZ16 */
13508 || (MATCH (opcode, jalr_insn_16_bd32)
13510 && reg != JR16_REG (opcode) && reg != RA))
13516 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13517 then return TRUE, otherwise FALSE. */
13520 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13522 unsigned long opcode;
13524 opcode = bfd_get_micromips_32 (abfd, ptr);
13525 if (MATCH (opcode, j_insn_32)
13527 || MATCH (opcode, bc_insn_32)
13528 /* BC1F, BC1T, BC2F, BC2T */
13529 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13531 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13532 /* BGEZ, BGTZ, BLEZ, BLTZ */
13533 || (MATCH (opcode, bzal_insn_32)
13534 /* BGEZAL, BLTZAL */
13535 && reg != OP32_SREG (opcode) && reg != RA)
13536 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13537 /* JALR, JALR.HB, BEQ, BNE */
13538 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13544 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13545 IRELEND) at OFFSET indicate that there must be a compact branch there,
13546 then return TRUE, otherwise FALSE. */
13549 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13550 const Elf_Internal_Rela *internal_relocs,
13551 const Elf_Internal_Rela *irelend)
13553 const Elf_Internal_Rela *irel;
13554 unsigned long opcode;
13556 opcode = bfd_get_micromips_32 (abfd, ptr);
13557 if (find_match (opcode, bzc_insns_32) < 0)
13560 for (irel = internal_relocs; irel < irelend; irel++)
13561 if (irel->r_offset == offset
13562 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13568 /* Bitsize checking. */
13569 #define IS_BITSIZE(val, N) \
13570 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13571 - (1ULL << ((N) - 1))) == (val))
13575 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13576 struct bfd_link_info *link_info,
13577 bfd_boolean *again)
13579 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13580 Elf_Internal_Shdr *symtab_hdr;
13581 Elf_Internal_Rela *internal_relocs;
13582 Elf_Internal_Rela *irel, *irelend;
13583 bfd_byte *contents = NULL;
13584 Elf_Internal_Sym *isymbuf = NULL;
13586 /* Assume nothing changes. */
13589 /* We don't have to do anything for a relocatable link, if
13590 this section does not have relocs, or if this is not a
13593 if (bfd_link_relocatable (link_info)
13594 || (sec->flags & SEC_RELOC) == 0
13595 || sec->reloc_count == 0
13596 || (sec->flags & SEC_CODE) == 0)
13599 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13601 /* Get a copy of the native relocations. */
13602 internal_relocs = (_bfd_elf_link_read_relocs
13603 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13604 link_info->keep_memory));
13605 if (internal_relocs == NULL)
13608 /* Walk through them looking for relaxing opportunities. */
13609 irelend = internal_relocs + sec->reloc_count;
13610 for (irel = internal_relocs; irel < irelend; irel++)
13612 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13613 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13614 bfd_boolean target_is_micromips_code_p;
13615 unsigned long opcode;
13621 /* The number of bytes to delete for relaxation and from where
13622 to delete these bytes starting at irel->r_offset. */
13626 /* If this isn't something that can be relaxed, then ignore
13628 if (r_type != R_MICROMIPS_HI16
13629 && r_type != R_MICROMIPS_PC16_S1
13630 && r_type != R_MICROMIPS_26_S1)
13633 /* Get the section contents if we haven't done so already. */
13634 if (contents == NULL)
13636 /* Get cached copy if it exists. */
13637 if (elf_section_data (sec)->this_hdr.contents != NULL)
13638 contents = elf_section_data (sec)->this_hdr.contents;
13639 /* Go get them off disk. */
13640 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13643 ptr = contents + irel->r_offset;
13645 /* Read this BFD's local symbols if we haven't done so already. */
13646 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13648 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13649 if (isymbuf == NULL)
13650 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13651 symtab_hdr->sh_info, 0,
13653 if (isymbuf == NULL)
13657 /* Get the value of the symbol referred to by the reloc. */
13658 if (r_symndx < symtab_hdr->sh_info)
13660 /* A local symbol. */
13661 Elf_Internal_Sym *isym;
13664 isym = isymbuf + r_symndx;
13665 if (isym->st_shndx == SHN_UNDEF)
13666 sym_sec = bfd_und_section_ptr;
13667 else if (isym->st_shndx == SHN_ABS)
13668 sym_sec = bfd_abs_section_ptr;
13669 else if (isym->st_shndx == SHN_COMMON)
13670 sym_sec = bfd_com_section_ptr;
13672 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13673 symval = (isym->st_value
13674 + sym_sec->output_section->vma
13675 + sym_sec->output_offset);
13676 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13680 unsigned long indx;
13681 struct elf_link_hash_entry *h;
13683 /* An external symbol. */
13684 indx = r_symndx - symtab_hdr->sh_info;
13685 h = elf_sym_hashes (abfd)[indx];
13686 BFD_ASSERT (h != NULL);
13688 if (h->root.type != bfd_link_hash_defined
13689 && h->root.type != bfd_link_hash_defweak)
13690 /* This appears to be a reference to an undefined
13691 symbol. Just ignore it -- it will be caught by the
13692 regular reloc processing. */
13695 symval = (h->root.u.def.value
13696 + h->root.u.def.section->output_section->vma
13697 + h->root.u.def.section->output_offset);
13698 target_is_micromips_code_p = (!h->needs_plt
13699 && ELF_ST_IS_MICROMIPS (h->other));
13703 /* For simplicity of coding, we are going to modify the
13704 section contents, the section relocs, and the BFD symbol
13705 table. We must tell the rest of the code not to free up this
13706 information. It would be possible to instead create a table
13707 of changes which have to be made, as is done in coff-mips.c;
13708 that would be more work, but would require less memory when
13709 the linker is run. */
13711 /* Only 32-bit instructions relaxed. */
13712 if (irel->r_offset + 4 > sec->size)
13715 opcode = bfd_get_micromips_32 (abfd, ptr);
13717 /* This is the pc-relative distance from the instruction the
13718 relocation is applied to, to the symbol referred. */
13720 - (sec->output_section->vma + sec->output_offset)
13723 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13724 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13725 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13727 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13729 where pcrval has first to be adjusted to apply against the LO16
13730 location (we make the adjustment later on, when we have figured
13731 out the offset). */
13732 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13734 bfd_boolean bzc = FALSE;
13735 unsigned long nextopc;
13739 /* Give up if the previous reloc was a HI16 against this symbol
13741 if (irel > internal_relocs
13742 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13743 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13746 /* Or if the next reloc is not a LO16 against this symbol. */
13747 if (irel + 1 >= irelend
13748 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13749 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13752 /* Or if the second next reloc is a LO16 against this symbol too. */
13753 if (irel + 2 >= irelend
13754 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13755 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13758 /* See if the LUI instruction *might* be in a branch delay slot.
13759 We check whether what looks like a 16-bit branch or jump is
13760 actually an immediate argument to a compact branch, and let
13761 it through if so. */
13762 if (irel->r_offset >= 2
13763 && check_br16_dslot (abfd, ptr - 2)
13764 && !(irel->r_offset >= 4
13765 && (bzc = check_relocated_bzc (abfd,
13766 ptr - 4, irel->r_offset - 4,
13767 internal_relocs, irelend))))
13769 if (irel->r_offset >= 4
13771 && check_br32_dslot (abfd, ptr - 4))
13774 reg = OP32_SREG (opcode);
13776 /* We only relax adjacent instructions or ones separated with
13777 a branch or jump that has a delay slot. The branch or jump
13778 must not fiddle with the register used to hold the address.
13779 Subtract 4 for the LUI itself. */
13780 offset = irel[1].r_offset - irel[0].r_offset;
13781 switch (offset - 4)
13786 if (check_br16 (abfd, ptr + 4, reg))
13790 if (check_br32 (abfd, ptr + 4, reg))
13797 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13799 /* Give up unless the same register is used with both
13801 if (OP32_SREG (nextopc) != reg)
13804 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13805 and rounding up to take masking of the two LSBs into account. */
13806 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13808 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13809 if (IS_BITSIZE (symval, 16))
13811 /* Fix the relocation's type. */
13812 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13814 /* Instructions using R_MICROMIPS_LO16 have the base or
13815 source register in bits 20:16. This register becomes $0
13816 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13817 nextopc &= ~0x001f0000;
13818 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13819 contents + irel[1].r_offset);
13822 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13823 We add 4 to take LUI deletion into account while checking
13824 the PC-relative distance. */
13825 else if (symval % 4 == 0
13826 && IS_BITSIZE (pcrval + 4, 25)
13827 && MATCH (nextopc, addiu_insn)
13828 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13829 && OP16_VALID_REG (OP32_TREG (nextopc)))
13831 /* Fix the relocation's type. */
13832 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13834 /* Replace ADDIU with the ADDIUPC version. */
13835 nextopc = (addiupc_insn.match
13836 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13838 bfd_put_micromips_32 (abfd, nextopc,
13839 contents + irel[1].r_offset);
13842 /* Can't do anything, give up, sigh... */
13846 /* Fix the relocation's type. */
13847 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13849 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13854 /* Compact branch relaxation -- due to the multitude of macros
13855 employed by the compiler/assembler, compact branches are not
13856 always generated. Obviously, this can/will be fixed elsewhere,
13857 but there is no drawback in double checking it here. */
13858 else if (r_type == R_MICROMIPS_PC16_S1
13859 && irel->r_offset + 5 < sec->size
13860 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13861 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13863 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13864 nop_insn_16) ? 2 : 0))
13865 || (irel->r_offset + 7 < sec->size
13866 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13868 nop_insn_32) ? 4 : 0))))
13872 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13874 /* Replace BEQZ/BNEZ with the compact version. */
13875 opcode = (bzc_insns_32[fndopc].match
13876 | BZC32_REG_FIELD (reg)
13877 | (opcode & 0xffff)); /* Addend value. */
13879 bfd_put_micromips_32 (abfd, opcode, ptr);
13881 /* Delete the delay slot NOP: two or four bytes from
13882 irel->offset + 4; delcnt has already been set above. */
13886 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13887 to check the distance from the next instruction, so subtract 2. */
13889 && r_type == R_MICROMIPS_PC16_S1
13890 && IS_BITSIZE (pcrval - 2, 11)
13891 && find_match (opcode, b_insns_32) >= 0)
13893 /* Fix the relocation's type. */
13894 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13896 /* Replace the 32-bit opcode with a 16-bit opcode. */
13899 | (opcode & 0x3ff)), /* Addend value. */
13902 /* Delete 2 bytes from irel->r_offset + 2. */
13907 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13908 to check the distance from the next instruction, so subtract 2. */
13910 && r_type == R_MICROMIPS_PC16_S1
13911 && IS_BITSIZE (pcrval - 2, 8)
13912 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13913 && OP16_VALID_REG (OP32_SREG (opcode)))
13914 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13915 && OP16_VALID_REG (OP32_TREG (opcode)))))
13919 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13921 /* Fix the relocation's type. */
13922 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13924 /* Replace the 32-bit opcode with a 16-bit opcode. */
13926 (bz_insns_16[fndopc].match
13927 | BZ16_REG_FIELD (reg)
13928 | (opcode & 0x7f)), /* Addend value. */
13931 /* Delete 2 bytes from irel->r_offset + 2. */
13936 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13938 && r_type == R_MICROMIPS_26_S1
13939 && target_is_micromips_code_p
13940 && irel->r_offset + 7 < sec->size
13941 && MATCH (opcode, jal_insn_32_bd32))
13943 unsigned long n32opc;
13944 bfd_boolean relaxed = FALSE;
13946 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13948 if (MATCH (n32opc, nop_insn_32))
13950 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13951 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13955 else if (find_match (n32opc, move_insns_32) >= 0)
13957 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13959 (move_insn_16.match
13960 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13961 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13966 /* Other 32-bit instructions relaxable to 16-bit
13967 instructions will be handled here later. */
13971 /* JAL with 32-bit delay slot that is changed to a JALS
13972 with 16-bit delay slot. */
13973 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13975 /* Delete 2 bytes from irel->r_offset + 6. */
13983 /* Note that we've changed the relocs, section contents, etc. */
13984 elf_section_data (sec)->relocs = internal_relocs;
13985 elf_section_data (sec)->this_hdr.contents = contents;
13986 symtab_hdr->contents = (unsigned char *) isymbuf;
13988 /* Delete bytes depending on the delcnt and deloff. */
13989 if (!mips_elf_relax_delete_bytes (abfd, sec,
13990 irel->r_offset + deloff, delcnt))
13993 /* That will change things, so we should relax again.
13994 Note that this is not required, and it may be slow. */
13999 if (isymbuf != NULL
14000 && symtab_hdr->contents != (unsigned char *) isymbuf)
14002 if (! link_info->keep_memory)
14006 /* Cache the symbols for elf_link_input_bfd. */
14007 symtab_hdr->contents = (unsigned char *) isymbuf;
14011 if (contents != NULL
14012 && elf_section_data (sec)->this_hdr.contents != contents)
14014 if (! link_info->keep_memory)
14018 /* Cache the section contents for elf_link_input_bfd. */
14019 elf_section_data (sec)->this_hdr.contents = contents;
14023 if (internal_relocs != NULL
14024 && elf_section_data (sec)->relocs != internal_relocs)
14025 free (internal_relocs);
14030 if (isymbuf != NULL
14031 && symtab_hdr->contents != (unsigned char *) isymbuf)
14033 if (contents != NULL
14034 && elf_section_data (sec)->this_hdr.contents != contents)
14036 if (internal_relocs != NULL
14037 && elf_section_data (sec)->relocs != internal_relocs)
14038 free (internal_relocs);
14043 /* Create a MIPS ELF linker hash table. */
14045 struct bfd_link_hash_table *
14046 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14048 struct mips_elf_link_hash_table *ret;
14049 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14051 ret = bfd_zmalloc (amt);
14055 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14056 mips_elf_link_hash_newfunc,
14057 sizeof (struct mips_elf_link_hash_entry),
14063 ret->root.init_plt_refcount.plist = NULL;
14064 ret->root.init_plt_offset.plist = NULL;
14066 return &ret->root.root;
14069 /* Likewise, but indicate that the target is VxWorks. */
14071 struct bfd_link_hash_table *
14072 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14074 struct bfd_link_hash_table *ret;
14076 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14079 struct mips_elf_link_hash_table *htab;
14081 htab = (struct mips_elf_link_hash_table *) ret;
14082 htab->use_plts_and_copy_relocs = TRUE;
14083 htab->is_vxworks = TRUE;
14088 /* A function that the linker calls if we are allowed to use PLTs
14089 and copy relocs. */
14092 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14094 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14097 /* A function that the linker calls to select between all or only
14098 32-bit microMIPS instructions, and between making or ignoring
14099 branch relocation checks for invalid transitions between ISA modes. */
14102 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14103 bfd_boolean ignore_branch_isa)
14105 mips_elf_hash_table (info)->insn32 = insn32;
14106 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14109 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14111 struct mips_mach_extension
14113 unsigned long extension, base;
14117 /* An array describing how BFD machines relate to one another. The entries
14118 are ordered topologically with MIPS I extensions listed last. */
14120 static const struct mips_mach_extension mips_mach_extensions[] =
14122 /* MIPS64r2 extensions. */
14123 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14124 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14125 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14126 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14127 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14129 /* MIPS64 extensions. */
14130 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14131 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14132 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14134 /* MIPS V extensions. */
14135 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14137 /* R10000 extensions. */
14138 { bfd_mach_mips12000, bfd_mach_mips10000 },
14139 { bfd_mach_mips14000, bfd_mach_mips10000 },
14140 { bfd_mach_mips16000, bfd_mach_mips10000 },
14142 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14143 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14144 better to allow vr5400 and vr5500 code to be merged anyway, since
14145 many libraries will just use the core ISA. Perhaps we could add
14146 some sort of ASE flag if this ever proves a problem. */
14147 { bfd_mach_mips5500, bfd_mach_mips5400 },
14148 { bfd_mach_mips5400, bfd_mach_mips5000 },
14150 /* MIPS IV extensions. */
14151 { bfd_mach_mips5, bfd_mach_mips8000 },
14152 { bfd_mach_mips10000, bfd_mach_mips8000 },
14153 { bfd_mach_mips5000, bfd_mach_mips8000 },
14154 { bfd_mach_mips7000, bfd_mach_mips8000 },
14155 { bfd_mach_mips9000, bfd_mach_mips8000 },
14157 /* VR4100 extensions. */
14158 { bfd_mach_mips4120, bfd_mach_mips4100 },
14159 { bfd_mach_mips4111, bfd_mach_mips4100 },
14161 /* MIPS III extensions. */
14162 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14163 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14164 { bfd_mach_mips8000, bfd_mach_mips4000 },
14165 { bfd_mach_mips4650, bfd_mach_mips4000 },
14166 { bfd_mach_mips4600, bfd_mach_mips4000 },
14167 { bfd_mach_mips4400, bfd_mach_mips4000 },
14168 { bfd_mach_mips4300, bfd_mach_mips4000 },
14169 { bfd_mach_mips4100, bfd_mach_mips4000 },
14170 { bfd_mach_mips4010, bfd_mach_mips4000 },
14171 { bfd_mach_mips5900, bfd_mach_mips4000 },
14173 /* MIPS32 extensions. */
14174 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14176 /* MIPS II extensions. */
14177 { bfd_mach_mips4000, bfd_mach_mips6000 },
14178 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14180 /* MIPS I extensions. */
14181 { bfd_mach_mips6000, bfd_mach_mips3000 },
14182 { bfd_mach_mips3900, bfd_mach_mips3000 }
14185 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14188 mips_mach_extends_p (unsigned long base, unsigned long extension)
14192 if (extension == base)
14195 if (base == bfd_mach_mipsisa32
14196 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14199 if (base == bfd_mach_mipsisa32r2
14200 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14203 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14204 if (extension == mips_mach_extensions[i].extension)
14206 extension = mips_mach_extensions[i].base;
14207 if (extension == base)
14214 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14216 static unsigned long
14217 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14221 case AFL_EXT_3900: return bfd_mach_mips3900;
14222 case AFL_EXT_4010: return bfd_mach_mips4010;
14223 case AFL_EXT_4100: return bfd_mach_mips4100;
14224 case AFL_EXT_4111: return bfd_mach_mips4111;
14225 case AFL_EXT_4120: return bfd_mach_mips4120;
14226 case AFL_EXT_4650: return bfd_mach_mips4650;
14227 case AFL_EXT_5400: return bfd_mach_mips5400;
14228 case AFL_EXT_5500: return bfd_mach_mips5500;
14229 case AFL_EXT_5900: return bfd_mach_mips5900;
14230 case AFL_EXT_10000: return bfd_mach_mips10000;
14231 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14232 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14233 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14234 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14235 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14236 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14237 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14238 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14239 default: return bfd_mach_mips3000;
14243 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14246 bfd_mips_isa_ext (bfd *abfd)
14248 switch (bfd_get_mach (abfd))
14250 case bfd_mach_mips3900: return AFL_EXT_3900;
14251 case bfd_mach_mips4010: return AFL_EXT_4010;
14252 case bfd_mach_mips4100: return AFL_EXT_4100;
14253 case bfd_mach_mips4111: return AFL_EXT_4111;
14254 case bfd_mach_mips4120: return AFL_EXT_4120;
14255 case bfd_mach_mips4650: return AFL_EXT_4650;
14256 case bfd_mach_mips5400: return AFL_EXT_5400;
14257 case bfd_mach_mips5500: return AFL_EXT_5500;
14258 case bfd_mach_mips5900: return AFL_EXT_5900;
14259 case bfd_mach_mips10000: return AFL_EXT_10000;
14260 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14261 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14262 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14263 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14264 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14265 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14266 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14267 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14268 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14273 /* Encode ISA level and revision as a single value. */
14274 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14276 /* Decode a single value into level and revision. */
14277 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14278 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14280 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14283 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14286 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14288 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14289 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14290 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14291 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14292 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14293 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14294 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14295 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14296 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14297 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14298 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14301 /* xgettext:c-format */
14302 (_("%B: Unknown architecture %s"),
14303 abfd, bfd_printable_name (abfd));
14306 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14308 abiflags->isa_level = ISA_LEVEL (new_isa);
14309 abiflags->isa_rev = ISA_REV (new_isa);
14312 /* Update the isa_ext if ABFD describes a further extension. */
14313 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14314 bfd_get_mach (abfd)))
14315 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14318 /* Return true if the given ELF header flags describe a 32-bit binary. */
14321 mips_32bit_flags_p (flagword flags)
14323 return ((flags & EF_MIPS_32BITMODE) != 0
14324 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14325 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14326 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14327 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14328 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14329 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14330 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14333 /* Infer the content of the ABI flags based on the elf header. */
14336 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14338 obj_attribute *in_attr;
14340 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14341 update_mips_abiflags_isa (abfd, abiflags);
14343 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14344 abiflags->gpr_size = AFL_REG_32;
14346 abiflags->gpr_size = AFL_REG_64;
14348 abiflags->cpr1_size = AFL_REG_NONE;
14350 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14351 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14353 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14354 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14355 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14356 && abiflags->gpr_size == AFL_REG_32))
14357 abiflags->cpr1_size = AFL_REG_32;
14358 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14359 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14360 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14361 abiflags->cpr1_size = AFL_REG_64;
14363 abiflags->cpr2_size = AFL_REG_NONE;
14365 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14366 abiflags->ases |= AFL_ASE_MDMX;
14367 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14368 abiflags->ases |= AFL_ASE_MIPS16;
14369 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14370 abiflags->ases |= AFL_ASE_MICROMIPS;
14372 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14373 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14374 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14375 && abiflags->isa_level >= 32
14376 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14377 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14380 /* We need to use a special link routine to handle the .reginfo and
14381 the .mdebug sections. We need to merge all instances of these
14382 sections together, not write them all out sequentially. */
14385 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14388 struct bfd_link_order *p;
14389 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14390 asection *rtproc_sec, *abiflags_sec;
14391 Elf32_RegInfo reginfo;
14392 struct ecoff_debug_info debug;
14393 struct mips_htab_traverse_info hti;
14394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14395 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14396 HDRR *symhdr = &debug.symbolic_header;
14397 void *mdebug_handle = NULL;
14402 struct mips_elf_link_hash_table *htab;
14404 static const char * const secname[] =
14406 ".text", ".init", ".fini", ".data",
14407 ".rodata", ".sdata", ".sbss", ".bss"
14409 static const int sc[] =
14411 scText, scInit, scFini, scData,
14412 scRData, scSData, scSBss, scBss
14415 /* Sort the dynamic symbols so that those with GOT entries come after
14417 htab = mips_elf_hash_table (info);
14418 BFD_ASSERT (htab != NULL);
14420 if (!mips_elf_sort_hash_table (abfd, info))
14423 /* Create any scheduled LA25 stubs. */
14425 hti.output_bfd = abfd;
14427 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14431 /* Get a value for the GP register. */
14432 if (elf_gp (abfd) == 0)
14434 struct bfd_link_hash_entry *h;
14436 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14437 if (h != NULL && h->type == bfd_link_hash_defined)
14438 elf_gp (abfd) = (h->u.def.value
14439 + h->u.def.section->output_section->vma
14440 + h->u.def.section->output_offset);
14441 else if (htab->is_vxworks
14442 && (h = bfd_link_hash_lookup (info->hash,
14443 "_GLOBAL_OFFSET_TABLE_",
14444 FALSE, FALSE, TRUE))
14445 && h->type == bfd_link_hash_defined)
14446 elf_gp (abfd) = (h->u.def.section->output_section->vma
14447 + h->u.def.section->output_offset
14449 else if (bfd_link_relocatable (info))
14451 bfd_vma lo = MINUS_ONE;
14453 /* Find the GP-relative section with the lowest offset. */
14454 for (o = abfd->sections; o != NULL; o = o->next)
14456 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14459 /* And calculate GP relative to that. */
14460 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14464 /* If the relocate_section function needs to do a reloc
14465 involving the GP value, it should make a reloc_dangerous
14466 callback to warn that GP is not defined. */
14470 /* Go through the sections and collect the .reginfo and .mdebug
14472 abiflags_sec = NULL;
14473 reginfo_sec = NULL;
14475 gptab_data_sec = NULL;
14476 gptab_bss_sec = NULL;
14477 for (o = abfd->sections; o != NULL; o = o->next)
14479 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14481 /* We have found the .MIPS.abiflags section in the output file.
14482 Look through all the link_orders comprising it and remove them.
14483 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14484 for (p = o->map_head.link_order; p != NULL; p = p->next)
14486 asection *input_section;
14488 if (p->type != bfd_indirect_link_order)
14490 if (p->type == bfd_data_link_order)
14495 input_section = p->u.indirect.section;
14497 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14498 elf_link_input_bfd ignores this section. */
14499 input_section->flags &= ~SEC_HAS_CONTENTS;
14502 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14503 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14505 /* Skip this section later on (I don't think this currently
14506 matters, but someday it might). */
14507 o->map_head.link_order = NULL;
14512 if (strcmp (o->name, ".reginfo") == 0)
14514 memset (®info, 0, sizeof reginfo);
14516 /* We have found the .reginfo section in the output file.
14517 Look through all the link_orders comprising it and merge
14518 the information together. */
14519 for (p = o->map_head.link_order; p != NULL; p = p->next)
14521 asection *input_section;
14523 Elf32_External_RegInfo ext;
14526 if (p->type != bfd_indirect_link_order)
14528 if (p->type == bfd_data_link_order)
14533 input_section = p->u.indirect.section;
14534 input_bfd = input_section->owner;
14536 if (! bfd_get_section_contents (input_bfd, input_section,
14537 &ext, 0, sizeof ext))
14540 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14542 reginfo.ri_gprmask |= sub.ri_gprmask;
14543 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14544 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14545 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14546 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14548 /* ri_gp_value is set by the function
14549 mips_elf32_section_processing when the section is
14550 finally written out. */
14552 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14553 elf_link_input_bfd ignores this section. */
14554 input_section->flags &= ~SEC_HAS_CONTENTS;
14557 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14558 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14560 /* Skip this section later on (I don't think this currently
14561 matters, but someday it might). */
14562 o->map_head.link_order = NULL;
14567 if (strcmp (o->name, ".mdebug") == 0)
14569 struct extsym_info einfo;
14572 /* We have found the .mdebug section in the output file.
14573 Look through all the link_orders comprising it and merge
14574 the information together. */
14575 symhdr->magic = swap->sym_magic;
14576 /* FIXME: What should the version stamp be? */
14577 symhdr->vstamp = 0;
14578 symhdr->ilineMax = 0;
14579 symhdr->cbLine = 0;
14580 symhdr->idnMax = 0;
14581 symhdr->ipdMax = 0;
14582 symhdr->isymMax = 0;
14583 symhdr->ioptMax = 0;
14584 symhdr->iauxMax = 0;
14585 symhdr->issMax = 0;
14586 symhdr->issExtMax = 0;
14587 symhdr->ifdMax = 0;
14589 symhdr->iextMax = 0;
14591 /* We accumulate the debugging information itself in the
14592 debug_info structure. */
14594 debug.external_dnr = NULL;
14595 debug.external_pdr = NULL;
14596 debug.external_sym = NULL;
14597 debug.external_opt = NULL;
14598 debug.external_aux = NULL;
14600 debug.ssext = debug.ssext_end = NULL;
14601 debug.external_fdr = NULL;
14602 debug.external_rfd = NULL;
14603 debug.external_ext = debug.external_ext_end = NULL;
14605 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14606 if (mdebug_handle == NULL)
14610 esym.cobol_main = 0;
14614 esym.asym.iss = issNil;
14615 esym.asym.st = stLocal;
14616 esym.asym.reserved = 0;
14617 esym.asym.index = indexNil;
14619 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14621 esym.asym.sc = sc[i];
14622 s = bfd_get_section_by_name (abfd, secname[i]);
14625 esym.asym.value = s->vma;
14626 last = s->vma + s->size;
14629 esym.asym.value = last;
14630 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14631 secname[i], &esym))
14635 for (p = o->map_head.link_order; p != NULL; p = p->next)
14637 asection *input_section;
14639 const struct ecoff_debug_swap *input_swap;
14640 struct ecoff_debug_info input_debug;
14644 if (p->type != bfd_indirect_link_order)
14646 if (p->type == bfd_data_link_order)
14651 input_section = p->u.indirect.section;
14652 input_bfd = input_section->owner;
14654 if (!is_mips_elf (input_bfd))
14656 /* I don't know what a non MIPS ELF bfd would be
14657 doing with a .mdebug section, but I don't really
14658 want to deal with it. */
14662 input_swap = (get_elf_backend_data (input_bfd)
14663 ->elf_backend_ecoff_debug_swap);
14665 BFD_ASSERT (p->size == input_section->size);
14667 /* The ECOFF linking code expects that we have already
14668 read in the debugging information and set up an
14669 ecoff_debug_info structure, so we do that now. */
14670 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14674 if (! (bfd_ecoff_debug_accumulate
14675 (mdebug_handle, abfd, &debug, swap, input_bfd,
14676 &input_debug, input_swap, info)))
14679 /* Loop through the external symbols. For each one with
14680 interesting information, try to find the symbol in
14681 the linker global hash table and save the information
14682 for the output external symbols. */
14683 eraw_src = input_debug.external_ext;
14684 eraw_end = (eraw_src
14685 + (input_debug.symbolic_header.iextMax
14686 * input_swap->external_ext_size));
14688 eraw_src < eraw_end;
14689 eraw_src += input_swap->external_ext_size)
14693 struct mips_elf_link_hash_entry *h;
14695 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14696 if (ext.asym.sc == scNil
14697 || ext.asym.sc == scUndefined
14698 || ext.asym.sc == scSUndefined)
14701 name = input_debug.ssext + ext.asym.iss;
14702 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14703 name, FALSE, FALSE, TRUE);
14704 if (h == NULL || h->esym.ifd != -2)
14709 BFD_ASSERT (ext.ifd
14710 < input_debug.symbolic_header.ifdMax);
14711 ext.ifd = input_debug.ifdmap[ext.ifd];
14717 /* Free up the information we just read. */
14718 free (input_debug.line);
14719 free (input_debug.external_dnr);
14720 free (input_debug.external_pdr);
14721 free (input_debug.external_sym);
14722 free (input_debug.external_opt);
14723 free (input_debug.external_aux);
14724 free (input_debug.ss);
14725 free (input_debug.ssext);
14726 free (input_debug.external_fdr);
14727 free (input_debug.external_rfd);
14728 free (input_debug.external_ext);
14730 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14731 elf_link_input_bfd ignores this section. */
14732 input_section->flags &= ~SEC_HAS_CONTENTS;
14735 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14737 /* Create .rtproc section. */
14738 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14739 if (rtproc_sec == NULL)
14741 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14742 | SEC_LINKER_CREATED | SEC_READONLY);
14744 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14747 if (rtproc_sec == NULL
14748 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14752 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14758 /* Build the external symbol information. */
14761 einfo.debug = &debug;
14763 einfo.failed = FALSE;
14764 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14765 mips_elf_output_extsym, &einfo);
14769 /* Set the size of the .mdebug section. */
14770 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14772 /* Skip this section later on (I don't think this currently
14773 matters, but someday it might). */
14774 o->map_head.link_order = NULL;
14779 if (CONST_STRNEQ (o->name, ".gptab."))
14781 const char *subname;
14784 Elf32_External_gptab *ext_tab;
14787 /* The .gptab.sdata and .gptab.sbss sections hold
14788 information describing how the small data area would
14789 change depending upon the -G switch. These sections
14790 not used in executables files. */
14791 if (! bfd_link_relocatable (info))
14793 for (p = o->map_head.link_order; p != NULL; p = p->next)
14795 asection *input_section;
14797 if (p->type != bfd_indirect_link_order)
14799 if (p->type == bfd_data_link_order)
14804 input_section = p->u.indirect.section;
14806 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14807 elf_link_input_bfd ignores this section. */
14808 input_section->flags &= ~SEC_HAS_CONTENTS;
14811 /* Skip this section later on (I don't think this
14812 currently matters, but someday it might). */
14813 o->map_head.link_order = NULL;
14815 /* Really remove the section. */
14816 bfd_section_list_remove (abfd, o);
14817 --abfd->section_count;
14822 /* There is one gptab for initialized data, and one for
14823 uninitialized data. */
14824 if (strcmp (o->name, ".gptab.sdata") == 0)
14825 gptab_data_sec = o;
14826 else if (strcmp (o->name, ".gptab.sbss") == 0)
14831 /* xgettext:c-format */
14832 (_("%s: illegal section name `%s'"),
14833 bfd_get_filename (abfd), o->name);
14834 bfd_set_error (bfd_error_nonrepresentable_section);
14838 /* The linker script always combines .gptab.data and
14839 .gptab.sdata into .gptab.sdata, and likewise for
14840 .gptab.bss and .gptab.sbss. It is possible that there is
14841 no .sdata or .sbss section in the output file, in which
14842 case we must change the name of the output section. */
14843 subname = o->name + sizeof ".gptab" - 1;
14844 if (bfd_get_section_by_name (abfd, subname) == NULL)
14846 if (o == gptab_data_sec)
14847 o->name = ".gptab.data";
14849 o->name = ".gptab.bss";
14850 subname = o->name + sizeof ".gptab" - 1;
14851 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14854 /* Set up the first entry. */
14856 amt = c * sizeof (Elf32_gptab);
14857 tab = bfd_malloc (amt);
14860 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14861 tab[0].gt_header.gt_unused = 0;
14863 /* Combine the input sections. */
14864 for (p = o->map_head.link_order; p != NULL; p = p->next)
14866 asection *input_section;
14868 bfd_size_type size;
14869 unsigned long last;
14870 bfd_size_type gpentry;
14872 if (p->type != bfd_indirect_link_order)
14874 if (p->type == bfd_data_link_order)
14879 input_section = p->u.indirect.section;
14880 input_bfd = input_section->owner;
14882 /* Combine the gptab entries for this input section one
14883 by one. We know that the input gptab entries are
14884 sorted by ascending -G value. */
14885 size = input_section->size;
14887 for (gpentry = sizeof (Elf32_External_gptab);
14889 gpentry += sizeof (Elf32_External_gptab))
14891 Elf32_External_gptab ext_gptab;
14892 Elf32_gptab int_gptab;
14898 if (! (bfd_get_section_contents
14899 (input_bfd, input_section, &ext_gptab, gpentry,
14900 sizeof (Elf32_External_gptab))))
14906 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14908 val = int_gptab.gt_entry.gt_g_value;
14909 add = int_gptab.gt_entry.gt_bytes - last;
14912 for (look = 1; look < c; look++)
14914 if (tab[look].gt_entry.gt_g_value >= val)
14915 tab[look].gt_entry.gt_bytes += add;
14917 if (tab[look].gt_entry.gt_g_value == val)
14923 Elf32_gptab *new_tab;
14926 /* We need a new table entry. */
14927 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14928 new_tab = bfd_realloc (tab, amt);
14929 if (new_tab == NULL)
14935 tab[c].gt_entry.gt_g_value = val;
14936 tab[c].gt_entry.gt_bytes = add;
14938 /* Merge in the size for the next smallest -G
14939 value, since that will be implied by this new
14942 for (look = 1; look < c; look++)
14944 if (tab[look].gt_entry.gt_g_value < val
14946 || (tab[look].gt_entry.gt_g_value
14947 > tab[max].gt_entry.gt_g_value)))
14951 tab[c].gt_entry.gt_bytes +=
14952 tab[max].gt_entry.gt_bytes;
14957 last = int_gptab.gt_entry.gt_bytes;
14960 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14961 elf_link_input_bfd ignores this section. */
14962 input_section->flags &= ~SEC_HAS_CONTENTS;
14965 /* The table must be sorted by -G value. */
14967 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14969 /* Swap out the table. */
14970 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14971 ext_tab = bfd_alloc (abfd, amt);
14972 if (ext_tab == NULL)
14978 for (j = 0; j < c; j++)
14979 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14982 o->size = c * sizeof (Elf32_External_gptab);
14983 o->contents = (bfd_byte *) ext_tab;
14985 /* Skip this section later on (I don't think this currently
14986 matters, but someday it might). */
14987 o->map_head.link_order = NULL;
14991 /* Invoke the regular ELF backend linker to do all the work. */
14992 if (!bfd_elf_final_link (abfd, info))
14995 /* Now write out the computed sections. */
14997 if (abiflags_sec != NULL)
14999 Elf_External_ABIFlags_v0 ext;
15000 Elf_Internal_ABIFlags_v0 *abiflags;
15002 abiflags = &mips_elf_tdata (abfd)->abiflags;
15004 /* Set up the abiflags if no valid input sections were found. */
15005 if (!mips_elf_tdata (abfd)->abiflags_valid)
15007 infer_mips_abiflags (abfd, abiflags);
15008 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15010 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15011 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15015 if (reginfo_sec != NULL)
15017 Elf32_External_RegInfo ext;
15019 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
15020 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15024 if (mdebug_sec != NULL)
15026 BFD_ASSERT (abfd->output_has_begun);
15027 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15029 mdebug_sec->filepos))
15032 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15035 if (gptab_data_sec != NULL)
15037 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15038 gptab_data_sec->contents,
15039 0, gptab_data_sec->size))
15043 if (gptab_bss_sec != NULL)
15045 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15046 gptab_bss_sec->contents,
15047 0, gptab_bss_sec->size))
15051 if (SGI_COMPAT (abfd))
15053 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15054 if (rtproc_sec != NULL)
15056 if (! bfd_set_section_contents (abfd, rtproc_sec,
15057 rtproc_sec->contents,
15058 0, rtproc_sec->size))
15066 /* Merge object file header flags from IBFD into OBFD. Raise an error
15067 if there are conflicting settings. */
15070 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15072 bfd *obfd = info->output_bfd;
15073 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15074 flagword old_flags;
15075 flagword new_flags;
15078 new_flags = elf_elfheader (ibfd)->e_flags;
15079 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15080 old_flags = elf_elfheader (obfd)->e_flags;
15082 /* Check flag compatibility. */
15084 new_flags &= ~EF_MIPS_NOREORDER;
15085 old_flags &= ~EF_MIPS_NOREORDER;
15087 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15088 doesn't seem to matter. */
15089 new_flags &= ~EF_MIPS_XGOT;
15090 old_flags &= ~EF_MIPS_XGOT;
15092 /* MIPSpro generates ucode info in n64 objects. Again, we should
15093 just be able to ignore this. */
15094 new_flags &= ~EF_MIPS_UCODE;
15095 old_flags &= ~EF_MIPS_UCODE;
15097 /* DSOs should only be linked with CPIC code. */
15098 if ((ibfd->flags & DYNAMIC) != 0)
15099 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15101 if (new_flags == old_flags)
15106 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15107 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15110 (_("%B: warning: linking abicalls files with non-abicalls files"),
15115 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15116 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15117 if (! (new_flags & EF_MIPS_PIC))
15118 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15120 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15121 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15123 /* Compare the ISAs. */
15124 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15127 (_("%B: linking 32-bit code with 64-bit code"),
15131 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15133 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15134 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15136 /* Copy the architecture info from IBFD to OBFD. Also copy
15137 the 32-bit flag (if set) so that we continue to recognise
15138 OBFD as a 32-bit binary. */
15139 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15140 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15141 elf_elfheader (obfd)->e_flags
15142 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15144 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15145 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15147 /* Copy across the ABI flags if OBFD doesn't use them
15148 and if that was what caused us to treat IBFD as 32-bit. */
15149 if ((old_flags & EF_MIPS_ABI) == 0
15150 && mips_32bit_flags_p (new_flags)
15151 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15152 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15156 /* The ISAs aren't compatible. */
15158 /* xgettext:c-format */
15159 (_("%B: linking %s module with previous %s modules"),
15161 bfd_printable_name (ibfd),
15162 bfd_printable_name (obfd));
15167 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15168 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15170 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15171 does set EI_CLASS differently from any 32-bit ABI. */
15172 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15173 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15174 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15176 /* Only error if both are set (to different values). */
15177 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15178 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15179 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15182 /* xgettext:c-format */
15183 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15185 elf_mips_abi_name (ibfd),
15186 elf_mips_abi_name (obfd));
15189 new_flags &= ~EF_MIPS_ABI;
15190 old_flags &= ~EF_MIPS_ABI;
15193 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15194 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15195 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15197 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15198 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15199 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15200 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15201 int micro_mis = old_m16 && new_micro;
15202 int m16_mis = old_micro && new_m16;
15204 if (m16_mis || micro_mis)
15207 /* xgettext:c-format */
15208 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15210 m16_mis ? "MIPS16" : "microMIPS",
15211 m16_mis ? "microMIPS" : "MIPS16");
15215 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15217 new_flags &= ~ EF_MIPS_ARCH_ASE;
15218 old_flags &= ~ EF_MIPS_ARCH_ASE;
15221 /* Compare NaN encodings. */
15222 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15224 /* xgettext:c-format */
15225 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15227 (new_flags & EF_MIPS_NAN2008
15228 ? "-mnan=2008" : "-mnan=legacy"),
15229 (old_flags & EF_MIPS_NAN2008
15230 ? "-mnan=2008" : "-mnan=legacy"));
15232 new_flags &= ~EF_MIPS_NAN2008;
15233 old_flags &= ~EF_MIPS_NAN2008;
15236 /* Compare FP64 state. */
15237 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15239 /* xgettext:c-format */
15240 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15242 (new_flags & EF_MIPS_FP64
15243 ? "-mfp64" : "-mfp32"),
15244 (old_flags & EF_MIPS_FP64
15245 ? "-mfp64" : "-mfp32"));
15247 new_flags &= ~EF_MIPS_FP64;
15248 old_flags &= ~EF_MIPS_FP64;
15251 /* Warn about any other mismatches */
15252 if (new_flags != old_flags)
15254 /* xgettext:c-format */
15256 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15258 ibfd, (unsigned long) new_flags,
15259 (unsigned long) old_flags);
15266 /* Merge object attributes from IBFD into OBFD. Raise an error if
15267 there are conflicting attributes. */
15269 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15271 bfd *obfd = info->output_bfd;
15272 obj_attribute *in_attr;
15273 obj_attribute *out_attr;
15277 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15278 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15279 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15280 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15282 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15284 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15285 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15287 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15289 /* This is the first object. Copy the attributes. */
15290 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15292 /* Use the Tag_null value to indicate the attributes have been
15294 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15299 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15300 non-conflicting ones. */
15301 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15302 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15306 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15307 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15308 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15309 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15310 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15311 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15312 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15313 || in_fp == Val_GNU_MIPS_ABI_FP_64
15314 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15316 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15317 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15319 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15320 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15321 || out_fp == Val_GNU_MIPS_ABI_FP_64
15322 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15323 /* Keep the current setting. */;
15324 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15325 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15327 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15328 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15330 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15331 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15332 /* Keep the current setting. */;
15333 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15335 const char *out_string, *in_string;
15337 out_string = _bfd_mips_fp_abi_string (out_fp);
15338 in_string = _bfd_mips_fp_abi_string (in_fp);
15339 /* First warn about cases involving unrecognised ABIs. */
15340 if (!out_string && !in_string)
15341 /* xgettext:c-format */
15343 (_("Warning: %B uses unknown floating point ABI %d "
15344 "(set by %B), %B uses unknown floating point ABI %d"),
15345 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15346 else if (!out_string)
15348 /* xgettext:c-format */
15349 (_("Warning: %B uses unknown floating point ABI %d "
15350 "(set by %B), %B uses %s"),
15351 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15352 else if (!in_string)
15354 /* xgettext:c-format */
15355 (_("Warning: %B uses %s (set by %B), "
15356 "%B uses unknown floating point ABI %d"),
15357 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15360 /* If one of the bfds is soft-float, the other must be
15361 hard-float. The exact choice of hard-float ABI isn't
15362 really relevant to the error message. */
15363 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15364 out_string = "-mhard-float";
15365 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15366 in_string = "-mhard-float";
15368 /* xgettext:c-format */
15369 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15370 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15375 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15376 non-conflicting ones. */
15377 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15379 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15380 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15381 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15382 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15383 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15385 case Val_GNU_MIPS_ABI_MSA_128:
15387 /* xgettext:c-format */
15388 (_("Warning: %B uses %s (set by %B), "
15389 "%B uses unknown MSA ABI %d"),
15390 obfd, abi_msa_bfd, ibfd,
15391 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15395 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15397 case Val_GNU_MIPS_ABI_MSA_128:
15399 /* xgettext:c-format */
15400 (_("Warning: %B uses unknown MSA ABI %d "
15401 "(set by %B), %B uses %s"),
15402 obfd, abi_msa_bfd, ibfd,
15403 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15408 /* xgettext:c-format */
15409 (_("Warning: %B uses unknown MSA ABI %d "
15410 "(set by %B), %B uses unknown MSA ABI %d"),
15411 obfd, abi_msa_bfd, ibfd,
15412 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15413 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15419 /* Merge Tag_compatibility attributes and any common GNU ones. */
15420 return _bfd_elf_merge_object_attributes (ibfd, info);
15423 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15424 there are conflicting settings. */
15427 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15429 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15430 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15431 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15433 /* Update the output abiflags fp_abi using the computed fp_abi. */
15434 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15436 #define max(a, b) ((a) > (b) ? (a) : (b))
15437 /* Merge abiflags. */
15438 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15439 in_tdata->abiflags.isa_level);
15440 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15441 in_tdata->abiflags.isa_rev);
15442 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15443 in_tdata->abiflags.gpr_size);
15444 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15445 in_tdata->abiflags.cpr1_size);
15446 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15447 in_tdata->abiflags.cpr2_size);
15449 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15450 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15455 /* Merge backend specific data from an object file to the output
15456 object file when linking. */
15459 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15461 bfd *obfd = info->output_bfd;
15462 struct mips_elf_obj_tdata *out_tdata;
15463 struct mips_elf_obj_tdata *in_tdata;
15464 bfd_boolean null_input_bfd = TRUE;
15468 /* Check if we have the same endianness. */
15469 if (! _bfd_generic_verify_endian_match (ibfd, info))
15472 (_("%B: endianness incompatible with that of the selected emulation"),
15477 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15480 in_tdata = mips_elf_tdata (ibfd);
15481 out_tdata = mips_elf_tdata (obfd);
15483 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15486 (_("%B: ABI is incompatible with that of the selected emulation"),
15491 /* Check to see if the input BFD actually contains any sections. If not,
15492 then it has no attributes, and its flags may not have been initialized
15493 either, but it cannot actually cause any incompatibility. */
15494 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15496 /* Ignore synthetic sections and empty .text, .data and .bss sections
15497 which are automatically generated by gas. Also ignore fake
15498 (s)common sections, since merely defining a common symbol does
15499 not affect compatibility. */
15500 if ((sec->flags & SEC_IS_COMMON) == 0
15501 && strcmp (sec->name, ".reginfo")
15502 && strcmp (sec->name, ".mdebug")
15504 || (strcmp (sec->name, ".text")
15505 && strcmp (sec->name, ".data")
15506 && strcmp (sec->name, ".bss"))))
15508 null_input_bfd = FALSE;
15512 if (null_input_bfd)
15515 /* Populate abiflags using existing information. */
15516 if (in_tdata->abiflags_valid)
15518 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15519 Elf_Internal_ABIFlags_v0 in_abiflags;
15520 Elf_Internal_ABIFlags_v0 abiflags;
15522 /* Set up the FP ABI attribute from the abiflags if it is not already
15524 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15525 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15527 infer_mips_abiflags (ibfd, &abiflags);
15528 in_abiflags = in_tdata->abiflags;
15530 /* It is not possible to infer the correct ISA revision
15531 for R3 or R5 so drop down to R2 for the checks. */
15532 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15533 in_abiflags.isa_rev = 2;
15535 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15536 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15538 (_("%B: warning: Inconsistent ISA between e_flags and "
15539 ".MIPS.abiflags"), ibfd);
15540 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15541 && in_abiflags.fp_abi != abiflags.fp_abi)
15543 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15544 ".MIPS.abiflags"), ibfd);
15545 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15547 (_("%B: warning: Inconsistent ASEs between e_flags and "
15548 ".MIPS.abiflags"), ibfd);
15549 /* The isa_ext is allowed to be an extension of what can be inferred
15551 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15552 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15554 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15555 ".MIPS.abiflags"), ibfd);
15556 if (in_abiflags.flags2 != 0)
15558 (_("%B: warning: Unexpected flag in the flags2 field of "
15559 ".MIPS.abiflags (0x%lx)"), ibfd,
15560 (unsigned long) in_abiflags.flags2);
15564 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15565 in_tdata->abiflags_valid = TRUE;
15568 if (!out_tdata->abiflags_valid)
15570 /* Copy input abiflags if output abiflags are not already valid. */
15571 out_tdata->abiflags = in_tdata->abiflags;
15572 out_tdata->abiflags_valid = TRUE;
15575 if (! elf_flags_init (obfd))
15577 elf_flags_init (obfd) = TRUE;
15578 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15579 elf_elfheader (obfd)->e_ident[EI_CLASS]
15580 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15582 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15583 && (bfd_get_arch_info (obfd)->the_default
15584 || mips_mach_extends_p (bfd_get_mach (obfd),
15585 bfd_get_mach (ibfd))))
15587 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15588 bfd_get_mach (ibfd)))
15591 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15592 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15598 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15600 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15602 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15606 bfd_set_error (bfd_error_bad_value);
15613 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15616 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15618 BFD_ASSERT (!elf_flags_init (abfd)
15619 || elf_elfheader (abfd)->e_flags == flags);
15621 elf_elfheader (abfd)->e_flags = flags;
15622 elf_flags_init (abfd) = TRUE;
15627 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15631 default: return "";
15632 case DT_MIPS_RLD_VERSION:
15633 return "MIPS_RLD_VERSION";
15634 case DT_MIPS_TIME_STAMP:
15635 return "MIPS_TIME_STAMP";
15636 case DT_MIPS_ICHECKSUM:
15637 return "MIPS_ICHECKSUM";
15638 case DT_MIPS_IVERSION:
15639 return "MIPS_IVERSION";
15640 case DT_MIPS_FLAGS:
15641 return "MIPS_FLAGS";
15642 case DT_MIPS_BASE_ADDRESS:
15643 return "MIPS_BASE_ADDRESS";
15645 return "MIPS_MSYM";
15646 case DT_MIPS_CONFLICT:
15647 return "MIPS_CONFLICT";
15648 case DT_MIPS_LIBLIST:
15649 return "MIPS_LIBLIST";
15650 case DT_MIPS_LOCAL_GOTNO:
15651 return "MIPS_LOCAL_GOTNO";
15652 case DT_MIPS_CONFLICTNO:
15653 return "MIPS_CONFLICTNO";
15654 case DT_MIPS_LIBLISTNO:
15655 return "MIPS_LIBLISTNO";
15656 case DT_MIPS_SYMTABNO:
15657 return "MIPS_SYMTABNO";
15658 case DT_MIPS_UNREFEXTNO:
15659 return "MIPS_UNREFEXTNO";
15660 case DT_MIPS_GOTSYM:
15661 return "MIPS_GOTSYM";
15662 case DT_MIPS_HIPAGENO:
15663 return "MIPS_HIPAGENO";
15664 case DT_MIPS_RLD_MAP:
15665 return "MIPS_RLD_MAP";
15666 case DT_MIPS_RLD_MAP_REL:
15667 return "MIPS_RLD_MAP_REL";
15668 case DT_MIPS_DELTA_CLASS:
15669 return "MIPS_DELTA_CLASS";
15670 case DT_MIPS_DELTA_CLASS_NO:
15671 return "MIPS_DELTA_CLASS_NO";
15672 case DT_MIPS_DELTA_INSTANCE:
15673 return "MIPS_DELTA_INSTANCE";
15674 case DT_MIPS_DELTA_INSTANCE_NO:
15675 return "MIPS_DELTA_INSTANCE_NO";
15676 case DT_MIPS_DELTA_RELOC:
15677 return "MIPS_DELTA_RELOC";
15678 case DT_MIPS_DELTA_RELOC_NO:
15679 return "MIPS_DELTA_RELOC_NO";
15680 case DT_MIPS_DELTA_SYM:
15681 return "MIPS_DELTA_SYM";
15682 case DT_MIPS_DELTA_SYM_NO:
15683 return "MIPS_DELTA_SYM_NO";
15684 case DT_MIPS_DELTA_CLASSSYM:
15685 return "MIPS_DELTA_CLASSSYM";
15686 case DT_MIPS_DELTA_CLASSSYM_NO:
15687 return "MIPS_DELTA_CLASSSYM_NO";
15688 case DT_MIPS_CXX_FLAGS:
15689 return "MIPS_CXX_FLAGS";
15690 case DT_MIPS_PIXIE_INIT:
15691 return "MIPS_PIXIE_INIT";
15692 case DT_MIPS_SYMBOL_LIB:
15693 return "MIPS_SYMBOL_LIB";
15694 case DT_MIPS_LOCALPAGE_GOTIDX:
15695 return "MIPS_LOCALPAGE_GOTIDX";
15696 case DT_MIPS_LOCAL_GOTIDX:
15697 return "MIPS_LOCAL_GOTIDX";
15698 case DT_MIPS_HIDDEN_GOTIDX:
15699 return "MIPS_HIDDEN_GOTIDX";
15700 case DT_MIPS_PROTECTED_GOTIDX:
15701 return "MIPS_PROTECTED_GOT_IDX";
15702 case DT_MIPS_OPTIONS:
15703 return "MIPS_OPTIONS";
15704 case DT_MIPS_INTERFACE:
15705 return "MIPS_INTERFACE";
15706 case DT_MIPS_DYNSTR_ALIGN:
15707 return "DT_MIPS_DYNSTR_ALIGN";
15708 case DT_MIPS_INTERFACE_SIZE:
15709 return "DT_MIPS_INTERFACE_SIZE";
15710 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15711 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15712 case DT_MIPS_PERF_SUFFIX:
15713 return "DT_MIPS_PERF_SUFFIX";
15714 case DT_MIPS_COMPACT_SIZE:
15715 return "DT_MIPS_COMPACT_SIZE";
15716 case DT_MIPS_GP_VALUE:
15717 return "DT_MIPS_GP_VALUE";
15718 case DT_MIPS_AUX_DYNAMIC:
15719 return "DT_MIPS_AUX_DYNAMIC";
15720 case DT_MIPS_PLTGOT:
15721 return "DT_MIPS_PLTGOT";
15722 case DT_MIPS_RWPLT:
15723 return "DT_MIPS_RWPLT";
15727 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15731 _bfd_mips_fp_abi_string (int fp)
15735 /* These strings aren't translated because they're simply
15737 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15738 return "-mdouble-float";
15740 case Val_GNU_MIPS_ABI_FP_SINGLE:
15741 return "-msingle-float";
15743 case Val_GNU_MIPS_ABI_FP_SOFT:
15744 return "-msoft-float";
15746 case Val_GNU_MIPS_ABI_FP_OLD_64:
15747 return _("-mips32r2 -mfp64 (12 callee-saved)");
15749 case Val_GNU_MIPS_ABI_FP_XX:
15752 case Val_GNU_MIPS_ABI_FP_64:
15753 return "-mgp32 -mfp64";
15755 case Val_GNU_MIPS_ABI_FP_64A:
15756 return "-mgp32 -mfp64 -mno-odd-spreg";
15764 print_mips_ases (FILE *file, unsigned int mask)
15766 if (mask & AFL_ASE_DSP)
15767 fputs ("\n\tDSP ASE", file);
15768 if (mask & AFL_ASE_DSPR2)
15769 fputs ("\n\tDSP R2 ASE", file);
15770 if (mask & AFL_ASE_DSPR3)
15771 fputs ("\n\tDSP R3 ASE", file);
15772 if (mask & AFL_ASE_EVA)
15773 fputs ("\n\tEnhanced VA Scheme", file);
15774 if (mask & AFL_ASE_MCU)
15775 fputs ("\n\tMCU (MicroController) ASE", file);
15776 if (mask & AFL_ASE_MDMX)
15777 fputs ("\n\tMDMX ASE", file);
15778 if (mask & AFL_ASE_MIPS3D)
15779 fputs ("\n\tMIPS-3D ASE", file);
15780 if (mask & AFL_ASE_MT)
15781 fputs ("\n\tMT ASE", file);
15782 if (mask & AFL_ASE_SMARTMIPS)
15783 fputs ("\n\tSmartMIPS ASE", file);
15784 if (mask & AFL_ASE_VIRT)
15785 fputs ("\n\tVZ ASE", file);
15786 if (mask & AFL_ASE_MSA)
15787 fputs ("\n\tMSA ASE", file);
15788 if (mask & AFL_ASE_MIPS16)
15789 fputs ("\n\tMIPS16 ASE", file);
15790 if (mask & AFL_ASE_MICROMIPS)
15791 fputs ("\n\tMICROMIPS ASE", file);
15792 if (mask & AFL_ASE_XPA)
15793 fputs ("\n\tXPA ASE", file);
15795 fprintf (file, "\n\t%s", _("None"));
15796 else if ((mask & ~AFL_ASE_MASK) != 0)
15797 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15801 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15806 fputs (_("None"), file);
15809 fputs ("RMI XLR", file);
15811 case AFL_EXT_OCTEON3:
15812 fputs ("Cavium Networks Octeon3", file);
15814 case AFL_EXT_OCTEON2:
15815 fputs ("Cavium Networks Octeon2", file);
15817 case AFL_EXT_OCTEONP:
15818 fputs ("Cavium Networks OcteonP", file);
15820 case AFL_EXT_LOONGSON_3A:
15821 fputs ("Loongson 3A", file);
15823 case AFL_EXT_OCTEON:
15824 fputs ("Cavium Networks Octeon", file);
15827 fputs ("Toshiba R5900", file);
15830 fputs ("MIPS R4650", file);
15833 fputs ("LSI R4010", file);
15836 fputs ("NEC VR4100", file);
15839 fputs ("Toshiba R3900", file);
15841 case AFL_EXT_10000:
15842 fputs ("MIPS R10000", file);
15845 fputs ("Broadcom SB-1", file);
15848 fputs ("NEC VR4111/VR4181", file);
15851 fputs ("NEC VR4120", file);
15854 fputs ("NEC VR5400", file);
15857 fputs ("NEC VR5500", file);
15859 case AFL_EXT_LOONGSON_2E:
15860 fputs ("ST Microelectronics Loongson 2E", file);
15862 case AFL_EXT_LOONGSON_2F:
15863 fputs ("ST Microelectronics Loongson 2F", file);
15866 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15872 print_mips_fp_abi_value (FILE *file, int val)
15876 case Val_GNU_MIPS_ABI_FP_ANY:
15877 fprintf (file, _("Hard or soft float\n"));
15879 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15880 fprintf (file, _("Hard float (double precision)\n"));
15882 case Val_GNU_MIPS_ABI_FP_SINGLE:
15883 fprintf (file, _("Hard float (single precision)\n"));
15885 case Val_GNU_MIPS_ABI_FP_SOFT:
15886 fprintf (file, _("Soft float\n"));
15888 case Val_GNU_MIPS_ABI_FP_OLD_64:
15889 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15891 case Val_GNU_MIPS_ABI_FP_XX:
15892 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15894 case Val_GNU_MIPS_ABI_FP_64:
15895 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15897 case Val_GNU_MIPS_ABI_FP_64A:
15898 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15901 fprintf (file, "??? (%d)\n", val);
15907 get_mips_reg_size (int reg_size)
15909 return (reg_size == AFL_REG_NONE) ? 0
15910 : (reg_size == AFL_REG_32) ? 32
15911 : (reg_size == AFL_REG_64) ? 64
15912 : (reg_size == AFL_REG_128) ? 128
15917 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15921 BFD_ASSERT (abfd != NULL && ptr != NULL);
15923 /* Print normal ELF private data. */
15924 _bfd_elf_print_private_bfd_data (abfd, ptr);
15926 /* xgettext:c-format */
15927 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15929 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15930 fprintf (file, _(" [abi=O32]"));
15931 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15932 fprintf (file, _(" [abi=O64]"));
15933 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15934 fprintf (file, _(" [abi=EABI32]"));
15935 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15936 fprintf (file, _(" [abi=EABI64]"));
15937 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15938 fprintf (file, _(" [abi unknown]"));
15939 else if (ABI_N32_P (abfd))
15940 fprintf (file, _(" [abi=N32]"));
15941 else if (ABI_64_P (abfd))
15942 fprintf (file, _(" [abi=64]"));
15944 fprintf (file, _(" [no abi set]"));
15946 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15947 fprintf (file, " [mips1]");
15948 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15949 fprintf (file, " [mips2]");
15950 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15951 fprintf (file, " [mips3]");
15952 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15953 fprintf (file, " [mips4]");
15954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15955 fprintf (file, " [mips5]");
15956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15957 fprintf (file, " [mips32]");
15958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15959 fprintf (file, " [mips64]");
15960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15961 fprintf (file, " [mips32r2]");
15962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15963 fprintf (file, " [mips64r2]");
15964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15965 fprintf (file, " [mips32r6]");
15966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15967 fprintf (file, " [mips64r6]");
15969 fprintf (file, _(" [unknown ISA]"));
15971 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15972 fprintf (file, " [mdmx]");
15974 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15975 fprintf (file, " [mips16]");
15977 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15978 fprintf (file, " [micromips]");
15980 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15981 fprintf (file, " [nan2008]");
15983 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15984 fprintf (file, " [old fp64]");
15986 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15987 fprintf (file, " [32bitmode]");
15989 fprintf (file, _(" [not 32bitmode]"));
15991 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15992 fprintf (file, " [noreorder]");
15994 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15995 fprintf (file, " [PIC]");
15997 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15998 fprintf (file, " [CPIC]");
16000 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16001 fprintf (file, " [XGOT]");
16003 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16004 fprintf (file, " [UCODE]");
16006 fputc ('\n', file);
16008 if (mips_elf_tdata (abfd)->abiflags_valid)
16010 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16011 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16012 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16013 if (abiflags->isa_rev > 1)
16014 fprintf (file, "r%d", abiflags->isa_rev);
16015 fprintf (file, "\nGPR size: %d",
16016 get_mips_reg_size (abiflags->gpr_size));
16017 fprintf (file, "\nCPR1 size: %d",
16018 get_mips_reg_size (abiflags->cpr1_size));
16019 fprintf (file, "\nCPR2 size: %d",
16020 get_mips_reg_size (abiflags->cpr2_size));
16021 fputs ("\nFP ABI: ", file);
16022 print_mips_fp_abi_value (file, abiflags->fp_abi);
16023 fputs ("ISA Extension: ", file);
16024 print_mips_isa_ext (file, abiflags->isa_ext);
16025 fputs ("\nASEs:", file);
16026 print_mips_ases (file, abiflags->ases);
16027 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16028 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16029 fputc ('\n', file);
16035 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16037 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16038 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16039 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16040 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16041 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16042 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16043 { NULL, 0, 0, 0, 0 }
16046 /* Merge non visibility st_other attributes. Ensure that the
16047 STO_OPTIONAL flag is copied into h->other, even if this is not a
16048 definiton of the symbol. */
16050 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16051 const Elf_Internal_Sym *isym,
16052 bfd_boolean definition,
16053 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16055 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16057 unsigned char other;
16059 other = (definition ? isym->st_other : h->other);
16060 other &= ~ELF_ST_VISIBILITY (-1);
16061 h->other = other | ELF_ST_VISIBILITY (h->other);
16065 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16066 h->other |= STO_OPTIONAL;
16069 /* Decide whether an undefined symbol is special and can be ignored.
16070 This is the case for OPTIONAL symbols on IRIX. */
16072 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16074 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16078 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16080 return (sym->st_shndx == SHN_COMMON
16081 || sym->st_shndx == SHN_MIPS_ACOMMON
16082 || sym->st_shndx == SHN_MIPS_SCOMMON);
16085 /* Return address for Ith PLT stub in section PLT, for relocation REL
16086 or (bfd_vma) -1 if it should not be included. */
16089 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16090 const arelent *rel ATTRIBUTE_UNUSED)
16093 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16094 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16097 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16098 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16099 and .got.plt and also the slots may be of a different size each we walk
16100 the PLT manually fetching instructions and matching them against known
16101 patterns. To make things easier standard MIPS slots, if any, always come
16102 first. As we don't create proper ELF symbols we use the UDATA.I member
16103 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16104 with the ST_OTHER member of the ELF symbol. */
16107 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16108 long symcount ATTRIBUTE_UNUSED,
16109 asymbol **syms ATTRIBUTE_UNUSED,
16110 long dynsymcount, asymbol **dynsyms,
16113 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16114 static const char microsuffix[] = "@micromipsplt";
16115 static const char m16suffix[] = "@mips16plt";
16116 static const char mipssuffix[] = "@plt";
16118 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16120 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16121 Elf_Internal_Shdr *hdr;
16122 bfd_byte *plt_data;
16123 bfd_vma plt_offset;
16124 unsigned int other;
16125 bfd_vma entry_size;
16144 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16147 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16148 if (relplt == NULL)
16151 hdr = &elf_section_data (relplt)->this_hdr;
16152 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16155 plt = bfd_get_section_by_name (abfd, ".plt");
16159 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16160 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16162 p = relplt->relocation;
16164 /* Calculating the exact amount of space required for symbols would
16165 require two passes over the PLT, so just pessimise assuming two
16166 PLT slots per relocation. */
16167 count = relplt->size / hdr->sh_entsize;
16168 counti = count * bed->s->int_rels_per_ext_rel;
16169 size = 2 * count * sizeof (asymbol);
16170 size += count * (sizeof (mipssuffix) +
16171 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16172 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16173 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16175 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16176 size += sizeof (asymbol) + sizeof (pltname);
16178 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16181 if (plt->size < 16)
16184 s = *ret = bfd_malloc (size);
16187 send = s + 2 * count + 1;
16189 names = (char *) send;
16190 nend = (char *) s + size;
16193 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16194 if (opcode == 0x3302fffe)
16198 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16199 other = STO_MICROMIPS;
16201 else if (opcode == 0x0398c1d0)
16205 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16206 other = STO_MICROMIPS;
16210 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16215 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16219 s->udata.i = other;
16220 memcpy (names, pltname, sizeof (pltname));
16221 names += sizeof (pltname);
16225 for (plt_offset = plt0_size;
16226 plt_offset + 8 <= plt->size && s < send;
16227 plt_offset += entry_size)
16229 bfd_vma gotplt_addr;
16230 const char *suffix;
16235 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16237 /* Check if the second word matches the expected MIPS16 instruction. */
16238 if (opcode == 0x651aeb00)
16242 /* Truncated table??? */
16243 if (plt_offset + 16 > plt->size)
16245 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16246 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16247 suffixlen = sizeof (m16suffix);
16248 suffix = m16suffix;
16249 other = STO_MIPS16;
16251 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16252 else if (opcode == 0xff220000)
16256 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16257 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16258 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16260 gotplt_addr = gotplt_hi + gotplt_lo;
16261 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16262 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16263 suffixlen = sizeof (microsuffix);
16264 suffix = microsuffix;
16265 other = STO_MICROMIPS;
16267 /* Likewise the expected microMIPS instruction (insn32 mode). */
16268 else if ((opcode & 0xffff0000) == 0xff2f0000)
16270 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16271 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16272 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16273 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16274 gotplt_addr = gotplt_hi + gotplt_lo;
16275 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16276 suffixlen = sizeof (microsuffix);
16277 suffix = microsuffix;
16278 other = STO_MICROMIPS;
16280 /* Otherwise assume standard MIPS code. */
16283 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16284 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16285 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16286 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16287 gotplt_addr = gotplt_hi + gotplt_lo;
16288 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16289 suffixlen = sizeof (mipssuffix);
16290 suffix = mipssuffix;
16293 /* Truncated table??? */
16294 if (plt_offset + entry_size > plt->size)
16298 i < count && p[pi].address != gotplt_addr;
16299 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16306 *s = **p[pi].sym_ptr_ptr;
16307 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16308 we are defining a symbol, ensure one of them is set. */
16309 if ((s->flags & BSF_LOCAL) == 0)
16310 s->flags |= BSF_GLOBAL;
16311 s->flags |= BSF_SYNTHETIC;
16313 s->value = plt_offset;
16315 s->udata.i = other;
16317 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16318 namelen = len + suffixlen;
16319 if (names + namelen > nend)
16322 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16324 memcpy (names, suffix, suffixlen);
16325 names += suffixlen;
16328 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16337 /* Return the ABI flags associated with ABFD if available. */
16339 Elf_Internal_ABIFlags_v0 *
16340 bfd_mips_elf_get_abiflags (bfd *abfd)
16342 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16344 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16348 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16350 struct mips_elf_link_hash_table *htab;
16351 Elf_Internal_Ehdr *i_ehdrp;
16353 i_ehdrp = elf_elfheader (abfd);
16356 htab = mips_elf_hash_table (link_info);
16357 BFD_ASSERT (htab != NULL);
16359 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16360 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16363 _bfd_elf_post_process_headers (abfd, link_info);
16365 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16366 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16367 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16371 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16373 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16376 /* Return the opcode for can't unwind. */
16379 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16381 return COMPACT_EH_CANT_UNWIND_OPCODE;