1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
330 /* Traditional SVR4 stub offset, or -1 if none. */
333 /* Standard PLT entry offset, or -1 if none. */
336 /* Compressed PLT entry offset, or -1 if none. */
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
352 struct mips_elf_link_hash_entry
354 struct elf_link_hash_entry root;
356 /* External symbol information. */
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
364 unsigned int possibly_dynamic_relocs;
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
443 /* True if we can only use 32-bit microMIPS instructions. */
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
452 /* Shortcuts to some dynamic sections, or NULL if they are not
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
466 /* The global symbol in the GOT with the lowest index in the dynamic
468 struct elf_link_hash_entry *global_gotsym;
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
510 The function returns the new section on success, otherwise it
512 asection *(*add_stub_section) (const char *, asection *, asection *);
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
538 /* MIPS ELF private object data. */
540 struct mips_elf_obj_tdata
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
575 /* Get MIPS ELF private object data from BFD's tdata. */
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
609 /* Structure used to pass information to mips_elf_output_extsym. */
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
620 /* The names of the runtime procedure table symbols used on IRIX5. */
622 static const char * const mips_elf_dynsym_rtproc_names[] =
625 "_procedure_string_table",
626 "_procedure_table_size",
630 /* These structures are used to generate the .compact_rel section on
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
677 } Elf32_External_crinfo;
683 } Elf32_External_crinfo2;
685 /* These are the constants used to swap the bitfields in a crinfo. */
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
736 struct exception_info *exception_info;/* Pointer to exception array. */
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
773 #define JALR_TO_BAL_P(abfd) 1
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
778 #define JR_TO_B_P(abfd) 1
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
905 /* The maximum size of the GOT for it to be addressable using 16-bit
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
951 /* The name of the dynamic interpreter. This is put in the .interp
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
972 #define ELF_R_TYPE(bfd, i) \
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1010 We record any stubs that we find in the symbol table. */
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1123 0x653b, /* move $25, $3 */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1189 /* microMIPS 32-bit opcode helper installer. */
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1198 /* microMIPS 32-bit opcode helper retriever. */
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1213 /* Traverse a MIPS ELF linker hash table. */
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1228 dtprel_base (struct bfd_link_info *info)
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1237 tprel_base (struct bfd_link_info *info)
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1245 /* Create an entry in a MIPS ELF linker hash table. */
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1254 /* Allocate the structure if it has not already been allocated by a
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1259 return (struct bfd_hash_entry *) ret;
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1288 return (struct bfd_hash_entry *) ret;
1291 /* Allocate MIPS ELF private object data. */
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1303 if (!sec->used_by_bfd)
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1308 sdata = bfd_zalloc (abfd, amt);
1311 sec->used_by_bfd = sdata;
1314 return _bfd_elf_new_section_hook (abfd, sec);
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1325 const struct ecoff_debug_swap *swap;
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1342 /* The symbolic header contains absolute file offsets and sizes to
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1377 if (ext_hdr != NULL)
1379 if (debug->line != NULL)
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1422 /* Create a runtime procedure table from the .mdebug section. */
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1432 struct rpdr_ext *erp;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1439 bfd_size_type count;
1440 unsigned long sindex;
1444 const char *no_name_func = _("static procedure (no name)");
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1458 size = swap->external_pdr_size;
1460 epdr = bfd_malloc (size * count);
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1517 mips_elf_hash_table (info)->procedure_count = 0;
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1537 /* Set the size and contents of .rtproc section. */
1539 s->contents = rtproc;
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->forced_local = 1;
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1652 section_allows_mips16_refs_p (asection *section)
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1749 mips_elf_la25_stub_hash (const void *entry_)
1751 const struct mips_elf_la25_stub *entry;
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1780 struct mips_elf_link_hash_table *htab;
1782 htab = mips_elf_hash_table (info);
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1842 struct mips_elf_link_hash_table *htab;
1844 asection *s, *input_section;
1847 htab = mips_elf_hash_table (info);
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1869 s->size = (1 << align) - 8;
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1876 /* Allocate room for it. */
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1889 struct mips_elf_link_hash_table *htab;
1892 htab = mips_elf_hash_table (info);
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1905 htab->strampoline = s;
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1913 /* Allocate room for it. */
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1946 stub = (struct mips_elf_la25_stub *) *slot;
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1978 struct mips_htab_traverse_info *hti;
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1984 if (mips_elf_local_pic_function_p (h))
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1996 if (bfd_link_relocatable (hti->info))
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2014 The format of these instructions is:
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2020 +-----------------------------------------------+
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2048 +--------+----------------------+
2052 +--------+----------------------+
2055 +----------+------+-------------+
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2080 A typical instruction will have a format like this:
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2088 EXTEND is the five bit value 11110. Major is the instruction
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2125 /* Check if a microMIPS reloc. */
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1
2231 || r_type == R_MICROMIPS_PC16_S1
2232 || r_type == R_MICROMIPS_PC10_S1
2233 || r_type == R_MICROMIPS_PC7_S1);
2236 static inline bfd_boolean
2237 aligned_pcrel_reloc_p (int r_type)
2239 return (r_type == R_MIPS_PC18_S3
2240 || r_type == R_MIPS_PC19_S2);
2243 static inline bfd_boolean
2244 branch_reloc_p (int r_type)
2246 return (r_type == R_MIPS_26
2247 || r_type == R_MIPS_PC26_S2
2248 || r_type == R_MIPS_PC21_S2
2249 || r_type == R_MIPS_PC16
2250 || r_type == R_MIPS_GNU_REL16_S2);
2253 static inline bfd_boolean
2254 mips16_branch_reloc_p (int r_type)
2256 return (r_type == R_MIPS16_26
2257 || r_type == R_MIPS16_PC16_S1);
2260 static inline bfd_boolean
2261 micromips_branch_reloc_p (int r_type)
2263 return (r_type == R_MICROMIPS_26_S1
2264 || r_type == R_MICROMIPS_PC16_S1
2265 || r_type == R_MICROMIPS_PC10_S1
2266 || r_type == R_MICROMIPS_PC7_S1);
2269 static inline bfd_boolean
2270 tls_gd_reloc_p (unsigned int r_type)
2272 return (r_type == R_MIPS_TLS_GD
2273 || r_type == R_MIPS16_TLS_GD
2274 || r_type == R_MICROMIPS_TLS_GD);
2277 static inline bfd_boolean
2278 tls_ldm_reloc_p (unsigned int r_type)
2280 return (r_type == R_MIPS_TLS_LDM
2281 || r_type == R_MIPS16_TLS_LDM
2282 || r_type == R_MICROMIPS_TLS_LDM);
2285 static inline bfd_boolean
2286 tls_gottprel_reloc_p (unsigned int r_type)
2288 return (r_type == R_MIPS_TLS_GOTTPREL
2289 || r_type == R_MIPS16_TLS_GOTTPREL
2290 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2294 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2295 bfd_boolean jal_shuffle, bfd_byte *data)
2297 bfd_vma first, second, val;
2299 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2302 /* Pick up the first and second halfwords of the instruction. */
2303 first = bfd_get_16 (abfd, data);
2304 second = bfd_get_16 (abfd, data + 2);
2305 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2306 val = first << 16 | second;
2307 else if (r_type != R_MIPS16_26)
2308 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2309 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2311 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2312 | ((first & 0x1f) << 21) | second);
2313 bfd_put_32 (abfd, val, data);
2317 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2318 bfd_boolean jal_shuffle, bfd_byte *data)
2320 bfd_vma first, second, val;
2322 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2325 val = bfd_get_32 (abfd, data);
2326 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2328 second = val & 0xffff;
2331 else if (r_type != R_MIPS16_26)
2333 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2334 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2338 second = val & 0xffff;
2339 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2340 | ((val >> 21) & 0x1f);
2342 bfd_put_16 (abfd, second, data + 2);
2343 bfd_put_16 (abfd, first, data);
2346 bfd_reloc_status_type
2347 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2348 arelent *reloc_entry, asection *input_section,
2349 bfd_boolean relocatable, void *data, bfd_vma gp)
2353 bfd_reloc_status_type status;
2355 if (bfd_is_com_section (symbol->section))
2358 relocation = symbol->value;
2360 relocation += symbol->section->output_section->vma;
2361 relocation += symbol->section->output_offset;
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2366 /* Set val to the offset into the section or symbol. */
2367 val = reloc_entry->addend;
2369 _bfd_mips_elf_sign_extend (val, 16);
2371 /* Adjust val for the final section location and GP value. If we
2372 are producing relocatable output, we don't want to do this for
2373 an external symbol. */
2375 || (symbol->flags & BSF_SECTION_SYM) != 0)
2376 val += relocation - gp;
2378 if (reloc_entry->howto->partial_inplace)
2380 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2382 + reloc_entry->address);
2383 if (status != bfd_reloc_ok)
2387 reloc_entry->addend = val;
2390 reloc_entry->address += input_section->output_offset;
2392 return bfd_reloc_ok;
2395 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2396 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2397 that contains the relocation field and DATA points to the start of
2402 struct mips_hi16 *next;
2404 asection *input_section;
2408 /* FIXME: This should not be a static variable. */
2410 static struct mips_hi16 *mips_hi16_list;
2412 /* A howto special_function for REL *HI16 relocations. We can only
2413 calculate the correct value once we've seen the partnering
2414 *LO16 relocation, so just save the information for later.
2416 The ABI requires that the *LO16 immediately follow the *HI16.
2417 However, as a GNU extension, we permit an arbitrary number of
2418 *HI16s to be associated with a single *LO16. This significantly
2419 simplies the relocation handling in gcc. */
2421 bfd_reloc_status_type
2422 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2423 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2424 asection *input_section, bfd *output_bfd,
2425 char **error_message ATTRIBUTE_UNUSED)
2427 struct mips_hi16 *n;
2429 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2430 return bfd_reloc_outofrange;
2432 n = bfd_malloc (sizeof *n);
2434 return bfd_reloc_outofrange;
2436 n->next = mips_hi16_list;
2438 n->input_section = input_section;
2439 n->rel = *reloc_entry;
2442 if (output_bfd != NULL)
2443 reloc_entry->address += input_section->output_offset;
2445 return bfd_reloc_ok;
2448 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2449 like any other 16-bit relocation when applied to global symbols, but is
2450 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2452 bfd_reloc_status_type
2453 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2454 void *data, asection *input_section,
2455 bfd *output_bfd, char **error_message)
2457 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2458 || bfd_is_und_section (bfd_get_section (symbol))
2459 || bfd_is_com_section (bfd_get_section (symbol)))
2460 /* The relocation is against a global symbol. */
2461 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2462 input_section, output_bfd,
2465 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2466 input_section, output_bfd, error_message);
2469 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2470 is a straightforward 16 bit inplace relocation, but we must deal with
2471 any partnering high-part relocations as well. */
2473 bfd_reloc_status_type
2474 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2475 void *data, asection *input_section,
2476 bfd *output_bfd, char **error_message)
2479 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2481 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2482 return bfd_reloc_outofrange;
2484 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2486 vallo = bfd_get_32 (abfd, location);
2487 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2490 while (mips_hi16_list != NULL)
2492 bfd_reloc_status_type ret;
2493 struct mips_hi16 *hi;
2495 hi = mips_hi16_list;
2497 /* R_MIPS*_GOT16 relocations are something of a special case. We
2498 want to install the addend in the same way as for a R_MIPS*_HI16
2499 relocation (with a rightshift of 16). However, since GOT16
2500 relocations can also be used with global symbols, their howto
2501 has a rightshift of 0. */
2502 if (hi->rel.howto->type == R_MIPS_GOT16)
2503 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2504 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2509 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2510 carry or borrow will induce a change of +1 or -1 in the high part. */
2511 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2513 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2514 hi->input_section, output_bfd,
2516 if (ret != bfd_reloc_ok)
2519 mips_hi16_list = hi->next;
2523 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2524 input_section, output_bfd,
2528 /* A generic howto special_function. This calculates and installs the
2529 relocation itself, thus avoiding the oft-discussed problems in
2530 bfd_perform_relocation and bfd_install_relocation. */
2532 bfd_reloc_status_type
2533 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2534 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2535 asection *input_section, bfd *output_bfd,
2536 char **error_message ATTRIBUTE_UNUSED)
2539 bfd_reloc_status_type status;
2540 bfd_boolean relocatable;
2542 relocatable = (output_bfd != NULL);
2544 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2545 return bfd_reloc_outofrange;
2547 /* Build up the field adjustment in VAL. */
2549 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2551 /* Either we're calculating the final field value or we have a
2552 relocation against a section symbol. Add in the section's
2553 offset or address. */
2554 val += symbol->section->output_section->vma;
2555 val += symbol->section->output_offset;
2560 /* We're calculating the final field value. Add in the symbol's value
2561 and, if pc-relative, subtract the address of the field itself. */
2562 val += symbol->value;
2563 if (reloc_entry->howto->pc_relative)
2565 val -= input_section->output_section->vma;
2566 val -= input_section->output_offset;
2567 val -= reloc_entry->address;
2571 /* VAL is now the final adjustment. If we're keeping this relocation
2572 in the output file, and if the relocation uses a separate addend,
2573 we just need to add VAL to that addend. Otherwise we need to add
2574 VAL to the relocation field itself. */
2575 if (relocatable && !reloc_entry->howto->partial_inplace)
2576 reloc_entry->addend += val;
2579 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2581 /* Add in the separate addend, if any. */
2582 val += reloc_entry->addend;
2584 /* Add VAL to the relocation field. */
2585 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2587 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2589 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2592 if (status != bfd_reloc_ok)
2597 reloc_entry->address += input_section->output_offset;
2599 return bfd_reloc_ok;
2602 /* Swap an entry in a .gptab section. Note that these routines rely
2603 on the equivalence of the two elements of the union. */
2606 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2609 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2610 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2614 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2615 Elf32_External_gptab *ex)
2617 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2618 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2622 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2623 Elf32_External_compact_rel *ex)
2625 H_PUT_32 (abfd, in->id1, ex->id1);
2626 H_PUT_32 (abfd, in->num, ex->num);
2627 H_PUT_32 (abfd, in->id2, ex->id2);
2628 H_PUT_32 (abfd, in->offset, ex->offset);
2629 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2630 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2634 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2635 Elf32_External_crinfo *ex)
2639 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2640 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2641 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2642 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2643 H_PUT_32 (abfd, l, ex->info);
2644 H_PUT_32 (abfd, in->konst, ex->konst);
2645 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2648 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2649 routines swap this structure in and out. They are used outside of
2650 BFD, so they are globally visible. */
2653 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2656 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2657 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2658 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2659 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2660 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2661 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2665 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2666 Elf32_External_RegInfo *ex)
2668 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2676 /* In the 64 bit ABI, the .MIPS.options section holds register
2677 information in an Elf64_Reginfo structure. These routines swap
2678 them in and out. They are globally visible because they are used
2679 outside of BFD. These routines are here so that gas can call them
2680 without worrying about whether the 64 bit ABI has been included. */
2683 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2684 Elf64_Internal_RegInfo *in)
2686 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2687 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2688 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2689 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2690 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2691 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2692 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2696 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2697 Elf64_External_RegInfo *ex)
2699 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2700 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2701 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2702 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2703 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2704 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2705 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2708 /* Swap in an options header. */
2711 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2712 Elf_Internal_Options *in)
2714 in->kind = H_GET_8 (abfd, ex->kind);
2715 in->size = H_GET_8 (abfd, ex->size);
2716 in->section = H_GET_16 (abfd, ex->section);
2717 in->info = H_GET_32 (abfd, ex->info);
2720 /* Swap out an options header. */
2723 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2724 Elf_External_Options *ex)
2726 H_PUT_8 (abfd, in->kind, ex->kind);
2727 H_PUT_8 (abfd, in->size, ex->size);
2728 H_PUT_16 (abfd, in->section, ex->section);
2729 H_PUT_32 (abfd, in->info, ex->info);
2732 /* Swap in an abiflags structure. */
2735 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2736 const Elf_External_ABIFlags_v0 *ex,
2737 Elf_Internal_ABIFlags_v0 *in)
2739 in->version = H_GET_16 (abfd, ex->version);
2740 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2741 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2742 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2743 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2744 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2745 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2746 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2747 in->ases = H_GET_32 (abfd, ex->ases);
2748 in->flags1 = H_GET_32 (abfd, ex->flags1);
2749 in->flags2 = H_GET_32 (abfd, ex->flags2);
2752 /* Swap out an abiflags structure. */
2755 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2756 const Elf_Internal_ABIFlags_v0 *in,
2757 Elf_External_ABIFlags_v0 *ex)
2759 H_PUT_16 (abfd, in->version, ex->version);
2760 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2761 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2762 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2763 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2764 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2765 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2766 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2767 H_PUT_32 (abfd, in->ases, ex->ases);
2768 H_PUT_32 (abfd, in->flags1, ex->flags1);
2769 H_PUT_32 (abfd, in->flags2, ex->flags2);
2772 /* This function is called via qsort() to sort the dynamic relocation
2773 entries by increasing r_symndx value. */
2776 sort_dynamic_relocs (const void *arg1, const void *arg2)
2778 Elf_Internal_Rela int_reloc1;
2779 Elf_Internal_Rela int_reloc2;
2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2789 if (int_reloc1.r_offset < int_reloc2.r_offset)
2791 if (int_reloc1.r_offset > int_reloc2.r_offset)
2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2800 const void *arg2 ATTRIBUTE_UNUSED)
2803 Elf_Internal_Rela int_reloc1[3];
2804 Elf_Internal_Rela int_reloc2[3];
2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2807 (reldyn_sorting_bfd, arg1, int_reloc1);
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg2, int_reloc2);
2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2827 /* This routine is used to write out ECOFF debugging external symbol
2828 information. It is called via mips_elf_link_hash_traverse. The
2829 ECOFF external symbol information must match the ELF external
2830 symbol information. Unfortunately, at this point we don't know
2831 whether a symbol is required by reloc information, so the two
2832 tables may wind up being different. We must sort out the external
2833 symbol information before we can set the final size of the .mdebug
2834 section, and we must set the size of the .mdebug section before we
2835 can relocate any sections, and we can't know which symbols are
2836 required by relocation until we relocate the sections.
2837 Fortunately, it is relatively unlikely that any symbol will be
2838 stripped but required by a reloc. In particular, it can not happen
2839 when generating a final executable. */
2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2844 struct extsym_info *einfo = data;
2846 asection *sec, *output_section;
2848 if (h->root.indx == -2)
2850 else if ((h->root.def_dynamic
2851 || h->root.ref_dynamic
2852 || h->root.type == bfd_link_hash_new)
2853 && !h->root.def_regular
2854 && !h->root.ref_regular)
2856 else if (einfo->info->strip == strip_all
2857 || (einfo->info->strip == strip_some
2858 && bfd_hash_lookup (einfo->info->keep_hash,
2859 h->root.root.root.string,
2860 FALSE, FALSE) == NULL))
2868 if (h->esym.ifd == -2)
2871 h->esym.cobol_main = 0;
2872 h->esym.weakext = 0;
2873 h->esym.reserved = 0;
2874 h->esym.ifd = ifdNil;
2875 h->esym.asym.value = 0;
2876 h->esym.asym.st = stGlobal;
2878 if (h->root.root.type == bfd_link_hash_undefined
2879 || h->root.root.type == bfd_link_hash_undefweak)
2883 /* Use undefined class. Also, set class and type for some
2885 name = h->root.root.root.string;
2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2889 h->esym.asym.sc = scData;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = 0;
2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2895 h->esym.asym.sc = scAbs;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value =
2898 mips_elf_hash_table (einfo->info)->procedure_count;
2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2902 h->esym.asym.sc = scAbs;
2903 h->esym.asym.st = stLabel;
2904 h->esym.asym.value = elf_gp (einfo->abfd);
2907 h->esym.asym.sc = scUndefined;
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2925 name = bfd_section_name (output_section->owner, output_section);
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2945 h->esym.asym.sc = scAbs;
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2970 h->esym.asym.value = 0;
2974 struct mips_elf_link_hash_entry *hd = h;
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2979 if (hd->needs_lazy_stub)
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2987 h->esym.asym.value = 0;
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2996 h->esym.asym.value = 0;
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3005 einfo->failed = TRUE;
3012 /* A comparison routine used to sort .gptab entries. */
3015 gptab_compare (const void *p1, const void *p2)
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3023 /* Functions to manage the got entry hash table. */
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3032 return addr + (addr >> 32);
3039 mips_elf_got_entry_hash (const void *entry_)
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3068 mips_got_page_ref_hash (const void *ref_)
3070 const struct mips_got_page_ref *ref;
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3082 const struct mips_got_page_ref *ref1, *ref2;
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3094 mips_got_page_entry_hash (const void *entry_)
3096 const struct mips_got_page_entry *entry;
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3105 const struct mips_got_page_entry *entry1, *entry2;
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3112 /* Create and return a new mips_got_info structure. */
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3117 struct mips_got_info *g;
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3142 struct mips_elf_obj_tdata *tdata;
3144 if (!is_mips_elf (abfd))
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3153 /* Record that ABFD should use output GOT G. */
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3158 struct mips_elf_obj_tdata *tdata;
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3195 | SEC_LINKER_CREATED
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3210 if (tls_gd_reloc_p (r_type))
3213 if (tls_ldm_reloc_p (r_type))
3216 if (tls_gottprel_reloc_p (r_type))
3219 return GOT_TLS_NONE;
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3225 mips_tls_got_entries (unsigned int type)
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 if ((bfd_link_pic (info) || indx != 0)
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3270 return indx != 0 ? 2 : 1;
3276 return bfd_link_pic (info) ? 1 : 0;
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3291 if (entry->tls_type)
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3296 ? &entry->d.h->root : NULL);
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3301 g->global_gotno += 1;
3304 /* Output a simple dynamic relocation into SRELOC. */
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3309 unsigned long reloc_index,
3314 Elf_Internal_Rela rel[3];
3316 memset (rel, 0, sizeof (rel));
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3321 if (ABI_64_P (output_bfd))
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3343 struct mips_elf_link_hash_table *htab;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3349 htab = mips_elf_hash_table (info);
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3367 if (entry->tls_initialized)
3370 if ((bfd_link_pic (info) || indx != 0)
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3386 switch (entry->tls_type)
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3418 /* Initial Exec model. */
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 entry->tls_initialized = TRUE;
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->sgotplt->output_section->vma
3481 + htab->sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3490 return got_address - got_value;
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->sgot->size);
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3581 if (lookup.tls_type)
3583 bfd_vma value = MINUS_ONE;
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3617 got_index = entry->gotidx;
3620 *offsetp = value - entry->d.address;
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3633 struct mips_got_entry *entry;
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3640 value = mips_elf_high (value) << 16;
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3648 return entry->gotidx;
3653 /* Returns the offset for the entry at the INDEXth position
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3660 struct mips_elf_link_hash_table *htab;
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3686 struct mips_got_entry lookup, *entry;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3702 /* This function shouldn't be called for symbols that live in the global
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3710 if (tls_ldm_reloc_p (r_type))
3713 lookup.d.addend = 0;
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3742 entry = (struct mips_got_entry *) *loc;
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3748 /* We didn't allocate enough space in the GOT. */
3749 (*_bfd_error_handler)
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3775 Elf_Internal_Rela outrel;
3778 bfd_vma got_address;
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->sgot->output_section->vma
3782 + htab->sgot->output_offset
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3803 bfd_size_type count;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3810 const struct elf_backend_data *bed;
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3832 if (elf_hash_table (info)->dynsymcount == 0)
3835 htab = mips_elf_hash_table (info);
3836 BFD_ASSERT (htab != NULL);
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3846 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3847 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3848 elf_hash_table (info)),
3849 mips_elf_sort_hash_table_f,
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3856 == elf_hash_table (info)->dynsymcount);
3857 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3858 == g->global_gotno);
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3874 struct mips_elf_hash_sort_data *hsd = data;
3876 /* Symbols without dynamic symbol table entries aren't interesting
3878 if (h->root.dynindx == -1)
3881 switch (h->global_got_area)
3884 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 h->root.dynindx = --hsd->min_got_dynindx;
3889 hsd->low = (struct elf_link_hash_entry *) h;
3892 case GGA_RELOC_ONLY:
3893 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3894 hsd->low = (struct elf_link_hash_entry *) h;
3895 h->root.dynindx = hsd->max_unref_got_dynindx++;
3902 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3903 (which is owned by the caller and shouldn't be added to the
3904 hash table directly). */
3907 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3908 struct mips_got_entry *lookup)
3910 struct mips_elf_link_hash_table *htab;
3911 struct mips_got_entry *entry;
3912 struct mips_got_info *g;
3913 void **loc, **bfd_loc;
3915 /* Make sure there's a slot for this entry in the master GOT. */
3916 htab = mips_elf_hash_table (info);
3918 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 /* Populate the entry if it isn't already. */
3923 entry = (struct mips_got_entry *) *loc;
3926 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 lookup->tls_initialized = FALSE;
3931 lookup->gotidx = -1;
3936 /* Reuse the same GOT entry for the BFD's GOT. */
3937 g = mips_elf_bfd_got (abfd, TRUE);
3941 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3951 entry for it. FOR_CALL is true if the caller is only interested in
3952 using the GOT entry for calls. */
3955 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3956 bfd *abfd, struct bfd_link_info *info,
3957 bfd_boolean for_call, int r_type)
3959 struct mips_elf_link_hash_table *htab;
3960 struct mips_elf_link_hash_entry *hmips;
3961 struct mips_got_entry entry;
3962 unsigned char tls_type;
3964 htab = mips_elf_hash_table (info);
3965 BFD_ASSERT (htab != NULL);
3967 hmips = (struct mips_elf_link_hash_entry *) h;
3969 hmips->got_only_for_calls = FALSE;
3971 /* A global symbol in the GOT must also be in the dynamic symbol
3973 if (h->dynindx == -1)
3975 switch (ELF_ST_VISIBILITY (h->other))
3979 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3982 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 tls_type = mips_elf_reloc_tls_type (r_type);
3987 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3988 hmips->global_got_area = GGA_NORMAL;
3992 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3993 entry.tls_type = tls_type;
3994 return mips_elf_record_got_entry (info, abfd, &entry);
3997 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3998 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4001 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4002 struct bfd_link_info *info, int r_type)
4004 struct mips_elf_link_hash_table *htab;
4005 struct mips_got_info *g;
4006 struct mips_got_entry entry;
4008 htab = mips_elf_hash_table (info);
4009 BFD_ASSERT (htab != NULL);
4012 BFD_ASSERT (g != NULL);
4015 entry.symndx = symndx;
4016 entry.d.addend = addend;
4017 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4018 return mips_elf_record_got_entry (info, abfd, &entry);
4021 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4022 H is the symbol's hash table entry, or null if SYMNDX is local
4026 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4027 long symndx, struct elf_link_hash_entry *h,
4028 bfd_signed_vma addend)
4030 struct mips_elf_link_hash_table *htab;
4031 struct mips_got_info *g1, *g2;
4032 struct mips_got_page_ref lookup, *entry;
4033 void **loc, **bfd_loc;
4035 htab = mips_elf_hash_table (info);
4036 BFD_ASSERT (htab != NULL);
4038 g1 = htab->got_info;
4039 BFD_ASSERT (g1 != NULL);
4044 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 lookup.symndx = symndx;
4049 lookup.u.abfd = abfd;
4051 lookup.addend = addend;
4052 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 entry = (struct mips_got_page_ref *) *loc;
4059 entry = bfd_alloc (abfd, sizeof (*entry));
4067 /* Add the same entry to the BFD's GOT. */
4068 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4082 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 struct mips_elf_link_hash_table *htab;
4091 htab = mips_elf_hash_table (info);
4092 BFD_ASSERT (htab != NULL);
4094 s = mips_elf_rel_dyn_section (info, FALSE);
4095 BFD_ASSERT (s != NULL);
4097 if (htab->is_vxworks)
4098 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4103 /* Make room for a null element. */
4104 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4112 mips_elf_traverse_got_arg structure. Count the number of GOT
4113 entries and TLS relocs. Set DATA->value to true if we need
4114 to resolve indirect or warning symbols and then recreate the GOT. */
4117 mips_elf_check_recreate_got (void **entryp, void *data)
4119 struct mips_got_entry *entry;
4120 struct mips_elf_traverse_got_arg *arg;
4122 entry = (struct mips_got_entry *) *entryp;
4123 arg = (struct mips_elf_traverse_got_arg *) data;
4124 if (entry->abfd != NULL && entry->symndx == -1)
4126 struct mips_elf_link_hash_entry *h;
4129 if (h->root.root.type == bfd_link_hash_indirect
4130 || h->root.root.type == bfd_link_hash_warning)
4136 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4141 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4142 converting entries for indirect and warning symbols into entries
4143 for the target symbol. Set DATA->g to null on error. */
4146 mips_elf_recreate_got (void **entryp, void *data)
4148 struct mips_got_entry new_entry, *entry;
4149 struct mips_elf_traverse_got_arg *arg;
4152 entry = (struct mips_got_entry *) *entryp;
4153 arg = (struct mips_elf_traverse_got_arg *) data;
4154 if (entry->abfd != NULL
4155 && entry->symndx == -1
4156 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4157 || entry->d.h->root.root.type == bfd_link_hash_warning))
4159 struct mips_elf_link_hash_entry *h;
4166 BFD_ASSERT (h->global_got_area == GGA_NONE);
4167 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4169 while (h->root.root.type == bfd_link_hash_indirect
4170 || h->root.root.type == bfd_link_hash_warning);
4173 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4181 if (entry == &new_entry)
4183 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 mips_elf_count_got_entry (arg->info, arg->g, entry);
4197 /* Return the maximum number of GOT page entries required for RANGE. */
4200 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4202 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4208 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4209 asection *sec, bfd_signed_vma addend)
4211 struct mips_got_info *g = arg->g;
4212 struct mips_got_page_entry lookup, *entry;
4213 struct mips_got_page_range **range_ptr, *range;
4214 bfd_vma old_pages, new_pages;
4217 /* Find the mips_got_page_entry hash table entry for this section. */
4219 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 /* Create a mips_got_page_entry if this is the first time we've
4224 seen the section. */
4225 entry = (struct mips_got_page_entry *) *loc;
4228 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4236 /* Skip over ranges whose maximum extent cannot share a page entry
4238 range_ptr = &entry->ranges;
4239 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4240 range_ptr = &(*range_ptr)->next;
4242 /* If we scanned to the end of the list, or found a range whose
4243 minimum extent cannot share a page entry with ADDEND, create
4244 a new singleton range. */
4246 if (!range || addend < range->min_addend - 0xffff)
4248 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 range->next = *range_ptr;
4253 range->min_addend = addend;
4254 range->max_addend = addend;
4262 /* Remember how many pages the old range contributed. */
4263 old_pages = mips_elf_pages_for_range (range);
4265 /* Update the ranges. */
4266 if (addend < range->min_addend)
4267 range->min_addend = addend;
4268 else if (addend > range->max_addend)
4270 if (range->next && addend >= range->next->min_addend - 0xffff)
4272 old_pages += mips_elf_pages_for_range (range->next);
4273 range->max_addend = range->next->max_addend;
4274 range->next = range->next->next;
4277 range->max_addend = addend;
4280 /* Record any change in the total estimate. */
4281 new_pages = mips_elf_pages_for_range (range);
4282 if (old_pages != new_pages)
4284 entry->num_pages += new_pages - old_pages;
4285 g->page_gotno += new_pages - old_pages;
4291 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4292 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4293 whether the page reference described by *REFP needs a GOT page entry,
4294 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297 mips_elf_resolve_got_page_ref (void **refp, void *data)
4299 struct mips_got_page_ref *ref;
4300 struct mips_elf_traverse_got_arg *arg;
4301 struct mips_elf_link_hash_table *htab;
4305 ref = (struct mips_got_page_ref *) *refp;
4306 arg = (struct mips_elf_traverse_got_arg *) data;
4307 htab = mips_elf_hash_table (arg->info);
4309 if (ref->symndx < 0)
4311 struct mips_elf_link_hash_entry *h;
4313 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4315 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 /* Ignore undefined symbols; we'll issue an error later if
4320 if (!((h->root.root.type == bfd_link_hash_defined
4321 || h->root.root.type == bfd_link_hash_defweak)
4322 && h->root.root.u.def.section))
4325 sec = h->root.root.u.def.section;
4326 addend = h->root.root.u.def.value + ref->addend;
4330 Elf_Internal_Sym *isym;
4332 /* Read in the symbol. */
4333 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4341 /* Get the associated input section. */
4342 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4349 /* If this is a mergable section, work out the section and offset
4350 of the merged data. For section symbols, the addend specifies
4351 of the offset _of_ the first byte in the data, otherwise it
4352 specifies the offset _from_ the first byte. */
4353 if (sec->flags & SEC_MERGE)
4357 secinfo = elf_section_data (sec)->sec_info;
4358 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4359 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4360 isym->st_value + ref->addend);
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value) + ref->addend;
4366 addend = isym->st_value + ref->addend;
4368 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4376 /* If any entries in G->got_entries are for indirect or warning symbols,
4377 replace them with entries for the target symbol. Convert g->got_page_refs
4378 into got_page_entry structures and estimate the number of page entries
4379 that they require. */
4382 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4383 struct mips_got_info *g)
4385 struct mips_elf_traverse_got_arg tga;
4386 struct mips_got_info oldg;
4393 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 g->got_entries = htab_create (htab_size (oldg.got_entries),
4398 mips_elf_got_entry_hash,
4399 mips_elf_got_entry_eq, NULL);
4400 if (!g->got_entries)
4403 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 htab_delete (oldg.got_entries);
4410 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4411 mips_got_page_entry_eq, NULL);
4412 if (g->got_page_entries == NULL)
4417 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4422 /* Return true if a GOT entry for H should live in the local rather than
4426 mips_use_local_got_p (struct bfd_link_info *info,
4427 struct mips_elf_link_hash_entry *h)
4429 /* Symbols that aren't in the dynamic symbol table must live in the
4430 local GOT. This includes symbols that are completely undefined
4431 and which therefore don't bind locally. We'll report undefined
4432 symbols later if appropriate. */
4433 if (h->root.dynindx == -1)
4436 /* Symbols that bind locally can (and in the case of forced-local
4437 symbols, must) live in the local GOT. */
4438 if (h->got_only_for_calls
4439 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4440 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 /* If this is an executable that must provide a definition of the symbol,
4444 either though PLTs or copy relocations, then that address should go in
4445 the local rather than global GOT. */
4446 if (bfd_link_executable (info) && h->has_static_relocs)
4452 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4453 link_info structure. Decide whether the hash entry needs an entry in
4454 the global part of the primary GOT, setting global_got_area accordingly.
4455 Count the number of global symbols that are in the primary GOT only
4456 because they have relocations against them (reloc_only_gotno). */
4459 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4461 struct bfd_link_info *info;
4462 struct mips_elf_link_hash_table *htab;
4463 struct mips_got_info *g;
4465 info = (struct bfd_link_info *) data;
4466 htab = mips_elf_hash_table (info);
4468 if (h->global_got_area != GGA_NONE)
4470 /* Make a final decision about whether the symbol belongs in the
4471 local or global GOT. */
4472 if (mips_use_local_got_p (info, h))
4473 /* The symbol belongs in the local GOT. We no longer need this
4474 entry if it was only used for relocations; those relocations
4475 will be against the null or section symbol instead of H. */
4476 h->global_got_area = GGA_NONE;
4477 else if (htab->is_vxworks
4478 && h->got_only_for_calls
4479 && h->root.plt.plist->mips_offset != MINUS_ONE)
4480 /* On VxWorks, calls can refer directly to the .got.plt entry;
4481 they don't need entries in the regular GOT. .got.plt entries
4482 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4483 h->global_got_area = GGA_NONE;
4484 else if (h->global_got_area == GGA_RELOC_ONLY)
4486 g->reloc_only_gotno++;
4493 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4494 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4497 mips_elf_add_got_entry (void **entryp, void *data)
4499 struct mips_got_entry *entry;
4500 struct mips_elf_traverse_got_arg *arg;
4503 entry = (struct mips_got_entry *) *entryp;
4504 arg = (struct mips_elf_traverse_got_arg *) data;
4505 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 mips_elf_count_got_entry (arg->info, arg->g, entry);
4519 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4520 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4523 mips_elf_add_got_page_entry (void **entryp, void *data)
4525 struct mips_got_page_entry *entry;
4526 struct mips_elf_traverse_got_arg *arg;
4529 entry = (struct mips_got_page_entry *) *entryp;
4530 arg = (struct mips_elf_traverse_got_arg *) data;
4531 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 arg->g->page_gotno += entry->num_pages;
4545 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4546 this would lead to overflow, 1 if they were merged successfully,
4547 and 0 if a merge failed due to lack of memory. (These values are chosen
4548 so that nonnegative return values can be returned by a htab_traverse
4552 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4553 struct mips_got_info *to,
4554 struct mips_elf_got_per_bfd_arg *arg)
4556 struct mips_elf_traverse_got_arg tga;
4557 unsigned int estimate;
4559 /* Work out how many page entries we would need for the combined GOT. */
4560 estimate = arg->max_pages;
4561 if (estimate >= from->page_gotno + to->page_gotno)
4562 estimate = from->page_gotno + to->page_gotno;
4564 /* And conservatively estimate how many local and TLS entries
4566 estimate += from->local_gotno + to->local_gotno;
4567 estimate += from->tls_gotno + to->tls_gotno;
4569 /* If we're merging with the primary got, any TLS relocations will
4570 come after the full set of global entries. Otherwise estimate those
4571 conservatively as well. */
4572 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4573 estimate += arg->global_count;
4575 estimate += from->global_gotno + to->global_gotno;
4577 /* Bail out if the combined GOT might be too big. */
4578 if (estimate > arg->max_count)
4581 /* Transfer the bfd's got information from FROM to TO. */
4582 tga.info = arg->info;
4584 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 mips_elf_replace_bfd_got (abfd, to);
4596 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4597 as possible of the primary got, since it doesn't require explicit
4598 dynamic relocations, but don't use bfds that would reference global
4599 symbols out of the addressable range. Failing the primary got,
4600 attempt to merge with the current got, or finish the current got
4601 and then make make the new got current. */
4604 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4605 struct mips_elf_got_per_bfd_arg *arg)
4607 unsigned int estimate;
4610 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4613 /* Work out the number of page, local and TLS entries. */
4614 estimate = arg->max_pages;
4615 if (estimate > g->page_gotno)
4616 estimate = g->page_gotno;
4617 estimate += g->local_gotno + g->tls_gotno;
4619 /* We place TLS GOT entries after both locals and globals. The globals
4620 for the primary GOT may overflow the normal GOT size limit, so be
4621 sure not to merge a GOT which requires TLS with the primary GOT in that
4622 case. This doesn't affect non-primary GOTs. */
4623 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4625 if (estimate <= arg->max_count)
4627 /* If we don't have a primary GOT, use it as
4628 a starting point for the primary GOT. */
4635 /* Try merging with the primary GOT. */
4636 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4641 /* If we can merge with the last-created got, do it. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4649 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4650 fits; if it turns out that it doesn't, we'll get relocation
4651 overflows anyway. */
4652 g->next = arg->current;
4658 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4659 to GOTIDX, duplicating the entry if it has already been assigned
4660 an index in a different GOT. */
4663 mips_elf_set_gotidx (void **entryp, long gotidx)
4665 struct mips_got_entry *entry;
4667 entry = (struct mips_got_entry *) *entryp;
4668 if (entry->gotidx > 0)
4670 struct mips_got_entry *new_entry;
4672 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 *new_entry = *entry;
4677 *entryp = new_entry;
4680 entry->gotidx = gotidx;
4684 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4685 mips_elf_traverse_got_arg in which DATA->value is the size of one
4686 GOT entry. Set DATA->g to null on failure. */
4689 mips_elf_initialize_tls_index (void **entryp, void *data)
4691 struct mips_got_entry *entry;
4692 struct mips_elf_traverse_got_arg *arg;
4694 /* We're only interested in TLS symbols. */
4695 entry = (struct mips_got_entry *) *entryp;
4696 if (entry->tls_type == GOT_TLS_NONE)
4699 arg = (struct mips_elf_traverse_got_arg *) data;
4700 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4706 /* Account for the entries we've just allocated. */
4707 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 /* A htab_traverse callback for GOT entries, where DATA points to a
4712 mips_elf_traverse_got_arg. Set the global_got_area of each global
4713 symbol to DATA->value. */
4716 mips_elf_set_global_got_area (void **entryp, void *data)
4718 struct mips_got_entry *entry;
4719 struct mips_elf_traverse_got_arg *arg;
4721 entry = (struct mips_got_entry *) *entryp;
4722 arg = (struct mips_elf_traverse_got_arg *) data;
4723 if (entry->abfd != NULL
4724 && entry->symndx == -1
4725 && entry->d.h->global_got_area != GGA_NONE)
4726 entry->d.h->global_got_area = arg->value;
4730 /* A htab_traverse callback for secondary GOT entries, where DATA points
4731 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4732 and record the number of relocations they require. DATA->value is
4733 the size of one GOT entry. Set DATA->g to null on failure. */
4736 mips_elf_set_global_gotidx (void **entryp, void *data)
4738 struct mips_got_entry *entry;
4739 struct mips_elf_traverse_got_arg *arg;
4741 entry = (struct mips_got_entry *) *entryp;
4742 arg = (struct mips_elf_traverse_got_arg *) data;
4743 if (entry->abfd != NULL
4744 && entry->symndx == -1
4745 && entry->d.h->global_got_area != GGA_NONE)
4747 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4752 arg->g->assigned_low_gotno += 1;
4754 if (bfd_link_pic (arg->info)
4755 || (elf_hash_table (arg->info)->dynamic_sections_created
4756 && entry->d.h->root.def_dynamic
4757 && !entry->d.h->root.def_regular))
4758 arg->g->relocs += 1;
4764 /* A htab_traverse callback for GOT entries for which DATA is the
4765 bfd_link_info. Forbid any global symbols from having traditional
4766 lazy-binding stubs. */
4769 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4771 struct bfd_link_info *info;
4772 struct mips_elf_link_hash_table *htab;
4773 struct mips_got_entry *entry;
4775 entry = (struct mips_got_entry *) *entryp;
4776 info = (struct bfd_link_info *) data;
4777 htab = mips_elf_hash_table (info);
4778 BFD_ASSERT (htab != NULL);
4780 if (entry->abfd != NULL
4781 && entry->symndx == -1
4782 && entry->d.h->needs_lazy_stub)
4784 entry->d.h->needs_lazy_stub = FALSE;
4785 htab->lazy_stub_count--;
4791 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4799 g = mips_elf_bfd_got (ibfd, FALSE);
4803 BFD_ASSERT (g->next);
4807 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4808 * MIPS_ELF_GOT_SIZE (abfd);
4811 /* Turn a single GOT that is too big for 16-bit addressing into
4812 a sequence of GOTs, each one 16-bit addressable. */
4815 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4816 asection *got, bfd_size_type pages)
4818 struct mips_elf_link_hash_table *htab;
4819 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4820 struct mips_elf_traverse_got_arg tga;
4821 struct mips_got_info *g, *gg;
4822 unsigned int assign, needed_relocs;
4825 dynobj = elf_hash_table (info)->dynobj;
4826 htab = mips_elf_hash_table (info);
4827 BFD_ASSERT (htab != NULL);
4831 got_per_bfd_arg.obfd = abfd;
4832 got_per_bfd_arg.info = info;
4833 got_per_bfd_arg.current = NULL;
4834 got_per_bfd_arg.primary = NULL;
4835 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4836 / MIPS_ELF_GOT_SIZE (abfd))
4837 - htab->reserved_gotno);
4838 got_per_bfd_arg.max_pages = pages;
4839 /* The number of globals that will be included in the primary GOT.
4840 See the calls to mips_elf_set_global_got_area below for more
4842 got_per_bfd_arg.global_count = g->global_gotno;
4844 /* Try to merge the GOTs of input bfds together, as long as they
4845 don't seem to exceed the maximum GOT size, choosing one of them
4846 to be the primary GOT. */
4847 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4849 gg = mips_elf_bfd_got (ibfd, FALSE);
4850 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 /* If we do not find any suitable primary GOT, create an empty one. */
4855 if (got_per_bfd_arg.primary == NULL)
4856 g->next = mips_elf_create_got_info (abfd);
4858 g->next = got_per_bfd_arg.primary;
4859 g->next->next = got_per_bfd_arg.current;
4861 /* GG is now the master GOT, and G is the primary GOT. */
4865 /* Map the output bfd to the primary got. That's what we're going
4866 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4867 didn't mark in check_relocs, and we want a quick way to find it.
4868 We can't just use gg->next because we're going to reverse the
4870 mips_elf_replace_bfd_got (abfd, g);
4872 /* Every symbol that is referenced in a dynamic relocation must be
4873 present in the primary GOT, so arrange for them to appear after
4874 those that are actually referenced. */
4875 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4876 g->global_gotno = gg->global_gotno;
4879 tga.value = GGA_RELOC_ONLY;
4880 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4881 tga.value = GGA_NORMAL;
4882 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4884 /* Now go through the GOTs assigning them offset ranges.
4885 [assigned_low_gotno, local_gotno[ will be set to the range of local
4886 entries in each GOT. We can then compute the end of a GOT by
4887 adding local_gotno to global_gotno. We reverse the list and make
4888 it circular since then we'll be able to quickly compute the
4889 beginning of a GOT, by computing the end of its predecessor. To
4890 avoid special cases for the primary GOT, while still preserving
4891 assertions that are valid for both single- and multi-got links,
4892 we arrange for the main got struct to have the right number of
4893 global entries, but set its local_gotno such that the initial
4894 offset of the primary GOT is zero. Remember that the primary GOT
4895 will become the last item in the circular linked list, so it
4896 points back to the master GOT. */
4897 gg->local_gotno = -g->global_gotno;
4898 gg->global_gotno = g->global_gotno;
4905 struct mips_got_info *gn;
4907 assign += htab->reserved_gotno;
4908 g->assigned_low_gotno = assign;
4909 g->local_gotno += assign;
4910 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4911 g->assigned_high_gotno = g->local_gotno - 1;
4912 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4914 /* Take g out of the direct list, and push it onto the reversed
4915 list that gg points to. g->next is guaranteed to be nonnull after
4916 this operation, as required by mips_elf_initialize_tls_index. */
4921 /* Set up any TLS entries. We always place the TLS entries after
4922 all non-TLS entries. */
4923 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4925 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4926 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 BFD_ASSERT (g->tls_assigned_gotno == assign);
4931 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4934 /* Forbid global symbols in every non-primary GOT from having
4935 lazy-binding stubs. */
4937 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4944 for (g = gg->next; g && g->next != gg; g = g->next)
4946 unsigned int save_assign;
4948 /* Assign offsets to global GOT entries and count how many
4949 relocations they need. */
4950 save_assign = g->assigned_low_gotno;
4951 g->assigned_low_gotno = g->local_gotno;
4953 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4955 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4958 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4959 g->assigned_low_gotno = save_assign;
4961 if (bfd_link_pic (info))
4963 g->relocs += g->local_gotno - g->assigned_low_gotno;
4964 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4965 + g->next->global_gotno
4966 + g->next->tls_gotno
4967 + htab->reserved_gotno);
4969 needed_relocs += g->relocs;
4971 needed_relocs += g->relocs;
4974 mips_elf_allocate_dynamic_relocations (dynobj, info,
4981 /* Returns the first relocation of type r_type found, beginning with
4982 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4984 static const Elf_Internal_Rela *
4985 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4986 const Elf_Internal_Rela *relocation,
4987 const Elf_Internal_Rela *relend)
4989 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4991 while (relocation < relend)
4993 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4994 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5000 /* We didn't find it. */
5004 /* Return whether an input relocation is against a local symbol. */
5007 mips_elf_local_relocation_p (bfd *input_bfd,
5008 const Elf_Internal_Rela *relocation,
5009 asection **local_sections)
5011 unsigned long r_symndx;
5012 Elf_Internal_Shdr *symtab_hdr;
5015 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5017 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5019 if (r_symndx < extsymoff)
5021 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5027 /* Sign-extend VALUE, which has the indicated number of BITS. */
5030 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5032 if (value & ((bfd_vma) 1 << (bits - 1)))
5033 /* VALUE is negative. */
5034 value |= ((bfd_vma) - 1) << bits;
5039 /* Return non-zero if the indicated VALUE has overflowed the maximum
5040 range expressible by a signed number with the indicated number of
5044 mips_elf_overflow_p (bfd_vma value, int bits)
5046 bfd_signed_vma svalue = (bfd_signed_vma) value;
5048 if (svalue > (1 << (bits - 1)) - 1)
5049 /* The value is too big. */
5051 else if (svalue < -(1 << (bits - 1)))
5052 /* The value is too small. */
5059 /* Calculate the %high function. */
5062 mips_elf_high (bfd_vma value)
5064 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067 /* Calculate the %higher function. */
5070 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5073 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5080 /* Calculate the %highest function. */
5083 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5086 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5093 /* Create the .compact_rel section. */
5096 mips_elf_create_compact_rel_section
5097 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5100 register asection *s;
5102 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5104 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5109 || ! bfd_set_section_alignment (abfd, s,
5110 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5113 s->size = sizeof (Elf32_External_compact_rel);
5119 /* Create the .got section to hold the global offset table. */
5122 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5125 register asection *s;
5126 struct elf_link_hash_entry *h;
5127 struct bfd_link_hash_entry *bh;
5128 struct mips_elf_link_hash_table *htab;
5130 htab = mips_elf_hash_table (info);
5131 BFD_ASSERT (htab != NULL);
5133 /* This function may be called more than once. */
5137 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5138 | SEC_LINKER_CREATED);
5140 /* We have to use an alignment of 2**4 here because this is hardcoded
5141 in the function stub generation and in the linker script. */
5142 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5144 || ! bfd_set_section_alignment (abfd, s, 4))
5148 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5149 linker script because we don't want to define the symbol if we
5150 are not creating a global offset table. */
5152 if (! (_bfd_generic_link_add_one_symbol
5153 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5154 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5157 h = (struct elf_link_hash_entry *) bh;
5160 h->type = STT_OBJECT;
5161 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5162 elf_hash_table (info)->hgot = h;
5164 if (bfd_link_pic (info)
5165 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5168 htab->got_info = mips_elf_create_got_info (abfd);
5169 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5170 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5172 /* We also need a .got.plt section when generating PLTs. */
5173 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5174 SEC_ALLOC | SEC_LOAD
5177 | SEC_LINKER_CREATED);
5185 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5186 __GOTT_INDEX__ symbols. These symbols are only special for
5187 shared objects; they are not used in executables. */
5190 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5192 return (mips_elf_hash_table (info)->is_vxworks
5193 && bfd_link_pic (info)
5194 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5195 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5199 require an la25 stub. See also mips_elf_local_pic_function_p,
5200 which determines whether the destination function ever requires a
5204 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5205 bfd_boolean target_is_16_bit_code_p)
5207 /* We specifically ignore branches and jumps from EF_PIC objects,
5208 where the onus is on the compiler or programmer to perform any
5209 necessary initialization of $25. Sometimes such initialization
5210 is unnecessary; for example, -mno-shared functions do not use
5211 the incoming value of $25, and may therefore be called directly. */
5212 if (PIC_OBJECT_P (input_bfd))
5219 case R_MIPS_PC21_S2:
5220 case R_MIPS_PC26_S2:
5221 case R_MICROMIPS_26_S1:
5222 case R_MICROMIPS_PC7_S1:
5223 case R_MICROMIPS_PC10_S1:
5224 case R_MICROMIPS_PC16_S1:
5225 case R_MICROMIPS_PC23_S2:
5229 return !target_is_16_bit_code_p;
5236 /* Calculate the value produced by the RELOCATION (which comes from
5237 the INPUT_BFD). The ADDEND is the addend to use for this
5238 RELOCATION; RELOCATION->R_ADDEND is ignored.
5240 The result of the relocation calculation is stored in VALUEP.
5241 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5242 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5244 This function returns bfd_reloc_continue if the caller need take no
5245 further action regarding this relocation, bfd_reloc_notsupported if
5246 something goes dramatically wrong, bfd_reloc_overflow if an
5247 overflow occurs, and bfd_reloc_ok to indicate success. */
5249 static bfd_reloc_status_type
5250 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5251 asection *input_section,
5252 struct bfd_link_info *info,
5253 const Elf_Internal_Rela *relocation,
5254 bfd_vma addend, reloc_howto_type *howto,
5255 Elf_Internal_Sym *local_syms,
5256 asection **local_sections, bfd_vma *valuep,
5258 bfd_boolean *cross_mode_jump_p,
5259 bfd_boolean save_addend)
5261 /* The eventual value we will return. */
5263 /* The address of the symbol against which the relocation is
5266 /* The final GP value to be used for the relocatable, executable, or
5267 shared object file being produced. */
5269 /* The place (section offset or address) of the storage unit being
5272 /* The value of GP used to create the relocatable object. */
5274 /* The offset into the global offset table at which the address of
5275 the relocation entry symbol, adjusted by the addend, resides
5276 during execution. */
5277 bfd_vma g = MINUS_ONE;
5278 /* The section in which the symbol referenced by the relocation is
5280 asection *sec = NULL;
5281 struct mips_elf_link_hash_entry *h = NULL;
5282 /* TRUE if the symbol referred to by this relocation is a local
5284 bfd_boolean local_p, was_local_p;
5285 /* TRUE if the symbol referred to by this relocation is a section
5287 bfd_boolean section_p = FALSE;
5288 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5289 bfd_boolean gp_disp_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is
5291 "__gnu_local_gp". */
5292 bfd_boolean gnu_local_gp_p = FALSE;
5293 Elf_Internal_Shdr *symtab_hdr;
5295 unsigned long r_symndx;
5297 /* TRUE if overflow occurred during the calculation of the
5298 relocation value. */
5299 bfd_boolean overflowed_p;
5300 /* TRUE if this relocation refers to a MIPS16 function. */
5301 bfd_boolean target_is_16_bit_code_p = FALSE;
5302 bfd_boolean target_is_micromips_code_p = FALSE;
5303 struct mips_elf_link_hash_table *htab;
5306 dynobj = elf_hash_table (info)->dynobj;
5307 htab = mips_elf_hash_table (info);
5308 BFD_ASSERT (htab != NULL);
5310 /* Parse the relocation. */
5311 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5312 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5313 p = (input_section->output_section->vma
5314 + input_section->output_offset
5315 + relocation->r_offset);
5317 /* Assume that there will be no overflow. */
5318 overflowed_p = FALSE;
5320 /* Figure out whether or not the symbol is local, and get the offset
5321 used in the array of hash table entries. */
5322 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5323 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5325 was_local_p = local_p;
5326 if (! elf_bad_symtab (input_bfd))
5327 extsymoff = symtab_hdr->sh_info;
5330 /* The symbol table does not follow the rule that local symbols
5331 must come before globals. */
5335 /* Figure out the value of the symbol. */
5338 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5339 Elf_Internal_Sym *sym;
5341 sym = local_syms + r_symndx;
5342 sec = local_sections[r_symndx];
5344 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5346 symbol = sec->output_section->vma + sec->output_offset;
5347 if (!section_p || (sec->flags & SEC_MERGE))
5348 symbol += sym->st_value;
5349 if ((sec->flags & SEC_MERGE) && section_p)
5351 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5353 addend += sec->output_section->vma + sec->output_offset;
5356 /* MIPS16/microMIPS text labels should be treated as odd. */
5357 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5360 /* Record the name of this symbol, for our caller. */
5361 *namep = bfd_elf_string_from_elf_section (input_bfd,
5362 symtab_hdr->sh_link,
5364 if (*namep == NULL || **namep == '\0')
5365 *namep = bfd_section_name (input_bfd, sec);
5367 /* For relocations against a section symbol and ones against no
5368 symbol (absolute relocations) infer the ISA mode from the addend. */
5369 if (section_p || r_symndx == STN_UNDEF)
5371 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5372 target_is_micromips_code_p = (addend & 1) && micromips_p;
5374 /* For relocations against an absolute symbol infer the ISA mode
5375 from the value of the symbol plus addend. */
5376 else if (bfd_is_abs_section (sec))
5378 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5379 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5381 /* Otherwise just use the regular symbol annotation available. */
5384 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5385 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5392 /* For global symbols we look up the symbol in the hash-table. */
5393 h = ((struct mips_elf_link_hash_entry *)
5394 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5395 /* Find the real hash-table entry for this symbol. */
5396 while (h->root.root.type == bfd_link_hash_indirect
5397 || h->root.root.type == bfd_link_hash_warning)
5398 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5400 /* Record the name of this symbol, for our caller. */
5401 *namep = h->root.root.root.string;
5403 /* See if this is the special _gp_disp symbol. Note that such a
5404 symbol must always be a global symbol. */
5405 if (strcmp (*namep, "_gp_disp") == 0
5406 && ! NEWABI_P (input_bfd))
5408 /* Relocations against _gp_disp are permitted only with
5409 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5410 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5411 return bfd_reloc_notsupported;
5415 /* See if this is the special _gp symbol. Note that such a
5416 symbol must always be a global symbol. */
5417 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5418 gnu_local_gp_p = TRUE;
5421 /* If this symbol is defined, calculate its address. Note that
5422 _gp_disp is a magic symbol, always implicitly defined by the
5423 linker, so it's inappropriate to check to see whether or not
5425 else if ((h->root.root.type == bfd_link_hash_defined
5426 || h->root.root.type == bfd_link_hash_defweak)
5427 && h->root.root.u.def.section)
5429 sec = h->root.root.u.def.section;
5430 if (sec->output_section)
5431 symbol = (h->root.root.u.def.value
5432 + sec->output_section->vma
5433 + sec->output_offset);
5435 symbol = h->root.root.u.def.value;
5437 else if (h->root.root.type == bfd_link_hash_undefweak)
5438 /* We allow relocations against undefined weak symbols, giving
5439 it the value zero, so that you can undefined weak functions
5440 and check to see if they exist by looking at their
5443 else if (info->unresolved_syms_in_objects == RM_IGNORE
5444 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5446 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5447 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5449 /* If this is a dynamic link, we should have created a
5450 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5451 in in _bfd_mips_elf_create_dynamic_sections.
5452 Otherwise, we should define the symbol with a value of 0.
5453 FIXME: It should probably get into the symbol table
5455 BFD_ASSERT (! bfd_link_pic (info));
5456 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5461 /* This is an optional symbol - an Irix specific extension to the
5462 ELF spec. Ignore it for now.
5463 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5464 than simply ignoring them, but we do not handle this for now.
5465 For information see the "64-bit ELF Object File Specification"
5466 which is available from here:
5467 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 (*info->callbacks->undefined_symbol)
5473 (info, h->root.root.root.string, input_bfd,
5474 input_section, relocation->r_offset,
5475 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5476 || ELF_ST_VISIBILITY (h->root.other));
5477 return bfd_reloc_undefined;
5480 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5481 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5484 /* If this is a reference to a 16-bit function with a stub, we need
5485 to redirect the relocation to the stub unless:
5487 (a) the relocation is for a MIPS16 JAL;
5489 (b) the relocation is for a MIPS16 PIC call, and there are no
5490 non-MIPS16 uses of the GOT slot; or
5492 (c) the section allows direct references to MIPS16 functions. */
5493 if (r_type != R_MIPS16_26
5494 && !bfd_link_relocatable (info)
5496 && h->fn_stub != NULL
5497 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5499 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5500 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5501 && !section_allows_mips16_refs_p (input_section))
5503 /* This is a 32- or 64-bit call to a 16-bit function. We should
5504 have already noticed that we were going to need the
5508 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5513 BFD_ASSERT (h->need_fn_stub);
5516 /* If a LA25 header for the stub itself exists, point to the
5517 prepended LUI/ADDIU sequence. */
5518 sec = h->la25_stub->stub_section;
5519 value = h->la25_stub->offset;
5528 symbol = sec->output_section->vma + sec->output_offset + value;
5529 /* The target is 16-bit, but the stub isn't. */
5530 target_is_16_bit_code_p = FALSE;
5532 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5533 to a standard MIPS function, we need to redirect the call to the stub.
5534 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5535 indirect calls should use an indirect stub instead. */
5536 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5537 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5539 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5540 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5541 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5544 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5547 /* If both call_stub and call_fp_stub are defined, we can figure
5548 out which one to use by checking which one appears in the input
5550 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5555 for (o = input_bfd->sections; o != NULL; o = o->next)
5557 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5559 sec = h->call_fp_stub;
5566 else if (h->call_stub != NULL)
5569 sec = h->call_fp_stub;
5572 BFD_ASSERT (sec->size > 0);
5573 symbol = sec->output_section->vma + sec->output_offset;
5575 /* If this is a direct call to a PIC function, redirect to the
5577 else if (h != NULL && h->la25_stub
5578 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5579 target_is_16_bit_code_p))
5580 symbol = (h->la25_stub->stub_section->output_section->vma
5581 + h->la25_stub->stub_section->output_offset
5582 + h->la25_stub->offset);
5583 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5584 entry is used if a standard PLT entry has also been made. In this
5585 case the symbol will have been set by mips_elf_set_plt_sym_value
5586 to point to the standard PLT entry, so redirect to the compressed
5588 else if ((mips16_branch_reloc_p (r_type)
5589 || micromips_branch_reloc_p (r_type))
5590 && !bfd_link_relocatable (info)
5593 && h->root.plt.plist->comp_offset != MINUS_ONE
5594 && h->root.plt.plist->mips_offset != MINUS_ONE)
5596 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5599 symbol = (sec->output_section->vma
5600 + sec->output_offset
5601 + htab->plt_header_size
5602 + htab->plt_mips_offset
5603 + h->root.plt.plist->comp_offset
5606 target_is_16_bit_code_p = !micromips_p;
5607 target_is_micromips_code_p = micromips_p;
5610 /* Make sure MIPS16 and microMIPS are not used together. */
5611 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5612 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5614 (*_bfd_error_handler)
5615 (_("MIPS16 and microMIPS functions cannot call each other"));
5616 return bfd_reloc_notsupported;
5619 /* Calls from 16-bit code to 32-bit code and vice versa require the
5620 mode change. However, we can ignore calls to undefined weak symbols,
5621 which should never be executed at runtime. This exception is important
5622 because the assembly writer may have "known" that any definition of the
5623 symbol would be 16-bit code, and that direct jumps were therefore
5625 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5626 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5627 && ((mips16_branch_reloc_p (r_type)
5628 && !target_is_16_bit_code_p)
5629 || (micromips_branch_reloc_p (r_type)
5630 && !target_is_micromips_code_p)
5631 || ((branch_reloc_p (r_type)
5632 || r_type == R_MIPS_JALR)
5633 && (target_is_16_bit_code_p
5634 || target_is_micromips_code_p))));
5636 local_p = (h == NULL || mips_use_local_got_p (info, h));
5638 gp0 = _bfd_get_gp_value (input_bfd);
5639 gp = _bfd_get_gp_value (abfd);
5641 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5646 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5647 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5648 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5649 if (got_page_reloc_p (r_type) && !local_p)
5651 r_type = (micromips_reloc_p (r_type)
5652 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5656 /* If we haven't already determined the GOT offset, and we're going
5657 to need it, get it now. */
5660 case R_MIPS16_CALL16:
5661 case R_MIPS16_GOT16:
5664 case R_MIPS_GOT_DISP:
5665 case R_MIPS_GOT_HI16:
5666 case R_MIPS_CALL_HI16:
5667 case R_MIPS_GOT_LO16:
5668 case R_MIPS_CALL_LO16:
5669 case R_MICROMIPS_CALL16:
5670 case R_MICROMIPS_GOT16:
5671 case R_MICROMIPS_GOT_DISP:
5672 case R_MICROMIPS_GOT_HI16:
5673 case R_MICROMIPS_CALL_HI16:
5674 case R_MICROMIPS_GOT_LO16:
5675 case R_MICROMIPS_CALL_LO16:
5677 case R_MIPS_TLS_GOTTPREL:
5678 case R_MIPS_TLS_LDM:
5679 case R_MIPS16_TLS_GD:
5680 case R_MIPS16_TLS_GOTTPREL:
5681 case R_MIPS16_TLS_LDM:
5682 case R_MICROMIPS_TLS_GD:
5683 case R_MICROMIPS_TLS_GOTTPREL:
5684 case R_MICROMIPS_TLS_LDM:
5685 /* Find the index into the GOT where this value is located. */
5686 if (tls_ldm_reloc_p (r_type))
5688 g = mips_elf_local_got_index (abfd, input_bfd, info,
5689 0, 0, NULL, r_type);
5691 return bfd_reloc_outofrange;
5695 /* On VxWorks, CALL relocations should refer to the .got.plt
5696 entry, which is initialized to point at the PLT stub. */
5697 if (htab->is_vxworks
5698 && (call_hi16_reloc_p (r_type)
5699 || call_lo16_reloc_p (r_type)
5700 || call16_reloc_p (r_type)))
5702 BFD_ASSERT (addend == 0);
5703 BFD_ASSERT (h->root.needs_plt);
5704 g = mips_elf_gotplt_index (info, &h->root);
5708 BFD_ASSERT (addend == 0);
5709 g = mips_elf_global_got_index (abfd, info, input_bfd,
5711 if (!TLS_RELOC_P (r_type)
5712 && !elf_hash_table (info)->dynamic_sections_created)
5713 /* This is a static link. We must initialize the GOT entry. */
5714 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5717 else if (!htab->is_vxworks
5718 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5719 /* The calculation below does not involve "g". */
5723 g = mips_elf_local_got_index (abfd, input_bfd, info,
5724 symbol + addend, r_symndx, h, r_type);
5726 return bfd_reloc_outofrange;
5729 /* Convert GOT indices to actual offsets. */
5730 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5734 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5735 symbols are resolved by the loader. Add them to .rela.dyn. */
5736 if (h != NULL && is_gott_symbol (info, &h->root))
5738 Elf_Internal_Rela outrel;
5742 s = mips_elf_rel_dyn_section (info, FALSE);
5743 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5745 outrel.r_offset = (input_section->output_section->vma
5746 + input_section->output_offset
5747 + relocation->r_offset);
5748 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5749 outrel.r_addend = addend;
5750 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5752 /* If we've written this relocation for a readonly section,
5753 we need to set DF_TEXTREL again, so that we do not delete the
5755 if (MIPS_ELF_READONLY_SECTION (input_section))
5756 info->flags |= DF_TEXTREL;
5759 return bfd_reloc_ok;
5762 /* Figure out what kind of relocation is being performed. */
5766 return bfd_reloc_continue;
5769 if (howto->partial_inplace)
5770 addend = _bfd_mips_elf_sign_extend (addend, 16);
5771 value = symbol + addend;
5772 overflowed_p = mips_elf_overflow_p (value, 16);
5778 if ((bfd_link_pic (info)
5779 || (htab->root.dynamic_sections_created
5781 && h->root.def_dynamic
5782 && !h->root.def_regular
5783 && !h->has_static_relocs))
5784 && r_symndx != STN_UNDEF
5786 || h->root.root.type != bfd_link_hash_undefweak
5787 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5788 && (input_section->flags & SEC_ALLOC) != 0)
5790 /* If we're creating a shared library, then we can't know
5791 where the symbol will end up. So, we create a relocation
5792 record in the output, and leave the job up to the dynamic
5793 linker. We must do the same for executable references to
5794 shared library symbols, unless we've decided to use copy
5795 relocs or PLTs instead. */
5797 if (!mips_elf_create_dynamic_relocation (abfd,
5805 return bfd_reloc_undefined;
5809 if (r_type != R_MIPS_REL32)
5810 value = symbol + addend;
5814 value &= howto->dst_mask;
5818 value = symbol + addend - p;
5819 value &= howto->dst_mask;
5823 /* The calculation for R_MIPS16_26 is just the same as for an
5824 R_MIPS_26. It's only the storage of the relocated field into
5825 the output file that's different. That's handled in
5826 mips_elf_perform_relocation. So, we just fall through to the
5827 R_MIPS_26 case here. */
5829 case R_MICROMIPS_26_S1:
5833 /* Shift is 2, unusually, for microMIPS JALX. */
5834 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5836 if (howto->partial_inplace && !section_p)
5837 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5842 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5843 be the correct ISA mode selector except for weak undefined
5845 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5846 && (*cross_mode_jump_p
5847 ? (value & 3) != (r_type == R_MIPS_26)
5848 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5849 return bfd_reloc_outofrange;
5852 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5853 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5854 value &= howto->dst_mask;
5858 case R_MIPS_TLS_DTPREL_HI16:
5859 case R_MIPS16_TLS_DTPREL_HI16:
5860 case R_MICROMIPS_TLS_DTPREL_HI16:
5861 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5865 case R_MIPS_TLS_DTPREL_LO16:
5866 case R_MIPS_TLS_DTPREL32:
5867 case R_MIPS_TLS_DTPREL64:
5868 case R_MIPS16_TLS_DTPREL_LO16:
5869 case R_MICROMIPS_TLS_DTPREL_LO16:
5870 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5873 case R_MIPS_TLS_TPREL_HI16:
5874 case R_MIPS16_TLS_TPREL_HI16:
5875 case R_MICROMIPS_TLS_TPREL_HI16:
5876 value = (mips_elf_high (addend + symbol - tprel_base (info))
5880 case R_MIPS_TLS_TPREL_LO16:
5881 case R_MIPS_TLS_TPREL32:
5882 case R_MIPS_TLS_TPREL64:
5883 case R_MIPS16_TLS_TPREL_LO16:
5884 case R_MICROMIPS_TLS_TPREL_LO16:
5885 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5890 case R_MICROMIPS_HI16:
5893 value = mips_elf_high (addend + symbol);
5894 value &= howto->dst_mask;
5898 /* For MIPS16 ABI code we generate this sequence
5899 0: li $v0,%hi(_gp_disp)
5900 4: addiupc $v1,%lo(_gp_disp)
5904 So the offsets of hi and lo relocs are the same, but the
5905 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5906 ADDIUPC clears the low two bits of the instruction address,
5907 so the base is ($t9 + 4) & ~3. */
5908 if (r_type == R_MIPS16_HI16)
5909 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5910 /* The microMIPS .cpload sequence uses the same assembly
5911 instructions as the traditional psABI version, but the
5912 incoming $t9 has the low bit set. */
5913 else if (r_type == R_MICROMIPS_HI16)
5914 value = mips_elf_high (addend + gp - p - 1);
5916 value = mips_elf_high (addend + gp - p);
5917 overflowed_p = mips_elf_overflow_p (value, 16);
5923 case R_MICROMIPS_LO16:
5924 case R_MICROMIPS_HI0_LO16:
5926 value = (symbol + addend) & howto->dst_mask;
5929 /* See the comment for R_MIPS16_HI16 above for the reason
5930 for this conditional. */
5931 if (r_type == R_MIPS16_LO16)
5932 value = addend + gp - (p & ~(bfd_vma) 0x3);
5933 else if (r_type == R_MICROMIPS_LO16
5934 || r_type == R_MICROMIPS_HI0_LO16)
5935 value = addend + gp - p + 3;
5937 value = addend + gp - p + 4;
5938 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5939 for overflow. But, on, say, IRIX5, relocations against
5940 _gp_disp are normally generated from the .cpload
5941 pseudo-op. It generates code that normally looks like
5944 lui $gp,%hi(_gp_disp)
5945 addiu $gp,$gp,%lo(_gp_disp)
5948 Here $t9 holds the address of the function being called,
5949 as required by the MIPS ELF ABI. The R_MIPS_LO16
5950 relocation can easily overflow in this situation, but the
5951 R_MIPS_HI16 relocation will handle the overflow.
5952 Therefore, we consider this a bug in the MIPS ABI, and do
5953 not check for overflow here. */
5957 case R_MIPS_LITERAL:
5958 case R_MICROMIPS_LITERAL:
5959 /* Because we don't merge literal sections, we can handle this
5960 just like R_MIPS_GPREL16. In the long run, we should merge
5961 shared literals, and then we will need to additional work
5966 case R_MIPS16_GPREL:
5967 /* The R_MIPS16_GPREL performs the same calculation as
5968 R_MIPS_GPREL16, but stores the relocated bits in a different
5969 order. We don't need to do anything special here; the
5970 differences are handled in mips_elf_perform_relocation. */
5971 case R_MIPS_GPREL16:
5972 case R_MICROMIPS_GPREL7_S2:
5973 case R_MICROMIPS_GPREL16:
5974 /* Only sign-extend the addend if it was extracted from the
5975 instruction. If the addend was separate, leave it alone,
5976 otherwise we may lose significant bits. */
5977 if (howto->partial_inplace)
5978 addend = _bfd_mips_elf_sign_extend (addend, 16);
5979 value = symbol + addend - gp;
5980 /* If the symbol was local, any earlier relocatable links will
5981 have adjusted its addend with the gp offset, so compensate
5982 for that now. Don't do it for symbols forced local in this
5983 link, though, since they won't have had the gp offset applied
5987 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5988 overflowed_p = mips_elf_overflow_p (value, 16);
5991 case R_MIPS16_GOT16:
5992 case R_MIPS16_CALL16:
5995 case R_MICROMIPS_GOT16:
5996 case R_MICROMIPS_CALL16:
5997 /* VxWorks does not have separate local and global semantics for
5998 R_MIPS*_GOT16; every relocation evaluates to "G". */
5999 if (!htab->is_vxworks && local_p)
6001 value = mips_elf_got16_entry (abfd, input_bfd, info,
6002 symbol + addend, !was_local_p);
6003 if (value == MINUS_ONE)
6004 return bfd_reloc_outofrange;
6006 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6007 overflowed_p = mips_elf_overflow_p (value, 16);
6014 case R_MIPS_TLS_GOTTPREL:
6015 case R_MIPS_TLS_LDM:
6016 case R_MIPS_GOT_DISP:
6017 case R_MIPS16_TLS_GD:
6018 case R_MIPS16_TLS_GOTTPREL:
6019 case R_MIPS16_TLS_LDM:
6020 case R_MICROMIPS_TLS_GD:
6021 case R_MICROMIPS_TLS_GOTTPREL:
6022 case R_MICROMIPS_TLS_LDM:
6023 case R_MICROMIPS_GOT_DISP:
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6028 case R_MIPS_GPREL32:
6029 value = (addend + symbol + gp0 - gp);
6031 value &= howto->dst_mask;
6035 case R_MIPS_GNU_REL16_S2:
6036 if (howto->partial_inplace)
6037 addend = _bfd_mips_elf_sign_extend (addend, 18);
6039 /* No need to exclude weak undefined symbols here as they resolve
6040 to 0 and never set `*cross_mode_jump_p', so this alignment check
6041 will never trigger for them. */
6042 if (*cross_mode_jump_p
6043 ? ((symbol + addend) & 3) != 1
6044 : ((symbol + addend) & 3) != 0)
6045 return bfd_reloc_outofrange;
6047 value = symbol + addend - p;
6048 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6049 overflowed_p = mips_elf_overflow_p (value, 18);
6050 value >>= howto->rightshift;
6051 value &= howto->dst_mask;
6054 case R_MIPS16_PC16_S1:
6055 if (howto->partial_inplace)
6056 addend = _bfd_mips_elf_sign_extend (addend, 17);
6058 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6059 && (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 0
6061 : ((symbol + addend) & 1) == 0))
6062 return bfd_reloc_outofrange;
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 17);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6071 case R_MIPS_PC21_S2:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 23);
6075 if ((symbol + addend) & 3)
6076 return bfd_reloc_outofrange;
6078 value = symbol + addend - p;
6079 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6080 overflowed_p = mips_elf_overflow_p (value, 23);
6081 value >>= howto->rightshift;
6082 value &= howto->dst_mask;
6085 case R_MIPS_PC26_S2:
6086 if (howto->partial_inplace)
6087 addend = _bfd_mips_elf_sign_extend (addend, 28);
6089 if ((symbol + addend) & 3)
6090 return bfd_reloc_outofrange;
6092 value = symbol + addend - p;
6093 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6094 overflowed_p = mips_elf_overflow_p (value, 28);
6095 value >>= howto->rightshift;
6096 value &= howto->dst_mask;
6099 case R_MIPS_PC18_S3:
6100 if (howto->partial_inplace)
6101 addend = _bfd_mips_elf_sign_extend (addend, 21);
6103 if ((symbol + addend) & 7)
6104 return bfd_reloc_outofrange;
6106 value = symbol + addend - ((p | 7) ^ 7);
6107 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6108 overflowed_p = mips_elf_overflow_p (value, 21);
6109 value >>= howto->rightshift;
6110 value &= howto->dst_mask;
6113 case R_MIPS_PC19_S2:
6114 if (howto->partial_inplace)
6115 addend = _bfd_mips_elf_sign_extend (addend, 21);
6117 if ((symbol + addend) & 3)
6118 return bfd_reloc_outofrange;
6120 value = symbol + addend - p;
6121 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6122 overflowed_p = mips_elf_overflow_p (value, 21);
6123 value >>= howto->rightshift;
6124 value &= howto->dst_mask;
6128 value = mips_elf_high (symbol + addend - p);
6129 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6130 overflowed_p = mips_elf_overflow_p (value, 16);
6131 value &= howto->dst_mask;
6135 if (howto->partial_inplace)
6136 addend = _bfd_mips_elf_sign_extend (addend, 16);
6137 value = symbol + addend - p;
6138 value &= howto->dst_mask;
6141 case R_MICROMIPS_PC7_S1:
6142 if (howto->partial_inplace)
6143 addend = _bfd_mips_elf_sign_extend (addend, 8);
6145 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6146 && (*cross_mode_jump_p
6147 ? ((symbol + addend + 2) & 3) != 0
6148 : ((symbol + addend + 2) & 1) == 0))
6149 return bfd_reloc_outofrange;
6151 value = symbol + addend - p;
6152 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6153 overflowed_p = mips_elf_overflow_p (value, 8);
6154 value >>= howto->rightshift;
6155 value &= howto->dst_mask;
6158 case R_MICROMIPS_PC10_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 11);
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 11);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6175 case R_MICROMIPS_PC16_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 17);
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend) & 3) != 0
6182 : ((symbol + addend) & 1) == 0))
6183 return bfd_reloc_outofrange;
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 17);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6192 case R_MICROMIPS_PC23_S2:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 25);
6195 value = symbol + addend - ((p | 3) ^ 3);
6196 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 overflowed_p = mips_elf_overflow_p (value, 25);
6198 value >>= howto->rightshift;
6199 value &= howto->dst_mask;
6202 case R_MIPS_GOT_HI16:
6203 case R_MIPS_CALL_HI16:
6204 case R_MICROMIPS_GOT_HI16:
6205 case R_MICROMIPS_CALL_HI16:
6206 /* We're allowed to handle these two relocations identically.
6207 The dynamic linker is allowed to handle the CALL relocations
6208 differently by creating a lazy evaluation stub. */
6210 value = mips_elf_high (value);
6211 value &= howto->dst_mask;
6214 case R_MIPS_GOT_LO16:
6215 case R_MIPS_CALL_LO16:
6216 case R_MICROMIPS_GOT_LO16:
6217 case R_MICROMIPS_CALL_LO16:
6218 value = g & howto->dst_mask;
6221 case R_MIPS_GOT_PAGE:
6222 case R_MICROMIPS_GOT_PAGE:
6223 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6224 if (value == MINUS_ONE)
6225 return bfd_reloc_outofrange;
6226 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6227 overflowed_p = mips_elf_overflow_p (value, 16);
6230 case R_MIPS_GOT_OFST:
6231 case R_MICROMIPS_GOT_OFST:
6233 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6236 overflowed_p = mips_elf_overflow_p (value, 16);
6240 case R_MICROMIPS_SUB:
6241 value = symbol - addend;
6242 value &= howto->dst_mask;
6246 case R_MICROMIPS_HIGHER:
6247 value = mips_elf_higher (addend + symbol);
6248 value &= howto->dst_mask;
6251 case R_MIPS_HIGHEST:
6252 case R_MICROMIPS_HIGHEST:
6253 value = mips_elf_highest (addend + symbol);
6254 value &= howto->dst_mask;
6257 case R_MIPS_SCN_DISP:
6258 case R_MICROMIPS_SCN_DISP:
6259 value = symbol + addend - sec->output_offset;
6260 value &= howto->dst_mask;
6264 case R_MICROMIPS_JALR:
6265 /* This relocation is only a hint. In some cases, we optimize
6266 it into a bal instruction. But we don't try to optimize
6267 when the symbol does not resolve locally. */
6268 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6269 return bfd_reloc_continue;
6270 value = symbol + addend;
6274 case R_MIPS_GNU_VTINHERIT:
6275 case R_MIPS_GNU_VTENTRY:
6276 /* We don't do anything with these at present. */
6277 return bfd_reloc_continue;
6280 /* An unrecognized relocation type. */
6281 return bfd_reloc_notsupported;
6284 /* Store the VALUE for our caller. */
6286 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6289 /* Obtain the field relocated by RELOCATION. */
6292 mips_elf_obtain_contents (reloc_howto_type *howto,
6293 const Elf_Internal_Rela *relocation,
6294 bfd *input_bfd, bfd_byte *contents)
6297 bfd_byte *location = contents + relocation->r_offset;
6298 unsigned int size = bfd_get_reloc_size (howto);
6300 /* Obtain the bytes. */
6302 x = bfd_get (8 * size, input_bfd, location);
6307 /* It has been determined that the result of the RELOCATION is the
6308 VALUE. Use HOWTO to place VALUE into the output file at the
6309 appropriate position. The SECTION is the section to which the
6311 CROSS_MODE_JUMP_P is true if the relocation field
6312 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6314 Returns FALSE if anything goes wrong. */
6317 mips_elf_perform_relocation (struct bfd_link_info *info,
6318 reloc_howto_type *howto,
6319 const Elf_Internal_Rela *relocation,
6320 bfd_vma value, bfd *input_bfd,
6321 asection *input_section, bfd_byte *contents,
6322 bfd_boolean cross_mode_jump_p)
6326 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6329 /* Figure out where the relocation is occurring. */
6330 location = contents + relocation->r_offset;
6332 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6334 /* Obtain the current value. */
6335 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6337 /* Clear the field we are setting. */
6338 x &= ~howto->dst_mask;
6340 /* Set the field. */
6341 x |= (value & howto->dst_mask);
6343 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6344 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6346 bfd_vma opcode = x >> 26;
6348 if (r_type == R_MIPS16_26 ? opcode == 0x7
6349 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6352 info->callbacks->einfo
6353 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6354 input_bfd, input_section, relocation->r_offset);
6358 if (cross_mode_jump_p && jal_reloc_p (r_type))
6361 bfd_vma opcode = x >> 26;
6362 bfd_vma jalx_opcode;
6364 /* Check to see if the opcode is already JAL or JALX. */
6365 if (r_type == R_MIPS16_26)
6367 ok = ((opcode == 0x6) || (opcode == 0x7));
6370 else if (r_type == R_MICROMIPS_26_S1)
6372 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6377 ok = ((opcode == 0x3) || (opcode == 0x1d));
6381 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6382 convert J or JALS to JALX. */
6385 info->callbacks->einfo
6386 (_("%X%H: Unsupported jump between ISA modes; "
6387 "consider recompiling with interlinking enabled\n"),
6388 input_bfd, input_section, relocation->r_offset);
6392 /* Make this the JALX opcode. */
6393 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6395 else if (cross_mode_jump_p && b_reloc_p (r_type))
6397 bfd_boolean ok = FALSE;
6398 bfd_vma opcode = x >> 16;
6399 bfd_vma jalx_opcode = 0;
6403 if (r_type == R_MICROMIPS_PC16_S1)
6405 ok = opcode == 0x4060;
6409 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6411 ok = opcode == 0x411;
6416 if (bfd_link_pic (info) || !ok)
6418 info->callbacks->einfo
6419 (_("%X%H: Unsupported branch between ISA modes\n"),
6420 input_bfd, input_section, relocation->r_offset);
6424 addr = (input_section->output_section->vma
6425 + input_section->output_offset
6426 + relocation->r_offset
6428 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6430 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6432 info->callbacks->einfo
6433 (_("%X%H: Cannot convert branch between ISA modes "
6434 "to JALX: relocation out of range\n"),
6435 input_bfd, input_section, relocation->r_offset);
6439 /* Make this the JALX opcode. */
6440 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6443 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6445 if (!bfd_link_relocatable (info)
6446 && !cross_mode_jump_p
6447 && ((JAL_TO_BAL_P (input_bfd)
6448 && r_type == R_MIPS_26
6449 && (x >> 26) == 0x3) /* jal addr */
6450 || (JALR_TO_BAL_P (input_bfd)
6451 && r_type == R_MIPS_JALR
6452 && x == 0x0320f809) /* jalr t9 */
6453 || (JR_TO_B_P (input_bfd)
6454 && r_type == R_MIPS_JALR
6455 && x == 0x03200008))) /* jr t9 */
6461 addr = (input_section->output_section->vma
6462 + input_section->output_offset
6463 + relocation->r_offset
6465 if (r_type == R_MIPS_26)
6466 dest = (value << 2) | ((addr >> 28) << 28);
6470 if (off <= 0x1ffff && off >= -0x20000)
6472 if (x == 0x03200008) /* jr t9 */
6473 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6475 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6479 /* Put the value into the output. */
6480 size = bfd_get_reloc_size (howto);
6482 bfd_put (8 * size, input_bfd, x, location);
6484 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6490 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6491 is the original relocation, which is now being transformed into a
6492 dynamic relocation. The ADDENDP is adjusted if necessary; the
6493 caller should store the result in place of the original addend. */
6496 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6497 struct bfd_link_info *info,
6498 const Elf_Internal_Rela *rel,
6499 struct mips_elf_link_hash_entry *h,
6500 asection *sec, bfd_vma symbol,
6501 bfd_vma *addendp, asection *input_section)
6503 Elf_Internal_Rela outrel[3];
6508 bfd_boolean defined_p;
6509 struct mips_elf_link_hash_table *htab;
6511 htab = mips_elf_hash_table (info);
6512 BFD_ASSERT (htab != NULL);
6514 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6515 dynobj = elf_hash_table (info)->dynobj;
6516 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6517 BFD_ASSERT (sreloc != NULL);
6518 BFD_ASSERT (sreloc->contents != NULL);
6519 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6522 outrel[0].r_offset =
6523 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6524 if (ABI_64_P (output_bfd))
6526 outrel[1].r_offset =
6527 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6528 outrel[2].r_offset =
6529 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6532 if (outrel[0].r_offset == MINUS_ONE)
6533 /* The relocation field has been deleted. */
6536 if (outrel[0].r_offset == MINUS_TWO)
6538 /* The relocation field has been converted into a relative value of
6539 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6540 the field to be fully relocated, so add in the symbol's value. */
6545 /* We must now calculate the dynamic symbol table index to use
6546 in the relocation. */
6547 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6549 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6550 indx = h->root.dynindx;
6551 if (SGI_COMPAT (output_bfd))
6552 defined_p = h->root.def_regular;
6554 /* ??? glibc's ld.so just adds the final GOT entry to the
6555 relocation field. It therefore treats relocs against
6556 defined symbols in the same way as relocs against
6557 undefined symbols. */
6562 if (sec != NULL && bfd_is_abs_section (sec))
6564 else if (sec == NULL || sec->owner == NULL)
6566 bfd_set_error (bfd_error_bad_value);
6571 indx = elf_section_data (sec->output_section)->dynindx;
6574 asection *osec = htab->root.text_index_section;
6575 indx = elf_section_data (osec)->dynindx;
6581 /* Instead of generating a relocation using the section
6582 symbol, we may as well make it a fully relative
6583 relocation. We want to avoid generating relocations to
6584 local symbols because we used to generate them
6585 incorrectly, without adding the original symbol value,
6586 which is mandated by the ABI for section symbols. In
6587 order to give dynamic loaders and applications time to
6588 phase out the incorrect use, we refrain from emitting
6589 section-relative relocations. It's not like they're
6590 useful, after all. This should be a bit more efficient
6592 /* ??? Although this behavior is compatible with glibc's ld.so,
6593 the ABI says that relocations against STN_UNDEF should have
6594 a symbol value of 0. Irix rld honors this, so relocations
6595 against STN_UNDEF have no effect. */
6596 if (!SGI_COMPAT (output_bfd))
6601 /* If the relocation was previously an absolute relocation and
6602 this symbol will not be referred to by the relocation, we must
6603 adjust it by the value we give it in the dynamic symbol table.
6604 Otherwise leave the job up to the dynamic linker. */
6605 if (defined_p && r_type != R_MIPS_REL32)
6608 if (htab->is_vxworks)
6609 /* VxWorks uses non-relative relocations for this. */
6610 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6612 /* The relocation is always an REL32 relocation because we don't
6613 know where the shared library will wind up at load-time. */
6614 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6617 /* For strict adherence to the ABI specification, we should
6618 generate a R_MIPS_64 relocation record by itself before the
6619 _REL32/_64 record as well, such that the addend is read in as
6620 a 64-bit value (REL32 is a 32-bit relocation, after all).
6621 However, since none of the existing ELF64 MIPS dynamic
6622 loaders seems to care, we don't waste space with these
6623 artificial relocations. If this turns out to not be true,
6624 mips_elf_allocate_dynamic_relocation() should be tweaked so
6625 as to make room for a pair of dynamic relocations per
6626 invocation if ABI_64_P, and here we should generate an
6627 additional relocation record with R_MIPS_64 by itself for a
6628 NULL symbol before this relocation record. */
6629 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6630 ABI_64_P (output_bfd)
6633 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6635 /* Adjust the output offset of the relocation to reference the
6636 correct location in the output file. */
6637 outrel[0].r_offset += (input_section->output_section->vma
6638 + input_section->output_offset);
6639 outrel[1].r_offset += (input_section->output_section->vma
6640 + input_section->output_offset);
6641 outrel[2].r_offset += (input_section->output_section->vma
6642 + input_section->output_offset);
6644 /* Put the relocation back out. We have to use the special
6645 relocation outputter in the 64-bit case since the 64-bit
6646 relocation format is non-standard. */
6647 if (ABI_64_P (output_bfd))
6649 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6650 (output_bfd, &outrel[0],
6652 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6654 else if (htab->is_vxworks)
6656 /* VxWorks uses RELA rather than REL dynamic relocations. */
6657 outrel[0].r_addend = *addendp;
6658 bfd_elf32_swap_reloca_out
6659 (output_bfd, &outrel[0],
6661 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6664 bfd_elf32_swap_reloc_out
6665 (output_bfd, &outrel[0],
6666 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6668 /* We've now added another relocation. */
6669 ++sreloc->reloc_count;
6671 /* Make sure the output section is writable. The dynamic linker
6672 will be writing to it. */
6673 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6676 /* On IRIX5, make an entry of compact relocation info. */
6677 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6679 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6684 Elf32_crinfo cptrel;
6686 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6687 cptrel.vaddr = (rel->r_offset
6688 + input_section->output_section->vma
6689 + input_section->output_offset);
6690 if (r_type == R_MIPS_REL32)
6691 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6693 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6694 mips_elf_set_cr_dist2to (cptrel, 0);
6695 cptrel.konst = *addendp;
6697 cr = (scpt->contents
6698 + sizeof (Elf32_External_compact_rel));
6699 mips_elf_set_cr_relvaddr (cptrel, 0);
6700 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6701 ((Elf32_External_crinfo *) cr
6702 + scpt->reloc_count));
6703 ++scpt->reloc_count;
6707 /* If we've written this relocation for a readonly section,
6708 we need to set DF_TEXTREL again, so that we do not delete the
6710 if (MIPS_ELF_READONLY_SECTION (input_section))
6711 info->flags |= DF_TEXTREL;
6716 /* Return the MACH for a MIPS e_flags value. */
6719 _bfd_elf_mips_mach (flagword flags)
6721 switch (flags & EF_MIPS_MACH)
6723 case E_MIPS_MACH_3900:
6724 return bfd_mach_mips3900;
6726 case E_MIPS_MACH_4010:
6727 return bfd_mach_mips4010;
6729 case E_MIPS_MACH_4100:
6730 return bfd_mach_mips4100;
6732 case E_MIPS_MACH_4111:
6733 return bfd_mach_mips4111;
6735 case E_MIPS_MACH_4120:
6736 return bfd_mach_mips4120;
6738 case E_MIPS_MACH_4650:
6739 return bfd_mach_mips4650;
6741 case E_MIPS_MACH_5400:
6742 return bfd_mach_mips5400;
6744 case E_MIPS_MACH_5500:
6745 return bfd_mach_mips5500;
6747 case E_MIPS_MACH_5900:
6748 return bfd_mach_mips5900;
6750 case E_MIPS_MACH_9000:
6751 return bfd_mach_mips9000;
6753 case E_MIPS_MACH_SB1:
6754 return bfd_mach_mips_sb1;
6756 case E_MIPS_MACH_LS2E:
6757 return bfd_mach_mips_loongson_2e;
6759 case E_MIPS_MACH_LS2F:
6760 return bfd_mach_mips_loongson_2f;
6762 case E_MIPS_MACH_LS3A:
6763 return bfd_mach_mips_loongson_3a;
6765 case E_MIPS_MACH_OCTEON3:
6766 return bfd_mach_mips_octeon3;
6768 case E_MIPS_MACH_OCTEON2:
6769 return bfd_mach_mips_octeon2;
6771 case E_MIPS_MACH_OCTEON:
6772 return bfd_mach_mips_octeon;
6774 case E_MIPS_MACH_XLR:
6775 return bfd_mach_mips_xlr;
6778 switch (flags & EF_MIPS_ARCH)
6782 return bfd_mach_mips3000;
6785 return bfd_mach_mips6000;
6788 return bfd_mach_mips4000;
6791 return bfd_mach_mips8000;
6794 return bfd_mach_mips5;
6796 case E_MIPS_ARCH_32:
6797 return bfd_mach_mipsisa32;
6799 case E_MIPS_ARCH_64:
6800 return bfd_mach_mipsisa64;
6802 case E_MIPS_ARCH_32R2:
6803 return bfd_mach_mipsisa32r2;
6805 case E_MIPS_ARCH_64R2:
6806 return bfd_mach_mipsisa64r2;
6808 case E_MIPS_ARCH_32R6:
6809 return bfd_mach_mipsisa32r6;
6811 case E_MIPS_ARCH_64R6:
6812 return bfd_mach_mipsisa64r6;
6819 /* Return printable name for ABI. */
6821 static INLINE char *
6822 elf_mips_abi_name (bfd *abfd)
6826 flags = elf_elfheader (abfd)->e_flags;
6827 switch (flags & EF_MIPS_ABI)
6830 if (ABI_N32_P (abfd))
6832 else if (ABI_64_P (abfd))
6836 case E_MIPS_ABI_O32:
6838 case E_MIPS_ABI_O64:
6840 case E_MIPS_ABI_EABI32:
6842 case E_MIPS_ABI_EABI64:
6845 return "unknown abi";
6849 /* MIPS ELF uses two common sections. One is the usual one, and the
6850 other is for small objects. All the small objects are kept
6851 together, and then referenced via the gp pointer, which yields
6852 faster assembler code. This is what we use for the small common
6853 section. This approach is copied from ecoff.c. */
6854 static asection mips_elf_scom_section;
6855 static asymbol mips_elf_scom_symbol;
6856 static asymbol *mips_elf_scom_symbol_ptr;
6858 /* MIPS ELF also uses an acommon section, which represents an
6859 allocated common symbol which may be overridden by a
6860 definition in a shared library. */
6861 static asection mips_elf_acom_section;
6862 static asymbol mips_elf_acom_symbol;
6863 static asymbol *mips_elf_acom_symbol_ptr;
6865 /* This is used for both the 32-bit and the 64-bit ABI. */
6868 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6870 elf_symbol_type *elfsym;
6872 /* Handle the special MIPS section numbers that a symbol may use. */
6873 elfsym = (elf_symbol_type *) asym;
6874 switch (elfsym->internal_elf_sym.st_shndx)
6876 case SHN_MIPS_ACOMMON:
6877 /* This section is used in a dynamically linked executable file.
6878 It is an allocated common section. The dynamic linker can
6879 either resolve these symbols to something in a shared
6880 library, or it can just leave them here. For our purposes,
6881 we can consider these symbols to be in a new section. */
6882 if (mips_elf_acom_section.name == NULL)
6884 /* Initialize the acommon section. */
6885 mips_elf_acom_section.name = ".acommon";
6886 mips_elf_acom_section.flags = SEC_ALLOC;
6887 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6888 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6889 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6890 mips_elf_acom_symbol.name = ".acommon";
6891 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6892 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6893 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6895 asym->section = &mips_elf_acom_section;
6899 /* Common symbols less than the GP size are automatically
6900 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6901 if (asym->value > elf_gp_size (abfd)
6902 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6903 || IRIX_COMPAT (abfd) == ict_irix6)
6906 case SHN_MIPS_SCOMMON:
6907 if (mips_elf_scom_section.name == NULL)
6909 /* Initialize the small common section. */
6910 mips_elf_scom_section.name = ".scommon";
6911 mips_elf_scom_section.flags = SEC_IS_COMMON;
6912 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6913 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6914 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6915 mips_elf_scom_symbol.name = ".scommon";
6916 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6917 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6918 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6920 asym->section = &mips_elf_scom_section;
6921 asym->value = elfsym->internal_elf_sym.st_size;
6924 case SHN_MIPS_SUNDEFINED:
6925 asym->section = bfd_und_section_ptr;
6930 asection *section = bfd_get_section_by_name (abfd, ".text");
6932 if (section != NULL)
6934 asym->section = section;
6935 /* MIPS_TEXT is a bit special, the address is not an offset
6936 to the base of the .text section. So substract the section
6937 base address to make it an offset. */
6938 asym->value -= section->vma;
6945 asection *section = bfd_get_section_by_name (abfd, ".data");
6947 if (section != NULL)
6949 asym->section = section;
6950 /* MIPS_DATA is a bit special, the address is not an offset
6951 to the base of the .data section. So substract the section
6952 base address to make it an offset. */
6953 asym->value -= section->vma;
6959 /* If this is an odd-valued function symbol, assume it's a MIPS16
6960 or microMIPS one. */
6961 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6962 && (asym->value & 1) != 0)
6965 if (MICROMIPS_P (abfd))
6966 elfsym->internal_elf_sym.st_other
6967 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6969 elfsym->internal_elf_sym.st_other
6970 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6974 /* Implement elf_backend_eh_frame_address_size. This differs from
6975 the default in the way it handles EABI64.
6977 EABI64 was originally specified as an LP64 ABI, and that is what
6978 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6979 historically accepted the combination of -mabi=eabi and -mlong32,
6980 and this ILP32 variation has become semi-official over time.
6981 Both forms use elf32 and have pointer-sized FDE addresses.
6983 If an EABI object was generated by GCC 4.0 or above, it will have
6984 an empty .gcc_compiled_longXX section, where XX is the size of longs
6985 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6986 have no special marking to distinguish them from LP64 objects.
6988 We don't want users of the official LP64 ABI to be punished for the
6989 existence of the ILP32 variant, but at the same time, we don't want
6990 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6991 We therefore take the following approach:
6993 - If ABFD contains a .gcc_compiled_longXX section, use it to
6994 determine the pointer size.
6996 - Otherwise check the type of the first relocation. Assume that
6997 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7001 The second check is enough to detect LP64 objects generated by pre-4.0
7002 compilers because, in the kind of output generated by those compilers,
7003 the first relocation will be associated with either a CIE personality
7004 routine or an FDE start address. Furthermore, the compilers never
7005 used a special (non-pointer) encoding for this ABI.
7007 Checking the relocation type should also be safe because there is no
7008 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7012 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7014 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7016 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7018 bfd_boolean long32_p, long64_p;
7020 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7021 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7022 if (long32_p && long64_p)
7029 if (sec->reloc_count > 0
7030 && elf_section_data (sec)->relocs != NULL
7031 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7040 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7041 relocations against two unnamed section symbols to resolve to the
7042 same address. For example, if we have code like:
7044 lw $4,%got_disp(.data)($gp)
7045 lw $25,%got_disp(.text)($gp)
7048 then the linker will resolve both relocations to .data and the program
7049 will jump there rather than to .text.
7051 We can work around this problem by giving names to local section symbols.
7052 This is also what the MIPSpro tools do. */
7055 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7057 return SGI_COMPAT (abfd);
7060 /* Work over a section just before writing it out. This routine is
7061 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7062 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7066 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7068 if (hdr->sh_type == SHT_MIPS_REGINFO
7069 && hdr->sh_size > 0)
7073 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7074 BFD_ASSERT (hdr->contents == NULL);
7077 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7080 H_PUT_32 (abfd, elf_gp (abfd), buf);
7081 if (bfd_bwrite (buf, 4, abfd) != 4)
7085 if (hdr->sh_type == SHT_MIPS_OPTIONS
7086 && hdr->bfd_section != NULL
7087 && mips_elf_section_data (hdr->bfd_section) != NULL
7088 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7090 bfd_byte *contents, *l, *lend;
7092 /* We stored the section contents in the tdata field in the
7093 set_section_contents routine. We save the section contents
7094 so that we don't have to read them again.
7095 At this point we know that elf_gp is set, so we can look
7096 through the section contents to see if there is an
7097 ODK_REGINFO structure. */
7099 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7101 lend = contents + hdr->sh_size;
7102 while (l + sizeof (Elf_External_Options) <= lend)
7104 Elf_Internal_Options intopt;
7106 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7108 if (intopt.size < sizeof (Elf_External_Options))
7110 (*_bfd_error_handler)
7111 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7112 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7115 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7122 + sizeof (Elf_External_Options)
7123 + (sizeof (Elf64_External_RegInfo) - 8)),
7126 H_PUT_64 (abfd, elf_gp (abfd), buf);
7127 if (bfd_bwrite (buf, 8, abfd) != 8)
7130 else if (intopt.kind == ODK_REGINFO)
7137 + sizeof (Elf_External_Options)
7138 + (sizeof (Elf32_External_RegInfo) - 4)),
7141 H_PUT_32 (abfd, elf_gp (abfd), buf);
7142 if (bfd_bwrite (buf, 4, abfd) != 4)
7149 if (hdr->bfd_section != NULL)
7151 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7153 /* .sbss is not handled specially here because the GNU/Linux
7154 prelinker can convert .sbss from NOBITS to PROGBITS and
7155 changing it back to NOBITS breaks the binary. The entry in
7156 _bfd_mips_elf_special_sections will ensure the correct flags
7157 are set on .sbss if BFD creates it without reading it from an
7158 input file, and without special handling here the flags set
7159 on it in an input file will be followed. */
7160 if (strcmp (name, ".sdata") == 0
7161 || strcmp (name, ".lit8") == 0
7162 || strcmp (name, ".lit4") == 0)
7163 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7164 else if (strcmp (name, ".srdata") == 0)
7165 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7166 else if (strcmp (name, ".compact_rel") == 0)
7168 else if (strcmp (name, ".rtproc") == 0)
7170 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7172 unsigned int adjust;
7174 adjust = hdr->sh_size % hdr->sh_addralign;
7176 hdr->sh_size += hdr->sh_addralign - adjust;
7184 /* Handle a MIPS specific section when reading an object file. This
7185 is called when elfcode.h finds a section with an unknown type.
7186 This routine supports both the 32-bit and 64-bit ELF ABI.
7188 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7192 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7193 Elf_Internal_Shdr *hdr,
7199 /* There ought to be a place to keep ELF backend specific flags, but
7200 at the moment there isn't one. We just keep track of the
7201 sections by their name, instead. Fortunately, the ABI gives
7202 suggested names for all the MIPS specific sections, so we will
7203 probably get away with this. */
7204 switch (hdr->sh_type)
7206 case SHT_MIPS_LIBLIST:
7207 if (strcmp (name, ".liblist") != 0)
7211 if (strcmp (name, ".msym") != 0)
7214 case SHT_MIPS_CONFLICT:
7215 if (strcmp (name, ".conflict") != 0)
7218 case SHT_MIPS_GPTAB:
7219 if (! CONST_STRNEQ (name, ".gptab."))
7222 case SHT_MIPS_UCODE:
7223 if (strcmp (name, ".ucode") != 0)
7226 case SHT_MIPS_DEBUG:
7227 if (strcmp (name, ".mdebug") != 0)
7229 flags = SEC_DEBUGGING;
7231 case SHT_MIPS_REGINFO:
7232 if (strcmp (name, ".reginfo") != 0
7233 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7235 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7237 case SHT_MIPS_IFACE:
7238 if (strcmp (name, ".MIPS.interfaces") != 0)
7241 case SHT_MIPS_CONTENT:
7242 if (! CONST_STRNEQ (name, ".MIPS.content"))
7245 case SHT_MIPS_OPTIONS:
7246 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7249 case SHT_MIPS_ABIFLAGS:
7250 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7252 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7254 case SHT_MIPS_DWARF:
7255 if (! CONST_STRNEQ (name, ".debug_")
7256 && ! CONST_STRNEQ (name, ".zdebug_"))
7259 case SHT_MIPS_SYMBOL_LIB:
7260 if (strcmp (name, ".MIPS.symlib") != 0)
7263 case SHT_MIPS_EVENTS:
7264 if (! CONST_STRNEQ (name, ".MIPS.events")
7265 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7272 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7277 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7278 (bfd_get_section_flags (abfd,
7284 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7286 Elf_External_ABIFlags_v0 ext;
7288 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7289 &ext, 0, sizeof ext))
7291 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7292 &mips_elf_tdata (abfd)->abiflags);
7293 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7295 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7298 /* FIXME: We should record sh_info for a .gptab section. */
7300 /* For a .reginfo section, set the gp value in the tdata information
7301 from the contents of this section. We need the gp value while
7302 processing relocs, so we just get it now. The .reginfo section
7303 is not used in the 64-bit MIPS ELF ABI. */
7304 if (hdr->sh_type == SHT_MIPS_REGINFO)
7306 Elf32_External_RegInfo ext;
7309 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7310 &ext, 0, sizeof ext))
7312 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7313 elf_gp (abfd) = s.ri_gp_value;
7316 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7317 set the gp value based on what we find. We may see both
7318 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7319 they should agree. */
7320 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7322 bfd_byte *contents, *l, *lend;
7324 contents = bfd_malloc (hdr->sh_size);
7325 if (contents == NULL)
7327 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7334 lend = contents + hdr->sh_size;
7335 while (l + sizeof (Elf_External_Options) <= lend)
7337 Elf_Internal_Options intopt;
7339 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7341 if (intopt.size < sizeof (Elf_External_Options))
7343 (*_bfd_error_handler)
7344 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7345 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7348 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7350 Elf64_Internal_RegInfo intreg;
7352 bfd_mips_elf64_swap_reginfo_in
7354 ((Elf64_External_RegInfo *)
7355 (l + sizeof (Elf_External_Options))),
7357 elf_gp (abfd) = intreg.ri_gp_value;
7359 else if (intopt.kind == ODK_REGINFO)
7361 Elf32_RegInfo intreg;
7363 bfd_mips_elf32_swap_reginfo_in
7365 ((Elf32_External_RegInfo *)
7366 (l + sizeof (Elf_External_Options))),
7368 elf_gp (abfd) = intreg.ri_gp_value;
7378 /* Set the correct type for a MIPS ELF section. We do this by the
7379 section name, which is a hack, but ought to work. This routine is
7380 used by both the 32-bit and the 64-bit ABI. */
7383 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7385 const char *name = bfd_get_section_name (abfd, sec);
7387 if (strcmp (name, ".liblist") == 0)
7389 hdr->sh_type = SHT_MIPS_LIBLIST;
7390 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7391 /* The sh_link field is set in final_write_processing. */
7393 else if (strcmp (name, ".conflict") == 0)
7394 hdr->sh_type = SHT_MIPS_CONFLICT;
7395 else if (CONST_STRNEQ (name, ".gptab."))
7397 hdr->sh_type = SHT_MIPS_GPTAB;
7398 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7399 /* The sh_info field is set in final_write_processing. */
7401 else if (strcmp (name, ".ucode") == 0)
7402 hdr->sh_type = SHT_MIPS_UCODE;
7403 else if (strcmp (name, ".mdebug") == 0)
7405 hdr->sh_type = SHT_MIPS_DEBUG;
7406 /* In a shared object on IRIX 5.3, the .mdebug section has an
7407 entsize of 0. FIXME: Does this matter? */
7408 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7409 hdr->sh_entsize = 0;
7411 hdr->sh_entsize = 1;
7413 else if (strcmp (name, ".reginfo") == 0)
7415 hdr->sh_type = SHT_MIPS_REGINFO;
7416 /* In a shared object on IRIX 5.3, the .reginfo section has an
7417 entsize of 0x18. FIXME: Does this matter? */
7418 if (SGI_COMPAT (abfd))
7420 if ((abfd->flags & DYNAMIC) != 0)
7421 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7423 hdr->sh_entsize = 1;
7426 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7428 else if (SGI_COMPAT (abfd)
7429 && (strcmp (name, ".hash") == 0
7430 || strcmp (name, ".dynamic") == 0
7431 || strcmp (name, ".dynstr") == 0))
7433 if (SGI_COMPAT (abfd))
7434 hdr->sh_entsize = 0;
7436 /* This isn't how the IRIX6 linker behaves. */
7437 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7440 else if (strcmp (name, ".got") == 0
7441 || strcmp (name, ".srdata") == 0
7442 || strcmp (name, ".sdata") == 0
7443 || strcmp (name, ".sbss") == 0
7444 || strcmp (name, ".lit4") == 0
7445 || strcmp (name, ".lit8") == 0)
7446 hdr->sh_flags |= SHF_MIPS_GPREL;
7447 else if (strcmp (name, ".MIPS.interfaces") == 0)
7449 hdr->sh_type = SHT_MIPS_IFACE;
7450 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7452 else if (CONST_STRNEQ (name, ".MIPS.content"))
7454 hdr->sh_type = SHT_MIPS_CONTENT;
7455 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7456 /* The sh_info field is set in final_write_processing. */
7458 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7460 hdr->sh_type = SHT_MIPS_OPTIONS;
7461 hdr->sh_entsize = 1;
7462 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7464 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7466 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7467 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7469 else if (CONST_STRNEQ (name, ".debug_")
7470 || CONST_STRNEQ (name, ".zdebug_"))
7472 hdr->sh_type = SHT_MIPS_DWARF;
7474 /* Irix facilities such as libexc expect a single .debug_frame
7475 per executable, the system ones have NOSTRIP set and the linker
7476 doesn't merge sections with different flags so ... */
7477 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7478 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7480 else if (strcmp (name, ".MIPS.symlib") == 0)
7482 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7483 /* The sh_link and sh_info fields are set in
7484 final_write_processing. */
7486 else if (CONST_STRNEQ (name, ".MIPS.events")
7487 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7489 hdr->sh_type = SHT_MIPS_EVENTS;
7490 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7491 /* The sh_link field is set in final_write_processing. */
7493 else if (strcmp (name, ".msym") == 0)
7495 hdr->sh_type = SHT_MIPS_MSYM;
7496 hdr->sh_flags |= SHF_ALLOC;
7497 hdr->sh_entsize = 8;
7500 /* The generic elf_fake_sections will set up REL_HDR using the default
7501 kind of relocations. We used to set up a second header for the
7502 non-default kind of relocations here, but only NewABI would use
7503 these, and the IRIX ld doesn't like resulting empty RELA sections.
7504 Thus we create those header only on demand now. */
7509 /* Given a BFD section, try to locate the corresponding ELF section
7510 index. This is used by both the 32-bit and the 64-bit ABI.
7511 Actually, it's not clear to me that the 64-bit ABI supports these,
7512 but for non-PIC objects we will certainly want support for at least
7513 the .scommon section. */
7516 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7517 asection *sec, int *retval)
7519 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7521 *retval = SHN_MIPS_SCOMMON;
7524 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7526 *retval = SHN_MIPS_ACOMMON;
7532 /* Hook called by the linker routine which adds symbols from an object
7533 file. We must handle the special MIPS section numbers here. */
7536 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7537 Elf_Internal_Sym *sym, const char **namep,
7538 flagword *flagsp ATTRIBUTE_UNUSED,
7539 asection **secp, bfd_vma *valp)
7541 if (SGI_COMPAT (abfd)
7542 && (abfd->flags & DYNAMIC) != 0
7543 && strcmp (*namep, "_rld_new_interface") == 0)
7545 /* Skip IRIX5 rld entry name. */
7550 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7551 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7552 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7553 a magic symbol resolved by the linker, we ignore this bogus definition
7554 of _gp_disp. New ABI objects do not suffer from this problem so this
7555 is not done for them. */
7557 && (sym->st_shndx == SHN_ABS)
7558 && (strcmp (*namep, "_gp_disp") == 0))
7564 switch (sym->st_shndx)
7567 /* Common symbols less than the GP size are automatically
7568 treated as SHN_MIPS_SCOMMON symbols. */
7569 if (sym->st_size > elf_gp_size (abfd)
7570 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7571 || IRIX_COMPAT (abfd) == ict_irix6)
7574 case SHN_MIPS_SCOMMON:
7575 *secp = bfd_make_section_old_way (abfd, ".scommon");
7576 (*secp)->flags |= SEC_IS_COMMON;
7577 *valp = sym->st_size;
7581 /* This section is used in a shared object. */
7582 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7584 asymbol *elf_text_symbol;
7585 asection *elf_text_section;
7586 bfd_size_type amt = sizeof (asection);
7588 elf_text_section = bfd_zalloc (abfd, amt);
7589 if (elf_text_section == NULL)
7592 amt = sizeof (asymbol);
7593 elf_text_symbol = bfd_zalloc (abfd, amt);
7594 if (elf_text_symbol == NULL)
7597 /* Initialize the section. */
7599 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7600 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7602 elf_text_section->symbol = elf_text_symbol;
7603 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7605 elf_text_section->name = ".text";
7606 elf_text_section->flags = SEC_NO_FLAGS;
7607 elf_text_section->output_section = NULL;
7608 elf_text_section->owner = abfd;
7609 elf_text_symbol->name = ".text";
7610 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7611 elf_text_symbol->section = elf_text_section;
7613 /* This code used to do *secp = bfd_und_section_ptr if
7614 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7615 so I took it out. */
7616 *secp = mips_elf_tdata (abfd)->elf_text_section;
7619 case SHN_MIPS_ACOMMON:
7620 /* Fall through. XXX Can we treat this as allocated data? */
7622 /* This section is used in a shared object. */
7623 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7625 asymbol *elf_data_symbol;
7626 asection *elf_data_section;
7627 bfd_size_type amt = sizeof (asection);
7629 elf_data_section = bfd_zalloc (abfd, amt);
7630 if (elf_data_section == NULL)
7633 amt = sizeof (asymbol);
7634 elf_data_symbol = bfd_zalloc (abfd, amt);
7635 if (elf_data_symbol == NULL)
7638 /* Initialize the section. */
7640 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7641 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7643 elf_data_section->symbol = elf_data_symbol;
7644 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7646 elf_data_section->name = ".data";
7647 elf_data_section->flags = SEC_NO_FLAGS;
7648 elf_data_section->output_section = NULL;
7649 elf_data_section->owner = abfd;
7650 elf_data_symbol->name = ".data";
7651 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7652 elf_data_symbol->section = elf_data_section;
7654 /* This code used to do *secp = bfd_und_section_ptr if
7655 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7656 so I took it out. */
7657 *secp = mips_elf_tdata (abfd)->elf_data_section;
7660 case SHN_MIPS_SUNDEFINED:
7661 *secp = bfd_und_section_ptr;
7665 if (SGI_COMPAT (abfd)
7666 && ! bfd_link_pic (info)
7667 && info->output_bfd->xvec == abfd->xvec
7668 && strcmp (*namep, "__rld_obj_head") == 0)
7670 struct elf_link_hash_entry *h;
7671 struct bfd_link_hash_entry *bh;
7673 /* Mark __rld_obj_head as dynamic. */
7675 if (! (_bfd_generic_link_add_one_symbol
7676 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7677 get_elf_backend_data (abfd)->collect, &bh)))
7680 h = (struct elf_link_hash_entry *) bh;
7683 h->type = STT_OBJECT;
7685 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7688 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7689 mips_elf_hash_table (info)->rld_symbol = h;
7692 /* If this is a mips16 text symbol, add 1 to the value to make it
7693 odd. This will cause something like .word SYM to come up with
7694 the right value when it is loaded into the PC. */
7695 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7701 /* This hook function is called before the linker writes out a global
7702 symbol. We mark symbols as small common if appropriate. This is
7703 also where we undo the increment of the value for a mips16 symbol. */
7706 _bfd_mips_elf_link_output_symbol_hook
7707 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7708 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7709 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7711 /* If we see a common symbol, which implies a relocatable link, then
7712 if a symbol was small common in an input file, mark it as small
7713 common in the output file. */
7714 if (sym->st_shndx == SHN_COMMON
7715 && strcmp (input_sec->name, ".scommon") == 0)
7716 sym->st_shndx = SHN_MIPS_SCOMMON;
7718 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7719 sym->st_value &= ~1;
7724 /* Functions for the dynamic linker. */
7726 /* Create dynamic sections when linking against a dynamic object. */
7729 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7731 struct elf_link_hash_entry *h;
7732 struct bfd_link_hash_entry *bh;
7734 register asection *s;
7735 const char * const *namep;
7736 struct mips_elf_link_hash_table *htab;
7738 htab = mips_elf_hash_table (info);
7739 BFD_ASSERT (htab != NULL);
7741 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7742 | SEC_LINKER_CREATED | SEC_READONLY);
7744 /* The psABI requires a read-only .dynamic section, but the VxWorks
7746 if (!htab->is_vxworks)
7748 s = bfd_get_linker_section (abfd, ".dynamic");
7751 if (! bfd_set_section_flags (abfd, s, flags))
7756 /* We need to create .got section. */
7757 if (!mips_elf_create_got_section (abfd, info))
7760 if (! mips_elf_rel_dyn_section (info, TRUE))
7763 /* Create .stub section. */
7764 s = bfd_make_section_anyway_with_flags (abfd,
7765 MIPS_ELF_STUB_SECTION_NAME (abfd),
7768 || ! bfd_set_section_alignment (abfd, s,
7769 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7773 if (!mips_elf_hash_table (info)->use_rld_obj_head
7774 && bfd_link_executable (info)
7775 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7777 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7778 flags &~ (flagword) SEC_READONLY);
7780 || ! bfd_set_section_alignment (abfd, s,
7781 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7785 /* On IRIX5, we adjust add some additional symbols and change the
7786 alignments of several sections. There is no ABI documentation
7787 indicating that this is necessary on IRIX6, nor any evidence that
7788 the linker takes such action. */
7789 if (IRIX_COMPAT (abfd) == ict_irix5)
7791 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7794 if (! (_bfd_generic_link_add_one_symbol
7795 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7796 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7799 h = (struct elf_link_hash_entry *) bh;
7802 h->type = STT_SECTION;
7804 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7808 /* We need to create a .compact_rel section. */
7809 if (SGI_COMPAT (abfd))
7811 if (!mips_elf_create_compact_rel_section (abfd, info))
7815 /* Change alignments of some sections. */
7816 s = bfd_get_linker_section (abfd, ".hash");
7818 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7820 s = bfd_get_linker_section (abfd, ".dynsym");
7822 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7824 s = bfd_get_linker_section (abfd, ".dynstr");
7826 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7829 s = bfd_get_section_by_name (abfd, ".reginfo");
7831 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7833 s = bfd_get_linker_section (abfd, ".dynamic");
7835 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7838 if (bfd_link_executable (info))
7842 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7844 if (!(_bfd_generic_link_add_one_symbol
7845 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7846 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7849 h = (struct elf_link_hash_entry *) bh;
7852 h->type = STT_SECTION;
7854 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7857 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7859 /* __rld_map is a four byte word located in the .data section
7860 and is filled in by the rtld to contain a pointer to
7861 the _r_debug structure. Its symbol value will be set in
7862 _bfd_mips_elf_finish_dynamic_symbol. */
7863 s = bfd_get_linker_section (abfd, ".rld_map");
7864 BFD_ASSERT (s != NULL);
7866 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7868 if (!(_bfd_generic_link_add_one_symbol
7869 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7870 get_elf_backend_data (abfd)->collect, &bh)))
7873 h = (struct elf_link_hash_entry *) bh;
7876 h->type = STT_OBJECT;
7878 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7880 mips_elf_hash_table (info)->rld_symbol = h;
7884 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7885 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7886 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7889 /* Cache the sections created above. */
7890 htab->splt = bfd_get_linker_section (abfd, ".plt");
7891 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7892 if (htab->is_vxworks)
7894 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7895 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7898 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7900 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7905 /* Do the usual VxWorks handling. */
7906 if (htab->is_vxworks
7907 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7913 /* Return true if relocation REL against section SEC is a REL rather than
7914 RELA relocation. RELOCS is the first relocation in the section and
7915 ABFD is the bfd that contains SEC. */
7918 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7919 const Elf_Internal_Rela *relocs,
7920 const Elf_Internal_Rela *rel)
7922 Elf_Internal_Shdr *rel_hdr;
7923 const struct elf_backend_data *bed;
7925 /* To determine which flavor of relocation this is, we depend on the
7926 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7927 rel_hdr = elf_section_data (sec)->rel.hdr;
7928 if (rel_hdr == NULL)
7930 bed = get_elf_backend_data (abfd);
7931 return ((size_t) (rel - relocs)
7932 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7935 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7936 HOWTO is the relocation's howto and CONTENTS points to the contents
7937 of the section that REL is against. */
7940 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7941 reloc_howto_type *howto, bfd_byte *contents)
7944 unsigned int r_type;
7948 r_type = ELF_R_TYPE (abfd, rel->r_info);
7949 location = contents + rel->r_offset;
7951 /* Get the addend, which is stored in the input file. */
7952 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7953 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7954 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7956 addend = bytes & howto->src_mask;
7958 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7960 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7966 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7967 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7968 and update *ADDEND with the final addend. Return true on success
7969 or false if the LO16 could not be found. RELEND is the exclusive
7970 upper bound on the relocations for REL's section. */
7973 mips_elf_add_lo16_rel_addend (bfd *abfd,
7974 const Elf_Internal_Rela *rel,
7975 const Elf_Internal_Rela *relend,
7976 bfd_byte *contents, bfd_vma *addend)
7978 unsigned int r_type, lo16_type;
7979 const Elf_Internal_Rela *lo16_relocation;
7980 reloc_howto_type *lo16_howto;
7983 r_type = ELF_R_TYPE (abfd, rel->r_info);
7984 if (mips16_reloc_p (r_type))
7985 lo16_type = R_MIPS16_LO16;
7986 else if (micromips_reloc_p (r_type))
7987 lo16_type = R_MICROMIPS_LO16;
7988 else if (r_type == R_MIPS_PCHI16)
7989 lo16_type = R_MIPS_PCLO16;
7991 lo16_type = R_MIPS_LO16;
7993 /* The combined value is the sum of the HI16 addend, left-shifted by
7994 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7995 code does a `lui' of the HI16 value, and then an `addiu' of the
7998 Scan ahead to find a matching LO16 relocation.
8000 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8001 be immediately following. However, for the IRIX6 ABI, the next
8002 relocation may be a composed relocation consisting of several
8003 relocations for the same address. In that case, the R_MIPS_LO16
8004 relocation may occur as one of these. We permit a similar
8005 extension in general, as that is useful for GCC.
8007 In some cases GCC dead code elimination removes the LO16 but keeps
8008 the corresponding HI16. This is strictly speaking a violation of
8009 the ABI but not immediately harmful. */
8010 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8011 if (lo16_relocation == NULL)
8014 /* Obtain the addend kept there. */
8015 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8016 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8018 l <<= lo16_howto->rightshift;
8019 l = _bfd_mips_elf_sign_extend (l, 16);
8026 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8027 store the contents in *CONTENTS on success. Assume that *CONTENTS
8028 already holds the contents if it is nonull on entry. */
8031 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8036 /* Get cached copy if it exists. */
8037 if (elf_section_data (sec)->this_hdr.contents != NULL)
8039 *contents = elf_section_data (sec)->this_hdr.contents;
8043 return bfd_malloc_and_get_section (abfd, sec, contents);
8046 /* Make a new PLT record to keep internal data. */
8048 static struct plt_entry *
8049 mips_elf_make_plt_record (bfd *abfd)
8051 struct plt_entry *entry;
8053 entry = bfd_zalloc (abfd, sizeof (*entry));
8057 entry->stub_offset = MINUS_ONE;
8058 entry->mips_offset = MINUS_ONE;
8059 entry->comp_offset = MINUS_ONE;
8060 entry->gotplt_index = MINUS_ONE;
8064 /* Look through the relocs for a section during the first phase, and
8065 allocate space in the global offset table and record the need for
8066 standard MIPS and compressed procedure linkage table entries. */
8069 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8070 asection *sec, const Elf_Internal_Rela *relocs)
8074 Elf_Internal_Shdr *symtab_hdr;
8075 struct elf_link_hash_entry **sym_hashes;
8077 const Elf_Internal_Rela *rel;
8078 const Elf_Internal_Rela *rel_end;
8080 const struct elf_backend_data *bed;
8081 struct mips_elf_link_hash_table *htab;
8084 reloc_howto_type *howto;
8086 if (bfd_link_relocatable (info))
8089 htab = mips_elf_hash_table (info);
8090 BFD_ASSERT (htab != NULL);
8092 dynobj = elf_hash_table (info)->dynobj;
8093 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8094 sym_hashes = elf_sym_hashes (abfd);
8095 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8097 bed = get_elf_backend_data (abfd);
8098 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8100 /* Check for the mips16 stub sections. */
8102 name = bfd_get_section_name (abfd, sec);
8103 if (FN_STUB_P (name))
8105 unsigned long r_symndx;
8107 /* Look at the relocation information to figure out which symbol
8110 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8113 (*_bfd_error_handler)
8114 (_("%B: Warning: cannot determine the target function for"
8115 " stub section `%s'"),
8117 bfd_set_error (bfd_error_bad_value);
8121 if (r_symndx < extsymoff
8122 || sym_hashes[r_symndx - extsymoff] == NULL)
8126 /* This stub is for a local symbol. This stub will only be
8127 needed if there is some relocation in this BFD, other
8128 than a 16 bit function call, which refers to this symbol. */
8129 for (o = abfd->sections; o != NULL; o = o->next)
8131 Elf_Internal_Rela *sec_relocs;
8132 const Elf_Internal_Rela *r, *rend;
8134 /* We can ignore stub sections when looking for relocs. */
8135 if ((o->flags & SEC_RELOC) == 0
8136 || o->reloc_count == 0
8137 || section_allows_mips16_refs_p (o))
8141 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8143 if (sec_relocs == NULL)
8146 rend = sec_relocs + o->reloc_count;
8147 for (r = sec_relocs; r < rend; r++)
8148 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8149 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8152 if (elf_section_data (o)->relocs != sec_relocs)
8161 /* There is no non-call reloc for this stub, so we do
8162 not need it. Since this function is called before
8163 the linker maps input sections to output sections, we
8164 can easily discard it by setting the SEC_EXCLUDE
8166 sec->flags |= SEC_EXCLUDE;
8170 /* Record this stub in an array of local symbol stubs for
8172 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8174 unsigned long symcount;
8178 if (elf_bad_symtab (abfd))
8179 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8181 symcount = symtab_hdr->sh_info;
8182 amt = symcount * sizeof (asection *);
8183 n = bfd_zalloc (abfd, amt);
8186 mips_elf_tdata (abfd)->local_stubs = n;
8189 sec->flags |= SEC_KEEP;
8190 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8192 /* We don't need to set mips16_stubs_seen in this case.
8193 That flag is used to see whether we need to look through
8194 the global symbol table for stubs. We don't need to set
8195 it here, because we just have a local stub. */
8199 struct mips_elf_link_hash_entry *h;
8201 h = ((struct mips_elf_link_hash_entry *)
8202 sym_hashes[r_symndx - extsymoff]);
8204 while (h->root.root.type == bfd_link_hash_indirect
8205 || h->root.root.type == bfd_link_hash_warning)
8206 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8208 /* H is the symbol this stub is for. */
8210 /* If we already have an appropriate stub for this function, we
8211 don't need another one, so we can discard this one. Since
8212 this function is called before the linker maps input sections
8213 to output sections, we can easily discard it by setting the
8214 SEC_EXCLUDE flag. */
8215 if (h->fn_stub != NULL)
8217 sec->flags |= SEC_EXCLUDE;
8221 sec->flags |= SEC_KEEP;
8223 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8226 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8228 unsigned long r_symndx;
8229 struct mips_elf_link_hash_entry *h;
8232 /* Look at the relocation information to figure out which symbol
8235 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8238 (*_bfd_error_handler)
8239 (_("%B: Warning: cannot determine the target function for"
8240 " stub section `%s'"),
8242 bfd_set_error (bfd_error_bad_value);
8246 if (r_symndx < extsymoff
8247 || sym_hashes[r_symndx - extsymoff] == NULL)
8251 /* This stub is for a local symbol. This stub will only be
8252 needed if there is some relocation (R_MIPS16_26) in this BFD
8253 that refers to this symbol. */
8254 for (o = abfd->sections; o != NULL; o = o->next)
8256 Elf_Internal_Rela *sec_relocs;
8257 const Elf_Internal_Rela *r, *rend;
8259 /* We can ignore stub sections when looking for relocs. */
8260 if ((o->flags & SEC_RELOC) == 0
8261 || o->reloc_count == 0
8262 || section_allows_mips16_refs_p (o))
8266 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8268 if (sec_relocs == NULL)
8271 rend = sec_relocs + o->reloc_count;
8272 for (r = sec_relocs; r < rend; r++)
8273 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8274 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8277 if (elf_section_data (o)->relocs != sec_relocs)
8286 /* There is no non-call reloc for this stub, so we do
8287 not need it. Since this function is called before
8288 the linker maps input sections to output sections, we
8289 can easily discard it by setting the SEC_EXCLUDE
8291 sec->flags |= SEC_EXCLUDE;
8295 /* Record this stub in an array of local symbol call_stubs for
8297 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8299 unsigned long symcount;
8303 if (elf_bad_symtab (abfd))
8304 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8306 symcount = symtab_hdr->sh_info;
8307 amt = symcount * sizeof (asection *);
8308 n = bfd_zalloc (abfd, amt);
8311 mips_elf_tdata (abfd)->local_call_stubs = n;
8314 sec->flags |= SEC_KEEP;
8315 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8317 /* We don't need to set mips16_stubs_seen in this case.
8318 That flag is used to see whether we need to look through
8319 the global symbol table for stubs. We don't need to set
8320 it here, because we just have a local stub. */
8324 h = ((struct mips_elf_link_hash_entry *)
8325 sym_hashes[r_symndx - extsymoff]);
8327 /* H is the symbol this stub is for. */
8329 if (CALL_FP_STUB_P (name))
8330 loc = &h->call_fp_stub;
8332 loc = &h->call_stub;
8334 /* If we already have an appropriate stub for this function, we
8335 don't need another one, so we can discard this one. Since
8336 this function is called before the linker maps input sections
8337 to output sections, we can easily discard it by setting the
8338 SEC_EXCLUDE flag. */
8341 sec->flags |= SEC_EXCLUDE;
8345 sec->flags |= SEC_KEEP;
8347 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8353 for (rel = relocs; rel < rel_end; ++rel)
8355 unsigned long r_symndx;
8356 unsigned int r_type;
8357 struct elf_link_hash_entry *h;
8358 bfd_boolean can_make_dynamic_p;
8359 bfd_boolean call_reloc_p;
8360 bfd_boolean constrain_symbol_p;
8362 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8363 r_type = ELF_R_TYPE (abfd, rel->r_info);
8365 if (r_symndx < extsymoff)
8367 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8369 (*_bfd_error_handler)
8370 (_("%B: Malformed reloc detected for section %s"),
8372 bfd_set_error (bfd_error_bad_value);
8377 h = sym_hashes[r_symndx - extsymoff];
8380 while (h->root.type == bfd_link_hash_indirect
8381 || h->root.type == bfd_link_hash_warning)
8382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8384 /* PR15323, ref flags aren't set for references in the
8386 h->root.non_ir_ref = 1;
8390 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8391 relocation into a dynamic one. */
8392 can_make_dynamic_p = FALSE;
8394 /* Set CALL_RELOC_P to true if the relocation is for a call,
8395 and if pointer equality therefore doesn't matter. */
8396 call_reloc_p = FALSE;
8398 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8399 into account when deciding how to define the symbol.
8400 Relocations in nonallocatable sections such as .pdr and
8401 .debug* should have no effect. */
8402 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8407 case R_MIPS_CALL_HI16:
8408 case R_MIPS_CALL_LO16:
8409 case R_MIPS16_CALL16:
8410 case R_MICROMIPS_CALL16:
8411 case R_MICROMIPS_CALL_HI16:
8412 case R_MICROMIPS_CALL_LO16:
8413 call_reloc_p = TRUE;
8417 case R_MIPS_GOT_HI16:
8418 case R_MIPS_GOT_LO16:
8419 case R_MIPS_GOT_PAGE:
8420 case R_MIPS_GOT_OFST:
8421 case R_MIPS_GOT_DISP:
8422 case R_MIPS_TLS_GOTTPREL:
8424 case R_MIPS_TLS_LDM:
8425 case R_MIPS16_GOT16:
8426 case R_MIPS16_TLS_GOTTPREL:
8427 case R_MIPS16_TLS_GD:
8428 case R_MIPS16_TLS_LDM:
8429 case R_MICROMIPS_GOT16:
8430 case R_MICROMIPS_GOT_HI16:
8431 case R_MICROMIPS_GOT_LO16:
8432 case R_MICROMIPS_GOT_PAGE:
8433 case R_MICROMIPS_GOT_OFST:
8434 case R_MICROMIPS_GOT_DISP:
8435 case R_MICROMIPS_TLS_GOTTPREL:
8436 case R_MICROMIPS_TLS_GD:
8437 case R_MICROMIPS_TLS_LDM:
8439 elf_hash_table (info)->dynobj = dynobj = abfd;
8440 if (!mips_elf_create_got_section (dynobj, info))
8442 if (htab->is_vxworks && !bfd_link_pic (info))
8444 (*_bfd_error_handler)
8445 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8446 abfd, (unsigned long) rel->r_offset);
8447 bfd_set_error (bfd_error_bad_value);
8450 can_make_dynamic_p = TRUE;
8455 case R_MICROMIPS_JALR:
8456 /* These relocations have empty fields and are purely there to
8457 provide link information. The symbol value doesn't matter. */
8458 constrain_symbol_p = FALSE;
8461 case R_MIPS_GPREL16:
8462 case R_MIPS_GPREL32:
8463 case R_MIPS16_GPREL:
8464 case R_MICROMIPS_GPREL16:
8465 /* GP-relative relocations always resolve to a definition in a
8466 regular input file, ignoring the one-definition rule. This is
8467 important for the GP setup sequence in NewABI code, which
8468 always resolves to a local function even if other relocations
8469 against the symbol wouldn't. */
8470 constrain_symbol_p = FALSE;
8476 /* In VxWorks executables, references to external symbols
8477 must be handled using copy relocs or PLT entries; it is not
8478 possible to convert this relocation into a dynamic one.
8480 For executables that use PLTs and copy-relocs, we have a
8481 choice between converting the relocation into a dynamic
8482 one or using copy relocations or PLT entries. It is
8483 usually better to do the former, unless the relocation is
8484 against a read-only section. */
8485 if ((bfd_link_pic (info)
8487 && !htab->is_vxworks
8488 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8489 && !(!info->nocopyreloc
8490 && !PIC_OBJECT_P (abfd)
8491 && MIPS_ELF_READONLY_SECTION (sec))))
8492 && (sec->flags & SEC_ALLOC) != 0)
8494 can_make_dynamic_p = TRUE;
8496 elf_hash_table (info)->dynobj = dynobj = abfd;
8502 case R_MIPS_PC21_S2:
8503 case R_MIPS_PC26_S2:
8505 case R_MIPS16_PC16_S1:
8506 case R_MICROMIPS_26_S1:
8507 case R_MICROMIPS_PC7_S1:
8508 case R_MICROMIPS_PC10_S1:
8509 case R_MICROMIPS_PC16_S1:
8510 case R_MICROMIPS_PC23_S2:
8511 call_reloc_p = TRUE;
8517 if (constrain_symbol_p)
8519 if (!can_make_dynamic_p)
8520 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8523 h->pointer_equality_needed = 1;
8525 /* We must not create a stub for a symbol that has
8526 relocations related to taking the function's address.
8527 This doesn't apply to VxWorks, where CALL relocs refer
8528 to a .got.plt entry instead of a normal .got entry. */
8529 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8530 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8533 /* Relocations against the special VxWorks __GOTT_BASE__ and
8534 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8535 room for them in .rela.dyn. */
8536 if (is_gott_symbol (info, h))
8540 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8544 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8545 if (MIPS_ELF_READONLY_SECTION (sec))
8546 /* We tell the dynamic linker that there are
8547 relocations against the text segment. */
8548 info->flags |= DF_TEXTREL;
8551 else if (call_lo16_reloc_p (r_type)
8552 || got_lo16_reloc_p (r_type)
8553 || got_disp_reloc_p (r_type)
8554 || (got16_reloc_p (r_type) && htab->is_vxworks))
8556 /* We may need a local GOT entry for this relocation. We
8557 don't count R_MIPS_GOT_PAGE because we can estimate the
8558 maximum number of pages needed by looking at the size of
8559 the segment. Similar comments apply to R_MIPS*_GOT16 and
8560 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8561 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8562 R_MIPS_CALL_HI16 because these are always followed by an
8563 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8564 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8565 rel->r_addend, info, r_type))
8570 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8571 ELF_ST_IS_MIPS16 (h->other)))
8572 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8577 case R_MIPS16_CALL16:
8578 case R_MICROMIPS_CALL16:
8581 (*_bfd_error_handler)
8582 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8583 abfd, (unsigned long) rel->r_offset);
8584 bfd_set_error (bfd_error_bad_value);
8589 case R_MIPS_CALL_HI16:
8590 case R_MIPS_CALL_LO16:
8591 case R_MICROMIPS_CALL_HI16:
8592 case R_MICROMIPS_CALL_LO16:
8595 /* Make sure there is room in the regular GOT to hold the
8596 function's address. We may eliminate it in favour of
8597 a .got.plt entry later; see mips_elf_count_got_symbols. */
8598 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8602 /* We need a stub, not a plt entry for the undefined
8603 function. But we record it as if it needs plt. See
8604 _bfd_elf_adjust_dynamic_symbol. */
8610 case R_MIPS_GOT_PAGE:
8611 case R_MICROMIPS_GOT_PAGE:
8612 case R_MIPS16_GOT16:
8614 case R_MIPS_GOT_HI16:
8615 case R_MIPS_GOT_LO16:
8616 case R_MICROMIPS_GOT16:
8617 case R_MICROMIPS_GOT_HI16:
8618 case R_MICROMIPS_GOT_LO16:
8619 if (!h || got_page_reloc_p (r_type))
8621 /* This relocation needs (or may need, if h != NULL) a
8622 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8623 know for sure until we know whether the symbol is
8625 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8627 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8629 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8630 addend = mips_elf_read_rel_addend (abfd, rel,
8632 if (got16_reloc_p (r_type))
8633 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8636 addend <<= howto->rightshift;
8639 addend = rel->r_addend;
8640 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8646 struct mips_elf_link_hash_entry *hmips =
8647 (struct mips_elf_link_hash_entry *) h;
8649 /* This symbol is definitely not overridable. */
8650 if (hmips->root.def_regular
8651 && ! (bfd_link_pic (info) && ! info->symbolic
8652 && ! hmips->root.forced_local))
8656 /* If this is a global, overridable symbol, GOT_PAGE will
8657 decay to GOT_DISP, so we'll need a GOT entry for it. */
8660 case R_MIPS_GOT_DISP:
8661 case R_MICROMIPS_GOT_DISP:
8662 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8667 case R_MIPS_TLS_GOTTPREL:
8668 case R_MIPS16_TLS_GOTTPREL:
8669 case R_MICROMIPS_TLS_GOTTPREL:
8670 if (bfd_link_pic (info))
8671 info->flags |= DF_STATIC_TLS;
8674 case R_MIPS_TLS_LDM:
8675 case R_MIPS16_TLS_LDM:
8676 case R_MICROMIPS_TLS_LDM:
8677 if (tls_ldm_reloc_p (r_type))
8679 r_symndx = STN_UNDEF;
8685 case R_MIPS16_TLS_GD:
8686 case R_MICROMIPS_TLS_GD:
8687 /* This symbol requires a global offset table entry, or two
8688 for TLS GD relocations. */
8691 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8697 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8707 /* In VxWorks executables, references to external symbols
8708 are handled using copy relocs or PLT stubs, so there's
8709 no need to add a .rela.dyn entry for this relocation. */
8710 if (can_make_dynamic_p)
8714 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8718 if (bfd_link_pic (info) && h == NULL)
8720 /* When creating a shared object, we must copy these
8721 reloc types into the output file as R_MIPS_REL32
8722 relocs. Make room for this reloc in .rel(a).dyn. */
8723 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8724 if (MIPS_ELF_READONLY_SECTION (sec))
8725 /* We tell the dynamic linker that there are
8726 relocations against the text segment. */
8727 info->flags |= DF_TEXTREL;
8731 struct mips_elf_link_hash_entry *hmips;
8733 /* For a shared object, we must copy this relocation
8734 unless the symbol turns out to be undefined and
8735 weak with non-default visibility, in which case
8736 it will be left as zero.
8738 We could elide R_MIPS_REL32 for locally binding symbols
8739 in shared libraries, but do not yet do so.
8741 For an executable, we only need to copy this
8742 reloc if the symbol is defined in a dynamic
8744 hmips = (struct mips_elf_link_hash_entry *) h;
8745 ++hmips->possibly_dynamic_relocs;
8746 if (MIPS_ELF_READONLY_SECTION (sec))
8747 /* We need it to tell the dynamic linker if there
8748 are relocations against the text segment. */
8749 hmips->readonly_reloc = TRUE;
8753 if (SGI_COMPAT (abfd))
8754 mips_elf_hash_table (info)->compact_rel_size +=
8755 sizeof (Elf32_External_crinfo);
8759 case R_MIPS_GPREL16:
8760 case R_MIPS_LITERAL:
8761 case R_MIPS_GPREL32:
8762 case R_MICROMIPS_26_S1:
8763 case R_MICROMIPS_GPREL16:
8764 case R_MICROMIPS_LITERAL:
8765 case R_MICROMIPS_GPREL7_S2:
8766 if (SGI_COMPAT (abfd))
8767 mips_elf_hash_table (info)->compact_rel_size +=
8768 sizeof (Elf32_External_crinfo);
8771 /* This relocation describes the C++ object vtable hierarchy.
8772 Reconstruct it for later use during GC. */
8773 case R_MIPS_GNU_VTINHERIT:
8774 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8778 /* This relocation describes which C++ vtable entries are actually
8779 used. Record for later use during GC. */
8780 case R_MIPS_GNU_VTENTRY:
8781 BFD_ASSERT (h != NULL);
8783 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8791 /* Record the need for a PLT entry. At this point we don't know
8792 yet if we are going to create a PLT in the first place, but
8793 we only record whether the relocation requires a standard MIPS
8794 or a compressed code entry anyway. If we don't make a PLT after
8795 all, then we'll just ignore these arrangements. Likewise if
8796 a PLT entry is not created because the symbol is satisfied
8799 && (branch_reloc_p (r_type)
8800 || mips16_branch_reloc_p (r_type)
8801 || micromips_branch_reloc_p (r_type))
8802 && !SYMBOL_CALLS_LOCAL (info, h))
8804 if (h->plt.plist == NULL)
8805 h->plt.plist = mips_elf_make_plt_record (abfd);
8806 if (h->plt.plist == NULL)
8809 if (branch_reloc_p (r_type))
8810 h->plt.plist->need_mips = TRUE;
8812 h->plt.plist->need_comp = TRUE;
8815 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8816 if there is one. We only need to handle global symbols here;
8817 we decide whether to keep or delete stubs for local symbols
8818 when processing the stub's relocations. */
8820 && !mips16_call_reloc_p (r_type)
8821 && !section_allows_mips16_refs_p (sec))
8823 struct mips_elf_link_hash_entry *mh;
8825 mh = (struct mips_elf_link_hash_entry *) h;
8826 mh->need_fn_stub = TRUE;
8829 /* Refuse some position-dependent relocations when creating a
8830 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8831 not PIC, but we can create dynamic relocations and the result
8832 will be fine. Also do not refuse R_MIPS_LO16, which can be
8833 combined with R_MIPS_GOT16. */
8834 if (bfd_link_pic (info))
8841 case R_MIPS_HIGHEST:
8842 case R_MICROMIPS_HI16:
8843 case R_MICROMIPS_HIGHER:
8844 case R_MICROMIPS_HIGHEST:
8845 /* Don't refuse a high part relocation if it's against
8846 no symbol (e.g. part of a compound relocation). */
8847 if (r_symndx == STN_UNDEF)
8850 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8851 and has a special meaning. */
8852 if (!NEWABI_P (abfd) && h != NULL
8853 && strcmp (h->root.root.string, "_gp_disp") == 0)
8856 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8857 if (is_gott_symbol (info, h))
8864 case R_MICROMIPS_26_S1:
8865 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8866 (*_bfd_error_handler)
8867 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8869 (h) ? h->root.root.string : "a local symbol");
8870 bfd_set_error (bfd_error_bad_value);
8882 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8883 struct bfd_link_info *link_info,
8886 Elf_Internal_Rela *internal_relocs;
8887 Elf_Internal_Rela *irel, *irelend;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 bfd_byte *contents = NULL;
8891 bfd_boolean changed_contents = FALSE;
8892 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8893 Elf_Internal_Sym *isymbuf = NULL;
8895 /* We are not currently changing any sizes, so only one pass. */
8898 if (bfd_link_relocatable (link_info))
8901 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8902 link_info->keep_memory);
8903 if (internal_relocs == NULL)
8906 irelend = internal_relocs + sec->reloc_count
8907 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8908 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8909 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8911 for (irel = internal_relocs; irel < irelend; irel++)
8914 bfd_signed_vma sym_offset;
8915 unsigned int r_type;
8916 unsigned long r_symndx;
8918 unsigned long instruction;
8920 /* Turn jalr into bgezal, and jr into beq, if they're marked
8921 with a JALR relocation, that indicate where they jump to.
8922 This saves some pipeline bubbles. */
8923 r_type = ELF_R_TYPE (abfd, irel->r_info);
8924 if (r_type != R_MIPS_JALR)
8927 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8928 /* Compute the address of the jump target. */
8929 if (r_symndx >= extsymoff)
8931 struct mips_elf_link_hash_entry *h
8932 = ((struct mips_elf_link_hash_entry *)
8933 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8935 while (h->root.root.type == bfd_link_hash_indirect
8936 || h->root.root.type == bfd_link_hash_warning)
8937 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8939 /* If a symbol is undefined, or if it may be overridden,
8941 if (! ((h->root.root.type == bfd_link_hash_defined
8942 || h->root.root.type == bfd_link_hash_defweak)
8943 && h->root.root.u.def.section)
8944 || (bfd_link_pic (link_info) && ! link_info->symbolic
8945 && !h->root.forced_local))
8948 sym_sec = h->root.root.u.def.section;
8949 if (sym_sec->output_section)
8950 symval = (h->root.root.u.def.value
8951 + sym_sec->output_section->vma
8952 + sym_sec->output_offset);
8954 symval = h->root.root.u.def.value;
8958 Elf_Internal_Sym *isym;
8960 /* Read this BFD's symbols if we haven't done so already. */
8961 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8963 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8964 if (isymbuf == NULL)
8965 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8966 symtab_hdr->sh_info, 0,
8968 if (isymbuf == NULL)
8972 isym = isymbuf + r_symndx;
8973 if (isym->st_shndx == SHN_UNDEF)
8975 else if (isym->st_shndx == SHN_ABS)
8976 sym_sec = bfd_abs_section_ptr;
8977 else if (isym->st_shndx == SHN_COMMON)
8978 sym_sec = bfd_com_section_ptr;
8981 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8982 symval = isym->st_value
8983 + sym_sec->output_section->vma
8984 + sym_sec->output_offset;
8987 /* Compute branch offset, from delay slot of the jump to the
8989 sym_offset = (symval + irel->r_addend)
8990 - (sec_start + irel->r_offset + 4);
8992 /* Branch offset must be properly aligned. */
8993 if ((sym_offset & 3) != 0)
8998 /* Check that it's in range. */
8999 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9002 /* Get the section contents if we haven't done so already. */
9003 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9006 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9008 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9009 if ((instruction & 0xfc1fffff) == 0x0000f809)
9010 instruction = 0x04110000;
9011 /* If it was jr <reg>, turn it into b <target>. */
9012 else if ((instruction & 0xfc1fffff) == 0x00000008)
9013 instruction = 0x10000000;
9017 instruction |= (sym_offset & 0xffff);
9018 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9019 changed_contents = TRUE;
9022 if (contents != NULL
9023 && elf_section_data (sec)->this_hdr.contents != contents)
9025 if (!changed_contents && !link_info->keep_memory)
9029 /* Cache the section contents for elf_link_input_bfd. */
9030 elf_section_data (sec)->this_hdr.contents = contents;
9036 if (contents != NULL
9037 && elf_section_data (sec)->this_hdr.contents != contents)
9042 /* Allocate space for global sym dynamic relocs. */
9045 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9047 struct bfd_link_info *info = inf;
9049 struct mips_elf_link_hash_entry *hmips;
9050 struct mips_elf_link_hash_table *htab;
9052 htab = mips_elf_hash_table (info);
9053 BFD_ASSERT (htab != NULL);
9055 dynobj = elf_hash_table (info)->dynobj;
9056 hmips = (struct mips_elf_link_hash_entry *) h;
9058 /* VxWorks executables are handled elsewhere; we only need to
9059 allocate relocations in shared objects. */
9060 if (htab->is_vxworks && !bfd_link_pic (info))
9063 /* Ignore indirect symbols. All relocations against such symbols
9064 will be redirected to the target symbol. */
9065 if (h->root.type == bfd_link_hash_indirect)
9068 /* If this symbol is defined in a dynamic object, or we are creating
9069 a shared library, we will need to copy any R_MIPS_32 or
9070 R_MIPS_REL32 relocs against it into the output file. */
9071 if (! bfd_link_relocatable (info)
9072 && hmips->possibly_dynamic_relocs != 0
9073 && (h->root.type == bfd_link_hash_defweak
9074 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9075 || bfd_link_pic (info)))
9077 bfd_boolean do_copy = TRUE;
9079 if (h->root.type == bfd_link_hash_undefweak)
9081 /* Do not copy relocations for undefined weak symbols with
9082 non-default visibility. */
9083 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9086 /* Make sure undefined weak symbols are output as a dynamic
9088 else if (h->dynindx == -1 && !h->forced_local)
9090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9097 /* Even though we don't directly need a GOT entry for this symbol,
9098 the SVR4 psABI requires it to have a dynamic symbol table
9099 index greater that DT_MIPS_GOTSYM if there are dynamic
9100 relocations against it.
9102 VxWorks does not enforce the same mapping between the GOT
9103 and the symbol table, so the same requirement does not
9105 if (!htab->is_vxworks)
9107 if (hmips->global_got_area > GGA_RELOC_ONLY)
9108 hmips->global_got_area = GGA_RELOC_ONLY;
9109 hmips->got_only_for_calls = FALSE;
9112 mips_elf_allocate_dynamic_relocations
9113 (dynobj, info, hmips->possibly_dynamic_relocs);
9114 if (hmips->readonly_reloc)
9115 /* We tell the dynamic linker that there are relocations
9116 against the text segment. */
9117 info->flags |= DF_TEXTREL;
9124 /* Adjust a symbol defined by a dynamic object and referenced by a
9125 regular object. The current definition is in some section of the
9126 dynamic object, but we're not including those sections. We have to
9127 change the definition to something the rest of the link can
9131 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9132 struct elf_link_hash_entry *h)
9135 struct mips_elf_link_hash_entry *hmips;
9136 struct mips_elf_link_hash_table *htab;
9138 htab = mips_elf_hash_table (info);
9139 BFD_ASSERT (htab != NULL);
9141 dynobj = elf_hash_table (info)->dynobj;
9142 hmips = (struct mips_elf_link_hash_entry *) h;
9144 /* Make sure we know what is going on here. */
9145 BFD_ASSERT (dynobj != NULL
9147 || h->u.weakdef != NULL
9150 && !h->def_regular)));
9152 hmips = (struct mips_elf_link_hash_entry *) h;
9154 /* If there are call relocations against an externally-defined symbol,
9155 see whether we can create a MIPS lazy-binding stub for it. We can
9156 only do this if all references to the function are through call
9157 relocations, and in that case, the traditional lazy-binding stubs
9158 are much more efficient than PLT entries.
9160 Traditional stubs are only available on SVR4 psABI-based systems;
9161 VxWorks always uses PLTs instead. */
9162 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9164 if (! elf_hash_table (info)->dynamic_sections_created)
9167 /* If this symbol is not defined in a regular file, then set
9168 the symbol to the stub location. This is required to make
9169 function pointers compare as equal between the normal
9170 executable and the shared library. */
9171 if (!h->def_regular)
9173 hmips->needs_lazy_stub = TRUE;
9174 htab->lazy_stub_count++;
9178 /* As above, VxWorks requires PLT entries for externally-defined
9179 functions that are only accessed through call relocations.
9181 Both VxWorks and non-VxWorks targets also need PLT entries if there
9182 are static-only relocations against an externally-defined function.
9183 This can technically occur for shared libraries if there are
9184 branches to the symbol, although it is unlikely that this will be
9185 used in practice due to the short ranges involved. It can occur
9186 for any relative or absolute relocation in executables; in that
9187 case, the PLT entry becomes the function's canonical address. */
9188 else if (((h->needs_plt && !hmips->no_fn_stub)
9189 || (h->type == STT_FUNC && hmips->has_static_relocs))
9190 && htab->use_plts_and_copy_relocs
9191 && !SYMBOL_CALLS_LOCAL (info, h)
9192 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9193 && h->root.type == bfd_link_hash_undefweak))
9195 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9196 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9198 /* If this is the first symbol to need a PLT entry, then make some
9199 basic setup. Also work out PLT entry sizes. We'll need them
9200 for PLT offset calculations. */
9201 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9203 BFD_ASSERT (htab->sgotplt->size == 0);
9204 BFD_ASSERT (htab->plt_got_index == 0);
9206 /* If we're using the PLT additions to the psABI, each PLT
9207 entry is 16 bytes and the PLT0 entry is 32 bytes.
9208 Encourage better cache usage by aligning. We do this
9209 lazily to avoid pessimizing traditional objects. */
9210 if (!htab->is_vxworks
9211 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9214 /* Make sure that .got.plt is word-aligned. We do this lazily
9215 for the same reason as above. */
9216 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9217 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9220 /* On non-VxWorks targets, the first two entries in .got.plt
9222 if (!htab->is_vxworks)
9224 += (get_elf_backend_data (dynobj)->got_header_size
9225 / MIPS_ELF_GOT_SIZE (dynobj));
9227 /* On VxWorks, also allocate room for the header's
9228 .rela.plt.unloaded entries. */
9229 if (htab->is_vxworks && !bfd_link_pic (info))
9230 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9232 /* Now work out the sizes of individual PLT entries. */
9233 if (htab->is_vxworks && bfd_link_pic (info))
9234 htab->plt_mips_entry_size
9235 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9236 else if (htab->is_vxworks)
9237 htab->plt_mips_entry_size
9238 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9242 else if (!micromips_p)
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9246 htab->plt_comp_entry_size
9247 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9249 else if (htab->insn32)
9251 htab->plt_mips_entry_size
9252 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9253 htab->plt_comp_entry_size
9254 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9258 htab->plt_mips_entry_size
9259 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9260 htab->plt_comp_entry_size
9261 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9265 if (h->plt.plist == NULL)
9266 h->plt.plist = mips_elf_make_plt_record (dynobj);
9267 if (h->plt.plist == NULL)
9270 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9271 n32 or n64, so always use a standard entry there.
9273 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9274 all MIPS16 calls will go via that stub, and there is no benefit
9275 to having a MIPS16 entry. And in the case of call_stub a
9276 standard entry actually has to be used as the stub ends with a J
9281 || hmips->call_fp_stub)
9283 h->plt.plist->need_mips = TRUE;
9284 h->plt.plist->need_comp = FALSE;
9287 /* Otherwise, if there are no direct calls to the function, we
9288 have a free choice of whether to use standard or compressed
9289 entries. Prefer microMIPS entries if the object is known to
9290 contain microMIPS code, so that it becomes possible to create
9291 pure microMIPS binaries. Prefer standard entries otherwise,
9292 because MIPS16 ones are no smaller and are usually slower. */
9293 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9296 h->plt.plist->need_comp = TRUE;
9298 h->plt.plist->need_mips = TRUE;
9301 if (h->plt.plist->need_mips)
9303 h->plt.plist->mips_offset = htab->plt_mips_offset;
9304 htab->plt_mips_offset += htab->plt_mips_entry_size;
9306 if (h->plt.plist->need_comp)
9308 h->plt.plist->comp_offset = htab->plt_comp_offset;
9309 htab->plt_comp_offset += htab->plt_comp_entry_size;
9312 /* Reserve the corresponding .got.plt entry now too. */
9313 h->plt.plist->gotplt_index = htab->plt_got_index++;
9315 /* If the output file has no definition of the symbol, set the
9316 symbol's value to the address of the stub. */
9317 if (!bfd_link_pic (info) && !h->def_regular)
9318 hmips->use_plt_entry = TRUE;
9320 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9321 htab->srelplt->size += (htab->is_vxworks
9322 ? MIPS_ELF_RELA_SIZE (dynobj)
9323 : MIPS_ELF_REL_SIZE (dynobj));
9325 /* Make room for the .rela.plt.unloaded relocations. */
9326 if (htab->is_vxworks && !bfd_link_pic (info))
9327 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9329 /* All relocations against this symbol that could have been made
9330 dynamic will now refer to the PLT entry instead. */
9331 hmips->possibly_dynamic_relocs = 0;
9336 /* If this is a weak symbol, and there is a real definition, the
9337 processor independent code will have arranged for us to see the
9338 real definition first, and we can just use the same value. */
9339 if (h->u.weakdef != NULL)
9341 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9342 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9343 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9344 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9348 /* Otherwise, there is nothing further to do for symbols defined
9349 in regular objects. */
9353 /* There's also nothing more to do if we'll convert all relocations
9354 against this symbol into dynamic relocations. */
9355 if (!hmips->has_static_relocs)
9358 /* We're now relying on copy relocations. Complain if we have
9359 some that we can't convert. */
9360 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9362 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9363 "dynamic symbol %s"),
9364 h->root.root.string);
9365 bfd_set_error (bfd_error_bad_value);
9369 /* We must allocate the symbol in our .dynbss section, which will
9370 become part of the .bss section of the executable. There will be
9371 an entry for this symbol in the .dynsym section. The dynamic
9372 object will contain position independent code, so all references
9373 from the dynamic object to this symbol will go through the global
9374 offset table. The dynamic linker will use the .dynsym entry to
9375 determine the address it must put in the global offset table, so
9376 both the dynamic object and the regular object will refer to the
9377 same memory location for the variable. */
9379 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9381 if (htab->is_vxworks)
9382 htab->srelbss->size += sizeof (Elf32_External_Rela);
9384 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9388 /* All relocations against this symbol that could have been made
9389 dynamic will now refer to the local copy instead. */
9390 hmips->possibly_dynamic_relocs = 0;
9392 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9395 /* This function is called after all the input files have been read,
9396 and the input sections have been assigned to output sections. We
9397 check for any mips16 stub sections that we can discard. */
9400 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9401 struct bfd_link_info *info)
9404 struct mips_elf_link_hash_table *htab;
9405 struct mips_htab_traverse_info hti;
9407 htab = mips_elf_hash_table (info);
9408 BFD_ASSERT (htab != NULL);
9410 /* The .reginfo section has a fixed size. */
9411 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9413 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9415 /* The .MIPS.abiflags section has a fixed size. */
9416 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9418 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9421 hti.output_bfd = output_bfd;
9423 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9424 mips_elf_check_symbols, &hti);
9431 /* If the link uses a GOT, lay it out and work out its size. */
9434 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9438 struct mips_got_info *g;
9439 bfd_size_type loadable_size = 0;
9440 bfd_size_type page_gotno;
9442 struct mips_elf_traverse_got_arg tga;
9443 struct mips_elf_link_hash_table *htab;
9445 htab = mips_elf_hash_table (info);
9446 BFD_ASSERT (htab != NULL);
9452 dynobj = elf_hash_table (info)->dynobj;
9455 /* Allocate room for the reserved entries. VxWorks always reserves
9456 3 entries; other objects only reserve 2 entries. */
9457 BFD_ASSERT (g->assigned_low_gotno == 0);
9458 if (htab->is_vxworks)
9459 htab->reserved_gotno = 3;
9461 htab->reserved_gotno = 2;
9462 g->local_gotno += htab->reserved_gotno;
9463 g->assigned_low_gotno = htab->reserved_gotno;
9465 /* Decide which symbols need to go in the global part of the GOT and
9466 count the number of reloc-only GOT symbols. */
9467 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9469 if (!mips_elf_resolve_final_got_entries (info, g))
9472 /* Calculate the total loadable size of the output. That
9473 will give us the maximum number of GOT_PAGE entries
9475 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9477 asection *subsection;
9479 for (subsection = ibfd->sections;
9481 subsection = subsection->next)
9483 if ((subsection->flags & SEC_ALLOC) == 0)
9485 loadable_size += ((subsection->size + 0xf)
9486 &~ (bfd_size_type) 0xf);
9490 if (htab->is_vxworks)
9491 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9492 relocations against local symbols evaluate to "G", and the EABI does
9493 not include R_MIPS_GOT_PAGE. */
9496 /* Assume there are two loadable segments consisting of contiguous
9497 sections. Is 5 enough? */
9498 page_gotno = (loadable_size >> 16) + 5;
9500 /* Choose the smaller of the two page estimates; both are intended to be
9502 if (page_gotno > g->page_gotno)
9503 page_gotno = g->page_gotno;
9505 g->local_gotno += page_gotno;
9506 g->assigned_high_gotno = g->local_gotno - 1;
9508 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9509 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9510 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9512 /* VxWorks does not support multiple GOTs. It initializes $gp to
9513 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9515 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9517 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9522 /* Record that all bfds use G. This also has the effect of freeing
9523 the per-bfd GOTs, which we no longer need. */
9524 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9525 if (mips_elf_bfd_got (ibfd, FALSE))
9526 mips_elf_replace_bfd_got (ibfd, g);
9527 mips_elf_replace_bfd_got (output_bfd, g);
9529 /* Set up TLS entries. */
9530 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9533 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9534 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9537 BFD_ASSERT (g->tls_assigned_gotno
9538 == g->global_gotno + g->local_gotno + g->tls_gotno);
9540 /* Each VxWorks GOT entry needs an explicit relocation. */
9541 if (htab->is_vxworks && bfd_link_pic (info))
9542 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9544 /* Allocate room for the TLS relocations. */
9546 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9552 /* Estimate the size of the .MIPS.stubs section. */
9555 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9557 struct mips_elf_link_hash_table *htab;
9558 bfd_size_type dynsymcount;
9560 htab = mips_elf_hash_table (info);
9561 BFD_ASSERT (htab != NULL);
9563 if (htab->lazy_stub_count == 0)
9566 /* IRIX rld assumes that a function stub isn't at the end of the .text
9567 section, so add a dummy entry to the end. */
9568 htab->lazy_stub_count++;
9570 /* Get a worst-case estimate of the number of dynamic symbols needed.
9571 At this point, dynsymcount does not account for section symbols
9572 and count_section_dynsyms may overestimate the number that will
9574 dynsymcount = (elf_hash_table (info)->dynsymcount
9575 + count_section_dynsyms (output_bfd, info));
9577 /* Determine the size of one stub entry. There's no disadvantage
9578 from using microMIPS code here, so for the sake of pure-microMIPS
9579 binaries we prefer it whenever there's any microMIPS code in
9580 output produced at all. This has a benefit of stubs being
9581 shorter by 4 bytes each too, unless in the insn32 mode. */
9582 if (!MICROMIPS_P (output_bfd))
9583 htab->function_stub_size = (dynsymcount > 0x10000
9584 ? MIPS_FUNCTION_STUB_BIG_SIZE
9585 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9586 else if (htab->insn32)
9587 htab->function_stub_size = (dynsymcount > 0x10000
9588 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9589 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9591 htab->function_stub_size = (dynsymcount > 0x10000
9592 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9593 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9595 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9598 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9599 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9600 stub, allocate an entry in the stubs section. */
9603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9605 struct mips_htab_traverse_info *hti = data;
9606 struct mips_elf_link_hash_table *htab;
9607 struct bfd_link_info *info;
9611 output_bfd = hti->output_bfd;
9612 htab = mips_elf_hash_table (info);
9613 BFD_ASSERT (htab != NULL);
9615 if (h->needs_lazy_stub)
9617 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9618 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9619 bfd_vma isa_bit = micromips_p;
9621 BFD_ASSERT (htab->root.dynobj != NULL);
9622 if (h->root.plt.plist == NULL)
9623 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9624 if (h->root.plt.plist == NULL)
9629 h->root.root.u.def.section = htab->sstubs;
9630 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9631 h->root.plt.plist->stub_offset = htab->sstubs->size;
9632 h->root.other = other;
9633 htab->sstubs->size += htab->function_stub_size;
9638 /* Allocate offsets in the stubs section to each symbol that needs one.
9639 Set the final size of the .MIPS.stub section. */
9642 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9644 bfd *output_bfd = info->output_bfd;
9645 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9646 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9647 bfd_vma isa_bit = micromips_p;
9648 struct mips_elf_link_hash_table *htab;
9649 struct mips_htab_traverse_info hti;
9650 struct elf_link_hash_entry *h;
9653 htab = mips_elf_hash_table (info);
9654 BFD_ASSERT (htab != NULL);
9656 if (htab->lazy_stub_count == 0)
9659 htab->sstubs->size = 0;
9661 hti.output_bfd = output_bfd;
9663 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9666 htab->sstubs->size += htab->function_stub_size;
9667 BFD_ASSERT (htab->sstubs->size
9668 == htab->lazy_stub_count * htab->function_stub_size);
9670 dynobj = elf_hash_table (info)->dynobj;
9671 BFD_ASSERT (dynobj != NULL);
9672 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9675 h->root.u.def.value = isa_bit;
9682 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9683 bfd_link_info. If H uses the address of a PLT entry as the value
9684 of the symbol, then set the entry in the symbol table now. Prefer
9685 a standard MIPS PLT entry. */
9688 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9690 struct bfd_link_info *info = data;
9691 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9692 struct mips_elf_link_hash_table *htab;
9697 htab = mips_elf_hash_table (info);
9698 BFD_ASSERT (htab != NULL);
9700 if (h->use_plt_entry)
9702 BFD_ASSERT (h->root.plt.plist != NULL);
9703 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9704 || h->root.plt.plist->comp_offset != MINUS_ONE);
9706 val = htab->plt_header_size;
9707 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9710 val += h->root.plt.plist->mips_offset;
9716 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9717 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9720 /* For VxWorks, point at the PLT load stub rather than the lazy
9721 resolution stub; this stub will become the canonical function
9723 if (htab->is_vxworks)
9726 h->root.root.u.def.section = htab->splt;
9727 h->root.root.u.def.value = val;
9728 h->root.other = other;
9734 /* Set the sizes of the dynamic sections. */
9737 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9738 struct bfd_link_info *info)
9741 asection *s, *sreldyn;
9742 bfd_boolean reltext;
9743 struct mips_elf_link_hash_table *htab;
9745 htab = mips_elf_hash_table (info);
9746 BFD_ASSERT (htab != NULL);
9747 dynobj = elf_hash_table (info)->dynobj;
9748 BFD_ASSERT (dynobj != NULL);
9750 if (elf_hash_table (info)->dynamic_sections_created)
9752 /* Set the contents of the .interp section to the interpreter. */
9753 if (bfd_link_executable (info) && !info->nointerp)
9755 s = bfd_get_linker_section (dynobj, ".interp");
9756 BFD_ASSERT (s != NULL);
9758 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9760 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9763 /* Figure out the size of the PLT header if we know that we
9764 are using it. For the sake of cache alignment always use
9765 a standard header whenever any standard entries are present
9766 even if microMIPS entries are present as well. This also
9767 lets the microMIPS header rely on the value of $v0 only set
9768 by microMIPS entries, for a small size reduction.
9770 Set symbol table entry values for symbols that use the
9771 address of their PLT entry now that we can calculate it.
9773 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9774 haven't already in _bfd_elf_create_dynamic_sections. */
9775 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9777 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9778 && !htab->plt_mips_offset);
9779 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9780 bfd_vma isa_bit = micromips_p;
9781 struct elf_link_hash_entry *h;
9784 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9785 BFD_ASSERT (htab->sgotplt->size == 0);
9786 BFD_ASSERT (htab->splt->size == 0);
9788 if (htab->is_vxworks && bfd_link_pic (info))
9789 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9790 else if (htab->is_vxworks)
9791 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9792 else if (ABI_64_P (output_bfd))
9793 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9794 else if (ABI_N32_P (output_bfd))
9795 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9796 else if (!micromips_p)
9797 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9798 else if (htab->insn32)
9799 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9801 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9803 htab->plt_header_is_comp = micromips_p;
9804 htab->plt_header_size = size;
9805 htab->splt->size = (size
9806 + htab->plt_mips_offset
9807 + htab->plt_comp_offset);
9808 htab->sgotplt->size = (htab->plt_got_index
9809 * MIPS_ELF_GOT_SIZE (dynobj));
9811 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9813 if (htab->root.hplt == NULL)
9815 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9816 "_PROCEDURE_LINKAGE_TABLE_");
9817 htab->root.hplt = h;
9822 h = htab->root.hplt;
9823 h->root.u.def.value = isa_bit;
9829 /* Allocate space for global sym dynamic relocs. */
9830 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9832 mips_elf_estimate_stub_size (output_bfd, info);
9834 if (!mips_elf_lay_out_got (output_bfd, info))
9837 mips_elf_lay_out_lazy_stubs (info);
9839 /* The check_relocs and adjust_dynamic_symbol entry points have
9840 determined the sizes of the various dynamic sections. Allocate
9843 for (s = dynobj->sections; s != NULL; s = s->next)
9847 /* It's OK to base decisions on the section name, because none
9848 of the dynobj section names depend upon the input files. */
9849 name = bfd_get_section_name (dynobj, s);
9851 if ((s->flags & SEC_LINKER_CREATED) == 0)
9854 if (CONST_STRNEQ (name, ".rel"))
9858 const char *outname;
9861 /* If this relocation section applies to a read only
9862 section, then we probably need a DT_TEXTREL entry.
9863 If the relocation section is .rel(a).dyn, we always
9864 assert a DT_TEXTREL entry rather than testing whether
9865 there exists a relocation to a read only section or
9867 outname = bfd_get_section_name (output_bfd,
9869 target = bfd_get_section_by_name (output_bfd, outname + 4);
9871 && (target->flags & SEC_READONLY) != 0
9872 && (target->flags & SEC_ALLOC) != 0)
9873 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9876 /* We use the reloc_count field as a counter if we need
9877 to copy relocs into the output file. */
9878 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9881 /* If combreloc is enabled, elf_link_sort_relocs() will
9882 sort relocations, but in a different way than we do,
9883 and before we're done creating relocations. Also, it
9884 will move them around between input sections'
9885 relocation's contents, so our sorting would be
9886 broken, so don't let it run. */
9887 info->combreloc = 0;
9890 else if (bfd_link_executable (info)
9891 && ! mips_elf_hash_table (info)->use_rld_obj_head
9892 && CONST_STRNEQ (name, ".rld_map"))
9894 /* We add a room for __rld_map. It will be filled in by the
9895 rtld to contain a pointer to the _r_debug structure. */
9896 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9898 else if (SGI_COMPAT (output_bfd)
9899 && CONST_STRNEQ (name, ".compact_rel"))
9900 s->size += mips_elf_hash_table (info)->compact_rel_size;
9901 else if (s == htab->splt)
9903 /* If the last PLT entry has a branch delay slot, allocate
9904 room for an extra nop to fill the delay slot. This is
9905 for CPUs without load interlocking. */
9906 if (! LOAD_INTERLOCKS_P (output_bfd)
9907 && ! htab->is_vxworks && s->size > 0)
9910 else if (! CONST_STRNEQ (name, ".init")
9912 && s != htab->sgotplt
9913 && s != htab->sstubs
9914 && s != htab->sdynbss)
9916 /* It's not one of our sections, so don't allocate space. */
9922 s->flags |= SEC_EXCLUDE;
9926 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9929 /* Allocate memory for the section contents. */
9930 s->contents = bfd_zalloc (dynobj, s->size);
9931 if (s->contents == NULL)
9933 bfd_set_error (bfd_error_no_memory);
9938 if (elf_hash_table (info)->dynamic_sections_created)
9940 /* Add some entries to the .dynamic section. We fill in the
9941 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9942 must add the entries now so that we get the correct size for
9943 the .dynamic section. */
9945 /* SGI object has the equivalence of DT_DEBUG in the
9946 DT_MIPS_RLD_MAP entry. This must come first because glibc
9947 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9948 may only look at the first one they see. */
9949 if (!bfd_link_pic (info)
9950 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9953 if (bfd_link_executable (info)
9954 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9957 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9958 used by the debugger. */
9959 if (bfd_link_executable (info)
9960 && !SGI_COMPAT (output_bfd)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9964 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9965 info->flags |= DF_TEXTREL;
9967 if ((info->flags & DF_TEXTREL) != 0)
9969 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9972 /* Clear the DF_TEXTREL flag. It will be set again if we
9973 write out an actual text relocation; we may not, because
9974 at this point we do not know whether e.g. any .eh_frame
9975 absolute relocations have been converted to PC-relative. */
9976 info->flags &= ~DF_TEXTREL;
9979 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9982 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9983 if (htab->is_vxworks)
9985 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9986 use any of the DT_MIPS_* tags. */
9987 if (sreldyn && sreldyn->size > 0)
9989 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9992 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9995 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10001 if (sreldyn && sreldyn->size > 0)
10003 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10022 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10025 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10031 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10034 if (IRIX_COMPAT (dynobj) == ict_irix5
10035 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10038 if (IRIX_COMPAT (dynobj) == ict_irix6
10039 && (bfd_get_section_by_name
10040 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10041 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10044 if (htab->splt->size > 0)
10046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10049 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10052 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10058 if (htab->is_vxworks
10059 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10066 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10067 Adjust its R_ADDEND field so that it is correct for the output file.
10068 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10069 and sections respectively; both use symbol indexes. */
10072 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10073 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10074 asection **local_sections, Elf_Internal_Rela *rel)
10076 unsigned int r_type, r_symndx;
10077 Elf_Internal_Sym *sym;
10080 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10082 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10083 if (gprel16_reloc_p (r_type)
10084 || r_type == R_MIPS_GPREL32
10085 || literal_reloc_p (r_type))
10087 rel->r_addend += _bfd_get_gp_value (input_bfd);
10088 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10091 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10092 sym = local_syms + r_symndx;
10094 /* Adjust REL's addend to account for section merging. */
10095 if (!bfd_link_relocatable (info))
10097 sec = local_sections[r_symndx];
10098 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10101 /* This would normally be done by the rela_normal code in elflink.c. */
10102 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10103 rel->r_addend += local_sections[r_symndx]->output_offset;
10107 /* Handle relocations against symbols from removed linkonce sections,
10108 or sections discarded by a linker script. We use this wrapper around
10109 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10110 on 64-bit ELF targets. In this case for any relocation handled, which
10111 always be the first in a triplet, the remaining two have to be processed
10112 together with the first, even if they are R_MIPS_NONE. It is the symbol
10113 index referred by the first reloc that applies to all the three and the
10114 remaining two never refer to an object symbol. And it is the final
10115 relocation (the last non-null one) that determines the output field of
10116 the whole relocation so retrieve the corresponding howto structure for
10117 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10119 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10120 and therefore requires to be pasted in a loop. It also defines a block
10121 and does not protect any of its arguments, hence the extra brackets. */
10124 mips_reloc_against_discarded_section (bfd *output_bfd,
10125 struct bfd_link_info *info,
10126 bfd *input_bfd, asection *input_section,
10127 Elf_Internal_Rela **rel,
10128 const Elf_Internal_Rela **relend,
10129 bfd_boolean rel_reloc,
10130 reloc_howto_type *howto,
10131 bfd_byte *contents)
10133 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10134 int count = bed->s->int_rels_per_ext_rel;
10135 unsigned int r_type;
10138 for (i = count - 1; i > 0; i--)
10140 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10141 if (r_type != R_MIPS_NONE)
10143 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10149 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10150 (*rel), count, (*relend),
10151 howto, i, contents);
10156 /* Relocate a MIPS ELF section. */
10159 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10160 bfd *input_bfd, asection *input_section,
10161 bfd_byte *contents, Elf_Internal_Rela *relocs,
10162 Elf_Internal_Sym *local_syms,
10163 asection **local_sections)
10165 Elf_Internal_Rela *rel;
10166 const Elf_Internal_Rela *relend;
10167 bfd_vma addend = 0;
10168 bfd_boolean use_saved_addend_p = FALSE;
10169 const struct elf_backend_data *bed;
10171 bed = get_elf_backend_data (output_bfd);
10172 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10173 for (rel = relocs; rel < relend; ++rel)
10177 reloc_howto_type *howto;
10178 bfd_boolean cross_mode_jump_p = FALSE;
10179 /* TRUE if the relocation is a RELA relocation, rather than a
10181 bfd_boolean rela_relocation_p = TRUE;
10182 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10184 unsigned long r_symndx;
10186 Elf_Internal_Shdr *symtab_hdr;
10187 struct elf_link_hash_entry *h;
10188 bfd_boolean rel_reloc;
10190 rel_reloc = (NEWABI_P (input_bfd)
10191 && mips_elf_rel_relocation_p (input_bfd, input_section,
10193 /* Find the relocation howto for this relocation. */
10194 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10196 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10197 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10198 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10200 sec = local_sections[r_symndx];
10205 unsigned long extsymoff;
10208 if (!elf_bad_symtab (input_bfd))
10209 extsymoff = symtab_hdr->sh_info;
10210 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10211 while (h->root.type == bfd_link_hash_indirect
10212 || h->root.type == bfd_link_hash_warning)
10213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10216 if (h->root.type == bfd_link_hash_defined
10217 || h->root.type == bfd_link_hash_defweak)
10218 sec = h->root.u.def.section;
10221 if (sec != NULL && discarded_section (sec))
10223 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10224 input_section, &rel, &relend,
10225 rel_reloc, howto, contents);
10229 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10231 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10232 64-bit code, but make sure all their addresses are in the
10233 lowermost or uppermost 32-bit section of the 64-bit address
10234 space. Thus, when they use an R_MIPS_64 they mean what is
10235 usually meant by R_MIPS_32, with the exception that the
10236 stored value is sign-extended to 64 bits. */
10237 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10239 /* On big-endian systems, we need to lie about the position
10241 if (bfd_big_endian (input_bfd))
10242 rel->r_offset += 4;
10245 if (!use_saved_addend_p)
10247 /* If these relocations were originally of the REL variety,
10248 we must pull the addend out of the field that will be
10249 relocated. Otherwise, we simply use the contents of the
10250 RELA relocation. */
10251 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10254 rela_relocation_p = FALSE;
10255 addend = mips_elf_read_rel_addend (input_bfd, rel,
10257 if (hi16_reloc_p (r_type)
10258 || (got16_reloc_p (r_type)
10259 && mips_elf_local_relocation_p (input_bfd, rel,
10262 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10263 contents, &addend))
10266 name = h->root.root.string;
10268 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10269 local_syms + r_symndx,
10271 (*_bfd_error_handler)
10272 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10273 input_bfd, input_section, name, howto->name,
10278 addend <<= howto->rightshift;
10281 addend = rel->r_addend;
10282 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10283 local_syms, local_sections, rel);
10286 if (bfd_link_relocatable (info))
10288 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10289 && bfd_big_endian (input_bfd))
10290 rel->r_offset -= 4;
10292 if (!rela_relocation_p && rel->r_addend)
10294 addend += rel->r_addend;
10295 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10296 addend = mips_elf_high (addend);
10297 else if (r_type == R_MIPS_HIGHER)
10298 addend = mips_elf_higher (addend);
10299 else if (r_type == R_MIPS_HIGHEST)
10300 addend = mips_elf_highest (addend);
10302 addend >>= howto->rightshift;
10304 /* We use the source mask, rather than the destination
10305 mask because the place to which we are writing will be
10306 source of the addend in the final link. */
10307 addend &= howto->src_mask;
10309 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10310 /* See the comment above about using R_MIPS_64 in the 32-bit
10311 ABI. Here, we need to update the addend. It would be
10312 possible to get away with just using the R_MIPS_32 reloc
10313 but for endianness. */
10319 if (addend & ((bfd_vma) 1 << 31))
10321 sign_bits = ((bfd_vma) 1 << 32) - 1;
10328 /* If we don't know that we have a 64-bit type,
10329 do two separate stores. */
10330 if (bfd_big_endian (input_bfd))
10332 /* Store the sign-bits (which are most significant)
10334 low_bits = sign_bits;
10335 high_bits = addend;
10340 high_bits = sign_bits;
10342 bfd_put_32 (input_bfd, low_bits,
10343 contents + rel->r_offset);
10344 bfd_put_32 (input_bfd, high_bits,
10345 contents + rel->r_offset + 4);
10349 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10350 input_bfd, input_section,
10355 /* Go on to the next relocation. */
10359 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10360 relocations for the same offset. In that case we are
10361 supposed to treat the output of each relocation as the addend
10363 if (rel + 1 < relend
10364 && rel->r_offset == rel[1].r_offset
10365 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10366 use_saved_addend_p = TRUE;
10368 use_saved_addend_p = FALSE;
10370 /* Figure out what value we are supposed to relocate. */
10371 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10372 input_section, info, rel,
10373 addend, howto, local_syms,
10374 local_sections, &value,
10375 &name, &cross_mode_jump_p,
10376 use_saved_addend_p))
10378 case bfd_reloc_continue:
10379 /* There's nothing to do. */
10382 case bfd_reloc_undefined:
10383 /* mips_elf_calculate_relocation already called the
10384 undefined_symbol callback. There's no real point in
10385 trying to perform the relocation at this point, so we
10386 just skip ahead to the next relocation. */
10389 case bfd_reloc_notsupported:
10390 msg = _("internal error: unsupported relocation error");
10391 info->callbacks->warning
10392 (info, msg, name, input_bfd, input_section, rel->r_offset);
10395 case bfd_reloc_overflow:
10396 if (use_saved_addend_p)
10397 /* Ignore overflow until we reach the last relocation for
10398 a given location. */
10402 struct mips_elf_link_hash_table *htab;
10404 htab = mips_elf_hash_table (info);
10405 BFD_ASSERT (htab != NULL);
10406 BFD_ASSERT (name != NULL);
10407 if (!htab->small_data_overflow_reported
10408 && (gprel16_reloc_p (howto->type)
10409 || literal_reloc_p (howto->type)))
10411 msg = _("small-data section exceeds 64KB;"
10412 " lower small-data size limit (see option -G)");
10414 htab->small_data_overflow_reported = TRUE;
10415 (*info->callbacks->einfo) ("%P: %s\n", msg);
10417 (*info->callbacks->reloc_overflow)
10418 (info, NULL, name, howto->name, (bfd_vma) 0,
10419 input_bfd, input_section, rel->r_offset);
10426 case bfd_reloc_outofrange:
10428 if (jal_reloc_p (howto->type))
10429 msg = (cross_mode_jump_p
10430 ? _("Cannot convert a jump to JALX "
10431 "for a non-word-aligned address")
10432 : (howto->type == R_MIPS16_26
10433 ? _("Jump to a non-word-aligned address")
10434 : _("Jump to a non-instruction-aligned address")));
10435 else if (b_reloc_p (howto->type))
10436 msg = (cross_mode_jump_p
10437 ? _("Cannot convert a branch to JALX "
10438 "for a non-word-aligned address")
10439 : _("Branch to a non-instruction-aligned address"));
10440 else if (aligned_pcrel_reloc_p (howto->type))
10441 msg = _("PC-relative load from unaligned address");
10444 info->callbacks->einfo
10445 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10448 /* Fall through. */
10455 /* If we've got another relocation for the address, keep going
10456 until we reach the last one. */
10457 if (use_saved_addend_p)
10463 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10464 /* See the comment above about using R_MIPS_64 in the 32-bit
10465 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10466 that calculated the right value. Now, however, we
10467 sign-extend the 32-bit result to 64-bits, and store it as a
10468 64-bit value. We are especially generous here in that we
10469 go to extreme lengths to support this usage on systems with
10470 only a 32-bit VMA. */
10476 if (value & ((bfd_vma) 1 << 31))
10478 sign_bits = ((bfd_vma) 1 << 32) - 1;
10485 /* If we don't know that we have a 64-bit type,
10486 do two separate stores. */
10487 if (bfd_big_endian (input_bfd))
10489 /* Undo what we did above. */
10490 rel->r_offset -= 4;
10491 /* Store the sign-bits (which are most significant)
10493 low_bits = sign_bits;
10499 high_bits = sign_bits;
10501 bfd_put_32 (input_bfd, low_bits,
10502 contents + rel->r_offset);
10503 bfd_put_32 (input_bfd, high_bits,
10504 contents + rel->r_offset + 4);
10508 /* Actually perform the relocation. */
10509 if (! mips_elf_perform_relocation (info, howto, rel, value,
10510 input_bfd, input_section,
10511 contents, cross_mode_jump_p))
10518 /* A function that iterates over each entry in la25_stubs and fills
10519 in the code for each one. DATA points to a mips_htab_traverse_info. */
10522 mips_elf_create_la25_stub (void **slot, void *data)
10524 struct mips_htab_traverse_info *hti;
10525 struct mips_elf_link_hash_table *htab;
10526 struct mips_elf_la25_stub *stub;
10529 bfd_vma offset, target, target_high, target_low;
10531 stub = (struct mips_elf_la25_stub *) *slot;
10532 hti = (struct mips_htab_traverse_info *) data;
10533 htab = mips_elf_hash_table (hti->info);
10534 BFD_ASSERT (htab != NULL);
10536 /* Create the section contents, if we haven't already. */
10537 s = stub->stub_section;
10541 loc = bfd_malloc (s->size);
10550 /* Work out where in the section this stub should go. */
10551 offset = stub->offset;
10553 /* Work out the target address. */
10554 target = mips_elf_get_la25_target (stub, &s);
10555 target += s->output_section->vma + s->output_offset;
10557 target_high = ((target + 0x8000) >> 16) & 0xffff;
10558 target_low = (target & 0xffff);
10560 if (stub->stub_section != htab->strampoline)
10562 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10563 of the section and write the two instructions at the end. */
10564 memset (loc, 0, offset);
10566 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10568 bfd_put_micromips_32 (hti->output_bfd,
10569 LA25_LUI_MICROMIPS (target_high),
10571 bfd_put_micromips_32 (hti->output_bfd,
10572 LA25_ADDIU_MICROMIPS (target_low),
10577 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10578 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10583 /* This is trampoline. */
10585 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10587 bfd_put_micromips_32 (hti->output_bfd,
10588 LA25_LUI_MICROMIPS (target_high), loc);
10589 bfd_put_micromips_32 (hti->output_bfd,
10590 LA25_J_MICROMIPS (target), loc + 4);
10591 bfd_put_micromips_32 (hti->output_bfd,
10592 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10593 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10597 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10598 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10599 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10600 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10606 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10607 adjust it appropriately now. */
10610 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10611 const char *name, Elf_Internal_Sym *sym)
10613 /* The linker script takes care of providing names and values for
10614 these, but we must place them into the right sections. */
10615 static const char* const text_section_symbols[] = {
10618 "__dso_displacement",
10620 "__program_header_table",
10624 static const char* const data_section_symbols[] = {
10632 const char* const *p;
10635 for (i = 0; i < 2; ++i)
10636 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10639 if (strcmp (*p, name) == 0)
10641 /* All of these symbols are given type STT_SECTION by the
10643 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10644 sym->st_other = STO_PROTECTED;
10646 /* The IRIX linker puts these symbols in special sections. */
10648 sym->st_shndx = SHN_MIPS_TEXT;
10650 sym->st_shndx = SHN_MIPS_DATA;
10656 /* Finish up dynamic symbol handling. We set the contents of various
10657 dynamic sections here. */
10660 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10661 struct bfd_link_info *info,
10662 struct elf_link_hash_entry *h,
10663 Elf_Internal_Sym *sym)
10667 struct mips_got_info *g, *gg;
10670 struct mips_elf_link_hash_table *htab;
10671 struct mips_elf_link_hash_entry *hmips;
10673 htab = mips_elf_hash_table (info);
10674 BFD_ASSERT (htab != NULL);
10675 dynobj = elf_hash_table (info)->dynobj;
10676 hmips = (struct mips_elf_link_hash_entry *) h;
10678 BFD_ASSERT (!htab->is_vxworks);
10680 if (h->plt.plist != NULL
10681 && (h->plt.plist->mips_offset != MINUS_ONE
10682 || h->plt.plist->comp_offset != MINUS_ONE))
10684 /* We've decided to create a PLT entry for this symbol. */
10686 bfd_vma header_address, got_address;
10687 bfd_vma got_address_high, got_address_low, load;
10691 got_index = h->plt.plist->gotplt_index;
10693 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10694 BFD_ASSERT (h->dynindx != -1);
10695 BFD_ASSERT (htab->splt != NULL);
10696 BFD_ASSERT (got_index != MINUS_ONE);
10697 BFD_ASSERT (!h->def_regular);
10699 /* Calculate the address of the PLT header. */
10700 isa_bit = htab->plt_header_is_comp;
10701 header_address = (htab->splt->output_section->vma
10702 + htab->splt->output_offset + isa_bit);
10704 /* Calculate the address of the .got.plt entry. */
10705 got_address = (htab->sgotplt->output_section->vma
10706 + htab->sgotplt->output_offset
10707 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10709 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10710 got_address_low = got_address & 0xffff;
10712 /* Initially point the .got.plt entry at the PLT header. */
10713 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10714 if (ABI_64_P (output_bfd))
10715 bfd_put_64 (output_bfd, header_address, loc);
10717 bfd_put_32 (output_bfd, header_address, loc);
10719 /* Now handle the PLT itself. First the standard entry (the order
10720 does not matter, we just have to pick one). */
10721 if (h->plt.plist->mips_offset != MINUS_ONE)
10723 const bfd_vma *plt_entry;
10724 bfd_vma plt_offset;
10726 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10728 BFD_ASSERT (plt_offset <= htab->splt->size);
10730 /* Find out where the .plt entry should go. */
10731 loc = htab->splt->contents + plt_offset;
10733 /* Pick the load opcode. */
10734 load = MIPS_ELF_LOAD_WORD (output_bfd);
10736 /* Fill in the PLT entry itself. */
10738 if (MIPSR6_P (output_bfd))
10739 plt_entry = mipsr6_exec_plt_entry;
10741 plt_entry = mips_exec_plt_entry;
10742 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10743 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10746 if (! LOAD_INTERLOCKS_P (output_bfd))
10748 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10749 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10753 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10754 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10759 /* Now the compressed entry. They come after any standard ones. */
10760 if (h->plt.plist->comp_offset != MINUS_ONE)
10762 bfd_vma plt_offset;
10764 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10765 + h->plt.plist->comp_offset);
10767 BFD_ASSERT (plt_offset <= htab->splt->size);
10769 /* Find out where the .plt entry should go. */
10770 loc = htab->splt->contents + plt_offset;
10772 /* Fill in the PLT entry itself. */
10773 if (!MICROMIPS_P (output_bfd))
10775 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10777 bfd_put_16 (output_bfd, plt_entry[0], loc);
10778 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10779 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10780 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10781 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10782 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10783 bfd_put_32 (output_bfd, got_address, loc + 12);
10785 else if (htab->insn32)
10787 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10789 bfd_put_16 (output_bfd, plt_entry[0], loc);
10790 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10791 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10792 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10793 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10794 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10795 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10796 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10800 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10801 bfd_signed_vma gotpc_offset;
10802 bfd_vma loc_address;
10804 BFD_ASSERT (got_address % 4 == 0);
10806 loc_address = (htab->splt->output_section->vma
10807 + htab->splt->output_offset + plt_offset);
10808 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10810 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10811 if (gotpc_offset + 0x1000000 >= 0x2000000)
10813 (*_bfd_error_handler)
10814 (_("%B: `%A' offset of %ld from `%A' "
10815 "beyond the range of ADDIUPC"),
10817 htab->sgotplt->output_section,
10818 htab->splt->output_section,
10819 (long) gotpc_offset);
10820 bfd_set_error (bfd_error_no_error);
10823 bfd_put_16 (output_bfd,
10824 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10825 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10826 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10827 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10828 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10829 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10833 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10834 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10835 got_index - 2, h->dynindx,
10836 R_MIPS_JUMP_SLOT, got_address);
10838 /* We distinguish between PLT entries and lazy-binding stubs by
10839 giving the former an st_other value of STO_MIPS_PLT. Set the
10840 flag and leave the value if there are any relocations in the
10841 binary where pointer equality matters. */
10842 sym->st_shndx = SHN_UNDEF;
10843 if (h->pointer_equality_needed)
10844 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10852 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10854 /* We've decided to create a lazy-binding stub. */
10855 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10856 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10857 bfd_vma stub_size = htab->function_stub_size;
10858 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10859 bfd_vma isa_bit = micromips_p;
10860 bfd_vma stub_big_size;
10863 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10864 else if (htab->insn32)
10865 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10867 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10869 /* This symbol has a stub. Set it up. */
10871 BFD_ASSERT (h->dynindx != -1);
10873 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10875 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10876 sign extension at runtime in the stub, resulting in a negative
10878 if (h->dynindx & ~0x7fffffff)
10881 /* Fill the stub. */
10885 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10890 bfd_put_micromips_32 (output_bfd,
10891 STUB_MOVE32_MICROMIPS, stub + idx);
10896 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10899 if (stub_size == stub_big_size)
10901 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10903 bfd_put_micromips_32 (output_bfd,
10904 STUB_LUI_MICROMIPS (dynindx_hi),
10910 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10916 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10920 /* If a large stub is not required and sign extension is not a
10921 problem, then use legacy code in the stub. */
10922 if (stub_size == stub_big_size)
10923 bfd_put_micromips_32 (output_bfd,
10924 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10926 else if (h->dynindx & ~0x7fff)
10927 bfd_put_micromips_32 (output_bfd,
10928 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10931 bfd_put_micromips_32 (output_bfd,
10932 STUB_LI16S_MICROMIPS (output_bfd,
10939 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10941 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10943 if (stub_size == stub_big_size)
10945 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10949 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10952 /* If a large stub is not required and sign extension is not a
10953 problem, then use legacy code in the stub. */
10954 if (stub_size == stub_big_size)
10955 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10957 else if (h->dynindx & ~0x7fff)
10958 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10961 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10965 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10966 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10969 /* Mark the symbol as undefined. stub_offset != -1 occurs
10970 only for the referenced symbol. */
10971 sym->st_shndx = SHN_UNDEF;
10973 /* The run-time linker uses the st_value field of the symbol
10974 to reset the global offset table entry for this external
10975 to its stub address when unlinking a shared object. */
10976 sym->st_value = (htab->sstubs->output_section->vma
10977 + htab->sstubs->output_offset
10978 + h->plt.plist->stub_offset
10980 sym->st_other = other;
10983 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10984 refer to the stub, since only the stub uses the standard calling
10986 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10988 BFD_ASSERT (hmips->need_fn_stub);
10989 sym->st_value = (hmips->fn_stub->output_section->vma
10990 + hmips->fn_stub->output_offset);
10991 sym->st_size = hmips->fn_stub->size;
10992 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10995 BFD_ASSERT (h->dynindx != -1
10996 || h->forced_local);
10999 g = htab->got_info;
11000 BFD_ASSERT (g != NULL);
11002 /* Run through the global symbol table, creating GOT entries for all
11003 the symbols that need them. */
11004 if (hmips->global_got_area != GGA_NONE)
11009 value = sym->st_value;
11010 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11011 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11014 if (hmips->global_got_area != GGA_NONE && g->next)
11016 struct mips_got_entry e, *p;
11022 e.abfd = output_bfd;
11025 e.tls_type = GOT_TLS_NONE;
11027 for (g = g->next; g->next != gg; g = g->next)
11030 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11033 offset = p->gotidx;
11034 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
11035 if (bfd_link_pic (info)
11036 || (elf_hash_table (info)->dynamic_sections_created
11038 && p->d.h->root.def_dynamic
11039 && !p->d.h->root.def_regular))
11041 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11042 the various compatibility problems, it's easier to mock
11043 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11044 mips_elf_create_dynamic_relocation to calculate the
11045 appropriate addend. */
11046 Elf_Internal_Rela rel[3];
11048 memset (rel, 0, sizeof (rel));
11049 if (ABI_64_P (output_bfd))
11050 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11052 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11053 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11056 if (! (mips_elf_create_dynamic_relocation
11057 (output_bfd, info, rel,
11058 e.d.h, NULL, sym->st_value, &entry, sgot)))
11062 entry = sym->st_value;
11063 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11068 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11069 name = h->root.root.string;
11070 if (h == elf_hash_table (info)->hdynamic
11071 || h == elf_hash_table (info)->hgot)
11072 sym->st_shndx = SHN_ABS;
11073 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11074 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11076 sym->st_shndx = SHN_ABS;
11077 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11080 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11082 sym->st_shndx = SHN_ABS;
11083 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11084 sym->st_value = elf_gp (output_bfd);
11086 else if (SGI_COMPAT (output_bfd))
11088 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11089 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11091 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11092 sym->st_other = STO_PROTECTED;
11094 sym->st_shndx = SHN_MIPS_DATA;
11096 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11098 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11099 sym->st_other = STO_PROTECTED;
11100 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11101 sym->st_shndx = SHN_ABS;
11103 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11105 if (h->type == STT_FUNC)
11106 sym->st_shndx = SHN_MIPS_TEXT;
11107 else if (h->type == STT_OBJECT)
11108 sym->st_shndx = SHN_MIPS_DATA;
11112 /* Emit a copy reloc, if needed. */
11118 BFD_ASSERT (h->dynindx != -1);
11119 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11121 s = mips_elf_rel_dyn_section (info, FALSE);
11122 symval = (h->root.u.def.section->output_section->vma
11123 + h->root.u.def.section->output_offset
11124 + h->root.u.def.value);
11125 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11126 h->dynindx, R_MIPS_COPY, symval);
11129 /* Handle the IRIX6-specific symbols. */
11130 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11131 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11133 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11134 to treat compressed symbols like any other. */
11135 if (ELF_ST_IS_MIPS16 (sym->st_other))
11137 BFD_ASSERT (sym->st_value & 1);
11138 sym->st_other -= STO_MIPS16;
11140 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11142 BFD_ASSERT (sym->st_value & 1);
11143 sym->st_other -= STO_MICROMIPS;
11149 /* Likewise, for VxWorks. */
11152 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11153 struct bfd_link_info *info,
11154 struct elf_link_hash_entry *h,
11155 Elf_Internal_Sym *sym)
11159 struct mips_got_info *g;
11160 struct mips_elf_link_hash_table *htab;
11161 struct mips_elf_link_hash_entry *hmips;
11163 htab = mips_elf_hash_table (info);
11164 BFD_ASSERT (htab != NULL);
11165 dynobj = elf_hash_table (info)->dynobj;
11166 hmips = (struct mips_elf_link_hash_entry *) h;
11168 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11171 bfd_vma plt_address, got_address, got_offset, branch_offset;
11172 Elf_Internal_Rela rel;
11173 static const bfd_vma *plt_entry;
11174 bfd_vma gotplt_index;
11175 bfd_vma plt_offset;
11177 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11178 gotplt_index = h->plt.plist->gotplt_index;
11180 BFD_ASSERT (h->dynindx != -1);
11181 BFD_ASSERT (htab->splt != NULL);
11182 BFD_ASSERT (gotplt_index != MINUS_ONE);
11183 BFD_ASSERT (plt_offset <= htab->splt->size);
11185 /* Calculate the address of the .plt entry. */
11186 plt_address = (htab->splt->output_section->vma
11187 + htab->splt->output_offset
11190 /* Calculate the address of the .got.plt entry. */
11191 got_address = (htab->sgotplt->output_section->vma
11192 + htab->sgotplt->output_offset
11193 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11195 /* Calculate the offset of the .got.plt entry from
11196 _GLOBAL_OFFSET_TABLE_. */
11197 got_offset = mips_elf_gotplt_index (info, h);
11199 /* Calculate the offset for the branch at the start of the PLT
11200 entry. The branch jumps to the beginning of .plt. */
11201 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11203 /* Fill in the initial value of the .got.plt entry. */
11204 bfd_put_32 (output_bfd, plt_address,
11205 (htab->sgotplt->contents
11206 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11208 /* Find out where the .plt entry should go. */
11209 loc = htab->splt->contents + plt_offset;
11211 if (bfd_link_pic (info))
11213 plt_entry = mips_vxworks_shared_plt_entry;
11214 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11215 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11219 bfd_vma got_address_high, got_address_low;
11221 plt_entry = mips_vxworks_exec_plt_entry;
11222 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11223 got_address_low = got_address & 0xffff;
11225 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11226 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11227 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11228 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11229 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11230 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11231 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11232 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11234 loc = (htab->srelplt2->contents
11235 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11237 /* Emit a relocation for the .got.plt entry. */
11238 rel.r_offset = got_address;
11239 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11240 rel.r_addend = plt_offset;
11241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11243 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11244 loc += sizeof (Elf32_External_Rela);
11245 rel.r_offset = plt_address + 8;
11246 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11247 rel.r_addend = got_offset;
11248 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11250 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11251 loc += sizeof (Elf32_External_Rela);
11253 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11254 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11257 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11258 loc = (htab->srelplt->contents
11259 + gotplt_index * sizeof (Elf32_External_Rela));
11260 rel.r_offset = got_address;
11261 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11265 if (!h->def_regular)
11266 sym->st_shndx = SHN_UNDEF;
11269 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11272 g = htab->got_info;
11273 BFD_ASSERT (g != NULL);
11275 /* See if this symbol has an entry in the GOT. */
11276 if (hmips->global_got_area != GGA_NONE)
11279 Elf_Internal_Rela outrel;
11283 /* Install the symbol value in the GOT. */
11284 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11285 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11287 /* Add a dynamic relocation for it. */
11288 s = mips_elf_rel_dyn_section (info, FALSE);
11289 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11290 outrel.r_offset = (sgot->output_section->vma
11291 + sgot->output_offset
11293 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11294 outrel.r_addend = 0;
11295 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11298 /* Emit a copy reloc, if needed. */
11301 Elf_Internal_Rela rel;
11303 BFD_ASSERT (h->dynindx != -1);
11305 rel.r_offset = (h->root.u.def.section->output_section->vma
11306 + h->root.u.def.section->output_offset
11307 + h->root.u.def.value);
11308 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11310 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11311 htab->srelbss->contents
11312 + (htab->srelbss->reloc_count
11313 * sizeof (Elf32_External_Rela)));
11314 ++htab->srelbss->reloc_count;
11317 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11319 sym->st_value &= ~1;
11324 /* Write out a plt0 entry to the beginning of .plt. */
11327 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11330 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11331 static const bfd_vma *plt_entry;
11332 struct mips_elf_link_hash_table *htab;
11334 htab = mips_elf_hash_table (info);
11335 BFD_ASSERT (htab != NULL);
11337 if (ABI_64_P (output_bfd))
11338 plt_entry = mips_n64_exec_plt0_entry;
11339 else if (ABI_N32_P (output_bfd))
11340 plt_entry = mips_n32_exec_plt0_entry;
11341 else if (!htab->plt_header_is_comp)
11342 plt_entry = mips_o32_exec_plt0_entry;
11343 else if (htab->insn32)
11344 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11346 plt_entry = micromips_o32_exec_plt0_entry;
11348 /* Calculate the value of .got.plt. */
11349 gotplt_value = (htab->sgotplt->output_section->vma
11350 + htab->sgotplt->output_offset);
11351 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11352 gotplt_value_low = gotplt_value & 0xffff;
11354 /* The PLT sequence is not safe for N64 if .got.plt's address can
11355 not be loaded in two instructions. */
11356 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11357 || ~(gotplt_value | 0x7fffffff) == 0);
11359 /* Install the PLT header. */
11360 loc = htab->splt->contents;
11361 if (plt_entry == micromips_o32_exec_plt0_entry)
11363 bfd_vma gotpc_offset;
11364 bfd_vma loc_address;
11367 BFD_ASSERT (gotplt_value % 4 == 0);
11369 loc_address = (htab->splt->output_section->vma
11370 + htab->splt->output_offset);
11371 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11373 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11374 if (gotpc_offset + 0x1000000 >= 0x2000000)
11376 (*_bfd_error_handler)
11377 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11379 htab->sgotplt->output_section,
11380 htab->splt->output_section,
11381 (long) gotpc_offset);
11382 bfd_set_error (bfd_error_no_error);
11385 bfd_put_16 (output_bfd,
11386 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11387 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11388 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11389 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11391 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11395 bfd_put_16 (output_bfd, plt_entry[0], loc);
11396 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11397 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11398 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11399 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11400 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11401 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11402 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11406 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11407 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11408 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11409 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11410 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11411 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11412 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11413 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11419 /* Install the PLT header for a VxWorks executable and finalize the
11420 contents of .rela.plt.unloaded. */
11423 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11425 Elf_Internal_Rela rela;
11427 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11428 static const bfd_vma *plt_entry;
11429 struct mips_elf_link_hash_table *htab;
11431 htab = mips_elf_hash_table (info);
11432 BFD_ASSERT (htab != NULL);
11434 plt_entry = mips_vxworks_exec_plt0_entry;
11436 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11437 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11438 + htab->root.hgot->root.u.def.section->output_offset
11439 + htab->root.hgot->root.u.def.value);
11441 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11442 got_value_low = got_value & 0xffff;
11444 /* Calculate the address of the PLT header. */
11445 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11447 /* Install the PLT header. */
11448 loc = htab->splt->contents;
11449 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11450 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11451 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11452 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11453 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11454 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11456 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11457 loc = htab->srelplt2->contents;
11458 rela.r_offset = plt_address;
11459 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11461 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11462 loc += sizeof (Elf32_External_Rela);
11464 /* Output the relocation for the following addiu of
11465 %lo(_GLOBAL_OFFSET_TABLE_). */
11466 rela.r_offset += 4;
11467 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11468 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11469 loc += sizeof (Elf32_External_Rela);
11471 /* Fix up the remaining relocations. They may have the wrong
11472 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11473 in which symbols were output. */
11474 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11476 Elf_Internal_Rela rel;
11478 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11479 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11480 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11481 loc += sizeof (Elf32_External_Rela);
11483 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11484 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11485 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11486 loc += sizeof (Elf32_External_Rela);
11488 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11489 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11490 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11491 loc += sizeof (Elf32_External_Rela);
11495 /* Install the PLT header for a VxWorks shared library. */
11498 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11501 struct mips_elf_link_hash_table *htab;
11503 htab = mips_elf_hash_table (info);
11504 BFD_ASSERT (htab != NULL);
11506 /* We just need to copy the entry byte-by-byte. */
11507 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11508 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11509 htab->splt->contents + i * 4);
11512 /* Finish up the dynamic sections. */
11515 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11516 struct bfd_link_info *info)
11521 struct mips_got_info *gg, *g;
11522 struct mips_elf_link_hash_table *htab;
11524 htab = mips_elf_hash_table (info);
11525 BFD_ASSERT (htab != NULL);
11527 dynobj = elf_hash_table (info)->dynobj;
11529 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11532 gg = htab->got_info;
11534 if (elf_hash_table (info)->dynamic_sections_created)
11537 int dyn_to_skip = 0, dyn_skipped = 0;
11539 BFD_ASSERT (sdyn != NULL);
11540 BFD_ASSERT (gg != NULL);
11542 g = mips_elf_bfd_got (output_bfd, FALSE);
11543 BFD_ASSERT (g != NULL);
11545 for (b = sdyn->contents;
11546 b < sdyn->contents + sdyn->size;
11547 b += MIPS_ELF_DYN_SIZE (dynobj))
11549 Elf_Internal_Dyn dyn;
11553 bfd_boolean swap_out_p;
11555 /* Read in the current dynamic entry. */
11556 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11558 /* Assume that we're going to modify it and write it out. */
11564 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11568 BFD_ASSERT (htab->is_vxworks);
11569 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11573 /* Rewrite DT_STRSZ. */
11575 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11580 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11583 case DT_MIPS_PLTGOT:
11585 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11588 case DT_MIPS_RLD_VERSION:
11589 dyn.d_un.d_val = 1; /* XXX */
11592 case DT_MIPS_FLAGS:
11593 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11596 case DT_MIPS_TIME_STAMP:
11600 dyn.d_un.d_val = t;
11604 case DT_MIPS_ICHECKSUM:
11606 swap_out_p = FALSE;
11609 case DT_MIPS_IVERSION:
11611 swap_out_p = FALSE;
11614 case DT_MIPS_BASE_ADDRESS:
11615 s = output_bfd->sections;
11616 BFD_ASSERT (s != NULL);
11617 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11620 case DT_MIPS_LOCAL_GOTNO:
11621 dyn.d_un.d_val = g->local_gotno;
11624 case DT_MIPS_UNREFEXTNO:
11625 /* The index into the dynamic symbol table which is the
11626 entry of the first external symbol that is not
11627 referenced within the same object. */
11628 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11631 case DT_MIPS_GOTSYM:
11632 if (htab->global_gotsym)
11634 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11637 /* In case if we don't have global got symbols we default
11638 to setting DT_MIPS_GOTSYM to the same value as
11639 DT_MIPS_SYMTABNO, so we just fall through. */
11641 case DT_MIPS_SYMTABNO:
11643 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11644 s = bfd_get_linker_section (dynobj, name);
11647 dyn.d_un.d_val = s->size / elemsize;
11649 dyn.d_un.d_val = 0;
11652 case DT_MIPS_HIPAGENO:
11653 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11656 case DT_MIPS_RLD_MAP:
11658 struct elf_link_hash_entry *h;
11659 h = mips_elf_hash_table (info)->rld_symbol;
11662 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11663 swap_out_p = FALSE;
11666 s = h->root.u.def.section;
11668 /* The MIPS_RLD_MAP tag stores the absolute address of the
11670 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11671 + h->root.u.def.value);
11675 case DT_MIPS_RLD_MAP_REL:
11677 struct elf_link_hash_entry *h;
11678 bfd_vma dt_addr, rld_addr;
11679 h = mips_elf_hash_table (info)->rld_symbol;
11682 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11683 swap_out_p = FALSE;
11686 s = h->root.u.def.section;
11688 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11689 pointer, relative to the address of the tag. */
11690 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11691 + (b - sdyn->contents));
11692 rld_addr = (s->output_section->vma + s->output_offset
11693 + h->root.u.def.value);
11694 dyn.d_un.d_ptr = rld_addr - dt_addr;
11698 case DT_MIPS_OPTIONS:
11699 s = (bfd_get_section_by_name
11700 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11701 dyn.d_un.d_ptr = s->vma;
11705 BFD_ASSERT (htab->is_vxworks);
11706 /* The count does not include the JUMP_SLOT relocations. */
11708 dyn.d_un.d_val -= htab->srelplt->size;
11712 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11713 if (htab->is_vxworks)
11714 dyn.d_un.d_val = DT_RELA;
11716 dyn.d_un.d_val = DT_REL;
11720 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11721 dyn.d_un.d_val = htab->srelplt->size;
11725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11726 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11727 + htab->srelplt->output_offset);
11731 /* If we didn't need any text relocations after all, delete
11732 the dynamic tag. */
11733 if (!(info->flags & DF_TEXTREL))
11735 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11736 swap_out_p = FALSE;
11741 /* If we didn't need any text relocations after all, clear
11742 DF_TEXTREL from DT_FLAGS. */
11743 if (!(info->flags & DF_TEXTREL))
11744 dyn.d_un.d_val &= ~DF_TEXTREL;
11746 swap_out_p = FALSE;
11750 swap_out_p = FALSE;
11751 if (htab->is_vxworks
11752 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11757 if (swap_out_p || dyn_skipped)
11758 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11759 (dynobj, &dyn, b - dyn_skipped);
11763 dyn_skipped += dyn_to_skip;
11768 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11769 if (dyn_skipped > 0)
11770 memset (b - dyn_skipped, 0, dyn_skipped);
11773 if (sgot != NULL && sgot->size > 0
11774 && !bfd_is_abs_section (sgot->output_section))
11776 if (htab->is_vxworks)
11778 /* The first entry of the global offset table points to the
11779 ".dynamic" section. The second is initialized by the
11780 loader and contains the shared library identifier.
11781 The third is also initialized by the loader and points
11782 to the lazy resolution stub. */
11783 MIPS_ELF_PUT_WORD (output_bfd,
11784 sdyn->output_offset + sdyn->output_section->vma,
11786 MIPS_ELF_PUT_WORD (output_bfd, 0,
11787 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11788 MIPS_ELF_PUT_WORD (output_bfd, 0,
11790 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11794 /* The first entry of the global offset table will be filled at
11795 runtime. The second entry will be used by some runtime loaders.
11796 This isn't the case of IRIX rld. */
11797 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11798 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11799 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11802 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11803 = MIPS_ELF_GOT_SIZE (output_bfd);
11806 /* Generate dynamic relocations for the non-primary gots. */
11807 if (gg != NULL && gg->next)
11809 Elf_Internal_Rela rel[3];
11810 bfd_vma addend = 0;
11812 memset (rel, 0, sizeof (rel));
11813 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11815 for (g = gg->next; g->next != gg; g = g->next)
11817 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11818 + g->next->tls_gotno;
11820 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11821 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11822 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11824 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11826 if (! bfd_link_pic (info))
11829 for (; got_index < g->local_gotno; got_index++)
11831 if (got_index >= g->assigned_low_gotno
11832 && got_index <= g->assigned_high_gotno)
11835 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11836 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11837 if (!(mips_elf_create_dynamic_relocation
11838 (output_bfd, info, rel, NULL,
11839 bfd_abs_section_ptr,
11840 0, &addend, sgot)))
11842 BFD_ASSERT (addend == 0);
11847 /* The generation of dynamic relocations for the non-primary gots
11848 adds more dynamic relocations. We cannot count them until
11851 if (elf_hash_table (info)->dynamic_sections_created)
11854 bfd_boolean swap_out_p;
11856 BFD_ASSERT (sdyn != NULL);
11858 for (b = sdyn->contents;
11859 b < sdyn->contents + sdyn->size;
11860 b += MIPS_ELF_DYN_SIZE (dynobj))
11862 Elf_Internal_Dyn dyn;
11865 /* Read in the current dynamic entry. */
11866 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11868 /* Assume that we're going to modify it and write it out. */
11874 /* Reduce DT_RELSZ to account for any relocations we
11875 decided not to make. This is for the n64 irix rld,
11876 which doesn't seem to apply any relocations if there
11877 are trailing null entries. */
11878 s = mips_elf_rel_dyn_section (info, FALSE);
11879 dyn.d_un.d_val = (s->reloc_count
11880 * (ABI_64_P (output_bfd)
11881 ? sizeof (Elf64_Mips_External_Rel)
11882 : sizeof (Elf32_External_Rel)));
11883 /* Adjust the section size too. Tools like the prelinker
11884 can reasonably expect the values to the same. */
11885 elf_section_data (s->output_section)->this_hdr.sh_size
11890 swap_out_p = FALSE;
11895 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11902 Elf32_compact_rel cpt;
11904 if (SGI_COMPAT (output_bfd))
11906 /* Write .compact_rel section out. */
11907 s = bfd_get_linker_section (dynobj, ".compact_rel");
11911 cpt.num = s->reloc_count;
11913 cpt.offset = (s->output_section->filepos
11914 + sizeof (Elf32_External_compact_rel));
11917 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11918 ((Elf32_External_compact_rel *)
11921 /* Clean up a dummy stub function entry in .text. */
11922 if (htab->sstubs != NULL)
11924 file_ptr dummy_offset;
11926 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11927 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11928 memset (htab->sstubs->contents + dummy_offset, 0,
11929 htab->function_stub_size);
11934 /* The psABI says that the dynamic relocations must be sorted in
11935 increasing order of r_symndx. The VxWorks EABI doesn't require
11936 this, and because the code below handles REL rather than RELA
11937 relocations, using it for VxWorks would be outright harmful. */
11938 if (!htab->is_vxworks)
11940 s = mips_elf_rel_dyn_section (info, FALSE);
11942 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11944 reldyn_sorting_bfd = output_bfd;
11946 if (ABI_64_P (output_bfd))
11947 qsort ((Elf64_External_Rel *) s->contents + 1,
11948 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11949 sort_dynamic_relocs_64);
11951 qsort ((Elf32_External_Rel *) s->contents + 1,
11952 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11953 sort_dynamic_relocs);
11958 if (htab->splt && htab->splt->size > 0)
11960 if (htab->is_vxworks)
11962 if (bfd_link_pic (info))
11963 mips_vxworks_finish_shared_plt (output_bfd, info);
11965 mips_vxworks_finish_exec_plt (output_bfd, info);
11969 BFD_ASSERT (!bfd_link_pic (info));
11970 if (!mips_finish_exec_plt (output_bfd, info))
11978 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11981 mips_set_isa_flags (bfd *abfd)
11985 switch (bfd_get_mach (abfd))
11988 case bfd_mach_mips3000:
11989 val = E_MIPS_ARCH_1;
11992 case bfd_mach_mips3900:
11993 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11996 case bfd_mach_mips6000:
11997 val = E_MIPS_ARCH_2;
12000 case bfd_mach_mips4000:
12001 case bfd_mach_mips4300:
12002 case bfd_mach_mips4400:
12003 case bfd_mach_mips4600:
12004 val = E_MIPS_ARCH_3;
12007 case bfd_mach_mips4010:
12008 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12011 case bfd_mach_mips4100:
12012 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12015 case bfd_mach_mips4111:
12016 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12019 case bfd_mach_mips4120:
12020 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12023 case bfd_mach_mips4650:
12024 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12027 case bfd_mach_mips5400:
12028 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12031 case bfd_mach_mips5500:
12032 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12035 case bfd_mach_mips5900:
12036 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12039 case bfd_mach_mips9000:
12040 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12043 case bfd_mach_mips5000:
12044 case bfd_mach_mips7000:
12045 case bfd_mach_mips8000:
12046 case bfd_mach_mips10000:
12047 case bfd_mach_mips12000:
12048 case bfd_mach_mips14000:
12049 case bfd_mach_mips16000:
12050 val = E_MIPS_ARCH_4;
12053 case bfd_mach_mips5:
12054 val = E_MIPS_ARCH_5;
12057 case bfd_mach_mips_loongson_2e:
12058 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12061 case bfd_mach_mips_loongson_2f:
12062 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12065 case bfd_mach_mips_sb1:
12066 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12069 case bfd_mach_mips_loongson_3a:
12070 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12073 case bfd_mach_mips_octeon:
12074 case bfd_mach_mips_octeonp:
12075 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12078 case bfd_mach_mips_octeon3:
12079 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12082 case bfd_mach_mips_xlr:
12083 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12086 case bfd_mach_mips_octeon2:
12087 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12090 case bfd_mach_mipsisa32:
12091 val = E_MIPS_ARCH_32;
12094 case bfd_mach_mipsisa64:
12095 val = E_MIPS_ARCH_64;
12098 case bfd_mach_mipsisa32r2:
12099 case bfd_mach_mipsisa32r3:
12100 case bfd_mach_mipsisa32r5:
12101 val = E_MIPS_ARCH_32R2;
12104 case bfd_mach_mipsisa64r2:
12105 case bfd_mach_mipsisa64r3:
12106 case bfd_mach_mipsisa64r5:
12107 val = E_MIPS_ARCH_64R2;
12110 case bfd_mach_mipsisa32r6:
12111 val = E_MIPS_ARCH_32R6;
12114 case bfd_mach_mipsisa64r6:
12115 val = E_MIPS_ARCH_64R6;
12118 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12119 elf_elfheader (abfd)->e_flags |= val;
12124 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12125 Don't do so for code sections. We want to keep ordering of HI16/LO16
12126 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12127 relocs to be sorted. */
12130 _bfd_mips_elf_sort_relocs_p (asection *sec)
12132 return (sec->flags & SEC_CODE) == 0;
12136 /* The final processing done just before writing out a MIPS ELF object
12137 file. This gets the MIPS architecture right based on the machine
12138 number. This is used by both the 32-bit and the 64-bit ABI. */
12141 _bfd_mips_elf_final_write_processing (bfd *abfd,
12142 bfd_boolean linker ATTRIBUTE_UNUSED)
12145 Elf_Internal_Shdr **hdrpp;
12149 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12150 is nonzero. This is for compatibility with old objects, which used
12151 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12152 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12153 mips_set_isa_flags (abfd);
12155 /* Set the sh_info field for .gptab sections and other appropriate
12156 info for each special section. */
12157 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12158 i < elf_numsections (abfd);
12161 switch ((*hdrpp)->sh_type)
12163 case SHT_MIPS_MSYM:
12164 case SHT_MIPS_LIBLIST:
12165 sec = bfd_get_section_by_name (abfd, ".dynstr");
12167 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12170 case SHT_MIPS_GPTAB:
12171 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12172 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12173 BFD_ASSERT (name != NULL
12174 && CONST_STRNEQ (name, ".gptab."));
12175 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12176 BFD_ASSERT (sec != NULL);
12177 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12180 case SHT_MIPS_CONTENT:
12181 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12182 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12183 BFD_ASSERT (name != NULL
12184 && CONST_STRNEQ (name, ".MIPS.content"));
12185 sec = bfd_get_section_by_name (abfd,
12186 name + sizeof ".MIPS.content" - 1);
12187 BFD_ASSERT (sec != NULL);
12188 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12191 case SHT_MIPS_SYMBOL_LIB:
12192 sec = bfd_get_section_by_name (abfd, ".dynsym");
12194 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12195 sec = bfd_get_section_by_name (abfd, ".liblist");
12197 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12200 case SHT_MIPS_EVENTS:
12201 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12202 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12203 BFD_ASSERT (name != NULL);
12204 if (CONST_STRNEQ (name, ".MIPS.events"))
12205 sec = bfd_get_section_by_name (abfd,
12206 name + sizeof ".MIPS.events" - 1);
12209 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12210 sec = bfd_get_section_by_name (abfd,
12212 + sizeof ".MIPS.post_rel" - 1));
12214 BFD_ASSERT (sec != NULL);
12215 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12222 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12226 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12227 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12232 /* See if we need a PT_MIPS_REGINFO segment. */
12233 s = bfd_get_section_by_name (abfd, ".reginfo");
12234 if (s && (s->flags & SEC_LOAD))
12237 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12238 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12241 /* See if we need a PT_MIPS_OPTIONS segment. */
12242 if (IRIX_COMPAT (abfd) == ict_irix6
12243 && bfd_get_section_by_name (abfd,
12244 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12247 /* See if we need a PT_MIPS_RTPROC segment. */
12248 if (IRIX_COMPAT (abfd) == ict_irix5
12249 && bfd_get_section_by_name (abfd, ".dynamic")
12250 && bfd_get_section_by_name (abfd, ".mdebug"))
12253 /* Allocate a PT_NULL header in dynamic objects. See
12254 _bfd_mips_elf_modify_segment_map for details. */
12255 if (!SGI_COMPAT (abfd)
12256 && bfd_get_section_by_name (abfd, ".dynamic"))
12262 /* Modify the segment map for an IRIX5 executable. */
12265 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12266 struct bfd_link_info *info)
12269 struct elf_segment_map *m, **pm;
12272 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12274 s = bfd_get_section_by_name (abfd, ".reginfo");
12275 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12277 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12278 if (m->p_type == PT_MIPS_REGINFO)
12283 m = bfd_zalloc (abfd, amt);
12287 m->p_type = PT_MIPS_REGINFO;
12289 m->sections[0] = s;
12291 /* We want to put it after the PHDR and INTERP segments. */
12292 pm = &elf_seg_map (abfd);
12294 && ((*pm)->p_type == PT_PHDR
12295 || (*pm)->p_type == PT_INTERP))
12303 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12305 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12306 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12308 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12309 if (m->p_type == PT_MIPS_ABIFLAGS)
12314 m = bfd_zalloc (abfd, amt);
12318 m->p_type = PT_MIPS_ABIFLAGS;
12320 m->sections[0] = s;
12322 /* We want to put it after the PHDR and INTERP segments. */
12323 pm = &elf_seg_map (abfd);
12325 && ((*pm)->p_type == PT_PHDR
12326 || (*pm)->p_type == PT_INTERP))
12334 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12335 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12336 PT_MIPS_OPTIONS segment immediately following the program header
12338 if (NEWABI_P (abfd)
12339 /* On non-IRIX6 new abi, we'll have already created a segment
12340 for this section, so don't create another. I'm not sure this
12341 is not also the case for IRIX 6, but I can't test it right
12343 && IRIX_COMPAT (abfd) == ict_irix6)
12345 for (s = abfd->sections; s; s = s->next)
12346 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12351 struct elf_segment_map *options_segment;
12353 pm = &elf_seg_map (abfd);
12355 && ((*pm)->p_type == PT_PHDR
12356 || (*pm)->p_type == PT_INTERP))
12359 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12361 amt = sizeof (struct elf_segment_map);
12362 options_segment = bfd_zalloc (abfd, amt);
12363 options_segment->next = *pm;
12364 options_segment->p_type = PT_MIPS_OPTIONS;
12365 options_segment->p_flags = PF_R;
12366 options_segment->p_flags_valid = TRUE;
12367 options_segment->count = 1;
12368 options_segment->sections[0] = s;
12369 *pm = options_segment;
12375 if (IRIX_COMPAT (abfd) == ict_irix5)
12377 /* If there are .dynamic and .mdebug sections, we make a room
12378 for the RTPROC header. FIXME: Rewrite without section names. */
12379 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12380 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12381 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12383 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12384 if (m->p_type == PT_MIPS_RTPROC)
12389 m = bfd_zalloc (abfd, amt);
12393 m->p_type = PT_MIPS_RTPROC;
12395 s = bfd_get_section_by_name (abfd, ".rtproc");
12400 m->p_flags_valid = 1;
12405 m->sections[0] = s;
12408 /* We want to put it after the DYNAMIC segment. */
12409 pm = &elf_seg_map (abfd);
12410 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12420 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12421 .dynstr, .dynsym, and .hash sections, and everything in
12423 for (pm = &elf_seg_map (abfd); *pm != NULL;
12425 if ((*pm)->p_type == PT_DYNAMIC)
12428 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12429 glibc's dynamic linker has traditionally derived the number of
12430 tags from the p_filesz field, and sometimes allocates stack
12431 arrays of that size. An overly-big PT_DYNAMIC segment can
12432 be actively harmful in such cases. Making PT_DYNAMIC contain
12433 other sections can also make life hard for the prelinker,
12434 which might move one of the other sections to a different
12435 PT_LOAD segment. */
12436 if (SGI_COMPAT (abfd)
12439 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12441 static const char *sec_names[] =
12443 ".dynamic", ".dynstr", ".dynsym", ".hash"
12447 struct elf_segment_map *n;
12449 low = ~(bfd_vma) 0;
12451 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12453 s = bfd_get_section_by_name (abfd, sec_names[i]);
12454 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12461 if (high < s->vma + sz)
12462 high = s->vma + sz;
12467 for (s = abfd->sections; s != NULL; s = s->next)
12468 if ((s->flags & SEC_LOAD) != 0
12470 && s->vma + s->size <= high)
12473 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12474 n = bfd_zalloc (abfd, amt);
12481 for (s = abfd->sections; s != NULL; s = s->next)
12483 if ((s->flags & SEC_LOAD) != 0
12485 && s->vma + s->size <= high)
12487 n->sections[i] = s;
12496 /* Allocate a spare program header in dynamic objects so that tools
12497 like the prelinker can add an extra PT_LOAD entry.
12499 If the prelinker needs to make room for a new PT_LOAD entry, its
12500 standard procedure is to move the first (read-only) sections into
12501 the new (writable) segment. However, the MIPS ABI requires
12502 .dynamic to be in a read-only segment, and the section will often
12503 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12505 Although the prelinker could in principle move .dynamic to a
12506 writable segment, it seems better to allocate a spare program
12507 header instead, and avoid the need to move any sections.
12508 There is a long tradition of allocating spare dynamic tags,
12509 so allocating a spare program header seems like a natural
12512 If INFO is NULL, we may be copying an already prelinked binary
12513 with objcopy or strip, so do not add this header. */
12515 && !SGI_COMPAT (abfd)
12516 && bfd_get_section_by_name (abfd, ".dynamic"))
12518 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12519 if ((*pm)->p_type == PT_NULL)
12523 m = bfd_zalloc (abfd, sizeof (*m));
12527 m->p_type = PT_NULL;
12535 /* Return the section that should be marked against GC for a given
12539 _bfd_mips_elf_gc_mark_hook (asection *sec,
12540 struct bfd_link_info *info,
12541 Elf_Internal_Rela *rel,
12542 struct elf_link_hash_entry *h,
12543 Elf_Internal_Sym *sym)
12545 /* ??? Do mips16 stub sections need to be handled special? */
12548 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12550 case R_MIPS_GNU_VTINHERIT:
12551 case R_MIPS_GNU_VTENTRY:
12555 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12558 /* Update the got entry reference counts for the section being removed. */
12561 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12562 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12563 asection *sec ATTRIBUTE_UNUSED,
12564 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12567 Elf_Internal_Shdr *symtab_hdr;
12568 struct elf_link_hash_entry **sym_hashes;
12569 bfd_signed_vma *local_got_refcounts;
12570 const Elf_Internal_Rela *rel, *relend;
12571 unsigned long r_symndx;
12572 struct elf_link_hash_entry *h;
12574 if (bfd_link_relocatable (info))
12577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12578 sym_hashes = elf_sym_hashes (abfd);
12579 local_got_refcounts = elf_local_got_refcounts (abfd);
12581 relend = relocs + sec->reloc_count;
12582 for (rel = relocs; rel < relend; rel++)
12583 switch (ELF_R_TYPE (abfd, rel->r_info))
12585 case R_MIPS16_GOT16:
12586 case R_MIPS16_CALL16:
12588 case R_MIPS_CALL16:
12589 case R_MIPS_CALL_HI16:
12590 case R_MIPS_CALL_LO16:
12591 case R_MIPS_GOT_HI16:
12592 case R_MIPS_GOT_LO16:
12593 case R_MIPS_GOT_DISP:
12594 case R_MIPS_GOT_PAGE:
12595 case R_MIPS_GOT_OFST:
12596 case R_MICROMIPS_GOT16:
12597 case R_MICROMIPS_CALL16:
12598 case R_MICROMIPS_CALL_HI16:
12599 case R_MICROMIPS_CALL_LO16:
12600 case R_MICROMIPS_GOT_HI16:
12601 case R_MICROMIPS_GOT_LO16:
12602 case R_MICROMIPS_GOT_DISP:
12603 case R_MICROMIPS_GOT_PAGE:
12604 case R_MICROMIPS_GOT_OFST:
12605 /* ??? It would seem that the existing MIPS code does no sort
12606 of reference counting or whatnot on its GOT and PLT entries,
12607 so it is not possible to garbage collect them at this time. */
12618 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12621 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12622 elf_gc_mark_hook_fn gc_mark_hook)
12626 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12628 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12632 if (! is_mips_elf (sub))
12635 for (o = sub->sections; o != NULL; o = o->next)
12637 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12638 (bfd_get_section_name (sub, o)))
12640 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12648 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12649 hiding the old indirect symbol. Process additional relocation
12650 information. Also called for weakdefs, in which case we just let
12651 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12654 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12655 struct elf_link_hash_entry *dir,
12656 struct elf_link_hash_entry *ind)
12658 struct mips_elf_link_hash_entry *dirmips, *indmips;
12660 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12662 dirmips = (struct mips_elf_link_hash_entry *) dir;
12663 indmips = (struct mips_elf_link_hash_entry *) ind;
12664 /* Any absolute non-dynamic relocations against an indirect or weak
12665 definition will be against the target symbol. */
12666 if (indmips->has_static_relocs)
12667 dirmips->has_static_relocs = TRUE;
12669 if (ind->root.type != bfd_link_hash_indirect)
12672 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12673 if (indmips->readonly_reloc)
12674 dirmips->readonly_reloc = TRUE;
12675 if (indmips->no_fn_stub)
12676 dirmips->no_fn_stub = TRUE;
12677 if (indmips->fn_stub)
12679 dirmips->fn_stub = indmips->fn_stub;
12680 indmips->fn_stub = NULL;
12682 if (indmips->need_fn_stub)
12684 dirmips->need_fn_stub = TRUE;
12685 indmips->need_fn_stub = FALSE;
12687 if (indmips->call_stub)
12689 dirmips->call_stub = indmips->call_stub;
12690 indmips->call_stub = NULL;
12692 if (indmips->call_fp_stub)
12694 dirmips->call_fp_stub = indmips->call_fp_stub;
12695 indmips->call_fp_stub = NULL;
12697 if (indmips->global_got_area < dirmips->global_got_area)
12698 dirmips->global_got_area = indmips->global_got_area;
12699 if (indmips->global_got_area < GGA_NONE)
12700 indmips->global_got_area = GGA_NONE;
12701 if (indmips->has_nonpic_branches)
12702 dirmips->has_nonpic_branches = TRUE;
12705 #define PDR_SIZE 32
12708 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12709 struct bfd_link_info *info)
12712 bfd_boolean ret = FALSE;
12713 unsigned char *tdata;
12716 o = bfd_get_section_by_name (abfd, ".pdr");
12721 if (o->size % PDR_SIZE != 0)
12723 if (o->output_section != NULL
12724 && bfd_is_abs_section (o->output_section))
12727 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12731 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12732 info->keep_memory);
12739 cookie->rel = cookie->rels;
12740 cookie->relend = cookie->rels + o->reloc_count;
12742 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12744 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12753 mips_elf_section_data (o)->u.tdata = tdata;
12754 if (o->rawsize == 0)
12755 o->rawsize = o->size;
12756 o->size -= skip * PDR_SIZE;
12762 if (! info->keep_memory)
12763 free (cookie->rels);
12769 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12771 if (strcmp (sec->name, ".pdr") == 0)
12777 _bfd_mips_elf_write_section (bfd *output_bfd,
12778 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12779 asection *sec, bfd_byte *contents)
12781 bfd_byte *to, *from, *end;
12784 if (strcmp (sec->name, ".pdr") != 0)
12787 if (mips_elf_section_data (sec)->u.tdata == NULL)
12791 end = contents + sec->size;
12792 for (from = contents, i = 0;
12794 from += PDR_SIZE, i++)
12796 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12799 memcpy (to, from, PDR_SIZE);
12802 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12803 sec->output_offset, sec->size);
12807 /* microMIPS code retains local labels for linker relaxation. Omit them
12808 from output by default for clarity. */
12811 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12813 return _bfd_elf_is_local_label_name (abfd, sym->name);
12816 /* MIPS ELF uses a special find_nearest_line routine in order the
12817 handle the ECOFF debugging information. */
12819 struct mips_elf_find_line
12821 struct ecoff_debug_info d;
12822 struct ecoff_find_line i;
12826 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12827 asection *section, bfd_vma offset,
12828 const char **filename_ptr,
12829 const char **functionname_ptr,
12830 unsigned int *line_ptr,
12831 unsigned int *discriminator_ptr)
12835 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12836 filename_ptr, functionname_ptr,
12837 line_ptr, discriminator_ptr,
12838 dwarf_debug_sections,
12839 ABI_64_P (abfd) ? 8 : 0,
12840 &elf_tdata (abfd)->dwarf2_find_line_info))
12843 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12844 filename_ptr, functionname_ptr,
12848 msec = bfd_get_section_by_name (abfd, ".mdebug");
12851 flagword origflags;
12852 struct mips_elf_find_line *fi;
12853 const struct ecoff_debug_swap * const swap =
12854 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12856 /* If we are called during a link, mips_elf_final_link may have
12857 cleared the SEC_HAS_CONTENTS field. We force it back on here
12858 if appropriate (which it normally will be). */
12859 origflags = msec->flags;
12860 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12861 msec->flags |= SEC_HAS_CONTENTS;
12863 fi = mips_elf_tdata (abfd)->find_line_info;
12866 bfd_size_type external_fdr_size;
12869 struct fdr *fdr_ptr;
12870 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12872 fi = bfd_zalloc (abfd, amt);
12875 msec->flags = origflags;
12879 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12881 msec->flags = origflags;
12885 /* Swap in the FDR information. */
12886 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12887 fi->d.fdr = bfd_alloc (abfd, amt);
12888 if (fi->d.fdr == NULL)
12890 msec->flags = origflags;
12893 external_fdr_size = swap->external_fdr_size;
12894 fdr_ptr = fi->d.fdr;
12895 fraw_src = (char *) fi->d.external_fdr;
12896 fraw_end = (fraw_src
12897 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12898 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12899 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12901 mips_elf_tdata (abfd)->find_line_info = fi;
12903 /* Note that we don't bother to ever free this information.
12904 find_nearest_line is either called all the time, as in
12905 objdump -l, so the information should be saved, or it is
12906 rarely called, as in ld error messages, so the memory
12907 wasted is unimportant. Still, it would probably be a
12908 good idea for free_cached_info to throw it away. */
12911 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12912 &fi->i, filename_ptr, functionname_ptr,
12915 msec->flags = origflags;
12919 msec->flags = origflags;
12922 /* Fall back on the generic ELF find_nearest_line routine. */
12924 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12925 filename_ptr, functionname_ptr,
12926 line_ptr, discriminator_ptr);
12930 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12931 const char **filename_ptr,
12932 const char **functionname_ptr,
12933 unsigned int *line_ptr)
12936 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12937 functionname_ptr, line_ptr,
12938 & elf_tdata (abfd)->dwarf2_find_line_info);
12943 /* When are writing out the .options or .MIPS.options section,
12944 remember the bytes we are writing out, so that we can install the
12945 GP value in the section_processing routine. */
12948 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12949 const void *location,
12950 file_ptr offset, bfd_size_type count)
12952 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12956 if (elf_section_data (section) == NULL)
12958 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12959 section->used_by_bfd = bfd_zalloc (abfd, amt);
12960 if (elf_section_data (section) == NULL)
12963 c = mips_elf_section_data (section)->u.tdata;
12966 c = bfd_zalloc (abfd, section->size);
12969 mips_elf_section_data (section)->u.tdata = c;
12972 memcpy (c + offset, location, count);
12975 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12979 /* This is almost identical to bfd_generic_get_... except that some
12980 MIPS relocations need to be handled specially. Sigh. */
12983 _bfd_elf_mips_get_relocated_section_contents
12985 struct bfd_link_info *link_info,
12986 struct bfd_link_order *link_order,
12988 bfd_boolean relocatable,
12991 /* Get enough memory to hold the stuff */
12992 bfd *input_bfd = link_order->u.indirect.section->owner;
12993 asection *input_section = link_order->u.indirect.section;
12996 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12997 arelent **reloc_vector = NULL;
13000 if (reloc_size < 0)
13003 reloc_vector = bfd_malloc (reloc_size);
13004 if (reloc_vector == NULL && reloc_size != 0)
13007 /* read in the section */
13008 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13009 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13012 reloc_count = bfd_canonicalize_reloc (input_bfd,
13016 if (reloc_count < 0)
13019 if (reloc_count > 0)
13024 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13027 struct bfd_hash_entry *h;
13028 struct bfd_link_hash_entry *lh;
13029 /* Skip all this stuff if we aren't mixing formats. */
13030 if (abfd && input_bfd
13031 && abfd->xvec == input_bfd->xvec)
13035 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13036 lh = (struct bfd_link_hash_entry *) h;
13043 case bfd_link_hash_undefined:
13044 case bfd_link_hash_undefweak:
13045 case bfd_link_hash_common:
13048 case bfd_link_hash_defined:
13049 case bfd_link_hash_defweak:
13051 gp = lh->u.def.value;
13053 case bfd_link_hash_indirect:
13054 case bfd_link_hash_warning:
13056 /* @@FIXME ignoring warning for now */
13058 case bfd_link_hash_new:
13067 for (parent = reloc_vector; *parent != NULL; parent++)
13069 char *error_message = NULL;
13070 bfd_reloc_status_type r;
13072 /* Specific to MIPS: Deal with relocation types that require
13073 knowing the gp of the output bfd. */
13074 asymbol *sym = *(*parent)->sym_ptr_ptr;
13076 /* If we've managed to find the gp and have a special
13077 function for the relocation then go ahead, else default
13078 to the generic handling. */
13080 && (*parent)->howto->special_function
13081 == _bfd_mips_elf32_gprel16_reloc)
13082 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13083 input_section, relocatable,
13086 r = bfd_perform_relocation (input_bfd, *parent, data,
13088 relocatable ? abfd : NULL,
13093 asection *os = input_section->output_section;
13095 /* A partial link, so keep the relocs */
13096 os->orelocation[os->reloc_count] = *parent;
13100 if (r != bfd_reloc_ok)
13104 case bfd_reloc_undefined:
13105 (*link_info->callbacks->undefined_symbol)
13106 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13107 input_bfd, input_section, (*parent)->address, TRUE);
13109 case bfd_reloc_dangerous:
13110 BFD_ASSERT (error_message != NULL);
13111 (*link_info->callbacks->reloc_dangerous)
13112 (link_info, error_message,
13113 input_bfd, input_section, (*parent)->address);
13115 case bfd_reloc_overflow:
13116 (*link_info->callbacks->reloc_overflow)
13118 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13119 (*parent)->howto->name, (*parent)->addend,
13120 input_bfd, input_section, (*parent)->address);
13122 case bfd_reloc_outofrange:
13131 if (reloc_vector != NULL)
13132 free (reloc_vector);
13136 if (reloc_vector != NULL)
13137 free (reloc_vector);
13142 mips_elf_relax_delete_bytes (bfd *abfd,
13143 asection *sec, bfd_vma addr, int count)
13145 Elf_Internal_Shdr *symtab_hdr;
13146 unsigned int sec_shndx;
13147 bfd_byte *contents;
13148 Elf_Internal_Rela *irel, *irelend;
13149 Elf_Internal_Sym *isym;
13150 Elf_Internal_Sym *isymend;
13151 struct elf_link_hash_entry **sym_hashes;
13152 struct elf_link_hash_entry **end_hashes;
13153 struct elf_link_hash_entry **start_hashes;
13154 unsigned int symcount;
13156 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13157 contents = elf_section_data (sec)->this_hdr.contents;
13159 irel = elf_section_data (sec)->relocs;
13160 irelend = irel + sec->reloc_count;
13162 /* Actually delete the bytes. */
13163 memmove (contents + addr, contents + addr + count,
13164 (size_t) (sec->size - addr - count));
13165 sec->size -= count;
13167 /* Adjust all the relocs. */
13168 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13170 /* Get the new reloc address. */
13171 if (irel->r_offset > addr)
13172 irel->r_offset -= count;
13175 BFD_ASSERT (addr % 2 == 0);
13176 BFD_ASSERT (count % 2 == 0);
13178 /* Adjust the local symbols defined in this section. */
13179 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13180 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13181 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13182 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13183 isym->st_value -= count;
13185 /* Now adjust the global symbols defined in this section. */
13186 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13187 - symtab_hdr->sh_info);
13188 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13189 end_hashes = sym_hashes + symcount;
13191 for (; sym_hashes < end_hashes; sym_hashes++)
13193 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13195 if ((sym_hash->root.type == bfd_link_hash_defined
13196 || sym_hash->root.type == bfd_link_hash_defweak)
13197 && sym_hash->root.u.def.section == sec)
13199 bfd_vma value = sym_hash->root.u.def.value;
13201 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13202 value &= MINUS_TWO;
13204 sym_hash->root.u.def.value -= count;
13212 /* Opcodes needed for microMIPS relaxation as found in
13213 opcodes/micromips-opc.c. */
13215 struct opcode_descriptor {
13216 unsigned long match;
13217 unsigned long mask;
13220 /* The $ra register aka $31. */
13224 /* 32-bit instruction format register fields. */
13226 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13227 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13229 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13231 #define OP16_VALID_REG(r) \
13232 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13235 /* 32-bit and 16-bit branches. */
13237 static const struct opcode_descriptor b_insns_32[] = {
13238 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13239 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13240 { 0, 0 } /* End marker for find_match(). */
13243 static const struct opcode_descriptor bc_insn_32 =
13244 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13246 static const struct opcode_descriptor bz_insn_32 =
13247 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13249 static const struct opcode_descriptor bzal_insn_32 =
13250 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13252 static const struct opcode_descriptor beq_insn_32 =
13253 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13255 static const struct opcode_descriptor b_insn_16 =
13256 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13258 static const struct opcode_descriptor bz_insn_16 =
13259 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13262 /* 32-bit and 16-bit branch EQ and NE zero. */
13264 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13265 eq and second the ne. This convention is used when replacing a
13266 32-bit BEQ/BNE with the 16-bit version. */
13268 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13270 static const struct opcode_descriptor bz_rs_insns_32[] = {
13271 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13272 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13273 { 0, 0 } /* End marker for find_match(). */
13276 static const struct opcode_descriptor bz_rt_insns_32[] = {
13277 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13278 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13279 { 0, 0 } /* End marker for find_match(). */
13282 static const struct opcode_descriptor bzc_insns_32[] = {
13283 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13284 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13285 { 0, 0 } /* End marker for find_match(). */
13288 static const struct opcode_descriptor bz_insns_16[] = {
13289 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13290 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13291 { 0, 0 } /* End marker for find_match(). */
13294 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13296 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13297 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13300 /* 32-bit instructions with a delay slot. */
13302 static const struct opcode_descriptor jal_insn_32_bd16 =
13303 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13305 static const struct opcode_descriptor jal_insn_32_bd32 =
13306 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13308 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13309 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13311 static const struct opcode_descriptor j_insn_32 =
13312 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13314 static const struct opcode_descriptor jalr_insn_32 =
13315 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13317 /* This table can be compacted, because no opcode replacement is made. */
13319 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13320 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13322 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13323 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13325 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13326 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13327 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13328 { 0, 0 } /* End marker for find_match(). */
13331 /* This table can be compacted, because no opcode replacement is made. */
13333 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13334 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13336 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13337 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13338 { 0, 0 } /* End marker for find_match(). */
13342 /* 16-bit instructions with a delay slot. */
13344 static const struct opcode_descriptor jalr_insn_16_bd16 =
13345 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13347 static const struct opcode_descriptor jalr_insn_16_bd32 =
13348 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13350 static const struct opcode_descriptor jr_insn_16 =
13351 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13353 #define JR16_REG(opcode) ((opcode) & 0x1f)
13355 /* This table can be compacted, because no opcode replacement is made. */
13357 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13358 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13360 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13361 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13362 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13363 { 0, 0 } /* End marker for find_match(). */
13367 /* LUI instruction. */
13369 static const struct opcode_descriptor lui_insn =
13370 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13373 /* ADDIU instruction. */
13375 static const struct opcode_descriptor addiu_insn =
13376 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13378 static const struct opcode_descriptor addiupc_insn =
13379 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13381 #define ADDIUPC_REG_FIELD(r) \
13382 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13385 /* Relaxable instructions in a JAL delay slot: MOVE. */
13387 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13388 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13389 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13390 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13392 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13393 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13395 static const struct opcode_descriptor move_insns_32[] = {
13396 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13397 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13398 { 0, 0 } /* End marker for find_match(). */
13401 static const struct opcode_descriptor move_insn_16 =
13402 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13405 /* NOP instructions. */
13407 static const struct opcode_descriptor nop_insn_32 =
13408 { /* "nop", "", */ 0x00000000, 0xffffffff };
13410 static const struct opcode_descriptor nop_insn_16 =
13411 { /* "nop", "", */ 0x0c00, 0xffff };
13414 /* Instruction match support. */
13416 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13419 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13421 unsigned long indx;
13423 for (indx = 0; insn[indx].mask != 0; indx++)
13424 if (MATCH (opcode, insn[indx]))
13431 /* Branch and delay slot decoding support. */
13433 /* If PTR points to what *might* be a 16-bit branch or jump, then
13434 return the minimum length of its delay slot, otherwise return 0.
13435 Non-zero results are not definitive as we might be checking against
13436 the second half of another instruction. */
13439 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13441 unsigned long opcode;
13444 opcode = bfd_get_16 (abfd, ptr);
13445 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13446 /* 16-bit branch/jump with a 32-bit delay slot. */
13448 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13449 || find_match (opcode, ds_insns_16_bd16) >= 0)
13450 /* 16-bit branch/jump with a 16-bit delay slot. */
13453 /* No delay slot. */
13459 /* If PTR points to what *might* be a 32-bit branch or jump, then
13460 return the minimum length of its delay slot, otherwise return 0.
13461 Non-zero results are not definitive as we might be checking against
13462 the second half of another instruction. */
13465 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13467 unsigned long opcode;
13470 opcode = bfd_get_micromips_32 (abfd, ptr);
13471 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13472 /* 32-bit branch/jump with a 32-bit delay slot. */
13474 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13475 /* 32-bit branch/jump with a 16-bit delay slot. */
13478 /* No delay slot. */
13484 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13485 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13488 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13490 unsigned long opcode;
13492 opcode = bfd_get_16 (abfd, ptr);
13493 if (MATCH (opcode, b_insn_16)
13495 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13497 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13498 /* BEQZ16, BNEZ16 */
13499 || (MATCH (opcode, jalr_insn_16_bd32)
13501 && reg != JR16_REG (opcode) && reg != RA))
13507 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13508 then return TRUE, otherwise FALSE. */
13511 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13513 unsigned long opcode;
13515 opcode = bfd_get_micromips_32 (abfd, ptr);
13516 if (MATCH (opcode, j_insn_32)
13518 || MATCH (opcode, bc_insn_32)
13519 /* BC1F, BC1T, BC2F, BC2T */
13520 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13522 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13523 /* BGEZ, BGTZ, BLEZ, BLTZ */
13524 || (MATCH (opcode, bzal_insn_32)
13525 /* BGEZAL, BLTZAL */
13526 && reg != OP32_SREG (opcode) && reg != RA)
13527 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13528 /* JALR, JALR.HB, BEQ, BNE */
13529 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13535 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13536 IRELEND) at OFFSET indicate that there must be a compact branch there,
13537 then return TRUE, otherwise FALSE. */
13540 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13541 const Elf_Internal_Rela *internal_relocs,
13542 const Elf_Internal_Rela *irelend)
13544 const Elf_Internal_Rela *irel;
13545 unsigned long opcode;
13547 opcode = bfd_get_micromips_32 (abfd, ptr);
13548 if (find_match (opcode, bzc_insns_32) < 0)
13551 for (irel = internal_relocs; irel < irelend; irel++)
13552 if (irel->r_offset == offset
13553 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13559 /* Bitsize checking. */
13560 #define IS_BITSIZE(val, N) \
13561 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13562 - (1ULL << ((N) - 1))) == (val))
13566 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13567 struct bfd_link_info *link_info,
13568 bfd_boolean *again)
13570 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13571 Elf_Internal_Shdr *symtab_hdr;
13572 Elf_Internal_Rela *internal_relocs;
13573 Elf_Internal_Rela *irel, *irelend;
13574 bfd_byte *contents = NULL;
13575 Elf_Internal_Sym *isymbuf = NULL;
13577 /* Assume nothing changes. */
13580 /* We don't have to do anything for a relocatable link, if
13581 this section does not have relocs, or if this is not a
13584 if (bfd_link_relocatable (link_info)
13585 || (sec->flags & SEC_RELOC) == 0
13586 || sec->reloc_count == 0
13587 || (sec->flags & SEC_CODE) == 0)
13590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13592 /* Get a copy of the native relocations. */
13593 internal_relocs = (_bfd_elf_link_read_relocs
13594 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13595 link_info->keep_memory));
13596 if (internal_relocs == NULL)
13599 /* Walk through them looking for relaxing opportunities. */
13600 irelend = internal_relocs + sec->reloc_count;
13601 for (irel = internal_relocs; irel < irelend; irel++)
13603 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13604 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13605 bfd_boolean target_is_micromips_code_p;
13606 unsigned long opcode;
13612 /* The number of bytes to delete for relaxation and from where
13613 to delete these bytes starting at irel->r_offset. */
13617 /* If this isn't something that can be relaxed, then ignore
13619 if (r_type != R_MICROMIPS_HI16
13620 && r_type != R_MICROMIPS_PC16_S1
13621 && r_type != R_MICROMIPS_26_S1)
13624 /* Get the section contents if we haven't done so already. */
13625 if (contents == NULL)
13627 /* Get cached copy if it exists. */
13628 if (elf_section_data (sec)->this_hdr.contents != NULL)
13629 contents = elf_section_data (sec)->this_hdr.contents;
13630 /* Go get them off disk. */
13631 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13634 ptr = contents + irel->r_offset;
13636 /* Read this BFD's local symbols if we haven't done so already. */
13637 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13639 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13640 if (isymbuf == NULL)
13641 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13642 symtab_hdr->sh_info, 0,
13644 if (isymbuf == NULL)
13648 /* Get the value of the symbol referred to by the reloc. */
13649 if (r_symndx < symtab_hdr->sh_info)
13651 /* A local symbol. */
13652 Elf_Internal_Sym *isym;
13655 isym = isymbuf + r_symndx;
13656 if (isym->st_shndx == SHN_UNDEF)
13657 sym_sec = bfd_und_section_ptr;
13658 else if (isym->st_shndx == SHN_ABS)
13659 sym_sec = bfd_abs_section_ptr;
13660 else if (isym->st_shndx == SHN_COMMON)
13661 sym_sec = bfd_com_section_ptr;
13663 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13664 symval = (isym->st_value
13665 + sym_sec->output_section->vma
13666 + sym_sec->output_offset);
13667 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13671 unsigned long indx;
13672 struct elf_link_hash_entry *h;
13674 /* An external symbol. */
13675 indx = r_symndx - symtab_hdr->sh_info;
13676 h = elf_sym_hashes (abfd)[indx];
13677 BFD_ASSERT (h != NULL);
13679 if (h->root.type != bfd_link_hash_defined
13680 && h->root.type != bfd_link_hash_defweak)
13681 /* This appears to be a reference to an undefined
13682 symbol. Just ignore it -- it will be caught by the
13683 regular reloc processing. */
13686 symval = (h->root.u.def.value
13687 + h->root.u.def.section->output_section->vma
13688 + h->root.u.def.section->output_offset);
13689 target_is_micromips_code_p = (!h->needs_plt
13690 && ELF_ST_IS_MICROMIPS (h->other));
13694 /* For simplicity of coding, we are going to modify the
13695 section contents, the section relocs, and the BFD symbol
13696 table. We must tell the rest of the code not to free up this
13697 information. It would be possible to instead create a table
13698 of changes which have to be made, as is done in coff-mips.c;
13699 that would be more work, but would require less memory when
13700 the linker is run. */
13702 /* Only 32-bit instructions relaxed. */
13703 if (irel->r_offset + 4 > sec->size)
13706 opcode = bfd_get_micromips_32 (abfd, ptr);
13708 /* This is the pc-relative distance from the instruction the
13709 relocation is applied to, to the symbol referred. */
13711 - (sec->output_section->vma + sec->output_offset)
13714 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13715 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13716 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13718 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13720 where pcrval has first to be adjusted to apply against the LO16
13721 location (we make the adjustment later on, when we have figured
13722 out the offset). */
13723 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13725 bfd_boolean bzc = FALSE;
13726 unsigned long nextopc;
13730 /* Give up if the previous reloc was a HI16 against this symbol
13732 if (irel > internal_relocs
13733 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13734 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13737 /* Or if the next reloc is not a LO16 against this symbol. */
13738 if (irel + 1 >= irelend
13739 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13740 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13743 /* Or if the second next reloc is a LO16 against this symbol too. */
13744 if (irel + 2 >= irelend
13745 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13746 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13749 /* See if the LUI instruction *might* be in a branch delay slot.
13750 We check whether what looks like a 16-bit branch or jump is
13751 actually an immediate argument to a compact branch, and let
13752 it through if so. */
13753 if (irel->r_offset >= 2
13754 && check_br16_dslot (abfd, ptr - 2)
13755 && !(irel->r_offset >= 4
13756 && (bzc = check_relocated_bzc (abfd,
13757 ptr - 4, irel->r_offset - 4,
13758 internal_relocs, irelend))))
13760 if (irel->r_offset >= 4
13762 && check_br32_dslot (abfd, ptr - 4))
13765 reg = OP32_SREG (opcode);
13767 /* We only relax adjacent instructions or ones separated with
13768 a branch or jump that has a delay slot. The branch or jump
13769 must not fiddle with the register used to hold the address.
13770 Subtract 4 for the LUI itself. */
13771 offset = irel[1].r_offset - irel[0].r_offset;
13772 switch (offset - 4)
13777 if (check_br16 (abfd, ptr + 4, reg))
13781 if (check_br32 (abfd, ptr + 4, reg))
13788 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13790 /* Give up unless the same register is used with both
13792 if (OP32_SREG (nextopc) != reg)
13795 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13796 and rounding up to take masking of the two LSBs into account. */
13797 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13799 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13800 if (IS_BITSIZE (symval, 16))
13802 /* Fix the relocation's type. */
13803 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13805 /* Instructions using R_MICROMIPS_LO16 have the base or
13806 source register in bits 20:16. This register becomes $0
13807 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13808 nextopc &= ~0x001f0000;
13809 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13810 contents + irel[1].r_offset);
13813 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13814 We add 4 to take LUI deletion into account while checking
13815 the PC-relative distance. */
13816 else if (symval % 4 == 0
13817 && IS_BITSIZE (pcrval + 4, 25)
13818 && MATCH (nextopc, addiu_insn)
13819 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13820 && OP16_VALID_REG (OP32_TREG (nextopc)))
13822 /* Fix the relocation's type. */
13823 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13825 /* Replace ADDIU with the ADDIUPC version. */
13826 nextopc = (addiupc_insn.match
13827 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13829 bfd_put_micromips_32 (abfd, nextopc,
13830 contents + irel[1].r_offset);
13833 /* Can't do anything, give up, sigh... */
13837 /* Fix the relocation's type. */
13838 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13840 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13845 /* Compact branch relaxation -- due to the multitude of macros
13846 employed by the compiler/assembler, compact branches are not
13847 always generated. Obviously, this can/will be fixed elsewhere,
13848 but there is no drawback in double checking it here. */
13849 else if (r_type == R_MICROMIPS_PC16_S1
13850 && irel->r_offset + 5 < sec->size
13851 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13852 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13854 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13855 nop_insn_16) ? 2 : 0))
13856 || (irel->r_offset + 7 < sec->size
13857 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13859 nop_insn_32) ? 4 : 0))))
13863 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13865 /* Replace BEQZ/BNEZ with the compact version. */
13866 opcode = (bzc_insns_32[fndopc].match
13867 | BZC32_REG_FIELD (reg)
13868 | (opcode & 0xffff)); /* Addend value. */
13870 bfd_put_micromips_32 (abfd, opcode, ptr);
13872 /* Delete the delay slot NOP: two or four bytes from
13873 irel->offset + 4; delcnt has already been set above. */
13877 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13878 to check the distance from the next instruction, so subtract 2. */
13880 && r_type == R_MICROMIPS_PC16_S1
13881 && IS_BITSIZE (pcrval - 2, 11)
13882 && find_match (opcode, b_insns_32) >= 0)
13884 /* Fix the relocation's type. */
13885 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13887 /* Replace the 32-bit opcode with a 16-bit opcode. */
13890 | (opcode & 0x3ff)), /* Addend value. */
13893 /* Delete 2 bytes from irel->r_offset + 2. */
13898 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13899 to check the distance from the next instruction, so subtract 2. */
13901 && r_type == R_MICROMIPS_PC16_S1
13902 && IS_BITSIZE (pcrval - 2, 8)
13903 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13904 && OP16_VALID_REG (OP32_SREG (opcode)))
13905 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13906 && OP16_VALID_REG (OP32_TREG (opcode)))))
13910 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13912 /* Fix the relocation's type. */
13913 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13915 /* Replace the 32-bit opcode with a 16-bit opcode. */
13917 (bz_insns_16[fndopc].match
13918 | BZ16_REG_FIELD (reg)
13919 | (opcode & 0x7f)), /* Addend value. */
13922 /* Delete 2 bytes from irel->r_offset + 2. */
13927 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13929 && r_type == R_MICROMIPS_26_S1
13930 && target_is_micromips_code_p
13931 && irel->r_offset + 7 < sec->size
13932 && MATCH (opcode, jal_insn_32_bd32))
13934 unsigned long n32opc;
13935 bfd_boolean relaxed = FALSE;
13937 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13939 if (MATCH (n32opc, nop_insn_32))
13941 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13942 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13946 else if (find_match (n32opc, move_insns_32) >= 0)
13948 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13950 (move_insn_16.match
13951 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13952 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13957 /* Other 32-bit instructions relaxable to 16-bit
13958 instructions will be handled here later. */
13962 /* JAL with 32-bit delay slot that is changed to a JALS
13963 with 16-bit delay slot. */
13964 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13966 /* Delete 2 bytes from irel->r_offset + 6. */
13974 /* Note that we've changed the relocs, section contents, etc. */
13975 elf_section_data (sec)->relocs = internal_relocs;
13976 elf_section_data (sec)->this_hdr.contents = contents;
13977 symtab_hdr->contents = (unsigned char *) isymbuf;
13979 /* Delete bytes depending on the delcnt and deloff. */
13980 if (!mips_elf_relax_delete_bytes (abfd, sec,
13981 irel->r_offset + deloff, delcnt))
13984 /* That will change things, so we should relax again.
13985 Note that this is not required, and it may be slow. */
13990 if (isymbuf != NULL
13991 && symtab_hdr->contents != (unsigned char *) isymbuf)
13993 if (! link_info->keep_memory)
13997 /* Cache the symbols for elf_link_input_bfd. */
13998 symtab_hdr->contents = (unsigned char *) isymbuf;
14002 if (contents != NULL
14003 && elf_section_data (sec)->this_hdr.contents != contents)
14005 if (! link_info->keep_memory)
14009 /* Cache the section contents for elf_link_input_bfd. */
14010 elf_section_data (sec)->this_hdr.contents = contents;
14014 if (internal_relocs != NULL
14015 && elf_section_data (sec)->relocs != internal_relocs)
14016 free (internal_relocs);
14021 if (isymbuf != NULL
14022 && symtab_hdr->contents != (unsigned char *) isymbuf)
14024 if (contents != NULL
14025 && elf_section_data (sec)->this_hdr.contents != contents)
14027 if (internal_relocs != NULL
14028 && elf_section_data (sec)->relocs != internal_relocs)
14029 free (internal_relocs);
14034 /* Create a MIPS ELF linker hash table. */
14036 struct bfd_link_hash_table *
14037 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14039 struct mips_elf_link_hash_table *ret;
14040 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14042 ret = bfd_zmalloc (amt);
14046 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14047 mips_elf_link_hash_newfunc,
14048 sizeof (struct mips_elf_link_hash_entry),
14054 ret->root.init_plt_refcount.plist = NULL;
14055 ret->root.init_plt_offset.plist = NULL;
14057 return &ret->root.root;
14060 /* Likewise, but indicate that the target is VxWorks. */
14062 struct bfd_link_hash_table *
14063 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14065 struct bfd_link_hash_table *ret;
14067 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14070 struct mips_elf_link_hash_table *htab;
14072 htab = (struct mips_elf_link_hash_table *) ret;
14073 htab->use_plts_and_copy_relocs = TRUE;
14074 htab->is_vxworks = TRUE;
14079 /* A function that the linker calls if we are allowed to use PLTs
14080 and copy relocs. */
14083 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14085 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14088 /* A function that the linker calls to select between all or only
14089 32-bit microMIPS instructions. */
14092 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14094 mips_elf_hash_table (info)->insn32 = on;
14097 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14099 struct mips_mach_extension
14101 unsigned long extension, base;
14105 /* An array describing how BFD machines relate to one another. The entries
14106 are ordered topologically with MIPS I extensions listed last. */
14108 static const struct mips_mach_extension mips_mach_extensions[] =
14110 /* MIPS64r2 extensions. */
14111 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14112 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14113 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14114 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14115 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14117 /* MIPS64 extensions. */
14118 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14119 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14120 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14122 /* MIPS V extensions. */
14123 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14125 /* R10000 extensions. */
14126 { bfd_mach_mips12000, bfd_mach_mips10000 },
14127 { bfd_mach_mips14000, bfd_mach_mips10000 },
14128 { bfd_mach_mips16000, bfd_mach_mips10000 },
14130 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14131 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14132 better to allow vr5400 and vr5500 code to be merged anyway, since
14133 many libraries will just use the core ISA. Perhaps we could add
14134 some sort of ASE flag if this ever proves a problem. */
14135 { bfd_mach_mips5500, bfd_mach_mips5400 },
14136 { bfd_mach_mips5400, bfd_mach_mips5000 },
14138 /* MIPS IV extensions. */
14139 { bfd_mach_mips5, bfd_mach_mips8000 },
14140 { bfd_mach_mips10000, bfd_mach_mips8000 },
14141 { bfd_mach_mips5000, bfd_mach_mips8000 },
14142 { bfd_mach_mips7000, bfd_mach_mips8000 },
14143 { bfd_mach_mips9000, bfd_mach_mips8000 },
14145 /* VR4100 extensions. */
14146 { bfd_mach_mips4120, bfd_mach_mips4100 },
14147 { bfd_mach_mips4111, bfd_mach_mips4100 },
14149 /* MIPS III extensions. */
14150 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14151 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14152 { bfd_mach_mips8000, bfd_mach_mips4000 },
14153 { bfd_mach_mips4650, bfd_mach_mips4000 },
14154 { bfd_mach_mips4600, bfd_mach_mips4000 },
14155 { bfd_mach_mips4400, bfd_mach_mips4000 },
14156 { bfd_mach_mips4300, bfd_mach_mips4000 },
14157 { bfd_mach_mips4100, bfd_mach_mips4000 },
14158 { bfd_mach_mips4010, bfd_mach_mips4000 },
14159 { bfd_mach_mips5900, bfd_mach_mips4000 },
14161 /* MIPS32 extensions. */
14162 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14164 /* MIPS II extensions. */
14165 { bfd_mach_mips4000, bfd_mach_mips6000 },
14166 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14168 /* MIPS I extensions. */
14169 { bfd_mach_mips6000, bfd_mach_mips3000 },
14170 { bfd_mach_mips3900, bfd_mach_mips3000 }
14173 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14176 mips_mach_extends_p (unsigned long base, unsigned long extension)
14180 if (extension == base)
14183 if (base == bfd_mach_mipsisa32
14184 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14187 if (base == bfd_mach_mipsisa32r2
14188 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14191 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14192 if (extension == mips_mach_extensions[i].extension)
14194 extension = mips_mach_extensions[i].base;
14195 if (extension == base)
14202 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14204 static unsigned long
14205 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14209 case AFL_EXT_3900: return bfd_mach_mips3900;
14210 case AFL_EXT_4010: return bfd_mach_mips4010;
14211 case AFL_EXT_4100: return bfd_mach_mips4100;
14212 case AFL_EXT_4111: return bfd_mach_mips4111;
14213 case AFL_EXT_4120: return bfd_mach_mips4120;
14214 case AFL_EXT_4650: return bfd_mach_mips4650;
14215 case AFL_EXT_5400: return bfd_mach_mips5400;
14216 case AFL_EXT_5500: return bfd_mach_mips5500;
14217 case AFL_EXT_5900: return bfd_mach_mips5900;
14218 case AFL_EXT_10000: return bfd_mach_mips10000;
14219 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14220 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14221 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14222 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14223 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14224 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14225 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14226 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14227 default: return bfd_mach_mips3000;
14231 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14234 bfd_mips_isa_ext (bfd *abfd)
14236 switch (bfd_get_mach (abfd))
14238 case bfd_mach_mips3900: return AFL_EXT_3900;
14239 case bfd_mach_mips4010: return AFL_EXT_4010;
14240 case bfd_mach_mips4100: return AFL_EXT_4100;
14241 case bfd_mach_mips4111: return AFL_EXT_4111;
14242 case bfd_mach_mips4120: return AFL_EXT_4120;
14243 case bfd_mach_mips4650: return AFL_EXT_4650;
14244 case bfd_mach_mips5400: return AFL_EXT_5400;
14245 case bfd_mach_mips5500: return AFL_EXT_5500;
14246 case bfd_mach_mips5900: return AFL_EXT_5900;
14247 case bfd_mach_mips10000: return AFL_EXT_10000;
14248 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14249 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14250 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14251 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14252 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14253 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14254 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14255 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14256 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14261 /* Encode ISA level and revision as a single value. */
14262 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14264 /* Decode a single value into level and revision. */
14265 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14266 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14268 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14271 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14274 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14276 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14277 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14278 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14279 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14280 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14281 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14282 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14283 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14284 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14285 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14286 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14288 (*_bfd_error_handler)
14289 (_("%B: Unknown architecture %s"),
14290 abfd, bfd_printable_name (abfd));
14293 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14295 abiflags->isa_level = ISA_LEVEL (new_isa);
14296 abiflags->isa_rev = ISA_REV (new_isa);
14299 /* Update the isa_ext if ABFD describes a further extension. */
14300 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14301 bfd_get_mach (abfd)))
14302 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14305 /* Return true if the given ELF header flags describe a 32-bit binary. */
14308 mips_32bit_flags_p (flagword flags)
14310 return ((flags & EF_MIPS_32BITMODE) != 0
14311 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14312 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14313 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14314 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14315 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14316 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14317 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14320 /* Infer the content of the ABI flags based on the elf header. */
14323 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14325 obj_attribute *in_attr;
14327 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14328 update_mips_abiflags_isa (abfd, abiflags);
14330 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14331 abiflags->gpr_size = AFL_REG_32;
14333 abiflags->gpr_size = AFL_REG_64;
14335 abiflags->cpr1_size = AFL_REG_NONE;
14337 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14338 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14340 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14341 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14342 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14343 && abiflags->gpr_size == AFL_REG_32))
14344 abiflags->cpr1_size = AFL_REG_32;
14345 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14346 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14347 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14348 abiflags->cpr1_size = AFL_REG_64;
14350 abiflags->cpr2_size = AFL_REG_NONE;
14352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14353 abiflags->ases |= AFL_ASE_MDMX;
14354 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14355 abiflags->ases |= AFL_ASE_MIPS16;
14356 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14357 abiflags->ases |= AFL_ASE_MICROMIPS;
14359 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14360 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14361 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14362 && abiflags->isa_level >= 32
14363 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14364 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14367 /* We need to use a special link routine to handle the .reginfo and
14368 the .mdebug sections. We need to merge all instances of these
14369 sections together, not write them all out sequentially. */
14372 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14375 struct bfd_link_order *p;
14376 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14377 asection *rtproc_sec, *abiflags_sec;
14378 Elf32_RegInfo reginfo;
14379 struct ecoff_debug_info debug;
14380 struct mips_htab_traverse_info hti;
14381 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14382 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14383 HDRR *symhdr = &debug.symbolic_header;
14384 void *mdebug_handle = NULL;
14389 struct mips_elf_link_hash_table *htab;
14391 static const char * const secname[] =
14393 ".text", ".init", ".fini", ".data",
14394 ".rodata", ".sdata", ".sbss", ".bss"
14396 static const int sc[] =
14398 scText, scInit, scFini, scData,
14399 scRData, scSData, scSBss, scBss
14402 /* Sort the dynamic symbols so that those with GOT entries come after
14404 htab = mips_elf_hash_table (info);
14405 BFD_ASSERT (htab != NULL);
14407 if (!mips_elf_sort_hash_table (abfd, info))
14410 /* Create any scheduled LA25 stubs. */
14412 hti.output_bfd = abfd;
14414 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14418 /* Get a value for the GP register. */
14419 if (elf_gp (abfd) == 0)
14421 struct bfd_link_hash_entry *h;
14423 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14424 if (h != NULL && h->type == bfd_link_hash_defined)
14425 elf_gp (abfd) = (h->u.def.value
14426 + h->u.def.section->output_section->vma
14427 + h->u.def.section->output_offset);
14428 else if (htab->is_vxworks
14429 && (h = bfd_link_hash_lookup (info->hash,
14430 "_GLOBAL_OFFSET_TABLE_",
14431 FALSE, FALSE, TRUE))
14432 && h->type == bfd_link_hash_defined)
14433 elf_gp (abfd) = (h->u.def.section->output_section->vma
14434 + h->u.def.section->output_offset
14436 else if (bfd_link_relocatable (info))
14438 bfd_vma lo = MINUS_ONE;
14440 /* Find the GP-relative section with the lowest offset. */
14441 for (o = abfd->sections; o != NULL; o = o->next)
14443 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14446 /* And calculate GP relative to that. */
14447 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14451 /* If the relocate_section function needs to do a reloc
14452 involving the GP value, it should make a reloc_dangerous
14453 callback to warn that GP is not defined. */
14457 /* Go through the sections and collect the .reginfo and .mdebug
14459 abiflags_sec = NULL;
14460 reginfo_sec = NULL;
14462 gptab_data_sec = NULL;
14463 gptab_bss_sec = NULL;
14464 for (o = abfd->sections; o != NULL; o = o->next)
14466 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14468 /* We have found the .MIPS.abiflags section in the output file.
14469 Look through all the link_orders comprising it and remove them.
14470 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14471 for (p = o->map_head.link_order; p != NULL; p = p->next)
14473 asection *input_section;
14475 if (p->type != bfd_indirect_link_order)
14477 if (p->type == bfd_data_link_order)
14482 input_section = p->u.indirect.section;
14484 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14485 elf_link_input_bfd ignores this section. */
14486 input_section->flags &= ~SEC_HAS_CONTENTS;
14489 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14490 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14492 /* Skip this section later on (I don't think this currently
14493 matters, but someday it might). */
14494 o->map_head.link_order = NULL;
14499 if (strcmp (o->name, ".reginfo") == 0)
14501 memset (®info, 0, sizeof reginfo);
14503 /* We have found the .reginfo section in the output file.
14504 Look through all the link_orders comprising it and merge
14505 the information together. */
14506 for (p = o->map_head.link_order; p != NULL; p = p->next)
14508 asection *input_section;
14510 Elf32_External_RegInfo ext;
14513 if (p->type != bfd_indirect_link_order)
14515 if (p->type == bfd_data_link_order)
14520 input_section = p->u.indirect.section;
14521 input_bfd = input_section->owner;
14523 if (! bfd_get_section_contents (input_bfd, input_section,
14524 &ext, 0, sizeof ext))
14527 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14529 reginfo.ri_gprmask |= sub.ri_gprmask;
14530 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14531 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14532 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14533 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14535 /* ri_gp_value is set by the function
14536 mips_elf32_section_processing when the section is
14537 finally written out. */
14539 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14540 elf_link_input_bfd ignores this section. */
14541 input_section->flags &= ~SEC_HAS_CONTENTS;
14544 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14545 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14547 /* Skip this section later on (I don't think this currently
14548 matters, but someday it might). */
14549 o->map_head.link_order = NULL;
14554 if (strcmp (o->name, ".mdebug") == 0)
14556 struct extsym_info einfo;
14559 /* We have found the .mdebug section in the output file.
14560 Look through all the link_orders comprising it and merge
14561 the information together. */
14562 symhdr->magic = swap->sym_magic;
14563 /* FIXME: What should the version stamp be? */
14564 symhdr->vstamp = 0;
14565 symhdr->ilineMax = 0;
14566 symhdr->cbLine = 0;
14567 symhdr->idnMax = 0;
14568 symhdr->ipdMax = 0;
14569 symhdr->isymMax = 0;
14570 symhdr->ioptMax = 0;
14571 symhdr->iauxMax = 0;
14572 symhdr->issMax = 0;
14573 symhdr->issExtMax = 0;
14574 symhdr->ifdMax = 0;
14576 symhdr->iextMax = 0;
14578 /* We accumulate the debugging information itself in the
14579 debug_info structure. */
14581 debug.external_dnr = NULL;
14582 debug.external_pdr = NULL;
14583 debug.external_sym = NULL;
14584 debug.external_opt = NULL;
14585 debug.external_aux = NULL;
14587 debug.ssext = debug.ssext_end = NULL;
14588 debug.external_fdr = NULL;
14589 debug.external_rfd = NULL;
14590 debug.external_ext = debug.external_ext_end = NULL;
14592 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14593 if (mdebug_handle == NULL)
14597 esym.cobol_main = 0;
14601 esym.asym.iss = issNil;
14602 esym.asym.st = stLocal;
14603 esym.asym.reserved = 0;
14604 esym.asym.index = indexNil;
14606 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14608 esym.asym.sc = sc[i];
14609 s = bfd_get_section_by_name (abfd, secname[i]);
14612 esym.asym.value = s->vma;
14613 last = s->vma + s->size;
14616 esym.asym.value = last;
14617 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14618 secname[i], &esym))
14622 for (p = o->map_head.link_order; p != NULL; p = p->next)
14624 asection *input_section;
14626 const struct ecoff_debug_swap *input_swap;
14627 struct ecoff_debug_info input_debug;
14631 if (p->type != bfd_indirect_link_order)
14633 if (p->type == bfd_data_link_order)
14638 input_section = p->u.indirect.section;
14639 input_bfd = input_section->owner;
14641 if (!is_mips_elf (input_bfd))
14643 /* I don't know what a non MIPS ELF bfd would be
14644 doing with a .mdebug section, but I don't really
14645 want to deal with it. */
14649 input_swap = (get_elf_backend_data (input_bfd)
14650 ->elf_backend_ecoff_debug_swap);
14652 BFD_ASSERT (p->size == input_section->size);
14654 /* The ECOFF linking code expects that we have already
14655 read in the debugging information and set up an
14656 ecoff_debug_info structure, so we do that now. */
14657 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14661 if (! (bfd_ecoff_debug_accumulate
14662 (mdebug_handle, abfd, &debug, swap, input_bfd,
14663 &input_debug, input_swap, info)))
14666 /* Loop through the external symbols. For each one with
14667 interesting information, try to find the symbol in
14668 the linker global hash table and save the information
14669 for the output external symbols. */
14670 eraw_src = input_debug.external_ext;
14671 eraw_end = (eraw_src
14672 + (input_debug.symbolic_header.iextMax
14673 * input_swap->external_ext_size));
14675 eraw_src < eraw_end;
14676 eraw_src += input_swap->external_ext_size)
14680 struct mips_elf_link_hash_entry *h;
14682 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14683 if (ext.asym.sc == scNil
14684 || ext.asym.sc == scUndefined
14685 || ext.asym.sc == scSUndefined)
14688 name = input_debug.ssext + ext.asym.iss;
14689 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14690 name, FALSE, FALSE, TRUE);
14691 if (h == NULL || h->esym.ifd != -2)
14696 BFD_ASSERT (ext.ifd
14697 < input_debug.symbolic_header.ifdMax);
14698 ext.ifd = input_debug.ifdmap[ext.ifd];
14704 /* Free up the information we just read. */
14705 free (input_debug.line);
14706 free (input_debug.external_dnr);
14707 free (input_debug.external_pdr);
14708 free (input_debug.external_sym);
14709 free (input_debug.external_opt);
14710 free (input_debug.external_aux);
14711 free (input_debug.ss);
14712 free (input_debug.ssext);
14713 free (input_debug.external_fdr);
14714 free (input_debug.external_rfd);
14715 free (input_debug.external_ext);
14717 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14718 elf_link_input_bfd ignores this section. */
14719 input_section->flags &= ~SEC_HAS_CONTENTS;
14722 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14724 /* Create .rtproc section. */
14725 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14726 if (rtproc_sec == NULL)
14728 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14729 | SEC_LINKER_CREATED | SEC_READONLY);
14731 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14734 if (rtproc_sec == NULL
14735 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14739 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14745 /* Build the external symbol information. */
14748 einfo.debug = &debug;
14750 einfo.failed = FALSE;
14751 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14752 mips_elf_output_extsym, &einfo);
14756 /* Set the size of the .mdebug section. */
14757 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14759 /* Skip this section later on (I don't think this currently
14760 matters, but someday it might). */
14761 o->map_head.link_order = NULL;
14766 if (CONST_STRNEQ (o->name, ".gptab."))
14768 const char *subname;
14771 Elf32_External_gptab *ext_tab;
14774 /* The .gptab.sdata and .gptab.sbss sections hold
14775 information describing how the small data area would
14776 change depending upon the -G switch. These sections
14777 not used in executables files. */
14778 if (! bfd_link_relocatable (info))
14780 for (p = o->map_head.link_order; p != NULL; p = p->next)
14782 asection *input_section;
14784 if (p->type != bfd_indirect_link_order)
14786 if (p->type == bfd_data_link_order)
14791 input_section = p->u.indirect.section;
14793 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14794 elf_link_input_bfd ignores this section. */
14795 input_section->flags &= ~SEC_HAS_CONTENTS;
14798 /* Skip this section later on (I don't think this
14799 currently matters, but someday it might). */
14800 o->map_head.link_order = NULL;
14802 /* Really remove the section. */
14803 bfd_section_list_remove (abfd, o);
14804 --abfd->section_count;
14809 /* There is one gptab for initialized data, and one for
14810 uninitialized data. */
14811 if (strcmp (o->name, ".gptab.sdata") == 0)
14812 gptab_data_sec = o;
14813 else if (strcmp (o->name, ".gptab.sbss") == 0)
14817 (*_bfd_error_handler)
14818 (_("%s: illegal section name `%s'"),
14819 bfd_get_filename (abfd), o->name);
14820 bfd_set_error (bfd_error_nonrepresentable_section);
14824 /* The linker script always combines .gptab.data and
14825 .gptab.sdata into .gptab.sdata, and likewise for
14826 .gptab.bss and .gptab.sbss. It is possible that there is
14827 no .sdata or .sbss section in the output file, in which
14828 case we must change the name of the output section. */
14829 subname = o->name + sizeof ".gptab" - 1;
14830 if (bfd_get_section_by_name (abfd, subname) == NULL)
14832 if (o == gptab_data_sec)
14833 o->name = ".gptab.data";
14835 o->name = ".gptab.bss";
14836 subname = o->name + sizeof ".gptab" - 1;
14837 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14840 /* Set up the first entry. */
14842 amt = c * sizeof (Elf32_gptab);
14843 tab = bfd_malloc (amt);
14846 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14847 tab[0].gt_header.gt_unused = 0;
14849 /* Combine the input sections. */
14850 for (p = o->map_head.link_order; p != NULL; p = p->next)
14852 asection *input_section;
14854 bfd_size_type size;
14855 unsigned long last;
14856 bfd_size_type gpentry;
14858 if (p->type != bfd_indirect_link_order)
14860 if (p->type == bfd_data_link_order)
14865 input_section = p->u.indirect.section;
14866 input_bfd = input_section->owner;
14868 /* Combine the gptab entries for this input section one
14869 by one. We know that the input gptab entries are
14870 sorted by ascending -G value. */
14871 size = input_section->size;
14873 for (gpentry = sizeof (Elf32_External_gptab);
14875 gpentry += sizeof (Elf32_External_gptab))
14877 Elf32_External_gptab ext_gptab;
14878 Elf32_gptab int_gptab;
14884 if (! (bfd_get_section_contents
14885 (input_bfd, input_section, &ext_gptab, gpentry,
14886 sizeof (Elf32_External_gptab))))
14892 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14894 val = int_gptab.gt_entry.gt_g_value;
14895 add = int_gptab.gt_entry.gt_bytes - last;
14898 for (look = 1; look < c; look++)
14900 if (tab[look].gt_entry.gt_g_value >= val)
14901 tab[look].gt_entry.gt_bytes += add;
14903 if (tab[look].gt_entry.gt_g_value == val)
14909 Elf32_gptab *new_tab;
14912 /* We need a new table entry. */
14913 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14914 new_tab = bfd_realloc (tab, amt);
14915 if (new_tab == NULL)
14921 tab[c].gt_entry.gt_g_value = val;
14922 tab[c].gt_entry.gt_bytes = add;
14924 /* Merge in the size for the next smallest -G
14925 value, since that will be implied by this new
14928 for (look = 1; look < c; look++)
14930 if (tab[look].gt_entry.gt_g_value < val
14932 || (tab[look].gt_entry.gt_g_value
14933 > tab[max].gt_entry.gt_g_value)))
14937 tab[c].gt_entry.gt_bytes +=
14938 tab[max].gt_entry.gt_bytes;
14943 last = int_gptab.gt_entry.gt_bytes;
14946 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14947 elf_link_input_bfd ignores this section. */
14948 input_section->flags &= ~SEC_HAS_CONTENTS;
14951 /* The table must be sorted by -G value. */
14953 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14955 /* Swap out the table. */
14956 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14957 ext_tab = bfd_alloc (abfd, amt);
14958 if (ext_tab == NULL)
14964 for (j = 0; j < c; j++)
14965 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14968 o->size = c * sizeof (Elf32_External_gptab);
14969 o->contents = (bfd_byte *) ext_tab;
14971 /* Skip this section later on (I don't think this currently
14972 matters, but someday it might). */
14973 o->map_head.link_order = NULL;
14977 /* Invoke the regular ELF backend linker to do all the work. */
14978 if (!bfd_elf_final_link (abfd, info))
14981 /* Now write out the computed sections. */
14983 if (abiflags_sec != NULL)
14985 Elf_External_ABIFlags_v0 ext;
14986 Elf_Internal_ABIFlags_v0 *abiflags;
14988 abiflags = &mips_elf_tdata (abfd)->abiflags;
14990 /* Set up the abiflags if no valid input sections were found. */
14991 if (!mips_elf_tdata (abfd)->abiflags_valid)
14993 infer_mips_abiflags (abfd, abiflags);
14994 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14996 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14997 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15001 if (reginfo_sec != NULL)
15003 Elf32_External_RegInfo ext;
15005 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
15006 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15010 if (mdebug_sec != NULL)
15012 BFD_ASSERT (abfd->output_has_begun);
15013 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15015 mdebug_sec->filepos))
15018 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15021 if (gptab_data_sec != NULL)
15023 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15024 gptab_data_sec->contents,
15025 0, gptab_data_sec->size))
15029 if (gptab_bss_sec != NULL)
15031 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15032 gptab_bss_sec->contents,
15033 0, gptab_bss_sec->size))
15037 if (SGI_COMPAT (abfd))
15039 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15040 if (rtproc_sec != NULL)
15042 if (! bfd_set_section_contents (abfd, rtproc_sec,
15043 rtproc_sec->contents,
15044 0, rtproc_sec->size))
15052 /* Merge object file header flags from IBFD into OBFD. Raise an error
15053 if there are conflicting settings. */
15056 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
15058 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15059 flagword old_flags;
15060 flagword new_flags;
15063 new_flags = elf_elfheader (ibfd)->e_flags;
15064 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15065 old_flags = elf_elfheader (obfd)->e_flags;
15067 /* Check flag compatibility. */
15069 new_flags &= ~EF_MIPS_NOREORDER;
15070 old_flags &= ~EF_MIPS_NOREORDER;
15072 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15073 doesn't seem to matter. */
15074 new_flags &= ~EF_MIPS_XGOT;
15075 old_flags &= ~EF_MIPS_XGOT;
15077 /* MIPSpro generates ucode info in n64 objects. Again, we should
15078 just be able to ignore this. */
15079 new_flags &= ~EF_MIPS_UCODE;
15080 old_flags &= ~EF_MIPS_UCODE;
15082 /* DSOs should only be linked with CPIC code. */
15083 if ((ibfd->flags & DYNAMIC) != 0)
15084 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15086 if (new_flags == old_flags)
15091 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15092 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15094 (*_bfd_error_handler)
15095 (_("%B: warning: linking abicalls files with non-abicalls files"),
15100 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15101 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15102 if (! (new_flags & EF_MIPS_PIC))
15103 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15105 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15106 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15108 /* Compare the ISAs. */
15109 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15111 (*_bfd_error_handler)
15112 (_("%B: linking 32-bit code with 64-bit code"),
15116 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15118 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15119 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15121 /* Copy the architecture info from IBFD to OBFD. Also copy
15122 the 32-bit flag (if set) so that we continue to recognise
15123 OBFD as a 32-bit binary. */
15124 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15125 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15126 elf_elfheader (obfd)->e_flags
15127 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15129 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15130 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15132 /* Copy across the ABI flags if OBFD doesn't use them
15133 and if that was what caused us to treat IBFD as 32-bit. */
15134 if ((old_flags & EF_MIPS_ABI) == 0
15135 && mips_32bit_flags_p (new_flags)
15136 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15137 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15141 /* The ISAs aren't compatible. */
15142 (*_bfd_error_handler)
15143 (_("%B: linking %s module with previous %s modules"),
15145 bfd_printable_name (ibfd),
15146 bfd_printable_name (obfd));
15151 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15152 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15154 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15155 does set EI_CLASS differently from any 32-bit ABI. */
15156 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15160 /* Only error if both are set (to different values). */
15161 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15162 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15163 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15165 (*_bfd_error_handler)
15166 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15168 elf_mips_abi_name (ibfd),
15169 elf_mips_abi_name (obfd));
15172 new_flags &= ~EF_MIPS_ABI;
15173 old_flags &= ~EF_MIPS_ABI;
15176 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15177 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15178 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15180 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15181 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15182 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15183 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15184 int micro_mis = old_m16 && new_micro;
15185 int m16_mis = old_micro && new_m16;
15187 if (m16_mis || micro_mis)
15189 (*_bfd_error_handler)
15190 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15192 m16_mis ? "MIPS16" : "microMIPS",
15193 m16_mis ? "microMIPS" : "MIPS16");
15197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15199 new_flags &= ~ EF_MIPS_ARCH_ASE;
15200 old_flags &= ~ EF_MIPS_ARCH_ASE;
15203 /* Compare NaN encodings. */
15204 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15206 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15208 (new_flags & EF_MIPS_NAN2008
15209 ? "-mnan=2008" : "-mnan=legacy"),
15210 (old_flags & EF_MIPS_NAN2008
15211 ? "-mnan=2008" : "-mnan=legacy"));
15213 new_flags &= ~EF_MIPS_NAN2008;
15214 old_flags &= ~EF_MIPS_NAN2008;
15217 /* Compare FP64 state. */
15218 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15220 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15222 (new_flags & EF_MIPS_FP64
15223 ? "-mfp64" : "-mfp32"),
15224 (old_flags & EF_MIPS_FP64
15225 ? "-mfp64" : "-mfp32"));
15227 new_flags &= ~EF_MIPS_FP64;
15228 old_flags &= ~EF_MIPS_FP64;
15231 /* Warn about any other mismatches */
15232 if (new_flags != old_flags)
15234 (*_bfd_error_handler)
15235 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15237 ibfd, (unsigned long) new_flags,
15238 (unsigned long) old_flags);
15245 /* Merge object attributes from IBFD into OBFD. Raise an error if
15246 there are conflicting attributes. */
15248 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15250 obj_attribute *in_attr;
15251 obj_attribute *out_attr;
15255 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15256 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15257 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15258 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15260 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15262 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15263 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15265 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15267 /* This is the first object. Copy the attributes. */
15268 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15270 /* Use the Tag_null value to indicate the attributes have been
15272 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15277 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15278 non-conflicting ones. */
15279 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15280 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15284 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15285 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15286 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15287 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15288 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15289 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15290 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15291 || in_fp == Val_GNU_MIPS_ABI_FP_64
15292 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15294 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15295 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15297 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15298 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15299 || out_fp == Val_GNU_MIPS_ABI_FP_64
15300 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15301 /* Keep the current setting. */;
15302 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15303 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15305 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15306 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15308 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15309 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15310 /* Keep the current setting. */;
15311 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15313 const char *out_string, *in_string;
15315 out_string = _bfd_mips_fp_abi_string (out_fp);
15316 in_string = _bfd_mips_fp_abi_string (in_fp);
15317 /* First warn about cases involving unrecognised ABIs. */
15318 if (!out_string && !in_string)
15320 (_("Warning: %B uses unknown floating point ABI %d "
15321 "(set by %B), %B uses unknown floating point ABI %d"),
15322 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15323 else if (!out_string)
15325 (_("Warning: %B uses unknown floating point ABI %d "
15326 "(set by %B), %B uses %s"),
15327 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15328 else if (!in_string)
15330 (_("Warning: %B uses %s (set by %B), "
15331 "%B uses unknown floating point ABI %d"),
15332 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15335 /* If one of the bfds is soft-float, the other must be
15336 hard-float. The exact choice of hard-float ABI isn't
15337 really relevant to the error message. */
15338 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15339 out_string = "-mhard-float";
15340 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15341 in_string = "-mhard-float";
15343 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15344 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15349 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15350 non-conflicting ones. */
15351 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15353 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15354 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15355 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15356 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15357 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15359 case Val_GNU_MIPS_ABI_MSA_128:
15361 (_("Warning: %B uses %s (set by %B), "
15362 "%B uses unknown MSA ABI %d"),
15363 obfd, abi_msa_bfd, ibfd,
15364 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15368 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15370 case Val_GNU_MIPS_ABI_MSA_128:
15372 (_("Warning: %B uses unknown MSA ABI %d "
15373 "(set by %B), %B uses %s"),
15374 obfd, abi_msa_bfd, ibfd,
15375 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15380 (_("Warning: %B uses unknown MSA ABI %d "
15381 "(set by %B), %B uses unknown MSA ABI %d"),
15382 obfd, abi_msa_bfd, ibfd,
15383 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15384 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15390 /* Merge Tag_compatibility attributes and any common GNU ones. */
15391 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15394 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15395 there are conflicting settings. */
15398 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15400 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15401 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15402 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15404 /* Update the output abiflags fp_abi using the computed fp_abi. */
15405 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15407 #define max(a, b) ((a) > (b) ? (a) : (b))
15408 /* Merge abiflags. */
15409 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15410 in_tdata->abiflags.isa_level);
15411 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15412 in_tdata->abiflags.isa_rev);
15413 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15414 in_tdata->abiflags.gpr_size);
15415 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15416 in_tdata->abiflags.cpr1_size);
15417 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15418 in_tdata->abiflags.cpr2_size);
15420 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15421 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15426 /* Merge backend specific data from an object file to the output
15427 object file when linking. */
15430 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15432 struct mips_elf_obj_tdata *out_tdata;
15433 struct mips_elf_obj_tdata *in_tdata;
15434 bfd_boolean null_input_bfd = TRUE;
15438 /* Check if we have the same endianness. */
15439 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15441 (*_bfd_error_handler)
15442 (_("%B: endianness incompatible with that of the selected emulation"),
15447 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15450 in_tdata = mips_elf_tdata (ibfd);
15451 out_tdata = mips_elf_tdata (obfd);
15453 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15455 (*_bfd_error_handler)
15456 (_("%B: ABI is incompatible with that of the selected emulation"),
15461 /* Check to see if the input BFD actually contains any sections. If not,
15462 then it has no attributes, and its flags may not have been initialized
15463 either, but it cannot actually cause any incompatibility. */
15464 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15466 /* Ignore synthetic sections and empty .text, .data and .bss sections
15467 which are automatically generated by gas. Also ignore fake
15468 (s)common sections, since merely defining a common symbol does
15469 not affect compatibility. */
15470 if ((sec->flags & SEC_IS_COMMON) == 0
15471 && strcmp (sec->name, ".reginfo")
15472 && strcmp (sec->name, ".mdebug")
15474 || (strcmp (sec->name, ".text")
15475 && strcmp (sec->name, ".data")
15476 && strcmp (sec->name, ".bss"))))
15478 null_input_bfd = FALSE;
15482 if (null_input_bfd)
15485 /* Populate abiflags using existing information. */
15486 if (in_tdata->abiflags_valid)
15488 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15489 Elf_Internal_ABIFlags_v0 in_abiflags;
15490 Elf_Internal_ABIFlags_v0 abiflags;
15492 /* Set up the FP ABI attribute from the abiflags if it is not already
15494 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15495 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15497 infer_mips_abiflags (ibfd, &abiflags);
15498 in_abiflags = in_tdata->abiflags;
15500 /* It is not possible to infer the correct ISA revision
15501 for R3 or R5 so drop down to R2 for the checks. */
15502 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15503 in_abiflags.isa_rev = 2;
15505 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15506 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15507 (*_bfd_error_handler)
15508 (_("%B: warning: Inconsistent ISA between e_flags and "
15509 ".MIPS.abiflags"), ibfd);
15510 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15511 && in_abiflags.fp_abi != abiflags.fp_abi)
15512 (*_bfd_error_handler)
15513 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15514 ".MIPS.abiflags"), ibfd);
15515 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15516 (*_bfd_error_handler)
15517 (_("%B: warning: Inconsistent ASEs between e_flags and "
15518 ".MIPS.abiflags"), ibfd);
15519 /* The isa_ext is allowed to be an extension of what can be inferred
15521 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15522 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15523 (*_bfd_error_handler)
15524 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15525 ".MIPS.abiflags"), ibfd);
15526 if (in_abiflags.flags2 != 0)
15527 (*_bfd_error_handler)
15528 (_("%B: warning: Unexpected flag in the flags2 field of "
15529 ".MIPS.abiflags (0x%lx)"), ibfd,
15530 (unsigned long) in_abiflags.flags2);
15534 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15535 in_tdata->abiflags_valid = TRUE;
15538 if (!out_tdata->abiflags_valid)
15540 /* Copy input abiflags if output abiflags are not already valid. */
15541 out_tdata->abiflags = in_tdata->abiflags;
15542 out_tdata->abiflags_valid = TRUE;
15545 if (! elf_flags_init (obfd))
15547 elf_flags_init (obfd) = TRUE;
15548 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15549 elf_elfheader (obfd)->e_ident[EI_CLASS]
15550 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15552 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15553 && (bfd_get_arch_info (obfd)->the_default
15554 || mips_mach_extends_p (bfd_get_mach (obfd),
15555 bfd_get_mach (ibfd))))
15557 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15558 bfd_get_mach (ibfd)))
15561 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15562 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15568 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15570 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15572 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15576 bfd_set_error (bfd_error_bad_value);
15583 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15586 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15588 BFD_ASSERT (!elf_flags_init (abfd)
15589 || elf_elfheader (abfd)->e_flags == flags);
15591 elf_elfheader (abfd)->e_flags = flags;
15592 elf_flags_init (abfd) = TRUE;
15597 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15601 default: return "";
15602 case DT_MIPS_RLD_VERSION:
15603 return "MIPS_RLD_VERSION";
15604 case DT_MIPS_TIME_STAMP:
15605 return "MIPS_TIME_STAMP";
15606 case DT_MIPS_ICHECKSUM:
15607 return "MIPS_ICHECKSUM";
15608 case DT_MIPS_IVERSION:
15609 return "MIPS_IVERSION";
15610 case DT_MIPS_FLAGS:
15611 return "MIPS_FLAGS";
15612 case DT_MIPS_BASE_ADDRESS:
15613 return "MIPS_BASE_ADDRESS";
15615 return "MIPS_MSYM";
15616 case DT_MIPS_CONFLICT:
15617 return "MIPS_CONFLICT";
15618 case DT_MIPS_LIBLIST:
15619 return "MIPS_LIBLIST";
15620 case DT_MIPS_LOCAL_GOTNO:
15621 return "MIPS_LOCAL_GOTNO";
15622 case DT_MIPS_CONFLICTNO:
15623 return "MIPS_CONFLICTNO";
15624 case DT_MIPS_LIBLISTNO:
15625 return "MIPS_LIBLISTNO";
15626 case DT_MIPS_SYMTABNO:
15627 return "MIPS_SYMTABNO";
15628 case DT_MIPS_UNREFEXTNO:
15629 return "MIPS_UNREFEXTNO";
15630 case DT_MIPS_GOTSYM:
15631 return "MIPS_GOTSYM";
15632 case DT_MIPS_HIPAGENO:
15633 return "MIPS_HIPAGENO";
15634 case DT_MIPS_RLD_MAP:
15635 return "MIPS_RLD_MAP";
15636 case DT_MIPS_RLD_MAP_REL:
15637 return "MIPS_RLD_MAP_REL";
15638 case DT_MIPS_DELTA_CLASS:
15639 return "MIPS_DELTA_CLASS";
15640 case DT_MIPS_DELTA_CLASS_NO:
15641 return "MIPS_DELTA_CLASS_NO";
15642 case DT_MIPS_DELTA_INSTANCE:
15643 return "MIPS_DELTA_INSTANCE";
15644 case DT_MIPS_DELTA_INSTANCE_NO:
15645 return "MIPS_DELTA_INSTANCE_NO";
15646 case DT_MIPS_DELTA_RELOC:
15647 return "MIPS_DELTA_RELOC";
15648 case DT_MIPS_DELTA_RELOC_NO:
15649 return "MIPS_DELTA_RELOC_NO";
15650 case DT_MIPS_DELTA_SYM:
15651 return "MIPS_DELTA_SYM";
15652 case DT_MIPS_DELTA_SYM_NO:
15653 return "MIPS_DELTA_SYM_NO";
15654 case DT_MIPS_DELTA_CLASSSYM:
15655 return "MIPS_DELTA_CLASSSYM";
15656 case DT_MIPS_DELTA_CLASSSYM_NO:
15657 return "MIPS_DELTA_CLASSSYM_NO";
15658 case DT_MIPS_CXX_FLAGS:
15659 return "MIPS_CXX_FLAGS";
15660 case DT_MIPS_PIXIE_INIT:
15661 return "MIPS_PIXIE_INIT";
15662 case DT_MIPS_SYMBOL_LIB:
15663 return "MIPS_SYMBOL_LIB";
15664 case DT_MIPS_LOCALPAGE_GOTIDX:
15665 return "MIPS_LOCALPAGE_GOTIDX";
15666 case DT_MIPS_LOCAL_GOTIDX:
15667 return "MIPS_LOCAL_GOTIDX";
15668 case DT_MIPS_HIDDEN_GOTIDX:
15669 return "MIPS_HIDDEN_GOTIDX";
15670 case DT_MIPS_PROTECTED_GOTIDX:
15671 return "MIPS_PROTECTED_GOT_IDX";
15672 case DT_MIPS_OPTIONS:
15673 return "MIPS_OPTIONS";
15674 case DT_MIPS_INTERFACE:
15675 return "MIPS_INTERFACE";
15676 case DT_MIPS_DYNSTR_ALIGN:
15677 return "DT_MIPS_DYNSTR_ALIGN";
15678 case DT_MIPS_INTERFACE_SIZE:
15679 return "DT_MIPS_INTERFACE_SIZE";
15680 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15681 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15682 case DT_MIPS_PERF_SUFFIX:
15683 return "DT_MIPS_PERF_SUFFIX";
15684 case DT_MIPS_COMPACT_SIZE:
15685 return "DT_MIPS_COMPACT_SIZE";
15686 case DT_MIPS_GP_VALUE:
15687 return "DT_MIPS_GP_VALUE";
15688 case DT_MIPS_AUX_DYNAMIC:
15689 return "DT_MIPS_AUX_DYNAMIC";
15690 case DT_MIPS_PLTGOT:
15691 return "DT_MIPS_PLTGOT";
15692 case DT_MIPS_RWPLT:
15693 return "DT_MIPS_RWPLT";
15697 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15701 _bfd_mips_fp_abi_string (int fp)
15705 /* These strings aren't translated because they're simply
15707 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15708 return "-mdouble-float";
15710 case Val_GNU_MIPS_ABI_FP_SINGLE:
15711 return "-msingle-float";
15713 case Val_GNU_MIPS_ABI_FP_SOFT:
15714 return "-msoft-float";
15716 case Val_GNU_MIPS_ABI_FP_OLD_64:
15717 return _("-mips32r2 -mfp64 (12 callee-saved)");
15719 case Val_GNU_MIPS_ABI_FP_XX:
15722 case Val_GNU_MIPS_ABI_FP_64:
15723 return "-mgp32 -mfp64";
15725 case Val_GNU_MIPS_ABI_FP_64A:
15726 return "-mgp32 -mfp64 -mno-odd-spreg";
15734 print_mips_ases (FILE *file, unsigned int mask)
15736 if (mask & AFL_ASE_DSP)
15737 fputs ("\n\tDSP ASE", file);
15738 if (mask & AFL_ASE_DSPR2)
15739 fputs ("\n\tDSP R2 ASE", file);
15740 if (mask & AFL_ASE_DSPR3)
15741 fputs ("\n\tDSP R3 ASE", file);
15742 if (mask & AFL_ASE_EVA)
15743 fputs ("\n\tEnhanced VA Scheme", file);
15744 if (mask & AFL_ASE_MCU)
15745 fputs ("\n\tMCU (MicroController) ASE", file);
15746 if (mask & AFL_ASE_MDMX)
15747 fputs ("\n\tMDMX ASE", file);
15748 if (mask & AFL_ASE_MIPS3D)
15749 fputs ("\n\tMIPS-3D ASE", file);
15750 if (mask & AFL_ASE_MT)
15751 fputs ("\n\tMT ASE", file);
15752 if (mask & AFL_ASE_SMARTMIPS)
15753 fputs ("\n\tSmartMIPS ASE", file);
15754 if (mask & AFL_ASE_VIRT)
15755 fputs ("\n\tVZ ASE", file);
15756 if (mask & AFL_ASE_MSA)
15757 fputs ("\n\tMSA ASE", file);
15758 if (mask & AFL_ASE_MIPS16)
15759 fputs ("\n\tMIPS16 ASE", file);
15760 if (mask & AFL_ASE_MICROMIPS)
15761 fputs ("\n\tMICROMIPS ASE", file);
15762 if (mask & AFL_ASE_XPA)
15763 fputs ("\n\tXPA ASE", file);
15765 fprintf (file, "\n\t%s", _("None"));
15766 else if ((mask & ~AFL_ASE_MASK) != 0)
15767 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15771 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15776 fputs (_("None"), file);
15779 fputs ("RMI XLR", file);
15781 case AFL_EXT_OCTEON3:
15782 fputs ("Cavium Networks Octeon3", file);
15784 case AFL_EXT_OCTEON2:
15785 fputs ("Cavium Networks Octeon2", file);
15787 case AFL_EXT_OCTEONP:
15788 fputs ("Cavium Networks OcteonP", file);
15790 case AFL_EXT_LOONGSON_3A:
15791 fputs ("Loongson 3A", file);
15793 case AFL_EXT_OCTEON:
15794 fputs ("Cavium Networks Octeon", file);
15797 fputs ("Toshiba R5900", file);
15800 fputs ("MIPS R4650", file);
15803 fputs ("LSI R4010", file);
15806 fputs ("NEC VR4100", file);
15809 fputs ("Toshiba R3900", file);
15811 case AFL_EXT_10000:
15812 fputs ("MIPS R10000", file);
15815 fputs ("Broadcom SB-1", file);
15818 fputs ("NEC VR4111/VR4181", file);
15821 fputs ("NEC VR4120", file);
15824 fputs ("NEC VR5400", file);
15827 fputs ("NEC VR5500", file);
15829 case AFL_EXT_LOONGSON_2E:
15830 fputs ("ST Microelectronics Loongson 2E", file);
15832 case AFL_EXT_LOONGSON_2F:
15833 fputs ("ST Microelectronics Loongson 2F", file);
15836 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15842 print_mips_fp_abi_value (FILE *file, int val)
15846 case Val_GNU_MIPS_ABI_FP_ANY:
15847 fprintf (file, _("Hard or soft float\n"));
15849 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15850 fprintf (file, _("Hard float (double precision)\n"));
15852 case Val_GNU_MIPS_ABI_FP_SINGLE:
15853 fprintf (file, _("Hard float (single precision)\n"));
15855 case Val_GNU_MIPS_ABI_FP_SOFT:
15856 fprintf (file, _("Soft float\n"));
15858 case Val_GNU_MIPS_ABI_FP_OLD_64:
15859 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15861 case Val_GNU_MIPS_ABI_FP_XX:
15862 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15864 case Val_GNU_MIPS_ABI_FP_64:
15865 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15867 case Val_GNU_MIPS_ABI_FP_64A:
15868 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15871 fprintf (file, "??? (%d)\n", val);
15877 get_mips_reg_size (int reg_size)
15879 return (reg_size == AFL_REG_NONE) ? 0
15880 : (reg_size == AFL_REG_32) ? 32
15881 : (reg_size == AFL_REG_64) ? 64
15882 : (reg_size == AFL_REG_128) ? 128
15887 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15891 BFD_ASSERT (abfd != NULL && ptr != NULL);
15893 /* Print normal ELF private data. */
15894 _bfd_elf_print_private_bfd_data (abfd, ptr);
15896 /* xgettext:c-format */
15897 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15899 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15900 fprintf (file, _(" [abi=O32]"));
15901 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15902 fprintf (file, _(" [abi=O64]"));
15903 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15904 fprintf (file, _(" [abi=EABI32]"));
15905 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15906 fprintf (file, _(" [abi=EABI64]"));
15907 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15908 fprintf (file, _(" [abi unknown]"));
15909 else if (ABI_N32_P (abfd))
15910 fprintf (file, _(" [abi=N32]"));
15911 else if (ABI_64_P (abfd))
15912 fprintf (file, _(" [abi=64]"));
15914 fprintf (file, _(" [no abi set]"));
15916 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15917 fprintf (file, " [mips1]");
15918 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15919 fprintf (file, " [mips2]");
15920 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15921 fprintf (file, " [mips3]");
15922 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15923 fprintf (file, " [mips4]");
15924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15925 fprintf (file, " [mips5]");
15926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15927 fprintf (file, " [mips32]");
15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15929 fprintf (file, " [mips64]");
15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15931 fprintf (file, " [mips32r2]");
15932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15933 fprintf (file, " [mips64r2]");
15934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15935 fprintf (file, " [mips32r6]");
15936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15937 fprintf (file, " [mips64r6]");
15939 fprintf (file, _(" [unknown ISA]"));
15941 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15942 fprintf (file, " [mdmx]");
15944 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15945 fprintf (file, " [mips16]");
15947 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15948 fprintf (file, " [micromips]");
15950 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15951 fprintf (file, " [nan2008]");
15953 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15954 fprintf (file, " [old fp64]");
15956 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15957 fprintf (file, " [32bitmode]");
15959 fprintf (file, _(" [not 32bitmode]"));
15961 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15962 fprintf (file, " [noreorder]");
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15965 fprintf (file, " [PIC]");
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15968 fprintf (file, " [CPIC]");
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15971 fprintf (file, " [XGOT]");
15973 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15974 fprintf (file, " [UCODE]");
15976 fputc ('\n', file);
15978 if (mips_elf_tdata (abfd)->abiflags_valid)
15980 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15981 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15982 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15983 if (abiflags->isa_rev > 1)
15984 fprintf (file, "r%d", abiflags->isa_rev);
15985 fprintf (file, "\nGPR size: %d",
15986 get_mips_reg_size (abiflags->gpr_size));
15987 fprintf (file, "\nCPR1 size: %d",
15988 get_mips_reg_size (abiflags->cpr1_size));
15989 fprintf (file, "\nCPR2 size: %d",
15990 get_mips_reg_size (abiflags->cpr2_size));
15991 fputs ("\nFP ABI: ", file);
15992 print_mips_fp_abi_value (file, abiflags->fp_abi);
15993 fputs ("ISA Extension: ", file);
15994 print_mips_isa_ext (file, abiflags->isa_ext);
15995 fputs ("\nASEs:", file);
15996 print_mips_ases (file, abiflags->ases);
15997 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15998 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15999 fputc ('\n', file);
16005 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16007 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16008 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16009 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16010 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16011 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16012 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16013 { NULL, 0, 0, 0, 0 }
16016 /* Merge non visibility st_other attributes. Ensure that the
16017 STO_OPTIONAL flag is copied into h->other, even if this is not a
16018 definiton of the symbol. */
16020 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16021 const Elf_Internal_Sym *isym,
16022 bfd_boolean definition,
16023 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16025 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16027 unsigned char other;
16029 other = (definition ? isym->st_other : h->other);
16030 other &= ~ELF_ST_VISIBILITY (-1);
16031 h->other = other | ELF_ST_VISIBILITY (h->other);
16035 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16036 h->other |= STO_OPTIONAL;
16039 /* Decide whether an undefined symbol is special and can be ignored.
16040 This is the case for OPTIONAL symbols on IRIX. */
16042 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16044 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16048 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16050 return (sym->st_shndx == SHN_COMMON
16051 || sym->st_shndx == SHN_MIPS_ACOMMON
16052 || sym->st_shndx == SHN_MIPS_SCOMMON);
16055 /* Return address for Ith PLT stub in section PLT, for relocation REL
16056 or (bfd_vma) -1 if it should not be included. */
16059 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16060 const arelent *rel ATTRIBUTE_UNUSED)
16063 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16064 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16067 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16068 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16069 and .got.plt and also the slots may be of a different size each we walk
16070 the PLT manually fetching instructions and matching them against known
16071 patterns. To make things easier standard MIPS slots, if any, always come
16072 first. As we don't create proper ELF symbols we use the UDATA.I member
16073 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16074 with the ST_OTHER member of the ELF symbol. */
16077 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16078 long symcount ATTRIBUTE_UNUSED,
16079 asymbol **syms ATTRIBUTE_UNUSED,
16080 long dynsymcount, asymbol **dynsyms,
16083 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16084 static const char microsuffix[] = "@micromipsplt";
16085 static const char m16suffix[] = "@mips16plt";
16086 static const char mipssuffix[] = "@plt";
16088 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16090 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16091 Elf_Internal_Shdr *hdr;
16092 bfd_byte *plt_data;
16093 bfd_vma plt_offset;
16094 unsigned int other;
16095 bfd_vma entry_size;
16114 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16117 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16118 if (relplt == NULL)
16121 hdr = &elf_section_data (relplt)->this_hdr;
16122 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16125 plt = bfd_get_section_by_name (abfd, ".plt");
16129 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16130 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16132 p = relplt->relocation;
16134 /* Calculating the exact amount of space required for symbols would
16135 require two passes over the PLT, so just pessimise assuming two
16136 PLT slots per relocation. */
16137 count = relplt->size / hdr->sh_entsize;
16138 counti = count * bed->s->int_rels_per_ext_rel;
16139 size = 2 * count * sizeof (asymbol);
16140 size += count * (sizeof (mipssuffix) +
16141 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16142 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16143 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16145 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16146 size += sizeof (asymbol) + sizeof (pltname);
16148 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16151 if (plt->size < 16)
16154 s = *ret = bfd_malloc (size);
16157 send = s + 2 * count + 1;
16159 names = (char *) send;
16160 nend = (char *) s + size;
16163 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16164 if (opcode == 0x3302fffe)
16168 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16169 other = STO_MICROMIPS;
16171 else if (opcode == 0x0398c1d0)
16175 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16176 other = STO_MICROMIPS;
16180 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16185 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16189 s->udata.i = other;
16190 memcpy (names, pltname, sizeof (pltname));
16191 names += sizeof (pltname);
16195 for (plt_offset = plt0_size;
16196 plt_offset + 8 <= plt->size && s < send;
16197 plt_offset += entry_size)
16199 bfd_vma gotplt_addr;
16200 const char *suffix;
16205 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16207 /* Check if the second word matches the expected MIPS16 instruction. */
16208 if (opcode == 0x651aeb00)
16212 /* Truncated table??? */
16213 if (plt_offset + 16 > plt->size)
16215 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16216 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16217 suffixlen = sizeof (m16suffix);
16218 suffix = m16suffix;
16219 other = STO_MIPS16;
16221 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16222 else if (opcode == 0xff220000)
16226 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16227 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16228 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16230 gotplt_addr = gotplt_hi + gotplt_lo;
16231 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16232 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16233 suffixlen = sizeof (microsuffix);
16234 suffix = microsuffix;
16235 other = STO_MICROMIPS;
16237 /* Likewise the expected microMIPS instruction (insn32 mode). */
16238 else if ((opcode & 0xffff0000) == 0xff2f0000)
16240 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16241 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16242 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16243 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16244 gotplt_addr = gotplt_hi + gotplt_lo;
16245 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16246 suffixlen = sizeof (microsuffix);
16247 suffix = microsuffix;
16248 other = STO_MICROMIPS;
16250 /* Otherwise assume standard MIPS code. */
16253 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16254 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16255 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16256 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16257 gotplt_addr = gotplt_hi + gotplt_lo;
16258 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16259 suffixlen = sizeof (mipssuffix);
16260 suffix = mipssuffix;
16263 /* Truncated table??? */
16264 if (plt_offset + entry_size > plt->size)
16268 i < count && p[pi].address != gotplt_addr;
16269 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16276 *s = **p[pi].sym_ptr_ptr;
16277 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16278 we are defining a symbol, ensure one of them is set. */
16279 if ((s->flags & BSF_LOCAL) == 0)
16280 s->flags |= BSF_GLOBAL;
16281 s->flags |= BSF_SYNTHETIC;
16283 s->value = plt_offset;
16285 s->udata.i = other;
16287 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16288 namelen = len + suffixlen;
16289 if (names + namelen > nend)
16292 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16294 memcpy (names, suffix, suffixlen);
16295 names += suffixlen;
16298 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16308 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16310 struct mips_elf_link_hash_table *htab;
16311 Elf_Internal_Ehdr *i_ehdrp;
16313 i_ehdrp = elf_elfheader (abfd);
16316 htab = mips_elf_hash_table (link_info);
16317 BFD_ASSERT (htab != NULL);
16319 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16320 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16323 _bfd_elf_post_process_headers (abfd, link_info);
16325 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16326 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16327 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16329 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16330 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16334 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16336 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16339 /* Return the opcode for can't unwind. */
16342 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16344 return COMPACT_EH_CANT_UNWIND_OPCODE;