1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
31 /* This file handles functionality common to the different MIPS ABI's. */
36 #include "libiberty.h"
38 #include "elfxx-mips.h"
40 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
53 (1) absolute addresses
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
85 /* The input bfd in which the symbol is defined. */
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
92 /* If abfd == NULL, an address that must be stored in the got. */
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
120 struct mips_got_page_range
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
131 /* The input bfd in which the symbol is defined. */
133 /* The index of the symbol, as stored in the relocation r_info. */
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
141 /* This structure is used to hold .got information when linking. */
145 /* The global symbol in the GOT with the lowest index in the dynamic
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
180 /* Map an input bfd to a got in a multi-got link. */
182 struct mips_elf_bfd2got_hash
185 struct mips_got_info *g;
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
191 struct mips_elf_got_per_bfd_arg
193 /* A hashtable that maps bfds to gots. */
195 /* The output bfd. */
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
215 unsigned int global_count;
218 /* Another structure used to pass arguments for got entries traversal. */
220 struct mips_elf_set_global_got_offset_arg
222 struct mips_got_info *g;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
231 struct mips_elf_count_tls_arg
233 struct bfd_link_info *info;
237 struct _mips_elf_section_data
239 struct bfd_elf_section_data elf;
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
272 #define GGA_RELOC_ONLY 1
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
279 addiu $25,$25,%lo(func)
281 immediately before a PIC function "func". The second is to add:
285 addiu $25,$25,%lo(func)
287 to a separate trampoline section.
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
296 /* The offset of the stub from the start of STUB_SECTION. */
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
304 /* Macros for populating a mips_elf_la25_stub. */
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
319 struct mips_elf_hash_sort_data
321 /* The symbol in the global GOT with the lowest dynamic symbol table
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
339 struct mips_elf_link_hash_entry
341 struct elf_link_hash_entry root;
343 /* External symbol information. */
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
351 unsigned int possibly_dynamic_relocs;
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
367 #define GOT_TLS_LDM 2
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
439 /* This is the value of the __rld_map or __rld_obj_head symbol. */
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
454 /* Shortcuts to some dynamic sections, or NULL if they are not
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
496 The function returns the new section on success, otherwise it
498 asection *(*add_stub_section) (const char *, asection *, asection *);
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
540 /* Structure used to pass information to mips_elf_output_extsym. */
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
551 /* The names of the runtime procedure table symbols used on IRIX5. */
553 static const char * const mips_elf_dynsym_rtproc_names[] =
556 "_procedure_string_table",
557 "_procedure_table_size",
561 /* These structures are used to generate the .compact_rel section on
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
608 } Elf32_External_crinfo;
614 } Elf32_External_crinfo2;
616 /* These are the constants used to swap the bitfields in a crinfo. */
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
667 struct exception_info *exception_info;/* Pointer to exception array. */
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
708 #define JALR_TO_BAL_P(abfd) 1
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
713 #define JR_TO_B_P(abfd) 1
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
771 /* The size of a symbol-table entry. */
772 #define MIPS_ELF_SYM_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_sym)
775 /* The default alignment for sections, as a power of two. */
776 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
777 (get_elf_backend_data (abfd)->s->log_file_align)
779 /* Get word-sized data. */
780 #define MIPS_ELF_GET_WORD(abfd, ptr) \
781 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
783 /* Put out word-sized data. */
784 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
786 ? bfd_put_64 (abfd, val, ptr) \
787 : bfd_put_32 (abfd, val, ptr))
789 /* The opcode for word-sized loads (LW or LD). */
790 #define MIPS_ELF_LOAD_WORD(abfd) \
791 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
793 /* Add a dynamic symbol table-entry. */
794 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
795 _bfd_elf_add_dynamic_entry (info, tag, val)
797 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
798 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
800 /* The name of the dynamic relocation section. */
801 #define MIPS_ELF_REL_DYN_NAME(INFO) \
802 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
804 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
805 from smaller values. Start with zero, widen, *then* decrement. */
806 #define MINUS_ONE (((bfd_vma)0) - 1)
807 #define MINUS_TWO (((bfd_vma)0) - 2)
809 /* The value to write into got[1] for SVR4 targets, to identify it is
810 a GNU object. The dynamic linker can then use got[1] to store the
812 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
813 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
815 /* The offset of $gp from the beginning of the .got section. */
816 #define ELF_MIPS_GP_OFFSET(INFO) \
817 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
819 /* The maximum size of the GOT for it to be addressable using 16-bit
821 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
823 /* Instructions which appear in a stub. */
824 #define STUB_LW(abfd) \
826 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
827 : 0x8f998010)) /* lw t9,0x8010(gp) */
828 #define STUB_MOVE(abfd) \
830 ? 0x03e0782d /* daddu t7,ra */ \
831 : 0x03e07821)) /* addu t7,ra */
832 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
833 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
834 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
835 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
836 #define STUB_LI16S(abfd, VAL) \
838 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
839 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
841 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
842 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
844 /* The name of the dynamic interpreter. This is put in the .interp
847 #define ELF_DYNAMIC_INTERPRETER(abfd) \
848 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
849 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
850 : "/usr/lib/libc.so.1")
853 #define MNAME(bfd,pre,pos) \
854 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
855 #define ELF_R_SYM(bfd, i) \
856 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
857 #define ELF_R_TYPE(bfd, i) \
858 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
859 #define ELF_R_INFO(bfd, s, t) \
860 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
862 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
863 #define ELF_R_SYM(bfd, i) \
865 #define ELF_R_TYPE(bfd, i) \
867 #define ELF_R_INFO(bfd, s, t) \
868 (ELF32_R_INFO (s, t))
871 /* The mips16 compiler uses a couple of special sections to handle
872 floating point arguments.
874 Section names that look like .mips16.fn.FNNAME contain stubs that
875 copy floating point arguments from the fp regs to the gp regs and
876 then jump to FNNAME. If any 32 bit function calls FNNAME, the
877 call should be redirected to the stub instead. If no 32 bit
878 function calls FNNAME, the stub should be discarded. We need to
879 consider any reference to the function, not just a call, because
880 if the address of the function is taken we will need the stub,
881 since the address might be passed to a 32 bit function.
883 Section names that look like .mips16.call.FNNAME contain stubs
884 that copy floating point arguments from the gp regs to the fp
885 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
886 then any 16 bit function that calls FNNAME should be redirected
887 to the stub instead. If FNNAME is not a 32 bit function, the
888 stub should be discarded.
890 .mips16.call.fp.FNNAME sections are similar, but contain stubs
891 which call FNNAME and then copy the return value from the fp regs
892 to the gp regs. These stubs store the return value in $18 while
893 calling FNNAME; any function which might call one of these stubs
894 must arrange to save $18 around the call. (This case is not
895 needed for 32 bit functions that call 16 bit functions, because
896 16 bit functions always return floating point values in both
899 Note that in all cases FNNAME might be defined statically.
900 Therefore, FNNAME is not used literally. Instead, the relocation
901 information will indicate which symbol the section is for.
903 We record any stubs that we find in the symbol table. */
905 #define FN_STUB ".mips16.fn."
906 #define CALL_STUB ".mips16.call."
907 #define CALL_FP_STUB ".mips16.call.fp."
909 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
910 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
911 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
913 /* The format of the first PLT entry in an O32 executable. */
914 static const bfd_vma mips_o32_exec_plt0_entry[] =
916 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
917 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
918 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
919 0x031cc023, /* subu $24, $24, $28 */
920 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
926 /* The format of the first PLT entry in an N32 executable. Different
927 because gp ($28) is not available; we use t2 ($14) instead. */
928 static const bfd_vma mips_n32_exec_plt0_entry[] =
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
940 /* The format of the first PLT entry in an N64 executable. Different
941 from N32 because of the increased size of GOT entries. */
942 static const bfd_vma mips_n64_exec_plt0_entry[] =
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
948 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
949 0x0018c0c2, /* srl $24, $24, 3 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
954 /* The format of subsequent PLT entries. */
955 static const bfd_vma mips_exec_plt_entry[] =
957 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
958 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
959 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
960 0x03200008 /* jr $25 */
963 /* The format of the first PLT entry in a VxWorks executable. */
964 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
966 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
967 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
968 0x8f390008, /* lw t9, 8(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
974 /* The format of subsequent PLT entries. */
975 static const bfd_vma mips_vxworks_exec_plt_entry[] =
977 0x10000000, /* b .PLT_resolver */
978 0x24180000, /* li t8, <pltindex> */
979 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
980 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
981 0x8f390000, /* lw t9, 0(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
987 /* The format of the first PLT entry in a VxWorks shared object. */
988 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
990 0x8f990008, /* lw t9, 8(gp) */
991 0x00000000, /* nop */
992 0x03200008, /* jr t9 */
993 0x00000000, /* nop */
994 0x00000000, /* nop */
998 /* The format of subsequent PLT entries. */
999 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1001 0x10000000, /* b .PLT_resolver */
1002 0x24180000 /* li t8, <pltindex> */
1005 /* Look up an entry in a MIPS ELF linker hash table. */
1007 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1008 ((struct mips_elf_link_hash_entry *) \
1009 elf_link_hash_lookup (&(table)->root, (string), (create), \
1012 /* Traverse a MIPS ELF linker hash table. */
1014 #define mips_elf_link_hash_traverse(table, func, info) \
1015 (elf_link_hash_traverse \
1017 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1020 /* Find the base offsets for thread-local storage in this object,
1021 for GD/LD and IE/LE respectively. */
1023 #define TP_OFFSET 0x7000
1024 #define DTP_OFFSET 0x8000
1027 dtprel_base (struct bfd_link_info *info)
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1032 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1036 tprel_base (struct bfd_link_info *info)
1038 /* If tls_sec is NULL, we should have signalled an error already. */
1039 if (elf_hash_table (info)->tls_sec == NULL)
1041 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1044 /* Create an entry in a MIPS ELF linker hash table. */
1046 static struct bfd_hash_entry *
1047 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1048 struct bfd_hash_table *table, const char *string)
1050 struct mips_elf_link_hash_entry *ret =
1051 (struct mips_elf_link_hash_entry *) entry;
1053 /* Allocate the structure if it has not already been allocated by a
1056 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1058 return (struct bfd_hash_entry *) ret;
1060 /* Call the allocation method of the superclass. */
1061 ret = ((struct mips_elf_link_hash_entry *)
1062 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1066 /* Set local fields. */
1067 memset (&ret->esym, 0, sizeof (EXTR));
1068 /* We use -2 as a marker to indicate that the information has
1069 not been set. -1 means there is no associated ifd. */
1072 ret->possibly_dynamic_relocs = 0;
1073 ret->fn_stub = NULL;
1074 ret->call_stub = NULL;
1075 ret->call_fp_stub = NULL;
1076 ret->tls_type = GOT_NORMAL;
1077 ret->global_got_area = GGA_NONE;
1078 ret->got_only_for_calls = TRUE;
1079 ret->readonly_reloc = FALSE;
1080 ret->has_static_relocs = FALSE;
1081 ret->no_fn_stub = FALSE;
1082 ret->need_fn_stub = FALSE;
1083 ret->has_nonpic_branches = FALSE;
1084 ret->needs_lazy_stub = FALSE;
1087 return (struct bfd_hash_entry *) ret;
1091 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1093 if (!sec->used_by_bfd)
1095 struct _mips_elf_section_data *sdata;
1096 bfd_size_type amt = sizeof (*sdata);
1098 sdata = bfd_zalloc (abfd, amt);
1101 sec->used_by_bfd = sdata;
1104 return _bfd_elf_new_section_hook (abfd, sec);
1107 /* Read ECOFF debugging information from a .mdebug section into a
1108 ecoff_debug_info structure. */
1111 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1112 struct ecoff_debug_info *debug)
1115 const struct ecoff_debug_swap *swap;
1118 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1119 memset (debug, 0, sizeof (*debug));
1121 ext_hdr = bfd_malloc (swap->external_hdr_size);
1122 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1125 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1126 swap->external_hdr_size))
1129 symhdr = &debug->symbolic_header;
1130 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1132 /* The symbolic header contains absolute file offsets and sizes to
1134 #define READ(ptr, offset, count, size, type) \
1135 if (symhdr->count == 0) \
1136 debug->ptr = NULL; \
1139 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1140 debug->ptr = bfd_malloc (amt); \
1141 if (debug->ptr == NULL) \
1142 goto error_return; \
1143 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1144 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1145 goto error_return; \
1148 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1149 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1150 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1151 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1152 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1153 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1155 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1156 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1157 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1158 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1159 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1167 if (ext_hdr != NULL)
1169 if (debug->line != NULL)
1171 if (debug->external_dnr != NULL)
1172 free (debug->external_dnr);
1173 if (debug->external_pdr != NULL)
1174 free (debug->external_pdr);
1175 if (debug->external_sym != NULL)
1176 free (debug->external_sym);
1177 if (debug->external_opt != NULL)
1178 free (debug->external_opt);
1179 if (debug->external_aux != NULL)
1180 free (debug->external_aux);
1181 if (debug->ss != NULL)
1183 if (debug->ssext != NULL)
1184 free (debug->ssext);
1185 if (debug->external_fdr != NULL)
1186 free (debug->external_fdr);
1187 if (debug->external_rfd != NULL)
1188 free (debug->external_rfd);
1189 if (debug->external_ext != NULL)
1190 free (debug->external_ext);
1194 /* Swap RPDR (runtime procedure table entry) for output. */
1197 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1199 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1200 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1201 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1202 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1203 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1204 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1206 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1207 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1209 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1212 /* Create a runtime procedure table from the .mdebug section. */
1215 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1216 struct bfd_link_info *info, asection *s,
1217 struct ecoff_debug_info *debug)
1219 const struct ecoff_debug_swap *swap;
1220 HDRR *hdr = &debug->symbolic_header;
1222 struct rpdr_ext *erp;
1224 struct pdr_ext *epdr;
1225 struct sym_ext *esym;
1229 bfd_size_type count;
1230 unsigned long sindex;
1234 const char *no_name_func = _("static procedure (no name)");
1242 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1244 sindex = strlen (no_name_func) + 1;
1245 count = hdr->ipdMax;
1248 size = swap->external_pdr_size;
1250 epdr = bfd_malloc (size * count);
1254 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1257 size = sizeof (RPDR);
1258 rp = rpdr = bfd_malloc (size * count);
1262 size = sizeof (char *);
1263 sv = bfd_malloc (size * count);
1267 count = hdr->isymMax;
1268 size = swap->external_sym_size;
1269 esym = bfd_malloc (size * count);
1273 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1276 count = hdr->issMax;
1277 ss = bfd_malloc (count);
1280 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1283 count = hdr->ipdMax;
1284 for (i = 0; i < (unsigned long) count; i++, rp++)
1286 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1287 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1288 rp->adr = sym.value;
1289 rp->regmask = pdr.regmask;
1290 rp->regoffset = pdr.regoffset;
1291 rp->fregmask = pdr.fregmask;
1292 rp->fregoffset = pdr.fregoffset;
1293 rp->frameoffset = pdr.frameoffset;
1294 rp->framereg = pdr.framereg;
1295 rp->pcreg = pdr.pcreg;
1297 sv[i] = ss + sym.iss;
1298 sindex += strlen (sv[i]) + 1;
1302 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1303 size = BFD_ALIGN (size, 16);
1304 rtproc = bfd_alloc (abfd, size);
1307 mips_elf_hash_table (info)->procedure_count = 0;
1311 mips_elf_hash_table (info)->procedure_count = count + 2;
1314 memset (erp, 0, sizeof (struct rpdr_ext));
1316 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1317 strcpy (str, no_name_func);
1318 str += strlen (no_name_func) + 1;
1319 for (i = 0; i < count; i++)
1321 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1322 strcpy (str, sv[i]);
1323 str += strlen (sv[i]) + 1;
1325 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1327 /* Set the size and contents of .rtproc section. */
1329 s->contents = rtproc;
1331 /* Skip this section later on (I don't think this currently
1332 matters, but someday it might). */
1333 s->map_head.link_order = NULL;
1362 /* We're going to create a stub for H. Create a symbol for the stub's
1363 value and size, to help make the disassembly easier to read. */
1366 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1367 struct mips_elf_link_hash_entry *h,
1368 const char *prefix, asection *s, bfd_vma value,
1371 struct bfd_link_hash_entry *bh;
1372 struct elf_link_hash_entry *elfh;
1375 if (ELF_ST_IS_MICROMIPS (h->root.other))
1378 /* Create a new symbol. */
1379 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1381 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1382 BSF_LOCAL, s, value, NULL,
1386 /* Make it a local function. */
1387 elfh = (struct elf_link_hash_entry *) bh;
1388 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1390 elfh->forced_local = 1;
1394 /* We're about to redefine H. Create a symbol to represent H's
1395 current value and size, to help make the disassembly easier
1399 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1400 struct mips_elf_link_hash_entry *h,
1403 struct bfd_link_hash_entry *bh;
1404 struct elf_link_hash_entry *elfh;
1409 /* Read the symbol's value. */
1410 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1411 || h->root.root.type == bfd_link_hash_defweak);
1412 s = h->root.root.u.def.section;
1413 value = h->root.root.u.def.value;
1415 /* Create a new symbol. */
1416 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1418 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1419 BSF_LOCAL, s, value, NULL,
1423 /* Make it local and copy the other attributes from H. */
1424 elfh = (struct elf_link_hash_entry *) bh;
1425 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1426 elfh->other = h->root.other;
1427 elfh->size = h->root.size;
1428 elfh->forced_local = 1;
1432 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1433 function rather than to a hard-float stub. */
1436 section_allows_mips16_refs_p (asection *section)
1440 name = bfd_get_section_name (section->owner, section);
1441 return (FN_STUB_P (name)
1442 || CALL_STUB_P (name)
1443 || CALL_FP_STUB_P (name)
1444 || strcmp (name, ".pdr") == 0);
1447 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1448 stub section of some kind. Return the R_SYMNDX of the target
1449 function, or 0 if we can't decide which function that is. */
1451 static unsigned long
1452 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1456 const Elf_Internal_Rela *rel;
1458 /* Trust the first R_MIPS_NONE relocation, if any. */
1459 for (rel = relocs; rel < relend; rel++)
1460 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1461 return ELF_R_SYM (sec->owner, rel->r_info);
1463 /* Otherwise trust the first relocation, whatever its kind. This is
1464 the traditional behavior. */
1465 if (relocs < relend)
1466 return ELF_R_SYM (sec->owner, relocs->r_info);
1471 /* Check the mips16 stubs for a particular symbol, and see if we can
1475 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1476 struct mips_elf_link_hash_entry *h)
1478 /* Dynamic symbols must use the standard call interface, in case other
1479 objects try to call them. */
1480 if (h->fn_stub != NULL
1481 && h->root.dynindx != -1)
1483 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1484 h->need_fn_stub = TRUE;
1487 if (h->fn_stub != NULL
1488 && ! h->need_fn_stub)
1490 /* We don't need the fn_stub; the only references to this symbol
1491 are 16 bit calls. Clobber the size to 0 to prevent it from
1492 being included in the link. */
1493 h->fn_stub->size = 0;
1494 h->fn_stub->flags &= ~SEC_RELOC;
1495 h->fn_stub->reloc_count = 0;
1496 h->fn_stub->flags |= SEC_EXCLUDE;
1499 if (h->call_stub != NULL
1500 && ELF_ST_IS_MIPS16 (h->root.other))
1502 /* We don't need the call_stub; this is a 16 bit function, so
1503 calls from other 16 bit functions are OK. Clobber the size
1504 to 0 to prevent it from being included in the link. */
1505 h->call_stub->size = 0;
1506 h->call_stub->flags &= ~SEC_RELOC;
1507 h->call_stub->reloc_count = 0;
1508 h->call_stub->flags |= SEC_EXCLUDE;
1511 if (h->call_fp_stub != NULL
1512 && ELF_ST_IS_MIPS16 (h->root.other))
1514 /* We don't need the call_stub; this is a 16 bit function, so
1515 calls from other 16 bit functions are OK. Clobber the size
1516 to 0 to prevent it from being included in the link. */
1517 h->call_fp_stub->size = 0;
1518 h->call_fp_stub->flags &= ~SEC_RELOC;
1519 h->call_fp_stub->reloc_count = 0;
1520 h->call_fp_stub->flags |= SEC_EXCLUDE;
1524 /* Hashtable callbacks for mips_elf_la25_stubs. */
1527 mips_elf_la25_stub_hash (const void *entry_)
1529 const struct mips_elf_la25_stub *entry;
1531 entry = (struct mips_elf_la25_stub *) entry_;
1532 return entry->h->root.root.u.def.section->id
1533 + entry->h->root.root.u.def.value;
1537 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1539 const struct mips_elf_la25_stub *entry1, *entry2;
1541 entry1 = (struct mips_elf_la25_stub *) entry1_;
1542 entry2 = (struct mips_elf_la25_stub *) entry2_;
1543 return ((entry1->h->root.root.u.def.section
1544 == entry2->h->root.root.u.def.section)
1545 && (entry1->h->root.root.u.def.value
1546 == entry2->h->root.root.u.def.value));
1549 /* Called by the linker to set up the la25 stub-creation code. FN is
1550 the linker's implementation of add_stub_function. Return true on
1554 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1555 asection *(*fn) (const char *, asection *,
1558 struct mips_elf_link_hash_table *htab;
1560 htab = mips_elf_hash_table (info);
1564 htab->add_stub_section = fn;
1565 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1566 mips_elf_la25_stub_eq, NULL);
1567 if (htab->la25_stubs == NULL)
1573 /* Return true if H is a locally-defined PIC function, in the sense
1574 that it might need $25 to be valid on entry. Note that MIPS16
1575 functions never need $25 to be valid on entry; they set up $gp
1576 using PC-relative instructions instead. */
1579 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1581 return ((h->root.root.type == bfd_link_hash_defined
1582 || h->root.root.type == bfd_link_hash_defweak)
1583 && h->root.def_regular
1584 && !bfd_is_abs_section (h->root.root.u.def.section)
1585 && !ELF_ST_IS_MIPS16 (h->root.other)
1586 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1587 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1590 /* STUB describes an la25 stub that we have decided to implement
1591 by inserting an LUI/ADDIU pair before the target function.
1592 Create the section and redirect the function symbol to it. */
1595 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1596 struct bfd_link_info *info)
1598 struct mips_elf_link_hash_table *htab;
1600 asection *s, *input_section;
1603 htab = mips_elf_hash_table (info);
1607 /* Create a unique name for the new section. */
1608 name = bfd_malloc (11 + sizeof (".text.stub."));
1611 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1613 /* Create the section. */
1614 input_section = stub->h->root.root.u.def.section;
1615 s = htab->add_stub_section (name, input_section,
1616 input_section->output_section);
1620 /* Make sure that any padding goes before the stub. */
1621 align = input_section->alignment_power;
1622 if (!bfd_set_section_alignment (s->owner, s, align))
1625 s->size = (1 << align) - 8;
1627 /* Create a symbol for the stub. */
1628 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1629 stub->stub_section = s;
1630 stub->offset = s->size;
1632 /* Allocate room for it. */
1637 /* STUB describes an la25 stub that we have decided to implement
1638 with a separate trampoline. Allocate room for it and redirect
1639 the function symbol to it. */
1642 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1643 struct bfd_link_info *info)
1645 struct mips_elf_link_hash_table *htab;
1648 htab = mips_elf_hash_table (info);
1652 /* Create a trampoline section, if we haven't already. */
1653 s = htab->strampoline;
1656 asection *input_section = stub->h->root.root.u.def.section;
1657 s = htab->add_stub_section (".text", NULL,
1658 input_section->output_section);
1659 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1661 htab->strampoline = s;
1664 /* Create a symbol for the stub. */
1665 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1666 stub->stub_section = s;
1667 stub->offset = s->size;
1669 /* Allocate room for it. */
1674 /* H describes a symbol that needs an la25 stub. Make sure that an
1675 appropriate stub exists and point H at it. */
1678 mips_elf_add_la25_stub (struct bfd_link_info *info,
1679 struct mips_elf_link_hash_entry *h)
1681 struct mips_elf_link_hash_table *htab;
1682 struct mips_elf_la25_stub search, *stub;
1683 bfd_boolean use_trampoline_p;
1688 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1689 of the section and if we would need no more than 2 nops. */
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1694 /* Describe the stub we want. */
1695 search.stub_section = NULL;
1699 /* See if we've already created an equivalent stub. */
1700 htab = mips_elf_hash_table (info);
1704 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1708 stub = (struct mips_elf_la25_stub *) *slot;
1711 /* We can reuse the existing stub. */
1712 h->la25_stub = stub;
1716 /* Create a permanent copy of ENTRY and add it to the hash table. */
1717 stub = bfd_malloc (sizeof (search));
1723 h->la25_stub = stub;
1724 return (use_trampoline_p
1725 ? mips_elf_add_la25_trampoline (stub, info)
1726 : mips_elf_add_la25_intro (stub, info));
1729 /* A mips_elf_link_hash_traverse callback that is called before sizing
1730 sections. DATA points to a mips_htab_traverse_info structure. */
1733 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1735 struct mips_htab_traverse_info *hti;
1737 hti = (struct mips_htab_traverse_info *) data;
1738 if (!hti->info->relocatable)
1739 mips_elf_check_mips16_stubs (hti->info, h);
1741 if (mips_elf_local_pic_function_p (h))
1743 /* PR 12845: If H is in a section that has been garbage
1744 collected it will have its output section set to *ABS*. */
1745 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1748 /* H is a function that might need $25 to be valid on entry.
1749 If we're creating a non-PIC relocatable object, mark H as
1750 being PIC. If we're creating a non-relocatable object with
1751 non-PIC branches and jumps to H, make sure that H has an la25
1753 if (hti->info->relocatable)
1755 if (!PIC_OBJECT_P (hti->output_bfd))
1756 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1758 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1767 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1768 Most mips16 instructions are 16 bits, but these instructions
1771 The format of these instructions is:
1773 +--------------+--------------------------------+
1774 | JALX | X| Imm 20:16 | Imm 25:21 |
1775 +--------------+--------------------------------+
1777 +-----------------------------------------------+
1779 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1780 Note that the immediate value in the first word is swapped.
1782 When producing a relocatable object file, R_MIPS16_26 is
1783 handled mostly like R_MIPS_26. In particular, the addend is
1784 stored as a straight 26-bit value in a 32-bit instruction.
1785 (gas makes life simpler for itself by never adjusting a
1786 R_MIPS16_26 reloc to be against a section, so the addend is
1787 always zero). However, the 32 bit instruction is stored as 2
1788 16-bit values, rather than a single 32-bit value. In a
1789 big-endian file, the result is the same; in a little-endian
1790 file, the two 16-bit halves of the 32 bit value are swapped.
1791 This is so that a disassembler can recognize the jal
1794 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1795 instruction stored as two 16-bit values. The addend A is the
1796 contents of the targ26 field. The calculation is the same as
1797 R_MIPS_26. When storing the calculated value, reorder the
1798 immediate value as shown above, and don't forget to store the
1799 value as two 16-bit values.
1801 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1805 +--------+----------------------+
1809 +--------+----------------------+
1812 +----------+------+-------------+
1816 +----------+--------------------+
1817 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1818 ((sub1 << 16) | sub2)).
1820 When producing a relocatable object file, the calculation is
1821 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1822 When producing a fully linked file, the calculation is
1823 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1824 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1826 The table below lists the other MIPS16 instruction relocations.
1827 Each one is calculated in the same way as the non-MIPS16 relocation
1828 given on the right, but using the extended MIPS16 layout of 16-bit
1831 R_MIPS16_GPREL R_MIPS_GPREL16
1832 R_MIPS16_GOT16 R_MIPS_GOT16
1833 R_MIPS16_CALL16 R_MIPS_CALL16
1834 R_MIPS16_HI16 R_MIPS_HI16
1835 R_MIPS16_LO16 R_MIPS_LO16
1837 A typical instruction will have a format like this:
1839 +--------------+--------------------------------+
1840 | EXTEND | Imm 10:5 | Imm 15:11 |
1841 +--------------+--------------------------------+
1842 | Major | rx | ry | Imm 4:0 |
1843 +--------------+--------------------------------+
1845 EXTEND is the five bit value 11110. Major is the instruction
1848 All we need to do here is shuffle the bits appropriately.
1849 As above, the two 16-bit halves must be swapped on a
1850 little-endian system. */
1852 static inline bfd_boolean
1853 mips16_reloc_p (int r_type)
1858 case R_MIPS16_GPREL:
1859 case R_MIPS16_GOT16:
1860 case R_MIPS16_CALL16:
1870 /* Check if a microMIPS reloc. */
1872 static inline bfd_boolean
1873 micromips_reloc_p (unsigned int r_type)
1875 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1878 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1879 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1880 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1882 static inline bfd_boolean
1883 micromips_reloc_shuffle_p (unsigned int r_type)
1885 return (micromips_reloc_p (r_type)
1886 && r_type != R_MICROMIPS_PC7_S1
1887 && r_type != R_MICROMIPS_PC10_S1);
1890 static inline bfd_boolean
1891 got16_reloc_p (int r_type)
1893 return (r_type == R_MIPS_GOT16
1894 || r_type == R_MIPS16_GOT16
1895 || r_type == R_MICROMIPS_GOT16);
1898 static inline bfd_boolean
1899 call16_reloc_p (int r_type)
1901 return (r_type == R_MIPS_CALL16
1902 || r_type == R_MIPS16_CALL16
1903 || r_type == R_MICROMIPS_CALL16);
1906 static inline bfd_boolean
1907 got_disp_reloc_p (unsigned int r_type)
1909 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1912 static inline bfd_boolean
1913 got_page_reloc_p (unsigned int r_type)
1915 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1918 static inline bfd_boolean
1919 got_ofst_reloc_p (unsigned int r_type)
1921 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1924 static inline bfd_boolean
1925 got_hi16_reloc_p (unsigned int r_type)
1927 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1930 static inline bfd_boolean
1931 got_lo16_reloc_p (unsigned int r_type)
1933 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1936 static inline bfd_boolean
1937 call_hi16_reloc_p (unsigned int r_type)
1939 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1942 static inline bfd_boolean
1943 call_lo16_reloc_p (unsigned int r_type)
1945 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1948 static inline bfd_boolean
1949 hi16_reloc_p (int r_type)
1951 return (r_type == R_MIPS_HI16
1952 || r_type == R_MIPS16_HI16
1953 || r_type == R_MICROMIPS_HI16);
1956 static inline bfd_boolean
1957 lo16_reloc_p (int r_type)
1959 return (r_type == R_MIPS_LO16
1960 || r_type == R_MIPS16_LO16
1961 || r_type == R_MICROMIPS_LO16);
1964 static inline bfd_boolean
1965 mips16_call_reloc_p (int r_type)
1967 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1970 static inline bfd_boolean
1971 jal_reloc_p (int r_type)
1973 return (r_type == R_MIPS_26
1974 || r_type == R_MIPS16_26
1975 || r_type == R_MICROMIPS_26_S1);
1978 static inline bfd_boolean
1979 micromips_branch_reloc_p (int r_type)
1981 return (r_type == R_MICROMIPS_26_S1
1982 || r_type == R_MICROMIPS_PC16_S1
1983 || r_type == R_MICROMIPS_PC10_S1
1984 || r_type == R_MICROMIPS_PC7_S1);
1987 static inline bfd_boolean
1988 tls_gd_reloc_p (unsigned int r_type)
1990 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1993 static inline bfd_boolean
1994 tls_ldm_reloc_p (unsigned int r_type)
1996 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
1999 static inline bfd_boolean
2000 tls_gottprel_reloc_p (unsigned int r_type)
2002 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2006 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2007 bfd_boolean jal_shuffle, bfd_byte *data)
2009 bfd_vma first, second, val;
2011 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2014 /* Pick up the first and second halfwords of the instruction. */
2015 first = bfd_get_16 (abfd, data);
2016 second = bfd_get_16 (abfd, data + 2);
2017 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2018 val = first << 16 | second;
2019 else if (r_type != R_MIPS16_26)
2020 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2021 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2023 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2024 | ((first & 0x1f) << 21) | second);
2025 bfd_put_32 (abfd, val, data);
2029 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2030 bfd_boolean jal_shuffle, bfd_byte *data)
2032 bfd_vma first, second, val;
2034 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2037 val = bfd_get_32 (abfd, data);
2038 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2040 second = val & 0xffff;
2043 else if (r_type != R_MIPS16_26)
2045 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2046 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2050 second = val & 0xffff;
2051 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2052 | ((val >> 21) & 0x1f);
2054 bfd_put_16 (abfd, second, data + 2);
2055 bfd_put_16 (abfd, first, data);
2058 bfd_reloc_status_type
2059 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2060 arelent *reloc_entry, asection *input_section,
2061 bfd_boolean relocatable, void *data, bfd_vma gp)
2065 bfd_reloc_status_type status;
2067 if (bfd_is_com_section (symbol->section))
2070 relocation = symbol->value;
2072 relocation += symbol->section->output_section->vma;
2073 relocation += symbol->section->output_offset;
2075 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2076 return bfd_reloc_outofrange;
2078 /* Set val to the offset into the section or symbol. */
2079 val = reloc_entry->addend;
2081 _bfd_mips_elf_sign_extend (val, 16);
2083 /* Adjust val for the final section location and GP value. If we
2084 are producing relocatable output, we don't want to do this for
2085 an external symbol. */
2087 || (symbol->flags & BSF_SECTION_SYM) != 0)
2088 val += relocation - gp;
2090 if (reloc_entry->howto->partial_inplace)
2092 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2094 + reloc_entry->address);
2095 if (status != bfd_reloc_ok)
2099 reloc_entry->addend = val;
2102 reloc_entry->address += input_section->output_offset;
2104 return bfd_reloc_ok;
2107 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2108 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2109 that contains the relocation field and DATA points to the start of
2114 struct mips_hi16 *next;
2116 asection *input_section;
2120 /* FIXME: This should not be a static variable. */
2122 static struct mips_hi16 *mips_hi16_list;
2124 /* A howto special_function for REL *HI16 relocations. We can only
2125 calculate the correct value once we've seen the partnering
2126 *LO16 relocation, so just save the information for later.
2128 The ABI requires that the *LO16 immediately follow the *HI16.
2129 However, as a GNU extension, we permit an arbitrary number of
2130 *HI16s to be associated with a single *LO16. This significantly
2131 simplies the relocation handling in gcc. */
2133 bfd_reloc_status_type
2134 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2136 asection *input_section, bfd *output_bfd,
2137 char **error_message ATTRIBUTE_UNUSED)
2139 struct mips_hi16 *n;
2141 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2142 return bfd_reloc_outofrange;
2144 n = bfd_malloc (sizeof *n);
2146 return bfd_reloc_outofrange;
2148 n->next = mips_hi16_list;
2150 n->input_section = input_section;
2151 n->rel = *reloc_entry;
2154 if (output_bfd != NULL)
2155 reloc_entry->address += input_section->output_offset;
2157 return bfd_reloc_ok;
2160 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2161 like any other 16-bit relocation when applied to global symbols, but is
2162 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2164 bfd_reloc_status_type
2165 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2166 void *data, asection *input_section,
2167 bfd *output_bfd, char **error_message)
2169 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2170 || bfd_is_und_section (bfd_get_section (symbol))
2171 || bfd_is_com_section (bfd_get_section (symbol)))
2172 /* The relocation is against a global symbol. */
2173 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2174 input_section, output_bfd,
2177 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd, error_message);
2181 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2182 is a straightforward 16 bit inplace relocation, but we must deal with
2183 any partnering high-part relocations as well. */
2185 bfd_reloc_status_type
2186 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2187 void *data, asection *input_section,
2188 bfd *output_bfd, char **error_message)
2191 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2193 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2194 return bfd_reloc_outofrange;
2196 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2198 vallo = bfd_get_32 (abfd, location);
2199 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2202 while (mips_hi16_list != NULL)
2204 bfd_reloc_status_type ret;
2205 struct mips_hi16 *hi;
2207 hi = mips_hi16_list;
2209 /* R_MIPS*_GOT16 relocations are something of a special case. We
2210 want to install the addend in the same way as for a R_MIPS*_HI16
2211 relocation (with a rightshift of 16). However, since GOT16
2212 relocations can also be used with global symbols, their howto
2213 has a rightshift of 0. */
2214 if (hi->rel.howto->type == R_MIPS_GOT16)
2215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2216 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2217 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2218 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2221 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2222 carry or borrow will induce a change of +1 or -1 in the high part. */
2223 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2225 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2226 hi->input_section, output_bfd,
2228 if (ret != bfd_reloc_ok)
2231 mips_hi16_list = hi->next;
2235 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2236 input_section, output_bfd,
2240 /* A generic howto special_function. This calculates and installs the
2241 relocation itself, thus avoiding the oft-discussed problems in
2242 bfd_perform_relocation and bfd_install_relocation. */
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2246 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2247 asection *input_section, bfd *output_bfd,
2248 char **error_message ATTRIBUTE_UNUSED)
2251 bfd_reloc_status_type status;
2252 bfd_boolean relocatable;
2254 relocatable = (output_bfd != NULL);
2256 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2257 return bfd_reloc_outofrange;
2259 /* Build up the field adjustment in VAL. */
2261 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2263 /* Either we're calculating the final field value or we have a
2264 relocation against a section symbol. Add in the section's
2265 offset or address. */
2266 val += symbol->section->output_section->vma;
2267 val += symbol->section->output_offset;
2272 /* We're calculating the final field value. Add in the symbol's value
2273 and, if pc-relative, subtract the address of the field itself. */
2274 val += symbol->value;
2275 if (reloc_entry->howto->pc_relative)
2277 val -= input_section->output_section->vma;
2278 val -= input_section->output_offset;
2279 val -= reloc_entry->address;
2283 /* VAL is now the final adjustment. If we're keeping this relocation
2284 in the output file, and if the relocation uses a separate addend,
2285 we just need to add VAL to that addend. Otherwise we need to add
2286 VAL to the relocation field itself. */
2287 if (relocatable && !reloc_entry->howto->partial_inplace)
2288 reloc_entry->addend += val;
2291 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2293 /* Add in the separate addend, if any. */
2294 val += reloc_entry->addend;
2296 /* Add VAL to the relocation field. */
2297 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2299 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2301 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2304 if (status != bfd_reloc_ok)
2309 reloc_entry->address += input_section->output_offset;
2311 return bfd_reloc_ok;
2314 /* Swap an entry in a .gptab section. Note that these routines rely
2315 on the equivalence of the two elements of the union. */
2318 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2321 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2322 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2326 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2327 Elf32_External_gptab *ex)
2329 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2330 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2334 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2335 Elf32_External_compact_rel *ex)
2337 H_PUT_32 (abfd, in->id1, ex->id1);
2338 H_PUT_32 (abfd, in->num, ex->num);
2339 H_PUT_32 (abfd, in->id2, ex->id2);
2340 H_PUT_32 (abfd, in->offset, ex->offset);
2341 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2342 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2346 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2347 Elf32_External_crinfo *ex)
2351 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2352 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2353 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2354 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2355 H_PUT_32 (abfd, l, ex->info);
2356 H_PUT_32 (abfd, in->konst, ex->konst);
2357 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2360 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2361 routines swap this structure in and out. They are used outside of
2362 BFD, so they are globally visible. */
2365 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2368 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2369 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2370 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2371 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2372 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2373 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2377 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2378 Elf32_External_RegInfo *ex)
2380 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2381 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2382 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2383 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2384 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2385 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2388 /* In the 64 bit ABI, the .MIPS.options section holds register
2389 information in an Elf64_Reginfo structure. These routines swap
2390 them in and out. They are globally visible because they are used
2391 outside of BFD. These routines are here so that gas can call them
2392 without worrying about whether the 64 bit ABI has been included. */
2395 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2396 Elf64_Internal_RegInfo *in)
2398 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2399 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2400 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2401 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2402 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2403 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2404 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2408 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2409 Elf64_External_RegInfo *ex)
2411 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2412 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2413 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2414 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2415 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2416 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2417 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2420 /* Swap in an options header. */
2423 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2424 Elf_Internal_Options *in)
2426 in->kind = H_GET_8 (abfd, ex->kind);
2427 in->size = H_GET_8 (abfd, ex->size);
2428 in->section = H_GET_16 (abfd, ex->section);
2429 in->info = H_GET_32 (abfd, ex->info);
2432 /* Swap out an options header. */
2435 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2436 Elf_External_Options *ex)
2438 H_PUT_8 (abfd, in->kind, ex->kind);
2439 H_PUT_8 (abfd, in->size, ex->size);
2440 H_PUT_16 (abfd, in->section, ex->section);
2441 H_PUT_32 (abfd, in->info, ex->info);
2444 /* This function is called via qsort() to sort the dynamic relocation
2445 entries by increasing r_symndx value. */
2448 sort_dynamic_relocs (const void *arg1, const void *arg2)
2450 Elf_Internal_Rela int_reloc1;
2451 Elf_Internal_Rela int_reloc2;
2454 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2455 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2457 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2461 if (int_reloc1.r_offset < int_reloc2.r_offset)
2463 if (int_reloc1.r_offset > int_reloc2.r_offset)
2468 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2471 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2472 const void *arg2 ATTRIBUTE_UNUSED)
2475 Elf_Internal_Rela int_reloc1[3];
2476 Elf_Internal_Rela int_reloc2[3];
2478 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2479 (reldyn_sorting_bfd, arg1, int_reloc1);
2480 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2481 (reldyn_sorting_bfd, arg2, int_reloc2);
2483 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2485 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2488 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2490 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2499 /* This routine is used to write out ECOFF debugging external symbol
2500 information. It is called via mips_elf_link_hash_traverse. The
2501 ECOFF external symbol information must match the ELF external
2502 symbol information. Unfortunately, at this point we don't know
2503 whether a symbol is required by reloc information, so the two
2504 tables may wind up being different. We must sort out the external
2505 symbol information before we can set the final size of the .mdebug
2506 section, and we must set the size of the .mdebug section before we
2507 can relocate any sections, and we can't know which symbols are
2508 required by relocation until we relocate the sections.
2509 Fortunately, it is relatively unlikely that any symbol will be
2510 stripped but required by a reloc. In particular, it can not happen
2511 when generating a final executable. */
2514 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2516 struct extsym_info *einfo = data;
2518 asection *sec, *output_section;
2520 if (h->root.indx == -2)
2522 else if ((h->root.def_dynamic
2523 || h->root.ref_dynamic
2524 || h->root.type == bfd_link_hash_new)
2525 && !h->root.def_regular
2526 && !h->root.ref_regular)
2528 else if (einfo->info->strip == strip_all
2529 || (einfo->info->strip == strip_some
2530 && bfd_hash_lookup (einfo->info->keep_hash,
2531 h->root.root.root.string,
2532 FALSE, FALSE) == NULL))
2540 if (h->esym.ifd == -2)
2543 h->esym.cobol_main = 0;
2544 h->esym.weakext = 0;
2545 h->esym.reserved = 0;
2546 h->esym.ifd = ifdNil;
2547 h->esym.asym.value = 0;
2548 h->esym.asym.st = stGlobal;
2550 if (h->root.root.type == bfd_link_hash_undefined
2551 || h->root.root.type == bfd_link_hash_undefweak)
2555 /* Use undefined class. Also, set class and type for some
2557 name = h->root.root.root.string;
2558 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2559 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2561 h->esym.asym.sc = scData;
2562 h->esym.asym.st = stLabel;
2563 h->esym.asym.value = 0;
2565 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2567 h->esym.asym.sc = scAbs;
2568 h->esym.asym.st = stLabel;
2569 h->esym.asym.value =
2570 mips_elf_hash_table (einfo->info)->procedure_count;
2572 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2574 h->esym.asym.sc = scAbs;
2575 h->esym.asym.st = stLabel;
2576 h->esym.asym.value = elf_gp (einfo->abfd);
2579 h->esym.asym.sc = scUndefined;
2581 else if (h->root.root.type != bfd_link_hash_defined
2582 && h->root.root.type != bfd_link_hash_defweak)
2583 h->esym.asym.sc = scAbs;
2588 sec = h->root.root.u.def.section;
2589 output_section = sec->output_section;
2591 /* When making a shared library and symbol h is the one from
2592 the another shared library, OUTPUT_SECTION may be null. */
2593 if (output_section == NULL)
2594 h->esym.asym.sc = scUndefined;
2597 name = bfd_section_name (output_section->owner, output_section);
2599 if (strcmp (name, ".text") == 0)
2600 h->esym.asym.sc = scText;
2601 else if (strcmp (name, ".data") == 0)
2602 h->esym.asym.sc = scData;
2603 else if (strcmp (name, ".sdata") == 0)
2604 h->esym.asym.sc = scSData;
2605 else if (strcmp (name, ".rodata") == 0
2606 || strcmp (name, ".rdata") == 0)
2607 h->esym.asym.sc = scRData;
2608 else if (strcmp (name, ".bss") == 0)
2609 h->esym.asym.sc = scBss;
2610 else if (strcmp (name, ".sbss") == 0)
2611 h->esym.asym.sc = scSBss;
2612 else if (strcmp (name, ".init") == 0)
2613 h->esym.asym.sc = scInit;
2614 else if (strcmp (name, ".fini") == 0)
2615 h->esym.asym.sc = scFini;
2617 h->esym.asym.sc = scAbs;
2621 h->esym.asym.reserved = 0;
2622 h->esym.asym.index = indexNil;
2625 if (h->root.root.type == bfd_link_hash_common)
2626 h->esym.asym.value = h->root.root.u.c.size;
2627 else if (h->root.root.type == bfd_link_hash_defined
2628 || h->root.root.type == bfd_link_hash_defweak)
2630 if (h->esym.asym.sc == scCommon)
2631 h->esym.asym.sc = scBss;
2632 else if (h->esym.asym.sc == scSCommon)
2633 h->esym.asym.sc = scSBss;
2635 sec = h->root.root.u.def.section;
2636 output_section = sec->output_section;
2637 if (output_section != NULL)
2638 h->esym.asym.value = (h->root.root.u.def.value
2639 + sec->output_offset
2640 + output_section->vma);
2642 h->esym.asym.value = 0;
2646 struct mips_elf_link_hash_entry *hd = h;
2648 while (hd->root.root.type == bfd_link_hash_indirect)
2649 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2651 if (hd->needs_lazy_stub)
2653 /* Set type and value for a symbol with a function stub. */
2654 h->esym.asym.st = stProc;
2655 sec = hd->root.root.u.def.section;
2657 h->esym.asym.value = 0;
2660 output_section = sec->output_section;
2661 if (output_section != NULL)
2662 h->esym.asym.value = (hd->root.plt.offset
2663 + sec->output_offset
2664 + output_section->vma);
2666 h->esym.asym.value = 0;
2671 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2672 h->root.root.root.string,
2675 einfo->failed = TRUE;
2682 /* A comparison routine used to sort .gptab entries. */
2685 gptab_compare (const void *p1, const void *p2)
2687 const Elf32_gptab *a1 = p1;
2688 const Elf32_gptab *a2 = p2;
2690 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2693 /* Functions to manage the got entry hash table. */
2695 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2698 static INLINE hashval_t
2699 mips_elf_hash_bfd_vma (bfd_vma addr)
2702 return addr + (addr >> 32);
2708 /* got_entries only match if they're identical, except for gotidx, so
2709 use all fields to compute the hash, and compare the appropriate
2713 mips_elf_got_entry_hash (const void *entry_)
2715 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2717 return entry->symndx
2718 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2719 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2721 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2722 : entry->d.h->root.root.root.hash));
2726 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2728 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2729 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2731 /* An LDM entry can only match another LDM entry. */
2732 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2735 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2736 && (! e1->abfd ? e1->d.address == e2->d.address
2737 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2738 : e1->d.h == e2->d.h);
2741 /* multi_got_entries are still a match in the case of global objects,
2742 even if the input bfd in which they're referenced differs, so the
2743 hash computation and compare functions are adjusted
2747 mips_elf_multi_got_entry_hash (const void *entry_)
2749 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2751 return entry->symndx
2753 ? mips_elf_hash_bfd_vma (entry->d.address)
2754 : entry->symndx >= 0
2755 ? ((entry->tls_type & GOT_TLS_LDM)
2756 ? (GOT_TLS_LDM << 17)
2758 + mips_elf_hash_bfd_vma (entry->d.addend)))
2759 : entry->d.h->root.root.root.hash);
2763 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2765 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2766 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2768 /* Any two LDM entries match. */
2769 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2772 /* Nothing else matches an LDM entry. */
2773 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2776 return e1->symndx == e2->symndx
2777 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2778 : e1->abfd == NULL || e2->abfd == NULL
2779 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2780 : e1->d.h == e2->d.h);
2784 mips_got_page_entry_hash (const void *entry_)
2786 const struct mips_got_page_entry *entry;
2788 entry = (const struct mips_got_page_entry *) entry_;
2789 return entry->abfd->id + entry->symndx;
2793 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2795 const struct mips_got_page_entry *entry1, *entry2;
2797 entry1 = (const struct mips_got_page_entry *) entry1_;
2798 entry2 = (const struct mips_got_page_entry *) entry2_;
2799 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2802 /* Return the dynamic relocation section. If it doesn't exist, try to
2803 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2804 if creation fails. */
2807 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2813 dname = MIPS_ELF_REL_DYN_NAME (info);
2814 dynobj = elf_hash_table (info)->dynobj;
2815 sreloc = bfd_get_section_by_name (dynobj, dname);
2816 if (sreloc == NULL && create_p)
2818 sreloc = bfd_make_section_with_flags (dynobj, dname,
2823 | SEC_LINKER_CREATED
2826 || ! bfd_set_section_alignment (dynobj, sreloc,
2827 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2833 /* Count the number of relocations needed for a TLS GOT entry, with
2834 access types from TLS_TYPE, and symbol H (or a local symbol if H
2838 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2839 struct elf_link_hash_entry *h)
2843 bfd_boolean need_relocs = FALSE;
2844 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2846 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2847 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2850 if ((info->shared || indx != 0)
2852 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2853 || h->root.type != bfd_link_hash_undefweak))
2859 if (tls_type & GOT_TLS_GD)
2866 if (tls_type & GOT_TLS_IE)
2869 if ((tls_type & GOT_TLS_LDM) && info->shared)
2875 /* Count the number of TLS relocations required for the GOT entry in
2876 ARG1, if it describes a local symbol. */
2879 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2881 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2882 struct mips_elf_count_tls_arg *arg = arg2;
2884 if (entry->abfd != NULL && entry->symndx != -1)
2885 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2890 /* Count the number of TLS GOT entries required for the global (or
2891 forced-local) symbol in ARG1. */
2894 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2896 struct mips_elf_link_hash_entry *hm
2897 = (struct mips_elf_link_hash_entry *) arg1;
2898 struct mips_elf_count_tls_arg *arg = arg2;
2900 if (hm->tls_type & GOT_TLS_GD)
2902 if (hm->tls_type & GOT_TLS_IE)
2908 /* Count the number of TLS relocations required for the global (or
2909 forced-local) symbol in ARG1. */
2912 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2914 struct mips_elf_link_hash_entry *hm
2915 = (struct mips_elf_link_hash_entry *) arg1;
2916 struct mips_elf_count_tls_arg *arg = arg2;
2918 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2923 /* Output a simple dynamic relocation into SRELOC. */
2926 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2928 unsigned long reloc_index,
2933 Elf_Internal_Rela rel[3];
2935 memset (rel, 0, sizeof (rel));
2937 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2940 if (ABI_64_P (output_bfd))
2942 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2943 (output_bfd, &rel[0],
2945 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2948 bfd_elf32_swap_reloc_out
2949 (output_bfd, &rel[0],
2951 + reloc_index * sizeof (Elf32_External_Rel)));
2954 /* Initialize a set of TLS GOT entries for one symbol. */
2957 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2958 unsigned char *tls_type_p,
2959 struct bfd_link_info *info,
2960 struct mips_elf_link_hash_entry *h,
2963 struct mips_elf_link_hash_table *htab;
2965 asection *sreloc, *sgot;
2966 bfd_vma offset, offset2;
2967 bfd_boolean need_relocs = FALSE;
2969 htab = mips_elf_hash_table (info);
2978 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2980 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2981 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2982 indx = h->root.dynindx;
2985 if (*tls_type_p & GOT_TLS_DONE)
2988 if ((info->shared || indx != 0)
2990 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2991 || h->root.type != bfd_link_hash_undefweak))
2994 /* MINUS_ONE means the symbol is not defined in this object. It may not
2995 be defined at all; assume that the value doesn't matter in that
2996 case. Otherwise complain if we would use the value. */
2997 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2998 || h->root.root.type == bfd_link_hash_undefweak);
3000 /* Emit necessary relocations. */
3001 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3003 /* General Dynamic. */
3004 if (*tls_type_p & GOT_TLS_GD)
3006 offset = got_offset;
3007 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3011 mips_elf_output_dynamic_relocation
3012 (abfd, sreloc, sreloc->reloc_count++, indx,
3013 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3014 sgot->output_offset + sgot->output_section->vma + offset);
3017 mips_elf_output_dynamic_relocation
3018 (abfd, sreloc, sreloc->reloc_count++, indx,
3019 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3020 sgot->output_offset + sgot->output_section->vma + offset2);
3022 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3023 sgot->contents + offset2);
3027 MIPS_ELF_PUT_WORD (abfd, 1,
3028 sgot->contents + offset);
3029 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3030 sgot->contents + offset2);
3033 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3036 /* Initial Exec model. */
3037 if (*tls_type_p & GOT_TLS_IE)
3039 offset = got_offset;
3044 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3045 sgot->contents + offset);
3047 MIPS_ELF_PUT_WORD (abfd, 0,
3048 sgot->contents + offset);
3050 mips_elf_output_dynamic_relocation
3051 (abfd, sreloc, sreloc->reloc_count++, indx,
3052 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3053 sgot->output_offset + sgot->output_section->vma + offset);
3056 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3057 sgot->contents + offset);
3060 if (*tls_type_p & GOT_TLS_LDM)
3062 /* The initial offset is zero, and the LD offsets will include the
3063 bias by DTP_OFFSET. */
3064 MIPS_ELF_PUT_WORD (abfd, 0,
3065 sgot->contents + got_offset
3066 + MIPS_ELF_GOT_SIZE (abfd));
3069 MIPS_ELF_PUT_WORD (abfd, 1,
3070 sgot->contents + got_offset);
3072 mips_elf_output_dynamic_relocation
3073 (abfd, sreloc, sreloc->reloc_count++, indx,
3074 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3075 sgot->output_offset + sgot->output_section->vma + got_offset);
3078 *tls_type_p |= GOT_TLS_DONE;
3081 /* Return the GOT index to use for a relocation of type R_TYPE against
3082 a symbol accessed using TLS_TYPE models. The GOT entries for this
3083 symbol in this GOT start at GOT_INDEX. This function initializes the
3084 GOT entries and corresponding relocations. */
3087 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3088 int r_type, struct bfd_link_info *info,
3089 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3091 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3092 || tls_gd_reloc_p (r_type)
3093 || tls_ldm_reloc_p (r_type));
3095 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3097 if (tls_gottprel_reloc_p (r_type))
3099 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3100 if (*tls_type & GOT_TLS_GD)
3101 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3106 if (tls_gd_reloc_p (r_type))
3108 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3112 if (tls_ldm_reloc_p (r_type))
3114 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3121 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3122 for global symbol H. .got.plt comes before the GOT, so the offset
3123 will be negative. */
3126 mips_elf_gotplt_index (struct bfd_link_info *info,
3127 struct elf_link_hash_entry *h)
3129 bfd_vma plt_index, got_address, got_value;
3130 struct mips_elf_link_hash_table *htab;
3132 htab = mips_elf_hash_table (info);
3133 BFD_ASSERT (htab != NULL);
3135 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3137 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3138 section starts with reserved entries. */
3139 BFD_ASSERT (htab->is_vxworks);
3141 /* Calculate the index of the symbol's PLT entry. */
3142 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3144 /* Calculate the address of the associated .got.plt entry. */
3145 got_address = (htab->sgotplt->output_section->vma
3146 + htab->sgotplt->output_offset
3149 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3150 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3151 + htab->root.hgot->root.u.def.section->output_offset
3152 + htab->root.hgot->root.u.def.value);
3154 return got_address - got_value;
3157 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3158 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3159 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3160 offset can be found. */
3163 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3164 bfd_vma value, unsigned long r_symndx,
3165 struct mips_elf_link_hash_entry *h, int r_type)
3167 struct mips_elf_link_hash_table *htab;
3168 struct mips_got_entry *entry;
3170 htab = mips_elf_hash_table (info);
3171 BFD_ASSERT (htab != NULL);
3173 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3174 r_symndx, h, r_type);
3178 if (TLS_RELOC_P (r_type))
3180 if (entry->symndx == -1 && htab->got_info->next == NULL)
3181 /* A type (3) entry in the single-GOT case. We use the symbol's
3182 hash table entry to track the index. */
3183 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3184 r_type, info, h, value);
3186 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3187 r_type, info, h, value);
3190 return entry->gotidx;
3193 /* Returns the GOT index for the global symbol indicated by H. */
3196 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3197 int r_type, struct bfd_link_info *info)
3199 struct mips_elf_link_hash_table *htab;
3201 struct mips_got_info *g, *gg;
3202 long global_got_dynindx = 0;
3204 htab = mips_elf_hash_table (info);
3205 BFD_ASSERT (htab != NULL);
3207 gg = g = htab->got_info;
3208 if (g->bfd2got && ibfd)
3210 struct mips_got_entry e, *p;
3212 BFD_ASSERT (h->dynindx >= 0);
3214 g = mips_elf_got_for_ibfd (g, ibfd);
3215 if (g->next != gg || TLS_RELOC_P (r_type))
3219 e.d.h = (struct mips_elf_link_hash_entry *)h;
3222 p = htab_find (g->got_entries, &e);
3224 BFD_ASSERT (p->gotidx > 0);
3226 if (TLS_RELOC_P (r_type))
3228 bfd_vma value = MINUS_ONE;
3229 if ((h->root.type == bfd_link_hash_defined
3230 || h->root.type == bfd_link_hash_defweak)
3231 && h->root.u.def.section->output_section)
3232 value = (h->root.u.def.value
3233 + h->root.u.def.section->output_offset
3234 + h->root.u.def.section->output_section->vma);
3236 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3237 info, e.d.h, value);
3244 if (gg->global_gotsym != NULL)
3245 global_got_dynindx = gg->global_gotsym->dynindx;
3247 if (TLS_RELOC_P (r_type))
3249 struct mips_elf_link_hash_entry *hm
3250 = (struct mips_elf_link_hash_entry *) h;
3251 bfd_vma value = MINUS_ONE;
3253 if ((h->root.type == bfd_link_hash_defined
3254 || h->root.type == bfd_link_hash_defweak)
3255 && h->root.u.def.section->output_section)
3256 value = (h->root.u.def.value
3257 + h->root.u.def.section->output_offset
3258 + h->root.u.def.section->output_section->vma);
3260 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3261 r_type, info, hm, value);
3265 /* Once we determine the global GOT entry with the lowest dynamic
3266 symbol table index, we must put all dynamic symbols with greater
3267 indices into the GOT. That makes it easy to calculate the GOT
3269 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3270 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3271 * MIPS_ELF_GOT_SIZE (abfd));
3273 BFD_ASSERT (got_index < htab->sgot->size);
3278 /* Find a GOT page entry that points to within 32KB of VALUE. These
3279 entries are supposed to be placed at small offsets in the GOT, i.e.,
3280 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3281 entry could be created. If OFFSETP is nonnull, use it to return the
3282 offset of the GOT entry from VALUE. */
3285 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286 bfd_vma value, bfd_vma *offsetp)
3288 bfd_vma page, got_index;
3289 struct mips_got_entry *entry;
3291 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293 NULL, R_MIPS_GOT_PAGE);
3298 got_index = entry->gotidx;
3301 *offsetp = value - entry->d.address;
3306 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307 EXTERNAL is true if the relocation was originally against a global
3308 symbol that binds locally. */
3311 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312 bfd_vma value, bfd_boolean external)
3314 struct mips_got_entry *entry;
3316 /* GOT16 relocations against local symbols are followed by a LO16
3317 relocation; those against global symbols are not. Thus if the
3318 symbol was originally local, the GOT16 relocation should load the
3319 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3321 value = mips_elf_high (value) << 16;
3323 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3325 same in all cases. */
3326 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327 NULL, R_MIPS_GOT16);
3329 return entry->gotidx;
3334 /* Returns the offset for the entry at the INDEXth position
3338 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339 bfd *input_bfd, bfd_vma got_index)
3341 struct mips_elf_link_hash_table *htab;
3345 htab = mips_elf_hash_table (info);
3346 BFD_ASSERT (htab != NULL);
3349 gp = _bfd_get_gp_value (output_bfd)
3350 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3352 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3355 /* Create and return a local GOT entry for VALUE, which was calculated
3356 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3357 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3360 static struct mips_got_entry *
3361 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362 bfd *ibfd, bfd_vma value,
3363 unsigned long r_symndx,
3364 struct mips_elf_link_hash_entry *h,
3367 struct mips_got_entry entry, **loc;
3368 struct mips_got_info *g;
3369 struct mips_elf_link_hash_table *htab;
3371 htab = mips_elf_hash_table (info);
3372 BFD_ASSERT (htab != NULL);
3376 entry.d.address = value;
3379 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3382 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3383 BFD_ASSERT (g != NULL);
3386 /* This function shouldn't be called for symbols that live in the global
3388 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3389 if (TLS_RELOC_P (r_type))
3391 struct mips_got_entry *p;
3394 if (tls_ldm_reloc_p (r_type))
3396 entry.tls_type = GOT_TLS_LDM;
3402 entry.symndx = r_symndx;
3408 p = (struct mips_got_entry *)
3409 htab_find (g->got_entries, &entry);
3415 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3420 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3423 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3428 memcpy (*loc, &entry, sizeof entry);
3430 if (g->assigned_gotno > g->local_gotno)
3432 (*loc)->gotidx = -1;
3433 /* We didn't allocate enough space in the GOT. */
3434 (*_bfd_error_handler)
3435 (_("not enough GOT space for local GOT entries"));
3436 bfd_set_error (bfd_error_bad_value);
3440 MIPS_ELF_PUT_WORD (abfd, value,
3441 (htab->sgot->contents + entry.gotidx));
3443 /* These GOT entries need a dynamic relocation on VxWorks. */
3444 if (htab->is_vxworks)
3446 Elf_Internal_Rela outrel;
3449 bfd_vma got_address;
3451 s = mips_elf_rel_dyn_section (info, FALSE);
3452 got_address = (htab->sgot->output_section->vma
3453 + htab->sgot->output_offset
3456 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3457 outrel.r_offset = got_address;
3458 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3459 outrel.r_addend = value;
3460 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3466 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3467 The number might be exact or a worst-case estimate, depending on how
3468 much information is available to elf_backend_omit_section_dynsym at
3469 the current linking stage. */
3471 static bfd_size_type
3472 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3474 bfd_size_type count;
3477 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3480 const struct elf_backend_data *bed;
3482 bed = get_elf_backend_data (output_bfd);
3483 for (p = output_bfd->sections; p ; p = p->next)
3484 if ((p->flags & SEC_EXCLUDE) == 0
3485 && (p->flags & SEC_ALLOC) != 0
3486 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3492 /* Sort the dynamic symbol table so that symbols that need GOT entries
3493 appear towards the end. */
3496 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3498 struct mips_elf_link_hash_table *htab;
3499 struct mips_elf_hash_sort_data hsd;
3500 struct mips_got_info *g;
3502 if (elf_hash_table (info)->dynsymcount == 0)
3505 htab = mips_elf_hash_table (info);
3506 BFD_ASSERT (htab != NULL);
3513 hsd.max_unref_got_dynindx
3514 = hsd.min_got_dynindx
3515 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3516 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3517 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3518 elf_hash_table (info)),
3519 mips_elf_sort_hash_table_f,
3522 /* There should have been enough room in the symbol table to
3523 accommodate both the GOT and non-GOT symbols. */
3524 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3525 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3526 == elf_hash_table (info)->dynsymcount);
3527 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3528 == g->global_gotno);
3530 /* Now we know which dynamic symbol has the lowest dynamic symbol
3531 table index in the GOT. */
3532 g->global_gotsym = hsd.low;
3537 /* If H needs a GOT entry, assign it the highest available dynamic
3538 index. Otherwise, assign it the lowest available dynamic
3542 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3544 struct mips_elf_hash_sort_data *hsd = data;
3546 /* Symbols without dynamic symbol table entries aren't interesting
3548 if (h->root.dynindx == -1)
3551 switch (h->global_got_area)
3554 h->root.dynindx = hsd->max_non_got_dynindx++;
3558 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3560 h->root.dynindx = --hsd->min_got_dynindx;
3561 hsd->low = (struct elf_link_hash_entry *) h;
3564 case GGA_RELOC_ONLY:
3565 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3567 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3568 hsd->low = (struct elf_link_hash_entry *) h;
3569 h->root.dynindx = hsd->max_unref_got_dynindx++;
3576 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3577 symbol table index lower than any we've seen to date, record it for
3578 posterity. FOR_CALL is true if the caller is only interested in
3579 using the GOT entry for calls. */
3582 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3583 bfd *abfd, struct bfd_link_info *info,
3584 bfd_boolean for_call,
3585 unsigned char tls_flag)
3587 struct mips_elf_link_hash_table *htab;
3588 struct mips_elf_link_hash_entry *hmips;
3589 struct mips_got_entry entry, **loc;
3590 struct mips_got_info *g;
3592 htab = mips_elf_hash_table (info);
3593 BFD_ASSERT (htab != NULL);
3595 hmips = (struct mips_elf_link_hash_entry *) h;
3597 hmips->got_only_for_calls = FALSE;
3599 /* A global symbol in the GOT must also be in the dynamic symbol
3601 if (h->dynindx == -1)
3603 switch (ELF_ST_VISIBILITY (h->other))
3607 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3610 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3614 /* Make sure we have a GOT to put this entry into. */
3616 BFD_ASSERT (g != NULL);
3620 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3623 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3626 /* If we've already marked this entry as needing GOT space, we don't
3627 need to do it again. */
3630 (*loc)->tls_type |= tls_flag;
3634 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3640 entry.tls_type = tls_flag;
3642 memcpy (*loc, &entry, sizeof entry);
3645 hmips->global_got_area = GGA_NORMAL;
3650 /* Reserve space in G for a GOT entry containing the value of symbol
3651 SYMNDX in input bfd ABDF, plus ADDEND. */
3654 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3655 struct bfd_link_info *info,
3656 unsigned char tls_flag)
3658 struct mips_elf_link_hash_table *htab;
3659 struct mips_got_info *g;
3660 struct mips_got_entry entry, **loc;
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3666 BFD_ASSERT (g != NULL);
3669 entry.symndx = symndx;
3670 entry.d.addend = addend;
3671 entry.tls_type = tls_flag;
3672 loc = (struct mips_got_entry **)
3673 htab_find_slot (g->got_entries, &entry, INSERT);
3677 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3680 (*loc)->tls_type |= tls_flag;
3682 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3685 (*loc)->tls_type |= tls_flag;
3693 entry.tls_type = tls_flag;
3694 if (tls_flag == GOT_TLS_IE)
3696 else if (tls_flag == GOT_TLS_GD)
3698 else if (g->tls_ldm_offset == MINUS_ONE)
3700 g->tls_ldm_offset = MINUS_TWO;
3706 entry.gotidx = g->local_gotno++;
3710 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3715 memcpy (*loc, &entry, sizeof entry);
3720 /* Return the maximum number of GOT page entries required for RANGE. */
3723 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3725 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3728 /* Record that ABFD has a page relocation against symbol SYMNDX and
3729 that ADDEND is the addend for that relocation.
3731 This function creates an upper bound on the number of GOT slots
3732 required; no attempt is made to combine references to non-overridable
3733 global symbols across multiple input files. */
3736 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3737 long symndx, bfd_signed_vma addend)
3739 struct mips_elf_link_hash_table *htab;
3740 struct mips_got_info *g;
3741 struct mips_got_page_entry lookup, *entry;
3742 struct mips_got_page_range **range_ptr, *range;
3743 bfd_vma old_pages, new_pages;
3746 htab = mips_elf_hash_table (info);
3747 BFD_ASSERT (htab != NULL);
3750 BFD_ASSERT (g != NULL);
3752 /* Find the mips_got_page_entry hash table entry for this symbol. */
3754 lookup.symndx = symndx;
3755 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3759 /* Create a mips_got_page_entry if this is the first time we've
3761 entry = (struct mips_got_page_entry *) *loc;
3764 entry = bfd_alloc (abfd, sizeof (*entry));
3769 entry->symndx = symndx;
3770 entry->ranges = NULL;
3771 entry->num_pages = 0;
3775 /* Skip over ranges whose maximum extent cannot share a page entry
3777 range_ptr = &entry->ranges;
3778 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3779 range_ptr = &(*range_ptr)->next;
3781 /* If we scanned to the end of the list, or found a range whose
3782 minimum extent cannot share a page entry with ADDEND, create
3783 a new singleton range. */
3785 if (!range || addend < range->min_addend - 0xffff)
3787 range = bfd_alloc (abfd, sizeof (*range));
3791 range->next = *range_ptr;
3792 range->min_addend = addend;
3793 range->max_addend = addend;
3801 /* Remember how many pages the old range contributed. */
3802 old_pages = mips_elf_pages_for_range (range);
3804 /* Update the ranges. */
3805 if (addend < range->min_addend)
3806 range->min_addend = addend;
3807 else if (addend > range->max_addend)
3809 if (range->next && addend >= range->next->min_addend - 0xffff)
3811 old_pages += mips_elf_pages_for_range (range->next);
3812 range->max_addend = range->next->max_addend;
3813 range->next = range->next->next;
3816 range->max_addend = addend;
3819 /* Record any change in the total estimate. */
3820 new_pages = mips_elf_pages_for_range (range);
3821 if (old_pages != new_pages)
3823 entry->num_pages += new_pages - old_pages;
3824 g->page_gotno += new_pages - old_pages;
3830 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3833 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3837 struct mips_elf_link_hash_table *htab;
3839 htab = mips_elf_hash_table (info);
3840 BFD_ASSERT (htab != NULL);
3842 s = mips_elf_rel_dyn_section (info, FALSE);
3843 BFD_ASSERT (s != NULL);
3845 if (htab->is_vxworks)
3846 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3851 /* Make room for a null element. */
3852 s->size += MIPS_ELF_REL_SIZE (abfd);
3855 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3859 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3860 if the GOT entry is for an indirect or warning symbol. */
3863 mips_elf_check_recreate_got (void **entryp, void *data)
3865 struct mips_got_entry *entry;
3866 bfd_boolean *must_recreate;
3868 entry = (struct mips_got_entry *) *entryp;
3869 must_recreate = (bfd_boolean *) data;
3870 if (entry->abfd != NULL && entry->symndx == -1)
3872 struct mips_elf_link_hash_entry *h;
3875 if (h->root.root.type == bfd_link_hash_indirect
3876 || h->root.root.type == bfd_link_hash_warning)
3878 *must_recreate = TRUE;
3885 /* A htab_traverse callback for GOT entries. Add all entries to
3886 hash table *DATA, converting entries for indirect and warning
3887 symbols into entries for the target symbol. Set *DATA to null
3891 mips_elf_recreate_got (void **entryp, void *data)
3894 struct mips_got_entry *entry;
3897 new_got = (htab_t *) data;
3898 entry = (struct mips_got_entry *) *entryp;
3899 if (entry->abfd != NULL && entry->symndx == -1)
3901 struct mips_elf_link_hash_entry *h;
3904 while (h->root.root.type == bfd_link_hash_indirect
3905 || h->root.root.type == bfd_link_hash_warning)
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3912 slot = htab_find_slot (*new_got, entry, INSERT);
3925 /* If any entries in G->got_entries are for indirect or warning symbols,
3926 replace them with entries for the target symbol. */
3929 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3931 bfd_boolean must_recreate;
3934 must_recreate = FALSE;
3935 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3938 new_got = htab_create (htab_size (g->got_entries),
3939 mips_elf_got_entry_hash,
3940 mips_elf_got_entry_eq, NULL);
3941 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3942 if (new_got == NULL)
3945 /* Each entry in g->got_entries has either been copied to new_got
3946 or freed. Now delete the hash table itself. */
3947 htab_delete (g->got_entries);
3948 g->got_entries = new_got;
3953 /* A mips_elf_link_hash_traverse callback for which DATA points
3954 to the link_info structure. Count the number of type (3) entries
3955 in the master GOT. */
3958 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3960 struct bfd_link_info *info;
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_got_info *g;
3964 info = (struct bfd_link_info *) data;
3965 htab = mips_elf_hash_table (info);
3967 if (h->global_got_area != GGA_NONE)
3969 /* Make a final decision about whether the symbol belongs in the
3970 local or global GOT. Symbols that bind locally can (and in the
3971 case of forced-local symbols, must) live in the local GOT.
3972 Those that are aren't in the dynamic symbol table must also
3973 live in the local GOT.
3975 Note that the former condition does not always imply the
3976 latter: symbols do not bind locally if they are completely
3977 undefined. We'll report undefined symbols later if appropriate. */
3978 if (h->root.dynindx == -1
3979 || (h->got_only_for_calls
3980 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3981 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3983 /* The symbol belongs in the local GOT. We no longer need this
3984 entry if it was only used for relocations; those relocations
3985 will be against the null or section symbol instead of H. */
3986 if (h->global_got_area != GGA_RELOC_ONLY)
3988 h->global_got_area = GGA_NONE;
3990 else if (htab->is_vxworks
3991 && h->got_only_for_calls
3992 && h->root.plt.offset != MINUS_ONE)
3993 /* On VxWorks, calls can refer directly to the .got.plt entry;
3994 they don't need entries in the regular GOT. .got.plt entries
3995 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3996 h->global_got_area = GGA_NONE;
4000 if (h->global_got_area == GGA_RELOC_ONLY)
4001 g->reloc_only_gotno++;
4007 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4010 mips_elf_bfd2got_entry_hash (const void *entry_)
4012 const struct mips_elf_bfd2got_hash *entry
4013 = (struct mips_elf_bfd2got_hash *)entry_;
4015 return entry->bfd->id;
4018 /* Check whether two hash entries have the same bfd. */
4021 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4023 const struct mips_elf_bfd2got_hash *e1
4024 = (const struct mips_elf_bfd2got_hash *)entry1;
4025 const struct mips_elf_bfd2got_hash *e2
4026 = (const struct mips_elf_bfd2got_hash *)entry2;
4028 return e1->bfd == e2->bfd;
4031 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4032 be the master GOT data. */
4034 static struct mips_got_info *
4035 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4037 struct mips_elf_bfd2got_hash e, *p;
4043 p = htab_find (g->bfd2got, &e);
4044 return p ? p->g : NULL;
4047 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4048 Return NULL if an error occured. */
4050 static struct mips_got_info *
4051 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4054 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4055 struct mips_got_info *g;
4058 bfdgot_entry.bfd = input_bfd;
4059 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4060 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4064 bfdgot = ((struct mips_elf_bfd2got_hash *)
4065 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4071 g = ((struct mips_got_info *)
4072 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4076 bfdgot->bfd = input_bfd;
4079 g->global_gotsym = NULL;
4080 g->global_gotno = 0;
4081 g->reloc_only_gotno = 0;
4084 g->assigned_gotno = -1;
4086 g->tls_assigned_gotno = 0;
4087 g->tls_ldm_offset = MINUS_ONE;
4088 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4089 mips_elf_multi_got_entry_eq, NULL);
4090 if (g->got_entries == NULL)
4093 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4094 mips_got_page_entry_eq, NULL);
4095 if (g->got_page_entries == NULL)
4105 /* A htab_traverse callback for the entries in the master got.
4106 Create one separate got for each bfd that has entries in the global
4107 got, such that we can tell how many local and global entries each
4111 mips_elf_make_got_per_bfd (void **entryp, void *p)
4113 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4114 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4115 struct mips_got_info *g;
4117 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4124 /* Insert the GOT entry in the bfd's got entry hash table. */
4125 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4126 if (*entryp != NULL)
4131 if (entry->tls_type)
4133 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4135 if (entry->tls_type & GOT_TLS_IE)
4138 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4146 /* A htab_traverse callback for the page entries in the master got.
4147 Associate each page entry with the bfd's got. */
4150 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4152 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4153 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4154 struct mips_got_info *g;
4156 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4163 /* Insert the GOT entry in the bfd's got entry hash table. */
4164 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4165 if (*entryp != NULL)
4169 g->page_gotno += entry->num_pages;
4173 /* Consider merging the got described by BFD2GOT with TO, using the
4174 information given by ARG. Return -1 if this would lead to overflow,
4175 1 if they were merged successfully, and 0 if a merge failed due to
4176 lack of memory. (These values are chosen so that nonnegative return
4177 values can be returned by a htab_traverse callback.) */
4180 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4181 struct mips_got_info *to,
4182 struct mips_elf_got_per_bfd_arg *arg)
4184 struct mips_got_info *from = bfd2got->g;
4185 unsigned int estimate;
4187 /* Work out how many page entries we would need for the combined GOT. */
4188 estimate = arg->max_pages;
4189 if (estimate >= from->page_gotno + to->page_gotno)
4190 estimate = from->page_gotno + to->page_gotno;
4192 /* And conservatively estimate how many local and TLS entries
4194 estimate += from->local_gotno + to->local_gotno;
4195 estimate += from->tls_gotno + to->tls_gotno;
4197 /* If we're merging with the primary got, we will always have
4198 the full set of global entries. Otherwise estimate those
4199 conservatively as well. */
4200 if (to == arg->primary)
4201 estimate += arg->global_count;
4203 estimate += from->global_gotno + to->global_gotno;
4205 /* Bail out if the combined GOT might be too big. */
4206 if (estimate > arg->max_count)
4209 /* Commit to the merge. Record that TO is now the bfd for this got. */
4212 /* Transfer the bfd's got information from FROM to TO. */
4213 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4214 if (arg->obfd == NULL)
4217 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4218 if (arg->obfd == NULL)
4221 /* We don't have to worry about releasing memory of the actual
4222 got entries, since they're all in the master got_entries hash
4224 htab_delete (from->got_entries);
4225 htab_delete (from->got_page_entries);
4229 /* Attempt to merge gots of different input bfds. Try to use as much
4230 as possible of the primary got, since it doesn't require explicit
4231 dynamic relocations, but don't use bfds that would reference global
4232 symbols out of the addressable range. Failing the primary got,
4233 attempt to merge with the current got, or finish the current got
4234 and then make make the new got current. */
4237 mips_elf_merge_gots (void **bfd2got_, void *p)
4239 struct mips_elf_bfd2got_hash *bfd2got
4240 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4241 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4242 struct mips_got_info *g;
4243 unsigned int estimate;
4248 /* Work out the number of page, local and TLS entries. */
4249 estimate = arg->max_pages;
4250 if (estimate > g->page_gotno)
4251 estimate = g->page_gotno;
4252 estimate += g->local_gotno + g->tls_gotno;
4254 /* We place TLS GOT entries after both locals and globals. The globals
4255 for the primary GOT may overflow the normal GOT size limit, so be
4256 sure not to merge a GOT which requires TLS with the primary GOT in that
4257 case. This doesn't affect non-primary GOTs. */
4258 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4260 if (estimate <= arg->max_count)
4262 /* If we don't have a primary GOT, use it as
4263 a starting point for the primary GOT. */
4266 arg->primary = bfd2got->g;
4270 /* Try merging with the primary GOT. */
4271 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4276 /* If we can merge with the last-created got, do it. */
4279 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4284 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4285 fits; if it turns out that it doesn't, we'll get relocation
4286 overflows anyway. */
4287 g->next = arg->current;
4293 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4294 is null iff there is just a single GOT. */
4297 mips_elf_initialize_tls_index (void **entryp, void *p)
4299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4300 struct mips_got_info *g = p;
4302 unsigned char tls_type;
4304 /* We're only interested in TLS symbols. */
4305 if (entry->tls_type == 0)
4308 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4310 if (entry->symndx == -1 && g->next == NULL)
4312 /* A type (3) got entry in the single-GOT case. We use the symbol's
4313 hash table entry to track its index. */
4314 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4316 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4317 entry->d.h->tls_got_offset = next_index;
4318 tls_type = entry->d.h->tls_type;
4322 if (entry->tls_type & GOT_TLS_LDM)
4324 /* There are separate mips_got_entry objects for each input bfd
4325 that requires an LDM entry. Make sure that all LDM entries in
4326 a GOT resolve to the same index. */
4327 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4329 entry->gotidx = g->tls_ldm_offset;
4332 g->tls_ldm_offset = next_index;
4334 entry->gotidx = next_index;
4335 tls_type = entry->tls_type;
4338 /* Account for the entries we've just allocated. */
4339 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4340 g->tls_assigned_gotno += 2;
4341 if (tls_type & GOT_TLS_IE)
4342 g->tls_assigned_gotno += 1;
4347 /* If passed a NULL mips_got_info in the argument, set the marker used
4348 to tell whether a global symbol needs a got entry (in the primary
4349 got) to the given VALUE.
4351 If passed a pointer G to a mips_got_info in the argument (it must
4352 not be the primary GOT), compute the offset from the beginning of
4353 the (primary) GOT section to the entry in G corresponding to the
4354 global symbol. G's assigned_gotno must contain the index of the
4355 first available global GOT entry in G. VALUE must contain the size
4356 of a GOT entry in bytes. For each global GOT entry that requires a
4357 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4358 marked as not eligible for lazy resolution through a function
4361 mips_elf_set_global_got_offset (void **entryp, void *p)
4363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4364 struct mips_elf_set_global_got_offset_arg *arg
4365 = (struct mips_elf_set_global_got_offset_arg *)p;
4366 struct mips_got_info *g = arg->g;
4368 if (g && entry->tls_type != GOT_NORMAL)
4369 arg->needed_relocs +=
4370 mips_tls_got_relocs (arg->info, entry->tls_type,
4371 entry->symndx == -1 ? &entry->d.h->root : NULL);
4373 if (entry->abfd != NULL
4374 && entry->symndx == -1
4375 && entry->d.h->global_got_area != GGA_NONE)
4379 BFD_ASSERT (g->global_gotsym == NULL);
4381 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4382 if (arg->info->shared
4383 || (elf_hash_table (arg->info)->dynamic_sections_created
4384 && entry->d.h->root.def_dynamic
4385 && !entry->d.h->root.def_regular))
4386 ++arg->needed_relocs;
4389 entry->d.h->global_got_area = arg->value;
4395 /* A htab_traverse callback for GOT entries for which DATA is the
4396 bfd_link_info. Forbid any global symbols from having traditional
4397 lazy-binding stubs. */
4400 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4402 struct bfd_link_info *info;
4403 struct mips_elf_link_hash_table *htab;
4404 struct mips_got_entry *entry;
4406 entry = (struct mips_got_entry *) *entryp;
4407 info = (struct bfd_link_info *) data;
4408 htab = mips_elf_hash_table (info);
4409 BFD_ASSERT (htab != NULL);
4411 if (entry->abfd != NULL
4412 && entry->symndx == -1
4413 && entry->d.h->needs_lazy_stub)
4415 entry->d.h->needs_lazy_stub = FALSE;
4416 htab->lazy_stub_count--;
4422 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4425 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4427 if (g->bfd2got == NULL)
4430 g = mips_elf_got_for_ibfd (g, ibfd);
4434 BFD_ASSERT (g->next);
4438 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4439 * MIPS_ELF_GOT_SIZE (abfd);
4442 /* Turn a single GOT that is too big for 16-bit addressing into
4443 a sequence of GOTs, each one 16-bit addressable. */
4446 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4447 asection *got, bfd_size_type pages)
4449 struct mips_elf_link_hash_table *htab;
4450 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4451 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4452 struct mips_got_info *g, *gg;
4453 unsigned int assign, needed_relocs;
4456 dynobj = elf_hash_table (info)->dynobj;
4457 htab = mips_elf_hash_table (info);
4458 BFD_ASSERT (htab != NULL);
4461 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4462 mips_elf_bfd2got_entry_eq, NULL);
4463 if (g->bfd2got == NULL)
4466 got_per_bfd_arg.bfd2got = g->bfd2got;
4467 got_per_bfd_arg.obfd = abfd;
4468 got_per_bfd_arg.info = info;
4470 /* Count how many GOT entries each input bfd requires, creating a
4471 map from bfd to got info while at that. */
4472 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4473 if (got_per_bfd_arg.obfd == NULL)
4476 /* Also count how many page entries each input bfd requires. */
4477 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4479 if (got_per_bfd_arg.obfd == NULL)
4482 got_per_bfd_arg.current = NULL;
4483 got_per_bfd_arg.primary = NULL;
4484 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4485 / MIPS_ELF_GOT_SIZE (abfd))
4486 - htab->reserved_gotno);
4487 got_per_bfd_arg.max_pages = pages;
4488 /* The number of globals that will be included in the primary GOT.
4489 See the calls to mips_elf_set_global_got_offset below for more
4491 got_per_bfd_arg.global_count = g->global_gotno;
4493 /* Try to merge the GOTs of input bfds together, as long as they
4494 don't seem to exceed the maximum GOT size, choosing one of them
4495 to be the primary GOT. */
4496 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4497 if (got_per_bfd_arg.obfd == NULL)
4500 /* If we do not find any suitable primary GOT, create an empty one. */
4501 if (got_per_bfd_arg.primary == NULL)
4503 g->next = (struct mips_got_info *)
4504 bfd_alloc (abfd, sizeof (struct mips_got_info));
4505 if (g->next == NULL)
4508 g->next->global_gotsym = NULL;
4509 g->next->global_gotno = 0;
4510 g->next->reloc_only_gotno = 0;
4511 g->next->local_gotno = 0;
4512 g->next->page_gotno = 0;
4513 g->next->tls_gotno = 0;
4514 g->next->assigned_gotno = 0;
4515 g->next->tls_assigned_gotno = 0;
4516 g->next->tls_ldm_offset = MINUS_ONE;
4517 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4518 mips_elf_multi_got_entry_eq,
4520 if (g->next->got_entries == NULL)
4522 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4523 mips_got_page_entry_eq,
4525 if (g->next->got_page_entries == NULL)
4527 g->next->bfd2got = NULL;
4530 g->next = got_per_bfd_arg.primary;
4531 g->next->next = got_per_bfd_arg.current;
4533 /* GG is now the master GOT, and G is the primary GOT. */
4537 /* Map the output bfd to the primary got. That's what we're going
4538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4539 didn't mark in check_relocs, and we want a quick way to find it.
4540 We can't just use gg->next because we're going to reverse the
4543 struct mips_elf_bfd2got_hash *bfdgot;
4546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4556 BFD_ASSERT (*bfdgotp == NULL);
4560 /* Every symbol that is referenced in a dynamic relocation must be
4561 present in the primary GOT, so arrange for them to appear after
4562 those that are actually referenced. */
4563 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4564 g->global_gotno = gg->global_gotno;
4566 set_got_offset_arg.g = NULL;
4567 set_got_offset_arg.value = GGA_RELOC_ONLY;
4568 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4569 &set_got_offset_arg);
4570 set_got_offset_arg.value = GGA_NORMAL;
4571 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4572 &set_got_offset_arg);
4574 /* Now go through the GOTs assigning them offset ranges.
4575 [assigned_gotno, local_gotno[ will be set to the range of local
4576 entries in each GOT. We can then compute the end of a GOT by
4577 adding local_gotno to global_gotno. We reverse the list and make
4578 it circular since then we'll be able to quickly compute the
4579 beginning of a GOT, by computing the end of its predecessor. To
4580 avoid special cases for the primary GOT, while still preserving
4581 assertions that are valid for both single- and multi-got links,
4582 we arrange for the main got struct to have the right number of
4583 global entries, but set its local_gotno such that the initial
4584 offset of the primary GOT is zero. Remember that the primary GOT
4585 will become the last item in the circular linked list, so it
4586 points back to the master GOT. */
4587 gg->local_gotno = -g->global_gotno;
4588 gg->global_gotno = g->global_gotno;
4595 struct mips_got_info *gn;
4597 assign += htab->reserved_gotno;
4598 g->assigned_gotno = assign;
4599 g->local_gotno += assign;
4600 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4601 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4603 /* Take g out of the direct list, and push it onto the reversed
4604 list that gg points to. g->next is guaranteed to be nonnull after
4605 this operation, as required by mips_elf_initialize_tls_index. */
4610 /* Set up any TLS entries. We always place the TLS entries after
4611 all non-TLS entries. */
4612 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4613 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4615 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4618 /* Forbid global symbols in every non-primary GOT from having
4619 lazy-binding stubs. */
4621 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4625 got->size = (gg->next->local_gotno
4626 + gg->next->global_gotno
4627 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4630 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4631 set_got_offset_arg.info = info;
4632 for (g = gg->next; g && g->next != gg; g = g->next)
4634 unsigned int save_assign;
4636 /* Assign offsets to global GOT entries. */
4637 save_assign = g->assigned_gotno;
4638 g->assigned_gotno = g->local_gotno;
4639 set_got_offset_arg.g = g;
4640 set_got_offset_arg.needed_relocs = 0;
4641 htab_traverse (g->got_entries,
4642 mips_elf_set_global_got_offset,
4643 &set_got_offset_arg);
4644 needed_relocs += set_got_offset_arg.needed_relocs;
4645 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4647 g->assigned_gotno = save_assign;
4650 needed_relocs += g->local_gotno - g->assigned_gotno;
4651 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4652 + g->next->global_gotno
4653 + g->next->tls_gotno
4654 + htab->reserved_gotno);
4659 mips_elf_allocate_dynamic_relocations (dynobj, info,
4666 /* Returns the first relocation of type r_type found, beginning with
4667 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4669 static const Elf_Internal_Rela *
4670 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4671 const Elf_Internal_Rela *relocation,
4672 const Elf_Internal_Rela *relend)
4674 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4676 while (relocation < relend)
4678 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4679 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4685 /* We didn't find it. */
4689 /* Return whether an input relocation is against a local symbol. */
4692 mips_elf_local_relocation_p (bfd *input_bfd,
4693 const Elf_Internal_Rela *relocation,
4694 asection **local_sections)
4696 unsigned long r_symndx;
4697 Elf_Internal_Shdr *symtab_hdr;
4700 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4702 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4704 if (r_symndx < extsymoff)
4706 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4712 /* Sign-extend VALUE, which has the indicated number of BITS. */
4715 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4717 if (value & ((bfd_vma) 1 << (bits - 1)))
4718 /* VALUE is negative. */
4719 value |= ((bfd_vma) - 1) << bits;
4724 /* Return non-zero if the indicated VALUE has overflowed the maximum
4725 range expressible by a signed number with the indicated number of
4729 mips_elf_overflow_p (bfd_vma value, int bits)
4731 bfd_signed_vma svalue = (bfd_signed_vma) value;
4733 if (svalue > (1 << (bits - 1)) - 1)
4734 /* The value is too big. */
4736 else if (svalue < -(1 << (bits - 1)))
4737 /* The value is too small. */
4744 /* Calculate the %high function. */
4747 mips_elf_high (bfd_vma value)
4749 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4752 /* Calculate the %higher function. */
4755 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4758 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4765 /* Calculate the %highest function. */
4768 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4771 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4778 /* Create the .compact_rel section. */
4781 mips_elf_create_compact_rel_section
4782 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4785 register asection *s;
4787 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4789 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4792 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4794 || ! bfd_set_section_alignment (abfd, s,
4795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4798 s->size = sizeof (Elf32_External_compact_rel);
4804 /* Create the .got section to hold the global offset table. */
4807 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4810 register asection *s;
4811 struct elf_link_hash_entry *h;
4812 struct bfd_link_hash_entry *bh;
4813 struct mips_got_info *g;
4815 struct mips_elf_link_hash_table *htab;
4817 htab = mips_elf_hash_table (info);
4818 BFD_ASSERT (htab != NULL);
4820 /* This function may be called more than once. */
4824 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4825 | SEC_LINKER_CREATED);
4827 /* We have to use an alignment of 2**4 here because this is hardcoded
4828 in the function stub generation and in the linker script. */
4829 s = bfd_make_section_with_flags (abfd, ".got", flags);
4831 || ! bfd_set_section_alignment (abfd, s, 4))
4835 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4836 linker script because we don't want to define the symbol if we
4837 are not creating a global offset table. */
4839 if (! (_bfd_generic_link_add_one_symbol
4840 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4841 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4844 h = (struct elf_link_hash_entry *) bh;
4847 h->type = STT_OBJECT;
4848 elf_hash_table (info)->hgot = h;
4851 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4854 amt = sizeof (struct mips_got_info);
4855 g = bfd_alloc (abfd, amt);
4858 g->global_gotsym = NULL;
4859 g->global_gotno = 0;
4860 g->reloc_only_gotno = 0;
4864 g->assigned_gotno = 0;
4867 g->tls_ldm_offset = MINUS_ONE;
4868 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4869 mips_elf_got_entry_eq, NULL);
4870 if (g->got_entries == NULL)
4872 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4873 mips_got_page_entry_eq, NULL);
4874 if (g->got_page_entries == NULL)
4877 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4878 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4880 /* We also need a .got.plt section when generating PLTs. */
4881 s = bfd_make_section_with_flags (abfd, ".got.plt",
4882 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4883 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4891 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4892 __GOTT_INDEX__ symbols. These symbols are only special for
4893 shared objects; they are not used in executables. */
4896 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4898 return (mips_elf_hash_table (info)->is_vxworks
4900 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4901 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4904 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4905 require an la25 stub. See also mips_elf_local_pic_function_p,
4906 which determines whether the destination function ever requires a
4910 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4912 /* We specifically ignore branches and jumps from EF_PIC objects,
4913 where the onus is on the compiler or programmer to perform any
4914 necessary initialization of $25. Sometimes such initialization
4915 is unnecessary; for example, -mno-shared functions do not use
4916 the incoming value of $25, and may therefore be called directly. */
4917 if (PIC_OBJECT_P (input_bfd))
4925 case R_MICROMIPS_26_S1:
4926 case R_MICROMIPS_PC7_S1:
4927 case R_MICROMIPS_PC10_S1:
4928 case R_MICROMIPS_PC16_S1:
4929 case R_MICROMIPS_PC23_S2:
4937 /* Calculate the value produced by the RELOCATION (which comes from
4938 the INPUT_BFD). The ADDEND is the addend to use for this
4939 RELOCATION; RELOCATION->R_ADDEND is ignored.
4941 The result of the relocation calculation is stored in VALUEP.
4942 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4943 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4945 This function returns bfd_reloc_continue if the caller need take no
4946 further action regarding this relocation, bfd_reloc_notsupported if
4947 something goes dramatically wrong, bfd_reloc_overflow if an
4948 overflow occurs, and bfd_reloc_ok to indicate success. */
4950 static bfd_reloc_status_type
4951 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4952 asection *input_section,
4953 struct bfd_link_info *info,
4954 const Elf_Internal_Rela *relocation,
4955 bfd_vma addend, reloc_howto_type *howto,
4956 Elf_Internal_Sym *local_syms,
4957 asection **local_sections, bfd_vma *valuep,
4959 bfd_boolean *cross_mode_jump_p,
4960 bfd_boolean save_addend)
4962 /* The eventual value we will return. */
4964 /* The address of the symbol against which the relocation is
4967 /* The final GP value to be used for the relocatable, executable, or
4968 shared object file being produced. */
4970 /* The place (section offset or address) of the storage unit being
4973 /* The value of GP used to create the relocatable object. */
4975 /* The offset into the global offset table at which the address of
4976 the relocation entry symbol, adjusted by the addend, resides
4977 during execution. */
4978 bfd_vma g = MINUS_ONE;
4979 /* The section in which the symbol referenced by the relocation is
4981 asection *sec = NULL;
4982 struct mips_elf_link_hash_entry *h = NULL;
4983 /* TRUE if the symbol referred to by this relocation is a local
4985 bfd_boolean local_p, was_local_p;
4986 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4987 bfd_boolean gp_disp_p = FALSE;
4988 /* TRUE if the symbol referred to by this relocation is
4989 "__gnu_local_gp". */
4990 bfd_boolean gnu_local_gp_p = FALSE;
4991 Elf_Internal_Shdr *symtab_hdr;
4993 unsigned long r_symndx;
4995 /* TRUE if overflow occurred during the calculation of the
4996 relocation value. */
4997 bfd_boolean overflowed_p;
4998 /* TRUE if this relocation refers to a MIPS16 function. */
4999 bfd_boolean target_is_16_bit_code_p = FALSE;
5000 bfd_boolean target_is_micromips_code_p = FALSE;
5001 struct mips_elf_link_hash_table *htab;
5004 dynobj = elf_hash_table (info)->dynobj;
5005 htab = mips_elf_hash_table (info);
5006 BFD_ASSERT (htab != NULL);
5008 /* Parse the relocation. */
5009 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5010 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5011 p = (input_section->output_section->vma
5012 + input_section->output_offset
5013 + relocation->r_offset);
5015 /* Assume that there will be no overflow. */
5016 overflowed_p = FALSE;
5018 /* Figure out whether or not the symbol is local, and get the offset
5019 used in the array of hash table entries. */
5020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5023 was_local_p = local_p;
5024 if (! elf_bad_symtab (input_bfd))
5025 extsymoff = symtab_hdr->sh_info;
5028 /* The symbol table does not follow the rule that local symbols
5029 must come before globals. */
5033 /* Figure out the value of the symbol. */
5036 Elf_Internal_Sym *sym;
5038 sym = local_syms + r_symndx;
5039 sec = local_sections[r_symndx];
5041 symbol = sec->output_section->vma + sec->output_offset;
5042 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5043 || (sec->flags & SEC_MERGE))
5044 symbol += sym->st_value;
5045 if ((sec->flags & SEC_MERGE)
5046 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5048 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5050 addend += sec->output_section->vma + sec->output_offset;
5053 /* MIPS16/microMIPS text labels should be treated as odd. */
5054 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5057 /* Record the name of this symbol, for our caller. */
5058 *namep = bfd_elf_string_from_elf_section (input_bfd,
5059 symtab_hdr->sh_link,
5062 *namep = bfd_section_name (input_bfd, sec);
5064 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5065 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5069 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5071 /* For global symbols we look up the symbol in the hash-table. */
5072 h = ((struct mips_elf_link_hash_entry *)
5073 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5074 /* Find the real hash-table entry for this symbol. */
5075 while (h->root.root.type == bfd_link_hash_indirect
5076 || h->root.root.type == bfd_link_hash_warning)
5077 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5079 /* Record the name of this symbol, for our caller. */
5080 *namep = h->root.root.root.string;
5082 /* See if this is the special _gp_disp symbol. Note that such a
5083 symbol must always be a global symbol. */
5084 if (strcmp (*namep, "_gp_disp") == 0
5085 && ! NEWABI_P (input_bfd))
5087 /* Relocations against _gp_disp are permitted only with
5088 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5089 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5090 return bfd_reloc_notsupported;
5094 /* See if this is the special _gp symbol. Note that such a
5095 symbol must always be a global symbol. */
5096 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5097 gnu_local_gp_p = TRUE;
5100 /* If this symbol is defined, calculate its address. Note that
5101 _gp_disp is a magic symbol, always implicitly defined by the
5102 linker, so it's inappropriate to check to see whether or not
5104 else if ((h->root.root.type == bfd_link_hash_defined
5105 || h->root.root.type == bfd_link_hash_defweak)
5106 && h->root.root.u.def.section)
5108 sec = h->root.root.u.def.section;
5109 if (sec->output_section)
5110 symbol = (h->root.root.u.def.value
5111 + sec->output_section->vma
5112 + sec->output_offset);
5114 symbol = h->root.root.u.def.value;
5116 else if (h->root.root.type == bfd_link_hash_undefweak)
5117 /* We allow relocations against undefined weak symbols, giving
5118 it the value zero, so that you can undefined weak functions
5119 and check to see if they exist by looking at their
5122 else if (info->unresolved_syms_in_objects == RM_IGNORE
5123 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5125 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5126 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5128 /* If this is a dynamic link, we should have created a
5129 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5130 in in _bfd_mips_elf_create_dynamic_sections.
5131 Otherwise, we should define the symbol with a value of 0.
5132 FIXME: It should probably get into the symbol table
5134 BFD_ASSERT (! info->shared);
5135 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5138 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5140 /* This is an optional symbol - an Irix specific extension to the
5141 ELF spec. Ignore it for now.
5142 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5143 than simply ignoring them, but we do not handle this for now.
5144 For information see the "64-bit ELF Object File Specification"
5145 which is available from here:
5146 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5149 else if ((*info->callbacks->undefined_symbol)
5150 (info, h->root.root.root.string, input_bfd,
5151 input_section, relocation->r_offset,
5152 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5153 || ELF_ST_VISIBILITY (h->root.other)))
5155 return bfd_reloc_undefined;
5159 return bfd_reloc_notsupported;
5162 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5163 /* If the output section is the PLT section,
5164 then the target is not microMIPS. */
5165 target_is_micromips_code_p = (htab->splt != sec
5166 && ELF_ST_IS_MICROMIPS (h->root.other));
5169 /* If this is a reference to a 16-bit function with a stub, we need
5170 to redirect the relocation to the stub unless:
5172 (a) the relocation is for a MIPS16 JAL;
5174 (b) the relocation is for a MIPS16 PIC call, and there are no
5175 non-MIPS16 uses of the GOT slot; or
5177 (c) the section allows direct references to MIPS16 functions. */
5178 if (r_type != R_MIPS16_26
5179 && !info->relocatable
5181 && h->fn_stub != NULL
5182 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5184 && elf_tdata (input_bfd)->local_stubs != NULL
5185 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5186 && !section_allows_mips16_refs_p (input_section))
5188 /* This is a 32- or 64-bit call to a 16-bit function. We should
5189 have already noticed that we were going to need the
5192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5195 BFD_ASSERT (h->need_fn_stub);
5199 symbol = sec->output_section->vma + sec->output_offset;
5200 /* The target is 16-bit, but the stub isn't. */
5201 target_is_16_bit_code_p = FALSE;
5203 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5204 need to redirect the call to the stub. Note that we specifically
5205 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5206 use an indirect stub instead. */
5207 else if (r_type == R_MIPS16_26 && !info->relocatable
5208 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5210 && elf_tdata (input_bfd)->local_call_stubs != NULL
5211 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5212 && !target_is_16_bit_code_p)
5215 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5218 /* If both call_stub and call_fp_stub are defined, we can figure
5219 out which one to use by checking which one appears in the input
5221 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5226 for (o = input_bfd->sections; o != NULL; o = o->next)
5228 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5230 sec = h->call_fp_stub;
5237 else if (h->call_stub != NULL)
5240 sec = h->call_fp_stub;
5243 BFD_ASSERT (sec->size > 0);
5244 symbol = sec->output_section->vma + sec->output_offset;
5246 /* If this is a direct call to a PIC function, redirect to the
5248 else if (h != NULL && h->la25_stub
5249 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5250 symbol = (h->la25_stub->stub_section->output_section->vma
5251 + h->la25_stub->stub_section->output_offset
5252 + h->la25_stub->offset);
5254 /* Make sure MIPS16 and microMIPS are not used together. */
5255 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5256 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5258 (*_bfd_error_handler)
5259 (_("MIPS16 and microMIPS functions cannot call each other"));
5260 return bfd_reloc_notsupported;
5263 /* Calls from 16-bit code to 32-bit code and vice versa require the
5264 mode change. However, we can ignore calls to undefined weak symbols,
5265 which should never be executed at runtime. This exception is important
5266 because the assembly writer may have "known" that any definition of the
5267 symbol would be 16-bit code, and that direct jumps were therefore
5269 *cross_mode_jump_p = (!info->relocatable
5270 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5271 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5272 || (r_type == R_MICROMIPS_26_S1
5273 && !target_is_micromips_code_p)
5274 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5275 && (target_is_16_bit_code_p
5276 || target_is_micromips_code_p))));
5278 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5280 gp0 = _bfd_get_gp_value (input_bfd);
5281 gp = _bfd_get_gp_value (abfd);
5283 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5288 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5289 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5290 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5291 if (got_page_reloc_p (r_type) && !local_p)
5293 r_type = (micromips_reloc_p (r_type)
5294 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5298 /* If we haven't already determined the GOT offset, and we're going
5299 to need it, get it now. */
5302 case R_MIPS16_CALL16:
5303 case R_MIPS16_GOT16:
5306 case R_MIPS_GOT_DISP:
5307 case R_MIPS_GOT_HI16:
5308 case R_MIPS_CALL_HI16:
5309 case R_MIPS_GOT_LO16:
5310 case R_MIPS_CALL_LO16:
5311 case R_MICROMIPS_CALL16:
5312 case R_MICROMIPS_GOT16:
5313 case R_MICROMIPS_GOT_DISP:
5314 case R_MICROMIPS_GOT_HI16:
5315 case R_MICROMIPS_CALL_HI16:
5316 case R_MICROMIPS_GOT_LO16:
5317 case R_MICROMIPS_CALL_LO16:
5319 case R_MIPS_TLS_GOTTPREL:
5320 case R_MIPS_TLS_LDM:
5321 case R_MICROMIPS_TLS_GD:
5322 case R_MICROMIPS_TLS_GOTTPREL:
5323 case R_MICROMIPS_TLS_LDM:
5324 /* Find the index into the GOT where this value is located. */
5325 if (tls_ldm_reloc_p (r_type))
5327 g = mips_elf_local_got_index (abfd, input_bfd, info,
5328 0, 0, NULL, r_type);
5330 return bfd_reloc_outofrange;
5334 /* On VxWorks, CALL relocations should refer to the .got.plt
5335 entry, which is initialized to point at the PLT stub. */
5336 if (htab->is_vxworks
5337 && (call_hi16_reloc_p (r_type)
5338 || call_lo16_reloc_p (r_type)
5339 || call16_reloc_p (r_type)))
5341 BFD_ASSERT (addend == 0);
5342 BFD_ASSERT (h->root.needs_plt);
5343 g = mips_elf_gotplt_index (info, &h->root);
5347 BFD_ASSERT (addend == 0);
5348 g = mips_elf_global_got_index (dynobj, input_bfd,
5349 &h->root, r_type, info);
5350 if (h->tls_type == GOT_NORMAL
5351 && !elf_hash_table (info)->dynamic_sections_created)
5352 /* This is a static link. We must initialize the GOT entry. */
5353 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5356 else if (!htab->is_vxworks
5357 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5358 /* The calculation below does not involve "g". */
5362 g = mips_elf_local_got_index (abfd, input_bfd, info,
5363 symbol + addend, r_symndx, h, r_type);
5365 return bfd_reloc_outofrange;
5368 /* Convert GOT indices to actual offsets. */
5369 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5373 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5374 symbols are resolved by the loader. Add them to .rela.dyn. */
5375 if (h != NULL && is_gott_symbol (info, &h->root))
5377 Elf_Internal_Rela outrel;
5381 s = mips_elf_rel_dyn_section (info, FALSE);
5382 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5384 outrel.r_offset = (input_section->output_section->vma
5385 + input_section->output_offset
5386 + relocation->r_offset);
5387 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5388 outrel.r_addend = addend;
5389 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5391 /* If we've written this relocation for a readonly section,
5392 we need to set DF_TEXTREL again, so that we do not delete the
5394 if (MIPS_ELF_READONLY_SECTION (input_section))
5395 info->flags |= DF_TEXTREL;
5398 return bfd_reloc_ok;
5401 /* Figure out what kind of relocation is being performed. */
5405 return bfd_reloc_continue;
5408 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5409 overflowed_p = mips_elf_overflow_p (value, 16);
5416 || (htab->root.dynamic_sections_created
5418 && h->root.def_dynamic
5419 && !h->root.def_regular
5420 && !h->has_static_relocs))
5421 && r_symndx != STN_UNDEF
5423 || h->root.root.type != bfd_link_hash_undefweak
5424 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5425 && (input_section->flags & SEC_ALLOC) != 0)
5427 /* If we're creating a shared library, then we can't know
5428 where the symbol will end up. So, we create a relocation
5429 record in the output, and leave the job up to the dynamic
5430 linker. We must do the same for executable references to
5431 shared library symbols, unless we've decided to use copy
5432 relocs or PLTs instead. */
5434 if (!mips_elf_create_dynamic_relocation (abfd,
5442 return bfd_reloc_undefined;
5446 if (r_type != R_MIPS_REL32)
5447 value = symbol + addend;
5451 value &= howto->dst_mask;
5455 value = symbol + addend - p;
5456 value &= howto->dst_mask;
5460 /* The calculation for R_MIPS16_26 is just the same as for an
5461 R_MIPS_26. It's only the storage of the relocated field into
5462 the output file that's different. That's handled in
5463 mips_elf_perform_relocation. So, we just fall through to the
5464 R_MIPS_26 case here. */
5466 case R_MICROMIPS_26_S1:
5470 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5471 the correct ISA mode selector and bit 1 must be 0. */
5472 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5473 return bfd_reloc_outofrange;
5475 /* Shift is 2, unusually, for microMIPS JALX. */
5476 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5479 value = addend | ((p + 4) & (0xfc000000 << shift));
5481 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5482 value = (value + symbol) >> shift;
5483 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5484 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5485 value &= howto->dst_mask;
5489 case R_MIPS_TLS_DTPREL_HI16:
5490 case R_MICROMIPS_TLS_DTPREL_HI16:
5491 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5495 case R_MIPS_TLS_DTPREL_LO16:
5496 case R_MIPS_TLS_DTPREL32:
5497 case R_MIPS_TLS_DTPREL64:
5498 case R_MICROMIPS_TLS_DTPREL_LO16:
5499 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5502 case R_MIPS_TLS_TPREL_HI16:
5503 case R_MICROMIPS_TLS_TPREL_HI16:
5504 value = (mips_elf_high (addend + symbol - tprel_base (info))
5508 case R_MIPS_TLS_TPREL_LO16:
5509 case R_MICROMIPS_TLS_TPREL_LO16:
5510 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5515 case R_MICROMIPS_HI16:
5518 value = mips_elf_high (addend + symbol);
5519 value &= howto->dst_mask;
5523 /* For MIPS16 ABI code we generate this sequence
5524 0: li $v0,%hi(_gp_disp)
5525 4: addiupc $v1,%lo(_gp_disp)
5529 So the offsets of hi and lo relocs are the same, but the
5530 $pc is four higher than $t9 would be, so reduce
5531 both reloc addends by 4. */
5532 if (r_type == R_MIPS16_HI16)
5533 value = mips_elf_high (addend + gp - p - 4);
5534 /* The microMIPS .cpload sequence uses the same assembly
5535 instructions as the traditional psABI version, but the
5536 incoming $t9 has the low bit set. */
5537 else if (r_type == R_MICROMIPS_HI16)
5538 value = mips_elf_high (addend + gp - p - 1);
5540 value = mips_elf_high (addend + gp - p);
5541 overflowed_p = mips_elf_overflow_p (value, 16);
5547 case R_MICROMIPS_LO16:
5548 case R_MICROMIPS_HI0_LO16:
5550 value = (symbol + addend) & howto->dst_mask;
5553 /* See the comment for R_MIPS16_HI16 above for the reason
5554 for this conditional. */
5555 if (r_type == R_MIPS16_LO16)
5556 value = addend + gp - p;
5557 else if (r_type == R_MICROMIPS_LO16
5558 || r_type == R_MICROMIPS_HI0_LO16)
5559 value = addend + gp - p + 3;
5561 value = addend + gp - p + 4;
5562 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5563 for overflow. But, on, say, IRIX5, relocations against
5564 _gp_disp are normally generated from the .cpload
5565 pseudo-op. It generates code that normally looks like
5568 lui $gp,%hi(_gp_disp)
5569 addiu $gp,$gp,%lo(_gp_disp)
5572 Here $t9 holds the address of the function being called,
5573 as required by the MIPS ELF ABI. The R_MIPS_LO16
5574 relocation can easily overflow in this situation, but the
5575 R_MIPS_HI16 relocation will handle the overflow.
5576 Therefore, we consider this a bug in the MIPS ABI, and do
5577 not check for overflow here. */
5581 case R_MIPS_LITERAL:
5582 case R_MICROMIPS_LITERAL:
5583 /* Because we don't merge literal sections, we can handle this
5584 just like R_MIPS_GPREL16. In the long run, we should merge
5585 shared literals, and then we will need to additional work
5590 case R_MIPS16_GPREL:
5591 /* The R_MIPS16_GPREL performs the same calculation as
5592 R_MIPS_GPREL16, but stores the relocated bits in a different
5593 order. We don't need to do anything special here; the
5594 differences are handled in mips_elf_perform_relocation. */
5595 case R_MIPS_GPREL16:
5596 case R_MICROMIPS_GPREL7_S2:
5597 case R_MICROMIPS_GPREL16:
5598 /* Only sign-extend the addend if it was extracted from the
5599 instruction. If the addend was separate, leave it alone,
5600 otherwise we may lose significant bits. */
5601 if (howto->partial_inplace)
5602 addend = _bfd_mips_elf_sign_extend (addend, 16);
5603 value = symbol + addend - gp;
5604 /* If the symbol was local, any earlier relocatable links will
5605 have adjusted its addend with the gp offset, so compensate
5606 for that now. Don't do it for symbols forced local in this
5607 link, though, since they won't have had the gp offset applied
5611 overflowed_p = mips_elf_overflow_p (value, 16);
5614 case R_MIPS16_GOT16:
5615 case R_MIPS16_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_CALL16:
5620 /* VxWorks does not have separate local and global semantics for
5621 R_MIPS*_GOT16; every relocation evaluates to "G". */
5622 if (!htab->is_vxworks && local_p)
5624 value = mips_elf_got16_entry (abfd, input_bfd, info,
5625 symbol + addend, !was_local_p);
5626 if (value == MINUS_ONE)
5627 return bfd_reloc_outofrange;
5629 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5630 overflowed_p = mips_elf_overflow_p (value, 16);
5637 case R_MIPS_TLS_GOTTPREL:
5638 case R_MIPS_TLS_LDM:
5639 case R_MIPS_GOT_DISP:
5640 case R_MICROMIPS_TLS_GD:
5641 case R_MICROMIPS_TLS_GOTTPREL:
5642 case R_MICROMIPS_TLS_LDM:
5643 case R_MICROMIPS_GOT_DISP:
5645 overflowed_p = mips_elf_overflow_p (value, 16);
5648 case R_MIPS_GPREL32:
5649 value = (addend + symbol + gp0 - gp);
5651 value &= howto->dst_mask;
5655 case R_MIPS_GNU_REL16_S2:
5656 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5657 overflowed_p = mips_elf_overflow_p (value, 18);
5658 value >>= howto->rightshift;
5659 value &= howto->dst_mask;
5662 case R_MICROMIPS_PC7_S1:
5663 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5664 overflowed_p = mips_elf_overflow_p (value, 8);
5665 value >>= howto->rightshift;
5666 value &= howto->dst_mask;
5669 case R_MICROMIPS_PC10_S1:
5670 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5671 overflowed_p = mips_elf_overflow_p (value, 11);
5672 value >>= howto->rightshift;
5673 value &= howto->dst_mask;
5676 case R_MICROMIPS_PC16_S1:
5677 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5678 overflowed_p = mips_elf_overflow_p (value, 17);
5679 value >>= howto->rightshift;
5680 value &= howto->dst_mask;
5683 case R_MICROMIPS_PC23_S2:
5684 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5685 overflowed_p = mips_elf_overflow_p (value, 25);
5686 value >>= howto->rightshift;
5687 value &= howto->dst_mask;
5690 case R_MIPS_GOT_HI16:
5691 case R_MIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_HI16:
5693 case R_MICROMIPS_CALL_HI16:
5694 /* We're allowed to handle these two relocations identically.
5695 The dynamic linker is allowed to handle the CALL relocations
5696 differently by creating a lazy evaluation stub. */
5698 value = mips_elf_high (value);
5699 value &= howto->dst_mask;
5702 case R_MIPS_GOT_LO16:
5703 case R_MIPS_CALL_LO16:
5704 case R_MICROMIPS_GOT_LO16:
5705 case R_MICROMIPS_CALL_LO16:
5706 value = g & howto->dst_mask;
5709 case R_MIPS_GOT_PAGE:
5710 case R_MICROMIPS_GOT_PAGE:
5711 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5712 if (value == MINUS_ONE)
5713 return bfd_reloc_outofrange;
5714 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5718 case R_MIPS_GOT_OFST:
5719 case R_MICROMIPS_GOT_OFST:
5721 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5728 case R_MICROMIPS_SUB:
5729 value = symbol - addend;
5730 value &= howto->dst_mask;
5734 case R_MICROMIPS_HIGHER:
5735 value = mips_elf_higher (addend + symbol);
5736 value &= howto->dst_mask;
5739 case R_MIPS_HIGHEST:
5740 case R_MICROMIPS_HIGHEST:
5741 value = mips_elf_highest (addend + symbol);
5742 value &= howto->dst_mask;
5745 case R_MIPS_SCN_DISP:
5746 case R_MICROMIPS_SCN_DISP:
5747 value = symbol + addend - sec->output_offset;
5748 value &= howto->dst_mask;
5752 case R_MICROMIPS_JALR:
5753 /* This relocation is only a hint. In some cases, we optimize
5754 it into a bal instruction. But we don't try to optimize
5755 when the symbol does not resolve locally. */
5756 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5757 return bfd_reloc_continue;
5758 value = symbol + addend;
5762 case R_MIPS_GNU_VTINHERIT:
5763 case R_MIPS_GNU_VTENTRY:
5764 /* We don't do anything with these at present. */
5765 return bfd_reloc_continue;
5768 /* An unrecognized relocation type. */
5769 return bfd_reloc_notsupported;
5772 /* Store the VALUE for our caller. */
5774 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5777 /* Obtain the field relocated by RELOCATION. */
5780 mips_elf_obtain_contents (reloc_howto_type *howto,
5781 const Elf_Internal_Rela *relocation,
5782 bfd *input_bfd, bfd_byte *contents)
5785 bfd_byte *location = contents + relocation->r_offset;
5787 /* Obtain the bytes. */
5788 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5793 /* It has been determined that the result of the RELOCATION is the
5794 VALUE. Use HOWTO to place VALUE into the output file at the
5795 appropriate position. The SECTION is the section to which the
5797 CROSS_MODE_JUMP_P is true if the relocation field
5798 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5800 Returns FALSE if anything goes wrong. */
5803 mips_elf_perform_relocation (struct bfd_link_info *info,
5804 reloc_howto_type *howto,
5805 const Elf_Internal_Rela *relocation,
5806 bfd_vma value, bfd *input_bfd,
5807 asection *input_section, bfd_byte *contents,
5808 bfd_boolean cross_mode_jump_p)
5812 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5814 /* Figure out where the relocation is occurring. */
5815 location = contents + relocation->r_offset;
5817 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5819 /* Obtain the current value. */
5820 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5822 /* Clear the field we are setting. */
5823 x &= ~howto->dst_mask;
5825 /* Set the field. */
5826 x |= (value & howto->dst_mask);
5828 /* If required, turn JAL into JALX. */
5829 if (cross_mode_jump_p && jal_reloc_p (r_type))
5832 bfd_vma opcode = x >> 26;
5833 bfd_vma jalx_opcode;
5835 /* Check to see if the opcode is already JAL or JALX. */
5836 if (r_type == R_MIPS16_26)
5838 ok = ((opcode == 0x6) || (opcode == 0x7));
5841 else if (r_type == R_MICROMIPS_26_S1)
5843 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5848 ok = ((opcode == 0x3) || (opcode == 0x1d));
5852 /* If the opcode is not JAL or JALX, there's a problem. */
5855 (*_bfd_error_handler)
5856 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5859 (unsigned long) relocation->r_offset);
5860 bfd_set_error (bfd_error_bad_value);
5864 /* Make this the JALX opcode. */
5865 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5868 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5870 if (!info->relocatable
5871 && !cross_mode_jump_p
5872 && ((JAL_TO_BAL_P (input_bfd)
5873 && r_type == R_MIPS_26
5874 && (x >> 26) == 0x3) /* jal addr */
5875 || (JALR_TO_BAL_P (input_bfd)
5876 && r_type == R_MIPS_JALR
5877 && x == 0x0320f809) /* jalr t9 */
5878 || (JR_TO_B_P (input_bfd)
5879 && r_type == R_MIPS_JALR
5880 && x == 0x03200008))) /* jr t9 */
5886 addr = (input_section->output_section->vma
5887 + input_section->output_offset
5888 + relocation->r_offset
5890 if (r_type == R_MIPS_26)
5891 dest = (value << 2) | ((addr >> 28) << 28);
5895 if (off <= 0x1ffff && off >= -0x20000)
5897 if (x == 0x03200008) /* jr t9 */
5898 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5900 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5904 /* Put the value into the output. */
5905 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5907 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5913 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5914 is the original relocation, which is now being transformed into a
5915 dynamic relocation. The ADDENDP is adjusted if necessary; the
5916 caller should store the result in place of the original addend. */
5919 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5920 struct bfd_link_info *info,
5921 const Elf_Internal_Rela *rel,
5922 struct mips_elf_link_hash_entry *h,
5923 asection *sec, bfd_vma symbol,
5924 bfd_vma *addendp, asection *input_section)
5926 Elf_Internal_Rela outrel[3];
5931 bfd_boolean defined_p;
5932 struct mips_elf_link_hash_table *htab;
5934 htab = mips_elf_hash_table (info);
5935 BFD_ASSERT (htab != NULL);
5937 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5938 dynobj = elf_hash_table (info)->dynobj;
5939 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5940 BFD_ASSERT (sreloc != NULL);
5941 BFD_ASSERT (sreloc->contents != NULL);
5942 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5945 outrel[0].r_offset =
5946 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5947 if (ABI_64_P (output_bfd))
5949 outrel[1].r_offset =
5950 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5951 outrel[2].r_offset =
5952 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5955 if (outrel[0].r_offset == MINUS_ONE)
5956 /* The relocation field has been deleted. */
5959 if (outrel[0].r_offset == MINUS_TWO)
5961 /* The relocation field has been converted into a relative value of
5962 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5963 the field to be fully relocated, so add in the symbol's value. */
5968 /* We must now calculate the dynamic symbol table index to use
5969 in the relocation. */
5970 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5972 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5973 indx = h->root.dynindx;
5974 if (SGI_COMPAT (output_bfd))
5975 defined_p = h->root.def_regular;
5977 /* ??? glibc's ld.so just adds the final GOT entry to the
5978 relocation field. It therefore treats relocs against
5979 defined symbols in the same way as relocs against
5980 undefined symbols. */
5985 if (sec != NULL && bfd_is_abs_section (sec))
5987 else if (sec == NULL || sec->owner == NULL)
5989 bfd_set_error (bfd_error_bad_value);
5994 indx = elf_section_data (sec->output_section)->dynindx;
5997 asection *osec = htab->root.text_index_section;
5998 indx = elf_section_data (osec)->dynindx;
6004 /* Instead of generating a relocation using the section
6005 symbol, we may as well make it a fully relative
6006 relocation. We want to avoid generating relocations to
6007 local symbols because we used to generate them
6008 incorrectly, without adding the original symbol value,
6009 which is mandated by the ABI for section symbols. In
6010 order to give dynamic loaders and applications time to
6011 phase out the incorrect use, we refrain from emitting
6012 section-relative relocations. It's not like they're
6013 useful, after all. This should be a bit more efficient
6015 /* ??? Although this behavior is compatible with glibc's ld.so,
6016 the ABI says that relocations against STN_UNDEF should have
6017 a symbol value of 0. Irix rld honors this, so relocations
6018 against STN_UNDEF have no effect. */
6019 if (!SGI_COMPAT (output_bfd))
6024 /* If the relocation was previously an absolute relocation and
6025 this symbol will not be referred to by the relocation, we must
6026 adjust it by the value we give it in the dynamic symbol table.
6027 Otherwise leave the job up to the dynamic linker. */
6028 if (defined_p && r_type != R_MIPS_REL32)
6031 if (htab->is_vxworks)
6032 /* VxWorks uses non-relative relocations for this. */
6033 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6035 /* The relocation is always an REL32 relocation because we don't
6036 know where the shared library will wind up at load-time. */
6037 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6040 /* For strict adherence to the ABI specification, we should
6041 generate a R_MIPS_64 relocation record by itself before the
6042 _REL32/_64 record as well, such that the addend is read in as
6043 a 64-bit value (REL32 is a 32-bit relocation, after all).
6044 However, since none of the existing ELF64 MIPS dynamic
6045 loaders seems to care, we don't waste space with these
6046 artificial relocations. If this turns out to not be true,
6047 mips_elf_allocate_dynamic_relocation() should be tweaked so
6048 as to make room for a pair of dynamic relocations per
6049 invocation if ABI_64_P, and here we should generate an
6050 additional relocation record with R_MIPS_64 by itself for a
6051 NULL symbol before this relocation record. */
6052 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6053 ABI_64_P (output_bfd)
6056 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6058 /* Adjust the output offset of the relocation to reference the
6059 correct location in the output file. */
6060 outrel[0].r_offset += (input_section->output_section->vma
6061 + input_section->output_offset);
6062 outrel[1].r_offset += (input_section->output_section->vma
6063 + input_section->output_offset);
6064 outrel[2].r_offset += (input_section->output_section->vma
6065 + input_section->output_offset);
6067 /* Put the relocation back out. We have to use the special
6068 relocation outputter in the 64-bit case since the 64-bit
6069 relocation format is non-standard. */
6070 if (ABI_64_P (output_bfd))
6072 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6073 (output_bfd, &outrel[0],
6075 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6077 else if (htab->is_vxworks)
6079 /* VxWorks uses RELA rather than REL dynamic relocations. */
6080 outrel[0].r_addend = *addendp;
6081 bfd_elf32_swap_reloca_out
6082 (output_bfd, &outrel[0],
6084 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6087 bfd_elf32_swap_reloc_out
6088 (output_bfd, &outrel[0],
6089 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6091 /* We've now added another relocation. */
6092 ++sreloc->reloc_count;
6094 /* Make sure the output section is writable. The dynamic linker
6095 will be writing to it. */
6096 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6099 /* On IRIX5, make an entry of compact relocation info. */
6100 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6102 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6107 Elf32_crinfo cptrel;
6109 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6110 cptrel.vaddr = (rel->r_offset
6111 + input_section->output_section->vma
6112 + input_section->output_offset);
6113 if (r_type == R_MIPS_REL32)
6114 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6116 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6117 mips_elf_set_cr_dist2to (cptrel, 0);
6118 cptrel.konst = *addendp;
6120 cr = (scpt->contents
6121 + sizeof (Elf32_External_compact_rel));
6122 mips_elf_set_cr_relvaddr (cptrel, 0);
6123 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6124 ((Elf32_External_crinfo *) cr
6125 + scpt->reloc_count));
6126 ++scpt->reloc_count;
6130 /* If we've written this relocation for a readonly section,
6131 we need to set DF_TEXTREL again, so that we do not delete the
6133 if (MIPS_ELF_READONLY_SECTION (input_section))
6134 info->flags |= DF_TEXTREL;
6139 /* Return the MACH for a MIPS e_flags value. */
6142 _bfd_elf_mips_mach (flagword flags)
6144 switch (flags & EF_MIPS_MACH)
6146 case E_MIPS_MACH_3900:
6147 return bfd_mach_mips3900;
6149 case E_MIPS_MACH_4010:
6150 return bfd_mach_mips4010;
6152 case E_MIPS_MACH_4100:
6153 return bfd_mach_mips4100;
6155 case E_MIPS_MACH_4111:
6156 return bfd_mach_mips4111;
6158 case E_MIPS_MACH_4120:
6159 return bfd_mach_mips4120;
6161 case E_MIPS_MACH_4650:
6162 return bfd_mach_mips4650;
6164 case E_MIPS_MACH_5400:
6165 return bfd_mach_mips5400;
6167 case E_MIPS_MACH_5500:
6168 return bfd_mach_mips5500;
6170 case E_MIPS_MACH_9000:
6171 return bfd_mach_mips9000;
6173 case E_MIPS_MACH_SB1:
6174 return bfd_mach_mips_sb1;
6176 case E_MIPS_MACH_LS2E:
6177 return bfd_mach_mips_loongson_2e;
6179 case E_MIPS_MACH_LS2F:
6180 return bfd_mach_mips_loongson_2f;
6182 case E_MIPS_MACH_LS3A:
6183 return bfd_mach_mips_loongson_3a;
6185 case E_MIPS_MACH_OCTEON2:
6186 return bfd_mach_mips_octeon2;
6188 case E_MIPS_MACH_OCTEON:
6189 return bfd_mach_mips_octeon;
6191 case E_MIPS_MACH_XLR:
6192 return bfd_mach_mips_xlr;
6195 switch (flags & EF_MIPS_ARCH)
6199 return bfd_mach_mips3000;
6202 return bfd_mach_mips6000;
6205 return bfd_mach_mips4000;
6208 return bfd_mach_mips8000;
6211 return bfd_mach_mips5;
6213 case E_MIPS_ARCH_32:
6214 return bfd_mach_mipsisa32;
6216 case E_MIPS_ARCH_64:
6217 return bfd_mach_mipsisa64;
6219 case E_MIPS_ARCH_32R2:
6220 return bfd_mach_mipsisa32r2;
6222 case E_MIPS_ARCH_64R2:
6223 return bfd_mach_mipsisa64r2;
6230 /* Return printable name for ABI. */
6232 static INLINE char *
6233 elf_mips_abi_name (bfd *abfd)
6237 flags = elf_elfheader (abfd)->e_flags;
6238 switch (flags & EF_MIPS_ABI)
6241 if (ABI_N32_P (abfd))
6243 else if (ABI_64_P (abfd))
6247 case E_MIPS_ABI_O32:
6249 case E_MIPS_ABI_O64:
6251 case E_MIPS_ABI_EABI32:
6253 case E_MIPS_ABI_EABI64:
6256 return "unknown abi";
6260 /* MIPS ELF uses two common sections. One is the usual one, and the
6261 other is for small objects. All the small objects are kept
6262 together, and then referenced via the gp pointer, which yields
6263 faster assembler code. This is what we use for the small common
6264 section. This approach is copied from ecoff.c. */
6265 static asection mips_elf_scom_section;
6266 static asymbol mips_elf_scom_symbol;
6267 static asymbol *mips_elf_scom_symbol_ptr;
6269 /* MIPS ELF also uses an acommon section, which represents an
6270 allocated common symbol which may be overridden by a
6271 definition in a shared library. */
6272 static asection mips_elf_acom_section;
6273 static asymbol mips_elf_acom_symbol;
6274 static asymbol *mips_elf_acom_symbol_ptr;
6276 /* This is used for both the 32-bit and the 64-bit ABI. */
6279 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6281 elf_symbol_type *elfsym;
6283 /* Handle the special MIPS section numbers that a symbol may use. */
6284 elfsym = (elf_symbol_type *) asym;
6285 switch (elfsym->internal_elf_sym.st_shndx)
6287 case SHN_MIPS_ACOMMON:
6288 /* This section is used in a dynamically linked executable file.
6289 It is an allocated common section. The dynamic linker can
6290 either resolve these symbols to something in a shared
6291 library, or it can just leave them here. For our purposes,
6292 we can consider these symbols to be in a new section. */
6293 if (mips_elf_acom_section.name == NULL)
6295 /* Initialize the acommon section. */
6296 mips_elf_acom_section.name = ".acommon";
6297 mips_elf_acom_section.flags = SEC_ALLOC;
6298 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6299 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6300 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6301 mips_elf_acom_symbol.name = ".acommon";
6302 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6303 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6304 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6306 asym->section = &mips_elf_acom_section;
6310 /* Common symbols less than the GP size are automatically
6311 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6312 if (asym->value > elf_gp_size (abfd)
6313 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6314 || IRIX_COMPAT (abfd) == ict_irix6)
6317 case SHN_MIPS_SCOMMON:
6318 if (mips_elf_scom_section.name == NULL)
6320 /* Initialize the small common section. */
6321 mips_elf_scom_section.name = ".scommon";
6322 mips_elf_scom_section.flags = SEC_IS_COMMON;
6323 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6324 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6325 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6326 mips_elf_scom_symbol.name = ".scommon";
6327 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6328 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6329 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6331 asym->section = &mips_elf_scom_section;
6332 asym->value = elfsym->internal_elf_sym.st_size;
6335 case SHN_MIPS_SUNDEFINED:
6336 asym->section = bfd_und_section_ptr;
6341 asection *section = bfd_get_section_by_name (abfd, ".text");
6343 if (section != NULL)
6345 asym->section = section;
6346 /* MIPS_TEXT is a bit special, the address is not an offset
6347 to the base of the .text section. So substract the section
6348 base address to make it an offset. */
6349 asym->value -= section->vma;
6356 asection *section = bfd_get_section_by_name (abfd, ".data");
6358 if (section != NULL)
6360 asym->section = section;
6361 /* MIPS_DATA is a bit special, the address is not an offset
6362 to the base of the .data section. So substract the section
6363 base address to make it an offset. */
6364 asym->value -= section->vma;
6370 /* If this is an odd-valued function symbol, assume it's a MIPS16
6371 or microMIPS one. */
6372 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6373 && (asym->value & 1) != 0)
6376 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6377 elfsym->internal_elf_sym.st_other
6378 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6380 elfsym->internal_elf_sym.st_other
6381 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6385 /* Implement elf_backend_eh_frame_address_size. This differs from
6386 the default in the way it handles EABI64.
6388 EABI64 was originally specified as an LP64 ABI, and that is what
6389 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6390 historically accepted the combination of -mabi=eabi and -mlong32,
6391 and this ILP32 variation has become semi-official over time.
6392 Both forms use elf32 and have pointer-sized FDE addresses.
6394 If an EABI object was generated by GCC 4.0 or above, it will have
6395 an empty .gcc_compiled_longXX section, where XX is the size of longs
6396 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6397 have no special marking to distinguish them from LP64 objects.
6399 We don't want users of the official LP64 ABI to be punished for the
6400 existence of the ILP32 variant, but at the same time, we don't want
6401 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6402 We therefore take the following approach:
6404 - If ABFD contains a .gcc_compiled_longXX section, use it to
6405 determine the pointer size.
6407 - Otherwise check the type of the first relocation. Assume that
6408 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6412 The second check is enough to detect LP64 objects generated by pre-4.0
6413 compilers because, in the kind of output generated by those compilers,
6414 the first relocation will be associated with either a CIE personality
6415 routine or an FDE start address. Furthermore, the compilers never
6416 used a special (non-pointer) encoding for this ABI.
6418 Checking the relocation type should also be safe because there is no
6419 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6423 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6425 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6427 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6429 bfd_boolean long32_p, long64_p;
6431 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6432 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6433 if (long32_p && long64_p)
6440 if (sec->reloc_count > 0
6441 && elf_section_data (sec)->relocs != NULL
6442 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6451 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6452 relocations against two unnamed section symbols to resolve to the
6453 same address. For example, if we have code like:
6455 lw $4,%got_disp(.data)($gp)
6456 lw $25,%got_disp(.text)($gp)
6459 then the linker will resolve both relocations to .data and the program
6460 will jump there rather than to .text.
6462 We can work around this problem by giving names to local section symbols.
6463 This is also what the MIPSpro tools do. */
6466 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6468 return SGI_COMPAT (abfd);
6471 /* Work over a section just before writing it out. This routine is
6472 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6473 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6477 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6479 if (hdr->sh_type == SHT_MIPS_REGINFO
6480 && hdr->sh_size > 0)
6484 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6485 BFD_ASSERT (hdr->contents == NULL);
6488 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6491 H_PUT_32 (abfd, elf_gp (abfd), buf);
6492 if (bfd_bwrite (buf, 4, abfd) != 4)
6496 if (hdr->sh_type == SHT_MIPS_OPTIONS
6497 && hdr->bfd_section != NULL
6498 && mips_elf_section_data (hdr->bfd_section) != NULL
6499 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6501 bfd_byte *contents, *l, *lend;
6503 /* We stored the section contents in the tdata field in the
6504 set_section_contents routine. We save the section contents
6505 so that we don't have to read them again.
6506 At this point we know that elf_gp is set, so we can look
6507 through the section contents to see if there is an
6508 ODK_REGINFO structure. */
6510 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6512 lend = contents + hdr->sh_size;
6513 while (l + sizeof (Elf_External_Options) <= lend)
6515 Elf_Internal_Options intopt;
6517 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6519 if (intopt.size < sizeof (Elf_External_Options))
6521 (*_bfd_error_handler)
6522 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6523 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6526 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6533 + sizeof (Elf_External_Options)
6534 + (sizeof (Elf64_External_RegInfo) - 8)),
6537 H_PUT_64 (abfd, elf_gp (abfd), buf);
6538 if (bfd_bwrite (buf, 8, abfd) != 8)
6541 else if (intopt.kind == ODK_REGINFO)
6548 + sizeof (Elf_External_Options)
6549 + (sizeof (Elf32_External_RegInfo) - 4)),
6552 H_PUT_32 (abfd, elf_gp (abfd), buf);
6553 if (bfd_bwrite (buf, 4, abfd) != 4)
6560 if (hdr->bfd_section != NULL)
6562 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6564 /* .sbss is not handled specially here because the GNU/Linux
6565 prelinker can convert .sbss from NOBITS to PROGBITS and
6566 changing it back to NOBITS breaks the binary. The entry in
6567 _bfd_mips_elf_special_sections will ensure the correct flags
6568 are set on .sbss if BFD creates it without reading it from an
6569 input file, and without special handling here the flags set
6570 on it in an input file will be followed. */
6571 if (strcmp (name, ".sdata") == 0
6572 || strcmp (name, ".lit8") == 0
6573 || strcmp (name, ".lit4") == 0)
6575 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6576 hdr->sh_type = SHT_PROGBITS;
6578 else if (strcmp (name, ".srdata") == 0)
6580 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6581 hdr->sh_type = SHT_PROGBITS;
6583 else if (strcmp (name, ".compact_rel") == 0)
6586 hdr->sh_type = SHT_PROGBITS;
6588 else if (strcmp (name, ".rtproc") == 0)
6590 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6592 unsigned int adjust;
6594 adjust = hdr->sh_size % hdr->sh_addralign;
6596 hdr->sh_size += hdr->sh_addralign - adjust;
6604 /* Handle a MIPS specific section when reading an object file. This
6605 is called when elfcode.h finds a section with an unknown type.
6606 This routine supports both the 32-bit and 64-bit ELF ABI.
6608 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6612 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6613 Elf_Internal_Shdr *hdr,
6619 /* There ought to be a place to keep ELF backend specific flags, but
6620 at the moment there isn't one. We just keep track of the
6621 sections by their name, instead. Fortunately, the ABI gives
6622 suggested names for all the MIPS specific sections, so we will
6623 probably get away with this. */
6624 switch (hdr->sh_type)
6626 case SHT_MIPS_LIBLIST:
6627 if (strcmp (name, ".liblist") != 0)
6631 if (strcmp (name, ".msym") != 0)
6634 case SHT_MIPS_CONFLICT:
6635 if (strcmp (name, ".conflict") != 0)
6638 case SHT_MIPS_GPTAB:
6639 if (! CONST_STRNEQ (name, ".gptab."))
6642 case SHT_MIPS_UCODE:
6643 if (strcmp (name, ".ucode") != 0)
6646 case SHT_MIPS_DEBUG:
6647 if (strcmp (name, ".mdebug") != 0)
6649 flags = SEC_DEBUGGING;
6651 case SHT_MIPS_REGINFO:
6652 if (strcmp (name, ".reginfo") != 0
6653 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6655 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6657 case SHT_MIPS_IFACE:
6658 if (strcmp (name, ".MIPS.interfaces") != 0)
6661 case SHT_MIPS_CONTENT:
6662 if (! CONST_STRNEQ (name, ".MIPS.content"))
6665 case SHT_MIPS_OPTIONS:
6666 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6669 case SHT_MIPS_DWARF:
6670 if (! CONST_STRNEQ (name, ".debug_")
6671 && ! CONST_STRNEQ (name, ".zdebug_"))
6674 case SHT_MIPS_SYMBOL_LIB:
6675 if (strcmp (name, ".MIPS.symlib") != 0)
6678 case SHT_MIPS_EVENTS:
6679 if (! CONST_STRNEQ (name, ".MIPS.events")
6680 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6687 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6692 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6693 (bfd_get_section_flags (abfd,
6699 /* FIXME: We should record sh_info for a .gptab section. */
6701 /* For a .reginfo section, set the gp value in the tdata information
6702 from the contents of this section. We need the gp value while
6703 processing relocs, so we just get it now. The .reginfo section
6704 is not used in the 64-bit MIPS ELF ABI. */
6705 if (hdr->sh_type == SHT_MIPS_REGINFO)
6707 Elf32_External_RegInfo ext;
6710 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6711 &ext, 0, sizeof ext))
6713 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6714 elf_gp (abfd) = s.ri_gp_value;
6717 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6718 set the gp value based on what we find. We may see both
6719 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6720 they should agree. */
6721 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6723 bfd_byte *contents, *l, *lend;
6725 contents = bfd_malloc (hdr->sh_size);
6726 if (contents == NULL)
6728 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6735 lend = contents + hdr->sh_size;
6736 while (l + sizeof (Elf_External_Options) <= lend)
6738 Elf_Internal_Options intopt;
6740 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6742 if (intopt.size < sizeof (Elf_External_Options))
6744 (*_bfd_error_handler)
6745 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6746 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6749 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6751 Elf64_Internal_RegInfo intreg;
6753 bfd_mips_elf64_swap_reginfo_in
6755 ((Elf64_External_RegInfo *)
6756 (l + sizeof (Elf_External_Options))),
6758 elf_gp (abfd) = intreg.ri_gp_value;
6760 else if (intopt.kind == ODK_REGINFO)
6762 Elf32_RegInfo intreg;
6764 bfd_mips_elf32_swap_reginfo_in
6766 ((Elf32_External_RegInfo *)
6767 (l + sizeof (Elf_External_Options))),
6769 elf_gp (abfd) = intreg.ri_gp_value;
6779 /* Set the correct type for a MIPS ELF section. We do this by the
6780 section name, which is a hack, but ought to work. This routine is
6781 used by both the 32-bit and the 64-bit ABI. */
6784 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6786 const char *name = bfd_get_section_name (abfd, sec);
6788 if (strcmp (name, ".liblist") == 0)
6790 hdr->sh_type = SHT_MIPS_LIBLIST;
6791 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6792 /* The sh_link field is set in final_write_processing. */
6794 else if (strcmp (name, ".conflict") == 0)
6795 hdr->sh_type = SHT_MIPS_CONFLICT;
6796 else if (CONST_STRNEQ (name, ".gptab."))
6798 hdr->sh_type = SHT_MIPS_GPTAB;
6799 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6800 /* The sh_info field is set in final_write_processing. */
6802 else if (strcmp (name, ".ucode") == 0)
6803 hdr->sh_type = SHT_MIPS_UCODE;
6804 else if (strcmp (name, ".mdebug") == 0)
6806 hdr->sh_type = SHT_MIPS_DEBUG;
6807 /* In a shared object on IRIX 5.3, the .mdebug section has an
6808 entsize of 0. FIXME: Does this matter? */
6809 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6810 hdr->sh_entsize = 0;
6812 hdr->sh_entsize = 1;
6814 else if (strcmp (name, ".reginfo") == 0)
6816 hdr->sh_type = SHT_MIPS_REGINFO;
6817 /* In a shared object on IRIX 5.3, the .reginfo section has an
6818 entsize of 0x18. FIXME: Does this matter? */
6819 if (SGI_COMPAT (abfd))
6821 if ((abfd->flags & DYNAMIC) != 0)
6822 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6824 hdr->sh_entsize = 1;
6827 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6829 else if (SGI_COMPAT (abfd)
6830 && (strcmp (name, ".hash") == 0
6831 || strcmp (name, ".dynamic") == 0
6832 || strcmp (name, ".dynstr") == 0))
6834 if (SGI_COMPAT (abfd))
6835 hdr->sh_entsize = 0;
6837 /* This isn't how the IRIX6 linker behaves. */
6838 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6841 else if (strcmp (name, ".got") == 0
6842 || strcmp (name, ".srdata") == 0
6843 || strcmp (name, ".sdata") == 0
6844 || strcmp (name, ".sbss") == 0
6845 || strcmp (name, ".lit4") == 0
6846 || strcmp (name, ".lit8") == 0)
6847 hdr->sh_flags |= SHF_MIPS_GPREL;
6848 else if (strcmp (name, ".MIPS.interfaces") == 0)
6850 hdr->sh_type = SHT_MIPS_IFACE;
6851 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6853 else if (CONST_STRNEQ (name, ".MIPS.content"))
6855 hdr->sh_type = SHT_MIPS_CONTENT;
6856 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6857 /* The sh_info field is set in final_write_processing. */
6859 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6861 hdr->sh_type = SHT_MIPS_OPTIONS;
6862 hdr->sh_entsize = 1;
6863 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6865 else if (CONST_STRNEQ (name, ".debug_")
6866 || CONST_STRNEQ (name, ".zdebug_"))
6868 hdr->sh_type = SHT_MIPS_DWARF;
6870 /* Irix facilities such as libexc expect a single .debug_frame
6871 per executable, the system ones have NOSTRIP set and the linker
6872 doesn't merge sections with different flags so ... */
6873 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6874 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6876 else if (strcmp (name, ".MIPS.symlib") == 0)
6878 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6879 /* The sh_link and sh_info fields are set in
6880 final_write_processing. */
6882 else if (CONST_STRNEQ (name, ".MIPS.events")
6883 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6885 hdr->sh_type = SHT_MIPS_EVENTS;
6886 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6887 /* The sh_link field is set in final_write_processing. */
6889 else if (strcmp (name, ".msym") == 0)
6891 hdr->sh_type = SHT_MIPS_MSYM;
6892 hdr->sh_flags |= SHF_ALLOC;
6893 hdr->sh_entsize = 8;
6896 /* The generic elf_fake_sections will set up REL_HDR using the default
6897 kind of relocations. We used to set up a second header for the
6898 non-default kind of relocations here, but only NewABI would use
6899 these, and the IRIX ld doesn't like resulting empty RELA sections.
6900 Thus we create those header only on demand now. */
6905 /* Given a BFD section, try to locate the corresponding ELF section
6906 index. This is used by both the 32-bit and the 64-bit ABI.
6907 Actually, it's not clear to me that the 64-bit ABI supports these,
6908 but for non-PIC objects we will certainly want support for at least
6909 the .scommon section. */
6912 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6913 asection *sec, int *retval)
6915 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6917 *retval = SHN_MIPS_SCOMMON;
6920 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6922 *retval = SHN_MIPS_ACOMMON;
6928 /* Hook called by the linker routine which adds symbols from an object
6929 file. We must handle the special MIPS section numbers here. */
6932 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6933 Elf_Internal_Sym *sym, const char **namep,
6934 flagword *flagsp ATTRIBUTE_UNUSED,
6935 asection **secp, bfd_vma *valp)
6937 if (SGI_COMPAT (abfd)
6938 && (abfd->flags & DYNAMIC) != 0
6939 && strcmp (*namep, "_rld_new_interface") == 0)
6941 /* Skip IRIX5 rld entry name. */
6946 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6947 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6948 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6949 a magic symbol resolved by the linker, we ignore this bogus definition
6950 of _gp_disp. New ABI objects do not suffer from this problem so this
6951 is not done for them. */
6953 && (sym->st_shndx == SHN_ABS)
6954 && (strcmp (*namep, "_gp_disp") == 0))
6960 switch (sym->st_shndx)
6963 /* Common symbols less than the GP size are automatically
6964 treated as SHN_MIPS_SCOMMON symbols. */
6965 if (sym->st_size > elf_gp_size (abfd)
6966 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6967 || IRIX_COMPAT (abfd) == ict_irix6)
6970 case SHN_MIPS_SCOMMON:
6971 *secp = bfd_make_section_old_way (abfd, ".scommon");
6972 (*secp)->flags |= SEC_IS_COMMON;
6973 *valp = sym->st_size;
6977 /* This section is used in a shared object. */
6978 if (elf_tdata (abfd)->elf_text_section == NULL)
6980 asymbol *elf_text_symbol;
6981 asection *elf_text_section;
6982 bfd_size_type amt = sizeof (asection);
6984 elf_text_section = bfd_zalloc (abfd, amt);
6985 if (elf_text_section == NULL)
6988 amt = sizeof (asymbol);
6989 elf_text_symbol = bfd_zalloc (abfd, amt);
6990 if (elf_text_symbol == NULL)
6993 /* Initialize the section. */
6995 elf_tdata (abfd)->elf_text_section = elf_text_section;
6996 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6998 elf_text_section->symbol = elf_text_symbol;
6999 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7001 elf_text_section->name = ".text";
7002 elf_text_section->flags = SEC_NO_FLAGS;
7003 elf_text_section->output_section = NULL;
7004 elf_text_section->owner = abfd;
7005 elf_text_symbol->name = ".text";
7006 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7007 elf_text_symbol->section = elf_text_section;
7009 /* This code used to do *secp = bfd_und_section_ptr if
7010 info->shared. I don't know why, and that doesn't make sense,
7011 so I took it out. */
7012 *secp = elf_tdata (abfd)->elf_text_section;
7015 case SHN_MIPS_ACOMMON:
7016 /* Fall through. XXX Can we treat this as allocated data? */
7018 /* This section is used in a shared object. */
7019 if (elf_tdata (abfd)->elf_data_section == NULL)
7021 asymbol *elf_data_symbol;
7022 asection *elf_data_section;
7023 bfd_size_type amt = sizeof (asection);
7025 elf_data_section = bfd_zalloc (abfd, amt);
7026 if (elf_data_section == NULL)
7029 amt = sizeof (asymbol);
7030 elf_data_symbol = bfd_zalloc (abfd, amt);
7031 if (elf_data_symbol == NULL)
7034 /* Initialize the section. */
7036 elf_tdata (abfd)->elf_data_section = elf_data_section;
7037 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7039 elf_data_section->symbol = elf_data_symbol;
7040 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7042 elf_data_section->name = ".data";
7043 elf_data_section->flags = SEC_NO_FLAGS;
7044 elf_data_section->output_section = NULL;
7045 elf_data_section->owner = abfd;
7046 elf_data_symbol->name = ".data";
7047 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7048 elf_data_symbol->section = elf_data_section;
7050 /* This code used to do *secp = bfd_und_section_ptr if
7051 info->shared. I don't know why, and that doesn't make sense,
7052 so I took it out. */
7053 *secp = elf_tdata (abfd)->elf_data_section;
7056 case SHN_MIPS_SUNDEFINED:
7057 *secp = bfd_und_section_ptr;
7061 if (SGI_COMPAT (abfd)
7063 && info->output_bfd->xvec == abfd->xvec
7064 && strcmp (*namep, "__rld_obj_head") == 0)
7066 struct elf_link_hash_entry *h;
7067 struct bfd_link_hash_entry *bh;
7069 /* Mark __rld_obj_head as dynamic. */
7071 if (! (_bfd_generic_link_add_one_symbol
7072 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7073 get_elf_backend_data (abfd)->collect, &bh)))
7076 h = (struct elf_link_hash_entry *) bh;
7079 h->type = STT_OBJECT;
7081 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7084 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7087 /* If this is a mips16 text symbol, add 1 to the value to make it
7088 odd. This will cause something like .word SYM to come up with
7089 the right value when it is loaded into the PC. */
7090 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7096 /* This hook function is called before the linker writes out a global
7097 symbol. We mark symbols as small common if appropriate. This is
7098 also where we undo the increment of the value for a mips16 symbol. */
7101 _bfd_mips_elf_link_output_symbol_hook
7102 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7103 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7104 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7106 /* If we see a common symbol, which implies a relocatable link, then
7107 if a symbol was small common in an input file, mark it as small
7108 common in the output file. */
7109 if (sym->st_shndx == SHN_COMMON
7110 && strcmp (input_sec->name, ".scommon") == 0)
7111 sym->st_shndx = SHN_MIPS_SCOMMON;
7113 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7114 sym->st_value &= ~1;
7119 /* Functions for the dynamic linker. */
7121 /* Create dynamic sections when linking against a dynamic object. */
7124 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7126 struct elf_link_hash_entry *h;
7127 struct bfd_link_hash_entry *bh;
7129 register asection *s;
7130 const char * const *namep;
7131 struct mips_elf_link_hash_table *htab;
7133 htab = mips_elf_hash_table (info);
7134 BFD_ASSERT (htab != NULL);
7136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7137 | SEC_LINKER_CREATED | SEC_READONLY);
7139 /* The psABI requires a read-only .dynamic section, but the VxWorks
7141 if (!htab->is_vxworks)
7143 s = bfd_get_section_by_name (abfd, ".dynamic");
7146 if (! bfd_set_section_flags (abfd, s, flags))
7151 /* We need to create .got section. */
7152 if (!mips_elf_create_got_section (abfd, info))
7155 if (! mips_elf_rel_dyn_section (info, TRUE))
7158 /* Create .stub section. */
7159 s = bfd_make_section_with_flags (abfd,
7160 MIPS_ELF_STUB_SECTION_NAME (abfd),
7163 || ! bfd_set_section_alignment (abfd, s,
7164 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7168 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7170 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7172 s = bfd_make_section_with_flags (abfd, ".rld_map",
7173 flags &~ (flagword) SEC_READONLY);
7175 || ! bfd_set_section_alignment (abfd, s,
7176 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7180 /* On IRIX5, we adjust add some additional symbols and change the
7181 alignments of several sections. There is no ABI documentation
7182 indicating that this is necessary on IRIX6, nor any evidence that
7183 the linker takes such action. */
7184 if (IRIX_COMPAT (abfd) == ict_irix5)
7186 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7189 if (! (_bfd_generic_link_add_one_symbol
7190 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7191 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7194 h = (struct elf_link_hash_entry *) bh;
7197 h->type = STT_SECTION;
7199 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7203 /* We need to create a .compact_rel section. */
7204 if (SGI_COMPAT (abfd))
7206 if (!mips_elf_create_compact_rel_section (abfd, info))
7210 /* Change alignments of some sections. */
7211 s = bfd_get_section_by_name (abfd, ".hash");
7213 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7214 s = bfd_get_section_by_name (abfd, ".dynsym");
7216 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7217 s = bfd_get_section_by_name (abfd, ".dynstr");
7219 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7220 s = bfd_get_section_by_name (abfd, ".reginfo");
7222 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7223 s = bfd_get_section_by_name (abfd, ".dynamic");
7225 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7232 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7234 if (!(_bfd_generic_link_add_one_symbol
7235 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7236 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7239 h = (struct elf_link_hash_entry *) bh;
7242 h->type = STT_SECTION;
7244 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7247 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7249 /* __rld_map is a four byte word located in the .data section
7250 and is filled in by the rtld to contain a pointer to
7251 the _r_debug structure. Its symbol value will be set in
7252 _bfd_mips_elf_finish_dynamic_symbol. */
7253 s = bfd_get_section_by_name (abfd, ".rld_map");
7254 BFD_ASSERT (s != NULL);
7256 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7258 if (!(_bfd_generic_link_add_one_symbol
7259 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7260 get_elf_backend_data (abfd)->collect, &bh)))
7263 h = (struct elf_link_hash_entry *) bh;
7266 h->type = STT_OBJECT;
7268 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7273 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7274 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7275 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7278 /* Cache the sections created above. */
7279 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7280 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7281 if (htab->is_vxworks)
7283 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7284 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7287 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7289 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7294 if (htab->is_vxworks)
7296 /* Do the usual VxWorks handling. */
7297 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7300 /* Work out the PLT sizes. */
7303 htab->plt_header_size
7304 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7305 htab->plt_entry_size
7306 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7310 htab->plt_header_size
7311 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7312 htab->plt_entry_size
7313 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7316 else if (!info->shared)
7318 /* All variants of the plt0 entry are the same size. */
7319 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7320 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7326 /* Return true if relocation REL against section SEC is a REL rather than
7327 RELA relocation. RELOCS is the first relocation in the section and
7328 ABFD is the bfd that contains SEC. */
7331 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7332 const Elf_Internal_Rela *relocs,
7333 const Elf_Internal_Rela *rel)
7335 Elf_Internal_Shdr *rel_hdr;
7336 const struct elf_backend_data *bed;
7338 /* To determine which flavor of relocation this is, we depend on the
7339 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7340 rel_hdr = elf_section_data (sec)->rel.hdr;
7341 if (rel_hdr == NULL)
7343 bed = get_elf_backend_data (abfd);
7344 return ((size_t) (rel - relocs)
7345 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7348 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7349 HOWTO is the relocation's howto and CONTENTS points to the contents
7350 of the section that REL is against. */
7353 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7354 reloc_howto_type *howto, bfd_byte *contents)
7357 unsigned int r_type;
7360 r_type = ELF_R_TYPE (abfd, rel->r_info);
7361 location = contents + rel->r_offset;
7363 /* Get the addend, which is stored in the input file. */
7364 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7365 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7366 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7368 return addend & howto->src_mask;
7371 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7372 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7373 and update *ADDEND with the final addend. Return true on success
7374 or false if the LO16 could not be found. RELEND is the exclusive
7375 upper bound on the relocations for REL's section. */
7378 mips_elf_add_lo16_rel_addend (bfd *abfd,
7379 const Elf_Internal_Rela *rel,
7380 const Elf_Internal_Rela *relend,
7381 bfd_byte *contents, bfd_vma *addend)
7383 unsigned int r_type, lo16_type;
7384 const Elf_Internal_Rela *lo16_relocation;
7385 reloc_howto_type *lo16_howto;
7388 r_type = ELF_R_TYPE (abfd, rel->r_info);
7389 if (mips16_reloc_p (r_type))
7390 lo16_type = R_MIPS16_LO16;
7391 else if (micromips_reloc_p (r_type))
7392 lo16_type = R_MICROMIPS_LO16;
7394 lo16_type = R_MIPS_LO16;
7396 /* The combined value is the sum of the HI16 addend, left-shifted by
7397 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7398 code does a `lui' of the HI16 value, and then an `addiu' of the
7401 Scan ahead to find a matching LO16 relocation.
7403 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7404 be immediately following. However, for the IRIX6 ABI, the next
7405 relocation may be a composed relocation consisting of several
7406 relocations for the same address. In that case, the R_MIPS_LO16
7407 relocation may occur as one of these. We permit a similar
7408 extension in general, as that is useful for GCC.
7410 In some cases GCC dead code elimination removes the LO16 but keeps
7411 the corresponding HI16. This is strictly speaking a violation of
7412 the ABI but not immediately harmful. */
7413 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7414 if (lo16_relocation == NULL)
7417 /* Obtain the addend kept there. */
7418 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7419 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7421 l <<= lo16_howto->rightshift;
7422 l = _bfd_mips_elf_sign_extend (l, 16);
7429 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7430 store the contents in *CONTENTS on success. Assume that *CONTENTS
7431 already holds the contents if it is nonull on entry. */
7434 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7439 /* Get cached copy if it exists. */
7440 if (elf_section_data (sec)->this_hdr.contents != NULL)
7442 *contents = elf_section_data (sec)->this_hdr.contents;
7446 return bfd_malloc_and_get_section (abfd, sec, contents);
7449 /* Look through the relocs for a section during the first phase, and
7450 allocate space in the global offset table. */
7453 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7454 asection *sec, const Elf_Internal_Rela *relocs)
7458 Elf_Internal_Shdr *symtab_hdr;
7459 struct elf_link_hash_entry **sym_hashes;
7461 const Elf_Internal_Rela *rel;
7462 const Elf_Internal_Rela *rel_end;
7464 const struct elf_backend_data *bed;
7465 struct mips_elf_link_hash_table *htab;
7468 reloc_howto_type *howto;
7470 if (info->relocatable)
7473 htab = mips_elf_hash_table (info);
7474 BFD_ASSERT (htab != NULL);
7476 dynobj = elf_hash_table (info)->dynobj;
7477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7478 sym_hashes = elf_sym_hashes (abfd);
7479 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7481 bed = get_elf_backend_data (abfd);
7482 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7484 /* Check for the mips16 stub sections. */
7486 name = bfd_get_section_name (abfd, sec);
7487 if (FN_STUB_P (name))
7489 unsigned long r_symndx;
7491 /* Look at the relocation information to figure out which symbol
7494 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7497 (*_bfd_error_handler)
7498 (_("%B: Warning: cannot determine the target function for"
7499 " stub section `%s'"),
7501 bfd_set_error (bfd_error_bad_value);
7505 if (r_symndx < extsymoff
7506 || sym_hashes[r_symndx - extsymoff] == NULL)
7510 /* This stub is for a local symbol. This stub will only be
7511 needed if there is some relocation in this BFD, other
7512 than a 16 bit function call, which refers to this symbol. */
7513 for (o = abfd->sections; o != NULL; o = o->next)
7515 Elf_Internal_Rela *sec_relocs;
7516 const Elf_Internal_Rela *r, *rend;
7518 /* We can ignore stub sections when looking for relocs. */
7519 if ((o->flags & SEC_RELOC) == 0
7520 || o->reloc_count == 0
7521 || section_allows_mips16_refs_p (o))
7525 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7527 if (sec_relocs == NULL)
7530 rend = sec_relocs + o->reloc_count;
7531 for (r = sec_relocs; r < rend; r++)
7532 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7533 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7536 if (elf_section_data (o)->relocs != sec_relocs)
7545 /* There is no non-call reloc for this stub, so we do
7546 not need it. Since this function is called before
7547 the linker maps input sections to output sections, we
7548 can easily discard it by setting the SEC_EXCLUDE
7550 sec->flags |= SEC_EXCLUDE;
7554 /* Record this stub in an array of local symbol stubs for
7556 if (elf_tdata (abfd)->local_stubs == NULL)
7558 unsigned long symcount;
7562 if (elf_bad_symtab (abfd))
7563 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7565 symcount = symtab_hdr->sh_info;
7566 amt = symcount * sizeof (asection *);
7567 n = bfd_zalloc (abfd, amt);
7570 elf_tdata (abfd)->local_stubs = n;
7573 sec->flags |= SEC_KEEP;
7574 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7576 /* We don't need to set mips16_stubs_seen in this case.
7577 That flag is used to see whether we need to look through
7578 the global symbol table for stubs. We don't need to set
7579 it here, because we just have a local stub. */
7583 struct mips_elf_link_hash_entry *h;
7585 h = ((struct mips_elf_link_hash_entry *)
7586 sym_hashes[r_symndx - extsymoff]);
7588 while (h->root.root.type == bfd_link_hash_indirect
7589 || h->root.root.type == bfd_link_hash_warning)
7590 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7592 /* H is the symbol this stub is for. */
7594 /* If we already have an appropriate stub for this function, we
7595 don't need another one, so we can discard this one. Since
7596 this function is called before the linker maps input sections
7597 to output sections, we can easily discard it by setting the
7598 SEC_EXCLUDE flag. */
7599 if (h->fn_stub != NULL)
7601 sec->flags |= SEC_EXCLUDE;
7605 sec->flags |= SEC_KEEP;
7607 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7610 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7612 unsigned long r_symndx;
7613 struct mips_elf_link_hash_entry *h;
7616 /* Look at the relocation information to figure out which symbol
7619 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7622 (*_bfd_error_handler)
7623 (_("%B: Warning: cannot determine the target function for"
7624 " stub section `%s'"),
7626 bfd_set_error (bfd_error_bad_value);
7630 if (r_symndx < extsymoff
7631 || sym_hashes[r_symndx - extsymoff] == NULL)
7635 /* This stub is for a local symbol. This stub will only be
7636 needed if there is some relocation (R_MIPS16_26) in this BFD
7637 that refers to this symbol. */
7638 for (o = abfd->sections; o != NULL; o = o->next)
7640 Elf_Internal_Rela *sec_relocs;
7641 const Elf_Internal_Rela *r, *rend;
7643 /* We can ignore stub sections when looking for relocs. */
7644 if ((o->flags & SEC_RELOC) == 0
7645 || o->reloc_count == 0
7646 || section_allows_mips16_refs_p (o))
7650 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7652 if (sec_relocs == NULL)
7655 rend = sec_relocs + o->reloc_count;
7656 for (r = sec_relocs; r < rend; r++)
7657 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7658 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7661 if (elf_section_data (o)->relocs != sec_relocs)
7670 /* There is no non-call reloc for this stub, so we do
7671 not need it. Since this function is called before
7672 the linker maps input sections to output sections, we
7673 can easily discard it by setting the SEC_EXCLUDE
7675 sec->flags |= SEC_EXCLUDE;
7679 /* Record this stub in an array of local symbol call_stubs for
7681 if (elf_tdata (abfd)->local_call_stubs == NULL)
7683 unsigned long symcount;
7687 if (elf_bad_symtab (abfd))
7688 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7690 symcount = symtab_hdr->sh_info;
7691 amt = symcount * sizeof (asection *);
7692 n = bfd_zalloc (abfd, amt);
7695 elf_tdata (abfd)->local_call_stubs = n;
7698 sec->flags |= SEC_KEEP;
7699 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7701 /* We don't need to set mips16_stubs_seen in this case.
7702 That flag is used to see whether we need to look through
7703 the global symbol table for stubs. We don't need to set
7704 it here, because we just have a local stub. */
7708 h = ((struct mips_elf_link_hash_entry *)
7709 sym_hashes[r_symndx - extsymoff]);
7711 /* H is the symbol this stub is for. */
7713 if (CALL_FP_STUB_P (name))
7714 loc = &h->call_fp_stub;
7716 loc = &h->call_stub;
7718 /* If we already have an appropriate stub for this function, we
7719 don't need another one, so we can discard this one. Since
7720 this function is called before the linker maps input sections
7721 to output sections, we can easily discard it by setting the
7722 SEC_EXCLUDE flag. */
7725 sec->flags |= SEC_EXCLUDE;
7729 sec->flags |= SEC_KEEP;
7731 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7737 for (rel = relocs; rel < rel_end; ++rel)
7739 unsigned long r_symndx;
7740 unsigned int r_type;
7741 struct elf_link_hash_entry *h;
7742 bfd_boolean can_make_dynamic_p;
7744 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7745 r_type = ELF_R_TYPE (abfd, rel->r_info);
7747 if (r_symndx < extsymoff)
7749 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7751 (*_bfd_error_handler)
7752 (_("%B: Malformed reloc detected for section %s"),
7754 bfd_set_error (bfd_error_bad_value);
7759 h = sym_hashes[r_symndx - extsymoff];
7761 && (h->root.type == bfd_link_hash_indirect
7762 || h->root.type == bfd_link_hash_warning))
7763 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7766 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7767 relocation into a dynamic one. */
7768 can_make_dynamic_p = FALSE;
7771 case R_MIPS16_GOT16:
7772 case R_MIPS16_CALL16:
7775 case R_MIPS_CALL_HI16:
7776 case R_MIPS_CALL_LO16:
7777 case R_MIPS_GOT_HI16:
7778 case R_MIPS_GOT_LO16:
7779 case R_MIPS_GOT_PAGE:
7780 case R_MIPS_GOT_OFST:
7781 case R_MIPS_GOT_DISP:
7782 case R_MIPS_TLS_GOTTPREL:
7784 case R_MIPS_TLS_LDM:
7785 case R_MICROMIPS_GOT16:
7786 case R_MICROMIPS_CALL16:
7787 case R_MICROMIPS_CALL_HI16:
7788 case R_MICROMIPS_CALL_LO16:
7789 case R_MICROMIPS_GOT_HI16:
7790 case R_MICROMIPS_GOT_LO16:
7791 case R_MICROMIPS_GOT_PAGE:
7792 case R_MICROMIPS_GOT_OFST:
7793 case R_MICROMIPS_GOT_DISP:
7794 case R_MICROMIPS_TLS_GOTTPREL:
7795 case R_MICROMIPS_TLS_GD:
7796 case R_MICROMIPS_TLS_LDM:
7798 elf_hash_table (info)->dynobj = dynobj = abfd;
7799 if (!mips_elf_create_got_section (dynobj, info))
7801 if (htab->is_vxworks && !info->shared)
7803 (*_bfd_error_handler)
7804 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7805 abfd, (unsigned long) rel->r_offset);
7806 bfd_set_error (bfd_error_bad_value);
7811 /* This is just a hint; it can safely be ignored. Don't set
7812 has_static_relocs for the corresponding symbol. */
7814 case R_MICROMIPS_JALR:
7820 /* In VxWorks executables, references to external symbols
7821 must be handled using copy relocs or PLT entries; it is not
7822 possible to convert this relocation into a dynamic one.
7824 For executables that use PLTs and copy-relocs, we have a
7825 choice between converting the relocation into a dynamic
7826 one or using copy relocations or PLT entries. It is
7827 usually better to do the former, unless the relocation is
7828 against a read-only section. */
7831 && !htab->is_vxworks
7832 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7833 && !(!info->nocopyreloc
7834 && !PIC_OBJECT_P (abfd)
7835 && MIPS_ELF_READONLY_SECTION (sec))))
7836 && (sec->flags & SEC_ALLOC) != 0)
7838 can_make_dynamic_p = TRUE;
7840 elf_hash_table (info)->dynobj = dynobj = abfd;
7843 /* For sections that are not SEC_ALLOC a copy reloc would be
7844 output if possible (implying questionable semantics for
7845 read-only data objects) or otherwise the final link would
7846 fail as ld.so will not process them and could not therefore
7847 handle any outstanding dynamic relocations.
7849 For such sections that are also SEC_DEBUGGING, we can avoid
7850 these problems by simply ignoring any relocs as these
7851 sections have a predefined use and we know it is safe to do
7854 This is needed in cases such as a global symbol definition
7855 in a shared library causing a common symbol from an object
7856 file to be converted to an undefined reference. If that
7857 happens, then all the relocations against this symbol from
7858 SEC_DEBUGGING sections in the object file will resolve to
7860 if ((sec->flags & SEC_DEBUGGING) != 0)
7865 /* Most static relocations require pointer equality, except
7868 h->pointer_equality_needed = TRUE;
7874 case R_MICROMIPS_26_S1:
7875 case R_MICROMIPS_PC7_S1:
7876 case R_MICROMIPS_PC10_S1:
7877 case R_MICROMIPS_PC16_S1:
7878 case R_MICROMIPS_PC23_S2:
7880 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7886 /* Relocations against the special VxWorks __GOTT_BASE__ and
7887 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7888 room for them in .rela.dyn. */
7889 if (is_gott_symbol (info, h))
7893 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7897 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7898 if (MIPS_ELF_READONLY_SECTION (sec))
7899 /* We tell the dynamic linker that there are
7900 relocations against the text segment. */
7901 info->flags |= DF_TEXTREL;
7904 else if (call_lo16_reloc_p (r_type)
7905 || got_lo16_reloc_p (r_type)
7906 || got_disp_reloc_p (r_type)
7907 || (got16_reloc_p (r_type) && htab->is_vxworks))
7909 /* We may need a local GOT entry for this relocation. We
7910 don't count R_MIPS_GOT_PAGE because we can estimate the
7911 maximum number of pages needed by looking at the size of
7912 the segment. Similar comments apply to R_MIPS*_GOT16 and
7913 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7914 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7915 R_MIPS_CALL_HI16 because these are always followed by an
7916 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7917 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7918 rel->r_addend, info, 0))
7922 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7923 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7928 case R_MIPS16_CALL16:
7929 case R_MICROMIPS_CALL16:
7932 (*_bfd_error_handler)
7933 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7934 abfd, (unsigned long) rel->r_offset);
7935 bfd_set_error (bfd_error_bad_value);
7940 case R_MIPS_CALL_HI16:
7941 case R_MIPS_CALL_LO16:
7942 case R_MICROMIPS_CALL_HI16:
7943 case R_MICROMIPS_CALL_LO16:
7946 /* Make sure there is room in the regular GOT to hold the
7947 function's address. We may eliminate it in favour of
7948 a .got.plt entry later; see mips_elf_count_got_symbols. */
7949 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7952 /* We need a stub, not a plt entry for the undefined
7953 function. But we record it as if it needs plt. See
7954 _bfd_elf_adjust_dynamic_symbol. */
7960 case R_MIPS_GOT_PAGE:
7961 case R_MICROMIPS_GOT_PAGE:
7962 /* If this is a global, overridable symbol, GOT_PAGE will
7963 decay to GOT_DISP, so we'll need a GOT entry for it. */
7966 struct mips_elf_link_hash_entry *hmips =
7967 (struct mips_elf_link_hash_entry *) h;
7969 /* This symbol is definitely not overridable. */
7970 if (hmips->root.def_regular
7971 && ! (info->shared && ! info->symbolic
7972 && ! hmips->root.forced_local))
7977 case R_MIPS16_GOT16:
7979 case R_MIPS_GOT_HI16:
7980 case R_MIPS_GOT_LO16:
7981 case R_MICROMIPS_GOT16:
7982 case R_MICROMIPS_GOT_HI16:
7983 case R_MICROMIPS_GOT_LO16:
7984 if (!h || got_page_reloc_p (r_type))
7986 /* This relocation needs (or may need, if h != NULL) a
7987 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7988 know for sure until we know whether the symbol is
7990 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7992 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7994 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7995 addend = mips_elf_read_rel_addend (abfd, rel,
7997 if (got16_reloc_p (r_type))
7998 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8001 addend <<= howto->rightshift;
8004 addend = rel->r_addend;
8005 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8011 case R_MIPS_GOT_DISP:
8012 case R_MICROMIPS_GOT_DISP:
8013 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8018 case R_MIPS_TLS_GOTTPREL:
8019 case R_MICROMIPS_TLS_GOTTPREL:
8021 info->flags |= DF_STATIC_TLS;
8024 case R_MIPS_TLS_LDM:
8025 case R_MICROMIPS_TLS_LDM:
8026 if (tls_ldm_reloc_p (r_type))
8028 r_symndx = STN_UNDEF;
8034 case R_MICROMIPS_TLS_GD:
8035 /* This symbol requires a global offset table entry, or two
8036 for TLS GD relocations. */
8040 flag = (tls_gd_reloc_p (r_type)
8042 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8045 struct mips_elf_link_hash_entry *hmips =
8046 (struct mips_elf_link_hash_entry *) h;
8047 hmips->tls_type |= flag;
8049 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8055 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8057 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8068 /* In VxWorks executables, references to external symbols
8069 are handled using copy relocs or PLT stubs, so there's
8070 no need to add a .rela.dyn entry for this relocation. */
8071 if (can_make_dynamic_p)
8075 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8079 if (info->shared && h == NULL)
8081 /* When creating a shared object, we must copy these
8082 reloc types into the output file as R_MIPS_REL32
8083 relocs. Make room for this reloc in .rel(a).dyn. */
8084 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8085 if (MIPS_ELF_READONLY_SECTION (sec))
8086 /* We tell the dynamic linker that there are
8087 relocations against the text segment. */
8088 info->flags |= DF_TEXTREL;
8092 struct mips_elf_link_hash_entry *hmips;
8094 /* For a shared object, we must copy this relocation
8095 unless the symbol turns out to be undefined and
8096 weak with non-default visibility, in which case
8097 it will be left as zero.
8099 We could elide R_MIPS_REL32 for locally binding symbols
8100 in shared libraries, but do not yet do so.
8102 For an executable, we only need to copy this
8103 reloc if the symbol is defined in a dynamic
8105 hmips = (struct mips_elf_link_hash_entry *) h;
8106 ++hmips->possibly_dynamic_relocs;
8107 if (MIPS_ELF_READONLY_SECTION (sec))
8108 /* We need it to tell the dynamic linker if there
8109 are relocations against the text segment. */
8110 hmips->readonly_reloc = TRUE;
8114 if (SGI_COMPAT (abfd))
8115 mips_elf_hash_table (info)->compact_rel_size +=
8116 sizeof (Elf32_External_crinfo);
8120 case R_MIPS_GPREL16:
8121 case R_MIPS_LITERAL:
8122 case R_MIPS_GPREL32:
8123 case R_MICROMIPS_26_S1:
8124 case R_MICROMIPS_GPREL16:
8125 case R_MICROMIPS_LITERAL:
8126 case R_MICROMIPS_GPREL7_S2:
8127 if (SGI_COMPAT (abfd))
8128 mips_elf_hash_table (info)->compact_rel_size +=
8129 sizeof (Elf32_External_crinfo);
8132 /* This relocation describes the C++ object vtable hierarchy.
8133 Reconstruct it for later use during GC. */
8134 case R_MIPS_GNU_VTINHERIT:
8135 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8139 /* This relocation describes which C++ vtable entries are actually
8140 used. Record for later use during GC. */
8141 case R_MIPS_GNU_VTENTRY:
8142 BFD_ASSERT (h != NULL);
8144 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8152 /* We must not create a stub for a symbol that has relocations
8153 related to taking the function's address. This doesn't apply to
8154 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8155 a normal .got entry. */
8156 if (!htab->is_vxworks && h != NULL)
8160 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8162 case R_MIPS16_CALL16:
8164 case R_MIPS_CALL_HI16:
8165 case R_MIPS_CALL_LO16:
8167 case R_MICROMIPS_CALL16:
8168 case R_MICROMIPS_CALL_HI16:
8169 case R_MICROMIPS_CALL_LO16:
8170 case R_MICROMIPS_JALR:
8174 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8175 if there is one. We only need to handle global symbols here;
8176 we decide whether to keep or delete stubs for local symbols
8177 when processing the stub's relocations. */
8179 && !mips16_call_reloc_p (r_type)
8180 && !section_allows_mips16_refs_p (sec))
8182 struct mips_elf_link_hash_entry *mh;
8184 mh = (struct mips_elf_link_hash_entry *) h;
8185 mh->need_fn_stub = TRUE;
8188 /* Refuse some position-dependent relocations when creating a
8189 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8190 not PIC, but we can create dynamic relocations and the result
8191 will be fine. Also do not refuse R_MIPS_LO16, which can be
8192 combined with R_MIPS_GOT16. */
8200 case R_MIPS_HIGHEST:
8201 case R_MICROMIPS_HI16:
8202 case R_MICROMIPS_HIGHER:
8203 case R_MICROMIPS_HIGHEST:
8204 /* Don't refuse a high part relocation if it's against
8205 no symbol (e.g. part of a compound relocation). */
8206 if (r_symndx == STN_UNDEF)
8209 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8210 and has a special meaning. */
8211 if (!NEWABI_P (abfd) && h != NULL
8212 && strcmp (h->root.root.string, "_gp_disp") == 0)
8215 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8216 if (is_gott_symbol (info, h))
8223 case R_MICROMIPS_26_S1:
8224 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8225 (*_bfd_error_handler)
8226 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8228 (h) ? h->root.root.string : "a local symbol");
8229 bfd_set_error (bfd_error_bad_value);
8241 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8242 struct bfd_link_info *link_info,
8245 Elf_Internal_Rela *internal_relocs;
8246 Elf_Internal_Rela *irel, *irelend;
8247 Elf_Internal_Shdr *symtab_hdr;
8248 bfd_byte *contents = NULL;
8250 bfd_boolean changed_contents = FALSE;
8251 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8252 Elf_Internal_Sym *isymbuf = NULL;
8254 /* We are not currently changing any sizes, so only one pass. */
8257 if (link_info->relocatable)
8260 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8261 link_info->keep_memory);
8262 if (internal_relocs == NULL)
8265 irelend = internal_relocs + sec->reloc_count
8266 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8267 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8268 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8270 for (irel = internal_relocs; irel < irelend; irel++)
8273 bfd_signed_vma sym_offset;
8274 unsigned int r_type;
8275 unsigned long r_symndx;
8277 unsigned long instruction;
8279 /* Turn jalr into bgezal, and jr into beq, if they're marked
8280 with a JALR relocation, that indicate where they jump to.
8281 This saves some pipeline bubbles. */
8282 r_type = ELF_R_TYPE (abfd, irel->r_info);
8283 if (r_type != R_MIPS_JALR)
8286 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8287 /* Compute the address of the jump target. */
8288 if (r_symndx >= extsymoff)
8290 struct mips_elf_link_hash_entry *h
8291 = ((struct mips_elf_link_hash_entry *)
8292 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8294 while (h->root.root.type == bfd_link_hash_indirect
8295 || h->root.root.type == bfd_link_hash_warning)
8296 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8298 /* If a symbol is undefined, or if it may be overridden,
8300 if (! ((h->root.root.type == bfd_link_hash_defined
8301 || h->root.root.type == bfd_link_hash_defweak)
8302 && h->root.root.u.def.section)
8303 || (link_info->shared && ! link_info->symbolic
8304 && !h->root.forced_local))
8307 sym_sec = h->root.root.u.def.section;
8308 if (sym_sec->output_section)
8309 symval = (h->root.root.u.def.value
8310 + sym_sec->output_section->vma
8311 + sym_sec->output_offset);
8313 symval = h->root.root.u.def.value;
8317 Elf_Internal_Sym *isym;
8319 /* Read this BFD's symbols if we haven't done so already. */
8320 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8322 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8323 if (isymbuf == NULL)
8324 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8325 symtab_hdr->sh_info, 0,
8327 if (isymbuf == NULL)
8331 isym = isymbuf + r_symndx;
8332 if (isym->st_shndx == SHN_UNDEF)
8334 else if (isym->st_shndx == SHN_ABS)
8335 sym_sec = bfd_abs_section_ptr;
8336 else if (isym->st_shndx == SHN_COMMON)
8337 sym_sec = bfd_com_section_ptr;
8340 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8341 symval = isym->st_value
8342 + sym_sec->output_section->vma
8343 + sym_sec->output_offset;
8346 /* Compute branch offset, from delay slot of the jump to the
8348 sym_offset = (symval + irel->r_addend)
8349 - (sec_start + irel->r_offset + 4);
8351 /* Branch offset must be properly aligned. */
8352 if ((sym_offset & 3) != 0)
8357 /* Check that it's in range. */
8358 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8361 /* Get the section contents if we haven't done so already. */
8362 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8365 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8367 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8368 if ((instruction & 0xfc1fffff) == 0x0000f809)
8369 instruction = 0x04110000;
8370 /* If it was jr <reg>, turn it into b <target>. */
8371 else if ((instruction & 0xfc1fffff) == 0x00000008)
8372 instruction = 0x10000000;
8376 instruction |= (sym_offset & 0xffff);
8377 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8378 changed_contents = TRUE;
8381 if (contents != NULL
8382 && elf_section_data (sec)->this_hdr.contents != contents)
8384 if (!changed_contents && !link_info->keep_memory)
8388 /* Cache the section contents for elf_link_input_bfd. */
8389 elf_section_data (sec)->this_hdr.contents = contents;
8395 if (contents != NULL
8396 && elf_section_data (sec)->this_hdr.contents != contents)
8401 /* Allocate space for global sym dynamic relocs. */
8404 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8406 struct bfd_link_info *info = inf;
8408 struct mips_elf_link_hash_entry *hmips;
8409 struct mips_elf_link_hash_table *htab;
8411 htab = mips_elf_hash_table (info);
8412 BFD_ASSERT (htab != NULL);
8414 dynobj = elf_hash_table (info)->dynobj;
8415 hmips = (struct mips_elf_link_hash_entry *) h;
8417 /* VxWorks executables are handled elsewhere; we only need to
8418 allocate relocations in shared objects. */
8419 if (htab->is_vxworks && !info->shared)
8422 /* Ignore indirect symbols. All relocations against such symbols
8423 will be redirected to the target symbol. */
8424 if (h->root.type == bfd_link_hash_indirect)
8427 /* If this symbol is defined in a dynamic object, or we are creating
8428 a shared library, we will need to copy any R_MIPS_32 or
8429 R_MIPS_REL32 relocs against it into the output file. */
8430 if (! info->relocatable
8431 && hmips->possibly_dynamic_relocs != 0
8432 && (h->root.type == bfd_link_hash_defweak
8436 bfd_boolean do_copy = TRUE;
8438 if (h->root.type == bfd_link_hash_undefweak)
8440 /* Do not copy relocations for undefined weak symbols with
8441 non-default visibility. */
8442 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8445 /* Make sure undefined weak symbols are output as a dynamic
8447 else if (h->dynindx == -1 && !h->forced_local)
8449 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8456 /* Even though we don't directly need a GOT entry for this symbol,
8457 the SVR4 psABI requires it to have a dynamic symbol table
8458 index greater that DT_MIPS_GOTSYM if there are dynamic
8459 relocations against it.
8461 VxWorks does not enforce the same mapping between the GOT
8462 and the symbol table, so the same requirement does not
8464 if (!htab->is_vxworks)
8466 if (hmips->global_got_area > GGA_RELOC_ONLY)
8467 hmips->global_got_area = GGA_RELOC_ONLY;
8468 hmips->got_only_for_calls = FALSE;
8471 mips_elf_allocate_dynamic_relocations
8472 (dynobj, info, hmips->possibly_dynamic_relocs);
8473 if (hmips->readonly_reloc)
8474 /* We tell the dynamic linker that there are relocations
8475 against the text segment. */
8476 info->flags |= DF_TEXTREL;
8483 /* Adjust a symbol defined by a dynamic object and referenced by a
8484 regular object. The current definition is in some section of the
8485 dynamic object, but we're not including those sections. We have to
8486 change the definition to something the rest of the link can
8490 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8491 struct elf_link_hash_entry *h)
8494 struct mips_elf_link_hash_entry *hmips;
8495 struct mips_elf_link_hash_table *htab;
8497 htab = mips_elf_hash_table (info);
8498 BFD_ASSERT (htab != NULL);
8500 dynobj = elf_hash_table (info)->dynobj;
8501 hmips = (struct mips_elf_link_hash_entry *) h;
8503 /* Make sure we know what is going on here. */
8504 BFD_ASSERT (dynobj != NULL
8506 || h->u.weakdef != NULL
8509 && !h->def_regular)));
8511 hmips = (struct mips_elf_link_hash_entry *) h;
8513 /* If there are call relocations against an externally-defined symbol,
8514 see whether we can create a MIPS lazy-binding stub for it. We can
8515 only do this if all references to the function are through call
8516 relocations, and in that case, the traditional lazy-binding stubs
8517 are much more efficient than PLT entries.
8519 Traditional stubs are only available on SVR4 psABI-based systems;
8520 VxWorks always uses PLTs instead. */
8521 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8523 if (! elf_hash_table (info)->dynamic_sections_created)
8526 /* If this symbol is not defined in a regular file, then set
8527 the symbol to the stub location. This is required to make
8528 function pointers compare as equal between the normal
8529 executable and the shared library. */
8530 if (!h->def_regular)
8532 hmips->needs_lazy_stub = TRUE;
8533 htab->lazy_stub_count++;
8537 /* As above, VxWorks requires PLT entries for externally-defined
8538 functions that are only accessed through call relocations.
8540 Both VxWorks and non-VxWorks targets also need PLT entries if there
8541 are static-only relocations against an externally-defined function.
8542 This can technically occur for shared libraries if there are
8543 branches to the symbol, although it is unlikely that this will be
8544 used in practice due to the short ranges involved. It can occur
8545 for any relative or absolute relocation in executables; in that
8546 case, the PLT entry becomes the function's canonical address. */
8547 else if (((h->needs_plt && !hmips->no_fn_stub)
8548 || (h->type == STT_FUNC && hmips->has_static_relocs))
8549 && htab->use_plts_and_copy_relocs
8550 && !SYMBOL_CALLS_LOCAL (info, h)
8551 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8552 && h->root.type == bfd_link_hash_undefweak))
8554 /* If this is the first symbol to need a PLT entry, allocate room
8556 if (htab->splt->size == 0)
8558 BFD_ASSERT (htab->sgotplt->size == 0);
8560 /* If we're using the PLT additions to the psABI, each PLT
8561 entry is 16 bytes and the PLT0 entry is 32 bytes.
8562 Encourage better cache usage by aligning. We do this
8563 lazily to avoid pessimizing traditional objects. */
8564 if (!htab->is_vxworks
8565 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8568 /* Make sure that .got.plt is word-aligned. We do this lazily
8569 for the same reason as above. */
8570 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8571 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8574 htab->splt->size += htab->plt_header_size;
8576 /* On non-VxWorks targets, the first two entries in .got.plt
8578 if (!htab->is_vxworks)
8579 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8581 /* On VxWorks, also allocate room for the header's
8582 .rela.plt.unloaded entries. */
8583 if (htab->is_vxworks && !info->shared)
8584 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8587 /* Assign the next .plt entry to this symbol. */
8588 h->plt.offset = htab->splt->size;
8589 htab->splt->size += htab->plt_entry_size;
8591 /* If the output file has no definition of the symbol, set the
8592 symbol's value to the address of the stub. */
8593 if (!info->shared && !h->def_regular)
8595 h->root.u.def.section = htab->splt;
8596 h->root.u.def.value = h->plt.offset;
8597 /* For VxWorks, point at the PLT load stub rather than the
8598 lazy resolution stub; this stub will become the canonical
8599 function address. */
8600 if (htab->is_vxworks)
8601 h->root.u.def.value += 8;
8604 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8606 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8607 htab->srelplt->size += (htab->is_vxworks
8608 ? MIPS_ELF_RELA_SIZE (dynobj)
8609 : MIPS_ELF_REL_SIZE (dynobj));
8611 /* Make room for the .rela.plt.unloaded relocations. */
8612 if (htab->is_vxworks && !info->shared)
8613 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8615 /* All relocations against this symbol that could have been made
8616 dynamic will now refer to the PLT entry instead. */
8617 hmips->possibly_dynamic_relocs = 0;
8622 /* If this is a weak symbol, and there is a real definition, the
8623 processor independent code will have arranged for us to see the
8624 real definition first, and we can just use the same value. */
8625 if (h->u.weakdef != NULL)
8627 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8628 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8629 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8630 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8634 /* Otherwise, there is nothing further to do for symbols defined
8635 in regular objects. */
8639 /* There's also nothing more to do if we'll convert all relocations
8640 against this symbol into dynamic relocations. */
8641 if (!hmips->has_static_relocs)
8644 /* We're now relying on copy relocations. Complain if we have
8645 some that we can't convert. */
8646 if (!htab->use_plts_and_copy_relocs || info->shared)
8648 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8649 "dynamic symbol %s"),
8650 h->root.root.string);
8651 bfd_set_error (bfd_error_bad_value);
8655 /* We must allocate the symbol in our .dynbss section, which will
8656 become part of the .bss section of the executable. There will be
8657 an entry for this symbol in the .dynsym section. The dynamic
8658 object will contain position independent code, so all references
8659 from the dynamic object to this symbol will go through the global
8660 offset table. The dynamic linker will use the .dynsym entry to
8661 determine the address it must put in the global offset table, so
8662 both the dynamic object and the regular object will refer to the
8663 same memory location for the variable. */
8665 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8667 if (htab->is_vxworks)
8668 htab->srelbss->size += sizeof (Elf32_External_Rela);
8670 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8674 /* All relocations against this symbol that could have been made
8675 dynamic will now refer to the local copy instead. */
8676 hmips->possibly_dynamic_relocs = 0;
8678 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8681 /* This function is called after all the input files have been read,
8682 and the input sections have been assigned to output sections. We
8683 check for any mips16 stub sections that we can discard. */
8686 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8687 struct bfd_link_info *info)
8690 struct mips_elf_link_hash_table *htab;
8691 struct mips_htab_traverse_info hti;
8693 htab = mips_elf_hash_table (info);
8694 BFD_ASSERT (htab != NULL);
8696 /* The .reginfo section has a fixed size. */
8697 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8699 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8702 hti.output_bfd = output_bfd;
8704 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8705 mips_elf_check_symbols, &hti);
8712 /* If the link uses a GOT, lay it out and work out its size. */
8715 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8719 struct mips_got_info *g;
8720 bfd_size_type loadable_size = 0;
8721 bfd_size_type page_gotno;
8723 struct mips_elf_count_tls_arg count_tls_arg;
8724 struct mips_elf_link_hash_table *htab;
8726 htab = mips_elf_hash_table (info);
8727 BFD_ASSERT (htab != NULL);
8733 dynobj = elf_hash_table (info)->dynobj;
8736 /* Allocate room for the reserved entries. VxWorks always reserves
8737 3 entries; other objects only reserve 2 entries. */
8738 BFD_ASSERT (g->assigned_gotno == 0);
8739 if (htab->is_vxworks)
8740 htab->reserved_gotno = 3;
8742 htab->reserved_gotno = 2;
8743 g->local_gotno += htab->reserved_gotno;
8744 g->assigned_gotno = htab->reserved_gotno;
8746 /* Replace entries for indirect and warning symbols with entries for
8747 the target symbol. */
8748 if (!mips_elf_resolve_final_got_entries (g))
8751 /* Count the number of GOT symbols. */
8752 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8754 /* Calculate the total loadable size of the output. That
8755 will give us the maximum number of GOT_PAGE entries
8757 for (sub = info->input_bfds; sub; sub = sub->link_next)
8759 asection *subsection;
8761 for (subsection = sub->sections;
8763 subsection = subsection->next)
8765 if ((subsection->flags & SEC_ALLOC) == 0)
8767 loadable_size += ((subsection->size + 0xf)
8768 &~ (bfd_size_type) 0xf);
8772 if (htab->is_vxworks)
8773 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8774 relocations against local symbols evaluate to "G", and the EABI does
8775 not include R_MIPS_GOT_PAGE. */
8778 /* Assume there are two loadable segments consisting of contiguous
8779 sections. Is 5 enough? */
8780 page_gotno = (loadable_size >> 16) + 5;
8782 /* Choose the smaller of the two estimates; both are intended to be
8784 if (page_gotno > g->page_gotno)
8785 page_gotno = g->page_gotno;
8787 g->local_gotno += page_gotno;
8788 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8789 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8791 /* We need to calculate tls_gotno for global symbols at this point
8792 instead of building it up earlier, to avoid doublecounting
8793 entries for one global symbol from multiple input files. */
8794 count_tls_arg.info = info;
8795 count_tls_arg.needed = 0;
8796 elf_link_hash_traverse (elf_hash_table (info),
8797 mips_elf_count_global_tls_entries,
8799 g->tls_gotno += count_tls_arg.needed;
8800 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8802 /* VxWorks does not support multiple GOTs. It initializes $gp to
8803 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8805 if (htab->is_vxworks)
8807 /* VxWorks executables do not need a GOT. */
8810 /* Each VxWorks GOT entry needs an explicit relocation. */
8813 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8815 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8818 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8820 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8825 struct mips_elf_count_tls_arg arg;
8827 /* Set up TLS entries. */
8828 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8829 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8831 /* Allocate room for the TLS relocations. */
8834 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8835 elf_link_hash_traverse (elf_hash_table (info),
8836 mips_elf_count_global_tls_relocs,
8839 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8845 /* Estimate the size of the .MIPS.stubs section. */
8848 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8850 struct mips_elf_link_hash_table *htab;
8851 bfd_size_type dynsymcount;
8853 htab = mips_elf_hash_table (info);
8854 BFD_ASSERT (htab != NULL);
8856 if (htab->lazy_stub_count == 0)
8859 /* IRIX rld assumes that a function stub isn't at the end of the .text
8860 section, so add a dummy entry to the end. */
8861 htab->lazy_stub_count++;
8863 /* Get a worst-case estimate of the number of dynamic symbols needed.
8864 At this point, dynsymcount does not account for section symbols
8865 and count_section_dynsyms may overestimate the number that will
8867 dynsymcount = (elf_hash_table (info)->dynsymcount
8868 + count_section_dynsyms (output_bfd, info));
8870 /* Determine the size of one stub entry. */
8871 htab->function_stub_size = (dynsymcount > 0x10000
8872 ? MIPS_FUNCTION_STUB_BIG_SIZE
8873 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8875 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8878 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8879 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8880 allocate an entry in the stubs section. */
8883 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8885 struct mips_elf_link_hash_table *htab;
8887 htab = (struct mips_elf_link_hash_table *) data;
8888 if (h->needs_lazy_stub)
8890 h->root.root.u.def.section = htab->sstubs;
8891 h->root.root.u.def.value = htab->sstubs->size;
8892 h->root.plt.offset = htab->sstubs->size;
8893 htab->sstubs->size += htab->function_stub_size;
8898 /* Allocate offsets in the stubs section to each symbol that needs one.
8899 Set the final size of the .MIPS.stub section. */
8902 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8904 struct mips_elf_link_hash_table *htab;
8906 htab = mips_elf_hash_table (info);
8907 BFD_ASSERT (htab != NULL);
8909 if (htab->lazy_stub_count == 0)
8912 htab->sstubs->size = 0;
8913 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8914 htab->sstubs->size += htab->function_stub_size;
8915 BFD_ASSERT (htab->sstubs->size
8916 == htab->lazy_stub_count * htab->function_stub_size);
8919 /* Set the sizes of the dynamic sections. */
8922 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8923 struct bfd_link_info *info)
8926 asection *s, *sreldyn;
8927 bfd_boolean reltext;
8928 struct mips_elf_link_hash_table *htab;
8930 htab = mips_elf_hash_table (info);
8931 BFD_ASSERT (htab != NULL);
8932 dynobj = elf_hash_table (info)->dynobj;
8933 BFD_ASSERT (dynobj != NULL);
8935 if (elf_hash_table (info)->dynamic_sections_created)
8937 /* Set the contents of the .interp section to the interpreter. */
8938 if (info->executable)
8940 s = bfd_get_section_by_name (dynobj, ".interp");
8941 BFD_ASSERT (s != NULL);
8943 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8945 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8948 /* Create a symbol for the PLT, if we know that we are using it. */
8949 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8951 struct elf_link_hash_entry *h;
8953 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8955 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8956 "_PROCEDURE_LINKAGE_TABLE_");
8957 htab->root.hplt = h;
8964 /* Allocate space for global sym dynamic relocs. */
8965 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8967 mips_elf_estimate_stub_size (output_bfd, info);
8969 if (!mips_elf_lay_out_got (output_bfd, info))
8972 mips_elf_lay_out_lazy_stubs (info);
8974 /* The check_relocs and adjust_dynamic_symbol entry points have
8975 determined the sizes of the various dynamic sections. Allocate
8978 for (s = dynobj->sections; s != NULL; s = s->next)
8982 /* It's OK to base decisions on the section name, because none
8983 of the dynobj section names depend upon the input files. */
8984 name = bfd_get_section_name (dynobj, s);
8986 if ((s->flags & SEC_LINKER_CREATED) == 0)
8989 if (CONST_STRNEQ (name, ".rel"))
8993 const char *outname;
8996 /* If this relocation section applies to a read only
8997 section, then we probably need a DT_TEXTREL entry.
8998 If the relocation section is .rel(a).dyn, we always
8999 assert a DT_TEXTREL entry rather than testing whether
9000 there exists a relocation to a read only section or
9002 outname = bfd_get_section_name (output_bfd,
9004 target = bfd_get_section_by_name (output_bfd, outname + 4);
9006 && (target->flags & SEC_READONLY) != 0
9007 && (target->flags & SEC_ALLOC) != 0)
9008 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9011 /* We use the reloc_count field as a counter if we need
9012 to copy relocs into the output file. */
9013 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9016 /* If combreloc is enabled, elf_link_sort_relocs() will
9017 sort relocations, but in a different way than we do,
9018 and before we're done creating relocations. Also, it
9019 will move them around between input sections'
9020 relocation's contents, so our sorting would be
9021 broken, so don't let it run. */
9022 info->combreloc = 0;
9025 else if (! info->shared
9026 && ! mips_elf_hash_table (info)->use_rld_obj_head
9027 && CONST_STRNEQ (name, ".rld_map"))
9029 /* We add a room for __rld_map. It will be filled in by the
9030 rtld to contain a pointer to the _r_debug structure. */
9033 else if (SGI_COMPAT (output_bfd)
9034 && CONST_STRNEQ (name, ".compact_rel"))
9035 s->size += mips_elf_hash_table (info)->compact_rel_size;
9036 else if (s == htab->splt)
9038 /* If the last PLT entry has a branch delay slot, allocate
9039 room for an extra nop to fill the delay slot. This is
9040 for CPUs without load interlocking. */
9041 if (! LOAD_INTERLOCKS_P (output_bfd)
9042 && ! htab->is_vxworks && s->size > 0)
9045 else if (! CONST_STRNEQ (name, ".init")
9047 && s != htab->sgotplt
9048 && s != htab->sstubs
9049 && s != htab->sdynbss)
9051 /* It's not one of our sections, so don't allocate space. */
9057 s->flags |= SEC_EXCLUDE;
9061 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9064 /* Allocate memory for the section contents. */
9065 s->contents = bfd_zalloc (dynobj, s->size);
9066 if (s->contents == NULL)
9068 bfd_set_error (bfd_error_no_memory);
9073 if (elf_hash_table (info)->dynamic_sections_created)
9075 /* Add some entries to the .dynamic section. We fill in the
9076 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9077 must add the entries now so that we get the correct size for
9078 the .dynamic section. */
9080 /* SGI object has the equivalence of DT_DEBUG in the
9081 DT_MIPS_RLD_MAP entry. This must come first because glibc
9082 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9083 looks at the first one it sees. */
9085 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9088 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9089 used by the debugger. */
9090 if (info->executable
9091 && !SGI_COMPAT (output_bfd)
9092 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9095 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9096 info->flags |= DF_TEXTREL;
9098 if ((info->flags & DF_TEXTREL) != 0)
9100 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9103 /* Clear the DF_TEXTREL flag. It will be set again if we
9104 write out an actual text relocation; we may not, because
9105 at this point we do not know whether e.g. any .eh_frame
9106 absolute relocations have been converted to PC-relative. */
9107 info->flags &= ~DF_TEXTREL;
9110 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9113 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9114 if (htab->is_vxworks)
9116 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9117 use any of the DT_MIPS_* tags. */
9118 if (sreldyn && sreldyn->size > 0)
9120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9132 if (sreldyn && sreldyn->size > 0)
9134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9144 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9165 if (IRIX_COMPAT (dynobj) == ict_irix5
9166 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9169 if (IRIX_COMPAT (dynobj) == ict_irix6
9170 && (bfd_get_section_by_name
9171 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9172 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9175 if (htab->splt->size > 0)
9177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9189 if (htab->is_vxworks
9190 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9197 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9198 Adjust its R_ADDEND field so that it is correct for the output file.
9199 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9200 and sections respectively; both use symbol indexes. */
9203 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9204 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9205 asection **local_sections, Elf_Internal_Rela *rel)
9207 unsigned int r_type, r_symndx;
9208 Elf_Internal_Sym *sym;
9211 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9213 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9214 if (gprel16_reloc_p (r_type)
9215 || r_type == R_MIPS_GPREL32
9216 || literal_reloc_p (r_type))
9218 rel->r_addend += _bfd_get_gp_value (input_bfd);
9219 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9222 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9223 sym = local_syms + r_symndx;
9225 /* Adjust REL's addend to account for section merging. */
9226 if (!info->relocatable)
9228 sec = local_sections[r_symndx];
9229 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9232 /* This would normally be done by the rela_normal code in elflink.c. */
9233 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9234 rel->r_addend += local_sections[r_symndx]->output_offset;
9238 /* Relocate a MIPS ELF section. */
9241 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9242 bfd *input_bfd, asection *input_section,
9243 bfd_byte *contents, Elf_Internal_Rela *relocs,
9244 Elf_Internal_Sym *local_syms,
9245 asection **local_sections)
9247 Elf_Internal_Rela *rel;
9248 const Elf_Internal_Rela *relend;
9250 bfd_boolean use_saved_addend_p = FALSE;
9251 const struct elf_backend_data *bed;
9253 bed = get_elf_backend_data (output_bfd);
9254 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9255 for (rel = relocs; rel < relend; ++rel)
9259 reloc_howto_type *howto;
9260 bfd_boolean cross_mode_jump_p;
9261 /* TRUE if the relocation is a RELA relocation, rather than a
9263 bfd_boolean rela_relocation_p = TRUE;
9264 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9266 unsigned long r_symndx;
9268 Elf_Internal_Shdr *symtab_hdr;
9269 struct elf_link_hash_entry *h;
9270 bfd_boolean rel_reloc;
9272 rel_reloc = (NEWABI_P (input_bfd)
9273 && mips_elf_rel_relocation_p (input_bfd, input_section,
9275 /* Find the relocation howto for this relocation. */
9276 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9278 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9279 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9280 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9282 sec = local_sections[r_symndx];
9287 unsigned long extsymoff;
9290 if (!elf_bad_symtab (input_bfd))
9291 extsymoff = symtab_hdr->sh_info;
9292 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9293 while (h->root.type == bfd_link_hash_indirect
9294 || h->root.type == bfd_link_hash_warning)
9295 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9298 if (h->root.type == bfd_link_hash_defined
9299 || h->root.type == bfd_link_hash_defweak)
9300 sec = h->root.u.def.section;
9303 if (sec != NULL && elf_discarded_section (sec))
9304 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9305 rel, relend, howto, contents);
9307 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9309 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9310 64-bit code, but make sure all their addresses are in the
9311 lowermost or uppermost 32-bit section of the 64-bit address
9312 space. Thus, when they use an R_MIPS_64 they mean what is
9313 usually meant by R_MIPS_32, with the exception that the
9314 stored value is sign-extended to 64 bits. */
9315 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9317 /* On big-endian systems, we need to lie about the position
9319 if (bfd_big_endian (input_bfd))
9323 if (!use_saved_addend_p)
9325 /* If these relocations were originally of the REL variety,
9326 we must pull the addend out of the field that will be
9327 relocated. Otherwise, we simply use the contents of the
9329 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9332 rela_relocation_p = FALSE;
9333 addend = mips_elf_read_rel_addend (input_bfd, rel,
9335 if (hi16_reloc_p (r_type)
9336 || (got16_reloc_p (r_type)
9337 && mips_elf_local_relocation_p (input_bfd, rel,
9340 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9344 name = h->root.root.string;
9346 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9347 local_syms + r_symndx,
9349 (*_bfd_error_handler)
9350 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9351 input_bfd, input_section, name, howto->name,
9356 addend <<= howto->rightshift;
9359 addend = rel->r_addend;
9360 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9361 local_syms, local_sections, rel);
9364 if (info->relocatable)
9366 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9367 && bfd_big_endian (input_bfd))
9370 if (!rela_relocation_p && rel->r_addend)
9372 addend += rel->r_addend;
9373 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9374 addend = mips_elf_high (addend);
9375 else if (r_type == R_MIPS_HIGHER)
9376 addend = mips_elf_higher (addend);
9377 else if (r_type == R_MIPS_HIGHEST)
9378 addend = mips_elf_highest (addend);
9380 addend >>= howto->rightshift;
9382 /* We use the source mask, rather than the destination
9383 mask because the place to which we are writing will be
9384 source of the addend in the final link. */
9385 addend &= howto->src_mask;
9387 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9388 /* See the comment above about using R_MIPS_64 in the 32-bit
9389 ABI. Here, we need to update the addend. It would be
9390 possible to get away with just using the R_MIPS_32 reloc
9391 but for endianness. */
9397 if (addend & ((bfd_vma) 1 << 31))
9399 sign_bits = ((bfd_vma) 1 << 32) - 1;
9406 /* If we don't know that we have a 64-bit type,
9407 do two separate stores. */
9408 if (bfd_big_endian (input_bfd))
9410 /* Store the sign-bits (which are most significant)
9412 low_bits = sign_bits;
9418 high_bits = sign_bits;
9420 bfd_put_32 (input_bfd, low_bits,
9421 contents + rel->r_offset);
9422 bfd_put_32 (input_bfd, high_bits,
9423 contents + rel->r_offset + 4);
9427 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9428 input_bfd, input_section,
9433 /* Go on to the next relocation. */
9437 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9438 relocations for the same offset. In that case we are
9439 supposed to treat the output of each relocation as the addend
9441 if (rel + 1 < relend
9442 && rel->r_offset == rel[1].r_offset
9443 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9444 use_saved_addend_p = TRUE;
9446 use_saved_addend_p = FALSE;
9448 /* Figure out what value we are supposed to relocate. */
9449 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9450 input_section, info, rel,
9451 addend, howto, local_syms,
9452 local_sections, &value,
9453 &name, &cross_mode_jump_p,
9454 use_saved_addend_p))
9456 case bfd_reloc_continue:
9457 /* There's nothing to do. */
9460 case bfd_reloc_undefined:
9461 /* mips_elf_calculate_relocation already called the
9462 undefined_symbol callback. There's no real point in
9463 trying to perform the relocation at this point, so we
9464 just skip ahead to the next relocation. */
9467 case bfd_reloc_notsupported:
9468 msg = _("internal error: unsupported relocation error");
9469 info->callbacks->warning
9470 (info, msg, name, input_bfd, input_section, rel->r_offset);
9473 case bfd_reloc_overflow:
9474 if (use_saved_addend_p)
9475 /* Ignore overflow until we reach the last relocation for
9476 a given location. */
9480 struct mips_elf_link_hash_table *htab;
9482 htab = mips_elf_hash_table (info);
9483 BFD_ASSERT (htab != NULL);
9484 BFD_ASSERT (name != NULL);
9485 if (!htab->small_data_overflow_reported
9486 && (gprel16_reloc_p (howto->type)
9487 || literal_reloc_p (howto->type)))
9489 msg = _("small-data section exceeds 64KB;"
9490 " lower small-data size limit (see option -G)");
9492 htab->small_data_overflow_reported = TRUE;
9493 (*info->callbacks->einfo) ("%P: %s\n", msg);
9495 if (! ((*info->callbacks->reloc_overflow)
9496 (info, NULL, name, howto->name, (bfd_vma) 0,
9497 input_bfd, input_section, rel->r_offset)))
9505 case bfd_reloc_outofrange:
9506 if (jal_reloc_p (howto->type))
9508 msg = _("JALX to a non-word-aligned address");
9509 info->callbacks->warning
9510 (info, msg, name, input_bfd, input_section, rel->r_offset);
9520 /* If we've got another relocation for the address, keep going
9521 until we reach the last one. */
9522 if (use_saved_addend_p)
9528 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9529 /* See the comment above about using R_MIPS_64 in the 32-bit
9530 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9531 that calculated the right value. Now, however, we
9532 sign-extend the 32-bit result to 64-bits, and store it as a
9533 64-bit value. We are especially generous here in that we
9534 go to extreme lengths to support this usage on systems with
9535 only a 32-bit VMA. */
9541 if (value & ((bfd_vma) 1 << 31))
9543 sign_bits = ((bfd_vma) 1 << 32) - 1;
9550 /* If we don't know that we have a 64-bit type,
9551 do two separate stores. */
9552 if (bfd_big_endian (input_bfd))
9554 /* Undo what we did above. */
9556 /* Store the sign-bits (which are most significant)
9558 low_bits = sign_bits;
9564 high_bits = sign_bits;
9566 bfd_put_32 (input_bfd, low_bits,
9567 contents + rel->r_offset);
9568 bfd_put_32 (input_bfd, high_bits,
9569 contents + rel->r_offset + 4);
9573 /* Actually perform the relocation. */
9574 if (! mips_elf_perform_relocation (info, howto, rel, value,
9575 input_bfd, input_section,
9576 contents, cross_mode_jump_p))
9583 /* A function that iterates over each entry in la25_stubs and fills
9584 in the code for each one. DATA points to a mips_htab_traverse_info. */
9587 mips_elf_create_la25_stub (void **slot, void *data)
9589 struct mips_htab_traverse_info *hti;
9590 struct mips_elf_link_hash_table *htab;
9591 struct mips_elf_la25_stub *stub;
9594 bfd_vma offset, target, target_high, target_low;
9596 stub = (struct mips_elf_la25_stub *) *slot;
9597 hti = (struct mips_htab_traverse_info *) data;
9598 htab = mips_elf_hash_table (hti->info);
9599 BFD_ASSERT (htab != NULL);
9601 /* Create the section contents, if we haven't already. */
9602 s = stub->stub_section;
9606 loc = bfd_malloc (s->size);
9615 /* Work out where in the section this stub should go. */
9616 offset = stub->offset;
9618 /* Work out the target address. */
9619 target = (stub->h->root.root.u.def.section->output_section->vma
9620 + stub->h->root.root.u.def.section->output_offset
9621 + stub->h->root.root.u.def.value);
9622 target_high = ((target + 0x8000) >> 16) & 0xffff;
9623 target_low = (target & 0xffff);
9625 if (stub->stub_section != htab->strampoline)
9627 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9628 of the section and write the two instructions at the end. */
9629 memset (loc, 0, offset);
9631 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9633 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9635 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9637 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9639 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9644 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9645 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9650 /* This is trampoline. */
9652 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9654 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9656 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9658 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9659 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9660 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9662 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9664 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9668 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9669 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9670 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9671 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9677 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9678 adjust it appropriately now. */
9681 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9682 const char *name, Elf_Internal_Sym *sym)
9684 /* The linker script takes care of providing names and values for
9685 these, but we must place them into the right sections. */
9686 static const char* const text_section_symbols[] = {
9689 "__dso_displacement",
9691 "__program_header_table",
9695 static const char* const data_section_symbols[] = {
9703 const char* const *p;
9706 for (i = 0; i < 2; ++i)
9707 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9710 if (strcmp (*p, name) == 0)
9712 /* All of these symbols are given type STT_SECTION by the
9714 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9715 sym->st_other = STO_PROTECTED;
9717 /* The IRIX linker puts these symbols in special sections. */
9719 sym->st_shndx = SHN_MIPS_TEXT;
9721 sym->st_shndx = SHN_MIPS_DATA;
9727 /* Finish up dynamic symbol handling. We set the contents of various
9728 dynamic sections here. */
9731 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9732 struct bfd_link_info *info,
9733 struct elf_link_hash_entry *h,
9734 Elf_Internal_Sym *sym)
9738 struct mips_got_info *g, *gg;
9741 struct mips_elf_link_hash_table *htab;
9742 struct mips_elf_link_hash_entry *hmips;
9744 htab = mips_elf_hash_table (info);
9745 BFD_ASSERT (htab != NULL);
9746 dynobj = elf_hash_table (info)->dynobj;
9747 hmips = (struct mips_elf_link_hash_entry *) h;
9749 BFD_ASSERT (!htab->is_vxworks);
9751 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9753 /* We've decided to create a PLT entry for this symbol. */
9755 bfd_vma header_address, plt_index, got_address;
9756 bfd_vma got_address_high, got_address_low, load;
9757 const bfd_vma *plt_entry;
9759 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9760 BFD_ASSERT (h->dynindx != -1);
9761 BFD_ASSERT (htab->splt != NULL);
9762 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9763 BFD_ASSERT (!h->def_regular);
9765 /* Calculate the address of the PLT header. */
9766 header_address = (htab->splt->output_section->vma
9767 + htab->splt->output_offset);
9769 /* Calculate the index of the entry. */
9770 plt_index = ((h->plt.offset - htab->plt_header_size)
9771 / htab->plt_entry_size);
9773 /* Calculate the address of the .got.plt entry. */
9774 got_address = (htab->sgotplt->output_section->vma
9775 + htab->sgotplt->output_offset
9776 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9777 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9778 got_address_low = got_address & 0xffff;
9780 /* Initially point the .got.plt entry at the PLT header. */
9781 loc = (htab->sgotplt->contents
9782 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9783 if (ABI_64_P (output_bfd))
9784 bfd_put_64 (output_bfd, header_address, loc);
9786 bfd_put_32 (output_bfd, header_address, loc);
9788 /* Find out where the .plt entry should go. */
9789 loc = htab->splt->contents + h->plt.offset;
9791 /* Pick the load opcode. */
9792 load = MIPS_ELF_LOAD_WORD (output_bfd);
9794 /* Fill in the PLT entry itself. */
9795 plt_entry = mips_exec_plt_entry;
9796 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9797 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9799 if (! LOAD_INTERLOCKS_P (output_bfd))
9801 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9802 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9806 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9807 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9810 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9811 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9812 plt_index, h->dynindx,
9813 R_MIPS_JUMP_SLOT, got_address);
9815 /* We distinguish between PLT entries and lazy-binding stubs by
9816 giving the former an st_other value of STO_MIPS_PLT. Set the
9817 flag and leave the value if there are any relocations in the
9818 binary where pointer equality matters. */
9819 sym->st_shndx = SHN_UNDEF;
9820 if (h->pointer_equality_needed)
9821 sym->st_other = STO_MIPS_PLT;
9825 else if (h->plt.offset != MINUS_ONE)
9827 /* We've decided to create a lazy-binding stub. */
9828 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9830 /* This symbol has a stub. Set it up. */
9832 BFD_ASSERT (h->dynindx != -1);
9834 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9835 || (h->dynindx <= 0xffff));
9837 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9838 sign extension at runtime in the stub, resulting in a negative
9840 if (h->dynindx & ~0x7fffffff)
9843 /* Fill the stub. */
9845 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9847 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9849 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9851 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9855 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9858 /* If a large stub is not required and sign extension is not a
9859 problem, then use legacy code in the stub. */
9860 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9861 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9862 else if (h->dynindx & ~0x7fff)
9863 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9865 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9868 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9869 memcpy (htab->sstubs->contents + h->plt.offset,
9870 stub, htab->function_stub_size);
9872 /* Mark the symbol as undefined. plt.offset != -1 occurs
9873 only for the referenced symbol. */
9874 sym->st_shndx = SHN_UNDEF;
9876 /* The run-time linker uses the st_value field of the symbol
9877 to reset the global offset table entry for this external
9878 to its stub address when unlinking a shared object. */
9879 sym->st_value = (htab->sstubs->output_section->vma
9880 + htab->sstubs->output_offset
9884 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9885 refer to the stub, since only the stub uses the standard calling
9887 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9889 BFD_ASSERT (hmips->need_fn_stub);
9890 sym->st_value = (hmips->fn_stub->output_section->vma
9891 + hmips->fn_stub->output_offset);
9892 sym->st_size = hmips->fn_stub->size;
9893 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9896 BFD_ASSERT (h->dynindx != -1
9897 || h->forced_local);
9901 BFD_ASSERT (g != NULL);
9903 /* Run through the global symbol table, creating GOT entries for all
9904 the symbols that need them. */
9905 if (hmips->global_got_area != GGA_NONE)
9910 value = sym->st_value;
9911 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9912 R_MIPS_GOT16, info);
9913 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9916 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9918 struct mips_got_entry e, *p;
9924 e.abfd = output_bfd;
9929 for (g = g->next; g->next != gg; g = g->next)
9932 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9937 || (elf_hash_table (info)->dynamic_sections_created
9939 && p->d.h->root.def_dynamic
9940 && !p->d.h->root.def_regular))
9942 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9943 the various compatibility problems, it's easier to mock
9944 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9945 mips_elf_create_dynamic_relocation to calculate the
9946 appropriate addend. */
9947 Elf_Internal_Rela rel[3];
9949 memset (rel, 0, sizeof (rel));
9950 if (ABI_64_P (output_bfd))
9951 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9953 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9954 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9957 if (! (mips_elf_create_dynamic_relocation
9958 (output_bfd, info, rel,
9959 e.d.h, NULL, sym->st_value, &entry, sgot)))
9963 entry = sym->st_value;
9964 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9969 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9970 name = h->root.root.string;
9971 if (strcmp (name, "_DYNAMIC") == 0
9972 || h == elf_hash_table (info)->hgot)
9973 sym->st_shndx = SHN_ABS;
9974 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9975 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9977 sym->st_shndx = SHN_ABS;
9978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9981 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9983 sym->st_shndx = SHN_ABS;
9984 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9985 sym->st_value = elf_gp (output_bfd);
9987 else if (SGI_COMPAT (output_bfd))
9989 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9990 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9992 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9993 sym->st_other = STO_PROTECTED;
9995 sym->st_shndx = SHN_MIPS_DATA;
9997 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9999 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10000 sym->st_other = STO_PROTECTED;
10001 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10002 sym->st_shndx = SHN_ABS;
10004 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10006 if (h->type == STT_FUNC)
10007 sym->st_shndx = SHN_MIPS_TEXT;
10008 else if (h->type == STT_OBJECT)
10009 sym->st_shndx = SHN_MIPS_DATA;
10013 /* Emit a copy reloc, if needed. */
10019 BFD_ASSERT (h->dynindx != -1);
10020 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10022 s = mips_elf_rel_dyn_section (info, FALSE);
10023 symval = (h->root.u.def.section->output_section->vma
10024 + h->root.u.def.section->output_offset
10025 + h->root.u.def.value);
10026 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10027 h->dynindx, R_MIPS_COPY, symval);
10030 /* Handle the IRIX6-specific symbols. */
10031 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10032 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10034 if (! info->shared)
10036 if (! mips_elf_hash_table (info)->use_rld_obj_head
10037 && (strcmp (name, "__rld_map") == 0
10038 || strcmp (name, "__RLD_MAP") == 0))
10040 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
10041 BFD_ASSERT (s != NULL);
10042 sym->st_value = s->output_section->vma + s->output_offset;
10043 bfd_put_32 (output_bfd, 0, s->contents);
10044 if (mips_elf_hash_table (info)->rld_value == 0)
10045 mips_elf_hash_table (info)->rld_value = sym->st_value;
10047 else if (mips_elf_hash_table (info)->use_rld_obj_head
10048 && strcmp (name, "__rld_obj_head") == 0)
10050 /* IRIX6 does not use a .rld_map section. */
10051 if (IRIX_COMPAT (output_bfd) == ict_irix5
10052 || IRIX_COMPAT (output_bfd) == ict_none)
10053 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
10055 mips_elf_hash_table (info)->rld_value = sym->st_value;
10059 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10060 treat MIPS16 symbols like any other. */
10061 if (ELF_ST_IS_MIPS16 (sym->st_other))
10063 BFD_ASSERT (sym->st_value & 1);
10064 sym->st_other -= STO_MIPS16;
10070 /* Likewise, for VxWorks. */
10073 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10074 struct bfd_link_info *info,
10075 struct elf_link_hash_entry *h,
10076 Elf_Internal_Sym *sym)
10080 struct mips_got_info *g;
10081 struct mips_elf_link_hash_table *htab;
10082 struct mips_elf_link_hash_entry *hmips;
10084 htab = mips_elf_hash_table (info);
10085 BFD_ASSERT (htab != NULL);
10086 dynobj = elf_hash_table (info)->dynobj;
10087 hmips = (struct mips_elf_link_hash_entry *) h;
10089 if (h->plt.offset != (bfd_vma) -1)
10092 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10093 Elf_Internal_Rela rel;
10094 static const bfd_vma *plt_entry;
10096 BFD_ASSERT (h->dynindx != -1);
10097 BFD_ASSERT (htab->splt != NULL);
10098 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10100 /* Calculate the address of the .plt entry. */
10101 plt_address = (htab->splt->output_section->vma
10102 + htab->splt->output_offset
10105 /* Calculate the index of the entry. */
10106 plt_index = ((h->plt.offset - htab->plt_header_size)
10107 / htab->plt_entry_size);
10109 /* Calculate the address of the .got.plt entry. */
10110 got_address = (htab->sgotplt->output_section->vma
10111 + htab->sgotplt->output_offset
10114 /* Calculate the offset of the .got.plt entry from
10115 _GLOBAL_OFFSET_TABLE_. */
10116 got_offset = mips_elf_gotplt_index (info, h);
10118 /* Calculate the offset for the branch at the start of the PLT
10119 entry. The branch jumps to the beginning of .plt. */
10120 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10122 /* Fill in the initial value of the .got.plt entry. */
10123 bfd_put_32 (output_bfd, plt_address,
10124 htab->sgotplt->contents + plt_index * 4);
10126 /* Find out where the .plt entry should go. */
10127 loc = htab->splt->contents + h->plt.offset;
10131 plt_entry = mips_vxworks_shared_plt_entry;
10132 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10133 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10137 bfd_vma got_address_high, got_address_low;
10139 plt_entry = mips_vxworks_exec_plt_entry;
10140 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10141 got_address_low = got_address & 0xffff;
10143 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10144 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10145 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10146 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10147 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10148 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10149 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10150 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10152 loc = (htab->srelplt2->contents
10153 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10155 /* Emit a relocation for the .got.plt entry. */
10156 rel.r_offset = got_address;
10157 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10158 rel.r_addend = h->plt.offset;
10159 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10161 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10162 loc += sizeof (Elf32_External_Rela);
10163 rel.r_offset = plt_address + 8;
10164 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10165 rel.r_addend = got_offset;
10166 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10168 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10169 loc += sizeof (Elf32_External_Rela);
10171 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10172 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10175 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10176 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10177 rel.r_offset = got_address;
10178 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10180 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10182 if (!h->def_regular)
10183 sym->st_shndx = SHN_UNDEF;
10186 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10189 g = htab->got_info;
10190 BFD_ASSERT (g != NULL);
10192 /* See if this symbol has an entry in the GOT. */
10193 if (hmips->global_got_area != GGA_NONE)
10196 Elf_Internal_Rela outrel;
10200 /* Install the symbol value in the GOT. */
10201 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10202 R_MIPS_GOT16, info);
10203 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10205 /* Add a dynamic relocation for it. */
10206 s = mips_elf_rel_dyn_section (info, FALSE);
10207 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10208 outrel.r_offset = (sgot->output_section->vma
10209 + sgot->output_offset
10211 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10212 outrel.r_addend = 0;
10213 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10216 /* Emit a copy reloc, if needed. */
10219 Elf_Internal_Rela rel;
10221 BFD_ASSERT (h->dynindx != -1);
10223 rel.r_offset = (h->root.u.def.section->output_section->vma
10224 + h->root.u.def.section->output_offset
10225 + h->root.u.def.value);
10226 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10228 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10229 htab->srelbss->contents
10230 + (htab->srelbss->reloc_count
10231 * sizeof (Elf32_External_Rela)));
10232 ++htab->srelbss->reloc_count;
10235 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10236 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10237 sym->st_value &= ~1;
10242 /* Write out a plt0 entry to the beginning of .plt. */
10245 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10248 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10249 static const bfd_vma *plt_entry;
10250 struct mips_elf_link_hash_table *htab;
10252 htab = mips_elf_hash_table (info);
10253 BFD_ASSERT (htab != NULL);
10255 if (ABI_64_P (output_bfd))
10256 plt_entry = mips_n64_exec_plt0_entry;
10257 else if (ABI_N32_P (output_bfd))
10258 plt_entry = mips_n32_exec_plt0_entry;
10260 plt_entry = mips_o32_exec_plt0_entry;
10262 /* Calculate the value of .got.plt. */
10263 gotplt_value = (htab->sgotplt->output_section->vma
10264 + htab->sgotplt->output_offset);
10265 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10266 gotplt_value_low = gotplt_value & 0xffff;
10268 /* The PLT sequence is not safe for N64 if .got.plt's address can
10269 not be loaded in two instructions. */
10270 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10271 || ~(gotplt_value | 0x7fffffff) == 0);
10273 /* Install the PLT header. */
10274 loc = htab->splt->contents;
10275 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10276 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10277 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10278 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10279 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10280 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10281 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10282 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10285 /* Install the PLT header for a VxWorks executable and finalize the
10286 contents of .rela.plt.unloaded. */
10289 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10291 Elf_Internal_Rela rela;
10293 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10294 static const bfd_vma *plt_entry;
10295 struct mips_elf_link_hash_table *htab;
10297 htab = mips_elf_hash_table (info);
10298 BFD_ASSERT (htab != NULL);
10300 plt_entry = mips_vxworks_exec_plt0_entry;
10302 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10303 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10304 + htab->root.hgot->root.u.def.section->output_offset
10305 + htab->root.hgot->root.u.def.value);
10307 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10308 got_value_low = got_value & 0xffff;
10310 /* Calculate the address of the PLT header. */
10311 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10313 /* Install the PLT header. */
10314 loc = htab->splt->contents;
10315 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10316 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10317 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10318 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10319 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10320 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10322 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10323 loc = htab->srelplt2->contents;
10324 rela.r_offset = plt_address;
10325 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10327 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10328 loc += sizeof (Elf32_External_Rela);
10330 /* Output the relocation for the following addiu of
10331 %lo(_GLOBAL_OFFSET_TABLE_). */
10332 rela.r_offset += 4;
10333 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10334 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10335 loc += sizeof (Elf32_External_Rela);
10337 /* Fix up the remaining relocations. They may have the wrong
10338 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10339 in which symbols were output. */
10340 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10342 Elf_Internal_Rela rel;
10344 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10345 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10346 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10347 loc += sizeof (Elf32_External_Rela);
10349 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10350 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10351 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10352 loc += sizeof (Elf32_External_Rela);
10354 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10355 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10356 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10357 loc += sizeof (Elf32_External_Rela);
10361 /* Install the PLT header for a VxWorks shared library. */
10364 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10367 struct mips_elf_link_hash_table *htab;
10369 htab = mips_elf_hash_table (info);
10370 BFD_ASSERT (htab != NULL);
10372 /* We just need to copy the entry byte-by-byte. */
10373 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10374 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10375 htab->splt->contents + i * 4);
10378 /* Finish up the dynamic sections. */
10381 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10382 struct bfd_link_info *info)
10387 struct mips_got_info *gg, *g;
10388 struct mips_elf_link_hash_table *htab;
10390 htab = mips_elf_hash_table (info);
10391 BFD_ASSERT (htab != NULL);
10393 dynobj = elf_hash_table (info)->dynobj;
10395 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10398 gg = htab->got_info;
10400 if (elf_hash_table (info)->dynamic_sections_created)
10403 int dyn_to_skip = 0, dyn_skipped = 0;
10405 BFD_ASSERT (sdyn != NULL);
10406 BFD_ASSERT (gg != NULL);
10408 g = mips_elf_got_for_ibfd (gg, output_bfd);
10409 BFD_ASSERT (g != NULL);
10411 for (b = sdyn->contents;
10412 b < sdyn->contents + sdyn->size;
10413 b += MIPS_ELF_DYN_SIZE (dynobj))
10415 Elf_Internal_Dyn dyn;
10419 bfd_boolean swap_out_p;
10421 /* Read in the current dynamic entry. */
10422 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10424 /* Assume that we're going to modify it and write it out. */
10430 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10434 BFD_ASSERT (htab->is_vxworks);
10435 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10439 /* Rewrite DT_STRSZ. */
10441 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10446 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10449 case DT_MIPS_PLTGOT:
10451 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10454 case DT_MIPS_RLD_VERSION:
10455 dyn.d_un.d_val = 1; /* XXX */
10458 case DT_MIPS_FLAGS:
10459 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10462 case DT_MIPS_TIME_STAMP:
10466 dyn.d_un.d_val = t;
10470 case DT_MIPS_ICHECKSUM:
10472 swap_out_p = FALSE;
10475 case DT_MIPS_IVERSION:
10477 swap_out_p = FALSE;
10480 case DT_MIPS_BASE_ADDRESS:
10481 s = output_bfd->sections;
10482 BFD_ASSERT (s != NULL);
10483 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10486 case DT_MIPS_LOCAL_GOTNO:
10487 dyn.d_un.d_val = g->local_gotno;
10490 case DT_MIPS_UNREFEXTNO:
10491 /* The index into the dynamic symbol table which is the
10492 entry of the first external symbol that is not
10493 referenced within the same object. */
10494 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10497 case DT_MIPS_GOTSYM:
10498 if (gg->global_gotsym)
10500 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10503 /* In case if we don't have global got symbols we default
10504 to setting DT_MIPS_GOTSYM to the same value as
10505 DT_MIPS_SYMTABNO, so we just fall through. */
10507 case DT_MIPS_SYMTABNO:
10509 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10510 s = bfd_get_section_by_name (output_bfd, name);
10511 BFD_ASSERT (s != NULL);
10513 dyn.d_un.d_val = s->size / elemsize;
10516 case DT_MIPS_HIPAGENO:
10517 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10520 case DT_MIPS_RLD_MAP:
10521 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10524 case DT_MIPS_OPTIONS:
10525 s = (bfd_get_section_by_name
10526 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10527 dyn.d_un.d_ptr = s->vma;
10531 BFD_ASSERT (htab->is_vxworks);
10532 /* The count does not include the JUMP_SLOT relocations. */
10534 dyn.d_un.d_val -= htab->srelplt->size;
10538 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10539 if (htab->is_vxworks)
10540 dyn.d_un.d_val = DT_RELA;
10542 dyn.d_un.d_val = DT_REL;
10546 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10547 dyn.d_un.d_val = htab->srelplt->size;
10551 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10552 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10553 + htab->srelplt->output_offset);
10557 /* If we didn't need any text relocations after all, delete
10558 the dynamic tag. */
10559 if (!(info->flags & DF_TEXTREL))
10561 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10562 swap_out_p = FALSE;
10567 /* If we didn't need any text relocations after all, clear
10568 DF_TEXTREL from DT_FLAGS. */
10569 if (!(info->flags & DF_TEXTREL))
10570 dyn.d_un.d_val &= ~DF_TEXTREL;
10572 swap_out_p = FALSE;
10576 swap_out_p = FALSE;
10577 if (htab->is_vxworks
10578 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10583 if (swap_out_p || dyn_skipped)
10584 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10585 (dynobj, &dyn, b - dyn_skipped);
10589 dyn_skipped += dyn_to_skip;
10594 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10595 if (dyn_skipped > 0)
10596 memset (b - dyn_skipped, 0, dyn_skipped);
10599 if (sgot != NULL && sgot->size > 0
10600 && !bfd_is_abs_section (sgot->output_section))
10602 if (htab->is_vxworks)
10604 /* The first entry of the global offset table points to the
10605 ".dynamic" section. The second is initialized by the
10606 loader and contains the shared library identifier.
10607 The third is also initialized by the loader and points
10608 to the lazy resolution stub. */
10609 MIPS_ELF_PUT_WORD (output_bfd,
10610 sdyn->output_offset + sdyn->output_section->vma,
10612 MIPS_ELF_PUT_WORD (output_bfd, 0,
10613 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10614 MIPS_ELF_PUT_WORD (output_bfd, 0,
10616 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10620 /* The first entry of the global offset table will be filled at
10621 runtime. The second entry will be used by some runtime loaders.
10622 This isn't the case of IRIX rld. */
10623 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10624 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10625 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10628 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10629 = MIPS_ELF_GOT_SIZE (output_bfd);
10632 /* Generate dynamic relocations for the non-primary gots. */
10633 if (gg != NULL && gg->next)
10635 Elf_Internal_Rela rel[3];
10636 bfd_vma addend = 0;
10638 memset (rel, 0, sizeof (rel));
10639 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10641 for (g = gg->next; g->next != gg; g = g->next)
10643 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10644 + g->next->tls_gotno;
10646 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10647 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10648 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10650 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10652 if (! info->shared)
10655 while (got_index < g->assigned_gotno)
10657 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10658 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10659 if (!(mips_elf_create_dynamic_relocation
10660 (output_bfd, info, rel, NULL,
10661 bfd_abs_section_ptr,
10662 0, &addend, sgot)))
10664 BFD_ASSERT (addend == 0);
10669 /* The generation of dynamic relocations for the non-primary gots
10670 adds more dynamic relocations. We cannot count them until
10673 if (elf_hash_table (info)->dynamic_sections_created)
10676 bfd_boolean swap_out_p;
10678 BFD_ASSERT (sdyn != NULL);
10680 for (b = sdyn->contents;
10681 b < sdyn->contents + sdyn->size;
10682 b += MIPS_ELF_DYN_SIZE (dynobj))
10684 Elf_Internal_Dyn dyn;
10687 /* Read in the current dynamic entry. */
10688 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10690 /* Assume that we're going to modify it and write it out. */
10696 /* Reduce DT_RELSZ to account for any relocations we
10697 decided not to make. This is for the n64 irix rld,
10698 which doesn't seem to apply any relocations if there
10699 are trailing null entries. */
10700 s = mips_elf_rel_dyn_section (info, FALSE);
10701 dyn.d_un.d_val = (s->reloc_count
10702 * (ABI_64_P (output_bfd)
10703 ? sizeof (Elf64_Mips_External_Rel)
10704 : sizeof (Elf32_External_Rel)));
10705 /* Adjust the section size too. Tools like the prelinker
10706 can reasonably expect the values to the same. */
10707 elf_section_data (s->output_section)->this_hdr.sh_size
10712 swap_out_p = FALSE;
10717 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10724 Elf32_compact_rel cpt;
10726 if (SGI_COMPAT (output_bfd))
10728 /* Write .compact_rel section out. */
10729 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10733 cpt.num = s->reloc_count;
10735 cpt.offset = (s->output_section->filepos
10736 + sizeof (Elf32_External_compact_rel));
10739 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10740 ((Elf32_External_compact_rel *)
10743 /* Clean up a dummy stub function entry in .text. */
10744 if (htab->sstubs != NULL)
10746 file_ptr dummy_offset;
10748 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10749 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10750 memset (htab->sstubs->contents + dummy_offset, 0,
10751 htab->function_stub_size);
10756 /* The psABI says that the dynamic relocations must be sorted in
10757 increasing order of r_symndx. The VxWorks EABI doesn't require
10758 this, and because the code below handles REL rather than RELA
10759 relocations, using it for VxWorks would be outright harmful. */
10760 if (!htab->is_vxworks)
10762 s = mips_elf_rel_dyn_section (info, FALSE);
10764 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10766 reldyn_sorting_bfd = output_bfd;
10768 if (ABI_64_P (output_bfd))
10769 qsort ((Elf64_External_Rel *) s->contents + 1,
10770 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10771 sort_dynamic_relocs_64);
10773 qsort ((Elf32_External_Rel *) s->contents + 1,
10774 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10775 sort_dynamic_relocs);
10780 if (htab->splt && htab->splt->size > 0)
10782 if (htab->is_vxworks)
10785 mips_vxworks_finish_shared_plt (output_bfd, info);
10787 mips_vxworks_finish_exec_plt (output_bfd, info);
10791 BFD_ASSERT (!info->shared);
10792 mips_finish_exec_plt (output_bfd, info);
10799 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10802 mips_set_isa_flags (bfd *abfd)
10806 switch (bfd_get_mach (abfd))
10809 case bfd_mach_mips3000:
10810 val = E_MIPS_ARCH_1;
10813 case bfd_mach_mips3900:
10814 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10817 case bfd_mach_mips6000:
10818 val = E_MIPS_ARCH_2;
10821 case bfd_mach_mips4000:
10822 case bfd_mach_mips4300:
10823 case bfd_mach_mips4400:
10824 case bfd_mach_mips4600:
10825 val = E_MIPS_ARCH_3;
10828 case bfd_mach_mips4010:
10829 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10832 case bfd_mach_mips4100:
10833 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10836 case bfd_mach_mips4111:
10837 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10840 case bfd_mach_mips4120:
10841 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10844 case bfd_mach_mips4650:
10845 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10848 case bfd_mach_mips5400:
10849 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10852 case bfd_mach_mips5500:
10853 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10856 case bfd_mach_mips9000:
10857 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10860 case bfd_mach_mips5000:
10861 case bfd_mach_mips7000:
10862 case bfd_mach_mips8000:
10863 case bfd_mach_mips10000:
10864 case bfd_mach_mips12000:
10865 case bfd_mach_mips14000:
10866 case bfd_mach_mips16000:
10867 val = E_MIPS_ARCH_4;
10870 case bfd_mach_mips5:
10871 val = E_MIPS_ARCH_5;
10874 case bfd_mach_mips_loongson_2e:
10875 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10878 case bfd_mach_mips_loongson_2f:
10879 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10882 case bfd_mach_mips_sb1:
10883 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10886 case bfd_mach_mips_loongson_3a:
10887 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10890 case bfd_mach_mips_octeon:
10891 case bfd_mach_mips_octeonp:
10892 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10895 case bfd_mach_mips_xlr:
10896 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10899 case bfd_mach_mips_octeon2:
10900 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10903 case bfd_mach_mipsisa32:
10904 val = E_MIPS_ARCH_32;
10907 case bfd_mach_mipsisa64:
10908 val = E_MIPS_ARCH_64;
10911 case bfd_mach_mipsisa32r2:
10912 val = E_MIPS_ARCH_32R2;
10915 case bfd_mach_mipsisa64r2:
10916 val = E_MIPS_ARCH_64R2;
10919 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10920 elf_elfheader (abfd)->e_flags |= val;
10925 /* The final processing done just before writing out a MIPS ELF object
10926 file. This gets the MIPS architecture right based on the machine
10927 number. This is used by both the 32-bit and the 64-bit ABI. */
10930 _bfd_mips_elf_final_write_processing (bfd *abfd,
10931 bfd_boolean linker ATTRIBUTE_UNUSED)
10934 Elf_Internal_Shdr **hdrpp;
10938 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10939 is nonzero. This is for compatibility with old objects, which used
10940 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10941 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10942 mips_set_isa_flags (abfd);
10944 /* Set the sh_info field for .gptab sections and other appropriate
10945 info for each special section. */
10946 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10947 i < elf_numsections (abfd);
10950 switch ((*hdrpp)->sh_type)
10952 case SHT_MIPS_MSYM:
10953 case SHT_MIPS_LIBLIST:
10954 sec = bfd_get_section_by_name (abfd, ".dynstr");
10956 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10959 case SHT_MIPS_GPTAB:
10960 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10961 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10962 BFD_ASSERT (name != NULL
10963 && CONST_STRNEQ (name, ".gptab."));
10964 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10965 BFD_ASSERT (sec != NULL);
10966 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10969 case SHT_MIPS_CONTENT:
10970 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10971 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10972 BFD_ASSERT (name != NULL
10973 && CONST_STRNEQ (name, ".MIPS.content"));
10974 sec = bfd_get_section_by_name (abfd,
10975 name + sizeof ".MIPS.content" - 1);
10976 BFD_ASSERT (sec != NULL);
10977 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10980 case SHT_MIPS_SYMBOL_LIB:
10981 sec = bfd_get_section_by_name (abfd, ".dynsym");
10983 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10984 sec = bfd_get_section_by_name (abfd, ".liblist");
10986 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10989 case SHT_MIPS_EVENTS:
10990 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10991 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10992 BFD_ASSERT (name != NULL);
10993 if (CONST_STRNEQ (name, ".MIPS.events"))
10994 sec = bfd_get_section_by_name (abfd,
10995 name + sizeof ".MIPS.events" - 1);
10998 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10999 sec = bfd_get_section_by_name (abfd,
11001 + sizeof ".MIPS.post_rel" - 1));
11003 BFD_ASSERT (sec != NULL);
11004 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11011 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11015 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11016 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11021 /* See if we need a PT_MIPS_REGINFO segment. */
11022 s = bfd_get_section_by_name (abfd, ".reginfo");
11023 if (s && (s->flags & SEC_LOAD))
11026 /* See if we need a PT_MIPS_OPTIONS segment. */
11027 if (IRIX_COMPAT (abfd) == ict_irix6
11028 && bfd_get_section_by_name (abfd,
11029 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11032 /* See if we need a PT_MIPS_RTPROC segment. */
11033 if (IRIX_COMPAT (abfd) == ict_irix5
11034 && bfd_get_section_by_name (abfd, ".dynamic")
11035 && bfd_get_section_by_name (abfd, ".mdebug"))
11038 /* Allocate a PT_NULL header in dynamic objects. See
11039 _bfd_mips_elf_modify_segment_map for details. */
11040 if (!SGI_COMPAT (abfd)
11041 && bfd_get_section_by_name (abfd, ".dynamic"))
11047 /* Modify the segment map for an IRIX5 executable. */
11050 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11051 struct bfd_link_info *info)
11054 struct elf_segment_map *m, **pm;
11057 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11059 s = bfd_get_section_by_name (abfd, ".reginfo");
11060 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11062 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11063 if (m->p_type == PT_MIPS_REGINFO)
11068 m = bfd_zalloc (abfd, amt);
11072 m->p_type = PT_MIPS_REGINFO;
11074 m->sections[0] = s;
11076 /* We want to put it after the PHDR and INTERP segments. */
11077 pm = &elf_tdata (abfd)->segment_map;
11079 && ((*pm)->p_type == PT_PHDR
11080 || (*pm)->p_type == PT_INTERP))
11088 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11089 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11090 PT_MIPS_OPTIONS segment immediately following the program header
11092 if (NEWABI_P (abfd)
11093 /* On non-IRIX6 new abi, we'll have already created a segment
11094 for this section, so don't create another. I'm not sure this
11095 is not also the case for IRIX 6, but I can't test it right
11097 && IRIX_COMPAT (abfd) == ict_irix6)
11099 for (s = abfd->sections; s; s = s->next)
11100 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11105 struct elf_segment_map *options_segment;
11107 pm = &elf_tdata (abfd)->segment_map;
11109 && ((*pm)->p_type == PT_PHDR
11110 || (*pm)->p_type == PT_INTERP))
11113 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11115 amt = sizeof (struct elf_segment_map);
11116 options_segment = bfd_zalloc (abfd, amt);
11117 options_segment->next = *pm;
11118 options_segment->p_type = PT_MIPS_OPTIONS;
11119 options_segment->p_flags = PF_R;
11120 options_segment->p_flags_valid = TRUE;
11121 options_segment->count = 1;
11122 options_segment->sections[0] = s;
11123 *pm = options_segment;
11129 if (IRIX_COMPAT (abfd) == ict_irix5)
11131 /* If there are .dynamic and .mdebug sections, we make a room
11132 for the RTPROC header. FIXME: Rewrite without section names. */
11133 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11134 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11135 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11137 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11138 if (m->p_type == PT_MIPS_RTPROC)
11143 m = bfd_zalloc (abfd, amt);
11147 m->p_type = PT_MIPS_RTPROC;
11149 s = bfd_get_section_by_name (abfd, ".rtproc");
11154 m->p_flags_valid = 1;
11159 m->sections[0] = s;
11162 /* We want to put it after the DYNAMIC segment. */
11163 pm = &elf_tdata (abfd)->segment_map;
11164 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11174 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11175 .dynstr, .dynsym, and .hash sections, and everything in
11177 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11179 if ((*pm)->p_type == PT_DYNAMIC)
11182 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11184 /* For a normal mips executable the permissions for the PT_DYNAMIC
11185 segment are read, write and execute. We do that here since
11186 the code in elf.c sets only the read permission. This matters
11187 sometimes for the dynamic linker. */
11188 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11190 m->p_flags = PF_R | PF_W | PF_X;
11191 m->p_flags_valid = 1;
11194 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11195 glibc's dynamic linker has traditionally derived the number of
11196 tags from the p_filesz field, and sometimes allocates stack
11197 arrays of that size. An overly-big PT_DYNAMIC segment can
11198 be actively harmful in such cases. Making PT_DYNAMIC contain
11199 other sections can also make life hard for the prelinker,
11200 which might move one of the other sections to a different
11201 PT_LOAD segment. */
11202 if (SGI_COMPAT (abfd)
11205 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11207 static const char *sec_names[] =
11209 ".dynamic", ".dynstr", ".dynsym", ".hash"
11213 struct elf_segment_map *n;
11215 low = ~(bfd_vma) 0;
11217 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11219 s = bfd_get_section_by_name (abfd, sec_names[i]);
11220 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11227 if (high < s->vma + sz)
11228 high = s->vma + sz;
11233 for (s = abfd->sections; s != NULL; s = s->next)
11234 if ((s->flags & SEC_LOAD) != 0
11236 && s->vma + s->size <= high)
11239 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11240 n = bfd_zalloc (abfd, amt);
11247 for (s = abfd->sections; s != NULL; s = s->next)
11249 if ((s->flags & SEC_LOAD) != 0
11251 && s->vma + s->size <= high)
11253 n->sections[i] = s;
11262 /* Allocate a spare program header in dynamic objects so that tools
11263 like the prelinker can add an extra PT_LOAD entry.
11265 If the prelinker needs to make room for a new PT_LOAD entry, its
11266 standard procedure is to move the first (read-only) sections into
11267 the new (writable) segment. However, the MIPS ABI requires
11268 .dynamic to be in a read-only segment, and the section will often
11269 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11271 Although the prelinker could in principle move .dynamic to a
11272 writable segment, it seems better to allocate a spare program
11273 header instead, and avoid the need to move any sections.
11274 There is a long tradition of allocating spare dynamic tags,
11275 so allocating a spare program header seems like a natural
11278 If INFO is NULL, we may be copying an already prelinked binary
11279 with objcopy or strip, so do not add this header. */
11281 && !SGI_COMPAT (abfd)
11282 && bfd_get_section_by_name (abfd, ".dynamic"))
11284 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11285 if ((*pm)->p_type == PT_NULL)
11289 m = bfd_zalloc (abfd, sizeof (*m));
11293 m->p_type = PT_NULL;
11301 /* Return the section that should be marked against GC for a given
11305 _bfd_mips_elf_gc_mark_hook (asection *sec,
11306 struct bfd_link_info *info,
11307 Elf_Internal_Rela *rel,
11308 struct elf_link_hash_entry *h,
11309 Elf_Internal_Sym *sym)
11311 /* ??? Do mips16 stub sections need to be handled special? */
11314 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11316 case R_MIPS_GNU_VTINHERIT:
11317 case R_MIPS_GNU_VTENTRY:
11321 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11324 /* Update the got entry reference counts for the section being removed. */
11327 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11328 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11329 asection *sec ATTRIBUTE_UNUSED,
11330 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11333 Elf_Internal_Shdr *symtab_hdr;
11334 struct elf_link_hash_entry **sym_hashes;
11335 bfd_signed_vma *local_got_refcounts;
11336 const Elf_Internal_Rela *rel, *relend;
11337 unsigned long r_symndx;
11338 struct elf_link_hash_entry *h;
11340 if (info->relocatable)
11343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11344 sym_hashes = elf_sym_hashes (abfd);
11345 local_got_refcounts = elf_local_got_refcounts (abfd);
11347 relend = relocs + sec->reloc_count;
11348 for (rel = relocs; rel < relend; rel++)
11349 switch (ELF_R_TYPE (abfd, rel->r_info))
11351 case R_MIPS16_GOT16:
11352 case R_MIPS16_CALL16:
11354 case R_MIPS_CALL16:
11355 case R_MIPS_CALL_HI16:
11356 case R_MIPS_CALL_LO16:
11357 case R_MIPS_GOT_HI16:
11358 case R_MIPS_GOT_LO16:
11359 case R_MIPS_GOT_DISP:
11360 case R_MIPS_GOT_PAGE:
11361 case R_MIPS_GOT_OFST:
11362 case R_MICROMIPS_GOT16:
11363 case R_MICROMIPS_CALL16:
11364 case R_MICROMIPS_CALL_HI16:
11365 case R_MICROMIPS_CALL_LO16:
11366 case R_MICROMIPS_GOT_HI16:
11367 case R_MICROMIPS_GOT_LO16:
11368 case R_MICROMIPS_GOT_DISP:
11369 case R_MICROMIPS_GOT_PAGE:
11370 case R_MICROMIPS_GOT_OFST:
11371 /* ??? It would seem that the existing MIPS code does no sort
11372 of reference counting or whatnot on its GOT and PLT entries,
11373 so it is not possible to garbage collect them at this time. */
11384 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11385 hiding the old indirect symbol. Process additional relocation
11386 information. Also called for weakdefs, in which case we just let
11387 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11390 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11391 struct elf_link_hash_entry *dir,
11392 struct elf_link_hash_entry *ind)
11394 struct mips_elf_link_hash_entry *dirmips, *indmips;
11396 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11398 dirmips = (struct mips_elf_link_hash_entry *) dir;
11399 indmips = (struct mips_elf_link_hash_entry *) ind;
11400 /* Any absolute non-dynamic relocations against an indirect or weak
11401 definition will be against the target symbol. */
11402 if (indmips->has_static_relocs)
11403 dirmips->has_static_relocs = TRUE;
11405 if (ind->root.type != bfd_link_hash_indirect)
11408 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11409 if (indmips->readonly_reloc)
11410 dirmips->readonly_reloc = TRUE;
11411 if (indmips->no_fn_stub)
11412 dirmips->no_fn_stub = TRUE;
11413 if (indmips->fn_stub)
11415 dirmips->fn_stub = indmips->fn_stub;
11416 indmips->fn_stub = NULL;
11418 if (indmips->need_fn_stub)
11420 dirmips->need_fn_stub = TRUE;
11421 indmips->need_fn_stub = FALSE;
11423 if (indmips->call_stub)
11425 dirmips->call_stub = indmips->call_stub;
11426 indmips->call_stub = NULL;
11428 if (indmips->call_fp_stub)
11430 dirmips->call_fp_stub = indmips->call_fp_stub;
11431 indmips->call_fp_stub = NULL;
11433 if (indmips->global_got_area < dirmips->global_got_area)
11434 dirmips->global_got_area = indmips->global_got_area;
11435 if (indmips->global_got_area < GGA_NONE)
11436 indmips->global_got_area = GGA_NONE;
11437 if (indmips->has_nonpic_branches)
11438 dirmips->has_nonpic_branches = TRUE;
11440 if (dirmips->tls_type == 0)
11441 dirmips->tls_type = indmips->tls_type;
11444 #define PDR_SIZE 32
11447 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11448 struct bfd_link_info *info)
11451 bfd_boolean ret = FALSE;
11452 unsigned char *tdata;
11455 o = bfd_get_section_by_name (abfd, ".pdr");
11460 if (o->size % PDR_SIZE != 0)
11462 if (o->output_section != NULL
11463 && bfd_is_abs_section (o->output_section))
11466 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11470 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11471 info->keep_memory);
11478 cookie->rel = cookie->rels;
11479 cookie->relend = cookie->rels + o->reloc_count;
11481 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11483 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11492 mips_elf_section_data (o)->u.tdata = tdata;
11493 o->size -= skip * PDR_SIZE;
11499 if (! info->keep_memory)
11500 free (cookie->rels);
11506 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11508 if (strcmp (sec->name, ".pdr") == 0)
11514 _bfd_mips_elf_write_section (bfd *output_bfd,
11515 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11516 asection *sec, bfd_byte *contents)
11518 bfd_byte *to, *from, *end;
11521 if (strcmp (sec->name, ".pdr") != 0)
11524 if (mips_elf_section_data (sec)->u.tdata == NULL)
11528 end = contents + sec->size;
11529 for (from = contents, i = 0;
11531 from += PDR_SIZE, i++)
11533 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11536 memcpy (to, from, PDR_SIZE);
11539 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11540 sec->output_offset, sec->size);
11544 /* microMIPS code retains local labels for linker relaxation. Omit them
11545 from output by default for clarity. */
11548 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11550 return _bfd_elf_is_local_label_name (abfd, sym->name);
11553 /* MIPS ELF uses a special find_nearest_line routine in order the
11554 handle the ECOFF debugging information. */
11556 struct mips_elf_find_line
11558 struct ecoff_debug_info d;
11559 struct ecoff_find_line i;
11563 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11564 asymbol **symbols, bfd_vma offset,
11565 const char **filename_ptr,
11566 const char **functionname_ptr,
11567 unsigned int *line_ptr)
11571 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11572 filename_ptr, functionname_ptr,
11576 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11577 section, symbols, offset,
11578 filename_ptr, functionname_ptr,
11579 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11580 &elf_tdata (abfd)->dwarf2_find_line_info))
11583 msec = bfd_get_section_by_name (abfd, ".mdebug");
11586 flagword origflags;
11587 struct mips_elf_find_line *fi;
11588 const struct ecoff_debug_swap * const swap =
11589 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11591 /* If we are called during a link, mips_elf_final_link may have
11592 cleared the SEC_HAS_CONTENTS field. We force it back on here
11593 if appropriate (which it normally will be). */
11594 origflags = msec->flags;
11595 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11596 msec->flags |= SEC_HAS_CONTENTS;
11598 fi = elf_tdata (abfd)->find_line_info;
11601 bfd_size_type external_fdr_size;
11604 struct fdr *fdr_ptr;
11605 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11607 fi = bfd_zalloc (abfd, amt);
11610 msec->flags = origflags;
11614 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11616 msec->flags = origflags;
11620 /* Swap in the FDR information. */
11621 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11622 fi->d.fdr = bfd_alloc (abfd, amt);
11623 if (fi->d.fdr == NULL)
11625 msec->flags = origflags;
11628 external_fdr_size = swap->external_fdr_size;
11629 fdr_ptr = fi->d.fdr;
11630 fraw_src = (char *) fi->d.external_fdr;
11631 fraw_end = (fraw_src
11632 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11633 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11634 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11636 elf_tdata (abfd)->find_line_info = fi;
11638 /* Note that we don't bother to ever free this information.
11639 find_nearest_line is either called all the time, as in
11640 objdump -l, so the information should be saved, or it is
11641 rarely called, as in ld error messages, so the memory
11642 wasted is unimportant. Still, it would probably be a
11643 good idea for free_cached_info to throw it away. */
11646 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11647 &fi->i, filename_ptr, functionname_ptr,
11650 msec->flags = origflags;
11654 msec->flags = origflags;
11657 /* Fall back on the generic ELF find_nearest_line routine. */
11659 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11660 filename_ptr, functionname_ptr,
11665 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11666 const char **filename_ptr,
11667 const char **functionname_ptr,
11668 unsigned int *line_ptr)
11671 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11672 functionname_ptr, line_ptr,
11673 & elf_tdata (abfd)->dwarf2_find_line_info);
11678 /* When are writing out the .options or .MIPS.options section,
11679 remember the bytes we are writing out, so that we can install the
11680 GP value in the section_processing routine. */
11683 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11684 const void *location,
11685 file_ptr offset, bfd_size_type count)
11687 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11691 if (elf_section_data (section) == NULL)
11693 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11694 section->used_by_bfd = bfd_zalloc (abfd, amt);
11695 if (elf_section_data (section) == NULL)
11698 c = mips_elf_section_data (section)->u.tdata;
11701 c = bfd_zalloc (abfd, section->size);
11704 mips_elf_section_data (section)->u.tdata = c;
11707 memcpy (c + offset, location, count);
11710 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11714 /* This is almost identical to bfd_generic_get_... except that some
11715 MIPS relocations need to be handled specially. Sigh. */
11718 _bfd_elf_mips_get_relocated_section_contents
11720 struct bfd_link_info *link_info,
11721 struct bfd_link_order *link_order,
11723 bfd_boolean relocatable,
11726 /* Get enough memory to hold the stuff */
11727 bfd *input_bfd = link_order->u.indirect.section->owner;
11728 asection *input_section = link_order->u.indirect.section;
11731 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11732 arelent **reloc_vector = NULL;
11735 if (reloc_size < 0)
11738 reloc_vector = bfd_malloc (reloc_size);
11739 if (reloc_vector == NULL && reloc_size != 0)
11742 /* read in the section */
11743 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11744 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11747 reloc_count = bfd_canonicalize_reloc (input_bfd,
11751 if (reloc_count < 0)
11754 if (reloc_count > 0)
11759 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11762 struct bfd_hash_entry *h;
11763 struct bfd_link_hash_entry *lh;
11764 /* Skip all this stuff if we aren't mixing formats. */
11765 if (abfd && input_bfd
11766 && abfd->xvec == input_bfd->xvec)
11770 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11771 lh = (struct bfd_link_hash_entry *) h;
11778 case bfd_link_hash_undefined:
11779 case bfd_link_hash_undefweak:
11780 case bfd_link_hash_common:
11783 case bfd_link_hash_defined:
11784 case bfd_link_hash_defweak:
11786 gp = lh->u.def.value;
11788 case bfd_link_hash_indirect:
11789 case bfd_link_hash_warning:
11791 /* @@FIXME ignoring warning for now */
11793 case bfd_link_hash_new:
11802 for (parent = reloc_vector; *parent != NULL; parent++)
11804 char *error_message = NULL;
11805 bfd_reloc_status_type r;
11807 /* Specific to MIPS: Deal with relocation types that require
11808 knowing the gp of the output bfd. */
11809 asymbol *sym = *(*parent)->sym_ptr_ptr;
11811 /* If we've managed to find the gp and have a special
11812 function for the relocation then go ahead, else default
11813 to the generic handling. */
11815 && (*parent)->howto->special_function
11816 == _bfd_mips_elf32_gprel16_reloc)
11817 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11818 input_section, relocatable,
11821 r = bfd_perform_relocation (input_bfd, *parent, data,
11823 relocatable ? abfd : NULL,
11828 asection *os = input_section->output_section;
11830 /* A partial link, so keep the relocs */
11831 os->orelocation[os->reloc_count] = *parent;
11835 if (r != bfd_reloc_ok)
11839 case bfd_reloc_undefined:
11840 if (!((*link_info->callbacks->undefined_symbol)
11841 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11842 input_bfd, input_section, (*parent)->address, TRUE)))
11845 case bfd_reloc_dangerous:
11846 BFD_ASSERT (error_message != NULL);
11847 if (!((*link_info->callbacks->reloc_dangerous)
11848 (link_info, error_message, input_bfd, input_section,
11849 (*parent)->address)))
11852 case bfd_reloc_overflow:
11853 if (!((*link_info->callbacks->reloc_overflow)
11855 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11856 (*parent)->howto->name, (*parent)->addend,
11857 input_bfd, input_section, (*parent)->address)))
11860 case bfd_reloc_outofrange:
11869 if (reloc_vector != NULL)
11870 free (reloc_vector);
11874 if (reloc_vector != NULL)
11875 free (reloc_vector);
11880 mips_elf_relax_delete_bytes (bfd *abfd,
11881 asection *sec, bfd_vma addr, int count)
11883 Elf_Internal_Shdr *symtab_hdr;
11884 unsigned int sec_shndx;
11885 bfd_byte *contents;
11886 Elf_Internal_Rela *irel, *irelend;
11887 Elf_Internal_Sym *isym;
11888 Elf_Internal_Sym *isymend;
11889 struct elf_link_hash_entry **sym_hashes;
11890 struct elf_link_hash_entry **end_hashes;
11891 struct elf_link_hash_entry **start_hashes;
11892 unsigned int symcount;
11894 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11895 contents = elf_section_data (sec)->this_hdr.contents;
11897 irel = elf_section_data (sec)->relocs;
11898 irelend = irel + sec->reloc_count;
11900 /* Actually delete the bytes. */
11901 memmove (contents + addr, contents + addr + count,
11902 (size_t) (sec->size - addr - count));
11903 sec->size -= count;
11905 /* Adjust all the relocs. */
11906 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11908 /* Get the new reloc address. */
11909 if (irel->r_offset > addr)
11910 irel->r_offset -= count;
11913 BFD_ASSERT (addr % 2 == 0);
11914 BFD_ASSERT (count % 2 == 0);
11916 /* Adjust the local symbols defined in this section. */
11917 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11918 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11919 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11920 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11921 isym->st_value -= count;
11923 /* Now adjust the global symbols defined in this section. */
11924 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11925 - symtab_hdr->sh_info);
11926 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11927 end_hashes = sym_hashes + symcount;
11929 for (; sym_hashes < end_hashes; sym_hashes++)
11931 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11933 if ((sym_hash->root.type == bfd_link_hash_defined
11934 || sym_hash->root.type == bfd_link_hash_defweak)
11935 && sym_hash->root.u.def.section == sec)
11937 bfd_vma value = sym_hash->root.u.def.value;
11939 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11940 value &= MINUS_TWO;
11942 sym_hash->root.u.def.value -= count;
11950 /* Opcodes needed for microMIPS relaxation as found in
11951 opcodes/micromips-opc.c. */
11953 struct opcode_descriptor {
11954 unsigned long match;
11955 unsigned long mask;
11958 /* The $ra register aka $31. */
11962 /* 32-bit instruction format register fields. */
11964 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11965 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11967 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11969 #define OP16_VALID_REG(r) \
11970 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11973 /* 32-bit and 16-bit branches. */
11975 static const struct opcode_descriptor b_insns_32[] = {
11976 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11977 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11978 { 0, 0 } /* End marker for find_match(). */
11981 static const struct opcode_descriptor bc_insn_32 =
11982 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11984 static const struct opcode_descriptor bz_insn_32 =
11985 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11987 static const struct opcode_descriptor bzal_insn_32 =
11988 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11990 static const struct opcode_descriptor beq_insn_32 =
11991 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11993 static const struct opcode_descriptor b_insn_16 =
11994 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11996 static const struct opcode_descriptor bz_insn_16 =
11997 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12000 /* 32-bit and 16-bit branch EQ and NE zero. */
12002 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12003 eq and second the ne. This convention is used when replacing a
12004 32-bit BEQ/BNE with the 16-bit version. */
12006 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12008 static const struct opcode_descriptor bz_rs_insns_32[] = {
12009 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12010 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12011 { 0, 0 } /* End marker for find_match(). */
12014 static const struct opcode_descriptor bz_rt_insns_32[] = {
12015 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12016 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12017 { 0, 0 } /* End marker for find_match(). */
12020 static const struct opcode_descriptor bzc_insns_32[] = {
12021 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12022 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12023 { 0, 0 } /* End marker for find_match(). */
12026 static const struct opcode_descriptor bz_insns_16[] = {
12027 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12028 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12029 { 0, 0 } /* End marker for find_match(). */
12032 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12034 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12035 #define BZ16_REG_FIELD(r) \
12036 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12039 /* 32-bit instructions with a delay slot. */
12041 static const struct opcode_descriptor jal_insn_32_bd16 =
12042 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12044 static const struct opcode_descriptor jal_insn_32_bd32 =
12045 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12047 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12048 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12050 static const struct opcode_descriptor j_insn_32 =
12051 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12053 static const struct opcode_descriptor jalr_insn_32 =
12054 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12056 /* This table can be compacted, because no opcode replacement is made. */
12058 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12059 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12061 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12062 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12064 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12065 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12066 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12067 { 0, 0 } /* End marker for find_match(). */
12070 /* This table can be compacted, because no opcode replacement is made. */
12072 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12073 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12075 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12076 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12077 { 0, 0 } /* End marker for find_match(). */
12081 /* 16-bit instructions with a delay slot. */
12083 static const struct opcode_descriptor jalr_insn_16_bd16 =
12084 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12086 static const struct opcode_descriptor jalr_insn_16_bd32 =
12087 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12089 static const struct opcode_descriptor jr_insn_16 =
12090 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12092 #define JR16_REG(opcode) ((opcode) & 0x1f)
12094 /* This table can be compacted, because no opcode replacement is made. */
12096 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12097 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12099 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12100 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12101 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12102 { 0, 0 } /* End marker for find_match(). */
12106 /* LUI instruction. */
12108 static const struct opcode_descriptor lui_insn =
12109 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12112 /* ADDIU instruction. */
12114 static const struct opcode_descriptor addiu_insn =
12115 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12117 static const struct opcode_descriptor addiupc_insn =
12118 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12120 #define ADDIUPC_REG_FIELD(r) \
12121 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12124 /* Relaxable instructions in a JAL delay slot: MOVE. */
12126 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12127 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12128 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12129 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12131 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12132 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12134 static const struct opcode_descriptor move_insns_32[] = {
12135 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12136 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12137 { 0, 0 } /* End marker for find_match(). */
12140 static const struct opcode_descriptor move_insn_16 =
12141 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12144 /* NOP instructions. */
12146 static const struct opcode_descriptor nop_insn_32 =
12147 { /* "nop", "", */ 0x00000000, 0xffffffff };
12149 static const struct opcode_descriptor nop_insn_16 =
12150 { /* "nop", "", */ 0x0c00, 0xffff };
12153 /* Instruction match support. */
12155 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12158 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12160 unsigned long indx;
12162 for (indx = 0; insn[indx].mask != 0; indx++)
12163 if (MATCH (opcode, insn[indx]))
12170 /* Branch and delay slot decoding support. */
12172 /* If PTR points to what *might* be a 16-bit branch or jump, then
12173 return the minimum length of its delay slot, otherwise return 0.
12174 Non-zero results are not definitive as we might be checking against
12175 the second half of another instruction. */
12178 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12180 unsigned long opcode;
12183 opcode = bfd_get_16 (abfd, ptr);
12184 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12185 /* 16-bit branch/jump with a 32-bit delay slot. */
12187 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12188 || find_match (opcode, ds_insns_16_bd16) >= 0)
12189 /* 16-bit branch/jump with a 16-bit delay slot. */
12192 /* No delay slot. */
12198 /* If PTR points to what *might* be a 32-bit branch or jump, then
12199 return the minimum length of its delay slot, otherwise return 0.
12200 Non-zero results are not definitive as we might be checking against
12201 the second half of another instruction. */
12204 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12206 unsigned long opcode;
12209 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12210 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12211 /* 32-bit branch/jump with a 32-bit delay slot. */
12213 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12214 /* 32-bit branch/jump with a 16-bit delay slot. */
12217 /* No delay slot. */
12223 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12224 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12227 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12229 unsigned long opcode;
12231 opcode = bfd_get_16 (abfd, ptr);
12232 if (MATCH (opcode, b_insn_16)
12234 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12236 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12237 /* BEQZ16, BNEZ16 */
12238 || (MATCH (opcode, jalr_insn_16_bd32)
12240 && reg != JR16_REG (opcode) && reg != RA))
12246 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12247 then return TRUE, otherwise FALSE. */
12250 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12252 unsigned long opcode;
12254 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12255 if (MATCH (opcode, j_insn_32)
12257 || MATCH (opcode, bc_insn_32)
12258 /* BC1F, BC1T, BC2F, BC2T */
12259 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12261 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12262 /* BGEZ, BGTZ, BLEZ, BLTZ */
12263 || (MATCH (opcode, bzal_insn_32)
12264 /* BGEZAL, BLTZAL */
12265 && reg != OP32_SREG (opcode) && reg != RA)
12266 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12267 /* JALR, JALR.HB, BEQ, BNE */
12268 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12274 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12275 IRELEND) at OFFSET indicate that there must be a compact branch there,
12276 then return TRUE, otherwise FALSE. */
12279 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12280 const Elf_Internal_Rela *internal_relocs,
12281 const Elf_Internal_Rela *irelend)
12283 const Elf_Internal_Rela *irel;
12284 unsigned long opcode;
12286 opcode = bfd_get_16 (abfd, ptr);
12288 opcode |= bfd_get_16 (abfd, ptr + 2);
12289 if (find_match (opcode, bzc_insns_32) < 0)
12292 for (irel = internal_relocs; irel < irelend; irel++)
12293 if (irel->r_offset == offset
12294 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12300 /* Bitsize checking. */
12301 #define IS_BITSIZE(val, N) \
12302 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12303 - (1ULL << ((N) - 1))) == (val))
12307 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12308 struct bfd_link_info *link_info,
12309 bfd_boolean *again)
12311 Elf_Internal_Shdr *symtab_hdr;
12312 Elf_Internal_Rela *internal_relocs;
12313 Elf_Internal_Rela *irel, *irelend;
12314 bfd_byte *contents = NULL;
12315 Elf_Internal_Sym *isymbuf = NULL;
12317 /* Assume nothing changes. */
12320 /* We don't have to do anything for a relocatable link, if
12321 this section does not have relocs, or if this is not a
12324 if (link_info->relocatable
12325 || (sec->flags & SEC_RELOC) == 0
12326 || sec->reloc_count == 0
12327 || (sec->flags & SEC_CODE) == 0)
12330 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12332 /* Get a copy of the native relocations. */
12333 internal_relocs = (_bfd_elf_link_read_relocs
12334 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12335 link_info->keep_memory));
12336 if (internal_relocs == NULL)
12339 /* Walk through them looking for relaxing opportunities. */
12340 irelend = internal_relocs + sec->reloc_count;
12341 for (irel = internal_relocs; irel < irelend; irel++)
12343 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12344 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12345 bfd_boolean target_is_micromips_code_p;
12346 unsigned long opcode;
12352 /* The number of bytes to delete for relaxation and from where
12353 to delete these bytes starting at irel->r_offset. */
12357 /* If this isn't something that can be relaxed, then ignore
12359 if (r_type != R_MICROMIPS_HI16
12360 && r_type != R_MICROMIPS_PC16_S1
12361 && r_type != R_MICROMIPS_26_S1)
12364 /* Get the section contents if we haven't done so already. */
12365 if (contents == NULL)
12367 /* Get cached copy if it exists. */
12368 if (elf_section_data (sec)->this_hdr.contents != NULL)
12369 contents = elf_section_data (sec)->this_hdr.contents;
12370 /* Go get them off disk. */
12371 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12374 ptr = contents + irel->r_offset;
12376 /* Read this BFD's local symbols if we haven't done so already. */
12377 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12379 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12380 if (isymbuf == NULL)
12381 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12382 symtab_hdr->sh_info, 0,
12384 if (isymbuf == NULL)
12388 /* Get the value of the symbol referred to by the reloc. */
12389 if (r_symndx < symtab_hdr->sh_info)
12391 /* A local symbol. */
12392 Elf_Internal_Sym *isym;
12395 isym = isymbuf + r_symndx;
12396 if (isym->st_shndx == SHN_UNDEF)
12397 sym_sec = bfd_und_section_ptr;
12398 else if (isym->st_shndx == SHN_ABS)
12399 sym_sec = bfd_abs_section_ptr;
12400 else if (isym->st_shndx == SHN_COMMON)
12401 sym_sec = bfd_com_section_ptr;
12403 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12404 symval = (isym->st_value
12405 + sym_sec->output_section->vma
12406 + sym_sec->output_offset);
12407 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12411 unsigned long indx;
12412 struct elf_link_hash_entry *h;
12414 /* An external symbol. */
12415 indx = r_symndx - symtab_hdr->sh_info;
12416 h = elf_sym_hashes (abfd)[indx];
12417 BFD_ASSERT (h != NULL);
12419 if (h->root.type != bfd_link_hash_defined
12420 && h->root.type != bfd_link_hash_defweak)
12421 /* This appears to be a reference to an undefined
12422 symbol. Just ignore it -- it will be caught by the
12423 regular reloc processing. */
12426 symval = (h->root.u.def.value
12427 + h->root.u.def.section->output_section->vma
12428 + h->root.u.def.section->output_offset);
12429 target_is_micromips_code_p = (!h->needs_plt
12430 && ELF_ST_IS_MICROMIPS (h->other));
12434 /* For simplicity of coding, we are going to modify the
12435 section contents, the section relocs, and the BFD symbol
12436 table. We must tell the rest of the code not to free up this
12437 information. It would be possible to instead create a table
12438 of changes which have to be made, as is done in coff-mips.c;
12439 that would be more work, but would require less memory when
12440 the linker is run. */
12442 /* Only 32-bit instructions relaxed. */
12443 if (irel->r_offset + 4 > sec->size)
12446 opcode = bfd_get_16 (abfd, ptr ) << 16;
12447 opcode |= bfd_get_16 (abfd, ptr + 2);
12449 /* This is the pc-relative distance from the instruction the
12450 relocation is applied to, to the symbol referred. */
12452 - (sec->output_section->vma + sec->output_offset)
12455 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12456 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12457 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12459 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12461 where pcrval has first to be adjusted to apply against the LO16
12462 location (we make the adjustment later on, when we have figured
12463 out the offset). */
12464 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12466 bfd_boolean bzc = FALSE;
12467 unsigned long nextopc;
12471 /* Give up if the previous reloc was a HI16 against this symbol
12473 if (irel > internal_relocs
12474 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12475 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12478 /* Or if the next reloc is not a LO16 against this symbol. */
12479 if (irel + 1 >= irelend
12480 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12481 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12484 /* Or if the second next reloc is a LO16 against this symbol too. */
12485 if (irel + 2 >= irelend
12486 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12487 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12490 /* See if the LUI instruction *might* be in a branch delay slot.
12491 We check whether what looks like a 16-bit branch or jump is
12492 actually an immediate argument to a compact branch, and let
12493 it through if so. */
12494 if (irel->r_offset >= 2
12495 && check_br16_dslot (abfd, ptr - 2)
12496 && !(irel->r_offset >= 4
12497 && (bzc = check_relocated_bzc (abfd,
12498 ptr - 4, irel->r_offset - 4,
12499 internal_relocs, irelend))))
12501 if (irel->r_offset >= 4
12503 && check_br32_dslot (abfd, ptr - 4))
12506 reg = OP32_SREG (opcode);
12508 /* We only relax adjacent instructions or ones separated with
12509 a branch or jump that has a delay slot. The branch or jump
12510 must not fiddle with the register used to hold the address.
12511 Subtract 4 for the LUI itself. */
12512 offset = irel[1].r_offset - irel[0].r_offset;
12513 switch (offset - 4)
12518 if (check_br16 (abfd, ptr + 4, reg))
12522 if (check_br32 (abfd, ptr + 4, reg))
12529 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12530 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12532 /* Give up unless the same register is used with both
12534 if (OP32_SREG (nextopc) != reg)
12537 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12538 and rounding up to take masking of the two LSBs into account. */
12539 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12541 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12542 if (IS_BITSIZE (symval, 16))
12544 /* Fix the relocation's type. */
12545 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12547 /* Instructions using R_MICROMIPS_LO16 have the base or
12548 source register in bits 20:16. This register becomes $0
12549 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12550 nextopc &= ~0x001f0000;
12551 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12552 contents + irel[1].r_offset);
12555 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12556 We add 4 to take LUI deletion into account while checking
12557 the PC-relative distance. */
12558 else if (symval % 4 == 0
12559 && IS_BITSIZE (pcrval + 4, 25)
12560 && MATCH (nextopc, addiu_insn)
12561 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12562 && OP16_VALID_REG (OP32_TREG (nextopc)))
12564 /* Fix the relocation's type. */
12565 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12567 /* Replace ADDIU with the ADDIUPC version. */
12568 nextopc = (addiupc_insn.match
12569 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12571 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12572 contents + irel[1].r_offset);
12573 bfd_put_16 (abfd, nextopc & 0xffff,
12574 contents + irel[1].r_offset + 2);
12577 /* Can't do anything, give up, sigh... */
12581 /* Fix the relocation's type. */
12582 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12584 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12589 /* Compact branch relaxation -- due to the multitude of macros
12590 employed by the compiler/assembler, compact branches are not
12591 always generated. Obviously, this can/will be fixed elsewhere,
12592 but there is no drawback in double checking it here. */
12593 else if (r_type == R_MICROMIPS_PC16_S1
12594 && irel->r_offset + 5 < sec->size
12595 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12596 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12597 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12601 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12603 /* Replace BEQZ/BNEZ with the compact version. */
12604 opcode = (bzc_insns_32[fndopc].match
12605 | BZC32_REG_FIELD (reg)
12606 | (opcode & 0xffff)); /* Addend value. */
12608 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12609 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12611 /* Delete the 16-bit delay slot NOP: two bytes from
12612 irel->offset + 4. */
12617 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12618 to check the distance from the next instruction, so subtract 2. */
12619 else if (r_type == R_MICROMIPS_PC16_S1
12620 && IS_BITSIZE (pcrval - 2, 11)
12621 && find_match (opcode, b_insns_32) >= 0)
12623 /* Fix the relocation's type. */
12624 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12626 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12629 | (opcode & 0x3ff)), /* Addend value. */
12632 /* Delete 2 bytes from irel->r_offset + 2. */
12637 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12638 to check the distance from the next instruction, so subtract 2. */
12639 else if (r_type == R_MICROMIPS_PC16_S1
12640 && IS_BITSIZE (pcrval - 2, 8)
12641 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12642 && OP16_VALID_REG (OP32_SREG (opcode)))
12643 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12644 && OP16_VALID_REG (OP32_TREG (opcode)))))
12648 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12650 /* Fix the relocation's type. */
12651 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12653 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12655 (bz_insns_16[fndopc].match
12656 | BZ16_REG_FIELD (reg)
12657 | (opcode & 0x7f)), /* Addend value. */
12660 /* Delete 2 bytes from irel->r_offset + 2. */
12665 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12666 else if (r_type == R_MICROMIPS_26_S1
12667 && target_is_micromips_code_p
12668 && irel->r_offset + 7 < sec->size
12669 && MATCH (opcode, jal_insn_32_bd32))
12671 unsigned long n32opc;
12672 bfd_boolean relaxed = FALSE;
12674 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12675 n32opc |= bfd_get_16 (abfd, ptr + 6);
12677 if (MATCH (n32opc, nop_insn_32))
12679 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12680 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12684 else if (find_match (n32opc, move_insns_32) >= 0)
12686 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12688 (move_insn_16.match
12689 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12690 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12695 /* Other 32-bit instructions relaxable to 16-bit
12696 instructions will be handled here later. */
12700 /* JAL with 32-bit delay slot that is changed to a JALS
12701 with 16-bit delay slot. */
12702 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12704 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12707 /* Delete 2 bytes from irel->r_offset + 6. */
12715 /* Note that we've changed the relocs, section contents, etc. */
12716 elf_section_data (sec)->relocs = internal_relocs;
12717 elf_section_data (sec)->this_hdr.contents = contents;
12718 symtab_hdr->contents = (unsigned char *) isymbuf;
12720 /* Delete bytes depending on the delcnt and deloff. */
12721 if (!mips_elf_relax_delete_bytes (abfd, sec,
12722 irel->r_offset + deloff, delcnt))
12725 /* That will change things, so we should relax again.
12726 Note that this is not required, and it may be slow. */
12731 if (isymbuf != NULL
12732 && symtab_hdr->contents != (unsigned char *) isymbuf)
12734 if (! link_info->keep_memory)
12738 /* Cache the symbols for elf_link_input_bfd. */
12739 symtab_hdr->contents = (unsigned char *) isymbuf;
12743 if (contents != NULL
12744 && elf_section_data (sec)->this_hdr.contents != contents)
12746 if (! link_info->keep_memory)
12750 /* Cache the section contents for elf_link_input_bfd. */
12751 elf_section_data (sec)->this_hdr.contents = contents;
12755 if (internal_relocs != NULL
12756 && elf_section_data (sec)->relocs != internal_relocs)
12757 free (internal_relocs);
12762 if (isymbuf != NULL
12763 && symtab_hdr->contents != (unsigned char *) isymbuf)
12765 if (contents != NULL
12766 && elf_section_data (sec)->this_hdr.contents != contents)
12768 if (internal_relocs != NULL
12769 && elf_section_data (sec)->relocs != internal_relocs)
12770 free (internal_relocs);
12775 /* Create a MIPS ELF linker hash table. */
12777 struct bfd_link_hash_table *
12778 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12780 struct mips_elf_link_hash_table *ret;
12781 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12783 ret = bfd_malloc (amt);
12787 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12788 mips_elf_link_hash_newfunc,
12789 sizeof (struct mips_elf_link_hash_entry),
12797 /* We no longer use this. */
12798 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12799 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12801 ret->procedure_count = 0;
12802 ret->compact_rel_size = 0;
12803 ret->use_rld_obj_head = FALSE;
12804 ret->rld_value = 0;
12805 ret->mips16_stubs_seen = FALSE;
12806 ret->use_plts_and_copy_relocs = FALSE;
12807 ret->is_vxworks = FALSE;
12808 ret->small_data_overflow_reported = FALSE;
12809 ret->srelbss = NULL;
12810 ret->sdynbss = NULL;
12811 ret->srelplt = NULL;
12812 ret->srelplt2 = NULL;
12813 ret->sgotplt = NULL;
12815 ret->sstubs = NULL;
12817 ret->got_info = NULL;
12818 ret->plt_header_size = 0;
12819 ret->plt_entry_size = 0;
12820 ret->lazy_stub_count = 0;
12821 ret->function_stub_size = 0;
12822 ret->strampoline = NULL;
12823 ret->la25_stubs = NULL;
12824 ret->add_stub_section = NULL;
12826 return &ret->root.root;
12829 /* Likewise, but indicate that the target is VxWorks. */
12831 struct bfd_link_hash_table *
12832 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12834 struct bfd_link_hash_table *ret;
12836 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12839 struct mips_elf_link_hash_table *htab;
12841 htab = (struct mips_elf_link_hash_table *) ret;
12842 htab->use_plts_and_copy_relocs = TRUE;
12843 htab->is_vxworks = TRUE;
12848 /* A function that the linker calls if we are allowed to use PLTs
12849 and copy relocs. */
12852 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12854 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12857 /* We need to use a special link routine to handle the .reginfo and
12858 the .mdebug sections. We need to merge all instances of these
12859 sections together, not write them all out sequentially. */
12862 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12865 struct bfd_link_order *p;
12866 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12867 asection *rtproc_sec;
12868 Elf32_RegInfo reginfo;
12869 struct ecoff_debug_info debug;
12870 struct mips_htab_traverse_info hti;
12871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12872 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12873 HDRR *symhdr = &debug.symbolic_header;
12874 void *mdebug_handle = NULL;
12879 struct mips_elf_link_hash_table *htab;
12881 static const char * const secname[] =
12883 ".text", ".init", ".fini", ".data",
12884 ".rodata", ".sdata", ".sbss", ".bss"
12886 static const int sc[] =
12888 scText, scInit, scFini, scData,
12889 scRData, scSData, scSBss, scBss
12892 /* Sort the dynamic symbols so that those with GOT entries come after
12894 htab = mips_elf_hash_table (info);
12895 BFD_ASSERT (htab != NULL);
12897 if (!mips_elf_sort_hash_table (abfd, info))
12900 /* Create any scheduled LA25 stubs. */
12902 hti.output_bfd = abfd;
12904 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12908 /* Get a value for the GP register. */
12909 if (elf_gp (abfd) == 0)
12911 struct bfd_link_hash_entry *h;
12913 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12914 if (h != NULL && h->type == bfd_link_hash_defined)
12915 elf_gp (abfd) = (h->u.def.value
12916 + h->u.def.section->output_section->vma
12917 + h->u.def.section->output_offset);
12918 else if (htab->is_vxworks
12919 && (h = bfd_link_hash_lookup (info->hash,
12920 "_GLOBAL_OFFSET_TABLE_",
12921 FALSE, FALSE, TRUE))
12922 && h->type == bfd_link_hash_defined)
12923 elf_gp (abfd) = (h->u.def.section->output_section->vma
12924 + h->u.def.section->output_offset
12926 else if (info->relocatable)
12928 bfd_vma lo = MINUS_ONE;
12930 /* Find the GP-relative section with the lowest offset. */
12931 for (o = abfd->sections; o != NULL; o = o->next)
12933 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12936 /* And calculate GP relative to that. */
12937 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12941 /* If the relocate_section function needs to do a reloc
12942 involving the GP value, it should make a reloc_dangerous
12943 callback to warn that GP is not defined. */
12947 /* Go through the sections and collect the .reginfo and .mdebug
12949 reginfo_sec = NULL;
12951 gptab_data_sec = NULL;
12952 gptab_bss_sec = NULL;
12953 for (o = abfd->sections; o != NULL; o = o->next)
12955 if (strcmp (o->name, ".reginfo") == 0)
12957 memset (®info, 0, sizeof reginfo);
12959 /* We have found the .reginfo section in the output file.
12960 Look through all the link_orders comprising it and merge
12961 the information together. */
12962 for (p = o->map_head.link_order; p != NULL; p = p->next)
12964 asection *input_section;
12966 Elf32_External_RegInfo ext;
12969 if (p->type != bfd_indirect_link_order)
12971 if (p->type == bfd_data_link_order)
12976 input_section = p->u.indirect.section;
12977 input_bfd = input_section->owner;
12979 if (! bfd_get_section_contents (input_bfd, input_section,
12980 &ext, 0, sizeof ext))
12983 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12985 reginfo.ri_gprmask |= sub.ri_gprmask;
12986 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12987 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12988 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12989 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12991 /* ri_gp_value is set by the function
12992 mips_elf32_section_processing when the section is
12993 finally written out. */
12995 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12996 elf_link_input_bfd ignores this section. */
12997 input_section->flags &= ~SEC_HAS_CONTENTS;
13000 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13001 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13003 /* Skip this section later on (I don't think this currently
13004 matters, but someday it might). */
13005 o->map_head.link_order = NULL;
13010 if (strcmp (o->name, ".mdebug") == 0)
13012 struct extsym_info einfo;
13015 /* We have found the .mdebug section in the output file.
13016 Look through all the link_orders comprising it and merge
13017 the information together. */
13018 symhdr->magic = swap->sym_magic;
13019 /* FIXME: What should the version stamp be? */
13020 symhdr->vstamp = 0;
13021 symhdr->ilineMax = 0;
13022 symhdr->cbLine = 0;
13023 symhdr->idnMax = 0;
13024 symhdr->ipdMax = 0;
13025 symhdr->isymMax = 0;
13026 symhdr->ioptMax = 0;
13027 symhdr->iauxMax = 0;
13028 symhdr->issMax = 0;
13029 symhdr->issExtMax = 0;
13030 symhdr->ifdMax = 0;
13032 symhdr->iextMax = 0;
13034 /* We accumulate the debugging information itself in the
13035 debug_info structure. */
13037 debug.external_dnr = NULL;
13038 debug.external_pdr = NULL;
13039 debug.external_sym = NULL;
13040 debug.external_opt = NULL;
13041 debug.external_aux = NULL;
13043 debug.ssext = debug.ssext_end = NULL;
13044 debug.external_fdr = NULL;
13045 debug.external_rfd = NULL;
13046 debug.external_ext = debug.external_ext_end = NULL;
13048 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13049 if (mdebug_handle == NULL)
13053 esym.cobol_main = 0;
13057 esym.asym.iss = issNil;
13058 esym.asym.st = stLocal;
13059 esym.asym.reserved = 0;
13060 esym.asym.index = indexNil;
13062 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13064 esym.asym.sc = sc[i];
13065 s = bfd_get_section_by_name (abfd, secname[i]);
13068 esym.asym.value = s->vma;
13069 last = s->vma + s->size;
13072 esym.asym.value = last;
13073 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13074 secname[i], &esym))
13078 for (p = o->map_head.link_order; p != NULL; p = p->next)
13080 asection *input_section;
13082 const struct ecoff_debug_swap *input_swap;
13083 struct ecoff_debug_info input_debug;
13087 if (p->type != bfd_indirect_link_order)
13089 if (p->type == bfd_data_link_order)
13094 input_section = p->u.indirect.section;
13095 input_bfd = input_section->owner;
13097 if (!is_mips_elf (input_bfd))
13099 /* I don't know what a non MIPS ELF bfd would be
13100 doing with a .mdebug section, but I don't really
13101 want to deal with it. */
13105 input_swap = (get_elf_backend_data (input_bfd)
13106 ->elf_backend_ecoff_debug_swap);
13108 BFD_ASSERT (p->size == input_section->size);
13110 /* The ECOFF linking code expects that we have already
13111 read in the debugging information and set up an
13112 ecoff_debug_info structure, so we do that now. */
13113 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13117 if (! (bfd_ecoff_debug_accumulate
13118 (mdebug_handle, abfd, &debug, swap, input_bfd,
13119 &input_debug, input_swap, info)))
13122 /* Loop through the external symbols. For each one with
13123 interesting information, try to find the symbol in
13124 the linker global hash table and save the information
13125 for the output external symbols. */
13126 eraw_src = input_debug.external_ext;
13127 eraw_end = (eraw_src
13128 + (input_debug.symbolic_header.iextMax
13129 * input_swap->external_ext_size));
13131 eraw_src < eraw_end;
13132 eraw_src += input_swap->external_ext_size)
13136 struct mips_elf_link_hash_entry *h;
13138 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13139 if (ext.asym.sc == scNil
13140 || ext.asym.sc == scUndefined
13141 || ext.asym.sc == scSUndefined)
13144 name = input_debug.ssext + ext.asym.iss;
13145 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13146 name, FALSE, FALSE, TRUE);
13147 if (h == NULL || h->esym.ifd != -2)
13152 BFD_ASSERT (ext.ifd
13153 < input_debug.symbolic_header.ifdMax);
13154 ext.ifd = input_debug.ifdmap[ext.ifd];
13160 /* Free up the information we just read. */
13161 free (input_debug.line);
13162 free (input_debug.external_dnr);
13163 free (input_debug.external_pdr);
13164 free (input_debug.external_sym);
13165 free (input_debug.external_opt);
13166 free (input_debug.external_aux);
13167 free (input_debug.ss);
13168 free (input_debug.ssext);
13169 free (input_debug.external_fdr);
13170 free (input_debug.external_rfd);
13171 free (input_debug.external_ext);
13173 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13174 elf_link_input_bfd ignores this section. */
13175 input_section->flags &= ~SEC_HAS_CONTENTS;
13178 if (SGI_COMPAT (abfd) && info->shared)
13180 /* Create .rtproc section. */
13181 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13182 if (rtproc_sec == NULL)
13184 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13185 | SEC_LINKER_CREATED | SEC_READONLY);
13187 rtproc_sec = bfd_make_section_with_flags (abfd,
13190 if (rtproc_sec == NULL
13191 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13195 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13201 /* Build the external symbol information. */
13204 einfo.debug = &debug;
13206 einfo.failed = FALSE;
13207 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13208 mips_elf_output_extsym, &einfo);
13212 /* Set the size of the .mdebug section. */
13213 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13215 /* Skip this section later on (I don't think this currently
13216 matters, but someday it might). */
13217 o->map_head.link_order = NULL;
13222 if (CONST_STRNEQ (o->name, ".gptab."))
13224 const char *subname;
13227 Elf32_External_gptab *ext_tab;
13230 /* The .gptab.sdata and .gptab.sbss sections hold
13231 information describing how the small data area would
13232 change depending upon the -G switch. These sections
13233 not used in executables files. */
13234 if (! info->relocatable)
13236 for (p = o->map_head.link_order; p != NULL; p = p->next)
13238 asection *input_section;
13240 if (p->type != bfd_indirect_link_order)
13242 if (p->type == bfd_data_link_order)
13247 input_section = p->u.indirect.section;
13249 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13250 elf_link_input_bfd ignores this section. */
13251 input_section->flags &= ~SEC_HAS_CONTENTS;
13254 /* Skip this section later on (I don't think this
13255 currently matters, but someday it might). */
13256 o->map_head.link_order = NULL;
13258 /* Really remove the section. */
13259 bfd_section_list_remove (abfd, o);
13260 --abfd->section_count;
13265 /* There is one gptab for initialized data, and one for
13266 uninitialized data. */
13267 if (strcmp (o->name, ".gptab.sdata") == 0)
13268 gptab_data_sec = o;
13269 else if (strcmp (o->name, ".gptab.sbss") == 0)
13273 (*_bfd_error_handler)
13274 (_("%s: illegal section name `%s'"),
13275 bfd_get_filename (abfd), o->name);
13276 bfd_set_error (bfd_error_nonrepresentable_section);
13280 /* The linker script always combines .gptab.data and
13281 .gptab.sdata into .gptab.sdata, and likewise for
13282 .gptab.bss and .gptab.sbss. It is possible that there is
13283 no .sdata or .sbss section in the output file, in which
13284 case we must change the name of the output section. */
13285 subname = o->name + sizeof ".gptab" - 1;
13286 if (bfd_get_section_by_name (abfd, subname) == NULL)
13288 if (o == gptab_data_sec)
13289 o->name = ".gptab.data";
13291 o->name = ".gptab.bss";
13292 subname = o->name + sizeof ".gptab" - 1;
13293 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13296 /* Set up the first entry. */
13298 amt = c * sizeof (Elf32_gptab);
13299 tab = bfd_malloc (amt);
13302 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13303 tab[0].gt_header.gt_unused = 0;
13305 /* Combine the input sections. */
13306 for (p = o->map_head.link_order; p != NULL; p = p->next)
13308 asection *input_section;
13310 bfd_size_type size;
13311 unsigned long last;
13312 bfd_size_type gpentry;
13314 if (p->type != bfd_indirect_link_order)
13316 if (p->type == bfd_data_link_order)
13321 input_section = p->u.indirect.section;
13322 input_bfd = input_section->owner;
13324 /* Combine the gptab entries for this input section one
13325 by one. We know that the input gptab entries are
13326 sorted by ascending -G value. */
13327 size = input_section->size;
13329 for (gpentry = sizeof (Elf32_External_gptab);
13331 gpentry += sizeof (Elf32_External_gptab))
13333 Elf32_External_gptab ext_gptab;
13334 Elf32_gptab int_gptab;
13340 if (! (bfd_get_section_contents
13341 (input_bfd, input_section, &ext_gptab, gpentry,
13342 sizeof (Elf32_External_gptab))))
13348 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13350 val = int_gptab.gt_entry.gt_g_value;
13351 add = int_gptab.gt_entry.gt_bytes - last;
13354 for (look = 1; look < c; look++)
13356 if (tab[look].gt_entry.gt_g_value >= val)
13357 tab[look].gt_entry.gt_bytes += add;
13359 if (tab[look].gt_entry.gt_g_value == val)
13365 Elf32_gptab *new_tab;
13368 /* We need a new table entry. */
13369 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13370 new_tab = bfd_realloc (tab, amt);
13371 if (new_tab == NULL)
13377 tab[c].gt_entry.gt_g_value = val;
13378 tab[c].gt_entry.gt_bytes = add;
13380 /* Merge in the size for the next smallest -G
13381 value, since that will be implied by this new
13384 for (look = 1; look < c; look++)
13386 if (tab[look].gt_entry.gt_g_value < val
13388 || (tab[look].gt_entry.gt_g_value
13389 > tab[max].gt_entry.gt_g_value)))
13393 tab[c].gt_entry.gt_bytes +=
13394 tab[max].gt_entry.gt_bytes;
13399 last = int_gptab.gt_entry.gt_bytes;
13402 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13403 elf_link_input_bfd ignores this section. */
13404 input_section->flags &= ~SEC_HAS_CONTENTS;
13407 /* The table must be sorted by -G value. */
13409 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13411 /* Swap out the table. */
13412 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13413 ext_tab = bfd_alloc (abfd, amt);
13414 if (ext_tab == NULL)
13420 for (j = 0; j < c; j++)
13421 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13424 o->size = c * sizeof (Elf32_External_gptab);
13425 o->contents = (bfd_byte *) ext_tab;
13427 /* Skip this section later on (I don't think this currently
13428 matters, but someday it might). */
13429 o->map_head.link_order = NULL;
13433 /* Invoke the regular ELF backend linker to do all the work. */
13434 if (!bfd_elf_final_link (abfd, info))
13437 /* Now write out the computed sections. */
13439 if (reginfo_sec != NULL)
13441 Elf32_External_RegInfo ext;
13443 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
13444 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13448 if (mdebug_sec != NULL)
13450 BFD_ASSERT (abfd->output_has_begun);
13451 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13453 mdebug_sec->filepos))
13456 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13459 if (gptab_data_sec != NULL)
13461 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13462 gptab_data_sec->contents,
13463 0, gptab_data_sec->size))
13467 if (gptab_bss_sec != NULL)
13469 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13470 gptab_bss_sec->contents,
13471 0, gptab_bss_sec->size))
13475 if (SGI_COMPAT (abfd))
13477 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13478 if (rtproc_sec != NULL)
13480 if (! bfd_set_section_contents (abfd, rtproc_sec,
13481 rtproc_sec->contents,
13482 0, rtproc_sec->size))
13490 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13492 struct mips_mach_extension {
13493 unsigned long extension, base;
13497 /* An array describing how BFD machines relate to one another. The entries
13498 are ordered topologically with MIPS I extensions listed last. */
13500 static const struct mips_mach_extension mips_mach_extensions[] = {
13501 /* MIPS64r2 extensions. */
13502 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13503 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13504 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13506 /* MIPS64 extensions. */
13507 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13508 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13509 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13510 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13512 /* MIPS V extensions. */
13513 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13515 /* R10000 extensions. */
13516 { bfd_mach_mips12000, bfd_mach_mips10000 },
13517 { bfd_mach_mips14000, bfd_mach_mips10000 },
13518 { bfd_mach_mips16000, bfd_mach_mips10000 },
13520 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13521 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13522 better to allow vr5400 and vr5500 code to be merged anyway, since
13523 many libraries will just use the core ISA. Perhaps we could add
13524 some sort of ASE flag if this ever proves a problem. */
13525 { bfd_mach_mips5500, bfd_mach_mips5400 },
13526 { bfd_mach_mips5400, bfd_mach_mips5000 },
13528 /* MIPS IV extensions. */
13529 { bfd_mach_mips5, bfd_mach_mips8000 },
13530 { bfd_mach_mips10000, bfd_mach_mips8000 },
13531 { bfd_mach_mips5000, bfd_mach_mips8000 },
13532 { bfd_mach_mips7000, bfd_mach_mips8000 },
13533 { bfd_mach_mips9000, bfd_mach_mips8000 },
13535 /* VR4100 extensions. */
13536 { bfd_mach_mips4120, bfd_mach_mips4100 },
13537 { bfd_mach_mips4111, bfd_mach_mips4100 },
13539 /* MIPS III extensions. */
13540 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13541 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13542 { bfd_mach_mips8000, bfd_mach_mips4000 },
13543 { bfd_mach_mips4650, bfd_mach_mips4000 },
13544 { bfd_mach_mips4600, bfd_mach_mips4000 },
13545 { bfd_mach_mips4400, bfd_mach_mips4000 },
13546 { bfd_mach_mips4300, bfd_mach_mips4000 },
13547 { bfd_mach_mips4100, bfd_mach_mips4000 },
13548 { bfd_mach_mips4010, bfd_mach_mips4000 },
13550 /* MIPS32 extensions. */
13551 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13553 /* MIPS II extensions. */
13554 { bfd_mach_mips4000, bfd_mach_mips6000 },
13555 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13557 /* MIPS I extensions. */
13558 { bfd_mach_mips6000, bfd_mach_mips3000 },
13559 { bfd_mach_mips3900, bfd_mach_mips3000 }
13563 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13566 mips_mach_extends_p (unsigned long base, unsigned long extension)
13570 if (extension == base)
13573 if (base == bfd_mach_mipsisa32
13574 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13577 if (base == bfd_mach_mipsisa32r2
13578 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13581 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13582 if (extension == mips_mach_extensions[i].extension)
13584 extension = mips_mach_extensions[i].base;
13585 if (extension == base)
13593 /* Return true if the given ELF header flags describe a 32-bit binary. */
13596 mips_32bit_flags_p (flagword flags)
13598 return ((flags & EF_MIPS_32BITMODE) != 0
13599 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13600 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13601 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13602 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13603 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13604 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13608 /* Merge object attributes from IBFD into OBFD. Raise an error if
13609 there are conflicting attributes. */
13611 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13613 obj_attribute *in_attr;
13614 obj_attribute *out_attr;
13616 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13618 /* This is the first object. Copy the attributes. */
13619 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13621 /* Use the Tag_null value to indicate the attributes have been
13623 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13628 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13629 non-conflicting ones. */
13630 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13631 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13632 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13634 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13635 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13636 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13637 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13639 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13641 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13642 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13643 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13645 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13646 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13648 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13651 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13655 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13661 (_("Warning: %B uses hard float, %B uses soft float"),
13667 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13677 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13681 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13687 (_("Warning: %B uses hard float, %B uses soft float"),
13693 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13703 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13709 (_("Warning: %B uses hard float, %B uses soft float"),
13719 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13723 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13729 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13735 (_("Warning: %B uses hard float, %B uses soft float"),
13749 /* Merge Tag_compatibility attributes and any common GNU ones. */
13750 _bfd_elf_merge_object_attributes (ibfd, obfd);
13755 /* Merge backend specific data from an object file to the output
13756 object file when linking. */
13759 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13761 flagword old_flags;
13762 flagword new_flags;
13764 bfd_boolean null_input_bfd = TRUE;
13767 /* Check if we have the same endianness. */
13768 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13770 (*_bfd_error_handler)
13771 (_("%B: endianness incompatible with that of the selected emulation"),
13776 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13779 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13781 (*_bfd_error_handler)
13782 (_("%B: ABI is incompatible with that of the selected emulation"),
13787 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13790 new_flags = elf_elfheader (ibfd)->e_flags;
13791 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13792 old_flags = elf_elfheader (obfd)->e_flags;
13794 if (! elf_flags_init (obfd))
13796 elf_flags_init (obfd) = TRUE;
13797 elf_elfheader (obfd)->e_flags = new_flags;
13798 elf_elfheader (obfd)->e_ident[EI_CLASS]
13799 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13801 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13802 && (bfd_get_arch_info (obfd)->the_default
13803 || mips_mach_extends_p (bfd_get_mach (obfd),
13804 bfd_get_mach (ibfd))))
13806 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13807 bfd_get_mach (ibfd)))
13814 /* Check flag compatibility. */
13816 new_flags &= ~EF_MIPS_NOREORDER;
13817 old_flags &= ~EF_MIPS_NOREORDER;
13819 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13820 doesn't seem to matter. */
13821 new_flags &= ~EF_MIPS_XGOT;
13822 old_flags &= ~EF_MIPS_XGOT;
13824 /* MIPSpro generates ucode info in n64 objects. Again, we should
13825 just be able to ignore this. */
13826 new_flags &= ~EF_MIPS_UCODE;
13827 old_flags &= ~EF_MIPS_UCODE;
13829 /* DSOs should only be linked with CPIC code. */
13830 if ((ibfd->flags & DYNAMIC) != 0)
13831 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13833 if (new_flags == old_flags)
13836 /* Check to see if the input BFD actually contains any sections.
13837 If not, its flags may not have been initialised either, but it cannot
13838 actually cause any incompatibility. */
13839 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13841 /* Ignore synthetic sections and empty .text, .data and .bss sections
13842 which are automatically generated by gas. Also ignore fake
13843 (s)common sections, since merely defining a common symbol does
13844 not affect compatibility. */
13845 if ((sec->flags & SEC_IS_COMMON) == 0
13846 && strcmp (sec->name, ".reginfo")
13847 && strcmp (sec->name, ".mdebug")
13849 || (strcmp (sec->name, ".text")
13850 && strcmp (sec->name, ".data")
13851 && strcmp (sec->name, ".bss"))))
13853 null_input_bfd = FALSE;
13857 if (null_input_bfd)
13862 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13863 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13865 (*_bfd_error_handler)
13866 (_("%B: warning: linking abicalls files with non-abicalls files"),
13871 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13872 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13873 if (! (new_flags & EF_MIPS_PIC))
13874 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13876 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13877 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13879 /* Compare the ISAs. */
13880 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13882 (*_bfd_error_handler)
13883 (_("%B: linking 32-bit code with 64-bit code"),
13887 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13889 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13890 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13892 /* Copy the architecture info from IBFD to OBFD. Also copy
13893 the 32-bit flag (if set) so that we continue to recognise
13894 OBFD as a 32-bit binary. */
13895 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13896 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13897 elf_elfheader (obfd)->e_flags
13898 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13900 /* Copy across the ABI flags if OBFD doesn't use them
13901 and if that was what caused us to treat IBFD as 32-bit. */
13902 if ((old_flags & EF_MIPS_ABI) == 0
13903 && mips_32bit_flags_p (new_flags)
13904 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13905 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13909 /* The ISAs aren't compatible. */
13910 (*_bfd_error_handler)
13911 (_("%B: linking %s module with previous %s modules"),
13913 bfd_printable_name (ibfd),
13914 bfd_printable_name (obfd));
13919 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13920 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13922 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13923 does set EI_CLASS differently from any 32-bit ABI. */
13924 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13925 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13926 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13928 /* Only error if both are set (to different values). */
13929 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13930 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13931 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13933 (*_bfd_error_handler)
13934 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13936 elf_mips_abi_name (ibfd),
13937 elf_mips_abi_name (obfd));
13940 new_flags &= ~EF_MIPS_ABI;
13941 old_flags &= ~EF_MIPS_ABI;
13944 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13945 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13946 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13948 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13949 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13950 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13951 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13952 int micro_mis = old_m16 && new_micro;
13953 int m16_mis = old_micro && new_m16;
13955 if (m16_mis || micro_mis)
13957 (*_bfd_error_handler)
13958 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13960 m16_mis ? "MIPS16" : "microMIPS",
13961 m16_mis ? "microMIPS" : "MIPS16");
13965 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13967 new_flags &= ~ EF_MIPS_ARCH_ASE;
13968 old_flags &= ~ EF_MIPS_ARCH_ASE;
13971 /* Warn about any other mismatches */
13972 if (new_flags != old_flags)
13974 (*_bfd_error_handler)
13975 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13976 ibfd, (unsigned long) new_flags,
13977 (unsigned long) old_flags);
13983 bfd_set_error (bfd_error_bad_value);
13990 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13993 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13995 BFD_ASSERT (!elf_flags_init (abfd)
13996 || elf_elfheader (abfd)->e_flags == flags);
13998 elf_elfheader (abfd)->e_flags = flags;
13999 elf_flags_init (abfd) = TRUE;
14004 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14008 default: return "";
14009 case DT_MIPS_RLD_VERSION:
14010 return "MIPS_RLD_VERSION";
14011 case DT_MIPS_TIME_STAMP:
14012 return "MIPS_TIME_STAMP";
14013 case DT_MIPS_ICHECKSUM:
14014 return "MIPS_ICHECKSUM";
14015 case DT_MIPS_IVERSION:
14016 return "MIPS_IVERSION";
14017 case DT_MIPS_FLAGS:
14018 return "MIPS_FLAGS";
14019 case DT_MIPS_BASE_ADDRESS:
14020 return "MIPS_BASE_ADDRESS";
14022 return "MIPS_MSYM";
14023 case DT_MIPS_CONFLICT:
14024 return "MIPS_CONFLICT";
14025 case DT_MIPS_LIBLIST:
14026 return "MIPS_LIBLIST";
14027 case DT_MIPS_LOCAL_GOTNO:
14028 return "MIPS_LOCAL_GOTNO";
14029 case DT_MIPS_CONFLICTNO:
14030 return "MIPS_CONFLICTNO";
14031 case DT_MIPS_LIBLISTNO:
14032 return "MIPS_LIBLISTNO";
14033 case DT_MIPS_SYMTABNO:
14034 return "MIPS_SYMTABNO";
14035 case DT_MIPS_UNREFEXTNO:
14036 return "MIPS_UNREFEXTNO";
14037 case DT_MIPS_GOTSYM:
14038 return "MIPS_GOTSYM";
14039 case DT_MIPS_HIPAGENO:
14040 return "MIPS_HIPAGENO";
14041 case DT_MIPS_RLD_MAP:
14042 return "MIPS_RLD_MAP";
14043 case DT_MIPS_DELTA_CLASS:
14044 return "MIPS_DELTA_CLASS";
14045 case DT_MIPS_DELTA_CLASS_NO:
14046 return "MIPS_DELTA_CLASS_NO";
14047 case DT_MIPS_DELTA_INSTANCE:
14048 return "MIPS_DELTA_INSTANCE";
14049 case DT_MIPS_DELTA_INSTANCE_NO:
14050 return "MIPS_DELTA_INSTANCE_NO";
14051 case DT_MIPS_DELTA_RELOC:
14052 return "MIPS_DELTA_RELOC";
14053 case DT_MIPS_DELTA_RELOC_NO:
14054 return "MIPS_DELTA_RELOC_NO";
14055 case DT_MIPS_DELTA_SYM:
14056 return "MIPS_DELTA_SYM";
14057 case DT_MIPS_DELTA_SYM_NO:
14058 return "MIPS_DELTA_SYM_NO";
14059 case DT_MIPS_DELTA_CLASSSYM:
14060 return "MIPS_DELTA_CLASSSYM";
14061 case DT_MIPS_DELTA_CLASSSYM_NO:
14062 return "MIPS_DELTA_CLASSSYM_NO";
14063 case DT_MIPS_CXX_FLAGS:
14064 return "MIPS_CXX_FLAGS";
14065 case DT_MIPS_PIXIE_INIT:
14066 return "MIPS_PIXIE_INIT";
14067 case DT_MIPS_SYMBOL_LIB:
14068 return "MIPS_SYMBOL_LIB";
14069 case DT_MIPS_LOCALPAGE_GOTIDX:
14070 return "MIPS_LOCALPAGE_GOTIDX";
14071 case DT_MIPS_LOCAL_GOTIDX:
14072 return "MIPS_LOCAL_GOTIDX";
14073 case DT_MIPS_HIDDEN_GOTIDX:
14074 return "MIPS_HIDDEN_GOTIDX";
14075 case DT_MIPS_PROTECTED_GOTIDX:
14076 return "MIPS_PROTECTED_GOT_IDX";
14077 case DT_MIPS_OPTIONS:
14078 return "MIPS_OPTIONS";
14079 case DT_MIPS_INTERFACE:
14080 return "MIPS_INTERFACE";
14081 case DT_MIPS_DYNSTR_ALIGN:
14082 return "DT_MIPS_DYNSTR_ALIGN";
14083 case DT_MIPS_INTERFACE_SIZE:
14084 return "DT_MIPS_INTERFACE_SIZE";
14085 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14086 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14087 case DT_MIPS_PERF_SUFFIX:
14088 return "DT_MIPS_PERF_SUFFIX";
14089 case DT_MIPS_COMPACT_SIZE:
14090 return "DT_MIPS_COMPACT_SIZE";
14091 case DT_MIPS_GP_VALUE:
14092 return "DT_MIPS_GP_VALUE";
14093 case DT_MIPS_AUX_DYNAMIC:
14094 return "DT_MIPS_AUX_DYNAMIC";
14095 case DT_MIPS_PLTGOT:
14096 return "DT_MIPS_PLTGOT";
14097 case DT_MIPS_RWPLT:
14098 return "DT_MIPS_RWPLT";
14103 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14107 BFD_ASSERT (abfd != NULL && ptr != NULL);
14109 /* Print normal ELF private data. */
14110 _bfd_elf_print_private_bfd_data (abfd, ptr);
14112 /* xgettext:c-format */
14113 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14115 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14116 fprintf (file, _(" [abi=O32]"));
14117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14118 fprintf (file, _(" [abi=O64]"));
14119 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14120 fprintf (file, _(" [abi=EABI32]"));
14121 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14122 fprintf (file, _(" [abi=EABI64]"));
14123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14124 fprintf (file, _(" [abi unknown]"));
14125 else if (ABI_N32_P (abfd))
14126 fprintf (file, _(" [abi=N32]"));
14127 else if (ABI_64_P (abfd))
14128 fprintf (file, _(" [abi=64]"));
14130 fprintf (file, _(" [no abi set]"));
14132 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14133 fprintf (file, " [mips1]");
14134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14135 fprintf (file, " [mips2]");
14136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14137 fprintf (file, " [mips3]");
14138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14139 fprintf (file, " [mips4]");
14140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14141 fprintf (file, " [mips5]");
14142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14143 fprintf (file, " [mips32]");
14144 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14145 fprintf (file, " [mips64]");
14146 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14147 fprintf (file, " [mips32r2]");
14148 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14149 fprintf (file, " [mips64r2]");
14151 fprintf (file, _(" [unknown ISA]"));
14153 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14154 fprintf (file, " [mdmx]");
14156 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14157 fprintf (file, " [mips16]");
14159 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14160 fprintf (file, " [micromips]");
14162 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14163 fprintf (file, " [32bitmode]");
14165 fprintf (file, _(" [not 32bitmode]"));
14167 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14168 fprintf (file, " [noreorder]");
14170 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14171 fprintf (file, " [PIC]");
14173 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14174 fprintf (file, " [CPIC]");
14176 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14177 fprintf (file, " [XGOT]");
14179 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14180 fprintf (file, " [UCODE]");
14182 fputc ('\n', file);
14187 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14189 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14190 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14191 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14192 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14193 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14194 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14195 { NULL, 0, 0, 0, 0 }
14198 /* Merge non visibility st_other attributes. Ensure that the
14199 STO_OPTIONAL flag is copied into h->other, even if this is not a
14200 definiton of the symbol. */
14202 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14203 const Elf_Internal_Sym *isym,
14204 bfd_boolean definition,
14205 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14207 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14209 unsigned char other;
14211 other = (definition ? isym->st_other : h->other);
14212 other &= ~ELF_ST_VISIBILITY (-1);
14213 h->other = other | ELF_ST_VISIBILITY (h->other);
14217 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14218 h->other |= STO_OPTIONAL;
14221 /* Decide whether an undefined symbol is special and can be ignored.
14222 This is the case for OPTIONAL symbols on IRIX. */
14224 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14226 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14230 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14232 return (sym->st_shndx == SHN_COMMON
14233 || sym->st_shndx == SHN_MIPS_ACOMMON
14234 || sym->st_shndx == SHN_MIPS_SCOMMON);
14237 /* Return address for Ith PLT stub in section PLT, for relocation REL
14238 or (bfd_vma) -1 if it should not be included. */
14241 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14242 const arelent *rel ATTRIBUTE_UNUSED)
14245 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14246 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14250 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14252 struct mips_elf_link_hash_table *htab;
14253 Elf_Internal_Ehdr *i_ehdrp;
14255 i_ehdrp = elf_elfheader (abfd);
14258 htab = mips_elf_hash_table (link_info);
14259 BFD_ASSERT (htab != NULL);
14261 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14262 i_ehdrp->e_ident[EI_ABIVERSION] = 1;