1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
333 /* Traditional SVR4 stub offset, or -1 if none. */
336 /* Standard PLT entry offset, or -1 if none. */
339 /* Compressed PLT entry offset, or -1 if none. */
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
355 struct mips_elf_link_hash_entry
357 struct elf_link_hash_entry root;
359 /* External symbol information. */
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 unsigned int possibly_dynamic_relocs;
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
421 /* MIPS ELF linker hash table. */
423 struct mips_elf_link_hash_table
425 struct elf_link_hash_table root;
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
446 /* True if we can only use 32-bit microMIPS instructions. */
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
458 /* Shortcuts to some dynamic sections, or NULL if they are not
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
466 /* The global symbol in the GOT with the lowest index in the dynamic
468 struct elf_link_hash_entry *global_gotsym;
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
510 The function returns the new section on success, otherwise it
512 asection *(*add_stub_section) (const char *, asection *, asection *);
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
538 /* MIPS ELF private object data. */
540 struct mips_elf_obj_tdata
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
575 /* Get MIPS ELF private object data from BFD's tdata. */
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
609 /* Structure used to pass information to mips_elf_output_extsym. */
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
620 /* The names of the runtime procedure table symbols used on IRIX5. */
622 static const char * const mips_elf_dynsym_rtproc_names[] =
625 "_procedure_string_table",
626 "_procedure_table_size",
630 /* These structures are used to generate the .compact_rel section on
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
677 } Elf32_External_crinfo;
683 } Elf32_External_crinfo2;
685 /* These are the constants used to swap the bitfields in a crinfo. */
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
736 struct exception_info *exception_info;/* Pointer to exception array. */
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
773 #define JALR_TO_BAL_P(abfd) 1
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
778 #define JR_TO_B_P(abfd) 1
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
905 /* The maximum size of the GOT for it to be addressable using 16-bit
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
951 /* The name of the dynamic interpreter. This is put in the .interp
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
972 #define ELF_R_TYPE(bfd, i) \
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1010 We record any stubs that we find in the symbol table. */
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1123 0x653b, /* move $25, $3 */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1189 /* microMIPS 32-bit opcode helper installer. */
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1198 /* microMIPS 32-bit opcode helper retriever. */
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1213 /* Traverse a MIPS ELF linker hash table. */
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1228 dtprel_base (struct bfd_link_info *info)
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1237 tprel_base (struct bfd_link_info *info)
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1245 /* Create an entry in a MIPS ELF linker hash table. */
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1254 /* Allocate the structure if it has not already been allocated by a
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1259 return (struct bfd_hash_entry *) ret;
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1288 return (struct bfd_hash_entry *) ret;
1291 /* Allocate MIPS ELF private object data. */
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1303 if (!sec->used_by_bfd)
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1308 sdata = bfd_zalloc (abfd, amt);
1311 sec->used_by_bfd = sdata;
1314 return _bfd_elf_new_section_hook (abfd, sec);
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1325 const struct ecoff_debug_swap *swap;
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1342 /* The symbolic header contains absolute file offsets and sizes to
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1377 if (ext_hdr != NULL)
1379 if (debug->line != NULL)
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1422 /* Create a runtime procedure table from the .mdebug section. */
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1432 struct rpdr_ext *erp;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1439 bfd_size_type count;
1440 unsigned long sindex;
1444 const char *no_name_func = _("static procedure (no name)");
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1458 size = swap->external_pdr_size;
1460 epdr = bfd_malloc (size * count);
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1517 mips_elf_hash_table (info)->procedure_count = 0;
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1537 /* Set the size and contents of .rtproc section. */
1539 s->contents = rtproc;
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1604 elfh->forced_local = 1;
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1655 section_allows_mips16_refs_p (asection *section)
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1752 mips_elf_la25_stub_hash (const void *entry_)
1754 const struct mips_elf_la25_stub *entry;
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1783 struct mips_elf_link_hash_table *htab;
1785 htab = mips_elf_hash_table (info);
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1846 struct mips_elf_link_hash_table *htab;
1848 asection *s, *input_section;
1851 htab = mips_elf_hash_table (info);
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1873 s->size = (1 << align) - 8;
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1880 /* Allocate room for it. */
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1893 struct mips_elf_link_hash_table *htab;
1896 htab = mips_elf_hash_table (info);
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1909 htab->strampoline = s;
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1917 /* Allocate room for it. */
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1950 stub = (struct mips_elf_la25_stub *) *slot;
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1984 struct mips_htab_traverse_info *hti;
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1990 if (mips_elf_local_pic_function_p (h))
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2002 if (bfd_link_relocatable (hti->info))
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2020 The format of these instructions is:
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2026 +-----------------------------------------------+
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2054 +--------+----------------------+
2058 +--------+----------------------+
2061 +----------+------+-------------+
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2086 A typical instruction will have a format like this:
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2094 EXTEND is the five bit value 11110. Major is the instruction
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2131 /* Check if a microMIPS reloc. */
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2303 bfd_vma first, second, val;
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2326 bfd_vma first, second, val;
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2334 second = val & 0xffff;
2337 else if (r_type != R_MIPS16_26)
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2359 bfd_reloc_status_type status;
2361 if (bfd_is_com_section (symbol->section))
2364 relocation = symbol->value;
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2375 _bfd_mips_elf_sign_extend (val, 16);
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2384 if (reloc_entry->howto->partial_inplace)
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2393 reloc_entry->addend = val;
2396 reloc_entry->address += input_section->output_offset;
2398 return bfd_reloc_ok;
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2408 struct mips_hi16 *next;
2410 asection *input_section;
2414 /* FIXME: This should not be a static variable. */
2416 static struct mips_hi16 *mips_hi16_list;
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2433 struct mips_hi16 *n;
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2438 n = bfd_malloc (sizeof *n);
2440 return bfd_reloc_outofrange;
2442 n->next = mips_hi16_list;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2451 return bfd_reloc_ok;
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2496 while (mips_hi16_list != NULL)
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2501 hi = mips_hi16_list;
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2522 if (ret != bfd_reloc_ok)
2525 mips_hi16_list = hi->next;
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2548 relocatable = (output_bfd != NULL);
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2553 /* Build up the field adjustment in VAL. */
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2598 if (status != bfd_reloc_ok)
2603 reloc_entry->address += input_section->output_offset;
2605 return bfd_reloc_ok;
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2714 /* Swap in an options header. */
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2726 /* Swap out an options header. */
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2738 /* Swap in an abiflags structure. */
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2758 /* Swap out an abiflags structure. */
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2850 struct extsym_info *einfo = data;
2852 asection *sec, *output_section;
2854 if (h->root.indx == -2)
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2874 if (h->esym.ifd == -2)
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2889 /* Use undefined class. Also, set class and type for some
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2907 h->esym.asym.sc = scUndefined;
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2925 name = bfd_section_name (output_section->owner, output_section);
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2945 h->esym.asym.sc = scAbs;
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2970 h->esym.asym.value = 0;
2974 struct mips_elf_link_hash_entry *hd = h;
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2979 if (hd->needs_lazy_stub)
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2987 h->esym.asym.value = 0;
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2996 h->esym.asym.value = 0;
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3005 einfo->failed = TRUE;
3012 /* A comparison routine used to sort .gptab entries. */
3015 gptab_compare (const void *p1, const void *p2)
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3023 /* Functions to manage the got entry hash table. */
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3032 return addr + (addr >> 32);
3039 mips_elf_got_entry_hash (const void *entry_)
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3068 mips_got_page_ref_hash (const void *ref_)
3070 const struct mips_got_page_ref *ref;
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3082 const struct mips_got_page_ref *ref1, *ref2;
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3094 mips_got_page_entry_hash (const void *entry_)
3096 const struct mips_got_page_entry *entry;
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3105 const struct mips_got_page_entry *entry1, *entry2;
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3112 /* Create and return a new mips_got_info structure. */
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3117 struct mips_got_info *g;
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3142 struct mips_elf_obj_tdata *tdata;
3144 if (!is_mips_elf (abfd))
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3153 /* Record that ABFD should use output GOT G. */
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3158 struct mips_elf_obj_tdata *tdata;
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3195 | SEC_LINKER_CREATED
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3210 if (tls_gd_reloc_p (r_type))
3213 if (tls_ldm_reloc_p (r_type))
3216 if (tls_gottprel_reloc_p (r_type))
3219 return GOT_TLS_NONE;
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3225 mips_tls_got_entries (unsigned int type)
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 if ((bfd_link_pic (info) || indx != 0)
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3270 return indx != 0 ? 2 : 1;
3276 return bfd_link_pic (info) ? 1 : 0;
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3291 if (entry->tls_type)
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3296 ? &entry->d.h->root : NULL);
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3301 g->global_gotno += 1;
3304 /* Output a simple dynamic relocation into SRELOC. */
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3309 unsigned long reloc_index,
3314 Elf_Internal_Rela rel[3];
3316 memset (rel, 0, sizeof (rel));
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3321 if (ABI_64_P (output_bfd))
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3343 struct mips_elf_link_hash_table *htab;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3349 htab = mips_elf_hash_table (info);
3353 sgot = htab->root.sgot;
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3367 if (entry->tls_initialized)
3370 if ((bfd_link_pic (info) || indx != 0)
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3386 switch (entry->tls_type)
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3418 /* Initial Exec model. */
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 entry->tls_initialized = TRUE;
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3490 return got_address - got_value;
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3581 if (lookup.tls_type)
3583 bfd_vma value = MINUS_ONE;
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3617 got_index = entry->gotidx;
3620 *offsetp = value - entry->d.address;
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3633 struct mips_got_entry *entry;
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3640 value = mips_elf_high (value) << 16;
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3648 return entry->gotidx;
3653 /* Returns the offset for the entry at the INDEXth position
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3660 struct mips_elf_link_hash_table *htab;
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3686 struct mips_got_entry lookup, *entry;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3702 /* This function shouldn't be called for symbols that live in the global
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3710 if (tls_ldm_reloc_p (r_type))
3713 lookup.d.addend = 0;
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3742 entry = (struct mips_got_entry *) *loc;
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3748 /* We didn't allocate enough space in the GOT. */
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3775 Elf_Internal_Rela outrel;
3778 bfd_vma got_address;
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3803 bfd_size_type count;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3810 const struct elf_backend_data *bed;
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3822 /* Sort the dynamic symbol table so that symbols that need GOT entries
3823 appear towards the end. */
3826 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 struct mips_elf_link_hash_table *htab;
3829 struct mips_elf_hash_sort_data hsd;
3830 struct mips_got_info *g;
3832 htab = mips_elf_hash_table (info);
3833 BFD_ASSERT (htab != NULL);
3835 if (htab->root.dynsymcount == 0)
3843 hsd.max_unref_got_dynindx
3844 = hsd.min_got_dynindx
3845 = (htab->root.dynsymcount - g->reloc_only_gotno);
3846 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3847 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3848 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3850 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852 /* There should have been enough room in the symbol table to
3853 accommodate both the GOT and non-GOT symbols. */
3854 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3855 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3856 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3857 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3859 /* Now we know which dynamic symbol has the lowest dynamic symbol
3860 table index in the GOT. */
3861 htab->global_gotsym = hsd.low;
3866 /* If H needs a GOT entry, assign it the highest available dynamic
3867 index. Otherwise, assign it the lowest available dynamic
3871 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 struct mips_elf_hash_sort_data *hsd = data;
3875 /* Symbols without dynamic symbol table entries aren't interesting
3877 if (h->root.dynindx == -1)
3880 switch (h->global_got_area)
3883 if (h->root.forced_local)
3884 h->root.dynindx = hsd->max_local_dynindx++;
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
3894 case GGA_RELOC_ONLY:
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3932 lookup->tls_initialized = FALSE;
3933 lookup->gotidx = -1;
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
3954 using the GOT entry for calls. */
3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
3959 bfd_boolean for_call, int r_type)
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_elf_link_hash_entry *hmips;
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
3966 htab = mips_elf_hash_table (info);
3967 BFD_ASSERT (htab != NULL);
3969 hmips = (struct mips_elf_link_hash_entry *) h;
3971 hmips->got_only_for_calls = FALSE;
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3975 if (h->dynindx == -1)
3977 switch (ELF_ST_VISIBILITY (h->other))
3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3988 tls_type = mips_elf_reloc_tls_type (r_type);
3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3990 hmips->global_got_area = GGA_NORMAL;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4004 struct bfd_link_info *info, int r_type)
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008 struct mips_got_entry entry;
4010 htab = mips_elf_hash_table (info);
4011 BFD_ASSERT (htab != NULL);
4014 BFD_ASSERT (g != NULL);
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4020 return mips_elf_record_got_entry (info, abfd, &entry);
4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
4032 struct mips_elf_link_hash_table *htab;
4033 struct mips_got_info *g1, *g2;
4034 struct mips_got_page_ref lookup, *entry;
4035 void **loc, **bfd_loc;
4037 htab = mips_elf_hash_table (info);
4038 BFD_ASSERT (htab != NULL);
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4058 entry = (struct mips_got_page_ref *) *loc;
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4091 struct mips_elf_link_hash_table *htab;
4093 htab = mips_elf_hash_table (info);
4094 BFD_ASSERT (htab != NULL);
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
4119 mips_elf_check_recreate_got (void **entryp, void *data)
4121 struct mips_got_entry *entry;
4122 struct mips_elf_traverse_got_arg *arg;
4124 entry = (struct mips_got_entry *) *entryp;
4125 arg = (struct mips_elf_traverse_got_arg *) data;
4126 if (entry->abfd != NULL && entry->symndx == -1)
4128 struct mips_elf_link_hash_entry *h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
4142 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
4148 mips_elf_recreate_got (void **entryp, void *data)
4150 struct mips_got_entry new_entry, *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 struct mips_elf_link_hash_entry *h;
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4183 if (entry == &new_entry)
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 /* Return the maximum number of GOT page entries required for RANGE. */
4202 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4207 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4210 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4211 asection *sec, bfd_signed_vma addend)
4213 struct mips_got_info *g = arg->g;
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4248 if (!range || addend < range->min_addend - 0xffff)
4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4279 range->max_addend = addend;
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4293 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4299 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4311 if (ref->symndx < 0)
4313 struct mips_elf_link_hash_entry *h;
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4320 /* Ignore undefined symbols; we'll issue an error later if
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4332 Elf_Internal_Sym *isym;
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4368 addend = isym->st_value + ref->addend;
4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4378 /* If any entries in G->got_entries are for indirect or warning symbols,
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
4384 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4409 htab_delete (oldg.got_entries);
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4424 /* Return true if a GOT entry for H should live in the local rather than
4428 mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
4448 if (bfd_link_executable (info) && h->has_static_relocs)
4454 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
4461 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 struct bfd_link_info *info;
4464 struct mips_elf_link_hash_table *htab;
4465 struct mips_got_info *g;
4467 info = (struct bfd_link_info *) data;
4468 htab = mips_elf_hash_table (info);
4470 if (h->global_got_area != GGA_NONE)
4472 /* Make a final decision about whether the symbol belongs in the
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
4486 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 g->reloc_only_gotno++;
4495 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4499 mips_elf_add_got_entry (void **entryp, void *data)
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
4521 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4525 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4542 arg->g->page_gotno += entry->num_pages;
4547 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4554 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4558 struct mips_elf_traverse_got_arg tga;
4559 unsigned int estimate;
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4566 /* And conservatively estimate how many local and TLS entries
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
4573 conservatively as well. */
4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4575 estimate += arg->global_count;
4577 estimate += from->global_gotno + to->global_gotno;
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4583 /* Transfer the bfd's got information from FROM to TO. */
4584 tga.info = arg->info;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4594 mips_elf_replace_bfd_got (abfd, to);
4598 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4606 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
4609 unsigned int estimate;
4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627 if (estimate <= arg->max_count)
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4637 /* Try merging with the primary GOT. */
4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4643 /* If we can merge with the last-created got, do it. */
4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
4654 g->next = arg->current;
4660 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4665 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 struct mips_got_entry *entry;
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4672 struct mips_got_entry *new_entry;
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4682 entry->gotidx = gotidx;
4686 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
4691 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
4696 /* We're only interested in TLS symbols. */
4697 entry = (struct mips_got_entry *) *entryp;
4698 if (entry->tls_type == GOT_TLS_NONE)
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4708 /* Account for the entries we've just allocated. */
4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4713 /* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
4718 mips_elf_set_global_got_area (void **entryp, void *data)
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4732 /* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
4735 the size of one GOT entry. Set DATA->g to null on failure. */
4738 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4754 arg->g->assigned_low_gotno += 1;
4756 if (bfd_link_pic (arg->info)
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
4766 /* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4771 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4780 BFD_ASSERT (htab != NULL);
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
4784 && entry->d.h->needs_lazy_stub)
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
4793 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4796 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4801 g = mips_elf_bfd_got (ibfd, FALSE);
4805 BFD_ASSERT (g->next);
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
4813 /* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4817 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4818 asection *got, bfd_size_type pages)
4820 struct mips_elf_link_hash_table *htab;
4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4822 struct mips_elf_traverse_got_arg tga;
4823 struct mips_got_info *g, *gg;
4824 unsigned int assign, needed_relocs;
4827 dynobj = elf_hash_table (info)->dynobj;
4828 htab = mips_elf_hash_table (info);
4829 BFD_ASSERT (htab != NULL);
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4838 / MIPS_ELF_GOT_SIZE (abfd))
4839 - htab->reserved_gotno);
4840 got_per_bfd_arg.max_pages = pages;
4841 /* The number of globals that will be included in the primary GOT.
4842 See the calls to mips_elf_set_global_got_area below for more
4844 got_per_bfd_arg.global_count = g->global_gotno;
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4856 /* If we do not find any suitable primary GOT, create an empty one. */
4857 if (got_per_bfd_arg.primary == NULL)
4858 g->next = mips_elf_create_got_info (abfd);
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4863 /* GG is now the master GOT, and G is the primary GOT. */
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4872 mips_elf_replace_bfd_got (abfd, g);
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4878 g->global_gotno = gg->global_gotno;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886 /* Now go through the GOTs assigning them offset ranges.
4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
4907 struct mips_got_info *gn;
4909 assign += htab->reserved_gotno;
4910 g->assigned_low_gotno = assign;
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4913 g->assigned_high_gotno = g->local_gotno - 1;
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4948 unsigned int save_assign;
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
4963 if (bfd_link_pic (info))
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
4969 + htab->reserved_gotno);
4971 needed_relocs += g->relocs;
4973 needed_relocs += g->relocs;
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 /* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986 static const Elf_Internal_Rela *
4987 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993 while (relocation < relend)
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5002 /* We didn't find it. */
5006 /* Return whether an input relocation is against a local symbol. */
5009 mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
5011 asection **local_sections)
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021 if (r_symndx < extsymoff)
5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5029 /* Sign-extend VALUE, which has the indicated number of BITS. */
5032 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5041 /* Return non-zero if the indicated VALUE has overflowed the maximum
5042 range expressible by a signed number with the indicated number of
5046 mips_elf_overflow_p (bfd_vma value, int bits)
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
5061 /* Calculate the %high function. */
5064 mips_elf_high (bfd_vma value)
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5069 /* Calculate the %higher function. */
5072 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 /* Calculate the %highest function. */
5085 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 /* Create the .compact_rel section. */
5098 mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5102 register asection *s;
5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5115 s->size = sizeof (Elf32_External_compact_rel);
5121 /* Create the .got section to hold the global offset table. */
5124 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
5129 struct bfd_link_hash_entry *bh;
5130 struct mips_elf_link_hash_table *htab;
5132 htab = mips_elf_hash_table (info);
5133 BFD_ASSERT (htab != NULL);
5135 /* This function may be called more than once. */
5136 if (htab->root.sgot)
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 || ! bfd_set_section_alignment (abfd, s, 4))
5148 htab->root.sgot = s;
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5159 h = (struct elf_link_hash_entry *) bh;
5162 h->type = STT_OBJECT;
5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5164 elf_hash_table (info)->hgot = h;
5166 if (bfd_link_pic (info)
5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5170 htab->got_info = mips_elf_create_got_info (abfd);
5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174 /* We also need a .got.plt section when generating PLTs. */
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5179 | SEC_LINKER_CREATED);
5182 htab->root.sgotplt = s;
5187 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5192 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 return (mips_elf_hash_table (info)->is_vxworks
5195 && bfd_link_pic (info)
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5200 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5206 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
5231 return !target_is_16_bit_code_p;
5238 /* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242 The result of the relocation calculation is stored in VALUEP.
5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5251 static bfd_reloc_status_type
5252 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
5260 bfd_boolean *cross_mode_jump_p,
5261 bfd_boolean save_addend)
5263 /* The eventual value we will return. */
5265 /* The address of the symbol against which the relocation is
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
5271 /* The place (section offset or address) of the storage unit being
5274 /* The value of GP used to create the relocatable object. */
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
5284 /* TRUE if the symbol referred to by this relocation is a local
5286 bfd_boolean local_p, was_local_p;
5287 /* TRUE if the symbol referred to by this relocation is a section
5289 bfd_boolean section_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
5295 Elf_Internal_Shdr *symtab_hdr;
5297 unsigned long r_symndx;
5299 /* TRUE if overflow occurred during the calculation of the
5300 relocation value. */
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
5304 bfd_boolean target_is_micromips_code_p = FALSE;
5305 struct mips_elf_link_hash_table *htab;
5307 bfd_boolean resolved_to_zero;
5309 dynobj = elf_hash_table (info)->dynobj;
5310 htab = mips_elf_hash_table (info);
5311 BFD_ASSERT (htab != NULL);
5313 /* Parse the relocation. */
5314 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5315 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5316 p = (input_section->output_section->vma
5317 + input_section->output_offset
5318 + relocation->r_offset);
5320 /* Assume that there will be no overflow. */
5321 overflowed_p = FALSE;
5323 /* Figure out whether or not the symbol is local, and get the offset
5324 used in the array of hash table entries. */
5325 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5326 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5328 was_local_p = local_p;
5329 if (! elf_bad_symtab (input_bfd))
5330 extsymoff = symtab_hdr->sh_info;
5333 /* The symbol table does not follow the rule that local symbols
5334 must come before globals. */
5338 /* Figure out the value of the symbol. */
5341 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5342 Elf_Internal_Sym *sym;
5344 sym = local_syms + r_symndx;
5345 sec = local_sections[r_symndx];
5347 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349 symbol = sec->output_section->vma + sec->output_offset;
5350 if (!section_p || (sec->flags & SEC_MERGE))
5351 symbol += sym->st_value;
5352 if ((sec->flags & SEC_MERGE) && section_p)
5354 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend += sec->output_section->vma + sec->output_offset;
5359 /* MIPS16/microMIPS text labels should be treated as odd. */
5360 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5363 /* Record the name of this symbol, for our caller. */
5364 *namep = bfd_elf_string_from_elf_section (input_bfd,
5365 symtab_hdr->sh_link,
5367 if (*namep == NULL || **namep == '\0')
5368 *namep = bfd_section_name (input_bfd, sec);
5370 /* For relocations against a section symbol and ones against no
5371 symbol (absolute relocations) infer the ISA mode from the addend. */
5372 if (section_p || r_symndx == STN_UNDEF)
5374 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5375 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 /* For relocations against an absolute symbol infer the ISA mode
5378 from the value of the symbol plus addend. */
5379 else if (bfd_is_abs_section (sec))
5381 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5382 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 /* Otherwise just use the regular symbol annotation available. */
5387 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5388 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5393 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395 /* For global symbols we look up the symbol in the hash-table. */
5396 h = ((struct mips_elf_link_hash_entry *)
5397 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5398 /* Find the real hash-table entry for this symbol. */
5399 while (h->root.root.type == bfd_link_hash_indirect
5400 || h->root.root.type == bfd_link_hash_warning)
5401 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403 /* Record the name of this symbol, for our caller. */
5404 *namep = h->root.root.root.string;
5406 /* See if this is the special _gp_disp symbol. Note that such a
5407 symbol must always be a global symbol. */
5408 if (strcmp (*namep, "_gp_disp") == 0
5409 && ! NEWABI_P (input_bfd))
5411 /* Relocations against _gp_disp are permitted only with
5412 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5413 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5414 return bfd_reloc_notsupported;
5418 /* See if this is the special _gp symbol. Note that such a
5419 symbol must always be a global symbol. */
5420 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5421 gnu_local_gp_p = TRUE;
5424 /* If this symbol is defined, calculate its address. Note that
5425 _gp_disp is a magic symbol, always implicitly defined by the
5426 linker, so it's inappropriate to check to see whether or not
5428 else if ((h->root.root.type == bfd_link_hash_defined
5429 || h->root.root.type == bfd_link_hash_defweak)
5430 && h->root.root.u.def.section)
5432 sec = h->root.root.u.def.section;
5433 if (sec->output_section)
5434 symbol = (h->root.root.u.def.value
5435 + sec->output_section->vma
5436 + sec->output_offset);
5438 symbol = h->root.root.u.def.value;
5440 else if (h->root.root.type == bfd_link_hash_undefweak)
5441 /* We allow relocations against undefined weak symbols, giving
5442 it the value zero, so that you can undefined weak functions
5443 and check to see if they exist by looking at their
5446 else if (info->unresolved_syms_in_objects == RM_IGNORE
5447 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5450 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5452 /* If this is a dynamic link, we should have created a
5453 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5454 in _bfd_mips_elf_create_dynamic_sections.
5455 Otherwise, we should define the symbol with a value of 0.
5456 FIXME: It should probably get into the symbol table
5458 BFD_ASSERT (! bfd_link_pic (info));
5459 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5462 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 /* This is an optional symbol - an Irix specific extension to the
5465 ELF spec. Ignore it for now.
5466 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5467 than simply ignoring them, but we do not handle this for now.
5468 For information see the "64-bit ELF Object File Specification"
5469 which is available from here:
5470 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5475 bfd_boolean reject_undefined
5476 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5477 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479 (*info->callbacks->undefined_symbol)
5480 (info, h->root.root.root.string, input_bfd,
5481 input_section, relocation->r_offset, reject_undefined);
5483 if (reject_undefined)
5484 return bfd_reloc_undefined;
5489 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5493 /* If this is a reference to a 16-bit function with a stub, we need
5494 to redirect the relocation to the stub unless:
5496 (a) the relocation is for a MIPS16 JAL;
5498 (b) the relocation is for a MIPS16 PIC call, and there are no
5499 non-MIPS16 uses of the GOT slot; or
5501 (c) the section allows direct references to MIPS16 functions. */
5502 if (r_type != R_MIPS16_26
5503 && !bfd_link_relocatable (info)
5505 && h->fn_stub != NULL
5506 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5508 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5509 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5510 && !section_allows_mips16_refs_p (input_section))
5512 /* This is a 32- or 64-bit call to a 16-bit function. We should
5513 have already noticed that we were going to need the
5517 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5522 BFD_ASSERT (h->need_fn_stub);
5525 /* If a LA25 header for the stub itself exists, point to the
5526 prepended LUI/ADDIU sequence. */
5527 sec = h->la25_stub->stub_section;
5528 value = h->la25_stub->offset;
5537 symbol = sec->output_section->vma + sec->output_offset + value;
5538 /* The target is 16-bit, but the stub isn't. */
5539 target_is_16_bit_code_p = FALSE;
5541 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5542 to a standard MIPS function, we need to redirect the call to the stub.
5543 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5544 indirect calls should use an indirect stub instead. */
5545 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5546 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5548 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5549 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5550 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5553 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5556 /* If both call_stub and call_fp_stub are defined, we can figure
5557 out which one to use by checking which one appears in the input
5559 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5564 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 sec = h->call_fp_stub;
5575 else if (h->call_stub != NULL)
5578 sec = h->call_fp_stub;
5581 BFD_ASSERT (sec->size > 0);
5582 symbol = sec->output_section->vma + sec->output_offset;
5584 /* If this is a direct call to a PIC function, redirect to the
5586 else if (h != NULL && h->la25_stub
5587 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5588 target_is_16_bit_code_p))
5590 symbol = (h->la25_stub->stub_section->output_section->vma
5591 + h->la25_stub->stub_section->output_offset
5592 + h->la25_stub->offset);
5593 if (ELF_ST_IS_MICROMIPS (h->root.other))
5596 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5597 entry is used if a standard PLT entry has also been made. In this
5598 case the symbol will have been set by mips_elf_set_plt_sym_value
5599 to point to the standard PLT entry, so redirect to the compressed
5601 else if ((mips16_branch_reloc_p (r_type)
5602 || micromips_branch_reloc_p (r_type))
5603 && !bfd_link_relocatable (info)
5606 && h->root.plt.plist->comp_offset != MINUS_ONE
5607 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611 sec = htab->root.splt;
5612 symbol = (sec->output_section->vma
5613 + sec->output_offset
5614 + htab->plt_header_size
5615 + htab->plt_mips_offset
5616 + h->root.plt.plist->comp_offset
5619 target_is_16_bit_code_p = !micromips_p;
5620 target_is_micromips_code_p = micromips_p;
5623 /* Make sure MIPS16 and microMIPS are not used together. */
5624 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5625 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5628 (_("MIPS16 and microMIPS functions cannot call each other"));
5629 return bfd_reloc_notsupported;
5632 /* Calls from 16-bit code to 32-bit code and vice versa require the
5633 mode change. However, we can ignore calls to undefined weak symbols,
5634 which should never be executed at runtime. This exception is important
5635 because the assembly writer may have "known" that any definition of the
5636 symbol would be 16-bit code, and that direct jumps were therefore
5638 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5639 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5640 && ((mips16_branch_reloc_p (r_type)
5641 && !target_is_16_bit_code_p)
5642 || (micromips_branch_reloc_p (r_type)
5643 && !target_is_micromips_code_p)
5644 || ((branch_reloc_p (r_type)
5645 || r_type == R_MIPS_JALR)
5646 && (target_is_16_bit_code_p
5647 || target_is_micromips_code_p))));
5649 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651 gp0 = _bfd_get_gp_value (input_bfd);
5652 gp = _bfd_get_gp_value (abfd);
5654 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5659 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5660 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5661 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5662 if (got_page_reloc_p (r_type) && !local_p)
5664 r_type = (micromips_reloc_p (r_type)
5665 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5669 resolved_to_zero = (h != NULL
5670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5673 /* If we haven't already determined the GOT offset, and we're going
5674 to need it, get it now. */
5677 case R_MIPS16_CALL16:
5678 case R_MIPS16_GOT16:
5681 case R_MIPS_GOT_DISP:
5682 case R_MIPS_GOT_HI16:
5683 case R_MIPS_CALL_HI16:
5684 case R_MIPS_GOT_LO16:
5685 case R_MIPS_CALL_LO16:
5686 case R_MICROMIPS_CALL16:
5687 case R_MICROMIPS_GOT16:
5688 case R_MICROMIPS_GOT_DISP:
5689 case R_MICROMIPS_GOT_HI16:
5690 case R_MICROMIPS_CALL_HI16:
5691 case R_MICROMIPS_GOT_LO16:
5692 case R_MICROMIPS_CALL_LO16:
5694 case R_MIPS_TLS_GOTTPREL:
5695 case R_MIPS_TLS_LDM:
5696 case R_MIPS16_TLS_GD:
5697 case R_MIPS16_TLS_GOTTPREL:
5698 case R_MIPS16_TLS_LDM:
5699 case R_MICROMIPS_TLS_GD:
5700 case R_MICROMIPS_TLS_GOTTPREL:
5701 case R_MICROMIPS_TLS_LDM:
5702 /* Find the index into the GOT where this value is located. */
5703 if (tls_ldm_reloc_p (r_type))
5705 g = mips_elf_local_got_index (abfd, input_bfd, info,
5706 0, 0, NULL, r_type);
5708 return bfd_reloc_outofrange;
5712 /* On VxWorks, CALL relocations should refer to the .got.plt
5713 entry, which is initialized to point at the PLT stub. */
5714 if (htab->is_vxworks
5715 && (call_hi16_reloc_p (r_type)
5716 || call_lo16_reloc_p (r_type)
5717 || call16_reloc_p (r_type)))
5719 BFD_ASSERT (addend == 0);
5720 BFD_ASSERT (h->root.needs_plt);
5721 g = mips_elf_gotplt_index (info, &h->root);
5725 BFD_ASSERT (addend == 0);
5726 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 if (!TLS_RELOC_P (r_type)
5729 && !elf_hash_table (info)->dynamic_sections_created)
5730 /* This is a static link. We must initialize the GOT entry. */
5731 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5734 else if (!htab->is_vxworks
5735 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5736 /* The calculation below does not involve "g". */
5740 g = mips_elf_local_got_index (abfd, input_bfd, info,
5741 symbol + addend, r_symndx, h, r_type);
5743 return bfd_reloc_outofrange;
5746 /* Convert GOT indices to actual offsets. */
5747 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5751 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5752 symbols are resolved by the loader. Add them to .rela.dyn. */
5753 if (h != NULL && is_gott_symbol (info, &h->root))
5755 Elf_Internal_Rela outrel;
5759 s = mips_elf_rel_dyn_section (info, FALSE);
5760 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762 outrel.r_offset = (input_section->output_section->vma
5763 + input_section->output_offset
5764 + relocation->r_offset);
5765 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5766 outrel.r_addend = addend;
5767 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769 /* If we've written this relocation for a readonly section,
5770 we need to set DF_TEXTREL again, so that we do not delete the
5772 if (MIPS_ELF_READONLY_SECTION (input_section))
5773 info->flags |= DF_TEXTREL;
5776 return bfd_reloc_ok;
5779 /* Figure out what kind of relocation is being performed. */
5783 return bfd_reloc_continue;
5786 if (howto->partial_inplace)
5787 addend = _bfd_mips_elf_sign_extend (addend, 16);
5788 value = symbol + addend;
5789 overflowed_p = mips_elf_overflow_p (value, 16);
5795 if ((bfd_link_pic (info)
5796 || (htab->root.dynamic_sections_created
5798 && h->root.def_dynamic
5799 && !h->root.def_regular
5800 && !h->has_static_relocs))
5801 && r_symndx != STN_UNDEF
5803 || h->root.root.type != bfd_link_hash_undefweak
5804 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5805 && !resolved_to_zero))
5806 && (input_section->flags & SEC_ALLOC) != 0)
5808 /* If we're creating a shared library, then we can't know
5809 where the symbol will end up. So, we create a relocation
5810 record in the output, and leave the job up to the dynamic
5811 linker. We must do the same for executable references to
5812 shared library symbols, unless we've decided to use copy
5813 relocs or PLTs instead. */
5815 if (!mips_elf_create_dynamic_relocation (abfd,
5823 return bfd_reloc_undefined;
5827 if (r_type != R_MIPS_REL32)
5828 value = symbol + addend;
5832 value &= howto->dst_mask;
5836 value = symbol + addend - p;
5837 value &= howto->dst_mask;
5841 /* The calculation for R_MIPS16_26 is just the same as for an
5842 R_MIPS_26. It's only the storage of the relocated field into
5843 the output file that's different. That's handled in
5844 mips_elf_perform_relocation. So, we just fall through to the
5845 R_MIPS_26 case here. */
5847 case R_MICROMIPS_26_S1:
5851 /* Shift is 2, unusually, for microMIPS JALX. */
5852 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854 if (howto->partial_inplace && !section_p)
5855 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5860 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5861 be the correct ISA mode selector except for weak undefined
5863 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5864 && (*cross_mode_jump_p
5865 ? (value & 3) != (r_type == R_MIPS_26)
5866 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5867 return bfd_reloc_outofrange;
5870 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5871 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5872 value &= howto->dst_mask;
5876 case R_MIPS_TLS_DTPREL_HI16:
5877 case R_MIPS16_TLS_DTPREL_HI16:
5878 case R_MICROMIPS_TLS_DTPREL_HI16:
5879 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5883 case R_MIPS_TLS_DTPREL_LO16:
5884 case R_MIPS_TLS_DTPREL32:
5885 case R_MIPS_TLS_DTPREL64:
5886 case R_MIPS16_TLS_DTPREL_LO16:
5887 case R_MICROMIPS_TLS_DTPREL_LO16:
5888 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5891 case R_MIPS_TLS_TPREL_HI16:
5892 case R_MIPS16_TLS_TPREL_HI16:
5893 case R_MICROMIPS_TLS_TPREL_HI16:
5894 value = (mips_elf_high (addend + symbol - tprel_base (info))
5898 case R_MIPS_TLS_TPREL_LO16:
5899 case R_MIPS_TLS_TPREL32:
5900 case R_MIPS_TLS_TPREL64:
5901 case R_MIPS16_TLS_TPREL_LO16:
5902 case R_MICROMIPS_TLS_TPREL_LO16:
5903 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5908 case R_MICROMIPS_HI16:
5911 value = mips_elf_high (addend + symbol);
5912 value &= howto->dst_mask;
5916 /* For MIPS16 ABI code we generate this sequence
5917 0: li $v0,%hi(_gp_disp)
5918 4: addiupc $v1,%lo(_gp_disp)
5922 So the offsets of hi and lo relocs are the same, but the
5923 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5924 ADDIUPC clears the low two bits of the instruction address,
5925 so the base is ($t9 + 4) & ~3. */
5926 if (r_type == R_MIPS16_HI16)
5927 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5928 /* The microMIPS .cpload sequence uses the same assembly
5929 instructions as the traditional psABI version, but the
5930 incoming $t9 has the low bit set. */
5931 else if (r_type == R_MICROMIPS_HI16)
5932 value = mips_elf_high (addend + gp - p - 1);
5934 value = mips_elf_high (addend + gp - p);
5940 case R_MICROMIPS_LO16:
5941 case R_MICROMIPS_HI0_LO16:
5943 value = (symbol + addend) & howto->dst_mask;
5946 /* See the comment for R_MIPS16_HI16 above for the reason
5947 for this conditional. */
5948 if (r_type == R_MIPS16_LO16)
5949 value = addend + gp - (p & ~(bfd_vma) 0x3);
5950 else if (r_type == R_MICROMIPS_LO16
5951 || r_type == R_MICROMIPS_HI0_LO16)
5952 value = addend + gp - p + 3;
5954 value = addend + gp - p + 4;
5955 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5956 for overflow. But, on, say, IRIX5, relocations against
5957 _gp_disp are normally generated from the .cpload
5958 pseudo-op. It generates code that normally looks like
5961 lui $gp,%hi(_gp_disp)
5962 addiu $gp,$gp,%lo(_gp_disp)
5965 Here $t9 holds the address of the function being called,
5966 as required by the MIPS ELF ABI. The R_MIPS_LO16
5967 relocation can easily overflow in this situation, but the
5968 R_MIPS_HI16 relocation will handle the overflow.
5969 Therefore, we consider this a bug in the MIPS ABI, and do
5970 not check for overflow here. */
5974 case R_MIPS_LITERAL:
5975 case R_MICROMIPS_LITERAL:
5976 /* Because we don't merge literal sections, we can handle this
5977 just like R_MIPS_GPREL16. In the long run, we should merge
5978 shared literals, and then we will need to additional work
5983 case R_MIPS16_GPREL:
5984 /* The R_MIPS16_GPREL performs the same calculation as
5985 R_MIPS_GPREL16, but stores the relocated bits in a different
5986 order. We don't need to do anything special here; the
5987 differences are handled in mips_elf_perform_relocation. */
5988 case R_MIPS_GPREL16:
5989 case R_MICROMIPS_GPREL7_S2:
5990 case R_MICROMIPS_GPREL16:
5991 /* Only sign-extend the addend if it was extracted from the
5992 instruction. If the addend was separate, leave it alone,
5993 otherwise we may lose significant bits. */
5994 if (howto->partial_inplace)
5995 addend = _bfd_mips_elf_sign_extend (addend, 16);
5996 value = symbol + addend - gp;
5997 /* If the symbol was local, any earlier relocatable links will
5998 have adjusted its addend with the gp offset, so compensate
5999 for that now. Don't do it for symbols forced local in this
6000 link, though, since they won't have had the gp offset applied
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 16);
6008 case R_MIPS16_GOT16:
6009 case R_MIPS16_CALL16:
6012 case R_MICROMIPS_GOT16:
6013 case R_MICROMIPS_CALL16:
6014 /* VxWorks does not have separate local and global semantics for
6015 R_MIPS*_GOT16; every relocation evaluates to "G". */
6016 if (!htab->is_vxworks && local_p)
6018 value = mips_elf_got16_entry (abfd, input_bfd, info,
6019 symbol + addend, !was_local_p);
6020 if (value == MINUS_ONE)
6021 return bfd_reloc_outofrange;
6023 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6024 overflowed_p = mips_elf_overflow_p (value, 16);
6031 case R_MIPS_TLS_GOTTPREL:
6032 case R_MIPS_TLS_LDM:
6033 case R_MIPS_GOT_DISP:
6034 case R_MIPS16_TLS_GD:
6035 case R_MIPS16_TLS_GOTTPREL:
6036 case R_MIPS16_TLS_LDM:
6037 case R_MICROMIPS_TLS_GD:
6038 case R_MICROMIPS_TLS_GOTTPREL:
6039 case R_MICROMIPS_TLS_LDM:
6040 case R_MICROMIPS_GOT_DISP:
6042 overflowed_p = mips_elf_overflow_p (value, 16);
6045 case R_MIPS_GPREL32:
6046 value = (addend + symbol + gp0 - gp);
6048 value &= howto->dst_mask;
6052 case R_MIPS_GNU_REL16_S2:
6053 if (howto->partial_inplace)
6054 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056 /* No need to exclude weak undefined symbols here as they resolve
6057 to 0 and never set `*cross_mode_jump_p', so this alignment check
6058 will never trigger for them. */
6059 if (*cross_mode_jump_p
6060 ? ((symbol + addend) & 3) != 1
6061 : ((symbol + addend) & 3) != 0)
6062 return bfd_reloc_outofrange;
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 18);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6071 case R_MIPS16_PC16_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 && (*cross_mode_jump_p
6077 ? ((symbol + addend) & 3) != 0
6078 : ((symbol + addend) & 1) == 0))
6079 return bfd_reloc_outofrange;
6081 value = symbol + addend - p;
6082 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6083 overflowed_p = mips_elf_overflow_p (value, 17);
6084 value >>= howto->rightshift;
6085 value &= howto->dst_mask;
6088 case R_MIPS_PC21_S2:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092 if ((symbol + addend) & 3)
6093 return bfd_reloc_outofrange;
6095 value = symbol + addend - p;
6096 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6097 overflowed_p = mips_elf_overflow_p (value, 23);
6098 value >>= howto->rightshift;
6099 value &= howto->dst_mask;
6102 case R_MIPS_PC26_S2:
6103 if (howto->partial_inplace)
6104 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106 if ((symbol + addend) & 3)
6107 return bfd_reloc_outofrange;
6109 value = symbol + addend - p;
6110 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6111 overflowed_p = mips_elf_overflow_p (value, 28);
6112 value >>= howto->rightshift;
6113 value &= howto->dst_mask;
6116 case R_MIPS_PC18_S3:
6117 if (howto->partial_inplace)
6118 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120 if ((symbol + addend) & 7)
6121 return bfd_reloc_outofrange;
6123 value = symbol + addend - ((p | 7) ^ 7);
6124 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6125 overflowed_p = mips_elf_overflow_p (value, 21);
6126 value >>= howto->rightshift;
6127 value &= howto->dst_mask;
6130 case R_MIPS_PC19_S2:
6131 if (howto->partial_inplace)
6132 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134 if ((symbol + addend) & 3)
6135 return bfd_reloc_outofrange;
6137 value = symbol + addend - p;
6138 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6139 overflowed_p = mips_elf_overflow_p (value, 21);
6140 value >>= howto->rightshift;
6141 value &= howto->dst_mask;
6145 value = mips_elf_high (symbol + addend - p);
6146 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6147 overflowed_p = mips_elf_overflow_p (value, 16);
6148 value &= howto->dst_mask;
6152 if (howto->partial_inplace)
6153 addend = _bfd_mips_elf_sign_extend (addend, 16);
6154 value = symbol + addend - p;
6155 value &= howto->dst_mask;
6158 case R_MICROMIPS_PC7_S1:
6159 if (howto->partial_inplace)
6160 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6163 && (*cross_mode_jump_p
6164 ? ((symbol + addend + 2) & 3) != 0
6165 : ((symbol + addend + 2) & 1) == 0))
6166 return bfd_reloc_outofrange;
6168 value = symbol + addend - p;
6169 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6170 overflowed_p = mips_elf_overflow_p (value, 8);
6171 value >>= howto->rightshift;
6172 value &= howto->dst_mask;
6175 case R_MICROMIPS_PC10_S1:
6176 if (howto->partial_inplace)
6177 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6180 && (*cross_mode_jump_p
6181 ? ((symbol + addend + 2) & 3) != 0
6182 : ((symbol + addend + 2) & 1) == 0))
6183 return bfd_reloc_outofrange;
6185 value = symbol + addend - p;
6186 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6187 overflowed_p = mips_elf_overflow_p (value, 11);
6188 value >>= howto->rightshift;
6189 value &= howto->dst_mask;
6192 case R_MICROMIPS_PC16_S1:
6193 if (howto->partial_inplace)
6194 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6197 && (*cross_mode_jump_p
6198 ? ((symbol + addend) & 3) != 0
6199 : ((symbol + addend) & 1) == 0))
6200 return bfd_reloc_outofrange;
6202 value = symbol + addend - p;
6203 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6204 overflowed_p = mips_elf_overflow_p (value, 17);
6205 value >>= howto->rightshift;
6206 value &= howto->dst_mask;
6209 case R_MICROMIPS_PC23_S2:
6210 if (howto->partial_inplace)
6211 addend = _bfd_mips_elf_sign_extend (addend, 25);
6212 value = symbol + addend - ((p | 3) ^ 3);
6213 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6214 overflowed_p = mips_elf_overflow_p (value, 25);
6215 value >>= howto->rightshift;
6216 value &= howto->dst_mask;
6219 case R_MIPS_GOT_HI16:
6220 case R_MIPS_CALL_HI16:
6221 case R_MICROMIPS_GOT_HI16:
6222 case R_MICROMIPS_CALL_HI16:
6223 /* We're allowed to handle these two relocations identically.
6224 The dynamic linker is allowed to handle the CALL relocations
6225 differently by creating a lazy evaluation stub. */
6227 value = mips_elf_high (value);
6228 value &= howto->dst_mask;
6231 case R_MIPS_GOT_LO16:
6232 case R_MIPS_CALL_LO16:
6233 case R_MICROMIPS_GOT_LO16:
6234 case R_MICROMIPS_CALL_LO16:
6235 value = g & howto->dst_mask;
6238 case R_MIPS_GOT_PAGE:
6239 case R_MICROMIPS_GOT_PAGE:
6240 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6241 if (value == MINUS_ONE)
6242 return bfd_reloc_outofrange;
6243 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6244 overflowed_p = mips_elf_overflow_p (value, 16);
6247 case R_MIPS_GOT_OFST:
6248 case R_MICROMIPS_GOT_OFST:
6250 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6253 overflowed_p = mips_elf_overflow_p (value, 16);
6257 case R_MICROMIPS_SUB:
6258 value = symbol - addend;
6259 value &= howto->dst_mask;
6263 case R_MICROMIPS_HIGHER:
6264 value = mips_elf_higher (addend + symbol);
6265 value &= howto->dst_mask;
6268 case R_MIPS_HIGHEST:
6269 case R_MICROMIPS_HIGHEST:
6270 value = mips_elf_highest (addend + symbol);
6271 value &= howto->dst_mask;
6274 case R_MIPS_SCN_DISP:
6275 case R_MICROMIPS_SCN_DISP:
6276 value = symbol + addend - sec->output_offset;
6277 value &= howto->dst_mask;
6281 case R_MICROMIPS_JALR:
6282 /* This relocation is only a hint. In some cases, we optimize
6283 it into a bal instruction. But we don't try to optimize
6284 when the symbol does not resolve locally. */
6285 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6286 return bfd_reloc_continue;
6287 /* We can't optimize cross-mode jumps either. */
6288 if (*cross_mode_jump_p)
6289 return bfd_reloc_continue;
6290 value = symbol + addend;
6291 /* Neither we can non-instruction-aligned targets. */
6292 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6293 return bfd_reloc_continue;
6297 case R_MIPS_GNU_VTINHERIT:
6298 case R_MIPS_GNU_VTENTRY:
6299 /* We don't do anything with these at present. */
6300 return bfd_reloc_continue;
6303 /* An unrecognized relocation type. */
6304 return bfd_reloc_notsupported;
6307 /* Store the VALUE for our caller. */
6309 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6312 /* Obtain the field relocated by RELOCATION. */
6315 mips_elf_obtain_contents (reloc_howto_type *howto,
6316 const Elf_Internal_Rela *relocation,
6317 bfd *input_bfd, bfd_byte *contents)
6320 bfd_byte *location = contents + relocation->r_offset;
6321 unsigned int size = bfd_get_reloc_size (howto);
6323 /* Obtain the bytes. */
6325 x = bfd_get (8 * size, input_bfd, location);
6330 /* It has been determined that the result of the RELOCATION is the
6331 VALUE. Use HOWTO to place VALUE into the output file at the
6332 appropriate position. The SECTION is the section to which the
6334 CROSS_MODE_JUMP_P is true if the relocation field
6335 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337 Returns FALSE if anything goes wrong. */
6340 mips_elf_perform_relocation (struct bfd_link_info *info,
6341 reloc_howto_type *howto,
6342 const Elf_Internal_Rela *relocation,
6343 bfd_vma value, bfd *input_bfd,
6344 asection *input_section, bfd_byte *contents,
6345 bfd_boolean cross_mode_jump_p)
6349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6352 /* Figure out where the relocation is occurring. */
6353 location = contents + relocation->r_offset;
6355 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357 /* Obtain the current value. */
6358 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360 /* Clear the field we are setting. */
6361 x &= ~howto->dst_mask;
6363 /* Set the field. */
6364 x |= (value & howto->dst_mask);
6366 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6367 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 bfd_vma opcode = x >> 26;
6371 if (r_type == R_MIPS16_26 ? opcode == 0x7
6372 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6375 info->callbacks->einfo
6376 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6377 input_bfd, input_section, relocation->r_offset);
6381 if (cross_mode_jump_p && jal_reloc_p (r_type))
6384 bfd_vma opcode = x >> 26;
6385 bfd_vma jalx_opcode;
6387 /* Check to see if the opcode is already JAL or JALX. */
6388 if (r_type == R_MIPS16_26)
6390 ok = ((opcode == 0x6) || (opcode == 0x7));
6393 else if (r_type == R_MICROMIPS_26_S1)
6395 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6400 ok = ((opcode == 0x3) || (opcode == 0x1d));
6404 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6405 convert J or JALS to JALX. */
6408 info->callbacks->einfo
6409 (_("%X%H: unsupported jump between ISA modes; "
6410 "consider recompiling with interlinking enabled\n"),
6411 input_bfd, input_section, relocation->r_offset);
6415 /* Make this the JALX opcode. */
6416 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 bfd_boolean ok = FALSE;
6421 bfd_vma opcode = x >> 16;
6422 bfd_vma jalx_opcode = 0;
6423 bfd_vma sign_bit = 0;
6427 if (r_type == R_MICROMIPS_PC16_S1)
6429 ok = opcode == 0x4060;
6434 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 ok = opcode == 0x411;
6442 if (ok && !bfd_link_pic (info))
6444 addr = (input_section->output_section->vma
6445 + input_section->output_offset
6446 + relocation->r_offset
6449 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 info->callbacks->einfo
6454 (_("%X%H: cannot convert branch between ISA modes "
6455 "to JALX: relocation out of range\n"),
6456 input_bfd, input_section, relocation->r_offset);
6460 /* Make this the JALX opcode. */
6461 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 info->callbacks->einfo
6466 (_("%X%H: unsupported branch between ISA modes\n"),
6467 input_bfd, input_section, relocation->r_offset);
6472 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 if (!bfd_link_relocatable (info)
6475 && !cross_mode_jump_p
6476 && ((JAL_TO_BAL_P (input_bfd)
6477 && r_type == R_MIPS_26
6478 && (x >> 26) == 0x3) /* jal addr */
6479 || (JALR_TO_BAL_P (input_bfd)
6480 && r_type == R_MIPS_JALR
6481 && x == 0x0320f809) /* jalr t9 */
6482 || (JR_TO_B_P (input_bfd)
6483 && r_type == R_MIPS_JALR
6484 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6490 addr = (input_section->output_section->vma
6491 + input_section->output_offset
6492 + relocation->r_offset
6494 if (r_type == R_MIPS_26)
6495 dest = (value << 2) | ((addr >> 28) << 28);
6499 if (off <= 0x1ffff && off >= -0x20000)
6501 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6502 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6508 /* Put the value into the output. */
6509 size = bfd_get_reloc_size (howto);
6511 bfd_put (8 * size, input_bfd, x, location);
6513 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6519 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6520 is the original relocation, which is now being transformed into a
6521 dynamic relocation. The ADDENDP is adjusted if necessary; the
6522 caller should store the result in place of the original addend. */
6525 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6526 struct bfd_link_info *info,
6527 const Elf_Internal_Rela *rel,
6528 struct mips_elf_link_hash_entry *h,
6529 asection *sec, bfd_vma symbol,
6530 bfd_vma *addendp, asection *input_section)
6532 Elf_Internal_Rela outrel[3];
6537 bfd_boolean defined_p;
6538 struct mips_elf_link_hash_table *htab;
6540 htab = mips_elf_hash_table (info);
6541 BFD_ASSERT (htab != NULL);
6543 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6544 dynobj = elf_hash_table (info)->dynobj;
6545 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6546 BFD_ASSERT (sreloc != NULL);
6547 BFD_ASSERT (sreloc->contents != NULL);
6548 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6551 outrel[0].r_offset =
6552 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6553 if (ABI_64_P (output_bfd))
6555 outrel[1].r_offset =
6556 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6557 outrel[2].r_offset =
6558 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6561 if (outrel[0].r_offset == MINUS_ONE)
6562 /* The relocation field has been deleted. */
6565 if (outrel[0].r_offset == MINUS_TWO)
6567 /* The relocation field has been converted into a relative value of
6568 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6569 the field to be fully relocated, so add in the symbol's value. */
6574 /* We must now calculate the dynamic symbol table index to use
6575 in the relocation. */
6576 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6579 indx = h->root.dynindx;
6580 if (SGI_COMPAT (output_bfd))
6581 defined_p = h->root.def_regular;
6583 /* ??? glibc's ld.so just adds the final GOT entry to the
6584 relocation field. It therefore treats relocs against
6585 defined symbols in the same way as relocs against
6586 undefined symbols. */
6591 if (sec != NULL && bfd_is_abs_section (sec))
6593 else if (sec == NULL || sec->owner == NULL)
6595 bfd_set_error (bfd_error_bad_value);
6600 indx = elf_section_data (sec->output_section)->dynindx;
6603 asection *osec = htab->root.text_index_section;
6604 indx = elf_section_data (osec)->dynindx;
6610 /* Instead of generating a relocation using the section
6611 symbol, we may as well make it a fully relative
6612 relocation. We want to avoid generating relocations to
6613 local symbols because we used to generate them
6614 incorrectly, without adding the original symbol value,
6615 which is mandated by the ABI for section symbols. In
6616 order to give dynamic loaders and applications time to
6617 phase out the incorrect use, we refrain from emitting
6618 section-relative relocations. It's not like they're
6619 useful, after all. This should be a bit more efficient
6621 /* ??? Although this behavior is compatible with glibc's ld.so,
6622 the ABI says that relocations against STN_UNDEF should have
6623 a symbol value of 0. Irix rld honors this, so relocations
6624 against STN_UNDEF have no effect. */
6625 if (!SGI_COMPAT (output_bfd))
6630 /* If the relocation was previously an absolute relocation and
6631 this symbol will not be referred to by the relocation, we must
6632 adjust it by the value we give it in the dynamic symbol table.
6633 Otherwise leave the job up to the dynamic linker. */
6634 if (defined_p && r_type != R_MIPS_REL32)
6637 if (htab->is_vxworks)
6638 /* VxWorks uses non-relative relocations for this. */
6639 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 /* The relocation is always an REL32 relocation because we don't
6642 know where the shared library will wind up at load-time. */
6643 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6646 /* For strict adherence to the ABI specification, we should
6647 generate a R_MIPS_64 relocation record by itself before the
6648 _REL32/_64 record as well, such that the addend is read in as
6649 a 64-bit value (REL32 is a 32-bit relocation, after all).
6650 However, since none of the existing ELF64 MIPS dynamic
6651 loaders seems to care, we don't waste space with these
6652 artificial relocations. If this turns out to not be true,
6653 mips_elf_allocate_dynamic_relocation() should be tweaked so
6654 as to make room for a pair of dynamic relocations per
6655 invocation if ABI_64_P, and here we should generate an
6656 additional relocation record with R_MIPS_64 by itself for a
6657 NULL symbol before this relocation record. */
6658 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6659 ABI_64_P (output_bfd)
6662 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664 /* Adjust the output offset of the relocation to reference the
6665 correct location in the output file. */
6666 outrel[0].r_offset += (input_section->output_section->vma
6667 + input_section->output_offset);
6668 outrel[1].r_offset += (input_section->output_section->vma
6669 + input_section->output_offset);
6670 outrel[2].r_offset += (input_section->output_section->vma
6671 + input_section->output_offset);
6673 /* Put the relocation back out. We have to use the special
6674 relocation outputter in the 64-bit case since the 64-bit
6675 relocation format is non-standard. */
6676 if (ABI_64_P (output_bfd))
6678 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6679 (output_bfd, &outrel[0],
6681 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 else if (htab->is_vxworks)
6685 /* VxWorks uses RELA rather than REL dynamic relocations. */
6686 outrel[0].r_addend = *addendp;
6687 bfd_elf32_swap_reloca_out
6688 (output_bfd, &outrel[0],
6690 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6693 bfd_elf32_swap_reloc_out
6694 (output_bfd, &outrel[0],
6695 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697 /* We've now added another relocation. */
6698 ++sreloc->reloc_count;
6700 /* Make sure the output section is writable. The dynamic linker
6701 will be writing to it. */
6702 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6705 /* On IRIX5, make an entry of compact relocation info. */
6706 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6713 Elf32_crinfo cptrel;
6715 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6716 cptrel.vaddr = (rel->r_offset
6717 + input_section->output_section->vma
6718 + input_section->output_offset);
6719 if (r_type == R_MIPS_REL32)
6720 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6723 mips_elf_set_cr_dist2to (cptrel, 0);
6724 cptrel.konst = *addendp;
6726 cr = (scpt->contents
6727 + sizeof (Elf32_External_compact_rel));
6728 mips_elf_set_cr_relvaddr (cptrel, 0);
6729 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6730 ((Elf32_External_crinfo *) cr
6731 + scpt->reloc_count));
6732 ++scpt->reloc_count;
6736 /* If we've written this relocation for a readonly section,
6737 we need to set DF_TEXTREL again, so that we do not delete the
6739 if (MIPS_ELF_READONLY_SECTION (input_section))
6740 info->flags |= DF_TEXTREL;
6745 /* Return the MACH for a MIPS e_flags value. */
6748 _bfd_elf_mips_mach (flagword flags)
6750 switch (flags & EF_MIPS_MACH)
6752 case E_MIPS_MACH_3900:
6753 return bfd_mach_mips3900;
6755 case E_MIPS_MACH_4010:
6756 return bfd_mach_mips4010;
6758 case E_MIPS_MACH_4100:
6759 return bfd_mach_mips4100;
6761 case E_MIPS_MACH_4111:
6762 return bfd_mach_mips4111;
6764 case E_MIPS_MACH_4120:
6765 return bfd_mach_mips4120;
6767 case E_MIPS_MACH_4650:
6768 return bfd_mach_mips4650;
6770 case E_MIPS_MACH_5400:
6771 return bfd_mach_mips5400;
6773 case E_MIPS_MACH_5500:
6774 return bfd_mach_mips5500;
6776 case E_MIPS_MACH_5900:
6777 return bfd_mach_mips5900;
6779 case E_MIPS_MACH_9000:
6780 return bfd_mach_mips9000;
6782 case E_MIPS_MACH_SB1:
6783 return bfd_mach_mips_sb1;
6785 case E_MIPS_MACH_LS2E:
6786 return bfd_mach_mips_loongson_2e;
6788 case E_MIPS_MACH_LS2F:
6789 return bfd_mach_mips_loongson_2f;
6791 case E_MIPS_MACH_LS3A:
6792 return bfd_mach_mips_loongson_3a;
6794 case E_MIPS_MACH_OCTEON3:
6795 return bfd_mach_mips_octeon3;
6797 case E_MIPS_MACH_OCTEON2:
6798 return bfd_mach_mips_octeon2;
6800 case E_MIPS_MACH_OCTEON:
6801 return bfd_mach_mips_octeon;
6803 case E_MIPS_MACH_XLR:
6804 return bfd_mach_mips_xlr;
6806 case E_MIPS_MACH_IAMR2:
6807 return bfd_mach_mips_interaptiv_mr2;
6810 switch (flags & EF_MIPS_ARCH)
6814 return bfd_mach_mips3000;
6817 return bfd_mach_mips6000;
6820 return bfd_mach_mips4000;
6823 return bfd_mach_mips8000;
6826 return bfd_mach_mips5;
6828 case E_MIPS_ARCH_32:
6829 return bfd_mach_mipsisa32;
6831 case E_MIPS_ARCH_64:
6832 return bfd_mach_mipsisa64;
6834 case E_MIPS_ARCH_32R2:
6835 return bfd_mach_mipsisa32r2;
6837 case E_MIPS_ARCH_64R2:
6838 return bfd_mach_mipsisa64r2;
6840 case E_MIPS_ARCH_32R6:
6841 return bfd_mach_mipsisa32r6;
6843 case E_MIPS_ARCH_64R6:
6844 return bfd_mach_mipsisa64r6;
6851 /* Return printable name for ABI. */
6853 static INLINE char *
6854 elf_mips_abi_name (bfd *abfd)
6858 flags = elf_elfheader (abfd)->e_flags;
6859 switch (flags & EF_MIPS_ABI)
6862 if (ABI_N32_P (abfd))
6864 else if (ABI_64_P (abfd))
6868 case E_MIPS_ABI_O32:
6870 case E_MIPS_ABI_O64:
6872 case E_MIPS_ABI_EABI32:
6874 case E_MIPS_ABI_EABI64:
6877 return "unknown abi";
6881 /* MIPS ELF uses two common sections. One is the usual one, and the
6882 other is for small objects. All the small objects are kept
6883 together, and then referenced via the gp pointer, which yields
6884 faster assembler code. This is what we use for the small common
6885 section. This approach is copied from ecoff.c. */
6886 static asection mips_elf_scom_section;
6887 static asymbol mips_elf_scom_symbol;
6888 static asymbol *mips_elf_scom_symbol_ptr;
6890 /* MIPS ELF also uses an acommon section, which represents an
6891 allocated common symbol which may be overridden by a
6892 definition in a shared library. */
6893 static asection mips_elf_acom_section;
6894 static asymbol mips_elf_acom_symbol;
6895 static asymbol *mips_elf_acom_symbol_ptr;
6897 /* This is used for both the 32-bit and the 64-bit ABI. */
6900 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 elf_symbol_type *elfsym;
6904 /* Handle the special MIPS section numbers that a symbol may use. */
6905 elfsym = (elf_symbol_type *) asym;
6906 switch (elfsym->internal_elf_sym.st_shndx)
6908 case SHN_MIPS_ACOMMON:
6909 /* This section is used in a dynamically linked executable file.
6910 It is an allocated common section. The dynamic linker can
6911 either resolve these symbols to something in a shared
6912 library, or it can just leave them here. For our purposes,
6913 we can consider these symbols to be in a new section. */
6914 if (mips_elf_acom_section.name == NULL)
6916 /* Initialize the acommon section. */
6917 mips_elf_acom_section.name = ".acommon";
6918 mips_elf_acom_section.flags = SEC_ALLOC;
6919 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6920 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6921 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6922 mips_elf_acom_symbol.name = ".acommon";
6923 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6924 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6925 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 asym->section = &mips_elf_acom_section;
6931 /* Common symbols less than the GP size are automatically
6932 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6933 if (asym->value > elf_gp_size (abfd)
6934 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6935 || IRIX_COMPAT (abfd) == ict_irix6)
6938 case SHN_MIPS_SCOMMON:
6939 if (mips_elf_scom_section.name == NULL)
6941 /* Initialize the small common section. */
6942 mips_elf_scom_section.name = ".scommon";
6943 mips_elf_scom_section.flags = SEC_IS_COMMON;
6944 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6945 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6946 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6947 mips_elf_scom_symbol.name = ".scommon";
6948 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6949 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6950 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 asym->section = &mips_elf_scom_section;
6953 asym->value = elfsym->internal_elf_sym.st_size;
6956 case SHN_MIPS_SUNDEFINED:
6957 asym->section = bfd_und_section_ptr;
6962 asection *section = bfd_get_section_by_name (abfd, ".text");
6964 if (section != NULL)
6966 asym->section = section;
6967 /* MIPS_TEXT is a bit special, the address is not an offset
6968 to the base of the .text section. So subtract the section
6969 base address to make it an offset. */
6970 asym->value -= section->vma;
6977 asection *section = bfd_get_section_by_name (abfd, ".data");
6979 if (section != NULL)
6981 asym->section = section;
6982 /* MIPS_DATA is a bit special, the address is not an offset
6983 to the base of the .data section. So subtract the section
6984 base address to make it an offset. */
6985 asym->value -= section->vma;
6991 /* If this is an odd-valued function symbol, assume it's a MIPS16
6992 or microMIPS one. */
6993 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6994 && (asym->value & 1) != 0)
6997 if (MICROMIPS_P (abfd))
6998 elfsym->internal_elf_sym.st_other
6999 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 elfsym->internal_elf_sym.st_other
7002 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7006 /* Implement elf_backend_eh_frame_address_size. This differs from
7007 the default in the way it handles EABI64.
7009 EABI64 was originally specified as an LP64 ABI, and that is what
7010 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7011 historically accepted the combination of -mabi=eabi and -mlong32,
7012 and this ILP32 variation has become semi-official over time.
7013 Both forms use elf32 and have pointer-sized FDE addresses.
7015 If an EABI object was generated by GCC 4.0 or above, it will have
7016 an empty .gcc_compiled_longXX section, where XX is the size of longs
7017 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7018 have no special marking to distinguish them from LP64 objects.
7020 We don't want users of the official LP64 ABI to be punished for the
7021 existence of the ILP32 variant, but at the same time, we don't want
7022 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7023 We therefore take the following approach:
7025 - If ABFD contains a .gcc_compiled_longXX section, use it to
7026 determine the pointer size.
7028 - Otherwise check the type of the first relocation. Assume that
7029 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7033 The second check is enough to detect LP64 objects generated by pre-4.0
7034 compilers because, in the kind of output generated by those compilers,
7035 the first relocation will be associated with either a CIE personality
7036 routine or an FDE start address. Furthermore, the compilers never
7037 used a special (non-pointer) encoding for this ABI.
7039 Checking the relocation type should also be safe because there is no
7040 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7044 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 bfd_boolean long32_p, long64_p;
7052 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7053 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7054 if (long32_p && long64_p)
7061 if (sec->reloc_count > 0
7062 && elf_section_data (sec)->relocs != NULL
7063 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7072 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7073 relocations against two unnamed section symbols to resolve to the
7074 same address. For example, if we have code like:
7076 lw $4,%got_disp(.data)($gp)
7077 lw $25,%got_disp(.text)($gp)
7080 then the linker will resolve both relocations to .data and the program
7081 will jump there rather than to .text.
7083 We can work around this problem by giving names to local section symbols.
7084 This is also what the MIPSpro tools do. */
7087 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 return SGI_COMPAT (abfd);
7092 /* Work over a section just before writing it out. This routine is
7093 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7094 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7098 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 if (hdr->sh_type == SHT_MIPS_REGINFO
7101 && hdr->sh_size > 0)
7105 BFD_ASSERT (hdr->contents == NULL);
7107 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7110 (_("%pB: incorrect `.reginfo' section size; "
7111 "expected %" PRIu64 ", got %" PRIu64),
7112 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7113 (uint64_t) hdr->sh_size);
7114 bfd_set_error (bfd_error_bad_value);
7119 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7122 H_PUT_32 (abfd, elf_gp (abfd), buf);
7123 if (bfd_bwrite (buf, 4, abfd) != 4)
7127 if (hdr->sh_type == SHT_MIPS_OPTIONS
7128 && hdr->bfd_section != NULL
7129 && mips_elf_section_data (hdr->bfd_section) != NULL
7130 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7132 bfd_byte *contents, *l, *lend;
7134 /* We stored the section contents in the tdata field in the
7135 set_section_contents routine. We save the section contents
7136 so that we don't have to read them again.
7137 At this point we know that elf_gp is set, so we can look
7138 through the section contents to see if there is an
7139 ODK_REGINFO structure. */
7141 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7143 lend = contents + hdr->sh_size;
7144 while (l + sizeof (Elf_External_Options) <= lend)
7146 Elf_Internal_Options intopt;
7148 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 if (intopt.size < sizeof (Elf_External_Options))
7153 /* xgettext:c-format */
7154 (_("%pB: warning: bad `%s' option size %u smaller than"
7156 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7159 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7166 + sizeof (Elf_External_Options)
7167 + (sizeof (Elf64_External_RegInfo) - 8)),
7170 H_PUT_64 (abfd, elf_gp (abfd), buf);
7171 if (bfd_bwrite (buf, 8, abfd) != 8)
7174 else if (intopt.kind == ODK_REGINFO)
7181 + sizeof (Elf_External_Options)
7182 + (sizeof (Elf32_External_RegInfo) - 4)),
7185 H_PUT_32 (abfd, elf_gp (abfd), buf);
7186 if (bfd_bwrite (buf, 4, abfd) != 4)
7193 if (hdr->bfd_section != NULL)
7195 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197 /* .sbss is not handled specially here because the GNU/Linux
7198 prelinker can convert .sbss from NOBITS to PROGBITS and
7199 changing it back to NOBITS breaks the binary. The entry in
7200 _bfd_mips_elf_special_sections will ensure the correct flags
7201 are set on .sbss if BFD creates it without reading it from an
7202 input file, and without special handling here the flags set
7203 on it in an input file will be followed. */
7204 if (strcmp (name, ".sdata") == 0
7205 || strcmp (name, ".lit8") == 0
7206 || strcmp (name, ".lit4") == 0)
7207 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7208 else if (strcmp (name, ".srdata") == 0)
7209 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7210 else if (strcmp (name, ".compact_rel") == 0)
7212 else if (strcmp (name, ".rtproc") == 0)
7214 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 unsigned int adjust;
7218 adjust = hdr->sh_size % hdr->sh_addralign;
7220 hdr->sh_size += hdr->sh_addralign - adjust;
7228 /* Handle a MIPS specific section when reading an object file. This
7229 is called when elfcode.h finds a section with an unknown type.
7230 This routine supports both the 32-bit and 64-bit ELF ABI.
7232 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7236 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7237 Elf_Internal_Shdr *hdr,
7243 /* There ought to be a place to keep ELF backend specific flags, but
7244 at the moment there isn't one. We just keep track of the
7245 sections by their name, instead. Fortunately, the ABI gives
7246 suggested names for all the MIPS specific sections, so we will
7247 probably get away with this. */
7248 switch (hdr->sh_type)
7250 case SHT_MIPS_LIBLIST:
7251 if (strcmp (name, ".liblist") != 0)
7255 if (strcmp (name, ".msym") != 0)
7258 case SHT_MIPS_CONFLICT:
7259 if (strcmp (name, ".conflict") != 0)
7262 case SHT_MIPS_GPTAB:
7263 if (! CONST_STRNEQ (name, ".gptab."))
7266 case SHT_MIPS_UCODE:
7267 if (strcmp (name, ".ucode") != 0)
7270 case SHT_MIPS_DEBUG:
7271 if (strcmp (name, ".mdebug") != 0)
7273 flags = SEC_DEBUGGING;
7275 case SHT_MIPS_REGINFO:
7276 if (strcmp (name, ".reginfo") != 0
7277 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7279 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 case SHT_MIPS_IFACE:
7282 if (strcmp (name, ".MIPS.interfaces") != 0)
7285 case SHT_MIPS_CONTENT:
7286 if (! CONST_STRNEQ (name, ".MIPS.content"))
7289 case SHT_MIPS_OPTIONS:
7290 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7293 case SHT_MIPS_ABIFLAGS:
7294 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 case SHT_MIPS_DWARF:
7299 if (! CONST_STRNEQ (name, ".debug_")
7300 && ! CONST_STRNEQ (name, ".zdebug_"))
7303 case SHT_MIPS_SYMBOL_LIB:
7304 if (strcmp (name, ".MIPS.symlib") != 0)
7307 case SHT_MIPS_EVENTS:
7308 if (! CONST_STRNEQ (name, ".MIPS.events")
7309 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7316 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7321 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7322 (bfd_get_section_flags (abfd,
7328 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 Elf_External_ABIFlags_v0 ext;
7332 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7333 &ext, 0, sizeof ext))
7335 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7336 &mips_elf_tdata (abfd)->abiflags);
7337 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7342 /* FIXME: We should record sh_info for a .gptab section. */
7344 /* For a .reginfo section, set the gp value in the tdata information
7345 from the contents of this section. We need the gp value while
7346 processing relocs, so we just get it now. The .reginfo section
7347 is not used in the 64-bit MIPS ELF ABI. */
7348 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 Elf32_External_RegInfo ext;
7353 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7354 &ext, 0, sizeof ext))
7356 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7357 elf_gp (abfd) = s.ri_gp_value;
7360 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7361 set the gp value based on what we find. We may see both
7362 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7363 they should agree. */
7364 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 bfd_byte *contents, *l, *lend;
7368 contents = bfd_malloc (hdr->sh_size);
7369 if (contents == NULL)
7371 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7378 lend = contents + hdr->sh_size;
7379 while (l + sizeof (Elf_External_Options) <= lend)
7381 Elf_Internal_Options intopt;
7383 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 if (intopt.size < sizeof (Elf_External_Options))
7388 /* xgettext:c-format */
7389 (_("%pB: warning: bad `%s' option size %u smaller than"
7391 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7394 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 Elf64_Internal_RegInfo intreg;
7398 bfd_mips_elf64_swap_reginfo_in
7400 ((Elf64_External_RegInfo *)
7401 (l + sizeof (Elf_External_Options))),
7403 elf_gp (abfd) = intreg.ri_gp_value;
7405 else if (intopt.kind == ODK_REGINFO)
7407 Elf32_RegInfo intreg;
7409 bfd_mips_elf32_swap_reginfo_in
7411 ((Elf32_External_RegInfo *)
7412 (l + sizeof (Elf_External_Options))),
7414 elf_gp (abfd) = intreg.ri_gp_value;
7424 /* Set the correct type for a MIPS ELF section. We do this by the
7425 section name, which is a hack, but ought to work. This routine is
7426 used by both the 32-bit and the 64-bit ABI. */
7429 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7431 const char *name = bfd_get_section_name (abfd, sec);
7433 if (strcmp (name, ".liblist") == 0)
7435 hdr->sh_type = SHT_MIPS_LIBLIST;
7436 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7437 /* The sh_link field is set in final_write_processing. */
7439 else if (strcmp (name, ".conflict") == 0)
7440 hdr->sh_type = SHT_MIPS_CONFLICT;
7441 else if (CONST_STRNEQ (name, ".gptab."))
7443 hdr->sh_type = SHT_MIPS_GPTAB;
7444 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7445 /* The sh_info field is set in final_write_processing. */
7447 else if (strcmp (name, ".ucode") == 0)
7448 hdr->sh_type = SHT_MIPS_UCODE;
7449 else if (strcmp (name, ".mdebug") == 0)
7451 hdr->sh_type = SHT_MIPS_DEBUG;
7452 /* In a shared object on IRIX 5.3, the .mdebug section has an
7453 entsize of 0. FIXME: Does this matter? */
7454 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7455 hdr->sh_entsize = 0;
7457 hdr->sh_entsize = 1;
7459 else if (strcmp (name, ".reginfo") == 0)
7461 hdr->sh_type = SHT_MIPS_REGINFO;
7462 /* In a shared object on IRIX 5.3, the .reginfo section has an
7463 entsize of 0x18. FIXME: Does this matter? */
7464 if (SGI_COMPAT (abfd))
7466 if ((abfd->flags & DYNAMIC) != 0)
7467 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 hdr->sh_entsize = 1;
7472 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 else if (SGI_COMPAT (abfd)
7475 && (strcmp (name, ".hash") == 0
7476 || strcmp (name, ".dynamic") == 0
7477 || strcmp (name, ".dynstr") == 0))
7479 if (SGI_COMPAT (abfd))
7480 hdr->sh_entsize = 0;
7482 /* This isn't how the IRIX6 linker behaves. */
7483 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7486 else if (strcmp (name, ".got") == 0
7487 || strcmp (name, ".srdata") == 0
7488 || strcmp (name, ".sdata") == 0
7489 || strcmp (name, ".sbss") == 0
7490 || strcmp (name, ".lit4") == 0
7491 || strcmp (name, ".lit8") == 0)
7492 hdr->sh_flags |= SHF_MIPS_GPREL;
7493 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 hdr->sh_type = SHT_MIPS_IFACE;
7496 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 else if (CONST_STRNEQ (name, ".MIPS.content"))
7500 hdr->sh_type = SHT_MIPS_CONTENT;
7501 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502 /* The sh_info field is set in final_write_processing. */
7504 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7506 hdr->sh_type = SHT_MIPS_OPTIONS;
7507 hdr->sh_entsize = 1;
7508 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7513 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 else if (CONST_STRNEQ (name, ".debug_")
7516 || CONST_STRNEQ (name, ".zdebug_"))
7518 hdr->sh_type = SHT_MIPS_DWARF;
7520 /* Irix facilities such as libexc expect a single .debug_frame
7521 per executable, the system ones have NOSTRIP set and the linker
7522 doesn't merge sections with different flags so ... */
7523 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7524 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7529 /* The sh_link and sh_info fields are set in
7530 final_write_processing. */
7532 else if (CONST_STRNEQ (name, ".MIPS.events")
7533 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7535 hdr->sh_type = SHT_MIPS_EVENTS;
7536 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7537 /* The sh_link field is set in final_write_processing. */
7539 else if (strcmp (name, ".msym") == 0)
7541 hdr->sh_type = SHT_MIPS_MSYM;
7542 hdr->sh_flags |= SHF_ALLOC;
7543 hdr->sh_entsize = 8;
7546 /* The generic elf_fake_sections will set up REL_HDR using the default
7547 kind of relocations. We used to set up a second header for the
7548 non-default kind of relocations here, but only NewABI would use
7549 these, and the IRIX ld doesn't like resulting empty RELA sections.
7550 Thus we create those header only on demand now. */
7555 /* Given a BFD section, try to locate the corresponding ELF section
7556 index. This is used by both the 32-bit and the 64-bit ABI.
7557 Actually, it's not clear to me that the 64-bit ABI supports these,
7558 but for non-PIC objects we will certainly want support for at least
7559 the .scommon section. */
7562 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7563 asection *sec, int *retval)
7565 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 *retval = SHN_MIPS_SCOMMON;
7570 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 *retval = SHN_MIPS_ACOMMON;
7578 /* Hook called by the linker routine which adds symbols from an object
7579 file. We must handle the special MIPS section numbers here. */
7582 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7583 Elf_Internal_Sym *sym, const char **namep,
7584 flagword *flagsp ATTRIBUTE_UNUSED,
7585 asection **secp, bfd_vma *valp)
7587 if (SGI_COMPAT (abfd)
7588 && (abfd->flags & DYNAMIC) != 0
7589 && strcmp (*namep, "_rld_new_interface") == 0)
7591 /* Skip IRIX5 rld entry name. */
7596 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7597 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7598 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7599 a magic symbol resolved by the linker, we ignore this bogus definition
7600 of _gp_disp. New ABI objects do not suffer from this problem so this
7601 is not done for them. */
7603 && (sym->st_shndx == SHN_ABS)
7604 && (strcmp (*namep, "_gp_disp") == 0))
7610 switch (sym->st_shndx)
7613 /* Common symbols less than the GP size are automatically
7614 treated as SHN_MIPS_SCOMMON symbols. */
7615 if (sym->st_size > elf_gp_size (abfd)
7616 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7617 || IRIX_COMPAT (abfd) == ict_irix6)
7620 case SHN_MIPS_SCOMMON:
7621 *secp = bfd_make_section_old_way (abfd, ".scommon");
7622 (*secp)->flags |= SEC_IS_COMMON;
7623 *valp = sym->st_size;
7627 /* This section is used in a shared object. */
7628 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7630 asymbol *elf_text_symbol;
7631 asection *elf_text_section;
7632 bfd_size_type amt = sizeof (asection);
7634 elf_text_section = bfd_zalloc (abfd, amt);
7635 if (elf_text_section == NULL)
7638 amt = sizeof (asymbol);
7639 elf_text_symbol = bfd_zalloc (abfd, amt);
7640 if (elf_text_symbol == NULL)
7643 /* Initialize the section. */
7645 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7646 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7648 elf_text_section->symbol = elf_text_symbol;
7649 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7651 elf_text_section->name = ".text";
7652 elf_text_section->flags = SEC_NO_FLAGS;
7653 elf_text_section->output_section = NULL;
7654 elf_text_section->owner = abfd;
7655 elf_text_symbol->name = ".text";
7656 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7657 elf_text_symbol->section = elf_text_section;
7659 /* This code used to do *secp = bfd_und_section_ptr if
7660 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7661 so I took it out. */
7662 *secp = mips_elf_tdata (abfd)->elf_text_section;
7665 case SHN_MIPS_ACOMMON:
7666 /* Fall through. XXX Can we treat this as allocated data? */
7668 /* This section is used in a shared object. */
7669 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7671 asymbol *elf_data_symbol;
7672 asection *elf_data_section;
7673 bfd_size_type amt = sizeof (asection);
7675 elf_data_section = bfd_zalloc (abfd, amt);
7676 if (elf_data_section == NULL)
7679 amt = sizeof (asymbol);
7680 elf_data_symbol = bfd_zalloc (abfd, amt);
7681 if (elf_data_symbol == NULL)
7684 /* Initialize the section. */
7686 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7687 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7689 elf_data_section->symbol = elf_data_symbol;
7690 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7692 elf_data_section->name = ".data";
7693 elf_data_section->flags = SEC_NO_FLAGS;
7694 elf_data_section->output_section = NULL;
7695 elf_data_section->owner = abfd;
7696 elf_data_symbol->name = ".data";
7697 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7698 elf_data_symbol->section = elf_data_section;
7700 /* This code used to do *secp = bfd_und_section_ptr if
7701 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7702 so I took it out. */
7703 *secp = mips_elf_tdata (abfd)->elf_data_section;
7706 case SHN_MIPS_SUNDEFINED:
7707 *secp = bfd_und_section_ptr;
7711 if (SGI_COMPAT (abfd)
7712 && ! bfd_link_pic (info)
7713 && info->output_bfd->xvec == abfd->xvec
7714 && strcmp (*namep, "__rld_obj_head") == 0)
7716 struct elf_link_hash_entry *h;
7717 struct bfd_link_hash_entry *bh;
7719 /* Mark __rld_obj_head as dynamic. */
7721 if (! (_bfd_generic_link_add_one_symbol
7722 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7723 get_elf_backend_data (abfd)->collect, &bh)))
7726 h = (struct elf_link_hash_entry *) bh;
7729 h->type = STT_OBJECT;
7731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7734 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7735 mips_elf_hash_table (info)->rld_symbol = h;
7738 /* If this is a mips16 text symbol, add 1 to the value to make it
7739 odd. This will cause something like .word SYM to come up with
7740 the right value when it is loaded into the PC. */
7741 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7747 /* This hook function is called before the linker writes out a global
7748 symbol. We mark symbols as small common if appropriate. This is
7749 also where we undo the increment of the value for a mips16 symbol. */
7752 _bfd_mips_elf_link_output_symbol_hook
7753 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7754 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7755 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7757 /* If we see a common symbol, which implies a relocatable link, then
7758 if a symbol was small common in an input file, mark it as small
7759 common in the output file. */
7760 if (sym->st_shndx == SHN_COMMON
7761 && strcmp (input_sec->name, ".scommon") == 0)
7762 sym->st_shndx = SHN_MIPS_SCOMMON;
7764 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7765 sym->st_value &= ~1;
7770 /* Functions for the dynamic linker. */
7772 /* Create dynamic sections when linking against a dynamic object. */
7775 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7777 struct elf_link_hash_entry *h;
7778 struct bfd_link_hash_entry *bh;
7780 register asection *s;
7781 const char * const *namep;
7782 struct mips_elf_link_hash_table *htab;
7784 htab = mips_elf_hash_table (info);
7785 BFD_ASSERT (htab != NULL);
7787 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7788 | SEC_LINKER_CREATED | SEC_READONLY);
7790 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 if (!htab->is_vxworks)
7794 s = bfd_get_linker_section (abfd, ".dynamic");
7797 if (! bfd_set_section_flags (abfd, s, flags))
7802 /* We need to create .got section. */
7803 if (!mips_elf_create_got_section (abfd, info))
7806 if (! mips_elf_rel_dyn_section (info, TRUE))
7809 /* Create .stub section. */
7810 s = bfd_make_section_anyway_with_flags (abfd,
7811 MIPS_ELF_STUB_SECTION_NAME (abfd),
7814 || ! bfd_set_section_alignment (abfd, s,
7815 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7819 if (!mips_elf_hash_table (info)->use_rld_obj_head
7820 && bfd_link_executable (info)
7821 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7823 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7824 flags &~ (flagword) SEC_READONLY);
7826 || ! bfd_set_section_alignment (abfd, s,
7827 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7831 /* On IRIX5, we adjust add some additional symbols and change the
7832 alignments of several sections. There is no ABI documentation
7833 indicating that this is necessary on IRIX6, nor any evidence that
7834 the linker takes such action. */
7835 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7840 if (! (_bfd_generic_link_add_one_symbol
7841 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7842 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7845 h = (struct elf_link_hash_entry *) bh;
7848 h->type = STT_SECTION;
7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
7861 /* Change alignments of some sections. */
7862 s = bfd_get_linker_section (abfd, ".hash");
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866 s = bfd_get_linker_section (abfd, ".dynsym");
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7870 s = bfd_get_linker_section (abfd, ".dynstr");
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879 s = bfd_get_linker_section (abfd, ".dynamic");
7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7884 if (bfd_link_executable (info))
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7890 if (!(_bfd_generic_link_add_one_symbol
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7895 h = (struct elf_link_hash_entry *) bh;
7898 h->type = STT_SECTION;
7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
7909 s = bfd_get_linker_section (abfd, ".rld_map");
7910 BFD_ASSERT (s != NULL);
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7919 h = (struct elf_link_hash_entry *) bh;
7922 h->type = STT_OBJECT;
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7926 mips_elf_hash_table (info)->rld_symbol = h;
7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7943 /* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7948 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7960 bed = get_elf_backend_data (abfd);
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7965 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7970 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7974 unsigned int r_type;
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7981 /* Get the addend, which is stored in the input file. */
7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7986 addend = bytes & howto->src_mask;
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7996 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8003 mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
8014 if (mips16_reloc_p (r_type))
8015 lo16_type = R_MIPS16_LO16;
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
8021 lo16_type = R_MIPS_LO16;
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8028 Scan ahead to find a matching LO16 relocation.
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8056 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8061 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8076 /* Make a new PLT record to keep internal data. */
8078 static struct plt_entry *
8079 mips_elf_make_plt_record (bfd *abfd)
8081 struct plt_entry *entry;
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8094 /* Look through the relocs for a section during the first phase, and
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
8099 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
8110 const struct elf_backend_data *bed;
8111 struct mips_elf_link_hash_table *htab;
8114 reloc_howto_type *howto;
8116 if (bfd_link_relocatable (info))
8119 htab = mips_elf_hash_table (info);
8120 BFD_ASSERT (htab != NULL);
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8127 bed = get_elf_backend_data (abfd);
8128 rel_end = relocs + sec->reloc_count;
8130 /* Check for the mips16 stub sections. */
8132 name = bfd_get_section_name (abfd, sec);
8133 if (FN_STUB_P (name))
8135 unsigned long r_symndx;
8137 /* Look at the relocation information to figure out which symbol
8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8144 /* xgettext:c-format */
8145 (_("%pB: warning: cannot determine the target function for"
8146 " stub section `%s'"),
8148 bfd_set_error (bfd_error_bad_value);
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8157 /* This stub is for a local symbol. This stub will only be
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
8160 for (o = abfd->sections; o != NULL; o = o->next)
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
8168 || section_allows_mips16_refs_p (o))
8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8174 if (sec_relocs == NULL)
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8183 if (elf_section_data (o)->relocs != sec_relocs)
8192 /* There is no non-call reloc for this stub, so we do
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8197 sec->flags |= SEC_EXCLUDE;
8201 /* Record this stub in an array of local symbol stubs for
8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8205 unsigned long symcount;
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
8214 n = bfd_zalloc (abfd, amt);
8217 mips_elf_tdata (abfd)->local_stubs = n;
8220 sec->flags |= SEC_KEEP;
8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8223 /* We don't need to set mips16_stubs_seen in this case.
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
8230 struct mips_elf_link_hash_entry *h;
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8239 /* H is the symbol this stub is for. */
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8248 sec->flags |= SEC_EXCLUDE;
8252 sec->flags |= SEC_KEEP;
8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8263 /* Look at the relocation information to figure out which symbol
8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8270 /* xgettext:c-format */
8271 (_("%pB: warning: cannot determine the target function for"
8272 " stub section `%s'"),
8274 bfd_set_error (bfd_error_bad_value);
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8283 /* This stub is for a local symbol. This stub will only be
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
8286 for (o = abfd->sections; o != NULL; o = o->next)
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
8294 || section_allows_mips16_refs_p (o))
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8300 if (sec_relocs == NULL)
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8309 if (elf_section_data (o)->relocs != sec_relocs)
8318 /* There is no non-call reloc for this stub, so we do
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8323 sec->flags |= SEC_EXCLUDE;
8327 /* Record this stub in an array of local symbol call_stubs for
8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8331 unsigned long symcount;
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8343 mips_elf_tdata (abfd)->local_call_stubs = n;
8346 sec->flags |= SEC_KEEP;
8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8349 /* We don't need to set mips16_stubs_seen in this case.
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
8359 /* H is the symbol this stub is for. */
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8364 loc = &h->call_stub;
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8373 sec->flags |= SEC_EXCLUDE;
8377 sec->flags |= SEC_KEEP;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8385 for (rel = relocs; rel < rel_end; ++rel)
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
8390 bfd_boolean can_make_dynamic_p;
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8397 if (r_symndx < extsymoff)
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8402 /* xgettext:c-format */
8403 (_("%pB: malformed reloc detected for section %s"),
8405 bfd_set_error (bfd_error_bad_value);
8410 h = sym_hashes[r_symndx - extsymoff];
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8453 case R_MIPS_TLS_LDM:
8454 case R_MIPS16_GOT16:
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
8458 case R_MICROMIPS_GOT16:
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8471 if (htab->is_vxworks && !bfd_link_pic (info))
8474 /* xgettext:c-format */
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
8477 bfd_set_error (bfd_error_bad_value);
8480 can_make_dynamic_p = TRUE;
8485 case R_MICROMIPS_JALR:
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
8515 if ((bfd_link_pic (info)
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
8524 can_make_dynamic_p = TRUE;
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
8535 case R_MIPS16_PC16_S1:
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
8541 call_reloc_p = TRUE;
8547 if (constrain_symbol_p)
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8553 h->pointer_equality_needed = 1;
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8592 R_MIPS_CALL_HI16 because these are always followed by an
8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8595 rel->r_addend, info, r_type))
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8607 case R_MIPS16_CALL16:
8608 case R_MICROMIPS_CALL16:
8612 /* xgettext:c-format */
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
8615 bfd_set_error (bfd_error_bad_value);
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
8635 _bfd_elf_adjust_dynamic_symbol. */
8641 case R_MIPS_GOT_PAGE:
8642 case R_MICROMIPS_GOT_PAGE:
8643 case R_MIPS16_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8663 if (got16_reloc_p (r_type))
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8667 addend <<= howto->rightshift;
8670 addend = rel->r_addend;
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
8682 && ! (bfd_link_pic (info) && ! info->symbolic
8683 && ! hmips->root.forced_local))
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
8691 case R_MIPS_GOT_DISP:
8692 case R_MICROMIPS_GOT_DISP:
8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8698 case R_MIPS_TLS_GOTTPREL:
8699 case R_MIPS16_TLS_GOTTPREL:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 if (bfd_link_pic (info))
8702 info->flags |= DF_STATIC_TLS;
8705 case R_MIPS_TLS_LDM:
8706 case R_MIPS16_TLS_LDM:
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
8710 r_symndx = STN_UNDEF;
8716 case R_MIPS16_TLS_GD:
8717 case R_MICROMIPS_TLS_GD:
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
8741 if (can_make_dynamic_p)
8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8749 if (bfd_link_pic (info) && h == NULL)
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8755 if (MIPS_ELF_READONLY_SECTION (sec))
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8762 struct mips_elf_link_hash_entry *hmips;
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
8777 if (MIPS_ELF_READONLY_SECTION (sec))
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
8812 BFD_ASSERT (h != NULL);
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8822 /* Record the need for a PLT entry. At this point we don't know
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8840 if (branch_reloc_p (r_type))
8841 h->plt.plist->need_mips = TRUE;
8843 h->plt.plist->need_comp = TRUE;
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
8854 struct mips_elf_link_hash_entry *mh;
8856 mh = (struct mips_elf_link_hash_entry *) h;
8857 mh->need_fn_stub = TRUE;
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
8865 if (bfd_link_pic (info))
8872 case R_MIPS_HIGHEST:
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
8878 if (r_symndx == STN_UNDEF)
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8895 case R_MICROMIPS_26_S1:
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8898 /* xgettext:c-format */
8899 (_("%pB: relocation %s against `%s' can not be used"
8900 " when making a shared object; recompile with -fPIC"),
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8914 /* Allocate space for global sym dynamic relocs. */
8917 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8919 struct bfd_link_info *info = inf;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8924 htab = mips_elf_hash_table (info);
8925 BFD_ASSERT (htab != NULL);
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
8932 if (htab->is_vxworks && !bfd_link_pic (info))
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
8943 if (! bfd_link_relocatable (info)
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8947 || bfd_link_pic (info)))
8949 bfd_boolean do_copy = TRUE;
8951 if (h->root.type == bfd_link_hash_undefweak)
8953 /* Do not copy relocations for undefined weak symbols with
8954 non-default visibility. */
8955 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8956 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8959 /* Make sure undefined weak symbols are output as a dynamic
8961 else if (h->dynindx == -1 && !h->forced_local)
8963 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8970 /* Even though we don't directly need a GOT entry for this symbol,
8971 the SVR4 psABI requires it to have a dynamic symbol table
8972 index greater that DT_MIPS_GOTSYM if there are dynamic
8973 relocations against it.
8975 VxWorks does not enforce the same mapping between the GOT
8976 and the symbol table, so the same requirement does not
8978 if (!htab->is_vxworks)
8980 if (hmips->global_got_area > GGA_RELOC_ONLY)
8981 hmips->global_got_area = GGA_RELOC_ONLY;
8982 hmips->got_only_for_calls = FALSE;
8985 mips_elf_allocate_dynamic_relocations
8986 (dynobj, info, hmips->possibly_dynamic_relocs);
8987 if (hmips->readonly_reloc)
8988 /* We tell the dynamic linker that there are relocations
8989 against the text segment. */
8990 info->flags |= DF_TEXTREL;
8997 /* Adjust a symbol defined by a dynamic object and referenced by a
8998 regular object. The current definition is in some section of the
8999 dynamic object, but we're not including those sections. We have to
9000 change the definition to something the rest of the link can
9004 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9005 struct elf_link_hash_entry *h)
9008 struct mips_elf_link_hash_entry *hmips;
9009 struct mips_elf_link_hash_table *htab;
9012 htab = mips_elf_hash_table (info);
9013 BFD_ASSERT (htab != NULL);
9015 dynobj = elf_hash_table (info)->dynobj;
9016 hmips = (struct mips_elf_link_hash_entry *) h;
9018 /* Make sure we know what is going on here. */
9019 BFD_ASSERT (dynobj != NULL
9024 && !h->def_regular)));
9026 hmips = (struct mips_elf_link_hash_entry *) h;
9028 /* If there are call relocations against an externally-defined symbol,
9029 see whether we can create a MIPS lazy-binding stub for it. We can
9030 only do this if all references to the function are through call
9031 relocations, and in that case, the traditional lazy-binding stubs
9032 are much more efficient than PLT entries.
9034 Traditional stubs are only available on SVR4 psABI-based systems;
9035 VxWorks always uses PLTs instead. */
9036 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9038 if (! elf_hash_table (info)->dynamic_sections_created)
9041 /* If this symbol is not defined in a regular file, then set
9042 the symbol to the stub location. This is required to make
9043 function pointers compare as equal between the normal
9044 executable and the shared library. */
9045 if (!h->def_regular)
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9072 /* If this is the first symbol to need a PLT entry, then make some
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
9078 BFD_ASSERT (htab->plt_got_index == 0);
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9096 if (!htab->is_vxworks)
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
9103 if (htab->is_vxworks && !bfd_link_pic (info))
9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9106 /* Now work out the sizes of individual PLT entries. */
9107 if (htab->is_vxworks && bfd_link_pic (info))
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 else if (!micromips_p)
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9123 else if (htab->insn32)
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9145 n32 or n64, so always use a standard entry there.
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9155 || hmips->call_fp_stub)
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9161 /* Otherwise, if there are no direct calls to the function, we
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9170 h->plt.plist->need_comp = TRUE;
9172 h->plt.plist->need_mips = TRUE;
9175 if (h->plt.plist->need_mips)
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9180 if (h->plt.plist->need_comp)
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
9189 /* If the output file has no definition of the symbol, set the
9190 symbol's value to the address of the stub. */
9191 if (!bfd_link_pic (info) && !h->def_regular)
9192 hmips->use_plt_entry = TRUE;
9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
9199 /* Make room for the .rela.plt.unloaded relocations. */
9200 if (htab->is_vxworks && !bfd_link_pic (info))
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
9213 if (h->is_weakalias)
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9265 if (htab->is_vxworks)
9266 srel->size += sizeof (Elf32_External_Rela);
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9279 /* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9284 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
9288 struct mips_elf_link_hash_table *htab;
9289 struct mips_htab_traverse_info hti;
9291 htab = mips_elf_hash_table (info);
9292 BFD_ASSERT (htab != NULL);
9294 /* The .reginfo section has a fixed size. */
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9299 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9302 /* The .MIPS.abiflags section has a fixed size. */
9303 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9306 bfd_set_section_size (output_bfd, sect,
9307 sizeof (Elf_External_ABIFlags_v0));
9308 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9312 hti.output_bfd = output_bfd;
9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9315 mips_elf_check_symbols, &hti);
9322 /* If the link uses a GOT, lay it out and work out its size. */
9325 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9329 struct mips_got_info *g;
9330 bfd_size_type loadable_size = 0;
9331 bfd_size_type page_gotno;
9333 struct mips_elf_traverse_got_arg tga;
9334 struct mips_elf_link_hash_table *htab;
9336 htab = mips_elf_hash_table (info);
9337 BFD_ASSERT (htab != NULL);
9339 s = htab->root.sgot;
9343 dynobj = elf_hash_table (info)->dynobj;
9346 /* Allocate room for the reserved entries. VxWorks always reserves
9347 3 entries; other objects only reserve 2 entries. */
9348 BFD_ASSERT (g->assigned_low_gotno == 0);
9349 if (htab->is_vxworks)
9350 htab->reserved_gotno = 3;
9352 htab->reserved_gotno = 2;
9353 g->local_gotno += htab->reserved_gotno;
9354 g->assigned_low_gotno = htab->reserved_gotno;
9356 /* Decide which symbols need to go in the global part of the GOT and
9357 count the number of reloc-only GOT symbols. */
9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9360 if (!mips_elf_resolve_final_got_entries (info, g))
9363 /* Calculate the total loadable size of the output. That
9364 will give us the maximum number of GOT_PAGE entries
9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9368 asection *subsection;
9370 for (subsection = ibfd->sections;
9372 subsection = subsection->next)
9374 if ((subsection->flags & SEC_ALLOC) == 0)
9376 loadable_size += ((subsection->size + 0xf)
9377 &~ (bfd_size_type) 0xf);
9381 if (htab->is_vxworks)
9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9383 relocations against local symbols evaluate to "G", and the EABI does
9384 not include R_MIPS_GOT_PAGE. */
9387 /* Assume there are two loadable segments consisting of contiguous
9388 sections. Is 5 enough? */
9389 page_gotno = (loadable_size >> 16) + 5;
9391 /* Choose the smaller of the two page estimates; both are intended to be
9393 if (page_gotno > g->page_gotno)
9394 page_gotno = g->page_gotno;
9396 g->local_gotno += page_gotno;
9397 g->assigned_high_gotno = g->local_gotno - 1;
9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9403 /* VxWorks does not support multiple GOTs. It initializes $gp to
9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9413 /* Record that all bfds use G. This also has the effect of freeing
9414 the per-bfd GOTs, which we no longer need. */
9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9416 if (mips_elf_bfd_got (ibfd, FALSE))
9417 mips_elf_replace_bfd_got (ibfd, g);
9418 mips_elf_replace_bfd_got (output_bfd, g);
9420 /* Set up TLS entries. */
9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9428 BFD_ASSERT (g->tls_assigned_gotno
9429 == g->global_gotno + g->local_gotno + g->tls_gotno);
9431 /* Each VxWorks GOT entry needs an explicit relocation. */
9432 if (htab->is_vxworks && bfd_link_pic (info))
9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9435 /* Allocate room for the TLS relocations. */
9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9443 /* Estimate the size of the .MIPS.stubs section. */
9446 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9448 struct mips_elf_link_hash_table *htab;
9449 bfd_size_type dynsymcount;
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9454 if (htab->lazy_stub_count == 0)
9457 /* IRIX rld assumes that a function stub isn't at the end of the .text
9458 section, so add a dummy entry to the end. */
9459 htab->lazy_stub_count++;
9461 /* Get a worst-case estimate of the number of dynamic symbols needed.
9462 At this point, dynsymcount does not account for section symbols
9463 and count_section_dynsyms may overestimate the number that will
9465 dynsymcount = (elf_hash_table (info)->dynsymcount
9466 + count_section_dynsyms (output_bfd, info));
9468 /* Determine the size of one stub entry. There's no disadvantage
9469 from using microMIPS code here, so for the sake of pure-microMIPS
9470 binaries we prefer it whenever there's any microMIPS code in
9471 output produced at all. This has a benefit of stubs being
9472 shorter by 4 bytes each too, unless in the insn32 mode. */
9473 if (!MICROMIPS_P (output_bfd))
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MIPS_FUNCTION_STUB_BIG_SIZE
9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9477 else if (htab->insn32)
9478 htab->function_stub_size = (dynsymcount > 0x10000
9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9482 htab->function_stub_size = (dynsymcount > 0x10000
9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9489 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9491 stub, allocate an entry in the stubs section. */
9494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9496 struct mips_htab_traverse_info *hti = data;
9497 struct mips_elf_link_hash_table *htab;
9498 struct bfd_link_info *info;
9502 output_bfd = hti->output_bfd;
9503 htab = mips_elf_hash_table (info);
9504 BFD_ASSERT (htab != NULL);
9506 if (h->needs_lazy_stub)
9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9510 bfd_vma isa_bit = micromips_p;
9512 BFD_ASSERT (htab->root.dynobj != NULL);
9513 if (h->root.plt.plist == NULL)
9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9515 if (h->root.plt.plist == NULL)
9520 h->root.root.u.def.section = htab->sstubs;
9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9522 h->root.plt.plist->stub_offset = htab->sstubs->size;
9523 h->root.other = other;
9524 htab->sstubs->size += htab->function_stub_size;
9529 /* Allocate offsets in the stubs section to each symbol that needs one.
9530 Set the final size of the .MIPS.stub section. */
9533 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9535 bfd *output_bfd = info->output_bfd;
9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9538 bfd_vma isa_bit = micromips_p;
9539 struct mips_elf_link_hash_table *htab;
9540 struct mips_htab_traverse_info hti;
9541 struct elf_link_hash_entry *h;
9544 htab = mips_elf_hash_table (info);
9545 BFD_ASSERT (htab != NULL);
9547 if (htab->lazy_stub_count == 0)
9550 htab->sstubs->size = 0;
9552 hti.output_bfd = output_bfd;
9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9557 htab->sstubs->size += htab->function_stub_size;
9558 BFD_ASSERT (htab->sstubs->size
9559 == htab->lazy_stub_count * htab->function_stub_size);
9561 dynobj = elf_hash_table (info)->dynobj;
9562 BFD_ASSERT (dynobj != NULL);
9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9566 h->root.u.def.value = isa_bit;
9573 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9574 bfd_link_info. If H uses the address of a PLT entry as the value
9575 of the symbol, then set the entry in the symbol table now. Prefer
9576 a standard MIPS PLT entry. */
9579 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9581 struct bfd_link_info *info = data;
9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9583 struct mips_elf_link_hash_table *htab;
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9591 if (h->use_plt_entry)
9593 BFD_ASSERT (h->root.plt.plist != NULL);
9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9595 || h->root.plt.plist->comp_offset != MINUS_ONE);
9597 val = htab->plt_header_size;
9598 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9601 val += h->root.plt.plist->mips_offset;
9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9611 /* For VxWorks, point at the PLT load stub rather than the lazy
9612 resolution stub; this stub will become the canonical function
9614 if (htab->is_vxworks)
9617 h->root.root.u.def.section = htab->root.splt;
9618 h->root.root.u.def.value = val;
9619 h->root.other = other;
9625 /* Set the sizes of the dynamic sections. */
9628 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9629 struct bfd_link_info *info)
9632 asection *s, *sreldyn;
9633 bfd_boolean reltext;
9634 struct mips_elf_link_hash_table *htab;
9636 htab = mips_elf_hash_table (info);
9637 BFD_ASSERT (htab != NULL);
9638 dynobj = elf_hash_table (info)->dynobj;
9639 BFD_ASSERT (dynobj != NULL);
9641 if (elf_hash_table (info)->dynamic_sections_created)
9643 /* Set the contents of the .interp section to the interpreter. */
9644 if (bfd_link_executable (info) && !info->nointerp)
9646 s = bfd_get_linker_section (dynobj, ".interp");
9647 BFD_ASSERT (s != NULL);
9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9654 /* Figure out the size of the PLT header if we know that we
9655 are using it. For the sake of cache alignment always use
9656 a standard header whenever any standard entries are present
9657 even if microMIPS entries are present as well. This also
9658 lets the microMIPS header rely on the value of $v0 only set
9659 by microMIPS entries, for a small size reduction.
9661 Set symbol table entry values for symbols that use the
9662 address of their PLT entry now that we can calculate it.
9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9665 haven't already in _bfd_elf_create_dynamic_sections. */
9666 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9669 && !htab->plt_mips_offset);
9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9671 bfd_vma isa_bit = micromips_p;
9672 struct elf_link_hash_entry *h;
9675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9676 BFD_ASSERT (htab->root.sgotplt->size == 0);
9677 BFD_ASSERT (htab->root.splt->size == 0);
9679 if (htab->is_vxworks && bfd_link_pic (info))
9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9681 else if (htab->is_vxworks)
9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9683 else if (ABI_64_P (output_bfd))
9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9685 else if (ABI_N32_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9687 else if (!micromips_p)
9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9689 else if (htab->insn32)
9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9694 htab->plt_header_is_comp = micromips_p;
9695 htab->plt_header_size = size;
9696 htab->root.splt->size = (size
9697 + htab->plt_mips_offset
9698 + htab->plt_comp_offset);
9699 htab->root.sgotplt->size = (htab->plt_got_index
9700 * MIPS_ELF_GOT_SIZE (dynobj));
9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9704 if (htab->root.hplt == NULL)
9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9707 "_PROCEDURE_LINKAGE_TABLE_");
9708 htab->root.hplt = h;
9713 h = htab->root.hplt;
9714 h->root.u.def.value = isa_bit;
9720 /* Allocate space for global sym dynamic relocs. */
9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9723 mips_elf_estimate_stub_size (output_bfd, info);
9725 if (!mips_elf_lay_out_got (output_bfd, info))
9728 mips_elf_lay_out_lazy_stubs (info);
9730 /* The check_relocs and adjust_dynamic_symbol entry points have
9731 determined the sizes of the various dynamic sections. Allocate
9734 for (s = dynobj->sections; s != NULL; s = s->next)
9738 /* It's OK to base decisions on the section name, because none
9739 of the dynobj section names depend upon the input files. */
9740 name = bfd_get_section_name (dynobj, s);
9742 if ((s->flags & SEC_LINKER_CREATED) == 0)
9745 if (CONST_STRNEQ (name, ".rel"))
9749 const char *outname;
9752 /* If this relocation section applies to a read only
9753 section, then we probably need a DT_TEXTREL entry.
9754 If the relocation section is .rel(a).dyn, we always
9755 assert a DT_TEXTREL entry rather than testing whether
9756 there exists a relocation to a read only section or
9758 outname = bfd_get_section_name (output_bfd,
9760 target = bfd_get_section_by_name (output_bfd, outname + 4);
9762 && (target->flags & SEC_READONLY) != 0
9763 && (target->flags & SEC_ALLOC) != 0)
9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9767 /* We use the reloc_count field as a counter if we need
9768 to copy relocs into the output file. */
9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9772 /* If combreloc is enabled, elf_link_sort_relocs() will
9773 sort relocations, but in a different way than we do,
9774 and before we're done creating relocations. Also, it
9775 will move them around between input sections'
9776 relocation's contents, so our sorting would be
9777 broken, so don't let it run. */
9778 info->combreloc = 0;
9781 else if (bfd_link_executable (info)
9782 && ! mips_elf_hash_table (info)->use_rld_obj_head
9783 && CONST_STRNEQ (name, ".rld_map"))
9785 /* We add a room for __rld_map. It will be filled in by the
9786 rtld to contain a pointer to the _r_debug structure. */
9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9789 else if (SGI_COMPAT (output_bfd)
9790 && CONST_STRNEQ (name, ".compact_rel"))
9791 s->size += mips_elf_hash_table (info)->compact_rel_size;
9792 else if (s == htab->root.splt)
9794 /* If the last PLT entry has a branch delay slot, allocate
9795 room for an extra nop to fill the delay slot. This is
9796 for CPUs without load interlocking. */
9797 if (! LOAD_INTERLOCKS_P (output_bfd)
9798 && ! htab->is_vxworks && s->size > 0)
9801 else if (! CONST_STRNEQ (name, ".init")
9802 && s != htab->root.sgot
9803 && s != htab->root.sgotplt
9804 && s != htab->sstubs
9805 && s != htab->root.sdynbss
9806 && s != htab->root.sdynrelro)
9808 /* It's not one of our sections, so don't allocate space. */
9814 s->flags |= SEC_EXCLUDE;
9818 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9821 /* Allocate memory for the section contents. */
9822 s->contents = bfd_zalloc (dynobj, s->size);
9823 if (s->contents == NULL)
9825 bfd_set_error (bfd_error_no_memory);
9830 if (elf_hash_table (info)->dynamic_sections_created)
9832 /* Add some entries to the .dynamic section. We fill in the
9833 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9834 must add the entries now so that we get the correct size for
9835 the .dynamic section. */
9837 /* SGI object has the equivalence of DT_DEBUG in the
9838 DT_MIPS_RLD_MAP entry. This must come first because glibc
9839 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9840 may only look at the first one they see. */
9841 if (!bfd_link_pic (info)
9842 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9845 if (bfd_link_executable (info)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9849 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9850 used by the debugger. */
9851 if (bfd_link_executable (info)
9852 && !SGI_COMPAT (output_bfd)
9853 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9856 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9857 info->flags |= DF_TEXTREL;
9859 if ((info->flags & DF_TEXTREL) != 0)
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9864 /* Clear the DF_TEXTREL flag. It will be set again if we
9865 write out an actual text relocation; we may not, because
9866 at this point we do not know whether e.g. any .eh_frame
9867 absolute relocations have been converted to PC-relative. */
9868 info->flags &= ~DF_TEXTREL;
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9874 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9875 if (htab->is_vxworks)
9877 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9878 use any of the DT_MIPS_* tags. */
9879 if (sreldyn && sreldyn->size > 0)
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9893 if (sreldyn && sreldyn->size > 0)
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9905 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9908 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9911 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9926 if (IRIX_COMPAT (dynobj) == ict_irix5
9927 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9930 if (IRIX_COMPAT (dynobj) == ict_irix6
9931 && (bfd_get_section_by_name
9932 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9933 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9936 if (htab->root.splt->size > 0)
9938 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9941 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9944 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9947 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9950 if (htab->is_vxworks
9951 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9958 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9959 Adjust its R_ADDEND field so that it is correct for the output file.
9960 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9961 and sections respectively; both use symbol indexes. */
9964 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9965 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9966 asection **local_sections, Elf_Internal_Rela *rel)
9968 unsigned int r_type, r_symndx;
9969 Elf_Internal_Sym *sym;
9972 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9974 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9975 if (gprel16_reloc_p (r_type)
9976 || r_type == R_MIPS_GPREL32
9977 || literal_reloc_p (r_type))
9979 rel->r_addend += _bfd_get_gp_value (input_bfd);
9980 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9983 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9984 sym = local_syms + r_symndx;
9986 /* Adjust REL's addend to account for section merging. */
9987 if (!bfd_link_relocatable (info))
9989 sec = local_sections[r_symndx];
9990 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9993 /* This would normally be done by the rela_normal code in elflink.c. */
9994 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9995 rel->r_addend += local_sections[r_symndx]->output_offset;
9999 /* Handle relocations against symbols from removed linkonce sections,
10000 or sections discarded by a linker script. We use this wrapper around
10001 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10002 on 64-bit ELF targets. In this case for any relocation handled, which
10003 always be the first in a triplet, the remaining two have to be processed
10004 together with the first, even if they are R_MIPS_NONE. It is the symbol
10005 index referred by the first reloc that applies to all the three and the
10006 remaining two never refer to an object symbol. And it is the final
10007 relocation (the last non-null one) that determines the output field of
10008 the whole relocation so retrieve the corresponding howto structure for
10009 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10011 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10012 and therefore requires to be pasted in a loop. It also defines a block
10013 and does not protect any of its arguments, hence the extra brackets. */
10016 mips_reloc_against_discarded_section (bfd *output_bfd,
10017 struct bfd_link_info *info,
10018 bfd *input_bfd, asection *input_section,
10019 Elf_Internal_Rela **rel,
10020 const Elf_Internal_Rela **relend,
10021 bfd_boolean rel_reloc,
10022 reloc_howto_type *howto,
10023 bfd_byte *contents)
10025 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10026 int count = bed->s->int_rels_per_ext_rel;
10027 unsigned int r_type;
10030 for (i = count - 1; i > 0; i--)
10032 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10033 if (r_type != R_MIPS_NONE)
10035 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10041 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10042 (*rel), count, (*relend),
10043 howto, i, contents);
10048 /* Relocate a MIPS ELF section. */
10051 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10052 bfd *input_bfd, asection *input_section,
10053 bfd_byte *contents, Elf_Internal_Rela *relocs,
10054 Elf_Internal_Sym *local_syms,
10055 asection **local_sections)
10057 Elf_Internal_Rela *rel;
10058 const Elf_Internal_Rela *relend;
10059 bfd_vma addend = 0;
10060 bfd_boolean use_saved_addend_p = FALSE;
10062 relend = relocs + input_section->reloc_count;
10063 for (rel = relocs; rel < relend; ++rel)
10067 reloc_howto_type *howto;
10068 bfd_boolean cross_mode_jump_p = FALSE;
10069 /* TRUE if the relocation is a RELA relocation, rather than a
10071 bfd_boolean rela_relocation_p = TRUE;
10072 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10074 unsigned long r_symndx;
10076 Elf_Internal_Shdr *symtab_hdr;
10077 struct elf_link_hash_entry *h;
10078 bfd_boolean rel_reloc;
10080 rel_reloc = (NEWABI_P (input_bfd)
10081 && mips_elf_rel_relocation_p (input_bfd, input_section,
10083 /* Find the relocation howto for this relocation. */
10084 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10086 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10087 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10088 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10090 sec = local_sections[r_symndx];
10095 unsigned long extsymoff;
10098 if (!elf_bad_symtab (input_bfd))
10099 extsymoff = symtab_hdr->sh_info;
10100 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10101 while (h->root.type == bfd_link_hash_indirect
10102 || h->root.type == bfd_link_hash_warning)
10103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10106 if (h->root.type == bfd_link_hash_defined
10107 || h->root.type == bfd_link_hash_defweak)
10108 sec = h->root.u.def.section;
10111 if (sec != NULL && discarded_section (sec))
10113 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10114 input_section, &rel, &relend,
10115 rel_reloc, howto, contents);
10119 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10121 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10122 64-bit code, but make sure all their addresses are in the
10123 lowermost or uppermost 32-bit section of the 64-bit address
10124 space. Thus, when they use an R_MIPS_64 they mean what is
10125 usually meant by R_MIPS_32, with the exception that the
10126 stored value is sign-extended to 64 bits. */
10127 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10129 /* On big-endian systems, we need to lie about the position
10131 if (bfd_big_endian (input_bfd))
10132 rel->r_offset += 4;
10135 if (!use_saved_addend_p)
10137 /* If these relocations were originally of the REL variety,
10138 we must pull the addend out of the field that will be
10139 relocated. Otherwise, we simply use the contents of the
10140 RELA relocation. */
10141 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10144 rela_relocation_p = FALSE;
10145 addend = mips_elf_read_rel_addend (input_bfd, rel,
10147 if (hi16_reloc_p (r_type)
10148 || (got16_reloc_p (r_type)
10149 && mips_elf_local_relocation_p (input_bfd, rel,
10152 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10153 contents, &addend))
10156 name = h->root.root.string;
10158 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10159 local_syms + r_symndx,
10162 /* xgettext:c-format */
10163 (_("%pB: can't find matching LO16 reloc against `%s'"
10164 " for %s at %#" PRIx64 " in section `%pA'"),
10166 howto->name, (uint64_t) rel->r_offset, input_section);
10170 addend <<= howto->rightshift;
10173 addend = rel->r_addend;
10174 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10175 local_syms, local_sections, rel);
10178 if (bfd_link_relocatable (info))
10180 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10181 && bfd_big_endian (input_bfd))
10182 rel->r_offset -= 4;
10184 if (!rela_relocation_p && rel->r_addend)
10186 addend += rel->r_addend;
10187 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10188 addend = mips_elf_high (addend);
10189 else if (r_type == R_MIPS_HIGHER)
10190 addend = mips_elf_higher (addend);
10191 else if (r_type == R_MIPS_HIGHEST)
10192 addend = mips_elf_highest (addend);
10194 addend >>= howto->rightshift;
10196 /* We use the source mask, rather than the destination
10197 mask because the place to which we are writing will be
10198 source of the addend in the final link. */
10199 addend &= howto->src_mask;
10201 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10202 /* See the comment above about using R_MIPS_64 in the 32-bit
10203 ABI. Here, we need to update the addend. It would be
10204 possible to get away with just using the R_MIPS_32 reloc
10205 but for endianness. */
10211 if (addend & ((bfd_vma) 1 << 31))
10213 sign_bits = ((bfd_vma) 1 << 32) - 1;
10220 /* If we don't know that we have a 64-bit type,
10221 do two separate stores. */
10222 if (bfd_big_endian (input_bfd))
10224 /* Store the sign-bits (which are most significant)
10226 low_bits = sign_bits;
10227 high_bits = addend;
10232 high_bits = sign_bits;
10234 bfd_put_32 (input_bfd, low_bits,
10235 contents + rel->r_offset);
10236 bfd_put_32 (input_bfd, high_bits,
10237 contents + rel->r_offset + 4);
10241 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10242 input_bfd, input_section,
10247 /* Go on to the next relocation. */
10251 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10252 relocations for the same offset. In that case we are
10253 supposed to treat the output of each relocation as the addend
10255 if (rel + 1 < relend
10256 && rel->r_offset == rel[1].r_offset
10257 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10258 use_saved_addend_p = TRUE;
10260 use_saved_addend_p = FALSE;
10262 /* Figure out what value we are supposed to relocate. */
10263 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10264 input_section, info, rel,
10265 addend, howto, local_syms,
10266 local_sections, &value,
10267 &name, &cross_mode_jump_p,
10268 use_saved_addend_p))
10270 case bfd_reloc_continue:
10271 /* There's nothing to do. */
10274 case bfd_reloc_undefined:
10275 /* mips_elf_calculate_relocation already called the
10276 undefined_symbol callback. There's no real point in
10277 trying to perform the relocation at this point, so we
10278 just skip ahead to the next relocation. */
10281 case bfd_reloc_notsupported:
10282 msg = _("internal error: unsupported relocation error");
10283 info->callbacks->warning
10284 (info, msg, name, input_bfd, input_section, rel->r_offset);
10287 case bfd_reloc_overflow:
10288 if (use_saved_addend_p)
10289 /* Ignore overflow until we reach the last relocation for
10290 a given location. */
10294 struct mips_elf_link_hash_table *htab;
10296 htab = mips_elf_hash_table (info);
10297 BFD_ASSERT (htab != NULL);
10298 BFD_ASSERT (name != NULL);
10299 if (!htab->small_data_overflow_reported
10300 && (gprel16_reloc_p (howto->type)
10301 || literal_reloc_p (howto->type)))
10303 msg = _("small-data section exceeds 64KB;"
10304 " lower small-data size limit (see option -G)");
10306 htab->small_data_overflow_reported = TRUE;
10307 (*info->callbacks->einfo) ("%P: %s\n", msg);
10309 (*info->callbacks->reloc_overflow)
10310 (info, NULL, name, howto->name, (bfd_vma) 0,
10311 input_bfd, input_section, rel->r_offset);
10318 case bfd_reloc_outofrange:
10320 if (jal_reloc_p (howto->type))
10321 msg = (cross_mode_jump_p
10322 ? _("cannot convert a jump to JALX "
10323 "for a non-word-aligned address")
10324 : (howto->type == R_MIPS16_26
10325 ? _("jump to a non-word-aligned address")
10326 : _("jump to a non-instruction-aligned address")));
10327 else if (b_reloc_p (howto->type))
10328 msg = (cross_mode_jump_p
10329 ? _("cannot convert a branch to JALX "
10330 "for a non-word-aligned address")
10331 : _("branch to a non-instruction-aligned address"));
10332 else if (aligned_pcrel_reloc_p (howto->type))
10333 msg = _("PC-relative load from unaligned address");
10336 info->callbacks->einfo
10337 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10340 /* Fall through. */
10347 /* If we've got another relocation for the address, keep going
10348 until we reach the last one. */
10349 if (use_saved_addend_p)
10355 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10356 /* See the comment above about using R_MIPS_64 in the 32-bit
10357 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10358 that calculated the right value. Now, however, we
10359 sign-extend the 32-bit result to 64-bits, and store it as a
10360 64-bit value. We are especially generous here in that we
10361 go to extreme lengths to support this usage on systems with
10362 only a 32-bit VMA. */
10368 if (value & ((bfd_vma) 1 << 31))
10370 sign_bits = ((bfd_vma) 1 << 32) - 1;
10377 /* If we don't know that we have a 64-bit type,
10378 do two separate stores. */
10379 if (bfd_big_endian (input_bfd))
10381 /* Undo what we did above. */
10382 rel->r_offset -= 4;
10383 /* Store the sign-bits (which are most significant)
10385 low_bits = sign_bits;
10391 high_bits = sign_bits;
10393 bfd_put_32 (input_bfd, low_bits,
10394 contents + rel->r_offset);
10395 bfd_put_32 (input_bfd, high_bits,
10396 contents + rel->r_offset + 4);
10400 /* Actually perform the relocation. */
10401 if (! mips_elf_perform_relocation (info, howto, rel, value,
10402 input_bfd, input_section,
10403 contents, cross_mode_jump_p))
10410 /* A function that iterates over each entry in la25_stubs and fills
10411 in the code for each one. DATA points to a mips_htab_traverse_info. */
10414 mips_elf_create_la25_stub (void **slot, void *data)
10416 struct mips_htab_traverse_info *hti;
10417 struct mips_elf_link_hash_table *htab;
10418 struct mips_elf_la25_stub *stub;
10421 bfd_vma offset, target, target_high, target_low;
10423 stub = (struct mips_elf_la25_stub *) *slot;
10424 hti = (struct mips_htab_traverse_info *) data;
10425 htab = mips_elf_hash_table (hti->info);
10426 BFD_ASSERT (htab != NULL);
10428 /* Create the section contents, if we haven't already. */
10429 s = stub->stub_section;
10433 loc = bfd_malloc (s->size);
10442 /* Work out where in the section this stub should go. */
10443 offset = stub->offset;
10445 /* Work out the target address. */
10446 target = mips_elf_get_la25_target (stub, &s);
10447 target += s->output_section->vma + s->output_offset;
10449 target_high = ((target + 0x8000) >> 16) & 0xffff;
10450 target_low = (target & 0xffff);
10452 if (stub->stub_section != htab->strampoline)
10454 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10455 of the section and write the two instructions at the end. */
10456 memset (loc, 0, offset);
10458 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10460 bfd_put_micromips_32 (hti->output_bfd,
10461 LA25_LUI_MICROMIPS (target_high),
10463 bfd_put_micromips_32 (hti->output_bfd,
10464 LA25_ADDIU_MICROMIPS (target_low),
10469 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10470 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10475 /* This is trampoline. */
10477 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10479 bfd_put_micromips_32 (hti->output_bfd,
10480 LA25_LUI_MICROMIPS (target_high), loc);
10481 bfd_put_micromips_32 (hti->output_bfd,
10482 LA25_J_MICROMIPS (target), loc + 4);
10483 bfd_put_micromips_32 (hti->output_bfd,
10484 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10485 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10489 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10490 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10491 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10492 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10498 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10499 adjust it appropriately now. */
10502 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10503 const char *name, Elf_Internal_Sym *sym)
10505 /* The linker script takes care of providing names and values for
10506 these, but we must place them into the right sections. */
10507 static const char* const text_section_symbols[] = {
10510 "__dso_displacement",
10512 "__program_header_table",
10516 static const char* const data_section_symbols[] = {
10524 const char* const *p;
10527 for (i = 0; i < 2; ++i)
10528 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10531 if (strcmp (*p, name) == 0)
10533 /* All of these symbols are given type STT_SECTION by the
10535 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10536 sym->st_other = STO_PROTECTED;
10538 /* The IRIX linker puts these symbols in special sections. */
10540 sym->st_shndx = SHN_MIPS_TEXT;
10542 sym->st_shndx = SHN_MIPS_DATA;
10548 /* Finish up dynamic symbol handling. We set the contents of various
10549 dynamic sections here. */
10552 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10553 struct bfd_link_info *info,
10554 struct elf_link_hash_entry *h,
10555 Elf_Internal_Sym *sym)
10559 struct mips_got_info *g, *gg;
10562 struct mips_elf_link_hash_table *htab;
10563 struct mips_elf_link_hash_entry *hmips;
10565 htab = mips_elf_hash_table (info);
10566 BFD_ASSERT (htab != NULL);
10567 dynobj = elf_hash_table (info)->dynobj;
10568 hmips = (struct mips_elf_link_hash_entry *) h;
10570 BFD_ASSERT (!htab->is_vxworks);
10572 if (h->plt.plist != NULL
10573 && (h->plt.plist->mips_offset != MINUS_ONE
10574 || h->plt.plist->comp_offset != MINUS_ONE))
10576 /* We've decided to create a PLT entry for this symbol. */
10578 bfd_vma header_address, got_address;
10579 bfd_vma got_address_high, got_address_low, load;
10583 got_index = h->plt.plist->gotplt_index;
10585 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10586 BFD_ASSERT (h->dynindx != -1);
10587 BFD_ASSERT (htab->root.splt != NULL);
10588 BFD_ASSERT (got_index != MINUS_ONE);
10589 BFD_ASSERT (!h->def_regular);
10591 /* Calculate the address of the PLT header. */
10592 isa_bit = htab->plt_header_is_comp;
10593 header_address = (htab->root.splt->output_section->vma
10594 + htab->root.splt->output_offset + isa_bit);
10596 /* Calculate the address of the .got.plt entry. */
10597 got_address = (htab->root.sgotplt->output_section->vma
10598 + htab->root.sgotplt->output_offset
10599 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10601 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10602 got_address_low = got_address & 0xffff;
10604 /* Initially point the .got.plt entry at the PLT header. */
10605 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10606 if (ABI_64_P (output_bfd))
10607 bfd_put_64 (output_bfd, header_address, loc);
10609 bfd_put_32 (output_bfd, header_address, loc);
10611 /* Now handle the PLT itself. First the standard entry (the order
10612 does not matter, we just have to pick one). */
10613 if (h->plt.plist->mips_offset != MINUS_ONE)
10615 const bfd_vma *plt_entry;
10616 bfd_vma plt_offset;
10618 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10620 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10622 /* Find out where the .plt entry should go. */
10623 loc = htab->root.splt->contents + plt_offset;
10625 /* Pick the load opcode. */
10626 load = MIPS_ELF_LOAD_WORD (output_bfd);
10628 /* Fill in the PLT entry itself. */
10630 if (MIPSR6_P (output_bfd))
10631 plt_entry = mipsr6_exec_plt_entry;
10633 plt_entry = mips_exec_plt_entry;
10634 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10635 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10638 if (! LOAD_INTERLOCKS_P (output_bfd))
10640 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10641 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10645 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10646 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10651 /* Now the compressed entry. They come after any standard ones. */
10652 if (h->plt.plist->comp_offset != MINUS_ONE)
10654 bfd_vma plt_offset;
10656 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10657 + h->plt.plist->comp_offset);
10659 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10661 /* Find out where the .plt entry should go. */
10662 loc = htab->root.splt->contents + plt_offset;
10664 /* Fill in the PLT entry itself. */
10665 if (!MICROMIPS_P (output_bfd))
10667 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10669 bfd_put_16 (output_bfd, plt_entry[0], loc);
10670 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10671 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10672 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10673 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10674 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10675 bfd_put_32 (output_bfd, got_address, loc + 12);
10677 else if (htab->insn32)
10679 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10681 bfd_put_16 (output_bfd, plt_entry[0], loc);
10682 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10683 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10684 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10685 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10686 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10687 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10688 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10692 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10693 bfd_signed_vma gotpc_offset;
10694 bfd_vma loc_address;
10696 BFD_ASSERT (got_address % 4 == 0);
10698 loc_address = (htab->root.splt->output_section->vma
10699 + htab->root.splt->output_offset + plt_offset);
10700 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10702 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10703 if (gotpc_offset + 0x1000000 >= 0x2000000)
10706 /* xgettext:c-format */
10707 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10708 "beyond the range of ADDIUPC"),
10710 htab->root.sgotplt->output_section,
10711 (int64_t) gotpc_offset,
10712 htab->root.splt->output_section);
10713 bfd_set_error (bfd_error_no_error);
10716 bfd_put_16 (output_bfd,
10717 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10718 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10719 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10720 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10721 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10722 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10726 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10727 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10728 got_index - 2, h->dynindx,
10729 R_MIPS_JUMP_SLOT, got_address);
10731 /* We distinguish between PLT entries and lazy-binding stubs by
10732 giving the former an st_other value of STO_MIPS_PLT. Set the
10733 flag and leave the value if there are any relocations in the
10734 binary where pointer equality matters. */
10735 sym->st_shndx = SHN_UNDEF;
10736 if (h->pointer_equality_needed)
10737 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10745 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10747 /* We've decided to create a lazy-binding stub. */
10748 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10749 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10750 bfd_vma stub_size = htab->function_stub_size;
10751 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10752 bfd_vma isa_bit = micromips_p;
10753 bfd_vma stub_big_size;
10756 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10757 else if (htab->insn32)
10758 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10760 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10762 /* This symbol has a stub. Set it up. */
10764 BFD_ASSERT (h->dynindx != -1);
10766 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10768 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10769 sign extension at runtime in the stub, resulting in a negative
10771 if (h->dynindx & ~0x7fffffff)
10774 /* Fill the stub. */
10778 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10783 bfd_put_micromips_32 (output_bfd,
10784 STUB_MOVE32_MICROMIPS, stub + idx);
10789 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10792 if (stub_size == stub_big_size)
10794 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_LUI_MICROMIPS (dynindx_hi),
10803 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10809 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10813 /* If a large stub is not required and sign extension is not a
10814 problem, then use legacy code in the stub. */
10815 if (stub_size == stub_big_size)
10816 bfd_put_micromips_32 (output_bfd,
10817 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10819 else if (h->dynindx & ~0x7fff)
10820 bfd_put_micromips_32 (output_bfd,
10821 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10824 bfd_put_micromips_32 (output_bfd,
10825 STUB_LI16S_MICROMIPS (output_bfd,
10832 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10834 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10836 if (stub_size == stub_big_size)
10838 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10842 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10845 /* If a large stub is not required and sign extension is not a
10846 problem, then use legacy code in the stub. */
10847 if (stub_size == stub_big_size)
10848 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10850 else if (h->dynindx & ~0x7fff)
10851 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10854 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10858 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10859 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10862 /* Mark the symbol as undefined. stub_offset != -1 occurs
10863 only for the referenced symbol. */
10864 sym->st_shndx = SHN_UNDEF;
10866 /* The run-time linker uses the st_value field of the symbol
10867 to reset the global offset table entry for this external
10868 to its stub address when unlinking a shared object. */
10869 sym->st_value = (htab->sstubs->output_section->vma
10870 + htab->sstubs->output_offset
10871 + h->plt.plist->stub_offset
10873 sym->st_other = other;
10876 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10877 refer to the stub, since only the stub uses the standard calling
10879 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10881 BFD_ASSERT (hmips->need_fn_stub);
10882 sym->st_value = (hmips->fn_stub->output_section->vma
10883 + hmips->fn_stub->output_offset);
10884 sym->st_size = hmips->fn_stub->size;
10885 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10888 BFD_ASSERT (h->dynindx != -1
10889 || h->forced_local);
10891 sgot = htab->root.sgot;
10892 g = htab->got_info;
10893 BFD_ASSERT (g != NULL);
10895 /* Run through the global symbol table, creating GOT entries for all
10896 the symbols that need them. */
10897 if (hmips->global_got_area != GGA_NONE)
10902 value = sym->st_value;
10903 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10904 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10907 if (hmips->global_got_area != GGA_NONE && g->next)
10909 struct mips_got_entry e, *p;
10915 e.abfd = output_bfd;
10918 e.tls_type = GOT_TLS_NONE;
10920 for (g = g->next; g->next != gg; g = g->next)
10923 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10926 offset = p->gotidx;
10927 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10928 if (bfd_link_pic (info)
10929 || (elf_hash_table (info)->dynamic_sections_created
10931 && p->d.h->root.def_dynamic
10932 && !p->d.h->root.def_regular))
10934 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10935 the various compatibility problems, it's easier to mock
10936 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10937 mips_elf_create_dynamic_relocation to calculate the
10938 appropriate addend. */
10939 Elf_Internal_Rela rel[3];
10941 memset (rel, 0, sizeof (rel));
10942 if (ABI_64_P (output_bfd))
10943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10945 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10946 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10949 if (! (mips_elf_create_dynamic_relocation
10950 (output_bfd, info, rel,
10951 e.d.h, NULL, sym->st_value, &entry, sgot)))
10955 entry = sym->st_value;
10956 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10961 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10962 name = h->root.root.string;
10963 if (h == elf_hash_table (info)->hdynamic
10964 || h == elf_hash_table (info)->hgot)
10965 sym->st_shndx = SHN_ABS;
10966 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10967 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10969 sym->st_shndx = SHN_ABS;
10970 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10973 else if (SGI_COMPAT (output_bfd))
10975 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10976 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10978 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10979 sym->st_other = STO_PROTECTED;
10981 sym->st_shndx = SHN_MIPS_DATA;
10983 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10985 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10986 sym->st_other = STO_PROTECTED;
10987 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10988 sym->st_shndx = SHN_ABS;
10990 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10992 if (h->type == STT_FUNC)
10993 sym->st_shndx = SHN_MIPS_TEXT;
10994 else if (h->type == STT_OBJECT)
10995 sym->st_shndx = SHN_MIPS_DATA;
10999 /* Emit a copy reloc, if needed. */
11005 BFD_ASSERT (h->dynindx != -1);
11006 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11008 s = mips_elf_rel_dyn_section (info, FALSE);
11009 symval = (h->root.u.def.section->output_section->vma
11010 + h->root.u.def.section->output_offset
11011 + h->root.u.def.value);
11012 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11013 h->dynindx, R_MIPS_COPY, symval);
11016 /* Handle the IRIX6-specific symbols. */
11017 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11018 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11020 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11021 to treat compressed symbols like any other. */
11022 if (ELF_ST_IS_MIPS16 (sym->st_other))
11024 BFD_ASSERT (sym->st_value & 1);
11025 sym->st_other -= STO_MIPS16;
11027 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11029 BFD_ASSERT (sym->st_value & 1);
11030 sym->st_other -= STO_MICROMIPS;
11036 /* Likewise, for VxWorks. */
11039 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11040 struct bfd_link_info *info,
11041 struct elf_link_hash_entry *h,
11042 Elf_Internal_Sym *sym)
11046 struct mips_got_info *g;
11047 struct mips_elf_link_hash_table *htab;
11048 struct mips_elf_link_hash_entry *hmips;
11050 htab = mips_elf_hash_table (info);
11051 BFD_ASSERT (htab != NULL);
11052 dynobj = elf_hash_table (info)->dynobj;
11053 hmips = (struct mips_elf_link_hash_entry *) h;
11055 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11058 bfd_vma plt_address, got_address, got_offset, branch_offset;
11059 Elf_Internal_Rela rel;
11060 static const bfd_vma *plt_entry;
11061 bfd_vma gotplt_index;
11062 bfd_vma plt_offset;
11064 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11065 gotplt_index = h->plt.plist->gotplt_index;
11067 BFD_ASSERT (h->dynindx != -1);
11068 BFD_ASSERT (htab->root.splt != NULL);
11069 BFD_ASSERT (gotplt_index != MINUS_ONE);
11070 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11072 /* Calculate the address of the .plt entry. */
11073 plt_address = (htab->root.splt->output_section->vma
11074 + htab->root.splt->output_offset
11077 /* Calculate the address of the .got.plt entry. */
11078 got_address = (htab->root.sgotplt->output_section->vma
11079 + htab->root.sgotplt->output_offset
11080 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11082 /* Calculate the offset of the .got.plt entry from
11083 _GLOBAL_OFFSET_TABLE_. */
11084 got_offset = mips_elf_gotplt_index (info, h);
11086 /* Calculate the offset for the branch at the start of the PLT
11087 entry. The branch jumps to the beginning of .plt. */
11088 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11090 /* Fill in the initial value of the .got.plt entry. */
11091 bfd_put_32 (output_bfd, plt_address,
11092 (htab->root.sgotplt->contents
11093 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11095 /* Find out where the .plt entry should go. */
11096 loc = htab->root.splt->contents + plt_offset;
11098 if (bfd_link_pic (info))
11100 plt_entry = mips_vxworks_shared_plt_entry;
11101 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11102 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11106 bfd_vma got_address_high, got_address_low;
11108 plt_entry = mips_vxworks_exec_plt_entry;
11109 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11110 got_address_low = got_address & 0xffff;
11112 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11113 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11114 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11115 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11116 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11117 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11118 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11119 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11121 loc = (htab->srelplt2->contents
11122 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11124 /* Emit a relocation for the .got.plt entry. */
11125 rel.r_offset = got_address;
11126 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11127 rel.r_addend = plt_offset;
11128 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11130 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11131 loc += sizeof (Elf32_External_Rela);
11132 rel.r_offset = plt_address + 8;
11133 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11134 rel.r_addend = got_offset;
11135 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11137 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11138 loc += sizeof (Elf32_External_Rela);
11140 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11141 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11144 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11145 loc = (htab->root.srelplt->contents
11146 + gotplt_index * sizeof (Elf32_External_Rela));
11147 rel.r_offset = got_address;
11148 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11150 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11152 if (!h->def_regular)
11153 sym->st_shndx = SHN_UNDEF;
11156 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11158 sgot = htab->root.sgot;
11159 g = htab->got_info;
11160 BFD_ASSERT (g != NULL);
11162 /* See if this symbol has an entry in the GOT. */
11163 if (hmips->global_got_area != GGA_NONE)
11166 Elf_Internal_Rela outrel;
11170 /* Install the symbol value in the GOT. */
11171 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11172 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11174 /* Add a dynamic relocation for it. */
11175 s = mips_elf_rel_dyn_section (info, FALSE);
11176 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11177 outrel.r_offset = (sgot->output_section->vma
11178 + sgot->output_offset
11180 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11181 outrel.r_addend = 0;
11182 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11185 /* Emit a copy reloc, if needed. */
11188 Elf_Internal_Rela rel;
11192 BFD_ASSERT (h->dynindx != -1);
11194 rel.r_offset = (h->root.u.def.section->output_section->vma
11195 + h->root.u.def.section->output_offset
11196 + h->root.u.def.value);
11197 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11199 if (h->root.u.def.section == htab->root.sdynrelro)
11200 srel = htab->root.sreldynrelro;
11202 srel = htab->root.srelbss;
11203 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11204 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11205 ++srel->reloc_count;
11208 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11209 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11210 sym->st_value &= ~1;
11215 /* Write out a plt0 entry to the beginning of .plt. */
11218 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11221 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11222 static const bfd_vma *plt_entry;
11223 struct mips_elf_link_hash_table *htab;
11225 htab = mips_elf_hash_table (info);
11226 BFD_ASSERT (htab != NULL);
11228 if (ABI_64_P (output_bfd))
11229 plt_entry = mips_n64_exec_plt0_entry;
11230 else if (ABI_N32_P (output_bfd))
11231 plt_entry = mips_n32_exec_plt0_entry;
11232 else if (!htab->plt_header_is_comp)
11233 plt_entry = mips_o32_exec_plt0_entry;
11234 else if (htab->insn32)
11235 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11237 plt_entry = micromips_o32_exec_plt0_entry;
11239 /* Calculate the value of .got.plt. */
11240 gotplt_value = (htab->root.sgotplt->output_section->vma
11241 + htab->root.sgotplt->output_offset);
11242 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11243 gotplt_value_low = gotplt_value & 0xffff;
11245 /* The PLT sequence is not safe for N64 if .got.plt's address can
11246 not be loaded in two instructions. */
11247 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11248 || ~(gotplt_value | 0x7fffffff) == 0);
11250 /* Install the PLT header. */
11251 loc = htab->root.splt->contents;
11252 if (plt_entry == micromips_o32_exec_plt0_entry)
11254 bfd_vma gotpc_offset;
11255 bfd_vma loc_address;
11258 BFD_ASSERT (gotplt_value % 4 == 0);
11260 loc_address = (htab->root.splt->output_section->vma
11261 + htab->root.splt->output_offset);
11262 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11264 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11265 if (gotpc_offset + 0x1000000 >= 0x2000000)
11268 /* xgettext:c-format */
11269 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11270 "beyond the range of ADDIUPC"),
11272 htab->root.sgotplt->output_section,
11273 (int64_t) gotpc_offset,
11274 htab->root.splt->output_section);
11275 bfd_set_error (bfd_error_no_error);
11278 bfd_put_16 (output_bfd,
11279 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11280 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11281 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11282 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11284 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11288 bfd_put_16 (output_bfd, plt_entry[0], loc);
11289 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11290 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11291 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11292 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11293 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11294 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11295 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11299 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11300 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11301 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11302 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11303 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11304 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11305 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11306 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11312 /* Install the PLT header for a VxWorks executable and finalize the
11313 contents of .rela.plt.unloaded. */
11316 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11318 Elf_Internal_Rela rela;
11320 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11321 static const bfd_vma *plt_entry;
11322 struct mips_elf_link_hash_table *htab;
11324 htab = mips_elf_hash_table (info);
11325 BFD_ASSERT (htab != NULL);
11327 plt_entry = mips_vxworks_exec_plt0_entry;
11329 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11330 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11331 + htab->root.hgot->root.u.def.section->output_offset
11332 + htab->root.hgot->root.u.def.value);
11334 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11335 got_value_low = got_value & 0xffff;
11337 /* Calculate the address of the PLT header. */
11338 plt_address = (htab->root.splt->output_section->vma
11339 + htab->root.splt->output_offset);
11341 /* Install the PLT header. */
11342 loc = htab->root.splt->contents;
11343 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11344 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11345 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11346 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11347 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11348 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11350 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11351 loc = htab->srelplt2->contents;
11352 rela.r_offset = plt_address;
11353 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11355 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11356 loc += sizeof (Elf32_External_Rela);
11358 /* Output the relocation for the following addiu of
11359 %lo(_GLOBAL_OFFSET_TABLE_). */
11360 rela.r_offset += 4;
11361 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11362 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11363 loc += sizeof (Elf32_External_Rela);
11365 /* Fix up the remaining relocations. They may have the wrong
11366 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11367 in which symbols were output. */
11368 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11370 Elf_Internal_Rela rel;
11372 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11373 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11374 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11375 loc += sizeof (Elf32_External_Rela);
11377 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11378 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11379 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11380 loc += sizeof (Elf32_External_Rela);
11382 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11383 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11384 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11385 loc += sizeof (Elf32_External_Rela);
11389 /* Install the PLT header for a VxWorks shared library. */
11392 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11395 struct mips_elf_link_hash_table *htab;
11397 htab = mips_elf_hash_table (info);
11398 BFD_ASSERT (htab != NULL);
11400 /* We just need to copy the entry byte-by-byte. */
11401 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11402 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11403 htab->root.splt->contents + i * 4);
11406 /* Finish up the dynamic sections. */
11409 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11410 struct bfd_link_info *info)
11415 struct mips_got_info *gg, *g;
11416 struct mips_elf_link_hash_table *htab;
11418 htab = mips_elf_hash_table (info);
11419 BFD_ASSERT (htab != NULL);
11421 dynobj = elf_hash_table (info)->dynobj;
11423 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11425 sgot = htab->root.sgot;
11426 gg = htab->got_info;
11428 if (elf_hash_table (info)->dynamic_sections_created)
11431 int dyn_to_skip = 0, dyn_skipped = 0;
11433 BFD_ASSERT (sdyn != NULL);
11434 BFD_ASSERT (gg != NULL);
11436 g = mips_elf_bfd_got (output_bfd, FALSE);
11437 BFD_ASSERT (g != NULL);
11439 for (b = sdyn->contents;
11440 b < sdyn->contents + sdyn->size;
11441 b += MIPS_ELF_DYN_SIZE (dynobj))
11443 Elf_Internal_Dyn dyn;
11447 bfd_boolean swap_out_p;
11449 /* Read in the current dynamic entry. */
11450 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11452 /* Assume that we're going to modify it and write it out. */
11458 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11462 BFD_ASSERT (htab->is_vxworks);
11463 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11467 /* Rewrite DT_STRSZ. */
11469 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11473 s = htab->root.sgot;
11474 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11477 case DT_MIPS_PLTGOT:
11478 s = htab->root.sgotplt;
11479 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11482 case DT_MIPS_RLD_VERSION:
11483 dyn.d_un.d_val = 1; /* XXX */
11486 case DT_MIPS_FLAGS:
11487 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11490 case DT_MIPS_TIME_STAMP:
11494 dyn.d_un.d_val = t;
11498 case DT_MIPS_ICHECKSUM:
11500 swap_out_p = FALSE;
11503 case DT_MIPS_IVERSION:
11505 swap_out_p = FALSE;
11508 case DT_MIPS_BASE_ADDRESS:
11509 s = output_bfd->sections;
11510 BFD_ASSERT (s != NULL);
11511 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11514 case DT_MIPS_LOCAL_GOTNO:
11515 dyn.d_un.d_val = g->local_gotno;
11518 case DT_MIPS_UNREFEXTNO:
11519 /* The index into the dynamic symbol table which is the
11520 entry of the first external symbol that is not
11521 referenced within the same object. */
11522 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11525 case DT_MIPS_GOTSYM:
11526 if (htab->global_gotsym)
11528 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11531 /* In case if we don't have global got symbols we default
11532 to setting DT_MIPS_GOTSYM to the same value as
11533 DT_MIPS_SYMTABNO. */
11534 /* Fall through. */
11536 case DT_MIPS_SYMTABNO:
11538 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11539 s = bfd_get_linker_section (dynobj, name);
11542 dyn.d_un.d_val = s->size / elemsize;
11544 dyn.d_un.d_val = 0;
11547 case DT_MIPS_HIPAGENO:
11548 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11551 case DT_MIPS_RLD_MAP:
11553 struct elf_link_hash_entry *h;
11554 h = mips_elf_hash_table (info)->rld_symbol;
11557 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11558 swap_out_p = FALSE;
11561 s = h->root.u.def.section;
11563 /* The MIPS_RLD_MAP tag stores the absolute address of the
11565 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11566 + h->root.u.def.value);
11570 case DT_MIPS_RLD_MAP_REL:
11572 struct elf_link_hash_entry *h;
11573 bfd_vma dt_addr, rld_addr;
11574 h = mips_elf_hash_table (info)->rld_symbol;
11577 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11578 swap_out_p = FALSE;
11581 s = h->root.u.def.section;
11583 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11584 pointer, relative to the address of the tag. */
11585 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11586 + (b - sdyn->contents));
11587 rld_addr = (s->output_section->vma + s->output_offset
11588 + h->root.u.def.value);
11589 dyn.d_un.d_ptr = rld_addr - dt_addr;
11593 case DT_MIPS_OPTIONS:
11594 s = (bfd_get_section_by_name
11595 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11596 dyn.d_un.d_ptr = s->vma;
11600 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11601 if (htab->is_vxworks)
11602 dyn.d_un.d_val = DT_RELA;
11604 dyn.d_un.d_val = DT_REL;
11608 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11609 dyn.d_un.d_val = htab->root.srelplt->size;
11613 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11614 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11615 + htab->root.srelplt->output_offset);
11619 /* If we didn't need any text relocations after all, delete
11620 the dynamic tag. */
11621 if (!(info->flags & DF_TEXTREL))
11623 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11624 swap_out_p = FALSE;
11629 /* If we didn't need any text relocations after all, clear
11630 DF_TEXTREL from DT_FLAGS. */
11631 if (!(info->flags & DF_TEXTREL))
11632 dyn.d_un.d_val &= ~DF_TEXTREL;
11634 swap_out_p = FALSE;
11638 swap_out_p = FALSE;
11639 if (htab->is_vxworks
11640 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11645 if (swap_out_p || dyn_skipped)
11646 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11647 (dynobj, &dyn, b - dyn_skipped);
11651 dyn_skipped += dyn_to_skip;
11656 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11657 if (dyn_skipped > 0)
11658 memset (b - dyn_skipped, 0, dyn_skipped);
11661 if (sgot != NULL && sgot->size > 0
11662 && !bfd_is_abs_section (sgot->output_section))
11664 if (htab->is_vxworks)
11666 /* The first entry of the global offset table points to the
11667 ".dynamic" section. The second is initialized by the
11668 loader and contains the shared library identifier.
11669 The third is also initialized by the loader and points
11670 to the lazy resolution stub. */
11671 MIPS_ELF_PUT_WORD (output_bfd,
11672 sdyn->output_offset + sdyn->output_section->vma,
11674 MIPS_ELF_PUT_WORD (output_bfd, 0,
11675 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11676 MIPS_ELF_PUT_WORD (output_bfd, 0,
11678 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11682 /* The first entry of the global offset table will be filled at
11683 runtime. The second entry will be used by some runtime loaders.
11684 This isn't the case of IRIX rld. */
11685 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11686 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11687 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11690 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11691 = MIPS_ELF_GOT_SIZE (output_bfd);
11694 /* Generate dynamic relocations for the non-primary gots. */
11695 if (gg != NULL && gg->next)
11697 Elf_Internal_Rela rel[3];
11698 bfd_vma addend = 0;
11700 memset (rel, 0, sizeof (rel));
11701 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11703 for (g = gg->next; g->next != gg; g = g->next)
11705 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11706 + g->next->tls_gotno;
11708 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11709 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11710 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11712 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11714 if (! bfd_link_pic (info))
11717 for (; got_index < g->local_gotno; got_index++)
11719 if (got_index >= g->assigned_low_gotno
11720 && got_index <= g->assigned_high_gotno)
11723 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11724 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11725 if (!(mips_elf_create_dynamic_relocation
11726 (output_bfd, info, rel, NULL,
11727 bfd_abs_section_ptr,
11728 0, &addend, sgot)))
11730 BFD_ASSERT (addend == 0);
11735 /* The generation of dynamic relocations for the non-primary gots
11736 adds more dynamic relocations. We cannot count them until
11739 if (elf_hash_table (info)->dynamic_sections_created)
11742 bfd_boolean swap_out_p;
11744 BFD_ASSERT (sdyn != NULL);
11746 for (b = sdyn->contents;
11747 b < sdyn->contents + sdyn->size;
11748 b += MIPS_ELF_DYN_SIZE (dynobj))
11750 Elf_Internal_Dyn dyn;
11753 /* Read in the current dynamic entry. */
11754 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11756 /* Assume that we're going to modify it and write it out. */
11762 /* Reduce DT_RELSZ to account for any relocations we
11763 decided not to make. This is for the n64 irix rld,
11764 which doesn't seem to apply any relocations if there
11765 are trailing null entries. */
11766 s = mips_elf_rel_dyn_section (info, FALSE);
11767 dyn.d_un.d_val = (s->reloc_count
11768 * (ABI_64_P (output_bfd)
11769 ? sizeof (Elf64_Mips_External_Rel)
11770 : sizeof (Elf32_External_Rel)));
11771 /* Adjust the section size too. Tools like the prelinker
11772 can reasonably expect the values to the same. */
11773 elf_section_data (s->output_section)->this_hdr.sh_size
11778 swap_out_p = FALSE;
11783 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11790 Elf32_compact_rel cpt;
11792 if (SGI_COMPAT (output_bfd))
11794 /* Write .compact_rel section out. */
11795 s = bfd_get_linker_section (dynobj, ".compact_rel");
11799 cpt.num = s->reloc_count;
11801 cpt.offset = (s->output_section->filepos
11802 + sizeof (Elf32_External_compact_rel));
11805 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11806 ((Elf32_External_compact_rel *)
11809 /* Clean up a dummy stub function entry in .text. */
11810 if (htab->sstubs != NULL)
11812 file_ptr dummy_offset;
11814 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11815 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11816 memset (htab->sstubs->contents + dummy_offset, 0,
11817 htab->function_stub_size);
11822 /* The psABI says that the dynamic relocations must be sorted in
11823 increasing order of r_symndx. The VxWorks EABI doesn't require
11824 this, and because the code below handles REL rather than RELA
11825 relocations, using it for VxWorks would be outright harmful. */
11826 if (!htab->is_vxworks)
11828 s = mips_elf_rel_dyn_section (info, FALSE);
11830 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11832 reldyn_sorting_bfd = output_bfd;
11834 if (ABI_64_P (output_bfd))
11835 qsort ((Elf64_External_Rel *) s->contents + 1,
11836 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11837 sort_dynamic_relocs_64);
11839 qsort ((Elf32_External_Rel *) s->contents + 1,
11840 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11841 sort_dynamic_relocs);
11846 if (htab->root.splt && htab->root.splt->size > 0)
11848 if (htab->is_vxworks)
11850 if (bfd_link_pic (info))
11851 mips_vxworks_finish_shared_plt (output_bfd, info);
11853 mips_vxworks_finish_exec_plt (output_bfd, info);
11857 BFD_ASSERT (!bfd_link_pic (info));
11858 if (!mips_finish_exec_plt (output_bfd, info))
11866 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11869 mips_set_isa_flags (bfd *abfd)
11873 switch (bfd_get_mach (abfd))
11876 case bfd_mach_mips3000:
11877 val = E_MIPS_ARCH_1;
11880 case bfd_mach_mips3900:
11881 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11884 case bfd_mach_mips6000:
11885 val = E_MIPS_ARCH_2;
11888 case bfd_mach_mips4010:
11889 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11892 case bfd_mach_mips4000:
11893 case bfd_mach_mips4300:
11894 case bfd_mach_mips4400:
11895 case bfd_mach_mips4600:
11896 val = E_MIPS_ARCH_3;
11899 case bfd_mach_mips4100:
11900 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11903 case bfd_mach_mips4111:
11904 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11907 case bfd_mach_mips4120:
11908 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11911 case bfd_mach_mips4650:
11912 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11915 case bfd_mach_mips5400:
11916 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11919 case bfd_mach_mips5500:
11920 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11923 case bfd_mach_mips5900:
11924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11927 case bfd_mach_mips9000:
11928 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11931 case bfd_mach_mips5000:
11932 case bfd_mach_mips7000:
11933 case bfd_mach_mips8000:
11934 case bfd_mach_mips10000:
11935 case bfd_mach_mips12000:
11936 case bfd_mach_mips14000:
11937 case bfd_mach_mips16000:
11938 val = E_MIPS_ARCH_4;
11941 case bfd_mach_mips5:
11942 val = E_MIPS_ARCH_5;
11945 case bfd_mach_mips_loongson_2e:
11946 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11949 case bfd_mach_mips_loongson_2f:
11950 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11953 case bfd_mach_mips_sb1:
11954 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11957 case bfd_mach_mips_loongson_3a:
11958 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11961 case bfd_mach_mips_octeon:
11962 case bfd_mach_mips_octeonp:
11963 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11966 case bfd_mach_mips_octeon3:
11967 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11970 case bfd_mach_mips_xlr:
11971 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11974 case bfd_mach_mips_octeon2:
11975 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11978 case bfd_mach_mipsisa32:
11979 val = E_MIPS_ARCH_32;
11982 case bfd_mach_mipsisa64:
11983 val = E_MIPS_ARCH_64;
11986 case bfd_mach_mipsisa32r2:
11987 case bfd_mach_mipsisa32r3:
11988 case bfd_mach_mipsisa32r5:
11989 val = E_MIPS_ARCH_32R2;
11992 case bfd_mach_mips_interaptiv_mr2:
11993 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11996 case bfd_mach_mipsisa64r2:
11997 case bfd_mach_mipsisa64r3:
11998 case bfd_mach_mipsisa64r5:
11999 val = E_MIPS_ARCH_64R2;
12002 case bfd_mach_mipsisa32r6:
12003 val = E_MIPS_ARCH_32R6;
12006 case bfd_mach_mipsisa64r6:
12007 val = E_MIPS_ARCH_64R6;
12010 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12011 elf_elfheader (abfd)->e_flags |= val;
12016 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12017 Don't do so for code sections. We want to keep ordering of HI16/LO16
12018 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12019 relocs to be sorted. */
12022 _bfd_mips_elf_sort_relocs_p (asection *sec)
12024 return (sec->flags & SEC_CODE) == 0;
12028 /* The final processing done just before writing out a MIPS ELF object
12029 file. This gets the MIPS architecture right based on the machine
12030 number. This is used by both the 32-bit and the 64-bit ABI. */
12033 _bfd_mips_elf_final_write_processing (bfd *abfd,
12034 bfd_boolean linker ATTRIBUTE_UNUSED)
12037 Elf_Internal_Shdr **hdrpp;
12041 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12042 is nonzero. This is for compatibility with old objects, which used
12043 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12044 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12045 mips_set_isa_flags (abfd);
12047 /* Set the sh_info field for .gptab sections and other appropriate
12048 info for each special section. */
12049 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12050 i < elf_numsections (abfd);
12053 switch ((*hdrpp)->sh_type)
12055 case SHT_MIPS_MSYM:
12056 case SHT_MIPS_LIBLIST:
12057 sec = bfd_get_section_by_name (abfd, ".dynstr");
12059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12062 case SHT_MIPS_GPTAB:
12063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12065 BFD_ASSERT (name != NULL
12066 && CONST_STRNEQ (name, ".gptab."));
12067 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12068 BFD_ASSERT (sec != NULL);
12069 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12072 case SHT_MIPS_CONTENT:
12073 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12074 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12075 BFD_ASSERT (name != NULL
12076 && CONST_STRNEQ (name, ".MIPS.content"));
12077 sec = bfd_get_section_by_name (abfd,
12078 name + sizeof ".MIPS.content" - 1);
12079 BFD_ASSERT (sec != NULL);
12080 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12083 case SHT_MIPS_SYMBOL_LIB:
12084 sec = bfd_get_section_by_name (abfd, ".dynsym");
12086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12087 sec = bfd_get_section_by_name (abfd, ".liblist");
12089 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12092 case SHT_MIPS_EVENTS:
12093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12095 BFD_ASSERT (name != NULL);
12096 if (CONST_STRNEQ (name, ".MIPS.events"))
12097 sec = bfd_get_section_by_name (abfd,
12098 name + sizeof ".MIPS.events" - 1);
12101 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12102 sec = bfd_get_section_by_name (abfd,
12104 + sizeof ".MIPS.post_rel" - 1));
12106 BFD_ASSERT (sec != NULL);
12107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12114 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12118 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12119 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12124 /* See if we need a PT_MIPS_REGINFO segment. */
12125 s = bfd_get_section_by_name (abfd, ".reginfo");
12126 if (s && (s->flags & SEC_LOAD))
12129 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12130 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12133 /* See if we need a PT_MIPS_OPTIONS segment. */
12134 if (IRIX_COMPAT (abfd) == ict_irix6
12135 && bfd_get_section_by_name (abfd,
12136 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12139 /* See if we need a PT_MIPS_RTPROC segment. */
12140 if (IRIX_COMPAT (abfd) == ict_irix5
12141 && bfd_get_section_by_name (abfd, ".dynamic")
12142 && bfd_get_section_by_name (abfd, ".mdebug"))
12145 /* Allocate a PT_NULL header in dynamic objects. See
12146 _bfd_mips_elf_modify_segment_map for details. */
12147 if (!SGI_COMPAT (abfd)
12148 && bfd_get_section_by_name (abfd, ".dynamic"))
12154 /* Modify the segment map for an IRIX5 executable. */
12157 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12158 struct bfd_link_info *info)
12161 struct elf_segment_map *m, **pm;
12164 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12166 s = bfd_get_section_by_name (abfd, ".reginfo");
12167 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12169 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12170 if (m->p_type == PT_MIPS_REGINFO)
12175 m = bfd_zalloc (abfd, amt);
12179 m->p_type = PT_MIPS_REGINFO;
12181 m->sections[0] = s;
12183 /* We want to put it after the PHDR and INTERP segments. */
12184 pm = &elf_seg_map (abfd);
12186 && ((*pm)->p_type == PT_PHDR
12187 || (*pm)->p_type == PT_INTERP))
12195 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12197 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12198 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12200 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12201 if (m->p_type == PT_MIPS_ABIFLAGS)
12206 m = bfd_zalloc (abfd, amt);
12210 m->p_type = PT_MIPS_ABIFLAGS;
12212 m->sections[0] = s;
12214 /* We want to put it after the PHDR and INTERP segments. */
12215 pm = &elf_seg_map (abfd);
12217 && ((*pm)->p_type == PT_PHDR
12218 || (*pm)->p_type == PT_INTERP))
12226 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12227 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12228 PT_MIPS_OPTIONS segment immediately following the program header
12230 if (NEWABI_P (abfd)
12231 /* On non-IRIX6 new abi, we'll have already created a segment
12232 for this section, so don't create another. I'm not sure this
12233 is not also the case for IRIX 6, but I can't test it right
12235 && IRIX_COMPAT (abfd) == ict_irix6)
12237 for (s = abfd->sections; s; s = s->next)
12238 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12243 struct elf_segment_map *options_segment;
12245 pm = &elf_seg_map (abfd);
12247 && ((*pm)->p_type == PT_PHDR
12248 || (*pm)->p_type == PT_INTERP))
12251 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12253 amt = sizeof (struct elf_segment_map);
12254 options_segment = bfd_zalloc (abfd, amt);
12255 options_segment->next = *pm;
12256 options_segment->p_type = PT_MIPS_OPTIONS;
12257 options_segment->p_flags = PF_R;
12258 options_segment->p_flags_valid = TRUE;
12259 options_segment->count = 1;
12260 options_segment->sections[0] = s;
12261 *pm = options_segment;
12267 if (IRIX_COMPAT (abfd) == ict_irix5)
12269 /* If there are .dynamic and .mdebug sections, we make a room
12270 for the RTPROC header. FIXME: Rewrite without section names. */
12271 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12272 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12273 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12275 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12276 if (m->p_type == PT_MIPS_RTPROC)
12281 m = bfd_zalloc (abfd, amt);
12285 m->p_type = PT_MIPS_RTPROC;
12287 s = bfd_get_section_by_name (abfd, ".rtproc");
12292 m->p_flags_valid = 1;
12297 m->sections[0] = s;
12300 /* We want to put it after the DYNAMIC segment. */
12301 pm = &elf_seg_map (abfd);
12302 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12312 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12313 .dynstr, .dynsym, and .hash sections, and everything in
12315 for (pm = &elf_seg_map (abfd); *pm != NULL;
12317 if ((*pm)->p_type == PT_DYNAMIC)
12320 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12321 glibc's dynamic linker has traditionally derived the number of
12322 tags from the p_filesz field, and sometimes allocates stack
12323 arrays of that size. An overly-big PT_DYNAMIC segment can
12324 be actively harmful in such cases. Making PT_DYNAMIC contain
12325 other sections can also make life hard for the prelinker,
12326 which might move one of the other sections to a different
12327 PT_LOAD segment. */
12328 if (SGI_COMPAT (abfd)
12331 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12333 static const char *sec_names[] =
12335 ".dynamic", ".dynstr", ".dynsym", ".hash"
12339 struct elf_segment_map *n;
12341 low = ~(bfd_vma) 0;
12343 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12345 s = bfd_get_section_by_name (abfd, sec_names[i]);
12346 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12353 if (high < s->vma + sz)
12354 high = s->vma + sz;
12359 for (s = abfd->sections; s != NULL; s = s->next)
12360 if ((s->flags & SEC_LOAD) != 0
12362 && s->vma + s->size <= high)
12365 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12366 n = bfd_zalloc (abfd, amt);
12373 for (s = abfd->sections; s != NULL; s = s->next)
12375 if ((s->flags & SEC_LOAD) != 0
12377 && s->vma + s->size <= high)
12379 n->sections[i] = s;
12388 /* Allocate a spare program header in dynamic objects so that tools
12389 like the prelinker can add an extra PT_LOAD entry.
12391 If the prelinker needs to make room for a new PT_LOAD entry, its
12392 standard procedure is to move the first (read-only) sections into
12393 the new (writable) segment. However, the MIPS ABI requires
12394 .dynamic to be in a read-only segment, and the section will often
12395 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12397 Although the prelinker could in principle move .dynamic to a
12398 writable segment, it seems better to allocate a spare program
12399 header instead, and avoid the need to move any sections.
12400 There is a long tradition of allocating spare dynamic tags,
12401 so allocating a spare program header seems like a natural
12404 If INFO is NULL, we may be copying an already prelinked binary
12405 with objcopy or strip, so do not add this header. */
12407 && !SGI_COMPAT (abfd)
12408 && bfd_get_section_by_name (abfd, ".dynamic"))
12410 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12411 if ((*pm)->p_type == PT_NULL)
12415 m = bfd_zalloc (abfd, sizeof (*m));
12419 m->p_type = PT_NULL;
12427 /* Return the section that should be marked against GC for a given
12431 _bfd_mips_elf_gc_mark_hook (asection *sec,
12432 struct bfd_link_info *info,
12433 Elf_Internal_Rela *rel,
12434 struct elf_link_hash_entry *h,
12435 Elf_Internal_Sym *sym)
12437 /* ??? Do mips16 stub sections need to be handled special? */
12440 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12442 case R_MIPS_GNU_VTINHERIT:
12443 case R_MIPS_GNU_VTENTRY:
12447 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12450 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12453 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12454 elf_gc_mark_hook_fn gc_mark_hook)
12458 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12460 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12464 if (! is_mips_elf (sub))
12467 for (o = sub->sections; o != NULL; o = o->next)
12469 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12470 (bfd_get_section_name (sub, o)))
12472 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12480 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12481 hiding the old indirect symbol. Process additional relocation
12482 information. Also called for weakdefs, in which case we just let
12483 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12486 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12487 struct elf_link_hash_entry *dir,
12488 struct elf_link_hash_entry *ind)
12490 struct mips_elf_link_hash_entry *dirmips, *indmips;
12492 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12494 dirmips = (struct mips_elf_link_hash_entry *) dir;
12495 indmips = (struct mips_elf_link_hash_entry *) ind;
12496 /* Any absolute non-dynamic relocations against an indirect or weak
12497 definition will be against the target symbol. */
12498 if (indmips->has_static_relocs)
12499 dirmips->has_static_relocs = TRUE;
12501 if (ind->root.type != bfd_link_hash_indirect)
12504 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12505 if (indmips->readonly_reloc)
12506 dirmips->readonly_reloc = TRUE;
12507 if (indmips->no_fn_stub)
12508 dirmips->no_fn_stub = TRUE;
12509 if (indmips->fn_stub)
12511 dirmips->fn_stub = indmips->fn_stub;
12512 indmips->fn_stub = NULL;
12514 if (indmips->need_fn_stub)
12516 dirmips->need_fn_stub = TRUE;
12517 indmips->need_fn_stub = FALSE;
12519 if (indmips->call_stub)
12521 dirmips->call_stub = indmips->call_stub;
12522 indmips->call_stub = NULL;
12524 if (indmips->call_fp_stub)
12526 dirmips->call_fp_stub = indmips->call_fp_stub;
12527 indmips->call_fp_stub = NULL;
12529 if (indmips->global_got_area < dirmips->global_got_area)
12530 dirmips->global_got_area = indmips->global_got_area;
12531 if (indmips->global_got_area < GGA_NONE)
12532 indmips->global_got_area = GGA_NONE;
12533 if (indmips->has_nonpic_branches)
12534 dirmips->has_nonpic_branches = TRUE;
12537 #define PDR_SIZE 32
12540 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12541 struct bfd_link_info *info)
12544 bfd_boolean ret = FALSE;
12545 unsigned char *tdata;
12548 o = bfd_get_section_by_name (abfd, ".pdr");
12553 if (o->size % PDR_SIZE != 0)
12555 if (o->output_section != NULL
12556 && bfd_is_abs_section (o->output_section))
12559 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12563 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12564 info->keep_memory);
12571 cookie->rel = cookie->rels;
12572 cookie->relend = cookie->rels + o->reloc_count;
12574 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12576 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12585 mips_elf_section_data (o)->u.tdata = tdata;
12586 if (o->rawsize == 0)
12587 o->rawsize = o->size;
12588 o->size -= skip * PDR_SIZE;
12594 if (! info->keep_memory)
12595 free (cookie->rels);
12601 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12603 if (strcmp (sec->name, ".pdr") == 0)
12609 _bfd_mips_elf_write_section (bfd *output_bfd,
12610 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12611 asection *sec, bfd_byte *contents)
12613 bfd_byte *to, *from, *end;
12616 if (strcmp (sec->name, ".pdr") != 0)
12619 if (mips_elf_section_data (sec)->u.tdata == NULL)
12623 end = contents + sec->size;
12624 for (from = contents, i = 0;
12626 from += PDR_SIZE, i++)
12628 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12631 memcpy (to, from, PDR_SIZE);
12634 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12635 sec->output_offset, sec->size);
12639 /* microMIPS code retains local labels for linker relaxation. Omit them
12640 from output by default for clarity. */
12643 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12645 return _bfd_elf_is_local_label_name (abfd, sym->name);
12648 /* MIPS ELF uses a special find_nearest_line routine in order the
12649 handle the ECOFF debugging information. */
12651 struct mips_elf_find_line
12653 struct ecoff_debug_info d;
12654 struct ecoff_find_line i;
12658 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12659 asection *section, bfd_vma offset,
12660 const char **filename_ptr,
12661 const char **functionname_ptr,
12662 unsigned int *line_ptr,
12663 unsigned int *discriminator_ptr)
12667 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12668 filename_ptr, functionname_ptr,
12669 line_ptr, discriminator_ptr,
12670 dwarf_debug_sections,
12671 ABI_64_P (abfd) ? 8 : 0,
12672 &elf_tdata (abfd)->dwarf2_find_line_info)
12673 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12674 filename_ptr, functionname_ptr,
12677 /* PR 22789: If the function name or filename was not found through
12678 the debug information, then try an ordinary lookup instead. */
12679 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12680 || (filename_ptr != NULL && *filename_ptr == NULL))
12682 /* Do not override already discovered names. */
12683 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12684 functionname_ptr = NULL;
12686 if (filename_ptr != NULL && *filename_ptr != NULL)
12687 filename_ptr = NULL;
12689 _bfd_elf_find_function (abfd, symbols, section, offset,
12690 filename_ptr, functionname_ptr);
12696 msec = bfd_get_section_by_name (abfd, ".mdebug");
12699 flagword origflags;
12700 struct mips_elf_find_line *fi;
12701 const struct ecoff_debug_swap * const swap =
12702 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12704 /* If we are called during a link, mips_elf_final_link may have
12705 cleared the SEC_HAS_CONTENTS field. We force it back on here
12706 if appropriate (which it normally will be). */
12707 origflags = msec->flags;
12708 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12709 msec->flags |= SEC_HAS_CONTENTS;
12711 fi = mips_elf_tdata (abfd)->find_line_info;
12714 bfd_size_type external_fdr_size;
12717 struct fdr *fdr_ptr;
12718 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12720 fi = bfd_zalloc (abfd, amt);
12723 msec->flags = origflags;
12727 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12729 msec->flags = origflags;
12733 /* Swap in the FDR information. */
12734 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12735 fi->d.fdr = bfd_alloc (abfd, amt);
12736 if (fi->d.fdr == NULL)
12738 msec->flags = origflags;
12741 external_fdr_size = swap->external_fdr_size;
12742 fdr_ptr = fi->d.fdr;
12743 fraw_src = (char *) fi->d.external_fdr;
12744 fraw_end = (fraw_src
12745 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12746 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12747 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12749 mips_elf_tdata (abfd)->find_line_info = fi;
12751 /* Note that we don't bother to ever free this information.
12752 find_nearest_line is either called all the time, as in
12753 objdump -l, so the information should be saved, or it is
12754 rarely called, as in ld error messages, so the memory
12755 wasted is unimportant. Still, it would probably be a
12756 good idea for free_cached_info to throw it away. */
12759 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12760 &fi->i, filename_ptr, functionname_ptr,
12763 msec->flags = origflags;
12767 msec->flags = origflags;
12770 /* Fall back on the generic ELF find_nearest_line routine. */
12772 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12773 filename_ptr, functionname_ptr,
12774 line_ptr, discriminator_ptr);
12778 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12779 const char **filename_ptr,
12780 const char **functionname_ptr,
12781 unsigned int *line_ptr)
12784 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12785 functionname_ptr, line_ptr,
12786 & elf_tdata (abfd)->dwarf2_find_line_info);
12791 /* When are writing out the .options or .MIPS.options section,
12792 remember the bytes we are writing out, so that we can install the
12793 GP value in the section_processing routine. */
12796 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12797 const void *location,
12798 file_ptr offset, bfd_size_type count)
12800 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12804 if (elf_section_data (section) == NULL)
12806 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12807 section->used_by_bfd = bfd_zalloc (abfd, amt);
12808 if (elf_section_data (section) == NULL)
12811 c = mips_elf_section_data (section)->u.tdata;
12814 c = bfd_zalloc (abfd, section->size);
12817 mips_elf_section_data (section)->u.tdata = c;
12820 memcpy (c + offset, location, count);
12823 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12827 /* This is almost identical to bfd_generic_get_... except that some
12828 MIPS relocations need to be handled specially. Sigh. */
12831 _bfd_elf_mips_get_relocated_section_contents
12833 struct bfd_link_info *link_info,
12834 struct bfd_link_order *link_order,
12836 bfd_boolean relocatable,
12839 /* Get enough memory to hold the stuff */
12840 bfd *input_bfd = link_order->u.indirect.section->owner;
12841 asection *input_section = link_order->u.indirect.section;
12844 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12845 arelent **reloc_vector = NULL;
12848 if (reloc_size < 0)
12851 reloc_vector = bfd_malloc (reloc_size);
12852 if (reloc_vector == NULL && reloc_size != 0)
12855 /* read in the section */
12856 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12857 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12860 reloc_count = bfd_canonicalize_reloc (input_bfd,
12864 if (reloc_count < 0)
12867 if (reloc_count > 0)
12872 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12875 struct bfd_hash_entry *h;
12876 struct bfd_link_hash_entry *lh;
12877 /* Skip all this stuff if we aren't mixing formats. */
12878 if (abfd && input_bfd
12879 && abfd->xvec == input_bfd->xvec)
12883 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12884 lh = (struct bfd_link_hash_entry *) h;
12891 case bfd_link_hash_undefined:
12892 case bfd_link_hash_undefweak:
12893 case bfd_link_hash_common:
12896 case bfd_link_hash_defined:
12897 case bfd_link_hash_defweak:
12899 gp = lh->u.def.value;
12901 case bfd_link_hash_indirect:
12902 case bfd_link_hash_warning:
12904 /* @@FIXME ignoring warning for now */
12906 case bfd_link_hash_new:
12915 for (parent = reloc_vector; *parent != NULL; parent++)
12917 char *error_message = NULL;
12918 bfd_reloc_status_type r;
12920 /* Specific to MIPS: Deal with relocation types that require
12921 knowing the gp of the output bfd. */
12922 asymbol *sym = *(*parent)->sym_ptr_ptr;
12924 /* If we've managed to find the gp and have a special
12925 function for the relocation then go ahead, else default
12926 to the generic handling. */
12928 && (*parent)->howto->special_function
12929 == _bfd_mips_elf32_gprel16_reloc)
12930 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12931 input_section, relocatable,
12934 r = bfd_perform_relocation (input_bfd, *parent, data,
12936 relocatable ? abfd : NULL,
12941 asection *os = input_section->output_section;
12943 /* A partial link, so keep the relocs */
12944 os->orelocation[os->reloc_count] = *parent;
12948 if (r != bfd_reloc_ok)
12952 case bfd_reloc_undefined:
12953 (*link_info->callbacks->undefined_symbol)
12954 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12955 input_bfd, input_section, (*parent)->address, TRUE);
12957 case bfd_reloc_dangerous:
12958 BFD_ASSERT (error_message != NULL);
12959 (*link_info->callbacks->reloc_dangerous)
12960 (link_info, error_message,
12961 input_bfd, input_section, (*parent)->address);
12963 case bfd_reloc_overflow:
12964 (*link_info->callbacks->reloc_overflow)
12966 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12967 (*parent)->howto->name, (*parent)->addend,
12968 input_bfd, input_section, (*parent)->address);
12970 case bfd_reloc_outofrange:
12979 if (reloc_vector != NULL)
12980 free (reloc_vector);
12984 if (reloc_vector != NULL)
12985 free (reloc_vector);
12990 mips_elf_relax_delete_bytes (bfd *abfd,
12991 asection *sec, bfd_vma addr, int count)
12993 Elf_Internal_Shdr *symtab_hdr;
12994 unsigned int sec_shndx;
12995 bfd_byte *contents;
12996 Elf_Internal_Rela *irel, *irelend;
12997 Elf_Internal_Sym *isym;
12998 Elf_Internal_Sym *isymend;
12999 struct elf_link_hash_entry **sym_hashes;
13000 struct elf_link_hash_entry **end_hashes;
13001 struct elf_link_hash_entry **start_hashes;
13002 unsigned int symcount;
13004 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13005 contents = elf_section_data (sec)->this_hdr.contents;
13007 irel = elf_section_data (sec)->relocs;
13008 irelend = irel + sec->reloc_count;
13010 /* Actually delete the bytes. */
13011 memmove (contents + addr, contents + addr + count,
13012 (size_t) (sec->size - addr - count));
13013 sec->size -= count;
13015 /* Adjust all the relocs. */
13016 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13018 /* Get the new reloc address. */
13019 if (irel->r_offset > addr)
13020 irel->r_offset -= count;
13023 BFD_ASSERT (addr % 2 == 0);
13024 BFD_ASSERT (count % 2 == 0);
13026 /* Adjust the local symbols defined in this section. */
13027 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13028 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13029 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13030 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13031 isym->st_value -= count;
13033 /* Now adjust the global symbols defined in this section. */
13034 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13035 - symtab_hdr->sh_info);
13036 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13037 end_hashes = sym_hashes + symcount;
13039 for (; sym_hashes < end_hashes; sym_hashes++)
13041 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13043 if ((sym_hash->root.type == bfd_link_hash_defined
13044 || sym_hash->root.type == bfd_link_hash_defweak)
13045 && sym_hash->root.u.def.section == sec)
13047 bfd_vma value = sym_hash->root.u.def.value;
13049 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13050 value &= MINUS_TWO;
13052 sym_hash->root.u.def.value -= count;
13060 /* Opcodes needed for microMIPS relaxation as found in
13061 opcodes/micromips-opc.c. */
13063 struct opcode_descriptor {
13064 unsigned long match;
13065 unsigned long mask;
13068 /* The $ra register aka $31. */
13072 /* 32-bit instruction format register fields. */
13074 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13075 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13077 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13079 #define OP16_VALID_REG(r) \
13080 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13083 /* 32-bit and 16-bit branches. */
13085 static const struct opcode_descriptor b_insns_32[] = {
13086 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13087 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13088 { 0, 0 } /* End marker for find_match(). */
13091 static const struct opcode_descriptor bc_insn_32 =
13092 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13094 static const struct opcode_descriptor bz_insn_32 =
13095 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13097 static const struct opcode_descriptor bzal_insn_32 =
13098 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13100 static const struct opcode_descriptor beq_insn_32 =
13101 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13103 static const struct opcode_descriptor b_insn_16 =
13104 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13106 static const struct opcode_descriptor bz_insn_16 =
13107 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13110 /* 32-bit and 16-bit branch EQ and NE zero. */
13112 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13113 eq and second the ne. This convention is used when replacing a
13114 32-bit BEQ/BNE with the 16-bit version. */
13116 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13118 static const struct opcode_descriptor bz_rs_insns_32[] = {
13119 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13120 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13121 { 0, 0 } /* End marker for find_match(). */
13124 static const struct opcode_descriptor bz_rt_insns_32[] = {
13125 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13126 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13127 { 0, 0 } /* End marker for find_match(). */
13130 static const struct opcode_descriptor bzc_insns_32[] = {
13131 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13132 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13133 { 0, 0 } /* End marker for find_match(). */
13136 static const struct opcode_descriptor bz_insns_16[] = {
13137 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13138 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13139 { 0, 0 } /* End marker for find_match(). */
13142 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13144 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13145 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13148 /* 32-bit instructions with a delay slot. */
13150 static const struct opcode_descriptor jal_insn_32_bd16 =
13151 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13153 static const struct opcode_descriptor jal_insn_32_bd32 =
13154 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13156 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13157 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13159 static const struct opcode_descriptor j_insn_32 =
13160 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13162 static const struct opcode_descriptor jalr_insn_32 =
13163 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13165 /* This table can be compacted, because no opcode replacement is made. */
13167 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13168 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13170 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13171 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13173 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13174 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13175 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13176 { 0, 0 } /* End marker for find_match(). */
13179 /* This table can be compacted, because no opcode replacement is made. */
13181 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13184 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13185 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13186 { 0, 0 } /* End marker for find_match(). */
13190 /* 16-bit instructions with a delay slot. */
13192 static const struct opcode_descriptor jalr_insn_16_bd16 =
13193 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13195 static const struct opcode_descriptor jalr_insn_16_bd32 =
13196 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13198 static const struct opcode_descriptor jr_insn_16 =
13199 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13201 #define JR16_REG(opcode) ((opcode) & 0x1f)
13203 /* This table can be compacted, because no opcode replacement is made. */
13205 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13206 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13208 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13209 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13210 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13211 { 0, 0 } /* End marker for find_match(). */
13215 /* LUI instruction. */
13217 static const struct opcode_descriptor lui_insn =
13218 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13221 /* ADDIU instruction. */
13223 static const struct opcode_descriptor addiu_insn =
13224 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13226 static const struct opcode_descriptor addiupc_insn =
13227 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13229 #define ADDIUPC_REG_FIELD(r) \
13230 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13233 /* Relaxable instructions in a JAL delay slot: MOVE. */
13235 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13236 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13237 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13238 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13240 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13241 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13243 static const struct opcode_descriptor move_insns_32[] = {
13244 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13245 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13246 { 0, 0 } /* End marker for find_match(). */
13249 static const struct opcode_descriptor move_insn_16 =
13250 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13253 /* NOP instructions. */
13255 static const struct opcode_descriptor nop_insn_32 =
13256 { /* "nop", "", */ 0x00000000, 0xffffffff };
13258 static const struct opcode_descriptor nop_insn_16 =
13259 { /* "nop", "", */ 0x0c00, 0xffff };
13262 /* Instruction match support. */
13264 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13267 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13269 unsigned long indx;
13271 for (indx = 0; insn[indx].mask != 0; indx++)
13272 if (MATCH (opcode, insn[indx]))
13279 /* Branch and delay slot decoding support. */
13281 /* If PTR points to what *might* be a 16-bit branch or jump, then
13282 return the minimum length of its delay slot, otherwise return 0.
13283 Non-zero results are not definitive as we might be checking against
13284 the second half of another instruction. */
13287 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13289 unsigned long opcode;
13292 opcode = bfd_get_16 (abfd, ptr);
13293 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13294 /* 16-bit branch/jump with a 32-bit delay slot. */
13296 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13297 || find_match (opcode, ds_insns_16_bd16) >= 0)
13298 /* 16-bit branch/jump with a 16-bit delay slot. */
13301 /* No delay slot. */
13307 /* If PTR points to what *might* be a 32-bit branch or jump, then
13308 return the minimum length of its delay slot, otherwise return 0.
13309 Non-zero results are not definitive as we might be checking against
13310 the second half of another instruction. */
13313 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13315 unsigned long opcode;
13318 opcode = bfd_get_micromips_32 (abfd, ptr);
13319 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13320 /* 32-bit branch/jump with a 32-bit delay slot. */
13322 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13323 /* 32-bit branch/jump with a 16-bit delay slot. */
13326 /* No delay slot. */
13332 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13333 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13336 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13338 unsigned long opcode;
13340 opcode = bfd_get_16 (abfd, ptr);
13341 if (MATCH (opcode, b_insn_16)
13343 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13345 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13346 /* BEQZ16, BNEZ16 */
13347 || (MATCH (opcode, jalr_insn_16_bd32)
13349 && reg != JR16_REG (opcode) && reg != RA))
13355 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13356 then return TRUE, otherwise FALSE. */
13359 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13361 unsigned long opcode;
13363 opcode = bfd_get_micromips_32 (abfd, ptr);
13364 if (MATCH (opcode, j_insn_32)
13366 || MATCH (opcode, bc_insn_32)
13367 /* BC1F, BC1T, BC2F, BC2T */
13368 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13370 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13371 /* BGEZ, BGTZ, BLEZ, BLTZ */
13372 || (MATCH (opcode, bzal_insn_32)
13373 /* BGEZAL, BLTZAL */
13374 && reg != OP32_SREG (opcode) && reg != RA)
13375 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13376 /* JALR, JALR.HB, BEQ, BNE */
13377 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13383 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13384 IRELEND) at OFFSET indicate that there must be a compact branch there,
13385 then return TRUE, otherwise FALSE. */
13388 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13389 const Elf_Internal_Rela *internal_relocs,
13390 const Elf_Internal_Rela *irelend)
13392 const Elf_Internal_Rela *irel;
13393 unsigned long opcode;
13395 opcode = bfd_get_micromips_32 (abfd, ptr);
13396 if (find_match (opcode, bzc_insns_32) < 0)
13399 for (irel = internal_relocs; irel < irelend; irel++)
13400 if (irel->r_offset == offset
13401 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13407 /* Bitsize checking. */
13408 #define IS_BITSIZE(val, N) \
13409 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13410 - (1ULL << ((N) - 1))) == (val))
13414 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13415 struct bfd_link_info *link_info,
13416 bfd_boolean *again)
13418 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13419 Elf_Internal_Shdr *symtab_hdr;
13420 Elf_Internal_Rela *internal_relocs;
13421 Elf_Internal_Rela *irel, *irelend;
13422 bfd_byte *contents = NULL;
13423 Elf_Internal_Sym *isymbuf = NULL;
13425 /* Assume nothing changes. */
13428 /* We don't have to do anything for a relocatable link, if
13429 this section does not have relocs, or if this is not a
13432 if (bfd_link_relocatable (link_info)
13433 || (sec->flags & SEC_RELOC) == 0
13434 || sec->reloc_count == 0
13435 || (sec->flags & SEC_CODE) == 0)
13438 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13440 /* Get a copy of the native relocations. */
13441 internal_relocs = (_bfd_elf_link_read_relocs
13442 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13443 link_info->keep_memory));
13444 if (internal_relocs == NULL)
13447 /* Walk through them looking for relaxing opportunities. */
13448 irelend = internal_relocs + sec->reloc_count;
13449 for (irel = internal_relocs; irel < irelend; irel++)
13451 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13452 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13453 bfd_boolean target_is_micromips_code_p;
13454 unsigned long opcode;
13460 /* The number of bytes to delete for relaxation and from where
13461 to delete these bytes starting at irel->r_offset. */
13465 /* If this isn't something that can be relaxed, then ignore
13467 if (r_type != R_MICROMIPS_HI16
13468 && r_type != R_MICROMIPS_PC16_S1
13469 && r_type != R_MICROMIPS_26_S1)
13472 /* Get the section contents if we haven't done so already. */
13473 if (contents == NULL)
13475 /* Get cached copy if it exists. */
13476 if (elf_section_data (sec)->this_hdr.contents != NULL)
13477 contents = elf_section_data (sec)->this_hdr.contents;
13478 /* Go get them off disk. */
13479 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13482 ptr = contents + irel->r_offset;
13484 /* Read this BFD's local symbols if we haven't done so already. */
13485 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13487 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13488 if (isymbuf == NULL)
13489 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13490 symtab_hdr->sh_info, 0,
13492 if (isymbuf == NULL)
13496 /* Get the value of the symbol referred to by the reloc. */
13497 if (r_symndx < symtab_hdr->sh_info)
13499 /* A local symbol. */
13500 Elf_Internal_Sym *isym;
13503 isym = isymbuf + r_symndx;
13504 if (isym->st_shndx == SHN_UNDEF)
13505 sym_sec = bfd_und_section_ptr;
13506 else if (isym->st_shndx == SHN_ABS)
13507 sym_sec = bfd_abs_section_ptr;
13508 else if (isym->st_shndx == SHN_COMMON)
13509 sym_sec = bfd_com_section_ptr;
13511 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13512 symval = (isym->st_value
13513 + sym_sec->output_section->vma
13514 + sym_sec->output_offset);
13515 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13519 unsigned long indx;
13520 struct elf_link_hash_entry *h;
13522 /* An external symbol. */
13523 indx = r_symndx - symtab_hdr->sh_info;
13524 h = elf_sym_hashes (abfd)[indx];
13525 BFD_ASSERT (h != NULL);
13527 if (h->root.type != bfd_link_hash_defined
13528 && h->root.type != bfd_link_hash_defweak)
13529 /* This appears to be a reference to an undefined
13530 symbol. Just ignore it -- it will be caught by the
13531 regular reloc processing. */
13534 symval = (h->root.u.def.value
13535 + h->root.u.def.section->output_section->vma
13536 + h->root.u.def.section->output_offset);
13537 target_is_micromips_code_p = (!h->needs_plt
13538 && ELF_ST_IS_MICROMIPS (h->other));
13542 /* For simplicity of coding, we are going to modify the
13543 section contents, the section relocs, and the BFD symbol
13544 table. We must tell the rest of the code not to free up this
13545 information. It would be possible to instead create a table
13546 of changes which have to be made, as is done in coff-mips.c;
13547 that would be more work, but would require less memory when
13548 the linker is run. */
13550 /* Only 32-bit instructions relaxed. */
13551 if (irel->r_offset + 4 > sec->size)
13554 opcode = bfd_get_micromips_32 (abfd, ptr);
13556 /* This is the pc-relative distance from the instruction the
13557 relocation is applied to, to the symbol referred. */
13559 - (sec->output_section->vma + sec->output_offset)
13562 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13563 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13564 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13566 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13568 where pcrval has first to be adjusted to apply against the LO16
13569 location (we make the adjustment later on, when we have figured
13570 out the offset). */
13571 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13573 bfd_boolean bzc = FALSE;
13574 unsigned long nextopc;
13578 /* Give up if the previous reloc was a HI16 against this symbol
13580 if (irel > internal_relocs
13581 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13582 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13585 /* Or if the next reloc is not a LO16 against this symbol. */
13586 if (irel + 1 >= irelend
13587 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13588 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13591 /* Or if the second next reloc is a LO16 against this symbol too. */
13592 if (irel + 2 >= irelend
13593 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13594 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13597 /* See if the LUI instruction *might* be in a branch delay slot.
13598 We check whether what looks like a 16-bit branch or jump is
13599 actually an immediate argument to a compact branch, and let
13600 it through if so. */
13601 if (irel->r_offset >= 2
13602 && check_br16_dslot (abfd, ptr - 2)
13603 && !(irel->r_offset >= 4
13604 && (bzc = check_relocated_bzc (abfd,
13605 ptr - 4, irel->r_offset - 4,
13606 internal_relocs, irelend))))
13608 if (irel->r_offset >= 4
13610 && check_br32_dslot (abfd, ptr - 4))
13613 reg = OP32_SREG (opcode);
13615 /* We only relax adjacent instructions or ones separated with
13616 a branch or jump that has a delay slot. The branch or jump
13617 must not fiddle with the register used to hold the address.
13618 Subtract 4 for the LUI itself. */
13619 offset = irel[1].r_offset - irel[0].r_offset;
13620 switch (offset - 4)
13625 if (check_br16 (abfd, ptr + 4, reg))
13629 if (check_br32 (abfd, ptr + 4, reg))
13636 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13638 /* Give up unless the same register is used with both
13640 if (OP32_SREG (nextopc) != reg)
13643 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13644 and rounding up to take masking of the two LSBs into account. */
13645 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13647 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13648 if (IS_BITSIZE (symval, 16))
13650 /* Fix the relocation's type. */
13651 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13653 /* Instructions using R_MICROMIPS_LO16 have the base or
13654 source register in bits 20:16. This register becomes $0
13655 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13656 nextopc &= ~0x001f0000;
13657 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13658 contents + irel[1].r_offset);
13661 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13662 We add 4 to take LUI deletion into account while checking
13663 the PC-relative distance. */
13664 else if (symval % 4 == 0
13665 && IS_BITSIZE (pcrval + 4, 25)
13666 && MATCH (nextopc, addiu_insn)
13667 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13668 && OP16_VALID_REG (OP32_TREG (nextopc)))
13670 /* Fix the relocation's type. */
13671 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13673 /* Replace ADDIU with the ADDIUPC version. */
13674 nextopc = (addiupc_insn.match
13675 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13677 bfd_put_micromips_32 (abfd, nextopc,
13678 contents + irel[1].r_offset);
13681 /* Can't do anything, give up, sigh... */
13685 /* Fix the relocation's type. */
13686 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13688 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13693 /* Compact branch relaxation -- due to the multitude of macros
13694 employed by the compiler/assembler, compact branches are not
13695 always generated. Obviously, this can/will be fixed elsewhere,
13696 but there is no drawback in double checking it here. */
13697 else if (r_type == R_MICROMIPS_PC16_S1
13698 && irel->r_offset + 5 < sec->size
13699 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13700 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13702 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13703 nop_insn_16) ? 2 : 0))
13704 || (irel->r_offset + 7 < sec->size
13705 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13707 nop_insn_32) ? 4 : 0))))
13711 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13713 /* Replace BEQZ/BNEZ with the compact version. */
13714 opcode = (bzc_insns_32[fndopc].match
13715 | BZC32_REG_FIELD (reg)
13716 | (opcode & 0xffff)); /* Addend value. */
13718 bfd_put_micromips_32 (abfd, opcode, ptr);
13720 /* Delete the delay slot NOP: two or four bytes from
13721 irel->offset + 4; delcnt has already been set above. */
13725 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13726 to check the distance from the next instruction, so subtract 2. */
13728 && r_type == R_MICROMIPS_PC16_S1
13729 && IS_BITSIZE (pcrval - 2, 11)
13730 && find_match (opcode, b_insns_32) >= 0)
13732 /* Fix the relocation's type. */
13733 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13735 /* Replace the 32-bit opcode with a 16-bit opcode. */
13738 | (opcode & 0x3ff)), /* Addend value. */
13741 /* Delete 2 bytes from irel->r_offset + 2. */
13746 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13747 to check the distance from the next instruction, so subtract 2. */
13749 && r_type == R_MICROMIPS_PC16_S1
13750 && IS_BITSIZE (pcrval - 2, 8)
13751 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13752 && OP16_VALID_REG (OP32_SREG (opcode)))
13753 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13754 && OP16_VALID_REG (OP32_TREG (opcode)))))
13758 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13760 /* Fix the relocation's type. */
13761 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13763 /* Replace the 32-bit opcode with a 16-bit opcode. */
13765 (bz_insns_16[fndopc].match
13766 | BZ16_REG_FIELD (reg)
13767 | (opcode & 0x7f)), /* Addend value. */
13770 /* Delete 2 bytes from irel->r_offset + 2. */
13775 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13777 && r_type == R_MICROMIPS_26_S1
13778 && target_is_micromips_code_p
13779 && irel->r_offset + 7 < sec->size
13780 && MATCH (opcode, jal_insn_32_bd32))
13782 unsigned long n32opc;
13783 bfd_boolean relaxed = FALSE;
13785 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13787 if (MATCH (n32opc, nop_insn_32))
13789 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13790 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13794 else if (find_match (n32opc, move_insns_32) >= 0)
13796 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13798 (move_insn_16.match
13799 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13800 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13805 /* Other 32-bit instructions relaxable to 16-bit
13806 instructions will be handled here later. */
13810 /* JAL with 32-bit delay slot that is changed to a JALS
13811 with 16-bit delay slot. */
13812 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13814 /* Delete 2 bytes from irel->r_offset + 6. */
13822 /* Note that we've changed the relocs, section contents, etc. */
13823 elf_section_data (sec)->relocs = internal_relocs;
13824 elf_section_data (sec)->this_hdr.contents = contents;
13825 symtab_hdr->contents = (unsigned char *) isymbuf;
13827 /* Delete bytes depending on the delcnt and deloff. */
13828 if (!mips_elf_relax_delete_bytes (abfd, sec,
13829 irel->r_offset + deloff, delcnt))
13832 /* That will change things, so we should relax again.
13833 Note that this is not required, and it may be slow. */
13838 if (isymbuf != NULL
13839 && symtab_hdr->contents != (unsigned char *) isymbuf)
13841 if (! link_info->keep_memory)
13845 /* Cache the symbols for elf_link_input_bfd. */
13846 symtab_hdr->contents = (unsigned char *) isymbuf;
13850 if (contents != NULL
13851 && elf_section_data (sec)->this_hdr.contents != contents)
13853 if (! link_info->keep_memory)
13857 /* Cache the section contents for elf_link_input_bfd. */
13858 elf_section_data (sec)->this_hdr.contents = contents;
13862 if (internal_relocs != NULL
13863 && elf_section_data (sec)->relocs != internal_relocs)
13864 free (internal_relocs);
13869 if (isymbuf != NULL
13870 && symtab_hdr->contents != (unsigned char *) isymbuf)
13872 if (contents != NULL
13873 && elf_section_data (sec)->this_hdr.contents != contents)
13875 if (internal_relocs != NULL
13876 && elf_section_data (sec)->relocs != internal_relocs)
13877 free (internal_relocs);
13882 /* Create a MIPS ELF linker hash table. */
13884 struct bfd_link_hash_table *
13885 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13887 struct mips_elf_link_hash_table *ret;
13888 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13890 ret = bfd_zmalloc (amt);
13894 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13895 mips_elf_link_hash_newfunc,
13896 sizeof (struct mips_elf_link_hash_entry),
13902 ret->root.init_plt_refcount.plist = NULL;
13903 ret->root.init_plt_offset.plist = NULL;
13905 return &ret->root.root;
13908 /* Likewise, but indicate that the target is VxWorks. */
13910 struct bfd_link_hash_table *
13911 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13913 struct bfd_link_hash_table *ret;
13915 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13918 struct mips_elf_link_hash_table *htab;
13920 htab = (struct mips_elf_link_hash_table *) ret;
13921 htab->use_plts_and_copy_relocs = TRUE;
13922 htab->is_vxworks = TRUE;
13927 /* A function that the linker calls if we are allowed to use PLTs
13928 and copy relocs. */
13931 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13933 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13936 /* A function that the linker calls to select between all or only
13937 32-bit microMIPS instructions, and between making or ignoring
13938 branch relocation checks for invalid transitions between ISA modes. */
13941 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13942 bfd_boolean ignore_branch_isa)
13944 mips_elf_hash_table (info)->insn32 = insn32;
13945 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13948 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13950 struct mips_mach_extension
13952 unsigned long extension, base;
13956 /* An array describing how BFD machines relate to one another. The entries
13957 are ordered topologically with MIPS I extensions listed last. */
13959 static const struct mips_mach_extension mips_mach_extensions[] =
13961 /* MIPS64r2 extensions. */
13962 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13963 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13964 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13965 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13966 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13968 /* MIPS64 extensions. */
13969 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13970 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13971 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13973 /* MIPS V extensions. */
13974 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13976 /* R10000 extensions. */
13977 { bfd_mach_mips12000, bfd_mach_mips10000 },
13978 { bfd_mach_mips14000, bfd_mach_mips10000 },
13979 { bfd_mach_mips16000, bfd_mach_mips10000 },
13981 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13982 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13983 better to allow vr5400 and vr5500 code to be merged anyway, since
13984 many libraries will just use the core ISA. Perhaps we could add
13985 some sort of ASE flag if this ever proves a problem. */
13986 { bfd_mach_mips5500, bfd_mach_mips5400 },
13987 { bfd_mach_mips5400, bfd_mach_mips5000 },
13989 /* MIPS IV extensions. */
13990 { bfd_mach_mips5, bfd_mach_mips8000 },
13991 { bfd_mach_mips10000, bfd_mach_mips8000 },
13992 { bfd_mach_mips5000, bfd_mach_mips8000 },
13993 { bfd_mach_mips7000, bfd_mach_mips8000 },
13994 { bfd_mach_mips9000, bfd_mach_mips8000 },
13996 /* VR4100 extensions. */
13997 { bfd_mach_mips4120, bfd_mach_mips4100 },
13998 { bfd_mach_mips4111, bfd_mach_mips4100 },
14000 /* MIPS III extensions. */
14001 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14002 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14003 { bfd_mach_mips8000, bfd_mach_mips4000 },
14004 { bfd_mach_mips4650, bfd_mach_mips4000 },
14005 { bfd_mach_mips4600, bfd_mach_mips4000 },
14006 { bfd_mach_mips4400, bfd_mach_mips4000 },
14007 { bfd_mach_mips4300, bfd_mach_mips4000 },
14008 { bfd_mach_mips4100, bfd_mach_mips4000 },
14009 { bfd_mach_mips5900, bfd_mach_mips4000 },
14011 /* MIPS32r3 extensions. */
14012 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14014 /* MIPS32r2 extensions. */
14015 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14017 /* MIPS32 extensions. */
14018 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14020 /* MIPS II extensions. */
14021 { bfd_mach_mips4000, bfd_mach_mips6000 },
14022 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14023 { bfd_mach_mips4010, bfd_mach_mips6000 },
14025 /* MIPS I extensions. */
14026 { bfd_mach_mips6000, bfd_mach_mips3000 },
14027 { bfd_mach_mips3900, bfd_mach_mips3000 }
14030 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14033 mips_mach_extends_p (unsigned long base, unsigned long extension)
14037 if (extension == base)
14040 if (base == bfd_mach_mipsisa32
14041 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14044 if (base == bfd_mach_mipsisa32r2
14045 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14048 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14049 if (extension == mips_mach_extensions[i].extension)
14051 extension = mips_mach_extensions[i].base;
14052 if (extension == base)
14059 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14061 static unsigned long
14062 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14066 case AFL_EXT_3900: return bfd_mach_mips3900;
14067 case AFL_EXT_4010: return bfd_mach_mips4010;
14068 case AFL_EXT_4100: return bfd_mach_mips4100;
14069 case AFL_EXT_4111: return bfd_mach_mips4111;
14070 case AFL_EXT_4120: return bfd_mach_mips4120;
14071 case AFL_EXT_4650: return bfd_mach_mips4650;
14072 case AFL_EXT_5400: return bfd_mach_mips5400;
14073 case AFL_EXT_5500: return bfd_mach_mips5500;
14074 case AFL_EXT_5900: return bfd_mach_mips5900;
14075 case AFL_EXT_10000: return bfd_mach_mips10000;
14076 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14077 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14078 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14079 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14080 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14081 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14082 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14083 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14084 default: return bfd_mach_mips3000;
14088 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14091 bfd_mips_isa_ext (bfd *abfd)
14093 switch (bfd_get_mach (abfd))
14095 case bfd_mach_mips3900: return AFL_EXT_3900;
14096 case bfd_mach_mips4010: return AFL_EXT_4010;
14097 case bfd_mach_mips4100: return AFL_EXT_4100;
14098 case bfd_mach_mips4111: return AFL_EXT_4111;
14099 case bfd_mach_mips4120: return AFL_EXT_4120;
14100 case bfd_mach_mips4650: return AFL_EXT_4650;
14101 case bfd_mach_mips5400: return AFL_EXT_5400;
14102 case bfd_mach_mips5500: return AFL_EXT_5500;
14103 case bfd_mach_mips5900: return AFL_EXT_5900;
14104 case bfd_mach_mips10000: return AFL_EXT_10000;
14105 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14106 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14107 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14108 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14109 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14110 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14111 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14112 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14113 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14114 case bfd_mach_mips_interaptiv_mr2:
14115 return AFL_EXT_INTERAPTIV_MR2;
14120 /* Encode ISA level and revision as a single value. */
14121 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14123 /* Decode a single value into level and revision. */
14124 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14125 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14127 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14130 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14133 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14135 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14136 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14137 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14138 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14139 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14140 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14141 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14142 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14143 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14144 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14145 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14148 /* xgettext:c-format */
14149 (_("%pB: unknown architecture %s"),
14150 abfd, bfd_printable_name (abfd));
14153 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14155 abiflags->isa_level = ISA_LEVEL (new_isa);
14156 abiflags->isa_rev = ISA_REV (new_isa);
14159 /* Update the isa_ext if ABFD describes a further extension. */
14160 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14161 bfd_get_mach (abfd)))
14162 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14165 /* Return true if the given ELF header flags describe a 32-bit binary. */
14168 mips_32bit_flags_p (flagword flags)
14170 return ((flags & EF_MIPS_32BITMODE) != 0
14171 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14172 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14173 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14174 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14180 /* Infer the content of the ABI flags based on the elf header. */
14183 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14185 obj_attribute *in_attr;
14187 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14188 update_mips_abiflags_isa (abfd, abiflags);
14190 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14191 abiflags->gpr_size = AFL_REG_32;
14193 abiflags->gpr_size = AFL_REG_64;
14195 abiflags->cpr1_size = AFL_REG_NONE;
14197 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14198 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14200 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14201 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14202 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14203 && abiflags->gpr_size == AFL_REG_32))
14204 abiflags->cpr1_size = AFL_REG_32;
14205 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14206 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14207 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14208 abiflags->cpr1_size = AFL_REG_64;
14210 abiflags->cpr2_size = AFL_REG_NONE;
14212 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14213 abiflags->ases |= AFL_ASE_MDMX;
14214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14215 abiflags->ases |= AFL_ASE_MIPS16;
14216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14217 abiflags->ases |= AFL_ASE_MICROMIPS;
14219 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14220 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14221 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14222 && abiflags->isa_level >= 32
14223 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14224 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14227 /* We need to use a special link routine to handle the .reginfo and
14228 the .mdebug sections. We need to merge all instances of these
14229 sections together, not write them all out sequentially. */
14232 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14235 struct bfd_link_order *p;
14236 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14237 asection *rtproc_sec, *abiflags_sec;
14238 Elf32_RegInfo reginfo;
14239 struct ecoff_debug_info debug;
14240 struct mips_htab_traverse_info hti;
14241 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14242 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14243 HDRR *symhdr = &debug.symbolic_header;
14244 void *mdebug_handle = NULL;
14249 struct mips_elf_link_hash_table *htab;
14251 static const char * const secname[] =
14253 ".text", ".init", ".fini", ".data",
14254 ".rodata", ".sdata", ".sbss", ".bss"
14256 static const int sc[] =
14258 scText, scInit, scFini, scData,
14259 scRData, scSData, scSBss, scBss
14262 htab = mips_elf_hash_table (info);
14263 BFD_ASSERT (htab != NULL);
14265 /* Sort the dynamic symbols so that those with GOT entries come after
14267 if (!mips_elf_sort_hash_table (abfd, info))
14270 /* Create any scheduled LA25 stubs. */
14272 hti.output_bfd = abfd;
14274 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14278 /* Get a value for the GP register. */
14279 if (elf_gp (abfd) == 0)
14281 struct bfd_link_hash_entry *h;
14283 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14284 if (h != NULL && h->type == bfd_link_hash_defined)
14285 elf_gp (abfd) = (h->u.def.value
14286 + h->u.def.section->output_section->vma
14287 + h->u.def.section->output_offset);
14288 else if (htab->is_vxworks
14289 && (h = bfd_link_hash_lookup (info->hash,
14290 "_GLOBAL_OFFSET_TABLE_",
14291 FALSE, FALSE, TRUE))
14292 && h->type == bfd_link_hash_defined)
14293 elf_gp (abfd) = (h->u.def.section->output_section->vma
14294 + h->u.def.section->output_offset
14296 else if (bfd_link_relocatable (info))
14298 bfd_vma lo = MINUS_ONE;
14300 /* Find the GP-relative section with the lowest offset. */
14301 for (o = abfd->sections; o != NULL; o = o->next)
14303 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14306 /* And calculate GP relative to that. */
14307 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14311 /* If the relocate_section function needs to do a reloc
14312 involving the GP value, it should make a reloc_dangerous
14313 callback to warn that GP is not defined. */
14317 /* Go through the sections and collect the .reginfo and .mdebug
14319 abiflags_sec = NULL;
14320 reginfo_sec = NULL;
14322 gptab_data_sec = NULL;
14323 gptab_bss_sec = NULL;
14324 for (o = abfd->sections; o != NULL; o = o->next)
14326 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14328 /* We have found the .MIPS.abiflags section in the output file.
14329 Look through all the link_orders comprising it and remove them.
14330 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14331 for (p = o->map_head.link_order; p != NULL; p = p->next)
14333 asection *input_section;
14335 if (p->type != bfd_indirect_link_order)
14337 if (p->type == bfd_data_link_order)
14342 input_section = p->u.indirect.section;
14344 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14345 elf_link_input_bfd ignores this section. */
14346 input_section->flags &= ~SEC_HAS_CONTENTS;
14349 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14350 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14352 /* Skip this section later on (I don't think this currently
14353 matters, but someday it might). */
14354 o->map_head.link_order = NULL;
14359 if (strcmp (o->name, ".reginfo") == 0)
14361 memset (®info, 0, sizeof reginfo);
14363 /* We have found the .reginfo section in the output file.
14364 Look through all the link_orders comprising it and merge
14365 the information together. */
14366 for (p = o->map_head.link_order; p != NULL; p = p->next)
14368 asection *input_section;
14370 Elf32_External_RegInfo ext;
14374 if (p->type != bfd_indirect_link_order)
14376 if (p->type == bfd_data_link_order)
14381 input_section = p->u.indirect.section;
14382 input_bfd = input_section->owner;
14384 sz = (input_section->size < sizeof (ext)
14385 ? input_section->size : sizeof (ext));
14386 memset (&ext, 0, sizeof (ext));
14387 if (! bfd_get_section_contents (input_bfd, input_section,
14391 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14393 reginfo.ri_gprmask |= sub.ri_gprmask;
14394 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14395 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14396 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14397 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14399 /* ri_gp_value is set by the function
14400 `_bfd_mips_elf_section_processing' when the section is
14401 finally written out. */
14403 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14404 elf_link_input_bfd ignores this section. */
14405 input_section->flags &= ~SEC_HAS_CONTENTS;
14408 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14409 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14411 /* Skip this section later on (I don't think this currently
14412 matters, but someday it might). */
14413 o->map_head.link_order = NULL;
14418 if (strcmp (o->name, ".mdebug") == 0)
14420 struct extsym_info einfo;
14423 /* We have found the .mdebug section in the output file.
14424 Look through all the link_orders comprising it and merge
14425 the information together. */
14426 symhdr->magic = swap->sym_magic;
14427 /* FIXME: What should the version stamp be? */
14428 symhdr->vstamp = 0;
14429 symhdr->ilineMax = 0;
14430 symhdr->cbLine = 0;
14431 symhdr->idnMax = 0;
14432 symhdr->ipdMax = 0;
14433 symhdr->isymMax = 0;
14434 symhdr->ioptMax = 0;
14435 symhdr->iauxMax = 0;
14436 symhdr->issMax = 0;
14437 symhdr->issExtMax = 0;
14438 symhdr->ifdMax = 0;
14440 symhdr->iextMax = 0;
14442 /* We accumulate the debugging information itself in the
14443 debug_info structure. */
14445 debug.external_dnr = NULL;
14446 debug.external_pdr = NULL;
14447 debug.external_sym = NULL;
14448 debug.external_opt = NULL;
14449 debug.external_aux = NULL;
14451 debug.ssext = debug.ssext_end = NULL;
14452 debug.external_fdr = NULL;
14453 debug.external_rfd = NULL;
14454 debug.external_ext = debug.external_ext_end = NULL;
14456 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14457 if (mdebug_handle == NULL)
14461 esym.cobol_main = 0;
14465 esym.asym.iss = issNil;
14466 esym.asym.st = stLocal;
14467 esym.asym.reserved = 0;
14468 esym.asym.index = indexNil;
14470 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14472 esym.asym.sc = sc[i];
14473 s = bfd_get_section_by_name (abfd, secname[i]);
14476 esym.asym.value = s->vma;
14477 last = s->vma + s->size;
14480 esym.asym.value = last;
14481 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14482 secname[i], &esym))
14486 for (p = o->map_head.link_order; p != NULL; p = p->next)
14488 asection *input_section;
14490 const struct ecoff_debug_swap *input_swap;
14491 struct ecoff_debug_info input_debug;
14495 if (p->type != bfd_indirect_link_order)
14497 if (p->type == bfd_data_link_order)
14502 input_section = p->u.indirect.section;
14503 input_bfd = input_section->owner;
14505 if (!is_mips_elf (input_bfd))
14507 /* I don't know what a non MIPS ELF bfd would be
14508 doing with a .mdebug section, but I don't really
14509 want to deal with it. */
14513 input_swap = (get_elf_backend_data (input_bfd)
14514 ->elf_backend_ecoff_debug_swap);
14516 BFD_ASSERT (p->size == input_section->size);
14518 /* The ECOFF linking code expects that we have already
14519 read in the debugging information and set up an
14520 ecoff_debug_info structure, so we do that now. */
14521 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14525 if (! (bfd_ecoff_debug_accumulate
14526 (mdebug_handle, abfd, &debug, swap, input_bfd,
14527 &input_debug, input_swap, info)))
14530 /* Loop through the external symbols. For each one with
14531 interesting information, try to find the symbol in
14532 the linker global hash table and save the information
14533 for the output external symbols. */
14534 eraw_src = input_debug.external_ext;
14535 eraw_end = (eraw_src
14536 + (input_debug.symbolic_header.iextMax
14537 * input_swap->external_ext_size));
14539 eraw_src < eraw_end;
14540 eraw_src += input_swap->external_ext_size)
14544 struct mips_elf_link_hash_entry *h;
14546 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14547 if (ext.asym.sc == scNil
14548 || ext.asym.sc == scUndefined
14549 || ext.asym.sc == scSUndefined)
14552 name = input_debug.ssext + ext.asym.iss;
14553 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14554 name, FALSE, FALSE, TRUE);
14555 if (h == NULL || h->esym.ifd != -2)
14560 BFD_ASSERT (ext.ifd
14561 < input_debug.symbolic_header.ifdMax);
14562 ext.ifd = input_debug.ifdmap[ext.ifd];
14568 /* Free up the information we just read. */
14569 free (input_debug.line);
14570 free (input_debug.external_dnr);
14571 free (input_debug.external_pdr);
14572 free (input_debug.external_sym);
14573 free (input_debug.external_opt);
14574 free (input_debug.external_aux);
14575 free (input_debug.ss);
14576 free (input_debug.ssext);
14577 free (input_debug.external_fdr);
14578 free (input_debug.external_rfd);
14579 free (input_debug.external_ext);
14581 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14582 elf_link_input_bfd ignores this section. */
14583 input_section->flags &= ~SEC_HAS_CONTENTS;
14586 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14588 /* Create .rtproc section. */
14589 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14590 if (rtproc_sec == NULL)
14592 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14593 | SEC_LINKER_CREATED | SEC_READONLY);
14595 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14598 if (rtproc_sec == NULL
14599 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14603 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14609 /* Build the external symbol information. */
14612 einfo.debug = &debug;
14614 einfo.failed = FALSE;
14615 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14616 mips_elf_output_extsym, &einfo);
14620 /* Set the size of the .mdebug section. */
14621 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14623 /* Skip this section later on (I don't think this currently
14624 matters, but someday it might). */
14625 o->map_head.link_order = NULL;
14630 if (CONST_STRNEQ (o->name, ".gptab."))
14632 const char *subname;
14635 Elf32_External_gptab *ext_tab;
14638 /* The .gptab.sdata and .gptab.sbss sections hold
14639 information describing how the small data area would
14640 change depending upon the -G switch. These sections
14641 not used in executables files. */
14642 if (! bfd_link_relocatable (info))
14644 for (p = o->map_head.link_order; p != NULL; p = p->next)
14646 asection *input_section;
14648 if (p->type != bfd_indirect_link_order)
14650 if (p->type == bfd_data_link_order)
14655 input_section = p->u.indirect.section;
14657 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14658 elf_link_input_bfd ignores this section. */
14659 input_section->flags &= ~SEC_HAS_CONTENTS;
14662 /* Skip this section later on (I don't think this
14663 currently matters, but someday it might). */
14664 o->map_head.link_order = NULL;
14666 /* Really remove the section. */
14667 bfd_section_list_remove (abfd, o);
14668 --abfd->section_count;
14673 /* There is one gptab for initialized data, and one for
14674 uninitialized data. */
14675 if (strcmp (o->name, ".gptab.sdata") == 0)
14676 gptab_data_sec = o;
14677 else if (strcmp (o->name, ".gptab.sbss") == 0)
14682 /* xgettext:c-format */
14683 (_("%pB: illegal section name `%pA'"), abfd, o);
14684 bfd_set_error (bfd_error_nonrepresentable_section);
14688 /* The linker script always combines .gptab.data and
14689 .gptab.sdata into .gptab.sdata, and likewise for
14690 .gptab.bss and .gptab.sbss. It is possible that there is
14691 no .sdata or .sbss section in the output file, in which
14692 case we must change the name of the output section. */
14693 subname = o->name + sizeof ".gptab" - 1;
14694 if (bfd_get_section_by_name (abfd, subname) == NULL)
14696 if (o == gptab_data_sec)
14697 o->name = ".gptab.data";
14699 o->name = ".gptab.bss";
14700 subname = o->name + sizeof ".gptab" - 1;
14701 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14704 /* Set up the first entry. */
14706 amt = c * sizeof (Elf32_gptab);
14707 tab = bfd_malloc (amt);
14710 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14711 tab[0].gt_header.gt_unused = 0;
14713 /* Combine the input sections. */
14714 for (p = o->map_head.link_order; p != NULL; p = p->next)
14716 asection *input_section;
14718 bfd_size_type size;
14719 unsigned long last;
14720 bfd_size_type gpentry;
14722 if (p->type != bfd_indirect_link_order)
14724 if (p->type == bfd_data_link_order)
14729 input_section = p->u.indirect.section;
14730 input_bfd = input_section->owner;
14732 /* Combine the gptab entries for this input section one
14733 by one. We know that the input gptab entries are
14734 sorted by ascending -G value. */
14735 size = input_section->size;
14737 for (gpentry = sizeof (Elf32_External_gptab);
14739 gpentry += sizeof (Elf32_External_gptab))
14741 Elf32_External_gptab ext_gptab;
14742 Elf32_gptab int_gptab;
14748 if (! (bfd_get_section_contents
14749 (input_bfd, input_section, &ext_gptab, gpentry,
14750 sizeof (Elf32_External_gptab))))
14756 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14758 val = int_gptab.gt_entry.gt_g_value;
14759 add = int_gptab.gt_entry.gt_bytes - last;
14762 for (look = 1; look < c; look++)
14764 if (tab[look].gt_entry.gt_g_value >= val)
14765 tab[look].gt_entry.gt_bytes += add;
14767 if (tab[look].gt_entry.gt_g_value == val)
14773 Elf32_gptab *new_tab;
14776 /* We need a new table entry. */
14777 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14778 new_tab = bfd_realloc (tab, amt);
14779 if (new_tab == NULL)
14785 tab[c].gt_entry.gt_g_value = val;
14786 tab[c].gt_entry.gt_bytes = add;
14788 /* Merge in the size for the next smallest -G
14789 value, since that will be implied by this new
14792 for (look = 1; look < c; look++)
14794 if (tab[look].gt_entry.gt_g_value < val
14796 || (tab[look].gt_entry.gt_g_value
14797 > tab[max].gt_entry.gt_g_value)))
14801 tab[c].gt_entry.gt_bytes +=
14802 tab[max].gt_entry.gt_bytes;
14807 last = int_gptab.gt_entry.gt_bytes;
14810 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14811 elf_link_input_bfd ignores this section. */
14812 input_section->flags &= ~SEC_HAS_CONTENTS;
14815 /* The table must be sorted by -G value. */
14817 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14819 /* Swap out the table. */
14820 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14821 ext_tab = bfd_alloc (abfd, amt);
14822 if (ext_tab == NULL)
14828 for (j = 0; j < c; j++)
14829 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14832 o->size = c * sizeof (Elf32_External_gptab);
14833 o->contents = (bfd_byte *) ext_tab;
14835 /* Skip this section later on (I don't think this currently
14836 matters, but someday it might). */
14837 o->map_head.link_order = NULL;
14841 /* Invoke the regular ELF backend linker to do all the work. */
14842 if (!bfd_elf_final_link (abfd, info))
14845 /* Now write out the computed sections. */
14847 if (abiflags_sec != NULL)
14849 Elf_External_ABIFlags_v0 ext;
14850 Elf_Internal_ABIFlags_v0 *abiflags;
14852 abiflags = &mips_elf_tdata (abfd)->abiflags;
14854 /* Set up the abiflags if no valid input sections were found. */
14855 if (!mips_elf_tdata (abfd)->abiflags_valid)
14857 infer_mips_abiflags (abfd, abiflags);
14858 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14860 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14861 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14865 if (reginfo_sec != NULL)
14867 Elf32_External_RegInfo ext;
14869 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
14870 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14874 if (mdebug_sec != NULL)
14876 BFD_ASSERT (abfd->output_has_begun);
14877 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14879 mdebug_sec->filepos))
14882 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14885 if (gptab_data_sec != NULL)
14887 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14888 gptab_data_sec->contents,
14889 0, gptab_data_sec->size))
14893 if (gptab_bss_sec != NULL)
14895 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14896 gptab_bss_sec->contents,
14897 0, gptab_bss_sec->size))
14901 if (SGI_COMPAT (abfd))
14903 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14904 if (rtproc_sec != NULL)
14906 if (! bfd_set_section_contents (abfd, rtproc_sec,
14907 rtproc_sec->contents,
14908 0, rtproc_sec->size))
14916 /* Merge object file header flags from IBFD into OBFD. Raise an error
14917 if there are conflicting settings. */
14920 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14922 bfd *obfd = info->output_bfd;
14923 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14924 flagword old_flags;
14925 flagword new_flags;
14928 new_flags = elf_elfheader (ibfd)->e_flags;
14929 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14930 old_flags = elf_elfheader (obfd)->e_flags;
14932 /* Check flag compatibility. */
14934 new_flags &= ~EF_MIPS_NOREORDER;
14935 old_flags &= ~EF_MIPS_NOREORDER;
14937 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14938 doesn't seem to matter. */
14939 new_flags &= ~EF_MIPS_XGOT;
14940 old_flags &= ~EF_MIPS_XGOT;
14942 /* MIPSpro generates ucode info in n64 objects. Again, we should
14943 just be able to ignore this. */
14944 new_flags &= ~EF_MIPS_UCODE;
14945 old_flags &= ~EF_MIPS_UCODE;
14947 /* DSOs should only be linked with CPIC code. */
14948 if ((ibfd->flags & DYNAMIC) != 0)
14949 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14951 if (new_flags == old_flags)
14956 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14957 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14960 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14965 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14966 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14967 if (! (new_flags & EF_MIPS_PIC))
14968 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14970 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14971 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14973 /* Compare the ISAs. */
14974 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14977 (_("%pB: linking 32-bit code with 64-bit code"),
14981 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14983 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14984 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14986 /* Copy the architecture info from IBFD to OBFD. Also copy
14987 the 32-bit flag (if set) so that we continue to recognise
14988 OBFD as a 32-bit binary. */
14989 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14990 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14991 elf_elfheader (obfd)->e_flags
14992 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14994 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14995 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14997 /* Copy across the ABI flags if OBFD doesn't use them
14998 and if that was what caused us to treat IBFD as 32-bit. */
14999 if ((old_flags & EF_MIPS_ABI) == 0
15000 && mips_32bit_flags_p (new_flags)
15001 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15002 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15006 /* The ISAs aren't compatible. */
15008 /* xgettext:c-format */
15009 (_("%pB: linking %s module with previous %s modules"),
15011 bfd_printable_name (ibfd),
15012 bfd_printable_name (obfd));
15017 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15018 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15020 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15021 does set EI_CLASS differently from any 32-bit ABI. */
15022 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15023 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15024 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15026 /* Only error if both are set (to different values). */
15027 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15028 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15029 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15032 /* xgettext:c-format */
15033 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15035 elf_mips_abi_name (ibfd),
15036 elf_mips_abi_name (obfd));
15039 new_flags &= ~EF_MIPS_ABI;
15040 old_flags &= ~EF_MIPS_ABI;
15043 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15044 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15045 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15047 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15048 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15049 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15050 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15051 int micro_mis = old_m16 && new_micro;
15052 int m16_mis = old_micro && new_m16;
15054 if (m16_mis || micro_mis)
15057 /* xgettext:c-format */
15058 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15060 m16_mis ? "MIPS16" : "microMIPS",
15061 m16_mis ? "microMIPS" : "MIPS16");
15065 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15067 new_flags &= ~ EF_MIPS_ARCH_ASE;
15068 old_flags &= ~ EF_MIPS_ARCH_ASE;
15071 /* Compare NaN encodings. */
15072 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15074 /* xgettext:c-format */
15075 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15077 (new_flags & EF_MIPS_NAN2008
15078 ? "-mnan=2008" : "-mnan=legacy"),
15079 (old_flags & EF_MIPS_NAN2008
15080 ? "-mnan=2008" : "-mnan=legacy"));
15082 new_flags &= ~EF_MIPS_NAN2008;
15083 old_flags &= ~EF_MIPS_NAN2008;
15086 /* Compare FP64 state. */
15087 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15089 /* xgettext:c-format */
15090 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15092 (new_flags & EF_MIPS_FP64
15093 ? "-mfp64" : "-mfp32"),
15094 (old_flags & EF_MIPS_FP64
15095 ? "-mfp64" : "-mfp32"));
15097 new_flags &= ~EF_MIPS_FP64;
15098 old_flags &= ~EF_MIPS_FP64;
15101 /* Warn about any other mismatches */
15102 if (new_flags != old_flags)
15104 /* xgettext:c-format */
15106 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15108 ibfd, new_flags, old_flags);
15115 /* Merge object attributes from IBFD into OBFD. Raise an error if
15116 there are conflicting attributes. */
15118 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15120 bfd *obfd = info->output_bfd;
15121 obj_attribute *in_attr;
15122 obj_attribute *out_attr;
15126 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15127 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15128 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15129 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15131 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15133 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15134 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15136 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15138 /* This is the first object. Copy the attributes. */
15139 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15141 /* Use the Tag_null value to indicate the attributes have been
15143 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15148 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15149 non-conflicting ones. */
15150 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15151 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15155 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15156 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15157 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15158 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15159 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15160 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15161 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15162 || in_fp == Val_GNU_MIPS_ABI_FP_64
15163 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15165 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15166 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15168 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15169 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15170 || out_fp == Val_GNU_MIPS_ABI_FP_64
15171 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15172 /* Keep the current setting. */;
15173 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15174 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15176 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15177 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15179 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15180 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15181 /* Keep the current setting. */;
15182 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15184 const char *out_string, *in_string;
15186 out_string = _bfd_mips_fp_abi_string (out_fp);
15187 in_string = _bfd_mips_fp_abi_string (in_fp);
15188 /* First warn about cases involving unrecognised ABIs. */
15189 if (!out_string && !in_string)
15190 /* xgettext:c-format */
15192 (_("warning: %pB uses unknown floating point ABI %d "
15193 "(set by %pB), %pB uses unknown floating point ABI %d"),
15194 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15195 else if (!out_string)
15197 /* xgettext:c-format */
15198 (_("warning: %pB uses unknown floating point ABI %d "
15199 "(set by %pB), %pB uses %s"),
15200 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15201 else if (!in_string)
15203 /* xgettext:c-format */
15204 (_("warning: %pB uses %s (set by %pB), "
15205 "%pB uses unknown floating point ABI %d"),
15206 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15209 /* If one of the bfds is soft-float, the other must be
15210 hard-float. The exact choice of hard-float ABI isn't
15211 really relevant to the error message. */
15212 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15213 out_string = "-mhard-float";
15214 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15215 in_string = "-mhard-float";
15217 /* xgettext:c-format */
15218 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15219 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15224 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15225 non-conflicting ones. */
15226 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15228 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15229 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15230 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15231 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15232 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15234 case Val_GNU_MIPS_ABI_MSA_128:
15236 /* xgettext:c-format */
15237 (_("warning: %pB uses %s (set by %pB), "
15238 "%pB uses unknown MSA ABI %d"),
15239 obfd, "-mmsa", abi_msa_bfd,
15240 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15244 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15246 case Val_GNU_MIPS_ABI_MSA_128:
15248 /* xgettext:c-format */
15249 (_("warning: %pB uses unknown MSA ABI %d "
15250 "(set by %pB), %pB uses %s"),
15251 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15252 abi_msa_bfd, ibfd, "-mmsa");
15257 /* xgettext:c-format */
15258 (_("warning: %pB uses unknown MSA ABI %d "
15259 "(set by %pB), %pB uses unknown MSA ABI %d"),
15260 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15261 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15267 /* Merge Tag_compatibility attributes and any common GNU ones. */
15268 return _bfd_elf_merge_object_attributes (ibfd, info);
15271 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15272 there are conflicting settings. */
15275 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15277 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15278 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15279 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15281 /* Update the output abiflags fp_abi using the computed fp_abi. */
15282 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15284 #define max(a, b) ((a) > (b) ? (a) : (b))
15285 /* Merge abiflags. */
15286 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15287 in_tdata->abiflags.isa_level);
15288 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15289 in_tdata->abiflags.isa_rev);
15290 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15291 in_tdata->abiflags.gpr_size);
15292 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15293 in_tdata->abiflags.cpr1_size);
15294 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15295 in_tdata->abiflags.cpr2_size);
15297 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15298 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15303 /* Merge backend specific data from an object file to the output
15304 object file when linking. */
15307 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15309 bfd *obfd = info->output_bfd;
15310 struct mips_elf_obj_tdata *out_tdata;
15311 struct mips_elf_obj_tdata *in_tdata;
15312 bfd_boolean null_input_bfd = TRUE;
15316 /* Check if we have the same endianness. */
15317 if (! _bfd_generic_verify_endian_match (ibfd, info))
15320 (_("%pB: endianness incompatible with that of the selected emulation"),
15325 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15328 in_tdata = mips_elf_tdata (ibfd);
15329 out_tdata = mips_elf_tdata (obfd);
15331 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15334 (_("%pB: ABI is incompatible with that of the selected emulation"),
15339 /* Check to see if the input BFD actually contains any sections. If not,
15340 then it has no attributes, and its flags may not have been initialized
15341 either, but it cannot actually cause any incompatibility. */
15342 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15344 /* Ignore synthetic sections and empty .text, .data and .bss sections
15345 which are automatically generated by gas. Also ignore fake
15346 (s)common sections, since merely defining a common symbol does
15347 not affect compatibility. */
15348 if ((sec->flags & SEC_IS_COMMON) == 0
15349 && strcmp (sec->name, ".reginfo")
15350 && strcmp (sec->name, ".mdebug")
15352 || (strcmp (sec->name, ".text")
15353 && strcmp (sec->name, ".data")
15354 && strcmp (sec->name, ".bss"))))
15356 null_input_bfd = FALSE;
15360 if (null_input_bfd)
15363 /* Populate abiflags using existing information. */
15364 if (in_tdata->abiflags_valid)
15366 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15367 Elf_Internal_ABIFlags_v0 in_abiflags;
15368 Elf_Internal_ABIFlags_v0 abiflags;
15370 /* Set up the FP ABI attribute from the abiflags if it is not already
15372 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15373 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15375 infer_mips_abiflags (ibfd, &abiflags);
15376 in_abiflags = in_tdata->abiflags;
15378 /* It is not possible to infer the correct ISA revision
15379 for R3 or R5 so drop down to R2 for the checks. */
15380 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15381 in_abiflags.isa_rev = 2;
15383 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15384 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15386 (_("%pB: warning: inconsistent ISA between e_flags and "
15387 ".MIPS.abiflags"), ibfd);
15388 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15389 && in_abiflags.fp_abi != abiflags.fp_abi)
15391 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15392 ".MIPS.abiflags"), ibfd);
15393 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15395 (_("%pB: warning: inconsistent ASEs between e_flags and "
15396 ".MIPS.abiflags"), ibfd);
15397 /* The isa_ext is allowed to be an extension of what can be inferred
15399 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15400 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15402 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15403 ".MIPS.abiflags"), ibfd);
15404 if (in_abiflags.flags2 != 0)
15406 (_("%pB: warning: unexpected flag in the flags2 field of "
15407 ".MIPS.abiflags (0x%lx)"), ibfd,
15408 in_abiflags.flags2);
15412 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15413 in_tdata->abiflags_valid = TRUE;
15416 if (!out_tdata->abiflags_valid)
15418 /* Copy input abiflags if output abiflags are not already valid. */
15419 out_tdata->abiflags = in_tdata->abiflags;
15420 out_tdata->abiflags_valid = TRUE;
15423 if (! elf_flags_init (obfd))
15425 elf_flags_init (obfd) = TRUE;
15426 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15427 elf_elfheader (obfd)->e_ident[EI_CLASS]
15428 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15430 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15431 && (bfd_get_arch_info (obfd)->the_default
15432 || mips_mach_extends_p (bfd_get_mach (obfd),
15433 bfd_get_mach (ibfd))))
15435 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15436 bfd_get_mach (ibfd)))
15439 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15440 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15446 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15448 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15450 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15454 bfd_set_error (bfd_error_bad_value);
15461 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15464 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15466 BFD_ASSERT (!elf_flags_init (abfd)
15467 || elf_elfheader (abfd)->e_flags == flags);
15469 elf_elfheader (abfd)->e_flags = flags;
15470 elf_flags_init (abfd) = TRUE;
15475 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15479 default: return "";
15480 case DT_MIPS_RLD_VERSION:
15481 return "MIPS_RLD_VERSION";
15482 case DT_MIPS_TIME_STAMP:
15483 return "MIPS_TIME_STAMP";
15484 case DT_MIPS_ICHECKSUM:
15485 return "MIPS_ICHECKSUM";
15486 case DT_MIPS_IVERSION:
15487 return "MIPS_IVERSION";
15488 case DT_MIPS_FLAGS:
15489 return "MIPS_FLAGS";
15490 case DT_MIPS_BASE_ADDRESS:
15491 return "MIPS_BASE_ADDRESS";
15493 return "MIPS_MSYM";
15494 case DT_MIPS_CONFLICT:
15495 return "MIPS_CONFLICT";
15496 case DT_MIPS_LIBLIST:
15497 return "MIPS_LIBLIST";
15498 case DT_MIPS_LOCAL_GOTNO:
15499 return "MIPS_LOCAL_GOTNO";
15500 case DT_MIPS_CONFLICTNO:
15501 return "MIPS_CONFLICTNO";
15502 case DT_MIPS_LIBLISTNO:
15503 return "MIPS_LIBLISTNO";
15504 case DT_MIPS_SYMTABNO:
15505 return "MIPS_SYMTABNO";
15506 case DT_MIPS_UNREFEXTNO:
15507 return "MIPS_UNREFEXTNO";
15508 case DT_MIPS_GOTSYM:
15509 return "MIPS_GOTSYM";
15510 case DT_MIPS_HIPAGENO:
15511 return "MIPS_HIPAGENO";
15512 case DT_MIPS_RLD_MAP:
15513 return "MIPS_RLD_MAP";
15514 case DT_MIPS_RLD_MAP_REL:
15515 return "MIPS_RLD_MAP_REL";
15516 case DT_MIPS_DELTA_CLASS:
15517 return "MIPS_DELTA_CLASS";
15518 case DT_MIPS_DELTA_CLASS_NO:
15519 return "MIPS_DELTA_CLASS_NO";
15520 case DT_MIPS_DELTA_INSTANCE:
15521 return "MIPS_DELTA_INSTANCE";
15522 case DT_MIPS_DELTA_INSTANCE_NO:
15523 return "MIPS_DELTA_INSTANCE_NO";
15524 case DT_MIPS_DELTA_RELOC:
15525 return "MIPS_DELTA_RELOC";
15526 case DT_MIPS_DELTA_RELOC_NO:
15527 return "MIPS_DELTA_RELOC_NO";
15528 case DT_MIPS_DELTA_SYM:
15529 return "MIPS_DELTA_SYM";
15530 case DT_MIPS_DELTA_SYM_NO:
15531 return "MIPS_DELTA_SYM_NO";
15532 case DT_MIPS_DELTA_CLASSSYM:
15533 return "MIPS_DELTA_CLASSSYM";
15534 case DT_MIPS_DELTA_CLASSSYM_NO:
15535 return "MIPS_DELTA_CLASSSYM_NO";
15536 case DT_MIPS_CXX_FLAGS:
15537 return "MIPS_CXX_FLAGS";
15538 case DT_MIPS_PIXIE_INIT:
15539 return "MIPS_PIXIE_INIT";
15540 case DT_MIPS_SYMBOL_LIB:
15541 return "MIPS_SYMBOL_LIB";
15542 case DT_MIPS_LOCALPAGE_GOTIDX:
15543 return "MIPS_LOCALPAGE_GOTIDX";
15544 case DT_MIPS_LOCAL_GOTIDX:
15545 return "MIPS_LOCAL_GOTIDX";
15546 case DT_MIPS_HIDDEN_GOTIDX:
15547 return "MIPS_HIDDEN_GOTIDX";
15548 case DT_MIPS_PROTECTED_GOTIDX:
15549 return "MIPS_PROTECTED_GOT_IDX";
15550 case DT_MIPS_OPTIONS:
15551 return "MIPS_OPTIONS";
15552 case DT_MIPS_INTERFACE:
15553 return "MIPS_INTERFACE";
15554 case DT_MIPS_DYNSTR_ALIGN:
15555 return "DT_MIPS_DYNSTR_ALIGN";
15556 case DT_MIPS_INTERFACE_SIZE:
15557 return "DT_MIPS_INTERFACE_SIZE";
15558 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15559 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15560 case DT_MIPS_PERF_SUFFIX:
15561 return "DT_MIPS_PERF_SUFFIX";
15562 case DT_MIPS_COMPACT_SIZE:
15563 return "DT_MIPS_COMPACT_SIZE";
15564 case DT_MIPS_GP_VALUE:
15565 return "DT_MIPS_GP_VALUE";
15566 case DT_MIPS_AUX_DYNAMIC:
15567 return "DT_MIPS_AUX_DYNAMIC";
15568 case DT_MIPS_PLTGOT:
15569 return "DT_MIPS_PLTGOT";
15570 case DT_MIPS_RWPLT:
15571 return "DT_MIPS_RWPLT";
15575 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15579 _bfd_mips_fp_abi_string (int fp)
15583 /* These strings aren't translated because they're simply
15585 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15586 return "-mdouble-float";
15588 case Val_GNU_MIPS_ABI_FP_SINGLE:
15589 return "-msingle-float";
15591 case Val_GNU_MIPS_ABI_FP_SOFT:
15592 return "-msoft-float";
15594 case Val_GNU_MIPS_ABI_FP_OLD_64:
15595 return _("-mips32r2 -mfp64 (12 callee-saved)");
15597 case Val_GNU_MIPS_ABI_FP_XX:
15600 case Val_GNU_MIPS_ABI_FP_64:
15601 return "-mgp32 -mfp64";
15603 case Val_GNU_MIPS_ABI_FP_64A:
15604 return "-mgp32 -mfp64 -mno-odd-spreg";
15612 print_mips_ases (FILE *file, unsigned int mask)
15614 if (mask & AFL_ASE_DSP)
15615 fputs ("\n\tDSP ASE", file);
15616 if (mask & AFL_ASE_DSPR2)
15617 fputs ("\n\tDSP R2 ASE", file);
15618 if (mask & AFL_ASE_DSPR3)
15619 fputs ("\n\tDSP R3 ASE", file);
15620 if (mask & AFL_ASE_EVA)
15621 fputs ("\n\tEnhanced VA Scheme", file);
15622 if (mask & AFL_ASE_MCU)
15623 fputs ("\n\tMCU (MicroController) ASE", file);
15624 if (mask & AFL_ASE_MDMX)
15625 fputs ("\n\tMDMX ASE", file);
15626 if (mask & AFL_ASE_MIPS3D)
15627 fputs ("\n\tMIPS-3D ASE", file);
15628 if (mask & AFL_ASE_MT)
15629 fputs ("\n\tMT ASE", file);
15630 if (mask & AFL_ASE_SMARTMIPS)
15631 fputs ("\n\tSmartMIPS ASE", file);
15632 if (mask & AFL_ASE_VIRT)
15633 fputs ("\n\tVZ ASE", file);
15634 if (mask & AFL_ASE_MSA)
15635 fputs ("\n\tMSA ASE", file);
15636 if (mask & AFL_ASE_MIPS16)
15637 fputs ("\n\tMIPS16 ASE", file);
15638 if (mask & AFL_ASE_MICROMIPS)
15639 fputs ("\n\tMICROMIPS ASE", file);
15640 if (mask & AFL_ASE_XPA)
15641 fputs ("\n\tXPA ASE", file);
15642 if (mask & AFL_ASE_MIPS16E2)
15643 fputs ("\n\tMIPS16e2 ASE", file);
15645 fprintf (file, "\n\t%s", _("None"));
15646 else if ((mask & ~AFL_ASE_MASK) != 0)
15647 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15651 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15656 fputs (_("None"), file);
15659 fputs ("RMI XLR", file);
15661 case AFL_EXT_OCTEON3:
15662 fputs ("Cavium Networks Octeon3", file);
15664 case AFL_EXT_OCTEON2:
15665 fputs ("Cavium Networks Octeon2", file);
15667 case AFL_EXT_OCTEONP:
15668 fputs ("Cavium Networks OcteonP", file);
15670 case AFL_EXT_LOONGSON_3A:
15671 fputs ("Loongson 3A", file);
15673 case AFL_EXT_OCTEON:
15674 fputs ("Cavium Networks Octeon", file);
15677 fputs ("Toshiba R5900", file);
15680 fputs ("MIPS R4650", file);
15683 fputs ("LSI R4010", file);
15686 fputs ("NEC VR4100", file);
15689 fputs ("Toshiba R3900", file);
15691 case AFL_EXT_10000:
15692 fputs ("MIPS R10000", file);
15695 fputs ("Broadcom SB-1", file);
15698 fputs ("NEC VR4111/VR4181", file);
15701 fputs ("NEC VR4120", file);
15704 fputs ("NEC VR5400", file);
15707 fputs ("NEC VR5500", file);
15709 case AFL_EXT_LOONGSON_2E:
15710 fputs ("ST Microelectronics Loongson 2E", file);
15712 case AFL_EXT_LOONGSON_2F:
15713 fputs ("ST Microelectronics Loongson 2F", file);
15715 case AFL_EXT_INTERAPTIV_MR2:
15716 fputs ("Imagination interAptiv MR2", file);
15719 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15725 print_mips_fp_abi_value (FILE *file, int val)
15729 case Val_GNU_MIPS_ABI_FP_ANY:
15730 fprintf (file, _("Hard or soft float\n"));
15732 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15733 fprintf (file, _("Hard float (double precision)\n"));
15735 case Val_GNU_MIPS_ABI_FP_SINGLE:
15736 fprintf (file, _("Hard float (single precision)\n"));
15738 case Val_GNU_MIPS_ABI_FP_SOFT:
15739 fprintf (file, _("Soft float\n"));
15741 case Val_GNU_MIPS_ABI_FP_OLD_64:
15742 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15744 case Val_GNU_MIPS_ABI_FP_XX:
15745 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15747 case Val_GNU_MIPS_ABI_FP_64:
15748 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15750 case Val_GNU_MIPS_ABI_FP_64A:
15751 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15754 fprintf (file, "??? (%d)\n", val);
15760 get_mips_reg_size (int reg_size)
15762 return (reg_size == AFL_REG_NONE) ? 0
15763 : (reg_size == AFL_REG_32) ? 32
15764 : (reg_size == AFL_REG_64) ? 64
15765 : (reg_size == AFL_REG_128) ? 128
15770 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15774 BFD_ASSERT (abfd != NULL && ptr != NULL);
15776 /* Print normal ELF private data. */
15777 _bfd_elf_print_private_bfd_data (abfd, ptr);
15779 /* xgettext:c-format */
15780 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15782 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15783 fprintf (file, _(" [abi=O32]"));
15784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15785 fprintf (file, _(" [abi=O64]"));
15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15787 fprintf (file, _(" [abi=EABI32]"));
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15789 fprintf (file, _(" [abi=EABI64]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15791 fprintf (file, _(" [abi unknown]"));
15792 else if (ABI_N32_P (abfd))
15793 fprintf (file, _(" [abi=N32]"));
15794 else if (ABI_64_P (abfd))
15795 fprintf (file, _(" [abi=64]"));
15797 fprintf (file, _(" [no abi set]"));
15799 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15800 fprintf (file, " [mips1]");
15801 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15802 fprintf (file, " [mips2]");
15803 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15804 fprintf (file, " [mips3]");
15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15806 fprintf (file, " [mips4]");
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15808 fprintf (file, " [mips5]");
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15810 fprintf (file, " [mips32]");
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15812 fprintf (file, " [mips64]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15814 fprintf (file, " [mips32r2]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15816 fprintf (file, " [mips64r2]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15818 fprintf (file, " [mips32r6]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15820 fprintf (file, " [mips64r6]");
15822 fprintf (file, _(" [unknown ISA]"));
15824 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15825 fprintf (file, " [mdmx]");
15827 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15828 fprintf (file, " [mips16]");
15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15831 fprintf (file, " [micromips]");
15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15834 fprintf (file, " [nan2008]");
15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15837 fprintf (file, " [old fp64]");
15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15840 fprintf (file, " [32bitmode]");
15842 fprintf (file, _(" [not 32bitmode]"));
15844 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15845 fprintf (file, " [noreorder]");
15847 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15848 fprintf (file, " [PIC]");
15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15851 fprintf (file, " [CPIC]");
15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15854 fprintf (file, " [XGOT]");
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15857 fprintf (file, " [UCODE]");
15859 fputc ('\n', file);
15861 if (mips_elf_tdata (abfd)->abiflags_valid)
15863 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15864 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15865 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15866 if (abiflags->isa_rev > 1)
15867 fprintf (file, "r%d", abiflags->isa_rev);
15868 fprintf (file, "\nGPR size: %d",
15869 get_mips_reg_size (abiflags->gpr_size));
15870 fprintf (file, "\nCPR1 size: %d",
15871 get_mips_reg_size (abiflags->cpr1_size));
15872 fprintf (file, "\nCPR2 size: %d",
15873 get_mips_reg_size (abiflags->cpr2_size));
15874 fputs ("\nFP ABI: ", file);
15875 print_mips_fp_abi_value (file, abiflags->fp_abi);
15876 fputs ("ISA Extension: ", file);
15877 print_mips_isa_ext (file, abiflags->isa_ext);
15878 fputs ("\nASEs:", file);
15879 print_mips_ases (file, abiflags->ases);
15880 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15881 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15882 fputc ('\n', file);
15888 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15890 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15891 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15892 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15893 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15894 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15896 { NULL, 0, 0, 0, 0 }
15899 /* Merge non visibility st_other attributes. Ensure that the
15900 STO_OPTIONAL flag is copied into h->other, even if this is not a
15901 definiton of the symbol. */
15903 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15904 const Elf_Internal_Sym *isym,
15905 bfd_boolean definition,
15906 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15908 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15910 unsigned char other;
15912 other = (definition ? isym->st_other : h->other);
15913 other &= ~ELF_ST_VISIBILITY (-1);
15914 h->other = other | ELF_ST_VISIBILITY (h->other);
15918 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15919 h->other |= STO_OPTIONAL;
15922 /* Decide whether an undefined symbol is special and can be ignored.
15923 This is the case for OPTIONAL symbols on IRIX. */
15925 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15927 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15931 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15933 return (sym->st_shndx == SHN_COMMON
15934 || sym->st_shndx == SHN_MIPS_ACOMMON
15935 || sym->st_shndx == SHN_MIPS_SCOMMON);
15938 /* Return address for Ith PLT stub in section PLT, for relocation REL
15939 or (bfd_vma) -1 if it should not be included. */
15942 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15943 const arelent *rel ATTRIBUTE_UNUSED)
15946 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15947 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15950 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15951 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15952 and .got.plt and also the slots may be of a different size each we walk
15953 the PLT manually fetching instructions and matching them against known
15954 patterns. To make things easier standard MIPS slots, if any, always come
15955 first. As we don't create proper ELF symbols we use the UDATA.I member
15956 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15957 with the ST_OTHER member of the ELF symbol. */
15960 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15961 long symcount ATTRIBUTE_UNUSED,
15962 asymbol **syms ATTRIBUTE_UNUSED,
15963 long dynsymcount, asymbol **dynsyms,
15966 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15967 static const char microsuffix[] = "@micromipsplt";
15968 static const char m16suffix[] = "@mips16plt";
15969 static const char mipssuffix[] = "@plt";
15971 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15972 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15973 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15974 Elf_Internal_Shdr *hdr;
15975 bfd_byte *plt_data;
15976 bfd_vma plt_offset;
15977 unsigned int other;
15978 bfd_vma entry_size;
15997 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16000 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16001 if (relplt == NULL)
16004 hdr = &elf_section_data (relplt)->this_hdr;
16005 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16008 plt = bfd_get_section_by_name (abfd, ".plt");
16012 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16013 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16015 p = relplt->relocation;
16017 /* Calculating the exact amount of space required for symbols would
16018 require two passes over the PLT, so just pessimise assuming two
16019 PLT slots per relocation. */
16020 count = relplt->size / hdr->sh_entsize;
16021 counti = count * bed->s->int_rels_per_ext_rel;
16022 size = 2 * count * sizeof (asymbol);
16023 size += count * (sizeof (mipssuffix) +
16024 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16025 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16026 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16028 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16029 size += sizeof (asymbol) + sizeof (pltname);
16031 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16034 if (plt->size < 16)
16037 s = *ret = bfd_malloc (size);
16040 send = s + 2 * count + 1;
16042 names = (char *) send;
16043 nend = (char *) s + size;
16046 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16047 if (opcode == 0x3302fffe)
16051 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16052 other = STO_MICROMIPS;
16054 else if (opcode == 0x0398c1d0)
16058 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16059 other = STO_MICROMIPS;
16063 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16068 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16072 s->udata.i = other;
16073 memcpy (names, pltname, sizeof (pltname));
16074 names += sizeof (pltname);
16078 for (plt_offset = plt0_size;
16079 plt_offset + 8 <= plt->size && s < send;
16080 plt_offset += entry_size)
16082 bfd_vma gotplt_addr;
16083 const char *suffix;
16088 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16090 /* Check if the second word matches the expected MIPS16 instruction. */
16091 if (opcode == 0x651aeb00)
16095 /* Truncated table??? */
16096 if (plt_offset + 16 > plt->size)
16098 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16099 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16100 suffixlen = sizeof (m16suffix);
16101 suffix = m16suffix;
16102 other = STO_MIPS16;
16104 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16105 else if (opcode == 0xff220000)
16109 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16110 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16111 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16113 gotplt_addr = gotplt_hi + gotplt_lo;
16114 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16115 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16116 suffixlen = sizeof (microsuffix);
16117 suffix = microsuffix;
16118 other = STO_MICROMIPS;
16120 /* Likewise the expected microMIPS instruction (insn32 mode). */
16121 else if ((opcode & 0xffff0000) == 0xff2f0000)
16123 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16124 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16125 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16126 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16127 gotplt_addr = gotplt_hi + gotplt_lo;
16128 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16129 suffixlen = sizeof (microsuffix);
16130 suffix = microsuffix;
16131 other = STO_MICROMIPS;
16133 /* Otherwise assume standard MIPS code. */
16136 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16137 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16138 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16139 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16140 gotplt_addr = gotplt_hi + gotplt_lo;
16141 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16142 suffixlen = sizeof (mipssuffix);
16143 suffix = mipssuffix;
16146 /* Truncated table??? */
16147 if (plt_offset + entry_size > plt->size)
16151 i < count && p[pi].address != gotplt_addr;
16152 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16159 *s = **p[pi].sym_ptr_ptr;
16160 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16161 we are defining a symbol, ensure one of them is set. */
16162 if ((s->flags & BSF_LOCAL) == 0)
16163 s->flags |= BSF_GLOBAL;
16164 s->flags |= BSF_SYNTHETIC;
16166 s->value = plt_offset;
16168 s->udata.i = other;
16170 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16171 namelen = len + suffixlen;
16172 if (names + namelen > nend)
16175 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16177 memcpy (names, suffix, suffixlen);
16178 names += suffixlen;
16181 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16190 /* Return the ABI flags associated with ABFD if available. */
16192 Elf_Internal_ABIFlags_v0 *
16193 bfd_mips_elf_get_abiflags (bfd *abfd)
16195 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16197 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16201 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16203 struct mips_elf_link_hash_table *htab;
16204 Elf_Internal_Ehdr *i_ehdrp;
16206 i_ehdrp = elf_elfheader (abfd);
16209 htab = mips_elf_hash_table (link_info);
16210 BFD_ASSERT (htab != NULL);
16212 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16213 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16216 _bfd_elf_post_process_headers (abfd, link_info);
16218 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16219 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16220 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16224 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16226 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16229 /* Return the opcode for can't unwind. */
16232 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16234 return COMPACT_EH_CANT_UNWIND_OPCODE;