1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
40 /* Get the ECOFF swapping routines. */
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
48 /* Types of TLS GOT entry. */
49 enum mips_got_tls_type {
56 /* This structure is used to hold information about one GOT entry.
57 There are four types of entry:
59 (1) an absolute address
60 requires: abfd == NULL
63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 fields: abfd, symndx, d.addend, tls_type
67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 requires: abfd != NULL, symndx == -1
72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 fields: none; there's only one of these per GOT. */
76 /* One input bfd that needs the GOT entry. */
78 /* The index of the symbol, as stored in the relocation r_info, if
79 we have a local symbol; -1 otherwise. */
83 /* If abfd == NULL, an address that must be stored in the got. */
85 /* If abfd != NULL && symndx != -1, the addend of the relocation
86 that should be added to the symbol value. */
88 /* If abfd != NULL && symndx == -1, the hash table entry
89 corresponding to a symbol in the GOT. The symbol's entry
90 is in the local area if h->global_got_area is GGA_NONE,
91 otherwise it is in the global area. */
92 struct mips_elf_link_hash_entry *h;
95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
96 symbol entry with r_symndx == 0. */
97 unsigned char tls_type;
99 /* True if we have filled in the GOT contents for a TLS entry,
100 and created the associated relocations. */
101 unsigned char tls_initialized;
103 /* The offset from the beginning of the .got section to the entry
104 corresponding to this symbol+addend. If it's a global symbol
105 whose offset is yet to be decided, it's going to be -1. */
109 /* This structure represents a GOT page reference from an input bfd.
110 Each instance represents a symbol + ADDEND, where the representation
111 of the symbol depends on whether it is local to the input bfd.
112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115 Page references with SYMNDX >= 0 always become page references
116 in the output. Page references with SYMNDX < 0 only become page
117 references if the symbol binds locally; in other cases, the page
118 reference decays to a global GOT reference. */
119 struct mips_got_page_ref
124 struct mips_elf_link_hash_entry *h;
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131 The structures form a non-overlapping list that is sorted by increasing
133 struct mips_got_page_range
135 struct mips_got_page_range *next;
136 bfd_signed_vma min_addend;
137 bfd_signed_vma max_addend;
140 /* This structure describes the range of addends that are applied to page
141 relocations against a given section. */
142 struct mips_got_page_entry
144 /* The section that these entries are based on. */
146 /* The ranges for this page entry. */
147 struct mips_got_page_range *ranges;
148 /* The maximum number of page entries needed for RANGES. */
152 /* This structure is used to hold .got information when linking. */
156 /* The number of global .got entries. */
157 unsigned int global_gotno;
158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
159 unsigned int reloc_only_gotno;
160 /* The number of .got slots used for TLS. */
161 unsigned int tls_gotno;
162 /* The first unused TLS .got entry. Used only during
163 mips_elf_initialize_tls_index. */
164 unsigned int tls_assigned_gotno;
165 /* The number of local .got entries, eventually including page entries. */
166 unsigned int local_gotno;
167 /* The maximum number of page entries needed. */
168 unsigned int page_gotno;
169 /* The number of relocations needed for the GOT entries. */
171 /* The number of local .got entries we have used. */
172 unsigned int assigned_gotno;
173 /* A hash table holding members of the got. */
174 struct htab *got_entries;
175 /* A hash table holding mips_got_page_ref structures. */
176 struct htab *got_page_refs;
177 /* A hash table of mips_got_page_entry structures. */
178 struct htab *got_page_entries;
179 /* In multi-got links, a pointer to the next got (err, rather, most
180 of the time, it points to the previous got). */
181 struct mips_got_info *next;
184 /* Structure passed when merging bfds' gots. */
186 struct mips_elf_got_per_bfd_arg
188 /* The output bfd. */
190 /* The link information. */
191 struct bfd_link_info *info;
192 /* A pointer to the primary got, i.e., the one that's going to get
193 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
195 struct mips_got_info *primary;
196 /* A non-primary got we're trying to merge with other input bfd's
198 struct mips_got_info *current;
199 /* The maximum number of got entries that can be addressed with a
201 unsigned int max_count;
202 /* The maximum number of page entries needed by each got. */
203 unsigned int max_pages;
204 /* The total number of global entries which will live in the
205 primary got and be automatically relocated. This includes
206 those not referenced by the primary GOT but included in
208 unsigned int global_count;
211 /* A structure used to pass information to htab_traverse callbacks
212 when laying out the GOT. */
214 struct mips_elf_traverse_got_arg
216 struct bfd_link_info *info;
217 struct mips_got_info *g;
221 struct _mips_elf_section_data
223 struct bfd_elf_section_data elf;
230 #define mips_elf_section_data(sec) \
231 ((struct _mips_elf_section_data *) elf_section_data (sec))
233 #define is_mips_elf(bfd) \
234 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
235 && elf_tdata (bfd) != NULL \
236 && elf_object_id (bfd) == MIPS_ELF_DATA)
238 /* The ABI says that every symbol used by dynamic relocations must have
239 a global GOT entry. Among other things, this provides the dynamic
240 linker with a free, directly-indexed cache. The GOT can therefore
241 contain symbols that are not referenced by GOT relocations themselves
242 (in other words, it may have symbols that are not referenced by things
243 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
245 GOT relocations are less likely to overflow if we put the associated
246 GOT entries towards the beginning. We therefore divide the global
247 GOT entries into two areas: "normal" and "reloc-only". Entries in
248 the first area can be used for both dynamic relocations and GP-relative
249 accesses, while those in the "reloc-only" area are for dynamic
252 These GGA_* ("Global GOT Area") values are organised so that lower
253 values are more general than higher values. Also, non-GGA_NONE
254 values are ordered by the position of the area in the GOT. */
256 #define GGA_RELOC_ONLY 1
259 /* Information about a non-PIC interface to a PIC function. There are
260 two ways of creating these interfaces. The first is to add:
263 addiu $25,$25,%lo(func)
265 immediately before a PIC function "func". The second is to add:
269 addiu $25,$25,%lo(func)
271 to a separate trampoline section.
273 Stubs of the first kind go in a new section immediately before the
274 target function. Stubs of the second kind go in a single section
275 pointed to by the hash table's "strampoline" field. */
276 struct mips_elf_la25_stub {
277 /* The generated section that contains this stub. */
278 asection *stub_section;
280 /* The offset of the stub from the start of STUB_SECTION. */
283 /* One symbol for the original function. Its location is available
284 in H->root.root.u.def. */
285 struct mips_elf_link_hash_entry *h;
288 /* Macros for populating a mips_elf_la25_stub. */
290 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
291 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
292 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
293 #define LA25_LUI_MICROMIPS(VAL) \
294 (0x41b90000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J_MICROMIPS(VAL) \
296 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
297 #define LA25_ADDIU_MICROMIPS(VAL) \
298 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
300 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
301 the dynamic symbols. */
303 struct mips_elf_hash_sort_data
305 /* The symbol in the global GOT with the lowest dynamic symbol table
307 struct elf_link_hash_entry *low;
308 /* The least dynamic symbol table index corresponding to a non-TLS
309 symbol with a GOT entry. */
310 long min_got_dynindx;
311 /* The greatest dynamic symbol table index corresponding to a symbol
312 with a GOT entry that is not referenced (e.g., a dynamic symbol
313 with dynamic relocations pointing to it from non-primary GOTs). */
314 long max_unref_got_dynindx;
315 /* The greatest dynamic symbol table index not corresponding to a
316 symbol without a GOT entry. */
317 long max_non_got_dynindx;
320 /* We make up to two PLT entries if needed, one for standard MIPS code
321 and one for compressed code, either a MIPS16 or microMIPS one. We
322 keep a separate record of traditional lazy-binding stubs, for easier
327 /* Traditional SVR4 stub offset, or -1 if none. */
330 /* Standard PLT entry offset, or -1 if none. */
333 /* Compressed PLT entry offset, or -1 if none. */
336 /* The corresponding .got.plt index, or -1 if none. */
337 bfd_vma gotplt_index;
339 /* Whether we need a standard PLT entry. */
340 unsigned int need_mips : 1;
342 /* Whether we need a compressed PLT entry. */
343 unsigned int need_comp : 1;
346 /* The MIPS ELF linker needs additional information for each symbol in
347 the global hash table. */
349 struct mips_elf_link_hash_entry
351 struct elf_link_hash_entry root;
353 /* External symbol information. */
356 /* The la25 stub we have created for ths symbol, if any. */
357 struct mips_elf_la25_stub *la25_stub;
359 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
361 unsigned int possibly_dynamic_relocs;
363 /* If there is a stub that 32 bit functions should use to call this
364 16 bit function, this points to the section containing the stub. */
367 /* If there is a stub that 16 bit functions should use to call this
368 32 bit function, this points to the section containing the stub. */
371 /* This is like the call_stub field, but it is used if the function
372 being called returns a floating point value. */
373 asection *call_fp_stub;
375 /* The highest GGA_* value that satisfies all references to this symbol. */
376 unsigned int global_got_area : 2;
378 /* True if all GOT relocations against this symbol are for calls. This is
379 a looser condition than no_fn_stub below, because there may be other
380 non-call non-GOT relocations against the symbol. */
381 unsigned int got_only_for_calls : 1;
383 /* True if one of the relocations described by possibly_dynamic_relocs
384 is against a readonly section. */
385 unsigned int readonly_reloc : 1;
387 /* True if there is a relocation against this symbol that must be
388 resolved by the static linker (in other words, if the relocation
389 cannot possibly be made dynamic). */
390 unsigned int has_static_relocs : 1;
392 /* True if we must not create a .MIPS.stubs entry for this symbol.
393 This is set, for example, if there are relocations related to
394 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
395 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
396 unsigned int no_fn_stub : 1;
398 /* Whether we need the fn_stub; this is true if this symbol appears
399 in any relocs other than a 16 bit call. */
400 unsigned int need_fn_stub : 1;
402 /* True if this symbol is referenced by branch relocations from
403 any non-PIC input file. This is used to determine whether an
404 la25 stub is required. */
405 unsigned int has_nonpic_branches : 1;
407 /* Does this symbol need a traditional MIPS lazy-binding stub
408 (as opposed to a PLT entry)? */
409 unsigned int needs_lazy_stub : 1;
411 /* Does this symbol resolve to a PLT entry? */
412 unsigned int use_plt_entry : 1;
415 /* MIPS ELF linker hash table. */
417 struct mips_elf_link_hash_table
419 struct elf_link_hash_table root;
421 /* The number of .rtproc entries. */
422 bfd_size_type procedure_count;
424 /* The size of the .compact_rel section (if SGI_COMPAT). */
425 bfd_size_type compact_rel_size;
427 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
428 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
429 bfd_boolean use_rld_obj_head;
431 /* The __rld_map or __rld_obj_head symbol. */
432 struct elf_link_hash_entry *rld_symbol;
434 /* This is set if we see any mips16 stub sections. */
435 bfd_boolean mips16_stubs_seen;
437 /* True if we can generate copy relocs and PLTs. */
438 bfd_boolean use_plts_and_copy_relocs;
440 /* True if we can only use 32-bit microMIPS instructions. */
443 /* True if we're generating code for VxWorks. */
444 bfd_boolean is_vxworks;
446 /* True if we already reported the small-data section overflow. */
447 bfd_boolean small_data_overflow_reported;
449 /* Shortcuts to some dynamic sections, or NULL if they are not
460 /* The master GOT information. */
461 struct mips_got_info *got_info;
463 /* The global symbol in the GOT with the lowest index in the dynamic
465 struct elf_link_hash_entry *global_gotsym;
467 /* The size of the PLT header in bytes. */
468 bfd_vma plt_header_size;
470 /* The size of a standard PLT entry in bytes. */
471 bfd_vma plt_mips_entry_size;
473 /* The size of a compressed PLT entry in bytes. */
474 bfd_vma plt_comp_entry_size;
476 /* The offset of the next standard PLT entry to create. */
477 bfd_vma plt_mips_offset;
479 /* The offset of the next compressed PLT entry to create. */
480 bfd_vma plt_comp_offset;
482 /* The index of the next .got.plt entry to create. */
483 bfd_vma plt_got_index;
485 /* The number of functions that need a lazy-binding stub. */
486 bfd_vma lazy_stub_count;
488 /* The size of a function stub entry in bytes. */
489 bfd_vma function_stub_size;
491 /* The number of reserved entries at the beginning of the GOT. */
492 unsigned int reserved_gotno;
494 /* The section used for mips_elf_la25_stub trampolines.
495 See the comment above that structure for details. */
496 asection *strampoline;
498 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 /* A function FN (NAME, IS, OS) that creates a new input section
503 called NAME and links it to output section OS. If IS is nonnull,
504 the new section should go immediately before it, otherwise it
505 should go at the (current) beginning of OS.
507 The function returns the new section on success, otherwise it
509 asection *(*add_stub_section) (const char *, asection *, asection *);
511 /* Small local sym cache. */
512 struct sym_cache sym_cache;
514 /* Is the PLT header compressed? */
515 unsigned int plt_header_is_comp : 1;
518 /* Get the MIPS ELF linker hash table from a link_info structure. */
520 #define mips_elf_hash_table(p) \
521 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
522 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
524 /* A structure used to communicate with htab_traverse callbacks. */
525 struct mips_htab_traverse_info
527 /* The usual link-wide information. */
528 struct bfd_link_info *info;
531 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 /* MIPS ELF private object data. */
537 struct mips_elf_obj_tdata
539 /* Generic ELF private object data. */
540 struct elf_obj_tdata root;
542 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
545 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
548 /* The GOT requirements of input bfds. */
549 struct mips_got_info *got;
551 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
552 included directly in this one, but there's no point to wasting
553 the memory just for the infrequently called find_nearest_line. */
554 struct mips_elf_find_line *find_line_info;
556 /* An array of stub sections indexed by symbol number. */
557 asection **local_stubs;
558 asection **local_call_stubs;
560 /* The Irix 5 support uses two virtual sections, which represent
561 text/data symbols defined in dynamic objects. */
562 asymbol *elf_data_symbol;
563 asymbol *elf_text_symbol;
564 asection *elf_data_section;
565 asection *elf_text_section;
568 /* Get MIPS ELF private object data from BFD's tdata. */
570 #define mips_elf_tdata(bfd) \
571 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
573 #define TLS_RELOC_P(r_type) \
574 (r_type == R_MIPS_TLS_DTPMOD32 \
575 || r_type == R_MIPS_TLS_DTPMOD64 \
576 || r_type == R_MIPS_TLS_DTPREL32 \
577 || r_type == R_MIPS_TLS_DTPREL64 \
578 || r_type == R_MIPS_TLS_GD \
579 || r_type == R_MIPS_TLS_LDM \
580 || r_type == R_MIPS_TLS_DTPREL_HI16 \
581 || r_type == R_MIPS_TLS_DTPREL_LO16 \
582 || r_type == R_MIPS_TLS_GOTTPREL \
583 || r_type == R_MIPS_TLS_TPREL32 \
584 || r_type == R_MIPS_TLS_TPREL64 \
585 || r_type == R_MIPS_TLS_TPREL_HI16 \
586 || r_type == R_MIPS_TLS_TPREL_LO16 \
587 || r_type == R_MIPS16_TLS_GD \
588 || r_type == R_MIPS16_TLS_LDM \
589 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
590 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
591 || r_type == R_MIPS16_TLS_GOTTPREL \
592 || r_type == R_MIPS16_TLS_TPREL_HI16 \
593 || r_type == R_MIPS16_TLS_TPREL_LO16 \
594 || r_type == R_MICROMIPS_TLS_GD \
595 || r_type == R_MICROMIPS_TLS_LDM \
596 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
597 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
598 || r_type == R_MICROMIPS_TLS_GOTTPREL \
599 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
600 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
602 /* Structure used to pass information to mips_elf_output_extsym. */
607 struct bfd_link_info *info;
608 struct ecoff_debug_info *debug;
609 const struct ecoff_debug_swap *swap;
613 /* The names of the runtime procedure table symbols used on IRIX5. */
615 static const char * const mips_elf_dynsym_rtproc_names[] =
618 "_procedure_string_table",
619 "_procedure_table_size",
623 /* These structures are used to generate the .compact_rel section on
628 unsigned long id1; /* Always one? */
629 unsigned long num; /* Number of compact relocation entries. */
630 unsigned long id2; /* Always two? */
631 unsigned long offset; /* The file offset of the first relocation. */
632 unsigned long reserved0; /* Zero? */
633 unsigned long reserved1; /* Zero? */
642 bfd_byte reserved0[4];
643 bfd_byte reserved1[4];
644 } Elf32_External_compact_rel;
648 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
649 unsigned int rtype : 4; /* Relocation types. See below. */
650 unsigned int dist2to : 8;
651 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
652 unsigned long konst; /* KONST field. See below. */
653 unsigned long vaddr; /* VADDR to be relocated. */
658 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
659 unsigned int rtype : 4; /* Relocation types. See below. */
660 unsigned int dist2to : 8;
661 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
662 unsigned long konst; /* KONST field. See below. */
670 } Elf32_External_crinfo;
676 } Elf32_External_crinfo2;
678 /* These are the constants used to swap the bitfields in a crinfo. */
680 #define CRINFO_CTYPE (0x1)
681 #define CRINFO_CTYPE_SH (31)
682 #define CRINFO_RTYPE (0xf)
683 #define CRINFO_RTYPE_SH (27)
684 #define CRINFO_DIST2TO (0xff)
685 #define CRINFO_DIST2TO_SH (19)
686 #define CRINFO_RELVADDR (0x7ffff)
687 #define CRINFO_RELVADDR_SH (0)
689 /* A compact relocation info has long (3 words) or short (2 words)
690 formats. A short format doesn't have VADDR field and relvaddr
691 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
692 #define CRF_MIPS_LONG 1
693 #define CRF_MIPS_SHORT 0
695 /* There are 4 types of compact relocation at least. The value KONST
696 has different meaning for each type:
699 CT_MIPS_REL32 Address in data
700 CT_MIPS_WORD Address in word (XXX)
701 CT_MIPS_GPHI_LO GP - vaddr
702 CT_MIPS_JMPAD Address to jump
705 #define CRT_MIPS_REL32 0xa
706 #define CRT_MIPS_WORD 0xb
707 #define CRT_MIPS_GPHI_LO 0xc
708 #define CRT_MIPS_JMPAD 0xd
710 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
711 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
712 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
713 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
715 /* The structure of the runtime procedure descriptor created by the
716 loader for use by the static exception system. */
718 typedef struct runtime_pdr {
719 bfd_vma adr; /* Memory address of start of procedure. */
720 long regmask; /* Save register mask. */
721 long regoffset; /* Save register offset. */
722 long fregmask; /* Save floating point register mask. */
723 long fregoffset; /* Save floating point register offset. */
724 long frameoffset; /* Frame size. */
725 short framereg; /* Frame pointer register. */
726 short pcreg; /* Offset or reg of return pc. */
727 long irpss; /* Index into the runtime string table. */
729 struct exception_info *exception_info;/* Pointer to exception array. */
731 #define cbRPDR sizeof (RPDR)
732 #define rpdNil ((pRPDR) 0)
734 static struct mips_got_entry *mips_elf_create_local_got_entry
735 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
736 struct mips_elf_link_hash_entry *, int);
737 static bfd_boolean mips_elf_sort_hash_table_f
738 (struct mips_elf_link_hash_entry *, void *);
739 static bfd_vma mips_elf_high
741 static bfd_boolean mips_elf_create_dynamic_relocation
742 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
743 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
744 bfd_vma *, asection *);
745 static bfd_vma mips_elf_adjust_gp
746 (bfd *, struct mips_got_info *, bfd *);
748 /* This will be used when we sort the dynamic relocation records. */
749 static bfd *reldyn_sorting_bfd;
751 /* True if ABFD is for CPUs with load interlocking that include
752 non-MIPS1 CPUs and R3900. */
753 #define LOAD_INTERLOCKS_P(abfd) \
754 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
755 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
757 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
758 This should be safe for all architectures. We enable this predicate
759 for RM9000 for now. */
760 #define JAL_TO_BAL_P(abfd) \
761 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
763 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
764 This should be safe for all architectures. We enable this predicate for
766 #define JALR_TO_BAL_P(abfd) 1
768 /* True if ABFD is for CPUs that are faster if JR is converted to B.
769 This should be safe for all architectures. We enable this predicate for
771 #define JR_TO_B_P(abfd) 1
773 /* True if ABFD is a PIC object. */
774 #define PIC_OBJECT_P(abfd) \
775 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
777 /* Nonzero if ABFD is using the N32 ABI. */
778 #define ABI_N32_P(abfd) \
779 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
781 /* Nonzero if ABFD is using the N64 ABI. */
782 #define ABI_64_P(abfd) \
783 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
785 /* Nonzero if ABFD is using NewABI conventions. */
786 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
788 /* Nonzero if ABFD has microMIPS code. */
789 #define MICROMIPS_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
792 /* The IRIX compatibility level we are striving for. */
793 #define IRIX_COMPAT(abfd) \
794 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
796 /* Whether we are trying to be compatible with IRIX at all. */
797 #define SGI_COMPAT(abfd) \
798 (IRIX_COMPAT (abfd) != ict_none)
800 /* The name of the options section. */
801 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
802 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
804 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
805 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
806 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
807 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
809 /* Whether the section is readonly. */
810 #define MIPS_ELF_READONLY_SECTION(sec) \
811 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
812 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
814 /* The name of the stub section. */
815 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
817 /* The size of an external REL relocation. */
818 #define MIPS_ELF_REL_SIZE(abfd) \
819 (get_elf_backend_data (abfd)->s->sizeof_rel)
821 /* The size of an external RELA relocation. */
822 #define MIPS_ELF_RELA_SIZE(abfd) \
823 (get_elf_backend_data (abfd)->s->sizeof_rela)
825 /* The size of an external dynamic table entry. */
826 #define MIPS_ELF_DYN_SIZE(abfd) \
827 (get_elf_backend_data (abfd)->s->sizeof_dyn)
829 /* The size of a GOT entry. */
830 #define MIPS_ELF_GOT_SIZE(abfd) \
831 (get_elf_backend_data (abfd)->s->arch_size / 8)
833 /* The size of the .rld_map section. */
834 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
835 (get_elf_backend_data (abfd)->s->arch_size / 8)
837 /* The size of a symbol-table entry. */
838 #define MIPS_ELF_SYM_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_sym)
841 /* The default alignment for sections, as a power of two. */
842 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
843 (get_elf_backend_data (abfd)->s->log_file_align)
845 /* Get word-sized data. */
846 #define MIPS_ELF_GET_WORD(abfd, ptr) \
847 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
849 /* Put out word-sized data. */
850 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
852 ? bfd_put_64 (abfd, val, ptr) \
853 : bfd_put_32 (abfd, val, ptr))
855 /* The opcode for word-sized loads (LW or LD). */
856 #define MIPS_ELF_LOAD_WORD(abfd) \
857 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
859 /* Add a dynamic symbol table-entry. */
860 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
861 _bfd_elf_add_dynamic_entry (info, tag, val)
863 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
864 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
866 /* The name of the dynamic relocation section. */
867 #define MIPS_ELF_REL_DYN_NAME(INFO) \
868 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
870 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
871 from smaller values. Start with zero, widen, *then* decrement. */
872 #define MINUS_ONE (((bfd_vma)0) - 1)
873 #define MINUS_TWO (((bfd_vma)0) - 2)
875 /* The value to write into got[1] for SVR4 targets, to identify it is
876 a GNU object. The dynamic linker can then use got[1] to store the
878 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
879 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
881 /* The offset of $gp from the beginning of the .got section. */
882 #define ELF_MIPS_GP_OFFSET(INFO) \
883 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
885 /* The maximum size of the GOT for it to be addressable using 16-bit
887 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
889 /* Instructions which appear in a stub. */
890 #define STUB_LW(abfd) \
892 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
893 : 0x8f998010)) /* lw t9,0x8010(gp) */
894 #define STUB_MOVE(abfd) \
896 ? 0x03e0782d /* daddu t7,ra */ \
897 : 0x03e07821)) /* addu t7,ra */
898 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
899 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
900 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
901 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
902 #define STUB_LI16S(abfd, VAL) \
904 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
905 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
907 /* Likewise for the microMIPS ASE. */
908 #define STUB_LW_MICROMIPS(abfd) \
910 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
911 : 0xff3c8010) /* lw t9,0x8010(gp) */
912 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
913 #define STUB_MOVE32_MICROMIPS(abfd) \
915 ? 0x581f7950 /* daddu t7,ra,zero */ \
916 : 0x001f7950) /* addu t7,ra,zero */
917 #define STUB_LUI_MICROMIPS(VAL) \
918 (0x41b80000 + (VAL)) /* lui t8,VAL */
919 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
920 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
921 #define STUB_ORI_MICROMIPS(VAL) \
922 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
923 #define STUB_LI16U_MICROMIPS(VAL) \
924 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
927 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
928 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
930 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
931 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
932 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
933 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
934 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
935 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
937 /* The name of the dynamic interpreter. This is put in the .interp
940 #define ELF_DYNAMIC_INTERPRETER(abfd) \
941 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
942 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
943 : "/usr/lib/libc.so.1")
946 #define MNAME(bfd,pre,pos) \
947 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
948 #define ELF_R_SYM(bfd, i) \
949 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
950 #define ELF_R_TYPE(bfd, i) \
951 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
952 #define ELF_R_INFO(bfd, s, t) \
953 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
955 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
956 #define ELF_R_SYM(bfd, i) \
958 #define ELF_R_TYPE(bfd, i) \
960 #define ELF_R_INFO(bfd, s, t) \
961 (ELF32_R_INFO (s, t))
964 /* The mips16 compiler uses a couple of special sections to handle
965 floating point arguments.
967 Section names that look like .mips16.fn.FNNAME contain stubs that
968 copy floating point arguments from the fp regs to the gp regs and
969 then jump to FNNAME. If any 32 bit function calls FNNAME, the
970 call should be redirected to the stub instead. If no 32 bit
971 function calls FNNAME, the stub should be discarded. We need to
972 consider any reference to the function, not just a call, because
973 if the address of the function is taken we will need the stub,
974 since the address might be passed to a 32 bit function.
976 Section names that look like .mips16.call.FNNAME contain stubs
977 that copy floating point arguments from the gp regs to the fp
978 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
979 then any 16 bit function that calls FNNAME should be redirected
980 to the stub instead. If FNNAME is not a 32 bit function, the
981 stub should be discarded.
983 .mips16.call.fp.FNNAME sections are similar, but contain stubs
984 which call FNNAME and then copy the return value from the fp regs
985 to the gp regs. These stubs store the return value in $18 while
986 calling FNNAME; any function which might call one of these stubs
987 must arrange to save $18 around the call. (This case is not
988 needed for 32 bit functions that call 16 bit functions, because
989 16 bit functions always return floating point values in both
992 Note that in all cases FNNAME might be defined statically.
993 Therefore, FNNAME is not used literally. Instead, the relocation
994 information will indicate which symbol the section is for.
996 We record any stubs that we find in the symbol table. */
998 #define FN_STUB ".mips16.fn."
999 #define CALL_STUB ".mips16.call."
1000 #define CALL_FP_STUB ".mips16.call.fp."
1002 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1003 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1004 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1006 /* The format of the first PLT entry in an O32 executable. */
1007 static const bfd_vma mips_o32_exec_plt0_entry[] =
1009 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1010 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1011 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1012 0x031cc023, /* subu $24, $24, $28 */
1013 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1014 0x0018c082, /* srl $24, $24, 2 */
1015 0x0320f809, /* jalr $25 */
1016 0x2718fffe /* subu $24, $24, 2 */
1019 /* The format of the first PLT entry in an N32 executable. Different
1020 because gp ($28) is not available; we use t2 ($14) instead. */
1021 static const bfd_vma mips_n32_exec_plt0_entry[] =
1023 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1024 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1025 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1026 0x030ec023, /* subu $24, $24, $14 */
1027 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N64 executable. Different
1034 from N32 because of the increased size of GOT entries. */
1035 static const bfd_vma mips_n64_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1042 0x0018c0c2, /* srl $24, $24, 3 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the microMIPS first PLT entry in an O32 executable.
1048 We rely on v0 ($2) rather than t8 ($24) to contain the address
1049 of the GOTPLT entry handled, so this stub may only be used when
1050 all the subsequent PLT entries are microMIPS code too.
1052 The trailing NOP is for alignment and correct disassembly only. */
1053 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1055 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1056 0xff23, 0x0000, /* lw $25, 0($3) */
1057 0x0535, /* subu $2, $2, $3 */
1058 0x2525, /* srl $2, $2, 2 */
1059 0x3302, 0xfffe, /* subu $24, $2, 2 */
1060 0x0dff, /* move $15, $31 */
1061 0x45f9, /* jalrs $25 */
1062 0x0f83, /* move $28, $3 */
1066 /* The format of the microMIPS first PLT entry in an O32 executable
1067 in the insn32 mode. */
1068 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1070 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1071 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1072 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1073 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1074 0x001f, 0x7950, /* move $15, $31 */
1075 0x0318, 0x1040, /* srl $24, $24, 2 */
1076 0x03f9, 0x0f3c, /* jalr $25 */
1077 0x3318, 0xfffe /* subu $24, $24, 2 */
1080 /* The format of subsequent standard PLT entries. */
1081 static const bfd_vma mips_exec_plt_entry[] =
1083 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1084 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1085 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1086 0x03200008 /* jr $25 */
1089 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1090 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1091 directly addressable. */
1092 static const bfd_vma mips16_o32_exec_plt_entry[] =
1094 0xb203, /* lw $2, 12($pc) */
1095 0x9a60, /* lw $3, 0($2) */
1096 0x651a, /* move $24, $2 */
1098 0x653b, /* move $25, $3 */
1100 0x0000, 0x0000 /* .word (.got.plt entry) */
1103 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1104 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1105 static const bfd_vma micromips_o32_exec_plt_entry[] =
1107 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1108 0xff22, 0x0000, /* lw $25, 0($2) */
1109 0x4599, /* jr $25 */
1110 0x0f02 /* move $24, $2 */
1113 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1114 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1116 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1117 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1118 0x0019, 0x0f3c, /* jr $25 */
1119 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1122 /* The format of the first PLT entry in a VxWorks executable. */
1123 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1125 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1126 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1127 0x8f390008, /* lw t9, 8(t9) */
1128 0x00000000, /* nop */
1129 0x03200008, /* jr t9 */
1130 0x00000000 /* nop */
1133 /* The format of subsequent PLT entries. */
1134 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1136 0x10000000, /* b .PLT_resolver */
1137 0x24180000, /* li t8, <pltindex> */
1138 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1139 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1140 0x8f390000, /* lw t9, 0(t9) */
1141 0x00000000, /* nop */
1142 0x03200008, /* jr t9 */
1143 0x00000000 /* nop */
1146 /* The format of the first PLT entry in a VxWorks shared object. */
1147 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1149 0x8f990008, /* lw t9, 8(gp) */
1150 0x00000000, /* nop */
1151 0x03200008, /* jr t9 */
1152 0x00000000, /* nop */
1153 0x00000000, /* nop */
1154 0x00000000 /* nop */
1157 /* The format of subsequent PLT entries. */
1158 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1160 0x10000000, /* b .PLT_resolver */
1161 0x24180000 /* li t8, <pltindex> */
1164 /* microMIPS 32-bit opcode helper installer. */
1167 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1169 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1170 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1173 /* microMIPS 32-bit opcode helper retriever. */
1176 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1178 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1181 /* Look up an entry in a MIPS ELF linker hash table. */
1183 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1184 ((struct mips_elf_link_hash_entry *) \
1185 elf_link_hash_lookup (&(table)->root, (string), (create), \
1188 /* Traverse a MIPS ELF linker hash table. */
1190 #define mips_elf_link_hash_traverse(table, func, info) \
1191 (elf_link_hash_traverse \
1193 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1196 /* Find the base offsets for thread-local storage in this object,
1197 for GD/LD and IE/LE respectively. */
1199 #define TP_OFFSET 0x7000
1200 #define DTP_OFFSET 0x8000
1203 dtprel_base (struct bfd_link_info *info)
1205 /* If tls_sec is NULL, we should have signalled an error already. */
1206 if (elf_hash_table (info)->tls_sec == NULL)
1208 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1212 tprel_base (struct bfd_link_info *info)
1214 /* If tls_sec is NULL, we should have signalled an error already. */
1215 if (elf_hash_table (info)->tls_sec == NULL)
1217 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1220 /* Create an entry in a MIPS ELF linker hash table. */
1222 static struct bfd_hash_entry *
1223 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1224 struct bfd_hash_table *table, const char *string)
1226 struct mips_elf_link_hash_entry *ret =
1227 (struct mips_elf_link_hash_entry *) entry;
1229 /* Allocate the structure if it has not already been allocated by a
1232 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1234 return (struct bfd_hash_entry *) ret;
1236 /* Call the allocation method of the superclass. */
1237 ret = ((struct mips_elf_link_hash_entry *)
1238 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1242 /* Set local fields. */
1243 memset (&ret->esym, 0, sizeof (EXTR));
1244 /* We use -2 as a marker to indicate that the information has
1245 not been set. -1 means there is no associated ifd. */
1248 ret->possibly_dynamic_relocs = 0;
1249 ret->fn_stub = NULL;
1250 ret->call_stub = NULL;
1251 ret->call_fp_stub = NULL;
1252 ret->global_got_area = GGA_NONE;
1253 ret->got_only_for_calls = TRUE;
1254 ret->readonly_reloc = FALSE;
1255 ret->has_static_relocs = FALSE;
1256 ret->no_fn_stub = FALSE;
1257 ret->need_fn_stub = FALSE;
1258 ret->has_nonpic_branches = FALSE;
1259 ret->needs_lazy_stub = FALSE;
1260 ret->use_plt_entry = FALSE;
1263 return (struct bfd_hash_entry *) ret;
1266 /* Allocate MIPS ELF private object data. */
1269 _bfd_mips_elf_mkobject (bfd *abfd)
1271 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1276 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1278 if (!sec->used_by_bfd)
1280 struct _mips_elf_section_data *sdata;
1281 bfd_size_type amt = sizeof (*sdata);
1283 sdata = bfd_zalloc (abfd, amt);
1286 sec->used_by_bfd = sdata;
1289 return _bfd_elf_new_section_hook (abfd, sec);
1292 /* Read ECOFF debugging information from a .mdebug section into a
1293 ecoff_debug_info structure. */
1296 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1297 struct ecoff_debug_info *debug)
1300 const struct ecoff_debug_swap *swap;
1303 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1304 memset (debug, 0, sizeof (*debug));
1306 ext_hdr = bfd_malloc (swap->external_hdr_size);
1307 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1310 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1311 swap->external_hdr_size))
1314 symhdr = &debug->symbolic_header;
1315 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1317 /* The symbolic header contains absolute file offsets and sizes to
1319 #define READ(ptr, offset, count, size, type) \
1320 if (symhdr->count == 0) \
1321 debug->ptr = NULL; \
1324 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1325 debug->ptr = bfd_malloc (amt); \
1326 if (debug->ptr == NULL) \
1327 goto error_return; \
1328 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1329 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1330 goto error_return; \
1333 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1334 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1335 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1336 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1337 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1338 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1340 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1341 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1342 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1343 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1344 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1352 if (ext_hdr != NULL)
1354 if (debug->line != NULL)
1356 if (debug->external_dnr != NULL)
1357 free (debug->external_dnr);
1358 if (debug->external_pdr != NULL)
1359 free (debug->external_pdr);
1360 if (debug->external_sym != NULL)
1361 free (debug->external_sym);
1362 if (debug->external_opt != NULL)
1363 free (debug->external_opt);
1364 if (debug->external_aux != NULL)
1365 free (debug->external_aux);
1366 if (debug->ss != NULL)
1368 if (debug->ssext != NULL)
1369 free (debug->ssext);
1370 if (debug->external_fdr != NULL)
1371 free (debug->external_fdr);
1372 if (debug->external_rfd != NULL)
1373 free (debug->external_rfd);
1374 if (debug->external_ext != NULL)
1375 free (debug->external_ext);
1379 /* Swap RPDR (runtime procedure table entry) for output. */
1382 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1384 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1385 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1386 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1387 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1388 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1389 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1391 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1392 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1394 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1397 /* Create a runtime procedure table from the .mdebug section. */
1400 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1401 struct bfd_link_info *info, asection *s,
1402 struct ecoff_debug_info *debug)
1404 const struct ecoff_debug_swap *swap;
1405 HDRR *hdr = &debug->symbolic_header;
1407 struct rpdr_ext *erp;
1409 struct pdr_ext *epdr;
1410 struct sym_ext *esym;
1414 bfd_size_type count;
1415 unsigned long sindex;
1419 const char *no_name_func = _("static procedure (no name)");
1427 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1429 sindex = strlen (no_name_func) + 1;
1430 count = hdr->ipdMax;
1433 size = swap->external_pdr_size;
1435 epdr = bfd_malloc (size * count);
1439 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1442 size = sizeof (RPDR);
1443 rp = rpdr = bfd_malloc (size * count);
1447 size = sizeof (char *);
1448 sv = bfd_malloc (size * count);
1452 count = hdr->isymMax;
1453 size = swap->external_sym_size;
1454 esym = bfd_malloc (size * count);
1458 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1461 count = hdr->issMax;
1462 ss = bfd_malloc (count);
1465 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1468 count = hdr->ipdMax;
1469 for (i = 0; i < (unsigned long) count; i++, rp++)
1471 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1472 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1473 rp->adr = sym.value;
1474 rp->regmask = pdr.regmask;
1475 rp->regoffset = pdr.regoffset;
1476 rp->fregmask = pdr.fregmask;
1477 rp->fregoffset = pdr.fregoffset;
1478 rp->frameoffset = pdr.frameoffset;
1479 rp->framereg = pdr.framereg;
1480 rp->pcreg = pdr.pcreg;
1482 sv[i] = ss + sym.iss;
1483 sindex += strlen (sv[i]) + 1;
1487 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1488 size = BFD_ALIGN (size, 16);
1489 rtproc = bfd_alloc (abfd, size);
1492 mips_elf_hash_table (info)->procedure_count = 0;
1496 mips_elf_hash_table (info)->procedure_count = count + 2;
1499 memset (erp, 0, sizeof (struct rpdr_ext));
1501 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1502 strcpy (str, no_name_func);
1503 str += strlen (no_name_func) + 1;
1504 for (i = 0; i < count; i++)
1506 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1507 strcpy (str, sv[i]);
1508 str += strlen (sv[i]) + 1;
1510 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1512 /* Set the size and contents of .rtproc section. */
1514 s->contents = rtproc;
1516 /* Skip this section later on (I don't think this currently
1517 matters, but someday it might). */
1518 s->map_head.link_order = NULL;
1547 /* We're going to create a stub for H. Create a symbol for the stub's
1548 value and size, to help make the disassembly easier to read. */
1551 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1552 struct mips_elf_link_hash_entry *h,
1553 const char *prefix, asection *s, bfd_vma value,
1556 struct bfd_link_hash_entry *bh;
1557 struct elf_link_hash_entry *elfh;
1560 if (ELF_ST_IS_MICROMIPS (h->root.other))
1563 /* Create a new symbol. */
1564 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1566 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1567 BSF_LOCAL, s, value, NULL,
1571 /* Make it a local function. */
1572 elfh = (struct elf_link_hash_entry *) bh;
1573 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1575 elfh->forced_local = 1;
1579 /* We're about to redefine H. Create a symbol to represent H's
1580 current value and size, to help make the disassembly easier
1584 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1585 struct mips_elf_link_hash_entry *h,
1588 struct bfd_link_hash_entry *bh;
1589 struct elf_link_hash_entry *elfh;
1594 /* Read the symbol's value. */
1595 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1596 || h->root.root.type == bfd_link_hash_defweak);
1597 s = h->root.root.u.def.section;
1598 value = h->root.root.u.def.value;
1600 /* Create a new symbol. */
1601 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1603 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1604 BSF_LOCAL, s, value, NULL,
1608 /* Make it local and copy the other attributes from H. */
1609 elfh = (struct elf_link_hash_entry *) bh;
1610 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1611 elfh->other = h->root.other;
1612 elfh->size = h->root.size;
1613 elfh->forced_local = 1;
1617 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1618 function rather than to a hard-float stub. */
1621 section_allows_mips16_refs_p (asection *section)
1625 name = bfd_get_section_name (section->owner, section);
1626 return (FN_STUB_P (name)
1627 || CALL_STUB_P (name)
1628 || CALL_FP_STUB_P (name)
1629 || strcmp (name, ".pdr") == 0);
1632 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1633 stub section of some kind. Return the R_SYMNDX of the target
1634 function, or 0 if we can't decide which function that is. */
1636 static unsigned long
1637 mips16_stub_symndx (const struct elf_backend_data *bed,
1638 asection *sec ATTRIBUTE_UNUSED,
1639 const Elf_Internal_Rela *relocs,
1640 const Elf_Internal_Rela *relend)
1642 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1643 const Elf_Internal_Rela *rel;
1645 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1646 one in a compound relocation. */
1647 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1648 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1649 return ELF_R_SYM (sec->owner, rel->r_info);
1651 /* Otherwise trust the first relocation, whatever its kind. This is
1652 the traditional behavior. */
1653 if (relocs < relend)
1654 return ELF_R_SYM (sec->owner, relocs->r_info);
1659 /* Check the mips16 stubs for a particular symbol, and see if we can
1663 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1664 struct mips_elf_link_hash_entry *h)
1666 /* Dynamic symbols must use the standard call interface, in case other
1667 objects try to call them. */
1668 if (h->fn_stub != NULL
1669 && h->root.dynindx != -1)
1671 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1672 h->need_fn_stub = TRUE;
1675 if (h->fn_stub != NULL
1676 && ! h->need_fn_stub)
1678 /* We don't need the fn_stub; the only references to this symbol
1679 are 16 bit calls. Clobber the size to 0 to prevent it from
1680 being included in the link. */
1681 h->fn_stub->size = 0;
1682 h->fn_stub->flags &= ~SEC_RELOC;
1683 h->fn_stub->reloc_count = 0;
1684 h->fn_stub->flags |= SEC_EXCLUDE;
1687 if (h->call_stub != NULL
1688 && ELF_ST_IS_MIPS16 (h->root.other))
1690 /* We don't need the call_stub; this is a 16 bit function, so
1691 calls from other 16 bit functions are OK. Clobber the size
1692 to 0 to prevent it from being included in the link. */
1693 h->call_stub->size = 0;
1694 h->call_stub->flags &= ~SEC_RELOC;
1695 h->call_stub->reloc_count = 0;
1696 h->call_stub->flags |= SEC_EXCLUDE;
1699 if (h->call_fp_stub != NULL
1700 && ELF_ST_IS_MIPS16 (h->root.other))
1702 /* We don't need the call_stub; this is a 16 bit function, so
1703 calls from other 16 bit functions are OK. Clobber the size
1704 to 0 to prevent it from being included in the link. */
1705 h->call_fp_stub->size = 0;
1706 h->call_fp_stub->flags &= ~SEC_RELOC;
1707 h->call_fp_stub->reloc_count = 0;
1708 h->call_fp_stub->flags |= SEC_EXCLUDE;
1712 /* Hashtable callbacks for mips_elf_la25_stubs. */
1715 mips_elf_la25_stub_hash (const void *entry_)
1717 const struct mips_elf_la25_stub *entry;
1719 entry = (struct mips_elf_la25_stub *) entry_;
1720 return entry->h->root.root.u.def.section->id
1721 + entry->h->root.root.u.def.value;
1725 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1727 const struct mips_elf_la25_stub *entry1, *entry2;
1729 entry1 = (struct mips_elf_la25_stub *) entry1_;
1730 entry2 = (struct mips_elf_la25_stub *) entry2_;
1731 return ((entry1->h->root.root.u.def.section
1732 == entry2->h->root.root.u.def.section)
1733 && (entry1->h->root.root.u.def.value
1734 == entry2->h->root.root.u.def.value));
1737 /* Called by the linker to set up the la25 stub-creation code. FN is
1738 the linker's implementation of add_stub_function. Return true on
1742 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1743 asection *(*fn) (const char *, asection *,
1746 struct mips_elf_link_hash_table *htab;
1748 htab = mips_elf_hash_table (info);
1752 htab->add_stub_section = fn;
1753 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1754 mips_elf_la25_stub_eq, NULL);
1755 if (htab->la25_stubs == NULL)
1761 /* Return true if H is a locally-defined PIC function, in the sense
1762 that it or its fn_stub might need $25 to be valid on entry.
1763 Note that MIPS16 functions set up $gp using PC-relative instructions,
1764 so they themselves never need $25 to be valid. Only non-MIPS16
1765 entry points are of interest here. */
1768 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1770 return ((h->root.root.type == bfd_link_hash_defined
1771 || h->root.root.type == bfd_link_hash_defweak)
1772 && h->root.def_regular
1773 && !bfd_is_abs_section (h->root.root.u.def.section)
1774 && (!ELF_ST_IS_MIPS16 (h->root.other)
1775 || (h->fn_stub && h->need_fn_stub))
1776 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1777 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1780 /* Set *SEC to the input section that contains the target of STUB.
1781 Return the offset of the target from the start of that section. */
1784 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1787 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1789 BFD_ASSERT (stub->h->need_fn_stub);
1790 *sec = stub->h->fn_stub;
1795 *sec = stub->h->root.root.u.def.section;
1796 return stub->h->root.root.u.def.value;
1800 /* STUB describes an la25 stub that we have decided to implement
1801 by inserting an LUI/ADDIU pair before the target function.
1802 Create the section and redirect the function symbol to it. */
1805 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1806 struct bfd_link_info *info)
1808 struct mips_elf_link_hash_table *htab;
1810 asection *s, *input_section;
1813 htab = mips_elf_hash_table (info);
1817 /* Create a unique name for the new section. */
1818 name = bfd_malloc (11 + sizeof (".text.stub."));
1821 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1823 /* Create the section. */
1824 mips_elf_get_la25_target (stub, &input_section);
1825 s = htab->add_stub_section (name, input_section,
1826 input_section->output_section);
1830 /* Make sure that any padding goes before the stub. */
1831 align = input_section->alignment_power;
1832 if (!bfd_set_section_alignment (s->owner, s, align))
1835 s->size = (1 << align) - 8;
1837 /* Create a symbol for the stub. */
1838 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1839 stub->stub_section = s;
1840 stub->offset = s->size;
1842 /* Allocate room for it. */
1847 /* STUB describes an la25 stub that we have decided to implement
1848 with a separate trampoline. Allocate room for it and redirect
1849 the function symbol to it. */
1852 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1853 struct bfd_link_info *info)
1855 struct mips_elf_link_hash_table *htab;
1858 htab = mips_elf_hash_table (info);
1862 /* Create a trampoline section, if we haven't already. */
1863 s = htab->strampoline;
1866 asection *input_section = stub->h->root.root.u.def.section;
1867 s = htab->add_stub_section (".text", NULL,
1868 input_section->output_section);
1869 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1871 htab->strampoline = s;
1874 /* Create a symbol for the stub. */
1875 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1876 stub->stub_section = s;
1877 stub->offset = s->size;
1879 /* Allocate room for it. */
1884 /* H describes a symbol that needs an la25 stub. Make sure that an
1885 appropriate stub exists and point H at it. */
1888 mips_elf_add_la25_stub (struct bfd_link_info *info,
1889 struct mips_elf_link_hash_entry *h)
1891 struct mips_elf_link_hash_table *htab;
1892 struct mips_elf_la25_stub search, *stub;
1893 bfd_boolean use_trampoline_p;
1898 /* Describe the stub we want. */
1899 search.stub_section = NULL;
1903 /* See if we've already created an equivalent stub. */
1904 htab = mips_elf_hash_table (info);
1908 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1912 stub = (struct mips_elf_la25_stub *) *slot;
1915 /* We can reuse the existing stub. */
1916 h->la25_stub = stub;
1920 /* Create a permanent copy of ENTRY and add it to the hash table. */
1921 stub = bfd_malloc (sizeof (search));
1927 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1928 of the section and if we would need no more than 2 nops. */
1929 value = mips_elf_get_la25_target (stub, &s);
1930 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1932 h->la25_stub = stub;
1933 return (use_trampoline_p
1934 ? mips_elf_add_la25_trampoline (stub, info)
1935 : mips_elf_add_la25_intro (stub, info));
1938 /* A mips_elf_link_hash_traverse callback that is called before sizing
1939 sections. DATA points to a mips_htab_traverse_info structure. */
1942 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1944 struct mips_htab_traverse_info *hti;
1946 hti = (struct mips_htab_traverse_info *) data;
1947 if (!hti->info->relocatable)
1948 mips_elf_check_mips16_stubs (hti->info, h);
1950 if (mips_elf_local_pic_function_p (h))
1952 /* PR 12845: If H is in a section that has been garbage
1953 collected it will have its output section set to *ABS*. */
1954 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1957 /* H is a function that might need $25 to be valid on entry.
1958 If we're creating a non-PIC relocatable object, mark H as
1959 being PIC. If we're creating a non-relocatable object with
1960 non-PIC branches and jumps to H, make sure that H has an la25
1962 if (hti->info->relocatable)
1964 if (!PIC_OBJECT_P (hti->output_bfd))
1965 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1967 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1976 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1977 Most mips16 instructions are 16 bits, but these instructions
1980 The format of these instructions is:
1982 +--------------+--------------------------------+
1983 | JALX | X| Imm 20:16 | Imm 25:21 |
1984 +--------------+--------------------------------+
1986 +-----------------------------------------------+
1988 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1989 Note that the immediate value in the first word is swapped.
1991 When producing a relocatable object file, R_MIPS16_26 is
1992 handled mostly like R_MIPS_26. In particular, the addend is
1993 stored as a straight 26-bit value in a 32-bit instruction.
1994 (gas makes life simpler for itself by never adjusting a
1995 R_MIPS16_26 reloc to be against a section, so the addend is
1996 always zero). However, the 32 bit instruction is stored as 2
1997 16-bit values, rather than a single 32-bit value. In a
1998 big-endian file, the result is the same; in a little-endian
1999 file, the two 16-bit halves of the 32 bit value are swapped.
2000 This is so that a disassembler can recognize the jal
2003 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2004 instruction stored as two 16-bit values. The addend A is the
2005 contents of the targ26 field. The calculation is the same as
2006 R_MIPS_26. When storing the calculated value, reorder the
2007 immediate value as shown above, and don't forget to store the
2008 value as two 16-bit values.
2010 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2014 +--------+----------------------+
2018 +--------+----------------------+
2021 +----------+------+-------------+
2025 +----------+--------------------+
2026 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2027 ((sub1 << 16) | sub2)).
2029 When producing a relocatable object file, the calculation is
2030 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2031 When producing a fully linked file, the calculation is
2032 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2033 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2035 The table below lists the other MIPS16 instruction relocations.
2036 Each one is calculated in the same way as the non-MIPS16 relocation
2037 given on the right, but using the extended MIPS16 layout of 16-bit
2040 R_MIPS16_GPREL R_MIPS_GPREL16
2041 R_MIPS16_GOT16 R_MIPS_GOT16
2042 R_MIPS16_CALL16 R_MIPS_CALL16
2043 R_MIPS16_HI16 R_MIPS_HI16
2044 R_MIPS16_LO16 R_MIPS_LO16
2046 A typical instruction will have a format like this:
2048 +--------------+--------------------------------+
2049 | EXTEND | Imm 10:5 | Imm 15:11 |
2050 +--------------+--------------------------------+
2051 | Major | rx | ry | Imm 4:0 |
2052 +--------------+--------------------------------+
2054 EXTEND is the five bit value 11110. Major is the instruction
2057 All we need to do here is shuffle the bits appropriately.
2058 As above, the two 16-bit halves must be swapped on a
2059 little-endian system. */
2061 static inline bfd_boolean
2062 mips16_reloc_p (int r_type)
2067 case R_MIPS16_GPREL:
2068 case R_MIPS16_GOT16:
2069 case R_MIPS16_CALL16:
2072 case R_MIPS16_TLS_GD:
2073 case R_MIPS16_TLS_LDM:
2074 case R_MIPS16_TLS_DTPREL_HI16:
2075 case R_MIPS16_TLS_DTPREL_LO16:
2076 case R_MIPS16_TLS_GOTTPREL:
2077 case R_MIPS16_TLS_TPREL_HI16:
2078 case R_MIPS16_TLS_TPREL_LO16:
2086 /* Check if a microMIPS reloc. */
2088 static inline bfd_boolean
2089 micromips_reloc_p (unsigned int r_type)
2091 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2094 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2095 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2096 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2098 static inline bfd_boolean
2099 micromips_reloc_shuffle_p (unsigned int r_type)
2101 return (micromips_reloc_p (r_type)
2102 && r_type != R_MICROMIPS_PC7_S1
2103 && r_type != R_MICROMIPS_PC10_S1);
2106 static inline bfd_boolean
2107 got16_reloc_p (int r_type)
2109 return (r_type == R_MIPS_GOT16
2110 || r_type == R_MIPS16_GOT16
2111 || r_type == R_MICROMIPS_GOT16);
2114 static inline bfd_boolean
2115 call16_reloc_p (int r_type)
2117 return (r_type == R_MIPS_CALL16
2118 || r_type == R_MIPS16_CALL16
2119 || r_type == R_MICROMIPS_CALL16);
2122 static inline bfd_boolean
2123 got_disp_reloc_p (unsigned int r_type)
2125 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2128 static inline bfd_boolean
2129 got_page_reloc_p (unsigned int r_type)
2131 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2134 static inline bfd_boolean
2135 got_ofst_reloc_p (unsigned int r_type)
2137 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2140 static inline bfd_boolean
2141 got_hi16_reloc_p (unsigned int r_type)
2143 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2146 static inline bfd_boolean
2147 got_lo16_reloc_p (unsigned int r_type)
2149 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2152 static inline bfd_boolean
2153 call_hi16_reloc_p (unsigned int r_type)
2155 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2158 static inline bfd_boolean
2159 call_lo16_reloc_p (unsigned int r_type)
2161 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2164 static inline bfd_boolean
2165 hi16_reloc_p (int r_type)
2167 return (r_type == R_MIPS_HI16
2168 || r_type == R_MIPS16_HI16
2169 || r_type == R_MICROMIPS_HI16);
2172 static inline bfd_boolean
2173 lo16_reloc_p (int r_type)
2175 return (r_type == R_MIPS_LO16
2176 || r_type == R_MIPS16_LO16
2177 || r_type == R_MICROMIPS_LO16);
2180 static inline bfd_boolean
2181 mips16_call_reloc_p (int r_type)
2183 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2186 static inline bfd_boolean
2187 jal_reloc_p (int r_type)
2189 return (r_type == R_MIPS_26
2190 || r_type == R_MIPS16_26
2191 || r_type == R_MICROMIPS_26_S1);
2194 static inline bfd_boolean
2195 micromips_branch_reloc_p (int r_type)
2197 return (r_type == R_MICROMIPS_26_S1
2198 || r_type == R_MICROMIPS_PC16_S1
2199 || r_type == R_MICROMIPS_PC10_S1
2200 || r_type == R_MICROMIPS_PC7_S1);
2203 static inline bfd_boolean
2204 tls_gd_reloc_p (unsigned int r_type)
2206 return (r_type == R_MIPS_TLS_GD
2207 || r_type == R_MIPS16_TLS_GD
2208 || r_type == R_MICROMIPS_TLS_GD);
2211 static inline bfd_boolean
2212 tls_ldm_reloc_p (unsigned int r_type)
2214 return (r_type == R_MIPS_TLS_LDM
2215 || r_type == R_MIPS16_TLS_LDM
2216 || r_type == R_MICROMIPS_TLS_LDM);
2219 static inline bfd_boolean
2220 tls_gottprel_reloc_p (unsigned int r_type)
2222 return (r_type == R_MIPS_TLS_GOTTPREL
2223 || r_type == R_MIPS16_TLS_GOTTPREL
2224 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2228 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2229 bfd_boolean jal_shuffle, bfd_byte *data)
2231 bfd_vma first, second, val;
2233 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2236 /* Pick up the first and second halfwords of the instruction. */
2237 first = bfd_get_16 (abfd, data);
2238 second = bfd_get_16 (abfd, data + 2);
2239 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2240 val = first << 16 | second;
2241 else if (r_type != R_MIPS16_26)
2242 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2243 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2245 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2246 | ((first & 0x1f) << 21) | second);
2247 bfd_put_32 (abfd, val, data);
2251 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2252 bfd_boolean jal_shuffle, bfd_byte *data)
2254 bfd_vma first, second, val;
2256 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2259 val = bfd_get_32 (abfd, data);
2260 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2262 second = val & 0xffff;
2265 else if (r_type != R_MIPS16_26)
2267 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2268 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2272 second = val & 0xffff;
2273 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2274 | ((val >> 21) & 0x1f);
2276 bfd_put_16 (abfd, second, data + 2);
2277 bfd_put_16 (abfd, first, data);
2280 bfd_reloc_status_type
2281 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2282 arelent *reloc_entry, asection *input_section,
2283 bfd_boolean relocatable, void *data, bfd_vma gp)
2287 bfd_reloc_status_type status;
2289 if (bfd_is_com_section (symbol->section))
2292 relocation = symbol->value;
2294 relocation += symbol->section->output_section->vma;
2295 relocation += symbol->section->output_offset;
2297 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2298 return bfd_reloc_outofrange;
2300 /* Set val to the offset into the section or symbol. */
2301 val = reloc_entry->addend;
2303 _bfd_mips_elf_sign_extend (val, 16);
2305 /* Adjust val for the final section location and GP value. If we
2306 are producing relocatable output, we don't want to do this for
2307 an external symbol. */
2309 || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 val += relocation - gp;
2312 if (reloc_entry->howto->partial_inplace)
2314 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2316 + reloc_entry->address);
2317 if (status != bfd_reloc_ok)
2321 reloc_entry->addend = val;
2324 reloc_entry->address += input_section->output_offset;
2326 return bfd_reloc_ok;
2329 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2330 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2331 that contains the relocation field and DATA points to the start of
2336 struct mips_hi16 *next;
2338 asection *input_section;
2342 /* FIXME: This should not be a static variable. */
2344 static struct mips_hi16 *mips_hi16_list;
2346 /* A howto special_function for REL *HI16 relocations. We can only
2347 calculate the correct value once we've seen the partnering
2348 *LO16 relocation, so just save the information for later.
2350 The ABI requires that the *LO16 immediately follow the *HI16.
2351 However, as a GNU extension, we permit an arbitrary number of
2352 *HI16s to be associated with a single *LO16. This significantly
2353 simplies the relocation handling in gcc. */
2355 bfd_reloc_status_type
2356 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2357 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2358 asection *input_section, bfd *output_bfd,
2359 char **error_message ATTRIBUTE_UNUSED)
2361 struct mips_hi16 *n;
2363 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364 return bfd_reloc_outofrange;
2366 n = bfd_malloc (sizeof *n);
2368 return bfd_reloc_outofrange;
2370 n->next = mips_hi16_list;
2372 n->input_section = input_section;
2373 n->rel = *reloc_entry;
2376 if (output_bfd != NULL)
2377 reloc_entry->address += input_section->output_offset;
2379 return bfd_reloc_ok;
2382 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2383 like any other 16-bit relocation when applied to global symbols, but is
2384 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2386 bfd_reloc_status_type
2387 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2388 void *data, asection *input_section,
2389 bfd *output_bfd, char **error_message)
2391 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2392 || bfd_is_und_section (bfd_get_section (symbol))
2393 || bfd_is_com_section (bfd_get_section (symbol)))
2394 /* The relocation is against a global symbol. */
2395 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2396 input_section, output_bfd,
2399 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2400 input_section, output_bfd, error_message);
2403 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2404 is a straightforward 16 bit inplace relocation, but we must deal with
2405 any partnering high-part relocations as well. */
2407 bfd_reloc_status_type
2408 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2409 void *data, asection *input_section,
2410 bfd *output_bfd, char **error_message)
2413 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2415 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2416 return bfd_reloc_outofrange;
2418 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2420 vallo = bfd_get_32 (abfd, location);
2421 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2424 while (mips_hi16_list != NULL)
2426 bfd_reloc_status_type ret;
2427 struct mips_hi16 *hi;
2429 hi = mips_hi16_list;
2431 /* R_MIPS*_GOT16 relocations are something of a special case. We
2432 want to install the addend in the same way as for a R_MIPS*_HI16
2433 relocation (with a rightshift of 16). However, since GOT16
2434 relocations can also be used with global symbols, their howto
2435 has a rightshift of 0. */
2436 if (hi->rel.howto->type == R_MIPS_GOT16)
2437 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2438 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2439 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2440 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2441 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2443 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2444 carry or borrow will induce a change of +1 or -1 in the high part. */
2445 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2447 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2448 hi->input_section, output_bfd,
2450 if (ret != bfd_reloc_ok)
2453 mips_hi16_list = hi->next;
2457 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2458 input_section, output_bfd,
2462 /* A generic howto special_function. This calculates and installs the
2463 relocation itself, thus avoiding the oft-discussed problems in
2464 bfd_perform_relocation and bfd_install_relocation. */
2466 bfd_reloc_status_type
2467 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2468 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2469 asection *input_section, bfd *output_bfd,
2470 char **error_message ATTRIBUTE_UNUSED)
2473 bfd_reloc_status_type status;
2474 bfd_boolean relocatable;
2476 relocatable = (output_bfd != NULL);
2478 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2479 return bfd_reloc_outofrange;
2481 /* Build up the field adjustment in VAL. */
2483 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2485 /* Either we're calculating the final field value or we have a
2486 relocation against a section symbol. Add in the section's
2487 offset or address. */
2488 val += symbol->section->output_section->vma;
2489 val += symbol->section->output_offset;
2494 /* We're calculating the final field value. Add in the symbol's value
2495 and, if pc-relative, subtract the address of the field itself. */
2496 val += symbol->value;
2497 if (reloc_entry->howto->pc_relative)
2499 val -= input_section->output_section->vma;
2500 val -= input_section->output_offset;
2501 val -= reloc_entry->address;
2505 /* VAL is now the final adjustment. If we're keeping this relocation
2506 in the output file, and if the relocation uses a separate addend,
2507 we just need to add VAL to that addend. Otherwise we need to add
2508 VAL to the relocation field itself. */
2509 if (relocatable && !reloc_entry->howto->partial_inplace)
2510 reloc_entry->addend += val;
2513 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2515 /* Add in the separate addend, if any. */
2516 val += reloc_entry->addend;
2518 /* Add VAL to the relocation field. */
2519 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2521 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2523 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2526 if (status != bfd_reloc_ok)
2531 reloc_entry->address += input_section->output_offset;
2533 return bfd_reloc_ok;
2536 /* Swap an entry in a .gptab section. Note that these routines rely
2537 on the equivalence of the two elements of the union. */
2540 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2543 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2544 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2548 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2549 Elf32_External_gptab *ex)
2551 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2552 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2556 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2557 Elf32_External_compact_rel *ex)
2559 H_PUT_32 (abfd, in->id1, ex->id1);
2560 H_PUT_32 (abfd, in->num, ex->num);
2561 H_PUT_32 (abfd, in->id2, ex->id2);
2562 H_PUT_32 (abfd, in->offset, ex->offset);
2563 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2564 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2568 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2569 Elf32_External_crinfo *ex)
2573 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2574 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2575 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2576 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2577 H_PUT_32 (abfd, l, ex->info);
2578 H_PUT_32 (abfd, in->konst, ex->konst);
2579 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2582 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2583 routines swap this structure in and out. They are used outside of
2584 BFD, so they are globally visible. */
2587 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2590 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2591 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2592 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2593 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2594 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2595 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2599 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2600 Elf32_External_RegInfo *ex)
2602 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2603 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2604 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2605 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2606 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2607 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2610 /* In the 64 bit ABI, the .MIPS.options section holds register
2611 information in an Elf64_Reginfo structure. These routines swap
2612 them in and out. They are globally visible because they are used
2613 outside of BFD. These routines are here so that gas can call them
2614 without worrying about whether the 64 bit ABI has been included. */
2617 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2618 Elf64_Internal_RegInfo *in)
2620 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2621 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2630 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2631 Elf64_External_RegInfo *ex)
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2635 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2636 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2637 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2638 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2639 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2642 /* Swap in an options header. */
2645 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2646 Elf_Internal_Options *in)
2648 in->kind = H_GET_8 (abfd, ex->kind);
2649 in->size = H_GET_8 (abfd, ex->size);
2650 in->section = H_GET_16 (abfd, ex->section);
2651 in->info = H_GET_32 (abfd, ex->info);
2654 /* Swap out an options header. */
2657 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2658 Elf_External_Options *ex)
2660 H_PUT_8 (abfd, in->kind, ex->kind);
2661 H_PUT_8 (abfd, in->size, ex->size);
2662 H_PUT_16 (abfd, in->section, ex->section);
2663 H_PUT_32 (abfd, in->info, ex->info);
2666 /* This function is called via qsort() to sort the dynamic relocation
2667 entries by increasing r_symndx value. */
2670 sort_dynamic_relocs (const void *arg1, const void *arg2)
2672 Elf_Internal_Rela int_reloc1;
2673 Elf_Internal_Rela int_reloc2;
2676 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2677 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2679 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2683 if (int_reloc1.r_offset < int_reloc2.r_offset)
2685 if (int_reloc1.r_offset > int_reloc2.r_offset)
2690 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2693 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2694 const void *arg2 ATTRIBUTE_UNUSED)
2697 Elf_Internal_Rela int_reloc1[3];
2698 Elf_Internal_Rela int_reloc2[3];
2700 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2701 (reldyn_sorting_bfd, arg1, int_reloc1);
2702 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2703 (reldyn_sorting_bfd, arg2, int_reloc2);
2705 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2707 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2710 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2712 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2721 /* This routine is used to write out ECOFF debugging external symbol
2722 information. It is called via mips_elf_link_hash_traverse. The
2723 ECOFF external symbol information must match the ELF external
2724 symbol information. Unfortunately, at this point we don't know
2725 whether a symbol is required by reloc information, so the two
2726 tables may wind up being different. We must sort out the external
2727 symbol information before we can set the final size of the .mdebug
2728 section, and we must set the size of the .mdebug section before we
2729 can relocate any sections, and we can't know which symbols are
2730 required by relocation until we relocate the sections.
2731 Fortunately, it is relatively unlikely that any symbol will be
2732 stripped but required by a reloc. In particular, it can not happen
2733 when generating a final executable. */
2736 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2738 struct extsym_info *einfo = data;
2740 asection *sec, *output_section;
2742 if (h->root.indx == -2)
2744 else if ((h->root.def_dynamic
2745 || h->root.ref_dynamic
2746 || h->root.type == bfd_link_hash_new)
2747 && !h->root.def_regular
2748 && !h->root.ref_regular)
2750 else if (einfo->info->strip == strip_all
2751 || (einfo->info->strip == strip_some
2752 && bfd_hash_lookup (einfo->info->keep_hash,
2753 h->root.root.root.string,
2754 FALSE, FALSE) == NULL))
2762 if (h->esym.ifd == -2)
2765 h->esym.cobol_main = 0;
2766 h->esym.weakext = 0;
2767 h->esym.reserved = 0;
2768 h->esym.ifd = ifdNil;
2769 h->esym.asym.value = 0;
2770 h->esym.asym.st = stGlobal;
2772 if (h->root.root.type == bfd_link_hash_undefined
2773 || h->root.root.type == bfd_link_hash_undefweak)
2777 /* Use undefined class. Also, set class and type for some
2779 name = h->root.root.root.string;
2780 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2781 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2783 h->esym.asym.sc = scData;
2784 h->esym.asym.st = stLabel;
2785 h->esym.asym.value = 0;
2787 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2789 h->esym.asym.sc = scAbs;
2790 h->esym.asym.st = stLabel;
2791 h->esym.asym.value =
2792 mips_elf_hash_table (einfo->info)->procedure_count;
2794 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2796 h->esym.asym.sc = scAbs;
2797 h->esym.asym.st = stLabel;
2798 h->esym.asym.value = elf_gp (einfo->abfd);
2801 h->esym.asym.sc = scUndefined;
2803 else if (h->root.root.type != bfd_link_hash_defined
2804 && h->root.root.type != bfd_link_hash_defweak)
2805 h->esym.asym.sc = scAbs;
2810 sec = h->root.root.u.def.section;
2811 output_section = sec->output_section;
2813 /* When making a shared library and symbol h is the one from
2814 the another shared library, OUTPUT_SECTION may be null. */
2815 if (output_section == NULL)
2816 h->esym.asym.sc = scUndefined;
2819 name = bfd_section_name (output_section->owner, output_section);
2821 if (strcmp (name, ".text") == 0)
2822 h->esym.asym.sc = scText;
2823 else if (strcmp (name, ".data") == 0)
2824 h->esym.asym.sc = scData;
2825 else if (strcmp (name, ".sdata") == 0)
2826 h->esym.asym.sc = scSData;
2827 else if (strcmp (name, ".rodata") == 0
2828 || strcmp (name, ".rdata") == 0)
2829 h->esym.asym.sc = scRData;
2830 else if (strcmp (name, ".bss") == 0)
2831 h->esym.asym.sc = scBss;
2832 else if (strcmp (name, ".sbss") == 0)
2833 h->esym.asym.sc = scSBss;
2834 else if (strcmp (name, ".init") == 0)
2835 h->esym.asym.sc = scInit;
2836 else if (strcmp (name, ".fini") == 0)
2837 h->esym.asym.sc = scFini;
2839 h->esym.asym.sc = scAbs;
2843 h->esym.asym.reserved = 0;
2844 h->esym.asym.index = indexNil;
2847 if (h->root.root.type == bfd_link_hash_common)
2848 h->esym.asym.value = h->root.root.u.c.size;
2849 else if (h->root.root.type == bfd_link_hash_defined
2850 || h->root.root.type == bfd_link_hash_defweak)
2852 if (h->esym.asym.sc == scCommon)
2853 h->esym.asym.sc = scBss;
2854 else if (h->esym.asym.sc == scSCommon)
2855 h->esym.asym.sc = scSBss;
2857 sec = h->root.root.u.def.section;
2858 output_section = sec->output_section;
2859 if (output_section != NULL)
2860 h->esym.asym.value = (h->root.root.u.def.value
2861 + sec->output_offset
2862 + output_section->vma);
2864 h->esym.asym.value = 0;
2868 struct mips_elf_link_hash_entry *hd = h;
2870 while (hd->root.root.type == bfd_link_hash_indirect)
2871 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2873 if (hd->needs_lazy_stub)
2875 BFD_ASSERT (hd->root.plt.plist != NULL);
2876 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2877 /* Set type and value for a symbol with a function stub. */
2878 h->esym.asym.st = stProc;
2879 sec = hd->root.root.u.def.section;
2881 h->esym.asym.value = 0;
2884 output_section = sec->output_section;
2885 if (output_section != NULL)
2886 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2887 + sec->output_offset
2888 + output_section->vma);
2890 h->esym.asym.value = 0;
2895 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2896 h->root.root.root.string,
2899 einfo->failed = TRUE;
2906 /* A comparison routine used to sort .gptab entries. */
2909 gptab_compare (const void *p1, const void *p2)
2911 const Elf32_gptab *a1 = p1;
2912 const Elf32_gptab *a2 = p2;
2914 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2917 /* Functions to manage the got entry hash table. */
2919 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2922 static INLINE hashval_t
2923 mips_elf_hash_bfd_vma (bfd_vma addr)
2926 return addr + (addr >> 32);
2933 mips_elf_got_entry_hash (const void *entry_)
2935 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2937 return (entry->symndx
2938 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2939 + (entry->tls_type == GOT_TLS_LDM ? 0
2940 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2941 : entry->symndx >= 0 ? (entry->abfd->id
2942 + mips_elf_hash_bfd_vma (entry->d.addend))
2943 : entry->d.h->root.root.root.hash));
2947 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2949 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2950 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2952 return (e1->symndx == e2->symndx
2953 && e1->tls_type == e2->tls_type
2954 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2955 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2956 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2957 && e1->d.addend == e2->d.addend)
2958 : e2->abfd && e1->d.h == e2->d.h));
2962 mips_got_page_ref_hash (const void *ref_)
2964 const struct mips_got_page_ref *ref;
2966 ref = (const struct mips_got_page_ref *) ref_;
2967 return ((ref->symndx >= 0
2968 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2969 : ref->u.h->root.root.root.hash)
2970 + mips_elf_hash_bfd_vma (ref->addend));
2974 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2976 const struct mips_got_page_ref *ref1, *ref2;
2978 ref1 = (const struct mips_got_page_ref *) ref1_;
2979 ref2 = (const struct mips_got_page_ref *) ref2_;
2980 return (ref1->symndx == ref2->symndx
2981 && (ref1->symndx < 0
2982 ? ref1->u.h == ref2->u.h
2983 : ref1->u.abfd == ref2->u.abfd)
2984 && ref1->addend == ref2->addend);
2988 mips_got_page_entry_hash (const void *entry_)
2990 const struct mips_got_page_entry *entry;
2992 entry = (const struct mips_got_page_entry *) entry_;
2993 return entry->sec->id;
2997 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2999 const struct mips_got_page_entry *entry1, *entry2;
3001 entry1 = (const struct mips_got_page_entry *) entry1_;
3002 entry2 = (const struct mips_got_page_entry *) entry2_;
3003 return entry1->sec == entry2->sec;
3006 /* Create and return a new mips_got_info structure. */
3008 static struct mips_got_info *
3009 mips_elf_create_got_info (bfd *abfd)
3011 struct mips_got_info *g;
3013 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3017 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3018 mips_elf_got_entry_eq, NULL);
3019 if (g->got_entries == NULL)
3022 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3023 mips_got_page_ref_eq, NULL);
3024 if (g->got_page_refs == NULL)
3030 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3031 CREATE_P and if ABFD doesn't already have a GOT. */
3033 static struct mips_got_info *
3034 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3036 struct mips_elf_obj_tdata *tdata;
3038 if (!is_mips_elf (abfd))
3041 tdata = mips_elf_tdata (abfd);
3042 if (!tdata->got && create_p)
3043 tdata->got = mips_elf_create_got_info (abfd);
3047 /* Record that ABFD should use output GOT G. */
3050 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3052 struct mips_elf_obj_tdata *tdata;
3054 BFD_ASSERT (is_mips_elf (abfd));
3055 tdata = mips_elf_tdata (abfd);
3058 /* The GOT structure itself and the hash table entries are
3059 allocated to a bfd, but the hash tables aren't. */
3060 htab_delete (tdata->got->got_entries);
3061 htab_delete (tdata->got->got_page_refs);
3062 if (tdata->got->got_page_entries)
3063 htab_delete (tdata->got->got_page_entries);
3068 /* Return the dynamic relocation section. If it doesn't exist, try to
3069 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3070 if creation fails. */
3073 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3079 dname = MIPS_ELF_REL_DYN_NAME (info);
3080 dynobj = elf_hash_table (info)->dynobj;
3081 sreloc = bfd_get_linker_section (dynobj, dname);
3082 if (sreloc == NULL && create_p)
3084 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3089 | SEC_LINKER_CREATED
3092 || ! bfd_set_section_alignment (dynobj, sreloc,
3093 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3099 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3102 mips_elf_reloc_tls_type (unsigned int r_type)
3104 if (tls_gd_reloc_p (r_type))
3107 if (tls_ldm_reloc_p (r_type))
3110 if (tls_gottprel_reloc_p (r_type))
3113 return GOT_TLS_NONE;
3116 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3119 mips_tls_got_entries (unsigned int type)
3136 /* Count the number of relocations needed for a TLS GOT entry, with
3137 access types from TLS_TYPE, and symbol H (or a local symbol if H
3141 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3142 struct elf_link_hash_entry *h)
3145 bfd_boolean need_relocs = FALSE;
3146 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3148 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3149 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3152 if ((info->shared || indx != 0)
3154 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3155 || h->root.type != bfd_link_hash_undefweak))
3164 return indx != 0 ? 2 : 1;
3170 return info->shared ? 1 : 0;
3177 /* Add the number of GOT entries and TLS relocations required by ENTRY
3181 mips_elf_count_got_entry (struct bfd_link_info *info,
3182 struct mips_got_info *g,
3183 struct mips_got_entry *entry)
3185 if (entry->tls_type)
3187 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3188 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3190 ? &entry->d.h->root : NULL);
3192 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3193 g->local_gotno += 1;
3195 g->global_gotno += 1;
3198 /* Output a simple dynamic relocation into SRELOC. */
3201 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3203 unsigned long reloc_index,
3208 Elf_Internal_Rela rel[3];
3210 memset (rel, 0, sizeof (rel));
3212 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3213 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3215 if (ABI_64_P (output_bfd))
3217 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3218 (output_bfd, &rel[0],
3220 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3223 bfd_elf32_swap_reloc_out
3224 (output_bfd, &rel[0],
3226 + reloc_index * sizeof (Elf32_External_Rel)));
3229 /* Initialize a set of TLS GOT entries for one symbol. */
3232 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3233 struct mips_got_entry *entry,
3234 struct mips_elf_link_hash_entry *h,
3237 struct mips_elf_link_hash_table *htab;
3239 asection *sreloc, *sgot;
3240 bfd_vma got_offset, got_offset2;
3241 bfd_boolean need_relocs = FALSE;
3243 htab = mips_elf_hash_table (info);
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3254 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3255 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3256 indx = h->root.dynindx;
3259 if (entry->tls_initialized)
3262 if ((info->shared || indx != 0)
3264 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3265 || h->root.type != bfd_link_hash_undefweak))
3268 /* MINUS_ONE means the symbol is not defined in this object. It may not
3269 be defined at all; assume that the value doesn't matter in that
3270 case. Otherwise complain if we would use the value. */
3271 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3272 || h->root.root.type == bfd_link_hash_undefweak);
3274 /* Emit necessary relocations. */
3275 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3276 got_offset = entry->gotidx;
3278 switch (entry->tls_type)
3281 /* General Dynamic. */
3282 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3286 mips_elf_output_dynamic_relocation
3287 (abfd, sreloc, sreloc->reloc_count++, indx,
3288 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3289 sgot->output_offset + sgot->output_section->vma + got_offset);
3292 mips_elf_output_dynamic_relocation
3293 (abfd, sreloc, sreloc->reloc_count++, indx,
3294 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3295 sgot->output_offset + sgot->output_section->vma + got_offset2);
3297 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3298 sgot->contents + got_offset2);
3302 MIPS_ELF_PUT_WORD (abfd, 1,
3303 sgot->contents + got_offset);
3304 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3305 sgot->contents + got_offset2);
3310 /* Initial Exec model. */
3314 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3315 sgot->contents + got_offset);
3317 MIPS_ELF_PUT_WORD (abfd, 0,
3318 sgot->contents + got_offset);
3320 mips_elf_output_dynamic_relocation
3321 (abfd, sreloc, sreloc->reloc_count++, indx,
3322 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3323 sgot->output_offset + sgot->output_section->vma + got_offset);
3326 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3327 sgot->contents + got_offset);
3331 /* The initial offset is zero, and the LD offsets will include the
3332 bias by DTP_OFFSET. */
3333 MIPS_ELF_PUT_WORD (abfd, 0,
3334 sgot->contents + got_offset
3335 + MIPS_ELF_GOT_SIZE (abfd));
3338 MIPS_ELF_PUT_WORD (abfd, 1,
3339 sgot->contents + got_offset);
3341 mips_elf_output_dynamic_relocation
3342 (abfd, sreloc, sreloc->reloc_count++, indx,
3343 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3344 sgot->output_offset + sgot->output_section->vma + got_offset);
3351 entry->tls_initialized = TRUE;
3354 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3355 for global symbol H. .got.plt comes before the GOT, so the offset
3356 will be negative. */
3359 mips_elf_gotplt_index (struct bfd_link_info *info,
3360 struct elf_link_hash_entry *h)
3362 bfd_vma got_address, got_value;
3363 struct mips_elf_link_hash_table *htab;
3365 htab = mips_elf_hash_table (info);
3366 BFD_ASSERT (htab != NULL);
3368 BFD_ASSERT (h->plt.plist != NULL);
3369 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3371 /* Calculate the address of the associated .got.plt entry. */
3372 got_address = (htab->sgotplt->output_section->vma
3373 + htab->sgotplt->output_offset
3374 + (h->plt.plist->gotplt_index
3375 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3377 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3378 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3379 + htab->root.hgot->root.u.def.section->output_offset
3380 + htab->root.hgot->root.u.def.value);
3382 return got_address - got_value;
3385 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3386 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3387 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3388 offset can be found. */
3391 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3392 bfd_vma value, unsigned long r_symndx,
3393 struct mips_elf_link_hash_entry *h, int r_type)
3395 struct mips_elf_link_hash_table *htab;
3396 struct mips_got_entry *entry;
3398 htab = mips_elf_hash_table (info);
3399 BFD_ASSERT (htab != NULL);
3401 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3402 r_symndx, h, r_type);
3406 if (entry->tls_type)
3407 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3408 return entry->gotidx;
3411 /* Return the GOT index of global symbol H in the primary GOT. */
3414 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3415 struct elf_link_hash_entry *h)
3417 struct mips_elf_link_hash_table *htab;
3418 long global_got_dynindx;
3419 struct mips_got_info *g;
3422 htab = mips_elf_hash_table (info);
3423 BFD_ASSERT (htab != NULL);
3425 global_got_dynindx = 0;
3426 if (htab->global_gotsym != NULL)
3427 global_got_dynindx = htab->global_gotsym->dynindx;
3429 /* Once we determine the global GOT entry with the lowest dynamic
3430 symbol table index, we must put all dynamic symbols with greater
3431 indices into the primary GOT. That makes it easy to calculate the
3433 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3434 g = mips_elf_bfd_got (obfd, FALSE);
3435 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3436 * MIPS_ELF_GOT_SIZE (obfd));
3437 BFD_ASSERT (got_index < htab->sgot->size);
3442 /* Return the GOT index for the global symbol indicated by H, which is
3443 referenced by a relocation of type R_TYPE in IBFD. */
3446 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3447 struct elf_link_hash_entry *h, int r_type)
3449 struct mips_elf_link_hash_table *htab;
3450 struct mips_got_info *g;
3451 struct mips_got_entry lookup, *entry;
3454 htab = mips_elf_hash_table (info);
3455 BFD_ASSERT (htab != NULL);
3457 g = mips_elf_bfd_got (ibfd, FALSE);
3460 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3461 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3462 return mips_elf_primary_global_got_index (obfd, info, h);
3466 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3467 entry = htab_find (g->got_entries, &lookup);
3470 gotidx = entry->gotidx;
3471 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3473 if (lookup.tls_type)
3475 bfd_vma value = MINUS_ONE;
3477 if ((h->root.type == bfd_link_hash_defined
3478 || h->root.type == bfd_link_hash_defweak)
3479 && h->root.u.def.section->output_section)
3480 value = (h->root.u.def.value
3481 + h->root.u.def.section->output_offset
3482 + h->root.u.def.section->output_section->vma);
3484 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3489 /* Find a GOT page entry that points to within 32KB of VALUE. These
3490 entries are supposed to be placed at small offsets in the GOT, i.e.,
3491 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3492 entry could be created. If OFFSETP is nonnull, use it to return the
3493 offset of the GOT entry from VALUE. */
3496 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3497 bfd_vma value, bfd_vma *offsetp)
3499 bfd_vma page, got_index;
3500 struct mips_got_entry *entry;
3502 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3503 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3504 NULL, R_MIPS_GOT_PAGE);
3509 got_index = entry->gotidx;
3512 *offsetp = value - entry->d.address;
3517 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3518 EXTERNAL is true if the relocation was originally against a global
3519 symbol that binds locally. */
3522 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3523 bfd_vma value, bfd_boolean external)
3525 struct mips_got_entry *entry;
3527 /* GOT16 relocations against local symbols are followed by a LO16
3528 relocation; those against global symbols are not. Thus if the
3529 symbol was originally local, the GOT16 relocation should load the
3530 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3532 value = mips_elf_high (value) << 16;
3534 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3535 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3536 same in all cases. */
3537 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3538 NULL, R_MIPS_GOT16);
3540 return entry->gotidx;
3545 /* Returns the offset for the entry at the INDEXth position
3549 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3550 bfd *input_bfd, bfd_vma got_index)
3552 struct mips_elf_link_hash_table *htab;
3556 htab = mips_elf_hash_table (info);
3557 BFD_ASSERT (htab != NULL);
3560 gp = _bfd_get_gp_value (output_bfd)
3561 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3563 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3566 /* Create and return a local GOT entry for VALUE, which was calculated
3567 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3568 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3571 static struct mips_got_entry *
3572 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3573 bfd *ibfd, bfd_vma value,
3574 unsigned long r_symndx,
3575 struct mips_elf_link_hash_entry *h,
3578 struct mips_got_entry lookup, *entry;
3580 struct mips_got_info *g;
3581 struct mips_elf_link_hash_table *htab;
3584 htab = mips_elf_hash_table (info);
3585 BFD_ASSERT (htab != NULL);
3587 g = mips_elf_bfd_got (ibfd, FALSE);
3590 g = mips_elf_bfd_got (abfd, FALSE);
3591 BFD_ASSERT (g != NULL);
3594 /* This function shouldn't be called for symbols that live in the global
3596 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3598 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3599 if (lookup.tls_type)
3602 if (tls_ldm_reloc_p (r_type))
3605 lookup.d.addend = 0;
3609 lookup.symndx = r_symndx;
3610 lookup.d.addend = 0;
3618 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3621 gotidx = entry->gotidx;
3622 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3629 lookup.d.address = value;
3630 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3634 entry = (struct mips_got_entry *) *loc;
3638 if (g->assigned_gotno >= g->local_gotno)
3640 /* We didn't allocate enough space in the GOT. */
3641 (*_bfd_error_handler)
3642 (_("not enough GOT space for local GOT entries"));
3643 bfd_set_error (bfd_error_bad_value);
3647 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3651 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3655 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3657 /* These GOT entries need a dynamic relocation on VxWorks. */
3658 if (htab->is_vxworks)
3660 Elf_Internal_Rela outrel;
3663 bfd_vma got_address;
3665 s = mips_elf_rel_dyn_section (info, FALSE);
3666 got_address = (htab->sgot->output_section->vma
3667 + htab->sgot->output_offset
3670 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3671 outrel.r_offset = got_address;
3672 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3673 outrel.r_addend = value;
3674 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3680 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3681 The number might be exact or a worst-case estimate, depending on how
3682 much information is available to elf_backend_omit_section_dynsym at
3683 the current linking stage. */
3685 static bfd_size_type
3686 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3688 bfd_size_type count;
3691 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3694 const struct elf_backend_data *bed;
3696 bed = get_elf_backend_data (output_bfd);
3697 for (p = output_bfd->sections; p ; p = p->next)
3698 if ((p->flags & SEC_EXCLUDE) == 0
3699 && (p->flags & SEC_ALLOC) != 0
3700 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3706 /* Sort the dynamic symbol table so that symbols that need GOT entries
3707 appear towards the end. */
3710 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3712 struct mips_elf_link_hash_table *htab;
3713 struct mips_elf_hash_sort_data hsd;
3714 struct mips_got_info *g;
3716 if (elf_hash_table (info)->dynsymcount == 0)
3719 htab = mips_elf_hash_table (info);
3720 BFD_ASSERT (htab != NULL);
3727 hsd.max_unref_got_dynindx
3728 = hsd.min_got_dynindx
3729 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3730 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3731 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3732 elf_hash_table (info)),
3733 mips_elf_sort_hash_table_f,
3736 /* There should have been enough room in the symbol table to
3737 accommodate both the GOT and non-GOT symbols. */
3738 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3739 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3740 == elf_hash_table (info)->dynsymcount);
3741 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3742 == g->global_gotno);
3744 /* Now we know which dynamic symbol has the lowest dynamic symbol
3745 table index in the GOT. */
3746 htab->global_gotsym = hsd.low;
3751 /* If H needs a GOT entry, assign it the highest available dynamic
3752 index. Otherwise, assign it the lowest available dynamic
3756 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3758 struct mips_elf_hash_sort_data *hsd = data;
3760 /* Symbols without dynamic symbol table entries aren't interesting
3762 if (h->root.dynindx == -1)
3765 switch (h->global_got_area)
3768 h->root.dynindx = hsd->max_non_got_dynindx++;
3772 h->root.dynindx = --hsd->min_got_dynindx;
3773 hsd->low = (struct elf_link_hash_entry *) h;
3776 case GGA_RELOC_ONLY:
3777 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3778 hsd->low = (struct elf_link_hash_entry *) h;
3779 h->root.dynindx = hsd->max_unref_got_dynindx++;
3786 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3787 (which is owned by the caller and shouldn't be added to the
3788 hash table directly). */
3791 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3792 struct mips_got_entry *lookup)
3794 struct mips_elf_link_hash_table *htab;
3795 struct mips_got_entry *entry;
3796 struct mips_got_info *g;
3797 void **loc, **bfd_loc;
3799 /* Make sure there's a slot for this entry in the master GOT. */
3800 htab = mips_elf_hash_table (info);
3802 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3806 /* Populate the entry if it isn't already. */
3807 entry = (struct mips_got_entry *) *loc;
3810 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3814 lookup->tls_initialized = FALSE;
3815 lookup->gotidx = -1;
3820 /* Reuse the same GOT entry for the BFD's GOT. */
3821 g = mips_elf_bfd_got (abfd, TRUE);
3825 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3834 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3835 entry for it. FOR_CALL is true if the caller is only interested in
3836 using the GOT entry for calls. */
3839 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3840 bfd *abfd, struct bfd_link_info *info,
3841 bfd_boolean for_call, int r_type)
3843 struct mips_elf_link_hash_table *htab;
3844 struct mips_elf_link_hash_entry *hmips;
3845 struct mips_got_entry entry;
3846 unsigned char tls_type;
3848 htab = mips_elf_hash_table (info);
3849 BFD_ASSERT (htab != NULL);
3851 hmips = (struct mips_elf_link_hash_entry *) h;
3853 hmips->got_only_for_calls = FALSE;
3855 /* A global symbol in the GOT must also be in the dynamic symbol
3857 if (h->dynindx == -1)
3859 switch (ELF_ST_VISIBILITY (h->other))
3863 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3866 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3870 tls_type = mips_elf_reloc_tls_type (r_type);
3871 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3872 hmips->global_got_area = GGA_NORMAL;
3876 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3877 entry.tls_type = tls_type;
3878 return mips_elf_record_got_entry (info, abfd, &entry);
3881 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3882 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3885 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3886 struct bfd_link_info *info, int r_type)
3888 struct mips_elf_link_hash_table *htab;
3889 struct mips_got_info *g;
3890 struct mips_got_entry entry;
3892 htab = mips_elf_hash_table (info);
3893 BFD_ASSERT (htab != NULL);
3896 BFD_ASSERT (g != NULL);
3899 entry.symndx = symndx;
3900 entry.d.addend = addend;
3901 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3902 return mips_elf_record_got_entry (info, abfd, &entry);
3905 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3906 H is the symbol's hash table entry, or null if SYMNDX is local
3910 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3911 long symndx, struct elf_link_hash_entry *h,
3912 bfd_signed_vma addend)
3914 struct mips_elf_link_hash_table *htab;
3915 struct mips_got_info *g1, *g2;
3916 struct mips_got_page_ref lookup, *entry;
3917 void **loc, **bfd_loc;
3919 htab = mips_elf_hash_table (info);
3920 BFD_ASSERT (htab != NULL);
3922 g1 = htab->got_info;
3923 BFD_ASSERT (g1 != NULL);
3928 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3932 lookup.symndx = symndx;
3933 lookup.u.abfd = abfd;
3935 lookup.addend = addend;
3936 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3940 entry = (struct mips_got_page_ref *) *loc;
3943 entry = bfd_alloc (abfd, sizeof (*entry));
3951 /* Add the same entry to the BFD's GOT. */
3952 g2 = mips_elf_bfd_got (abfd, TRUE);
3956 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3966 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3969 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3973 struct mips_elf_link_hash_table *htab;
3975 htab = mips_elf_hash_table (info);
3976 BFD_ASSERT (htab != NULL);
3978 s = mips_elf_rel_dyn_section (info, FALSE);
3979 BFD_ASSERT (s != NULL);
3981 if (htab->is_vxworks)
3982 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3987 /* Make room for a null element. */
3988 s->size += MIPS_ELF_REL_SIZE (abfd);
3991 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3995 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3996 mips_elf_traverse_got_arg structure. Count the number of GOT
3997 entries and TLS relocs. Set DATA->value to true if we need
3998 to resolve indirect or warning symbols and then recreate the GOT. */
4001 mips_elf_check_recreate_got (void **entryp, void *data)
4003 struct mips_got_entry *entry;
4004 struct mips_elf_traverse_got_arg *arg;
4006 entry = (struct mips_got_entry *) *entryp;
4007 arg = (struct mips_elf_traverse_got_arg *) data;
4008 if (entry->abfd != NULL && entry->symndx == -1)
4010 struct mips_elf_link_hash_entry *h;
4013 if (h->root.root.type == bfd_link_hash_indirect
4014 || h->root.root.type == bfd_link_hash_warning)
4020 mips_elf_count_got_entry (arg->info, arg->g, entry);
4024 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4025 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4026 converting entries for indirect and warning symbols into entries
4027 for the target symbol. Set DATA->g to null on error. */
4030 mips_elf_recreate_got (void **entryp, void *data)
4032 struct mips_got_entry new_entry, *entry;
4033 struct mips_elf_traverse_got_arg *arg;
4036 entry = (struct mips_got_entry *) *entryp;
4037 arg = (struct mips_elf_traverse_got_arg *) data;
4038 if (entry->abfd != NULL
4039 && entry->symndx == -1
4040 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4041 || entry->d.h->root.root.type == bfd_link_hash_warning))
4043 struct mips_elf_link_hash_entry *h;
4050 BFD_ASSERT (h->global_got_area == GGA_NONE);
4051 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4053 while (h->root.root.type == bfd_link_hash_indirect
4054 || h->root.root.type == bfd_link_hash_warning);
4057 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4065 if (entry == &new_entry)
4067 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4076 mips_elf_count_got_entry (arg->info, arg->g, entry);
4081 /* Return the maximum number of GOT page entries required for RANGE. */
4084 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4086 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4089 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4092 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4093 asection *sec, bfd_signed_vma addend)
4095 struct mips_got_info *g = arg->g;
4096 struct mips_got_page_entry lookup, *entry;
4097 struct mips_got_page_range **range_ptr, *range;
4098 bfd_vma old_pages, new_pages;
4101 /* Find the mips_got_page_entry hash table entry for this section. */
4103 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4107 /* Create a mips_got_page_entry if this is the first time we've
4108 seen the section. */
4109 entry = (struct mips_got_page_entry *) *loc;
4112 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4120 /* Skip over ranges whose maximum extent cannot share a page entry
4122 range_ptr = &entry->ranges;
4123 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4124 range_ptr = &(*range_ptr)->next;
4126 /* If we scanned to the end of the list, or found a range whose
4127 minimum extent cannot share a page entry with ADDEND, create
4128 a new singleton range. */
4130 if (!range || addend < range->min_addend - 0xffff)
4132 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4136 range->next = *range_ptr;
4137 range->min_addend = addend;
4138 range->max_addend = addend;
4146 /* Remember how many pages the old range contributed. */
4147 old_pages = mips_elf_pages_for_range (range);
4149 /* Update the ranges. */
4150 if (addend < range->min_addend)
4151 range->min_addend = addend;
4152 else if (addend > range->max_addend)
4154 if (range->next && addend >= range->next->min_addend - 0xffff)
4156 old_pages += mips_elf_pages_for_range (range->next);
4157 range->max_addend = range->next->max_addend;
4158 range->next = range->next->next;
4161 range->max_addend = addend;
4164 /* Record any change in the total estimate. */
4165 new_pages = mips_elf_pages_for_range (range);
4166 if (old_pages != new_pages)
4168 entry->num_pages += new_pages - old_pages;
4169 g->page_gotno += new_pages - old_pages;
4175 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4176 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4177 whether the page reference described by *REFP needs a GOT page entry,
4178 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4181 mips_elf_resolve_got_page_ref (void **refp, void *data)
4183 struct mips_got_page_ref *ref;
4184 struct mips_elf_traverse_got_arg *arg;
4185 struct mips_elf_link_hash_table *htab;
4189 ref = (struct mips_got_page_ref *) *refp;
4190 arg = (struct mips_elf_traverse_got_arg *) data;
4191 htab = mips_elf_hash_table (arg->info);
4193 if (ref->symndx < 0)
4195 struct mips_elf_link_hash_entry *h;
4197 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4199 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4202 /* Ignore undefined symbols; we'll issue an error later if
4204 if (!((h->root.root.type == bfd_link_hash_defined
4205 || h->root.root.type == bfd_link_hash_defweak)
4206 && h->root.root.u.def.section))
4209 sec = h->root.root.u.def.section;
4210 addend = h->root.root.u.def.value + ref->addend;
4214 Elf_Internal_Sym *isym;
4216 /* Read in the symbol. */
4217 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4225 /* Get the associated input section. */
4226 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4233 /* If this is a mergable section, work out the section and offset
4234 of the merged data. For section symbols, the addend specifies
4235 of the offset _of_ the first byte in the data, otherwise it
4236 specifies the offset _from_ the first byte. */
4237 if (sec->flags & SEC_MERGE)
4241 secinfo = elf_section_data (sec)->sec_info;
4242 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4243 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4244 isym->st_value + ref->addend);
4246 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4247 isym->st_value) + ref->addend;
4250 addend = isym->st_value + ref->addend;
4252 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4260 /* If any entries in G->got_entries are for indirect or warning symbols,
4261 replace them with entries for the target symbol. Convert g->got_page_refs
4262 into got_page_entry structures and estimate the number of page entries
4263 that they require. */
4266 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4267 struct mips_got_info *g)
4269 struct mips_elf_traverse_got_arg tga;
4270 struct mips_got_info oldg;
4277 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4281 g->got_entries = htab_create (htab_size (oldg.got_entries),
4282 mips_elf_got_entry_hash,
4283 mips_elf_got_entry_eq, NULL);
4284 if (!g->got_entries)
4287 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4291 htab_delete (oldg.got_entries);
4294 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4295 mips_got_page_entry_eq, NULL);
4296 if (g->got_page_entries == NULL)
4301 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4306 /* Return true if a GOT entry for H should live in the local rather than
4310 mips_use_local_got_p (struct bfd_link_info *info,
4311 struct mips_elf_link_hash_entry *h)
4313 /* Symbols that aren't in the dynamic symbol table must live in the
4314 local GOT. This includes symbols that are completely undefined
4315 and which therefore don't bind locally. We'll report undefined
4316 symbols later if appropriate. */
4317 if (h->root.dynindx == -1)
4320 /* Symbols that bind locally can (and in the case of forced-local
4321 symbols, must) live in the local GOT. */
4322 if (h->got_only_for_calls
4323 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4324 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4327 /* If this is an executable that must provide a definition of the symbol,
4328 either though PLTs or copy relocations, then that address should go in
4329 the local rather than global GOT. */
4330 if (info->executable && h->has_static_relocs)
4336 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4337 link_info structure. Decide whether the hash entry needs an entry in
4338 the global part of the primary GOT, setting global_got_area accordingly.
4339 Count the number of global symbols that are in the primary GOT only
4340 because they have relocations against them (reloc_only_gotno). */
4343 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4345 struct bfd_link_info *info;
4346 struct mips_elf_link_hash_table *htab;
4347 struct mips_got_info *g;
4349 info = (struct bfd_link_info *) data;
4350 htab = mips_elf_hash_table (info);
4352 if (h->global_got_area != GGA_NONE)
4354 /* Make a final decision about whether the symbol belongs in the
4355 local or global GOT. */
4356 if (mips_use_local_got_p (info, h))
4357 /* The symbol belongs in the local GOT. We no longer need this
4358 entry if it was only used for relocations; those relocations
4359 will be against the null or section symbol instead of H. */
4360 h->global_got_area = GGA_NONE;
4361 else if (htab->is_vxworks
4362 && h->got_only_for_calls
4363 && h->root.plt.plist->mips_offset != MINUS_ONE)
4364 /* On VxWorks, calls can refer directly to the .got.plt entry;
4365 they don't need entries in the regular GOT. .got.plt entries
4366 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4367 h->global_got_area = GGA_NONE;
4368 else if (h->global_got_area == GGA_RELOC_ONLY)
4370 g->reloc_only_gotno++;
4377 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4378 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4381 mips_elf_add_got_entry (void **entryp, void *data)
4383 struct mips_got_entry *entry;
4384 struct mips_elf_traverse_got_arg *arg;
4387 entry = (struct mips_got_entry *) *entryp;
4388 arg = (struct mips_elf_traverse_got_arg *) data;
4389 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4398 mips_elf_count_got_entry (arg->info, arg->g, entry);
4403 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4404 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4407 mips_elf_add_got_page_entry (void **entryp, void *data)
4409 struct mips_got_page_entry *entry;
4410 struct mips_elf_traverse_got_arg *arg;
4413 entry = (struct mips_got_page_entry *) *entryp;
4414 arg = (struct mips_elf_traverse_got_arg *) data;
4415 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4424 arg->g->page_gotno += entry->num_pages;
4429 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4430 this would lead to overflow, 1 if they were merged successfully,
4431 and 0 if a merge failed due to lack of memory. (These values are chosen
4432 so that nonnegative return values can be returned by a htab_traverse
4436 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4437 struct mips_got_info *to,
4438 struct mips_elf_got_per_bfd_arg *arg)
4440 struct mips_elf_traverse_got_arg tga;
4441 unsigned int estimate;
4443 /* Work out how many page entries we would need for the combined GOT. */
4444 estimate = arg->max_pages;
4445 if (estimate >= from->page_gotno + to->page_gotno)
4446 estimate = from->page_gotno + to->page_gotno;
4448 /* And conservatively estimate how many local and TLS entries
4450 estimate += from->local_gotno + to->local_gotno;
4451 estimate += from->tls_gotno + to->tls_gotno;
4453 /* If we're merging with the primary got, any TLS relocations will
4454 come after the full set of global entries. Otherwise estimate those
4455 conservatively as well. */
4456 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4457 estimate += arg->global_count;
4459 estimate += from->global_gotno + to->global_gotno;
4461 /* Bail out if the combined GOT might be too big. */
4462 if (estimate > arg->max_count)
4465 /* Transfer the bfd's got information from FROM to TO. */
4466 tga.info = arg->info;
4468 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4472 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4476 mips_elf_replace_bfd_got (abfd, to);
4480 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4481 as possible of the primary got, since it doesn't require explicit
4482 dynamic relocations, but don't use bfds that would reference global
4483 symbols out of the addressable range. Failing the primary got,
4484 attempt to merge with the current got, or finish the current got
4485 and then make make the new got current. */
4488 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4489 struct mips_elf_got_per_bfd_arg *arg)
4491 unsigned int estimate;
4494 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4497 /* Work out the number of page, local and TLS entries. */
4498 estimate = arg->max_pages;
4499 if (estimate > g->page_gotno)
4500 estimate = g->page_gotno;
4501 estimate += g->local_gotno + g->tls_gotno;
4503 /* We place TLS GOT entries after both locals and globals. The globals
4504 for the primary GOT may overflow the normal GOT size limit, so be
4505 sure not to merge a GOT which requires TLS with the primary GOT in that
4506 case. This doesn't affect non-primary GOTs. */
4507 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4509 if (estimate <= arg->max_count)
4511 /* If we don't have a primary GOT, use it as
4512 a starting point for the primary GOT. */
4519 /* Try merging with the primary GOT. */
4520 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4525 /* If we can merge with the last-created got, do it. */
4528 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4533 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4534 fits; if it turns out that it doesn't, we'll get relocation
4535 overflows anyway. */
4536 g->next = arg->current;
4542 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4543 to GOTIDX, duplicating the entry if it has already been assigned
4544 an index in a different GOT. */
4547 mips_elf_set_gotidx (void **entryp, long gotidx)
4549 struct mips_got_entry *entry;
4551 entry = (struct mips_got_entry *) *entryp;
4552 if (entry->gotidx > 0)
4554 struct mips_got_entry *new_entry;
4556 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4560 *new_entry = *entry;
4561 *entryp = new_entry;
4564 entry->gotidx = gotidx;
4568 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4569 mips_elf_traverse_got_arg in which DATA->value is the size of one
4570 GOT entry. Set DATA->g to null on failure. */
4573 mips_elf_initialize_tls_index (void **entryp, void *data)
4575 struct mips_got_entry *entry;
4576 struct mips_elf_traverse_got_arg *arg;
4578 /* We're only interested in TLS symbols. */
4579 entry = (struct mips_got_entry *) *entryp;
4580 if (entry->tls_type == GOT_TLS_NONE)
4583 arg = (struct mips_elf_traverse_got_arg *) data;
4584 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4590 /* Account for the entries we've just allocated. */
4591 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4595 /* A htab_traverse callback for GOT entries, where DATA points to a
4596 mips_elf_traverse_got_arg. Set the global_got_area of each global
4597 symbol to DATA->value. */
4600 mips_elf_set_global_got_area (void **entryp, void *data)
4602 struct mips_got_entry *entry;
4603 struct mips_elf_traverse_got_arg *arg;
4605 entry = (struct mips_got_entry *) *entryp;
4606 arg = (struct mips_elf_traverse_got_arg *) data;
4607 if (entry->abfd != NULL
4608 && entry->symndx == -1
4609 && entry->d.h->global_got_area != GGA_NONE)
4610 entry->d.h->global_got_area = arg->value;
4614 /* A htab_traverse callback for secondary GOT entries, where DATA points
4615 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4616 and record the number of relocations they require. DATA->value is
4617 the size of one GOT entry. Set DATA->g to null on failure. */
4620 mips_elf_set_global_gotidx (void **entryp, void *data)
4622 struct mips_got_entry *entry;
4623 struct mips_elf_traverse_got_arg *arg;
4625 entry = (struct mips_got_entry *) *entryp;
4626 arg = (struct mips_elf_traverse_got_arg *) data;
4627 if (entry->abfd != NULL
4628 && entry->symndx == -1
4629 && entry->d.h->global_got_area != GGA_NONE)
4631 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4636 arg->g->assigned_gotno += 1;
4638 if (arg->info->shared
4639 || (elf_hash_table (arg->info)->dynamic_sections_created
4640 && entry->d.h->root.def_dynamic
4641 && !entry->d.h->root.def_regular))
4642 arg->g->relocs += 1;
4648 /* A htab_traverse callback for GOT entries for which DATA is the
4649 bfd_link_info. Forbid any global symbols from having traditional
4650 lazy-binding stubs. */
4653 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4655 struct bfd_link_info *info;
4656 struct mips_elf_link_hash_table *htab;
4657 struct mips_got_entry *entry;
4659 entry = (struct mips_got_entry *) *entryp;
4660 info = (struct bfd_link_info *) data;
4661 htab = mips_elf_hash_table (info);
4662 BFD_ASSERT (htab != NULL);
4664 if (entry->abfd != NULL
4665 && entry->symndx == -1
4666 && entry->d.h->needs_lazy_stub)
4668 entry->d.h->needs_lazy_stub = FALSE;
4669 htab->lazy_stub_count--;
4675 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4678 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4683 g = mips_elf_bfd_got (ibfd, FALSE);
4687 BFD_ASSERT (g->next);
4691 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4692 * MIPS_ELF_GOT_SIZE (abfd);
4695 /* Turn a single GOT that is too big for 16-bit addressing into
4696 a sequence of GOTs, each one 16-bit addressable. */
4699 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4700 asection *got, bfd_size_type pages)
4702 struct mips_elf_link_hash_table *htab;
4703 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4704 struct mips_elf_traverse_got_arg tga;
4705 struct mips_got_info *g, *gg;
4706 unsigned int assign, needed_relocs;
4709 dynobj = elf_hash_table (info)->dynobj;
4710 htab = mips_elf_hash_table (info);
4711 BFD_ASSERT (htab != NULL);
4715 got_per_bfd_arg.obfd = abfd;
4716 got_per_bfd_arg.info = info;
4717 got_per_bfd_arg.current = NULL;
4718 got_per_bfd_arg.primary = NULL;
4719 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4720 / MIPS_ELF_GOT_SIZE (abfd))
4721 - htab->reserved_gotno);
4722 got_per_bfd_arg.max_pages = pages;
4723 /* The number of globals that will be included in the primary GOT.
4724 See the calls to mips_elf_set_global_got_area below for more
4726 got_per_bfd_arg.global_count = g->global_gotno;
4728 /* Try to merge the GOTs of input bfds together, as long as they
4729 don't seem to exceed the maximum GOT size, choosing one of them
4730 to be the primary GOT. */
4731 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4733 gg = mips_elf_bfd_got (ibfd, FALSE);
4734 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4738 /* If we do not find any suitable primary GOT, create an empty one. */
4739 if (got_per_bfd_arg.primary == NULL)
4740 g->next = mips_elf_create_got_info (abfd);
4742 g->next = got_per_bfd_arg.primary;
4743 g->next->next = got_per_bfd_arg.current;
4745 /* GG is now the master GOT, and G is the primary GOT. */
4749 /* Map the output bfd to the primary got. That's what we're going
4750 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4751 didn't mark in check_relocs, and we want a quick way to find it.
4752 We can't just use gg->next because we're going to reverse the
4754 mips_elf_replace_bfd_got (abfd, g);
4756 /* Every symbol that is referenced in a dynamic relocation must be
4757 present in the primary GOT, so arrange for them to appear after
4758 those that are actually referenced. */
4759 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4760 g->global_gotno = gg->global_gotno;
4763 tga.value = GGA_RELOC_ONLY;
4764 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4765 tga.value = GGA_NORMAL;
4766 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4768 /* Now go through the GOTs assigning them offset ranges.
4769 [assigned_gotno, local_gotno[ will be set to the range of local
4770 entries in each GOT. We can then compute the end of a GOT by
4771 adding local_gotno to global_gotno. We reverse the list and make
4772 it circular since then we'll be able to quickly compute the
4773 beginning of a GOT, by computing the end of its predecessor. To
4774 avoid special cases for the primary GOT, while still preserving
4775 assertions that are valid for both single- and multi-got links,
4776 we arrange for the main got struct to have the right number of
4777 global entries, but set its local_gotno such that the initial
4778 offset of the primary GOT is zero. Remember that the primary GOT
4779 will become the last item in the circular linked list, so it
4780 points back to the master GOT. */
4781 gg->local_gotno = -g->global_gotno;
4782 gg->global_gotno = g->global_gotno;
4789 struct mips_got_info *gn;
4791 assign += htab->reserved_gotno;
4792 g->assigned_gotno = assign;
4793 g->local_gotno += assign;
4794 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4795 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4797 /* Take g out of the direct list, and push it onto the reversed
4798 list that gg points to. g->next is guaranteed to be nonnull after
4799 this operation, as required by mips_elf_initialize_tls_index. */
4804 /* Set up any TLS entries. We always place the TLS entries after
4805 all non-TLS entries. */
4806 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4808 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4809 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4812 BFD_ASSERT (g->tls_assigned_gotno == assign);
4814 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4817 /* Forbid global symbols in every non-primary GOT from having
4818 lazy-binding stubs. */
4820 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4824 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4827 for (g = gg->next; g && g->next != gg; g = g->next)
4829 unsigned int save_assign;
4831 /* Assign offsets to global GOT entries and count how many
4832 relocations they need. */
4833 save_assign = g->assigned_gotno;
4834 g->assigned_gotno = g->local_gotno;
4836 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4838 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4841 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4842 g->assigned_gotno = save_assign;
4846 g->relocs += g->local_gotno - g->assigned_gotno;
4847 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4848 + g->next->global_gotno
4849 + g->next->tls_gotno
4850 + htab->reserved_gotno);
4852 needed_relocs += g->relocs;
4854 needed_relocs += g->relocs;
4857 mips_elf_allocate_dynamic_relocations (dynobj, info,
4864 /* Returns the first relocation of type r_type found, beginning with
4865 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4867 static const Elf_Internal_Rela *
4868 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4869 const Elf_Internal_Rela *relocation,
4870 const Elf_Internal_Rela *relend)
4872 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4874 while (relocation < relend)
4876 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4877 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4883 /* We didn't find it. */
4887 /* Return whether an input relocation is against a local symbol. */
4890 mips_elf_local_relocation_p (bfd *input_bfd,
4891 const Elf_Internal_Rela *relocation,
4892 asection **local_sections)
4894 unsigned long r_symndx;
4895 Elf_Internal_Shdr *symtab_hdr;
4898 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4899 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4900 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4902 if (r_symndx < extsymoff)
4904 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4910 /* Sign-extend VALUE, which has the indicated number of BITS. */
4913 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4915 if (value & ((bfd_vma) 1 << (bits - 1)))
4916 /* VALUE is negative. */
4917 value |= ((bfd_vma) - 1) << bits;
4922 /* Return non-zero if the indicated VALUE has overflowed the maximum
4923 range expressible by a signed number with the indicated number of
4927 mips_elf_overflow_p (bfd_vma value, int bits)
4929 bfd_signed_vma svalue = (bfd_signed_vma) value;
4931 if (svalue > (1 << (bits - 1)) - 1)
4932 /* The value is too big. */
4934 else if (svalue < -(1 << (bits - 1)))
4935 /* The value is too small. */
4942 /* Calculate the %high function. */
4945 mips_elf_high (bfd_vma value)
4947 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4950 /* Calculate the %higher function. */
4953 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4956 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4963 /* Calculate the %highest function. */
4966 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4969 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4976 /* Create the .compact_rel section. */
4979 mips_elf_create_compact_rel_section
4980 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4983 register asection *s;
4985 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4987 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4990 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4992 || ! bfd_set_section_alignment (abfd, s,
4993 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4996 s->size = sizeof (Elf32_External_compact_rel);
5002 /* Create the .got section to hold the global offset table. */
5005 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5008 register asection *s;
5009 struct elf_link_hash_entry *h;
5010 struct bfd_link_hash_entry *bh;
5011 struct mips_elf_link_hash_table *htab;
5013 htab = mips_elf_hash_table (info);
5014 BFD_ASSERT (htab != NULL);
5016 /* This function may be called more than once. */
5020 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5021 | SEC_LINKER_CREATED);
5023 /* We have to use an alignment of 2**4 here because this is hardcoded
5024 in the function stub generation and in the linker script. */
5025 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5027 || ! bfd_set_section_alignment (abfd, s, 4))
5031 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5032 linker script because we don't want to define the symbol if we
5033 are not creating a global offset table. */
5035 if (! (_bfd_generic_link_add_one_symbol
5036 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5037 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5040 h = (struct elf_link_hash_entry *) bh;
5043 h->type = STT_OBJECT;
5044 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5045 elf_hash_table (info)->hgot = h;
5048 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5051 htab->got_info = mips_elf_create_got_info (abfd);
5052 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5053 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5055 /* We also need a .got.plt section when generating PLTs. */
5056 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5057 SEC_ALLOC | SEC_LOAD
5060 | SEC_LINKER_CREATED);
5068 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5069 __GOTT_INDEX__ symbols. These symbols are only special for
5070 shared objects; they are not used in executables. */
5073 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5075 return (mips_elf_hash_table (info)->is_vxworks
5077 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5078 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5081 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5082 require an la25 stub. See also mips_elf_local_pic_function_p,
5083 which determines whether the destination function ever requires a
5087 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5088 bfd_boolean target_is_16_bit_code_p)
5090 /* We specifically ignore branches and jumps from EF_PIC objects,
5091 where the onus is on the compiler or programmer to perform any
5092 necessary initialization of $25. Sometimes such initialization
5093 is unnecessary; for example, -mno-shared functions do not use
5094 the incoming value of $25, and may therefore be called directly. */
5095 if (PIC_OBJECT_P (input_bfd))
5102 case R_MICROMIPS_26_S1:
5103 case R_MICROMIPS_PC7_S1:
5104 case R_MICROMIPS_PC10_S1:
5105 case R_MICROMIPS_PC16_S1:
5106 case R_MICROMIPS_PC23_S2:
5110 return !target_is_16_bit_code_p;
5117 /* Calculate the value produced by the RELOCATION (which comes from
5118 the INPUT_BFD). The ADDEND is the addend to use for this
5119 RELOCATION; RELOCATION->R_ADDEND is ignored.
5121 The result of the relocation calculation is stored in VALUEP.
5122 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5123 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5125 This function returns bfd_reloc_continue if the caller need take no
5126 further action regarding this relocation, bfd_reloc_notsupported if
5127 something goes dramatically wrong, bfd_reloc_overflow if an
5128 overflow occurs, and bfd_reloc_ok to indicate success. */
5130 static bfd_reloc_status_type
5131 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5132 asection *input_section,
5133 struct bfd_link_info *info,
5134 const Elf_Internal_Rela *relocation,
5135 bfd_vma addend, reloc_howto_type *howto,
5136 Elf_Internal_Sym *local_syms,
5137 asection **local_sections, bfd_vma *valuep,
5139 bfd_boolean *cross_mode_jump_p,
5140 bfd_boolean save_addend)
5142 /* The eventual value we will return. */
5144 /* The address of the symbol against which the relocation is
5147 /* The final GP value to be used for the relocatable, executable, or
5148 shared object file being produced. */
5150 /* The place (section offset or address) of the storage unit being
5153 /* The value of GP used to create the relocatable object. */
5155 /* The offset into the global offset table at which the address of
5156 the relocation entry symbol, adjusted by the addend, resides
5157 during execution. */
5158 bfd_vma g = MINUS_ONE;
5159 /* The section in which the symbol referenced by the relocation is
5161 asection *sec = NULL;
5162 struct mips_elf_link_hash_entry *h = NULL;
5163 /* TRUE if the symbol referred to by this relocation is a local
5165 bfd_boolean local_p, was_local_p;
5166 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5167 bfd_boolean gp_disp_p = FALSE;
5168 /* TRUE if the symbol referred to by this relocation is
5169 "__gnu_local_gp". */
5170 bfd_boolean gnu_local_gp_p = FALSE;
5171 Elf_Internal_Shdr *symtab_hdr;
5173 unsigned long r_symndx;
5175 /* TRUE if overflow occurred during the calculation of the
5176 relocation value. */
5177 bfd_boolean overflowed_p;
5178 /* TRUE if this relocation refers to a MIPS16 function. */
5179 bfd_boolean target_is_16_bit_code_p = FALSE;
5180 bfd_boolean target_is_micromips_code_p = FALSE;
5181 struct mips_elf_link_hash_table *htab;
5184 dynobj = elf_hash_table (info)->dynobj;
5185 htab = mips_elf_hash_table (info);
5186 BFD_ASSERT (htab != NULL);
5188 /* Parse the relocation. */
5189 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5190 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5191 p = (input_section->output_section->vma
5192 + input_section->output_offset
5193 + relocation->r_offset);
5195 /* Assume that there will be no overflow. */
5196 overflowed_p = FALSE;
5198 /* Figure out whether or not the symbol is local, and get the offset
5199 used in the array of hash table entries. */
5200 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5201 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5203 was_local_p = local_p;
5204 if (! elf_bad_symtab (input_bfd))
5205 extsymoff = symtab_hdr->sh_info;
5208 /* The symbol table does not follow the rule that local symbols
5209 must come before globals. */
5213 /* Figure out the value of the symbol. */
5216 Elf_Internal_Sym *sym;
5218 sym = local_syms + r_symndx;
5219 sec = local_sections[r_symndx];
5221 symbol = sec->output_section->vma + sec->output_offset;
5222 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5223 || (sec->flags & SEC_MERGE))
5224 symbol += sym->st_value;
5225 if ((sec->flags & SEC_MERGE)
5226 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5228 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5230 addend += sec->output_section->vma + sec->output_offset;
5233 /* MIPS16/microMIPS text labels should be treated as odd. */
5234 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5237 /* Record the name of this symbol, for our caller. */
5238 *namep = bfd_elf_string_from_elf_section (input_bfd,
5239 symtab_hdr->sh_link,
5242 *namep = bfd_section_name (input_bfd, sec);
5244 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5245 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5249 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5251 /* For global symbols we look up the symbol in the hash-table. */
5252 h = ((struct mips_elf_link_hash_entry *)
5253 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5254 /* Find the real hash-table entry for this symbol. */
5255 while (h->root.root.type == bfd_link_hash_indirect
5256 || h->root.root.type == bfd_link_hash_warning)
5257 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5259 /* Record the name of this symbol, for our caller. */
5260 *namep = h->root.root.root.string;
5262 /* See if this is the special _gp_disp symbol. Note that such a
5263 symbol must always be a global symbol. */
5264 if (strcmp (*namep, "_gp_disp") == 0
5265 && ! NEWABI_P (input_bfd))
5267 /* Relocations against _gp_disp are permitted only with
5268 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5269 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5270 return bfd_reloc_notsupported;
5274 /* See if this is the special _gp symbol. Note that such a
5275 symbol must always be a global symbol. */
5276 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5277 gnu_local_gp_p = TRUE;
5280 /* If this symbol is defined, calculate its address. Note that
5281 _gp_disp is a magic symbol, always implicitly defined by the
5282 linker, so it's inappropriate to check to see whether or not
5284 else if ((h->root.root.type == bfd_link_hash_defined
5285 || h->root.root.type == bfd_link_hash_defweak)
5286 && h->root.root.u.def.section)
5288 sec = h->root.root.u.def.section;
5289 if (sec->output_section)
5290 symbol = (h->root.root.u.def.value
5291 + sec->output_section->vma
5292 + sec->output_offset);
5294 symbol = h->root.root.u.def.value;
5296 else if (h->root.root.type == bfd_link_hash_undefweak)
5297 /* We allow relocations against undefined weak symbols, giving
5298 it the value zero, so that you can undefined weak functions
5299 and check to see if they exist by looking at their
5302 else if (info->unresolved_syms_in_objects == RM_IGNORE
5303 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5305 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5306 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5308 /* If this is a dynamic link, we should have created a
5309 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5310 in in _bfd_mips_elf_create_dynamic_sections.
5311 Otherwise, we should define the symbol with a value of 0.
5312 FIXME: It should probably get into the symbol table
5314 BFD_ASSERT (! info->shared);
5315 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5318 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5320 /* This is an optional symbol - an Irix specific extension to the
5321 ELF spec. Ignore it for now.
5322 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5323 than simply ignoring them, but we do not handle this for now.
5324 For information see the "64-bit ELF Object File Specification"
5325 which is available from here:
5326 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5329 else if ((*info->callbacks->undefined_symbol)
5330 (info, h->root.root.root.string, input_bfd,
5331 input_section, relocation->r_offset,
5332 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5333 || ELF_ST_VISIBILITY (h->root.other)))
5335 return bfd_reloc_undefined;
5339 return bfd_reloc_notsupported;
5342 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5343 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5346 /* If this is a reference to a 16-bit function with a stub, we need
5347 to redirect the relocation to the stub unless:
5349 (a) the relocation is for a MIPS16 JAL;
5351 (b) the relocation is for a MIPS16 PIC call, and there are no
5352 non-MIPS16 uses of the GOT slot; or
5354 (c) the section allows direct references to MIPS16 functions. */
5355 if (r_type != R_MIPS16_26
5356 && !info->relocatable
5358 && h->fn_stub != NULL
5359 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5361 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5362 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5363 && !section_allows_mips16_refs_p (input_section))
5365 /* This is a 32- or 64-bit call to a 16-bit function. We should
5366 have already noticed that we were going to need the
5370 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5375 BFD_ASSERT (h->need_fn_stub);
5378 /* If a LA25 header for the stub itself exists, point to the
5379 prepended LUI/ADDIU sequence. */
5380 sec = h->la25_stub->stub_section;
5381 value = h->la25_stub->offset;
5390 symbol = sec->output_section->vma + sec->output_offset + value;
5391 /* The target is 16-bit, but the stub isn't. */
5392 target_is_16_bit_code_p = FALSE;
5394 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5395 to a standard MIPS function, we need to redirect the call to the stub.
5396 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5397 indirect calls should use an indirect stub instead. */
5398 else if (r_type == R_MIPS16_26 && !info->relocatable
5399 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5401 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5402 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5403 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5406 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5409 /* If both call_stub and call_fp_stub are defined, we can figure
5410 out which one to use by checking which one appears in the input
5412 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5417 for (o = input_bfd->sections; o != NULL; o = o->next)
5419 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5421 sec = h->call_fp_stub;
5428 else if (h->call_stub != NULL)
5431 sec = h->call_fp_stub;
5434 BFD_ASSERT (sec->size > 0);
5435 symbol = sec->output_section->vma + sec->output_offset;
5437 /* If this is a direct call to a PIC function, redirect to the
5439 else if (h != NULL && h->la25_stub
5440 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5441 target_is_16_bit_code_p))
5442 symbol = (h->la25_stub->stub_section->output_section->vma
5443 + h->la25_stub->stub_section->output_offset
5444 + h->la25_stub->offset);
5445 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5446 entry is used if a standard PLT entry has also been made. In this
5447 case the symbol will have been set by mips_elf_set_plt_sym_value
5448 to point to the standard PLT entry, so redirect to the compressed
5450 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5451 && !info->relocatable
5454 && h->root.plt.plist->comp_offset != MINUS_ONE
5455 && h->root.plt.plist->mips_offset != MINUS_ONE)
5457 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5460 symbol = (sec->output_section->vma
5461 + sec->output_offset
5462 + htab->plt_header_size
5463 + htab->plt_mips_offset
5464 + h->root.plt.plist->comp_offset
5467 target_is_16_bit_code_p = !micromips_p;
5468 target_is_micromips_code_p = micromips_p;
5471 /* Make sure MIPS16 and microMIPS are not used together. */
5472 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5473 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5475 (*_bfd_error_handler)
5476 (_("MIPS16 and microMIPS functions cannot call each other"));
5477 return bfd_reloc_notsupported;
5480 /* Calls from 16-bit code to 32-bit code and vice versa require the
5481 mode change. However, we can ignore calls to undefined weak symbols,
5482 which should never be executed at runtime. This exception is important
5483 because the assembly writer may have "known" that any definition of the
5484 symbol would be 16-bit code, and that direct jumps were therefore
5486 *cross_mode_jump_p = (!info->relocatable
5487 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5488 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5489 || (r_type == R_MICROMIPS_26_S1
5490 && !target_is_micromips_code_p)
5491 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5492 && (target_is_16_bit_code_p
5493 || target_is_micromips_code_p))));
5495 local_p = (h == NULL || mips_use_local_got_p (info, h));
5497 gp0 = _bfd_get_gp_value (input_bfd);
5498 gp = _bfd_get_gp_value (abfd);
5500 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5505 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5506 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5507 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5508 if (got_page_reloc_p (r_type) && !local_p)
5510 r_type = (micromips_reloc_p (r_type)
5511 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5515 /* If we haven't already determined the GOT offset, and we're going
5516 to need it, get it now. */
5519 case R_MIPS16_CALL16:
5520 case R_MIPS16_GOT16:
5523 case R_MIPS_GOT_DISP:
5524 case R_MIPS_GOT_HI16:
5525 case R_MIPS_CALL_HI16:
5526 case R_MIPS_GOT_LO16:
5527 case R_MIPS_CALL_LO16:
5528 case R_MICROMIPS_CALL16:
5529 case R_MICROMIPS_GOT16:
5530 case R_MICROMIPS_GOT_DISP:
5531 case R_MICROMIPS_GOT_HI16:
5532 case R_MICROMIPS_CALL_HI16:
5533 case R_MICROMIPS_GOT_LO16:
5534 case R_MICROMIPS_CALL_LO16:
5536 case R_MIPS_TLS_GOTTPREL:
5537 case R_MIPS_TLS_LDM:
5538 case R_MIPS16_TLS_GD:
5539 case R_MIPS16_TLS_GOTTPREL:
5540 case R_MIPS16_TLS_LDM:
5541 case R_MICROMIPS_TLS_GD:
5542 case R_MICROMIPS_TLS_GOTTPREL:
5543 case R_MICROMIPS_TLS_LDM:
5544 /* Find the index into the GOT where this value is located. */
5545 if (tls_ldm_reloc_p (r_type))
5547 g = mips_elf_local_got_index (abfd, input_bfd, info,
5548 0, 0, NULL, r_type);
5550 return bfd_reloc_outofrange;
5554 /* On VxWorks, CALL relocations should refer to the .got.plt
5555 entry, which is initialized to point at the PLT stub. */
5556 if (htab->is_vxworks
5557 && (call_hi16_reloc_p (r_type)
5558 || call_lo16_reloc_p (r_type)
5559 || call16_reloc_p (r_type)))
5561 BFD_ASSERT (addend == 0);
5562 BFD_ASSERT (h->root.needs_plt);
5563 g = mips_elf_gotplt_index (info, &h->root);
5567 BFD_ASSERT (addend == 0);
5568 g = mips_elf_global_got_index (abfd, info, input_bfd,
5570 if (!TLS_RELOC_P (r_type)
5571 && !elf_hash_table (info)->dynamic_sections_created)
5572 /* This is a static link. We must initialize the GOT entry. */
5573 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5576 else if (!htab->is_vxworks
5577 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5578 /* The calculation below does not involve "g". */
5582 g = mips_elf_local_got_index (abfd, input_bfd, info,
5583 symbol + addend, r_symndx, h, r_type);
5585 return bfd_reloc_outofrange;
5588 /* Convert GOT indices to actual offsets. */
5589 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5593 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5594 symbols are resolved by the loader. Add them to .rela.dyn. */
5595 if (h != NULL && is_gott_symbol (info, &h->root))
5597 Elf_Internal_Rela outrel;
5601 s = mips_elf_rel_dyn_section (info, FALSE);
5602 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5604 outrel.r_offset = (input_section->output_section->vma
5605 + input_section->output_offset
5606 + relocation->r_offset);
5607 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5608 outrel.r_addend = addend;
5609 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5611 /* If we've written this relocation for a readonly section,
5612 we need to set DF_TEXTREL again, so that we do not delete the
5614 if (MIPS_ELF_READONLY_SECTION (input_section))
5615 info->flags |= DF_TEXTREL;
5618 return bfd_reloc_ok;
5621 /* Figure out what kind of relocation is being performed. */
5625 return bfd_reloc_continue;
5628 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5629 overflowed_p = mips_elf_overflow_p (value, 16);
5636 || (htab->root.dynamic_sections_created
5638 && h->root.def_dynamic
5639 && !h->root.def_regular
5640 && !h->has_static_relocs))
5641 && r_symndx != STN_UNDEF
5643 || h->root.root.type != bfd_link_hash_undefweak
5644 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5645 && (input_section->flags & SEC_ALLOC) != 0)
5647 /* If we're creating a shared library, then we can't know
5648 where the symbol will end up. So, we create a relocation
5649 record in the output, and leave the job up to the dynamic
5650 linker. We must do the same for executable references to
5651 shared library symbols, unless we've decided to use copy
5652 relocs or PLTs instead. */
5654 if (!mips_elf_create_dynamic_relocation (abfd,
5662 return bfd_reloc_undefined;
5666 if (r_type != R_MIPS_REL32)
5667 value = symbol + addend;
5671 value &= howto->dst_mask;
5675 value = symbol + addend - p;
5676 value &= howto->dst_mask;
5680 /* The calculation for R_MIPS16_26 is just the same as for an
5681 R_MIPS_26. It's only the storage of the relocated field into
5682 the output file that's different. That's handled in
5683 mips_elf_perform_relocation. So, we just fall through to the
5684 R_MIPS_26 case here. */
5686 case R_MICROMIPS_26_S1:
5690 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5691 the correct ISA mode selector and bit 1 must be 0. */
5692 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5693 return bfd_reloc_outofrange;
5695 /* Shift is 2, unusually, for microMIPS JALX. */
5696 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5699 value = addend | ((p + 4) & (0xfc000000 << shift));
5701 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5702 value = (value + symbol) >> shift;
5703 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5704 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5705 value &= howto->dst_mask;
5709 case R_MIPS_TLS_DTPREL_HI16:
5710 case R_MIPS16_TLS_DTPREL_HI16:
5711 case R_MICROMIPS_TLS_DTPREL_HI16:
5712 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5716 case R_MIPS_TLS_DTPREL_LO16:
5717 case R_MIPS_TLS_DTPREL32:
5718 case R_MIPS_TLS_DTPREL64:
5719 case R_MIPS16_TLS_DTPREL_LO16:
5720 case R_MICROMIPS_TLS_DTPREL_LO16:
5721 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5724 case R_MIPS_TLS_TPREL_HI16:
5725 case R_MIPS16_TLS_TPREL_HI16:
5726 case R_MICROMIPS_TLS_TPREL_HI16:
5727 value = (mips_elf_high (addend + symbol - tprel_base (info))
5731 case R_MIPS_TLS_TPREL_LO16:
5732 case R_MIPS_TLS_TPREL32:
5733 case R_MIPS_TLS_TPREL64:
5734 case R_MIPS16_TLS_TPREL_LO16:
5735 case R_MICROMIPS_TLS_TPREL_LO16:
5736 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5741 case R_MICROMIPS_HI16:
5744 value = mips_elf_high (addend + symbol);
5745 value &= howto->dst_mask;
5749 /* For MIPS16 ABI code we generate this sequence
5750 0: li $v0,%hi(_gp_disp)
5751 4: addiupc $v1,%lo(_gp_disp)
5755 So the offsets of hi and lo relocs are the same, but the
5756 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5757 ADDIUPC clears the low two bits of the instruction address,
5758 so the base is ($t9 + 4) & ~3. */
5759 if (r_type == R_MIPS16_HI16)
5760 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5761 /* The microMIPS .cpload sequence uses the same assembly
5762 instructions as the traditional psABI version, but the
5763 incoming $t9 has the low bit set. */
5764 else if (r_type == R_MICROMIPS_HI16)
5765 value = mips_elf_high (addend + gp - p - 1);
5767 value = mips_elf_high (addend + gp - p);
5768 overflowed_p = mips_elf_overflow_p (value, 16);
5774 case R_MICROMIPS_LO16:
5775 case R_MICROMIPS_HI0_LO16:
5777 value = (symbol + addend) & howto->dst_mask;
5780 /* See the comment for R_MIPS16_HI16 above for the reason
5781 for this conditional. */
5782 if (r_type == R_MIPS16_LO16)
5783 value = addend + gp - (p & ~(bfd_vma) 0x3);
5784 else if (r_type == R_MICROMIPS_LO16
5785 || r_type == R_MICROMIPS_HI0_LO16)
5786 value = addend + gp - p + 3;
5788 value = addend + gp - p + 4;
5789 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5790 for overflow. But, on, say, IRIX5, relocations against
5791 _gp_disp are normally generated from the .cpload
5792 pseudo-op. It generates code that normally looks like
5795 lui $gp,%hi(_gp_disp)
5796 addiu $gp,$gp,%lo(_gp_disp)
5799 Here $t9 holds the address of the function being called,
5800 as required by the MIPS ELF ABI. The R_MIPS_LO16
5801 relocation can easily overflow in this situation, but the
5802 R_MIPS_HI16 relocation will handle the overflow.
5803 Therefore, we consider this a bug in the MIPS ABI, and do
5804 not check for overflow here. */
5808 case R_MIPS_LITERAL:
5809 case R_MICROMIPS_LITERAL:
5810 /* Because we don't merge literal sections, we can handle this
5811 just like R_MIPS_GPREL16. In the long run, we should merge
5812 shared literals, and then we will need to additional work
5817 case R_MIPS16_GPREL:
5818 /* The R_MIPS16_GPREL performs the same calculation as
5819 R_MIPS_GPREL16, but stores the relocated bits in a different
5820 order. We don't need to do anything special here; the
5821 differences are handled in mips_elf_perform_relocation. */
5822 case R_MIPS_GPREL16:
5823 case R_MICROMIPS_GPREL7_S2:
5824 case R_MICROMIPS_GPREL16:
5825 /* Only sign-extend the addend if it was extracted from the
5826 instruction. If the addend was separate, leave it alone,
5827 otherwise we may lose significant bits. */
5828 if (howto->partial_inplace)
5829 addend = _bfd_mips_elf_sign_extend (addend, 16);
5830 value = symbol + addend - gp;
5831 /* If the symbol was local, any earlier relocatable links will
5832 have adjusted its addend with the gp offset, so compensate
5833 for that now. Don't do it for symbols forced local in this
5834 link, though, since they won't have had the gp offset applied
5838 overflowed_p = mips_elf_overflow_p (value, 16);
5841 case R_MIPS16_GOT16:
5842 case R_MIPS16_CALL16:
5845 case R_MICROMIPS_GOT16:
5846 case R_MICROMIPS_CALL16:
5847 /* VxWorks does not have separate local and global semantics for
5848 R_MIPS*_GOT16; every relocation evaluates to "G". */
5849 if (!htab->is_vxworks && local_p)
5851 value = mips_elf_got16_entry (abfd, input_bfd, info,
5852 symbol + addend, !was_local_p);
5853 if (value == MINUS_ONE)
5854 return bfd_reloc_outofrange;
5856 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5857 overflowed_p = mips_elf_overflow_p (value, 16);
5864 case R_MIPS_TLS_GOTTPREL:
5865 case R_MIPS_TLS_LDM:
5866 case R_MIPS_GOT_DISP:
5867 case R_MIPS16_TLS_GD:
5868 case R_MIPS16_TLS_GOTTPREL:
5869 case R_MIPS16_TLS_LDM:
5870 case R_MICROMIPS_TLS_GD:
5871 case R_MICROMIPS_TLS_GOTTPREL:
5872 case R_MICROMIPS_TLS_LDM:
5873 case R_MICROMIPS_GOT_DISP:
5875 overflowed_p = mips_elf_overflow_p (value, 16);
5878 case R_MIPS_GPREL32:
5879 value = (addend + symbol + gp0 - gp);
5881 value &= howto->dst_mask;
5885 case R_MIPS_GNU_REL16_S2:
5886 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5887 overflowed_p = mips_elf_overflow_p (value, 18);
5888 value >>= howto->rightshift;
5889 value &= howto->dst_mask;
5892 case R_MICROMIPS_PC7_S1:
5893 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5894 overflowed_p = mips_elf_overflow_p (value, 8);
5895 value >>= howto->rightshift;
5896 value &= howto->dst_mask;
5899 case R_MICROMIPS_PC10_S1:
5900 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5901 overflowed_p = mips_elf_overflow_p (value, 11);
5902 value >>= howto->rightshift;
5903 value &= howto->dst_mask;
5906 case R_MICROMIPS_PC16_S1:
5907 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5908 overflowed_p = mips_elf_overflow_p (value, 17);
5909 value >>= howto->rightshift;
5910 value &= howto->dst_mask;
5913 case R_MICROMIPS_PC23_S2:
5914 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5915 overflowed_p = mips_elf_overflow_p (value, 25);
5916 value >>= howto->rightshift;
5917 value &= howto->dst_mask;
5920 case R_MIPS_GOT_HI16:
5921 case R_MIPS_CALL_HI16:
5922 case R_MICROMIPS_GOT_HI16:
5923 case R_MICROMIPS_CALL_HI16:
5924 /* We're allowed to handle these two relocations identically.
5925 The dynamic linker is allowed to handle the CALL relocations
5926 differently by creating a lazy evaluation stub. */
5928 value = mips_elf_high (value);
5929 value &= howto->dst_mask;
5932 case R_MIPS_GOT_LO16:
5933 case R_MIPS_CALL_LO16:
5934 case R_MICROMIPS_GOT_LO16:
5935 case R_MICROMIPS_CALL_LO16:
5936 value = g & howto->dst_mask;
5939 case R_MIPS_GOT_PAGE:
5940 case R_MICROMIPS_GOT_PAGE:
5941 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5942 if (value == MINUS_ONE)
5943 return bfd_reloc_outofrange;
5944 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5945 overflowed_p = mips_elf_overflow_p (value, 16);
5948 case R_MIPS_GOT_OFST:
5949 case R_MICROMIPS_GOT_OFST:
5951 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5954 overflowed_p = mips_elf_overflow_p (value, 16);
5958 case R_MICROMIPS_SUB:
5959 value = symbol - addend;
5960 value &= howto->dst_mask;
5964 case R_MICROMIPS_HIGHER:
5965 value = mips_elf_higher (addend + symbol);
5966 value &= howto->dst_mask;
5969 case R_MIPS_HIGHEST:
5970 case R_MICROMIPS_HIGHEST:
5971 value = mips_elf_highest (addend + symbol);
5972 value &= howto->dst_mask;
5975 case R_MIPS_SCN_DISP:
5976 case R_MICROMIPS_SCN_DISP:
5977 value = symbol + addend - sec->output_offset;
5978 value &= howto->dst_mask;
5982 case R_MICROMIPS_JALR:
5983 /* This relocation is only a hint. In some cases, we optimize
5984 it into a bal instruction. But we don't try to optimize
5985 when the symbol does not resolve locally. */
5986 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5987 return bfd_reloc_continue;
5988 value = symbol + addend;
5992 case R_MIPS_GNU_VTINHERIT:
5993 case R_MIPS_GNU_VTENTRY:
5994 /* We don't do anything with these at present. */
5995 return bfd_reloc_continue;
5998 /* An unrecognized relocation type. */
5999 return bfd_reloc_notsupported;
6002 /* Store the VALUE for our caller. */
6004 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6007 /* Obtain the field relocated by RELOCATION. */
6010 mips_elf_obtain_contents (reloc_howto_type *howto,
6011 const Elf_Internal_Rela *relocation,
6012 bfd *input_bfd, bfd_byte *contents)
6015 bfd_byte *location = contents + relocation->r_offset;
6017 /* Obtain the bytes. */
6018 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6023 /* It has been determined that the result of the RELOCATION is the
6024 VALUE. Use HOWTO to place VALUE into the output file at the
6025 appropriate position. The SECTION is the section to which the
6027 CROSS_MODE_JUMP_P is true if the relocation field
6028 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6030 Returns FALSE if anything goes wrong. */
6033 mips_elf_perform_relocation (struct bfd_link_info *info,
6034 reloc_howto_type *howto,
6035 const Elf_Internal_Rela *relocation,
6036 bfd_vma value, bfd *input_bfd,
6037 asection *input_section, bfd_byte *contents,
6038 bfd_boolean cross_mode_jump_p)
6042 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6044 /* Figure out where the relocation is occurring. */
6045 location = contents + relocation->r_offset;
6047 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6049 /* Obtain the current value. */
6050 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6052 /* Clear the field we are setting. */
6053 x &= ~howto->dst_mask;
6055 /* Set the field. */
6056 x |= (value & howto->dst_mask);
6058 /* If required, turn JAL into JALX. */
6059 if (cross_mode_jump_p && jal_reloc_p (r_type))
6062 bfd_vma opcode = x >> 26;
6063 bfd_vma jalx_opcode;
6065 /* Check to see if the opcode is already JAL or JALX. */
6066 if (r_type == R_MIPS16_26)
6068 ok = ((opcode == 0x6) || (opcode == 0x7));
6071 else if (r_type == R_MICROMIPS_26_S1)
6073 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6078 ok = ((opcode == 0x3) || (opcode == 0x1d));
6082 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6083 convert J or JALS to JALX. */
6086 (*_bfd_error_handler)
6087 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6090 (unsigned long) relocation->r_offset);
6091 bfd_set_error (bfd_error_bad_value);
6095 /* Make this the JALX opcode. */
6096 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6099 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6101 if (!info->relocatable
6102 && !cross_mode_jump_p
6103 && ((JAL_TO_BAL_P (input_bfd)
6104 && r_type == R_MIPS_26
6105 && (x >> 26) == 0x3) /* jal addr */
6106 || (JALR_TO_BAL_P (input_bfd)
6107 && r_type == R_MIPS_JALR
6108 && x == 0x0320f809) /* jalr t9 */
6109 || (JR_TO_B_P (input_bfd)
6110 && r_type == R_MIPS_JALR
6111 && x == 0x03200008))) /* jr t9 */
6117 addr = (input_section->output_section->vma
6118 + input_section->output_offset
6119 + relocation->r_offset
6121 if (r_type == R_MIPS_26)
6122 dest = (value << 2) | ((addr >> 28) << 28);
6126 if (off <= 0x1ffff && off >= -0x20000)
6128 if (x == 0x03200008) /* jr t9 */
6129 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6131 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6135 /* Put the value into the output. */
6136 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6138 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6144 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6145 is the original relocation, which is now being transformed into a
6146 dynamic relocation. The ADDENDP is adjusted if necessary; the
6147 caller should store the result in place of the original addend. */
6150 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6151 struct bfd_link_info *info,
6152 const Elf_Internal_Rela *rel,
6153 struct mips_elf_link_hash_entry *h,
6154 asection *sec, bfd_vma symbol,
6155 bfd_vma *addendp, asection *input_section)
6157 Elf_Internal_Rela outrel[3];
6162 bfd_boolean defined_p;
6163 struct mips_elf_link_hash_table *htab;
6165 htab = mips_elf_hash_table (info);
6166 BFD_ASSERT (htab != NULL);
6168 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6169 dynobj = elf_hash_table (info)->dynobj;
6170 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6171 BFD_ASSERT (sreloc != NULL);
6172 BFD_ASSERT (sreloc->contents != NULL);
6173 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6176 outrel[0].r_offset =
6177 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6178 if (ABI_64_P (output_bfd))
6180 outrel[1].r_offset =
6181 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6182 outrel[2].r_offset =
6183 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6186 if (outrel[0].r_offset == MINUS_ONE)
6187 /* The relocation field has been deleted. */
6190 if (outrel[0].r_offset == MINUS_TWO)
6192 /* The relocation field has been converted into a relative value of
6193 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6194 the field to be fully relocated, so add in the symbol's value. */
6199 /* We must now calculate the dynamic symbol table index to use
6200 in the relocation. */
6201 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6203 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6204 indx = h->root.dynindx;
6205 if (SGI_COMPAT (output_bfd))
6206 defined_p = h->root.def_regular;
6208 /* ??? glibc's ld.so just adds the final GOT entry to the
6209 relocation field. It therefore treats relocs against
6210 defined symbols in the same way as relocs against
6211 undefined symbols. */
6216 if (sec != NULL && bfd_is_abs_section (sec))
6218 else if (sec == NULL || sec->owner == NULL)
6220 bfd_set_error (bfd_error_bad_value);
6225 indx = elf_section_data (sec->output_section)->dynindx;
6228 asection *osec = htab->root.text_index_section;
6229 indx = elf_section_data (osec)->dynindx;
6235 /* Instead of generating a relocation using the section
6236 symbol, we may as well make it a fully relative
6237 relocation. We want to avoid generating relocations to
6238 local symbols because we used to generate them
6239 incorrectly, without adding the original symbol value,
6240 which is mandated by the ABI for section symbols. In
6241 order to give dynamic loaders and applications time to
6242 phase out the incorrect use, we refrain from emitting
6243 section-relative relocations. It's not like they're
6244 useful, after all. This should be a bit more efficient
6246 /* ??? Although this behavior is compatible with glibc's ld.so,
6247 the ABI says that relocations against STN_UNDEF should have
6248 a symbol value of 0. Irix rld honors this, so relocations
6249 against STN_UNDEF have no effect. */
6250 if (!SGI_COMPAT (output_bfd))
6255 /* If the relocation was previously an absolute relocation and
6256 this symbol will not be referred to by the relocation, we must
6257 adjust it by the value we give it in the dynamic symbol table.
6258 Otherwise leave the job up to the dynamic linker. */
6259 if (defined_p && r_type != R_MIPS_REL32)
6262 if (htab->is_vxworks)
6263 /* VxWorks uses non-relative relocations for this. */
6264 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6266 /* The relocation is always an REL32 relocation because we don't
6267 know where the shared library will wind up at load-time. */
6268 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6271 /* For strict adherence to the ABI specification, we should
6272 generate a R_MIPS_64 relocation record by itself before the
6273 _REL32/_64 record as well, such that the addend is read in as
6274 a 64-bit value (REL32 is a 32-bit relocation, after all).
6275 However, since none of the existing ELF64 MIPS dynamic
6276 loaders seems to care, we don't waste space with these
6277 artificial relocations. If this turns out to not be true,
6278 mips_elf_allocate_dynamic_relocation() should be tweaked so
6279 as to make room for a pair of dynamic relocations per
6280 invocation if ABI_64_P, and here we should generate an
6281 additional relocation record with R_MIPS_64 by itself for a
6282 NULL symbol before this relocation record. */
6283 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6284 ABI_64_P (output_bfd)
6287 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6289 /* Adjust the output offset of the relocation to reference the
6290 correct location in the output file. */
6291 outrel[0].r_offset += (input_section->output_section->vma
6292 + input_section->output_offset);
6293 outrel[1].r_offset += (input_section->output_section->vma
6294 + input_section->output_offset);
6295 outrel[2].r_offset += (input_section->output_section->vma
6296 + input_section->output_offset);
6298 /* Put the relocation back out. We have to use the special
6299 relocation outputter in the 64-bit case since the 64-bit
6300 relocation format is non-standard. */
6301 if (ABI_64_P (output_bfd))
6303 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6304 (output_bfd, &outrel[0],
6306 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6308 else if (htab->is_vxworks)
6310 /* VxWorks uses RELA rather than REL dynamic relocations. */
6311 outrel[0].r_addend = *addendp;
6312 bfd_elf32_swap_reloca_out
6313 (output_bfd, &outrel[0],
6315 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6318 bfd_elf32_swap_reloc_out
6319 (output_bfd, &outrel[0],
6320 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6322 /* We've now added another relocation. */
6323 ++sreloc->reloc_count;
6325 /* Make sure the output section is writable. The dynamic linker
6326 will be writing to it. */
6327 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6330 /* On IRIX5, make an entry of compact relocation info. */
6331 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6333 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6338 Elf32_crinfo cptrel;
6340 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6341 cptrel.vaddr = (rel->r_offset
6342 + input_section->output_section->vma
6343 + input_section->output_offset);
6344 if (r_type == R_MIPS_REL32)
6345 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6347 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6348 mips_elf_set_cr_dist2to (cptrel, 0);
6349 cptrel.konst = *addendp;
6351 cr = (scpt->contents
6352 + sizeof (Elf32_External_compact_rel));
6353 mips_elf_set_cr_relvaddr (cptrel, 0);
6354 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6355 ((Elf32_External_crinfo *) cr
6356 + scpt->reloc_count));
6357 ++scpt->reloc_count;
6361 /* If we've written this relocation for a readonly section,
6362 we need to set DF_TEXTREL again, so that we do not delete the
6364 if (MIPS_ELF_READONLY_SECTION (input_section))
6365 info->flags |= DF_TEXTREL;
6370 /* Return the MACH for a MIPS e_flags value. */
6373 _bfd_elf_mips_mach (flagword flags)
6375 switch (flags & EF_MIPS_MACH)
6377 case E_MIPS_MACH_3900:
6378 return bfd_mach_mips3900;
6380 case E_MIPS_MACH_4010:
6381 return bfd_mach_mips4010;
6383 case E_MIPS_MACH_4100:
6384 return bfd_mach_mips4100;
6386 case E_MIPS_MACH_4111:
6387 return bfd_mach_mips4111;
6389 case E_MIPS_MACH_4120:
6390 return bfd_mach_mips4120;
6392 case E_MIPS_MACH_4650:
6393 return bfd_mach_mips4650;
6395 case E_MIPS_MACH_5400:
6396 return bfd_mach_mips5400;
6398 case E_MIPS_MACH_5500:
6399 return bfd_mach_mips5500;
6401 case E_MIPS_MACH_5900:
6402 return bfd_mach_mips5900;
6404 case E_MIPS_MACH_9000:
6405 return bfd_mach_mips9000;
6407 case E_MIPS_MACH_SB1:
6408 return bfd_mach_mips_sb1;
6410 case E_MIPS_MACH_LS2E:
6411 return bfd_mach_mips_loongson_2e;
6413 case E_MIPS_MACH_LS2F:
6414 return bfd_mach_mips_loongson_2f;
6416 case E_MIPS_MACH_LS3A:
6417 return bfd_mach_mips_loongson_3a;
6419 case E_MIPS_MACH_OCTEON2:
6420 return bfd_mach_mips_octeon2;
6422 case E_MIPS_MACH_OCTEON:
6423 return bfd_mach_mips_octeon;
6425 case E_MIPS_MACH_XLR:
6426 return bfd_mach_mips_xlr;
6429 switch (flags & EF_MIPS_ARCH)
6433 return bfd_mach_mips3000;
6436 return bfd_mach_mips6000;
6439 return bfd_mach_mips4000;
6442 return bfd_mach_mips8000;
6445 return bfd_mach_mips5;
6447 case E_MIPS_ARCH_32:
6448 return bfd_mach_mipsisa32;
6450 case E_MIPS_ARCH_64:
6451 return bfd_mach_mipsisa64;
6453 case E_MIPS_ARCH_32R2:
6454 return bfd_mach_mipsisa32r2;
6456 case E_MIPS_ARCH_64R2:
6457 return bfd_mach_mipsisa64r2;
6464 /* Return printable name for ABI. */
6466 static INLINE char *
6467 elf_mips_abi_name (bfd *abfd)
6471 flags = elf_elfheader (abfd)->e_flags;
6472 switch (flags & EF_MIPS_ABI)
6475 if (ABI_N32_P (abfd))
6477 else if (ABI_64_P (abfd))
6481 case E_MIPS_ABI_O32:
6483 case E_MIPS_ABI_O64:
6485 case E_MIPS_ABI_EABI32:
6487 case E_MIPS_ABI_EABI64:
6490 return "unknown abi";
6494 /* MIPS ELF uses two common sections. One is the usual one, and the
6495 other is for small objects. All the small objects are kept
6496 together, and then referenced via the gp pointer, which yields
6497 faster assembler code. This is what we use for the small common
6498 section. This approach is copied from ecoff.c. */
6499 static asection mips_elf_scom_section;
6500 static asymbol mips_elf_scom_symbol;
6501 static asymbol *mips_elf_scom_symbol_ptr;
6503 /* MIPS ELF also uses an acommon section, which represents an
6504 allocated common symbol which may be overridden by a
6505 definition in a shared library. */
6506 static asection mips_elf_acom_section;
6507 static asymbol mips_elf_acom_symbol;
6508 static asymbol *mips_elf_acom_symbol_ptr;
6510 /* This is used for both the 32-bit and the 64-bit ABI. */
6513 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6515 elf_symbol_type *elfsym;
6517 /* Handle the special MIPS section numbers that a symbol may use. */
6518 elfsym = (elf_symbol_type *) asym;
6519 switch (elfsym->internal_elf_sym.st_shndx)
6521 case SHN_MIPS_ACOMMON:
6522 /* This section is used in a dynamically linked executable file.
6523 It is an allocated common section. The dynamic linker can
6524 either resolve these symbols to something in a shared
6525 library, or it can just leave them here. For our purposes,
6526 we can consider these symbols to be in a new section. */
6527 if (mips_elf_acom_section.name == NULL)
6529 /* Initialize the acommon section. */
6530 mips_elf_acom_section.name = ".acommon";
6531 mips_elf_acom_section.flags = SEC_ALLOC;
6532 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6533 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6534 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6535 mips_elf_acom_symbol.name = ".acommon";
6536 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6537 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6538 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6540 asym->section = &mips_elf_acom_section;
6544 /* Common symbols less than the GP size are automatically
6545 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6546 if (asym->value > elf_gp_size (abfd)
6547 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6548 || IRIX_COMPAT (abfd) == ict_irix6)
6551 case SHN_MIPS_SCOMMON:
6552 if (mips_elf_scom_section.name == NULL)
6554 /* Initialize the small common section. */
6555 mips_elf_scom_section.name = ".scommon";
6556 mips_elf_scom_section.flags = SEC_IS_COMMON;
6557 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6558 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6559 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6560 mips_elf_scom_symbol.name = ".scommon";
6561 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6562 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6563 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6565 asym->section = &mips_elf_scom_section;
6566 asym->value = elfsym->internal_elf_sym.st_size;
6569 case SHN_MIPS_SUNDEFINED:
6570 asym->section = bfd_und_section_ptr;
6575 asection *section = bfd_get_section_by_name (abfd, ".text");
6577 if (section != NULL)
6579 asym->section = section;
6580 /* MIPS_TEXT is a bit special, the address is not an offset
6581 to the base of the .text section. So substract the section
6582 base address to make it an offset. */
6583 asym->value -= section->vma;
6590 asection *section = bfd_get_section_by_name (abfd, ".data");
6592 if (section != NULL)
6594 asym->section = section;
6595 /* MIPS_DATA is a bit special, the address is not an offset
6596 to the base of the .data section. So substract the section
6597 base address to make it an offset. */
6598 asym->value -= section->vma;
6604 /* If this is an odd-valued function symbol, assume it's a MIPS16
6605 or microMIPS one. */
6606 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6607 && (asym->value & 1) != 0)
6610 if (MICROMIPS_P (abfd))
6611 elfsym->internal_elf_sym.st_other
6612 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6614 elfsym->internal_elf_sym.st_other
6615 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6619 /* Implement elf_backend_eh_frame_address_size. This differs from
6620 the default in the way it handles EABI64.
6622 EABI64 was originally specified as an LP64 ABI, and that is what
6623 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6624 historically accepted the combination of -mabi=eabi and -mlong32,
6625 and this ILP32 variation has become semi-official over time.
6626 Both forms use elf32 and have pointer-sized FDE addresses.
6628 If an EABI object was generated by GCC 4.0 or above, it will have
6629 an empty .gcc_compiled_longXX section, where XX is the size of longs
6630 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6631 have no special marking to distinguish them from LP64 objects.
6633 We don't want users of the official LP64 ABI to be punished for the
6634 existence of the ILP32 variant, but at the same time, we don't want
6635 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6636 We therefore take the following approach:
6638 - If ABFD contains a .gcc_compiled_longXX section, use it to
6639 determine the pointer size.
6641 - Otherwise check the type of the first relocation. Assume that
6642 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6646 The second check is enough to detect LP64 objects generated by pre-4.0
6647 compilers because, in the kind of output generated by those compilers,
6648 the first relocation will be associated with either a CIE personality
6649 routine or an FDE start address. Furthermore, the compilers never
6650 used a special (non-pointer) encoding for this ABI.
6652 Checking the relocation type should also be safe because there is no
6653 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6657 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6659 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6661 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6663 bfd_boolean long32_p, long64_p;
6665 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6666 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6667 if (long32_p && long64_p)
6674 if (sec->reloc_count > 0
6675 && elf_section_data (sec)->relocs != NULL
6676 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6685 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6686 relocations against two unnamed section symbols to resolve to the
6687 same address. For example, if we have code like:
6689 lw $4,%got_disp(.data)($gp)
6690 lw $25,%got_disp(.text)($gp)
6693 then the linker will resolve both relocations to .data and the program
6694 will jump there rather than to .text.
6696 We can work around this problem by giving names to local section symbols.
6697 This is also what the MIPSpro tools do. */
6700 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6702 return SGI_COMPAT (abfd);
6705 /* Work over a section just before writing it out. This routine is
6706 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6707 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6711 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6713 if (hdr->sh_type == SHT_MIPS_REGINFO
6714 && hdr->sh_size > 0)
6718 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6719 BFD_ASSERT (hdr->contents == NULL);
6722 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6725 H_PUT_32 (abfd, elf_gp (abfd), buf);
6726 if (bfd_bwrite (buf, 4, abfd) != 4)
6730 if (hdr->sh_type == SHT_MIPS_OPTIONS
6731 && hdr->bfd_section != NULL
6732 && mips_elf_section_data (hdr->bfd_section) != NULL
6733 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6735 bfd_byte *contents, *l, *lend;
6737 /* We stored the section contents in the tdata field in the
6738 set_section_contents routine. We save the section contents
6739 so that we don't have to read them again.
6740 At this point we know that elf_gp is set, so we can look
6741 through the section contents to see if there is an
6742 ODK_REGINFO structure. */
6744 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6746 lend = contents + hdr->sh_size;
6747 while (l + sizeof (Elf_External_Options) <= lend)
6749 Elf_Internal_Options intopt;
6751 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6753 if (intopt.size < sizeof (Elf_External_Options))
6755 (*_bfd_error_handler)
6756 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6757 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6760 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6767 + sizeof (Elf_External_Options)
6768 + (sizeof (Elf64_External_RegInfo) - 8)),
6771 H_PUT_64 (abfd, elf_gp (abfd), buf);
6772 if (bfd_bwrite (buf, 8, abfd) != 8)
6775 else if (intopt.kind == ODK_REGINFO)
6782 + sizeof (Elf_External_Options)
6783 + (sizeof (Elf32_External_RegInfo) - 4)),
6786 H_PUT_32 (abfd, elf_gp (abfd), buf);
6787 if (bfd_bwrite (buf, 4, abfd) != 4)
6794 if (hdr->bfd_section != NULL)
6796 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6798 /* .sbss is not handled specially here because the GNU/Linux
6799 prelinker can convert .sbss from NOBITS to PROGBITS and
6800 changing it back to NOBITS breaks the binary. The entry in
6801 _bfd_mips_elf_special_sections will ensure the correct flags
6802 are set on .sbss if BFD creates it without reading it from an
6803 input file, and without special handling here the flags set
6804 on it in an input file will be followed. */
6805 if (strcmp (name, ".sdata") == 0
6806 || strcmp (name, ".lit8") == 0
6807 || strcmp (name, ".lit4") == 0)
6809 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6810 hdr->sh_type = SHT_PROGBITS;
6812 else if (strcmp (name, ".srdata") == 0)
6814 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6815 hdr->sh_type = SHT_PROGBITS;
6817 else if (strcmp (name, ".compact_rel") == 0)
6820 hdr->sh_type = SHT_PROGBITS;
6822 else if (strcmp (name, ".rtproc") == 0)
6824 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6826 unsigned int adjust;
6828 adjust = hdr->sh_size % hdr->sh_addralign;
6830 hdr->sh_size += hdr->sh_addralign - adjust;
6838 /* Handle a MIPS specific section when reading an object file. This
6839 is called when elfcode.h finds a section with an unknown type.
6840 This routine supports both the 32-bit and 64-bit ELF ABI.
6842 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6846 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6847 Elf_Internal_Shdr *hdr,
6853 /* There ought to be a place to keep ELF backend specific flags, but
6854 at the moment there isn't one. We just keep track of the
6855 sections by their name, instead. Fortunately, the ABI gives
6856 suggested names for all the MIPS specific sections, so we will
6857 probably get away with this. */
6858 switch (hdr->sh_type)
6860 case SHT_MIPS_LIBLIST:
6861 if (strcmp (name, ".liblist") != 0)
6865 if (strcmp (name, ".msym") != 0)
6868 case SHT_MIPS_CONFLICT:
6869 if (strcmp (name, ".conflict") != 0)
6872 case SHT_MIPS_GPTAB:
6873 if (! CONST_STRNEQ (name, ".gptab."))
6876 case SHT_MIPS_UCODE:
6877 if (strcmp (name, ".ucode") != 0)
6880 case SHT_MIPS_DEBUG:
6881 if (strcmp (name, ".mdebug") != 0)
6883 flags = SEC_DEBUGGING;
6885 case SHT_MIPS_REGINFO:
6886 if (strcmp (name, ".reginfo") != 0
6887 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6889 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6891 case SHT_MIPS_IFACE:
6892 if (strcmp (name, ".MIPS.interfaces") != 0)
6895 case SHT_MIPS_CONTENT:
6896 if (! CONST_STRNEQ (name, ".MIPS.content"))
6899 case SHT_MIPS_OPTIONS:
6900 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6903 case SHT_MIPS_DWARF:
6904 if (! CONST_STRNEQ (name, ".debug_")
6905 && ! CONST_STRNEQ (name, ".zdebug_"))
6908 case SHT_MIPS_SYMBOL_LIB:
6909 if (strcmp (name, ".MIPS.symlib") != 0)
6912 case SHT_MIPS_EVENTS:
6913 if (! CONST_STRNEQ (name, ".MIPS.events")
6914 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6921 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6926 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6927 (bfd_get_section_flags (abfd,
6933 /* FIXME: We should record sh_info for a .gptab section. */
6935 /* For a .reginfo section, set the gp value in the tdata information
6936 from the contents of this section. We need the gp value while
6937 processing relocs, so we just get it now. The .reginfo section
6938 is not used in the 64-bit MIPS ELF ABI. */
6939 if (hdr->sh_type == SHT_MIPS_REGINFO)
6941 Elf32_External_RegInfo ext;
6944 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6945 &ext, 0, sizeof ext))
6947 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6948 elf_gp (abfd) = s.ri_gp_value;
6951 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6952 set the gp value based on what we find. We may see both
6953 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6954 they should agree. */
6955 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6957 bfd_byte *contents, *l, *lend;
6959 contents = bfd_malloc (hdr->sh_size);
6960 if (contents == NULL)
6962 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6969 lend = contents + hdr->sh_size;
6970 while (l + sizeof (Elf_External_Options) <= lend)
6972 Elf_Internal_Options intopt;
6974 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6976 if (intopt.size < sizeof (Elf_External_Options))
6978 (*_bfd_error_handler)
6979 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6980 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6983 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6985 Elf64_Internal_RegInfo intreg;
6987 bfd_mips_elf64_swap_reginfo_in
6989 ((Elf64_External_RegInfo *)
6990 (l + sizeof (Elf_External_Options))),
6992 elf_gp (abfd) = intreg.ri_gp_value;
6994 else if (intopt.kind == ODK_REGINFO)
6996 Elf32_RegInfo intreg;
6998 bfd_mips_elf32_swap_reginfo_in
7000 ((Elf32_External_RegInfo *)
7001 (l + sizeof (Elf_External_Options))),
7003 elf_gp (abfd) = intreg.ri_gp_value;
7013 /* Set the correct type for a MIPS ELF section. We do this by the
7014 section name, which is a hack, but ought to work. This routine is
7015 used by both the 32-bit and the 64-bit ABI. */
7018 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7020 const char *name = bfd_get_section_name (abfd, sec);
7022 if (strcmp (name, ".liblist") == 0)
7024 hdr->sh_type = SHT_MIPS_LIBLIST;
7025 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7026 /* The sh_link field is set in final_write_processing. */
7028 else if (strcmp (name, ".conflict") == 0)
7029 hdr->sh_type = SHT_MIPS_CONFLICT;
7030 else if (CONST_STRNEQ (name, ".gptab."))
7032 hdr->sh_type = SHT_MIPS_GPTAB;
7033 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7034 /* The sh_info field is set in final_write_processing. */
7036 else if (strcmp (name, ".ucode") == 0)
7037 hdr->sh_type = SHT_MIPS_UCODE;
7038 else if (strcmp (name, ".mdebug") == 0)
7040 hdr->sh_type = SHT_MIPS_DEBUG;
7041 /* In a shared object on IRIX 5.3, the .mdebug section has an
7042 entsize of 0. FIXME: Does this matter? */
7043 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7044 hdr->sh_entsize = 0;
7046 hdr->sh_entsize = 1;
7048 else if (strcmp (name, ".reginfo") == 0)
7050 hdr->sh_type = SHT_MIPS_REGINFO;
7051 /* In a shared object on IRIX 5.3, the .reginfo section has an
7052 entsize of 0x18. FIXME: Does this matter? */
7053 if (SGI_COMPAT (abfd))
7055 if ((abfd->flags & DYNAMIC) != 0)
7056 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7058 hdr->sh_entsize = 1;
7061 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7063 else if (SGI_COMPAT (abfd)
7064 && (strcmp (name, ".hash") == 0
7065 || strcmp (name, ".dynamic") == 0
7066 || strcmp (name, ".dynstr") == 0))
7068 if (SGI_COMPAT (abfd))
7069 hdr->sh_entsize = 0;
7071 /* This isn't how the IRIX6 linker behaves. */
7072 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7075 else if (strcmp (name, ".got") == 0
7076 || strcmp (name, ".srdata") == 0
7077 || strcmp (name, ".sdata") == 0
7078 || strcmp (name, ".sbss") == 0
7079 || strcmp (name, ".lit4") == 0
7080 || strcmp (name, ".lit8") == 0)
7081 hdr->sh_flags |= SHF_MIPS_GPREL;
7082 else if (strcmp (name, ".MIPS.interfaces") == 0)
7084 hdr->sh_type = SHT_MIPS_IFACE;
7085 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7087 else if (CONST_STRNEQ (name, ".MIPS.content"))
7089 hdr->sh_type = SHT_MIPS_CONTENT;
7090 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7091 /* The sh_info field is set in final_write_processing. */
7093 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7095 hdr->sh_type = SHT_MIPS_OPTIONS;
7096 hdr->sh_entsize = 1;
7097 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7099 else if (CONST_STRNEQ (name, ".debug_")
7100 || CONST_STRNEQ (name, ".zdebug_"))
7102 hdr->sh_type = SHT_MIPS_DWARF;
7104 /* Irix facilities such as libexc expect a single .debug_frame
7105 per executable, the system ones have NOSTRIP set and the linker
7106 doesn't merge sections with different flags so ... */
7107 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7108 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7110 else if (strcmp (name, ".MIPS.symlib") == 0)
7112 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7113 /* The sh_link and sh_info fields are set in
7114 final_write_processing. */
7116 else if (CONST_STRNEQ (name, ".MIPS.events")
7117 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7119 hdr->sh_type = SHT_MIPS_EVENTS;
7120 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7121 /* The sh_link field is set in final_write_processing. */
7123 else if (strcmp (name, ".msym") == 0)
7125 hdr->sh_type = SHT_MIPS_MSYM;
7126 hdr->sh_flags |= SHF_ALLOC;
7127 hdr->sh_entsize = 8;
7130 /* The generic elf_fake_sections will set up REL_HDR using the default
7131 kind of relocations. We used to set up a second header for the
7132 non-default kind of relocations here, but only NewABI would use
7133 these, and the IRIX ld doesn't like resulting empty RELA sections.
7134 Thus we create those header only on demand now. */
7139 /* Given a BFD section, try to locate the corresponding ELF section
7140 index. This is used by both the 32-bit and the 64-bit ABI.
7141 Actually, it's not clear to me that the 64-bit ABI supports these,
7142 but for non-PIC objects we will certainly want support for at least
7143 the .scommon section. */
7146 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7147 asection *sec, int *retval)
7149 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7151 *retval = SHN_MIPS_SCOMMON;
7154 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7156 *retval = SHN_MIPS_ACOMMON;
7162 /* Hook called by the linker routine which adds symbols from an object
7163 file. We must handle the special MIPS section numbers here. */
7166 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7167 Elf_Internal_Sym *sym, const char **namep,
7168 flagword *flagsp ATTRIBUTE_UNUSED,
7169 asection **secp, bfd_vma *valp)
7171 if (SGI_COMPAT (abfd)
7172 && (abfd->flags & DYNAMIC) != 0
7173 && strcmp (*namep, "_rld_new_interface") == 0)
7175 /* Skip IRIX5 rld entry name. */
7180 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7181 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7182 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7183 a magic symbol resolved by the linker, we ignore this bogus definition
7184 of _gp_disp. New ABI objects do not suffer from this problem so this
7185 is not done for them. */
7187 && (sym->st_shndx == SHN_ABS)
7188 && (strcmp (*namep, "_gp_disp") == 0))
7194 switch (sym->st_shndx)
7197 /* Common symbols less than the GP size are automatically
7198 treated as SHN_MIPS_SCOMMON symbols. */
7199 if (sym->st_size > elf_gp_size (abfd)
7200 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7201 || IRIX_COMPAT (abfd) == ict_irix6)
7204 case SHN_MIPS_SCOMMON:
7205 *secp = bfd_make_section_old_way (abfd, ".scommon");
7206 (*secp)->flags |= SEC_IS_COMMON;
7207 *valp = sym->st_size;
7211 /* This section is used in a shared object. */
7212 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7214 asymbol *elf_text_symbol;
7215 asection *elf_text_section;
7216 bfd_size_type amt = sizeof (asection);
7218 elf_text_section = bfd_zalloc (abfd, amt);
7219 if (elf_text_section == NULL)
7222 amt = sizeof (asymbol);
7223 elf_text_symbol = bfd_zalloc (abfd, amt);
7224 if (elf_text_symbol == NULL)
7227 /* Initialize the section. */
7229 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7230 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7232 elf_text_section->symbol = elf_text_symbol;
7233 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7235 elf_text_section->name = ".text";
7236 elf_text_section->flags = SEC_NO_FLAGS;
7237 elf_text_section->output_section = NULL;
7238 elf_text_section->owner = abfd;
7239 elf_text_symbol->name = ".text";
7240 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7241 elf_text_symbol->section = elf_text_section;
7243 /* This code used to do *secp = bfd_und_section_ptr if
7244 info->shared. I don't know why, and that doesn't make sense,
7245 so I took it out. */
7246 *secp = mips_elf_tdata (abfd)->elf_text_section;
7249 case SHN_MIPS_ACOMMON:
7250 /* Fall through. XXX Can we treat this as allocated data? */
7252 /* This section is used in a shared object. */
7253 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7255 asymbol *elf_data_symbol;
7256 asection *elf_data_section;
7257 bfd_size_type amt = sizeof (asection);
7259 elf_data_section = bfd_zalloc (abfd, amt);
7260 if (elf_data_section == NULL)
7263 amt = sizeof (asymbol);
7264 elf_data_symbol = bfd_zalloc (abfd, amt);
7265 if (elf_data_symbol == NULL)
7268 /* Initialize the section. */
7270 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7271 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7273 elf_data_section->symbol = elf_data_symbol;
7274 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7276 elf_data_section->name = ".data";
7277 elf_data_section->flags = SEC_NO_FLAGS;
7278 elf_data_section->output_section = NULL;
7279 elf_data_section->owner = abfd;
7280 elf_data_symbol->name = ".data";
7281 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7282 elf_data_symbol->section = elf_data_section;
7284 /* This code used to do *secp = bfd_und_section_ptr if
7285 info->shared. I don't know why, and that doesn't make sense,
7286 so I took it out. */
7287 *secp = mips_elf_tdata (abfd)->elf_data_section;
7290 case SHN_MIPS_SUNDEFINED:
7291 *secp = bfd_und_section_ptr;
7295 if (SGI_COMPAT (abfd)
7297 && info->output_bfd->xvec == abfd->xvec
7298 && strcmp (*namep, "__rld_obj_head") == 0)
7300 struct elf_link_hash_entry *h;
7301 struct bfd_link_hash_entry *bh;
7303 /* Mark __rld_obj_head as dynamic. */
7305 if (! (_bfd_generic_link_add_one_symbol
7306 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7307 get_elf_backend_data (abfd)->collect, &bh)))
7310 h = (struct elf_link_hash_entry *) bh;
7313 h->type = STT_OBJECT;
7315 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7318 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7319 mips_elf_hash_table (info)->rld_symbol = h;
7322 /* If this is a mips16 text symbol, add 1 to the value to make it
7323 odd. This will cause something like .word SYM to come up with
7324 the right value when it is loaded into the PC. */
7325 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7331 /* This hook function is called before the linker writes out a global
7332 symbol. We mark symbols as small common if appropriate. This is
7333 also where we undo the increment of the value for a mips16 symbol. */
7336 _bfd_mips_elf_link_output_symbol_hook
7337 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7338 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7339 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7341 /* If we see a common symbol, which implies a relocatable link, then
7342 if a symbol was small common in an input file, mark it as small
7343 common in the output file. */
7344 if (sym->st_shndx == SHN_COMMON
7345 && strcmp (input_sec->name, ".scommon") == 0)
7346 sym->st_shndx = SHN_MIPS_SCOMMON;
7348 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7349 sym->st_value &= ~1;
7354 /* Functions for the dynamic linker. */
7356 /* Create dynamic sections when linking against a dynamic object. */
7359 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7361 struct elf_link_hash_entry *h;
7362 struct bfd_link_hash_entry *bh;
7364 register asection *s;
7365 const char * const *namep;
7366 struct mips_elf_link_hash_table *htab;
7368 htab = mips_elf_hash_table (info);
7369 BFD_ASSERT (htab != NULL);
7371 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7372 | SEC_LINKER_CREATED | SEC_READONLY);
7374 /* The psABI requires a read-only .dynamic section, but the VxWorks
7376 if (!htab->is_vxworks)
7378 s = bfd_get_linker_section (abfd, ".dynamic");
7381 if (! bfd_set_section_flags (abfd, s, flags))
7386 /* We need to create .got section. */
7387 if (!mips_elf_create_got_section (abfd, info))
7390 if (! mips_elf_rel_dyn_section (info, TRUE))
7393 /* Create .stub section. */
7394 s = bfd_make_section_anyway_with_flags (abfd,
7395 MIPS_ELF_STUB_SECTION_NAME (abfd),
7398 || ! bfd_set_section_alignment (abfd, s,
7399 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7403 if (!mips_elf_hash_table (info)->use_rld_obj_head
7405 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7407 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7408 flags &~ (flagword) SEC_READONLY);
7410 || ! bfd_set_section_alignment (abfd, s,
7411 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7415 /* On IRIX5, we adjust add some additional symbols and change the
7416 alignments of several sections. There is no ABI documentation
7417 indicating that this is necessary on IRIX6, nor any evidence that
7418 the linker takes such action. */
7419 if (IRIX_COMPAT (abfd) == ict_irix5)
7421 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7424 if (! (_bfd_generic_link_add_one_symbol
7425 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7426 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7429 h = (struct elf_link_hash_entry *) bh;
7432 h->type = STT_SECTION;
7434 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7438 /* We need to create a .compact_rel section. */
7439 if (SGI_COMPAT (abfd))
7441 if (!mips_elf_create_compact_rel_section (abfd, info))
7445 /* Change alignments of some sections. */
7446 s = bfd_get_linker_section (abfd, ".hash");
7448 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7450 s = bfd_get_linker_section (abfd, ".dynsym");
7452 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7454 s = bfd_get_linker_section (abfd, ".dynstr");
7456 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7459 s = bfd_get_section_by_name (abfd, ".reginfo");
7461 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7463 s = bfd_get_linker_section (abfd, ".dynamic");
7465 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7472 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7474 if (!(_bfd_generic_link_add_one_symbol
7475 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7476 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7479 h = (struct elf_link_hash_entry *) bh;
7482 h->type = STT_SECTION;
7484 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7487 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7489 /* __rld_map is a four byte word located in the .data section
7490 and is filled in by the rtld to contain a pointer to
7491 the _r_debug structure. Its symbol value will be set in
7492 _bfd_mips_elf_finish_dynamic_symbol. */
7493 s = bfd_get_linker_section (abfd, ".rld_map");
7494 BFD_ASSERT (s != NULL);
7496 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7498 if (!(_bfd_generic_link_add_one_symbol
7499 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7500 get_elf_backend_data (abfd)->collect, &bh)))
7503 h = (struct elf_link_hash_entry *) bh;
7506 h->type = STT_OBJECT;
7508 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7510 mips_elf_hash_table (info)->rld_symbol = h;
7514 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7515 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7516 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7519 /* Cache the sections created above. */
7520 htab->splt = bfd_get_linker_section (abfd, ".plt");
7521 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7522 if (htab->is_vxworks)
7524 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7525 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7528 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7530 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7535 /* Do the usual VxWorks handling. */
7536 if (htab->is_vxworks
7537 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7543 /* Return true if relocation REL against section SEC is a REL rather than
7544 RELA relocation. RELOCS is the first relocation in the section and
7545 ABFD is the bfd that contains SEC. */
7548 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7549 const Elf_Internal_Rela *relocs,
7550 const Elf_Internal_Rela *rel)
7552 Elf_Internal_Shdr *rel_hdr;
7553 const struct elf_backend_data *bed;
7555 /* To determine which flavor of relocation this is, we depend on the
7556 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7557 rel_hdr = elf_section_data (sec)->rel.hdr;
7558 if (rel_hdr == NULL)
7560 bed = get_elf_backend_data (abfd);
7561 return ((size_t) (rel - relocs)
7562 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7565 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7566 HOWTO is the relocation's howto and CONTENTS points to the contents
7567 of the section that REL is against. */
7570 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7571 reloc_howto_type *howto, bfd_byte *contents)
7574 unsigned int r_type;
7577 r_type = ELF_R_TYPE (abfd, rel->r_info);
7578 location = contents + rel->r_offset;
7580 /* Get the addend, which is stored in the input file. */
7581 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7582 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7583 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7585 return addend & howto->src_mask;
7588 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7589 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7590 and update *ADDEND with the final addend. Return true on success
7591 or false if the LO16 could not be found. RELEND is the exclusive
7592 upper bound on the relocations for REL's section. */
7595 mips_elf_add_lo16_rel_addend (bfd *abfd,
7596 const Elf_Internal_Rela *rel,
7597 const Elf_Internal_Rela *relend,
7598 bfd_byte *contents, bfd_vma *addend)
7600 unsigned int r_type, lo16_type;
7601 const Elf_Internal_Rela *lo16_relocation;
7602 reloc_howto_type *lo16_howto;
7605 r_type = ELF_R_TYPE (abfd, rel->r_info);
7606 if (mips16_reloc_p (r_type))
7607 lo16_type = R_MIPS16_LO16;
7608 else if (micromips_reloc_p (r_type))
7609 lo16_type = R_MICROMIPS_LO16;
7611 lo16_type = R_MIPS_LO16;
7613 /* The combined value is the sum of the HI16 addend, left-shifted by
7614 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7615 code does a `lui' of the HI16 value, and then an `addiu' of the
7618 Scan ahead to find a matching LO16 relocation.
7620 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7621 be immediately following. However, for the IRIX6 ABI, the next
7622 relocation may be a composed relocation consisting of several
7623 relocations for the same address. In that case, the R_MIPS_LO16
7624 relocation may occur as one of these. We permit a similar
7625 extension in general, as that is useful for GCC.
7627 In some cases GCC dead code elimination removes the LO16 but keeps
7628 the corresponding HI16. This is strictly speaking a violation of
7629 the ABI but not immediately harmful. */
7630 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7631 if (lo16_relocation == NULL)
7634 /* Obtain the addend kept there. */
7635 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7636 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7638 l <<= lo16_howto->rightshift;
7639 l = _bfd_mips_elf_sign_extend (l, 16);
7646 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7647 store the contents in *CONTENTS on success. Assume that *CONTENTS
7648 already holds the contents if it is nonull on entry. */
7651 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7656 /* Get cached copy if it exists. */
7657 if (elf_section_data (sec)->this_hdr.contents != NULL)
7659 *contents = elf_section_data (sec)->this_hdr.contents;
7663 return bfd_malloc_and_get_section (abfd, sec, contents);
7666 /* Make a new PLT record to keep internal data. */
7668 static struct plt_entry *
7669 mips_elf_make_plt_record (bfd *abfd)
7671 struct plt_entry *entry;
7673 entry = bfd_zalloc (abfd, sizeof (*entry));
7677 entry->stub_offset = MINUS_ONE;
7678 entry->mips_offset = MINUS_ONE;
7679 entry->comp_offset = MINUS_ONE;
7680 entry->gotplt_index = MINUS_ONE;
7684 /* Look through the relocs for a section during the first phase, and
7685 allocate space in the global offset table and record the need for
7686 standard MIPS and compressed procedure linkage table entries. */
7689 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7690 asection *sec, const Elf_Internal_Rela *relocs)
7694 Elf_Internal_Shdr *symtab_hdr;
7695 struct elf_link_hash_entry **sym_hashes;
7697 const Elf_Internal_Rela *rel;
7698 const Elf_Internal_Rela *rel_end;
7700 const struct elf_backend_data *bed;
7701 struct mips_elf_link_hash_table *htab;
7704 reloc_howto_type *howto;
7706 if (info->relocatable)
7709 htab = mips_elf_hash_table (info);
7710 BFD_ASSERT (htab != NULL);
7712 dynobj = elf_hash_table (info)->dynobj;
7713 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7714 sym_hashes = elf_sym_hashes (abfd);
7715 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7717 bed = get_elf_backend_data (abfd);
7718 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7720 /* Check for the mips16 stub sections. */
7722 name = bfd_get_section_name (abfd, sec);
7723 if (FN_STUB_P (name))
7725 unsigned long r_symndx;
7727 /* Look at the relocation information to figure out which symbol
7730 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7733 (*_bfd_error_handler)
7734 (_("%B: Warning: cannot determine the target function for"
7735 " stub section `%s'"),
7737 bfd_set_error (bfd_error_bad_value);
7741 if (r_symndx < extsymoff
7742 || sym_hashes[r_symndx - extsymoff] == NULL)
7746 /* This stub is for a local symbol. This stub will only be
7747 needed if there is some relocation in this BFD, other
7748 than a 16 bit function call, which refers to this symbol. */
7749 for (o = abfd->sections; o != NULL; o = o->next)
7751 Elf_Internal_Rela *sec_relocs;
7752 const Elf_Internal_Rela *r, *rend;
7754 /* We can ignore stub sections when looking for relocs. */
7755 if ((o->flags & SEC_RELOC) == 0
7756 || o->reloc_count == 0
7757 || section_allows_mips16_refs_p (o))
7761 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7763 if (sec_relocs == NULL)
7766 rend = sec_relocs + o->reloc_count;
7767 for (r = sec_relocs; r < rend; r++)
7768 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7769 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7772 if (elf_section_data (o)->relocs != sec_relocs)
7781 /* There is no non-call reloc for this stub, so we do
7782 not need it. Since this function is called before
7783 the linker maps input sections to output sections, we
7784 can easily discard it by setting the SEC_EXCLUDE
7786 sec->flags |= SEC_EXCLUDE;
7790 /* Record this stub in an array of local symbol stubs for
7792 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7794 unsigned long symcount;
7798 if (elf_bad_symtab (abfd))
7799 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7801 symcount = symtab_hdr->sh_info;
7802 amt = symcount * sizeof (asection *);
7803 n = bfd_zalloc (abfd, amt);
7806 mips_elf_tdata (abfd)->local_stubs = n;
7809 sec->flags |= SEC_KEEP;
7810 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7812 /* We don't need to set mips16_stubs_seen in this case.
7813 That flag is used to see whether we need to look through
7814 the global symbol table for stubs. We don't need to set
7815 it here, because we just have a local stub. */
7819 struct mips_elf_link_hash_entry *h;
7821 h = ((struct mips_elf_link_hash_entry *)
7822 sym_hashes[r_symndx - extsymoff]);
7824 while (h->root.root.type == bfd_link_hash_indirect
7825 || h->root.root.type == bfd_link_hash_warning)
7826 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7828 /* H is the symbol this stub is for. */
7830 /* If we already have an appropriate stub for this function, we
7831 don't need another one, so we can discard this one. Since
7832 this function is called before the linker maps input sections
7833 to output sections, we can easily discard it by setting the
7834 SEC_EXCLUDE flag. */
7835 if (h->fn_stub != NULL)
7837 sec->flags |= SEC_EXCLUDE;
7841 sec->flags |= SEC_KEEP;
7843 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7846 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7848 unsigned long r_symndx;
7849 struct mips_elf_link_hash_entry *h;
7852 /* Look at the relocation information to figure out which symbol
7855 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7858 (*_bfd_error_handler)
7859 (_("%B: Warning: cannot determine the target function for"
7860 " stub section `%s'"),
7862 bfd_set_error (bfd_error_bad_value);
7866 if (r_symndx < extsymoff
7867 || sym_hashes[r_symndx - extsymoff] == NULL)
7871 /* This stub is for a local symbol. This stub will only be
7872 needed if there is some relocation (R_MIPS16_26) in this BFD
7873 that refers to this symbol. */
7874 for (o = abfd->sections; o != NULL; o = o->next)
7876 Elf_Internal_Rela *sec_relocs;
7877 const Elf_Internal_Rela *r, *rend;
7879 /* We can ignore stub sections when looking for relocs. */
7880 if ((o->flags & SEC_RELOC) == 0
7881 || o->reloc_count == 0
7882 || section_allows_mips16_refs_p (o))
7886 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7888 if (sec_relocs == NULL)
7891 rend = sec_relocs + o->reloc_count;
7892 for (r = sec_relocs; r < rend; r++)
7893 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7894 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7897 if (elf_section_data (o)->relocs != sec_relocs)
7906 /* There is no non-call reloc for this stub, so we do
7907 not need it. Since this function is called before
7908 the linker maps input sections to output sections, we
7909 can easily discard it by setting the SEC_EXCLUDE
7911 sec->flags |= SEC_EXCLUDE;
7915 /* Record this stub in an array of local symbol call_stubs for
7917 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7919 unsigned long symcount;
7923 if (elf_bad_symtab (abfd))
7924 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7926 symcount = symtab_hdr->sh_info;
7927 amt = symcount * sizeof (asection *);
7928 n = bfd_zalloc (abfd, amt);
7931 mips_elf_tdata (abfd)->local_call_stubs = n;
7934 sec->flags |= SEC_KEEP;
7935 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7937 /* We don't need to set mips16_stubs_seen in this case.
7938 That flag is used to see whether we need to look through
7939 the global symbol table for stubs. We don't need to set
7940 it here, because we just have a local stub. */
7944 h = ((struct mips_elf_link_hash_entry *)
7945 sym_hashes[r_symndx - extsymoff]);
7947 /* H is the symbol this stub is for. */
7949 if (CALL_FP_STUB_P (name))
7950 loc = &h->call_fp_stub;
7952 loc = &h->call_stub;
7954 /* If we already have an appropriate stub for this function, we
7955 don't need another one, so we can discard this one. Since
7956 this function is called before the linker maps input sections
7957 to output sections, we can easily discard it by setting the
7958 SEC_EXCLUDE flag. */
7961 sec->flags |= SEC_EXCLUDE;
7965 sec->flags |= SEC_KEEP;
7967 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7973 for (rel = relocs; rel < rel_end; ++rel)
7975 unsigned long r_symndx;
7976 unsigned int r_type;
7977 struct elf_link_hash_entry *h;
7978 bfd_boolean can_make_dynamic_p;
7979 bfd_boolean call_reloc_p;
7980 bfd_boolean constrain_symbol_p;
7982 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7983 r_type = ELF_R_TYPE (abfd, rel->r_info);
7985 if (r_symndx < extsymoff)
7987 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7989 (*_bfd_error_handler)
7990 (_("%B: Malformed reloc detected for section %s"),
7992 bfd_set_error (bfd_error_bad_value);
7997 h = sym_hashes[r_symndx - extsymoff];
8000 while (h->root.type == bfd_link_hash_indirect
8001 || h->root.type == bfd_link_hash_warning)
8002 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8004 /* PR15323, ref flags aren't set for references in the
8006 h->root.non_ir_ref = 1;
8010 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8011 relocation into a dynamic one. */
8012 can_make_dynamic_p = FALSE;
8014 /* Set CALL_RELOC_P to true if the relocation is for a call,
8015 and if pointer equality therefore doesn't matter. */
8016 call_reloc_p = FALSE;
8018 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8019 into account when deciding how to define the symbol.
8020 Relocations in nonallocatable sections such as .pdr and
8021 .debug* should have no effect. */
8022 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8027 case R_MIPS_CALL_HI16:
8028 case R_MIPS_CALL_LO16:
8029 case R_MIPS16_CALL16:
8030 case R_MICROMIPS_CALL16:
8031 case R_MICROMIPS_CALL_HI16:
8032 case R_MICROMIPS_CALL_LO16:
8033 call_reloc_p = TRUE;
8037 case R_MIPS_GOT_HI16:
8038 case R_MIPS_GOT_LO16:
8039 case R_MIPS_GOT_PAGE:
8040 case R_MIPS_GOT_OFST:
8041 case R_MIPS_GOT_DISP:
8042 case R_MIPS_TLS_GOTTPREL:
8044 case R_MIPS_TLS_LDM:
8045 case R_MIPS16_GOT16:
8046 case R_MIPS16_TLS_GOTTPREL:
8047 case R_MIPS16_TLS_GD:
8048 case R_MIPS16_TLS_LDM:
8049 case R_MICROMIPS_GOT16:
8050 case R_MICROMIPS_GOT_HI16:
8051 case R_MICROMIPS_GOT_LO16:
8052 case R_MICROMIPS_GOT_PAGE:
8053 case R_MICROMIPS_GOT_OFST:
8054 case R_MICROMIPS_GOT_DISP:
8055 case R_MICROMIPS_TLS_GOTTPREL:
8056 case R_MICROMIPS_TLS_GD:
8057 case R_MICROMIPS_TLS_LDM:
8059 elf_hash_table (info)->dynobj = dynobj = abfd;
8060 if (!mips_elf_create_got_section (dynobj, info))
8062 if (htab->is_vxworks && !info->shared)
8064 (*_bfd_error_handler)
8065 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8066 abfd, (unsigned long) rel->r_offset);
8067 bfd_set_error (bfd_error_bad_value);
8070 can_make_dynamic_p = TRUE;
8075 case R_MICROMIPS_JALR:
8076 /* These relocations have empty fields and are purely there to
8077 provide link information. The symbol value doesn't matter. */
8078 constrain_symbol_p = FALSE;
8081 case R_MIPS_GPREL16:
8082 case R_MIPS_GPREL32:
8083 case R_MIPS16_GPREL:
8084 case R_MICROMIPS_GPREL16:
8085 /* GP-relative relocations always resolve to a definition in a
8086 regular input file, ignoring the one-definition rule. This is
8087 important for the GP setup sequence in NewABI code, which
8088 always resolves to a local function even if other relocations
8089 against the symbol wouldn't. */
8090 constrain_symbol_p = FALSE;
8096 /* In VxWorks executables, references to external symbols
8097 must be handled using copy relocs or PLT entries; it is not
8098 possible to convert this relocation into a dynamic one.
8100 For executables that use PLTs and copy-relocs, we have a
8101 choice between converting the relocation into a dynamic
8102 one or using copy relocations or PLT entries. It is
8103 usually better to do the former, unless the relocation is
8104 against a read-only section. */
8107 && !htab->is_vxworks
8108 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8109 && !(!info->nocopyreloc
8110 && !PIC_OBJECT_P (abfd)
8111 && MIPS_ELF_READONLY_SECTION (sec))))
8112 && (sec->flags & SEC_ALLOC) != 0)
8114 can_make_dynamic_p = TRUE;
8116 elf_hash_table (info)->dynobj = dynobj = abfd;
8123 case R_MICROMIPS_26_S1:
8124 case R_MICROMIPS_PC7_S1:
8125 case R_MICROMIPS_PC10_S1:
8126 case R_MICROMIPS_PC16_S1:
8127 case R_MICROMIPS_PC23_S2:
8128 call_reloc_p = TRUE;
8134 if (constrain_symbol_p)
8136 if (!can_make_dynamic_p)
8137 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8140 h->pointer_equality_needed = 1;
8142 /* We must not create a stub for a symbol that has
8143 relocations related to taking the function's address.
8144 This doesn't apply to VxWorks, where CALL relocs refer
8145 to a .got.plt entry instead of a normal .got entry. */
8146 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8147 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8150 /* Relocations against the special VxWorks __GOTT_BASE__ and
8151 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8152 room for them in .rela.dyn. */
8153 if (is_gott_symbol (info, h))
8157 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8161 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8162 if (MIPS_ELF_READONLY_SECTION (sec))
8163 /* We tell the dynamic linker that there are
8164 relocations against the text segment. */
8165 info->flags |= DF_TEXTREL;
8168 else if (call_lo16_reloc_p (r_type)
8169 || got_lo16_reloc_p (r_type)
8170 || got_disp_reloc_p (r_type)
8171 || (got16_reloc_p (r_type) && htab->is_vxworks))
8173 /* We may need a local GOT entry for this relocation. We
8174 don't count R_MIPS_GOT_PAGE because we can estimate the
8175 maximum number of pages needed by looking at the size of
8176 the segment. Similar comments apply to R_MIPS*_GOT16 and
8177 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8178 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8179 R_MIPS_CALL_HI16 because these are always followed by an
8180 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8181 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8182 rel->r_addend, info, r_type))
8187 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8188 ELF_ST_IS_MIPS16 (h->other)))
8189 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8194 case R_MIPS16_CALL16:
8195 case R_MICROMIPS_CALL16:
8198 (*_bfd_error_handler)
8199 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8200 abfd, (unsigned long) rel->r_offset);
8201 bfd_set_error (bfd_error_bad_value);
8206 case R_MIPS_CALL_HI16:
8207 case R_MIPS_CALL_LO16:
8208 case R_MICROMIPS_CALL_HI16:
8209 case R_MICROMIPS_CALL_LO16:
8212 /* Make sure there is room in the regular GOT to hold the
8213 function's address. We may eliminate it in favour of
8214 a .got.plt entry later; see mips_elf_count_got_symbols. */
8215 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8219 /* We need a stub, not a plt entry for the undefined
8220 function. But we record it as if it needs plt. See
8221 _bfd_elf_adjust_dynamic_symbol. */
8227 case R_MIPS_GOT_PAGE:
8228 case R_MICROMIPS_GOT_PAGE:
8229 case R_MIPS16_GOT16:
8231 case R_MIPS_GOT_HI16:
8232 case R_MIPS_GOT_LO16:
8233 case R_MICROMIPS_GOT16:
8234 case R_MICROMIPS_GOT_HI16:
8235 case R_MICROMIPS_GOT_LO16:
8236 if (!h || got_page_reloc_p (r_type))
8238 /* This relocation needs (or may need, if h != NULL) a
8239 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8240 know for sure until we know whether the symbol is
8242 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8244 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8246 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8247 addend = mips_elf_read_rel_addend (abfd, rel,
8249 if (got16_reloc_p (r_type))
8250 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8253 addend <<= howto->rightshift;
8256 addend = rel->r_addend;
8257 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8263 struct mips_elf_link_hash_entry *hmips =
8264 (struct mips_elf_link_hash_entry *) h;
8266 /* This symbol is definitely not overridable. */
8267 if (hmips->root.def_regular
8268 && ! (info->shared && ! info->symbolic
8269 && ! hmips->root.forced_local))
8273 /* If this is a global, overridable symbol, GOT_PAGE will
8274 decay to GOT_DISP, so we'll need a GOT entry for it. */
8277 case R_MIPS_GOT_DISP:
8278 case R_MICROMIPS_GOT_DISP:
8279 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8284 case R_MIPS_TLS_GOTTPREL:
8285 case R_MIPS16_TLS_GOTTPREL:
8286 case R_MICROMIPS_TLS_GOTTPREL:
8288 info->flags |= DF_STATIC_TLS;
8291 case R_MIPS_TLS_LDM:
8292 case R_MIPS16_TLS_LDM:
8293 case R_MICROMIPS_TLS_LDM:
8294 if (tls_ldm_reloc_p (r_type))
8296 r_symndx = STN_UNDEF;
8302 case R_MIPS16_TLS_GD:
8303 case R_MICROMIPS_TLS_GD:
8304 /* This symbol requires a global offset table entry, or two
8305 for TLS GD relocations. */
8308 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8314 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8324 /* In VxWorks executables, references to external symbols
8325 are handled using copy relocs or PLT stubs, so there's
8326 no need to add a .rela.dyn entry for this relocation. */
8327 if (can_make_dynamic_p)
8331 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8335 if (info->shared && h == NULL)
8337 /* When creating a shared object, we must copy these
8338 reloc types into the output file as R_MIPS_REL32
8339 relocs. Make room for this reloc in .rel(a).dyn. */
8340 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8341 if (MIPS_ELF_READONLY_SECTION (sec))
8342 /* We tell the dynamic linker that there are
8343 relocations against the text segment. */
8344 info->flags |= DF_TEXTREL;
8348 struct mips_elf_link_hash_entry *hmips;
8350 /* For a shared object, we must copy this relocation
8351 unless the symbol turns out to be undefined and
8352 weak with non-default visibility, in which case
8353 it will be left as zero.
8355 We could elide R_MIPS_REL32 for locally binding symbols
8356 in shared libraries, but do not yet do so.
8358 For an executable, we only need to copy this
8359 reloc if the symbol is defined in a dynamic
8361 hmips = (struct mips_elf_link_hash_entry *) h;
8362 ++hmips->possibly_dynamic_relocs;
8363 if (MIPS_ELF_READONLY_SECTION (sec))
8364 /* We need it to tell the dynamic linker if there
8365 are relocations against the text segment. */
8366 hmips->readonly_reloc = TRUE;
8370 if (SGI_COMPAT (abfd))
8371 mips_elf_hash_table (info)->compact_rel_size +=
8372 sizeof (Elf32_External_crinfo);
8376 case R_MIPS_GPREL16:
8377 case R_MIPS_LITERAL:
8378 case R_MIPS_GPREL32:
8379 case R_MICROMIPS_26_S1:
8380 case R_MICROMIPS_GPREL16:
8381 case R_MICROMIPS_LITERAL:
8382 case R_MICROMIPS_GPREL7_S2:
8383 if (SGI_COMPAT (abfd))
8384 mips_elf_hash_table (info)->compact_rel_size +=
8385 sizeof (Elf32_External_crinfo);
8388 /* This relocation describes the C++ object vtable hierarchy.
8389 Reconstruct it for later use during GC. */
8390 case R_MIPS_GNU_VTINHERIT:
8391 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8395 /* This relocation describes which C++ vtable entries are actually
8396 used. Record for later use during GC. */
8397 case R_MIPS_GNU_VTENTRY:
8398 BFD_ASSERT (h != NULL);
8400 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8408 /* Record the need for a PLT entry. At this point we don't know
8409 yet if we are going to create a PLT in the first place, but
8410 we only record whether the relocation requires a standard MIPS
8411 or a compressed code entry anyway. If we don't make a PLT after
8412 all, then we'll just ignore these arrangements. Likewise if
8413 a PLT entry is not created because the symbol is satisfied
8416 && jal_reloc_p (r_type)
8417 && !SYMBOL_CALLS_LOCAL (info, h))
8419 if (h->plt.plist == NULL)
8420 h->plt.plist = mips_elf_make_plt_record (abfd);
8421 if (h->plt.plist == NULL)
8424 if (r_type == R_MIPS_26)
8425 h->plt.plist->need_mips = TRUE;
8427 h->plt.plist->need_comp = TRUE;
8430 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8431 if there is one. We only need to handle global symbols here;
8432 we decide whether to keep or delete stubs for local symbols
8433 when processing the stub's relocations. */
8435 && !mips16_call_reloc_p (r_type)
8436 && !section_allows_mips16_refs_p (sec))
8438 struct mips_elf_link_hash_entry *mh;
8440 mh = (struct mips_elf_link_hash_entry *) h;
8441 mh->need_fn_stub = TRUE;
8444 /* Refuse some position-dependent relocations when creating a
8445 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8446 not PIC, but we can create dynamic relocations and the result
8447 will be fine. Also do not refuse R_MIPS_LO16, which can be
8448 combined with R_MIPS_GOT16. */
8456 case R_MIPS_HIGHEST:
8457 case R_MICROMIPS_HI16:
8458 case R_MICROMIPS_HIGHER:
8459 case R_MICROMIPS_HIGHEST:
8460 /* Don't refuse a high part relocation if it's against
8461 no symbol (e.g. part of a compound relocation). */
8462 if (r_symndx == STN_UNDEF)
8465 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8466 and has a special meaning. */
8467 if (!NEWABI_P (abfd) && h != NULL
8468 && strcmp (h->root.root.string, "_gp_disp") == 0)
8471 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8472 if (is_gott_symbol (info, h))
8479 case R_MICROMIPS_26_S1:
8480 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8481 (*_bfd_error_handler)
8482 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8484 (h) ? h->root.root.string : "a local symbol");
8485 bfd_set_error (bfd_error_bad_value);
8497 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8498 struct bfd_link_info *link_info,
8501 Elf_Internal_Rela *internal_relocs;
8502 Elf_Internal_Rela *irel, *irelend;
8503 Elf_Internal_Shdr *symtab_hdr;
8504 bfd_byte *contents = NULL;
8506 bfd_boolean changed_contents = FALSE;
8507 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8508 Elf_Internal_Sym *isymbuf = NULL;
8510 /* We are not currently changing any sizes, so only one pass. */
8513 if (link_info->relocatable)
8516 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8517 link_info->keep_memory);
8518 if (internal_relocs == NULL)
8521 irelend = internal_relocs + sec->reloc_count
8522 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8524 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8526 for (irel = internal_relocs; irel < irelend; irel++)
8529 bfd_signed_vma sym_offset;
8530 unsigned int r_type;
8531 unsigned long r_symndx;
8533 unsigned long instruction;
8535 /* Turn jalr into bgezal, and jr into beq, if they're marked
8536 with a JALR relocation, that indicate where they jump to.
8537 This saves some pipeline bubbles. */
8538 r_type = ELF_R_TYPE (abfd, irel->r_info);
8539 if (r_type != R_MIPS_JALR)
8542 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8543 /* Compute the address of the jump target. */
8544 if (r_symndx >= extsymoff)
8546 struct mips_elf_link_hash_entry *h
8547 = ((struct mips_elf_link_hash_entry *)
8548 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8550 while (h->root.root.type == bfd_link_hash_indirect
8551 || h->root.root.type == bfd_link_hash_warning)
8552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8554 /* If a symbol is undefined, or if it may be overridden,
8556 if (! ((h->root.root.type == bfd_link_hash_defined
8557 || h->root.root.type == bfd_link_hash_defweak)
8558 && h->root.root.u.def.section)
8559 || (link_info->shared && ! link_info->symbolic
8560 && !h->root.forced_local))
8563 sym_sec = h->root.root.u.def.section;
8564 if (sym_sec->output_section)
8565 symval = (h->root.root.u.def.value
8566 + sym_sec->output_section->vma
8567 + sym_sec->output_offset);
8569 symval = h->root.root.u.def.value;
8573 Elf_Internal_Sym *isym;
8575 /* Read this BFD's symbols if we haven't done so already. */
8576 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8578 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8579 if (isymbuf == NULL)
8580 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8581 symtab_hdr->sh_info, 0,
8583 if (isymbuf == NULL)
8587 isym = isymbuf + r_symndx;
8588 if (isym->st_shndx == SHN_UNDEF)
8590 else if (isym->st_shndx == SHN_ABS)
8591 sym_sec = bfd_abs_section_ptr;
8592 else if (isym->st_shndx == SHN_COMMON)
8593 sym_sec = bfd_com_section_ptr;
8596 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8597 symval = isym->st_value
8598 + sym_sec->output_section->vma
8599 + sym_sec->output_offset;
8602 /* Compute branch offset, from delay slot of the jump to the
8604 sym_offset = (symval + irel->r_addend)
8605 - (sec_start + irel->r_offset + 4);
8607 /* Branch offset must be properly aligned. */
8608 if ((sym_offset & 3) != 0)
8613 /* Check that it's in range. */
8614 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8617 /* Get the section contents if we haven't done so already. */
8618 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8621 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8623 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8624 if ((instruction & 0xfc1fffff) == 0x0000f809)
8625 instruction = 0x04110000;
8626 /* If it was jr <reg>, turn it into b <target>. */
8627 else if ((instruction & 0xfc1fffff) == 0x00000008)
8628 instruction = 0x10000000;
8632 instruction |= (sym_offset & 0xffff);
8633 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8634 changed_contents = TRUE;
8637 if (contents != NULL
8638 && elf_section_data (sec)->this_hdr.contents != contents)
8640 if (!changed_contents && !link_info->keep_memory)
8644 /* Cache the section contents for elf_link_input_bfd. */
8645 elf_section_data (sec)->this_hdr.contents = contents;
8651 if (contents != NULL
8652 && elf_section_data (sec)->this_hdr.contents != contents)
8657 /* Allocate space for global sym dynamic relocs. */
8660 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8662 struct bfd_link_info *info = inf;
8664 struct mips_elf_link_hash_entry *hmips;
8665 struct mips_elf_link_hash_table *htab;
8667 htab = mips_elf_hash_table (info);
8668 BFD_ASSERT (htab != NULL);
8670 dynobj = elf_hash_table (info)->dynobj;
8671 hmips = (struct mips_elf_link_hash_entry *) h;
8673 /* VxWorks executables are handled elsewhere; we only need to
8674 allocate relocations in shared objects. */
8675 if (htab->is_vxworks && !info->shared)
8678 /* Ignore indirect symbols. All relocations against such symbols
8679 will be redirected to the target symbol. */
8680 if (h->root.type == bfd_link_hash_indirect)
8683 /* If this symbol is defined in a dynamic object, or we are creating
8684 a shared library, we will need to copy any R_MIPS_32 or
8685 R_MIPS_REL32 relocs against it into the output file. */
8686 if (! info->relocatable
8687 && hmips->possibly_dynamic_relocs != 0
8688 && (h->root.type == bfd_link_hash_defweak
8689 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8692 bfd_boolean do_copy = TRUE;
8694 if (h->root.type == bfd_link_hash_undefweak)
8696 /* Do not copy relocations for undefined weak symbols with
8697 non-default visibility. */
8698 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8701 /* Make sure undefined weak symbols are output as a dynamic
8703 else if (h->dynindx == -1 && !h->forced_local)
8705 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8712 /* Even though we don't directly need a GOT entry for this symbol,
8713 the SVR4 psABI requires it to have a dynamic symbol table
8714 index greater that DT_MIPS_GOTSYM if there are dynamic
8715 relocations against it.
8717 VxWorks does not enforce the same mapping between the GOT
8718 and the symbol table, so the same requirement does not
8720 if (!htab->is_vxworks)
8722 if (hmips->global_got_area > GGA_RELOC_ONLY)
8723 hmips->global_got_area = GGA_RELOC_ONLY;
8724 hmips->got_only_for_calls = FALSE;
8727 mips_elf_allocate_dynamic_relocations
8728 (dynobj, info, hmips->possibly_dynamic_relocs);
8729 if (hmips->readonly_reloc)
8730 /* We tell the dynamic linker that there are relocations
8731 against the text segment. */
8732 info->flags |= DF_TEXTREL;
8739 /* Adjust a symbol defined by a dynamic object and referenced by a
8740 regular object. The current definition is in some section of the
8741 dynamic object, but we're not including those sections. We have to
8742 change the definition to something the rest of the link can
8746 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8747 struct elf_link_hash_entry *h)
8750 struct mips_elf_link_hash_entry *hmips;
8751 struct mips_elf_link_hash_table *htab;
8753 htab = mips_elf_hash_table (info);
8754 BFD_ASSERT (htab != NULL);
8756 dynobj = elf_hash_table (info)->dynobj;
8757 hmips = (struct mips_elf_link_hash_entry *) h;
8759 /* Make sure we know what is going on here. */
8760 BFD_ASSERT (dynobj != NULL
8762 || h->u.weakdef != NULL
8765 && !h->def_regular)));
8767 hmips = (struct mips_elf_link_hash_entry *) h;
8769 /* If there are call relocations against an externally-defined symbol,
8770 see whether we can create a MIPS lazy-binding stub for it. We can
8771 only do this if all references to the function are through call
8772 relocations, and in that case, the traditional lazy-binding stubs
8773 are much more efficient than PLT entries.
8775 Traditional stubs are only available on SVR4 psABI-based systems;
8776 VxWorks always uses PLTs instead. */
8777 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8779 if (! elf_hash_table (info)->dynamic_sections_created)
8782 /* If this symbol is not defined in a regular file, then set
8783 the symbol to the stub location. This is required to make
8784 function pointers compare as equal between the normal
8785 executable and the shared library. */
8786 if (!h->def_regular)
8788 hmips->needs_lazy_stub = TRUE;
8789 htab->lazy_stub_count++;
8793 /* As above, VxWorks requires PLT entries for externally-defined
8794 functions that are only accessed through call relocations.
8796 Both VxWorks and non-VxWorks targets also need PLT entries if there
8797 are static-only relocations against an externally-defined function.
8798 This can technically occur for shared libraries if there are
8799 branches to the symbol, although it is unlikely that this will be
8800 used in practice due to the short ranges involved. It can occur
8801 for any relative or absolute relocation in executables; in that
8802 case, the PLT entry becomes the function's canonical address. */
8803 else if (((h->needs_plt && !hmips->no_fn_stub)
8804 || (h->type == STT_FUNC && hmips->has_static_relocs))
8805 && htab->use_plts_and_copy_relocs
8806 && !SYMBOL_CALLS_LOCAL (info, h)
8807 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8808 && h->root.type == bfd_link_hash_undefweak))
8810 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
8811 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
8813 /* If this is the first symbol to need a PLT entry, then make some
8814 basic setup. Also work out PLT entry sizes. We'll need them
8815 for PLT offset calculations. */
8816 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
8818 BFD_ASSERT (htab->sgotplt->size == 0);
8819 BFD_ASSERT (htab->plt_got_index == 0);
8821 /* If we're using the PLT additions to the psABI, each PLT
8822 entry is 16 bytes and the PLT0 entry is 32 bytes.
8823 Encourage better cache usage by aligning. We do this
8824 lazily to avoid pessimizing traditional objects. */
8825 if (!htab->is_vxworks
8826 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8829 /* Make sure that .got.plt is word-aligned. We do this lazily
8830 for the same reason as above. */
8831 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8832 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8835 /* On non-VxWorks targets, the first two entries in .got.plt
8837 if (!htab->is_vxworks)
8839 += (get_elf_backend_data (dynobj)->got_header_size
8840 / MIPS_ELF_GOT_SIZE (dynobj));
8842 /* On VxWorks, also allocate room for the header's
8843 .rela.plt.unloaded entries. */
8844 if (htab->is_vxworks && !info->shared)
8845 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8847 /* Now work out the sizes of individual PLT entries. */
8848 if (htab->is_vxworks && info->shared)
8849 htab->plt_mips_entry_size
8850 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
8851 else if (htab->is_vxworks)
8852 htab->plt_mips_entry_size
8853 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
8855 htab->plt_mips_entry_size
8856 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8857 else if (!micromips_p)
8859 htab->plt_mips_entry_size
8860 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8861 htab->plt_comp_entry_size
8862 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
8864 else if (htab->insn32)
8866 htab->plt_mips_entry_size
8867 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8868 htab->plt_comp_entry_size
8869 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
8873 htab->plt_mips_entry_size
8874 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8875 htab->plt_comp_entry_size
8876 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
8880 if (h->plt.plist == NULL)
8881 h->plt.plist = mips_elf_make_plt_record (dynobj);
8882 if (h->plt.plist == NULL)
8885 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
8886 n32 or n64, so always use a standard entry there.
8888 If the symbol has a MIPS16 call stub and gets a PLT entry, then
8889 all MIPS16 calls will go via that stub, and there is no benefit
8890 to having a MIPS16 entry. And in the case of call_stub a
8891 standard entry actually has to be used as the stub ends with a J
8896 || hmips->call_fp_stub)
8898 h->plt.plist->need_mips = TRUE;
8899 h->plt.plist->need_comp = FALSE;
8902 /* Otherwise, if there are no direct calls to the function, we
8903 have a free choice of whether to use standard or compressed
8904 entries. Prefer microMIPS entries if the object is known to
8905 contain microMIPS code, so that it becomes possible to create
8906 pure microMIPS binaries. Prefer standard entries otherwise,
8907 because MIPS16 ones are no smaller and are usually slower. */
8908 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
8911 h->plt.plist->need_comp = TRUE;
8913 h->plt.plist->need_mips = TRUE;
8916 if (h->plt.plist->need_mips)
8918 h->plt.plist->mips_offset = htab->plt_mips_offset;
8919 htab->plt_mips_offset += htab->plt_mips_entry_size;
8921 if (h->plt.plist->need_comp)
8923 h->plt.plist->comp_offset = htab->plt_comp_offset;
8924 htab->plt_comp_offset += htab->plt_comp_entry_size;
8927 /* Reserve the corresponding .got.plt entry now too. */
8928 h->plt.plist->gotplt_index = htab->plt_got_index++;
8930 /* If the output file has no definition of the symbol, set the
8931 symbol's value to the address of the stub. */
8932 if (!info->shared && !h->def_regular)
8933 hmips->use_plt_entry = TRUE;
8935 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
8936 htab->srelplt->size += (htab->is_vxworks
8937 ? MIPS_ELF_RELA_SIZE (dynobj)
8938 : MIPS_ELF_REL_SIZE (dynobj));
8940 /* Make room for the .rela.plt.unloaded relocations. */
8941 if (htab->is_vxworks && !info->shared)
8942 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8944 /* All relocations against this symbol that could have been made
8945 dynamic will now refer to the PLT entry instead. */
8946 hmips->possibly_dynamic_relocs = 0;
8951 /* If this is a weak symbol, and there is a real definition, the
8952 processor independent code will have arranged for us to see the
8953 real definition first, and we can just use the same value. */
8954 if (h->u.weakdef != NULL)
8956 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8957 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8958 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8959 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8963 /* Otherwise, there is nothing further to do for symbols defined
8964 in regular objects. */
8968 /* There's also nothing more to do if we'll convert all relocations
8969 against this symbol into dynamic relocations. */
8970 if (!hmips->has_static_relocs)
8973 /* We're now relying on copy relocations. Complain if we have
8974 some that we can't convert. */
8975 if (!htab->use_plts_and_copy_relocs || info->shared)
8977 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8978 "dynamic symbol %s"),
8979 h->root.root.string);
8980 bfd_set_error (bfd_error_bad_value);
8984 /* We must allocate the symbol in our .dynbss section, which will
8985 become part of the .bss section of the executable. There will be
8986 an entry for this symbol in the .dynsym section. The dynamic
8987 object will contain position independent code, so all references
8988 from the dynamic object to this symbol will go through the global
8989 offset table. The dynamic linker will use the .dynsym entry to
8990 determine the address it must put in the global offset table, so
8991 both the dynamic object and the regular object will refer to the
8992 same memory location for the variable. */
8994 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8996 if (htab->is_vxworks)
8997 htab->srelbss->size += sizeof (Elf32_External_Rela);
8999 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9003 /* All relocations against this symbol that could have been made
9004 dynamic will now refer to the local copy instead. */
9005 hmips->possibly_dynamic_relocs = 0;
9007 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9010 /* This function is called after all the input files have been read,
9011 and the input sections have been assigned to output sections. We
9012 check for any mips16 stub sections that we can discard. */
9015 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9016 struct bfd_link_info *info)
9019 struct mips_elf_link_hash_table *htab;
9020 struct mips_htab_traverse_info hti;
9022 htab = mips_elf_hash_table (info);
9023 BFD_ASSERT (htab != NULL);
9025 /* The .reginfo section has a fixed size. */
9026 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
9028 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
9031 hti.output_bfd = output_bfd;
9033 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9034 mips_elf_check_symbols, &hti);
9041 /* If the link uses a GOT, lay it out and work out its size. */
9044 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9048 struct mips_got_info *g;
9049 bfd_size_type loadable_size = 0;
9050 bfd_size_type page_gotno;
9052 struct mips_elf_traverse_got_arg tga;
9053 struct mips_elf_link_hash_table *htab;
9055 htab = mips_elf_hash_table (info);
9056 BFD_ASSERT (htab != NULL);
9062 dynobj = elf_hash_table (info)->dynobj;
9065 /* Allocate room for the reserved entries. VxWorks always reserves
9066 3 entries; other objects only reserve 2 entries. */
9067 BFD_ASSERT (g->assigned_gotno == 0);
9068 if (htab->is_vxworks)
9069 htab->reserved_gotno = 3;
9071 htab->reserved_gotno = 2;
9072 g->local_gotno += htab->reserved_gotno;
9073 g->assigned_gotno = htab->reserved_gotno;
9075 /* Decide which symbols need to go in the global part of the GOT and
9076 count the number of reloc-only GOT symbols. */
9077 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9079 if (!mips_elf_resolve_final_got_entries (info, g))
9082 /* Calculate the total loadable size of the output. That
9083 will give us the maximum number of GOT_PAGE entries
9085 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
9087 asection *subsection;
9089 for (subsection = ibfd->sections;
9091 subsection = subsection->next)
9093 if ((subsection->flags & SEC_ALLOC) == 0)
9095 loadable_size += ((subsection->size + 0xf)
9096 &~ (bfd_size_type) 0xf);
9100 if (htab->is_vxworks)
9101 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9102 relocations against local symbols evaluate to "G", and the EABI does
9103 not include R_MIPS_GOT_PAGE. */
9106 /* Assume there are two loadable segments consisting of contiguous
9107 sections. Is 5 enough? */
9108 page_gotno = (loadable_size >> 16) + 5;
9110 /* Choose the smaller of the two page estimates; both are intended to be
9112 if (page_gotno > g->page_gotno)
9113 page_gotno = g->page_gotno;
9115 g->local_gotno += page_gotno;
9117 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9118 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9119 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9121 /* VxWorks does not support multiple GOTs. It initializes $gp to
9122 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9124 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9126 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9131 /* Record that all bfds use G. This also has the effect of freeing
9132 the per-bfd GOTs, which we no longer need. */
9133 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
9134 if (mips_elf_bfd_got (ibfd, FALSE))
9135 mips_elf_replace_bfd_got (ibfd, g);
9136 mips_elf_replace_bfd_got (output_bfd, g);
9138 /* Set up TLS entries. */
9139 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9142 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9143 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9146 BFD_ASSERT (g->tls_assigned_gotno
9147 == g->global_gotno + g->local_gotno + g->tls_gotno);
9149 /* Each VxWorks GOT entry needs an explicit relocation. */
9150 if (htab->is_vxworks && info->shared)
9151 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9153 /* Allocate room for the TLS relocations. */
9155 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9161 /* Estimate the size of the .MIPS.stubs section. */
9164 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9166 struct mips_elf_link_hash_table *htab;
9167 bfd_size_type dynsymcount;
9169 htab = mips_elf_hash_table (info);
9170 BFD_ASSERT (htab != NULL);
9172 if (htab->lazy_stub_count == 0)
9175 /* IRIX rld assumes that a function stub isn't at the end of the .text
9176 section, so add a dummy entry to the end. */
9177 htab->lazy_stub_count++;
9179 /* Get a worst-case estimate of the number of dynamic symbols needed.
9180 At this point, dynsymcount does not account for section symbols
9181 and count_section_dynsyms may overestimate the number that will
9183 dynsymcount = (elf_hash_table (info)->dynsymcount
9184 + count_section_dynsyms (output_bfd, info));
9186 /* Determine the size of one stub entry. There's no disadvantage
9187 from using microMIPS code here, so for the sake of pure-microMIPS
9188 binaries we prefer it whenever there's any microMIPS code in
9189 output produced at all. This has a benefit of stubs being
9190 shorter by 4 bytes each too, unless in the insn32 mode. */
9191 if (!MICROMIPS_P (output_bfd))
9192 htab->function_stub_size = (dynsymcount > 0x10000
9193 ? MIPS_FUNCTION_STUB_BIG_SIZE
9194 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9195 else if (htab->insn32)
9196 htab->function_stub_size = (dynsymcount > 0x10000
9197 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9198 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9200 htab->function_stub_size = (dynsymcount > 0x10000
9201 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9202 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9204 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9207 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9208 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9209 stub, allocate an entry in the stubs section. */
9212 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9214 struct mips_htab_traverse_info *hti = data;
9215 struct mips_elf_link_hash_table *htab;
9216 struct bfd_link_info *info;
9220 output_bfd = hti->output_bfd;
9221 htab = mips_elf_hash_table (info);
9222 BFD_ASSERT (htab != NULL);
9224 if (h->needs_lazy_stub)
9226 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9227 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9228 bfd_vma isa_bit = micromips_p;
9230 BFD_ASSERT (htab->root.dynobj != NULL);
9231 if (h->root.plt.plist == NULL)
9232 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9233 if (h->root.plt.plist == NULL)
9238 h->root.root.u.def.section = htab->sstubs;
9239 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9240 h->root.plt.plist->stub_offset = htab->sstubs->size;
9241 h->root.other = other;
9242 htab->sstubs->size += htab->function_stub_size;
9247 /* Allocate offsets in the stubs section to each symbol that needs one.
9248 Set the final size of the .MIPS.stub section. */
9251 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9253 bfd *output_bfd = info->output_bfd;
9254 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9255 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9256 bfd_vma isa_bit = micromips_p;
9257 struct mips_elf_link_hash_table *htab;
9258 struct mips_htab_traverse_info hti;
9259 struct elf_link_hash_entry *h;
9262 htab = mips_elf_hash_table (info);
9263 BFD_ASSERT (htab != NULL);
9265 if (htab->lazy_stub_count == 0)
9268 htab->sstubs->size = 0;
9270 hti.output_bfd = output_bfd;
9272 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9275 htab->sstubs->size += htab->function_stub_size;
9276 BFD_ASSERT (htab->sstubs->size
9277 == htab->lazy_stub_count * htab->function_stub_size);
9279 dynobj = elf_hash_table (info)->dynobj;
9280 BFD_ASSERT (dynobj != NULL);
9281 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9284 h->root.u.def.value = isa_bit;
9291 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9292 bfd_link_info. If H uses the address of a PLT entry as the value
9293 of the symbol, then set the entry in the symbol table now. Prefer
9294 a standard MIPS PLT entry. */
9297 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9299 struct bfd_link_info *info = data;
9300 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9301 struct mips_elf_link_hash_table *htab;
9306 htab = mips_elf_hash_table (info);
9307 BFD_ASSERT (htab != NULL);
9309 if (h->use_plt_entry)
9311 BFD_ASSERT (h->root.plt.plist != NULL);
9312 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9313 || h->root.plt.plist->comp_offset != MINUS_ONE);
9315 val = htab->plt_header_size;
9316 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9319 val += h->root.plt.plist->mips_offset;
9325 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9326 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9329 /* For VxWorks, point at the PLT load stub rather than the lazy
9330 resolution stub; this stub will become the canonical function
9332 if (htab->is_vxworks)
9335 h->root.root.u.def.section = htab->splt;
9336 h->root.root.u.def.value = val;
9337 h->root.other = other;
9343 /* Set the sizes of the dynamic sections. */
9346 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9347 struct bfd_link_info *info)
9350 asection *s, *sreldyn;
9351 bfd_boolean reltext;
9352 struct mips_elf_link_hash_table *htab;
9354 htab = mips_elf_hash_table (info);
9355 BFD_ASSERT (htab != NULL);
9356 dynobj = elf_hash_table (info)->dynobj;
9357 BFD_ASSERT (dynobj != NULL);
9359 if (elf_hash_table (info)->dynamic_sections_created)
9361 /* Set the contents of the .interp section to the interpreter. */
9362 if (info->executable)
9364 s = bfd_get_linker_section (dynobj, ".interp");
9365 BFD_ASSERT (s != NULL);
9367 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9369 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9372 /* Figure out the size of the PLT header if we know that we
9373 are using it. For the sake of cache alignment always use
9374 a standard header whenever any standard entries are present
9375 even if microMIPS entries are present as well. This also
9376 lets the microMIPS header rely on the value of $v0 only set
9377 by microMIPS entries, for a small size reduction.
9379 Set symbol table entry values for symbols that use the
9380 address of their PLT entry now that we can calculate it.
9382 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9383 haven't already in _bfd_elf_create_dynamic_sections. */
9384 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9386 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9387 && !htab->plt_mips_offset);
9388 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9389 bfd_vma isa_bit = micromips_p;
9390 struct elf_link_hash_entry *h;
9393 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9394 BFD_ASSERT (htab->sgotplt->size == 0);
9395 BFD_ASSERT (htab->splt->size == 0);
9397 if (htab->is_vxworks && info->shared)
9398 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9399 else if (htab->is_vxworks)
9400 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9401 else if (ABI_64_P (output_bfd))
9402 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9403 else if (ABI_N32_P (output_bfd))
9404 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9405 else if (!micromips_p)
9406 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9407 else if (htab->insn32)
9408 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9410 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9412 htab->plt_header_is_comp = micromips_p;
9413 htab->plt_header_size = size;
9414 htab->splt->size = (size
9415 + htab->plt_mips_offset
9416 + htab->plt_comp_offset);
9417 htab->sgotplt->size = (htab->plt_got_index
9418 * MIPS_ELF_GOT_SIZE (dynobj));
9420 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9422 if (htab->root.hplt == NULL)
9424 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9425 "_PROCEDURE_LINKAGE_TABLE_");
9426 htab->root.hplt = h;
9431 h = htab->root.hplt;
9432 h->root.u.def.value = isa_bit;
9438 /* Allocate space for global sym dynamic relocs. */
9439 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9441 mips_elf_estimate_stub_size (output_bfd, info);
9443 if (!mips_elf_lay_out_got (output_bfd, info))
9446 mips_elf_lay_out_lazy_stubs (info);
9448 /* The check_relocs and adjust_dynamic_symbol entry points have
9449 determined the sizes of the various dynamic sections. Allocate
9452 for (s = dynobj->sections; s != NULL; s = s->next)
9456 /* It's OK to base decisions on the section name, because none
9457 of the dynobj section names depend upon the input files. */
9458 name = bfd_get_section_name (dynobj, s);
9460 if ((s->flags & SEC_LINKER_CREATED) == 0)
9463 if (CONST_STRNEQ (name, ".rel"))
9467 const char *outname;
9470 /* If this relocation section applies to a read only
9471 section, then we probably need a DT_TEXTREL entry.
9472 If the relocation section is .rel(a).dyn, we always
9473 assert a DT_TEXTREL entry rather than testing whether
9474 there exists a relocation to a read only section or
9476 outname = bfd_get_section_name (output_bfd,
9478 target = bfd_get_section_by_name (output_bfd, outname + 4);
9480 && (target->flags & SEC_READONLY) != 0
9481 && (target->flags & SEC_ALLOC) != 0)
9482 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9485 /* We use the reloc_count field as a counter if we need
9486 to copy relocs into the output file. */
9487 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9490 /* If combreloc is enabled, elf_link_sort_relocs() will
9491 sort relocations, but in a different way than we do,
9492 and before we're done creating relocations. Also, it
9493 will move them around between input sections'
9494 relocation's contents, so our sorting would be
9495 broken, so don't let it run. */
9496 info->combreloc = 0;
9499 else if (! info->shared
9500 && ! mips_elf_hash_table (info)->use_rld_obj_head
9501 && CONST_STRNEQ (name, ".rld_map"))
9503 /* We add a room for __rld_map. It will be filled in by the
9504 rtld to contain a pointer to the _r_debug structure. */
9505 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9507 else if (SGI_COMPAT (output_bfd)
9508 && CONST_STRNEQ (name, ".compact_rel"))
9509 s->size += mips_elf_hash_table (info)->compact_rel_size;
9510 else if (s == htab->splt)
9512 /* If the last PLT entry has a branch delay slot, allocate
9513 room for an extra nop to fill the delay slot. This is
9514 for CPUs without load interlocking. */
9515 if (! LOAD_INTERLOCKS_P (output_bfd)
9516 && ! htab->is_vxworks && s->size > 0)
9519 else if (! CONST_STRNEQ (name, ".init")
9521 && s != htab->sgotplt
9522 && s != htab->sstubs
9523 && s != htab->sdynbss)
9525 /* It's not one of our sections, so don't allocate space. */
9531 s->flags |= SEC_EXCLUDE;
9535 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9538 /* Allocate memory for the section contents. */
9539 s->contents = bfd_zalloc (dynobj, s->size);
9540 if (s->contents == NULL)
9542 bfd_set_error (bfd_error_no_memory);
9547 if (elf_hash_table (info)->dynamic_sections_created)
9549 /* Add some entries to the .dynamic section. We fill in the
9550 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9551 must add the entries now so that we get the correct size for
9552 the .dynamic section. */
9554 /* SGI object has the equivalence of DT_DEBUG in the
9555 DT_MIPS_RLD_MAP entry. This must come first because glibc
9556 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9557 may only look at the first one they see. */
9559 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9562 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9563 used by the debugger. */
9564 if (info->executable
9565 && !SGI_COMPAT (output_bfd)
9566 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9569 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9570 info->flags |= DF_TEXTREL;
9572 if ((info->flags & DF_TEXTREL) != 0)
9574 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9577 /* Clear the DF_TEXTREL flag. It will be set again if we
9578 write out an actual text relocation; we may not, because
9579 at this point we do not know whether e.g. any .eh_frame
9580 absolute relocations have been converted to PC-relative. */
9581 info->flags &= ~DF_TEXTREL;
9584 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9587 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9588 if (htab->is_vxworks)
9590 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9591 use any of the DT_MIPS_* tags. */
9592 if (sreldyn && sreldyn->size > 0)
9594 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9597 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9600 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9606 if (sreldyn && sreldyn->size > 0)
9608 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9611 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9614 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9618 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9621 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9624 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9639 if (IRIX_COMPAT (dynobj) == ict_irix5
9640 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9643 if (IRIX_COMPAT (dynobj) == ict_irix6
9644 && (bfd_get_section_by_name
9645 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9646 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9649 if (htab->splt->size > 0)
9651 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9654 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9657 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9660 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9663 if (htab->is_vxworks
9664 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9671 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9672 Adjust its R_ADDEND field so that it is correct for the output file.
9673 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9674 and sections respectively; both use symbol indexes. */
9677 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9678 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9679 asection **local_sections, Elf_Internal_Rela *rel)
9681 unsigned int r_type, r_symndx;
9682 Elf_Internal_Sym *sym;
9685 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9687 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9688 if (gprel16_reloc_p (r_type)
9689 || r_type == R_MIPS_GPREL32
9690 || literal_reloc_p (r_type))
9692 rel->r_addend += _bfd_get_gp_value (input_bfd);
9693 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9696 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9697 sym = local_syms + r_symndx;
9699 /* Adjust REL's addend to account for section merging. */
9700 if (!info->relocatable)
9702 sec = local_sections[r_symndx];
9703 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9706 /* This would normally be done by the rela_normal code in elflink.c. */
9707 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9708 rel->r_addend += local_sections[r_symndx]->output_offset;
9712 /* Handle relocations against symbols from removed linkonce sections,
9713 or sections discarded by a linker script. We use this wrapper around
9714 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9715 on 64-bit ELF targets. In this case for any relocation handled, which
9716 always be the first in a triplet, the remaining two have to be processed
9717 together with the first, even if they are R_MIPS_NONE. It is the symbol
9718 index referred by the first reloc that applies to all the three and the
9719 remaining two never refer to an object symbol. And it is the final
9720 relocation (the last non-null one) that determines the output field of
9721 the whole relocation so retrieve the corresponding howto structure for
9722 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9724 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9725 and therefore requires to be pasted in a loop. It also defines a block
9726 and does not protect any of its arguments, hence the extra brackets. */
9729 mips_reloc_against_discarded_section (bfd *output_bfd,
9730 struct bfd_link_info *info,
9731 bfd *input_bfd, asection *input_section,
9732 Elf_Internal_Rela **rel,
9733 const Elf_Internal_Rela **relend,
9734 bfd_boolean rel_reloc,
9735 reloc_howto_type *howto,
9738 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9739 int count = bed->s->int_rels_per_ext_rel;
9740 unsigned int r_type;
9743 for (i = count - 1; i > 0; i--)
9745 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9746 if (r_type != R_MIPS_NONE)
9748 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9754 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9755 (*rel), count, (*relend),
9756 howto, i, contents);
9761 /* Relocate a MIPS ELF section. */
9764 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9765 bfd *input_bfd, asection *input_section,
9766 bfd_byte *contents, Elf_Internal_Rela *relocs,
9767 Elf_Internal_Sym *local_syms,
9768 asection **local_sections)
9770 Elf_Internal_Rela *rel;
9771 const Elf_Internal_Rela *relend;
9773 bfd_boolean use_saved_addend_p = FALSE;
9774 const struct elf_backend_data *bed;
9776 bed = get_elf_backend_data (output_bfd);
9777 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9778 for (rel = relocs; rel < relend; ++rel)
9782 reloc_howto_type *howto;
9783 bfd_boolean cross_mode_jump_p = FALSE;
9784 /* TRUE if the relocation is a RELA relocation, rather than a
9786 bfd_boolean rela_relocation_p = TRUE;
9787 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9789 unsigned long r_symndx;
9791 Elf_Internal_Shdr *symtab_hdr;
9792 struct elf_link_hash_entry *h;
9793 bfd_boolean rel_reloc;
9795 rel_reloc = (NEWABI_P (input_bfd)
9796 && mips_elf_rel_relocation_p (input_bfd, input_section,
9798 /* Find the relocation howto for this relocation. */
9799 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9801 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9802 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9803 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9805 sec = local_sections[r_symndx];
9810 unsigned long extsymoff;
9813 if (!elf_bad_symtab (input_bfd))
9814 extsymoff = symtab_hdr->sh_info;
9815 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9816 while (h->root.type == bfd_link_hash_indirect
9817 || h->root.type == bfd_link_hash_warning)
9818 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9821 if (h->root.type == bfd_link_hash_defined
9822 || h->root.type == bfd_link_hash_defweak)
9823 sec = h->root.u.def.section;
9826 if (sec != NULL && discarded_section (sec))
9828 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9829 input_section, &rel, &relend,
9830 rel_reloc, howto, contents);
9834 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9836 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9837 64-bit code, but make sure all their addresses are in the
9838 lowermost or uppermost 32-bit section of the 64-bit address
9839 space. Thus, when they use an R_MIPS_64 they mean what is
9840 usually meant by R_MIPS_32, with the exception that the
9841 stored value is sign-extended to 64 bits. */
9842 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9844 /* On big-endian systems, we need to lie about the position
9846 if (bfd_big_endian (input_bfd))
9850 if (!use_saved_addend_p)
9852 /* If these relocations were originally of the REL variety,
9853 we must pull the addend out of the field that will be
9854 relocated. Otherwise, we simply use the contents of the
9856 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9859 rela_relocation_p = FALSE;
9860 addend = mips_elf_read_rel_addend (input_bfd, rel,
9862 if (hi16_reloc_p (r_type)
9863 || (got16_reloc_p (r_type)
9864 && mips_elf_local_relocation_p (input_bfd, rel,
9867 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9871 name = h->root.root.string;
9873 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9874 local_syms + r_symndx,
9876 (*_bfd_error_handler)
9877 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9878 input_bfd, input_section, name, howto->name,
9883 addend <<= howto->rightshift;
9886 addend = rel->r_addend;
9887 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9888 local_syms, local_sections, rel);
9891 if (info->relocatable)
9893 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9894 && bfd_big_endian (input_bfd))
9897 if (!rela_relocation_p && rel->r_addend)
9899 addend += rel->r_addend;
9900 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9901 addend = mips_elf_high (addend);
9902 else if (r_type == R_MIPS_HIGHER)
9903 addend = mips_elf_higher (addend);
9904 else if (r_type == R_MIPS_HIGHEST)
9905 addend = mips_elf_highest (addend);
9907 addend >>= howto->rightshift;
9909 /* We use the source mask, rather than the destination
9910 mask because the place to which we are writing will be
9911 source of the addend in the final link. */
9912 addend &= howto->src_mask;
9914 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9915 /* See the comment above about using R_MIPS_64 in the 32-bit
9916 ABI. Here, we need to update the addend. It would be
9917 possible to get away with just using the R_MIPS_32 reloc
9918 but for endianness. */
9924 if (addend & ((bfd_vma) 1 << 31))
9926 sign_bits = ((bfd_vma) 1 << 32) - 1;
9933 /* If we don't know that we have a 64-bit type,
9934 do two separate stores. */
9935 if (bfd_big_endian (input_bfd))
9937 /* Store the sign-bits (which are most significant)
9939 low_bits = sign_bits;
9945 high_bits = sign_bits;
9947 bfd_put_32 (input_bfd, low_bits,
9948 contents + rel->r_offset);
9949 bfd_put_32 (input_bfd, high_bits,
9950 contents + rel->r_offset + 4);
9954 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9955 input_bfd, input_section,
9960 /* Go on to the next relocation. */
9964 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9965 relocations for the same offset. In that case we are
9966 supposed to treat the output of each relocation as the addend
9968 if (rel + 1 < relend
9969 && rel->r_offset == rel[1].r_offset
9970 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9971 use_saved_addend_p = TRUE;
9973 use_saved_addend_p = FALSE;
9975 /* Figure out what value we are supposed to relocate. */
9976 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9977 input_section, info, rel,
9978 addend, howto, local_syms,
9979 local_sections, &value,
9980 &name, &cross_mode_jump_p,
9981 use_saved_addend_p))
9983 case bfd_reloc_continue:
9984 /* There's nothing to do. */
9987 case bfd_reloc_undefined:
9988 /* mips_elf_calculate_relocation already called the
9989 undefined_symbol callback. There's no real point in
9990 trying to perform the relocation at this point, so we
9991 just skip ahead to the next relocation. */
9994 case bfd_reloc_notsupported:
9995 msg = _("internal error: unsupported relocation error");
9996 info->callbacks->warning
9997 (info, msg, name, input_bfd, input_section, rel->r_offset);
10000 case bfd_reloc_overflow:
10001 if (use_saved_addend_p)
10002 /* Ignore overflow until we reach the last relocation for
10003 a given location. */
10007 struct mips_elf_link_hash_table *htab;
10009 htab = mips_elf_hash_table (info);
10010 BFD_ASSERT (htab != NULL);
10011 BFD_ASSERT (name != NULL);
10012 if (!htab->small_data_overflow_reported
10013 && (gprel16_reloc_p (howto->type)
10014 || literal_reloc_p (howto->type)))
10016 msg = _("small-data section exceeds 64KB;"
10017 " lower small-data size limit (see option -G)");
10019 htab->small_data_overflow_reported = TRUE;
10020 (*info->callbacks->einfo) ("%P: %s\n", msg);
10022 if (! ((*info->callbacks->reloc_overflow)
10023 (info, NULL, name, howto->name, (bfd_vma) 0,
10024 input_bfd, input_section, rel->r_offset)))
10032 case bfd_reloc_outofrange:
10033 if (jal_reloc_p (howto->type))
10035 msg = _("JALX to a non-word-aligned address");
10036 info->callbacks->warning
10037 (info, msg, name, input_bfd, input_section, rel->r_offset);
10040 /* Fall through. */
10047 /* If we've got another relocation for the address, keep going
10048 until we reach the last one. */
10049 if (use_saved_addend_p)
10055 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10056 /* See the comment above about using R_MIPS_64 in the 32-bit
10057 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10058 that calculated the right value. Now, however, we
10059 sign-extend the 32-bit result to 64-bits, and store it as a
10060 64-bit value. We are especially generous here in that we
10061 go to extreme lengths to support this usage on systems with
10062 only a 32-bit VMA. */
10068 if (value & ((bfd_vma) 1 << 31))
10070 sign_bits = ((bfd_vma) 1 << 32) - 1;
10077 /* If we don't know that we have a 64-bit type,
10078 do two separate stores. */
10079 if (bfd_big_endian (input_bfd))
10081 /* Undo what we did above. */
10082 rel->r_offset -= 4;
10083 /* Store the sign-bits (which are most significant)
10085 low_bits = sign_bits;
10091 high_bits = sign_bits;
10093 bfd_put_32 (input_bfd, low_bits,
10094 contents + rel->r_offset);
10095 bfd_put_32 (input_bfd, high_bits,
10096 contents + rel->r_offset + 4);
10100 /* Actually perform the relocation. */
10101 if (! mips_elf_perform_relocation (info, howto, rel, value,
10102 input_bfd, input_section,
10103 contents, cross_mode_jump_p))
10110 /* A function that iterates over each entry in la25_stubs and fills
10111 in the code for each one. DATA points to a mips_htab_traverse_info. */
10114 mips_elf_create_la25_stub (void **slot, void *data)
10116 struct mips_htab_traverse_info *hti;
10117 struct mips_elf_link_hash_table *htab;
10118 struct mips_elf_la25_stub *stub;
10121 bfd_vma offset, target, target_high, target_low;
10123 stub = (struct mips_elf_la25_stub *) *slot;
10124 hti = (struct mips_htab_traverse_info *) data;
10125 htab = mips_elf_hash_table (hti->info);
10126 BFD_ASSERT (htab != NULL);
10128 /* Create the section contents, if we haven't already. */
10129 s = stub->stub_section;
10133 loc = bfd_malloc (s->size);
10142 /* Work out where in the section this stub should go. */
10143 offset = stub->offset;
10145 /* Work out the target address. */
10146 target = mips_elf_get_la25_target (stub, &s);
10147 target += s->output_section->vma + s->output_offset;
10149 target_high = ((target + 0x8000) >> 16) & 0xffff;
10150 target_low = (target & 0xffff);
10152 if (stub->stub_section != htab->strampoline)
10154 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10155 of the section and write the two instructions at the end. */
10156 memset (loc, 0, offset);
10158 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10160 bfd_put_micromips_32 (hti->output_bfd,
10161 LA25_LUI_MICROMIPS (target_high),
10163 bfd_put_micromips_32 (hti->output_bfd,
10164 LA25_ADDIU_MICROMIPS (target_low),
10169 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10170 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10175 /* This is trampoline. */
10177 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10179 bfd_put_micromips_32 (hti->output_bfd,
10180 LA25_LUI_MICROMIPS (target_high), loc);
10181 bfd_put_micromips_32 (hti->output_bfd,
10182 LA25_J_MICROMIPS (target), loc + 4);
10183 bfd_put_micromips_32 (hti->output_bfd,
10184 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10185 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10189 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10190 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10191 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10192 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10198 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10199 adjust it appropriately now. */
10202 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10203 const char *name, Elf_Internal_Sym *sym)
10205 /* The linker script takes care of providing names and values for
10206 these, but we must place them into the right sections. */
10207 static const char* const text_section_symbols[] = {
10210 "__dso_displacement",
10212 "__program_header_table",
10216 static const char* const data_section_symbols[] = {
10224 const char* const *p;
10227 for (i = 0; i < 2; ++i)
10228 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10231 if (strcmp (*p, name) == 0)
10233 /* All of these symbols are given type STT_SECTION by the
10235 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10236 sym->st_other = STO_PROTECTED;
10238 /* The IRIX linker puts these symbols in special sections. */
10240 sym->st_shndx = SHN_MIPS_TEXT;
10242 sym->st_shndx = SHN_MIPS_DATA;
10248 /* Finish up dynamic symbol handling. We set the contents of various
10249 dynamic sections here. */
10252 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10253 struct bfd_link_info *info,
10254 struct elf_link_hash_entry *h,
10255 Elf_Internal_Sym *sym)
10259 struct mips_got_info *g, *gg;
10262 struct mips_elf_link_hash_table *htab;
10263 struct mips_elf_link_hash_entry *hmips;
10265 htab = mips_elf_hash_table (info);
10266 BFD_ASSERT (htab != NULL);
10267 dynobj = elf_hash_table (info)->dynobj;
10268 hmips = (struct mips_elf_link_hash_entry *) h;
10270 BFD_ASSERT (!htab->is_vxworks);
10272 if (h->plt.plist != NULL
10273 && (h->plt.plist->mips_offset != MINUS_ONE
10274 || h->plt.plist->comp_offset != MINUS_ONE))
10276 /* We've decided to create a PLT entry for this symbol. */
10278 bfd_vma header_address, got_address;
10279 bfd_vma got_address_high, got_address_low, load;
10283 got_index = h->plt.plist->gotplt_index;
10285 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10286 BFD_ASSERT (h->dynindx != -1);
10287 BFD_ASSERT (htab->splt != NULL);
10288 BFD_ASSERT (got_index != MINUS_ONE);
10289 BFD_ASSERT (!h->def_regular);
10291 /* Calculate the address of the PLT header. */
10292 isa_bit = htab->plt_header_is_comp;
10293 header_address = (htab->splt->output_section->vma
10294 + htab->splt->output_offset + isa_bit);
10296 /* Calculate the address of the .got.plt entry. */
10297 got_address = (htab->sgotplt->output_section->vma
10298 + htab->sgotplt->output_offset
10299 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10301 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10302 got_address_low = got_address & 0xffff;
10304 /* Initially point the .got.plt entry at the PLT header. */
10305 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10306 if (ABI_64_P (output_bfd))
10307 bfd_put_64 (output_bfd, header_address, loc);
10309 bfd_put_32 (output_bfd, header_address, loc);
10311 /* Now handle the PLT itself. First the standard entry (the order
10312 does not matter, we just have to pick one). */
10313 if (h->plt.plist->mips_offset != MINUS_ONE)
10315 const bfd_vma *plt_entry;
10316 bfd_vma plt_offset;
10318 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10320 BFD_ASSERT (plt_offset <= htab->splt->size);
10322 /* Find out where the .plt entry should go. */
10323 loc = htab->splt->contents + plt_offset;
10325 /* Pick the load opcode. */
10326 load = MIPS_ELF_LOAD_WORD (output_bfd);
10328 /* Fill in the PLT entry itself. */
10329 plt_entry = mips_exec_plt_entry;
10330 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10331 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10334 if (! LOAD_INTERLOCKS_P (output_bfd))
10336 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10337 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10341 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10342 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10347 /* Now the compressed entry. They come after any standard ones. */
10348 if (h->plt.plist->comp_offset != MINUS_ONE)
10350 bfd_vma plt_offset;
10352 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10353 + h->plt.plist->comp_offset);
10355 BFD_ASSERT (plt_offset <= htab->splt->size);
10357 /* Find out where the .plt entry should go. */
10358 loc = htab->splt->contents + plt_offset;
10360 /* Fill in the PLT entry itself. */
10361 if (!MICROMIPS_P (output_bfd))
10363 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10365 bfd_put_16 (output_bfd, plt_entry[0], loc);
10366 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10367 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10368 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10369 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10370 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10371 bfd_put_32 (output_bfd, got_address, loc + 12);
10373 else if (htab->insn32)
10375 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10377 bfd_put_16 (output_bfd, plt_entry[0], loc);
10378 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10379 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10380 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10381 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10382 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10383 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10384 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10388 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10389 bfd_signed_vma gotpc_offset;
10390 bfd_vma loc_address;
10392 BFD_ASSERT (got_address % 4 == 0);
10394 loc_address = (htab->splt->output_section->vma
10395 + htab->splt->output_offset + plt_offset);
10396 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10398 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10399 if (gotpc_offset + 0x1000000 >= 0x2000000)
10401 (*_bfd_error_handler)
10402 (_("%B: `%A' offset of %ld from `%A' "
10403 "beyond the range of ADDIUPC"),
10405 htab->sgotplt->output_section,
10406 htab->splt->output_section,
10407 (long) gotpc_offset);
10408 bfd_set_error (bfd_error_no_error);
10411 bfd_put_16 (output_bfd,
10412 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10413 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10414 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10415 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10416 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10417 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10421 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10422 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10423 got_index - 2, h->dynindx,
10424 R_MIPS_JUMP_SLOT, got_address);
10426 /* We distinguish between PLT entries and lazy-binding stubs by
10427 giving the former an st_other value of STO_MIPS_PLT. Set the
10428 flag and leave the value if there are any relocations in the
10429 binary where pointer equality matters. */
10430 sym->st_shndx = SHN_UNDEF;
10431 if (h->pointer_equality_needed)
10432 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10440 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10442 /* We've decided to create a lazy-binding stub. */
10443 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10444 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10445 bfd_vma stub_size = htab->function_stub_size;
10446 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10447 bfd_vma isa_bit = micromips_p;
10448 bfd_vma stub_big_size;
10451 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10452 else if (htab->insn32)
10453 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10455 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10457 /* This symbol has a stub. Set it up. */
10459 BFD_ASSERT (h->dynindx != -1);
10461 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10463 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10464 sign extension at runtime in the stub, resulting in a negative
10466 if (h->dynindx & ~0x7fffffff)
10469 /* Fill the stub. */
10473 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10478 bfd_put_micromips_32 (output_bfd,
10479 STUB_MOVE32_MICROMIPS (output_bfd),
10485 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10488 if (stub_size == stub_big_size)
10490 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10492 bfd_put_micromips_32 (output_bfd,
10493 STUB_LUI_MICROMIPS (dynindx_hi),
10499 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10505 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10509 /* If a large stub is not required and sign extension is not a
10510 problem, then use legacy code in the stub. */
10511 if (stub_size == stub_big_size)
10512 bfd_put_micromips_32 (output_bfd,
10513 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10515 else if (h->dynindx & ~0x7fff)
10516 bfd_put_micromips_32 (output_bfd,
10517 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10520 bfd_put_micromips_32 (output_bfd,
10521 STUB_LI16S_MICROMIPS (output_bfd,
10528 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10530 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10532 if (stub_size == stub_big_size)
10534 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10538 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10541 /* If a large stub is not required and sign extension is not a
10542 problem, then use legacy code in the stub. */
10543 if (stub_size == stub_big_size)
10544 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10546 else if (h->dynindx & ~0x7fff)
10547 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10550 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10554 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10555 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10558 /* Mark the symbol as undefined. stub_offset != -1 occurs
10559 only for the referenced symbol. */
10560 sym->st_shndx = SHN_UNDEF;
10562 /* The run-time linker uses the st_value field of the symbol
10563 to reset the global offset table entry for this external
10564 to its stub address when unlinking a shared object. */
10565 sym->st_value = (htab->sstubs->output_section->vma
10566 + htab->sstubs->output_offset
10567 + h->plt.plist->stub_offset
10569 sym->st_other = other;
10572 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10573 refer to the stub, since only the stub uses the standard calling
10575 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10577 BFD_ASSERT (hmips->need_fn_stub);
10578 sym->st_value = (hmips->fn_stub->output_section->vma
10579 + hmips->fn_stub->output_offset);
10580 sym->st_size = hmips->fn_stub->size;
10581 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10584 BFD_ASSERT (h->dynindx != -1
10585 || h->forced_local);
10588 g = htab->got_info;
10589 BFD_ASSERT (g != NULL);
10591 /* Run through the global symbol table, creating GOT entries for all
10592 the symbols that need them. */
10593 if (hmips->global_got_area != GGA_NONE)
10598 value = sym->st_value;
10599 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10600 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10603 if (hmips->global_got_area != GGA_NONE && g->next)
10605 struct mips_got_entry e, *p;
10611 e.abfd = output_bfd;
10614 e.tls_type = GOT_TLS_NONE;
10616 for (g = g->next; g->next != gg; g = g->next)
10619 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10622 offset = p->gotidx;
10623 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10625 || (elf_hash_table (info)->dynamic_sections_created
10627 && p->d.h->root.def_dynamic
10628 && !p->d.h->root.def_regular))
10630 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10631 the various compatibility problems, it's easier to mock
10632 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10633 mips_elf_create_dynamic_relocation to calculate the
10634 appropriate addend. */
10635 Elf_Internal_Rela rel[3];
10637 memset (rel, 0, sizeof (rel));
10638 if (ABI_64_P (output_bfd))
10639 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10641 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10642 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10645 if (! (mips_elf_create_dynamic_relocation
10646 (output_bfd, info, rel,
10647 e.d.h, NULL, sym->st_value, &entry, sgot)))
10651 entry = sym->st_value;
10652 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10657 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10658 name = h->root.root.string;
10659 if (h == elf_hash_table (info)->hdynamic
10660 || h == elf_hash_table (info)->hgot)
10661 sym->st_shndx = SHN_ABS;
10662 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10663 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10665 sym->st_shndx = SHN_ABS;
10666 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10669 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10671 sym->st_shndx = SHN_ABS;
10672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10673 sym->st_value = elf_gp (output_bfd);
10675 else if (SGI_COMPAT (output_bfd))
10677 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10678 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10680 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10681 sym->st_other = STO_PROTECTED;
10683 sym->st_shndx = SHN_MIPS_DATA;
10685 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10687 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10688 sym->st_other = STO_PROTECTED;
10689 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10690 sym->st_shndx = SHN_ABS;
10692 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10694 if (h->type == STT_FUNC)
10695 sym->st_shndx = SHN_MIPS_TEXT;
10696 else if (h->type == STT_OBJECT)
10697 sym->st_shndx = SHN_MIPS_DATA;
10701 /* Emit a copy reloc, if needed. */
10707 BFD_ASSERT (h->dynindx != -1);
10708 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10710 s = mips_elf_rel_dyn_section (info, FALSE);
10711 symval = (h->root.u.def.section->output_section->vma
10712 + h->root.u.def.section->output_offset
10713 + h->root.u.def.value);
10714 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10715 h->dynindx, R_MIPS_COPY, symval);
10718 /* Handle the IRIX6-specific symbols. */
10719 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10720 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10722 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10723 to treat compressed symbols like any other. */
10724 if (ELF_ST_IS_MIPS16 (sym->st_other))
10726 BFD_ASSERT (sym->st_value & 1);
10727 sym->st_other -= STO_MIPS16;
10729 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10731 BFD_ASSERT (sym->st_value & 1);
10732 sym->st_other -= STO_MICROMIPS;
10738 /* Likewise, for VxWorks. */
10741 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10742 struct bfd_link_info *info,
10743 struct elf_link_hash_entry *h,
10744 Elf_Internal_Sym *sym)
10748 struct mips_got_info *g;
10749 struct mips_elf_link_hash_table *htab;
10750 struct mips_elf_link_hash_entry *hmips;
10752 htab = mips_elf_hash_table (info);
10753 BFD_ASSERT (htab != NULL);
10754 dynobj = elf_hash_table (info)->dynobj;
10755 hmips = (struct mips_elf_link_hash_entry *) h;
10757 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10760 bfd_vma plt_address, got_address, got_offset, branch_offset;
10761 Elf_Internal_Rela rel;
10762 static const bfd_vma *plt_entry;
10763 bfd_vma gotplt_index;
10764 bfd_vma plt_offset;
10766 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10767 gotplt_index = h->plt.plist->gotplt_index;
10769 BFD_ASSERT (h->dynindx != -1);
10770 BFD_ASSERT (htab->splt != NULL);
10771 BFD_ASSERT (gotplt_index != MINUS_ONE);
10772 BFD_ASSERT (plt_offset <= htab->splt->size);
10774 /* Calculate the address of the .plt entry. */
10775 plt_address = (htab->splt->output_section->vma
10776 + htab->splt->output_offset
10779 /* Calculate the address of the .got.plt entry. */
10780 got_address = (htab->sgotplt->output_section->vma
10781 + htab->sgotplt->output_offset
10782 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
10784 /* Calculate the offset of the .got.plt entry from
10785 _GLOBAL_OFFSET_TABLE_. */
10786 got_offset = mips_elf_gotplt_index (info, h);
10788 /* Calculate the offset for the branch at the start of the PLT
10789 entry. The branch jumps to the beginning of .plt. */
10790 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
10792 /* Fill in the initial value of the .got.plt entry. */
10793 bfd_put_32 (output_bfd, plt_address,
10794 (htab->sgotplt->contents
10795 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
10797 /* Find out where the .plt entry should go. */
10798 loc = htab->splt->contents + plt_offset;
10802 plt_entry = mips_vxworks_shared_plt_entry;
10803 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10804 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10808 bfd_vma got_address_high, got_address_low;
10810 plt_entry = mips_vxworks_exec_plt_entry;
10811 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10812 got_address_low = got_address & 0xffff;
10814 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10815 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10816 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10817 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10818 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10819 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10820 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10821 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10823 loc = (htab->srelplt2->contents
10824 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10826 /* Emit a relocation for the .got.plt entry. */
10827 rel.r_offset = got_address;
10828 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10829 rel.r_addend = plt_offset;
10830 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10832 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10833 loc += sizeof (Elf32_External_Rela);
10834 rel.r_offset = plt_address + 8;
10835 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10836 rel.r_addend = got_offset;
10837 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10839 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10840 loc += sizeof (Elf32_External_Rela);
10842 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10843 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10846 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10847 loc = (htab->srelplt->contents
10848 + gotplt_index * sizeof (Elf32_External_Rela));
10849 rel.r_offset = got_address;
10850 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10852 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10854 if (!h->def_regular)
10855 sym->st_shndx = SHN_UNDEF;
10858 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10861 g = htab->got_info;
10862 BFD_ASSERT (g != NULL);
10864 /* See if this symbol has an entry in the GOT. */
10865 if (hmips->global_got_area != GGA_NONE)
10868 Elf_Internal_Rela outrel;
10872 /* Install the symbol value in the GOT. */
10873 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10874 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10876 /* Add a dynamic relocation for it. */
10877 s = mips_elf_rel_dyn_section (info, FALSE);
10878 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10879 outrel.r_offset = (sgot->output_section->vma
10880 + sgot->output_offset
10882 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10883 outrel.r_addend = 0;
10884 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10887 /* Emit a copy reloc, if needed. */
10890 Elf_Internal_Rela rel;
10892 BFD_ASSERT (h->dynindx != -1);
10894 rel.r_offset = (h->root.u.def.section->output_section->vma
10895 + h->root.u.def.section->output_offset
10896 + h->root.u.def.value);
10897 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10899 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10900 htab->srelbss->contents
10901 + (htab->srelbss->reloc_count
10902 * sizeof (Elf32_External_Rela)));
10903 ++htab->srelbss->reloc_count;
10906 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10908 sym->st_value &= ~1;
10913 /* Write out a plt0 entry to the beginning of .plt. */
10916 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10919 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10920 static const bfd_vma *plt_entry;
10921 struct mips_elf_link_hash_table *htab;
10923 htab = mips_elf_hash_table (info);
10924 BFD_ASSERT (htab != NULL);
10926 if (ABI_64_P (output_bfd))
10927 plt_entry = mips_n64_exec_plt0_entry;
10928 else if (ABI_N32_P (output_bfd))
10929 plt_entry = mips_n32_exec_plt0_entry;
10930 else if (!htab->plt_header_is_comp)
10931 plt_entry = mips_o32_exec_plt0_entry;
10932 else if (htab->insn32)
10933 plt_entry = micromips_insn32_o32_exec_plt0_entry;
10935 plt_entry = micromips_o32_exec_plt0_entry;
10937 /* Calculate the value of .got.plt. */
10938 gotplt_value = (htab->sgotplt->output_section->vma
10939 + htab->sgotplt->output_offset);
10940 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10941 gotplt_value_low = gotplt_value & 0xffff;
10943 /* The PLT sequence is not safe for N64 if .got.plt's address can
10944 not be loaded in two instructions. */
10945 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10946 || ~(gotplt_value | 0x7fffffff) == 0);
10948 /* Install the PLT header. */
10949 loc = htab->splt->contents;
10950 if (plt_entry == micromips_o32_exec_plt0_entry)
10952 bfd_vma gotpc_offset;
10953 bfd_vma loc_address;
10956 BFD_ASSERT (gotplt_value % 4 == 0);
10958 loc_address = (htab->splt->output_section->vma
10959 + htab->splt->output_offset);
10960 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
10962 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10963 if (gotpc_offset + 0x1000000 >= 0x2000000)
10965 (*_bfd_error_handler)
10966 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
10968 htab->sgotplt->output_section,
10969 htab->splt->output_section,
10970 (long) gotpc_offset);
10971 bfd_set_error (bfd_error_no_error);
10974 bfd_put_16 (output_bfd,
10975 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10976 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10977 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
10978 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
10980 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
10984 bfd_put_16 (output_bfd, plt_entry[0], loc);
10985 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
10986 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10987 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
10988 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10989 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
10990 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
10991 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
10995 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10996 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10997 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10998 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10999 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11000 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11001 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11002 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11008 /* Install the PLT header for a VxWorks executable and finalize the
11009 contents of .rela.plt.unloaded. */
11012 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11014 Elf_Internal_Rela rela;
11016 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11017 static const bfd_vma *plt_entry;
11018 struct mips_elf_link_hash_table *htab;
11020 htab = mips_elf_hash_table (info);
11021 BFD_ASSERT (htab != NULL);
11023 plt_entry = mips_vxworks_exec_plt0_entry;
11025 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11026 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11027 + htab->root.hgot->root.u.def.section->output_offset
11028 + htab->root.hgot->root.u.def.value);
11030 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11031 got_value_low = got_value & 0xffff;
11033 /* Calculate the address of the PLT header. */
11034 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11036 /* Install the PLT header. */
11037 loc = htab->splt->contents;
11038 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11039 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11040 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11041 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11042 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11043 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11045 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11046 loc = htab->srelplt2->contents;
11047 rela.r_offset = plt_address;
11048 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11050 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11051 loc += sizeof (Elf32_External_Rela);
11053 /* Output the relocation for the following addiu of
11054 %lo(_GLOBAL_OFFSET_TABLE_). */
11055 rela.r_offset += 4;
11056 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11057 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11058 loc += sizeof (Elf32_External_Rela);
11060 /* Fix up the remaining relocations. They may have the wrong
11061 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11062 in which symbols were output. */
11063 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11065 Elf_Internal_Rela rel;
11067 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11068 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11069 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11070 loc += sizeof (Elf32_External_Rela);
11072 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11073 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11074 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11075 loc += sizeof (Elf32_External_Rela);
11077 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11078 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11079 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11080 loc += sizeof (Elf32_External_Rela);
11084 /* Install the PLT header for a VxWorks shared library. */
11087 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11090 struct mips_elf_link_hash_table *htab;
11092 htab = mips_elf_hash_table (info);
11093 BFD_ASSERT (htab != NULL);
11095 /* We just need to copy the entry byte-by-byte. */
11096 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11097 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11098 htab->splt->contents + i * 4);
11101 /* Finish up the dynamic sections. */
11104 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11105 struct bfd_link_info *info)
11110 struct mips_got_info *gg, *g;
11111 struct mips_elf_link_hash_table *htab;
11113 htab = mips_elf_hash_table (info);
11114 BFD_ASSERT (htab != NULL);
11116 dynobj = elf_hash_table (info)->dynobj;
11118 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11121 gg = htab->got_info;
11123 if (elf_hash_table (info)->dynamic_sections_created)
11126 int dyn_to_skip = 0, dyn_skipped = 0;
11128 BFD_ASSERT (sdyn != NULL);
11129 BFD_ASSERT (gg != NULL);
11131 g = mips_elf_bfd_got (output_bfd, FALSE);
11132 BFD_ASSERT (g != NULL);
11134 for (b = sdyn->contents;
11135 b < sdyn->contents + sdyn->size;
11136 b += MIPS_ELF_DYN_SIZE (dynobj))
11138 Elf_Internal_Dyn dyn;
11142 bfd_boolean swap_out_p;
11144 /* Read in the current dynamic entry. */
11145 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11147 /* Assume that we're going to modify it and write it out. */
11153 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11157 BFD_ASSERT (htab->is_vxworks);
11158 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11162 /* Rewrite DT_STRSZ. */
11164 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11169 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11172 case DT_MIPS_PLTGOT:
11174 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11177 case DT_MIPS_RLD_VERSION:
11178 dyn.d_un.d_val = 1; /* XXX */
11181 case DT_MIPS_FLAGS:
11182 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11185 case DT_MIPS_TIME_STAMP:
11189 dyn.d_un.d_val = t;
11193 case DT_MIPS_ICHECKSUM:
11195 swap_out_p = FALSE;
11198 case DT_MIPS_IVERSION:
11200 swap_out_p = FALSE;
11203 case DT_MIPS_BASE_ADDRESS:
11204 s = output_bfd->sections;
11205 BFD_ASSERT (s != NULL);
11206 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11209 case DT_MIPS_LOCAL_GOTNO:
11210 dyn.d_un.d_val = g->local_gotno;
11213 case DT_MIPS_UNREFEXTNO:
11214 /* The index into the dynamic symbol table which is the
11215 entry of the first external symbol that is not
11216 referenced within the same object. */
11217 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11220 case DT_MIPS_GOTSYM:
11221 if (htab->global_gotsym)
11223 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11226 /* In case if we don't have global got symbols we default
11227 to setting DT_MIPS_GOTSYM to the same value as
11228 DT_MIPS_SYMTABNO, so we just fall through. */
11230 case DT_MIPS_SYMTABNO:
11232 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11233 s = bfd_get_section_by_name (output_bfd, name);
11234 BFD_ASSERT (s != NULL);
11236 dyn.d_un.d_val = s->size / elemsize;
11239 case DT_MIPS_HIPAGENO:
11240 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11243 case DT_MIPS_RLD_MAP:
11245 struct elf_link_hash_entry *h;
11246 h = mips_elf_hash_table (info)->rld_symbol;
11249 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11250 swap_out_p = FALSE;
11253 s = h->root.u.def.section;
11254 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11255 + h->root.u.def.value);
11259 case DT_MIPS_OPTIONS:
11260 s = (bfd_get_section_by_name
11261 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11262 dyn.d_un.d_ptr = s->vma;
11266 BFD_ASSERT (htab->is_vxworks);
11267 /* The count does not include the JUMP_SLOT relocations. */
11269 dyn.d_un.d_val -= htab->srelplt->size;
11273 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11274 if (htab->is_vxworks)
11275 dyn.d_un.d_val = DT_RELA;
11277 dyn.d_un.d_val = DT_REL;
11281 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11282 dyn.d_un.d_val = htab->srelplt->size;
11286 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11287 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11288 + htab->srelplt->output_offset);
11292 /* If we didn't need any text relocations after all, delete
11293 the dynamic tag. */
11294 if (!(info->flags & DF_TEXTREL))
11296 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11297 swap_out_p = FALSE;
11302 /* If we didn't need any text relocations after all, clear
11303 DF_TEXTREL from DT_FLAGS. */
11304 if (!(info->flags & DF_TEXTREL))
11305 dyn.d_un.d_val &= ~DF_TEXTREL;
11307 swap_out_p = FALSE;
11311 swap_out_p = FALSE;
11312 if (htab->is_vxworks
11313 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11318 if (swap_out_p || dyn_skipped)
11319 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11320 (dynobj, &dyn, b - dyn_skipped);
11324 dyn_skipped += dyn_to_skip;
11329 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11330 if (dyn_skipped > 0)
11331 memset (b - dyn_skipped, 0, dyn_skipped);
11334 if (sgot != NULL && sgot->size > 0
11335 && !bfd_is_abs_section (sgot->output_section))
11337 if (htab->is_vxworks)
11339 /* The first entry of the global offset table points to the
11340 ".dynamic" section. The second is initialized by the
11341 loader and contains the shared library identifier.
11342 The third is also initialized by the loader and points
11343 to the lazy resolution stub. */
11344 MIPS_ELF_PUT_WORD (output_bfd,
11345 sdyn->output_offset + sdyn->output_section->vma,
11347 MIPS_ELF_PUT_WORD (output_bfd, 0,
11348 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11349 MIPS_ELF_PUT_WORD (output_bfd, 0,
11351 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11355 /* The first entry of the global offset table will be filled at
11356 runtime. The second entry will be used by some runtime loaders.
11357 This isn't the case of IRIX rld. */
11358 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11359 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11360 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11363 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11364 = MIPS_ELF_GOT_SIZE (output_bfd);
11367 /* Generate dynamic relocations for the non-primary gots. */
11368 if (gg != NULL && gg->next)
11370 Elf_Internal_Rela rel[3];
11371 bfd_vma addend = 0;
11373 memset (rel, 0, sizeof (rel));
11374 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11376 for (g = gg->next; g->next != gg; g = g->next)
11378 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11379 + g->next->tls_gotno;
11381 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11382 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11383 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11385 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11387 if (! info->shared)
11390 while (got_index < g->assigned_gotno)
11392 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11393 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
11394 if (!(mips_elf_create_dynamic_relocation
11395 (output_bfd, info, rel, NULL,
11396 bfd_abs_section_ptr,
11397 0, &addend, sgot)))
11399 BFD_ASSERT (addend == 0);
11404 /* The generation of dynamic relocations for the non-primary gots
11405 adds more dynamic relocations. We cannot count them until
11408 if (elf_hash_table (info)->dynamic_sections_created)
11411 bfd_boolean swap_out_p;
11413 BFD_ASSERT (sdyn != NULL);
11415 for (b = sdyn->contents;
11416 b < sdyn->contents + sdyn->size;
11417 b += MIPS_ELF_DYN_SIZE (dynobj))
11419 Elf_Internal_Dyn dyn;
11422 /* Read in the current dynamic entry. */
11423 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11425 /* Assume that we're going to modify it and write it out. */
11431 /* Reduce DT_RELSZ to account for any relocations we
11432 decided not to make. This is for the n64 irix rld,
11433 which doesn't seem to apply any relocations if there
11434 are trailing null entries. */
11435 s = mips_elf_rel_dyn_section (info, FALSE);
11436 dyn.d_un.d_val = (s->reloc_count
11437 * (ABI_64_P (output_bfd)
11438 ? sizeof (Elf64_Mips_External_Rel)
11439 : sizeof (Elf32_External_Rel)));
11440 /* Adjust the section size too. Tools like the prelinker
11441 can reasonably expect the values to the same. */
11442 elf_section_data (s->output_section)->this_hdr.sh_size
11447 swap_out_p = FALSE;
11452 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11459 Elf32_compact_rel cpt;
11461 if (SGI_COMPAT (output_bfd))
11463 /* Write .compact_rel section out. */
11464 s = bfd_get_linker_section (dynobj, ".compact_rel");
11468 cpt.num = s->reloc_count;
11470 cpt.offset = (s->output_section->filepos
11471 + sizeof (Elf32_External_compact_rel));
11474 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11475 ((Elf32_External_compact_rel *)
11478 /* Clean up a dummy stub function entry in .text. */
11479 if (htab->sstubs != NULL)
11481 file_ptr dummy_offset;
11483 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11484 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11485 memset (htab->sstubs->contents + dummy_offset, 0,
11486 htab->function_stub_size);
11491 /* The psABI says that the dynamic relocations must be sorted in
11492 increasing order of r_symndx. The VxWorks EABI doesn't require
11493 this, and because the code below handles REL rather than RELA
11494 relocations, using it for VxWorks would be outright harmful. */
11495 if (!htab->is_vxworks)
11497 s = mips_elf_rel_dyn_section (info, FALSE);
11499 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11501 reldyn_sorting_bfd = output_bfd;
11503 if (ABI_64_P (output_bfd))
11504 qsort ((Elf64_External_Rel *) s->contents + 1,
11505 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11506 sort_dynamic_relocs_64);
11508 qsort ((Elf32_External_Rel *) s->contents + 1,
11509 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11510 sort_dynamic_relocs);
11515 if (htab->splt && htab->splt->size > 0)
11517 if (htab->is_vxworks)
11520 mips_vxworks_finish_shared_plt (output_bfd, info);
11522 mips_vxworks_finish_exec_plt (output_bfd, info);
11526 BFD_ASSERT (!info->shared);
11527 if (!mips_finish_exec_plt (output_bfd, info))
11535 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11538 mips_set_isa_flags (bfd *abfd)
11542 switch (bfd_get_mach (abfd))
11545 case bfd_mach_mips3000:
11546 val = E_MIPS_ARCH_1;
11549 case bfd_mach_mips3900:
11550 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11553 case bfd_mach_mips6000:
11554 val = E_MIPS_ARCH_2;
11557 case bfd_mach_mips4000:
11558 case bfd_mach_mips4300:
11559 case bfd_mach_mips4400:
11560 case bfd_mach_mips4600:
11561 val = E_MIPS_ARCH_3;
11564 case bfd_mach_mips4010:
11565 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11568 case bfd_mach_mips4100:
11569 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11572 case bfd_mach_mips4111:
11573 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11576 case bfd_mach_mips4120:
11577 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11580 case bfd_mach_mips4650:
11581 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11584 case bfd_mach_mips5400:
11585 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11588 case bfd_mach_mips5500:
11589 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11592 case bfd_mach_mips5900:
11593 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11596 case bfd_mach_mips9000:
11597 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11600 case bfd_mach_mips5000:
11601 case bfd_mach_mips7000:
11602 case bfd_mach_mips8000:
11603 case bfd_mach_mips10000:
11604 case bfd_mach_mips12000:
11605 case bfd_mach_mips14000:
11606 case bfd_mach_mips16000:
11607 val = E_MIPS_ARCH_4;
11610 case bfd_mach_mips5:
11611 val = E_MIPS_ARCH_5;
11614 case bfd_mach_mips_loongson_2e:
11615 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11618 case bfd_mach_mips_loongson_2f:
11619 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11622 case bfd_mach_mips_sb1:
11623 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11626 case bfd_mach_mips_loongson_3a:
11627 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11630 case bfd_mach_mips_octeon:
11631 case bfd_mach_mips_octeonp:
11632 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11635 case bfd_mach_mips_xlr:
11636 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11639 case bfd_mach_mips_octeon2:
11640 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11643 case bfd_mach_mipsisa32:
11644 val = E_MIPS_ARCH_32;
11647 case bfd_mach_mipsisa64:
11648 val = E_MIPS_ARCH_64;
11651 case bfd_mach_mipsisa32r2:
11652 val = E_MIPS_ARCH_32R2;
11655 case bfd_mach_mipsisa64r2:
11656 val = E_MIPS_ARCH_64R2;
11659 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11660 elf_elfheader (abfd)->e_flags |= val;
11665 /* The final processing done just before writing out a MIPS ELF object
11666 file. This gets the MIPS architecture right based on the machine
11667 number. This is used by both the 32-bit and the 64-bit ABI. */
11670 _bfd_mips_elf_final_write_processing (bfd *abfd,
11671 bfd_boolean linker ATTRIBUTE_UNUSED)
11674 Elf_Internal_Shdr **hdrpp;
11678 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11679 is nonzero. This is for compatibility with old objects, which used
11680 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11681 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11682 mips_set_isa_flags (abfd);
11684 /* Set the sh_info field for .gptab sections and other appropriate
11685 info for each special section. */
11686 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11687 i < elf_numsections (abfd);
11690 switch ((*hdrpp)->sh_type)
11692 case SHT_MIPS_MSYM:
11693 case SHT_MIPS_LIBLIST:
11694 sec = bfd_get_section_by_name (abfd, ".dynstr");
11696 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11699 case SHT_MIPS_GPTAB:
11700 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11701 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11702 BFD_ASSERT (name != NULL
11703 && CONST_STRNEQ (name, ".gptab."));
11704 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11705 BFD_ASSERT (sec != NULL);
11706 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11709 case SHT_MIPS_CONTENT:
11710 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11711 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11712 BFD_ASSERT (name != NULL
11713 && CONST_STRNEQ (name, ".MIPS.content"));
11714 sec = bfd_get_section_by_name (abfd,
11715 name + sizeof ".MIPS.content" - 1);
11716 BFD_ASSERT (sec != NULL);
11717 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11720 case SHT_MIPS_SYMBOL_LIB:
11721 sec = bfd_get_section_by_name (abfd, ".dynsym");
11723 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11724 sec = bfd_get_section_by_name (abfd, ".liblist");
11726 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11729 case SHT_MIPS_EVENTS:
11730 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11731 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11732 BFD_ASSERT (name != NULL);
11733 if (CONST_STRNEQ (name, ".MIPS.events"))
11734 sec = bfd_get_section_by_name (abfd,
11735 name + sizeof ".MIPS.events" - 1);
11738 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11739 sec = bfd_get_section_by_name (abfd,
11741 + sizeof ".MIPS.post_rel" - 1));
11743 BFD_ASSERT (sec != NULL);
11744 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11751 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11755 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11756 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11761 /* See if we need a PT_MIPS_REGINFO segment. */
11762 s = bfd_get_section_by_name (abfd, ".reginfo");
11763 if (s && (s->flags & SEC_LOAD))
11766 /* See if we need a PT_MIPS_OPTIONS segment. */
11767 if (IRIX_COMPAT (abfd) == ict_irix6
11768 && bfd_get_section_by_name (abfd,
11769 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11772 /* See if we need a PT_MIPS_RTPROC segment. */
11773 if (IRIX_COMPAT (abfd) == ict_irix5
11774 && bfd_get_section_by_name (abfd, ".dynamic")
11775 && bfd_get_section_by_name (abfd, ".mdebug"))
11778 /* Allocate a PT_NULL header in dynamic objects. See
11779 _bfd_mips_elf_modify_segment_map for details. */
11780 if (!SGI_COMPAT (abfd)
11781 && bfd_get_section_by_name (abfd, ".dynamic"))
11787 /* Modify the segment map for an IRIX5 executable. */
11790 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11791 struct bfd_link_info *info)
11794 struct elf_segment_map *m, **pm;
11797 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11799 s = bfd_get_section_by_name (abfd, ".reginfo");
11800 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11802 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11803 if (m->p_type == PT_MIPS_REGINFO)
11808 m = bfd_zalloc (abfd, amt);
11812 m->p_type = PT_MIPS_REGINFO;
11814 m->sections[0] = s;
11816 /* We want to put it after the PHDR and INTERP segments. */
11817 pm = &elf_seg_map (abfd);
11819 && ((*pm)->p_type == PT_PHDR
11820 || (*pm)->p_type == PT_INTERP))
11828 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11829 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11830 PT_MIPS_OPTIONS segment immediately following the program header
11832 if (NEWABI_P (abfd)
11833 /* On non-IRIX6 new abi, we'll have already created a segment
11834 for this section, so don't create another. I'm not sure this
11835 is not also the case for IRIX 6, but I can't test it right
11837 && IRIX_COMPAT (abfd) == ict_irix6)
11839 for (s = abfd->sections; s; s = s->next)
11840 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11845 struct elf_segment_map *options_segment;
11847 pm = &elf_seg_map (abfd);
11849 && ((*pm)->p_type == PT_PHDR
11850 || (*pm)->p_type == PT_INTERP))
11853 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11855 amt = sizeof (struct elf_segment_map);
11856 options_segment = bfd_zalloc (abfd, amt);
11857 options_segment->next = *pm;
11858 options_segment->p_type = PT_MIPS_OPTIONS;
11859 options_segment->p_flags = PF_R;
11860 options_segment->p_flags_valid = TRUE;
11861 options_segment->count = 1;
11862 options_segment->sections[0] = s;
11863 *pm = options_segment;
11869 if (IRIX_COMPAT (abfd) == ict_irix5)
11871 /* If there are .dynamic and .mdebug sections, we make a room
11872 for the RTPROC header. FIXME: Rewrite without section names. */
11873 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11874 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11875 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11877 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11878 if (m->p_type == PT_MIPS_RTPROC)
11883 m = bfd_zalloc (abfd, amt);
11887 m->p_type = PT_MIPS_RTPROC;
11889 s = bfd_get_section_by_name (abfd, ".rtproc");
11894 m->p_flags_valid = 1;
11899 m->sections[0] = s;
11902 /* We want to put it after the DYNAMIC segment. */
11903 pm = &elf_seg_map (abfd);
11904 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11914 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11915 .dynstr, .dynsym, and .hash sections, and everything in
11917 for (pm = &elf_seg_map (abfd); *pm != NULL;
11919 if ((*pm)->p_type == PT_DYNAMIC)
11922 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11923 glibc's dynamic linker has traditionally derived the number of
11924 tags from the p_filesz field, and sometimes allocates stack
11925 arrays of that size. An overly-big PT_DYNAMIC segment can
11926 be actively harmful in such cases. Making PT_DYNAMIC contain
11927 other sections can also make life hard for the prelinker,
11928 which might move one of the other sections to a different
11929 PT_LOAD segment. */
11930 if (SGI_COMPAT (abfd)
11933 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11935 static const char *sec_names[] =
11937 ".dynamic", ".dynstr", ".dynsym", ".hash"
11941 struct elf_segment_map *n;
11943 low = ~(bfd_vma) 0;
11945 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11947 s = bfd_get_section_by_name (abfd, sec_names[i]);
11948 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11955 if (high < s->vma + sz)
11956 high = s->vma + sz;
11961 for (s = abfd->sections; s != NULL; s = s->next)
11962 if ((s->flags & SEC_LOAD) != 0
11964 && s->vma + s->size <= high)
11967 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11968 n = bfd_zalloc (abfd, amt);
11975 for (s = abfd->sections; s != NULL; s = s->next)
11977 if ((s->flags & SEC_LOAD) != 0
11979 && s->vma + s->size <= high)
11981 n->sections[i] = s;
11990 /* Allocate a spare program header in dynamic objects so that tools
11991 like the prelinker can add an extra PT_LOAD entry.
11993 If the prelinker needs to make room for a new PT_LOAD entry, its
11994 standard procedure is to move the first (read-only) sections into
11995 the new (writable) segment. However, the MIPS ABI requires
11996 .dynamic to be in a read-only segment, and the section will often
11997 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11999 Although the prelinker could in principle move .dynamic to a
12000 writable segment, it seems better to allocate a spare program
12001 header instead, and avoid the need to move any sections.
12002 There is a long tradition of allocating spare dynamic tags,
12003 so allocating a spare program header seems like a natural
12006 If INFO is NULL, we may be copying an already prelinked binary
12007 with objcopy or strip, so do not add this header. */
12009 && !SGI_COMPAT (abfd)
12010 && bfd_get_section_by_name (abfd, ".dynamic"))
12012 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12013 if ((*pm)->p_type == PT_NULL)
12017 m = bfd_zalloc (abfd, sizeof (*m));
12021 m->p_type = PT_NULL;
12029 /* Return the section that should be marked against GC for a given
12033 _bfd_mips_elf_gc_mark_hook (asection *sec,
12034 struct bfd_link_info *info,
12035 Elf_Internal_Rela *rel,
12036 struct elf_link_hash_entry *h,
12037 Elf_Internal_Sym *sym)
12039 /* ??? Do mips16 stub sections need to be handled special? */
12042 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12044 case R_MIPS_GNU_VTINHERIT:
12045 case R_MIPS_GNU_VTENTRY:
12049 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12052 /* Update the got entry reference counts for the section being removed. */
12055 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12056 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12057 asection *sec ATTRIBUTE_UNUSED,
12058 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12061 Elf_Internal_Shdr *symtab_hdr;
12062 struct elf_link_hash_entry **sym_hashes;
12063 bfd_signed_vma *local_got_refcounts;
12064 const Elf_Internal_Rela *rel, *relend;
12065 unsigned long r_symndx;
12066 struct elf_link_hash_entry *h;
12068 if (info->relocatable)
12071 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12072 sym_hashes = elf_sym_hashes (abfd);
12073 local_got_refcounts = elf_local_got_refcounts (abfd);
12075 relend = relocs + sec->reloc_count;
12076 for (rel = relocs; rel < relend; rel++)
12077 switch (ELF_R_TYPE (abfd, rel->r_info))
12079 case R_MIPS16_GOT16:
12080 case R_MIPS16_CALL16:
12082 case R_MIPS_CALL16:
12083 case R_MIPS_CALL_HI16:
12084 case R_MIPS_CALL_LO16:
12085 case R_MIPS_GOT_HI16:
12086 case R_MIPS_GOT_LO16:
12087 case R_MIPS_GOT_DISP:
12088 case R_MIPS_GOT_PAGE:
12089 case R_MIPS_GOT_OFST:
12090 case R_MICROMIPS_GOT16:
12091 case R_MICROMIPS_CALL16:
12092 case R_MICROMIPS_CALL_HI16:
12093 case R_MICROMIPS_CALL_LO16:
12094 case R_MICROMIPS_GOT_HI16:
12095 case R_MICROMIPS_GOT_LO16:
12096 case R_MICROMIPS_GOT_DISP:
12097 case R_MICROMIPS_GOT_PAGE:
12098 case R_MICROMIPS_GOT_OFST:
12099 /* ??? It would seem that the existing MIPS code does no sort
12100 of reference counting or whatnot on its GOT and PLT entries,
12101 so it is not possible to garbage collect them at this time. */
12112 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12113 hiding the old indirect symbol. Process additional relocation
12114 information. Also called for weakdefs, in which case we just let
12115 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12118 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12119 struct elf_link_hash_entry *dir,
12120 struct elf_link_hash_entry *ind)
12122 struct mips_elf_link_hash_entry *dirmips, *indmips;
12124 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12126 dirmips = (struct mips_elf_link_hash_entry *) dir;
12127 indmips = (struct mips_elf_link_hash_entry *) ind;
12128 /* Any absolute non-dynamic relocations against an indirect or weak
12129 definition will be against the target symbol. */
12130 if (indmips->has_static_relocs)
12131 dirmips->has_static_relocs = TRUE;
12133 if (ind->root.type != bfd_link_hash_indirect)
12136 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12137 if (indmips->readonly_reloc)
12138 dirmips->readonly_reloc = TRUE;
12139 if (indmips->no_fn_stub)
12140 dirmips->no_fn_stub = TRUE;
12141 if (indmips->fn_stub)
12143 dirmips->fn_stub = indmips->fn_stub;
12144 indmips->fn_stub = NULL;
12146 if (indmips->need_fn_stub)
12148 dirmips->need_fn_stub = TRUE;
12149 indmips->need_fn_stub = FALSE;
12151 if (indmips->call_stub)
12153 dirmips->call_stub = indmips->call_stub;
12154 indmips->call_stub = NULL;
12156 if (indmips->call_fp_stub)
12158 dirmips->call_fp_stub = indmips->call_fp_stub;
12159 indmips->call_fp_stub = NULL;
12161 if (indmips->global_got_area < dirmips->global_got_area)
12162 dirmips->global_got_area = indmips->global_got_area;
12163 if (indmips->global_got_area < GGA_NONE)
12164 indmips->global_got_area = GGA_NONE;
12165 if (indmips->has_nonpic_branches)
12166 dirmips->has_nonpic_branches = TRUE;
12169 #define PDR_SIZE 32
12172 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12173 struct bfd_link_info *info)
12176 bfd_boolean ret = FALSE;
12177 unsigned char *tdata;
12180 o = bfd_get_section_by_name (abfd, ".pdr");
12185 if (o->size % PDR_SIZE != 0)
12187 if (o->output_section != NULL
12188 && bfd_is_abs_section (o->output_section))
12191 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12195 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12196 info->keep_memory);
12203 cookie->rel = cookie->rels;
12204 cookie->relend = cookie->rels + o->reloc_count;
12206 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12208 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12217 mips_elf_section_data (o)->u.tdata = tdata;
12218 o->size -= skip * PDR_SIZE;
12224 if (! info->keep_memory)
12225 free (cookie->rels);
12231 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12233 if (strcmp (sec->name, ".pdr") == 0)
12239 _bfd_mips_elf_write_section (bfd *output_bfd,
12240 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12241 asection *sec, bfd_byte *contents)
12243 bfd_byte *to, *from, *end;
12246 if (strcmp (sec->name, ".pdr") != 0)
12249 if (mips_elf_section_data (sec)->u.tdata == NULL)
12253 end = contents + sec->size;
12254 for (from = contents, i = 0;
12256 from += PDR_SIZE, i++)
12258 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12261 memcpy (to, from, PDR_SIZE);
12264 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12265 sec->output_offset, sec->size);
12269 /* microMIPS code retains local labels for linker relaxation. Omit them
12270 from output by default for clarity. */
12273 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12275 return _bfd_elf_is_local_label_name (abfd, sym->name);
12278 /* MIPS ELF uses a special find_nearest_line routine in order the
12279 handle the ECOFF debugging information. */
12281 struct mips_elf_find_line
12283 struct ecoff_debug_info d;
12284 struct ecoff_find_line i;
12288 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
12289 asymbol **symbols, bfd_vma offset,
12290 const char **filename_ptr,
12291 const char **functionname_ptr,
12292 unsigned int *line_ptr)
12296 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
12297 filename_ptr, functionname_ptr,
12301 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12302 section, symbols, offset,
12303 filename_ptr, functionname_ptr,
12304 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
12305 &elf_tdata (abfd)->dwarf2_find_line_info))
12308 msec = bfd_get_section_by_name (abfd, ".mdebug");
12311 flagword origflags;
12312 struct mips_elf_find_line *fi;
12313 const struct ecoff_debug_swap * const swap =
12314 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12316 /* If we are called during a link, mips_elf_final_link may have
12317 cleared the SEC_HAS_CONTENTS field. We force it back on here
12318 if appropriate (which it normally will be). */
12319 origflags = msec->flags;
12320 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12321 msec->flags |= SEC_HAS_CONTENTS;
12323 fi = mips_elf_tdata (abfd)->find_line_info;
12326 bfd_size_type external_fdr_size;
12329 struct fdr *fdr_ptr;
12330 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12332 fi = bfd_zalloc (abfd, amt);
12335 msec->flags = origflags;
12339 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12341 msec->flags = origflags;
12345 /* Swap in the FDR information. */
12346 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12347 fi->d.fdr = bfd_alloc (abfd, amt);
12348 if (fi->d.fdr == NULL)
12350 msec->flags = origflags;
12353 external_fdr_size = swap->external_fdr_size;
12354 fdr_ptr = fi->d.fdr;
12355 fraw_src = (char *) fi->d.external_fdr;
12356 fraw_end = (fraw_src
12357 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12358 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12359 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12361 mips_elf_tdata (abfd)->find_line_info = fi;
12363 /* Note that we don't bother to ever free this information.
12364 find_nearest_line is either called all the time, as in
12365 objdump -l, so the information should be saved, or it is
12366 rarely called, as in ld error messages, so the memory
12367 wasted is unimportant. Still, it would probably be a
12368 good idea for free_cached_info to throw it away. */
12371 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12372 &fi->i, filename_ptr, functionname_ptr,
12375 msec->flags = origflags;
12379 msec->flags = origflags;
12382 /* Fall back on the generic ELF find_nearest_line routine. */
12384 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
12385 filename_ptr, functionname_ptr,
12390 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12391 const char **filename_ptr,
12392 const char **functionname_ptr,
12393 unsigned int *line_ptr)
12396 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12397 functionname_ptr, line_ptr,
12398 & elf_tdata (abfd)->dwarf2_find_line_info);
12403 /* When are writing out the .options or .MIPS.options section,
12404 remember the bytes we are writing out, so that we can install the
12405 GP value in the section_processing routine. */
12408 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12409 const void *location,
12410 file_ptr offset, bfd_size_type count)
12412 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12416 if (elf_section_data (section) == NULL)
12418 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12419 section->used_by_bfd = bfd_zalloc (abfd, amt);
12420 if (elf_section_data (section) == NULL)
12423 c = mips_elf_section_data (section)->u.tdata;
12426 c = bfd_zalloc (abfd, section->size);
12429 mips_elf_section_data (section)->u.tdata = c;
12432 memcpy (c + offset, location, count);
12435 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12439 /* This is almost identical to bfd_generic_get_... except that some
12440 MIPS relocations need to be handled specially. Sigh. */
12443 _bfd_elf_mips_get_relocated_section_contents
12445 struct bfd_link_info *link_info,
12446 struct bfd_link_order *link_order,
12448 bfd_boolean relocatable,
12451 /* Get enough memory to hold the stuff */
12452 bfd *input_bfd = link_order->u.indirect.section->owner;
12453 asection *input_section = link_order->u.indirect.section;
12456 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12457 arelent **reloc_vector = NULL;
12460 if (reloc_size < 0)
12463 reloc_vector = bfd_malloc (reloc_size);
12464 if (reloc_vector == NULL && reloc_size != 0)
12467 /* read in the section */
12468 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12469 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12472 reloc_count = bfd_canonicalize_reloc (input_bfd,
12476 if (reloc_count < 0)
12479 if (reloc_count > 0)
12484 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12487 struct bfd_hash_entry *h;
12488 struct bfd_link_hash_entry *lh;
12489 /* Skip all this stuff if we aren't mixing formats. */
12490 if (abfd && input_bfd
12491 && abfd->xvec == input_bfd->xvec)
12495 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12496 lh = (struct bfd_link_hash_entry *) h;
12503 case bfd_link_hash_undefined:
12504 case bfd_link_hash_undefweak:
12505 case bfd_link_hash_common:
12508 case bfd_link_hash_defined:
12509 case bfd_link_hash_defweak:
12511 gp = lh->u.def.value;
12513 case bfd_link_hash_indirect:
12514 case bfd_link_hash_warning:
12516 /* @@FIXME ignoring warning for now */
12518 case bfd_link_hash_new:
12527 for (parent = reloc_vector; *parent != NULL; parent++)
12529 char *error_message = NULL;
12530 bfd_reloc_status_type r;
12532 /* Specific to MIPS: Deal with relocation types that require
12533 knowing the gp of the output bfd. */
12534 asymbol *sym = *(*parent)->sym_ptr_ptr;
12536 /* If we've managed to find the gp and have a special
12537 function for the relocation then go ahead, else default
12538 to the generic handling. */
12540 && (*parent)->howto->special_function
12541 == _bfd_mips_elf32_gprel16_reloc)
12542 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12543 input_section, relocatable,
12546 r = bfd_perform_relocation (input_bfd, *parent, data,
12548 relocatable ? abfd : NULL,
12553 asection *os = input_section->output_section;
12555 /* A partial link, so keep the relocs */
12556 os->orelocation[os->reloc_count] = *parent;
12560 if (r != bfd_reloc_ok)
12564 case bfd_reloc_undefined:
12565 if (!((*link_info->callbacks->undefined_symbol)
12566 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12567 input_bfd, input_section, (*parent)->address, TRUE)))
12570 case bfd_reloc_dangerous:
12571 BFD_ASSERT (error_message != NULL);
12572 if (!((*link_info->callbacks->reloc_dangerous)
12573 (link_info, error_message, input_bfd, input_section,
12574 (*parent)->address)))
12577 case bfd_reloc_overflow:
12578 if (!((*link_info->callbacks->reloc_overflow)
12580 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12581 (*parent)->howto->name, (*parent)->addend,
12582 input_bfd, input_section, (*parent)->address)))
12585 case bfd_reloc_outofrange:
12594 if (reloc_vector != NULL)
12595 free (reloc_vector);
12599 if (reloc_vector != NULL)
12600 free (reloc_vector);
12605 mips_elf_relax_delete_bytes (bfd *abfd,
12606 asection *sec, bfd_vma addr, int count)
12608 Elf_Internal_Shdr *symtab_hdr;
12609 unsigned int sec_shndx;
12610 bfd_byte *contents;
12611 Elf_Internal_Rela *irel, *irelend;
12612 Elf_Internal_Sym *isym;
12613 Elf_Internal_Sym *isymend;
12614 struct elf_link_hash_entry **sym_hashes;
12615 struct elf_link_hash_entry **end_hashes;
12616 struct elf_link_hash_entry **start_hashes;
12617 unsigned int symcount;
12619 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12620 contents = elf_section_data (sec)->this_hdr.contents;
12622 irel = elf_section_data (sec)->relocs;
12623 irelend = irel + sec->reloc_count;
12625 /* Actually delete the bytes. */
12626 memmove (contents + addr, contents + addr + count,
12627 (size_t) (sec->size - addr - count));
12628 sec->size -= count;
12630 /* Adjust all the relocs. */
12631 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12633 /* Get the new reloc address. */
12634 if (irel->r_offset > addr)
12635 irel->r_offset -= count;
12638 BFD_ASSERT (addr % 2 == 0);
12639 BFD_ASSERT (count % 2 == 0);
12641 /* Adjust the local symbols defined in this section. */
12642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12643 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12644 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12645 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12646 isym->st_value -= count;
12648 /* Now adjust the global symbols defined in this section. */
12649 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12650 - symtab_hdr->sh_info);
12651 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12652 end_hashes = sym_hashes + symcount;
12654 for (; sym_hashes < end_hashes; sym_hashes++)
12656 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12658 if ((sym_hash->root.type == bfd_link_hash_defined
12659 || sym_hash->root.type == bfd_link_hash_defweak)
12660 && sym_hash->root.u.def.section == sec)
12662 bfd_vma value = sym_hash->root.u.def.value;
12664 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12665 value &= MINUS_TWO;
12667 sym_hash->root.u.def.value -= count;
12675 /* Opcodes needed for microMIPS relaxation as found in
12676 opcodes/micromips-opc.c. */
12678 struct opcode_descriptor {
12679 unsigned long match;
12680 unsigned long mask;
12683 /* The $ra register aka $31. */
12687 /* 32-bit instruction format register fields. */
12689 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12690 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12692 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12694 #define OP16_VALID_REG(r) \
12695 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12698 /* 32-bit and 16-bit branches. */
12700 static const struct opcode_descriptor b_insns_32[] = {
12701 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12702 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12703 { 0, 0 } /* End marker for find_match(). */
12706 static const struct opcode_descriptor bc_insn_32 =
12707 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12709 static const struct opcode_descriptor bz_insn_32 =
12710 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12712 static const struct opcode_descriptor bzal_insn_32 =
12713 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12715 static const struct opcode_descriptor beq_insn_32 =
12716 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12718 static const struct opcode_descriptor b_insn_16 =
12719 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12721 static const struct opcode_descriptor bz_insn_16 =
12722 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12725 /* 32-bit and 16-bit branch EQ and NE zero. */
12727 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12728 eq and second the ne. This convention is used when replacing a
12729 32-bit BEQ/BNE with the 16-bit version. */
12731 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12733 static const struct opcode_descriptor bz_rs_insns_32[] = {
12734 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12735 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12736 { 0, 0 } /* End marker for find_match(). */
12739 static const struct opcode_descriptor bz_rt_insns_32[] = {
12740 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12741 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12742 { 0, 0 } /* End marker for find_match(). */
12745 static const struct opcode_descriptor bzc_insns_32[] = {
12746 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12747 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12748 { 0, 0 } /* End marker for find_match(). */
12751 static const struct opcode_descriptor bz_insns_16[] = {
12752 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12753 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12754 { 0, 0 } /* End marker for find_match(). */
12757 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12759 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12760 #define BZ16_REG_FIELD(r) \
12761 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12764 /* 32-bit instructions with a delay slot. */
12766 static const struct opcode_descriptor jal_insn_32_bd16 =
12767 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12769 static const struct opcode_descriptor jal_insn_32_bd32 =
12770 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12772 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12773 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12775 static const struct opcode_descriptor j_insn_32 =
12776 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12778 static const struct opcode_descriptor jalr_insn_32 =
12779 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12781 /* This table can be compacted, because no opcode replacement is made. */
12783 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12784 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12786 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12787 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12789 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12790 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12791 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12792 { 0, 0 } /* End marker for find_match(). */
12795 /* This table can be compacted, because no opcode replacement is made. */
12797 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12798 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12800 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12801 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12802 { 0, 0 } /* End marker for find_match(). */
12806 /* 16-bit instructions with a delay slot. */
12808 static const struct opcode_descriptor jalr_insn_16_bd16 =
12809 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12811 static const struct opcode_descriptor jalr_insn_16_bd32 =
12812 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12814 static const struct opcode_descriptor jr_insn_16 =
12815 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12817 #define JR16_REG(opcode) ((opcode) & 0x1f)
12819 /* This table can be compacted, because no opcode replacement is made. */
12821 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12822 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12824 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12825 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12826 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12827 { 0, 0 } /* End marker for find_match(). */
12831 /* LUI instruction. */
12833 static const struct opcode_descriptor lui_insn =
12834 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12837 /* ADDIU instruction. */
12839 static const struct opcode_descriptor addiu_insn =
12840 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12842 static const struct opcode_descriptor addiupc_insn =
12843 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12845 #define ADDIUPC_REG_FIELD(r) \
12846 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12849 /* Relaxable instructions in a JAL delay slot: MOVE. */
12851 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12852 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12853 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12854 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12856 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12857 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12859 static const struct opcode_descriptor move_insns_32[] = {
12860 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12861 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12862 { 0, 0 } /* End marker for find_match(). */
12865 static const struct opcode_descriptor move_insn_16 =
12866 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12869 /* NOP instructions. */
12871 static const struct opcode_descriptor nop_insn_32 =
12872 { /* "nop", "", */ 0x00000000, 0xffffffff };
12874 static const struct opcode_descriptor nop_insn_16 =
12875 { /* "nop", "", */ 0x0c00, 0xffff };
12878 /* Instruction match support. */
12880 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12883 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12885 unsigned long indx;
12887 for (indx = 0; insn[indx].mask != 0; indx++)
12888 if (MATCH (opcode, insn[indx]))
12895 /* Branch and delay slot decoding support. */
12897 /* If PTR points to what *might* be a 16-bit branch or jump, then
12898 return the minimum length of its delay slot, otherwise return 0.
12899 Non-zero results are not definitive as we might be checking against
12900 the second half of another instruction. */
12903 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12905 unsigned long opcode;
12908 opcode = bfd_get_16 (abfd, ptr);
12909 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12910 /* 16-bit branch/jump with a 32-bit delay slot. */
12912 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12913 || find_match (opcode, ds_insns_16_bd16) >= 0)
12914 /* 16-bit branch/jump with a 16-bit delay slot. */
12917 /* No delay slot. */
12923 /* If PTR points to what *might* be a 32-bit branch or jump, then
12924 return the minimum length of its delay slot, otherwise return 0.
12925 Non-zero results are not definitive as we might be checking against
12926 the second half of another instruction. */
12929 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12931 unsigned long opcode;
12934 opcode = bfd_get_micromips_32 (abfd, ptr);
12935 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12936 /* 32-bit branch/jump with a 32-bit delay slot. */
12938 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12939 /* 32-bit branch/jump with a 16-bit delay slot. */
12942 /* No delay slot. */
12948 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12949 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12952 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12954 unsigned long opcode;
12956 opcode = bfd_get_16 (abfd, ptr);
12957 if (MATCH (opcode, b_insn_16)
12959 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12961 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12962 /* BEQZ16, BNEZ16 */
12963 || (MATCH (opcode, jalr_insn_16_bd32)
12965 && reg != JR16_REG (opcode) && reg != RA))
12971 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12972 then return TRUE, otherwise FALSE. */
12975 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12977 unsigned long opcode;
12979 opcode = bfd_get_micromips_32 (abfd, ptr);
12980 if (MATCH (opcode, j_insn_32)
12982 || MATCH (opcode, bc_insn_32)
12983 /* BC1F, BC1T, BC2F, BC2T */
12984 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12986 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12987 /* BGEZ, BGTZ, BLEZ, BLTZ */
12988 || (MATCH (opcode, bzal_insn_32)
12989 /* BGEZAL, BLTZAL */
12990 && reg != OP32_SREG (opcode) && reg != RA)
12991 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12992 /* JALR, JALR.HB, BEQ, BNE */
12993 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12999 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13000 IRELEND) at OFFSET indicate that there must be a compact branch there,
13001 then return TRUE, otherwise FALSE. */
13004 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13005 const Elf_Internal_Rela *internal_relocs,
13006 const Elf_Internal_Rela *irelend)
13008 const Elf_Internal_Rela *irel;
13009 unsigned long opcode;
13011 opcode = bfd_get_micromips_32 (abfd, ptr);
13012 if (find_match (opcode, bzc_insns_32) < 0)
13015 for (irel = internal_relocs; irel < irelend; irel++)
13016 if (irel->r_offset == offset
13017 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13023 /* Bitsize checking. */
13024 #define IS_BITSIZE(val, N) \
13025 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13026 - (1ULL << ((N) - 1))) == (val))
13030 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13031 struct bfd_link_info *link_info,
13032 bfd_boolean *again)
13034 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13035 Elf_Internal_Shdr *symtab_hdr;
13036 Elf_Internal_Rela *internal_relocs;
13037 Elf_Internal_Rela *irel, *irelend;
13038 bfd_byte *contents = NULL;
13039 Elf_Internal_Sym *isymbuf = NULL;
13041 /* Assume nothing changes. */
13044 /* We don't have to do anything for a relocatable link, if
13045 this section does not have relocs, or if this is not a
13048 if (link_info->relocatable
13049 || (sec->flags & SEC_RELOC) == 0
13050 || sec->reloc_count == 0
13051 || (sec->flags & SEC_CODE) == 0)
13054 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13056 /* Get a copy of the native relocations. */
13057 internal_relocs = (_bfd_elf_link_read_relocs
13058 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13059 link_info->keep_memory));
13060 if (internal_relocs == NULL)
13063 /* Walk through them looking for relaxing opportunities. */
13064 irelend = internal_relocs + sec->reloc_count;
13065 for (irel = internal_relocs; irel < irelend; irel++)
13067 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13068 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13069 bfd_boolean target_is_micromips_code_p;
13070 unsigned long opcode;
13076 /* The number of bytes to delete for relaxation and from where
13077 to delete these bytes starting at irel->r_offset. */
13081 /* If this isn't something that can be relaxed, then ignore
13083 if (r_type != R_MICROMIPS_HI16
13084 && r_type != R_MICROMIPS_PC16_S1
13085 && r_type != R_MICROMIPS_26_S1)
13088 /* Get the section contents if we haven't done so already. */
13089 if (contents == NULL)
13091 /* Get cached copy if it exists. */
13092 if (elf_section_data (sec)->this_hdr.contents != NULL)
13093 contents = elf_section_data (sec)->this_hdr.contents;
13094 /* Go get them off disk. */
13095 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13098 ptr = contents + irel->r_offset;
13100 /* Read this BFD's local symbols if we haven't done so already. */
13101 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13103 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13104 if (isymbuf == NULL)
13105 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13106 symtab_hdr->sh_info, 0,
13108 if (isymbuf == NULL)
13112 /* Get the value of the symbol referred to by the reloc. */
13113 if (r_symndx < symtab_hdr->sh_info)
13115 /* A local symbol. */
13116 Elf_Internal_Sym *isym;
13119 isym = isymbuf + r_symndx;
13120 if (isym->st_shndx == SHN_UNDEF)
13121 sym_sec = bfd_und_section_ptr;
13122 else if (isym->st_shndx == SHN_ABS)
13123 sym_sec = bfd_abs_section_ptr;
13124 else if (isym->st_shndx == SHN_COMMON)
13125 sym_sec = bfd_com_section_ptr;
13127 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13128 symval = (isym->st_value
13129 + sym_sec->output_section->vma
13130 + sym_sec->output_offset);
13131 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13135 unsigned long indx;
13136 struct elf_link_hash_entry *h;
13138 /* An external symbol. */
13139 indx = r_symndx - symtab_hdr->sh_info;
13140 h = elf_sym_hashes (abfd)[indx];
13141 BFD_ASSERT (h != NULL);
13143 if (h->root.type != bfd_link_hash_defined
13144 && h->root.type != bfd_link_hash_defweak)
13145 /* This appears to be a reference to an undefined
13146 symbol. Just ignore it -- it will be caught by the
13147 regular reloc processing. */
13150 symval = (h->root.u.def.value
13151 + h->root.u.def.section->output_section->vma
13152 + h->root.u.def.section->output_offset);
13153 target_is_micromips_code_p = (!h->needs_plt
13154 && ELF_ST_IS_MICROMIPS (h->other));
13158 /* For simplicity of coding, we are going to modify the
13159 section contents, the section relocs, and the BFD symbol
13160 table. We must tell the rest of the code not to free up this
13161 information. It would be possible to instead create a table
13162 of changes which have to be made, as is done in coff-mips.c;
13163 that would be more work, but would require less memory when
13164 the linker is run. */
13166 /* Only 32-bit instructions relaxed. */
13167 if (irel->r_offset + 4 > sec->size)
13170 opcode = bfd_get_micromips_32 (abfd, ptr);
13172 /* This is the pc-relative distance from the instruction the
13173 relocation is applied to, to the symbol referred. */
13175 - (sec->output_section->vma + sec->output_offset)
13178 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13179 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13180 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13182 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13184 where pcrval has first to be adjusted to apply against the LO16
13185 location (we make the adjustment later on, when we have figured
13186 out the offset). */
13187 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13189 bfd_boolean bzc = FALSE;
13190 unsigned long nextopc;
13194 /* Give up if the previous reloc was a HI16 against this symbol
13196 if (irel > internal_relocs
13197 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13198 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13201 /* Or if the next reloc is not a LO16 against this symbol. */
13202 if (irel + 1 >= irelend
13203 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13204 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13207 /* Or if the second next reloc is a LO16 against this symbol too. */
13208 if (irel + 2 >= irelend
13209 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13210 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13213 /* See if the LUI instruction *might* be in a branch delay slot.
13214 We check whether what looks like a 16-bit branch or jump is
13215 actually an immediate argument to a compact branch, and let
13216 it through if so. */
13217 if (irel->r_offset >= 2
13218 && check_br16_dslot (abfd, ptr - 2)
13219 && !(irel->r_offset >= 4
13220 && (bzc = check_relocated_bzc (abfd,
13221 ptr - 4, irel->r_offset - 4,
13222 internal_relocs, irelend))))
13224 if (irel->r_offset >= 4
13226 && check_br32_dslot (abfd, ptr - 4))
13229 reg = OP32_SREG (opcode);
13231 /* We only relax adjacent instructions or ones separated with
13232 a branch or jump that has a delay slot. The branch or jump
13233 must not fiddle with the register used to hold the address.
13234 Subtract 4 for the LUI itself. */
13235 offset = irel[1].r_offset - irel[0].r_offset;
13236 switch (offset - 4)
13241 if (check_br16 (abfd, ptr + 4, reg))
13245 if (check_br32 (abfd, ptr + 4, reg))
13252 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13254 /* Give up unless the same register is used with both
13256 if (OP32_SREG (nextopc) != reg)
13259 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13260 and rounding up to take masking of the two LSBs into account. */
13261 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13263 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13264 if (IS_BITSIZE (symval, 16))
13266 /* Fix the relocation's type. */
13267 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13269 /* Instructions using R_MICROMIPS_LO16 have the base or
13270 source register in bits 20:16. This register becomes $0
13271 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13272 nextopc &= ~0x001f0000;
13273 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13274 contents + irel[1].r_offset);
13277 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13278 We add 4 to take LUI deletion into account while checking
13279 the PC-relative distance. */
13280 else if (symval % 4 == 0
13281 && IS_BITSIZE (pcrval + 4, 25)
13282 && MATCH (nextopc, addiu_insn)
13283 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13284 && OP16_VALID_REG (OP32_TREG (nextopc)))
13286 /* Fix the relocation's type. */
13287 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13289 /* Replace ADDIU with the ADDIUPC version. */
13290 nextopc = (addiupc_insn.match
13291 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13293 bfd_put_micromips_32 (abfd, nextopc,
13294 contents + irel[1].r_offset);
13297 /* Can't do anything, give up, sigh... */
13301 /* Fix the relocation's type. */
13302 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13304 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13309 /* Compact branch relaxation -- due to the multitude of macros
13310 employed by the compiler/assembler, compact branches are not
13311 always generated. Obviously, this can/will be fixed elsewhere,
13312 but there is no drawback in double checking it here. */
13313 else if (r_type == R_MICROMIPS_PC16_S1
13314 && irel->r_offset + 5 < sec->size
13315 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13316 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13318 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13319 nop_insn_16) ? 2 : 0))
13320 || (irel->r_offset + 7 < sec->size
13321 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13323 nop_insn_32) ? 4 : 0))))
13327 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13329 /* Replace BEQZ/BNEZ with the compact version. */
13330 opcode = (bzc_insns_32[fndopc].match
13331 | BZC32_REG_FIELD (reg)
13332 | (opcode & 0xffff)); /* Addend value. */
13334 bfd_put_micromips_32 (abfd, opcode, ptr);
13336 /* Delete the delay slot NOP: two or four bytes from
13337 irel->offset + 4; delcnt has already been set above. */
13341 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13342 to check the distance from the next instruction, so subtract 2. */
13344 && r_type == R_MICROMIPS_PC16_S1
13345 && IS_BITSIZE (pcrval - 2, 11)
13346 && find_match (opcode, b_insns_32) >= 0)
13348 /* Fix the relocation's type. */
13349 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13351 /* Replace the 32-bit opcode with a 16-bit opcode. */
13354 | (opcode & 0x3ff)), /* Addend value. */
13357 /* Delete 2 bytes from irel->r_offset + 2. */
13362 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13363 to check the distance from the next instruction, so subtract 2. */
13365 && r_type == R_MICROMIPS_PC16_S1
13366 && IS_BITSIZE (pcrval - 2, 8)
13367 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13368 && OP16_VALID_REG (OP32_SREG (opcode)))
13369 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13370 && OP16_VALID_REG (OP32_TREG (opcode)))))
13374 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13376 /* Fix the relocation's type. */
13377 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13379 /* Replace the 32-bit opcode with a 16-bit opcode. */
13381 (bz_insns_16[fndopc].match
13382 | BZ16_REG_FIELD (reg)
13383 | (opcode & 0x7f)), /* Addend value. */
13386 /* Delete 2 bytes from irel->r_offset + 2. */
13391 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13393 && r_type == R_MICROMIPS_26_S1
13394 && target_is_micromips_code_p
13395 && irel->r_offset + 7 < sec->size
13396 && MATCH (opcode, jal_insn_32_bd32))
13398 unsigned long n32opc;
13399 bfd_boolean relaxed = FALSE;
13401 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13403 if (MATCH (n32opc, nop_insn_32))
13405 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13406 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13410 else if (find_match (n32opc, move_insns_32) >= 0)
13412 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13414 (move_insn_16.match
13415 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13416 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13421 /* Other 32-bit instructions relaxable to 16-bit
13422 instructions will be handled here later. */
13426 /* JAL with 32-bit delay slot that is changed to a JALS
13427 with 16-bit delay slot. */
13428 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13430 /* Delete 2 bytes from irel->r_offset + 6. */
13438 /* Note that we've changed the relocs, section contents, etc. */
13439 elf_section_data (sec)->relocs = internal_relocs;
13440 elf_section_data (sec)->this_hdr.contents = contents;
13441 symtab_hdr->contents = (unsigned char *) isymbuf;
13443 /* Delete bytes depending on the delcnt and deloff. */
13444 if (!mips_elf_relax_delete_bytes (abfd, sec,
13445 irel->r_offset + deloff, delcnt))
13448 /* That will change things, so we should relax again.
13449 Note that this is not required, and it may be slow. */
13454 if (isymbuf != NULL
13455 && symtab_hdr->contents != (unsigned char *) isymbuf)
13457 if (! link_info->keep_memory)
13461 /* Cache the symbols for elf_link_input_bfd. */
13462 symtab_hdr->contents = (unsigned char *) isymbuf;
13466 if (contents != NULL
13467 && elf_section_data (sec)->this_hdr.contents != contents)
13469 if (! link_info->keep_memory)
13473 /* Cache the section contents for elf_link_input_bfd. */
13474 elf_section_data (sec)->this_hdr.contents = contents;
13478 if (internal_relocs != NULL
13479 && elf_section_data (sec)->relocs != internal_relocs)
13480 free (internal_relocs);
13485 if (isymbuf != NULL
13486 && symtab_hdr->contents != (unsigned char *) isymbuf)
13488 if (contents != NULL
13489 && elf_section_data (sec)->this_hdr.contents != contents)
13491 if (internal_relocs != NULL
13492 && elf_section_data (sec)->relocs != internal_relocs)
13493 free (internal_relocs);
13498 /* Create a MIPS ELF linker hash table. */
13500 struct bfd_link_hash_table *
13501 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13503 struct mips_elf_link_hash_table *ret;
13504 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13506 ret = bfd_zmalloc (amt);
13510 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13511 mips_elf_link_hash_newfunc,
13512 sizeof (struct mips_elf_link_hash_entry),
13518 ret->root.init_plt_refcount.plist = NULL;
13519 ret->root.init_plt_offset.plist = NULL;
13521 return &ret->root.root;
13524 /* Likewise, but indicate that the target is VxWorks. */
13526 struct bfd_link_hash_table *
13527 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13529 struct bfd_link_hash_table *ret;
13531 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13534 struct mips_elf_link_hash_table *htab;
13536 htab = (struct mips_elf_link_hash_table *) ret;
13537 htab->use_plts_and_copy_relocs = TRUE;
13538 htab->is_vxworks = TRUE;
13543 /* A function that the linker calls if we are allowed to use PLTs
13544 and copy relocs. */
13547 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13549 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13552 /* A function that the linker calls to select between all or only
13553 32-bit microMIPS instructions. */
13556 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13558 mips_elf_hash_table (info)->insn32 = on;
13561 /* We need to use a special link routine to handle the .reginfo and
13562 the .mdebug sections. We need to merge all instances of these
13563 sections together, not write them all out sequentially. */
13566 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13569 struct bfd_link_order *p;
13570 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13571 asection *rtproc_sec;
13572 Elf32_RegInfo reginfo;
13573 struct ecoff_debug_info debug;
13574 struct mips_htab_traverse_info hti;
13575 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13576 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13577 HDRR *symhdr = &debug.symbolic_header;
13578 void *mdebug_handle = NULL;
13583 struct mips_elf_link_hash_table *htab;
13585 static const char * const secname[] =
13587 ".text", ".init", ".fini", ".data",
13588 ".rodata", ".sdata", ".sbss", ".bss"
13590 static const int sc[] =
13592 scText, scInit, scFini, scData,
13593 scRData, scSData, scSBss, scBss
13596 /* Sort the dynamic symbols so that those with GOT entries come after
13598 htab = mips_elf_hash_table (info);
13599 BFD_ASSERT (htab != NULL);
13601 if (!mips_elf_sort_hash_table (abfd, info))
13604 /* Create any scheduled LA25 stubs. */
13606 hti.output_bfd = abfd;
13608 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13612 /* Get a value for the GP register. */
13613 if (elf_gp (abfd) == 0)
13615 struct bfd_link_hash_entry *h;
13617 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13618 if (h != NULL && h->type == bfd_link_hash_defined)
13619 elf_gp (abfd) = (h->u.def.value
13620 + h->u.def.section->output_section->vma
13621 + h->u.def.section->output_offset);
13622 else if (htab->is_vxworks
13623 && (h = bfd_link_hash_lookup (info->hash,
13624 "_GLOBAL_OFFSET_TABLE_",
13625 FALSE, FALSE, TRUE))
13626 && h->type == bfd_link_hash_defined)
13627 elf_gp (abfd) = (h->u.def.section->output_section->vma
13628 + h->u.def.section->output_offset
13630 else if (info->relocatable)
13632 bfd_vma lo = MINUS_ONE;
13634 /* Find the GP-relative section with the lowest offset. */
13635 for (o = abfd->sections; o != NULL; o = o->next)
13637 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13640 /* And calculate GP relative to that. */
13641 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13645 /* If the relocate_section function needs to do a reloc
13646 involving the GP value, it should make a reloc_dangerous
13647 callback to warn that GP is not defined. */
13651 /* Go through the sections and collect the .reginfo and .mdebug
13653 reginfo_sec = NULL;
13655 gptab_data_sec = NULL;
13656 gptab_bss_sec = NULL;
13657 for (o = abfd->sections; o != NULL; o = o->next)
13659 if (strcmp (o->name, ".reginfo") == 0)
13661 memset (®info, 0, sizeof reginfo);
13663 /* We have found the .reginfo section in the output file.
13664 Look through all the link_orders comprising it and merge
13665 the information together. */
13666 for (p = o->map_head.link_order; p != NULL; p = p->next)
13668 asection *input_section;
13670 Elf32_External_RegInfo ext;
13673 if (p->type != bfd_indirect_link_order)
13675 if (p->type == bfd_data_link_order)
13680 input_section = p->u.indirect.section;
13681 input_bfd = input_section->owner;
13683 if (! bfd_get_section_contents (input_bfd, input_section,
13684 &ext, 0, sizeof ext))
13687 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13689 reginfo.ri_gprmask |= sub.ri_gprmask;
13690 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13691 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13692 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13693 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13695 /* ri_gp_value is set by the function
13696 mips_elf32_section_processing when the section is
13697 finally written out. */
13699 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13700 elf_link_input_bfd ignores this section. */
13701 input_section->flags &= ~SEC_HAS_CONTENTS;
13704 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13705 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13707 /* Skip this section later on (I don't think this currently
13708 matters, but someday it might). */
13709 o->map_head.link_order = NULL;
13714 if (strcmp (o->name, ".mdebug") == 0)
13716 struct extsym_info einfo;
13719 /* We have found the .mdebug section in the output file.
13720 Look through all the link_orders comprising it and merge
13721 the information together. */
13722 symhdr->magic = swap->sym_magic;
13723 /* FIXME: What should the version stamp be? */
13724 symhdr->vstamp = 0;
13725 symhdr->ilineMax = 0;
13726 symhdr->cbLine = 0;
13727 symhdr->idnMax = 0;
13728 symhdr->ipdMax = 0;
13729 symhdr->isymMax = 0;
13730 symhdr->ioptMax = 0;
13731 symhdr->iauxMax = 0;
13732 symhdr->issMax = 0;
13733 symhdr->issExtMax = 0;
13734 symhdr->ifdMax = 0;
13736 symhdr->iextMax = 0;
13738 /* We accumulate the debugging information itself in the
13739 debug_info structure. */
13741 debug.external_dnr = NULL;
13742 debug.external_pdr = NULL;
13743 debug.external_sym = NULL;
13744 debug.external_opt = NULL;
13745 debug.external_aux = NULL;
13747 debug.ssext = debug.ssext_end = NULL;
13748 debug.external_fdr = NULL;
13749 debug.external_rfd = NULL;
13750 debug.external_ext = debug.external_ext_end = NULL;
13752 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13753 if (mdebug_handle == NULL)
13757 esym.cobol_main = 0;
13761 esym.asym.iss = issNil;
13762 esym.asym.st = stLocal;
13763 esym.asym.reserved = 0;
13764 esym.asym.index = indexNil;
13766 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13768 esym.asym.sc = sc[i];
13769 s = bfd_get_section_by_name (abfd, secname[i]);
13772 esym.asym.value = s->vma;
13773 last = s->vma + s->size;
13776 esym.asym.value = last;
13777 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13778 secname[i], &esym))
13782 for (p = o->map_head.link_order; p != NULL; p = p->next)
13784 asection *input_section;
13786 const struct ecoff_debug_swap *input_swap;
13787 struct ecoff_debug_info input_debug;
13791 if (p->type != bfd_indirect_link_order)
13793 if (p->type == bfd_data_link_order)
13798 input_section = p->u.indirect.section;
13799 input_bfd = input_section->owner;
13801 if (!is_mips_elf (input_bfd))
13803 /* I don't know what a non MIPS ELF bfd would be
13804 doing with a .mdebug section, but I don't really
13805 want to deal with it. */
13809 input_swap = (get_elf_backend_data (input_bfd)
13810 ->elf_backend_ecoff_debug_swap);
13812 BFD_ASSERT (p->size == input_section->size);
13814 /* The ECOFF linking code expects that we have already
13815 read in the debugging information and set up an
13816 ecoff_debug_info structure, so we do that now. */
13817 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13821 if (! (bfd_ecoff_debug_accumulate
13822 (mdebug_handle, abfd, &debug, swap, input_bfd,
13823 &input_debug, input_swap, info)))
13826 /* Loop through the external symbols. For each one with
13827 interesting information, try to find the symbol in
13828 the linker global hash table and save the information
13829 for the output external symbols. */
13830 eraw_src = input_debug.external_ext;
13831 eraw_end = (eraw_src
13832 + (input_debug.symbolic_header.iextMax
13833 * input_swap->external_ext_size));
13835 eraw_src < eraw_end;
13836 eraw_src += input_swap->external_ext_size)
13840 struct mips_elf_link_hash_entry *h;
13842 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13843 if (ext.asym.sc == scNil
13844 || ext.asym.sc == scUndefined
13845 || ext.asym.sc == scSUndefined)
13848 name = input_debug.ssext + ext.asym.iss;
13849 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13850 name, FALSE, FALSE, TRUE);
13851 if (h == NULL || h->esym.ifd != -2)
13856 BFD_ASSERT (ext.ifd
13857 < input_debug.symbolic_header.ifdMax);
13858 ext.ifd = input_debug.ifdmap[ext.ifd];
13864 /* Free up the information we just read. */
13865 free (input_debug.line);
13866 free (input_debug.external_dnr);
13867 free (input_debug.external_pdr);
13868 free (input_debug.external_sym);
13869 free (input_debug.external_opt);
13870 free (input_debug.external_aux);
13871 free (input_debug.ss);
13872 free (input_debug.ssext);
13873 free (input_debug.external_fdr);
13874 free (input_debug.external_rfd);
13875 free (input_debug.external_ext);
13877 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13878 elf_link_input_bfd ignores this section. */
13879 input_section->flags &= ~SEC_HAS_CONTENTS;
13882 if (SGI_COMPAT (abfd) && info->shared)
13884 /* Create .rtproc section. */
13885 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13886 if (rtproc_sec == NULL)
13888 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13889 | SEC_LINKER_CREATED | SEC_READONLY);
13891 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13894 if (rtproc_sec == NULL
13895 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13899 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13905 /* Build the external symbol information. */
13908 einfo.debug = &debug;
13910 einfo.failed = FALSE;
13911 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13912 mips_elf_output_extsym, &einfo);
13916 /* Set the size of the .mdebug section. */
13917 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13919 /* Skip this section later on (I don't think this currently
13920 matters, but someday it might). */
13921 o->map_head.link_order = NULL;
13926 if (CONST_STRNEQ (o->name, ".gptab."))
13928 const char *subname;
13931 Elf32_External_gptab *ext_tab;
13934 /* The .gptab.sdata and .gptab.sbss sections hold
13935 information describing how the small data area would
13936 change depending upon the -G switch. These sections
13937 not used in executables files. */
13938 if (! info->relocatable)
13940 for (p = o->map_head.link_order; p != NULL; p = p->next)
13942 asection *input_section;
13944 if (p->type != bfd_indirect_link_order)
13946 if (p->type == bfd_data_link_order)
13951 input_section = p->u.indirect.section;
13953 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13954 elf_link_input_bfd ignores this section. */
13955 input_section->flags &= ~SEC_HAS_CONTENTS;
13958 /* Skip this section later on (I don't think this
13959 currently matters, but someday it might). */
13960 o->map_head.link_order = NULL;
13962 /* Really remove the section. */
13963 bfd_section_list_remove (abfd, o);
13964 --abfd->section_count;
13969 /* There is one gptab for initialized data, and one for
13970 uninitialized data. */
13971 if (strcmp (o->name, ".gptab.sdata") == 0)
13972 gptab_data_sec = o;
13973 else if (strcmp (o->name, ".gptab.sbss") == 0)
13977 (*_bfd_error_handler)
13978 (_("%s: illegal section name `%s'"),
13979 bfd_get_filename (abfd), o->name);
13980 bfd_set_error (bfd_error_nonrepresentable_section);
13984 /* The linker script always combines .gptab.data and
13985 .gptab.sdata into .gptab.sdata, and likewise for
13986 .gptab.bss and .gptab.sbss. It is possible that there is
13987 no .sdata or .sbss section in the output file, in which
13988 case we must change the name of the output section. */
13989 subname = o->name + sizeof ".gptab" - 1;
13990 if (bfd_get_section_by_name (abfd, subname) == NULL)
13992 if (o == gptab_data_sec)
13993 o->name = ".gptab.data";
13995 o->name = ".gptab.bss";
13996 subname = o->name + sizeof ".gptab" - 1;
13997 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14000 /* Set up the first entry. */
14002 amt = c * sizeof (Elf32_gptab);
14003 tab = bfd_malloc (amt);
14006 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14007 tab[0].gt_header.gt_unused = 0;
14009 /* Combine the input sections. */
14010 for (p = o->map_head.link_order; p != NULL; p = p->next)
14012 asection *input_section;
14014 bfd_size_type size;
14015 unsigned long last;
14016 bfd_size_type gpentry;
14018 if (p->type != bfd_indirect_link_order)
14020 if (p->type == bfd_data_link_order)
14025 input_section = p->u.indirect.section;
14026 input_bfd = input_section->owner;
14028 /* Combine the gptab entries for this input section one
14029 by one. We know that the input gptab entries are
14030 sorted by ascending -G value. */
14031 size = input_section->size;
14033 for (gpentry = sizeof (Elf32_External_gptab);
14035 gpentry += sizeof (Elf32_External_gptab))
14037 Elf32_External_gptab ext_gptab;
14038 Elf32_gptab int_gptab;
14044 if (! (bfd_get_section_contents
14045 (input_bfd, input_section, &ext_gptab, gpentry,
14046 sizeof (Elf32_External_gptab))))
14052 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14054 val = int_gptab.gt_entry.gt_g_value;
14055 add = int_gptab.gt_entry.gt_bytes - last;
14058 for (look = 1; look < c; look++)
14060 if (tab[look].gt_entry.gt_g_value >= val)
14061 tab[look].gt_entry.gt_bytes += add;
14063 if (tab[look].gt_entry.gt_g_value == val)
14069 Elf32_gptab *new_tab;
14072 /* We need a new table entry. */
14073 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14074 new_tab = bfd_realloc (tab, amt);
14075 if (new_tab == NULL)
14081 tab[c].gt_entry.gt_g_value = val;
14082 tab[c].gt_entry.gt_bytes = add;
14084 /* Merge in the size for the next smallest -G
14085 value, since that will be implied by this new
14088 for (look = 1; look < c; look++)
14090 if (tab[look].gt_entry.gt_g_value < val
14092 || (tab[look].gt_entry.gt_g_value
14093 > tab[max].gt_entry.gt_g_value)))
14097 tab[c].gt_entry.gt_bytes +=
14098 tab[max].gt_entry.gt_bytes;
14103 last = int_gptab.gt_entry.gt_bytes;
14106 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14107 elf_link_input_bfd ignores this section. */
14108 input_section->flags &= ~SEC_HAS_CONTENTS;
14111 /* The table must be sorted by -G value. */
14113 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14115 /* Swap out the table. */
14116 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14117 ext_tab = bfd_alloc (abfd, amt);
14118 if (ext_tab == NULL)
14124 for (j = 0; j < c; j++)
14125 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14128 o->size = c * sizeof (Elf32_External_gptab);
14129 o->contents = (bfd_byte *) ext_tab;
14131 /* Skip this section later on (I don't think this currently
14132 matters, but someday it might). */
14133 o->map_head.link_order = NULL;
14137 /* Invoke the regular ELF backend linker to do all the work. */
14138 if (!bfd_elf_final_link (abfd, info))
14141 /* Now write out the computed sections. */
14143 if (reginfo_sec != NULL)
14145 Elf32_External_RegInfo ext;
14147 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
14148 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14152 if (mdebug_sec != NULL)
14154 BFD_ASSERT (abfd->output_has_begun);
14155 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14157 mdebug_sec->filepos))
14160 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14163 if (gptab_data_sec != NULL)
14165 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14166 gptab_data_sec->contents,
14167 0, gptab_data_sec->size))
14171 if (gptab_bss_sec != NULL)
14173 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14174 gptab_bss_sec->contents,
14175 0, gptab_bss_sec->size))
14179 if (SGI_COMPAT (abfd))
14181 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14182 if (rtproc_sec != NULL)
14184 if (! bfd_set_section_contents (abfd, rtproc_sec,
14185 rtproc_sec->contents,
14186 0, rtproc_sec->size))
14194 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14196 struct mips_mach_extension
14198 unsigned long extension, base;
14202 /* An array describing how BFD machines relate to one another. The entries
14203 are ordered topologically with MIPS I extensions listed last. */
14205 static const struct mips_mach_extension mips_mach_extensions[] =
14207 /* MIPS64r2 extensions. */
14208 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14209 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14210 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14211 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14213 /* MIPS64 extensions. */
14214 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14215 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14216 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14218 /* MIPS V extensions. */
14219 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14221 /* R10000 extensions. */
14222 { bfd_mach_mips12000, bfd_mach_mips10000 },
14223 { bfd_mach_mips14000, bfd_mach_mips10000 },
14224 { bfd_mach_mips16000, bfd_mach_mips10000 },
14226 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14227 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14228 better to allow vr5400 and vr5500 code to be merged anyway, since
14229 many libraries will just use the core ISA. Perhaps we could add
14230 some sort of ASE flag if this ever proves a problem. */
14231 { bfd_mach_mips5500, bfd_mach_mips5400 },
14232 { bfd_mach_mips5400, bfd_mach_mips5000 },
14234 /* MIPS IV extensions. */
14235 { bfd_mach_mips5, bfd_mach_mips8000 },
14236 { bfd_mach_mips10000, bfd_mach_mips8000 },
14237 { bfd_mach_mips5000, bfd_mach_mips8000 },
14238 { bfd_mach_mips7000, bfd_mach_mips8000 },
14239 { bfd_mach_mips9000, bfd_mach_mips8000 },
14241 /* VR4100 extensions. */
14242 { bfd_mach_mips4120, bfd_mach_mips4100 },
14243 { bfd_mach_mips4111, bfd_mach_mips4100 },
14245 /* MIPS III extensions. */
14246 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14247 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14248 { bfd_mach_mips8000, bfd_mach_mips4000 },
14249 { bfd_mach_mips4650, bfd_mach_mips4000 },
14250 { bfd_mach_mips4600, bfd_mach_mips4000 },
14251 { bfd_mach_mips4400, bfd_mach_mips4000 },
14252 { bfd_mach_mips4300, bfd_mach_mips4000 },
14253 { bfd_mach_mips4100, bfd_mach_mips4000 },
14254 { bfd_mach_mips4010, bfd_mach_mips4000 },
14255 { bfd_mach_mips5900, bfd_mach_mips4000 },
14257 /* MIPS32 extensions. */
14258 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14260 /* MIPS II extensions. */
14261 { bfd_mach_mips4000, bfd_mach_mips6000 },
14262 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14264 /* MIPS I extensions. */
14265 { bfd_mach_mips6000, bfd_mach_mips3000 },
14266 { bfd_mach_mips3900, bfd_mach_mips3000 }
14270 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14273 mips_mach_extends_p (unsigned long base, unsigned long extension)
14277 if (extension == base)
14280 if (base == bfd_mach_mipsisa32
14281 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14284 if (base == bfd_mach_mipsisa32r2
14285 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14288 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14289 if (extension == mips_mach_extensions[i].extension)
14291 extension = mips_mach_extensions[i].base;
14292 if (extension == base)
14300 /* Return true if the given ELF header flags describe a 32-bit binary. */
14303 mips_32bit_flags_p (flagword flags)
14305 return ((flags & EF_MIPS_32BITMODE) != 0
14306 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14307 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14308 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14309 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14310 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14311 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
14315 /* Merge object attributes from IBFD into OBFD. Raise an error if
14316 there are conflicting attributes. */
14318 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14320 obj_attribute *in_attr;
14321 obj_attribute *out_attr;
14325 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14326 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14327 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14328 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14330 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14332 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14333 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14335 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14337 /* This is the first object. Copy the attributes. */
14338 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14340 /* Use the Tag_null value to indicate the attributes have been
14342 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14347 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14348 non-conflicting ones. */
14349 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14350 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14352 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14353 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
14354 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14355 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14356 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
14358 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14359 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14361 case Val_GNU_MIPS_ABI_FP_SINGLE:
14363 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14364 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
14367 case Val_GNU_MIPS_ABI_FP_SOFT:
14369 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14370 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14373 case Val_GNU_MIPS_ABI_FP_64:
14375 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14376 obfd, abi_fp_bfd, ibfd,
14377 "-mdouble-float", "-mips32r2 -mfp64");
14382 (_("Warning: %B uses %s (set by %B), "
14383 "%B uses unknown floating point ABI %d"),
14384 obfd, abi_fp_bfd, ibfd,
14385 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14390 case Val_GNU_MIPS_ABI_FP_SINGLE:
14391 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14393 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14395 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14396 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
14399 case Val_GNU_MIPS_ABI_FP_SOFT:
14401 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14402 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14405 case Val_GNU_MIPS_ABI_FP_64:
14407 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14408 obfd, abi_fp_bfd, ibfd,
14409 "-msingle-float", "-mips32r2 -mfp64");
14414 (_("Warning: %B uses %s (set by %B), "
14415 "%B uses unknown floating point ABI %d"),
14416 obfd, abi_fp_bfd, ibfd,
14417 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14422 case Val_GNU_MIPS_ABI_FP_SOFT:
14423 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14425 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14426 case Val_GNU_MIPS_ABI_FP_SINGLE:
14427 case Val_GNU_MIPS_ABI_FP_64:
14429 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14430 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
14435 (_("Warning: %B uses %s (set by %B), "
14436 "%B uses unknown floating point ABI %d"),
14437 obfd, abi_fp_bfd, ibfd,
14438 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14443 case Val_GNU_MIPS_ABI_FP_64:
14444 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14446 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14448 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14449 obfd, abi_fp_bfd, ibfd,
14450 "-mips32r2 -mfp64", "-mdouble-float");
14453 case Val_GNU_MIPS_ABI_FP_SINGLE:
14455 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14456 obfd, abi_fp_bfd, ibfd,
14457 "-mips32r2 -mfp64", "-msingle-float");
14460 case Val_GNU_MIPS_ABI_FP_SOFT:
14462 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14463 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14468 (_("Warning: %B uses %s (set by %B), "
14469 "%B uses unknown floating point ABI %d"),
14470 obfd, abi_fp_bfd, ibfd,
14471 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14477 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14479 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14481 (_("Warning: %B uses unknown floating point ABI %d "
14482 "(set by %B), %B uses %s"),
14483 obfd, abi_fp_bfd, ibfd,
14484 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
14487 case Val_GNU_MIPS_ABI_FP_SINGLE:
14489 (_("Warning: %B uses unknown floating point ABI %d "
14490 "(set by %B), %B uses %s"),
14491 obfd, abi_fp_bfd, ibfd,
14492 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
14495 case Val_GNU_MIPS_ABI_FP_SOFT:
14497 (_("Warning: %B uses unknown floating point ABI %d "
14498 "(set by %B), %B uses %s"),
14499 obfd, abi_fp_bfd, ibfd,
14500 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
14503 case Val_GNU_MIPS_ABI_FP_64:
14505 (_("Warning: %B uses unknown floating point ABI %d "
14506 "(set by %B), %B uses %s"),
14507 obfd, abi_fp_bfd, ibfd,
14508 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
14513 (_("Warning: %B uses unknown floating point ABI %d "
14514 "(set by %B), %B uses unknown floating point ABI %d"),
14515 obfd, abi_fp_bfd, ibfd,
14516 out_attr[Tag_GNU_MIPS_ABI_FP].i,
14517 in_attr[Tag_GNU_MIPS_ABI_FP].i);
14524 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14525 non-conflicting ones. */
14526 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14528 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14529 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14530 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14531 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14532 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14534 case Val_GNU_MIPS_ABI_MSA_128:
14536 (_("Warning: %B uses %s (set by %B), "
14537 "%B uses unknown MSA ABI %d"),
14538 obfd, abi_msa_bfd, ibfd,
14539 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14543 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14545 case Val_GNU_MIPS_ABI_MSA_128:
14547 (_("Warning: %B uses unknown MSA ABI %d "
14548 "(set by %B), %B uses %s"),
14549 obfd, abi_msa_bfd, ibfd,
14550 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14555 (_("Warning: %B uses unknown MSA ABI %d "
14556 "(set by %B), %B uses unknown MSA ABI %d"),
14557 obfd, abi_msa_bfd, ibfd,
14558 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14559 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14565 /* Merge Tag_compatibility attributes and any common GNU ones. */
14566 _bfd_elf_merge_object_attributes (ibfd, obfd);
14571 /* Merge backend specific data from an object file to the output
14572 object file when linking. */
14575 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
14577 flagword old_flags;
14578 flagword new_flags;
14580 bfd_boolean null_input_bfd = TRUE;
14583 /* Check if we have the same endianness. */
14584 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14586 (*_bfd_error_handler)
14587 (_("%B: endianness incompatible with that of the selected emulation"),
14592 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14595 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14597 (*_bfd_error_handler)
14598 (_("%B: ABI is incompatible with that of the selected emulation"),
14603 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14606 new_flags = elf_elfheader (ibfd)->e_flags;
14607 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14608 old_flags = elf_elfheader (obfd)->e_flags;
14610 if (! elf_flags_init (obfd))
14612 elf_flags_init (obfd) = TRUE;
14613 elf_elfheader (obfd)->e_flags = new_flags;
14614 elf_elfheader (obfd)->e_ident[EI_CLASS]
14615 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14617 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14618 && (bfd_get_arch_info (obfd)->the_default
14619 || mips_mach_extends_p (bfd_get_mach (obfd),
14620 bfd_get_mach (ibfd))))
14622 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14623 bfd_get_mach (ibfd)))
14630 /* Check flag compatibility. */
14632 new_flags &= ~EF_MIPS_NOREORDER;
14633 old_flags &= ~EF_MIPS_NOREORDER;
14635 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14636 doesn't seem to matter. */
14637 new_flags &= ~EF_MIPS_XGOT;
14638 old_flags &= ~EF_MIPS_XGOT;
14640 /* MIPSpro generates ucode info in n64 objects. Again, we should
14641 just be able to ignore this. */
14642 new_flags &= ~EF_MIPS_UCODE;
14643 old_flags &= ~EF_MIPS_UCODE;
14645 /* DSOs should only be linked with CPIC code. */
14646 if ((ibfd->flags & DYNAMIC) != 0)
14647 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14649 if (new_flags == old_flags)
14652 /* Check to see if the input BFD actually contains any sections.
14653 If not, its flags may not have been initialised either, but it cannot
14654 actually cause any incompatibility. */
14655 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14657 /* Ignore synthetic sections and empty .text, .data and .bss sections
14658 which are automatically generated by gas. Also ignore fake
14659 (s)common sections, since merely defining a common symbol does
14660 not affect compatibility. */
14661 if ((sec->flags & SEC_IS_COMMON) == 0
14662 && strcmp (sec->name, ".reginfo")
14663 && strcmp (sec->name, ".mdebug")
14665 || (strcmp (sec->name, ".text")
14666 && strcmp (sec->name, ".data")
14667 && strcmp (sec->name, ".bss"))))
14669 null_input_bfd = FALSE;
14673 if (null_input_bfd)
14678 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14679 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14681 (*_bfd_error_handler)
14682 (_("%B: warning: linking abicalls files with non-abicalls files"),
14687 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14688 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14689 if (! (new_flags & EF_MIPS_PIC))
14690 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14692 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14693 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14695 /* Compare the ISAs. */
14696 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14698 (*_bfd_error_handler)
14699 (_("%B: linking 32-bit code with 64-bit code"),
14703 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14705 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14706 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14708 /* Copy the architecture info from IBFD to OBFD. Also copy
14709 the 32-bit flag (if set) so that we continue to recognise
14710 OBFD as a 32-bit binary. */
14711 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14712 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14713 elf_elfheader (obfd)->e_flags
14714 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14716 /* Copy across the ABI flags if OBFD doesn't use them
14717 and if that was what caused us to treat IBFD as 32-bit. */
14718 if ((old_flags & EF_MIPS_ABI) == 0
14719 && mips_32bit_flags_p (new_flags)
14720 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14721 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14725 /* The ISAs aren't compatible. */
14726 (*_bfd_error_handler)
14727 (_("%B: linking %s module with previous %s modules"),
14729 bfd_printable_name (ibfd),
14730 bfd_printable_name (obfd));
14735 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14736 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14738 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14739 does set EI_CLASS differently from any 32-bit ABI. */
14740 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14741 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14742 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14744 /* Only error if both are set (to different values). */
14745 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14746 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14747 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14749 (*_bfd_error_handler)
14750 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14752 elf_mips_abi_name (ibfd),
14753 elf_mips_abi_name (obfd));
14756 new_flags &= ~EF_MIPS_ABI;
14757 old_flags &= ~EF_MIPS_ABI;
14760 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14761 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14762 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14764 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14765 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14766 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14767 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14768 int micro_mis = old_m16 && new_micro;
14769 int m16_mis = old_micro && new_m16;
14771 if (m16_mis || micro_mis)
14773 (*_bfd_error_handler)
14774 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14776 m16_mis ? "MIPS16" : "microMIPS",
14777 m16_mis ? "microMIPS" : "MIPS16");
14781 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14783 new_flags &= ~ EF_MIPS_ARCH_ASE;
14784 old_flags &= ~ EF_MIPS_ARCH_ASE;
14787 /* Compare NaN encodings. */
14788 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
14790 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
14792 (new_flags & EF_MIPS_NAN2008
14793 ? "-mnan=2008" : "-mnan=legacy"),
14794 (old_flags & EF_MIPS_NAN2008
14795 ? "-mnan=2008" : "-mnan=legacy"));
14797 new_flags &= ~EF_MIPS_NAN2008;
14798 old_flags &= ~EF_MIPS_NAN2008;
14801 /* Warn about any other mismatches */
14802 if (new_flags != old_flags)
14804 (*_bfd_error_handler)
14805 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14806 ibfd, (unsigned long) new_flags,
14807 (unsigned long) old_flags);
14813 bfd_set_error (bfd_error_bad_value);
14820 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14823 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14825 BFD_ASSERT (!elf_flags_init (abfd)
14826 || elf_elfheader (abfd)->e_flags == flags);
14828 elf_elfheader (abfd)->e_flags = flags;
14829 elf_flags_init (abfd) = TRUE;
14834 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14838 default: return "";
14839 case DT_MIPS_RLD_VERSION:
14840 return "MIPS_RLD_VERSION";
14841 case DT_MIPS_TIME_STAMP:
14842 return "MIPS_TIME_STAMP";
14843 case DT_MIPS_ICHECKSUM:
14844 return "MIPS_ICHECKSUM";
14845 case DT_MIPS_IVERSION:
14846 return "MIPS_IVERSION";
14847 case DT_MIPS_FLAGS:
14848 return "MIPS_FLAGS";
14849 case DT_MIPS_BASE_ADDRESS:
14850 return "MIPS_BASE_ADDRESS";
14852 return "MIPS_MSYM";
14853 case DT_MIPS_CONFLICT:
14854 return "MIPS_CONFLICT";
14855 case DT_MIPS_LIBLIST:
14856 return "MIPS_LIBLIST";
14857 case DT_MIPS_LOCAL_GOTNO:
14858 return "MIPS_LOCAL_GOTNO";
14859 case DT_MIPS_CONFLICTNO:
14860 return "MIPS_CONFLICTNO";
14861 case DT_MIPS_LIBLISTNO:
14862 return "MIPS_LIBLISTNO";
14863 case DT_MIPS_SYMTABNO:
14864 return "MIPS_SYMTABNO";
14865 case DT_MIPS_UNREFEXTNO:
14866 return "MIPS_UNREFEXTNO";
14867 case DT_MIPS_GOTSYM:
14868 return "MIPS_GOTSYM";
14869 case DT_MIPS_HIPAGENO:
14870 return "MIPS_HIPAGENO";
14871 case DT_MIPS_RLD_MAP:
14872 return "MIPS_RLD_MAP";
14873 case DT_MIPS_DELTA_CLASS:
14874 return "MIPS_DELTA_CLASS";
14875 case DT_MIPS_DELTA_CLASS_NO:
14876 return "MIPS_DELTA_CLASS_NO";
14877 case DT_MIPS_DELTA_INSTANCE:
14878 return "MIPS_DELTA_INSTANCE";
14879 case DT_MIPS_DELTA_INSTANCE_NO:
14880 return "MIPS_DELTA_INSTANCE_NO";
14881 case DT_MIPS_DELTA_RELOC:
14882 return "MIPS_DELTA_RELOC";
14883 case DT_MIPS_DELTA_RELOC_NO:
14884 return "MIPS_DELTA_RELOC_NO";
14885 case DT_MIPS_DELTA_SYM:
14886 return "MIPS_DELTA_SYM";
14887 case DT_MIPS_DELTA_SYM_NO:
14888 return "MIPS_DELTA_SYM_NO";
14889 case DT_MIPS_DELTA_CLASSSYM:
14890 return "MIPS_DELTA_CLASSSYM";
14891 case DT_MIPS_DELTA_CLASSSYM_NO:
14892 return "MIPS_DELTA_CLASSSYM_NO";
14893 case DT_MIPS_CXX_FLAGS:
14894 return "MIPS_CXX_FLAGS";
14895 case DT_MIPS_PIXIE_INIT:
14896 return "MIPS_PIXIE_INIT";
14897 case DT_MIPS_SYMBOL_LIB:
14898 return "MIPS_SYMBOL_LIB";
14899 case DT_MIPS_LOCALPAGE_GOTIDX:
14900 return "MIPS_LOCALPAGE_GOTIDX";
14901 case DT_MIPS_LOCAL_GOTIDX:
14902 return "MIPS_LOCAL_GOTIDX";
14903 case DT_MIPS_HIDDEN_GOTIDX:
14904 return "MIPS_HIDDEN_GOTIDX";
14905 case DT_MIPS_PROTECTED_GOTIDX:
14906 return "MIPS_PROTECTED_GOT_IDX";
14907 case DT_MIPS_OPTIONS:
14908 return "MIPS_OPTIONS";
14909 case DT_MIPS_INTERFACE:
14910 return "MIPS_INTERFACE";
14911 case DT_MIPS_DYNSTR_ALIGN:
14912 return "DT_MIPS_DYNSTR_ALIGN";
14913 case DT_MIPS_INTERFACE_SIZE:
14914 return "DT_MIPS_INTERFACE_SIZE";
14915 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14916 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14917 case DT_MIPS_PERF_SUFFIX:
14918 return "DT_MIPS_PERF_SUFFIX";
14919 case DT_MIPS_COMPACT_SIZE:
14920 return "DT_MIPS_COMPACT_SIZE";
14921 case DT_MIPS_GP_VALUE:
14922 return "DT_MIPS_GP_VALUE";
14923 case DT_MIPS_AUX_DYNAMIC:
14924 return "DT_MIPS_AUX_DYNAMIC";
14925 case DT_MIPS_PLTGOT:
14926 return "DT_MIPS_PLTGOT";
14927 case DT_MIPS_RWPLT:
14928 return "DT_MIPS_RWPLT";
14933 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14937 BFD_ASSERT (abfd != NULL && ptr != NULL);
14939 /* Print normal ELF private data. */
14940 _bfd_elf_print_private_bfd_data (abfd, ptr);
14942 /* xgettext:c-format */
14943 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14945 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14946 fprintf (file, _(" [abi=O32]"));
14947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14948 fprintf (file, _(" [abi=O64]"));
14949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14950 fprintf (file, _(" [abi=EABI32]"));
14951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14952 fprintf (file, _(" [abi=EABI64]"));
14953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14954 fprintf (file, _(" [abi unknown]"));
14955 else if (ABI_N32_P (abfd))
14956 fprintf (file, _(" [abi=N32]"));
14957 else if (ABI_64_P (abfd))
14958 fprintf (file, _(" [abi=64]"));
14960 fprintf (file, _(" [no abi set]"));
14962 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14963 fprintf (file, " [mips1]");
14964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14965 fprintf (file, " [mips2]");
14966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14967 fprintf (file, " [mips3]");
14968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14969 fprintf (file, " [mips4]");
14970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14971 fprintf (file, " [mips5]");
14972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14973 fprintf (file, " [mips32]");
14974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14975 fprintf (file, " [mips64]");
14976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14977 fprintf (file, " [mips32r2]");
14978 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14979 fprintf (file, " [mips64r2]");
14981 fprintf (file, _(" [unknown ISA]"));
14983 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14984 fprintf (file, " [mdmx]");
14986 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14987 fprintf (file, " [mips16]");
14989 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14990 fprintf (file, " [micromips]");
14992 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
14993 fprintf (file, " [nan2008]");
14995 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
14996 fprintf (file, " [fp64]");
14998 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14999 fprintf (file, " [32bitmode]");
15001 fprintf (file, _(" [not 32bitmode]"));
15003 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15004 fprintf (file, " [noreorder]");
15006 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15007 fprintf (file, " [PIC]");
15009 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15010 fprintf (file, " [CPIC]");
15012 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15013 fprintf (file, " [XGOT]");
15015 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15016 fprintf (file, " [UCODE]");
15018 fputc ('\n', file);
15023 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15025 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15026 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15027 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15028 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15029 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15030 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15031 { NULL, 0, 0, 0, 0 }
15034 /* Merge non visibility st_other attributes. Ensure that the
15035 STO_OPTIONAL flag is copied into h->other, even if this is not a
15036 definiton of the symbol. */
15038 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15039 const Elf_Internal_Sym *isym,
15040 bfd_boolean definition,
15041 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15043 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15045 unsigned char other;
15047 other = (definition ? isym->st_other : h->other);
15048 other &= ~ELF_ST_VISIBILITY (-1);
15049 h->other = other | ELF_ST_VISIBILITY (h->other);
15053 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15054 h->other |= STO_OPTIONAL;
15057 /* Decide whether an undefined symbol is special and can be ignored.
15058 This is the case for OPTIONAL symbols on IRIX. */
15060 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15062 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15066 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15068 return (sym->st_shndx == SHN_COMMON
15069 || sym->st_shndx == SHN_MIPS_ACOMMON
15070 || sym->st_shndx == SHN_MIPS_SCOMMON);
15073 /* Return address for Ith PLT stub in section PLT, for relocation REL
15074 or (bfd_vma) -1 if it should not be included. */
15077 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15078 const arelent *rel ATTRIBUTE_UNUSED)
15081 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15082 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15085 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15086 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15087 and .got.plt and also the slots may be of a different size each we walk
15088 the PLT manually fetching instructions and matching them against known
15089 patterns. To make things easier standard MIPS slots, if any, always come
15090 first. As we don't create proper ELF symbols we use the UDATA.I member
15091 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15092 with the ST_OTHER member of the ELF symbol. */
15095 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15096 long symcount ATTRIBUTE_UNUSED,
15097 asymbol **syms ATTRIBUTE_UNUSED,
15098 long dynsymcount, asymbol **dynsyms,
15101 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15102 static const char microsuffix[] = "@micromipsplt";
15103 static const char m16suffix[] = "@mips16plt";
15104 static const char mipssuffix[] = "@plt";
15106 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15107 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15108 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15109 Elf_Internal_Shdr *hdr;
15110 bfd_byte *plt_data;
15111 bfd_vma plt_offset;
15112 unsigned int other;
15113 bfd_vma entry_size;
15132 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15135 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15136 if (relplt == NULL)
15139 hdr = &elf_section_data (relplt)->this_hdr;
15140 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15143 plt = bfd_get_section_by_name (abfd, ".plt");
15147 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15148 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15150 p = relplt->relocation;
15152 /* Calculating the exact amount of space required for symbols would
15153 require two passes over the PLT, so just pessimise assuming two
15154 PLT slots per relocation. */
15155 count = relplt->size / hdr->sh_entsize;
15156 counti = count * bed->s->int_rels_per_ext_rel;
15157 size = 2 * count * sizeof (asymbol);
15158 size += count * (sizeof (mipssuffix) +
15159 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15160 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15161 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15163 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15164 size += sizeof (asymbol) + sizeof (pltname);
15166 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15169 if (plt->size < 16)
15172 s = *ret = bfd_malloc (size);
15175 send = s + 2 * count + 1;
15177 names = (char *) send;
15178 nend = (char *) s + size;
15181 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15182 if (opcode == 0x3302fffe)
15186 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15187 other = STO_MICROMIPS;
15189 else if (opcode == 0x0398c1d0)
15193 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15194 other = STO_MICROMIPS;
15198 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15203 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15207 s->udata.i = other;
15208 memcpy (names, pltname, sizeof (pltname));
15209 names += sizeof (pltname);
15213 for (plt_offset = plt0_size;
15214 plt_offset + 8 <= plt->size && s < send;
15215 plt_offset += entry_size)
15217 bfd_vma gotplt_addr;
15218 const char *suffix;
15223 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15225 /* Check if the second word matches the expected MIPS16 instruction. */
15226 if (opcode == 0x651aeb00)
15230 /* Truncated table??? */
15231 if (plt_offset + 16 > plt->size)
15233 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15234 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15235 suffixlen = sizeof (m16suffix);
15236 suffix = m16suffix;
15237 other = STO_MIPS16;
15239 /* Likewise the expected microMIPS instruction (no insn32 mode). */
15240 else if (opcode == 0xff220000)
15244 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15245 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15246 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15248 gotplt_addr = gotplt_hi + gotplt_lo;
15249 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15250 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15251 suffixlen = sizeof (microsuffix);
15252 suffix = microsuffix;
15253 other = STO_MICROMIPS;
15255 /* Likewise the expected microMIPS instruction (insn32 mode). */
15256 else if ((opcode & 0xffff0000) == 0xff2f0000)
15258 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15259 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15260 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15261 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15262 gotplt_addr = gotplt_hi + gotplt_lo;
15263 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
15264 suffixlen = sizeof (microsuffix);
15265 suffix = microsuffix;
15266 other = STO_MICROMIPS;
15268 /* Otherwise assume standard MIPS code. */
15271 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
15272 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
15273 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15274 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15275 gotplt_addr = gotplt_hi + gotplt_lo;
15276 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
15277 suffixlen = sizeof (mipssuffix);
15278 suffix = mipssuffix;
15281 /* Truncated table??? */
15282 if (plt_offset + entry_size > plt->size)
15286 i < count && p[pi].address != gotplt_addr;
15287 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
15294 *s = **p[pi].sym_ptr_ptr;
15295 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
15296 we are defining a symbol, ensure one of them is set. */
15297 if ((s->flags & BSF_LOCAL) == 0)
15298 s->flags |= BSF_GLOBAL;
15299 s->flags |= BSF_SYNTHETIC;
15301 s->value = plt_offset;
15303 s->udata.i = other;
15305 len = strlen ((*p[pi].sym_ptr_ptr)->name);
15306 namelen = len + suffixlen;
15307 if (names + namelen > nend)
15310 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
15312 memcpy (names, suffix, suffixlen);
15313 names += suffixlen;
15316 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
15326 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
15328 struct mips_elf_link_hash_table *htab;
15329 Elf_Internal_Ehdr *i_ehdrp;
15331 i_ehdrp = elf_elfheader (abfd);
15334 htab = mips_elf_hash_table (link_info);
15335 BFD_ASSERT (htab != NULL);
15337 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
15338 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
15341 _bfd_elf_post_process_headers (abfd, link_info);