1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
31 /* This file handles functionality common to the different MIPS ABI's. */
36 #include "libiberty.h"
38 #include "elfxx-mips.h"
40 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
53 (1) absolute addresses
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
85 /* The input bfd in which the symbol is defined. */
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
92 /* If abfd == NULL, an address that must be stored in the got. */
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
120 struct mips_got_page_range
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
131 /* The input bfd in which the symbol is defined. */
133 /* The index of the symbol, as stored in the relocation r_info. */
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
141 /* This structure is used to hold .got information when linking. */
145 /* The global symbol in the GOT with the lowest index in the dynamic
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
180 /* Map an input bfd to a got in a multi-got link. */
182 struct mips_elf_bfd2got_hash
185 struct mips_got_info *g;
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
191 struct mips_elf_got_per_bfd_arg
193 /* A hashtable that maps bfds to gots. */
195 /* The output bfd. */
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
215 unsigned int global_count;
218 /* Another structure used to pass arguments for got entries traversal. */
220 struct mips_elf_set_global_got_offset_arg
222 struct mips_got_info *g;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
231 struct mips_elf_count_tls_arg
233 struct bfd_link_info *info;
237 struct _mips_elf_section_data
239 struct bfd_elf_section_data elf;
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
272 #define GGA_RELOC_ONLY 1
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
279 addiu $25,$25,%lo(func)
281 immediately before a PIC function "func". The second is to add:
285 addiu $25,$25,%lo(func)
287 to a separate trampoline section.
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
296 /* The offset of the stub from the start of STUB_SECTION. */
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
304 /* Macros for populating a mips_elf_la25_stub. */
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
319 struct mips_elf_hash_sort_data
321 /* The symbol in the global GOT with the lowest dynamic symbol table
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
339 struct mips_elf_link_hash_entry
341 struct elf_link_hash_entry root;
343 /* External symbol information. */
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
351 unsigned int possibly_dynamic_relocs;
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
367 #define GOT_TLS_LDM 2
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
436 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
437 bfd_boolean use_rld_obj_head;
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
454 /* Shortcuts to some dynamic sections, or NULL if they are not
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
496 The function returns the new section on success, otherwise it
498 asection *(*add_stub_section) (const char *, asection *, asection *);
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
518 /* MIPS ELF private object data. */
520 struct mips_elf_obj_tdata
522 /* Generic ELF private object data. */
523 struct elf_obj_tdata root;
525 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
529 /* Get MIPS ELF private object data from BFD's tdata. */
531 #define mips_elf_tdata(bfd) \
532 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
534 #define TLS_RELOC_P(r_type) \
535 (r_type == R_MIPS_TLS_DTPMOD32 \
536 || r_type == R_MIPS_TLS_DTPMOD64 \
537 || r_type == R_MIPS_TLS_DTPREL32 \
538 || r_type == R_MIPS_TLS_DTPREL64 \
539 || r_type == R_MIPS_TLS_GD \
540 || r_type == R_MIPS_TLS_LDM \
541 || r_type == R_MIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS_TLS_GOTTPREL \
544 || r_type == R_MIPS_TLS_TPREL32 \
545 || r_type == R_MIPS_TLS_TPREL64 \
546 || r_type == R_MIPS_TLS_TPREL_HI16 \
547 || r_type == R_MIPS_TLS_TPREL_LO16 \
548 || r_type == R_MIPS16_TLS_GD \
549 || r_type == R_MIPS16_TLS_LDM \
550 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
551 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
552 || r_type == R_MIPS16_TLS_GOTTPREL \
553 || r_type == R_MIPS16_TLS_TPREL_HI16 \
554 || r_type == R_MIPS16_TLS_TPREL_LO16 \
555 || r_type == R_MICROMIPS_TLS_GD \
556 || r_type == R_MICROMIPS_TLS_LDM \
557 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
558 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
559 || r_type == R_MICROMIPS_TLS_GOTTPREL \
560 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
561 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
563 /* Structure used to pass information to mips_elf_output_extsym. */
568 struct bfd_link_info *info;
569 struct ecoff_debug_info *debug;
570 const struct ecoff_debug_swap *swap;
574 /* The names of the runtime procedure table symbols used on IRIX5. */
576 static const char * const mips_elf_dynsym_rtproc_names[] =
579 "_procedure_string_table",
580 "_procedure_table_size",
584 /* These structures are used to generate the .compact_rel section on
589 unsigned long id1; /* Always one? */
590 unsigned long num; /* Number of compact relocation entries. */
591 unsigned long id2; /* Always two? */
592 unsigned long offset; /* The file offset of the first relocation. */
593 unsigned long reserved0; /* Zero? */
594 unsigned long reserved1; /* Zero? */
603 bfd_byte reserved0[4];
604 bfd_byte reserved1[4];
605 } Elf32_External_compact_rel;
609 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
610 unsigned int rtype : 4; /* Relocation types. See below. */
611 unsigned int dist2to : 8;
612 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
613 unsigned long konst; /* KONST field. See below. */
614 unsigned long vaddr; /* VADDR to be relocated. */
619 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
620 unsigned int rtype : 4; /* Relocation types. See below. */
621 unsigned int dist2to : 8;
622 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
623 unsigned long konst; /* KONST field. See below. */
631 } Elf32_External_crinfo;
637 } Elf32_External_crinfo2;
639 /* These are the constants used to swap the bitfields in a crinfo. */
641 #define CRINFO_CTYPE (0x1)
642 #define CRINFO_CTYPE_SH (31)
643 #define CRINFO_RTYPE (0xf)
644 #define CRINFO_RTYPE_SH (27)
645 #define CRINFO_DIST2TO (0xff)
646 #define CRINFO_DIST2TO_SH (19)
647 #define CRINFO_RELVADDR (0x7ffff)
648 #define CRINFO_RELVADDR_SH (0)
650 /* A compact relocation info has long (3 words) or short (2 words)
651 formats. A short format doesn't have VADDR field and relvaddr
652 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
653 #define CRF_MIPS_LONG 1
654 #define CRF_MIPS_SHORT 0
656 /* There are 4 types of compact relocation at least. The value KONST
657 has different meaning for each type:
660 CT_MIPS_REL32 Address in data
661 CT_MIPS_WORD Address in word (XXX)
662 CT_MIPS_GPHI_LO GP - vaddr
663 CT_MIPS_JMPAD Address to jump
666 #define CRT_MIPS_REL32 0xa
667 #define CRT_MIPS_WORD 0xb
668 #define CRT_MIPS_GPHI_LO 0xc
669 #define CRT_MIPS_JMPAD 0xd
671 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
672 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
673 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
674 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
676 /* The structure of the runtime procedure descriptor created by the
677 loader for use by the static exception system. */
679 typedef struct runtime_pdr {
680 bfd_vma adr; /* Memory address of start of procedure. */
681 long regmask; /* Save register mask. */
682 long regoffset; /* Save register offset. */
683 long fregmask; /* Save floating point register mask. */
684 long fregoffset; /* Save floating point register offset. */
685 long frameoffset; /* Frame size. */
686 short framereg; /* Frame pointer register. */
687 short pcreg; /* Offset or reg of return pc. */
688 long irpss; /* Index into the runtime string table. */
690 struct exception_info *exception_info;/* Pointer to exception array. */
692 #define cbRPDR sizeof (RPDR)
693 #define rpdNil ((pRPDR) 0)
695 static struct mips_got_entry *mips_elf_create_local_got_entry
696 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
697 struct mips_elf_link_hash_entry *, int);
698 static bfd_boolean mips_elf_sort_hash_table_f
699 (struct mips_elf_link_hash_entry *, void *);
700 static bfd_vma mips_elf_high
702 static bfd_boolean mips_elf_create_dynamic_relocation
703 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
704 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
705 bfd_vma *, asection *);
706 static hashval_t mips_elf_got_entry_hash
708 static bfd_vma mips_elf_adjust_gp
709 (bfd *, struct mips_got_info *, bfd *);
710 static struct mips_got_info *mips_elf_got_for_ibfd
711 (struct mips_got_info *, bfd *);
713 /* This will be used when we sort the dynamic relocation records. */
714 static bfd *reldyn_sorting_bfd;
716 /* True if ABFD is for CPUs with load interlocking that include
717 non-MIPS1 CPUs and R3900. */
718 #define LOAD_INTERLOCKS_P(abfd) \
719 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
720 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
722 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
723 This should be safe for all architectures. We enable this predicate
724 for RM9000 for now. */
725 #define JAL_TO_BAL_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
728 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
729 This should be safe for all architectures. We enable this predicate for
731 #define JALR_TO_BAL_P(abfd) 1
733 /* True if ABFD is for CPUs that are faster if JR is converted to B.
734 This should be safe for all architectures. We enable this predicate for
736 #define JR_TO_B_P(abfd) 1
738 /* True if ABFD is a PIC object. */
739 #define PIC_OBJECT_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
742 /* Nonzero if ABFD is using the N32 ABI. */
743 #define ABI_N32_P(abfd) \
744 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
746 /* Nonzero if ABFD is using the N64 ABI. */
747 #define ABI_64_P(abfd) \
748 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
750 /* Nonzero if ABFD is using NewABI conventions. */
751 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
753 /* The IRIX compatibility level we are striving for. */
754 #define IRIX_COMPAT(abfd) \
755 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
757 /* Whether we are trying to be compatible with IRIX at all. */
758 #define SGI_COMPAT(abfd) \
759 (IRIX_COMPAT (abfd) != ict_none)
761 /* The name of the options section. */
762 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
763 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
765 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
766 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
767 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
768 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
770 /* Whether the section is readonly. */
771 #define MIPS_ELF_READONLY_SECTION(sec) \
772 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
773 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
775 /* The name of the stub section. */
776 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
778 /* The size of an external REL relocation. */
779 #define MIPS_ELF_REL_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->sizeof_rel)
782 /* The size of an external RELA relocation. */
783 #define MIPS_ELF_RELA_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_rela)
786 /* The size of an external dynamic table entry. */
787 #define MIPS_ELF_DYN_SIZE(abfd) \
788 (get_elf_backend_data (abfd)->s->sizeof_dyn)
790 /* The size of a GOT entry. */
791 #define MIPS_ELF_GOT_SIZE(abfd) \
792 (get_elf_backend_data (abfd)->s->arch_size / 8)
794 /* The size of the .rld_map section. */
795 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
796 (get_elf_backend_data (abfd)->s->arch_size / 8)
798 /* The size of a symbol-table entry. */
799 #define MIPS_ELF_SYM_SIZE(abfd) \
800 (get_elf_backend_data (abfd)->s->sizeof_sym)
802 /* The default alignment for sections, as a power of two. */
803 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
804 (get_elf_backend_data (abfd)->s->log_file_align)
806 /* Get word-sized data. */
807 #define MIPS_ELF_GET_WORD(abfd, ptr) \
808 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
810 /* Put out word-sized data. */
811 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
813 ? bfd_put_64 (abfd, val, ptr) \
814 : bfd_put_32 (abfd, val, ptr))
816 /* The opcode for word-sized loads (LW or LD). */
817 #define MIPS_ELF_LOAD_WORD(abfd) \
818 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
820 /* Add a dynamic symbol table-entry. */
821 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
822 _bfd_elf_add_dynamic_entry (info, tag, val)
824 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
825 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
827 /* The name of the dynamic relocation section. */
828 #define MIPS_ELF_REL_DYN_NAME(INFO) \
829 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
831 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
832 from smaller values. Start with zero, widen, *then* decrement. */
833 #define MINUS_ONE (((bfd_vma)0) - 1)
834 #define MINUS_TWO (((bfd_vma)0) - 2)
836 /* The value to write into got[1] for SVR4 targets, to identify it is
837 a GNU object. The dynamic linker can then use got[1] to store the
839 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
840 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
842 /* The offset of $gp from the beginning of the .got section. */
843 #define ELF_MIPS_GP_OFFSET(INFO) \
844 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
846 /* The maximum size of the GOT for it to be addressable using 16-bit
848 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
850 /* Instructions which appear in a stub. */
851 #define STUB_LW(abfd) \
853 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
854 : 0x8f998010)) /* lw t9,0x8010(gp) */
855 #define STUB_MOVE(abfd) \
857 ? 0x03e0782d /* daddu t7,ra */ \
858 : 0x03e07821)) /* addu t7,ra */
859 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
860 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
861 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
862 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
863 #define STUB_LI16S(abfd, VAL) \
865 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
866 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
868 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
869 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
871 /* The name of the dynamic interpreter. This is put in the .interp
874 #define ELF_DYNAMIC_INTERPRETER(abfd) \
875 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
876 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
877 : "/usr/lib/libc.so.1")
880 #define MNAME(bfd,pre,pos) \
881 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
882 #define ELF_R_SYM(bfd, i) \
883 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
884 #define ELF_R_TYPE(bfd, i) \
885 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
886 #define ELF_R_INFO(bfd, s, t) \
887 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
889 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
890 #define ELF_R_SYM(bfd, i) \
892 #define ELF_R_TYPE(bfd, i) \
894 #define ELF_R_INFO(bfd, s, t) \
895 (ELF32_R_INFO (s, t))
898 /* The mips16 compiler uses a couple of special sections to handle
899 floating point arguments.
901 Section names that look like .mips16.fn.FNNAME contain stubs that
902 copy floating point arguments from the fp regs to the gp regs and
903 then jump to FNNAME. If any 32 bit function calls FNNAME, the
904 call should be redirected to the stub instead. If no 32 bit
905 function calls FNNAME, the stub should be discarded. We need to
906 consider any reference to the function, not just a call, because
907 if the address of the function is taken we will need the stub,
908 since the address might be passed to a 32 bit function.
910 Section names that look like .mips16.call.FNNAME contain stubs
911 that copy floating point arguments from the gp regs to the fp
912 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
913 then any 16 bit function that calls FNNAME should be redirected
914 to the stub instead. If FNNAME is not a 32 bit function, the
915 stub should be discarded.
917 .mips16.call.fp.FNNAME sections are similar, but contain stubs
918 which call FNNAME and then copy the return value from the fp regs
919 to the gp regs. These stubs store the return value in $18 while
920 calling FNNAME; any function which might call one of these stubs
921 must arrange to save $18 around the call. (This case is not
922 needed for 32 bit functions that call 16 bit functions, because
923 16 bit functions always return floating point values in both
926 Note that in all cases FNNAME might be defined statically.
927 Therefore, FNNAME is not used literally. Instead, the relocation
928 information will indicate which symbol the section is for.
930 We record any stubs that we find in the symbol table. */
932 #define FN_STUB ".mips16.fn."
933 #define CALL_STUB ".mips16.call."
934 #define CALL_FP_STUB ".mips16.call.fp."
936 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
937 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
938 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
940 /* The format of the first PLT entry in an O32 executable. */
941 static const bfd_vma mips_o32_exec_plt0_entry[] =
943 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
944 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
945 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
946 0x031cc023, /* subu $24, $24, $28 */
947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
953 /* The format of the first PLT entry in an N32 executable. Different
954 because gp ($28) is not available; we use t2 ($14) instead. */
955 static const bfd_vma mips_n32_exec_plt0_entry[] =
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
961 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
962 0x0018c082, /* srl $24, $24, 2 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
967 /* The format of the first PLT entry in an N64 executable. Different
968 from N32 because of the increased size of GOT entries. */
969 static const bfd_vma mips_n64_exec_plt0_entry[] =
971 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
972 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
973 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
974 0x030ec023, /* subu $24, $24, $14 */
975 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
976 0x0018c0c2, /* srl $24, $24, 3 */
977 0x0320f809, /* jalr $25 */
978 0x2718fffe /* subu $24, $24, 2 */
981 /* The format of subsequent PLT entries. */
982 static const bfd_vma mips_exec_plt_entry[] =
984 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
985 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
986 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
987 0x03200008 /* jr $25 */
990 /* The format of the first PLT entry in a VxWorks executable. */
991 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
993 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
994 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
995 0x8f390008, /* lw t9, 8(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
1001 /* The format of subsequent PLT entries. */
1002 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1004 0x10000000, /* b .PLT_resolver */
1005 0x24180000, /* li t8, <pltindex> */
1006 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1007 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1008 0x8f390000, /* lw t9, 0(t9) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000 /* nop */
1014 /* The format of the first PLT entry in a VxWorks shared object. */
1015 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1017 0x8f990008, /* lw t9, 8(gp) */
1018 0x00000000, /* nop */
1019 0x03200008, /* jr t9 */
1020 0x00000000, /* nop */
1021 0x00000000, /* nop */
1022 0x00000000 /* nop */
1025 /* The format of subsequent PLT entries. */
1026 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1028 0x10000000, /* b .PLT_resolver */
1029 0x24180000 /* li t8, <pltindex> */
1032 /* microMIPS 32-bit opcode helper installer. */
1035 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1037 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1038 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1041 /* microMIPS 32-bit opcode helper retriever. */
1044 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1046 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1049 /* Look up an entry in a MIPS ELF linker hash table. */
1051 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1052 ((struct mips_elf_link_hash_entry *) \
1053 elf_link_hash_lookup (&(table)->root, (string), (create), \
1056 /* Traverse a MIPS ELF linker hash table. */
1058 #define mips_elf_link_hash_traverse(table, func, info) \
1059 (elf_link_hash_traverse \
1061 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1064 /* Find the base offsets for thread-local storage in this object,
1065 for GD/LD and IE/LE respectively. */
1067 #define TP_OFFSET 0x7000
1068 #define DTP_OFFSET 0x8000
1071 dtprel_base (struct bfd_link_info *info)
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1076 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1080 tprel_base (struct bfd_link_info *info)
1082 /* If tls_sec is NULL, we should have signalled an error already. */
1083 if (elf_hash_table (info)->tls_sec == NULL)
1085 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1088 /* Create an entry in a MIPS ELF linker hash table. */
1090 static struct bfd_hash_entry *
1091 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1092 struct bfd_hash_table *table, const char *string)
1094 struct mips_elf_link_hash_entry *ret =
1095 (struct mips_elf_link_hash_entry *) entry;
1097 /* Allocate the structure if it has not already been allocated by a
1100 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1102 return (struct bfd_hash_entry *) ret;
1104 /* Call the allocation method of the superclass. */
1105 ret = ((struct mips_elf_link_hash_entry *)
1106 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1110 /* Set local fields. */
1111 memset (&ret->esym, 0, sizeof (EXTR));
1112 /* We use -2 as a marker to indicate that the information has
1113 not been set. -1 means there is no associated ifd. */
1116 ret->possibly_dynamic_relocs = 0;
1117 ret->fn_stub = NULL;
1118 ret->call_stub = NULL;
1119 ret->call_fp_stub = NULL;
1120 ret->tls_type = GOT_NORMAL;
1121 ret->global_got_area = GGA_NONE;
1122 ret->got_only_for_calls = TRUE;
1123 ret->readonly_reloc = FALSE;
1124 ret->has_static_relocs = FALSE;
1125 ret->no_fn_stub = FALSE;
1126 ret->need_fn_stub = FALSE;
1127 ret->has_nonpic_branches = FALSE;
1128 ret->needs_lazy_stub = FALSE;
1131 return (struct bfd_hash_entry *) ret;
1134 /* Allocate MIPS ELF private object data. */
1137 _bfd_mips_elf_mkobject (bfd *abfd)
1139 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1144 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1146 if (!sec->used_by_bfd)
1148 struct _mips_elf_section_data *sdata;
1149 bfd_size_type amt = sizeof (*sdata);
1151 sdata = bfd_zalloc (abfd, amt);
1154 sec->used_by_bfd = sdata;
1157 return _bfd_elf_new_section_hook (abfd, sec);
1160 /* Read ECOFF debugging information from a .mdebug section into a
1161 ecoff_debug_info structure. */
1164 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1165 struct ecoff_debug_info *debug)
1168 const struct ecoff_debug_swap *swap;
1171 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1172 memset (debug, 0, sizeof (*debug));
1174 ext_hdr = bfd_malloc (swap->external_hdr_size);
1175 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1178 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1179 swap->external_hdr_size))
1182 symhdr = &debug->symbolic_header;
1183 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1185 /* The symbolic header contains absolute file offsets and sizes to
1187 #define READ(ptr, offset, count, size, type) \
1188 if (symhdr->count == 0) \
1189 debug->ptr = NULL; \
1192 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1193 debug->ptr = bfd_malloc (amt); \
1194 if (debug->ptr == NULL) \
1195 goto error_return; \
1196 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1197 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1198 goto error_return; \
1201 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1202 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1203 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1204 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1205 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1206 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1208 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1209 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1210 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1211 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1212 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1220 if (ext_hdr != NULL)
1222 if (debug->line != NULL)
1224 if (debug->external_dnr != NULL)
1225 free (debug->external_dnr);
1226 if (debug->external_pdr != NULL)
1227 free (debug->external_pdr);
1228 if (debug->external_sym != NULL)
1229 free (debug->external_sym);
1230 if (debug->external_opt != NULL)
1231 free (debug->external_opt);
1232 if (debug->external_aux != NULL)
1233 free (debug->external_aux);
1234 if (debug->ss != NULL)
1236 if (debug->ssext != NULL)
1237 free (debug->ssext);
1238 if (debug->external_fdr != NULL)
1239 free (debug->external_fdr);
1240 if (debug->external_rfd != NULL)
1241 free (debug->external_rfd);
1242 if (debug->external_ext != NULL)
1243 free (debug->external_ext);
1247 /* Swap RPDR (runtime procedure table entry) for output. */
1250 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1252 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1253 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1254 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1255 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1256 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1257 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1259 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1260 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1262 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1265 /* Create a runtime procedure table from the .mdebug section. */
1268 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1269 struct bfd_link_info *info, asection *s,
1270 struct ecoff_debug_info *debug)
1272 const struct ecoff_debug_swap *swap;
1273 HDRR *hdr = &debug->symbolic_header;
1275 struct rpdr_ext *erp;
1277 struct pdr_ext *epdr;
1278 struct sym_ext *esym;
1282 bfd_size_type count;
1283 unsigned long sindex;
1287 const char *no_name_func = _("static procedure (no name)");
1295 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1297 sindex = strlen (no_name_func) + 1;
1298 count = hdr->ipdMax;
1301 size = swap->external_pdr_size;
1303 epdr = bfd_malloc (size * count);
1307 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1310 size = sizeof (RPDR);
1311 rp = rpdr = bfd_malloc (size * count);
1315 size = sizeof (char *);
1316 sv = bfd_malloc (size * count);
1320 count = hdr->isymMax;
1321 size = swap->external_sym_size;
1322 esym = bfd_malloc (size * count);
1326 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1329 count = hdr->issMax;
1330 ss = bfd_malloc (count);
1333 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1336 count = hdr->ipdMax;
1337 for (i = 0; i < (unsigned long) count; i++, rp++)
1339 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1340 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1341 rp->adr = sym.value;
1342 rp->regmask = pdr.regmask;
1343 rp->regoffset = pdr.regoffset;
1344 rp->fregmask = pdr.fregmask;
1345 rp->fregoffset = pdr.fregoffset;
1346 rp->frameoffset = pdr.frameoffset;
1347 rp->framereg = pdr.framereg;
1348 rp->pcreg = pdr.pcreg;
1350 sv[i] = ss + sym.iss;
1351 sindex += strlen (sv[i]) + 1;
1355 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1356 size = BFD_ALIGN (size, 16);
1357 rtproc = bfd_alloc (abfd, size);
1360 mips_elf_hash_table (info)->procedure_count = 0;
1364 mips_elf_hash_table (info)->procedure_count = count + 2;
1367 memset (erp, 0, sizeof (struct rpdr_ext));
1369 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1370 strcpy (str, no_name_func);
1371 str += strlen (no_name_func) + 1;
1372 for (i = 0; i < count; i++)
1374 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1375 strcpy (str, sv[i]);
1376 str += strlen (sv[i]) + 1;
1378 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1380 /* Set the size and contents of .rtproc section. */
1382 s->contents = rtproc;
1384 /* Skip this section later on (I don't think this currently
1385 matters, but someday it might). */
1386 s->map_head.link_order = NULL;
1415 /* We're going to create a stub for H. Create a symbol for the stub's
1416 value and size, to help make the disassembly easier to read. */
1419 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1420 struct mips_elf_link_hash_entry *h,
1421 const char *prefix, asection *s, bfd_vma value,
1424 struct bfd_link_hash_entry *bh;
1425 struct elf_link_hash_entry *elfh;
1428 if (ELF_ST_IS_MICROMIPS (h->root.other))
1431 /* Create a new symbol. */
1432 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1434 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1435 BSF_LOCAL, s, value, NULL,
1439 /* Make it a local function. */
1440 elfh = (struct elf_link_hash_entry *) bh;
1441 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1443 elfh->forced_local = 1;
1447 /* We're about to redefine H. Create a symbol to represent H's
1448 current value and size, to help make the disassembly easier
1452 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1453 struct mips_elf_link_hash_entry *h,
1456 struct bfd_link_hash_entry *bh;
1457 struct elf_link_hash_entry *elfh;
1462 /* Read the symbol's value. */
1463 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1464 || h->root.root.type == bfd_link_hash_defweak);
1465 s = h->root.root.u.def.section;
1466 value = h->root.root.u.def.value;
1468 /* Create a new symbol. */
1469 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1471 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1472 BSF_LOCAL, s, value, NULL,
1476 /* Make it local and copy the other attributes from H. */
1477 elfh = (struct elf_link_hash_entry *) bh;
1478 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1479 elfh->other = h->root.other;
1480 elfh->size = h->root.size;
1481 elfh->forced_local = 1;
1485 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1486 function rather than to a hard-float stub. */
1489 section_allows_mips16_refs_p (asection *section)
1493 name = bfd_get_section_name (section->owner, section);
1494 return (FN_STUB_P (name)
1495 || CALL_STUB_P (name)
1496 || CALL_FP_STUB_P (name)
1497 || strcmp (name, ".pdr") == 0);
1500 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1501 stub section of some kind. Return the R_SYMNDX of the target
1502 function, or 0 if we can't decide which function that is. */
1504 static unsigned long
1505 mips16_stub_symndx (const struct elf_backend_data *bed,
1506 asection *sec ATTRIBUTE_UNUSED,
1507 const Elf_Internal_Rela *relocs,
1508 const Elf_Internal_Rela *relend)
1510 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1511 const Elf_Internal_Rela *rel;
1513 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1514 one in a compound relocation. */
1515 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1516 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1517 return ELF_R_SYM (sec->owner, rel->r_info);
1519 /* Otherwise trust the first relocation, whatever its kind. This is
1520 the traditional behavior. */
1521 if (relocs < relend)
1522 return ELF_R_SYM (sec->owner, relocs->r_info);
1527 /* Check the mips16 stubs for a particular symbol, and see if we can
1531 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1532 struct mips_elf_link_hash_entry *h)
1534 /* Dynamic symbols must use the standard call interface, in case other
1535 objects try to call them. */
1536 if (h->fn_stub != NULL
1537 && h->root.dynindx != -1)
1539 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1540 h->need_fn_stub = TRUE;
1543 if (h->fn_stub != NULL
1544 && ! h->need_fn_stub)
1546 /* We don't need the fn_stub; the only references to this symbol
1547 are 16 bit calls. Clobber the size to 0 to prevent it from
1548 being included in the link. */
1549 h->fn_stub->size = 0;
1550 h->fn_stub->flags &= ~SEC_RELOC;
1551 h->fn_stub->reloc_count = 0;
1552 h->fn_stub->flags |= SEC_EXCLUDE;
1555 if (h->call_stub != NULL
1556 && ELF_ST_IS_MIPS16 (h->root.other))
1558 /* We don't need the call_stub; this is a 16 bit function, so
1559 calls from other 16 bit functions are OK. Clobber the size
1560 to 0 to prevent it from being included in the link. */
1561 h->call_stub->size = 0;
1562 h->call_stub->flags &= ~SEC_RELOC;
1563 h->call_stub->reloc_count = 0;
1564 h->call_stub->flags |= SEC_EXCLUDE;
1567 if (h->call_fp_stub != NULL
1568 && ELF_ST_IS_MIPS16 (h->root.other))
1570 /* We don't need the call_stub; this is a 16 bit function, so
1571 calls from other 16 bit functions are OK. Clobber the size
1572 to 0 to prevent it from being included in the link. */
1573 h->call_fp_stub->size = 0;
1574 h->call_fp_stub->flags &= ~SEC_RELOC;
1575 h->call_fp_stub->reloc_count = 0;
1576 h->call_fp_stub->flags |= SEC_EXCLUDE;
1580 /* Hashtable callbacks for mips_elf_la25_stubs. */
1583 mips_elf_la25_stub_hash (const void *entry_)
1585 const struct mips_elf_la25_stub *entry;
1587 entry = (struct mips_elf_la25_stub *) entry_;
1588 return entry->h->root.root.u.def.section->id
1589 + entry->h->root.root.u.def.value;
1593 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1595 const struct mips_elf_la25_stub *entry1, *entry2;
1597 entry1 = (struct mips_elf_la25_stub *) entry1_;
1598 entry2 = (struct mips_elf_la25_stub *) entry2_;
1599 return ((entry1->h->root.root.u.def.section
1600 == entry2->h->root.root.u.def.section)
1601 && (entry1->h->root.root.u.def.value
1602 == entry2->h->root.root.u.def.value));
1605 /* Called by the linker to set up the la25 stub-creation code. FN is
1606 the linker's implementation of add_stub_function. Return true on
1610 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1611 asection *(*fn) (const char *, asection *,
1614 struct mips_elf_link_hash_table *htab;
1616 htab = mips_elf_hash_table (info);
1620 htab->add_stub_section = fn;
1621 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1622 mips_elf_la25_stub_eq, NULL);
1623 if (htab->la25_stubs == NULL)
1629 /* Return true if H is a locally-defined PIC function, in the sense
1630 that it or its fn_stub might need $25 to be valid on entry.
1631 Note that MIPS16 functions set up $gp using PC-relative instructions,
1632 so they themselves never need $25 to be valid. Only non-MIPS16
1633 entry points are of interest here. */
1636 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1638 return ((h->root.root.type == bfd_link_hash_defined
1639 || h->root.root.type == bfd_link_hash_defweak)
1640 && h->root.def_regular
1641 && !bfd_is_abs_section (h->root.root.u.def.section)
1642 && (!ELF_ST_IS_MIPS16 (h->root.other)
1643 || (h->fn_stub && h->need_fn_stub))
1644 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1645 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1648 /* Set *SEC to the input section that contains the target of STUB.
1649 Return the offset of the target from the start of that section. */
1652 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1655 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1657 BFD_ASSERT (stub->h->need_fn_stub);
1658 *sec = stub->h->fn_stub;
1663 *sec = stub->h->root.root.u.def.section;
1664 return stub->h->root.root.u.def.value;
1668 /* STUB describes an la25 stub that we have decided to implement
1669 by inserting an LUI/ADDIU pair before the target function.
1670 Create the section and redirect the function symbol to it. */
1673 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1674 struct bfd_link_info *info)
1676 struct mips_elf_link_hash_table *htab;
1678 asection *s, *input_section;
1681 htab = mips_elf_hash_table (info);
1685 /* Create a unique name for the new section. */
1686 name = bfd_malloc (11 + sizeof (".text.stub."));
1689 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1691 /* Create the section. */
1692 mips_elf_get_la25_target (stub, &input_section);
1693 s = htab->add_stub_section (name, input_section,
1694 input_section->output_section);
1698 /* Make sure that any padding goes before the stub. */
1699 align = input_section->alignment_power;
1700 if (!bfd_set_section_alignment (s->owner, s, align))
1703 s->size = (1 << align) - 8;
1705 /* Create a symbol for the stub. */
1706 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1707 stub->stub_section = s;
1708 stub->offset = s->size;
1710 /* Allocate room for it. */
1715 /* STUB describes an la25 stub that we have decided to implement
1716 with a separate trampoline. Allocate room for it and redirect
1717 the function symbol to it. */
1720 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1721 struct bfd_link_info *info)
1723 struct mips_elf_link_hash_table *htab;
1726 htab = mips_elf_hash_table (info);
1730 /* Create a trampoline section, if we haven't already. */
1731 s = htab->strampoline;
1734 asection *input_section = stub->h->root.root.u.def.section;
1735 s = htab->add_stub_section (".text", NULL,
1736 input_section->output_section);
1737 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1739 htab->strampoline = s;
1742 /* Create a symbol for the stub. */
1743 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1744 stub->stub_section = s;
1745 stub->offset = s->size;
1747 /* Allocate room for it. */
1752 /* H describes a symbol that needs an la25 stub. Make sure that an
1753 appropriate stub exists and point H at it. */
1756 mips_elf_add_la25_stub (struct bfd_link_info *info,
1757 struct mips_elf_link_hash_entry *h)
1759 struct mips_elf_link_hash_table *htab;
1760 struct mips_elf_la25_stub search, *stub;
1761 bfd_boolean use_trampoline_p;
1766 /* Describe the stub we want. */
1767 search.stub_section = NULL;
1771 /* See if we've already created an equivalent stub. */
1772 htab = mips_elf_hash_table (info);
1776 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1780 stub = (struct mips_elf_la25_stub *) *slot;
1783 /* We can reuse the existing stub. */
1784 h->la25_stub = stub;
1788 /* Create a permanent copy of ENTRY and add it to the hash table. */
1789 stub = bfd_malloc (sizeof (search));
1795 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1796 of the section and if we would need no more than 2 nops. */
1797 value = mips_elf_get_la25_target (stub, &s);
1798 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1800 h->la25_stub = stub;
1801 return (use_trampoline_p
1802 ? mips_elf_add_la25_trampoline (stub, info)
1803 : mips_elf_add_la25_intro (stub, info));
1806 /* A mips_elf_link_hash_traverse callback that is called before sizing
1807 sections. DATA points to a mips_htab_traverse_info structure. */
1810 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1812 struct mips_htab_traverse_info *hti;
1814 hti = (struct mips_htab_traverse_info *) data;
1815 if (!hti->info->relocatable)
1816 mips_elf_check_mips16_stubs (hti->info, h);
1818 if (mips_elf_local_pic_function_p (h))
1820 /* PR 12845: If H is in a section that has been garbage
1821 collected it will have its output section set to *ABS*. */
1822 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1825 /* H is a function that might need $25 to be valid on entry.
1826 If we're creating a non-PIC relocatable object, mark H as
1827 being PIC. If we're creating a non-relocatable object with
1828 non-PIC branches and jumps to H, make sure that H has an la25
1830 if (hti->info->relocatable)
1832 if (!PIC_OBJECT_P (hti->output_bfd))
1833 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1835 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1844 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1845 Most mips16 instructions are 16 bits, but these instructions
1848 The format of these instructions is:
1850 +--------------+--------------------------------+
1851 | JALX | X| Imm 20:16 | Imm 25:21 |
1852 +--------------+--------------------------------+
1854 +-----------------------------------------------+
1856 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1857 Note that the immediate value in the first word is swapped.
1859 When producing a relocatable object file, R_MIPS16_26 is
1860 handled mostly like R_MIPS_26. In particular, the addend is
1861 stored as a straight 26-bit value in a 32-bit instruction.
1862 (gas makes life simpler for itself by never adjusting a
1863 R_MIPS16_26 reloc to be against a section, so the addend is
1864 always zero). However, the 32 bit instruction is stored as 2
1865 16-bit values, rather than a single 32-bit value. In a
1866 big-endian file, the result is the same; in a little-endian
1867 file, the two 16-bit halves of the 32 bit value are swapped.
1868 This is so that a disassembler can recognize the jal
1871 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1872 instruction stored as two 16-bit values. The addend A is the
1873 contents of the targ26 field. The calculation is the same as
1874 R_MIPS_26. When storing the calculated value, reorder the
1875 immediate value as shown above, and don't forget to store the
1876 value as two 16-bit values.
1878 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1882 +--------+----------------------+
1886 +--------+----------------------+
1889 +----------+------+-------------+
1893 +----------+--------------------+
1894 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1895 ((sub1 << 16) | sub2)).
1897 When producing a relocatable object file, the calculation is
1898 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1899 When producing a fully linked file, the calculation is
1900 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1901 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1903 The table below lists the other MIPS16 instruction relocations.
1904 Each one is calculated in the same way as the non-MIPS16 relocation
1905 given on the right, but using the extended MIPS16 layout of 16-bit
1908 R_MIPS16_GPREL R_MIPS_GPREL16
1909 R_MIPS16_GOT16 R_MIPS_GOT16
1910 R_MIPS16_CALL16 R_MIPS_CALL16
1911 R_MIPS16_HI16 R_MIPS_HI16
1912 R_MIPS16_LO16 R_MIPS_LO16
1914 A typical instruction will have a format like this:
1916 +--------------+--------------------------------+
1917 | EXTEND | Imm 10:5 | Imm 15:11 |
1918 +--------------+--------------------------------+
1919 | Major | rx | ry | Imm 4:0 |
1920 +--------------+--------------------------------+
1922 EXTEND is the five bit value 11110. Major is the instruction
1925 All we need to do here is shuffle the bits appropriately.
1926 As above, the two 16-bit halves must be swapped on a
1927 little-endian system. */
1929 static inline bfd_boolean
1930 mips16_reloc_p (int r_type)
1935 case R_MIPS16_GPREL:
1936 case R_MIPS16_GOT16:
1937 case R_MIPS16_CALL16:
1940 case R_MIPS16_TLS_GD:
1941 case R_MIPS16_TLS_LDM:
1942 case R_MIPS16_TLS_DTPREL_HI16:
1943 case R_MIPS16_TLS_DTPREL_LO16:
1944 case R_MIPS16_TLS_GOTTPREL:
1945 case R_MIPS16_TLS_TPREL_HI16:
1946 case R_MIPS16_TLS_TPREL_LO16:
1954 /* Check if a microMIPS reloc. */
1956 static inline bfd_boolean
1957 micromips_reloc_p (unsigned int r_type)
1959 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1962 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1963 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1964 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1966 static inline bfd_boolean
1967 micromips_reloc_shuffle_p (unsigned int r_type)
1969 return (micromips_reloc_p (r_type)
1970 && r_type != R_MICROMIPS_PC7_S1
1971 && r_type != R_MICROMIPS_PC10_S1);
1974 static inline bfd_boolean
1975 got16_reloc_p (int r_type)
1977 return (r_type == R_MIPS_GOT16
1978 || r_type == R_MIPS16_GOT16
1979 || r_type == R_MICROMIPS_GOT16);
1982 static inline bfd_boolean
1983 call16_reloc_p (int r_type)
1985 return (r_type == R_MIPS_CALL16
1986 || r_type == R_MIPS16_CALL16
1987 || r_type == R_MICROMIPS_CALL16);
1990 static inline bfd_boolean
1991 got_disp_reloc_p (unsigned int r_type)
1993 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1996 static inline bfd_boolean
1997 got_page_reloc_p (unsigned int r_type)
1999 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2002 static inline bfd_boolean
2003 got_ofst_reloc_p (unsigned int r_type)
2005 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2008 static inline bfd_boolean
2009 got_hi16_reloc_p (unsigned int r_type)
2011 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2014 static inline bfd_boolean
2015 got_lo16_reloc_p (unsigned int r_type)
2017 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2020 static inline bfd_boolean
2021 call_hi16_reloc_p (unsigned int r_type)
2023 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2026 static inline bfd_boolean
2027 call_lo16_reloc_p (unsigned int r_type)
2029 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2032 static inline bfd_boolean
2033 hi16_reloc_p (int r_type)
2035 return (r_type == R_MIPS_HI16
2036 || r_type == R_MIPS16_HI16
2037 || r_type == R_MICROMIPS_HI16);
2040 static inline bfd_boolean
2041 lo16_reloc_p (int r_type)
2043 return (r_type == R_MIPS_LO16
2044 || r_type == R_MIPS16_LO16
2045 || r_type == R_MICROMIPS_LO16);
2048 static inline bfd_boolean
2049 mips16_call_reloc_p (int r_type)
2051 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2054 static inline bfd_boolean
2055 jal_reloc_p (int r_type)
2057 return (r_type == R_MIPS_26
2058 || r_type == R_MIPS16_26
2059 || r_type == R_MICROMIPS_26_S1);
2062 static inline bfd_boolean
2063 micromips_branch_reloc_p (int r_type)
2065 return (r_type == R_MICROMIPS_26_S1
2066 || r_type == R_MICROMIPS_PC16_S1
2067 || r_type == R_MICROMIPS_PC10_S1
2068 || r_type == R_MICROMIPS_PC7_S1);
2071 static inline bfd_boolean
2072 tls_gd_reloc_p (unsigned int r_type)
2074 return (r_type == R_MIPS_TLS_GD
2075 || r_type == R_MIPS16_TLS_GD
2076 || r_type == R_MICROMIPS_TLS_GD);
2079 static inline bfd_boolean
2080 tls_ldm_reloc_p (unsigned int r_type)
2082 return (r_type == R_MIPS_TLS_LDM
2083 || r_type == R_MIPS16_TLS_LDM
2084 || r_type == R_MICROMIPS_TLS_LDM);
2087 static inline bfd_boolean
2088 tls_gottprel_reloc_p (unsigned int r_type)
2090 return (r_type == R_MIPS_TLS_GOTTPREL
2091 || r_type == R_MIPS16_TLS_GOTTPREL
2092 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2096 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2097 bfd_boolean jal_shuffle, bfd_byte *data)
2099 bfd_vma first, second, val;
2101 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2104 /* Pick up the first and second halfwords of the instruction. */
2105 first = bfd_get_16 (abfd, data);
2106 second = bfd_get_16 (abfd, data + 2);
2107 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2108 val = first << 16 | second;
2109 else if (r_type != R_MIPS16_26)
2110 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2111 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2113 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2114 | ((first & 0x1f) << 21) | second);
2115 bfd_put_32 (abfd, val, data);
2119 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2120 bfd_boolean jal_shuffle, bfd_byte *data)
2122 bfd_vma first, second, val;
2124 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2127 val = bfd_get_32 (abfd, data);
2128 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2130 second = val & 0xffff;
2133 else if (r_type != R_MIPS16_26)
2135 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2136 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2140 second = val & 0xffff;
2141 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2142 | ((val >> 21) & 0x1f);
2144 bfd_put_16 (abfd, second, data + 2);
2145 bfd_put_16 (abfd, first, data);
2148 bfd_reloc_status_type
2149 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2150 arelent *reloc_entry, asection *input_section,
2151 bfd_boolean relocatable, void *data, bfd_vma gp)
2155 bfd_reloc_status_type status;
2157 if (bfd_is_com_section (symbol->section))
2160 relocation = symbol->value;
2162 relocation += symbol->section->output_section->vma;
2163 relocation += symbol->section->output_offset;
2165 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2166 return bfd_reloc_outofrange;
2168 /* Set val to the offset into the section or symbol. */
2169 val = reloc_entry->addend;
2171 _bfd_mips_elf_sign_extend (val, 16);
2173 /* Adjust val for the final section location and GP value. If we
2174 are producing relocatable output, we don't want to do this for
2175 an external symbol. */
2177 || (symbol->flags & BSF_SECTION_SYM) != 0)
2178 val += relocation - gp;
2180 if (reloc_entry->howto->partial_inplace)
2182 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2184 + reloc_entry->address);
2185 if (status != bfd_reloc_ok)
2189 reloc_entry->addend = val;
2192 reloc_entry->address += input_section->output_offset;
2194 return bfd_reloc_ok;
2197 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2198 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2199 that contains the relocation field and DATA points to the start of
2204 struct mips_hi16 *next;
2206 asection *input_section;
2210 /* FIXME: This should not be a static variable. */
2212 static struct mips_hi16 *mips_hi16_list;
2214 /* A howto special_function for REL *HI16 relocations. We can only
2215 calculate the correct value once we've seen the partnering
2216 *LO16 relocation, so just save the information for later.
2218 The ABI requires that the *LO16 immediately follow the *HI16.
2219 However, as a GNU extension, we permit an arbitrary number of
2220 *HI16s to be associated with a single *LO16. This significantly
2221 simplies the relocation handling in gcc. */
2223 bfd_reloc_status_type
2224 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2225 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2226 asection *input_section, bfd *output_bfd,
2227 char **error_message ATTRIBUTE_UNUSED)
2229 struct mips_hi16 *n;
2231 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2232 return bfd_reloc_outofrange;
2234 n = bfd_malloc (sizeof *n);
2236 return bfd_reloc_outofrange;
2238 n->next = mips_hi16_list;
2240 n->input_section = input_section;
2241 n->rel = *reloc_entry;
2244 if (output_bfd != NULL)
2245 reloc_entry->address += input_section->output_offset;
2247 return bfd_reloc_ok;
2250 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2251 like any other 16-bit relocation when applied to global symbols, but is
2252 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2254 bfd_reloc_status_type
2255 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2256 void *data, asection *input_section,
2257 bfd *output_bfd, char **error_message)
2259 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2260 || bfd_is_und_section (bfd_get_section (symbol))
2261 || bfd_is_com_section (bfd_get_section (symbol)))
2262 /* The relocation is against a global symbol. */
2263 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd,
2267 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2268 input_section, output_bfd, error_message);
2271 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2272 is a straightforward 16 bit inplace relocation, but we must deal with
2273 any partnering high-part relocations as well. */
2275 bfd_reloc_status_type
2276 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2277 void *data, asection *input_section,
2278 bfd *output_bfd, char **error_message)
2281 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2283 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2284 return bfd_reloc_outofrange;
2286 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2288 vallo = bfd_get_32 (abfd, location);
2289 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2292 while (mips_hi16_list != NULL)
2294 bfd_reloc_status_type ret;
2295 struct mips_hi16 *hi;
2297 hi = mips_hi16_list;
2299 /* R_MIPS*_GOT16 relocations are something of a special case. We
2300 want to install the addend in the same way as for a R_MIPS*_HI16
2301 relocation (with a rightshift of 16). However, since GOT16
2302 relocations can also be used with global symbols, their howto
2303 has a rightshift of 0. */
2304 if (hi->rel.howto->type == R_MIPS_GOT16)
2305 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2306 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2307 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2308 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2309 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2311 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2312 carry or borrow will induce a change of +1 or -1 in the high part. */
2313 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2315 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2316 hi->input_section, output_bfd,
2318 if (ret != bfd_reloc_ok)
2321 mips_hi16_list = hi->next;
2325 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2326 input_section, output_bfd,
2330 /* A generic howto special_function. This calculates and installs the
2331 relocation itself, thus avoiding the oft-discussed problems in
2332 bfd_perform_relocation and bfd_install_relocation. */
2334 bfd_reloc_status_type
2335 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2336 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2337 asection *input_section, bfd *output_bfd,
2338 char **error_message ATTRIBUTE_UNUSED)
2341 bfd_reloc_status_type status;
2342 bfd_boolean relocatable;
2344 relocatable = (output_bfd != NULL);
2346 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2347 return bfd_reloc_outofrange;
2349 /* Build up the field adjustment in VAL. */
2351 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2353 /* Either we're calculating the final field value or we have a
2354 relocation against a section symbol. Add in the section's
2355 offset or address. */
2356 val += symbol->section->output_section->vma;
2357 val += symbol->section->output_offset;
2362 /* We're calculating the final field value. Add in the symbol's value
2363 and, if pc-relative, subtract the address of the field itself. */
2364 val += symbol->value;
2365 if (reloc_entry->howto->pc_relative)
2367 val -= input_section->output_section->vma;
2368 val -= input_section->output_offset;
2369 val -= reloc_entry->address;
2373 /* VAL is now the final adjustment. If we're keeping this relocation
2374 in the output file, and if the relocation uses a separate addend,
2375 we just need to add VAL to that addend. Otherwise we need to add
2376 VAL to the relocation field itself. */
2377 if (relocatable && !reloc_entry->howto->partial_inplace)
2378 reloc_entry->addend += val;
2381 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2383 /* Add in the separate addend, if any. */
2384 val += reloc_entry->addend;
2386 /* Add VAL to the relocation field. */
2387 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2389 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2391 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2394 if (status != bfd_reloc_ok)
2399 reloc_entry->address += input_section->output_offset;
2401 return bfd_reloc_ok;
2404 /* Swap an entry in a .gptab section. Note that these routines rely
2405 on the equivalence of the two elements of the union. */
2408 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2411 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2412 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2416 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2417 Elf32_External_gptab *ex)
2419 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2420 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2424 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2425 Elf32_External_compact_rel *ex)
2427 H_PUT_32 (abfd, in->id1, ex->id1);
2428 H_PUT_32 (abfd, in->num, ex->num);
2429 H_PUT_32 (abfd, in->id2, ex->id2);
2430 H_PUT_32 (abfd, in->offset, ex->offset);
2431 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2432 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2436 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2437 Elf32_External_crinfo *ex)
2441 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2442 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2443 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2444 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2445 H_PUT_32 (abfd, l, ex->info);
2446 H_PUT_32 (abfd, in->konst, ex->konst);
2447 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2450 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2451 routines swap this structure in and out. They are used outside of
2452 BFD, so they are globally visible. */
2455 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2458 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2459 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2460 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2461 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2462 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2463 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2467 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2468 Elf32_External_RegInfo *ex)
2470 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2471 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2472 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2473 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2474 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2475 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2478 /* In the 64 bit ABI, the .MIPS.options section holds register
2479 information in an Elf64_Reginfo structure. These routines swap
2480 them in and out. They are globally visible because they are used
2481 outside of BFD. These routines are here so that gas can call them
2482 without worrying about whether the 64 bit ABI has been included. */
2485 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2486 Elf64_Internal_RegInfo *in)
2488 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2489 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2490 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2491 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2492 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2493 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2494 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2498 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2499 Elf64_External_RegInfo *ex)
2501 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2502 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2503 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2504 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2505 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2506 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2507 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2510 /* Swap in an options header. */
2513 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2514 Elf_Internal_Options *in)
2516 in->kind = H_GET_8 (abfd, ex->kind);
2517 in->size = H_GET_8 (abfd, ex->size);
2518 in->section = H_GET_16 (abfd, ex->section);
2519 in->info = H_GET_32 (abfd, ex->info);
2522 /* Swap out an options header. */
2525 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2526 Elf_External_Options *ex)
2528 H_PUT_8 (abfd, in->kind, ex->kind);
2529 H_PUT_8 (abfd, in->size, ex->size);
2530 H_PUT_16 (abfd, in->section, ex->section);
2531 H_PUT_32 (abfd, in->info, ex->info);
2534 /* This function is called via qsort() to sort the dynamic relocation
2535 entries by increasing r_symndx value. */
2538 sort_dynamic_relocs (const void *arg1, const void *arg2)
2540 Elf_Internal_Rela int_reloc1;
2541 Elf_Internal_Rela int_reloc2;
2544 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2545 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2547 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2551 if (int_reloc1.r_offset < int_reloc2.r_offset)
2553 if (int_reloc1.r_offset > int_reloc2.r_offset)
2558 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2561 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2562 const void *arg2 ATTRIBUTE_UNUSED)
2565 Elf_Internal_Rela int_reloc1[3];
2566 Elf_Internal_Rela int_reloc2[3];
2568 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2569 (reldyn_sorting_bfd, arg1, int_reloc1);
2570 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2571 (reldyn_sorting_bfd, arg2, int_reloc2);
2573 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2575 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2578 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2580 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2589 /* This routine is used to write out ECOFF debugging external symbol
2590 information. It is called via mips_elf_link_hash_traverse. The
2591 ECOFF external symbol information must match the ELF external
2592 symbol information. Unfortunately, at this point we don't know
2593 whether a symbol is required by reloc information, so the two
2594 tables may wind up being different. We must sort out the external
2595 symbol information before we can set the final size of the .mdebug
2596 section, and we must set the size of the .mdebug section before we
2597 can relocate any sections, and we can't know which symbols are
2598 required by relocation until we relocate the sections.
2599 Fortunately, it is relatively unlikely that any symbol will be
2600 stripped but required by a reloc. In particular, it can not happen
2601 when generating a final executable. */
2604 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2606 struct extsym_info *einfo = data;
2608 asection *sec, *output_section;
2610 if (h->root.indx == -2)
2612 else if ((h->root.def_dynamic
2613 || h->root.ref_dynamic
2614 || h->root.type == bfd_link_hash_new)
2615 && !h->root.def_regular
2616 && !h->root.ref_regular)
2618 else if (einfo->info->strip == strip_all
2619 || (einfo->info->strip == strip_some
2620 && bfd_hash_lookup (einfo->info->keep_hash,
2621 h->root.root.root.string,
2622 FALSE, FALSE) == NULL))
2630 if (h->esym.ifd == -2)
2633 h->esym.cobol_main = 0;
2634 h->esym.weakext = 0;
2635 h->esym.reserved = 0;
2636 h->esym.ifd = ifdNil;
2637 h->esym.asym.value = 0;
2638 h->esym.asym.st = stGlobal;
2640 if (h->root.root.type == bfd_link_hash_undefined
2641 || h->root.root.type == bfd_link_hash_undefweak)
2645 /* Use undefined class. Also, set class and type for some
2647 name = h->root.root.root.string;
2648 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2649 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2651 h->esym.asym.sc = scData;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = 0;
2655 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2657 h->esym.asym.sc = scAbs;
2658 h->esym.asym.st = stLabel;
2659 h->esym.asym.value =
2660 mips_elf_hash_table (einfo->info)->procedure_count;
2662 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2664 h->esym.asym.sc = scAbs;
2665 h->esym.asym.st = stLabel;
2666 h->esym.asym.value = elf_gp (einfo->abfd);
2669 h->esym.asym.sc = scUndefined;
2671 else if (h->root.root.type != bfd_link_hash_defined
2672 && h->root.root.type != bfd_link_hash_defweak)
2673 h->esym.asym.sc = scAbs;
2678 sec = h->root.root.u.def.section;
2679 output_section = sec->output_section;
2681 /* When making a shared library and symbol h is the one from
2682 the another shared library, OUTPUT_SECTION may be null. */
2683 if (output_section == NULL)
2684 h->esym.asym.sc = scUndefined;
2687 name = bfd_section_name (output_section->owner, output_section);
2689 if (strcmp (name, ".text") == 0)
2690 h->esym.asym.sc = scText;
2691 else if (strcmp (name, ".data") == 0)
2692 h->esym.asym.sc = scData;
2693 else if (strcmp (name, ".sdata") == 0)
2694 h->esym.asym.sc = scSData;
2695 else if (strcmp (name, ".rodata") == 0
2696 || strcmp (name, ".rdata") == 0)
2697 h->esym.asym.sc = scRData;
2698 else if (strcmp (name, ".bss") == 0)
2699 h->esym.asym.sc = scBss;
2700 else if (strcmp (name, ".sbss") == 0)
2701 h->esym.asym.sc = scSBss;
2702 else if (strcmp (name, ".init") == 0)
2703 h->esym.asym.sc = scInit;
2704 else if (strcmp (name, ".fini") == 0)
2705 h->esym.asym.sc = scFini;
2707 h->esym.asym.sc = scAbs;
2711 h->esym.asym.reserved = 0;
2712 h->esym.asym.index = indexNil;
2715 if (h->root.root.type == bfd_link_hash_common)
2716 h->esym.asym.value = h->root.root.u.c.size;
2717 else if (h->root.root.type == bfd_link_hash_defined
2718 || h->root.root.type == bfd_link_hash_defweak)
2720 if (h->esym.asym.sc == scCommon)
2721 h->esym.asym.sc = scBss;
2722 else if (h->esym.asym.sc == scSCommon)
2723 h->esym.asym.sc = scSBss;
2725 sec = h->root.root.u.def.section;
2726 output_section = sec->output_section;
2727 if (output_section != NULL)
2728 h->esym.asym.value = (h->root.root.u.def.value
2729 + sec->output_offset
2730 + output_section->vma);
2732 h->esym.asym.value = 0;
2736 struct mips_elf_link_hash_entry *hd = h;
2738 while (hd->root.root.type == bfd_link_hash_indirect)
2739 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2741 if (hd->needs_lazy_stub)
2743 /* Set type and value for a symbol with a function stub. */
2744 h->esym.asym.st = stProc;
2745 sec = hd->root.root.u.def.section;
2747 h->esym.asym.value = 0;
2750 output_section = sec->output_section;
2751 if (output_section != NULL)
2752 h->esym.asym.value = (hd->root.plt.offset
2753 + sec->output_offset
2754 + output_section->vma);
2756 h->esym.asym.value = 0;
2761 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2762 h->root.root.root.string,
2765 einfo->failed = TRUE;
2772 /* A comparison routine used to sort .gptab entries. */
2775 gptab_compare (const void *p1, const void *p2)
2777 const Elf32_gptab *a1 = p1;
2778 const Elf32_gptab *a2 = p2;
2780 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2783 /* Functions to manage the got entry hash table. */
2785 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2788 static INLINE hashval_t
2789 mips_elf_hash_bfd_vma (bfd_vma addr)
2792 return addr + (addr >> 32);
2798 /* got_entries only match if they're identical, except for gotidx, so
2799 use all fields to compute the hash, and compare the appropriate
2803 mips_elf_got_entry_hash (const void *entry_)
2805 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2807 return entry->symndx
2808 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2809 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2811 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2812 : entry->d.h->root.root.root.hash));
2816 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2818 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2819 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2821 /* An LDM entry can only match another LDM entry. */
2822 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2825 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2826 && (! e1->abfd ? e1->d.address == e2->d.address
2827 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2828 : e1->d.h == e2->d.h);
2831 /* multi_got_entries are still a match in the case of global objects,
2832 even if the input bfd in which they're referenced differs, so the
2833 hash computation and compare functions are adjusted
2837 mips_elf_multi_got_entry_hash (const void *entry_)
2839 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2841 return entry->symndx
2843 ? mips_elf_hash_bfd_vma (entry->d.address)
2844 : entry->symndx >= 0
2845 ? ((entry->tls_type & GOT_TLS_LDM)
2846 ? (GOT_TLS_LDM << 17)
2848 + mips_elf_hash_bfd_vma (entry->d.addend)))
2849 : entry->d.h->root.root.root.hash);
2853 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2855 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2856 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2858 /* Any two LDM entries match. */
2859 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2862 /* Nothing else matches an LDM entry. */
2863 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2866 return e1->symndx == e2->symndx
2867 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2868 : e1->abfd == NULL || e2->abfd == NULL
2869 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2870 : e1->d.h == e2->d.h);
2874 mips_got_page_entry_hash (const void *entry_)
2876 const struct mips_got_page_entry *entry;
2878 entry = (const struct mips_got_page_entry *) entry_;
2879 return entry->abfd->id + entry->symndx;
2883 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2885 const struct mips_got_page_entry *entry1, *entry2;
2887 entry1 = (const struct mips_got_page_entry *) entry1_;
2888 entry2 = (const struct mips_got_page_entry *) entry2_;
2889 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2892 /* Return the dynamic relocation section. If it doesn't exist, try to
2893 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2894 if creation fails. */
2897 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2903 dname = MIPS_ELF_REL_DYN_NAME (info);
2904 dynobj = elf_hash_table (info)->dynobj;
2905 sreloc = bfd_get_linker_section (dynobj, dname);
2906 if (sreloc == NULL && create_p)
2908 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2913 | SEC_LINKER_CREATED
2916 || ! bfd_set_section_alignment (dynobj, sreloc,
2917 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2923 /* Count the number of relocations needed for a TLS GOT entry, with
2924 access types from TLS_TYPE, and symbol H (or a local symbol if H
2928 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2929 struct elf_link_hash_entry *h)
2933 bfd_boolean need_relocs = FALSE;
2934 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2936 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2937 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2940 if ((info->shared || indx != 0)
2942 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2943 || h->root.type != bfd_link_hash_undefweak))
2949 if (tls_type & GOT_TLS_GD)
2956 if (tls_type & GOT_TLS_IE)
2959 if ((tls_type & GOT_TLS_LDM) && info->shared)
2965 /* Count the number of TLS relocations required for the GOT entry in
2966 ARG1, if it describes a local symbol. */
2969 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2971 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2972 struct mips_elf_count_tls_arg *arg = arg2;
2974 if (entry->abfd != NULL && entry->symndx != -1)
2975 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2980 /* Count the number of TLS GOT entries required for the global (or
2981 forced-local) symbol in ARG1. */
2984 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2986 struct mips_elf_link_hash_entry *hm
2987 = (struct mips_elf_link_hash_entry *) arg1;
2988 struct mips_elf_count_tls_arg *arg = arg2;
2990 if (hm->tls_type & GOT_TLS_GD)
2992 if (hm->tls_type & GOT_TLS_IE)
2998 /* Count the number of TLS relocations required for the global (or
2999 forced-local) symbol in ARG1. */
3002 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3004 struct mips_elf_link_hash_entry *hm
3005 = (struct mips_elf_link_hash_entry *) arg1;
3006 struct mips_elf_count_tls_arg *arg = arg2;
3008 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3013 /* Output a simple dynamic relocation into SRELOC. */
3016 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3018 unsigned long reloc_index,
3023 Elf_Internal_Rela rel[3];
3025 memset (rel, 0, sizeof (rel));
3027 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3030 if (ABI_64_P (output_bfd))
3032 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3033 (output_bfd, &rel[0],
3035 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3038 bfd_elf32_swap_reloc_out
3039 (output_bfd, &rel[0],
3041 + reloc_index * sizeof (Elf32_External_Rel)));
3044 /* Initialize a set of TLS GOT entries for one symbol. */
3047 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3048 unsigned char *tls_type_p,
3049 struct bfd_link_info *info,
3050 struct mips_elf_link_hash_entry *h,
3053 struct mips_elf_link_hash_table *htab;
3055 asection *sreloc, *sgot;
3056 bfd_vma offset, offset2;
3057 bfd_boolean need_relocs = FALSE;
3059 htab = mips_elf_hash_table (info);
3068 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3070 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3071 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3072 indx = h->root.dynindx;
3075 if (*tls_type_p & GOT_TLS_DONE)
3078 if ((info->shared || indx != 0)
3080 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3081 || h->root.type != bfd_link_hash_undefweak))
3084 /* MINUS_ONE means the symbol is not defined in this object. It may not
3085 be defined at all; assume that the value doesn't matter in that
3086 case. Otherwise complain if we would use the value. */
3087 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3088 || h->root.root.type == bfd_link_hash_undefweak);
3090 /* Emit necessary relocations. */
3091 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3093 /* General Dynamic. */
3094 if (*tls_type_p & GOT_TLS_GD)
3096 offset = got_offset;
3097 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3101 mips_elf_output_dynamic_relocation
3102 (abfd, sreloc, sreloc->reloc_count++, indx,
3103 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3104 sgot->output_offset + sgot->output_section->vma + offset);
3107 mips_elf_output_dynamic_relocation
3108 (abfd, sreloc, sreloc->reloc_count++, indx,
3109 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3110 sgot->output_offset + sgot->output_section->vma + offset2);
3112 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3113 sgot->contents + offset2);
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + offset);
3119 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3120 sgot->contents + offset2);
3123 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3126 /* Initial Exec model. */
3127 if (*tls_type_p & GOT_TLS_IE)
3129 offset = got_offset;
3134 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3135 sgot->contents + offset);
3137 MIPS_ELF_PUT_WORD (abfd, 0,
3138 sgot->contents + offset);
3140 mips_elf_output_dynamic_relocation
3141 (abfd, sreloc, sreloc->reloc_count++, indx,
3142 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3143 sgot->output_offset + sgot->output_section->vma + offset);
3146 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3147 sgot->contents + offset);
3150 if (*tls_type_p & GOT_TLS_LDM)
3152 /* The initial offset is zero, and the LD offsets will include the
3153 bias by DTP_OFFSET. */
3154 MIPS_ELF_PUT_WORD (abfd, 0,
3155 sgot->contents + got_offset
3156 + MIPS_ELF_GOT_SIZE (abfd));
3159 MIPS_ELF_PUT_WORD (abfd, 1,
3160 sgot->contents + got_offset);
3162 mips_elf_output_dynamic_relocation
3163 (abfd, sreloc, sreloc->reloc_count++, indx,
3164 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3165 sgot->output_offset + sgot->output_section->vma + got_offset);
3168 *tls_type_p |= GOT_TLS_DONE;
3171 /* Return the GOT index to use for a relocation of type R_TYPE against
3172 a symbol accessed using TLS_TYPE models. The GOT entries for this
3173 symbol in this GOT start at GOT_INDEX. This function initializes the
3174 GOT entries and corresponding relocations. */
3177 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3178 int r_type, struct bfd_link_info *info,
3179 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3181 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3182 || tls_gd_reloc_p (r_type)
3183 || tls_ldm_reloc_p (r_type));
3185 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3187 if (tls_gottprel_reloc_p (r_type))
3189 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3190 if (*tls_type & GOT_TLS_GD)
3191 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3196 if (tls_gd_reloc_p (r_type))
3198 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3202 if (tls_ldm_reloc_p (r_type))
3204 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3211 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3212 for global symbol H. .got.plt comes before the GOT, so the offset
3213 will be negative. */
3216 mips_elf_gotplt_index (struct bfd_link_info *info,
3217 struct elf_link_hash_entry *h)
3219 bfd_vma plt_index, got_address, got_value;
3220 struct mips_elf_link_hash_table *htab;
3222 htab = mips_elf_hash_table (info);
3223 BFD_ASSERT (htab != NULL);
3225 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3227 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3228 section starts with reserved entries. */
3229 BFD_ASSERT (htab->is_vxworks);
3231 /* Calculate the index of the symbol's PLT entry. */
3232 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3234 /* Calculate the address of the associated .got.plt entry. */
3235 got_address = (htab->sgotplt->output_section->vma
3236 + htab->sgotplt->output_offset
3239 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3240 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3241 + htab->root.hgot->root.u.def.section->output_offset
3242 + htab->root.hgot->root.u.def.value);
3244 return got_address - got_value;
3247 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3248 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3249 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3250 offset can be found. */
3253 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3254 bfd_vma value, unsigned long r_symndx,
3255 struct mips_elf_link_hash_entry *h, int r_type)
3257 struct mips_elf_link_hash_table *htab;
3258 struct mips_got_entry *entry;
3260 htab = mips_elf_hash_table (info);
3261 BFD_ASSERT (htab != NULL);
3263 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3264 r_symndx, h, r_type);
3268 if (TLS_RELOC_P (r_type))
3270 if (entry->symndx == -1 && htab->got_info->next == NULL)
3271 /* A type (3) entry in the single-GOT case. We use the symbol's
3272 hash table entry to track the index. */
3273 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3274 r_type, info, h, value);
3276 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3277 r_type, info, h, value);
3280 return entry->gotidx;
3283 /* Returns the GOT index for the global symbol indicated by H. */
3286 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3287 int r_type, struct bfd_link_info *info)
3289 struct mips_elf_link_hash_table *htab;
3291 struct mips_got_info *g, *gg;
3292 long global_got_dynindx = 0;
3294 htab = mips_elf_hash_table (info);
3295 BFD_ASSERT (htab != NULL);
3297 gg = g = htab->got_info;
3298 if (g->bfd2got && ibfd)
3300 struct mips_got_entry e, *p;
3302 BFD_ASSERT (h->dynindx >= 0);
3304 g = mips_elf_got_for_ibfd (g, ibfd);
3305 if (g->next != gg || TLS_RELOC_P (r_type))
3309 e.d.h = (struct mips_elf_link_hash_entry *)h;
3312 p = htab_find (g->got_entries, &e);
3314 BFD_ASSERT (p->gotidx > 0);
3316 if (TLS_RELOC_P (r_type))
3318 bfd_vma value = MINUS_ONE;
3319 if ((h->root.type == bfd_link_hash_defined
3320 || h->root.type == bfd_link_hash_defweak)
3321 && h->root.u.def.section->output_section)
3322 value = (h->root.u.def.value
3323 + h->root.u.def.section->output_offset
3324 + h->root.u.def.section->output_section->vma);
3326 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3327 info, e.d.h, value);
3334 if (gg->global_gotsym != NULL)
3335 global_got_dynindx = gg->global_gotsym->dynindx;
3337 if (TLS_RELOC_P (r_type))
3339 struct mips_elf_link_hash_entry *hm
3340 = (struct mips_elf_link_hash_entry *) h;
3341 bfd_vma value = MINUS_ONE;
3343 if ((h->root.type == bfd_link_hash_defined
3344 || h->root.type == bfd_link_hash_defweak)
3345 && h->root.u.def.section->output_section)
3346 value = (h->root.u.def.value
3347 + h->root.u.def.section->output_offset
3348 + h->root.u.def.section->output_section->vma);
3350 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3351 r_type, info, hm, value);
3355 /* Once we determine the global GOT entry with the lowest dynamic
3356 symbol table index, we must put all dynamic symbols with greater
3357 indices into the GOT. That makes it easy to calculate the GOT
3359 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3360 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3361 * MIPS_ELF_GOT_SIZE (abfd));
3363 BFD_ASSERT (got_index < htab->sgot->size);
3368 /* Find a GOT page entry that points to within 32KB of VALUE. These
3369 entries are supposed to be placed at small offsets in the GOT, i.e.,
3370 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3371 entry could be created. If OFFSETP is nonnull, use it to return the
3372 offset of the GOT entry from VALUE. */
3375 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3376 bfd_vma value, bfd_vma *offsetp)
3378 bfd_vma page, got_index;
3379 struct mips_got_entry *entry;
3381 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3382 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3383 NULL, R_MIPS_GOT_PAGE);
3388 got_index = entry->gotidx;
3391 *offsetp = value - entry->d.address;
3396 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3397 EXTERNAL is true if the relocation was originally against a global
3398 symbol that binds locally. */
3401 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3402 bfd_vma value, bfd_boolean external)
3404 struct mips_got_entry *entry;
3406 /* GOT16 relocations against local symbols are followed by a LO16
3407 relocation; those against global symbols are not. Thus if the
3408 symbol was originally local, the GOT16 relocation should load the
3409 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3411 value = mips_elf_high (value) << 16;
3413 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3414 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3415 same in all cases. */
3416 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3417 NULL, R_MIPS_GOT16);
3419 return entry->gotidx;
3424 /* Returns the offset for the entry at the INDEXth position
3428 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3429 bfd *input_bfd, bfd_vma got_index)
3431 struct mips_elf_link_hash_table *htab;
3435 htab = mips_elf_hash_table (info);
3436 BFD_ASSERT (htab != NULL);
3439 gp = _bfd_get_gp_value (output_bfd)
3440 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3442 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3445 /* Create and return a local GOT entry for VALUE, which was calculated
3446 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3447 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3450 static struct mips_got_entry *
3451 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3452 bfd *ibfd, bfd_vma value,
3453 unsigned long r_symndx,
3454 struct mips_elf_link_hash_entry *h,
3457 struct mips_got_entry entry, **loc;
3458 struct mips_got_info *g;
3459 struct mips_elf_link_hash_table *htab;
3461 htab = mips_elf_hash_table (info);
3462 BFD_ASSERT (htab != NULL);
3466 entry.d.address = value;
3469 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3472 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3473 BFD_ASSERT (g != NULL);
3476 /* This function shouldn't be called for symbols that live in the global
3478 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3479 if (TLS_RELOC_P (r_type))
3481 struct mips_got_entry *p;
3484 if (tls_ldm_reloc_p (r_type))
3486 entry.tls_type = GOT_TLS_LDM;
3492 entry.symndx = r_symndx;
3498 p = (struct mips_got_entry *)
3499 htab_find (g->got_entries, &entry);
3505 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3510 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3513 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3518 memcpy (*loc, &entry, sizeof entry);
3520 if (g->assigned_gotno > g->local_gotno)
3522 (*loc)->gotidx = -1;
3523 /* We didn't allocate enough space in the GOT. */
3524 (*_bfd_error_handler)
3525 (_("not enough GOT space for local GOT entries"));
3526 bfd_set_error (bfd_error_bad_value);
3530 MIPS_ELF_PUT_WORD (abfd, value,
3531 (htab->sgot->contents + entry.gotidx));
3533 /* These GOT entries need a dynamic relocation on VxWorks. */
3534 if (htab->is_vxworks)
3536 Elf_Internal_Rela outrel;
3539 bfd_vma got_address;
3541 s = mips_elf_rel_dyn_section (info, FALSE);
3542 got_address = (htab->sgot->output_section->vma
3543 + htab->sgot->output_offset
3546 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3547 outrel.r_offset = got_address;
3548 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3549 outrel.r_addend = value;
3550 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3556 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3557 The number might be exact or a worst-case estimate, depending on how
3558 much information is available to elf_backend_omit_section_dynsym at
3559 the current linking stage. */
3561 static bfd_size_type
3562 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3564 bfd_size_type count;
3567 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3570 const struct elf_backend_data *bed;
3572 bed = get_elf_backend_data (output_bfd);
3573 for (p = output_bfd->sections; p ; p = p->next)
3574 if ((p->flags & SEC_EXCLUDE) == 0
3575 && (p->flags & SEC_ALLOC) != 0
3576 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3582 /* Sort the dynamic symbol table so that symbols that need GOT entries
3583 appear towards the end. */
3586 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3588 struct mips_elf_link_hash_table *htab;
3589 struct mips_elf_hash_sort_data hsd;
3590 struct mips_got_info *g;
3592 if (elf_hash_table (info)->dynsymcount == 0)
3595 htab = mips_elf_hash_table (info);
3596 BFD_ASSERT (htab != NULL);
3603 hsd.max_unref_got_dynindx
3604 = hsd.min_got_dynindx
3605 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3606 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3607 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3608 elf_hash_table (info)),
3609 mips_elf_sort_hash_table_f,
3612 /* There should have been enough room in the symbol table to
3613 accommodate both the GOT and non-GOT symbols. */
3614 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3615 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3616 == elf_hash_table (info)->dynsymcount);
3617 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3618 == g->global_gotno);
3620 /* Now we know which dynamic symbol has the lowest dynamic symbol
3621 table index in the GOT. */
3622 g->global_gotsym = hsd.low;
3627 /* If H needs a GOT entry, assign it the highest available dynamic
3628 index. Otherwise, assign it the lowest available dynamic
3632 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3634 struct mips_elf_hash_sort_data *hsd = data;
3636 /* Symbols without dynamic symbol table entries aren't interesting
3638 if (h->root.dynindx == -1)
3641 switch (h->global_got_area)
3644 h->root.dynindx = hsd->max_non_got_dynindx++;
3648 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3650 h->root.dynindx = --hsd->min_got_dynindx;
3651 hsd->low = (struct elf_link_hash_entry *) h;
3654 case GGA_RELOC_ONLY:
3655 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3657 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3658 hsd->low = (struct elf_link_hash_entry *) h;
3659 h->root.dynindx = hsd->max_unref_got_dynindx++;
3666 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3667 symbol table index lower than any we've seen to date, record it for
3668 posterity. FOR_CALL is true if the caller is only interested in
3669 using the GOT entry for calls. */
3672 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3673 bfd *abfd, struct bfd_link_info *info,
3674 bfd_boolean for_call,
3675 unsigned char tls_flag)
3677 struct mips_elf_link_hash_table *htab;
3678 struct mips_elf_link_hash_entry *hmips;
3679 struct mips_got_entry entry, **loc;
3680 struct mips_got_info *g;
3682 htab = mips_elf_hash_table (info);
3683 BFD_ASSERT (htab != NULL);
3685 hmips = (struct mips_elf_link_hash_entry *) h;
3687 hmips->got_only_for_calls = FALSE;
3689 /* A global symbol in the GOT must also be in the dynamic symbol
3691 if (h->dynindx == -1)
3693 switch (ELF_ST_VISIBILITY (h->other))
3697 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3700 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3704 /* Make sure we have a GOT to put this entry into. */
3706 BFD_ASSERT (g != NULL);
3710 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3713 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3716 /* If we've already marked this entry as needing GOT space, we don't
3717 need to do it again. */
3720 (*loc)->tls_type |= tls_flag;
3724 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3730 entry.tls_type = tls_flag;
3732 memcpy (*loc, &entry, sizeof entry);
3735 hmips->global_got_area = GGA_NORMAL;
3740 /* Reserve space in G for a GOT entry containing the value of symbol
3741 SYMNDX in input bfd ABDF, plus ADDEND. */
3744 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3745 struct bfd_link_info *info,
3746 unsigned char tls_flag)
3748 struct mips_elf_link_hash_table *htab;
3749 struct mips_got_info *g;
3750 struct mips_got_entry entry, **loc;
3752 htab = mips_elf_hash_table (info);
3753 BFD_ASSERT (htab != NULL);
3756 BFD_ASSERT (g != NULL);
3759 entry.symndx = symndx;
3760 entry.d.addend = addend;
3761 entry.tls_type = tls_flag;
3762 loc = (struct mips_got_entry **)
3763 htab_find_slot (g->got_entries, &entry, INSERT);
3767 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3770 (*loc)->tls_type |= tls_flag;
3772 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3775 (*loc)->tls_type |= tls_flag;
3783 entry.tls_type = tls_flag;
3784 if (tls_flag == GOT_TLS_IE)
3786 else if (tls_flag == GOT_TLS_GD)
3788 else if (g->tls_ldm_offset == MINUS_ONE)
3790 g->tls_ldm_offset = MINUS_TWO;
3796 entry.gotidx = g->local_gotno++;
3800 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3805 memcpy (*loc, &entry, sizeof entry);
3810 /* Return the maximum number of GOT page entries required for RANGE. */
3813 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3815 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3818 /* Record that ABFD has a page relocation against symbol SYMNDX and
3819 that ADDEND is the addend for that relocation.
3821 This function creates an upper bound on the number of GOT slots
3822 required; no attempt is made to combine references to non-overridable
3823 global symbols across multiple input files. */
3826 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3827 long symndx, bfd_signed_vma addend)
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_got_info *g;
3831 struct mips_got_page_entry lookup, *entry;
3832 struct mips_got_page_range **range_ptr, *range;
3833 bfd_vma old_pages, new_pages;
3836 htab = mips_elf_hash_table (info);
3837 BFD_ASSERT (htab != NULL);
3840 BFD_ASSERT (g != NULL);
3842 /* Find the mips_got_page_entry hash table entry for this symbol. */
3844 lookup.symndx = symndx;
3845 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3849 /* Create a mips_got_page_entry if this is the first time we've
3851 entry = (struct mips_got_page_entry *) *loc;
3854 entry = bfd_alloc (abfd, sizeof (*entry));
3859 entry->symndx = symndx;
3860 entry->ranges = NULL;
3861 entry->num_pages = 0;
3865 /* Skip over ranges whose maximum extent cannot share a page entry
3867 range_ptr = &entry->ranges;
3868 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3869 range_ptr = &(*range_ptr)->next;
3871 /* If we scanned to the end of the list, or found a range whose
3872 minimum extent cannot share a page entry with ADDEND, create
3873 a new singleton range. */
3875 if (!range || addend < range->min_addend - 0xffff)
3877 range = bfd_alloc (abfd, sizeof (*range));
3881 range->next = *range_ptr;
3882 range->min_addend = addend;
3883 range->max_addend = addend;
3891 /* Remember how many pages the old range contributed. */
3892 old_pages = mips_elf_pages_for_range (range);
3894 /* Update the ranges. */
3895 if (addend < range->min_addend)
3896 range->min_addend = addend;
3897 else if (addend > range->max_addend)
3899 if (range->next && addend >= range->next->min_addend - 0xffff)
3901 old_pages += mips_elf_pages_for_range (range->next);
3902 range->max_addend = range->next->max_addend;
3903 range->next = range->next->next;
3906 range->max_addend = addend;
3909 /* Record any change in the total estimate. */
3910 new_pages = mips_elf_pages_for_range (range);
3911 if (old_pages != new_pages)
3913 entry->num_pages += new_pages - old_pages;
3914 g->page_gotno += new_pages - old_pages;
3920 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3923 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3927 struct mips_elf_link_hash_table *htab;
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3932 s = mips_elf_rel_dyn_section (info, FALSE);
3933 BFD_ASSERT (s != NULL);
3935 if (htab->is_vxworks)
3936 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3941 /* Make room for a null element. */
3942 s->size += MIPS_ELF_REL_SIZE (abfd);
3945 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3949 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3950 if the GOT entry is for an indirect or warning symbol. */
3953 mips_elf_check_recreate_got (void **entryp, void *data)
3955 struct mips_got_entry *entry;
3956 bfd_boolean *must_recreate;
3958 entry = (struct mips_got_entry *) *entryp;
3959 must_recreate = (bfd_boolean *) data;
3960 if (entry->abfd != NULL && entry->symndx == -1)
3962 struct mips_elf_link_hash_entry *h;
3965 if (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3968 *must_recreate = TRUE;
3975 /* A htab_traverse callback for GOT entries. Add all entries to
3976 hash table *DATA, converting entries for indirect and warning
3977 symbols into entries for the target symbol. Set *DATA to null
3981 mips_elf_recreate_got (void **entryp, void *data)
3984 struct mips_got_entry *entry;
3987 new_got = (htab_t *) data;
3988 entry = (struct mips_got_entry *) *entryp;
3989 if (entry->abfd != NULL && entry->symndx == -1)
3991 struct mips_elf_link_hash_entry *h;
3994 while (h->root.root.type == bfd_link_hash_indirect
3995 || h->root.root.type == bfd_link_hash_warning)
3997 BFD_ASSERT (h->global_got_area == GGA_NONE);
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4002 slot = htab_find_slot (*new_got, entry, INSERT);
4015 /* If any entries in G->got_entries are for indirect or warning symbols,
4016 replace them with entries for the target symbol. */
4019 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4021 bfd_boolean must_recreate;
4024 must_recreate = FALSE;
4025 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4028 new_got = htab_create (htab_size (g->got_entries),
4029 mips_elf_got_entry_hash,
4030 mips_elf_got_entry_eq, NULL);
4031 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4032 if (new_got == NULL)
4035 /* Each entry in g->got_entries has either been copied to new_got
4036 or freed. Now delete the hash table itself. */
4037 htab_delete (g->got_entries);
4038 g->got_entries = new_got;
4043 /* A mips_elf_link_hash_traverse callback for which DATA points
4044 to the link_info structure. Count the number of type (3) entries
4045 in the master GOT. */
4048 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4050 struct bfd_link_info *info;
4051 struct mips_elf_link_hash_table *htab;
4052 struct mips_got_info *g;
4054 info = (struct bfd_link_info *) data;
4055 htab = mips_elf_hash_table (info);
4057 if (h->global_got_area != GGA_NONE)
4059 /* Make a final decision about whether the symbol belongs in the
4060 local or global GOT. Symbols that bind locally can (and in the
4061 case of forced-local symbols, must) live in the local GOT.
4062 Those that are aren't in the dynamic symbol table must also
4063 live in the local GOT.
4065 Note that the former condition does not always imply the
4066 latter: symbols do not bind locally if they are completely
4067 undefined. We'll report undefined symbols later if appropriate. */
4068 if (h->root.dynindx == -1
4069 || (h->got_only_for_calls
4070 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4071 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4073 /* The symbol belongs in the local GOT. We no longer need this
4074 entry if it was only used for relocations; those relocations
4075 will be against the null or section symbol instead of H. */
4076 if (h->global_got_area != GGA_RELOC_ONLY)
4078 h->global_got_area = GGA_NONE;
4080 else if (htab->is_vxworks
4081 && h->got_only_for_calls
4082 && h->root.plt.offset != MINUS_ONE)
4083 /* On VxWorks, calls can refer directly to the .got.plt entry;
4084 they don't need entries in the regular GOT. .got.plt entries
4085 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4086 h->global_got_area = GGA_NONE;
4090 if (h->global_got_area == GGA_RELOC_ONLY)
4091 g->reloc_only_gotno++;
4097 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4100 mips_elf_bfd2got_entry_hash (const void *entry_)
4102 const struct mips_elf_bfd2got_hash *entry
4103 = (struct mips_elf_bfd2got_hash *)entry_;
4105 return entry->bfd->id;
4108 /* Check whether two hash entries have the same bfd. */
4111 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4113 const struct mips_elf_bfd2got_hash *e1
4114 = (const struct mips_elf_bfd2got_hash *)entry1;
4115 const struct mips_elf_bfd2got_hash *e2
4116 = (const struct mips_elf_bfd2got_hash *)entry2;
4118 return e1->bfd == e2->bfd;
4121 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4122 be the master GOT data. */
4124 static struct mips_got_info *
4125 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4127 struct mips_elf_bfd2got_hash e, *p;
4133 p = htab_find (g->bfd2got, &e);
4134 return p ? p->g : NULL;
4137 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4138 Return NULL if an error occured. */
4140 static struct mips_got_info *
4141 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4144 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4145 struct mips_got_info *g;
4148 bfdgot_entry.bfd = input_bfd;
4149 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4150 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4154 bfdgot = ((struct mips_elf_bfd2got_hash *)
4155 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4161 g = ((struct mips_got_info *)
4162 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4166 bfdgot->bfd = input_bfd;
4169 g->global_gotsym = NULL;
4170 g->global_gotno = 0;
4171 g->reloc_only_gotno = 0;
4174 g->assigned_gotno = -1;
4176 g->tls_assigned_gotno = 0;
4177 g->tls_ldm_offset = MINUS_ONE;
4178 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4179 mips_elf_multi_got_entry_eq, NULL);
4180 if (g->got_entries == NULL)
4183 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4184 mips_got_page_entry_eq, NULL);
4185 if (g->got_page_entries == NULL)
4195 /* A htab_traverse callback for the entries in the master got.
4196 Create one separate got for each bfd that has entries in the global
4197 got, such that we can tell how many local and global entries each
4201 mips_elf_make_got_per_bfd (void **entryp, void *p)
4203 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4204 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4205 struct mips_got_info *g;
4207 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4214 /* Insert the GOT entry in the bfd's got entry hash table. */
4215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4216 if (*entryp != NULL)
4221 if (entry->tls_type)
4223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4225 if (entry->tls_type & GOT_TLS_IE)
4228 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4236 /* A htab_traverse callback for the page entries in the master got.
4237 Associate each page entry with the bfd's got. */
4240 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4242 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4244 struct mips_got_info *g;
4246 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4253 /* Insert the GOT entry in the bfd's got entry hash table. */
4254 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4255 if (*entryp != NULL)
4259 g->page_gotno += entry->num_pages;
4263 /* Consider merging the got described by BFD2GOT with TO, using the
4264 information given by ARG. Return -1 if this would lead to overflow,
4265 1 if they were merged successfully, and 0 if a merge failed due to
4266 lack of memory. (These values are chosen so that nonnegative return
4267 values can be returned by a htab_traverse callback.) */
4270 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4271 struct mips_got_info *to,
4272 struct mips_elf_got_per_bfd_arg *arg)
4274 struct mips_got_info *from = bfd2got->g;
4275 unsigned int estimate;
4277 /* Work out how many page entries we would need for the combined GOT. */
4278 estimate = arg->max_pages;
4279 if (estimate >= from->page_gotno + to->page_gotno)
4280 estimate = from->page_gotno + to->page_gotno;
4282 /* And conservatively estimate how many local and TLS entries
4284 estimate += from->local_gotno + to->local_gotno;
4285 estimate += from->tls_gotno + to->tls_gotno;
4287 /* If we're merging with the primary got, we will always have
4288 the full set of global entries. Otherwise estimate those
4289 conservatively as well. */
4290 if (to == arg->primary)
4291 estimate += arg->global_count;
4293 estimate += from->global_gotno + to->global_gotno;
4295 /* Bail out if the combined GOT might be too big. */
4296 if (estimate > arg->max_count)
4299 /* Commit to the merge. Record that TO is now the bfd for this got. */
4302 /* Transfer the bfd's got information from FROM to TO. */
4303 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4304 if (arg->obfd == NULL)
4307 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4308 if (arg->obfd == NULL)
4311 /* We don't have to worry about releasing memory of the actual
4312 got entries, since they're all in the master got_entries hash
4314 htab_delete (from->got_entries);
4315 htab_delete (from->got_page_entries);
4319 /* Attempt to merge gots of different input bfds. Try to use as much
4320 as possible of the primary got, since it doesn't require explicit
4321 dynamic relocations, but don't use bfds that would reference global
4322 symbols out of the addressable range. Failing the primary got,
4323 attempt to merge with the current got, or finish the current got
4324 and then make make the new got current. */
4327 mips_elf_merge_gots (void **bfd2got_, void *p)
4329 struct mips_elf_bfd2got_hash *bfd2got
4330 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4331 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4332 struct mips_got_info *g;
4333 unsigned int estimate;
4338 /* Work out the number of page, local and TLS entries. */
4339 estimate = arg->max_pages;
4340 if (estimate > g->page_gotno)
4341 estimate = g->page_gotno;
4342 estimate += g->local_gotno + g->tls_gotno;
4344 /* We place TLS GOT entries after both locals and globals. The globals
4345 for the primary GOT may overflow the normal GOT size limit, so be
4346 sure not to merge a GOT which requires TLS with the primary GOT in that
4347 case. This doesn't affect non-primary GOTs. */
4348 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4350 if (estimate <= arg->max_count)
4352 /* If we don't have a primary GOT, use it as
4353 a starting point for the primary GOT. */
4356 arg->primary = bfd2got->g;
4360 /* Try merging with the primary GOT. */
4361 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4366 /* If we can merge with the last-created got, do it. */
4369 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4374 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4375 fits; if it turns out that it doesn't, we'll get relocation
4376 overflows anyway. */
4377 g->next = arg->current;
4383 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4384 is null iff there is just a single GOT. */
4387 mips_elf_initialize_tls_index (void **entryp, void *p)
4389 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4390 struct mips_got_info *g = p;
4392 unsigned char tls_type;
4394 /* We're only interested in TLS symbols. */
4395 if (entry->tls_type == 0)
4398 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4400 if (entry->symndx == -1 && g->next == NULL)
4402 /* A type (3) got entry in the single-GOT case. We use the symbol's
4403 hash table entry to track its index. */
4404 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4406 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4407 entry->d.h->tls_got_offset = next_index;
4408 tls_type = entry->d.h->tls_type;
4412 if (entry->tls_type & GOT_TLS_LDM)
4414 /* There are separate mips_got_entry objects for each input bfd
4415 that requires an LDM entry. Make sure that all LDM entries in
4416 a GOT resolve to the same index. */
4417 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4419 entry->gotidx = g->tls_ldm_offset;
4422 g->tls_ldm_offset = next_index;
4424 entry->gotidx = next_index;
4425 tls_type = entry->tls_type;
4428 /* Account for the entries we've just allocated. */
4429 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4430 g->tls_assigned_gotno += 2;
4431 if (tls_type & GOT_TLS_IE)
4432 g->tls_assigned_gotno += 1;
4437 /* If passed a NULL mips_got_info in the argument, set the marker used
4438 to tell whether a global symbol needs a got entry (in the primary
4439 got) to the given VALUE.
4441 If passed a pointer G to a mips_got_info in the argument (it must
4442 not be the primary GOT), compute the offset from the beginning of
4443 the (primary) GOT section to the entry in G corresponding to the
4444 global symbol. G's assigned_gotno must contain the index of the
4445 first available global GOT entry in G. VALUE must contain the size
4446 of a GOT entry in bytes. For each global GOT entry that requires a
4447 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4448 marked as not eligible for lazy resolution through a function
4451 mips_elf_set_global_got_offset (void **entryp, void *p)
4453 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4454 struct mips_elf_set_global_got_offset_arg *arg
4455 = (struct mips_elf_set_global_got_offset_arg *)p;
4456 struct mips_got_info *g = arg->g;
4458 if (g && entry->tls_type != GOT_NORMAL)
4459 arg->needed_relocs +=
4460 mips_tls_got_relocs (arg->info, entry->tls_type,
4461 entry->symndx == -1 ? &entry->d.h->root : NULL);
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
4469 BFD_ASSERT (g->global_gotsym == NULL);
4471 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4472 if (arg->info->shared
4473 || (elf_hash_table (arg->info)->dynamic_sections_created
4474 && entry->d.h->root.def_dynamic
4475 && !entry->d.h->root.def_regular))
4476 ++arg->needed_relocs;
4479 entry->d.h->global_got_area = arg->value;
4485 /* A htab_traverse callback for GOT entries for which DATA is the
4486 bfd_link_info. Forbid any global symbols from having traditional
4487 lazy-binding stubs. */
4490 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4492 struct bfd_link_info *info;
4493 struct mips_elf_link_hash_table *htab;
4494 struct mips_got_entry *entry;
4496 entry = (struct mips_got_entry *) *entryp;
4497 info = (struct bfd_link_info *) data;
4498 htab = mips_elf_hash_table (info);
4499 BFD_ASSERT (htab != NULL);
4501 if (entry->abfd != NULL
4502 && entry->symndx == -1
4503 && entry->d.h->needs_lazy_stub)
4505 entry->d.h->needs_lazy_stub = FALSE;
4506 htab->lazy_stub_count--;
4512 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4515 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4517 if (g->bfd2got == NULL)
4520 g = mips_elf_got_for_ibfd (g, ibfd);
4524 BFD_ASSERT (g->next);
4528 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4529 * MIPS_ELF_GOT_SIZE (abfd);
4532 /* Turn a single GOT that is too big for 16-bit addressing into
4533 a sequence of GOTs, each one 16-bit addressable. */
4536 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4537 asection *got, bfd_size_type pages)
4539 struct mips_elf_link_hash_table *htab;
4540 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4541 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4542 struct mips_got_info *g, *gg;
4543 unsigned int assign, needed_relocs;
4546 dynobj = elf_hash_table (info)->dynobj;
4547 htab = mips_elf_hash_table (info);
4548 BFD_ASSERT (htab != NULL);
4551 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4552 mips_elf_bfd2got_entry_eq, NULL);
4553 if (g->bfd2got == NULL)
4556 got_per_bfd_arg.bfd2got = g->bfd2got;
4557 got_per_bfd_arg.obfd = abfd;
4558 got_per_bfd_arg.info = info;
4560 /* Count how many GOT entries each input bfd requires, creating a
4561 map from bfd to got info while at that. */
4562 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4563 if (got_per_bfd_arg.obfd == NULL)
4566 /* Also count how many page entries each input bfd requires. */
4567 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4569 if (got_per_bfd_arg.obfd == NULL)
4572 got_per_bfd_arg.current = NULL;
4573 got_per_bfd_arg.primary = NULL;
4574 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4575 / MIPS_ELF_GOT_SIZE (abfd))
4576 - htab->reserved_gotno);
4577 got_per_bfd_arg.max_pages = pages;
4578 /* The number of globals that will be included in the primary GOT.
4579 See the calls to mips_elf_set_global_got_offset below for more
4581 got_per_bfd_arg.global_count = g->global_gotno;
4583 /* Try to merge the GOTs of input bfds together, as long as they
4584 don't seem to exceed the maximum GOT size, choosing one of them
4585 to be the primary GOT. */
4586 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4587 if (got_per_bfd_arg.obfd == NULL)
4590 /* If we do not find any suitable primary GOT, create an empty one. */
4591 if (got_per_bfd_arg.primary == NULL)
4593 g->next = (struct mips_got_info *)
4594 bfd_alloc (abfd, sizeof (struct mips_got_info));
4595 if (g->next == NULL)
4598 g->next->global_gotsym = NULL;
4599 g->next->global_gotno = 0;
4600 g->next->reloc_only_gotno = 0;
4601 g->next->local_gotno = 0;
4602 g->next->page_gotno = 0;
4603 g->next->tls_gotno = 0;
4604 g->next->assigned_gotno = 0;
4605 g->next->tls_assigned_gotno = 0;
4606 g->next->tls_ldm_offset = MINUS_ONE;
4607 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4608 mips_elf_multi_got_entry_eq,
4610 if (g->next->got_entries == NULL)
4612 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4613 mips_got_page_entry_eq,
4615 if (g->next->got_page_entries == NULL)
4617 g->next->bfd2got = NULL;
4620 g->next = got_per_bfd_arg.primary;
4621 g->next->next = got_per_bfd_arg.current;
4623 /* GG is now the master GOT, and G is the primary GOT. */
4627 /* Map the output bfd to the primary got. That's what we're going
4628 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4629 didn't mark in check_relocs, and we want a quick way to find it.
4630 We can't just use gg->next because we're going to reverse the
4633 struct mips_elf_bfd2got_hash *bfdgot;
4636 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4637 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4644 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4646 BFD_ASSERT (*bfdgotp == NULL);
4650 /* Every symbol that is referenced in a dynamic relocation must be
4651 present in the primary GOT, so arrange for them to appear after
4652 those that are actually referenced. */
4653 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4654 g->global_gotno = gg->global_gotno;
4656 set_got_offset_arg.g = NULL;
4657 set_got_offset_arg.value = GGA_RELOC_ONLY;
4658 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4659 &set_got_offset_arg);
4660 set_got_offset_arg.value = GGA_NORMAL;
4661 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4662 &set_got_offset_arg);
4664 /* Now go through the GOTs assigning them offset ranges.
4665 [assigned_gotno, local_gotno[ will be set to the range of local
4666 entries in each GOT. We can then compute the end of a GOT by
4667 adding local_gotno to global_gotno. We reverse the list and make
4668 it circular since then we'll be able to quickly compute the
4669 beginning of a GOT, by computing the end of its predecessor. To
4670 avoid special cases for the primary GOT, while still preserving
4671 assertions that are valid for both single- and multi-got links,
4672 we arrange for the main got struct to have the right number of
4673 global entries, but set its local_gotno such that the initial
4674 offset of the primary GOT is zero. Remember that the primary GOT
4675 will become the last item in the circular linked list, so it
4676 points back to the master GOT. */
4677 gg->local_gotno = -g->global_gotno;
4678 gg->global_gotno = g->global_gotno;
4685 struct mips_got_info *gn;
4687 assign += htab->reserved_gotno;
4688 g->assigned_gotno = assign;
4689 g->local_gotno += assign;
4690 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4691 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4693 /* Take g out of the direct list, and push it onto the reversed
4694 list that gg points to. g->next is guaranteed to be nonnull after
4695 this operation, as required by mips_elf_initialize_tls_index. */
4700 /* Set up any TLS entries. We always place the TLS entries after
4701 all non-TLS entries. */
4702 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4705 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4708 /* Forbid global symbols in every non-primary GOT from having
4709 lazy-binding stubs. */
4711 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4715 got->size = (gg->next->local_gotno
4716 + gg->next->global_gotno
4717 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4720 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4721 set_got_offset_arg.info = info;
4722 for (g = gg->next; g && g->next != gg; g = g->next)
4724 unsigned int save_assign;
4726 /* Assign offsets to global GOT entries. */
4727 save_assign = g->assigned_gotno;
4728 g->assigned_gotno = g->local_gotno;
4729 set_got_offset_arg.g = g;
4730 set_got_offset_arg.needed_relocs = 0;
4731 htab_traverse (g->got_entries,
4732 mips_elf_set_global_got_offset,
4733 &set_got_offset_arg);
4734 needed_relocs += set_got_offset_arg.needed_relocs;
4735 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4737 g->assigned_gotno = save_assign;
4740 needed_relocs += g->local_gotno - g->assigned_gotno;
4741 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4742 + g->next->global_gotno
4743 + g->next->tls_gotno
4744 + htab->reserved_gotno);
4749 mips_elf_allocate_dynamic_relocations (dynobj, info,
4756 /* Returns the first relocation of type r_type found, beginning with
4757 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4759 static const Elf_Internal_Rela *
4760 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4761 const Elf_Internal_Rela *relocation,
4762 const Elf_Internal_Rela *relend)
4764 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4766 while (relocation < relend)
4768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4769 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4775 /* We didn't find it. */
4779 /* Return whether an input relocation is against a local symbol. */
4782 mips_elf_local_relocation_p (bfd *input_bfd,
4783 const Elf_Internal_Rela *relocation,
4784 asection **local_sections)
4786 unsigned long r_symndx;
4787 Elf_Internal_Shdr *symtab_hdr;
4790 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4792 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4794 if (r_symndx < extsymoff)
4796 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4802 /* Sign-extend VALUE, which has the indicated number of BITS. */
4805 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4807 if (value & ((bfd_vma) 1 << (bits - 1)))
4808 /* VALUE is negative. */
4809 value |= ((bfd_vma) - 1) << bits;
4814 /* Return non-zero if the indicated VALUE has overflowed the maximum
4815 range expressible by a signed number with the indicated number of
4819 mips_elf_overflow_p (bfd_vma value, int bits)
4821 bfd_signed_vma svalue = (bfd_signed_vma) value;
4823 if (svalue > (1 << (bits - 1)) - 1)
4824 /* The value is too big. */
4826 else if (svalue < -(1 << (bits - 1)))
4827 /* The value is too small. */
4834 /* Calculate the %high function. */
4837 mips_elf_high (bfd_vma value)
4839 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4842 /* Calculate the %higher function. */
4845 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4848 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4855 /* Calculate the %highest function. */
4858 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4861 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4868 /* Create the .compact_rel section. */
4871 mips_elf_create_compact_rel_section
4872 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4875 register asection *s;
4877 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4879 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4882 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4884 || ! bfd_set_section_alignment (abfd, s,
4885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4888 s->size = sizeof (Elf32_External_compact_rel);
4894 /* Create the .got section to hold the global offset table. */
4897 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4900 register asection *s;
4901 struct elf_link_hash_entry *h;
4902 struct bfd_link_hash_entry *bh;
4903 struct mips_got_info *g;
4905 struct mips_elf_link_hash_table *htab;
4907 htab = mips_elf_hash_table (info);
4908 BFD_ASSERT (htab != NULL);
4910 /* This function may be called more than once. */
4914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4915 | SEC_LINKER_CREATED);
4917 /* We have to use an alignment of 2**4 here because this is hardcoded
4918 in the function stub generation and in the linker script. */
4919 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4921 || ! bfd_set_section_alignment (abfd, s, 4))
4925 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4926 linker script because we don't want to define the symbol if we
4927 are not creating a global offset table. */
4929 if (! (_bfd_generic_link_add_one_symbol
4930 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4931 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4934 h = (struct elf_link_hash_entry *) bh;
4937 h->type = STT_OBJECT;
4938 elf_hash_table (info)->hgot = h;
4941 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4944 amt = sizeof (struct mips_got_info);
4945 g = bfd_alloc (abfd, amt);
4948 g->global_gotsym = NULL;
4949 g->global_gotno = 0;
4950 g->reloc_only_gotno = 0;
4954 g->assigned_gotno = 0;
4957 g->tls_ldm_offset = MINUS_ONE;
4958 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4959 mips_elf_got_entry_eq, NULL);
4960 if (g->got_entries == NULL)
4962 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4963 mips_got_page_entry_eq, NULL);
4964 if (g->got_page_entries == NULL)
4967 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4968 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4970 /* We also need a .got.plt section when generating PLTs. */
4971 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4972 SEC_ALLOC | SEC_LOAD
4975 | SEC_LINKER_CREATED);
4983 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4984 __GOTT_INDEX__ symbols. These symbols are only special for
4985 shared objects; they are not used in executables. */
4988 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4990 return (mips_elf_hash_table (info)->is_vxworks
4992 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4993 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4996 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4997 require an la25 stub. See also mips_elf_local_pic_function_p,
4998 which determines whether the destination function ever requires a
5002 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5003 bfd_boolean target_is_16_bit_code_p)
5005 /* We specifically ignore branches and jumps from EF_PIC objects,
5006 where the onus is on the compiler or programmer to perform any
5007 necessary initialization of $25. Sometimes such initialization
5008 is unnecessary; for example, -mno-shared functions do not use
5009 the incoming value of $25, and may therefore be called directly. */
5010 if (PIC_OBJECT_P (input_bfd))
5017 case R_MICROMIPS_26_S1:
5018 case R_MICROMIPS_PC7_S1:
5019 case R_MICROMIPS_PC10_S1:
5020 case R_MICROMIPS_PC16_S1:
5021 case R_MICROMIPS_PC23_S2:
5025 return !target_is_16_bit_code_p;
5032 /* Calculate the value produced by the RELOCATION (which comes from
5033 the INPUT_BFD). The ADDEND is the addend to use for this
5034 RELOCATION; RELOCATION->R_ADDEND is ignored.
5036 The result of the relocation calculation is stored in VALUEP.
5037 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5038 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5040 This function returns bfd_reloc_continue if the caller need take no
5041 further action regarding this relocation, bfd_reloc_notsupported if
5042 something goes dramatically wrong, bfd_reloc_overflow if an
5043 overflow occurs, and bfd_reloc_ok to indicate success. */
5045 static bfd_reloc_status_type
5046 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5047 asection *input_section,
5048 struct bfd_link_info *info,
5049 const Elf_Internal_Rela *relocation,
5050 bfd_vma addend, reloc_howto_type *howto,
5051 Elf_Internal_Sym *local_syms,
5052 asection **local_sections, bfd_vma *valuep,
5054 bfd_boolean *cross_mode_jump_p,
5055 bfd_boolean save_addend)
5057 /* The eventual value we will return. */
5059 /* The address of the symbol against which the relocation is
5062 /* The final GP value to be used for the relocatable, executable, or
5063 shared object file being produced. */
5065 /* The place (section offset or address) of the storage unit being
5068 /* The value of GP used to create the relocatable object. */
5070 /* The offset into the global offset table at which the address of
5071 the relocation entry symbol, adjusted by the addend, resides
5072 during execution. */
5073 bfd_vma g = MINUS_ONE;
5074 /* The section in which the symbol referenced by the relocation is
5076 asection *sec = NULL;
5077 struct mips_elf_link_hash_entry *h = NULL;
5078 /* TRUE if the symbol referred to by this relocation is a local
5080 bfd_boolean local_p, was_local_p;
5081 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5082 bfd_boolean gp_disp_p = FALSE;
5083 /* TRUE if the symbol referred to by this relocation is
5084 "__gnu_local_gp". */
5085 bfd_boolean gnu_local_gp_p = FALSE;
5086 Elf_Internal_Shdr *symtab_hdr;
5088 unsigned long r_symndx;
5090 /* TRUE if overflow occurred during the calculation of the
5091 relocation value. */
5092 bfd_boolean overflowed_p;
5093 /* TRUE if this relocation refers to a MIPS16 function. */
5094 bfd_boolean target_is_16_bit_code_p = FALSE;
5095 bfd_boolean target_is_micromips_code_p = FALSE;
5096 struct mips_elf_link_hash_table *htab;
5099 dynobj = elf_hash_table (info)->dynobj;
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5103 /* Parse the relocation. */
5104 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5105 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5106 p = (input_section->output_section->vma
5107 + input_section->output_offset
5108 + relocation->r_offset);
5110 /* Assume that there will be no overflow. */
5111 overflowed_p = FALSE;
5113 /* Figure out whether or not the symbol is local, and get the offset
5114 used in the array of hash table entries. */
5115 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5116 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5118 was_local_p = local_p;
5119 if (! elf_bad_symtab (input_bfd))
5120 extsymoff = symtab_hdr->sh_info;
5123 /* The symbol table does not follow the rule that local symbols
5124 must come before globals. */
5128 /* Figure out the value of the symbol. */
5131 Elf_Internal_Sym *sym;
5133 sym = local_syms + r_symndx;
5134 sec = local_sections[r_symndx];
5136 symbol = sec->output_section->vma + sec->output_offset;
5137 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5138 || (sec->flags & SEC_MERGE))
5139 symbol += sym->st_value;
5140 if ((sec->flags & SEC_MERGE)
5141 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5143 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5145 addend += sec->output_section->vma + sec->output_offset;
5148 /* MIPS16/microMIPS text labels should be treated as odd. */
5149 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5152 /* Record the name of this symbol, for our caller. */
5153 *namep = bfd_elf_string_from_elf_section (input_bfd,
5154 symtab_hdr->sh_link,
5157 *namep = bfd_section_name (input_bfd, sec);
5159 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5160 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5164 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5166 /* For global symbols we look up the symbol in the hash-table. */
5167 h = ((struct mips_elf_link_hash_entry *)
5168 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5169 /* Find the real hash-table entry for this symbol. */
5170 while (h->root.root.type == bfd_link_hash_indirect
5171 || h->root.root.type == bfd_link_hash_warning)
5172 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5174 /* Record the name of this symbol, for our caller. */
5175 *namep = h->root.root.root.string;
5177 /* See if this is the special _gp_disp symbol. Note that such a
5178 symbol must always be a global symbol. */
5179 if (strcmp (*namep, "_gp_disp") == 0
5180 && ! NEWABI_P (input_bfd))
5182 /* Relocations against _gp_disp are permitted only with
5183 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5184 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5185 return bfd_reloc_notsupported;
5189 /* See if this is the special _gp symbol. Note that such a
5190 symbol must always be a global symbol. */
5191 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5192 gnu_local_gp_p = TRUE;
5195 /* If this symbol is defined, calculate its address. Note that
5196 _gp_disp is a magic symbol, always implicitly defined by the
5197 linker, so it's inappropriate to check to see whether or not
5199 else if ((h->root.root.type == bfd_link_hash_defined
5200 || h->root.root.type == bfd_link_hash_defweak)
5201 && h->root.root.u.def.section)
5203 sec = h->root.root.u.def.section;
5204 if (sec->output_section)
5205 symbol = (h->root.root.u.def.value
5206 + sec->output_section->vma
5207 + sec->output_offset);
5209 symbol = h->root.root.u.def.value;
5211 else if (h->root.root.type == bfd_link_hash_undefweak)
5212 /* We allow relocations against undefined weak symbols, giving
5213 it the value zero, so that you can undefined weak functions
5214 and check to see if they exist by looking at their
5217 else if (info->unresolved_syms_in_objects == RM_IGNORE
5218 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5220 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5221 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5223 /* If this is a dynamic link, we should have created a
5224 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5225 in in _bfd_mips_elf_create_dynamic_sections.
5226 Otherwise, we should define the symbol with a value of 0.
5227 FIXME: It should probably get into the symbol table
5229 BFD_ASSERT (! info->shared);
5230 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5233 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5235 /* This is an optional symbol - an Irix specific extension to the
5236 ELF spec. Ignore it for now.
5237 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5238 than simply ignoring them, but we do not handle this for now.
5239 For information see the "64-bit ELF Object File Specification"
5240 which is available from here:
5241 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5244 else if ((*info->callbacks->undefined_symbol)
5245 (info, h->root.root.root.string, input_bfd,
5246 input_section, relocation->r_offset,
5247 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5248 || ELF_ST_VISIBILITY (h->root.other)))
5250 return bfd_reloc_undefined;
5254 return bfd_reloc_notsupported;
5257 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5258 /* If the output section is the PLT section,
5259 then the target is not microMIPS. */
5260 target_is_micromips_code_p = (htab->splt != sec
5261 && ELF_ST_IS_MICROMIPS (h->root.other));
5264 /* If this is a reference to a 16-bit function with a stub, we need
5265 to redirect the relocation to the stub unless:
5267 (a) the relocation is for a MIPS16 JAL;
5269 (b) the relocation is for a MIPS16 PIC call, and there are no
5270 non-MIPS16 uses of the GOT slot; or
5272 (c) the section allows direct references to MIPS16 functions. */
5273 if (r_type != R_MIPS16_26
5274 && !info->relocatable
5276 && h->fn_stub != NULL
5277 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5279 && elf_tdata (input_bfd)->local_stubs != NULL
5280 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5281 && !section_allows_mips16_refs_p (input_section))
5283 /* This is a 32- or 64-bit call to a 16-bit function. We should
5284 have already noticed that we were going to need the
5288 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5293 BFD_ASSERT (h->need_fn_stub);
5296 /* If a LA25 header for the stub itself exists, point to the
5297 prepended LUI/ADDIU sequence. */
5298 sec = h->la25_stub->stub_section;
5299 value = h->la25_stub->offset;
5308 symbol = sec->output_section->vma + sec->output_offset + value;
5309 /* The target is 16-bit, but the stub isn't. */
5310 target_is_16_bit_code_p = FALSE;
5312 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5313 need to redirect the call to the stub. Note that we specifically
5314 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5315 use an indirect stub instead. */
5316 else if (r_type == R_MIPS16_26 && !info->relocatable
5317 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5319 && elf_tdata (input_bfd)->local_call_stubs != NULL
5320 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5321 && !target_is_16_bit_code_p)
5324 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5327 /* If both call_stub and call_fp_stub are defined, we can figure
5328 out which one to use by checking which one appears in the input
5330 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5335 for (o = input_bfd->sections; o != NULL; o = o->next)
5337 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5339 sec = h->call_fp_stub;
5346 else if (h->call_stub != NULL)
5349 sec = h->call_fp_stub;
5352 BFD_ASSERT (sec->size > 0);
5353 symbol = sec->output_section->vma + sec->output_offset;
5355 /* If this is a direct call to a PIC function, redirect to the
5357 else if (h != NULL && h->la25_stub
5358 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5359 target_is_16_bit_code_p))
5360 symbol = (h->la25_stub->stub_section->output_section->vma
5361 + h->la25_stub->stub_section->output_offset
5362 + h->la25_stub->offset);
5364 /* Make sure MIPS16 and microMIPS are not used together. */
5365 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5366 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5368 (*_bfd_error_handler)
5369 (_("MIPS16 and microMIPS functions cannot call each other"));
5370 return bfd_reloc_notsupported;
5373 /* Calls from 16-bit code to 32-bit code and vice versa require the
5374 mode change. However, we can ignore calls to undefined weak symbols,
5375 which should never be executed at runtime. This exception is important
5376 because the assembly writer may have "known" that any definition of the
5377 symbol would be 16-bit code, and that direct jumps were therefore
5379 *cross_mode_jump_p = (!info->relocatable
5380 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5381 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5382 || (r_type == R_MICROMIPS_26_S1
5383 && !target_is_micromips_code_p)
5384 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5385 && (target_is_16_bit_code_p
5386 || target_is_micromips_code_p))));
5388 local_p = (h == NULL
5389 || (h->got_only_for_calls
5390 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5391 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5393 gp0 = _bfd_get_gp_value (input_bfd);
5394 gp = _bfd_get_gp_value (abfd);
5396 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5401 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5402 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5403 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5404 if (got_page_reloc_p (r_type) && !local_p)
5406 r_type = (micromips_reloc_p (r_type)
5407 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5411 /* If we haven't already determined the GOT offset, and we're going
5412 to need it, get it now. */
5415 case R_MIPS16_CALL16:
5416 case R_MIPS16_GOT16:
5419 case R_MIPS_GOT_DISP:
5420 case R_MIPS_GOT_HI16:
5421 case R_MIPS_CALL_HI16:
5422 case R_MIPS_GOT_LO16:
5423 case R_MIPS_CALL_LO16:
5424 case R_MICROMIPS_CALL16:
5425 case R_MICROMIPS_GOT16:
5426 case R_MICROMIPS_GOT_DISP:
5427 case R_MICROMIPS_GOT_HI16:
5428 case R_MICROMIPS_CALL_HI16:
5429 case R_MICROMIPS_GOT_LO16:
5430 case R_MICROMIPS_CALL_LO16:
5432 case R_MIPS_TLS_GOTTPREL:
5433 case R_MIPS_TLS_LDM:
5434 case R_MIPS16_TLS_GD:
5435 case R_MIPS16_TLS_GOTTPREL:
5436 case R_MIPS16_TLS_LDM:
5437 case R_MICROMIPS_TLS_GD:
5438 case R_MICROMIPS_TLS_GOTTPREL:
5439 case R_MICROMIPS_TLS_LDM:
5440 /* Find the index into the GOT where this value is located. */
5441 if (tls_ldm_reloc_p (r_type))
5443 g = mips_elf_local_got_index (abfd, input_bfd, info,
5444 0, 0, NULL, r_type);
5446 return bfd_reloc_outofrange;
5450 /* On VxWorks, CALL relocations should refer to the .got.plt
5451 entry, which is initialized to point at the PLT stub. */
5452 if (htab->is_vxworks
5453 && (call_hi16_reloc_p (r_type)
5454 || call_lo16_reloc_p (r_type)
5455 || call16_reloc_p (r_type)))
5457 BFD_ASSERT (addend == 0);
5458 BFD_ASSERT (h->root.needs_plt);
5459 g = mips_elf_gotplt_index (info, &h->root);
5463 BFD_ASSERT (addend == 0);
5464 g = mips_elf_global_got_index (dynobj, input_bfd,
5465 &h->root, r_type, info);
5466 if (h->tls_type == GOT_NORMAL
5467 && !elf_hash_table (info)->dynamic_sections_created)
5468 /* This is a static link. We must initialize the GOT entry. */
5469 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5472 else if (!htab->is_vxworks
5473 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5474 /* The calculation below does not involve "g". */
5478 g = mips_elf_local_got_index (abfd, input_bfd, info,
5479 symbol + addend, r_symndx, h, r_type);
5481 return bfd_reloc_outofrange;
5484 /* Convert GOT indices to actual offsets. */
5485 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5489 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5490 symbols are resolved by the loader. Add them to .rela.dyn. */
5491 if (h != NULL && is_gott_symbol (info, &h->root))
5493 Elf_Internal_Rela outrel;
5497 s = mips_elf_rel_dyn_section (info, FALSE);
5498 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5500 outrel.r_offset = (input_section->output_section->vma
5501 + input_section->output_offset
5502 + relocation->r_offset);
5503 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5504 outrel.r_addend = addend;
5505 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5507 /* If we've written this relocation for a readonly section,
5508 we need to set DF_TEXTREL again, so that we do not delete the
5510 if (MIPS_ELF_READONLY_SECTION (input_section))
5511 info->flags |= DF_TEXTREL;
5514 return bfd_reloc_ok;
5517 /* Figure out what kind of relocation is being performed. */
5521 return bfd_reloc_continue;
5524 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5525 overflowed_p = mips_elf_overflow_p (value, 16);
5532 || (htab->root.dynamic_sections_created
5534 && h->root.def_dynamic
5535 && !h->root.def_regular
5536 && !h->has_static_relocs))
5537 && r_symndx != STN_UNDEF
5539 || h->root.root.type != bfd_link_hash_undefweak
5540 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5541 && (input_section->flags & SEC_ALLOC) != 0)
5543 /* If we're creating a shared library, then we can't know
5544 where the symbol will end up. So, we create a relocation
5545 record in the output, and leave the job up to the dynamic
5546 linker. We must do the same for executable references to
5547 shared library symbols, unless we've decided to use copy
5548 relocs or PLTs instead. */
5550 if (!mips_elf_create_dynamic_relocation (abfd,
5558 return bfd_reloc_undefined;
5562 if (r_type != R_MIPS_REL32)
5563 value = symbol + addend;
5567 value &= howto->dst_mask;
5571 value = symbol + addend - p;
5572 value &= howto->dst_mask;
5576 /* The calculation for R_MIPS16_26 is just the same as for an
5577 R_MIPS_26. It's only the storage of the relocated field into
5578 the output file that's different. That's handled in
5579 mips_elf_perform_relocation. So, we just fall through to the
5580 R_MIPS_26 case here. */
5582 case R_MICROMIPS_26_S1:
5586 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5587 the correct ISA mode selector and bit 1 must be 0. */
5588 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5589 return bfd_reloc_outofrange;
5591 /* Shift is 2, unusually, for microMIPS JALX. */
5592 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5595 value = addend | ((p + 4) & (0xfc000000 << shift));
5597 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5598 value = (value + symbol) >> shift;
5599 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5600 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5601 value &= howto->dst_mask;
5605 case R_MIPS_TLS_DTPREL_HI16:
5606 case R_MIPS16_TLS_DTPREL_HI16:
5607 case R_MICROMIPS_TLS_DTPREL_HI16:
5608 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5612 case R_MIPS_TLS_DTPREL_LO16:
5613 case R_MIPS_TLS_DTPREL32:
5614 case R_MIPS_TLS_DTPREL64:
5615 case R_MIPS16_TLS_DTPREL_LO16:
5616 case R_MICROMIPS_TLS_DTPREL_LO16:
5617 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5620 case R_MIPS_TLS_TPREL_HI16:
5621 case R_MIPS16_TLS_TPREL_HI16:
5622 case R_MICROMIPS_TLS_TPREL_HI16:
5623 value = (mips_elf_high (addend + symbol - tprel_base (info))
5627 case R_MIPS_TLS_TPREL_LO16:
5628 case R_MIPS_TLS_TPREL32:
5629 case R_MIPS_TLS_TPREL64:
5630 case R_MIPS16_TLS_TPREL_LO16:
5631 case R_MICROMIPS_TLS_TPREL_LO16:
5632 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5637 case R_MICROMIPS_HI16:
5640 value = mips_elf_high (addend + symbol);
5641 value &= howto->dst_mask;
5645 /* For MIPS16 ABI code we generate this sequence
5646 0: li $v0,%hi(_gp_disp)
5647 4: addiupc $v1,%lo(_gp_disp)
5651 So the offsets of hi and lo relocs are the same, but the
5652 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5653 ADDIUPC clears the low two bits of the instruction address,
5654 so the base is ($t9 + 4) & ~3. */
5655 if (r_type == R_MIPS16_HI16)
5656 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5657 /* The microMIPS .cpload sequence uses the same assembly
5658 instructions as the traditional psABI version, but the
5659 incoming $t9 has the low bit set. */
5660 else if (r_type == R_MICROMIPS_HI16)
5661 value = mips_elf_high (addend + gp - p - 1);
5663 value = mips_elf_high (addend + gp - p);
5664 overflowed_p = mips_elf_overflow_p (value, 16);
5670 case R_MICROMIPS_LO16:
5671 case R_MICROMIPS_HI0_LO16:
5673 value = (symbol + addend) & howto->dst_mask;
5676 /* See the comment for R_MIPS16_HI16 above for the reason
5677 for this conditional. */
5678 if (r_type == R_MIPS16_LO16)
5679 value = addend + gp - (p & ~(bfd_vma) 0x3);
5680 else if (r_type == R_MICROMIPS_LO16
5681 || r_type == R_MICROMIPS_HI0_LO16)
5682 value = addend + gp - p + 3;
5684 value = addend + gp - p + 4;
5685 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5686 for overflow. But, on, say, IRIX5, relocations against
5687 _gp_disp are normally generated from the .cpload
5688 pseudo-op. It generates code that normally looks like
5691 lui $gp,%hi(_gp_disp)
5692 addiu $gp,$gp,%lo(_gp_disp)
5695 Here $t9 holds the address of the function being called,
5696 as required by the MIPS ELF ABI. The R_MIPS_LO16
5697 relocation can easily overflow in this situation, but the
5698 R_MIPS_HI16 relocation will handle the overflow.
5699 Therefore, we consider this a bug in the MIPS ABI, and do
5700 not check for overflow here. */
5704 case R_MIPS_LITERAL:
5705 case R_MICROMIPS_LITERAL:
5706 /* Because we don't merge literal sections, we can handle this
5707 just like R_MIPS_GPREL16. In the long run, we should merge
5708 shared literals, and then we will need to additional work
5713 case R_MIPS16_GPREL:
5714 /* The R_MIPS16_GPREL performs the same calculation as
5715 R_MIPS_GPREL16, but stores the relocated bits in a different
5716 order. We don't need to do anything special here; the
5717 differences are handled in mips_elf_perform_relocation. */
5718 case R_MIPS_GPREL16:
5719 case R_MICROMIPS_GPREL7_S2:
5720 case R_MICROMIPS_GPREL16:
5721 /* Only sign-extend the addend if it was extracted from the
5722 instruction. If the addend was separate, leave it alone,
5723 otherwise we may lose significant bits. */
5724 if (howto->partial_inplace)
5725 addend = _bfd_mips_elf_sign_extend (addend, 16);
5726 value = symbol + addend - gp;
5727 /* If the symbol was local, any earlier relocatable links will
5728 have adjusted its addend with the gp offset, so compensate
5729 for that now. Don't do it for symbols forced local in this
5730 link, though, since they won't have had the gp offset applied
5734 overflowed_p = mips_elf_overflow_p (value, 16);
5737 case R_MIPS16_GOT16:
5738 case R_MIPS16_CALL16:
5741 case R_MICROMIPS_GOT16:
5742 case R_MICROMIPS_CALL16:
5743 /* VxWorks does not have separate local and global semantics for
5744 R_MIPS*_GOT16; every relocation evaluates to "G". */
5745 if (!htab->is_vxworks && local_p)
5747 value = mips_elf_got16_entry (abfd, input_bfd, info,
5748 symbol + addend, !was_local_p);
5749 if (value == MINUS_ONE)
5750 return bfd_reloc_outofrange;
5752 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5753 overflowed_p = mips_elf_overflow_p (value, 16);
5760 case R_MIPS_TLS_GOTTPREL:
5761 case R_MIPS_TLS_LDM:
5762 case R_MIPS_GOT_DISP:
5763 case R_MIPS16_TLS_GD:
5764 case R_MIPS16_TLS_GOTTPREL:
5765 case R_MIPS16_TLS_LDM:
5766 case R_MICROMIPS_TLS_GD:
5767 case R_MICROMIPS_TLS_GOTTPREL:
5768 case R_MICROMIPS_TLS_LDM:
5769 case R_MICROMIPS_GOT_DISP:
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5774 case R_MIPS_GPREL32:
5775 value = (addend + symbol + gp0 - gp);
5777 value &= howto->dst_mask;
5781 case R_MIPS_GNU_REL16_S2:
5782 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5783 overflowed_p = mips_elf_overflow_p (value, 18);
5784 value >>= howto->rightshift;
5785 value &= howto->dst_mask;
5788 case R_MICROMIPS_PC7_S1:
5789 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5790 overflowed_p = mips_elf_overflow_p (value, 8);
5791 value >>= howto->rightshift;
5792 value &= howto->dst_mask;
5795 case R_MICROMIPS_PC10_S1:
5796 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5797 overflowed_p = mips_elf_overflow_p (value, 11);
5798 value >>= howto->rightshift;
5799 value &= howto->dst_mask;
5802 case R_MICROMIPS_PC16_S1:
5803 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5804 overflowed_p = mips_elf_overflow_p (value, 17);
5805 value >>= howto->rightshift;
5806 value &= howto->dst_mask;
5809 case R_MICROMIPS_PC23_S2:
5810 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5811 overflowed_p = mips_elf_overflow_p (value, 25);
5812 value >>= howto->rightshift;
5813 value &= howto->dst_mask;
5816 case R_MIPS_GOT_HI16:
5817 case R_MIPS_CALL_HI16:
5818 case R_MICROMIPS_GOT_HI16:
5819 case R_MICROMIPS_CALL_HI16:
5820 /* We're allowed to handle these two relocations identically.
5821 The dynamic linker is allowed to handle the CALL relocations
5822 differently by creating a lazy evaluation stub. */
5824 value = mips_elf_high (value);
5825 value &= howto->dst_mask;
5828 case R_MIPS_GOT_LO16:
5829 case R_MIPS_CALL_LO16:
5830 case R_MICROMIPS_GOT_LO16:
5831 case R_MICROMIPS_CALL_LO16:
5832 value = g & howto->dst_mask;
5835 case R_MIPS_GOT_PAGE:
5836 case R_MICROMIPS_GOT_PAGE:
5837 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5838 if (value == MINUS_ONE)
5839 return bfd_reloc_outofrange;
5840 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5841 overflowed_p = mips_elf_overflow_p (value, 16);
5844 case R_MIPS_GOT_OFST:
5845 case R_MICROMIPS_GOT_OFST:
5847 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5854 case R_MICROMIPS_SUB:
5855 value = symbol - addend;
5856 value &= howto->dst_mask;
5860 case R_MICROMIPS_HIGHER:
5861 value = mips_elf_higher (addend + symbol);
5862 value &= howto->dst_mask;
5865 case R_MIPS_HIGHEST:
5866 case R_MICROMIPS_HIGHEST:
5867 value = mips_elf_highest (addend + symbol);
5868 value &= howto->dst_mask;
5871 case R_MIPS_SCN_DISP:
5872 case R_MICROMIPS_SCN_DISP:
5873 value = symbol + addend - sec->output_offset;
5874 value &= howto->dst_mask;
5878 case R_MICROMIPS_JALR:
5879 /* This relocation is only a hint. In some cases, we optimize
5880 it into a bal instruction. But we don't try to optimize
5881 when the symbol does not resolve locally. */
5882 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5883 return bfd_reloc_continue;
5884 value = symbol + addend;
5888 case R_MIPS_GNU_VTINHERIT:
5889 case R_MIPS_GNU_VTENTRY:
5890 /* We don't do anything with these at present. */
5891 return bfd_reloc_continue;
5894 /* An unrecognized relocation type. */
5895 return bfd_reloc_notsupported;
5898 /* Store the VALUE for our caller. */
5900 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5903 /* Obtain the field relocated by RELOCATION. */
5906 mips_elf_obtain_contents (reloc_howto_type *howto,
5907 const Elf_Internal_Rela *relocation,
5908 bfd *input_bfd, bfd_byte *contents)
5911 bfd_byte *location = contents + relocation->r_offset;
5913 /* Obtain the bytes. */
5914 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5919 /* It has been determined that the result of the RELOCATION is the
5920 VALUE. Use HOWTO to place VALUE into the output file at the
5921 appropriate position. The SECTION is the section to which the
5923 CROSS_MODE_JUMP_P is true if the relocation field
5924 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5926 Returns FALSE if anything goes wrong. */
5929 mips_elf_perform_relocation (struct bfd_link_info *info,
5930 reloc_howto_type *howto,
5931 const Elf_Internal_Rela *relocation,
5932 bfd_vma value, bfd *input_bfd,
5933 asection *input_section, bfd_byte *contents,
5934 bfd_boolean cross_mode_jump_p)
5938 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5940 /* Figure out where the relocation is occurring. */
5941 location = contents + relocation->r_offset;
5943 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5945 /* Obtain the current value. */
5946 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5948 /* Clear the field we are setting. */
5949 x &= ~howto->dst_mask;
5951 /* Set the field. */
5952 x |= (value & howto->dst_mask);
5954 /* If required, turn JAL into JALX. */
5955 if (cross_mode_jump_p && jal_reloc_p (r_type))
5958 bfd_vma opcode = x >> 26;
5959 bfd_vma jalx_opcode;
5961 /* Check to see if the opcode is already JAL or JALX. */
5962 if (r_type == R_MIPS16_26)
5964 ok = ((opcode == 0x6) || (opcode == 0x7));
5967 else if (r_type == R_MICROMIPS_26_S1)
5969 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5974 ok = ((opcode == 0x3) || (opcode == 0x1d));
5978 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5979 convert J or JALS to JALX. */
5982 (*_bfd_error_handler)
5983 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5986 (unsigned long) relocation->r_offset);
5987 bfd_set_error (bfd_error_bad_value);
5991 /* Make this the JALX opcode. */
5992 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5995 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5997 if (!info->relocatable
5998 && !cross_mode_jump_p
5999 && ((JAL_TO_BAL_P (input_bfd)
6000 && r_type == R_MIPS_26
6001 && (x >> 26) == 0x3) /* jal addr */
6002 || (JALR_TO_BAL_P (input_bfd)
6003 && r_type == R_MIPS_JALR
6004 && x == 0x0320f809) /* jalr t9 */
6005 || (JR_TO_B_P (input_bfd)
6006 && r_type == R_MIPS_JALR
6007 && x == 0x03200008))) /* jr t9 */
6013 addr = (input_section->output_section->vma
6014 + input_section->output_offset
6015 + relocation->r_offset
6017 if (r_type == R_MIPS_26)
6018 dest = (value << 2) | ((addr >> 28) << 28);
6022 if (off <= 0x1ffff && off >= -0x20000)
6024 if (x == 0x03200008) /* jr t9 */
6025 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6027 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6031 /* Put the value into the output. */
6032 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6034 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6040 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6041 is the original relocation, which is now being transformed into a
6042 dynamic relocation. The ADDENDP is adjusted if necessary; the
6043 caller should store the result in place of the original addend. */
6046 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6047 struct bfd_link_info *info,
6048 const Elf_Internal_Rela *rel,
6049 struct mips_elf_link_hash_entry *h,
6050 asection *sec, bfd_vma symbol,
6051 bfd_vma *addendp, asection *input_section)
6053 Elf_Internal_Rela outrel[3];
6058 bfd_boolean defined_p;
6059 struct mips_elf_link_hash_table *htab;
6061 htab = mips_elf_hash_table (info);
6062 BFD_ASSERT (htab != NULL);
6064 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6065 dynobj = elf_hash_table (info)->dynobj;
6066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6067 BFD_ASSERT (sreloc != NULL);
6068 BFD_ASSERT (sreloc->contents != NULL);
6069 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6072 outrel[0].r_offset =
6073 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6074 if (ABI_64_P (output_bfd))
6076 outrel[1].r_offset =
6077 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6078 outrel[2].r_offset =
6079 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6082 if (outrel[0].r_offset == MINUS_ONE)
6083 /* The relocation field has been deleted. */
6086 if (outrel[0].r_offset == MINUS_TWO)
6088 /* The relocation field has been converted into a relative value of
6089 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6090 the field to be fully relocated, so add in the symbol's value. */
6095 /* We must now calculate the dynamic symbol table index to use
6096 in the relocation. */
6097 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6099 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6100 indx = h->root.dynindx;
6101 if (SGI_COMPAT (output_bfd))
6102 defined_p = h->root.def_regular;
6104 /* ??? glibc's ld.so just adds the final GOT entry to the
6105 relocation field. It therefore treats relocs against
6106 defined symbols in the same way as relocs against
6107 undefined symbols. */
6112 if (sec != NULL && bfd_is_abs_section (sec))
6114 else if (sec == NULL || sec->owner == NULL)
6116 bfd_set_error (bfd_error_bad_value);
6121 indx = elf_section_data (sec->output_section)->dynindx;
6124 asection *osec = htab->root.text_index_section;
6125 indx = elf_section_data (osec)->dynindx;
6131 /* Instead of generating a relocation using the section
6132 symbol, we may as well make it a fully relative
6133 relocation. We want to avoid generating relocations to
6134 local symbols because we used to generate them
6135 incorrectly, without adding the original symbol value,
6136 which is mandated by the ABI for section symbols. In
6137 order to give dynamic loaders and applications time to
6138 phase out the incorrect use, we refrain from emitting
6139 section-relative relocations. It's not like they're
6140 useful, after all. This should be a bit more efficient
6142 /* ??? Although this behavior is compatible with glibc's ld.so,
6143 the ABI says that relocations against STN_UNDEF should have
6144 a symbol value of 0. Irix rld honors this, so relocations
6145 against STN_UNDEF have no effect. */
6146 if (!SGI_COMPAT (output_bfd))
6151 /* If the relocation was previously an absolute relocation and
6152 this symbol will not be referred to by the relocation, we must
6153 adjust it by the value we give it in the dynamic symbol table.
6154 Otherwise leave the job up to the dynamic linker. */
6155 if (defined_p && r_type != R_MIPS_REL32)
6158 if (htab->is_vxworks)
6159 /* VxWorks uses non-relative relocations for this. */
6160 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6162 /* The relocation is always an REL32 relocation because we don't
6163 know where the shared library will wind up at load-time. */
6164 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6167 /* For strict adherence to the ABI specification, we should
6168 generate a R_MIPS_64 relocation record by itself before the
6169 _REL32/_64 record as well, such that the addend is read in as
6170 a 64-bit value (REL32 is a 32-bit relocation, after all).
6171 However, since none of the existing ELF64 MIPS dynamic
6172 loaders seems to care, we don't waste space with these
6173 artificial relocations. If this turns out to not be true,
6174 mips_elf_allocate_dynamic_relocation() should be tweaked so
6175 as to make room for a pair of dynamic relocations per
6176 invocation if ABI_64_P, and here we should generate an
6177 additional relocation record with R_MIPS_64 by itself for a
6178 NULL symbol before this relocation record. */
6179 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6180 ABI_64_P (output_bfd)
6183 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6185 /* Adjust the output offset of the relocation to reference the
6186 correct location in the output file. */
6187 outrel[0].r_offset += (input_section->output_section->vma
6188 + input_section->output_offset);
6189 outrel[1].r_offset += (input_section->output_section->vma
6190 + input_section->output_offset);
6191 outrel[2].r_offset += (input_section->output_section->vma
6192 + input_section->output_offset);
6194 /* Put the relocation back out. We have to use the special
6195 relocation outputter in the 64-bit case since the 64-bit
6196 relocation format is non-standard. */
6197 if (ABI_64_P (output_bfd))
6199 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6200 (output_bfd, &outrel[0],
6202 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6204 else if (htab->is_vxworks)
6206 /* VxWorks uses RELA rather than REL dynamic relocations. */
6207 outrel[0].r_addend = *addendp;
6208 bfd_elf32_swap_reloca_out
6209 (output_bfd, &outrel[0],
6211 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6214 bfd_elf32_swap_reloc_out
6215 (output_bfd, &outrel[0],
6216 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6218 /* We've now added another relocation. */
6219 ++sreloc->reloc_count;
6221 /* Make sure the output section is writable. The dynamic linker
6222 will be writing to it. */
6223 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6226 /* On IRIX5, make an entry of compact relocation info. */
6227 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6229 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6234 Elf32_crinfo cptrel;
6236 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6237 cptrel.vaddr = (rel->r_offset
6238 + input_section->output_section->vma
6239 + input_section->output_offset);
6240 if (r_type == R_MIPS_REL32)
6241 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6243 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6244 mips_elf_set_cr_dist2to (cptrel, 0);
6245 cptrel.konst = *addendp;
6247 cr = (scpt->contents
6248 + sizeof (Elf32_External_compact_rel));
6249 mips_elf_set_cr_relvaddr (cptrel, 0);
6250 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6251 ((Elf32_External_crinfo *) cr
6252 + scpt->reloc_count));
6253 ++scpt->reloc_count;
6257 /* If we've written this relocation for a readonly section,
6258 we need to set DF_TEXTREL again, so that we do not delete the
6260 if (MIPS_ELF_READONLY_SECTION (input_section))
6261 info->flags |= DF_TEXTREL;
6266 /* Return the MACH for a MIPS e_flags value. */
6269 _bfd_elf_mips_mach (flagword flags)
6271 switch (flags & EF_MIPS_MACH)
6273 case E_MIPS_MACH_3900:
6274 return bfd_mach_mips3900;
6276 case E_MIPS_MACH_4010:
6277 return bfd_mach_mips4010;
6279 case E_MIPS_MACH_4100:
6280 return bfd_mach_mips4100;
6282 case E_MIPS_MACH_4111:
6283 return bfd_mach_mips4111;
6285 case E_MIPS_MACH_4120:
6286 return bfd_mach_mips4120;
6288 case E_MIPS_MACH_4650:
6289 return bfd_mach_mips4650;
6291 case E_MIPS_MACH_5400:
6292 return bfd_mach_mips5400;
6294 case E_MIPS_MACH_5500:
6295 return bfd_mach_mips5500;
6297 case E_MIPS_MACH_5900:
6298 return bfd_mach_mips5900;
6300 case E_MIPS_MACH_9000:
6301 return bfd_mach_mips9000;
6303 case E_MIPS_MACH_SB1:
6304 return bfd_mach_mips_sb1;
6306 case E_MIPS_MACH_LS2E:
6307 return bfd_mach_mips_loongson_2e;
6309 case E_MIPS_MACH_LS2F:
6310 return bfd_mach_mips_loongson_2f;
6312 case E_MIPS_MACH_LS3A:
6313 return bfd_mach_mips_loongson_3a;
6315 case E_MIPS_MACH_OCTEON2:
6316 return bfd_mach_mips_octeon2;
6318 case E_MIPS_MACH_OCTEON:
6319 return bfd_mach_mips_octeon;
6321 case E_MIPS_MACH_XLR:
6322 return bfd_mach_mips_xlr;
6325 switch (flags & EF_MIPS_ARCH)
6329 return bfd_mach_mips3000;
6332 return bfd_mach_mips6000;
6335 return bfd_mach_mips4000;
6338 return bfd_mach_mips8000;
6341 return bfd_mach_mips5;
6343 case E_MIPS_ARCH_32:
6344 return bfd_mach_mipsisa32;
6346 case E_MIPS_ARCH_64:
6347 return bfd_mach_mipsisa64;
6349 case E_MIPS_ARCH_32R2:
6350 return bfd_mach_mipsisa32r2;
6352 case E_MIPS_ARCH_64R2:
6353 return bfd_mach_mipsisa64r2;
6360 /* Return printable name for ABI. */
6362 static INLINE char *
6363 elf_mips_abi_name (bfd *abfd)
6367 flags = elf_elfheader (abfd)->e_flags;
6368 switch (flags & EF_MIPS_ABI)
6371 if (ABI_N32_P (abfd))
6373 else if (ABI_64_P (abfd))
6377 case E_MIPS_ABI_O32:
6379 case E_MIPS_ABI_O64:
6381 case E_MIPS_ABI_EABI32:
6383 case E_MIPS_ABI_EABI64:
6386 return "unknown abi";
6390 /* MIPS ELF uses two common sections. One is the usual one, and the
6391 other is for small objects. All the small objects are kept
6392 together, and then referenced via the gp pointer, which yields
6393 faster assembler code. This is what we use for the small common
6394 section. This approach is copied from ecoff.c. */
6395 static asection mips_elf_scom_section;
6396 static asymbol mips_elf_scom_symbol;
6397 static asymbol *mips_elf_scom_symbol_ptr;
6399 /* MIPS ELF also uses an acommon section, which represents an
6400 allocated common symbol which may be overridden by a
6401 definition in a shared library. */
6402 static asection mips_elf_acom_section;
6403 static asymbol mips_elf_acom_symbol;
6404 static asymbol *mips_elf_acom_symbol_ptr;
6406 /* This is used for both the 32-bit and the 64-bit ABI. */
6409 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6411 elf_symbol_type *elfsym;
6413 /* Handle the special MIPS section numbers that a symbol may use. */
6414 elfsym = (elf_symbol_type *) asym;
6415 switch (elfsym->internal_elf_sym.st_shndx)
6417 case SHN_MIPS_ACOMMON:
6418 /* This section is used in a dynamically linked executable file.
6419 It is an allocated common section. The dynamic linker can
6420 either resolve these symbols to something in a shared
6421 library, or it can just leave them here. For our purposes,
6422 we can consider these symbols to be in a new section. */
6423 if (mips_elf_acom_section.name == NULL)
6425 /* Initialize the acommon section. */
6426 mips_elf_acom_section.name = ".acommon";
6427 mips_elf_acom_section.flags = SEC_ALLOC;
6428 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6429 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6430 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6431 mips_elf_acom_symbol.name = ".acommon";
6432 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6433 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6434 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6436 asym->section = &mips_elf_acom_section;
6440 /* Common symbols less than the GP size are automatically
6441 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6442 if (asym->value > elf_gp_size (abfd)
6443 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6444 || IRIX_COMPAT (abfd) == ict_irix6)
6447 case SHN_MIPS_SCOMMON:
6448 if (mips_elf_scom_section.name == NULL)
6450 /* Initialize the small common section. */
6451 mips_elf_scom_section.name = ".scommon";
6452 mips_elf_scom_section.flags = SEC_IS_COMMON;
6453 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6454 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6455 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6456 mips_elf_scom_symbol.name = ".scommon";
6457 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6458 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6459 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6461 asym->section = &mips_elf_scom_section;
6462 asym->value = elfsym->internal_elf_sym.st_size;
6465 case SHN_MIPS_SUNDEFINED:
6466 asym->section = bfd_und_section_ptr;
6471 asection *section = bfd_get_section_by_name (abfd, ".text");
6473 if (section != NULL)
6475 asym->section = section;
6476 /* MIPS_TEXT is a bit special, the address is not an offset
6477 to the base of the .text section. So substract the section
6478 base address to make it an offset. */
6479 asym->value -= section->vma;
6486 asection *section = bfd_get_section_by_name (abfd, ".data");
6488 if (section != NULL)
6490 asym->section = section;
6491 /* MIPS_DATA is a bit special, the address is not an offset
6492 to the base of the .data section. So substract the section
6493 base address to make it an offset. */
6494 asym->value -= section->vma;
6500 /* If this is an odd-valued function symbol, assume it's a MIPS16
6501 or microMIPS one. */
6502 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6503 && (asym->value & 1) != 0)
6506 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6507 elfsym->internal_elf_sym.st_other
6508 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6510 elfsym->internal_elf_sym.st_other
6511 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6515 /* Implement elf_backend_eh_frame_address_size. This differs from
6516 the default in the way it handles EABI64.
6518 EABI64 was originally specified as an LP64 ABI, and that is what
6519 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6520 historically accepted the combination of -mabi=eabi and -mlong32,
6521 and this ILP32 variation has become semi-official over time.
6522 Both forms use elf32 and have pointer-sized FDE addresses.
6524 If an EABI object was generated by GCC 4.0 or above, it will have
6525 an empty .gcc_compiled_longXX section, where XX is the size of longs
6526 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6527 have no special marking to distinguish them from LP64 objects.
6529 We don't want users of the official LP64 ABI to be punished for the
6530 existence of the ILP32 variant, but at the same time, we don't want
6531 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6532 We therefore take the following approach:
6534 - If ABFD contains a .gcc_compiled_longXX section, use it to
6535 determine the pointer size.
6537 - Otherwise check the type of the first relocation. Assume that
6538 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6542 The second check is enough to detect LP64 objects generated by pre-4.0
6543 compilers because, in the kind of output generated by those compilers,
6544 the first relocation will be associated with either a CIE personality
6545 routine or an FDE start address. Furthermore, the compilers never
6546 used a special (non-pointer) encoding for this ABI.
6548 Checking the relocation type should also be safe because there is no
6549 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6553 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6555 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6557 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6559 bfd_boolean long32_p, long64_p;
6561 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6562 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6563 if (long32_p && long64_p)
6570 if (sec->reloc_count > 0
6571 && elf_section_data (sec)->relocs != NULL
6572 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6581 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6582 relocations against two unnamed section symbols to resolve to the
6583 same address. For example, if we have code like:
6585 lw $4,%got_disp(.data)($gp)
6586 lw $25,%got_disp(.text)($gp)
6589 then the linker will resolve both relocations to .data and the program
6590 will jump there rather than to .text.
6592 We can work around this problem by giving names to local section symbols.
6593 This is also what the MIPSpro tools do. */
6596 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6598 return SGI_COMPAT (abfd);
6601 /* Work over a section just before writing it out. This routine is
6602 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6603 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6607 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6609 if (hdr->sh_type == SHT_MIPS_REGINFO
6610 && hdr->sh_size > 0)
6614 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6615 BFD_ASSERT (hdr->contents == NULL);
6618 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6621 H_PUT_32 (abfd, elf_gp (abfd), buf);
6622 if (bfd_bwrite (buf, 4, abfd) != 4)
6626 if (hdr->sh_type == SHT_MIPS_OPTIONS
6627 && hdr->bfd_section != NULL
6628 && mips_elf_section_data (hdr->bfd_section) != NULL
6629 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6631 bfd_byte *contents, *l, *lend;
6633 /* We stored the section contents in the tdata field in the
6634 set_section_contents routine. We save the section contents
6635 so that we don't have to read them again.
6636 At this point we know that elf_gp is set, so we can look
6637 through the section contents to see if there is an
6638 ODK_REGINFO structure. */
6640 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6642 lend = contents + hdr->sh_size;
6643 while (l + sizeof (Elf_External_Options) <= lend)
6645 Elf_Internal_Options intopt;
6647 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6649 if (intopt.size < sizeof (Elf_External_Options))
6651 (*_bfd_error_handler)
6652 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6653 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6656 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6663 + sizeof (Elf_External_Options)
6664 + (sizeof (Elf64_External_RegInfo) - 8)),
6667 H_PUT_64 (abfd, elf_gp (abfd), buf);
6668 if (bfd_bwrite (buf, 8, abfd) != 8)
6671 else if (intopt.kind == ODK_REGINFO)
6678 + sizeof (Elf_External_Options)
6679 + (sizeof (Elf32_External_RegInfo) - 4)),
6682 H_PUT_32 (abfd, elf_gp (abfd), buf);
6683 if (bfd_bwrite (buf, 4, abfd) != 4)
6690 if (hdr->bfd_section != NULL)
6692 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6694 /* .sbss is not handled specially here because the GNU/Linux
6695 prelinker can convert .sbss from NOBITS to PROGBITS and
6696 changing it back to NOBITS breaks the binary. The entry in
6697 _bfd_mips_elf_special_sections will ensure the correct flags
6698 are set on .sbss if BFD creates it without reading it from an
6699 input file, and without special handling here the flags set
6700 on it in an input file will be followed. */
6701 if (strcmp (name, ".sdata") == 0
6702 || strcmp (name, ".lit8") == 0
6703 || strcmp (name, ".lit4") == 0)
6705 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6706 hdr->sh_type = SHT_PROGBITS;
6708 else if (strcmp (name, ".srdata") == 0)
6710 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6711 hdr->sh_type = SHT_PROGBITS;
6713 else if (strcmp (name, ".compact_rel") == 0)
6716 hdr->sh_type = SHT_PROGBITS;
6718 else if (strcmp (name, ".rtproc") == 0)
6720 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6722 unsigned int adjust;
6724 adjust = hdr->sh_size % hdr->sh_addralign;
6726 hdr->sh_size += hdr->sh_addralign - adjust;
6734 /* Handle a MIPS specific section when reading an object file. This
6735 is called when elfcode.h finds a section with an unknown type.
6736 This routine supports both the 32-bit and 64-bit ELF ABI.
6738 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6742 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6743 Elf_Internal_Shdr *hdr,
6749 /* There ought to be a place to keep ELF backend specific flags, but
6750 at the moment there isn't one. We just keep track of the
6751 sections by their name, instead. Fortunately, the ABI gives
6752 suggested names for all the MIPS specific sections, so we will
6753 probably get away with this. */
6754 switch (hdr->sh_type)
6756 case SHT_MIPS_LIBLIST:
6757 if (strcmp (name, ".liblist") != 0)
6761 if (strcmp (name, ".msym") != 0)
6764 case SHT_MIPS_CONFLICT:
6765 if (strcmp (name, ".conflict") != 0)
6768 case SHT_MIPS_GPTAB:
6769 if (! CONST_STRNEQ (name, ".gptab."))
6772 case SHT_MIPS_UCODE:
6773 if (strcmp (name, ".ucode") != 0)
6776 case SHT_MIPS_DEBUG:
6777 if (strcmp (name, ".mdebug") != 0)
6779 flags = SEC_DEBUGGING;
6781 case SHT_MIPS_REGINFO:
6782 if (strcmp (name, ".reginfo") != 0
6783 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6785 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6787 case SHT_MIPS_IFACE:
6788 if (strcmp (name, ".MIPS.interfaces") != 0)
6791 case SHT_MIPS_CONTENT:
6792 if (! CONST_STRNEQ (name, ".MIPS.content"))
6795 case SHT_MIPS_OPTIONS:
6796 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6799 case SHT_MIPS_DWARF:
6800 if (! CONST_STRNEQ (name, ".debug_")
6801 && ! CONST_STRNEQ (name, ".zdebug_"))
6804 case SHT_MIPS_SYMBOL_LIB:
6805 if (strcmp (name, ".MIPS.symlib") != 0)
6808 case SHT_MIPS_EVENTS:
6809 if (! CONST_STRNEQ (name, ".MIPS.events")
6810 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6817 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6822 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6823 (bfd_get_section_flags (abfd,
6829 /* FIXME: We should record sh_info for a .gptab section. */
6831 /* For a .reginfo section, set the gp value in the tdata information
6832 from the contents of this section. We need the gp value while
6833 processing relocs, so we just get it now. The .reginfo section
6834 is not used in the 64-bit MIPS ELF ABI. */
6835 if (hdr->sh_type == SHT_MIPS_REGINFO)
6837 Elf32_External_RegInfo ext;
6840 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6841 &ext, 0, sizeof ext))
6843 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6844 elf_gp (abfd) = s.ri_gp_value;
6847 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6848 set the gp value based on what we find. We may see both
6849 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6850 they should agree. */
6851 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6853 bfd_byte *contents, *l, *lend;
6855 contents = bfd_malloc (hdr->sh_size);
6856 if (contents == NULL)
6858 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6865 lend = contents + hdr->sh_size;
6866 while (l + sizeof (Elf_External_Options) <= lend)
6868 Elf_Internal_Options intopt;
6870 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6872 if (intopt.size < sizeof (Elf_External_Options))
6874 (*_bfd_error_handler)
6875 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6876 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6879 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6881 Elf64_Internal_RegInfo intreg;
6883 bfd_mips_elf64_swap_reginfo_in
6885 ((Elf64_External_RegInfo *)
6886 (l + sizeof (Elf_External_Options))),
6888 elf_gp (abfd) = intreg.ri_gp_value;
6890 else if (intopt.kind == ODK_REGINFO)
6892 Elf32_RegInfo intreg;
6894 bfd_mips_elf32_swap_reginfo_in
6896 ((Elf32_External_RegInfo *)
6897 (l + sizeof (Elf_External_Options))),
6899 elf_gp (abfd) = intreg.ri_gp_value;
6909 /* Set the correct type for a MIPS ELF section. We do this by the
6910 section name, which is a hack, but ought to work. This routine is
6911 used by both the 32-bit and the 64-bit ABI. */
6914 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6916 const char *name = bfd_get_section_name (abfd, sec);
6918 if (strcmp (name, ".liblist") == 0)
6920 hdr->sh_type = SHT_MIPS_LIBLIST;
6921 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6922 /* The sh_link field is set in final_write_processing. */
6924 else if (strcmp (name, ".conflict") == 0)
6925 hdr->sh_type = SHT_MIPS_CONFLICT;
6926 else if (CONST_STRNEQ (name, ".gptab."))
6928 hdr->sh_type = SHT_MIPS_GPTAB;
6929 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6930 /* The sh_info field is set in final_write_processing. */
6932 else if (strcmp (name, ".ucode") == 0)
6933 hdr->sh_type = SHT_MIPS_UCODE;
6934 else if (strcmp (name, ".mdebug") == 0)
6936 hdr->sh_type = SHT_MIPS_DEBUG;
6937 /* In a shared object on IRIX 5.3, the .mdebug section has an
6938 entsize of 0. FIXME: Does this matter? */
6939 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6940 hdr->sh_entsize = 0;
6942 hdr->sh_entsize = 1;
6944 else if (strcmp (name, ".reginfo") == 0)
6946 hdr->sh_type = SHT_MIPS_REGINFO;
6947 /* In a shared object on IRIX 5.3, the .reginfo section has an
6948 entsize of 0x18. FIXME: Does this matter? */
6949 if (SGI_COMPAT (abfd))
6951 if ((abfd->flags & DYNAMIC) != 0)
6952 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6954 hdr->sh_entsize = 1;
6957 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6959 else if (SGI_COMPAT (abfd)
6960 && (strcmp (name, ".hash") == 0
6961 || strcmp (name, ".dynamic") == 0
6962 || strcmp (name, ".dynstr") == 0))
6964 if (SGI_COMPAT (abfd))
6965 hdr->sh_entsize = 0;
6967 /* This isn't how the IRIX6 linker behaves. */
6968 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6971 else if (strcmp (name, ".got") == 0
6972 || strcmp (name, ".srdata") == 0
6973 || strcmp (name, ".sdata") == 0
6974 || strcmp (name, ".sbss") == 0
6975 || strcmp (name, ".lit4") == 0
6976 || strcmp (name, ".lit8") == 0)
6977 hdr->sh_flags |= SHF_MIPS_GPREL;
6978 else if (strcmp (name, ".MIPS.interfaces") == 0)
6980 hdr->sh_type = SHT_MIPS_IFACE;
6981 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6983 else if (CONST_STRNEQ (name, ".MIPS.content"))
6985 hdr->sh_type = SHT_MIPS_CONTENT;
6986 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6987 /* The sh_info field is set in final_write_processing. */
6989 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6991 hdr->sh_type = SHT_MIPS_OPTIONS;
6992 hdr->sh_entsize = 1;
6993 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6995 else if (CONST_STRNEQ (name, ".debug_")
6996 || CONST_STRNEQ (name, ".zdebug_"))
6998 hdr->sh_type = SHT_MIPS_DWARF;
7000 /* Irix facilities such as libexc expect a single .debug_frame
7001 per executable, the system ones have NOSTRIP set and the linker
7002 doesn't merge sections with different flags so ... */
7003 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7004 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7006 else if (strcmp (name, ".MIPS.symlib") == 0)
7008 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7009 /* The sh_link and sh_info fields are set in
7010 final_write_processing. */
7012 else if (CONST_STRNEQ (name, ".MIPS.events")
7013 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7015 hdr->sh_type = SHT_MIPS_EVENTS;
7016 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7017 /* The sh_link field is set in final_write_processing. */
7019 else if (strcmp (name, ".msym") == 0)
7021 hdr->sh_type = SHT_MIPS_MSYM;
7022 hdr->sh_flags |= SHF_ALLOC;
7023 hdr->sh_entsize = 8;
7026 /* The generic elf_fake_sections will set up REL_HDR using the default
7027 kind of relocations. We used to set up a second header for the
7028 non-default kind of relocations here, but only NewABI would use
7029 these, and the IRIX ld doesn't like resulting empty RELA sections.
7030 Thus we create those header only on demand now. */
7035 /* Given a BFD section, try to locate the corresponding ELF section
7036 index. This is used by both the 32-bit and the 64-bit ABI.
7037 Actually, it's not clear to me that the 64-bit ABI supports these,
7038 but for non-PIC objects we will certainly want support for at least
7039 the .scommon section. */
7042 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7043 asection *sec, int *retval)
7045 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7047 *retval = SHN_MIPS_SCOMMON;
7050 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7052 *retval = SHN_MIPS_ACOMMON;
7058 /* Hook called by the linker routine which adds symbols from an object
7059 file. We must handle the special MIPS section numbers here. */
7062 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7063 Elf_Internal_Sym *sym, const char **namep,
7064 flagword *flagsp ATTRIBUTE_UNUSED,
7065 asection **secp, bfd_vma *valp)
7067 if (SGI_COMPAT (abfd)
7068 && (abfd->flags & DYNAMIC) != 0
7069 && strcmp (*namep, "_rld_new_interface") == 0)
7071 /* Skip IRIX5 rld entry name. */
7076 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7077 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7078 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7079 a magic symbol resolved by the linker, we ignore this bogus definition
7080 of _gp_disp. New ABI objects do not suffer from this problem so this
7081 is not done for them. */
7083 && (sym->st_shndx == SHN_ABS)
7084 && (strcmp (*namep, "_gp_disp") == 0))
7090 switch (sym->st_shndx)
7093 /* Common symbols less than the GP size are automatically
7094 treated as SHN_MIPS_SCOMMON symbols. */
7095 if (sym->st_size > elf_gp_size (abfd)
7096 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7097 || IRIX_COMPAT (abfd) == ict_irix6)
7100 case SHN_MIPS_SCOMMON:
7101 *secp = bfd_make_section_old_way (abfd, ".scommon");
7102 (*secp)->flags |= SEC_IS_COMMON;
7103 *valp = sym->st_size;
7107 /* This section is used in a shared object. */
7108 if (elf_tdata (abfd)->elf_text_section == NULL)
7110 asymbol *elf_text_symbol;
7111 asection *elf_text_section;
7112 bfd_size_type amt = sizeof (asection);
7114 elf_text_section = bfd_zalloc (abfd, amt);
7115 if (elf_text_section == NULL)
7118 amt = sizeof (asymbol);
7119 elf_text_symbol = bfd_zalloc (abfd, amt);
7120 if (elf_text_symbol == NULL)
7123 /* Initialize the section. */
7125 elf_tdata (abfd)->elf_text_section = elf_text_section;
7126 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7128 elf_text_section->symbol = elf_text_symbol;
7129 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7131 elf_text_section->name = ".text";
7132 elf_text_section->flags = SEC_NO_FLAGS;
7133 elf_text_section->output_section = NULL;
7134 elf_text_section->owner = abfd;
7135 elf_text_symbol->name = ".text";
7136 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7137 elf_text_symbol->section = elf_text_section;
7139 /* This code used to do *secp = bfd_und_section_ptr if
7140 info->shared. I don't know why, and that doesn't make sense,
7141 so I took it out. */
7142 *secp = elf_tdata (abfd)->elf_text_section;
7145 case SHN_MIPS_ACOMMON:
7146 /* Fall through. XXX Can we treat this as allocated data? */
7148 /* This section is used in a shared object. */
7149 if (elf_tdata (abfd)->elf_data_section == NULL)
7151 asymbol *elf_data_symbol;
7152 asection *elf_data_section;
7153 bfd_size_type amt = sizeof (asection);
7155 elf_data_section = bfd_zalloc (abfd, amt);
7156 if (elf_data_section == NULL)
7159 amt = sizeof (asymbol);
7160 elf_data_symbol = bfd_zalloc (abfd, amt);
7161 if (elf_data_symbol == NULL)
7164 /* Initialize the section. */
7166 elf_tdata (abfd)->elf_data_section = elf_data_section;
7167 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7169 elf_data_section->symbol = elf_data_symbol;
7170 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7172 elf_data_section->name = ".data";
7173 elf_data_section->flags = SEC_NO_FLAGS;
7174 elf_data_section->output_section = NULL;
7175 elf_data_section->owner = abfd;
7176 elf_data_symbol->name = ".data";
7177 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7178 elf_data_symbol->section = elf_data_section;
7180 /* This code used to do *secp = bfd_und_section_ptr if
7181 info->shared. I don't know why, and that doesn't make sense,
7182 so I took it out. */
7183 *secp = elf_tdata (abfd)->elf_data_section;
7186 case SHN_MIPS_SUNDEFINED:
7187 *secp = bfd_und_section_ptr;
7191 if (SGI_COMPAT (abfd)
7193 && info->output_bfd->xvec == abfd->xvec
7194 && strcmp (*namep, "__rld_obj_head") == 0)
7196 struct elf_link_hash_entry *h;
7197 struct bfd_link_hash_entry *bh;
7199 /* Mark __rld_obj_head as dynamic. */
7201 if (! (_bfd_generic_link_add_one_symbol
7202 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7203 get_elf_backend_data (abfd)->collect, &bh)))
7206 h = (struct elf_link_hash_entry *) bh;
7209 h->type = STT_OBJECT;
7211 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7214 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7215 mips_elf_hash_table (info)->rld_symbol = h;
7218 /* If this is a mips16 text symbol, add 1 to the value to make it
7219 odd. This will cause something like .word SYM to come up with
7220 the right value when it is loaded into the PC. */
7221 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7227 /* This hook function is called before the linker writes out a global
7228 symbol. We mark symbols as small common if appropriate. This is
7229 also where we undo the increment of the value for a mips16 symbol. */
7232 _bfd_mips_elf_link_output_symbol_hook
7233 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7234 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7235 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7237 /* If we see a common symbol, which implies a relocatable link, then
7238 if a symbol was small common in an input file, mark it as small
7239 common in the output file. */
7240 if (sym->st_shndx == SHN_COMMON
7241 && strcmp (input_sec->name, ".scommon") == 0)
7242 sym->st_shndx = SHN_MIPS_SCOMMON;
7244 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7245 sym->st_value &= ~1;
7250 /* Functions for the dynamic linker. */
7252 /* Create dynamic sections when linking against a dynamic object. */
7255 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7257 struct elf_link_hash_entry *h;
7258 struct bfd_link_hash_entry *bh;
7260 register asection *s;
7261 const char * const *namep;
7262 struct mips_elf_link_hash_table *htab;
7264 htab = mips_elf_hash_table (info);
7265 BFD_ASSERT (htab != NULL);
7267 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7268 | SEC_LINKER_CREATED | SEC_READONLY);
7270 /* The psABI requires a read-only .dynamic section, but the VxWorks
7272 if (!htab->is_vxworks)
7274 s = bfd_get_linker_section (abfd, ".dynamic");
7277 if (! bfd_set_section_flags (abfd, s, flags))
7282 /* We need to create .got section. */
7283 if (!mips_elf_create_got_section (abfd, info))
7286 if (! mips_elf_rel_dyn_section (info, TRUE))
7289 /* Create .stub section. */
7290 s = bfd_make_section_anyway_with_flags (abfd,
7291 MIPS_ELF_STUB_SECTION_NAME (abfd),
7294 || ! bfd_set_section_alignment (abfd, s,
7295 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7299 if (!mips_elf_hash_table (info)->use_rld_obj_head
7301 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7303 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7304 flags &~ (flagword) SEC_READONLY);
7306 || ! bfd_set_section_alignment (abfd, s,
7307 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7311 /* On IRIX5, we adjust add some additional symbols and change the
7312 alignments of several sections. There is no ABI documentation
7313 indicating that this is necessary on IRIX6, nor any evidence that
7314 the linker takes such action. */
7315 if (IRIX_COMPAT (abfd) == ict_irix5)
7317 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7320 if (! (_bfd_generic_link_add_one_symbol
7321 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7322 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7325 h = (struct elf_link_hash_entry *) bh;
7328 h->type = STT_SECTION;
7330 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7334 /* We need to create a .compact_rel section. */
7335 if (SGI_COMPAT (abfd))
7337 if (!mips_elf_create_compact_rel_section (abfd, info))
7341 /* Change alignments of some sections. */
7342 s = bfd_get_linker_section (abfd, ".hash");
7344 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7345 s = bfd_get_linker_section (abfd, ".dynsym");
7347 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7348 s = bfd_get_linker_section (abfd, ".dynstr");
7350 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7352 s = bfd_get_section_by_name (abfd, ".reginfo");
7354 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7355 s = bfd_get_linker_section (abfd, ".dynamic");
7357 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7364 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7366 if (!(_bfd_generic_link_add_one_symbol
7367 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7368 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7371 h = (struct elf_link_hash_entry *) bh;
7374 h->type = STT_SECTION;
7376 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7379 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7381 /* __rld_map is a four byte word located in the .data section
7382 and is filled in by the rtld to contain a pointer to
7383 the _r_debug structure. Its symbol value will be set in
7384 _bfd_mips_elf_finish_dynamic_symbol. */
7385 s = bfd_get_linker_section (abfd, ".rld_map");
7386 BFD_ASSERT (s != NULL);
7388 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7390 if (!(_bfd_generic_link_add_one_symbol
7391 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7392 get_elf_backend_data (abfd)->collect, &bh)))
7395 h = (struct elf_link_hash_entry *) bh;
7398 h->type = STT_OBJECT;
7400 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7402 mips_elf_hash_table (info)->rld_symbol = h;
7406 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7407 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7408 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7411 /* Cache the sections created above. */
7412 htab->splt = bfd_get_linker_section (abfd, ".plt");
7413 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7414 if (htab->is_vxworks)
7416 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7417 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7420 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7422 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7427 if (htab->is_vxworks)
7429 /* Do the usual VxWorks handling. */
7430 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7433 /* Work out the PLT sizes. */
7436 htab->plt_header_size
7437 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7438 htab->plt_entry_size
7439 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7443 htab->plt_header_size
7444 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7445 htab->plt_entry_size
7446 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7449 else if (!info->shared)
7451 /* All variants of the plt0 entry are the same size. */
7452 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7453 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7459 /* Return true if relocation REL against section SEC is a REL rather than
7460 RELA relocation. RELOCS is the first relocation in the section and
7461 ABFD is the bfd that contains SEC. */
7464 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7465 const Elf_Internal_Rela *relocs,
7466 const Elf_Internal_Rela *rel)
7468 Elf_Internal_Shdr *rel_hdr;
7469 const struct elf_backend_data *bed;
7471 /* To determine which flavor of relocation this is, we depend on the
7472 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7473 rel_hdr = elf_section_data (sec)->rel.hdr;
7474 if (rel_hdr == NULL)
7476 bed = get_elf_backend_data (abfd);
7477 return ((size_t) (rel - relocs)
7478 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7481 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7482 HOWTO is the relocation's howto and CONTENTS points to the contents
7483 of the section that REL is against. */
7486 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7487 reloc_howto_type *howto, bfd_byte *contents)
7490 unsigned int r_type;
7493 r_type = ELF_R_TYPE (abfd, rel->r_info);
7494 location = contents + rel->r_offset;
7496 /* Get the addend, which is stored in the input file. */
7497 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7498 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7499 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7501 return addend & howto->src_mask;
7504 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7505 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7506 and update *ADDEND with the final addend. Return true on success
7507 or false if the LO16 could not be found. RELEND is the exclusive
7508 upper bound on the relocations for REL's section. */
7511 mips_elf_add_lo16_rel_addend (bfd *abfd,
7512 const Elf_Internal_Rela *rel,
7513 const Elf_Internal_Rela *relend,
7514 bfd_byte *contents, bfd_vma *addend)
7516 unsigned int r_type, lo16_type;
7517 const Elf_Internal_Rela *lo16_relocation;
7518 reloc_howto_type *lo16_howto;
7521 r_type = ELF_R_TYPE (abfd, rel->r_info);
7522 if (mips16_reloc_p (r_type))
7523 lo16_type = R_MIPS16_LO16;
7524 else if (micromips_reloc_p (r_type))
7525 lo16_type = R_MICROMIPS_LO16;
7527 lo16_type = R_MIPS_LO16;
7529 /* The combined value is the sum of the HI16 addend, left-shifted by
7530 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7531 code does a `lui' of the HI16 value, and then an `addiu' of the
7534 Scan ahead to find a matching LO16 relocation.
7536 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7537 be immediately following. However, for the IRIX6 ABI, the next
7538 relocation may be a composed relocation consisting of several
7539 relocations for the same address. In that case, the R_MIPS_LO16
7540 relocation may occur as one of these. We permit a similar
7541 extension in general, as that is useful for GCC.
7543 In some cases GCC dead code elimination removes the LO16 but keeps
7544 the corresponding HI16. This is strictly speaking a violation of
7545 the ABI but not immediately harmful. */
7546 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7547 if (lo16_relocation == NULL)
7550 /* Obtain the addend kept there. */
7551 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7552 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7554 l <<= lo16_howto->rightshift;
7555 l = _bfd_mips_elf_sign_extend (l, 16);
7562 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7563 store the contents in *CONTENTS on success. Assume that *CONTENTS
7564 already holds the contents if it is nonull on entry. */
7567 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7572 /* Get cached copy if it exists. */
7573 if (elf_section_data (sec)->this_hdr.contents != NULL)
7575 *contents = elf_section_data (sec)->this_hdr.contents;
7579 return bfd_malloc_and_get_section (abfd, sec, contents);
7582 /* Look through the relocs for a section during the first phase, and
7583 allocate space in the global offset table. */
7586 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7587 asection *sec, const Elf_Internal_Rela *relocs)
7591 Elf_Internal_Shdr *symtab_hdr;
7592 struct elf_link_hash_entry **sym_hashes;
7594 const Elf_Internal_Rela *rel;
7595 const Elf_Internal_Rela *rel_end;
7597 const struct elf_backend_data *bed;
7598 struct mips_elf_link_hash_table *htab;
7601 reloc_howto_type *howto;
7603 if (info->relocatable)
7606 htab = mips_elf_hash_table (info);
7607 BFD_ASSERT (htab != NULL);
7609 dynobj = elf_hash_table (info)->dynobj;
7610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7611 sym_hashes = elf_sym_hashes (abfd);
7612 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7614 bed = get_elf_backend_data (abfd);
7615 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7617 /* Check for the mips16 stub sections. */
7619 name = bfd_get_section_name (abfd, sec);
7620 if (FN_STUB_P (name))
7622 unsigned long r_symndx;
7624 /* Look at the relocation information to figure out which symbol
7627 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7630 (*_bfd_error_handler)
7631 (_("%B: Warning: cannot determine the target function for"
7632 " stub section `%s'"),
7634 bfd_set_error (bfd_error_bad_value);
7638 if (r_symndx < extsymoff
7639 || sym_hashes[r_symndx - extsymoff] == NULL)
7643 /* This stub is for a local symbol. This stub will only be
7644 needed if there is some relocation in this BFD, other
7645 than a 16 bit function call, which refers to this symbol. */
7646 for (o = abfd->sections; o != NULL; o = o->next)
7648 Elf_Internal_Rela *sec_relocs;
7649 const Elf_Internal_Rela *r, *rend;
7651 /* We can ignore stub sections when looking for relocs. */
7652 if ((o->flags & SEC_RELOC) == 0
7653 || o->reloc_count == 0
7654 || section_allows_mips16_refs_p (o))
7658 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7660 if (sec_relocs == NULL)
7663 rend = sec_relocs + o->reloc_count;
7664 for (r = sec_relocs; r < rend; r++)
7665 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7666 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7669 if (elf_section_data (o)->relocs != sec_relocs)
7678 /* There is no non-call reloc for this stub, so we do
7679 not need it. Since this function is called before
7680 the linker maps input sections to output sections, we
7681 can easily discard it by setting the SEC_EXCLUDE
7683 sec->flags |= SEC_EXCLUDE;
7687 /* Record this stub in an array of local symbol stubs for
7689 if (elf_tdata (abfd)->local_stubs == NULL)
7691 unsigned long symcount;
7695 if (elf_bad_symtab (abfd))
7696 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7698 symcount = symtab_hdr->sh_info;
7699 amt = symcount * sizeof (asection *);
7700 n = bfd_zalloc (abfd, amt);
7703 elf_tdata (abfd)->local_stubs = n;
7706 sec->flags |= SEC_KEEP;
7707 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7709 /* We don't need to set mips16_stubs_seen in this case.
7710 That flag is used to see whether we need to look through
7711 the global symbol table for stubs. We don't need to set
7712 it here, because we just have a local stub. */
7716 struct mips_elf_link_hash_entry *h;
7718 h = ((struct mips_elf_link_hash_entry *)
7719 sym_hashes[r_symndx - extsymoff]);
7721 while (h->root.root.type == bfd_link_hash_indirect
7722 || h->root.root.type == bfd_link_hash_warning)
7723 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7725 /* H is the symbol this stub is for. */
7727 /* If we already have an appropriate stub for this function, we
7728 don't need another one, so we can discard this one. Since
7729 this function is called before the linker maps input sections
7730 to output sections, we can easily discard it by setting the
7731 SEC_EXCLUDE flag. */
7732 if (h->fn_stub != NULL)
7734 sec->flags |= SEC_EXCLUDE;
7738 sec->flags |= SEC_KEEP;
7740 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7743 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7745 unsigned long r_symndx;
7746 struct mips_elf_link_hash_entry *h;
7749 /* Look at the relocation information to figure out which symbol
7752 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7755 (*_bfd_error_handler)
7756 (_("%B: Warning: cannot determine the target function for"
7757 " stub section `%s'"),
7759 bfd_set_error (bfd_error_bad_value);
7763 if (r_symndx < extsymoff
7764 || sym_hashes[r_symndx - extsymoff] == NULL)
7768 /* This stub is for a local symbol. This stub will only be
7769 needed if there is some relocation (R_MIPS16_26) in this BFD
7770 that refers to this symbol. */
7771 for (o = abfd->sections; o != NULL; o = o->next)
7773 Elf_Internal_Rela *sec_relocs;
7774 const Elf_Internal_Rela *r, *rend;
7776 /* We can ignore stub sections when looking for relocs. */
7777 if ((o->flags & SEC_RELOC) == 0
7778 || o->reloc_count == 0
7779 || section_allows_mips16_refs_p (o))
7783 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7785 if (sec_relocs == NULL)
7788 rend = sec_relocs + o->reloc_count;
7789 for (r = sec_relocs; r < rend; r++)
7790 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7791 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7794 if (elf_section_data (o)->relocs != sec_relocs)
7803 /* There is no non-call reloc for this stub, so we do
7804 not need it. Since this function is called before
7805 the linker maps input sections to output sections, we
7806 can easily discard it by setting the SEC_EXCLUDE
7808 sec->flags |= SEC_EXCLUDE;
7812 /* Record this stub in an array of local symbol call_stubs for
7814 if (elf_tdata (abfd)->local_call_stubs == NULL)
7816 unsigned long symcount;
7820 if (elf_bad_symtab (abfd))
7821 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7823 symcount = symtab_hdr->sh_info;
7824 amt = symcount * sizeof (asection *);
7825 n = bfd_zalloc (abfd, amt);
7828 elf_tdata (abfd)->local_call_stubs = n;
7831 sec->flags |= SEC_KEEP;
7832 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7834 /* We don't need to set mips16_stubs_seen in this case.
7835 That flag is used to see whether we need to look through
7836 the global symbol table for stubs. We don't need to set
7837 it here, because we just have a local stub. */
7841 h = ((struct mips_elf_link_hash_entry *)
7842 sym_hashes[r_symndx - extsymoff]);
7844 /* H is the symbol this stub is for. */
7846 if (CALL_FP_STUB_P (name))
7847 loc = &h->call_fp_stub;
7849 loc = &h->call_stub;
7851 /* If we already have an appropriate stub for this function, we
7852 don't need another one, so we can discard this one. Since
7853 this function is called before the linker maps input sections
7854 to output sections, we can easily discard it by setting the
7855 SEC_EXCLUDE flag. */
7858 sec->flags |= SEC_EXCLUDE;
7862 sec->flags |= SEC_KEEP;
7864 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7870 for (rel = relocs; rel < rel_end; ++rel)
7872 unsigned long r_symndx;
7873 unsigned int r_type;
7874 struct elf_link_hash_entry *h;
7875 bfd_boolean can_make_dynamic_p;
7877 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7878 r_type = ELF_R_TYPE (abfd, rel->r_info);
7880 if (r_symndx < extsymoff)
7882 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7884 (*_bfd_error_handler)
7885 (_("%B: Malformed reloc detected for section %s"),
7887 bfd_set_error (bfd_error_bad_value);
7892 h = sym_hashes[r_symndx - extsymoff];
7894 && (h->root.type == bfd_link_hash_indirect
7895 || h->root.type == bfd_link_hash_warning))
7896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7899 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7900 relocation into a dynamic one. */
7901 can_make_dynamic_p = FALSE;
7906 case R_MIPS_CALL_HI16:
7907 case R_MIPS_CALL_LO16:
7908 case R_MIPS_GOT_HI16:
7909 case R_MIPS_GOT_LO16:
7910 case R_MIPS_GOT_PAGE:
7911 case R_MIPS_GOT_OFST:
7912 case R_MIPS_GOT_DISP:
7913 case R_MIPS_TLS_GOTTPREL:
7915 case R_MIPS_TLS_LDM:
7916 case R_MIPS16_GOT16:
7917 case R_MIPS16_CALL16:
7918 case R_MIPS16_TLS_GOTTPREL:
7919 case R_MIPS16_TLS_GD:
7920 case R_MIPS16_TLS_LDM:
7921 case R_MICROMIPS_GOT16:
7922 case R_MICROMIPS_CALL16:
7923 case R_MICROMIPS_CALL_HI16:
7924 case R_MICROMIPS_CALL_LO16:
7925 case R_MICROMIPS_GOT_HI16:
7926 case R_MICROMIPS_GOT_LO16:
7927 case R_MICROMIPS_GOT_PAGE:
7928 case R_MICROMIPS_GOT_OFST:
7929 case R_MICROMIPS_GOT_DISP:
7930 case R_MICROMIPS_TLS_GOTTPREL:
7931 case R_MICROMIPS_TLS_GD:
7932 case R_MICROMIPS_TLS_LDM:
7934 elf_hash_table (info)->dynobj = dynobj = abfd;
7935 if (!mips_elf_create_got_section (dynobj, info))
7937 if (htab->is_vxworks && !info->shared)
7939 (*_bfd_error_handler)
7940 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7941 abfd, (unsigned long) rel->r_offset);
7942 bfd_set_error (bfd_error_bad_value);
7947 /* This is just a hint; it can safely be ignored. Don't set
7948 has_static_relocs for the corresponding symbol. */
7950 case R_MICROMIPS_JALR:
7956 /* In VxWorks executables, references to external symbols
7957 must be handled using copy relocs or PLT entries; it is not
7958 possible to convert this relocation into a dynamic one.
7960 For executables that use PLTs and copy-relocs, we have a
7961 choice between converting the relocation into a dynamic
7962 one or using copy relocations or PLT entries. It is
7963 usually better to do the former, unless the relocation is
7964 against a read-only section. */
7967 && !htab->is_vxworks
7968 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7969 && !(!info->nocopyreloc
7970 && !PIC_OBJECT_P (abfd)
7971 && MIPS_ELF_READONLY_SECTION (sec))))
7972 && (sec->flags & SEC_ALLOC) != 0)
7974 can_make_dynamic_p = TRUE;
7976 elf_hash_table (info)->dynobj = dynobj = abfd;
7979 /* For sections that are not SEC_ALLOC a copy reloc would be
7980 output if possible (implying questionable semantics for
7981 read-only data objects) or otherwise the final link would
7982 fail as ld.so will not process them and could not therefore
7983 handle any outstanding dynamic relocations.
7985 For such sections that are also SEC_DEBUGGING, we can avoid
7986 these problems by simply ignoring any relocs as these
7987 sections have a predefined use and we know it is safe to do
7990 This is needed in cases such as a global symbol definition
7991 in a shared library causing a common symbol from an object
7992 file to be converted to an undefined reference. If that
7993 happens, then all the relocations against this symbol from
7994 SEC_DEBUGGING sections in the object file will resolve to
7996 if ((sec->flags & SEC_DEBUGGING) != 0)
8001 /* Most static relocations require pointer equality, except
8004 h->pointer_equality_needed = TRUE;
8010 case R_MICROMIPS_26_S1:
8011 case R_MICROMIPS_PC7_S1:
8012 case R_MICROMIPS_PC10_S1:
8013 case R_MICROMIPS_PC16_S1:
8014 case R_MICROMIPS_PC23_S2:
8016 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8022 /* Relocations against the special VxWorks __GOTT_BASE__ and
8023 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8024 room for them in .rela.dyn. */
8025 if (is_gott_symbol (info, h))
8029 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8033 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8034 if (MIPS_ELF_READONLY_SECTION (sec))
8035 /* We tell the dynamic linker that there are
8036 relocations against the text segment. */
8037 info->flags |= DF_TEXTREL;
8040 else if (call_lo16_reloc_p (r_type)
8041 || got_lo16_reloc_p (r_type)
8042 || got_disp_reloc_p (r_type)
8043 || (got16_reloc_p (r_type) && htab->is_vxworks))
8045 /* We may need a local GOT entry for this relocation. We
8046 don't count R_MIPS_GOT_PAGE because we can estimate the
8047 maximum number of pages needed by looking at the size of
8048 the segment. Similar comments apply to R_MIPS*_GOT16 and
8049 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8050 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8051 R_MIPS_CALL_HI16 because these are always followed by an
8052 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8053 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8054 rel->r_addend, info, 0))
8059 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8060 ELF_ST_IS_MIPS16 (h->other)))
8061 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8066 case R_MIPS16_CALL16:
8067 case R_MICROMIPS_CALL16:
8070 (*_bfd_error_handler)
8071 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8072 abfd, (unsigned long) rel->r_offset);
8073 bfd_set_error (bfd_error_bad_value);
8078 case R_MIPS_CALL_HI16:
8079 case R_MIPS_CALL_LO16:
8080 case R_MICROMIPS_CALL_HI16:
8081 case R_MICROMIPS_CALL_LO16:
8084 /* Make sure there is room in the regular GOT to hold the
8085 function's address. We may eliminate it in favour of
8086 a .got.plt entry later; see mips_elf_count_got_symbols. */
8087 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8090 /* We need a stub, not a plt entry for the undefined
8091 function. But we record it as if it needs plt. See
8092 _bfd_elf_adjust_dynamic_symbol. */
8098 case R_MIPS_GOT_PAGE:
8099 case R_MICROMIPS_GOT_PAGE:
8100 /* If this is a global, overridable symbol, GOT_PAGE will
8101 decay to GOT_DISP, so we'll need a GOT entry for it. */
8104 struct mips_elf_link_hash_entry *hmips =
8105 (struct mips_elf_link_hash_entry *) h;
8107 /* This symbol is definitely not overridable. */
8108 if (hmips->root.def_regular
8109 && ! (info->shared && ! info->symbolic
8110 && ! hmips->root.forced_local))
8115 case R_MIPS16_GOT16:
8117 case R_MIPS_GOT_HI16:
8118 case R_MIPS_GOT_LO16:
8119 case R_MICROMIPS_GOT16:
8120 case R_MICROMIPS_GOT_HI16:
8121 case R_MICROMIPS_GOT_LO16:
8122 if (!h || got_page_reloc_p (r_type))
8124 /* This relocation needs (or may need, if h != NULL) a
8125 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8126 know for sure until we know whether the symbol is
8128 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8130 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8132 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8133 addend = mips_elf_read_rel_addend (abfd, rel,
8135 if (got16_reloc_p (r_type))
8136 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8139 addend <<= howto->rightshift;
8142 addend = rel->r_addend;
8143 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8149 case R_MIPS_GOT_DISP:
8150 case R_MICROMIPS_GOT_DISP:
8151 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8156 case R_MIPS_TLS_GOTTPREL:
8157 case R_MIPS16_TLS_GOTTPREL:
8158 case R_MICROMIPS_TLS_GOTTPREL:
8160 info->flags |= DF_STATIC_TLS;
8163 case R_MIPS_TLS_LDM:
8164 case R_MIPS16_TLS_LDM:
8165 case R_MICROMIPS_TLS_LDM:
8166 if (tls_ldm_reloc_p (r_type))
8168 r_symndx = STN_UNDEF;
8174 case R_MIPS16_TLS_GD:
8175 case R_MICROMIPS_TLS_GD:
8176 /* This symbol requires a global offset table entry, or two
8177 for TLS GD relocations. */
8181 flag = (tls_gd_reloc_p (r_type)
8183 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8186 struct mips_elf_link_hash_entry *hmips =
8187 (struct mips_elf_link_hash_entry *) h;
8188 hmips->tls_type |= flag;
8190 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8196 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8198 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8209 /* In VxWorks executables, references to external symbols
8210 are handled using copy relocs or PLT stubs, so there's
8211 no need to add a .rela.dyn entry for this relocation. */
8212 if (can_make_dynamic_p)
8216 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8220 if (info->shared && h == NULL)
8222 /* When creating a shared object, we must copy these
8223 reloc types into the output file as R_MIPS_REL32
8224 relocs. Make room for this reloc in .rel(a).dyn. */
8225 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8226 if (MIPS_ELF_READONLY_SECTION (sec))
8227 /* We tell the dynamic linker that there are
8228 relocations against the text segment. */
8229 info->flags |= DF_TEXTREL;
8233 struct mips_elf_link_hash_entry *hmips;
8235 /* For a shared object, we must copy this relocation
8236 unless the symbol turns out to be undefined and
8237 weak with non-default visibility, in which case
8238 it will be left as zero.
8240 We could elide R_MIPS_REL32 for locally binding symbols
8241 in shared libraries, but do not yet do so.
8243 For an executable, we only need to copy this
8244 reloc if the symbol is defined in a dynamic
8246 hmips = (struct mips_elf_link_hash_entry *) h;
8247 ++hmips->possibly_dynamic_relocs;
8248 if (MIPS_ELF_READONLY_SECTION (sec))
8249 /* We need it to tell the dynamic linker if there
8250 are relocations against the text segment. */
8251 hmips->readonly_reloc = TRUE;
8255 if (SGI_COMPAT (abfd))
8256 mips_elf_hash_table (info)->compact_rel_size +=
8257 sizeof (Elf32_External_crinfo);
8261 case R_MIPS_GPREL16:
8262 case R_MIPS_LITERAL:
8263 case R_MIPS_GPREL32:
8264 case R_MICROMIPS_26_S1:
8265 case R_MICROMIPS_GPREL16:
8266 case R_MICROMIPS_LITERAL:
8267 case R_MICROMIPS_GPREL7_S2:
8268 if (SGI_COMPAT (abfd))
8269 mips_elf_hash_table (info)->compact_rel_size +=
8270 sizeof (Elf32_External_crinfo);
8273 /* This relocation describes the C++ object vtable hierarchy.
8274 Reconstruct it for later use during GC. */
8275 case R_MIPS_GNU_VTINHERIT:
8276 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8280 /* This relocation describes which C++ vtable entries are actually
8281 used. Record for later use during GC. */
8282 case R_MIPS_GNU_VTENTRY:
8283 BFD_ASSERT (h != NULL);
8285 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8293 /* We must not create a stub for a symbol that has relocations
8294 related to taking the function's address. This doesn't apply to
8295 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8296 a normal .got entry. */
8297 if (!htab->is_vxworks && h != NULL)
8301 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8303 case R_MIPS16_CALL16:
8305 case R_MIPS_CALL_HI16:
8306 case R_MIPS_CALL_LO16:
8308 case R_MICROMIPS_CALL16:
8309 case R_MICROMIPS_CALL_HI16:
8310 case R_MICROMIPS_CALL_LO16:
8311 case R_MICROMIPS_JALR:
8315 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8316 if there is one. We only need to handle global symbols here;
8317 we decide whether to keep or delete stubs for local symbols
8318 when processing the stub's relocations. */
8320 && !mips16_call_reloc_p (r_type)
8321 && !section_allows_mips16_refs_p (sec))
8323 struct mips_elf_link_hash_entry *mh;
8325 mh = (struct mips_elf_link_hash_entry *) h;
8326 mh->need_fn_stub = TRUE;
8329 /* Refuse some position-dependent relocations when creating a
8330 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8331 not PIC, but we can create dynamic relocations and the result
8332 will be fine. Also do not refuse R_MIPS_LO16, which can be
8333 combined with R_MIPS_GOT16. */
8341 case R_MIPS_HIGHEST:
8342 case R_MICROMIPS_HI16:
8343 case R_MICROMIPS_HIGHER:
8344 case R_MICROMIPS_HIGHEST:
8345 /* Don't refuse a high part relocation if it's against
8346 no symbol (e.g. part of a compound relocation). */
8347 if (r_symndx == STN_UNDEF)
8350 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8351 and has a special meaning. */
8352 if (!NEWABI_P (abfd) && h != NULL
8353 && strcmp (h->root.root.string, "_gp_disp") == 0)
8356 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8357 if (is_gott_symbol (info, h))
8364 case R_MICROMIPS_26_S1:
8365 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8366 (*_bfd_error_handler)
8367 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8369 (h) ? h->root.root.string : "a local symbol");
8370 bfd_set_error (bfd_error_bad_value);
8382 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8383 struct bfd_link_info *link_info,
8386 Elf_Internal_Rela *internal_relocs;
8387 Elf_Internal_Rela *irel, *irelend;
8388 Elf_Internal_Shdr *symtab_hdr;
8389 bfd_byte *contents = NULL;
8391 bfd_boolean changed_contents = FALSE;
8392 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8393 Elf_Internal_Sym *isymbuf = NULL;
8395 /* We are not currently changing any sizes, so only one pass. */
8398 if (link_info->relocatable)
8401 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8402 link_info->keep_memory);
8403 if (internal_relocs == NULL)
8406 irelend = internal_relocs + sec->reloc_count
8407 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8409 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8411 for (irel = internal_relocs; irel < irelend; irel++)
8414 bfd_signed_vma sym_offset;
8415 unsigned int r_type;
8416 unsigned long r_symndx;
8418 unsigned long instruction;
8420 /* Turn jalr into bgezal, and jr into beq, if they're marked
8421 with a JALR relocation, that indicate where they jump to.
8422 This saves some pipeline bubbles. */
8423 r_type = ELF_R_TYPE (abfd, irel->r_info);
8424 if (r_type != R_MIPS_JALR)
8427 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8428 /* Compute the address of the jump target. */
8429 if (r_symndx >= extsymoff)
8431 struct mips_elf_link_hash_entry *h
8432 = ((struct mips_elf_link_hash_entry *)
8433 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8435 while (h->root.root.type == bfd_link_hash_indirect
8436 || h->root.root.type == bfd_link_hash_warning)
8437 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8439 /* If a symbol is undefined, or if it may be overridden,
8441 if (! ((h->root.root.type == bfd_link_hash_defined
8442 || h->root.root.type == bfd_link_hash_defweak)
8443 && h->root.root.u.def.section)
8444 || (link_info->shared && ! link_info->symbolic
8445 && !h->root.forced_local))
8448 sym_sec = h->root.root.u.def.section;
8449 if (sym_sec->output_section)
8450 symval = (h->root.root.u.def.value
8451 + sym_sec->output_section->vma
8452 + sym_sec->output_offset);
8454 symval = h->root.root.u.def.value;
8458 Elf_Internal_Sym *isym;
8460 /* Read this BFD's symbols if we haven't done so already. */
8461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8464 if (isymbuf == NULL)
8465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8466 symtab_hdr->sh_info, 0,
8468 if (isymbuf == NULL)
8472 isym = isymbuf + r_symndx;
8473 if (isym->st_shndx == SHN_UNDEF)
8475 else if (isym->st_shndx == SHN_ABS)
8476 sym_sec = bfd_abs_section_ptr;
8477 else if (isym->st_shndx == SHN_COMMON)
8478 sym_sec = bfd_com_section_ptr;
8481 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8482 symval = isym->st_value
8483 + sym_sec->output_section->vma
8484 + sym_sec->output_offset;
8487 /* Compute branch offset, from delay slot of the jump to the
8489 sym_offset = (symval + irel->r_addend)
8490 - (sec_start + irel->r_offset + 4);
8492 /* Branch offset must be properly aligned. */
8493 if ((sym_offset & 3) != 0)
8498 /* Check that it's in range. */
8499 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8502 /* Get the section contents if we haven't done so already. */
8503 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8506 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8508 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8509 if ((instruction & 0xfc1fffff) == 0x0000f809)
8510 instruction = 0x04110000;
8511 /* If it was jr <reg>, turn it into b <target>. */
8512 else if ((instruction & 0xfc1fffff) == 0x00000008)
8513 instruction = 0x10000000;
8517 instruction |= (sym_offset & 0xffff);
8518 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8519 changed_contents = TRUE;
8522 if (contents != NULL
8523 && elf_section_data (sec)->this_hdr.contents != contents)
8525 if (!changed_contents && !link_info->keep_memory)
8529 /* Cache the section contents for elf_link_input_bfd. */
8530 elf_section_data (sec)->this_hdr.contents = contents;
8536 if (contents != NULL
8537 && elf_section_data (sec)->this_hdr.contents != contents)
8542 /* Allocate space for global sym dynamic relocs. */
8545 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8547 struct bfd_link_info *info = inf;
8549 struct mips_elf_link_hash_entry *hmips;
8550 struct mips_elf_link_hash_table *htab;
8552 htab = mips_elf_hash_table (info);
8553 BFD_ASSERT (htab != NULL);
8555 dynobj = elf_hash_table (info)->dynobj;
8556 hmips = (struct mips_elf_link_hash_entry *) h;
8558 /* VxWorks executables are handled elsewhere; we only need to
8559 allocate relocations in shared objects. */
8560 if (htab->is_vxworks && !info->shared)
8563 /* Ignore indirect symbols. All relocations against such symbols
8564 will be redirected to the target symbol. */
8565 if (h->root.type == bfd_link_hash_indirect)
8568 /* If this symbol is defined in a dynamic object, or we are creating
8569 a shared library, we will need to copy any R_MIPS_32 or
8570 R_MIPS_REL32 relocs against it into the output file. */
8571 if (! info->relocatable
8572 && hmips->possibly_dynamic_relocs != 0
8573 && (h->root.type == bfd_link_hash_defweak
8574 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8577 bfd_boolean do_copy = TRUE;
8579 if (h->root.type == bfd_link_hash_undefweak)
8581 /* Do not copy relocations for undefined weak symbols with
8582 non-default visibility. */
8583 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8586 /* Make sure undefined weak symbols are output as a dynamic
8588 else if (h->dynindx == -1 && !h->forced_local)
8590 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8597 /* Even though we don't directly need a GOT entry for this symbol,
8598 the SVR4 psABI requires it to have a dynamic symbol table
8599 index greater that DT_MIPS_GOTSYM if there are dynamic
8600 relocations against it.
8602 VxWorks does not enforce the same mapping between the GOT
8603 and the symbol table, so the same requirement does not
8605 if (!htab->is_vxworks)
8607 if (hmips->global_got_area > GGA_RELOC_ONLY)
8608 hmips->global_got_area = GGA_RELOC_ONLY;
8609 hmips->got_only_for_calls = FALSE;
8612 mips_elf_allocate_dynamic_relocations
8613 (dynobj, info, hmips->possibly_dynamic_relocs);
8614 if (hmips->readonly_reloc)
8615 /* We tell the dynamic linker that there are relocations
8616 against the text segment. */
8617 info->flags |= DF_TEXTREL;
8624 /* Adjust a symbol defined by a dynamic object and referenced by a
8625 regular object. The current definition is in some section of the
8626 dynamic object, but we're not including those sections. We have to
8627 change the definition to something the rest of the link can
8631 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8632 struct elf_link_hash_entry *h)
8635 struct mips_elf_link_hash_entry *hmips;
8636 struct mips_elf_link_hash_table *htab;
8638 htab = mips_elf_hash_table (info);
8639 BFD_ASSERT (htab != NULL);
8641 dynobj = elf_hash_table (info)->dynobj;
8642 hmips = (struct mips_elf_link_hash_entry *) h;
8644 /* Make sure we know what is going on here. */
8645 BFD_ASSERT (dynobj != NULL
8647 || h->u.weakdef != NULL
8650 && !h->def_regular)));
8652 hmips = (struct mips_elf_link_hash_entry *) h;
8654 /* If there are call relocations against an externally-defined symbol,
8655 see whether we can create a MIPS lazy-binding stub for it. We can
8656 only do this if all references to the function are through call
8657 relocations, and in that case, the traditional lazy-binding stubs
8658 are much more efficient than PLT entries.
8660 Traditional stubs are only available on SVR4 psABI-based systems;
8661 VxWorks always uses PLTs instead. */
8662 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8664 if (! elf_hash_table (info)->dynamic_sections_created)
8667 /* If this symbol is not defined in a regular file, then set
8668 the symbol to the stub location. This is required to make
8669 function pointers compare as equal between the normal
8670 executable and the shared library. */
8671 if (!h->def_regular)
8673 hmips->needs_lazy_stub = TRUE;
8674 htab->lazy_stub_count++;
8678 /* As above, VxWorks requires PLT entries for externally-defined
8679 functions that are only accessed through call relocations.
8681 Both VxWorks and non-VxWorks targets also need PLT entries if there
8682 are static-only relocations against an externally-defined function.
8683 This can technically occur for shared libraries if there are
8684 branches to the symbol, although it is unlikely that this will be
8685 used in practice due to the short ranges involved. It can occur
8686 for any relative or absolute relocation in executables; in that
8687 case, the PLT entry becomes the function's canonical address. */
8688 else if (((h->needs_plt && !hmips->no_fn_stub)
8689 || (h->type == STT_FUNC && hmips->has_static_relocs))
8690 && htab->use_plts_and_copy_relocs
8691 && !SYMBOL_CALLS_LOCAL (info, h)
8692 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8693 && h->root.type == bfd_link_hash_undefweak))
8695 /* If this is the first symbol to need a PLT entry, allocate room
8697 if (htab->splt->size == 0)
8699 BFD_ASSERT (htab->sgotplt->size == 0);
8701 /* If we're using the PLT additions to the psABI, each PLT
8702 entry is 16 bytes and the PLT0 entry is 32 bytes.
8703 Encourage better cache usage by aligning. We do this
8704 lazily to avoid pessimizing traditional objects. */
8705 if (!htab->is_vxworks
8706 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8709 /* Make sure that .got.plt is word-aligned. We do this lazily
8710 for the same reason as above. */
8711 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8712 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8715 htab->splt->size += htab->plt_header_size;
8717 /* On non-VxWorks targets, the first two entries in .got.plt
8719 if (!htab->is_vxworks)
8721 += get_elf_backend_data (dynobj)->got_header_size;
8723 /* On VxWorks, also allocate room for the header's
8724 .rela.plt.unloaded entries. */
8725 if (htab->is_vxworks && !info->shared)
8726 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8729 /* Assign the next .plt entry to this symbol. */
8730 h->plt.offset = htab->splt->size;
8731 htab->splt->size += htab->plt_entry_size;
8733 /* If the output file has no definition of the symbol, set the
8734 symbol's value to the address of the stub. */
8735 if (!info->shared && !h->def_regular)
8737 h->root.u.def.section = htab->splt;
8738 h->root.u.def.value = h->plt.offset;
8739 /* For VxWorks, point at the PLT load stub rather than the
8740 lazy resolution stub; this stub will become the canonical
8741 function address. */
8742 if (htab->is_vxworks)
8743 h->root.u.def.value += 8;
8746 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8748 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8749 htab->srelplt->size += (htab->is_vxworks
8750 ? MIPS_ELF_RELA_SIZE (dynobj)
8751 : MIPS_ELF_REL_SIZE (dynobj));
8753 /* Make room for the .rela.plt.unloaded relocations. */
8754 if (htab->is_vxworks && !info->shared)
8755 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8757 /* All relocations against this symbol that could have been made
8758 dynamic will now refer to the PLT entry instead. */
8759 hmips->possibly_dynamic_relocs = 0;
8764 /* If this is a weak symbol, and there is a real definition, the
8765 processor independent code will have arranged for us to see the
8766 real definition first, and we can just use the same value. */
8767 if (h->u.weakdef != NULL)
8769 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8770 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8771 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8772 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8776 /* Otherwise, there is nothing further to do for symbols defined
8777 in regular objects. */
8781 /* There's also nothing more to do if we'll convert all relocations
8782 against this symbol into dynamic relocations. */
8783 if (!hmips->has_static_relocs)
8786 /* We're now relying on copy relocations. Complain if we have
8787 some that we can't convert. */
8788 if (!htab->use_plts_and_copy_relocs || info->shared)
8790 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8791 "dynamic symbol %s"),
8792 h->root.root.string);
8793 bfd_set_error (bfd_error_bad_value);
8797 /* We must allocate the symbol in our .dynbss section, which will
8798 become part of the .bss section of the executable. There will be
8799 an entry for this symbol in the .dynsym section. The dynamic
8800 object will contain position independent code, so all references
8801 from the dynamic object to this symbol will go through the global
8802 offset table. The dynamic linker will use the .dynsym entry to
8803 determine the address it must put in the global offset table, so
8804 both the dynamic object and the regular object will refer to the
8805 same memory location for the variable. */
8807 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8809 if (htab->is_vxworks)
8810 htab->srelbss->size += sizeof (Elf32_External_Rela);
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8816 /* All relocations against this symbol that could have been made
8817 dynamic will now refer to the local copy instead. */
8818 hmips->possibly_dynamic_relocs = 0;
8820 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8823 /* This function is called after all the input files have been read,
8824 and the input sections have been assigned to output sections. We
8825 check for any mips16 stub sections that we can discard. */
8828 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8829 struct bfd_link_info *info)
8832 struct mips_elf_link_hash_table *htab;
8833 struct mips_htab_traverse_info hti;
8835 htab = mips_elf_hash_table (info);
8836 BFD_ASSERT (htab != NULL);
8838 /* The .reginfo section has a fixed size. */
8839 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8841 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8844 hti.output_bfd = output_bfd;
8846 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8847 mips_elf_check_symbols, &hti);
8854 /* If the link uses a GOT, lay it out and work out its size. */
8857 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8861 struct mips_got_info *g;
8862 bfd_size_type loadable_size = 0;
8863 bfd_size_type page_gotno;
8865 struct mips_elf_count_tls_arg count_tls_arg;
8866 struct mips_elf_link_hash_table *htab;
8868 htab = mips_elf_hash_table (info);
8869 BFD_ASSERT (htab != NULL);
8875 dynobj = elf_hash_table (info)->dynobj;
8878 /* Allocate room for the reserved entries. VxWorks always reserves
8879 3 entries; other objects only reserve 2 entries. */
8880 BFD_ASSERT (g->assigned_gotno == 0);
8881 if (htab->is_vxworks)
8882 htab->reserved_gotno = 3;
8884 htab->reserved_gotno = 2;
8885 g->local_gotno += htab->reserved_gotno;
8886 g->assigned_gotno = htab->reserved_gotno;
8888 /* Replace entries for indirect and warning symbols with entries for
8889 the target symbol. */
8890 if (!mips_elf_resolve_final_got_entries (g))
8893 /* Count the number of GOT symbols. */
8894 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8896 /* Calculate the total loadable size of the output. That
8897 will give us the maximum number of GOT_PAGE entries
8899 for (sub = info->input_bfds; sub; sub = sub->link_next)
8901 asection *subsection;
8903 for (subsection = sub->sections;
8905 subsection = subsection->next)
8907 if ((subsection->flags & SEC_ALLOC) == 0)
8909 loadable_size += ((subsection->size + 0xf)
8910 &~ (bfd_size_type) 0xf);
8914 if (htab->is_vxworks)
8915 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8916 relocations against local symbols evaluate to "G", and the EABI does
8917 not include R_MIPS_GOT_PAGE. */
8920 /* Assume there are two loadable segments consisting of contiguous
8921 sections. Is 5 enough? */
8922 page_gotno = (loadable_size >> 16) + 5;
8924 /* Choose the smaller of the two estimates; both are intended to be
8926 if (page_gotno > g->page_gotno)
8927 page_gotno = g->page_gotno;
8929 g->local_gotno += page_gotno;
8930 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8931 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8933 /* We need to calculate tls_gotno for global symbols at this point
8934 instead of building it up earlier, to avoid doublecounting
8935 entries for one global symbol from multiple input files. */
8936 count_tls_arg.info = info;
8937 count_tls_arg.needed = 0;
8938 elf_link_hash_traverse (elf_hash_table (info),
8939 mips_elf_count_global_tls_entries,
8941 g->tls_gotno += count_tls_arg.needed;
8942 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8944 /* VxWorks does not support multiple GOTs. It initializes $gp to
8945 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8947 if (htab->is_vxworks)
8949 /* VxWorks executables do not need a GOT. */
8952 /* Each VxWorks GOT entry needs an explicit relocation. */
8955 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8957 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8960 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8962 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8967 struct mips_elf_count_tls_arg arg;
8969 /* Set up TLS entries. */
8970 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8971 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8973 /* Allocate room for the TLS relocations. */
8976 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8977 elf_link_hash_traverse (elf_hash_table (info),
8978 mips_elf_count_global_tls_relocs,
8981 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8987 /* Estimate the size of the .MIPS.stubs section. */
8990 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8992 struct mips_elf_link_hash_table *htab;
8993 bfd_size_type dynsymcount;
8995 htab = mips_elf_hash_table (info);
8996 BFD_ASSERT (htab != NULL);
8998 if (htab->lazy_stub_count == 0)
9001 /* IRIX rld assumes that a function stub isn't at the end of the .text
9002 section, so add a dummy entry to the end. */
9003 htab->lazy_stub_count++;
9005 /* Get a worst-case estimate of the number of dynamic symbols needed.
9006 At this point, dynsymcount does not account for section symbols
9007 and count_section_dynsyms may overestimate the number that will
9009 dynsymcount = (elf_hash_table (info)->dynsymcount
9010 + count_section_dynsyms (output_bfd, info));
9012 /* Determine the size of one stub entry. */
9013 htab->function_stub_size = (dynsymcount > 0x10000
9014 ? MIPS_FUNCTION_STUB_BIG_SIZE
9015 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9017 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9020 /* A mips_elf_link_hash_traverse callback for which DATA points to the
9021 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9022 allocate an entry in the stubs section. */
9025 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9027 struct mips_elf_link_hash_table *htab;
9029 htab = (struct mips_elf_link_hash_table *) data;
9030 if (h->needs_lazy_stub)
9032 h->root.root.u.def.section = htab->sstubs;
9033 h->root.root.u.def.value = htab->sstubs->size;
9034 h->root.plt.offset = htab->sstubs->size;
9035 htab->sstubs->size += htab->function_stub_size;
9040 /* Allocate offsets in the stubs section to each symbol that needs one.
9041 Set the final size of the .MIPS.stub section. */
9044 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9046 struct mips_elf_link_hash_table *htab;
9048 htab = mips_elf_hash_table (info);
9049 BFD_ASSERT (htab != NULL);
9051 if (htab->lazy_stub_count == 0)
9054 htab->sstubs->size = 0;
9055 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9056 htab->sstubs->size += htab->function_stub_size;
9057 BFD_ASSERT (htab->sstubs->size
9058 == htab->lazy_stub_count * htab->function_stub_size);
9061 /* Set the sizes of the dynamic sections. */
9064 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9065 struct bfd_link_info *info)
9068 asection *s, *sreldyn;
9069 bfd_boolean reltext;
9070 struct mips_elf_link_hash_table *htab;
9072 htab = mips_elf_hash_table (info);
9073 BFD_ASSERT (htab != NULL);
9074 dynobj = elf_hash_table (info)->dynobj;
9075 BFD_ASSERT (dynobj != NULL);
9077 if (elf_hash_table (info)->dynamic_sections_created)
9079 /* Set the contents of the .interp section to the interpreter. */
9080 if (info->executable)
9082 s = bfd_get_linker_section (dynobj, ".interp");
9083 BFD_ASSERT (s != NULL);
9085 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9087 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9090 /* Create a symbol for the PLT, if we know that we are using it. */
9091 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9093 struct elf_link_hash_entry *h;
9095 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9097 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9098 "_PROCEDURE_LINKAGE_TABLE_");
9099 htab->root.hplt = h;
9106 /* Allocate space for global sym dynamic relocs. */
9107 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9109 mips_elf_estimate_stub_size (output_bfd, info);
9111 if (!mips_elf_lay_out_got (output_bfd, info))
9114 mips_elf_lay_out_lazy_stubs (info);
9116 /* The check_relocs and adjust_dynamic_symbol entry points have
9117 determined the sizes of the various dynamic sections. Allocate
9120 for (s = dynobj->sections; s != NULL; s = s->next)
9124 /* It's OK to base decisions on the section name, because none
9125 of the dynobj section names depend upon the input files. */
9126 name = bfd_get_section_name (dynobj, s);
9128 if ((s->flags & SEC_LINKER_CREATED) == 0)
9131 if (CONST_STRNEQ (name, ".rel"))
9135 const char *outname;
9138 /* If this relocation section applies to a read only
9139 section, then we probably need a DT_TEXTREL entry.
9140 If the relocation section is .rel(a).dyn, we always
9141 assert a DT_TEXTREL entry rather than testing whether
9142 there exists a relocation to a read only section or
9144 outname = bfd_get_section_name (output_bfd,
9146 target = bfd_get_section_by_name (output_bfd, outname + 4);
9148 && (target->flags & SEC_READONLY) != 0
9149 && (target->flags & SEC_ALLOC) != 0)
9150 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9153 /* We use the reloc_count field as a counter if we need
9154 to copy relocs into the output file. */
9155 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9158 /* If combreloc is enabled, elf_link_sort_relocs() will
9159 sort relocations, but in a different way than we do,
9160 and before we're done creating relocations. Also, it
9161 will move them around between input sections'
9162 relocation's contents, so our sorting would be
9163 broken, so don't let it run. */
9164 info->combreloc = 0;
9167 else if (! info->shared
9168 && ! mips_elf_hash_table (info)->use_rld_obj_head
9169 && CONST_STRNEQ (name, ".rld_map"))
9171 /* We add a room for __rld_map. It will be filled in by the
9172 rtld to contain a pointer to the _r_debug structure. */
9173 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9175 else if (SGI_COMPAT (output_bfd)
9176 && CONST_STRNEQ (name, ".compact_rel"))
9177 s->size += mips_elf_hash_table (info)->compact_rel_size;
9178 else if (s == htab->splt)
9180 /* If the last PLT entry has a branch delay slot, allocate
9181 room for an extra nop to fill the delay slot. This is
9182 for CPUs without load interlocking. */
9183 if (! LOAD_INTERLOCKS_P (output_bfd)
9184 && ! htab->is_vxworks && s->size > 0)
9187 else if (! CONST_STRNEQ (name, ".init")
9189 && s != htab->sgotplt
9190 && s != htab->sstubs
9191 && s != htab->sdynbss)
9193 /* It's not one of our sections, so don't allocate space. */
9199 s->flags |= SEC_EXCLUDE;
9203 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9206 /* Allocate memory for the section contents. */
9207 s->contents = bfd_zalloc (dynobj, s->size);
9208 if (s->contents == NULL)
9210 bfd_set_error (bfd_error_no_memory);
9215 if (elf_hash_table (info)->dynamic_sections_created)
9217 /* Add some entries to the .dynamic section. We fill in the
9218 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9219 must add the entries now so that we get the correct size for
9220 the .dynamic section. */
9222 /* SGI object has the equivalence of DT_DEBUG in the
9223 DT_MIPS_RLD_MAP entry. This must come first because glibc
9224 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9225 may only look at the first one they see. */
9227 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9230 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9231 used by the debugger. */
9232 if (info->executable
9233 && !SGI_COMPAT (output_bfd)
9234 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9237 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9238 info->flags |= DF_TEXTREL;
9240 if ((info->flags & DF_TEXTREL) != 0)
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9245 /* Clear the DF_TEXTREL flag. It will be set again if we
9246 write out an actual text relocation; we may not, because
9247 at this point we do not know whether e.g. any .eh_frame
9248 absolute relocations have been converted to PC-relative. */
9249 info->flags &= ~DF_TEXTREL;
9252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9255 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9256 if (htab->is_vxworks)
9258 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9259 use any of the DT_MIPS_* tags. */
9260 if (sreldyn && sreldyn->size > 0)
9262 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9265 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9268 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9274 if (sreldyn && sreldyn->size > 0)
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9282 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9286 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9289 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9292 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9295 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9298 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9301 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9304 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9307 if (IRIX_COMPAT (dynobj) == ict_irix5
9308 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9311 if (IRIX_COMPAT (dynobj) == ict_irix6
9312 && (bfd_get_section_by_name
9313 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9314 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9317 if (htab->splt->size > 0)
9319 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9322 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9325 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9328 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9331 if (htab->is_vxworks
9332 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9339 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9340 Adjust its R_ADDEND field so that it is correct for the output file.
9341 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9342 and sections respectively; both use symbol indexes. */
9345 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9346 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9347 asection **local_sections, Elf_Internal_Rela *rel)
9349 unsigned int r_type, r_symndx;
9350 Elf_Internal_Sym *sym;
9353 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9355 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9356 if (gprel16_reloc_p (r_type)
9357 || r_type == R_MIPS_GPREL32
9358 || literal_reloc_p (r_type))
9360 rel->r_addend += _bfd_get_gp_value (input_bfd);
9361 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9364 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9365 sym = local_syms + r_symndx;
9367 /* Adjust REL's addend to account for section merging. */
9368 if (!info->relocatable)
9370 sec = local_sections[r_symndx];
9371 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9374 /* This would normally be done by the rela_normal code in elflink.c. */
9375 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9376 rel->r_addend += local_sections[r_symndx]->output_offset;
9380 /* Handle relocations against symbols from removed linkonce sections,
9381 or sections discarded by a linker script. We use this wrapper around
9382 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9383 on 64-bit ELF targets. In this case for any relocation handled, which
9384 always be the first in a triplet, the remaining two have to be processed
9385 together with the first, even if they are R_MIPS_NONE. It is the symbol
9386 index referred by the first reloc that applies to all the three and the
9387 remaining two never refer to an object symbol. And it is the final
9388 relocation (the last non-null one) that determines the output field of
9389 the whole relocation so retrieve the corresponding howto structure for
9390 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9392 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9393 and therefore requires to be pasted in a loop. It also defines a block
9394 and does not protect any of its arguments, hence the extra brackets. */
9397 mips_reloc_against_discarded_section (bfd *output_bfd,
9398 struct bfd_link_info *info,
9399 bfd *input_bfd, asection *input_section,
9400 Elf_Internal_Rela **rel,
9401 const Elf_Internal_Rela **relend,
9402 bfd_boolean rel_reloc,
9403 reloc_howto_type *howto,
9406 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9407 int count = bed->s->int_rels_per_ext_rel;
9408 unsigned int r_type;
9411 for (i = count - 1; i > 0; i--)
9413 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9414 if (r_type != R_MIPS_NONE)
9416 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9422 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9423 (*rel), count, (*relend),
9424 howto, i, contents);
9429 /* Relocate a MIPS ELF section. */
9432 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9433 bfd *input_bfd, asection *input_section,
9434 bfd_byte *contents, Elf_Internal_Rela *relocs,
9435 Elf_Internal_Sym *local_syms,
9436 asection **local_sections)
9438 Elf_Internal_Rela *rel;
9439 const Elf_Internal_Rela *relend;
9441 bfd_boolean use_saved_addend_p = FALSE;
9442 const struct elf_backend_data *bed;
9444 bed = get_elf_backend_data (output_bfd);
9445 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9446 for (rel = relocs; rel < relend; ++rel)
9450 reloc_howto_type *howto;
9451 bfd_boolean cross_mode_jump_p;
9452 /* TRUE if the relocation is a RELA relocation, rather than a
9454 bfd_boolean rela_relocation_p = TRUE;
9455 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9457 unsigned long r_symndx;
9459 Elf_Internal_Shdr *symtab_hdr;
9460 struct elf_link_hash_entry *h;
9461 bfd_boolean rel_reloc;
9463 rel_reloc = (NEWABI_P (input_bfd)
9464 && mips_elf_rel_relocation_p (input_bfd, input_section,
9466 /* Find the relocation howto for this relocation. */
9467 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9469 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9471 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9473 sec = local_sections[r_symndx];
9478 unsigned long extsymoff;
9481 if (!elf_bad_symtab (input_bfd))
9482 extsymoff = symtab_hdr->sh_info;
9483 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9484 while (h->root.type == bfd_link_hash_indirect
9485 || h->root.type == bfd_link_hash_warning)
9486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9489 if (h->root.type == bfd_link_hash_defined
9490 || h->root.type == bfd_link_hash_defweak)
9491 sec = h->root.u.def.section;
9494 if (sec != NULL && discarded_section (sec))
9496 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9497 input_section, &rel, &relend,
9498 rel_reloc, howto, contents);
9502 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9504 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9505 64-bit code, but make sure all their addresses are in the
9506 lowermost or uppermost 32-bit section of the 64-bit address
9507 space. Thus, when they use an R_MIPS_64 they mean what is
9508 usually meant by R_MIPS_32, with the exception that the
9509 stored value is sign-extended to 64 bits. */
9510 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9512 /* On big-endian systems, we need to lie about the position
9514 if (bfd_big_endian (input_bfd))
9518 if (!use_saved_addend_p)
9520 /* If these relocations were originally of the REL variety,
9521 we must pull the addend out of the field that will be
9522 relocated. Otherwise, we simply use the contents of the
9524 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9527 rela_relocation_p = FALSE;
9528 addend = mips_elf_read_rel_addend (input_bfd, rel,
9530 if (hi16_reloc_p (r_type)
9531 || (got16_reloc_p (r_type)
9532 && mips_elf_local_relocation_p (input_bfd, rel,
9535 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9539 name = h->root.root.string;
9541 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9542 local_syms + r_symndx,
9544 (*_bfd_error_handler)
9545 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9546 input_bfd, input_section, name, howto->name,
9551 addend <<= howto->rightshift;
9554 addend = rel->r_addend;
9555 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9556 local_syms, local_sections, rel);
9559 if (info->relocatable)
9561 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9562 && bfd_big_endian (input_bfd))
9565 if (!rela_relocation_p && rel->r_addend)
9567 addend += rel->r_addend;
9568 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9569 addend = mips_elf_high (addend);
9570 else if (r_type == R_MIPS_HIGHER)
9571 addend = mips_elf_higher (addend);
9572 else if (r_type == R_MIPS_HIGHEST)
9573 addend = mips_elf_highest (addend);
9575 addend >>= howto->rightshift;
9577 /* We use the source mask, rather than the destination
9578 mask because the place to which we are writing will be
9579 source of the addend in the final link. */
9580 addend &= howto->src_mask;
9582 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9583 /* See the comment above about using R_MIPS_64 in the 32-bit
9584 ABI. Here, we need to update the addend. It would be
9585 possible to get away with just using the R_MIPS_32 reloc
9586 but for endianness. */
9592 if (addend & ((bfd_vma) 1 << 31))
9594 sign_bits = ((bfd_vma) 1 << 32) - 1;
9601 /* If we don't know that we have a 64-bit type,
9602 do two separate stores. */
9603 if (bfd_big_endian (input_bfd))
9605 /* Store the sign-bits (which are most significant)
9607 low_bits = sign_bits;
9613 high_bits = sign_bits;
9615 bfd_put_32 (input_bfd, low_bits,
9616 contents + rel->r_offset);
9617 bfd_put_32 (input_bfd, high_bits,
9618 contents + rel->r_offset + 4);
9622 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9623 input_bfd, input_section,
9628 /* Go on to the next relocation. */
9632 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9633 relocations for the same offset. In that case we are
9634 supposed to treat the output of each relocation as the addend
9636 if (rel + 1 < relend
9637 && rel->r_offset == rel[1].r_offset
9638 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9639 use_saved_addend_p = TRUE;
9641 use_saved_addend_p = FALSE;
9643 /* Figure out what value we are supposed to relocate. */
9644 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9645 input_section, info, rel,
9646 addend, howto, local_syms,
9647 local_sections, &value,
9648 &name, &cross_mode_jump_p,
9649 use_saved_addend_p))
9651 case bfd_reloc_continue:
9652 /* There's nothing to do. */
9655 case bfd_reloc_undefined:
9656 /* mips_elf_calculate_relocation already called the
9657 undefined_symbol callback. There's no real point in
9658 trying to perform the relocation at this point, so we
9659 just skip ahead to the next relocation. */
9662 case bfd_reloc_notsupported:
9663 msg = _("internal error: unsupported relocation error");
9664 info->callbacks->warning
9665 (info, msg, name, input_bfd, input_section, rel->r_offset);
9668 case bfd_reloc_overflow:
9669 if (use_saved_addend_p)
9670 /* Ignore overflow until we reach the last relocation for
9671 a given location. */
9675 struct mips_elf_link_hash_table *htab;
9677 htab = mips_elf_hash_table (info);
9678 BFD_ASSERT (htab != NULL);
9679 BFD_ASSERT (name != NULL);
9680 if (!htab->small_data_overflow_reported
9681 && (gprel16_reloc_p (howto->type)
9682 || literal_reloc_p (howto->type)))
9684 msg = _("small-data section exceeds 64KB;"
9685 " lower small-data size limit (see option -G)");
9687 htab->small_data_overflow_reported = TRUE;
9688 (*info->callbacks->einfo) ("%P: %s\n", msg);
9690 if (! ((*info->callbacks->reloc_overflow)
9691 (info, NULL, name, howto->name, (bfd_vma) 0,
9692 input_bfd, input_section, rel->r_offset)))
9700 case bfd_reloc_outofrange:
9701 if (jal_reloc_p (howto->type))
9703 msg = _("JALX to a non-word-aligned address");
9704 info->callbacks->warning
9705 (info, msg, name, input_bfd, input_section, rel->r_offset);
9715 /* If we've got another relocation for the address, keep going
9716 until we reach the last one. */
9717 if (use_saved_addend_p)
9723 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9724 /* See the comment above about using R_MIPS_64 in the 32-bit
9725 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9726 that calculated the right value. Now, however, we
9727 sign-extend the 32-bit result to 64-bits, and store it as a
9728 64-bit value. We are especially generous here in that we
9729 go to extreme lengths to support this usage on systems with
9730 only a 32-bit VMA. */
9736 if (value & ((bfd_vma) 1 << 31))
9738 sign_bits = ((bfd_vma) 1 << 32) - 1;
9745 /* If we don't know that we have a 64-bit type,
9746 do two separate stores. */
9747 if (bfd_big_endian (input_bfd))
9749 /* Undo what we did above. */
9751 /* Store the sign-bits (which are most significant)
9753 low_bits = sign_bits;
9759 high_bits = sign_bits;
9761 bfd_put_32 (input_bfd, low_bits,
9762 contents + rel->r_offset);
9763 bfd_put_32 (input_bfd, high_bits,
9764 contents + rel->r_offset + 4);
9768 /* Actually perform the relocation. */
9769 if (! mips_elf_perform_relocation (info, howto, rel, value,
9770 input_bfd, input_section,
9771 contents, cross_mode_jump_p))
9778 /* A function that iterates over each entry in la25_stubs and fills
9779 in the code for each one. DATA points to a mips_htab_traverse_info. */
9782 mips_elf_create_la25_stub (void **slot, void *data)
9784 struct mips_htab_traverse_info *hti;
9785 struct mips_elf_link_hash_table *htab;
9786 struct mips_elf_la25_stub *stub;
9789 bfd_vma offset, target, target_high, target_low;
9791 stub = (struct mips_elf_la25_stub *) *slot;
9792 hti = (struct mips_htab_traverse_info *) data;
9793 htab = mips_elf_hash_table (hti->info);
9794 BFD_ASSERT (htab != NULL);
9796 /* Create the section contents, if we haven't already. */
9797 s = stub->stub_section;
9801 loc = bfd_malloc (s->size);
9810 /* Work out where in the section this stub should go. */
9811 offset = stub->offset;
9813 /* Work out the target address. */
9814 target = mips_elf_get_la25_target (stub, &s);
9815 target += s->output_section->vma + s->output_offset;
9817 target_high = ((target + 0x8000) >> 16) & 0xffff;
9818 target_low = (target & 0xffff);
9820 if (stub->stub_section != htab->strampoline)
9822 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9823 of the section and write the two instructions at the end. */
9824 memset (loc, 0, offset);
9826 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9828 bfd_put_micromips_32 (hti->output_bfd,
9829 LA25_LUI_MICROMIPS (target_high),
9831 bfd_put_micromips_32 (hti->output_bfd,
9832 LA25_ADDIU_MICROMIPS (target_low),
9837 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9838 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9843 /* This is trampoline. */
9845 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9847 bfd_put_micromips_32 (hti->output_bfd,
9848 LA25_LUI_MICROMIPS (target_high), loc);
9849 bfd_put_micromips_32 (hti->output_bfd,
9850 LA25_J_MICROMIPS (target), loc + 4);
9851 bfd_put_micromips_32 (hti->output_bfd,
9852 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9853 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9857 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9858 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9859 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9860 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9866 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9867 adjust it appropriately now. */
9870 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9871 const char *name, Elf_Internal_Sym *sym)
9873 /* The linker script takes care of providing names and values for
9874 these, but we must place them into the right sections. */
9875 static const char* const text_section_symbols[] = {
9878 "__dso_displacement",
9880 "__program_header_table",
9884 static const char* const data_section_symbols[] = {
9892 const char* const *p;
9895 for (i = 0; i < 2; ++i)
9896 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9899 if (strcmp (*p, name) == 0)
9901 /* All of these symbols are given type STT_SECTION by the
9903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9904 sym->st_other = STO_PROTECTED;
9906 /* The IRIX linker puts these symbols in special sections. */
9908 sym->st_shndx = SHN_MIPS_TEXT;
9910 sym->st_shndx = SHN_MIPS_DATA;
9916 /* Finish up dynamic symbol handling. We set the contents of various
9917 dynamic sections here. */
9920 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9921 struct bfd_link_info *info,
9922 struct elf_link_hash_entry *h,
9923 Elf_Internal_Sym *sym)
9927 struct mips_got_info *g, *gg;
9930 struct mips_elf_link_hash_table *htab;
9931 struct mips_elf_link_hash_entry *hmips;
9933 htab = mips_elf_hash_table (info);
9934 BFD_ASSERT (htab != NULL);
9935 dynobj = elf_hash_table (info)->dynobj;
9936 hmips = (struct mips_elf_link_hash_entry *) h;
9938 BFD_ASSERT (!htab->is_vxworks);
9940 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9942 /* We've decided to create a PLT entry for this symbol. */
9944 bfd_vma header_address, plt_index, got_address;
9945 bfd_vma got_address_high, got_address_low, load;
9946 const bfd_vma *plt_entry;
9948 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9949 BFD_ASSERT (h->dynindx != -1);
9950 BFD_ASSERT (htab->splt != NULL);
9951 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9952 BFD_ASSERT (!h->def_regular);
9954 /* Calculate the address of the PLT header. */
9955 header_address = (htab->splt->output_section->vma
9956 + htab->splt->output_offset);
9958 /* Calculate the index of the entry. */
9959 plt_index = ((h->plt.offset - htab->plt_header_size)
9960 / htab->plt_entry_size);
9962 /* Calculate the address of the .got.plt entry. */
9963 got_address = (htab->sgotplt->output_section->vma
9964 + htab->sgotplt->output_offset
9965 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9966 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9967 got_address_low = got_address & 0xffff;
9969 /* Initially point the .got.plt entry at the PLT header. */
9970 loc = (htab->sgotplt->contents
9971 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9972 if (ABI_64_P (output_bfd))
9973 bfd_put_64 (output_bfd, header_address, loc);
9975 bfd_put_32 (output_bfd, header_address, loc);
9977 /* Find out where the .plt entry should go. */
9978 loc = htab->splt->contents + h->plt.offset;
9980 /* Pick the load opcode. */
9981 load = MIPS_ELF_LOAD_WORD (output_bfd);
9983 /* Fill in the PLT entry itself. */
9984 plt_entry = mips_exec_plt_entry;
9985 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9986 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9988 if (! LOAD_INTERLOCKS_P (output_bfd))
9990 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9991 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9995 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9996 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9999 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10000 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10001 plt_index, h->dynindx,
10002 R_MIPS_JUMP_SLOT, got_address);
10004 /* We distinguish between PLT entries and lazy-binding stubs by
10005 giving the former an st_other value of STO_MIPS_PLT. Set the
10006 flag and leave the value if there are any relocations in the
10007 binary where pointer equality matters. */
10008 sym->st_shndx = SHN_UNDEF;
10009 if (h->pointer_equality_needed)
10010 sym->st_other = STO_MIPS_PLT;
10014 else if (h->plt.offset != MINUS_ONE)
10016 /* We've decided to create a lazy-binding stub. */
10017 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10019 /* This symbol has a stub. Set it up. */
10021 BFD_ASSERT (h->dynindx != -1);
10023 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10024 || (h->dynindx <= 0xffff));
10026 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10027 sign extension at runtime in the stub, resulting in a negative
10029 if (h->dynindx & ~0x7fffffff)
10032 /* Fill the stub. */
10034 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10036 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10038 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10040 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10044 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10047 /* If a large stub is not required and sign extension is not a
10048 problem, then use legacy code in the stub. */
10049 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10050 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10051 else if (h->dynindx & ~0x7fff)
10052 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10054 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10057 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10058 memcpy (htab->sstubs->contents + h->plt.offset,
10059 stub, htab->function_stub_size);
10061 /* Mark the symbol as undefined. plt.offset != -1 occurs
10062 only for the referenced symbol. */
10063 sym->st_shndx = SHN_UNDEF;
10065 /* The run-time linker uses the st_value field of the symbol
10066 to reset the global offset table entry for this external
10067 to its stub address when unlinking a shared object. */
10068 sym->st_value = (htab->sstubs->output_section->vma
10069 + htab->sstubs->output_offset
10073 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10074 refer to the stub, since only the stub uses the standard calling
10076 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10078 BFD_ASSERT (hmips->need_fn_stub);
10079 sym->st_value = (hmips->fn_stub->output_section->vma
10080 + hmips->fn_stub->output_offset);
10081 sym->st_size = hmips->fn_stub->size;
10082 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10085 BFD_ASSERT (h->dynindx != -1
10086 || h->forced_local);
10089 g = htab->got_info;
10090 BFD_ASSERT (g != NULL);
10092 /* Run through the global symbol table, creating GOT entries for all
10093 the symbols that need them. */
10094 if (hmips->global_got_area != GGA_NONE)
10099 value = sym->st_value;
10100 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10101 R_MIPS_GOT16, info);
10102 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10105 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10107 struct mips_got_entry e, *p;
10113 e.abfd = output_bfd;
10118 for (g = g->next; g->next != gg; g = g->next)
10121 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10124 offset = p->gotidx;
10126 || (elf_hash_table (info)->dynamic_sections_created
10128 && p->d.h->root.def_dynamic
10129 && !p->d.h->root.def_regular))
10131 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10132 the various compatibility problems, it's easier to mock
10133 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10134 mips_elf_create_dynamic_relocation to calculate the
10135 appropriate addend. */
10136 Elf_Internal_Rela rel[3];
10138 memset (rel, 0, sizeof (rel));
10139 if (ABI_64_P (output_bfd))
10140 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10142 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10143 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10146 if (! (mips_elf_create_dynamic_relocation
10147 (output_bfd, info, rel,
10148 e.d.h, NULL, sym->st_value, &entry, sgot)))
10152 entry = sym->st_value;
10153 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10158 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10159 name = h->root.root.string;
10160 if (h == elf_hash_table (info)->hdynamic
10161 || h == elf_hash_table (info)->hgot)
10162 sym->st_shndx = SHN_ABS;
10163 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10164 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10166 sym->st_shndx = SHN_ABS;
10167 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10170 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10172 sym->st_shndx = SHN_ABS;
10173 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10174 sym->st_value = elf_gp (output_bfd);
10176 else if (SGI_COMPAT (output_bfd))
10178 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10179 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10181 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10182 sym->st_other = STO_PROTECTED;
10184 sym->st_shndx = SHN_MIPS_DATA;
10186 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10188 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10189 sym->st_other = STO_PROTECTED;
10190 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10191 sym->st_shndx = SHN_ABS;
10193 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10195 if (h->type == STT_FUNC)
10196 sym->st_shndx = SHN_MIPS_TEXT;
10197 else if (h->type == STT_OBJECT)
10198 sym->st_shndx = SHN_MIPS_DATA;
10202 /* Emit a copy reloc, if needed. */
10208 BFD_ASSERT (h->dynindx != -1);
10209 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10211 s = mips_elf_rel_dyn_section (info, FALSE);
10212 symval = (h->root.u.def.section->output_section->vma
10213 + h->root.u.def.section->output_offset
10214 + h->root.u.def.value);
10215 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10216 h->dynindx, R_MIPS_COPY, symval);
10219 /* Handle the IRIX6-specific symbols. */
10220 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10221 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10223 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10224 treat MIPS16 symbols like any other. */
10225 if (ELF_ST_IS_MIPS16 (sym->st_other))
10227 BFD_ASSERT (sym->st_value & 1);
10228 sym->st_other -= STO_MIPS16;
10234 /* Likewise, for VxWorks. */
10237 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10238 struct bfd_link_info *info,
10239 struct elf_link_hash_entry *h,
10240 Elf_Internal_Sym *sym)
10244 struct mips_got_info *g;
10245 struct mips_elf_link_hash_table *htab;
10246 struct mips_elf_link_hash_entry *hmips;
10248 htab = mips_elf_hash_table (info);
10249 BFD_ASSERT (htab != NULL);
10250 dynobj = elf_hash_table (info)->dynobj;
10251 hmips = (struct mips_elf_link_hash_entry *) h;
10253 if (h->plt.offset != (bfd_vma) -1)
10256 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10257 Elf_Internal_Rela rel;
10258 static const bfd_vma *plt_entry;
10260 BFD_ASSERT (h->dynindx != -1);
10261 BFD_ASSERT (htab->splt != NULL);
10262 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10264 /* Calculate the address of the .plt entry. */
10265 plt_address = (htab->splt->output_section->vma
10266 + htab->splt->output_offset
10269 /* Calculate the index of the entry. */
10270 plt_index = ((h->plt.offset - htab->plt_header_size)
10271 / htab->plt_entry_size);
10273 /* Calculate the address of the .got.plt entry. */
10274 got_address = (htab->sgotplt->output_section->vma
10275 + htab->sgotplt->output_offset
10278 /* Calculate the offset of the .got.plt entry from
10279 _GLOBAL_OFFSET_TABLE_. */
10280 got_offset = mips_elf_gotplt_index (info, h);
10282 /* Calculate the offset for the branch at the start of the PLT
10283 entry. The branch jumps to the beginning of .plt. */
10284 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10286 /* Fill in the initial value of the .got.plt entry. */
10287 bfd_put_32 (output_bfd, plt_address,
10288 htab->sgotplt->contents + plt_index * 4);
10290 /* Find out where the .plt entry should go. */
10291 loc = htab->splt->contents + h->plt.offset;
10295 plt_entry = mips_vxworks_shared_plt_entry;
10296 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10297 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10301 bfd_vma got_address_high, got_address_low;
10303 plt_entry = mips_vxworks_exec_plt_entry;
10304 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10305 got_address_low = got_address & 0xffff;
10307 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10308 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10309 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10310 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10311 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10312 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10313 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10314 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10316 loc = (htab->srelplt2->contents
10317 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10319 /* Emit a relocation for the .got.plt entry. */
10320 rel.r_offset = got_address;
10321 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10322 rel.r_addend = h->plt.offset;
10323 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10325 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10326 loc += sizeof (Elf32_External_Rela);
10327 rel.r_offset = plt_address + 8;
10328 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10329 rel.r_addend = got_offset;
10330 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10332 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10333 loc += sizeof (Elf32_External_Rela);
10335 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10339 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10340 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10341 rel.r_offset = got_address;
10342 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10344 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10346 if (!h->def_regular)
10347 sym->st_shndx = SHN_UNDEF;
10350 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10353 g = htab->got_info;
10354 BFD_ASSERT (g != NULL);
10356 /* See if this symbol has an entry in the GOT. */
10357 if (hmips->global_got_area != GGA_NONE)
10360 Elf_Internal_Rela outrel;
10364 /* Install the symbol value in the GOT. */
10365 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10366 R_MIPS_GOT16, info);
10367 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10369 /* Add a dynamic relocation for it. */
10370 s = mips_elf_rel_dyn_section (info, FALSE);
10371 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10372 outrel.r_offset = (sgot->output_section->vma
10373 + sgot->output_offset
10375 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10376 outrel.r_addend = 0;
10377 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10380 /* Emit a copy reloc, if needed. */
10383 Elf_Internal_Rela rel;
10385 BFD_ASSERT (h->dynindx != -1);
10387 rel.r_offset = (h->root.u.def.section->output_section->vma
10388 + h->root.u.def.section->output_offset
10389 + h->root.u.def.value);
10390 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10392 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10393 htab->srelbss->contents
10394 + (htab->srelbss->reloc_count
10395 * sizeof (Elf32_External_Rela)));
10396 ++htab->srelbss->reloc_count;
10399 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10400 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10401 sym->st_value &= ~1;
10406 /* Write out a plt0 entry to the beginning of .plt. */
10409 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10412 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10413 static const bfd_vma *plt_entry;
10414 struct mips_elf_link_hash_table *htab;
10416 htab = mips_elf_hash_table (info);
10417 BFD_ASSERT (htab != NULL);
10419 if (ABI_64_P (output_bfd))
10420 plt_entry = mips_n64_exec_plt0_entry;
10421 else if (ABI_N32_P (output_bfd))
10422 plt_entry = mips_n32_exec_plt0_entry;
10424 plt_entry = mips_o32_exec_plt0_entry;
10426 /* Calculate the value of .got.plt. */
10427 gotplt_value = (htab->sgotplt->output_section->vma
10428 + htab->sgotplt->output_offset);
10429 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10430 gotplt_value_low = gotplt_value & 0xffff;
10432 /* The PLT sequence is not safe for N64 if .got.plt's address can
10433 not be loaded in two instructions. */
10434 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10435 || ~(gotplt_value | 0x7fffffff) == 0);
10437 /* Install the PLT header. */
10438 loc = htab->splt->contents;
10439 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10440 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10441 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10442 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10443 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10444 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10445 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10446 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10449 /* Install the PLT header for a VxWorks executable and finalize the
10450 contents of .rela.plt.unloaded. */
10453 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10455 Elf_Internal_Rela rela;
10457 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10458 static const bfd_vma *plt_entry;
10459 struct mips_elf_link_hash_table *htab;
10461 htab = mips_elf_hash_table (info);
10462 BFD_ASSERT (htab != NULL);
10464 plt_entry = mips_vxworks_exec_plt0_entry;
10466 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10467 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10468 + htab->root.hgot->root.u.def.section->output_offset
10469 + htab->root.hgot->root.u.def.value);
10471 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10472 got_value_low = got_value & 0xffff;
10474 /* Calculate the address of the PLT header. */
10475 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10477 /* Install the PLT header. */
10478 loc = htab->splt->contents;
10479 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10480 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10481 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10482 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10483 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10484 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10486 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10487 loc = htab->srelplt2->contents;
10488 rela.r_offset = plt_address;
10489 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10491 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10492 loc += sizeof (Elf32_External_Rela);
10494 /* Output the relocation for the following addiu of
10495 %lo(_GLOBAL_OFFSET_TABLE_). */
10496 rela.r_offset += 4;
10497 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10498 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10499 loc += sizeof (Elf32_External_Rela);
10501 /* Fix up the remaining relocations. They may have the wrong
10502 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10503 in which symbols were output. */
10504 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10506 Elf_Internal_Rela rel;
10508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10509 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10511 loc += sizeof (Elf32_External_Rela);
10513 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10514 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10515 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10516 loc += sizeof (Elf32_External_Rela);
10518 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10519 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10520 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10521 loc += sizeof (Elf32_External_Rela);
10525 /* Install the PLT header for a VxWorks shared library. */
10528 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10531 struct mips_elf_link_hash_table *htab;
10533 htab = mips_elf_hash_table (info);
10534 BFD_ASSERT (htab != NULL);
10536 /* We just need to copy the entry byte-by-byte. */
10537 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10538 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10539 htab->splt->contents + i * 4);
10542 /* Finish up the dynamic sections. */
10545 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10546 struct bfd_link_info *info)
10551 struct mips_got_info *gg, *g;
10552 struct mips_elf_link_hash_table *htab;
10554 htab = mips_elf_hash_table (info);
10555 BFD_ASSERT (htab != NULL);
10557 dynobj = elf_hash_table (info)->dynobj;
10559 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10562 gg = htab->got_info;
10564 if (elf_hash_table (info)->dynamic_sections_created)
10567 int dyn_to_skip = 0, dyn_skipped = 0;
10569 BFD_ASSERT (sdyn != NULL);
10570 BFD_ASSERT (gg != NULL);
10572 g = mips_elf_got_for_ibfd (gg, output_bfd);
10573 BFD_ASSERT (g != NULL);
10575 for (b = sdyn->contents;
10576 b < sdyn->contents + sdyn->size;
10577 b += MIPS_ELF_DYN_SIZE (dynobj))
10579 Elf_Internal_Dyn dyn;
10583 bfd_boolean swap_out_p;
10585 /* Read in the current dynamic entry. */
10586 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10588 /* Assume that we're going to modify it and write it out. */
10594 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10598 BFD_ASSERT (htab->is_vxworks);
10599 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10603 /* Rewrite DT_STRSZ. */
10605 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10613 case DT_MIPS_PLTGOT:
10615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10618 case DT_MIPS_RLD_VERSION:
10619 dyn.d_un.d_val = 1; /* XXX */
10622 case DT_MIPS_FLAGS:
10623 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10626 case DT_MIPS_TIME_STAMP:
10630 dyn.d_un.d_val = t;
10634 case DT_MIPS_ICHECKSUM:
10636 swap_out_p = FALSE;
10639 case DT_MIPS_IVERSION:
10641 swap_out_p = FALSE;
10644 case DT_MIPS_BASE_ADDRESS:
10645 s = output_bfd->sections;
10646 BFD_ASSERT (s != NULL);
10647 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10650 case DT_MIPS_LOCAL_GOTNO:
10651 dyn.d_un.d_val = g->local_gotno;
10654 case DT_MIPS_UNREFEXTNO:
10655 /* The index into the dynamic symbol table which is the
10656 entry of the first external symbol that is not
10657 referenced within the same object. */
10658 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10661 case DT_MIPS_GOTSYM:
10662 if (gg->global_gotsym)
10664 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10667 /* In case if we don't have global got symbols we default
10668 to setting DT_MIPS_GOTSYM to the same value as
10669 DT_MIPS_SYMTABNO, so we just fall through. */
10671 case DT_MIPS_SYMTABNO:
10673 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10674 s = bfd_get_section_by_name (output_bfd, name);
10675 BFD_ASSERT (s != NULL);
10677 dyn.d_un.d_val = s->size / elemsize;
10680 case DT_MIPS_HIPAGENO:
10681 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10684 case DT_MIPS_RLD_MAP:
10686 struct elf_link_hash_entry *h;
10687 h = mips_elf_hash_table (info)->rld_symbol;
10690 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10691 swap_out_p = FALSE;
10694 s = h->root.u.def.section;
10695 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10696 + h->root.u.def.value);
10700 case DT_MIPS_OPTIONS:
10701 s = (bfd_get_section_by_name
10702 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10703 dyn.d_un.d_ptr = s->vma;
10707 BFD_ASSERT (htab->is_vxworks);
10708 /* The count does not include the JUMP_SLOT relocations. */
10710 dyn.d_un.d_val -= htab->srelplt->size;
10714 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10715 if (htab->is_vxworks)
10716 dyn.d_un.d_val = DT_RELA;
10718 dyn.d_un.d_val = DT_REL;
10722 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10723 dyn.d_un.d_val = htab->srelplt->size;
10727 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10728 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10729 + htab->srelplt->output_offset);
10733 /* If we didn't need any text relocations after all, delete
10734 the dynamic tag. */
10735 if (!(info->flags & DF_TEXTREL))
10737 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10738 swap_out_p = FALSE;
10743 /* If we didn't need any text relocations after all, clear
10744 DF_TEXTREL from DT_FLAGS. */
10745 if (!(info->flags & DF_TEXTREL))
10746 dyn.d_un.d_val &= ~DF_TEXTREL;
10748 swap_out_p = FALSE;
10752 swap_out_p = FALSE;
10753 if (htab->is_vxworks
10754 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10759 if (swap_out_p || dyn_skipped)
10760 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10761 (dynobj, &dyn, b - dyn_skipped);
10765 dyn_skipped += dyn_to_skip;
10770 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10771 if (dyn_skipped > 0)
10772 memset (b - dyn_skipped, 0, dyn_skipped);
10775 if (sgot != NULL && sgot->size > 0
10776 && !bfd_is_abs_section (sgot->output_section))
10778 if (htab->is_vxworks)
10780 /* The first entry of the global offset table points to the
10781 ".dynamic" section. The second is initialized by the
10782 loader and contains the shared library identifier.
10783 The third is also initialized by the loader and points
10784 to the lazy resolution stub. */
10785 MIPS_ELF_PUT_WORD (output_bfd,
10786 sdyn->output_offset + sdyn->output_section->vma,
10788 MIPS_ELF_PUT_WORD (output_bfd, 0,
10789 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10790 MIPS_ELF_PUT_WORD (output_bfd, 0,
10792 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10796 /* The first entry of the global offset table will be filled at
10797 runtime. The second entry will be used by some runtime loaders.
10798 This isn't the case of IRIX rld. */
10799 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10800 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10801 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10804 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10805 = MIPS_ELF_GOT_SIZE (output_bfd);
10808 /* Generate dynamic relocations for the non-primary gots. */
10809 if (gg != NULL && gg->next)
10811 Elf_Internal_Rela rel[3];
10812 bfd_vma addend = 0;
10814 memset (rel, 0, sizeof (rel));
10815 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10817 for (g = gg->next; g->next != gg; g = g->next)
10819 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10820 + g->next->tls_gotno;
10822 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10823 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10824 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10826 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10828 if (! info->shared)
10831 while (got_index < g->assigned_gotno)
10833 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10834 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10835 if (!(mips_elf_create_dynamic_relocation
10836 (output_bfd, info, rel, NULL,
10837 bfd_abs_section_ptr,
10838 0, &addend, sgot)))
10840 BFD_ASSERT (addend == 0);
10845 /* The generation of dynamic relocations for the non-primary gots
10846 adds more dynamic relocations. We cannot count them until
10849 if (elf_hash_table (info)->dynamic_sections_created)
10852 bfd_boolean swap_out_p;
10854 BFD_ASSERT (sdyn != NULL);
10856 for (b = sdyn->contents;
10857 b < sdyn->contents + sdyn->size;
10858 b += MIPS_ELF_DYN_SIZE (dynobj))
10860 Elf_Internal_Dyn dyn;
10863 /* Read in the current dynamic entry. */
10864 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10866 /* Assume that we're going to modify it and write it out. */
10872 /* Reduce DT_RELSZ to account for any relocations we
10873 decided not to make. This is for the n64 irix rld,
10874 which doesn't seem to apply any relocations if there
10875 are trailing null entries. */
10876 s = mips_elf_rel_dyn_section (info, FALSE);
10877 dyn.d_un.d_val = (s->reloc_count
10878 * (ABI_64_P (output_bfd)
10879 ? sizeof (Elf64_Mips_External_Rel)
10880 : sizeof (Elf32_External_Rel)));
10881 /* Adjust the section size too. Tools like the prelinker
10882 can reasonably expect the values to the same. */
10883 elf_section_data (s->output_section)->this_hdr.sh_size
10888 swap_out_p = FALSE;
10893 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10900 Elf32_compact_rel cpt;
10902 if (SGI_COMPAT (output_bfd))
10904 /* Write .compact_rel section out. */
10905 s = bfd_get_linker_section (dynobj, ".compact_rel");
10909 cpt.num = s->reloc_count;
10911 cpt.offset = (s->output_section->filepos
10912 + sizeof (Elf32_External_compact_rel));
10915 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10916 ((Elf32_External_compact_rel *)
10919 /* Clean up a dummy stub function entry in .text. */
10920 if (htab->sstubs != NULL)
10922 file_ptr dummy_offset;
10924 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10925 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10926 memset (htab->sstubs->contents + dummy_offset, 0,
10927 htab->function_stub_size);
10932 /* The psABI says that the dynamic relocations must be sorted in
10933 increasing order of r_symndx. The VxWorks EABI doesn't require
10934 this, and because the code below handles REL rather than RELA
10935 relocations, using it for VxWorks would be outright harmful. */
10936 if (!htab->is_vxworks)
10938 s = mips_elf_rel_dyn_section (info, FALSE);
10940 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10942 reldyn_sorting_bfd = output_bfd;
10944 if (ABI_64_P (output_bfd))
10945 qsort ((Elf64_External_Rel *) s->contents + 1,
10946 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10947 sort_dynamic_relocs_64);
10949 qsort ((Elf32_External_Rel *) s->contents + 1,
10950 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10951 sort_dynamic_relocs);
10956 if (htab->splt && htab->splt->size > 0)
10958 if (htab->is_vxworks)
10961 mips_vxworks_finish_shared_plt (output_bfd, info);
10963 mips_vxworks_finish_exec_plt (output_bfd, info);
10967 BFD_ASSERT (!info->shared);
10968 mips_finish_exec_plt (output_bfd, info);
10975 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10978 mips_set_isa_flags (bfd *abfd)
10982 switch (bfd_get_mach (abfd))
10985 case bfd_mach_mips3000:
10986 val = E_MIPS_ARCH_1;
10989 case bfd_mach_mips3900:
10990 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10993 case bfd_mach_mips6000:
10994 val = E_MIPS_ARCH_2;
10997 case bfd_mach_mips4000:
10998 case bfd_mach_mips4300:
10999 case bfd_mach_mips4400:
11000 case bfd_mach_mips4600:
11001 val = E_MIPS_ARCH_3;
11004 case bfd_mach_mips4010:
11005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11008 case bfd_mach_mips4100:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11012 case bfd_mach_mips4111:
11013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11016 case bfd_mach_mips4120:
11017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11020 case bfd_mach_mips4650:
11021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11024 case bfd_mach_mips5400:
11025 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11028 case bfd_mach_mips5500:
11029 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11032 case bfd_mach_mips5900:
11033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11036 case bfd_mach_mips9000:
11037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11040 case bfd_mach_mips5000:
11041 case bfd_mach_mips7000:
11042 case bfd_mach_mips8000:
11043 case bfd_mach_mips10000:
11044 case bfd_mach_mips12000:
11045 case bfd_mach_mips14000:
11046 case bfd_mach_mips16000:
11047 val = E_MIPS_ARCH_4;
11050 case bfd_mach_mips5:
11051 val = E_MIPS_ARCH_5;
11054 case bfd_mach_mips_loongson_2e:
11055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11058 case bfd_mach_mips_loongson_2f:
11059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11062 case bfd_mach_mips_sb1:
11063 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11066 case bfd_mach_mips_loongson_3a:
11067 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11070 case bfd_mach_mips_octeon:
11071 case bfd_mach_mips_octeonp:
11072 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11075 case bfd_mach_mips_xlr:
11076 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11079 case bfd_mach_mips_octeon2:
11080 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11083 case bfd_mach_mipsisa32:
11084 val = E_MIPS_ARCH_32;
11087 case bfd_mach_mipsisa64:
11088 val = E_MIPS_ARCH_64;
11091 case bfd_mach_mipsisa32r2:
11092 val = E_MIPS_ARCH_32R2;
11095 case bfd_mach_mipsisa64r2:
11096 val = E_MIPS_ARCH_64R2;
11099 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11100 elf_elfheader (abfd)->e_flags |= val;
11105 /* The final processing done just before writing out a MIPS ELF object
11106 file. This gets the MIPS architecture right based on the machine
11107 number. This is used by both the 32-bit and the 64-bit ABI. */
11110 _bfd_mips_elf_final_write_processing (bfd *abfd,
11111 bfd_boolean linker ATTRIBUTE_UNUSED)
11114 Elf_Internal_Shdr **hdrpp;
11118 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11119 is nonzero. This is for compatibility with old objects, which used
11120 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11121 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11122 mips_set_isa_flags (abfd);
11124 /* Set the sh_info field for .gptab sections and other appropriate
11125 info for each special section. */
11126 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11127 i < elf_numsections (abfd);
11130 switch ((*hdrpp)->sh_type)
11132 case SHT_MIPS_MSYM:
11133 case SHT_MIPS_LIBLIST:
11134 sec = bfd_get_section_by_name (abfd, ".dynstr");
11136 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11139 case SHT_MIPS_GPTAB:
11140 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11141 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11142 BFD_ASSERT (name != NULL
11143 && CONST_STRNEQ (name, ".gptab."));
11144 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11145 BFD_ASSERT (sec != NULL);
11146 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11149 case SHT_MIPS_CONTENT:
11150 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11151 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11152 BFD_ASSERT (name != NULL
11153 && CONST_STRNEQ (name, ".MIPS.content"));
11154 sec = bfd_get_section_by_name (abfd,
11155 name + sizeof ".MIPS.content" - 1);
11156 BFD_ASSERT (sec != NULL);
11157 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11160 case SHT_MIPS_SYMBOL_LIB:
11161 sec = bfd_get_section_by_name (abfd, ".dynsym");
11163 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11164 sec = bfd_get_section_by_name (abfd, ".liblist");
11166 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11169 case SHT_MIPS_EVENTS:
11170 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11171 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11172 BFD_ASSERT (name != NULL);
11173 if (CONST_STRNEQ (name, ".MIPS.events"))
11174 sec = bfd_get_section_by_name (abfd,
11175 name + sizeof ".MIPS.events" - 1);
11178 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11179 sec = bfd_get_section_by_name (abfd,
11181 + sizeof ".MIPS.post_rel" - 1));
11183 BFD_ASSERT (sec != NULL);
11184 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11191 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11195 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11196 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11201 /* See if we need a PT_MIPS_REGINFO segment. */
11202 s = bfd_get_section_by_name (abfd, ".reginfo");
11203 if (s && (s->flags & SEC_LOAD))
11206 /* See if we need a PT_MIPS_OPTIONS segment. */
11207 if (IRIX_COMPAT (abfd) == ict_irix6
11208 && bfd_get_section_by_name (abfd,
11209 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11212 /* See if we need a PT_MIPS_RTPROC segment. */
11213 if (IRIX_COMPAT (abfd) == ict_irix5
11214 && bfd_get_section_by_name (abfd, ".dynamic")
11215 && bfd_get_section_by_name (abfd, ".mdebug"))
11218 /* Allocate a PT_NULL header in dynamic objects. See
11219 _bfd_mips_elf_modify_segment_map for details. */
11220 if (!SGI_COMPAT (abfd)
11221 && bfd_get_section_by_name (abfd, ".dynamic"))
11227 /* Modify the segment map for an IRIX5 executable. */
11230 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11231 struct bfd_link_info *info)
11234 struct elf_segment_map *m, **pm;
11237 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11239 s = bfd_get_section_by_name (abfd, ".reginfo");
11240 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11242 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11243 if (m->p_type == PT_MIPS_REGINFO)
11248 m = bfd_zalloc (abfd, amt);
11252 m->p_type = PT_MIPS_REGINFO;
11254 m->sections[0] = s;
11256 /* We want to put it after the PHDR and INTERP segments. */
11257 pm = &elf_tdata (abfd)->segment_map;
11259 && ((*pm)->p_type == PT_PHDR
11260 || (*pm)->p_type == PT_INTERP))
11268 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11269 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11270 PT_MIPS_OPTIONS segment immediately following the program header
11272 if (NEWABI_P (abfd)
11273 /* On non-IRIX6 new abi, we'll have already created a segment
11274 for this section, so don't create another. I'm not sure this
11275 is not also the case for IRIX 6, but I can't test it right
11277 && IRIX_COMPAT (abfd) == ict_irix6)
11279 for (s = abfd->sections; s; s = s->next)
11280 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11285 struct elf_segment_map *options_segment;
11287 pm = &elf_tdata (abfd)->segment_map;
11289 && ((*pm)->p_type == PT_PHDR
11290 || (*pm)->p_type == PT_INTERP))
11293 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11295 amt = sizeof (struct elf_segment_map);
11296 options_segment = bfd_zalloc (abfd, amt);
11297 options_segment->next = *pm;
11298 options_segment->p_type = PT_MIPS_OPTIONS;
11299 options_segment->p_flags = PF_R;
11300 options_segment->p_flags_valid = TRUE;
11301 options_segment->count = 1;
11302 options_segment->sections[0] = s;
11303 *pm = options_segment;
11309 if (IRIX_COMPAT (abfd) == ict_irix5)
11311 /* If there are .dynamic and .mdebug sections, we make a room
11312 for the RTPROC header. FIXME: Rewrite without section names. */
11313 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11314 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11315 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11317 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11318 if (m->p_type == PT_MIPS_RTPROC)
11323 m = bfd_zalloc (abfd, amt);
11327 m->p_type = PT_MIPS_RTPROC;
11329 s = bfd_get_section_by_name (abfd, ".rtproc");
11334 m->p_flags_valid = 1;
11339 m->sections[0] = s;
11342 /* We want to put it after the DYNAMIC segment. */
11343 pm = &elf_tdata (abfd)->segment_map;
11344 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11354 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11355 .dynstr, .dynsym, and .hash sections, and everything in
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11359 if ((*pm)->p_type == PT_DYNAMIC)
11362 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11364 /* For a normal mips executable the permissions for the PT_DYNAMIC
11365 segment are read, write and execute. We do that here since
11366 the code in elf.c sets only the read permission. This matters
11367 sometimes for the dynamic linker. */
11368 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11370 m->p_flags = PF_R | PF_W | PF_X;
11371 m->p_flags_valid = 1;
11374 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11375 glibc's dynamic linker has traditionally derived the number of
11376 tags from the p_filesz field, and sometimes allocates stack
11377 arrays of that size. An overly-big PT_DYNAMIC segment can
11378 be actively harmful in such cases. Making PT_DYNAMIC contain
11379 other sections can also make life hard for the prelinker,
11380 which might move one of the other sections to a different
11381 PT_LOAD segment. */
11382 if (SGI_COMPAT (abfd)
11385 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11387 static const char *sec_names[] =
11389 ".dynamic", ".dynstr", ".dynsym", ".hash"
11393 struct elf_segment_map *n;
11395 low = ~(bfd_vma) 0;
11397 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11399 s = bfd_get_section_by_name (abfd, sec_names[i]);
11400 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11407 if (high < s->vma + sz)
11408 high = s->vma + sz;
11413 for (s = abfd->sections; s != NULL; s = s->next)
11414 if ((s->flags & SEC_LOAD) != 0
11416 && s->vma + s->size <= high)
11419 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11420 n = bfd_zalloc (abfd, amt);
11427 for (s = abfd->sections; s != NULL; s = s->next)
11429 if ((s->flags & SEC_LOAD) != 0
11431 && s->vma + s->size <= high)
11433 n->sections[i] = s;
11442 /* Allocate a spare program header in dynamic objects so that tools
11443 like the prelinker can add an extra PT_LOAD entry.
11445 If the prelinker needs to make room for a new PT_LOAD entry, its
11446 standard procedure is to move the first (read-only) sections into
11447 the new (writable) segment. However, the MIPS ABI requires
11448 .dynamic to be in a read-only segment, and the section will often
11449 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11451 Although the prelinker could in principle move .dynamic to a
11452 writable segment, it seems better to allocate a spare program
11453 header instead, and avoid the need to move any sections.
11454 There is a long tradition of allocating spare dynamic tags,
11455 so allocating a spare program header seems like a natural
11458 If INFO is NULL, we may be copying an already prelinked binary
11459 with objcopy or strip, so do not add this header. */
11461 && !SGI_COMPAT (abfd)
11462 && bfd_get_section_by_name (abfd, ".dynamic"))
11464 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11465 if ((*pm)->p_type == PT_NULL)
11469 m = bfd_zalloc (abfd, sizeof (*m));
11473 m->p_type = PT_NULL;
11481 /* Return the section that should be marked against GC for a given
11485 _bfd_mips_elf_gc_mark_hook (asection *sec,
11486 struct bfd_link_info *info,
11487 Elf_Internal_Rela *rel,
11488 struct elf_link_hash_entry *h,
11489 Elf_Internal_Sym *sym)
11491 /* ??? Do mips16 stub sections need to be handled special? */
11494 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11496 case R_MIPS_GNU_VTINHERIT:
11497 case R_MIPS_GNU_VTENTRY:
11501 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11504 /* Update the got entry reference counts for the section being removed. */
11507 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11508 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11509 asection *sec ATTRIBUTE_UNUSED,
11510 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11513 Elf_Internal_Shdr *symtab_hdr;
11514 struct elf_link_hash_entry **sym_hashes;
11515 bfd_signed_vma *local_got_refcounts;
11516 const Elf_Internal_Rela *rel, *relend;
11517 unsigned long r_symndx;
11518 struct elf_link_hash_entry *h;
11520 if (info->relocatable)
11523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11524 sym_hashes = elf_sym_hashes (abfd);
11525 local_got_refcounts = elf_local_got_refcounts (abfd);
11527 relend = relocs + sec->reloc_count;
11528 for (rel = relocs; rel < relend; rel++)
11529 switch (ELF_R_TYPE (abfd, rel->r_info))
11531 case R_MIPS16_GOT16:
11532 case R_MIPS16_CALL16:
11534 case R_MIPS_CALL16:
11535 case R_MIPS_CALL_HI16:
11536 case R_MIPS_CALL_LO16:
11537 case R_MIPS_GOT_HI16:
11538 case R_MIPS_GOT_LO16:
11539 case R_MIPS_GOT_DISP:
11540 case R_MIPS_GOT_PAGE:
11541 case R_MIPS_GOT_OFST:
11542 case R_MICROMIPS_GOT16:
11543 case R_MICROMIPS_CALL16:
11544 case R_MICROMIPS_CALL_HI16:
11545 case R_MICROMIPS_CALL_LO16:
11546 case R_MICROMIPS_GOT_HI16:
11547 case R_MICROMIPS_GOT_LO16:
11548 case R_MICROMIPS_GOT_DISP:
11549 case R_MICROMIPS_GOT_PAGE:
11550 case R_MICROMIPS_GOT_OFST:
11551 /* ??? It would seem that the existing MIPS code does no sort
11552 of reference counting or whatnot on its GOT and PLT entries,
11553 so it is not possible to garbage collect them at this time. */
11564 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11565 hiding the old indirect symbol. Process additional relocation
11566 information. Also called for weakdefs, in which case we just let
11567 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11570 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11571 struct elf_link_hash_entry *dir,
11572 struct elf_link_hash_entry *ind)
11574 struct mips_elf_link_hash_entry *dirmips, *indmips;
11576 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11578 dirmips = (struct mips_elf_link_hash_entry *) dir;
11579 indmips = (struct mips_elf_link_hash_entry *) ind;
11580 /* Any absolute non-dynamic relocations against an indirect or weak
11581 definition will be against the target symbol. */
11582 if (indmips->has_static_relocs)
11583 dirmips->has_static_relocs = TRUE;
11585 if (ind->root.type != bfd_link_hash_indirect)
11588 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11589 if (indmips->readonly_reloc)
11590 dirmips->readonly_reloc = TRUE;
11591 if (indmips->no_fn_stub)
11592 dirmips->no_fn_stub = TRUE;
11593 if (indmips->fn_stub)
11595 dirmips->fn_stub = indmips->fn_stub;
11596 indmips->fn_stub = NULL;
11598 if (indmips->need_fn_stub)
11600 dirmips->need_fn_stub = TRUE;
11601 indmips->need_fn_stub = FALSE;
11603 if (indmips->call_stub)
11605 dirmips->call_stub = indmips->call_stub;
11606 indmips->call_stub = NULL;
11608 if (indmips->call_fp_stub)
11610 dirmips->call_fp_stub = indmips->call_fp_stub;
11611 indmips->call_fp_stub = NULL;
11613 if (indmips->global_got_area < dirmips->global_got_area)
11614 dirmips->global_got_area = indmips->global_got_area;
11615 if (indmips->global_got_area < GGA_NONE)
11616 indmips->global_got_area = GGA_NONE;
11617 if (indmips->has_nonpic_branches)
11618 dirmips->has_nonpic_branches = TRUE;
11620 if (dirmips->tls_type == 0)
11621 dirmips->tls_type = indmips->tls_type;
11624 #define PDR_SIZE 32
11627 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11628 struct bfd_link_info *info)
11631 bfd_boolean ret = FALSE;
11632 unsigned char *tdata;
11635 o = bfd_get_section_by_name (abfd, ".pdr");
11640 if (o->size % PDR_SIZE != 0)
11642 if (o->output_section != NULL
11643 && bfd_is_abs_section (o->output_section))
11646 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11650 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11651 info->keep_memory);
11658 cookie->rel = cookie->rels;
11659 cookie->relend = cookie->rels + o->reloc_count;
11661 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11663 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11672 mips_elf_section_data (o)->u.tdata = tdata;
11673 o->size -= skip * PDR_SIZE;
11679 if (! info->keep_memory)
11680 free (cookie->rels);
11686 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11688 if (strcmp (sec->name, ".pdr") == 0)
11694 _bfd_mips_elf_write_section (bfd *output_bfd,
11695 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11696 asection *sec, bfd_byte *contents)
11698 bfd_byte *to, *from, *end;
11701 if (strcmp (sec->name, ".pdr") != 0)
11704 if (mips_elf_section_data (sec)->u.tdata == NULL)
11708 end = contents + sec->size;
11709 for (from = contents, i = 0;
11711 from += PDR_SIZE, i++)
11713 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11716 memcpy (to, from, PDR_SIZE);
11719 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11720 sec->output_offset, sec->size);
11724 /* microMIPS code retains local labels for linker relaxation. Omit them
11725 from output by default for clarity. */
11728 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11730 return _bfd_elf_is_local_label_name (abfd, sym->name);
11733 /* MIPS ELF uses a special find_nearest_line routine in order the
11734 handle the ECOFF debugging information. */
11736 struct mips_elf_find_line
11738 struct ecoff_debug_info d;
11739 struct ecoff_find_line i;
11743 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11744 asymbol **symbols, bfd_vma offset,
11745 const char **filename_ptr,
11746 const char **functionname_ptr,
11747 unsigned int *line_ptr)
11751 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11752 filename_ptr, functionname_ptr,
11756 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11757 section, symbols, offset,
11758 filename_ptr, functionname_ptr,
11759 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11760 &elf_tdata (abfd)->dwarf2_find_line_info))
11763 msec = bfd_get_section_by_name (abfd, ".mdebug");
11766 flagword origflags;
11767 struct mips_elf_find_line *fi;
11768 const struct ecoff_debug_swap * const swap =
11769 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11771 /* If we are called during a link, mips_elf_final_link may have
11772 cleared the SEC_HAS_CONTENTS field. We force it back on here
11773 if appropriate (which it normally will be). */
11774 origflags = msec->flags;
11775 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11776 msec->flags |= SEC_HAS_CONTENTS;
11778 fi = elf_tdata (abfd)->find_line_info;
11781 bfd_size_type external_fdr_size;
11784 struct fdr *fdr_ptr;
11785 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11787 fi = bfd_zalloc (abfd, amt);
11790 msec->flags = origflags;
11794 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11796 msec->flags = origflags;
11800 /* Swap in the FDR information. */
11801 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11802 fi->d.fdr = bfd_alloc (abfd, amt);
11803 if (fi->d.fdr == NULL)
11805 msec->flags = origflags;
11808 external_fdr_size = swap->external_fdr_size;
11809 fdr_ptr = fi->d.fdr;
11810 fraw_src = (char *) fi->d.external_fdr;
11811 fraw_end = (fraw_src
11812 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11813 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11814 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11816 elf_tdata (abfd)->find_line_info = fi;
11818 /* Note that we don't bother to ever free this information.
11819 find_nearest_line is either called all the time, as in
11820 objdump -l, so the information should be saved, or it is
11821 rarely called, as in ld error messages, so the memory
11822 wasted is unimportant. Still, it would probably be a
11823 good idea for free_cached_info to throw it away. */
11826 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11827 &fi->i, filename_ptr, functionname_ptr,
11830 msec->flags = origflags;
11834 msec->flags = origflags;
11837 /* Fall back on the generic ELF find_nearest_line routine. */
11839 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11840 filename_ptr, functionname_ptr,
11845 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11846 const char **filename_ptr,
11847 const char **functionname_ptr,
11848 unsigned int *line_ptr)
11851 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11852 functionname_ptr, line_ptr,
11853 & elf_tdata (abfd)->dwarf2_find_line_info);
11858 /* When are writing out the .options or .MIPS.options section,
11859 remember the bytes we are writing out, so that we can install the
11860 GP value in the section_processing routine. */
11863 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11864 const void *location,
11865 file_ptr offset, bfd_size_type count)
11867 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11871 if (elf_section_data (section) == NULL)
11873 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11874 section->used_by_bfd = bfd_zalloc (abfd, amt);
11875 if (elf_section_data (section) == NULL)
11878 c = mips_elf_section_data (section)->u.tdata;
11881 c = bfd_zalloc (abfd, section->size);
11884 mips_elf_section_data (section)->u.tdata = c;
11887 memcpy (c + offset, location, count);
11890 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11894 /* This is almost identical to bfd_generic_get_... except that some
11895 MIPS relocations need to be handled specially. Sigh. */
11898 _bfd_elf_mips_get_relocated_section_contents
11900 struct bfd_link_info *link_info,
11901 struct bfd_link_order *link_order,
11903 bfd_boolean relocatable,
11906 /* Get enough memory to hold the stuff */
11907 bfd *input_bfd = link_order->u.indirect.section->owner;
11908 asection *input_section = link_order->u.indirect.section;
11911 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11912 arelent **reloc_vector = NULL;
11915 if (reloc_size < 0)
11918 reloc_vector = bfd_malloc (reloc_size);
11919 if (reloc_vector == NULL && reloc_size != 0)
11922 /* read in the section */
11923 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11924 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11927 reloc_count = bfd_canonicalize_reloc (input_bfd,
11931 if (reloc_count < 0)
11934 if (reloc_count > 0)
11939 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11942 struct bfd_hash_entry *h;
11943 struct bfd_link_hash_entry *lh;
11944 /* Skip all this stuff if we aren't mixing formats. */
11945 if (abfd && input_bfd
11946 && abfd->xvec == input_bfd->xvec)
11950 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11951 lh = (struct bfd_link_hash_entry *) h;
11958 case bfd_link_hash_undefined:
11959 case bfd_link_hash_undefweak:
11960 case bfd_link_hash_common:
11963 case bfd_link_hash_defined:
11964 case bfd_link_hash_defweak:
11966 gp = lh->u.def.value;
11968 case bfd_link_hash_indirect:
11969 case bfd_link_hash_warning:
11971 /* @@FIXME ignoring warning for now */
11973 case bfd_link_hash_new:
11982 for (parent = reloc_vector; *parent != NULL; parent++)
11984 char *error_message = NULL;
11985 bfd_reloc_status_type r;
11987 /* Specific to MIPS: Deal with relocation types that require
11988 knowing the gp of the output bfd. */
11989 asymbol *sym = *(*parent)->sym_ptr_ptr;
11991 /* If we've managed to find the gp and have a special
11992 function for the relocation then go ahead, else default
11993 to the generic handling. */
11995 && (*parent)->howto->special_function
11996 == _bfd_mips_elf32_gprel16_reloc)
11997 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11998 input_section, relocatable,
12001 r = bfd_perform_relocation (input_bfd, *parent, data,
12003 relocatable ? abfd : NULL,
12008 asection *os = input_section->output_section;
12010 /* A partial link, so keep the relocs */
12011 os->orelocation[os->reloc_count] = *parent;
12015 if (r != bfd_reloc_ok)
12019 case bfd_reloc_undefined:
12020 if (!((*link_info->callbacks->undefined_symbol)
12021 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12022 input_bfd, input_section, (*parent)->address, TRUE)))
12025 case bfd_reloc_dangerous:
12026 BFD_ASSERT (error_message != NULL);
12027 if (!((*link_info->callbacks->reloc_dangerous)
12028 (link_info, error_message, input_bfd, input_section,
12029 (*parent)->address)))
12032 case bfd_reloc_overflow:
12033 if (!((*link_info->callbacks->reloc_overflow)
12035 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12036 (*parent)->howto->name, (*parent)->addend,
12037 input_bfd, input_section, (*parent)->address)))
12040 case bfd_reloc_outofrange:
12049 if (reloc_vector != NULL)
12050 free (reloc_vector);
12054 if (reloc_vector != NULL)
12055 free (reloc_vector);
12060 mips_elf_relax_delete_bytes (bfd *abfd,
12061 asection *sec, bfd_vma addr, int count)
12063 Elf_Internal_Shdr *symtab_hdr;
12064 unsigned int sec_shndx;
12065 bfd_byte *contents;
12066 Elf_Internal_Rela *irel, *irelend;
12067 Elf_Internal_Sym *isym;
12068 Elf_Internal_Sym *isymend;
12069 struct elf_link_hash_entry **sym_hashes;
12070 struct elf_link_hash_entry **end_hashes;
12071 struct elf_link_hash_entry **start_hashes;
12072 unsigned int symcount;
12074 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12075 contents = elf_section_data (sec)->this_hdr.contents;
12077 irel = elf_section_data (sec)->relocs;
12078 irelend = irel + sec->reloc_count;
12080 /* Actually delete the bytes. */
12081 memmove (contents + addr, contents + addr + count,
12082 (size_t) (sec->size - addr - count));
12083 sec->size -= count;
12085 /* Adjust all the relocs. */
12086 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12088 /* Get the new reloc address. */
12089 if (irel->r_offset > addr)
12090 irel->r_offset -= count;
12093 BFD_ASSERT (addr % 2 == 0);
12094 BFD_ASSERT (count % 2 == 0);
12096 /* Adjust the local symbols defined in this section. */
12097 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12098 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12099 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12100 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12101 isym->st_value -= count;
12103 /* Now adjust the global symbols defined in this section. */
12104 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12105 - symtab_hdr->sh_info);
12106 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12107 end_hashes = sym_hashes + symcount;
12109 for (; sym_hashes < end_hashes; sym_hashes++)
12111 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12113 if ((sym_hash->root.type == bfd_link_hash_defined
12114 || sym_hash->root.type == bfd_link_hash_defweak)
12115 && sym_hash->root.u.def.section == sec)
12117 bfd_vma value = sym_hash->root.u.def.value;
12119 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12120 value &= MINUS_TWO;
12122 sym_hash->root.u.def.value -= count;
12130 /* Opcodes needed for microMIPS relaxation as found in
12131 opcodes/micromips-opc.c. */
12133 struct opcode_descriptor {
12134 unsigned long match;
12135 unsigned long mask;
12138 /* The $ra register aka $31. */
12142 /* 32-bit instruction format register fields. */
12144 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12145 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12147 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12149 #define OP16_VALID_REG(r) \
12150 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12153 /* 32-bit and 16-bit branches. */
12155 static const struct opcode_descriptor b_insns_32[] = {
12156 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12157 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12158 { 0, 0 } /* End marker for find_match(). */
12161 static const struct opcode_descriptor bc_insn_32 =
12162 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12164 static const struct opcode_descriptor bz_insn_32 =
12165 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12167 static const struct opcode_descriptor bzal_insn_32 =
12168 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12170 static const struct opcode_descriptor beq_insn_32 =
12171 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12173 static const struct opcode_descriptor b_insn_16 =
12174 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12176 static const struct opcode_descriptor bz_insn_16 =
12177 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12180 /* 32-bit and 16-bit branch EQ and NE zero. */
12182 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12183 eq and second the ne. This convention is used when replacing a
12184 32-bit BEQ/BNE with the 16-bit version. */
12186 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12188 static const struct opcode_descriptor bz_rs_insns_32[] = {
12189 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12190 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12191 { 0, 0 } /* End marker for find_match(). */
12194 static const struct opcode_descriptor bz_rt_insns_32[] = {
12195 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12196 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12197 { 0, 0 } /* End marker for find_match(). */
12200 static const struct opcode_descriptor bzc_insns_32[] = {
12201 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12202 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12203 { 0, 0 } /* End marker for find_match(). */
12206 static const struct opcode_descriptor bz_insns_16[] = {
12207 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12208 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12209 { 0, 0 } /* End marker for find_match(). */
12212 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12214 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12215 #define BZ16_REG_FIELD(r) \
12216 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12219 /* 32-bit instructions with a delay slot. */
12221 static const struct opcode_descriptor jal_insn_32_bd16 =
12222 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12224 static const struct opcode_descriptor jal_insn_32_bd32 =
12225 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12227 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12228 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12230 static const struct opcode_descriptor j_insn_32 =
12231 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12233 static const struct opcode_descriptor jalr_insn_32 =
12234 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12236 /* This table can be compacted, because no opcode replacement is made. */
12238 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12239 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12241 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12242 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12244 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12245 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12246 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12247 { 0, 0 } /* End marker for find_match(). */
12250 /* This table can be compacted, because no opcode replacement is made. */
12252 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12253 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12255 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12256 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12257 { 0, 0 } /* End marker for find_match(). */
12261 /* 16-bit instructions with a delay slot. */
12263 static const struct opcode_descriptor jalr_insn_16_bd16 =
12264 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12266 static const struct opcode_descriptor jalr_insn_16_bd32 =
12267 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12269 static const struct opcode_descriptor jr_insn_16 =
12270 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12272 #define JR16_REG(opcode) ((opcode) & 0x1f)
12274 /* This table can be compacted, because no opcode replacement is made. */
12276 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12277 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12279 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12280 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12281 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12282 { 0, 0 } /* End marker for find_match(). */
12286 /* LUI instruction. */
12288 static const struct opcode_descriptor lui_insn =
12289 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12292 /* ADDIU instruction. */
12294 static const struct opcode_descriptor addiu_insn =
12295 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12297 static const struct opcode_descriptor addiupc_insn =
12298 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12300 #define ADDIUPC_REG_FIELD(r) \
12301 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12304 /* Relaxable instructions in a JAL delay slot: MOVE. */
12306 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12307 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12308 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12309 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12311 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12312 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12314 static const struct opcode_descriptor move_insns_32[] = {
12315 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12316 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12317 { 0, 0 } /* End marker for find_match(). */
12320 static const struct opcode_descriptor move_insn_16 =
12321 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12324 /* NOP instructions. */
12326 static const struct opcode_descriptor nop_insn_32 =
12327 { /* "nop", "", */ 0x00000000, 0xffffffff };
12329 static const struct opcode_descriptor nop_insn_16 =
12330 { /* "nop", "", */ 0x0c00, 0xffff };
12333 /* Instruction match support. */
12335 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12338 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12340 unsigned long indx;
12342 for (indx = 0; insn[indx].mask != 0; indx++)
12343 if (MATCH (opcode, insn[indx]))
12350 /* Branch and delay slot decoding support. */
12352 /* If PTR points to what *might* be a 16-bit branch or jump, then
12353 return the minimum length of its delay slot, otherwise return 0.
12354 Non-zero results are not definitive as we might be checking against
12355 the second half of another instruction. */
12358 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12360 unsigned long opcode;
12363 opcode = bfd_get_16 (abfd, ptr);
12364 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12365 /* 16-bit branch/jump with a 32-bit delay slot. */
12367 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12368 || find_match (opcode, ds_insns_16_bd16) >= 0)
12369 /* 16-bit branch/jump with a 16-bit delay slot. */
12372 /* No delay slot. */
12378 /* If PTR points to what *might* be a 32-bit branch or jump, then
12379 return the minimum length of its delay slot, otherwise return 0.
12380 Non-zero results are not definitive as we might be checking against
12381 the second half of another instruction. */
12384 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12386 unsigned long opcode;
12389 opcode = bfd_get_micromips_32 (abfd, ptr);
12390 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12391 /* 32-bit branch/jump with a 32-bit delay slot. */
12393 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12394 /* 32-bit branch/jump with a 16-bit delay slot. */
12397 /* No delay slot. */
12403 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12404 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12407 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12409 unsigned long opcode;
12411 opcode = bfd_get_16 (abfd, ptr);
12412 if (MATCH (opcode, b_insn_16)
12414 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12416 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12417 /* BEQZ16, BNEZ16 */
12418 || (MATCH (opcode, jalr_insn_16_bd32)
12420 && reg != JR16_REG (opcode) && reg != RA))
12426 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12427 then return TRUE, otherwise FALSE. */
12430 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12432 unsigned long opcode;
12434 opcode = bfd_get_micromips_32 (abfd, ptr);
12435 if (MATCH (opcode, j_insn_32)
12437 || MATCH (opcode, bc_insn_32)
12438 /* BC1F, BC1T, BC2F, BC2T */
12439 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12441 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12442 /* BGEZ, BGTZ, BLEZ, BLTZ */
12443 || (MATCH (opcode, bzal_insn_32)
12444 /* BGEZAL, BLTZAL */
12445 && reg != OP32_SREG (opcode) && reg != RA)
12446 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12447 /* JALR, JALR.HB, BEQ, BNE */
12448 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12454 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12455 IRELEND) at OFFSET indicate that there must be a compact branch there,
12456 then return TRUE, otherwise FALSE. */
12459 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12460 const Elf_Internal_Rela *internal_relocs,
12461 const Elf_Internal_Rela *irelend)
12463 const Elf_Internal_Rela *irel;
12464 unsigned long opcode;
12466 opcode = bfd_get_micromips_32 (abfd, ptr);
12467 if (find_match (opcode, bzc_insns_32) < 0)
12470 for (irel = internal_relocs; irel < irelend; irel++)
12471 if (irel->r_offset == offset
12472 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12478 /* Bitsize checking. */
12479 #define IS_BITSIZE(val, N) \
12480 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12481 - (1ULL << ((N) - 1))) == (val))
12485 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12486 struct bfd_link_info *link_info,
12487 bfd_boolean *again)
12489 Elf_Internal_Shdr *symtab_hdr;
12490 Elf_Internal_Rela *internal_relocs;
12491 Elf_Internal_Rela *irel, *irelend;
12492 bfd_byte *contents = NULL;
12493 Elf_Internal_Sym *isymbuf = NULL;
12495 /* Assume nothing changes. */
12498 /* We don't have to do anything for a relocatable link, if
12499 this section does not have relocs, or if this is not a
12502 if (link_info->relocatable
12503 || (sec->flags & SEC_RELOC) == 0
12504 || sec->reloc_count == 0
12505 || (sec->flags & SEC_CODE) == 0)
12508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12510 /* Get a copy of the native relocations. */
12511 internal_relocs = (_bfd_elf_link_read_relocs
12512 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12513 link_info->keep_memory));
12514 if (internal_relocs == NULL)
12517 /* Walk through them looking for relaxing opportunities. */
12518 irelend = internal_relocs + sec->reloc_count;
12519 for (irel = internal_relocs; irel < irelend; irel++)
12521 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12522 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12523 bfd_boolean target_is_micromips_code_p;
12524 unsigned long opcode;
12530 /* The number of bytes to delete for relaxation and from where
12531 to delete these bytes starting at irel->r_offset. */
12535 /* If this isn't something that can be relaxed, then ignore
12537 if (r_type != R_MICROMIPS_HI16
12538 && r_type != R_MICROMIPS_PC16_S1
12539 && r_type != R_MICROMIPS_26_S1)
12542 /* Get the section contents if we haven't done so already. */
12543 if (contents == NULL)
12545 /* Get cached copy if it exists. */
12546 if (elf_section_data (sec)->this_hdr.contents != NULL)
12547 contents = elf_section_data (sec)->this_hdr.contents;
12548 /* Go get them off disk. */
12549 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12552 ptr = contents + irel->r_offset;
12554 /* Read this BFD's local symbols if we haven't done so already. */
12555 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12557 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12558 if (isymbuf == NULL)
12559 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12560 symtab_hdr->sh_info, 0,
12562 if (isymbuf == NULL)
12566 /* Get the value of the symbol referred to by the reloc. */
12567 if (r_symndx < symtab_hdr->sh_info)
12569 /* A local symbol. */
12570 Elf_Internal_Sym *isym;
12573 isym = isymbuf + r_symndx;
12574 if (isym->st_shndx == SHN_UNDEF)
12575 sym_sec = bfd_und_section_ptr;
12576 else if (isym->st_shndx == SHN_ABS)
12577 sym_sec = bfd_abs_section_ptr;
12578 else if (isym->st_shndx == SHN_COMMON)
12579 sym_sec = bfd_com_section_ptr;
12581 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12582 symval = (isym->st_value
12583 + sym_sec->output_section->vma
12584 + sym_sec->output_offset);
12585 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12589 unsigned long indx;
12590 struct elf_link_hash_entry *h;
12592 /* An external symbol. */
12593 indx = r_symndx - symtab_hdr->sh_info;
12594 h = elf_sym_hashes (abfd)[indx];
12595 BFD_ASSERT (h != NULL);
12597 if (h->root.type != bfd_link_hash_defined
12598 && h->root.type != bfd_link_hash_defweak)
12599 /* This appears to be a reference to an undefined
12600 symbol. Just ignore it -- it will be caught by the
12601 regular reloc processing. */
12604 symval = (h->root.u.def.value
12605 + h->root.u.def.section->output_section->vma
12606 + h->root.u.def.section->output_offset);
12607 target_is_micromips_code_p = (!h->needs_plt
12608 && ELF_ST_IS_MICROMIPS (h->other));
12612 /* For simplicity of coding, we are going to modify the
12613 section contents, the section relocs, and the BFD symbol
12614 table. We must tell the rest of the code not to free up this
12615 information. It would be possible to instead create a table
12616 of changes which have to be made, as is done in coff-mips.c;
12617 that would be more work, but would require less memory when
12618 the linker is run. */
12620 /* Only 32-bit instructions relaxed. */
12621 if (irel->r_offset + 4 > sec->size)
12624 opcode = bfd_get_micromips_32 (abfd, ptr);
12626 /* This is the pc-relative distance from the instruction the
12627 relocation is applied to, to the symbol referred. */
12629 - (sec->output_section->vma + sec->output_offset)
12632 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12633 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12634 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12636 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12638 where pcrval has first to be adjusted to apply against the LO16
12639 location (we make the adjustment later on, when we have figured
12640 out the offset). */
12641 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12643 bfd_boolean bzc = FALSE;
12644 unsigned long nextopc;
12648 /* Give up if the previous reloc was a HI16 against this symbol
12650 if (irel > internal_relocs
12651 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12652 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12655 /* Or if the next reloc is not a LO16 against this symbol. */
12656 if (irel + 1 >= irelend
12657 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12658 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12661 /* Or if the second next reloc is a LO16 against this symbol too. */
12662 if (irel + 2 >= irelend
12663 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12664 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12667 /* See if the LUI instruction *might* be in a branch delay slot.
12668 We check whether what looks like a 16-bit branch or jump is
12669 actually an immediate argument to a compact branch, and let
12670 it through if so. */
12671 if (irel->r_offset >= 2
12672 && check_br16_dslot (abfd, ptr - 2)
12673 && !(irel->r_offset >= 4
12674 && (bzc = check_relocated_bzc (abfd,
12675 ptr - 4, irel->r_offset - 4,
12676 internal_relocs, irelend))))
12678 if (irel->r_offset >= 4
12680 && check_br32_dslot (abfd, ptr - 4))
12683 reg = OP32_SREG (opcode);
12685 /* We only relax adjacent instructions or ones separated with
12686 a branch or jump that has a delay slot. The branch or jump
12687 must not fiddle with the register used to hold the address.
12688 Subtract 4 for the LUI itself. */
12689 offset = irel[1].r_offset - irel[0].r_offset;
12690 switch (offset - 4)
12695 if (check_br16 (abfd, ptr + 4, reg))
12699 if (check_br32 (abfd, ptr + 4, reg))
12706 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12708 /* Give up unless the same register is used with both
12710 if (OP32_SREG (nextopc) != reg)
12713 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12714 and rounding up to take masking of the two LSBs into account. */
12715 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12717 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12718 if (IS_BITSIZE (symval, 16))
12720 /* Fix the relocation's type. */
12721 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12723 /* Instructions using R_MICROMIPS_LO16 have the base or
12724 source register in bits 20:16. This register becomes $0
12725 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12726 nextopc &= ~0x001f0000;
12727 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12728 contents + irel[1].r_offset);
12731 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12732 We add 4 to take LUI deletion into account while checking
12733 the PC-relative distance. */
12734 else if (symval % 4 == 0
12735 && IS_BITSIZE (pcrval + 4, 25)
12736 && MATCH (nextopc, addiu_insn)
12737 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12738 && OP16_VALID_REG (OP32_TREG (nextopc)))
12740 /* Fix the relocation's type. */
12741 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12743 /* Replace ADDIU with the ADDIUPC version. */
12744 nextopc = (addiupc_insn.match
12745 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12747 bfd_put_micromips_32 (abfd, nextopc,
12748 contents + irel[1].r_offset);
12751 /* Can't do anything, give up, sigh... */
12755 /* Fix the relocation's type. */
12756 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12758 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12763 /* Compact branch relaxation -- due to the multitude of macros
12764 employed by the compiler/assembler, compact branches are not
12765 always generated. Obviously, this can/will be fixed elsewhere,
12766 but there is no drawback in double checking it here. */
12767 else if (r_type == R_MICROMIPS_PC16_S1
12768 && irel->r_offset + 5 < sec->size
12769 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12770 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12771 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12775 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12777 /* Replace BEQZ/BNEZ with the compact version. */
12778 opcode = (bzc_insns_32[fndopc].match
12779 | BZC32_REG_FIELD (reg)
12780 | (opcode & 0xffff)); /* Addend value. */
12782 bfd_put_micromips_32 (abfd, opcode, ptr);
12784 /* Delete the 16-bit delay slot NOP: two bytes from
12785 irel->offset + 4. */
12790 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12791 to check the distance from the next instruction, so subtract 2. */
12792 else if (r_type == R_MICROMIPS_PC16_S1
12793 && IS_BITSIZE (pcrval - 2, 11)
12794 && find_match (opcode, b_insns_32) >= 0)
12796 /* Fix the relocation's type. */
12797 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12799 /* Replace the 32-bit opcode with a 16-bit opcode. */
12802 | (opcode & 0x3ff)), /* Addend value. */
12805 /* Delete 2 bytes from irel->r_offset + 2. */
12810 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12811 to check the distance from the next instruction, so subtract 2. */
12812 else if (r_type == R_MICROMIPS_PC16_S1
12813 && IS_BITSIZE (pcrval - 2, 8)
12814 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12815 && OP16_VALID_REG (OP32_SREG (opcode)))
12816 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12817 && OP16_VALID_REG (OP32_TREG (opcode)))))
12821 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12823 /* Fix the relocation's type. */
12824 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12826 /* Replace the 32-bit opcode with a 16-bit opcode. */
12828 (bz_insns_16[fndopc].match
12829 | BZ16_REG_FIELD (reg)
12830 | (opcode & 0x7f)), /* Addend value. */
12833 /* Delete 2 bytes from irel->r_offset + 2. */
12838 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12839 else if (r_type == R_MICROMIPS_26_S1
12840 && target_is_micromips_code_p
12841 && irel->r_offset + 7 < sec->size
12842 && MATCH (opcode, jal_insn_32_bd32))
12844 unsigned long n32opc;
12845 bfd_boolean relaxed = FALSE;
12847 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12849 if (MATCH (n32opc, nop_insn_32))
12851 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12852 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12856 else if (find_match (n32opc, move_insns_32) >= 0)
12858 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12860 (move_insn_16.match
12861 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12862 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12867 /* Other 32-bit instructions relaxable to 16-bit
12868 instructions will be handled here later. */
12872 /* JAL with 32-bit delay slot that is changed to a JALS
12873 with 16-bit delay slot. */
12874 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12876 /* Delete 2 bytes from irel->r_offset + 6. */
12884 /* Note that we've changed the relocs, section contents, etc. */
12885 elf_section_data (sec)->relocs = internal_relocs;
12886 elf_section_data (sec)->this_hdr.contents = contents;
12887 symtab_hdr->contents = (unsigned char *) isymbuf;
12889 /* Delete bytes depending on the delcnt and deloff. */
12890 if (!mips_elf_relax_delete_bytes (abfd, sec,
12891 irel->r_offset + deloff, delcnt))
12894 /* That will change things, so we should relax again.
12895 Note that this is not required, and it may be slow. */
12900 if (isymbuf != NULL
12901 && symtab_hdr->contents != (unsigned char *) isymbuf)
12903 if (! link_info->keep_memory)
12907 /* Cache the symbols for elf_link_input_bfd. */
12908 symtab_hdr->contents = (unsigned char *) isymbuf;
12912 if (contents != NULL
12913 && elf_section_data (sec)->this_hdr.contents != contents)
12915 if (! link_info->keep_memory)
12919 /* Cache the section contents for elf_link_input_bfd. */
12920 elf_section_data (sec)->this_hdr.contents = contents;
12924 if (internal_relocs != NULL
12925 && elf_section_data (sec)->relocs != internal_relocs)
12926 free (internal_relocs);
12931 if (isymbuf != NULL
12932 && symtab_hdr->contents != (unsigned char *) isymbuf)
12934 if (contents != NULL
12935 && elf_section_data (sec)->this_hdr.contents != contents)
12937 if (internal_relocs != NULL
12938 && elf_section_data (sec)->relocs != internal_relocs)
12939 free (internal_relocs);
12944 /* Create a MIPS ELF linker hash table. */
12946 struct bfd_link_hash_table *
12947 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12949 struct mips_elf_link_hash_table *ret;
12950 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12952 ret = bfd_malloc (amt);
12956 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12957 mips_elf_link_hash_newfunc,
12958 sizeof (struct mips_elf_link_hash_entry),
12966 /* We no longer use this. */
12967 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12968 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12970 ret->procedure_count = 0;
12971 ret->compact_rel_size = 0;
12972 ret->use_rld_obj_head = FALSE;
12973 ret->rld_symbol = NULL;
12974 ret->mips16_stubs_seen = FALSE;
12975 ret->use_plts_and_copy_relocs = FALSE;
12976 ret->is_vxworks = FALSE;
12977 ret->small_data_overflow_reported = FALSE;
12978 ret->srelbss = NULL;
12979 ret->sdynbss = NULL;
12980 ret->srelplt = NULL;
12981 ret->srelplt2 = NULL;
12982 ret->sgotplt = NULL;
12984 ret->sstubs = NULL;
12986 ret->got_info = NULL;
12987 ret->plt_header_size = 0;
12988 ret->plt_entry_size = 0;
12989 ret->lazy_stub_count = 0;
12990 ret->function_stub_size = 0;
12991 ret->strampoline = NULL;
12992 ret->la25_stubs = NULL;
12993 ret->add_stub_section = NULL;
12995 return &ret->root.root;
12998 /* Likewise, but indicate that the target is VxWorks. */
13000 struct bfd_link_hash_table *
13001 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13003 struct bfd_link_hash_table *ret;
13005 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13008 struct mips_elf_link_hash_table *htab;
13010 htab = (struct mips_elf_link_hash_table *) ret;
13011 htab->use_plts_and_copy_relocs = TRUE;
13012 htab->is_vxworks = TRUE;
13017 /* A function that the linker calls if we are allowed to use PLTs
13018 and copy relocs. */
13021 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13023 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13026 /* We need to use a special link routine to handle the .reginfo and
13027 the .mdebug sections. We need to merge all instances of these
13028 sections together, not write them all out sequentially. */
13031 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13034 struct bfd_link_order *p;
13035 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13036 asection *rtproc_sec;
13037 Elf32_RegInfo reginfo;
13038 struct ecoff_debug_info debug;
13039 struct mips_htab_traverse_info hti;
13040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13041 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13042 HDRR *symhdr = &debug.symbolic_header;
13043 void *mdebug_handle = NULL;
13048 struct mips_elf_link_hash_table *htab;
13050 static const char * const secname[] =
13052 ".text", ".init", ".fini", ".data",
13053 ".rodata", ".sdata", ".sbss", ".bss"
13055 static const int sc[] =
13057 scText, scInit, scFini, scData,
13058 scRData, scSData, scSBss, scBss
13061 /* Sort the dynamic symbols so that those with GOT entries come after
13063 htab = mips_elf_hash_table (info);
13064 BFD_ASSERT (htab != NULL);
13066 if (!mips_elf_sort_hash_table (abfd, info))
13069 /* Create any scheduled LA25 stubs. */
13071 hti.output_bfd = abfd;
13073 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13077 /* Get a value for the GP register. */
13078 if (elf_gp (abfd) == 0)
13080 struct bfd_link_hash_entry *h;
13082 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13083 if (h != NULL && h->type == bfd_link_hash_defined)
13084 elf_gp (abfd) = (h->u.def.value
13085 + h->u.def.section->output_section->vma
13086 + h->u.def.section->output_offset);
13087 else if (htab->is_vxworks
13088 && (h = bfd_link_hash_lookup (info->hash,
13089 "_GLOBAL_OFFSET_TABLE_",
13090 FALSE, FALSE, TRUE))
13091 && h->type == bfd_link_hash_defined)
13092 elf_gp (abfd) = (h->u.def.section->output_section->vma
13093 + h->u.def.section->output_offset
13095 else if (info->relocatable)
13097 bfd_vma lo = MINUS_ONE;
13099 /* Find the GP-relative section with the lowest offset. */
13100 for (o = abfd->sections; o != NULL; o = o->next)
13102 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13105 /* And calculate GP relative to that. */
13106 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13110 /* If the relocate_section function needs to do a reloc
13111 involving the GP value, it should make a reloc_dangerous
13112 callback to warn that GP is not defined. */
13116 /* Go through the sections and collect the .reginfo and .mdebug
13118 reginfo_sec = NULL;
13120 gptab_data_sec = NULL;
13121 gptab_bss_sec = NULL;
13122 for (o = abfd->sections; o != NULL; o = o->next)
13124 if (strcmp (o->name, ".reginfo") == 0)
13126 memset (®info, 0, sizeof reginfo);
13128 /* We have found the .reginfo section in the output file.
13129 Look through all the link_orders comprising it and merge
13130 the information together. */
13131 for (p = o->map_head.link_order; p != NULL; p = p->next)
13133 asection *input_section;
13135 Elf32_External_RegInfo ext;
13138 if (p->type != bfd_indirect_link_order)
13140 if (p->type == bfd_data_link_order)
13145 input_section = p->u.indirect.section;
13146 input_bfd = input_section->owner;
13148 if (! bfd_get_section_contents (input_bfd, input_section,
13149 &ext, 0, sizeof ext))
13152 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13154 reginfo.ri_gprmask |= sub.ri_gprmask;
13155 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13156 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13157 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13158 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13160 /* ri_gp_value is set by the function
13161 mips_elf32_section_processing when the section is
13162 finally written out. */
13164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13165 elf_link_input_bfd ignores this section. */
13166 input_section->flags &= ~SEC_HAS_CONTENTS;
13169 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13170 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13172 /* Skip this section later on (I don't think this currently
13173 matters, but someday it might). */
13174 o->map_head.link_order = NULL;
13179 if (strcmp (o->name, ".mdebug") == 0)
13181 struct extsym_info einfo;
13184 /* We have found the .mdebug section in the output file.
13185 Look through all the link_orders comprising it and merge
13186 the information together. */
13187 symhdr->magic = swap->sym_magic;
13188 /* FIXME: What should the version stamp be? */
13189 symhdr->vstamp = 0;
13190 symhdr->ilineMax = 0;
13191 symhdr->cbLine = 0;
13192 symhdr->idnMax = 0;
13193 symhdr->ipdMax = 0;
13194 symhdr->isymMax = 0;
13195 symhdr->ioptMax = 0;
13196 symhdr->iauxMax = 0;
13197 symhdr->issMax = 0;
13198 symhdr->issExtMax = 0;
13199 symhdr->ifdMax = 0;
13201 symhdr->iextMax = 0;
13203 /* We accumulate the debugging information itself in the
13204 debug_info structure. */
13206 debug.external_dnr = NULL;
13207 debug.external_pdr = NULL;
13208 debug.external_sym = NULL;
13209 debug.external_opt = NULL;
13210 debug.external_aux = NULL;
13212 debug.ssext = debug.ssext_end = NULL;
13213 debug.external_fdr = NULL;
13214 debug.external_rfd = NULL;
13215 debug.external_ext = debug.external_ext_end = NULL;
13217 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13218 if (mdebug_handle == NULL)
13222 esym.cobol_main = 0;
13226 esym.asym.iss = issNil;
13227 esym.asym.st = stLocal;
13228 esym.asym.reserved = 0;
13229 esym.asym.index = indexNil;
13231 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13233 esym.asym.sc = sc[i];
13234 s = bfd_get_section_by_name (abfd, secname[i]);
13237 esym.asym.value = s->vma;
13238 last = s->vma + s->size;
13241 esym.asym.value = last;
13242 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13243 secname[i], &esym))
13247 for (p = o->map_head.link_order; p != NULL; p = p->next)
13249 asection *input_section;
13251 const struct ecoff_debug_swap *input_swap;
13252 struct ecoff_debug_info input_debug;
13256 if (p->type != bfd_indirect_link_order)
13258 if (p->type == bfd_data_link_order)
13263 input_section = p->u.indirect.section;
13264 input_bfd = input_section->owner;
13266 if (!is_mips_elf (input_bfd))
13268 /* I don't know what a non MIPS ELF bfd would be
13269 doing with a .mdebug section, but I don't really
13270 want to deal with it. */
13274 input_swap = (get_elf_backend_data (input_bfd)
13275 ->elf_backend_ecoff_debug_swap);
13277 BFD_ASSERT (p->size == input_section->size);
13279 /* The ECOFF linking code expects that we have already
13280 read in the debugging information and set up an
13281 ecoff_debug_info structure, so we do that now. */
13282 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13286 if (! (bfd_ecoff_debug_accumulate
13287 (mdebug_handle, abfd, &debug, swap, input_bfd,
13288 &input_debug, input_swap, info)))
13291 /* Loop through the external symbols. For each one with
13292 interesting information, try to find the symbol in
13293 the linker global hash table and save the information
13294 for the output external symbols. */
13295 eraw_src = input_debug.external_ext;
13296 eraw_end = (eraw_src
13297 + (input_debug.symbolic_header.iextMax
13298 * input_swap->external_ext_size));
13300 eraw_src < eraw_end;
13301 eraw_src += input_swap->external_ext_size)
13305 struct mips_elf_link_hash_entry *h;
13307 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13308 if (ext.asym.sc == scNil
13309 || ext.asym.sc == scUndefined
13310 || ext.asym.sc == scSUndefined)
13313 name = input_debug.ssext + ext.asym.iss;
13314 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13315 name, FALSE, FALSE, TRUE);
13316 if (h == NULL || h->esym.ifd != -2)
13321 BFD_ASSERT (ext.ifd
13322 < input_debug.symbolic_header.ifdMax);
13323 ext.ifd = input_debug.ifdmap[ext.ifd];
13329 /* Free up the information we just read. */
13330 free (input_debug.line);
13331 free (input_debug.external_dnr);
13332 free (input_debug.external_pdr);
13333 free (input_debug.external_sym);
13334 free (input_debug.external_opt);
13335 free (input_debug.external_aux);
13336 free (input_debug.ss);
13337 free (input_debug.ssext);
13338 free (input_debug.external_fdr);
13339 free (input_debug.external_rfd);
13340 free (input_debug.external_ext);
13342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13343 elf_link_input_bfd ignores this section. */
13344 input_section->flags &= ~SEC_HAS_CONTENTS;
13347 if (SGI_COMPAT (abfd) && info->shared)
13349 /* Create .rtproc section. */
13350 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13351 if (rtproc_sec == NULL)
13353 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13354 | SEC_LINKER_CREATED | SEC_READONLY);
13356 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13359 if (rtproc_sec == NULL
13360 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13364 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13370 /* Build the external symbol information. */
13373 einfo.debug = &debug;
13375 einfo.failed = FALSE;
13376 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13377 mips_elf_output_extsym, &einfo);
13381 /* Set the size of the .mdebug section. */
13382 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13384 /* Skip this section later on (I don't think this currently
13385 matters, but someday it might). */
13386 o->map_head.link_order = NULL;
13391 if (CONST_STRNEQ (o->name, ".gptab."))
13393 const char *subname;
13396 Elf32_External_gptab *ext_tab;
13399 /* The .gptab.sdata and .gptab.sbss sections hold
13400 information describing how the small data area would
13401 change depending upon the -G switch. These sections
13402 not used in executables files. */
13403 if (! info->relocatable)
13405 for (p = o->map_head.link_order; p != NULL; p = p->next)
13407 asection *input_section;
13409 if (p->type != bfd_indirect_link_order)
13411 if (p->type == bfd_data_link_order)
13416 input_section = p->u.indirect.section;
13418 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13419 elf_link_input_bfd ignores this section. */
13420 input_section->flags &= ~SEC_HAS_CONTENTS;
13423 /* Skip this section later on (I don't think this
13424 currently matters, but someday it might). */
13425 o->map_head.link_order = NULL;
13427 /* Really remove the section. */
13428 bfd_section_list_remove (abfd, o);
13429 --abfd->section_count;
13434 /* There is one gptab for initialized data, and one for
13435 uninitialized data. */
13436 if (strcmp (o->name, ".gptab.sdata") == 0)
13437 gptab_data_sec = o;
13438 else if (strcmp (o->name, ".gptab.sbss") == 0)
13442 (*_bfd_error_handler)
13443 (_("%s: illegal section name `%s'"),
13444 bfd_get_filename (abfd), o->name);
13445 bfd_set_error (bfd_error_nonrepresentable_section);
13449 /* The linker script always combines .gptab.data and
13450 .gptab.sdata into .gptab.sdata, and likewise for
13451 .gptab.bss and .gptab.sbss. It is possible that there is
13452 no .sdata or .sbss section in the output file, in which
13453 case we must change the name of the output section. */
13454 subname = o->name + sizeof ".gptab" - 1;
13455 if (bfd_get_section_by_name (abfd, subname) == NULL)
13457 if (o == gptab_data_sec)
13458 o->name = ".gptab.data";
13460 o->name = ".gptab.bss";
13461 subname = o->name + sizeof ".gptab" - 1;
13462 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13465 /* Set up the first entry. */
13467 amt = c * sizeof (Elf32_gptab);
13468 tab = bfd_malloc (amt);
13471 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13472 tab[0].gt_header.gt_unused = 0;
13474 /* Combine the input sections. */
13475 for (p = o->map_head.link_order; p != NULL; p = p->next)
13477 asection *input_section;
13479 bfd_size_type size;
13480 unsigned long last;
13481 bfd_size_type gpentry;
13483 if (p->type != bfd_indirect_link_order)
13485 if (p->type == bfd_data_link_order)
13490 input_section = p->u.indirect.section;
13491 input_bfd = input_section->owner;
13493 /* Combine the gptab entries for this input section one
13494 by one. We know that the input gptab entries are
13495 sorted by ascending -G value. */
13496 size = input_section->size;
13498 for (gpentry = sizeof (Elf32_External_gptab);
13500 gpentry += sizeof (Elf32_External_gptab))
13502 Elf32_External_gptab ext_gptab;
13503 Elf32_gptab int_gptab;
13509 if (! (bfd_get_section_contents
13510 (input_bfd, input_section, &ext_gptab, gpentry,
13511 sizeof (Elf32_External_gptab))))
13517 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13519 val = int_gptab.gt_entry.gt_g_value;
13520 add = int_gptab.gt_entry.gt_bytes - last;
13523 for (look = 1; look < c; look++)
13525 if (tab[look].gt_entry.gt_g_value >= val)
13526 tab[look].gt_entry.gt_bytes += add;
13528 if (tab[look].gt_entry.gt_g_value == val)
13534 Elf32_gptab *new_tab;
13537 /* We need a new table entry. */
13538 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13539 new_tab = bfd_realloc (tab, amt);
13540 if (new_tab == NULL)
13546 tab[c].gt_entry.gt_g_value = val;
13547 tab[c].gt_entry.gt_bytes = add;
13549 /* Merge in the size for the next smallest -G
13550 value, since that will be implied by this new
13553 for (look = 1; look < c; look++)
13555 if (tab[look].gt_entry.gt_g_value < val
13557 || (tab[look].gt_entry.gt_g_value
13558 > tab[max].gt_entry.gt_g_value)))
13562 tab[c].gt_entry.gt_bytes +=
13563 tab[max].gt_entry.gt_bytes;
13568 last = int_gptab.gt_entry.gt_bytes;
13571 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13572 elf_link_input_bfd ignores this section. */
13573 input_section->flags &= ~SEC_HAS_CONTENTS;
13576 /* The table must be sorted by -G value. */
13578 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13580 /* Swap out the table. */
13581 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13582 ext_tab = bfd_alloc (abfd, amt);
13583 if (ext_tab == NULL)
13589 for (j = 0; j < c; j++)
13590 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13593 o->size = c * sizeof (Elf32_External_gptab);
13594 o->contents = (bfd_byte *) ext_tab;
13596 /* Skip this section later on (I don't think this currently
13597 matters, but someday it might). */
13598 o->map_head.link_order = NULL;
13602 /* Invoke the regular ELF backend linker to do all the work. */
13603 if (!bfd_elf_final_link (abfd, info))
13606 /* Now write out the computed sections. */
13608 if (reginfo_sec != NULL)
13610 Elf32_External_RegInfo ext;
13612 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
13613 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13617 if (mdebug_sec != NULL)
13619 BFD_ASSERT (abfd->output_has_begun);
13620 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13622 mdebug_sec->filepos))
13625 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13628 if (gptab_data_sec != NULL)
13630 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13631 gptab_data_sec->contents,
13632 0, gptab_data_sec->size))
13636 if (gptab_bss_sec != NULL)
13638 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13639 gptab_bss_sec->contents,
13640 0, gptab_bss_sec->size))
13644 if (SGI_COMPAT (abfd))
13646 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13647 if (rtproc_sec != NULL)
13649 if (! bfd_set_section_contents (abfd, rtproc_sec,
13650 rtproc_sec->contents,
13651 0, rtproc_sec->size))
13659 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13661 struct mips_mach_extension {
13662 unsigned long extension, base;
13666 /* An array describing how BFD machines relate to one another. The entries
13667 are ordered topologically with MIPS I extensions listed last. */
13669 static const struct mips_mach_extension mips_mach_extensions[] = {
13670 /* MIPS64r2 extensions. */
13671 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13672 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13673 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13675 /* MIPS64 extensions. */
13676 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13677 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13678 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13679 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13681 /* MIPS V extensions. */
13682 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13684 /* R10000 extensions. */
13685 { bfd_mach_mips12000, bfd_mach_mips10000 },
13686 { bfd_mach_mips14000, bfd_mach_mips10000 },
13687 { bfd_mach_mips16000, bfd_mach_mips10000 },
13689 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13690 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13691 better to allow vr5400 and vr5500 code to be merged anyway, since
13692 many libraries will just use the core ISA. Perhaps we could add
13693 some sort of ASE flag if this ever proves a problem. */
13694 { bfd_mach_mips5500, bfd_mach_mips5400 },
13695 { bfd_mach_mips5400, bfd_mach_mips5000 },
13697 /* MIPS IV extensions. */
13698 { bfd_mach_mips5, bfd_mach_mips8000 },
13699 { bfd_mach_mips10000, bfd_mach_mips8000 },
13700 { bfd_mach_mips5000, bfd_mach_mips8000 },
13701 { bfd_mach_mips7000, bfd_mach_mips8000 },
13702 { bfd_mach_mips9000, bfd_mach_mips8000 },
13704 /* VR4100 extensions. */
13705 { bfd_mach_mips4120, bfd_mach_mips4100 },
13706 { bfd_mach_mips4111, bfd_mach_mips4100 },
13708 /* MIPS III extensions. */
13709 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13710 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13711 { bfd_mach_mips8000, bfd_mach_mips4000 },
13712 { bfd_mach_mips4650, bfd_mach_mips4000 },
13713 { bfd_mach_mips4600, bfd_mach_mips4000 },
13714 { bfd_mach_mips4400, bfd_mach_mips4000 },
13715 { bfd_mach_mips4300, bfd_mach_mips4000 },
13716 { bfd_mach_mips4100, bfd_mach_mips4000 },
13717 { bfd_mach_mips4010, bfd_mach_mips4000 },
13718 { bfd_mach_mips5900, bfd_mach_mips4000 },
13720 /* MIPS32 extensions. */
13721 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13723 /* MIPS II extensions. */
13724 { bfd_mach_mips4000, bfd_mach_mips6000 },
13725 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13727 /* MIPS I extensions. */
13728 { bfd_mach_mips6000, bfd_mach_mips3000 },
13729 { bfd_mach_mips3900, bfd_mach_mips3000 }
13733 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13736 mips_mach_extends_p (unsigned long base, unsigned long extension)
13740 if (extension == base)
13743 if (base == bfd_mach_mipsisa32
13744 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13747 if (base == bfd_mach_mipsisa32r2
13748 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13751 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13752 if (extension == mips_mach_extensions[i].extension)
13754 extension = mips_mach_extensions[i].base;
13755 if (extension == base)
13763 /* Return true if the given ELF header flags describe a 32-bit binary. */
13766 mips_32bit_flags_p (flagword flags)
13768 return ((flags & EF_MIPS_32BITMODE) != 0
13769 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13770 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13771 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13772 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13773 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13774 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13778 /* Merge object attributes from IBFD into OBFD. Raise an error if
13779 there are conflicting attributes. */
13781 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13783 obj_attribute *in_attr;
13784 obj_attribute *out_attr;
13787 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13788 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13789 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13790 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13792 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13794 /* This is the first object. Copy the attributes. */
13795 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13797 /* Use the Tag_null value to indicate the attributes have been
13799 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13804 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13805 non-conflicting ones. */
13806 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13807 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13809 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13810 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13811 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13812 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13813 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13816 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13820 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13821 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13826 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13832 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 "-mdouble-float", "-mips32r2 -mfp64");
13839 (_("Warning: %B uses %s (set by %B), "
13840 "%B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13852 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13853 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13858 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13859 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13864 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13865 obfd, abi_fp_bfd, ibfd,
13866 "-msingle-float", "-mips32r2 -mfp64");
13871 (_("Warning: %B uses %s (set by %B), "
13872 "%B uses unknown floating point ABI %d"),
13873 obfd, abi_fp_bfd, ibfd,
13874 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13880 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13886 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13887 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13892 (_("Warning: %B uses %s (set by %B), "
13893 "%B uses unknown floating point ABI %d"),
13894 obfd, abi_fp_bfd, ibfd,
13895 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13901 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13905 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13906 obfd, abi_fp_bfd, ibfd,
13907 "-mips32r2 -mfp64", "-mdouble-float");
13912 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13913 obfd, abi_fp_bfd, ibfd,
13914 "-mips32r2 -mfp64", "-msingle-float");
13919 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13920 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13925 (_("Warning: %B uses %s (set by %B), "
13926 "%B uses unknown floating point ABI %d"),
13927 obfd, abi_fp_bfd, ibfd,
13928 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13934 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13938 (_("Warning: %B uses unknown floating point ABI %d "
13939 "(set by %B), %B uses %s"),
13940 obfd, abi_fp_bfd, ibfd,
13941 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13946 (_("Warning: %B uses unknown floating point ABI %d "
13947 "(set by %B), %B uses %s"),
13948 obfd, abi_fp_bfd, ibfd,
13949 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13954 (_("Warning: %B uses unknown floating point ABI %d "
13955 "(set by %B), %B uses %s"),
13956 obfd, abi_fp_bfd, ibfd,
13957 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13962 (_("Warning: %B uses unknown floating point ABI %d "
13963 "(set by %B), %B uses %s"),
13964 obfd, abi_fp_bfd, ibfd,
13965 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13970 (_("Warning: %B uses unknown floating point ABI %d "
13971 "(set by %B), %B uses unknown floating point ABI %d"),
13972 obfd, abi_fp_bfd, ibfd,
13973 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13974 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13981 /* Merge Tag_compatibility attributes and any common GNU ones. */
13982 _bfd_elf_merge_object_attributes (ibfd, obfd);
13987 /* Merge backend specific data from an object file to the output
13988 object file when linking. */
13991 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13993 flagword old_flags;
13994 flagword new_flags;
13996 bfd_boolean null_input_bfd = TRUE;
13999 /* Check if we have the same endianness. */
14000 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14002 (*_bfd_error_handler)
14003 (_("%B: endianness incompatible with that of the selected emulation"),
14008 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14011 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14013 (*_bfd_error_handler)
14014 (_("%B: ABI is incompatible with that of the selected emulation"),
14019 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14022 new_flags = elf_elfheader (ibfd)->e_flags;
14023 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14024 old_flags = elf_elfheader (obfd)->e_flags;
14026 if (! elf_flags_init (obfd))
14028 elf_flags_init (obfd) = TRUE;
14029 elf_elfheader (obfd)->e_flags = new_flags;
14030 elf_elfheader (obfd)->e_ident[EI_CLASS]
14031 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14033 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14034 && (bfd_get_arch_info (obfd)->the_default
14035 || mips_mach_extends_p (bfd_get_mach (obfd),
14036 bfd_get_mach (ibfd))))
14038 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14039 bfd_get_mach (ibfd)))
14046 /* Check flag compatibility. */
14048 new_flags &= ~EF_MIPS_NOREORDER;
14049 old_flags &= ~EF_MIPS_NOREORDER;
14051 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14052 doesn't seem to matter. */
14053 new_flags &= ~EF_MIPS_XGOT;
14054 old_flags &= ~EF_MIPS_XGOT;
14056 /* MIPSpro generates ucode info in n64 objects. Again, we should
14057 just be able to ignore this. */
14058 new_flags &= ~EF_MIPS_UCODE;
14059 old_flags &= ~EF_MIPS_UCODE;
14061 /* DSOs should only be linked with CPIC code. */
14062 if ((ibfd->flags & DYNAMIC) != 0)
14063 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14065 if (new_flags == old_flags)
14068 /* Check to see if the input BFD actually contains any sections.
14069 If not, its flags may not have been initialised either, but it cannot
14070 actually cause any incompatibility. */
14071 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14073 /* Ignore synthetic sections and empty .text, .data and .bss sections
14074 which are automatically generated by gas. Also ignore fake
14075 (s)common sections, since merely defining a common symbol does
14076 not affect compatibility. */
14077 if ((sec->flags & SEC_IS_COMMON) == 0
14078 && strcmp (sec->name, ".reginfo")
14079 && strcmp (sec->name, ".mdebug")
14081 || (strcmp (sec->name, ".text")
14082 && strcmp (sec->name, ".data")
14083 && strcmp (sec->name, ".bss"))))
14085 null_input_bfd = FALSE;
14089 if (null_input_bfd)
14094 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14095 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14097 (*_bfd_error_handler)
14098 (_("%B: warning: linking abicalls files with non-abicalls files"),
14103 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14104 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14105 if (! (new_flags & EF_MIPS_PIC))
14106 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14108 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14109 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14111 /* Compare the ISAs. */
14112 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14114 (*_bfd_error_handler)
14115 (_("%B: linking 32-bit code with 64-bit code"),
14119 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14121 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14122 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14124 /* Copy the architecture info from IBFD to OBFD. Also copy
14125 the 32-bit flag (if set) so that we continue to recognise
14126 OBFD as a 32-bit binary. */
14127 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14128 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14129 elf_elfheader (obfd)->e_flags
14130 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14132 /* Copy across the ABI flags if OBFD doesn't use them
14133 and if that was what caused us to treat IBFD as 32-bit. */
14134 if ((old_flags & EF_MIPS_ABI) == 0
14135 && mips_32bit_flags_p (new_flags)
14136 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14137 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14141 /* The ISAs aren't compatible. */
14142 (*_bfd_error_handler)
14143 (_("%B: linking %s module with previous %s modules"),
14145 bfd_printable_name (ibfd),
14146 bfd_printable_name (obfd));
14151 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14152 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14154 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14155 does set EI_CLASS differently from any 32-bit ABI. */
14156 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14160 /* Only error if both are set (to different values). */
14161 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14162 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14163 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14165 (*_bfd_error_handler)
14166 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14168 elf_mips_abi_name (ibfd),
14169 elf_mips_abi_name (obfd));
14172 new_flags &= ~EF_MIPS_ABI;
14173 old_flags &= ~EF_MIPS_ABI;
14176 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14177 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14178 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14180 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14181 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14182 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14183 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14184 int micro_mis = old_m16 && new_micro;
14185 int m16_mis = old_micro && new_m16;
14187 if (m16_mis || micro_mis)
14189 (*_bfd_error_handler)
14190 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14192 m16_mis ? "MIPS16" : "microMIPS",
14193 m16_mis ? "microMIPS" : "MIPS16");
14197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14199 new_flags &= ~ EF_MIPS_ARCH_ASE;
14200 old_flags &= ~ EF_MIPS_ARCH_ASE;
14203 /* Warn about any other mismatches */
14204 if (new_flags != old_flags)
14206 (*_bfd_error_handler)
14207 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14208 ibfd, (unsigned long) new_flags,
14209 (unsigned long) old_flags);
14215 bfd_set_error (bfd_error_bad_value);
14222 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14225 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14227 BFD_ASSERT (!elf_flags_init (abfd)
14228 || elf_elfheader (abfd)->e_flags == flags);
14230 elf_elfheader (abfd)->e_flags = flags;
14231 elf_flags_init (abfd) = TRUE;
14236 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14240 default: return "";
14241 case DT_MIPS_RLD_VERSION:
14242 return "MIPS_RLD_VERSION";
14243 case DT_MIPS_TIME_STAMP:
14244 return "MIPS_TIME_STAMP";
14245 case DT_MIPS_ICHECKSUM:
14246 return "MIPS_ICHECKSUM";
14247 case DT_MIPS_IVERSION:
14248 return "MIPS_IVERSION";
14249 case DT_MIPS_FLAGS:
14250 return "MIPS_FLAGS";
14251 case DT_MIPS_BASE_ADDRESS:
14252 return "MIPS_BASE_ADDRESS";
14254 return "MIPS_MSYM";
14255 case DT_MIPS_CONFLICT:
14256 return "MIPS_CONFLICT";
14257 case DT_MIPS_LIBLIST:
14258 return "MIPS_LIBLIST";
14259 case DT_MIPS_LOCAL_GOTNO:
14260 return "MIPS_LOCAL_GOTNO";
14261 case DT_MIPS_CONFLICTNO:
14262 return "MIPS_CONFLICTNO";
14263 case DT_MIPS_LIBLISTNO:
14264 return "MIPS_LIBLISTNO";
14265 case DT_MIPS_SYMTABNO:
14266 return "MIPS_SYMTABNO";
14267 case DT_MIPS_UNREFEXTNO:
14268 return "MIPS_UNREFEXTNO";
14269 case DT_MIPS_GOTSYM:
14270 return "MIPS_GOTSYM";
14271 case DT_MIPS_HIPAGENO:
14272 return "MIPS_HIPAGENO";
14273 case DT_MIPS_RLD_MAP:
14274 return "MIPS_RLD_MAP";
14275 case DT_MIPS_DELTA_CLASS:
14276 return "MIPS_DELTA_CLASS";
14277 case DT_MIPS_DELTA_CLASS_NO:
14278 return "MIPS_DELTA_CLASS_NO";
14279 case DT_MIPS_DELTA_INSTANCE:
14280 return "MIPS_DELTA_INSTANCE";
14281 case DT_MIPS_DELTA_INSTANCE_NO:
14282 return "MIPS_DELTA_INSTANCE_NO";
14283 case DT_MIPS_DELTA_RELOC:
14284 return "MIPS_DELTA_RELOC";
14285 case DT_MIPS_DELTA_RELOC_NO:
14286 return "MIPS_DELTA_RELOC_NO";
14287 case DT_MIPS_DELTA_SYM:
14288 return "MIPS_DELTA_SYM";
14289 case DT_MIPS_DELTA_SYM_NO:
14290 return "MIPS_DELTA_SYM_NO";
14291 case DT_MIPS_DELTA_CLASSSYM:
14292 return "MIPS_DELTA_CLASSSYM";
14293 case DT_MIPS_DELTA_CLASSSYM_NO:
14294 return "MIPS_DELTA_CLASSSYM_NO";
14295 case DT_MIPS_CXX_FLAGS:
14296 return "MIPS_CXX_FLAGS";
14297 case DT_MIPS_PIXIE_INIT:
14298 return "MIPS_PIXIE_INIT";
14299 case DT_MIPS_SYMBOL_LIB:
14300 return "MIPS_SYMBOL_LIB";
14301 case DT_MIPS_LOCALPAGE_GOTIDX:
14302 return "MIPS_LOCALPAGE_GOTIDX";
14303 case DT_MIPS_LOCAL_GOTIDX:
14304 return "MIPS_LOCAL_GOTIDX";
14305 case DT_MIPS_HIDDEN_GOTIDX:
14306 return "MIPS_HIDDEN_GOTIDX";
14307 case DT_MIPS_PROTECTED_GOTIDX:
14308 return "MIPS_PROTECTED_GOT_IDX";
14309 case DT_MIPS_OPTIONS:
14310 return "MIPS_OPTIONS";
14311 case DT_MIPS_INTERFACE:
14312 return "MIPS_INTERFACE";
14313 case DT_MIPS_DYNSTR_ALIGN:
14314 return "DT_MIPS_DYNSTR_ALIGN";
14315 case DT_MIPS_INTERFACE_SIZE:
14316 return "DT_MIPS_INTERFACE_SIZE";
14317 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14318 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14319 case DT_MIPS_PERF_SUFFIX:
14320 return "DT_MIPS_PERF_SUFFIX";
14321 case DT_MIPS_COMPACT_SIZE:
14322 return "DT_MIPS_COMPACT_SIZE";
14323 case DT_MIPS_GP_VALUE:
14324 return "DT_MIPS_GP_VALUE";
14325 case DT_MIPS_AUX_DYNAMIC:
14326 return "DT_MIPS_AUX_DYNAMIC";
14327 case DT_MIPS_PLTGOT:
14328 return "DT_MIPS_PLTGOT";
14329 case DT_MIPS_RWPLT:
14330 return "DT_MIPS_RWPLT";
14335 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14339 BFD_ASSERT (abfd != NULL && ptr != NULL);
14341 /* Print normal ELF private data. */
14342 _bfd_elf_print_private_bfd_data (abfd, ptr);
14344 /* xgettext:c-format */
14345 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14347 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14348 fprintf (file, _(" [abi=O32]"));
14349 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14350 fprintf (file, _(" [abi=O64]"));
14351 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14352 fprintf (file, _(" [abi=EABI32]"));
14353 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14354 fprintf (file, _(" [abi=EABI64]"));
14355 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14356 fprintf (file, _(" [abi unknown]"));
14357 else if (ABI_N32_P (abfd))
14358 fprintf (file, _(" [abi=N32]"));
14359 else if (ABI_64_P (abfd))
14360 fprintf (file, _(" [abi=64]"));
14362 fprintf (file, _(" [no abi set]"));
14364 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14365 fprintf (file, " [mips1]");
14366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14367 fprintf (file, " [mips2]");
14368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14369 fprintf (file, " [mips3]");
14370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14371 fprintf (file, " [mips4]");
14372 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14373 fprintf (file, " [mips5]");
14374 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14375 fprintf (file, " [mips32]");
14376 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14377 fprintf (file, " [mips64]");
14378 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14379 fprintf (file, " [mips32r2]");
14380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14381 fprintf (file, " [mips64r2]");
14383 fprintf (file, _(" [unknown ISA]"));
14385 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14386 fprintf (file, " [mdmx]");
14388 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14389 fprintf (file, " [mips16]");
14391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14392 fprintf (file, " [micromips]");
14394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14395 fprintf (file, " [32bitmode]");
14397 fprintf (file, _(" [not 32bitmode]"));
14399 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14400 fprintf (file, " [noreorder]");
14402 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14403 fprintf (file, " [PIC]");
14405 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14406 fprintf (file, " [CPIC]");
14408 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14409 fprintf (file, " [XGOT]");
14411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14412 fprintf (file, " [UCODE]");
14414 fputc ('\n', file);
14419 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14421 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14422 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14423 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14424 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14425 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14426 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14427 { NULL, 0, 0, 0, 0 }
14430 /* Merge non visibility st_other attributes. Ensure that the
14431 STO_OPTIONAL flag is copied into h->other, even if this is not a
14432 definiton of the symbol. */
14434 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14435 const Elf_Internal_Sym *isym,
14436 bfd_boolean definition,
14437 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14439 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14441 unsigned char other;
14443 other = (definition ? isym->st_other : h->other);
14444 other &= ~ELF_ST_VISIBILITY (-1);
14445 h->other = other | ELF_ST_VISIBILITY (h->other);
14449 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14450 h->other |= STO_OPTIONAL;
14453 /* Decide whether an undefined symbol is special and can be ignored.
14454 This is the case for OPTIONAL symbols on IRIX. */
14456 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14458 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14462 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14464 return (sym->st_shndx == SHN_COMMON
14465 || sym->st_shndx == SHN_MIPS_ACOMMON
14466 || sym->st_shndx == SHN_MIPS_SCOMMON);
14469 /* Return address for Ith PLT stub in section PLT, for relocation REL
14470 or (bfd_vma) -1 if it should not be included. */
14473 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14474 const arelent *rel ATTRIBUTE_UNUSED)
14477 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14478 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14482 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14484 struct mips_elf_link_hash_table *htab;
14485 Elf_Internal_Ehdr *i_ehdrp;
14487 i_ehdrp = elf_elfheader (abfd);
14490 htab = mips_elf_hash_table (link_info);
14491 BFD_ASSERT (htab != NULL);
14493 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14494 i_ehdrp->e_ident[EI_ABIVERSION] = 1;