1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
307 struct mips_elf_hash_sort_data
309 /* The symbol in the global GOT with the lowest dynamic symbol table
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 bfd_size_type min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 bfd_size_type max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a local
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
323 symbol without a GOT entry. */
324 bfd_size_type max_non_got_dynindx;
327 /* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
334 /* Traditional SVR4 stub offset, or -1 if none. */
337 /* Standard PLT entry offset, or -1 if none. */
340 /* Compressed PLT entry offset, or -1 if none. */
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
353 /* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
356 struct mips_elf_link_hash_entry
358 struct elf_link_hash_entry root;
360 /* External symbol information. */
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
368 unsigned int possibly_dynamic_relocs;
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
422 /* MIPS ELF linker hash table. */
424 struct mips_elf_link_hash_table
426 struct elf_link_hash_table root;
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
436 bfd_boolean use_rld_obj_head;
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
441 /* This is set if we see any mips16 stub sections. */
442 bfd_boolean mips16_stubs_seen;
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
447 /* True if we can only use 32-bit microMIPS instructions. */
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
468 /* Shortcuts to some dynamic sections, or NULL if they are not
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
476 /* The global symbol in the GOT with the lowest index in the dynamic
478 struct elf_link_hash_entry *global_gotsym;
480 /* The size of the PLT header in bytes. */
481 bfd_vma plt_header_size;
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
520 The function returns the new section on success, otherwise it
522 asection *(*add_stub_section) (const char *, asection *, asection *);
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
531 /* Get the MIPS ELF linker hash table from a link_info structure. */
533 #define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
537 /* A structure used to communicate with htab_traverse callbacks. */
538 struct mips_htab_traverse_info
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
548 /* MIPS ELF private object data. */
550 struct mips_elf_obj_tdata
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
585 /* Get MIPS ELF private object data from BFD's tdata. */
587 #define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
590 #define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
603 || r_type == R_MIPS_TLS_TPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
619 /* Structure used to pass information to mips_elf_output_extsym. */
624 struct bfd_link_info *info;
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
630 /* The names of the runtime procedure table symbols used on IRIX5. */
632 static const char * const mips_elf_dynsym_rtproc_names[] =
635 "_procedure_string_table",
636 "_procedure_table_size",
640 /* These structures are used to generate the .compact_rel section on
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661 } Elf32_External_compact_rel;
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
687 } Elf32_External_crinfo;
693 } Elf32_External_crinfo2;
695 /* These are the constants used to swap the bitfields in a crinfo. */
697 #define CRINFO_CTYPE (0x1)
698 #define CRINFO_CTYPE_SH (31)
699 #define CRINFO_RTYPE (0xf)
700 #define CRINFO_RTYPE_SH (27)
701 #define CRINFO_DIST2TO (0xff)
702 #define CRINFO_DIST2TO_SH (19)
703 #define CRINFO_RELVADDR (0x7ffff)
704 #define CRINFO_RELVADDR_SH (0)
706 /* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709 #define CRF_MIPS_LONG 1
710 #define CRF_MIPS_SHORT 0
712 /* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
722 #define CRT_MIPS_REL32 0xa
723 #define CRT_MIPS_WORD 0xb
724 #define CRT_MIPS_GPHI_LO 0xc
725 #define CRT_MIPS_JMPAD 0xd
727 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
732 /* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
735 typedef struct runtime_pdr {
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
746 struct exception_info *exception_info;/* Pointer to exception array. */
748 #define cbRPDR sizeof (RPDR)
749 #define rpdNil ((pRPDR) 0)
751 static struct mips_got_entry *mips_elf_create_local_got_entry
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
754 static bfd_boolean mips_elf_sort_hash_table_f
755 (struct mips_elf_link_hash_entry *, void *);
756 static bfd_vma mips_elf_high
758 static bfd_boolean mips_elf_create_dynamic_relocation
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
762 static bfd_vma mips_elf_adjust_gp
763 (bfd *, struct mips_got_info *, bfd *);
765 /* This will be used when we sort the dynamic relocation records. */
766 static bfd *reldyn_sorting_bfd;
768 /* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770 #define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
774 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777 #define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
780 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
783 #define JALR_TO_BAL_P(abfd) 1
785 /* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
788 #define JR_TO_B_P(abfd) 1
790 /* True if ABFD is a PIC object. */
791 #define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
794 /* Nonzero if ABFD is using the O32 ABI. */
795 #define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
798 /* Nonzero if ABFD is using the N32 ABI. */
799 #define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
802 /* Nonzero if ABFD is using the N64 ABI. */
803 #define ABI_64_P(abfd) \
804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
806 /* Nonzero if ABFD is using NewABI conventions. */
807 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
809 /* Nonzero if ABFD has microMIPS code. */
810 #define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
813 /* Nonzero if ABFD is MIPS R6. */
814 #define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
818 /* The IRIX compatibility level we are striving for. */
819 #define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
822 /* Whether we are trying to be compatible with IRIX at all. */
823 #define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
826 /* The name of the options section. */
827 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
830 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
835 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
839 /* Whether the section is readonly. */
840 #define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
844 /* The name of the stub section. */
845 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
847 /* The size of an external REL relocation. */
848 #define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
851 /* The size of an external RELA relocation. */
852 #define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
855 /* The size of an external dynamic table entry. */
856 #define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
859 /* The size of a GOT entry. */
860 #define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
863 /* The size of the .rld_map section. */
864 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
867 /* The size of a symbol-table entry. */
868 #define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
871 /* The default alignment for sections, as a power of two. */
872 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
873 (get_elf_backend_data (abfd)->s->log_file_align)
875 /* Get word-sized data. */
876 #define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
879 /* Put out word-sized data. */
880 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
882 ? bfd_put_64 (abfd, val, ptr) \
883 : bfd_put_32 (abfd, val, ptr))
885 /* The opcode for word-sized loads (LW or LD). */
886 #define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
889 /* Add a dynamic symbol table-entry. */
890 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
891 _bfd_elf_add_dynamic_entry (info, tag, val)
893 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
896 /* The name of the dynamic relocation section. */
897 #define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
900 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902 #define MINUS_ONE (((bfd_vma)0) - 1)
903 #define MINUS_TWO (((bfd_vma)0) - 2)
905 /* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
908 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
911 /* The offset of $gp from the beginning of the .got section. */
912 #define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
915 /* The maximum size of the GOT for it to be addressable using 16-bit
917 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
919 /* Instructions which appear in a stub. */
920 #define STUB_LW(abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
923 : 0x8f998010)) /* lw t9,0x8010(gp) */
924 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
925 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
926 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
927 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
928 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
930 #define STUB_LI16S(abfd, VAL) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
935 /* Likewise for the microMIPS ASE. */
936 #define STUB_LW_MICROMIPS(abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
941 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
942 #define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
945 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
946 #define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948 #define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
955 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
957 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
959 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
962 /* The name of the dynamic interpreter. This is put in the .interp
965 #define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
968 : "/usr/lib/libc.so.1")
971 #define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
973 #define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975 #define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977 #define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
980 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
981 #define ELF_R_SYM(bfd, i) \
983 #define ELF_R_TYPE(bfd, i) \
985 #define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1021 We record any stubs that we find in the symbol table. */
1023 #define FN_STUB ".mips16.fn."
1024 #define CALL_STUB ".mips16.call."
1025 #define CALL_FP_STUB ".mips16.call.fp."
1027 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1031 /* The format of the first PLT entry in an O32 executable. */
1032 static const bfd_vma mips_o32_exec_plt0_entry[] =
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1044 /* The format of the first PLT entry in an O32 executable using compact
1046 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1058 /* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
1060 static const bfd_vma mips_n32_exec_plt0_entry[] =
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
1066 0x03e07825, /* or t7, ra, zero */
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1072 /* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1075 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1087 /* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
1089 static const bfd_vma mips_n64_exec_plt0_entry[] =
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
1095 0x03e07825, /* or t7, ra, zero */
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1101 /* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1104 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1117 /* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1122 The trailing NOP is for alignment and correct disassembly only. */
1123 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1136 /* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1144 0x001f, 0x7a90, /* or $15, $31, zero */
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1150 /* The format of subsequent standard PLT entries. */
1151 static const bfd_vma mips_exec_plt_entry[] =
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1159 static const bfd_vma mipsr6_exec_plt_entry[] =
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1167 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1175 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178 static const bfd_vma mips16_o32_exec_plt_entry[] =
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1184 0x653b, /* move $25, $3 */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1189 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191 static const bfd_vma micromips_o32_exec_plt_entry[] =
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1199 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1208 /* The format of the first PLT entry in a VxWorks executable. */
1209 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1219 /* The format of subsequent PLT entries. */
1220 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1232 /* The format of the first PLT entry in a VxWorks shared object. */
1233 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1243 /* The format of subsequent PLT entries. */
1244 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1250 /* microMIPS 32-bit opcode helper installer. */
1253 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1259 /* microMIPS 32-bit opcode helper retriever. */
1262 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1267 /* Look up an entry in a MIPS ELF linker hash table. */
1269 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1274 /* Traverse a MIPS ELF linker hash table. */
1276 #define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1282 /* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1285 #define TP_OFFSET 0x7000
1286 #define DTP_OFFSET 0x8000
1289 dtprel_base (struct bfd_link_info *info)
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1298 tprel_base (struct bfd_link_info *info)
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1306 /* Create an entry in a MIPS ELF linker hash table. */
1308 static struct bfd_hash_entry *
1309 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1315 /* Allocate the structure if it has not already been allocated by a
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1320 return (struct bfd_hash_entry *) ret;
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1334 ret->possibly_dynamic_relocs = 0;
1335 ret->fn_stub = NULL;
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
1338 ret->global_got_area = GGA_NONE;
1339 ret->got_only_for_calls = TRUE;
1340 ret->readonly_reloc = FALSE;
1341 ret->has_static_relocs = FALSE;
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
1344 ret->has_nonpic_branches = FALSE;
1345 ret->needs_lazy_stub = FALSE;
1346 ret->use_plt_entry = FALSE;
1349 return (struct bfd_hash_entry *) ret;
1352 /* Allocate MIPS ELF private object data. */
1355 _bfd_mips_elf_mkobject (bfd *abfd)
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1362 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1364 if (!sec->used_by_bfd)
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
1369 sdata = bfd_zalloc (abfd, amt);
1372 sec->used_by_bfd = sdata;
1375 return _bfd_elf_new_section_hook (abfd, sec);
1378 /* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1382 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
1386 const struct ecoff_debug_swap *swap;
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1397 swap->external_hdr_size))
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1403 /* The symbolic header contains absolute file offsets and sizes to
1405 #define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1411 debug->ptr = bfd_malloc (amt); \
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1438 if (ext_hdr != NULL)
1440 if (debug->line != NULL)
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1483 /* Create a runtime procedure table from the .mdebug section. */
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1493 struct rpdr_ext *erp;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1500 bfd_size_type count;
1501 unsigned long sindex;
1505 const char *no_name_func = _("static procedure (no name)");
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1519 size = swap->external_pdr_size;
1521 epdr = bfd_malloc (size * count);
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1578 mips_elf_hash_table (info)->procedure_count = 0;
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1598 /* Set the size and contents of .rtproc section. */
1600 s->contents = rtproc;
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1633 /* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1637 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
1651 /* Create a new symbol. */
1652 name = concat (prefix, h->root.root.root.string, NULL);
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1665 elfh->forced_local = 1;
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1671 /* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1676 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1693 /* Create a new symbol. */
1694 name = concat (prefix, h->root.root.root.string, NULL);
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1712 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1716 section_allows_mips16_refs_p (asection *section)
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1727 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1731 static unsigned long
1732 mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
1734 const Elf_Internal_Rela *relocs,
1735 const Elf_Internal_Rela *relend)
1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1738 const Elf_Internal_Rela *rel;
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1754 /* Check the mips16 stubs for a particular symbol, and see if we can
1758 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1773 /* We don't need the fn_stub; the only references to this symbol
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
1776 h->fn_stub->size = 0;
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
1780 h->fn_stub->output_section = bfd_abs_section_ptr;
1783 if (h->call_stub != NULL
1784 && ELF_ST_IS_MIPS16 (h->root.other))
1786 /* We don't need the call_stub; this is a 16 bit function, so
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
1789 h->call_stub->size = 0;
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
1793 h->call_stub->output_section = bfd_abs_section_ptr;
1796 if (h->call_fp_stub != NULL
1797 && ELF_ST_IS_MIPS16 (h->root.other))
1799 /* We don't need the call_stub; this is a 16 bit function, so
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
1802 h->call_fp_stub->size = 0;
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1810 /* Hashtable callbacks for mips_elf_la25_stubs. */
1813 mips_elf_la25_stub_hash (const void *entry_)
1815 const struct mips_elf_la25_stub *entry;
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1823 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1835 /* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1840 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1844 struct mips_elf_link_hash_table *htab;
1846 htab = mips_elf_hash_table (info);
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1859 /* Return true if H is a locally-defined PIC function, in the sense
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
1866 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
1872 && !bfd_is_und_section (h->root.root.u.def.section)
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1879 /* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1883 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1899 /* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1904 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1907 struct mips_elf_link_hash_table *htab;
1909 asection *s, *input_section;
1912 htab = mips_elf_hash_table (info);
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1922 /* Create the section. */
1923 mips_elf_get_la25_target (stub, &input_section);
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1934 s->size = (1 << align) - 8;
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1941 /* Allocate room for it. */
1946 /* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1951 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1954 struct mips_elf_link_hash_table *htab;
1957 htab = mips_elf_hash_table (info);
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1970 htab->strampoline = s;
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1978 /* Allocate room for it. */
1983 /* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1987 mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2011 stub = (struct mips_elf_la25_stub *) *slot;
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2039 /* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2043 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2045 struct mips_htab_traverse_info *hti;
2047 hti = (struct mips_htab_traverse_info *) data;
2048 if (!bfd_link_relocatable (hti->info))
2049 mips_elf_check_mips16_stubs (hti->info, h);
2051 if (mips_elf_local_pic_function_p (h))
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2063 if (bfd_link_relocatable (hti->info))
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2077 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2081 The format of these instructions is:
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
2087 +-----------------------------------------------+
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2115 +--------+----------------------+
2119 +--------+----------------------+
2122 +----------+------+-------------+
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2147 A typical instruction will have a format like this:
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2155 EXTEND is the five bit value 11110. Major is the instruction
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
2160 little-endian system.
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
2166 static inline bfd_boolean
2167 mips16_reloc_p (int r_type)
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
2184 case R_MIPS16_PC16_S1:
2192 /* Check if a microMIPS reloc. */
2194 static inline bfd_boolean
2195 micromips_reloc_p (unsigned int r_type)
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2200 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2204 static inline bfd_boolean
2205 micromips_reloc_shuffle_p (unsigned int r_type)
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2212 static inline bfd_boolean
2213 got16_reloc_p (int r_type)
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
2220 static inline bfd_boolean
2221 call16_reloc_p (int r_type)
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2228 static inline bfd_boolean
2229 got_disp_reloc_p (unsigned int r_type)
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2234 static inline bfd_boolean
2235 got_page_reloc_p (unsigned int r_type)
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2240 static inline bfd_boolean
2241 got_lo16_reloc_p (unsigned int r_type)
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2246 static inline bfd_boolean
2247 call_hi16_reloc_p (unsigned int r_type)
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2252 static inline bfd_boolean
2253 call_lo16_reloc_p (unsigned int r_type)
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2258 static inline bfd_boolean
2259 hi16_reloc_p (int r_type)
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
2267 static inline bfd_boolean
2268 lo16_reloc_p (int r_type)
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
2276 static inline bfd_boolean
2277 mips16_call_reloc_p (int r_type)
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2282 static inline bfd_boolean
2283 jal_reloc_p (int r_type)
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2290 static inline bfd_boolean
2291 b_reloc_p (int r_type)
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
2296 || r_type == R_MIPS_GNU_REL16_S2
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
2303 static inline bfd_boolean
2304 aligned_pcrel_reloc_p (int r_type)
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2310 static inline bfd_boolean
2311 branch_reloc_p (int r_type)
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2320 static inline bfd_boolean
2321 mips16_branch_reloc_p (int r_type)
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2327 static inline bfd_boolean
2328 micromips_branch_reloc_p (int r_type)
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2336 static inline bfd_boolean
2337 tls_gd_reloc_p (unsigned int r_type)
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
2344 static inline bfd_boolean
2345 tls_ldm_reloc_p (unsigned int r_type)
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
2352 static inline bfd_boolean
2353 tls_gottprel_reloc_p (unsigned int r_type)
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2361 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
2364 bfd_vma first, second, val;
2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
2380 bfd_put_32 (abfd, val, data);
2384 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
2387 bfd_vma first, second, val;
2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2392 val = bfd_get_32 (abfd, data);
2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2395 second = val & 0xffff;
2398 else if (r_type != R_MIPS16_26)
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
2413 bfd_reloc_status_type
2414 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
2420 bfd_reloc_status_type status;
2422 if (bfd_is_com_section (symbol->section))
2425 relocation = symbol->value;
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2431 return bfd_reloc_outofrange;
2433 /* Set val to the offset into the section or symbol. */
2434 val = reloc_entry->addend;
2436 _bfd_mips_elf_sign_extend (val, 16);
2438 /* Adjust val for the final section location and GP value. If we
2439 are producing relocatable output, we don't want to do this for
2440 an external symbol. */
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2445 if (reloc_entry->howto->partial_inplace)
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2454 reloc_entry->addend = val;
2457 reloc_entry->address += input_section->output_offset;
2459 return bfd_reloc_ok;
2462 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2469 struct mips_hi16 *next;
2471 asection *input_section;
2475 /* FIXME: This should not be a static variable. */
2477 static struct mips_hi16 *mips_hi16_list;
2479 /* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2488 bfd_reloc_status_type
2489 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2494 struct mips_hi16 *n;
2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2497 return bfd_reloc_outofrange;
2499 n = bfd_malloc (sizeof *n);
2501 return bfd_reloc_outofrange;
2503 n->next = mips_hi16_list;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2512 return bfd_reloc_ok;
2515 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2519 bfd_reloc_status_type
2520 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2536 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2540 bfd_reloc_status_type
2541 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2549 return bfd_reloc_outofrange;
2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2557 while (mips_hi16_list != NULL)
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2562 hi = mips_hi16_list;
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2583 if (ret != bfd_reloc_ok)
2586 mips_hi16_list = hi->next;
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2595 /* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2599 bfd_reloc_status_type
2600 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2609 relocatable = (output_bfd != NULL);
2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2612 return bfd_reloc_outofrange;
2614 /* Build up the field adjustment in VAL. */
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2651 /* Add VAL to the relocation field. */
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2659 if (status != bfd_reloc_ok)
2664 reloc_entry->address += input_section->output_offset;
2666 return bfd_reloc_ok;
2669 /* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2673 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2681 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2689 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2701 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2715 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2720 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2732 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2743 /* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2750 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2763 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2775 /* Swap in an options header. */
2778 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2787 /* Swap out an options header. */
2790 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2799 /* Swap in an abiflags structure. */
2802 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2819 /* Swap out an abiflags structure. */
2822 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2839 /* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2843 sort_dynamic_relocs (const void *arg1, const void *arg2)
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2863 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2866 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2894 /* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2909 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2911 struct extsym_info *einfo = data;
2913 asection *sec, *output_section;
2915 if (h->root.indx == -2)
2917 else if ((h->root.def_dynamic
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
2927 FALSE, FALSE) == NULL))
2935 if (h->esym.ifd == -2)
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2950 /* Use undefined class. Also, set class and type for some
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2968 h->esym.asym.sc = scUndefined;
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2986 name = bfd_section_name (output_section->owner, output_section);
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3006 h->esym.asym.sc = scAbs;
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3031 h->esym.asym.value = 0;
3035 struct mips_elf_link_hash_entry *hd = h;
3037 while (hd->root.root.type == bfd_link_hash_indirect)
3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3040 if (hd->needs_lazy_stub)
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3048 h->esym.asym.value = 0;
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3054 + sec->output_offset
3055 + output_section->vma);
3057 h->esym.asym.value = 0;
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3066 einfo->failed = TRUE;
3073 /* A comparison routine used to sort .gptab entries. */
3076 gptab_compare (const void *p1, const void *p2)
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3084 /* Functions to manage the got entry hash table. */
3086 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3089 static INLINE hashval_t
3090 mips_elf_hash_bfd_vma (bfd_vma addr)
3093 return addr + (addr >> 32);
3100 mips_elf_got_entry_hash (const void *entry_)
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3104 return (entry->symndx
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
3114 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3119 return (e1->symndx == e2->symndx
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
3129 mips_got_page_ref_hash (const void *ref_)
3131 const struct mips_got_page_ref *ref;
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3141 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3143 const struct mips_got_page_ref *ref1, *ref2;
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3155 mips_got_page_entry_hash (const void *entry_)
3157 const struct mips_got_page_entry *entry;
3159 entry = (const struct mips_got_page_entry *) entry_;
3160 return entry->sec->id;
3164 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3166 const struct mips_got_page_entry *entry1, *entry2;
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
3170 return entry1->sec == entry2->sec;
3173 /* Create and return a new mips_got_info structure. */
3175 static struct mips_got_info *
3176 mips_elf_create_got_info (bfd *abfd)
3178 struct mips_got_info *g;
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
3186 if (g->got_entries == NULL)
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
3197 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3200 static struct mips_got_info *
3201 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3203 struct mips_elf_obj_tdata *tdata;
3205 if (!is_mips_elf (abfd))
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3210 tdata->got = mips_elf_create_got_info (abfd);
3214 /* Record that ABFD should use output GOT G. */
3217 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3219 struct mips_elf_obj_tdata *tdata;
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
3235 /* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
3240 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3248 sreloc = bfd_get_linker_section (dynobj, dname);
3249 if (sreloc == NULL && create_p)
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3256 | SEC_LINKER_CREATED
3259 || ! bfd_set_section_alignment (dynobj, sreloc,
3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3266 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3269 mips_elf_reloc_tls_type (unsigned int r_type)
3271 if (tls_gd_reloc_p (r_type))
3274 if (tls_ldm_reloc_p (r_type))
3277 if (tls_gottprel_reloc_p (r_type))
3280 return GOT_TLS_NONE;
3283 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3286 mips_tls_got_entries (unsigned int type)
3303 /* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3308 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3321 if ((bfd_link_dll (info) || indx != 0)
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3333 return indx != 0 ? 2 : 1;
3339 return bfd_link_dll (info) ? 1 : 0;
3346 /* Add the number of GOT entries and TLS relocations required by ENTRY
3350 mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
3354 if (entry->tls_type)
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3359 ? &entry->d.h->root : NULL);
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3364 g->global_gotno += 1;
3367 /* Output a simple dynamic relocation into SRELOC. */
3370 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3372 unsigned long reloc_index,
3377 Elf_Internal_Rela rel[3];
3379 memset (rel, 0, sizeof (rel));
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3384 if (ABI_64_P (output_bfd))
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3395 + reloc_index * sizeof (Elf32_External_Rel)));
3398 /* Initialize a set of TLS GOT entries for one symbol. */
3401 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
3403 struct mips_elf_link_hash_entry *h,
3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3407 struct mips_elf_link_hash_table *htab;
3409 asection *sreloc, *sgot;
3410 bfd_vma got_offset, got_offset2;
3411 bfd_boolean need_relocs = FALSE;
3413 htab = mips_elf_hash_table (info);
3417 sgot = htab->root.sgot;
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
3426 if (entry->tls_initialized)
3429 if ((bfd_link_dll (info) || indx != 0)
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3441 /* Emit necessary relocations. */
3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3443 got_offset = entry->gotidx;
3445 switch (entry->tls_type)
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 mips_elf_output_dynamic_relocation
3460 (abfd, sreloc, sreloc->reloc_count++, indx,
3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3465 sgot->contents + got_offset2);
3469 MIPS_ELF_PUT_WORD (abfd, 1,
3470 sgot->contents + got_offset);
3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3472 sgot->contents + got_offset2);
3477 /* Initial Exec model. */
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3482 sgot->contents + got_offset);
3484 MIPS_ELF_PUT_WORD (abfd, 0,
3485 sgot->contents + got_offset);
3487 mips_elf_output_dynamic_relocation
3488 (abfd, sreloc, sreloc->reloc_count++, indx,
3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3490 sgot->output_offset + sgot->output_section->vma + got_offset);
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3494 sgot->contents + got_offset);
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3504 if (!bfd_link_dll (info))
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3508 mips_elf_output_dynamic_relocation
3509 (abfd, sreloc, sreloc->reloc_count++, indx,
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
3518 entry->tls_initialized = TRUE;
3521 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3526 mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3529 bfd_vma got_address, got_value;
3530 struct mips_elf_link_hash_table *htab;
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3538 /* Calculate the address of the associated .got.plt entry. */
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3549 return got_address - got_value;
3552 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
3558 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3559 bfd_vma value, unsigned long r_symndx,
3560 struct mips_elf_link_hash_entry *h, int r_type)
3562 struct mips_elf_link_hash_table *htab;
3563 struct mips_got_entry *entry;
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
3573 if (entry->tls_type)
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
3578 /* Return the GOT index of global symbol H in the primary GOT. */
3581 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
3604 BFD_ASSERT (got_index < htab->root.sgot->size);
3609 /* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3613 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
3616 struct mips_elf_link_hash_table *htab;
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3621 htab = mips_elf_hash_table (info);
3622 BFD_ASSERT (htab != NULL);
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3637 gotidx = entry->gotidx;
3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3640 if (lookup.tls_type)
3642 bfd_vma value = MINUS_ONE;
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3656 /* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
3660 offset of the GOT entry from VALUE. */
3663 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3664 bfd_vma value, bfd_vma *offsetp)
3666 bfd_vma page, got_index;
3667 struct mips_got_entry *entry;
3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
3676 got_index = entry->gotidx;
3679 *offsetp = value - entry->d.address;
3684 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
3689 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3690 bfd_vma value, bfd_boolean external)
3692 struct mips_got_entry *entry;
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3699 value = mips_elf_high (value) << 16;
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
3707 return entry->gotidx;
3712 /* Returns the offset for the entry at the INDEXth position
3716 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3717 bfd *input_bfd, bfd_vma got_index)
3719 struct mips_elf_link_hash_table *htab;
3723 htab = mips_elf_hash_table (info);
3724 BFD_ASSERT (htab != NULL);
3726 sgot = htab->root.sgot;
3727 gp = _bfd_get_gp_value (output_bfd)
3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3733 /* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3738 static struct mips_got_entry *
3739 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3740 bfd *ibfd, bfd_vma value,
3741 unsigned long r_symndx,
3742 struct mips_elf_link_hash_entry *h,
3745 struct mips_got_entry lookup, *entry;
3747 struct mips_got_info *g;
3748 struct mips_elf_link_hash_table *htab;
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3754 g = mips_elf_bfd_got (ibfd, FALSE);
3757 g = mips_elf_bfd_got (abfd, FALSE);
3758 BFD_ASSERT (g != NULL);
3761 /* This function shouldn't be called for symbols that live in the global
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3769 if (tls_ldm_reloc_p (r_type))
3772 lookup.d.addend = 0;
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3788 gotidx = entry->gotidx;
3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3801 entry = (struct mips_got_entry *) *loc;
3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
3807 /* We didn't allocate enough space in the GOT. */
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3831 /* These GOT entries need a dynamic relocation on VxWorks. */
3832 if (htab->is_vxworks)
3834 Elf_Internal_Rela outrel;
3837 bfd_vma got_address;
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3845 outrel.r_offset = got_address;
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3854 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3859 static bfd_size_type
3860 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3862 bfd_size_type count;
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
3869 const struct elf_backend_data *bed;
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
3875 && elf_hash_table (info)->dynamic_relocs
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3882 /* Sort the dynamic symbol table so that symbols that need GOT entries
3883 appear towards the end. */
3886 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3888 struct mips_elf_link_hash_table *htab;
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
3892 htab = mips_elf_hash_table (info);
3893 BFD_ASSERT (htab != NULL);
3895 if (htab->root.dynsymcount == 0)
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912 /* There should have been enough room in the symbol table to
3913 accommodate both the GOT and non-GOT symbols. */
3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
3921 htab->global_gotsym = hsd.low;
3926 /* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3931 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 struct mips_elf_hash_sort_data *hsd = data;
3935 /* Symbols without dynamic symbol table entries aren't interesting
3937 if (h->root.dynindx == -1)
3940 switch (h->global_got_area)
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
3954 case GGA_RELOC_ONLY:
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3964 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3969 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3992 lookup->tls_initialized = FALSE;
3993 lookup->gotidx = -1;
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4012 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
4014 using the GOT entry for calls. */
4017 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
4019 bfd_boolean for_call, int r_type)
4021 struct mips_elf_link_hash_table *htab;
4022 struct mips_elf_link_hash_entry *hmips;
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
4026 htab = mips_elf_hash_table (info);
4027 BFD_ASSERT (htab != NULL);
4029 hmips = (struct mips_elf_link_hash_entry *) h;
4031 hmips->got_only_for_calls = FALSE;
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4035 if (h->dynindx == -1)
4037 switch (ELF_ST_VISIBILITY (h->other))
4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4048 tls_type = mips_elf_reloc_tls_type (r_type);
4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4050 hmips->global_got_area = GGA_NORMAL;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
4059 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4063 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4064 struct bfd_link_info *info, int r_type)
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
4068 struct mips_got_entry entry;
4070 htab = mips_elf_hash_table (info);
4071 BFD_ASSERT (htab != NULL);
4074 BFD_ASSERT (g != NULL);
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4080 return mips_elf_record_got_entry (info, abfd, &entry);
4083 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4088 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
4092 struct mips_elf_link_hash_table *htab;
4093 struct mips_got_info *g1, *g2;
4094 struct mips_got_page_ref lookup, *entry;
4095 void **loc, **bfd_loc;
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4118 entry = (struct mips_got_page_ref *) *loc;
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4144 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4147 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4151 struct mips_elf_link_hash_table *htab;
4153 htab = mips_elf_hash_table (info);
4154 BFD_ASSERT (htab != NULL);
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4173 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
4179 mips_elf_check_recreate_got (void **entryp, void *data)
4181 struct mips_got_entry *entry;
4182 struct mips_elf_traverse_got_arg *arg;
4184 entry = (struct mips_got_entry *) *entryp;
4185 arg = (struct mips_elf_traverse_got_arg *) data;
4186 if (entry->abfd != NULL && entry->symndx == -1)
4188 struct mips_elf_link_hash_entry *h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4202 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
4208 mips_elf_recreate_got (void **entryp, void *data)
4210 struct mips_got_entry new_entry, *entry;
4211 struct mips_elf_traverse_got_arg *arg;
4214 entry = (struct mips_got_entry *) *entryp;
4215 arg = (struct mips_elf_traverse_got_arg *) data;
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
4221 struct mips_elf_link_hash_entry *h;
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (entry == &new_entry)
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
4259 /* Return the maximum number of GOT page entries required for RANGE. */
4262 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4267 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4270 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4271 asection *sec, bfd_signed_vma addend)
4273 struct mips_got_info *g = arg->g;
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4308 if (!range || addend < range->min_addend - 0xffff)
4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4339 range->max_addend = addend;
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4353 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4359 mips_elf_resolve_got_page_ref (void **refp, void *data)
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4371 if (ref->symndx < 0)
4373 struct mips_elf_link_hash_entry *h;
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4380 /* Ignore undefined symbols; we'll issue an error later if
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4392 Elf_Internal_Sym *isym;
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4428 addend = isym->st_value + ref->addend;
4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 /* If any entries in G->got_entries are for indirect or warning symbols,
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
4444 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4469 htab_delete (oldg.got_entries);
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4484 /* Return true if a GOT entry for H should live in the local rather than
4488 mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
4514 if (bfd_link_executable (info) && h->has_static_relocs)
4520 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
4527 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4529 struct bfd_link_info *info;
4530 struct mips_elf_link_hash_table *htab;
4531 struct mips_got_info *g;
4533 info = (struct bfd_link_info *) data;
4534 htab = mips_elf_hash_table (info);
4536 if (h->global_got_area != GGA_NONE)
4538 /* Make a final decision about whether the symbol belongs in the
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
4552 else if (h->global_got_area == GGA_RELOC_ONLY)
4554 g->reloc_only_gotno++;
4561 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4565 mips_elf_add_got_entry (void **entryp, void *data)
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
4587 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4591 mips_elf_add_got_page_entry (void **entryp, void *data)
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4608 arg->g->page_gotno += entry->num_pages;
4613 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4620 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4624 struct mips_elf_traverse_got_arg tga;
4625 unsigned int estimate;
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4632 /* And conservatively estimate how many local and TLS entries
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
4639 conservatively as well. */
4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4641 estimate += arg->global_count;
4643 estimate += from->global_gotno + to->global_gotno;
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4649 /* Transfer the bfd's got information from FROM to TO. */
4650 tga.info = arg->info;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4660 mips_elf_replace_bfd_got (abfd, to);
4664 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4672 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
4675 unsigned int estimate;
4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4693 if (estimate <= arg->max_count)
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4703 /* Try merging with the primary GOT. */
4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4709 /* If we can merge with the last-created got, do it. */
4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
4720 g->next = arg->current;
4726 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4731 mips_elf_set_gotidx (void **entryp, long gotidx)
4733 struct mips_got_entry *entry;
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4738 struct mips_got_entry *new_entry;
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4748 entry->gotidx = gotidx;
4752 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
4757 mips_elf_initialize_tls_index (void **entryp, void *data)
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
4762 /* We're only interested in TLS symbols. */
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->tls_type == GOT_TLS_NONE)
4767 arg = (struct mips_elf_traverse_got_arg *) data;
4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4774 /* Account for the entries we've just allocated. */
4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4779 /* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
4784 mips_elf_set_global_got_area (void **entryp, void *data)
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4798 /* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
4801 the size of one GOT entry. Set DATA->g to null on failure. */
4804 mips_elf_set_global_gotidx (void **entryp, void *data)
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4820 arg->g->assigned_low_gotno += 1;
4822 if (bfd_link_pic (arg->info)
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
4832 /* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4837 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4846 BFD_ASSERT (htab != NULL);
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
4850 && entry->d.h->needs_lazy_stub)
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
4859 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4862 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4867 g = mips_elf_bfd_got (ibfd, FALSE);
4871 BFD_ASSERT (g->next);
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
4879 /* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4883 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4884 asection *got, bfd_size_type pages)
4886 struct mips_elf_link_hash_table *htab;
4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4888 struct mips_elf_traverse_got_arg tga;
4889 struct mips_got_info *g, *gg;
4890 unsigned int assign, needed_relocs;
4893 dynobj = elf_hash_table (info)->dynobj;
4894 htab = mips_elf_hash_table (info);
4895 BFD_ASSERT (htab != NULL);
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4904 / MIPS_ELF_GOT_SIZE (abfd))
4905 - htab->reserved_gotno);
4906 got_per_bfd_arg.max_pages = pages;
4907 /* The number of globals that will be included in the primary GOT.
4908 See the calls to mips_elf_set_global_got_area below for more
4910 got_per_bfd_arg.global_count = g->global_gotno;
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4922 /* If we do not find any suitable primary GOT, create an empty one. */
4923 if (got_per_bfd_arg.primary == NULL)
4924 g->next = mips_elf_create_got_info (abfd);
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4929 /* GG is now the master GOT, and G is the primary GOT. */
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4938 mips_elf_replace_bfd_got (abfd, g);
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4944 g->global_gotno = gg->global_gotno;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4952 /* Now go through the GOTs assigning them offset ranges.
4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
4973 struct mips_got_info *gn;
4975 assign += htab->reserved_gotno;
4976 g->assigned_low_gotno = assign;
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4979 g->assigned_high_gotno = g->local_gotno - 1;
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5014 unsigned int save_assign;
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
5029 if (bfd_link_pic (info))
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
5035 + htab->reserved_gotno);
5037 needed_relocs += g->relocs;
5039 needed_relocs += g->relocs;
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5049 /* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5052 static const Elf_Internal_Rela *
5053 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5059 while (relocation < relend)
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5068 /* We didn't find it. */
5072 /* Return whether an input relocation is against a local symbol. */
5075 mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
5077 asection **local_sections)
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5087 if (r_symndx < extsymoff)
5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5095 /* Sign-extend VALUE, which has the indicated number of BITS. */
5098 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5107 /* Return non-zero if the indicated VALUE has overflowed the maximum
5108 range expressible by a signed number with the indicated number of
5112 mips_elf_overflow_p (bfd_vma value, int bits)
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
5127 /* Calculate the %high function. */
5130 mips_elf_high (bfd_vma value)
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5135 /* Calculate the %higher function. */
5138 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5148 /* Calculate the %highest function. */
5151 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5161 /* Create the .compact_rel section. */
5164 mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5168 register asection *s;
5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5181 s->size = sizeof (Elf32_External_compact_rel);
5187 /* Create the .got section to hold the global offset table. */
5190 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
5195 struct bfd_link_hash_entry *bh;
5196 struct mips_elf_link_hash_table *htab;
5198 htab = mips_elf_hash_table (info);
5199 BFD_ASSERT (htab != NULL);
5201 /* This function may be called more than once. */
5202 if (htab->root.sgot)
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5212 || ! bfd_set_section_alignment (abfd, s, 4))
5214 htab->root.sgot = s;
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5225 h = (struct elf_link_hash_entry *) bh;
5228 h->type = STT_OBJECT;
5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5230 elf_hash_table (info)->hgot = h;
5232 if (bfd_link_pic (info)
5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5236 htab->got_info = mips_elf_create_got_info (abfd);
5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5240 /* We also need a .got.plt section when generating PLTs. */
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5245 | SEC_LINKER_CREATED);
5248 htab->root.sgotplt = s;
5253 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5258 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5260 return (mips_elf_hash_table (info)->is_vxworks
5261 && bfd_link_pic (info)
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5266 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5272 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
5297 return !target_is_16_bit_code_p;
5304 /* Obtain the field relocated by RELOCATION. */
5307 mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5315 /* Obtain the bytes. */
5317 x = bfd_get (8 * size, input_bfd, location);
5322 /* Store the field relocated by RELOCATION. */
5325 mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5332 /* Put the value into the output. */
5334 bfd_put (8 * size, input_bfd, x, location);
5337 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5345 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5383 /* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5387 The result of the relocation calculation is stored in VALUEP.
5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5396 static bfd_reloc_status_type
5397 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5398 asection *input_section, bfd_byte *contents,
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
5405 bfd_boolean *cross_mode_jump_p,
5406 bfd_boolean save_addend)
5408 /* The eventual value we will return. */
5410 /* The address of the symbol against which the relocation is
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
5416 /* The place (section offset or address) of the storage unit being
5419 /* The value of GP used to create the relocatable object. */
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
5429 /* TRUE if the symbol referred to by this relocation is a local
5431 bfd_boolean local_p, was_local_p;
5432 /* TRUE if the symbol referred to by this relocation is a section
5434 bfd_boolean section_p = FALSE;
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
5440 Elf_Internal_Shdr *symtab_hdr;
5442 unsigned long r_symndx;
5444 /* TRUE if overflow occurred during the calculation of the
5445 relocation value. */
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
5449 bfd_boolean target_is_micromips_code_p = FALSE;
5450 struct mips_elf_link_hash_table *htab;
5452 bfd_boolean resolved_to_zero;
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
5456 BFD_ASSERT (htab != NULL);
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5465 /* Assume that there will be no overflow. */
5466 overflowed_p = FALSE;
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5473 was_local_p = local_p;
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5483 /* Figure out the value of the symbol. */
5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5487 Elf_Internal_Sym *sym;
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5494 symbol = sec->output_section->vma + sec->output_offset;
5495 if (!section_p || (sec->flags & SEC_MERGE))
5496 symbol += sym->st_value;
5497 if ((sec->flags & SEC_MERGE) && section_p)
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5501 addend += sec->output_section->vma + sec->output_offset;
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5512 if (*namep == NULL || **namep == '\0')
5513 *namep = bfd_section_name (input_bfd, sec);
5515 /* For relocations against a section symbol and ones against no
5516 symbol (absolute relocations) infer the ISA mode from the addend. */
5517 if (section_p || r_symndx == STN_UNDEF)
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5522 /* For relocations against an absolute symbol infer the ISA mode
5523 from the value of the symbol plus addend. */
5524 else if (bfd_is_abs_section (sec))
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5529 /* Otherwise just use the regular symbol annotation available. */
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
5553 if (strcmp (*namep, "_gp_disp") == 0
5554 && ! NEWABI_P (input_bfd))
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5559 return bfd_reloc_notsupported;
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5583 symbol = h->root.root.u.def.value;
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5599 in _bfd_mips_elf_create_dynamic_sections.
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5603 BFD_ASSERT (! bfd_link_pic (info));
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
5626 input_section, relocation->r_offset, reject_undefined);
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5641 (a) the relocation is for a MIPS16 JAL;
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
5648 && !bfd_link_relocatable (info)
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5655 && !section_allows_mips16_refs_p (input_section))
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5667 BFD_ASSERT (h->need_fn_stub);
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5682 symbol = sec->output_section->vma + sec->output_offset + value;
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5713 sec = h->call_fp_stub;
5720 else if (h->call_stub != NULL)
5723 sec = h->call_fp_stub;
5726 BFD_ASSERT (sec->size > 0);
5727 symbol = sec->output_section->vma + sec->output_offset;
5729 /* If this is a direct call to a PIC function, redirect to the
5731 else if (h != NULL && h->la25_stub
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
5748 && !bfd_link_relocatable (info)
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5756 sec = htab->root.splt;
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5768 /* Make sure MIPS16 and microMIPS are not used together. */
5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
5788 && !target_is_micromips_code_p)
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5856 /* If we haven't already determined the GOT offset, and we're going
5857 to need it, get it now. */
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
5885 /* Find the index into the GOT where this value is located. */
5886 if (tls_ldm_reloc_p (r_type))
5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5889 0, 0, NULL, r_type);
5891 return bfd_reloc_outofrange;
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
5900 || call16_reloc_p (r_type)))
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5908 BFD_ASSERT (addend == 0);
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5911 if (!TLS_RELOC_P (r_type)
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5917 else if (!htab->is_vxworks
5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5919 /* The calculation below does not involve "g". */
5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
5924 symbol + addend, r_symndx, h, r_type);
5926 return bfd_reloc_outofrange;
5929 /* Convert GOT indices to actual offsets. */
5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5938 Elf_Internal_Rela outrel;
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5959 return bfd_reloc_ok;
5962 /* Figure out what kind of relocation is being performed. */
5966 return bfd_reloc_continue;
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5978 if ((bfd_link_pic (info)
5979 || (htab->root.dynamic_sections_created
5981 && h->root.def_dynamic
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
5984 && r_symndx != STN_UNDEF
5986 || h->root.root.type != bfd_link_hash_undefweak
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
5989 && (input_section->flags & SEC_ALLOC) != 0)
5991 /* If we're creating a shared library, then we can't know
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
5998 if (!mips_elf_create_dynamic_relocation (abfd,
6006 return bfd_reloc_undefined;
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6015 value &= howto->dst_mask;
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6030 case R_MICROMIPS_26_S1:
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6037 if (howto->partial_inplace && !section_p)
6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6050 return bfd_reloc_outofrange;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6059 case R_MIPS_TLS_DTPREL_HI16:
6060 case R_MIPS16_TLS_DTPREL_HI16:
6061 case R_MICROMIPS_TLS_DTPREL_HI16:
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6066 case R_MIPS_TLS_DTPREL_LO16:
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
6069 case R_MIPS16_TLS_DTPREL_LO16:
6070 case R_MICROMIPS_TLS_DTPREL_LO16:
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6074 case R_MIPS_TLS_TPREL_HI16:
6075 case R_MIPS16_TLS_TPREL_HI16:
6076 case R_MICROMIPS_TLS_TPREL_HI16:
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6081 case R_MIPS_TLS_TPREL_LO16:
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
6085 case R_MICROMIPS_TLS_TPREL_LO16:
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6091 case R_MICROMIPS_HI16:
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6099 /* For MIPS16 ABI code we generate this sequence
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6105 So the offsets of hi and lo relocs are the same, but the
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
6109 if (r_type == R_MIPS16_HI16)
6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
6117 value = mips_elf_high (addend + gp - p);
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
6126 value = (symbol + addend) & howto->dst_mask;
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
6137 value = addend + gp - p + 4;
6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6139 for overflow. But, on, say, IRIX5, relocations against
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6157 case R_MIPS_LITERAL:
6158 case R_MICROMIPS_LITERAL:
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
6197 /* VxWorks does not have separate local and global semantics for
6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
6199 if (!htab->is_vxworks && local_p)
6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
6202 symbol + addend, !was_local_p);
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
6216 case R_MIPS_GOT_DISP:
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6228 case R_MIPS_GPREL32:
6229 value = (addend + symbol + gp0 - gp);
6231 value &= howto->dst_mask;
6235 case R_MIPS_GNU_REL16_S2:
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6239 /* No need to exclude weak undefined symbols here as they resolve
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
6245 return bfd_reloc_outofrange;
6247 value = symbol + addend - p;
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
6262 return bfd_reloc_outofrange;
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6278 value = symbol + addend - p;
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6292 value = symbol + addend - p;
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6306 value = symbol + addend - ((p | 7) ^ 7);
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6320 value = symbol + addend - p;
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6328 value = mips_elf_high (symbol + addend - p);
6329 value &= howto->dst_mask;
6333 if (howto->partial_inplace)
6334 addend = _bfd_mips_elf_sign_extend (addend, 16);
6335 value = symbol + addend - p;
6336 value &= howto->dst_mask;
6339 case R_MICROMIPS_PC7_S1:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 8);
6343 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6344 && (*cross_mode_jump_p
6345 ? ((symbol + addend + 2) & 3) != 0
6346 : ((symbol + addend + 2) & 1) == 0))
6347 return bfd_reloc_outofrange;
6349 value = symbol + addend - p;
6350 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 overflowed_p = mips_elf_overflow_p (value, 8);
6352 value >>= howto->rightshift;
6353 value &= howto->dst_mask;
6356 case R_MICROMIPS_PC10_S1:
6357 if (howto->partial_inplace)
6358 addend = _bfd_mips_elf_sign_extend (addend, 11);
6360 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6361 && (*cross_mode_jump_p
6362 ? ((symbol + addend + 2) & 3) != 0
6363 : ((symbol + addend + 2) & 1) == 0))
6364 return bfd_reloc_outofrange;
6366 value = symbol + addend - p;
6367 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 overflowed_p = mips_elf_overflow_p (value, 11);
6369 value >>= howto->rightshift;
6370 value &= howto->dst_mask;
6373 case R_MICROMIPS_PC16_S1:
6374 if (howto->partial_inplace)
6375 addend = _bfd_mips_elf_sign_extend (addend, 17);
6377 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 && (*cross_mode_jump_p
6379 ? ((symbol + addend) & 3) != 0
6380 : ((symbol + addend) & 1) == 0))
6381 return bfd_reloc_outofrange;
6383 value = symbol + addend - p;
6384 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 overflowed_p = mips_elf_overflow_p (value, 17);
6386 value >>= howto->rightshift;
6387 value &= howto->dst_mask;
6390 case R_MICROMIPS_PC23_S2:
6391 if (howto->partial_inplace)
6392 addend = _bfd_mips_elf_sign_extend (addend, 25);
6393 value = symbol + addend - ((p | 3) ^ 3);
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 25);
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6400 case R_MIPS_GOT_HI16:
6401 case R_MIPS_CALL_HI16:
6402 case R_MICROMIPS_GOT_HI16:
6403 case R_MICROMIPS_CALL_HI16:
6404 /* We're allowed to handle these two relocations identically.
6405 The dynamic linker is allowed to handle the CALL relocations
6406 differently by creating a lazy evaluation stub. */
6408 value = mips_elf_high (value);
6409 value &= howto->dst_mask;
6412 case R_MIPS_GOT_LO16:
6413 case R_MIPS_CALL_LO16:
6414 case R_MICROMIPS_GOT_LO16:
6415 case R_MICROMIPS_CALL_LO16:
6416 value = g & howto->dst_mask;
6419 case R_MIPS_GOT_PAGE:
6420 case R_MICROMIPS_GOT_PAGE:
6421 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6422 if (value == MINUS_ONE)
6423 return bfd_reloc_outofrange;
6424 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6425 overflowed_p = mips_elf_overflow_p (value, 16);
6428 case R_MIPS_GOT_OFST:
6429 case R_MICROMIPS_GOT_OFST:
6431 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6434 overflowed_p = mips_elf_overflow_p (value, 16);
6438 case R_MICROMIPS_SUB:
6439 value = symbol - addend;
6440 value &= howto->dst_mask;
6444 case R_MICROMIPS_HIGHER:
6445 value = mips_elf_higher (addend + symbol);
6446 value &= howto->dst_mask;
6449 case R_MIPS_HIGHEST:
6450 case R_MICROMIPS_HIGHEST:
6451 value = mips_elf_highest (addend + symbol);
6452 value &= howto->dst_mask;
6455 case R_MIPS_SCN_DISP:
6456 case R_MICROMIPS_SCN_DISP:
6457 value = symbol + addend - sec->output_offset;
6458 value &= howto->dst_mask;
6462 case R_MICROMIPS_JALR:
6463 /* This relocation is only a hint. In some cases, we optimize
6464 it into a bal instruction. But we don't try to optimize
6465 when the symbol does not resolve locally. */
6466 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6467 return bfd_reloc_continue;
6468 /* We can't optimize cross-mode jumps either. */
6469 if (*cross_mode_jump_p)
6470 return bfd_reloc_continue;
6471 value = symbol + addend;
6472 /* Neither we can non-instruction-aligned targets. */
6473 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6474 return bfd_reloc_continue;
6478 case R_MIPS_GNU_VTINHERIT:
6479 case R_MIPS_GNU_VTENTRY:
6480 /* We don't do anything with these at present. */
6481 return bfd_reloc_continue;
6484 /* An unrecognized relocation type. */
6485 return bfd_reloc_notsupported;
6488 /* Store the VALUE for our caller. */
6490 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6493 /* It has been determined that the result of the RELOCATION is the
6494 VALUE. Use HOWTO to place VALUE into the output file at the
6495 appropriate position. The SECTION is the section to which the
6497 CROSS_MODE_JUMP_P is true if the relocation field
6498 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6500 Returns FALSE if anything goes wrong. */
6503 mips_elf_perform_relocation (struct bfd_link_info *info,
6504 reloc_howto_type *howto,
6505 const Elf_Internal_Rela *relocation,
6506 bfd_vma value, bfd *input_bfd,
6507 asection *input_section, bfd_byte *contents,
6508 bfd_boolean cross_mode_jump_p)
6512 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6514 /* Figure out where the relocation is occurring. */
6515 location = contents + relocation->r_offset;
6517 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6519 /* Obtain the current value. */
6520 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6522 /* Clear the field we are setting. */
6523 x &= ~howto->dst_mask;
6525 /* Set the field. */
6526 x |= (value & howto->dst_mask);
6528 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6529 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6531 bfd_vma opcode = x >> 26;
6533 if (r_type == R_MIPS16_26 ? opcode == 0x7
6534 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6537 info->callbacks->einfo
6538 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6539 input_bfd, input_section, relocation->r_offset);
6543 if (cross_mode_jump_p && jal_reloc_p (r_type))
6546 bfd_vma opcode = x >> 26;
6547 bfd_vma jalx_opcode;
6549 /* Check to see if the opcode is already JAL or JALX. */
6550 if (r_type == R_MIPS16_26)
6552 ok = ((opcode == 0x6) || (opcode == 0x7));
6555 else if (r_type == R_MICROMIPS_26_S1)
6557 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6562 ok = ((opcode == 0x3) || (opcode == 0x1d));
6566 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6567 convert J or JALS to JALX. */
6570 info->callbacks->einfo
6571 (_("%X%H: unsupported jump between ISA modes; "
6572 "consider recompiling with interlinking enabled\n"),
6573 input_bfd, input_section, relocation->r_offset);
6577 /* Make this the JALX opcode. */
6578 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6580 else if (cross_mode_jump_p && b_reloc_p (r_type))
6582 bfd_boolean ok = FALSE;
6583 bfd_vma opcode = x >> 16;
6584 bfd_vma jalx_opcode = 0;
6585 bfd_vma sign_bit = 0;
6589 if (r_type == R_MICROMIPS_PC16_S1)
6591 ok = opcode == 0x4060;
6596 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6598 ok = opcode == 0x411;
6604 if (ok && !bfd_link_pic (info))
6606 addr = (input_section->output_section->vma
6607 + input_section->output_offset
6608 + relocation->r_offset
6611 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6613 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6615 info->callbacks->einfo
6616 (_("%X%H: cannot convert branch between ISA modes "
6617 "to JALX: relocation out of range\n"),
6618 input_bfd, input_section, relocation->r_offset);
6622 /* Make this the JALX opcode. */
6623 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6625 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6627 info->callbacks->einfo
6628 (_("%X%H: unsupported branch between ISA modes\n"),
6629 input_bfd, input_section, relocation->r_offset);
6634 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6636 if (!bfd_link_relocatable (info)
6637 && !cross_mode_jump_p
6638 && ((JAL_TO_BAL_P (input_bfd)
6639 && r_type == R_MIPS_26
6640 && (x >> 26) == 0x3) /* jal addr */
6641 || (JALR_TO_BAL_P (input_bfd)
6642 && r_type == R_MIPS_JALR
6643 && x == 0x0320f809) /* jalr t9 */
6644 || (JR_TO_B_P (input_bfd)
6645 && r_type == R_MIPS_JALR
6646 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6652 addr = (input_section->output_section->vma
6653 + input_section->output_offset
6654 + relocation->r_offset
6656 if (r_type == R_MIPS_26)
6657 dest = (value << 2) | ((addr >> 28) << 28);
6661 if (off <= 0x1ffff && off >= -0x20000)
6663 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6664 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6666 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6670 /* Put the value into the output. */
6671 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6673 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6679 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6680 is the original relocation, which is now being transformed into a
6681 dynamic relocation. The ADDENDP is adjusted if necessary; the
6682 caller should store the result in place of the original addend. */
6685 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6686 struct bfd_link_info *info,
6687 const Elf_Internal_Rela *rel,
6688 struct mips_elf_link_hash_entry *h,
6689 asection *sec, bfd_vma symbol,
6690 bfd_vma *addendp, asection *input_section)
6692 Elf_Internal_Rela outrel[3];
6697 bfd_boolean defined_p;
6698 struct mips_elf_link_hash_table *htab;
6700 htab = mips_elf_hash_table (info);
6701 BFD_ASSERT (htab != NULL);
6703 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6704 dynobj = elf_hash_table (info)->dynobj;
6705 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6706 BFD_ASSERT (sreloc != NULL);
6707 BFD_ASSERT (sreloc->contents != NULL);
6708 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6711 outrel[0].r_offset =
6712 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6713 if (ABI_64_P (output_bfd))
6715 outrel[1].r_offset =
6716 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6717 outrel[2].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6721 if (outrel[0].r_offset == MINUS_ONE)
6722 /* The relocation field has been deleted. */
6725 if (outrel[0].r_offset == MINUS_TWO)
6727 /* The relocation field has been converted into a relative value of
6728 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6729 the field to be fully relocated, so add in the symbol's value. */
6734 /* We must now calculate the dynamic symbol table index to use
6735 in the relocation. */
6736 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6738 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6739 indx = h->root.dynindx;
6740 if (SGI_COMPAT (output_bfd))
6741 defined_p = h->root.def_regular;
6743 /* ??? glibc's ld.so just adds the final GOT entry to the
6744 relocation field. It therefore treats relocs against
6745 defined symbols in the same way as relocs against
6746 undefined symbols. */
6751 if (sec != NULL && bfd_is_abs_section (sec))
6753 else if (sec == NULL || sec->owner == NULL)
6755 bfd_set_error (bfd_error_bad_value);
6760 indx = elf_section_data (sec->output_section)->dynindx;
6763 asection *osec = htab->root.text_index_section;
6764 indx = elf_section_data (osec)->dynindx;
6770 /* Instead of generating a relocation using the section
6771 symbol, we may as well make it a fully relative
6772 relocation. We want to avoid generating relocations to
6773 local symbols because we used to generate them
6774 incorrectly, without adding the original symbol value,
6775 which is mandated by the ABI for section symbols. In
6776 order to give dynamic loaders and applications time to
6777 phase out the incorrect use, we refrain from emitting
6778 section-relative relocations. It's not like they're
6779 useful, after all. This should be a bit more efficient
6781 /* ??? Although this behavior is compatible with glibc's ld.so,
6782 the ABI says that relocations against STN_UNDEF should have
6783 a symbol value of 0. Irix rld honors this, so relocations
6784 against STN_UNDEF have no effect. */
6785 if (!SGI_COMPAT (output_bfd))
6790 /* If the relocation was previously an absolute relocation and
6791 this symbol will not be referred to by the relocation, we must
6792 adjust it by the value we give it in the dynamic symbol table.
6793 Otherwise leave the job up to the dynamic linker. */
6794 if (defined_p && r_type != R_MIPS_REL32)
6797 if (htab->is_vxworks)
6798 /* VxWorks uses non-relative relocations for this. */
6799 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6801 /* The relocation is always an REL32 relocation because we don't
6802 know where the shared library will wind up at load-time. */
6803 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6806 /* For strict adherence to the ABI specification, we should
6807 generate a R_MIPS_64 relocation record by itself before the
6808 _REL32/_64 record as well, such that the addend is read in as
6809 a 64-bit value (REL32 is a 32-bit relocation, after all).
6810 However, since none of the existing ELF64 MIPS dynamic
6811 loaders seems to care, we don't waste space with these
6812 artificial relocations. If this turns out to not be true,
6813 mips_elf_allocate_dynamic_relocation() should be tweaked so
6814 as to make room for a pair of dynamic relocations per
6815 invocation if ABI_64_P, and here we should generate an
6816 additional relocation record with R_MIPS_64 by itself for a
6817 NULL symbol before this relocation record. */
6818 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6819 ABI_64_P (output_bfd)
6822 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6824 /* Adjust the output offset of the relocation to reference the
6825 correct location in the output file. */
6826 outrel[0].r_offset += (input_section->output_section->vma
6827 + input_section->output_offset);
6828 outrel[1].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[2].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6833 /* Put the relocation back out. We have to use the special
6834 relocation outputter in the 64-bit case since the 64-bit
6835 relocation format is non-standard. */
6836 if (ABI_64_P (output_bfd))
6838 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6839 (output_bfd, &outrel[0],
6841 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6843 else if (htab->is_vxworks)
6845 /* VxWorks uses RELA rather than REL dynamic relocations. */
6846 outrel[0].r_addend = *addendp;
6847 bfd_elf32_swap_reloca_out
6848 (output_bfd, &outrel[0],
6850 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6853 bfd_elf32_swap_reloc_out
6854 (output_bfd, &outrel[0],
6855 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6857 /* We've now added another relocation. */
6858 ++sreloc->reloc_count;
6860 /* Make sure the output section is writable. The dynamic linker
6861 will be writing to it. */
6862 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6865 /* On IRIX5, make an entry of compact relocation info. */
6866 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6868 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6873 Elf32_crinfo cptrel;
6875 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6876 cptrel.vaddr = (rel->r_offset
6877 + input_section->output_section->vma
6878 + input_section->output_offset);
6879 if (r_type == R_MIPS_REL32)
6880 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6883 mips_elf_set_cr_dist2to (cptrel, 0);
6884 cptrel.konst = *addendp;
6886 cr = (scpt->contents
6887 + sizeof (Elf32_External_compact_rel));
6888 mips_elf_set_cr_relvaddr (cptrel, 0);
6889 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6890 ((Elf32_External_crinfo *) cr
6891 + scpt->reloc_count));
6892 ++scpt->reloc_count;
6896 /* If we've written this relocation for a readonly section,
6897 we need to set DF_TEXTREL again, so that we do not delete the
6899 if (MIPS_ELF_READONLY_SECTION (input_section))
6900 info->flags |= DF_TEXTREL;
6905 /* Return the MACH for a MIPS e_flags value. */
6908 _bfd_elf_mips_mach (flagword flags)
6910 switch (flags & EF_MIPS_MACH)
6912 case E_MIPS_MACH_3900:
6913 return bfd_mach_mips3900;
6915 case E_MIPS_MACH_4010:
6916 return bfd_mach_mips4010;
6918 case E_MIPS_MACH_4100:
6919 return bfd_mach_mips4100;
6921 case E_MIPS_MACH_4111:
6922 return bfd_mach_mips4111;
6924 case E_MIPS_MACH_4120:
6925 return bfd_mach_mips4120;
6927 case E_MIPS_MACH_4650:
6928 return bfd_mach_mips4650;
6930 case E_MIPS_MACH_5400:
6931 return bfd_mach_mips5400;
6933 case E_MIPS_MACH_5500:
6934 return bfd_mach_mips5500;
6936 case E_MIPS_MACH_5900:
6937 return bfd_mach_mips5900;
6939 case E_MIPS_MACH_9000:
6940 return bfd_mach_mips9000;
6942 case E_MIPS_MACH_SB1:
6943 return bfd_mach_mips_sb1;
6945 case E_MIPS_MACH_LS2E:
6946 return bfd_mach_mips_loongson_2e;
6948 case E_MIPS_MACH_LS2F:
6949 return bfd_mach_mips_loongson_2f;
6951 case E_MIPS_MACH_GS464:
6952 return bfd_mach_mips_gs464;
6954 case E_MIPS_MACH_GS464E:
6955 return bfd_mach_mips_gs464e;
6957 case E_MIPS_MACH_GS264E:
6958 return bfd_mach_mips_gs264e;
6960 case E_MIPS_MACH_OCTEON3:
6961 return bfd_mach_mips_octeon3;
6963 case E_MIPS_MACH_OCTEON2:
6964 return bfd_mach_mips_octeon2;
6966 case E_MIPS_MACH_OCTEON:
6967 return bfd_mach_mips_octeon;
6969 case E_MIPS_MACH_XLR:
6970 return bfd_mach_mips_xlr;
6972 case E_MIPS_MACH_IAMR2:
6973 return bfd_mach_mips_interaptiv_mr2;
6976 switch (flags & EF_MIPS_ARCH)
6980 return bfd_mach_mips3000;
6983 return bfd_mach_mips6000;
6986 return bfd_mach_mips4000;
6989 return bfd_mach_mips8000;
6992 return bfd_mach_mips5;
6994 case E_MIPS_ARCH_32:
6995 return bfd_mach_mipsisa32;
6997 case E_MIPS_ARCH_64:
6998 return bfd_mach_mipsisa64;
7000 case E_MIPS_ARCH_32R2:
7001 return bfd_mach_mipsisa32r2;
7003 case E_MIPS_ARCH_64R2:
7004 return bfd_mach_mipsisa64r2;
7006 case E_MIPS_ARCH_32R6:
7007 return bfd_mach_mipsisa32r6;
7009 case E_MIPS_ARCH_64R6:
7010 return bfd_mach_mipsisa64r6;
7017 /* Return printable name for ABI. */
7019 static INLINE char *
7020 elf_mips_abi_name (bfd *abfd)
7024 flags = elf_elfheader (abfd)->e_flags;
7025 switch (flags & EF_MIPS_ABI)
7028 if (ABI_N32_P (abfd))
7030 else if (ABI_64_P (abfd))
7034 case E_MIPS_ABI_O32:
7036 case E_MIPS_ABI_O64:
7038 case E_MIPS_ABI_EABI32:
7040 case E_MIPS_ABI_EABI64:
7043 return "unknown abi";
7047 /* MIPS ELF uses two common sections. One is the usual one, and the
7048 other is for small objects. All the small objects are kept
7049 together, and then referenced via the gp pointer, which yields
7050 faster assembler code. This is what we use for the small common
7051 section. This approach is copied from ecoff.c. */
7052 static asection mips_elf_scom_section;
7053 static asymbol mips_elf_scom_symbol;
7054 static asymbol *mips_elf_scom_symbol_ptr;
7056 /* MIPS ELF also uses an acommon section, which represents an
7057 allocated common symbol which may be overridden by a
7058 definition in a shared library. */
7059 static asection mips_elf_acom_section;
7060 static asymbol mips_elf_acom_symbol;
7061 static asymbol *mips_elf_acom_symbol_ptr;
7063 /* This is used for both the 32-bit and the 64-bit ABI. */
7066 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7068 elf_symbol_type *elfsym;
7070 /* Handle the special MIPS section numbers that a symbol may use. */
7071 elfsym = (elf_symbol_type *) asym;
7072 switch (elfsym->internal_elf_sym.st_shndx)
7074 case SHN_MIPS_ACOMMON:
7075 /* This section is used in a dynamically linked executable file.
7076 It is an allocated common section. The dynamic linker can
7077 either resolve these symbols to something in a shared
7078 library, or it can just leave them here. For our purposes,
7079 we can consider these symbols to be in a new section. */
7080 if (mips_elf_acom_section.name == NULL)
7082 /* Initialize the acommon section. */
7083 mips_elf_acom_section.name = ".acommon";
7084 mips_elf_acom_section.flags = SEC_ALLOC;
7085 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7086 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7087 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7088 mips_elf_acom_symbol.name = ".acommon";
7089 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7090 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7091 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7093 asym->section = &mips_elf_acom_section;
7097 /* Common symbols less than the GP size are automatically
7098 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7099 if (asym->value > elf_gp_size (abfd)
7100 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7101 || IRIX_COMPAT (abfd) == ict_irix6)
7104 case SHN_MIPS_SCOMMON:
7105 if (mips_elf_scom_section.name == NULL)
7107 /* Initialize the small common section. */
7108 mips_elf_scom_section.name = ".scommon";
7109 mips_elf_scom_section.flags = SEC_IS_COMMON;
7110 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7111 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7112 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7113 mips_elf_scom_symbol.name = ".scommon";
7114 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7115 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7116 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7118 asym->section = &mips_elf_scom_section;
7119 asym->value = elfsym->internal_elf_sym.st_size;
7122 case SHN_MIPS_SUNDEFINED:
7123 asym->section = bfd_und_section_ptr;
7128 asection *section = bfd_get_section_by_name (abfd, ".text");
7130 if (section != NULL)
7132 asym->section = section;
7133 /* MIPS_TEXT is a bit special, the address is not an offset
7134 to the base of the .text section. So subtract the section
7135 base address to make it an offset. */
7136 asym->value -= section->vma;
7143 asection *section = bfd_get_section_by_name (abfd, ".data");
7145 if (section != NULL)
7147 asym->section = section;
7148 /* MIPS_DATA is a bit special, the address is not an offset
7149 to the base of the .data section. So subtract the section
7150 base address to make it an offset. */
7151 asym->value -= section->vma;
7157 /* If this is an odd-valued function symbol, assume it's a MIPS16
7158 or microMIPS one. */
7159 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7160 && (asym->value & 1) != 0)
7163 if (MICROMIPS_P (abfd))
7164 elfsym->internal_elf_sym.st_other
7165 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7167 elfsym->internal_elf_sym.st_other
7168 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7172 /* Implement elf_backend_eh_frame_address_size. This differs from
7173 the default in the way it handles EABI64.
7175 EABI64 was originally specified as an LP64 ABI, and that is what
7176 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7177 historically accepted the combination of -mabi=eabi and -mlong32,
7178 and this ILP32 variation has become semi-official over time.
7179 Both forms use elf32 and have pointer-sized FDE addresses.
7181 If an EABI object was generated by GCC 4.0 or above, it will have
7182 an empty .gcc_compiled_longXX section, where XX is the size of longs
7183 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7184 have no special marking to distinguish them from LP64 objects.
7186 We don't want users of the official LP64 ABI to be punished for the
7187 existence of the ILP32 variant, but at the same time, we don't want
7188 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7189 We therefore take the following approach:
7191 - If ABFD contains a .gcc_compiled_longXX section, use it to
7192 determine the pointer size.
7194 - Otherwise check the type of the first relocation. Assume that
7195 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7199 The second check is enough to detect LP64 objects generated by pre-4.0
7200 compilers because, in the kind of output generated by those compilers,
7201 the first relocation will be associated with either a CIE personality
7202 routine or an FDE start address. Furthermore, the compilers never
7203 used a special (non-pointer) encoding for this ABI.
7205 Checking the relocation type should also be safe because there is no
7206 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7210 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7212 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7214 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7216 bfd_boolean long32_p, long64_p;
7218 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7219 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7220 if (long32_p && long64_p)
7227 if (sec->reloc_count > 0
7228 && elf_section_data (sec)->relocs != NULL
7229 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7238 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7239 relocations against two unnamed section symbols to resolve to the
7240 same address. For example, if we have code like:
7242 lw $4,%got_disp(.data)($gp)
7243 lw $25,%got_disp(.text)($gp)
7246 then the linker will resolve both relocations to .data and the program
7247 will jump there rather than to .text.
7249 We can work around this problem by giving names to local section symbols.
7250 This is also what the MIPSpro tools do. */
7253 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7255 return SGI_COMPAT (abfd);
7258 /* Work over a section just before writing it out. This routine is
7259 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7260 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7264 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7266 if (hdr->sh_type == SHT_MIPS_REGINFO
7267 && hdr->sh_size > 0)
7271 BFD_ASSERT (hdr->contents == NULL);
7273 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7276 (_("%pB: incorrect `.reginfo' section size; "
7277 "expected %" PRIu64 ", got %" PRIu64),
7278 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7279 (uint64_t) hdr->sh_size);
7280 bfd_set_error (bfd_error_bad_value);
7285 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7288 H_PUT_32 (abfd, elf_gp (abfd), buf);
7289 if (bfd_bwrite (buf, 4, abfd) != 4)
7293 if (hdr->sh_type == SHT_MIPS_OPTIONS
7294 && hdr->bfd_section != NULL
7295 && mips_elf_section_data (hdr->bfd_section) != NULL
7296 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7298 bfd_byte *contents, *l, *lend;
7300 /* We stored the section contents in the tdata field in the
7301 set_section_contents routine. We save the section contents
7302 so that we don't have to read them again.
7303 At this point we know that elf_gp is set, so we can look
7304 through the section contents to see if there is an
7305 ODK_REGINFO structure. */
7307 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7309 lend = contents + hdr->sh_size;
7310 while (l + sizeof (Elf_External_Options) <= lend)
7312 Elf_Internal_Options intopt;
7314 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7316 if (intopt.size < sizeof (Elf_External_Options))
7319 /* xgettext:c-format */
7320 (_("%pB: warning: bad `%s' option size %u smaller than"
7322 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7325 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7332 + sizeof (Elf_External_Options)
7333 + (sizeof (Elf64_External_RegInfo) - 8)),
7336 H_PUT_64 (abfd, elf_gp (abfd), buf);
7337 if (bfd_bwrite (buf, 8, abfd) != 8)
7340 else if (intopt.kind == ODK_REGINFO)
7347 + sizeof (Elf_External_Options)
7348 + (sizeof (Elf32_External_RegInfo) - 4)),
7351 H_PUT_32 (abfd, elf_gp (abfd), buf);
7352 if (bfd_bwrite (buf, 4, abfd) != 4)
7359 if (hdr->bfd_section != NULL)
7361 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7363 /* .sbss is not handled specially here because the GNU/Linux
7364 prelinker can convert .sbss from NOBITS to PROGBITS and
7365 changing it back to NOBITS breaks the binary. The entry in
7366 _bfd_mips_elf_special_sections will ensure the correct flags
7367 are set on .sbss if BFD creates it without reading it from an
7368 input file, and without special handling here the flags set
7369 on it in an input file will be followed. */
7370 if (strcmp (name, ".sdata") == 0
7371 || strcmp (name, ".lit8") == 0
7372 || strcmp (name, ".lit4") == 0)
7373 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7374 else if (strcmp (name, ".srdata") == 0)
7375 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7376 else if (strcmp (name, ".compact_rel") == 0)
7378 else if (strcmp (name, ".rtproc") == 0)
7380 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7382 unsigned int adjust;
7384 adjust = hdr->sh_size % hdr->sh_addralign;
7386 hdr->sh_size += hdr->sh_addralign - adjust;
7394 /* Handle a MIPS specific section when reading an object file. This
7395 is called when elfcode.h finds a section with an unknown type.
7396 This routine supports both the 32-bit and 64-bit ELF ABI.
7398 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7402 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7403 Elf_Internal_Shdr *hdr,
7409 /* There ought to be a place to keep ELF backend specific flags, but
7410 at the moment there isn't one. We just keep track of the
7411 sections by their name, instead. Fortunately, the ABI gives
7412 suggested names for all the MIPS specific sections, so we will
7413 probably get away with this. */
7414 switch (hdr->sh_type)
7416 case SHT_MIPS_LIBLIST:
7417 if (strcmp (name, ".liblist") != 0)
7421 if (strcmp (name, ".msym") != 0)
7424 case SHT_MIPS_CONFLICT:
7425 if (strcmp (name, ".conflict") != 0)
7428 case SHT_MIPS_GPTAB:
7429 if (! CONST_STRNEQ (name, ".gptab."))
7432 case SHT_MIPS_UCODE:
7433 if (strcmp (name, ".ucode") != 0)
7436 case SHT_MIPS_DEBUG:
7437 if (strcmp (name, ".mdebug") != 0)
7439 flags = SEC_DEBUGGING;
7441 case SHT_MIPS_REGINFO:
7442 if (strcmp (name, ".reginfo") != 0
7443 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7445 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7447 case SHT_MIPS_IFACE:
7448 if (strcmp (name, ".MIPS.interfaces") != 0)
7451 case SHT_MIPS_CONTENT:
7452 if (! CONST_STRNEQ (name, ".MIPS.content"))
7455 case SHT_MIPS_OPTIONS:
7456 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7459 case SHT_MIPS_ABIFLAGS:
7460 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7462 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7464 case SHT_MIPS_DWARF:
7465 if (! CONST_STRNEQ (name, ".debug_")
7466 && ! CONST_STRNEQ (name, ".zdebug_"))
7469 case SHT_MIPS_SYMBOL_LIB:
7470 if (strcmp (name, ".MIPS.symlib") != 0)
7473 case SHT_MIPS_EVENTS:
7474 if (! CONST_STRNEQ (name, ".MIPS.events")
7475 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7482 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7487 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7488 (bfd_get_section_flags (abfd,
7494 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7496 Elf_External_ABIFlags_v0 ext;
7498 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7499 &ext, 0, sizeof ext))
7501 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7502 &mips_elf_tdata (abfd)->abiflags);
7503 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7505 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7508 /* FIXME: We should record sh_info for a .gptab section. */
7510 /* For a .reginfo section, set the gp value in the tdata information
7511 from the contents of this section. We need the gp value while
7512 processing relocs, so we just get it now. The .reginfo section
7513 is not used in the 64-bit MIPS ELF ABI. */
7514 if (hdr->sh_type == SHT_MIPS_REGINFO)
7516 Elf32_External_RegInfo ext;
7519 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7520 &ext, 0, sizeof ext))
7522 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7523 elf_gp (abfd) = s.ri_gp_value;
7526 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7527 set the gp value based on what we find. We may see both
7528 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7529 they should agree. */
7530 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7532 bfd_byte *contents, *l, *lend;
7534 contents = bfd_malloc (hdr->sh_size);
7535 if (contents == NULL)
7537 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7544 lend = contents + hdr->sh_size;
7545 while (l + sizeof (Elf_External_Options) <= lend)
7547 Elf_Internal_Options intopt;
7549 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7551 if (intopt.size < sizeof (Elf_External_Options))
7554 /* xgettext:c-format */
7555 (_("%pB: warning: bad `%s' option size %u smaller than"
7557 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7560 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7562 Elf64_Internal_RegInfo intreg;
7564 bfd_mips_elf64_swap_reginfo_in
7566 ((Elf64_External_RegInfo *)
7567 (l + sizeof (Elf_External_Options))),
7569 elf_gp (abfd) = intreg.ri_gp_value;
7571 else if (intopt.kind == ODK_REGINFO)
7573 Elf32_RegInfo intreg;
7575 bfd_mips_elf32_swap_reginfo_in
7577 ((Elf32_External_RegInfo *)
7578 (l + sizeof (Elf_External_Options))),
7580 elf_gp (abfd) = intreg.ri_gp_value;
7590 /* Set the correct type for a MIPS ELF section. We do this by the
7591 section name, which is a hack, but ought to work. This routine is
7592 used by both the 32-bit and the 64-bit ABI. */
7595 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7597 const char *name = bfd_get_section_name (abfd, sec);
7599 if (strcmp (name, ".liblist") == 0)
7601 hdr->sh_type = SHT_MIPS_LIBLIST;
7602 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7603 /* The sh_link field is set in final_write_processing. */
7605 else if (strcmp (name, ".conflict") == 0)
7606 hdr->sh_type = SHT_MIPS_CONFLICT;
7607 else if (CONST_STRNEQ (name, ".gptab."))
7609 hdr->sh_type = SHT_MIPS_GPTAB;
7610 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7611 /* The sh_info field is set in final_write_processing. */
7613 else if (strcmp (name, ".ucode") == 0)
7614 hdr->sh_type = SHT_MIPS_UCODE;
7615 else if (strcmp (name, ".mdebug") == 0)
7617 hdr->sh_type = SHT_MIPS_DEBUG;
7618 /* In a shared object on IRIX 5.3, the .mdebug section has an
7619 entsize of 0. FIXME: Does this matter? */
7620 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7621 hdr->sh_entsize = 0;
7623 hdr->sh_entsize = 1;
7625 else if (strcmp (name, ".reginfo") == 0)
7627 hdr->sh_type = SHT_MIPS_REGINFO;
7628 /* In a shared object on IRIX 5.3, the .reginfo section has an
7629 entsize of 0x18. FIXME: Does this matter? */
7630 if (SGI_COMPAT (abfd))
7632 if ((abfd->flags & DYNAMIC) != 0)
7633 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7635 hdr->sh_entsize = 1;
7638 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7640 else if (SGI_COMPAT (abfd)
7641 && (strcmp (name, ".hash") == 0
7642 || strcmp (name, ".dynamic") == 0
7643 || strcmp (name, ".dynstr") == 0))
7645 if (SGI_COMPAT (abfd))
7646 hdr->sh_entsize = 0;
7648 /* This isn't how the IRIX6 linker behaves. */
7649 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7652 else if (strcmp (name, ".got") == 0
7653 || strcmp (name, ".srdata") == 0
7654 || strcmp (name, ".sdata") == 0
7655 || strcmp (name, ".sbss") == 0
7656 || strcmp (name, ".lit4") == 0
7657 || strcmp (name, ".lit8") == 0)
7658 hdr->sh_flags |= SHF_MIPS_GPREL;
7659 else if (strcmp (name, ".MIPS.interfaces") == 0)
7661 hdr->sh_type = SHT_MIPS_IFACE;
7662 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7664 else if (CONST_STRNEQ (name, ".MIPS.content"))
7666 hdr->sh_type = SHT_MIPS_CONTENT;
7667 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7668 /* The sh_info field is set in final_write_processing. */
7670 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7672 hdr->sh_type = SHT_MIPS_OPTIONS;
7673 hdr->sh_entsize = 1;
7674 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7676 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7678 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7679 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7681 else if (CONST_STRNEQ (name, ".debug_")
7682 || CONST_STRNEQ (name, ".zdebug_"))
7684 hdr->sh_type = SHT_MIPS_DWARF;
7686 /* Irix facilities such as libexc expect a single .debug_frame
7687 per executable, the system ones have NOSTRIP set and the linker
7688 doesn't merge sections with different flags so ... */
7689 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7690 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7692 else if (strcmp (name, ".MIPS.symlib") == 0)
7694 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7695 /* The sh_link and sh_info fields are set in
7696 final_write_processing. */
7698 else if (CONST_STRNEQ (name, ".MIPS.events")
7699 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7701 hdr->sh_type = SHT_MIPS_EVENTS;
7702 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7703 /* The sh_link field is set in final_write_processing. */
7705 else if (strcmp (name, ".msym") == 0)
7707 hdr->sh_type = SHT_MIPS_MSYM;
7708 hdr->sh_flags |= SHF_ALLOC;
7709 hdr->sh_entsize = 8;
7712 /* The generic elf_fake_sections will set up REL_HDR using the default
7713 kind of relocations. We used to set up a second header for the
7714 non-default kind of relocations here, but only NewABI would use
7715 these, and the IRIX ld doesn't like resulting empty RELA sections.
7716 Thus we create those header only on demand now. */
7721 /* Given a BFD section, try to locate the corresponding ELF section
7722 index. This is used by both the 32-bit and the 64-bit ABI.
7723 Actually, it's not clear to me that the 64-bit ABI supports these,
7724 but for non-PIC objects we will certainly want support for at least
7725 the .scommon section. */
7728 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7729 asection *sec, int *retval)
7731 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7733 *retval = SHN_MIPS_SCOMMON;
7736 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7738 *retval = SHN_MIPS_ACOMMON;
7744 /* Hook called by the linker routine which adds symbols from an object
7745 file. We must handle the special MIPS section numbers here. */
7748 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7749 Elf_Internal_Sym *sym, const char **namep,
7750 flagword *flagsp ATTRIBUTE_UNUSED,
7751 asection **secp, bfd_vma *valp)
7753 if (SGI_COMPAT (abfd)
7754 && (abfd->flags & DYNAMIC) != 0
7755 && strcmp (*namep, "_rld_new_interface") == 0)
7757 /* Skip IRIX5 rld entry name. */
7762 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7763 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7764 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7765 a magic symbol resolved by the linker, we ignore this bogus definition
7766 of _gp_disp. New ABI objects do not suffer from this problem so this
7767 is not done for them. */
7769 && (sym->st_shndx == SHN_ABS)
7770 && (strcmp (*namep, "_gp_disp") == 0))
7776 switch (sym->st_shndx)
7779 /* Common symbols less than the GP size are automatically
7780 treated as SHN_MIPS_SCOMMON symbols. */
7781 if (sym->st_size > elf_gp_size (abfd)
7782 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7783 || IRIX_COMPAT (abfd) == ict_irix6)
7786 case SHN_MIPS_SCOMMON:
7787 *secp = bfd_make_section_old_way (abfd, ".scommon");
7788 (*secp)->flags |= SEC_IS_COMMON;
7789 *valp = sym->st_size;
7793 /* This section is used in a shared object. */
7794 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7796 asymbol *elf_text_symbol;
7797 asection *elf_text_section;
7798 bfd_size_type amt = sizeof (asection);
7800 elf_text_section = bfd_zalloc (abfd, amt);
7801 if (elf_text_section == NULL)
7804 amt = sizeof (asymbol);
7805 elf_text_symbol = bfd_zalloc (abfd, amt);
7806 if (elf_text_symbol == NULL)
7809 /* Initialize the section. */
7811 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7812 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7814 elf_text_section->symbol = elf_text_symbol;
7815 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7817 elf_text_section->name = ".text";
7818 elf_text_section->flags = SEC_NO_FLAGS;
7819 elf_text_section->output_section = NULL;
7820 elf_text_section->owner = abfd;
7821 elf_text_symbol->name = ".text";
7822 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7823 elf_text_symbol->section = elf_text_section;
7825 /* This code used to do *secp = bfd_und_section_ptr if
7826 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7827 so I took it out. */
7828 *secp = mips_elf_tdata (abfd)->elf_text_section;
7831 case SHN_MIPS_ACOMMON:
7832 /* Fall through. XXX Can we treat this as allocated data? */
7834 /* This section is used in a shared object. */
7835 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7837 asymbol *elf_data_symbol;
7838 asection *elf_data_section;
7839 bfd_size_type amt = sizeof (asection);
7841 elf_data_section = bfd_zalloc (abfd, amt);
7842 if (elf_data_section == NULL)
7845 amt = sizeof (asymbol);
7846 elf_data_symbol = bfd_zalloc (abfd, amt);
7847 if (elf_data_symbol == NULL)
7850 /* Initialize the section. */
7852 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7853 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7855 elf_data_section->symbol = elf_data_symbol;
7856 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7858 elf_data_section->name = ".data";
7859 elf_data_section->flags = SEC_NO_FLAGS;
7860 elf_data_section->output_section = NULL;
7861 elf_data_section->owner = abfd;
7862 elf_data_symbol->name = ".data";
7863 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7864 elf_data_symbol->section = elf_data_section;
7866 /* This code used to do *secp = bfd_und_section_ptr if
7867 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7868 so I took it out. */
7869 *secp = mips_elf_tdata (abfd)->elf_data_section;
7872 case SHN_MIPS_SUNDEFINED:
7873 *secp = bfd_und_section_ptr;
7877 if (SGI_COMPAT (abfd)
7878 && ! bfd_link_pic (info)
7879 && info->output_bfd->xvec == abfd->xvec
7880 && strcmp (*namep, "__rld_obj_head") == 0)
7882 struct elf_link_hash_entry *h;
7883 struct bfd_link_hash_entry *bh;
7885 /* Mark __rld_obj_head as dynamic. */
7887 if (! (_bfd_generic_link_add_one_symbol
7888 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7889 get_elf_backend_data (abfd)->collect, &bh)))
7892 h = (struct elf_link_hash_entry *) bh;
7895 h->type = STT_OBJECT;
7897 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7900 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7901 mips_elf_hash_table (info)->rld_symbol = h;
7904 /* If this is a mips16 text symbol, add 1 to the value to make it
7905 odd. This will cause something like .word SYM to come up with
7906 the right value when it is loaded into the PC. */
7907 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7913 /* This hook function is called before the linker writes out a global
7914 symbol. We mark symbols as small common if appropriate. This is
7915 also where we undo the increment of the value for a mips16 symbol. */
7918 _bfd_mips_elf_link_output_symbol_hook
7919 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7920 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7921 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7923 /* If we see a common symbol, which implies a relocatable link, then
7924 if a symbol was small common in an input file, mark it as small
7925 common in the output file. */
7926 if (sym->st_shndx == SHN_COMMON
7927 && strcmp (input_sec->name, ".scommon") == 0)
7928 sym->st_shndx = SHN_MIPS_SCOMMON;
7930 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7931 sym->st_value &= ~1;
7936 /* Functions for the dynamic linker. */
7938 /* Create dynamic sections when linking against a dynamic object. */
7941 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7943 struct elf_link_hash_entry *h;
7944 struct bfd_link_hash_entry *bh;
7946 register asection *s;
7947 const char * const *namep;
7948 struct mips_elf_link_hash_table *htab;
7950 htab = mips_elf_hash_table (info);
7951 BFD_ASSERT (htab != NULL);
7953 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7954 | SEC_LINKER_CREATED | SEC_READONLY);
7956 /* The psABI requires a read-only .dynamic section, but the VxWorks
7958 if (!htab->is_vxworks)
7960 s = bfd_get_linker_section (abfd, ".dynamic");
7963 if (! bfd_set_section_flags (abfd, s, flags))
7968 /* We need to create .got section. */
7969 if (!mips_elf_create_got_section (abfd, info))
7972 if (! mips_elf_rel_dyn_section (info, TRUE))
7975 /* Create .stub section. */
7976 s = bfd_make_section_anyway_with_flags (abfd,
7977 MIPS_ELF_STUB_SECTION_NAME (abfd),
7980 || ! bfd_set_section_alignment (abfd, s,
7981 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7985 if (!mips_elf_hash_table (info)->use_rld_obj_head
7986 && bfd_link_executable (info)
7987 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7989 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7990 flags &~ (flagword) SEC_READONLY);
7992 || ! bfd_set_section_alignment (abfd, s,
7993 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7997 /* On IRIX5, we adjust add some additional symbols and change the
7998 alignments of several sections. There is no ABI documentation
7999 indicating that this is necessary on IRIX6, nor any evidence that
8000 the linker takes such action. */
8001 if (IRIX_COMPAT (abfd) == ict_irix5)
8003 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8006 if (! (_bfd_generic_link_add_one_symbol
8007 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8011 h = (struct elf_link_hash_entry *) bh;
8015 h->type = STT_SECTION;
8017 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8021 /* We need to create a .compact_rel section. */
8022 if (SGI_COMPAT (abfd))
8024 if (!mips_elf_create_compact_rel_section (abfd, info))
8028 /* Change alignments of some sections. */
8029 s = bfd_get_linker_section (abfd, ".hash");
8031 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8033 s = bfd_get_linker_section (abfd, ".dynsym");
8035 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8037 s = bfd_get_linker_section (abfd, ".dynstr");
8039 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8042 s = bfd_get_section_by_name (abfd, ".reginfo");
8044 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8046 s = bfd_get_linker_section (abfd, ".dynamic");
8048 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8051 if (bfd_link_executable (info))
8055 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8057 if (!(_bfd_generic_link_add_one_symbol
8058 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8059 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8062 h = (struct elf_link_hash_entry *) bh;
8065 h->type = STT_SECTION;
8067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8070 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8072 /* __rld_map is a four byte word located in the .data section
8073 and is filled in by the rtld to contain a pointer to
8074 the _r_debug structure. Its symbol value will be set in
8075 _bfd_mips_elf_finish_dynamic_symbol. */
8076 s = bfd_get_linker_section (abfd, ".rld_map");
8077 BFD_ASSERT (s != NULL);
8079 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8081 if (!(_bfd_generic_link_add_one_symbol
8082 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8083 get_elf_backend_data (abfd)->collect, &bh)))
8086 h = (struct elf_link_hash_entry *) bh;
8089 h->type = STT_OBJECT;
8091 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8093 mips_elf_hash_table (info)->rld_symbol = h;
8097 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8098 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8099 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8102 /* Do the usual VxWorks handling. */
8103 if (htab->is_vxworks
8104 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8110 /* Return true if relocation REL against section SEC is a REL rather than
8111 RELA relocation. RELOCS is the first relocation in the section and
8112 ABFD is the bfd that contains SEC. */
8115 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8116 const Elf_Internal_Rela *relocs,
8117 const Elf_Internal_Rela *rel)
8119 Elf_Internal_Shdr *rel_hdr;
8120 const struct elf_backend_data *bed;
8122 /* To determine which flavor of relocation this is, we depend on the
8123 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8124 rel_hdr = elf_section_data (sec)->rel.hdr;
8125 if (rel_hdr == NULL)
8127 bed = get_elf_backend_data (abfd);
8128 return ((size_t) (rel - relocs)
8129 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8132 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8133 HOWTO is the relocation's howto and CONTENTS points to the contents
8134 of the section that REL is against. */
8137 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8138 reloc_howto_type *howto, bfd_byte *contents)
8141 unsigned int r_type;
8145 r_type = ELF_R_TYPE (abfd, rel->r_info);
8146 location = contents + rel->r_offset;
8148 /* Get the addend, which is stored in the input file. */
8149 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8150 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8151 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8153 addend = bytes & howto->src_mask;
8155 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8157 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8163 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8164 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8165 and update *ADDEND with the final addend. Return true on success
8166 or false if the LO16 could not be found. RELEND is the exclusive
8167 upper bound on the relocations for REL's section. */
8170 mips_elf_add_lo16_rel_addend (bfd *abfd,
8171 const Elf_Internal_Rela *rel,
8172 const Elf_Internal_Rela *relend,
8173 bfd_byte *contents, bfd_vma *addend)
8175 unsigned int r_type, lo16_type;
8176 const Elf_Internal_Rela *lo16_relocation;
8177 reloc_howto_type *lo16_howto;
8180 r_type = ELF_R_TYPE (abfd, rel->r_info);
8181 if (mips16_reloc_p (r_type))
8182 lo16_type = R_MIPS16_LO16;
8183 else if (micromips_reloc_p (r_type))
8184 lo16_type = R_MICROMIPS_LO16;
8185 else if (r_type == R_MIPS_PCHI16)
8186 lo16_type = R_MIPS_PCLO16;
8188 lo16_type = R_MIPS_LO16;
8190 /* The combined value is the sum of the HI16 addend, left-shifted by
8191 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8192 code does a `lui' of the HI16 value, and then an `addiu' of the
8195 Scan ahead to find a matching LO16 relocation.
8197 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8198 be immediately following. However, for the IRIX6 ABI, the next
8199 relocation may be a composed relocation consisting of several
8200 relocations for the same address. In that case, the R_MIPS_LO16
8201 relocation may occur as one of these. We permit a similar
8202 extension in general, as that is useful for GCC.
8204 In some cases GCC dead code elimination removes the LO16 but keeps
8205 the corresponding HI16. This is strictly speaking a violation of
8206 the ABI but not immediately harmful. */
8207 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8208 if (lo16_relocation == NULL)
8211 /* Obtain the addend kept there. */
8212 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8213 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8215 l <<= lo16_howto->rightshift;
8216 l = _bfd_mips_elf_sign_extend (l, 16);
8223 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8224 store the contents in *CONTENTS on success. Assume that *CONTENTS
8225 already holds the contents if it is nonull on entry. */
8228 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8233 /* Get cached copy if it exists. */
8234 if (elf_section_data (sec)->this_hdr.contents != NULL)
8236 *contents = elf_section_data (sec)->this_hdr.contents;
8240 return bfd_malloc_and_get_section (abfd, sec, contents);
8243 /* Make a new PLT record to keep internal data. */
8245 static struct plt_entry *
8246 mips_elf_make_plt_record (bfd *abfd)
8248 struct plt_entry *entry;
8250 entry = bfd_zalloc (abfd, sizeof (*entry));
8254 entry->stub_offset = MINUS_ONE;
8255 entry->mips_offset = MINUS_ONE;
8256 entry->comp_offset = MINUS_ONE;
8257 entry->gotplt_index = MINUS_ONE;
8261 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8262 for PIC code, as otherwise there is no load-time relocation involved
8263 and local GOT entries whose value is zero at static link time will
8264 retain their value at load time. */
8267 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8268 struct mips_elf_link_hash_table *htab,
8269 unsigned int r_type)
8273 struct elf_link_hash_entry *eh;
8274 struct bfd_link_hash_entry *bh;
8278 BFD_ASSERT (!htab->use_absolute_zero);
8279 BFD_ASSERT (bfd_link_pic (info));
8282 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8283 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8284 NULL, FALSE, FALSE, &hzero.bh))
8287 BFD_ASSERT (hzero.bh != NULL);
8289 hzero.eh->type = STT_NOTYPE;
8290 hzero.eh->other = STV_PROTECTED;
8291 hzero.eh->def_regular = 1;
8292 hzero.eh->non_elf = 0;
8294 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8297 htab->use_absolute_zero = TRUE;
8302 /* Look through the relocs for a section during the first phase, and
8303 allocate space in the global offset table and record the need for
8304 standard MIPS and compressed procedure linkage table entries. */
8307 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8308 asection *sec, const Elf_Internal_Rela *relocs)
8312 Elf_Internal_Shdr *symtab_hdr;
8313 struct elf_link_hash_entry **sym_hashes;
8315 const Elf_Internal_Rela *rel;
8316 const Elf_Internal_Rela *rel_end;
8318 const struct elf_backend_data *bed;
8319 struct mips_elf_link_hash_table *htab;
8322 reloc_howto_type *howto;
8324 if (bfd_link_relocatable (info))
8327 htab = mips_elf_hash_table (info);
8328 BFD_ASSERT (htab != NULL);
8330 dynobj = elf_hash_table (info)->dynobj;
8331 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8332 sym_hashes = elf_sym_hashes (abfd);
8333 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8335 bed = get_elf_backend_data (abfd);
8336 rel_end = relocs + sec->reloc_count;
8338 /* Check for the mips16 stub sections. */
8340 name = bfd_get_section_name (abfd, sec);
8341 if (FN_STUB_P (name))
8343 unsigned long r_symndx;
8345 /* Look at the relocation information to figure out which symbol
8348 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8352 /* xgettext:c-format */
8353 (_("%pB: warning: cannot determine the target function for"
8354 " stub section `%s'"),
8356 bfd_set_error (bfd_error_bad_value);
8360 if (r_symndx < extsymoff
8361 || sym_hashes[r_symndx - extsymoff] == NULL)
8365 /* This stub is for a local symbol. This stub will only be
8366 needed if there is some relocation in this BFD, other
8367 than a 16 bit function call, which refers to this symbol. */
8368 for (o = abfd->sections; o != NULL; o = o->next)
8370 Elf_Internal_Rela *sec_relocs;
8371 const Elf_Internal_Rela *r, *rend;
8373 /* We can ignore stub sections when looking for relocs. */
8374 if ((o->flags & SEC_RELOC) == 0
8375 || o->reloc_count == 0
8376 || section_allows_mips16_refs_p (o))
8380 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8382 if (sec_relocs == NULL)
8385 rend = sec_relocs + o->reloc_count;
8386 for (r = sec_relocs; r < rend; r++)
8387 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8388 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8391 if (elf_section_data (o)->relocs != sec_relocs)
8400 /* There is no non-call reloc for this stub, so we do
8401 not need it. Since this function is called before
8402 the linker maps input sections to output sections, we
8403 can easily discard it by setting the SEC_EXCLUDE
8405 sec->flags |= SEC_EXCLUDE;
8409 /* Record this stub in an array of local symbol stubs for
8411 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8413 unsigned long symcount;
8417 if (elf_bad_symtab (abfd))
8418 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8420 symcount = symtab_hdr->sh_info;
8421 amt = symcount * sizeof (asection *);
8422 n = bfd_zalloc (abfd, amt);
8425 mips_elf_tdata (abfd)->local_stubs = n;
8428 sec->flags |= SEC_KEEP;
8429 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8431 /* We don't need to set mips16_stubs_seen in this case.
8432 That flag is used to see whether we need to look through
8433 the global symbol table for stubs. We don't need to set
8434 it here, because we just have a local stub. */
8438 struct mips_elf_link_hash_entry *h;
8440 h = ((struct mips_elf_link_hash_entry *)
8441 sym_hashes[r_symndx - extsymoff]);
8443 while (h->root.root.type == bfd_link_hash_indirect
8444 || h->root.root.type == bfd_link_hash_warning)
8445 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8447 /* H is the symbol this stub is for. */
8449 /* If we already have an appropriate stub for this function, we
8450 don't need another one, so we can discard this one. Since
8451 this function is called before the linker maps input sections
8452 to output sections, we can easily discard it by setting the
8453 SEC_EXCLUDE flag. */
8454 if (h->fn_stub != NULL)
8456 sec->flags |= SEC_EXCLUDE;
8460 sec->flags |= SEC_KEEP;
8462 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8465 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8467 unsigned long r_symndx;
8468 struct mips_elf_link_hash_entry *h;
8471 /* Look at the relocation information to figure out which symbol
8474 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8478 /* xgettext:c-format */
8479 (_("%pB: warning: cannot determine the target function for"
8480 " stub section `%s'"),
8482 bfd_set_error (bfd_error_bad_value);
8486 if (r_symndx < extsymoff
8487 || sym_hashes[r_symndx - extsymoff] == NULL)
8491 /* This stub is for a local symbol. This stub will only be
8492 needed if there is some relocation (R_MIPS16_26) in this BFD
8493 that refers to this symbol. */
8494 for (o = abfd->sections; o != NULL; o = o->next)
8496 Elf_Internal_Rela *sec_relocs;
8497 const Elf_Internal_Rela *r, *rend;
8499 /* We can ignore stub sections when looking for relocs. */
8500 if ((o->flags & SEC_RELOC) == 0
8501 || o->reloc_count == 0
8502 || section_allows_mips16_refs_p (o))
8506 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8508 if (sec_relocs == NULL)
8511 rend = sec_relocs + o->reloc_count;
8512 for (r = sec_relocs; r < rend; r++)
8513 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8514 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8517 if (elf_section_data (o)->relocs != sec_relocs)
8526 /* There is no non-call reloc for this stub, so we do
8527 not need it. Since this function is called before
8528 the linker maps input sections to output sections, we
8529 can easily discard it by setting the SEC_EXCLUDE
8531 sec->flags |= SEC_EXCLUDE;
8535 /* Record this stub in an array of local symbol call_stubs for
8537 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8539 unsigned long symcount;
8543 if (elf_bad_symtab (abfd))
8544 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8546 symcount = symtab_hdr->sh_info;
8547 amt = symcount * sizeof (asection *);
8548 n = bfd_zalloc (abfd, amt);
8551 mips_elf_tdata (abfd)->local_call_stubs = n;
8554 sec->flags |= SEC_KEEP;
8555 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8557 /* We don't need to set mips16_stubs_seen in this case.
8558 That flag is used to see whether we need to look through
8559 the global symbol table for stubs. We don't need to set
8560 it here, because we just have a local stub. */
8564 h = ((struct mips_elf_link_hash_entry *)
8565 sym_hashes[r_symndx - extsymoff]);
8567 /* H is the symbol this stub is for. */
8569 if (CALL_FP_STUB_P (name))
8570 loc = &h->call_fp_stub;
8572 loc = &h->call_stub;
8574 /* If we already have an appropriate stub for this function, we
8575 don't need another one, so we can discard this one. Since
8576 this function is called before the linker maps input sections
8577 to output sections, we can easily discard it by setting the
8578 SEC_EXCLUDE flag. */
8581 sec->flags |= SEC_EXCLUDE;
8585 sec->flags |= SEC_KEEP;
8587 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8593 for (rel = relocs; rel < rel_end; ++rel)
8595 unsigned long r_symndx;
8596 unsigned int r_type;
8597 struct elf_link_hash_entry *h;
8598 bfd_boolean can_make_dynamic_p;
8599 bfd_boolean call_reloc_p;
8600 bfd_boolean constrain_symbol_p;
8602 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8603 r_type = ELF_R_TYPE (abfd, rel->r_info);
8605 if (r_symndx < extsymoff)
8607 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8610 /* xgettext:c-format */
8611 (_("%pB: malformed reloc detected for section %s"),
8613 bfd_set_error (bfd_error_bad_value);
8618 h = sym_hashes[r_symndx - extsymoff];
8621 while (h->root.type == bfd_link_hash_indirect
8622 || h->root.type == bfd_link_hash_warning)
8623 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8627 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8628 relocation into a dynamic one. */
8629 can_make_dynamic_p = FALSE;
8631 /* Set CALL_RELOC_P to true if the relocation is for a call,
8632 and if pointer equality therefore doesn't matter. */
8633 call_reloc_p = FALSE;
8635 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8636 into account when deciding how to define the symbol.
8637 Relocations in nonallocatable sections such as .pdr and
8638 .debug* should have no effect. */
8639 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8644 case R_MIPS_CALL_HI16:
8645 case R_MIPS_CALL_LO16:
8646 case R_MIPS16_CALL16:
8647 case R_MICROMIPS_CALL16:
8648 case R_MICROMIPS_CALL_HI16:
8649 case R_MICROMIPS_CALL_LO16:
8650 call_reloc_p = TRUE;
8654 case R_MIPS_GOT_LO16:
8655 case R_MIPS_GOT_PAGE:
8656 case R_MIPS_GOT_DISP:
8657 case R_MIPS16_GOT16:
8658 case R_MICROMIPS_GOT16:
8659 case R_MICROMIPS_GOT_LO16:
8660 case R_MICROMIPS_GOT_PAGE:
8661 case R_MICROMIPS_GOT_DISP:
8662 /* If we have a symbol that will resolve to zero at static link
8663 time and it is used by a GOT relocation applied to code we
8664 cannot relax to an immediate zero load, then we will be using
8665 the special `__gnu_absolute_zero' symbol whose value is zero
8666 at dynamic load time. We ignore HI16-type GOT relocations at
8667 this stage, because their handling will depend entirely on
8668 the corresponding LO16-type GOT relocation. */
8669 if (!call_hi16_reloc_p (r_type)
8671 && bfd_link_pic (info)
8672 && !htab->use_absolute_zero
8673 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8675 bfd_boolean rel_reloc;
8677 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8680 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8681 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8683 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8685 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8690 case R_MIPS_GOT_HI16:
8691 case R_MIPS_GOT_OFST:
8692 case R_MIPS_TLS_GOTTPREL:
8694 case R_MIPS_TLS_LDM:
8695 case R_MIPS16_TLS_GOTTPREL:
8696 case R_MIPS16_TLS_GD:
8697 case R_MIPS16_TLS_LDM:
8698 case R_MICROMIPS_GOT_HI16:
8699 case R_MICROMIPS_GOT_OFST:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GD:
8702 case R_MICROMIPS_TLS_LDM:
8704 elf_hash_table (info)->dynobj = dynobj = abfd;
8705 if (!mips_elf_create_got_section (dynobj, info))
8707 if (htab->is_vxworks && !bfd_link_pic (info))
8710 /* xgettext:c-format */
8711 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8712 abfd, (uint64_t) rel->r_offset);
8713 bfd_set_error (bfd_error_bad_value);
8716 can_make_dynamic_p = TRUE;
8721 case R_MICROMIPS_JALR:
8722 /* These relocations have empty fields and are purely there to
8723 provide link information. The symbol value doesn't matter. */
8724 constrain_symbol_p = FALSE;
8727 case R_MIPS_GPREL16:
8728 case R_MIPS_GPREL32:
8729 case R_MIPS16_GPREL:
8730 case R_MICROMIPS_GPREL16:
8731 /* GP-relative relocations always resolve to a definition in a
8732 regular input file, ignoring the one-definition rule. This is
8733 important for the GP setup sequence in NewABI code, which
8734 always resolves to a local function even if other relocations
8735 against the symbol wouldn't. */
8736 constrain_symbol_p = FALSE;
8742 /* In VxWorks executables, references to external symbols
8743 must be handled using copy relocs or PLT entries; it is not
8744 possible to convert this relocation into a dynamic one.
8746 For executables that use PLTs and copy-relocs, we have a
8747 choice between converting the relocation into a dynamic
8748 one or using copy relocations or PLT entries. It is
8749 usually better to do the former, unless the relocation is
8750 against a read-only section. */
8751 if ((bfd_link_pic (info)
8753 && !htab->is_vxworks
8754 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8755 && !(!info->nocopyreloc
8756 && !PIC_OBJECT_P (abfd)
8757 && MIPS_ELF_READONLY_SECTION (sec))))
8758 && (sec->flags & SEC_ALLOC) != 0)
8760 can_make_dynamic_p = TRUE;
8762 elf_hash_table (info)->dynobj = dynobj = abfd;
8768 case R_MIPS_PC21_S2:
8769 case R_MIPS_PC26_S2:
8771 case R_MIPS16_PC16_S1:
8772 case R_MICROMIPS_26_S1:
8773 case R_MICROMIPS_PC7_S1:
8774 case R_MICROMIPS_PC10_S1:
8775 case R_MICROMIPS_PC16_S1:
8776 case R_MICROMIPS_PC23_S2:
8777 call_reloc_p = TRUE;
8783 if (constrain_symbol_p)
8785 if (!can_make_dynamic_p)
8786 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8789 h->pointer_equality_needed = 1;
8791 /* We must not create a stub for a symbol that has
8792 relocations related to taking the function's address.
8793 This doesn't apply to VxWorks, where CALL relocs refer
8794 to a .got.plt entry instead of a normal .got entry. */
8795 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8796 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8799 /* Relocations against the special VxWorks __GOTT_BASE__ and
8800 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8801 room for them in .rela.dyn. */
8802 if (is_gott_symbol (info, h))
8806 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8810 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8811 if (MIPS_ELF_READONLY_SECTION (sec))
8812 /* We tell the dynamic linker that there are
8813 relocations against the text segment. */
8814 info->flags |= DF_TEXTREL;
8817 else if (call_lo16_reloc_p (r_type)
8818 || got_lo16_reloc_p (r_type)
8819 || got_disp_reloc_p (r_type)
8820 || (got16_reloc_p (r_type) && htab->is_vxworks))
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8828 R_MIPS_CALL_HI16 because these are always followed by an
8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8830 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8831 rel->r_addend, info, r_type))
8836 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8837 ELF_ST_IS_MIPS16 (h->other)))
8838 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8843 case R_MIPS16_CALL16:
8844 case R_MICROMIPS_CALL16:
8848 /* xgettext:c-format */
8849 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8850 abfd, (uint64_t) rel->r_offset);
8851 bfd_set_error (bfd_error_bad_value);
8856 case R_MIPS_CALL_HI16:
8857 case R_MIPS_CALL_LO16:
8858 case R_MICROMIPS_CALL_HI16:
8859 case R_MICROMIPS_CALL_LO16:
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
8865 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
8871 _bfd_elf_adjust_dynamic_symbol. */
8877 case R_MIPS_GOT_PAGE:
8878 case R_MICROMIPS_GOT_PAGE:
8879 case R_MIPS16_GOT16:
8881 case R_MIPS_GOT_HI16:
8882 case R_MIPS_GOT_LO16:
8883 case R_MICROMIPS_GOT16:
8884 case R_MICROMIPS_GOT_HI16:
8885 case R_MICROMIPS_GOT_LO16:
8886 if (!h || got_page_reloc_p (r_type))
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8892 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8894 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 addend = mips_elf_read_rel_addend (abfd, rel,
8899 if (got16_reloc_p (r_type))
8900 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8903 addend <<= howto->rightshift;
8906 addend = rel->r_addend;
8907 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8913 struct mips_elf_link_hash_entry *hmips =
8914 (struct mips_elf_link_hash_entry *) h;
8916 /* This symbol is definitely not overridable. */
8917 if (hmips->root.def_regular
8918 && ! (bfd_link_pic (info) && ! info->symbolic
8919 && ! hmips->root.forced_local))
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
8927 case R_MIPS_GOT_DISP:
8928 case R_MICROMIPS_GOT_DISP:
8929 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8934 case R_MIPS_TLS_GOTTPREL:
8935 case R_MIPS16_TLS_GOTTPREL:
8936 case R_MICROMIPS_TLS_GOTTPREL:
8937 if (bfd_link_pic (info))
8938 info->flags |= DF_STATIC_TLS;
8941 case R_MIPS_TLS_LDM:
8942 case R_MIPS16_TLS_LDM:
8943 case R_MICROMIPS_TLS_LDM:
8944 if (tls_ldm_reloc_p (r_type))
8946 r_symndx = STN_UNDEF;
8952 case R_MIPS16_TLS_GD:
8953 case R_MICROMIPS_TLS_GD:
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
8958 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8964 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
8977 if (can_make_dynamic_p)
8981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8985 if (bfd_link_pic (info) && h == NULL)
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8991 if (MIPS_ELF_READONLY_SECTION (sec))
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info->flags |= DF_TEXTREL;
8998 struct mips_elf_link_hash_entry *hmips;
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9011 hmips = (struct mips_elf_link_hash_entry *) h;
9012 ++hmips->possibly_dynamic_relocs;
9013 if (MIPS_ELF_READONLY_SECTION (sec))
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips->readonly_reloc = TRUE;
9020 if (SGI_COMPAT (abfd))
9021 mips_elf_hash_table (info)->compact_rel_size +=
9022 sizeof (Elf32_External_crinfo);
9026 case R_MIPS_GPREL16:
9027 case R_MIPS_LITERAL:
9028 case R_MIPS_GPREL32:
9029 case R_MICROMIPS_26_S1:
9030 case R_MICROMIPS_GPREL16:
9031 case R_MICROMIPS_LITERAL:
9032 case R_MICROMIPS_GPREL7_S2:
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT:
9041 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY:
9048 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9056 /* Record the need for a PLT entry. At this point we don't know
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9064 && (branch_reloc_p (r_type)
9065 || mips16_branch_reloc_p (r_type)
9066 || micromips_branch_reloc_p (r_type))
9067 && !SYMBOL_CALLS_LOCAL (info, h))
9069 if (h->plt.plist == NULL)
9070 h->plt.plist = mips_elf_make_plt_record (abfd);
9071 if (h->plt.plist == NULL)
9074 if (branch_reloc_p (r_type))
9075 h->plt.plist->need_mips = TRUE;
9077 h->plt.plist->need_comp = TRUE;
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
9085 && !mips16_call_reloc_p (r_type)
9086 && !section_allows_mips16_refs_p (sec))
9088 struct mips_elf_link_hash_entry *mh;
9090 mh = (struct mips_elf_link_hash_entry *) h;
9091 mh->need_fn_stub = TRUE;
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
9099 if (bfd_link_pic (info))
9103 case R_MIPS_TLS_TPREL_HI16:
9104 case R_MIPS16_TLS_TPREL_HI16:
9105 case R_MICROMIPS_TLS_TPREL_HI16:
9106 case R_MIPS_TLS_TPREL_LO16:
9107 case R_MIPS16_TLS_TPREL_LO16:
9108 case R_MICROMIPS_TLS_TPREL_LO16:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info))
9118 case R_MIPS_HIGHEST:
9119 case R_MICROMIPS_HI16:
9120 case R_MICROMIPS_HIGHER:
9121 case R_MICROMIPS_HIGHEST:
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
9124 if (r_symndx == STN_UNDEF)
9127 /* Likewise an absolute symbol. */
9128 if (h != NULL && bfd_is_abs_symbol (&h->root))
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd) && h != NULL
9134 && strcmp (h->root.root.string, "_gp_disp") == 0)
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info, h))
9145 case R_MICROMIPS_26_S1:
9146 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9150 info->callbacks->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd, sec, rel->r_offset, howto->name,
9155 (h) ? h->root.root.string : "a local symbol");
9166 /* Allocate space for global sym dynamic relocs. */
9169 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9171 struct bfd_link_info *info = inf;
9173 struct mips_elf_link_hash_entry *hmips;
9174 struct mips_elf_link_hash_table *htab;
9176 htab = mips_elf_hash_table (info);
9177 BFD_ASSERT (htab != NULL);
9179 dynobj = elf_hash_table (info)->dynobj;
9180 hmips = (struct mips_elf_link_hash_entry *) h;
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
9184 if (htab->is_vxworks && !bfd_link_pic (info))
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h->root.type == bfd_link_hash_indirect)
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
9195 if (! bfd_link_relocatable (info)
9196 && hmips->possibly_dynamic_relocs != 0
9197 && (h->root.type == bfd_link_hash_defweak
9198 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9199 || bfd_link_pic (info)))
9201 bfd_boolean do_copy = TRUE;
9203 if (h->root.type == bfd_link_hash_undefweak)
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9210 /* Make sure undefined weak symbols are output as a dynamic
9212 else if (h->dynindx == -1 && !h->forced_local)
9214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9221 /* Even though we don't directly need a GOT entry for this symbol,
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9229 if (!htab->is_vxworks)
9231 if (hmips->global_got_area > GGA_RELOC_ONLY)
9232 hmips->global_got_area = GGA_RELOC_ONLY;
9233 hmips->got_only_for_calls = FALSE;
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj, info, hmips->possibly_dynamic_relocs);
9238 if (hmips->readonly_reloc)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info->flags |= DF_TEXTREL;
9248 /* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9255 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9256 struct elf_link_hash_entry *h)
9259 struct mips_elf_link_hash_entry *hmips;
9260 struct mips_elf_link_hash_table *htab;
9263 htab = mips_elf_hash_table (info);
9264 BFD_ASSERT (htab != NULL);
9266 dynobj = elf_hash_table (info)->dynobj;
9267 hmips = (struct mips_elf_link_hash_entry *) h;
9269 /* Make sure we know what is going on here. */
9270 BFD_ASSERT (dynobj != NULL
9275 && !h->def_regular)));
9277 hmips = (struct mips_elf_link_hash_entry *) h;
9279 /* If there are call relocations against an externally-defined symbol,
9280 see whether we can create a MIPS lazy-binding stub for it. We can
9281 only do this if all references to the function are through call
9282 relocations, and in that case, the traditional lazy-binding stubs
9283 are much more efficient than PLT entries.
9285 Traditional stubs are only available on SVR4 psABI-based systems;
9286 VxWorks always uses PLTs instead. */
9287 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9289 if (! elf_hash_table (info)->dynamic_sections_created)
9292 /* If this symbol is not defined in a regular file, then set
9293 the symbol to the stub location. This is required to make
9294 function pointers compare as equal between the normal
9295 executable and the shared library. */
9297 && !bfd_is_abs_section (htab->sstubs->output_section))
9299 hmips->needs_lazy_stub = TRUE;
9300 htab->lazy_stub_count++;
9304 /* As above, VxWorks requires PLT entries for externally-defined
9305 functions that are only accessed through call relocations.
9307 Both VxWorks and non-VxWorks targets also need PLT entries if there
9308 are static-only relocations against an externally-defined function.
9309 This can technically occur for shared libraries if there are
9310 branches to the symbol, although it is unlikely that this will be
9311 used in practice due to the short ranges involved. It can occur
9312 for any relative or absolute relocation in executables; in that
9313 case, the PLT entry becomes the function's canonical address. */
9314 else if (((h->needs_plt && !hmips->no_fn_stub)
9315 || (h->type == STT_FUNC && hmips->has_static_relocs))
9316 && htab->use_plts_and_copy_relocs
9317 && !SYMBOL_CALLS_LOCAL (info, h)
9318 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9319 && h->root.type == bfd_link_hash_undefweak))
9321 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9322 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9324 /* If this is the first symbol to need a PLT entry, then make some
9325 basic setup. Also work out PLT entry sizes. We'll need them
9326 for PLT offset calculations. */
9327 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9329 BFD_ASSERT (htab->root.sgotplt->size == 0);
9330 BFD_ASSERT (htab->plt_got_index == 0);
9332 /* If we're using the PLT additions to the psABI, each PLT
9333 entry is 16 bytes and the PLT0 entry is 32 bytes.
9334 Encourage better cache usage by aligning. We do this
9335 lazily to avoid pessimizing traditional objects. */
9336 if (!htab->is_vxworks
9337 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9340 /* Make sure that .got.plt is word-aligned. We do this lazily
9341 for the same reason as above. */
9342 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9343 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9346 /* On non-VxWorks targets, the first two entries in .got.plt
9348 if (!htab->is_vxworks)
9350 += (get_elf_backend_data (dynobj)->got_header_size
9351 / MIPS_ELF_GOT_SIZE (dynobj));
9353 /* On VxWorks, also allocate room for the header's
9354 .rela.plt.unloaded entries. */
9355 if (htab->is_vxworks && !bfd_link_pic (info))
9356 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9358 /* Now work out the sizes of individual PLT entries. */
9359 if (htab->is_vxworks && bfd_link_pic (info))
9360 htab->plt_mips_entry_size
9361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9362 else if (htab->is_vxworks)
9363 htab->plt_mips_entry_size
9364 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9366 htab->plt_mips_entry_size
9367 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9368 else if (!micromips_p)
9370 htab->plt_mips_entry_size
9371 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9372 htab->plt_comp_entry_size
9373 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9375 else if (htab->insn32)
9377 htab->plt_mips_entry_size
9378 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9379 htab->plt_comp_entry_size
9380 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9384 htab->plt_mips_entry_size
9385 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9386 htab->plt_comp_entry_size
9387 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9391 if (h->plt.plist == NULL)
9392 h->plt.plist = mips_elf_make_plt_record (dynobj);
9393 if (h->plt.plist == NULL)
9396 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9397 n32 or n64, so always use a standard entry there.
9399 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9400 all MIPS16 calls will go via that stub, and there is no benefit
9401 to having a MIPS16 entry. And in the case of call_stub a
9402 standard entry actually has to be used as the stub ends with a J
9407 || hmips->call_fp_stub)
9409 h->plt.plist->need_mips = TRUE;
9410 h->plt.plist->need_comp = FALSE;
9413 /* Otherwise, if there are no direct calls to the function, we
9414 have a free choice of whether to use standard or compressed
9415 entries. Prefer microMIPS entries if the object is known to
9416 contain microMIPS code, so that it becomes possible to create
9417 pure microMIPS binaries. Prefer standard entries otherwise,
9418 because MIPS16 ones are no smaller and are usually slower. */
9419 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9422 h->plt.plist->need_comp = TRUE;
9424 h->plt.plist->need_mips = TRUE;
9427 if (h->plt.plist->need_mips)
9429 h->plt.plist->mips_offset = htab->plt_mips_offset;
9430 htab->plt_mips_offset += htab->plt_mips_entry_size;
9432 if (h->plt.plist->need_comp)
9434 h->plt.plist->comp_offset = htab->plt_comp_offset;
9435 htab->plt_comp_offset += htab->plt_comp_entry_size;
9438 /* Reserve the corresponding .got.plt entry now too. */
9439 h->plt.plist->gotplt_index = htab->plt_got_index++;
9441 /* If the output file has no definition of the symbol, set the
9442 symbol's value to the address of the stub. */
9443 if (!bfd_link_pic (info) && !h->def_regular)
9444 hmips->use_plt_entry = TRUE;
9446 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9447 htab->root.srelplt->size += (htab->is_vxworks
9448 ? MIPS_ELF_RELA_SIZE (dynobj)
9449 : MIPS_ELF_REL_SIZE (dynobj));
9451 /* Make room for the .rela.plt.unloaded relocations. */
9452 if (htab->is_vxworks && !bfd_link_pic (info))
9453 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9455 /* All relocations against this symbol that could have been made
9456 dynamic will now refer to the PLT entry instead. */
9457 hmips->possibly_dynamic_relocs = 0;
9462 /* If this is a weak symbol, and there is a real definition, the
9463 processor independent code will have arranged for us to see the
9464 real definition first, and we can just use the same value. */
9465 if (h->is_weakalias)
9467 struct elf_link_hash_entry *def = weakdef (h);
9468 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9469 h->root.u.def.section = def->root.u.def.section;
9470 h->root.u.def.value = def->root.u.def.value;
9474 /* Otherwise, there is nothing further to do for symbols defined
9475 in regular objects. */
9479 /* There's also nothing more to do if we'll convert all relocations
9480 against this symbol into dynamic relocations. */
9481 if (!hmips->has_static_relocs)
9484 /* We're now relying on copy relocations. Complain if we have
9485 some that we can't convert. */
9486 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9488 _bfd_error_handler (_("non-dynamic relocations refer to "
9489 "dynamic symbol %s"),
9490 h->root.root.string);
9491 bfd_set_error (bfd_error_bad_value);
9495 /* We must allocate the symbol in our .dynbss section, which will
9496 become part of the .bss section of the executable. There will be
9497 an entry for this symbol in the .dynsym section. The dynamic
9498 object will contain position independent code, so all references
9499 from the dynamic object to this symbol will go through the global
9500 offset table. The dynamic linker will use the .dynsym entry to
9501 determine the address it must put in the global offset table, so
9502 both the dynamic object and the regular object will refer to the
9503 same memory location for the variable. */
9505 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9507 s = htab->root.sdynrelro;
9508 srel = htab->root.sreldynrelro;
9512 s = htab->root.sdynbss;
9513 srel = htab->root.srelbss;
9515 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9517 if (htab->is_vxworks)
9518 srel->size += sizeof (Elf32_External_Rela);
9520 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9524 /* All relocations against this symbol that could have been made
9525 dynamic will now refer to the local copy instead. */
9526 hmips->possibly_dynamic_relocs = 0;
9528 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9531 /* This function is called after all the input files have been read,
9532 and the input sections have been assigned to output sections. We
9533 check for any mips16 stub sections that we can discard. */
9536 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9537 struct bfd_link_info *info)
9540 struct mips_elf_link_hash_table *htab;
9541 struct mips_htab_traverse_info hti;
9543 htab = mips_elf_hash_table (info);
9544 BFD_ASSERT (htab != NULL);
9546 /* The .reginfo section has a fixed size. */
9547 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9550 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9551 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9554 /* The .MIPS.abiflags section has a fixed size. */
9555 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9558 bfd_set_section_size (output_bfd, sect,
9559 sizeof (Elf_External_ABIFlags_v0));
9560 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9564 hti.output_bfd = output_bfd;
9566 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9567 mips_elf_check_symbols, &hti);
9574 /* If the link uses a GOT, lay it out and work out its size. */
9577 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9581 struct mips_got_info *g;
9582 bfd_size_type loadable_size = 0;
9583 bfd_size_type page_gotno;
9585 struct mips_elf_traverse_got_arg tga;
9586 struct mips_elf_link_hash_table *htab;
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9591 s = htab->root.sgot;
9595 dynobj = elf_hash_table (info)->dynobj;
9598 /* Allocate room for the reserved entries. VxWorks always reserves
9599 3 entries; other objects only reserve 2 entries. */
9600 BFD_ASSERT (g->assigned_low_gotno == 0);
9601 if (htab->is_vxworks)
9602 htab->reserved_gotno = 3;
9604 htab->reserved_gotno = 2;
9605 g->local_gotno += htab->reserved_gotno;
9606 g->assigned_low_gotno = htab->reserved_gotno;
9608 /* Decide which symbols need to go in the global part of the GOT and
9609 count the number of reloc-only GOT symbols. */
9610 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9612 if (!mips_elf_resolve_final_got_entries (info, g))
9615 /* Calculate the total loadable size of the output. That
9616 will give us the maximum number of GOT_PAGE entries
9618 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9620 asection *subsection;
9622 for (subsection = ibfd->sections;
9624 subsection = subsection->next)
9626 if ((subsection->flags & SEC_ALLOC) == 0)
9628 loadable_size += ((subsection->size + 0xf)
9629 &~ (bfd_size_type) 0xf);
9633 if (htab->is_vxworks)
9634 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9635 relocations against local symbols evaluate to "G", and the EABI does
9636 not include R_MIPS_GOT_PAGE. */
9639 /* Assume there are two loadable segments consisting of contiguous
9640 sections. Is 5 enough? */
9641 page_gotno = (loadable_size >> 16) + 5;
9643 /* Choose the smaller of the two page estimates; both are intended to be
9645 if (page_gotno > g->page_gotno)
9646 page_gotno = g->page_gotno;
9648 g->local_gotno += page_gotno;
9649 g->assigned_high_gotno = g->local_gotno - 1;
9651 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9652 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9653 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9655 /* VxWorks does not support multiple GOTs. It initializes $gp to
9656 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9658 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9660 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9665 /* Record that all bfds use G. This also has the effect of freeing
9666 the per-bfd GOTs, which we no longer need. */
9667 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9668 if (mips_elf_bfd_got (ibfd, FALSE))
9669 mips_elf_replace_bfd_got (ibfd, g);
9670 mips_elf_replace_bfd_got (output_bfd, g);
9672 /* Set up TLS entries. */
9673 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9676 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9677 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9680 BFD_ASSERT (g->tls_assigned_gotno
9681 == g->global_gotno + g->local_gotno + g->tls_gotno);
9683 /* Each VxWorks GOT entry needs an explicit relocation. */
9684 if (htab->is_vxworks && bfd_link_pic (info))
9685 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9687 /* Allocate room for the TLS relocations. */
9689 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9695 /* Estimate the size of the .MIPS.stubs section. */
9698 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9700 struct mips_elf_link_hash_table *htab;
9701 bfd_size_type dynsymcount;
9703 htab = mips_elf_hash_table (info);
9704 BFD_ASSERT (htab != NULL);
9706 if (htab->lazy_stub_count == 0)
9709 /* IRIX rld assumes that a function stub isn't at the end of the .text
9710 section, so add a dummy entry to the end. */
9711 htab->lazy_stub_count++;
9713 /* Get a worst-case estimate of the number of dynamic symbols needed.
9714 At this point, dynsymcount does not account for section symbols
9715 and count_section_dynsyms may overestimate the number that will
9717 dynsymcount = (elf_hash_table (info)->dynsymcount
9718 + count_section_dynsyms (output_bfd, info));
9720 /* Determine the size of one stub entry. There's no disadvantage
9721 from using microMIPS code here, so for the sake of pure-microMIPS
9722 binaries we prefer it whenever there's any microMIPS code in
9723 output produced at all. This has a benefit of stubs being
9724 shorter by 4 bytes each too, unless in the insn32 mode. */
9725 if (!MICROMIPS_P (output_bfd))
9726 htab->function_stub_size = (dynsymcount > 0x10000
9727 ? MIPS_FUNCTION_STUB_BIG_SIZE
9728 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9729 else if (htab->insn32)
9730 htab->function_stub_size = (dynsymcount > 0x10000
9731 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9732 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9734 htab->function_stub_size = (dynsymcount > 0x10000
9735 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9736 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9738 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9741 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9742 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9743 stub, allocate an entry in the stubs section. */
9746 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9748 struct mips_htab_traverse_info *hti = data;
9749 struct mips_elf_link_hash_table *htab;
9750 struct bfd_link_info *info;
9754 output_bfd = hti->output_bfd;
9755 htab = mips_elf_hash_table (info);
9756 BFD_ASSERT (htab != NULL);
9758 if (h->needs_lazy_stub)
9760 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9761 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9762 bfd_vma isa_bit = micromips_p;
9764 BFD_ASSERT (htab->root.dynobj != NULL);
9765 if (h->root.plt.plist == NULL)
9766 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9767 if (h->root.plt.plist == NULL)
9772 h->root.root.u.def.section = htab->sstubs;
9773 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9774 h->root.plt.plist->stub_offset = htab->sstubs->size;
9775 h->root.other = other;
9776 htab->sstubs->size += htab->function_stub_size;
9781 /* Allocate offsets in the stubs section to each symbol that needs one.
9782 Set the final size of the .MIPS.stub section. */
9785 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9787 bfd *output_bfd = info->output_bfd;
9788 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9789 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9790 bfd_vma isa_bit = micromips_p;
9791 struct mips_elf_link_hash_table *htab;
9792 struct mips_htab_traverse_info hti;
9793 struct elf_link_hash_entry *h;
9796 htab = mips_elf_hash_table (info);
9797 BFD_ASSERT (htab != NULL);
9799 if (htab->lazy_stub_count == 0)
9802 htab->sstubs->size = 0;
9804 hti.output_bfd = output_bfd;
9806 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9809 htab->sstubs->size += htab->function_stub_size;
9810 BFD_ASSERT (htab->sstubs->size
9811 == htab->lazy_stub_count * htab->function_stub_size);
9813 dynobj = elf_hash_table (info)->dynobj;
9814 BFD_ASSERT (dynobj != NULL);
9815 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9818 h->root.u.def.value = isa_bit;
9825 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9826 bfd_link_info. If H uses the address of a PLT entry as the value
9827 of the symbol, then set the entry in the symbol table now. Prefer
9828 a standard MIPS PLT entry. */
9831 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9833 struct bfd_link_info *info = data;
9834 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9835 struct mips_elf_link_hash_table *htab;
9840 htab = mips_elf_hash_table (info);
9841 BFD_ASSERT (htab != NULL);
9843 if (h->use_plt_entry)
9845 BFD_ASSERT (h->root.plt.plist != NULL);
9846 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9847 || h->root.plt.plist->comp_offset != MINUS_ONE);
9849 val = htab->plt_header_size;
9850 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9853 val += h->root.plt.plist->mips_offset;
9859 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9860 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9863 /* For VxWorks, point at the PLT load stub rather than the lazy
9864 resolution stub; this stub will become the canonical function
9866 if (htab->is_vxworks)
9869 h->root.root.u.def.section = htab->root.splt;
9870 h->root.root.u.def.value = val;
9871 h->root.other = other;
9877 /* Set the sizes of the dynamic sections. */
9880 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9881 struct bfd_link_info *info)
9884 asection *s, *sreldyn;
9885 bfd_boolean reltext;
9886 struct mips_elf_link_hash_table *htab;
9888 htab = mips_elf_hash_table (info);
9889 BFD_ASSERT (htab != NULL);
9890 dynobj = elf_hash_table (info)->dynobj;
9891 BFD_ASSERT (dynobj != NULL);
9893 if (elf_hash_table (info)->dynamic_sections_created)
9895 /* Set the contents of the .interp section to the interpreter. */
9896 if (bfd_link_executable (info) && !info->nointerp)
9898 s = bfd_get_linker_section (dynobj, ".interp");
9899 BFD_ASSERT (s != NULL);
9901 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9903 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9906 /* Figure out the size of the PLT header if we know that we
9907 are using it. For the sake of cache alignment always use
9908 a standard header whenever any standard entries are present
9909 even if microMIPS entries are present as well. This also
9910 lets the microMIPS header rely on the value of $v0 only set
9911 by microMIPS entries, for a small size reduction.
9913 Set symbol table entry values for symbols that use the
9914 address of their PLT entry now that we can calculate it.
9916 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9917 haven't already in _bfd_elf_create_dynamic_sections. */
9918 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9920 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9921 && !htab->plt_mips_offset);
9922 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9923 bfd_vma isa_bit = micromips_p;
9924 struct elf_link_hash_entry *h;
9927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9928 BFD_ASSERT (htab->root.sgotplt->size == 0);
9929 BFD_ASSERT (htab->root.splt->size == 0);
9931 if (htab->is_vxworks && bfd_link_pic (info))
9932 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9933 else if (htab->is_vxworks)
9934 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9935 else if (ABI_64_P (output_bfd))
9936 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9937 else if (ABI_N32_P (output_bfd))
9938 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9939 else if (!micromips_p)
9940 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9941 else if (htab->insn32)
9942 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9944 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9946 htab->plt_header_is_comp = micromips_p;
9947 htab->plt_header_size = size;
9948 htab->root.splt->size = (size
9949 + htab->plt_mips_offset
9950 + htab->plt_comp_offset);
9951 htab->root.sgotplt->size = (htab->plt_got_index
9952 * MIPS_ELF_GOT_SIZE (dynobj));
9954 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9956 if (htab->root.hplt == NULL)
9958 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9959 "_PROCEDURE_LINKAGE_TABLE_");
9960 htab->root.hplt = h;
9965 h = htab->root.hplt;
9966 h->root.u.def.value = isa_bit;
9972 /* Allocate space for global sym dynamic relocs. */
9973 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9975 mips_elf_estimate_stub_size (output_bfd, info);
9977 if (!mips_elf_lay_out_got (output_bfd, info))
9980 mips_elf_lay_out_lazy_stubs (info);
9982 /* The check_relocs and adjust_dynamic_symbol entry points have
9983 determined the sizes of the various dynamic sections. Allocate
9986 for (s = dynobj->sections; s != NULL; s = s->next)
9990 /* It's OK to base decisions on the section name, because none
9991 of the dynobj section names depend upon the input files. */
9992 name = bfd_get_section_name (dynobj, s);
9994 if ((s->flags & SEC_LINKER_CREATED) == 0)
9997 if (CONST_STRNEQ (name, ".rel"))
10001 const char *outname;
10004 /* If this relocation section applies to a read only
10005 section, then we probably need a DT_TEXTREL entry.
10006 If the relocation section is .rel(a).dyn, we always
10007 assert a DT_TEXTREL entry rather than testing whether
10008 there exists a relocation to a read only section or
10010 outname = bfd_get_section_name (output_bfd,
10011 s->output_section);
10012 target = bfd_get_section_by_name (output_bfd, outname + 4);
10013 if ((target != NULL
10014 && (target->flags & SEC_READONLY) != 0
10015 && (target->flags & SEC_ALLOC) != 0)
10016 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10019 /* We use the reloc_count field as a counter if we need
10020 to copy relocs into the output file. */
10021 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10022 s->reloc_count = 0;
10024 /* If combreloc is enabled, elf_link_sort_relocs() will
10025 sort relocations, but in a different way than we do,
10026 and before we're done creating relocations. Also, it
10027 will move them around between input sections'
10028 relocation's contents, so our sorting would be
10029 broken, so don't let it run. */
10030 info->combreloc = 0;
10033 else if (bfd_link_executable (info)
10034 && ! mips_elf_hash_table (info)->use_rld_obj_head
10035 && CONST_STRNEQ (name, ".rld_map"))
10037 /* We add a room for __rld_map. It will be filled in by the
10038 rtld to contain a pointer to the _r_debug structure. */
10039 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10041 else if (SGI_COMPAT (output_bfd)
10042 && CONST_STRNEQ (name, ".compact_rel"))
10043 s->size += mips_elf_hash_table (info)->compact_rel_size;
10044 else if (s == htab->root.splt)
10046 /* If the last PLT entry has a branch delay slot, allocate
10047 room for an extra nop to fill the delay slot. This is
10048 for CPUs without load interlocking. */
10049 if (! LOAD_INTERLOCKS_P (output_bfd)
10050 && ! htab->is_vxworks && s->size > 0)
10053 else if (! CONST_STRNEQ (name, ".init")
10054 && s != htab->root.sgot
10055 && s != htab->root.sgotplt
10056 && s != htab->sstubs
10057 && s != htab->root.sdynbss
10058 && s != htab->root.sdynrelro)
10060 /* It's not one of our sections, so don't allocate space. */
10066 s->flags |= SEC_EXCLUDE;
10070 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10073 /* Allocate memory for the section contents. */
10074 s->contents = bfd_zalloc (dynobj, s->size);
10075 if (s->contents == NULL)
10077 bfd_set_error (bfd_error_no_memory);
10082 if (elf_hash_table (info)->dynamic_sections_created)
10084 /* Add some entries to the .dynamic section. We fill in the
10085 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10086 must add the entries now so that we get the correct size for
10087 the .dynamic section. */
10089 /* SGI object has the equivalence of DT_DEBUG in the
10090 DT_MIPS_RLD_MAP entry. This must come first because glibc
10091 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10092 may only look at the first one they see. */
10093 if (!bfd_link_pic (info)
10094 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10097 if (bfd_link_executable (info)
10098 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10101 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10102 used by the debugger. */
10103 if (bfd_link_executable (info)
10104 && !SGI_COMPAT (output_bfd)
10105 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10108 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10109 info->flags |= DF_TEXTREL;
10111 if ((info->flags & DF_TEXTREL) != 0)
10113 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10116 /* Clear the DF_TEXTREL flag. It will be set again if we
10117 write out an actual text relocation; we may not, because
10118 at this point we do not know whether e.g. any .eh_frame
10119 absolute relocations have been converted to PC-relative. */
10120 info->flags &= ~DF_TEXTREL;
10123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10126 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10127 if (htab->is_vxworks)
10129 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10130 use any of the DT_MIPS_* tags. */
10131 if (sreldyn && sreldyn->size > 0)
10133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10145 if (sreldyn && sreldyn->size > 0
10146 && !bfd_is_abs_section (sreldyn->output_section))
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10164 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10167 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10170 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10179 if (IRIX_COMPAT (dynobj) == ict_irix5
10180 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10183 if (IRIX_COMPAT (dynobj) == ict_irix6
10184 && (bfd_get_section_by_name
10185 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10186 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10189 if (htab->root.splt->size > 0)
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10203 if (htab->is_vxworks
10204 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10211 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10212 Adjust its R_ADDEND field so that it is correct for the output file.
10213 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10214 and sections respectively; both use symbol indexes. */
10217 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10218 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10219 asection **local_sections, Elf_Internal_Rela *rel)
10221 unsigned int r_type, r_symndx;
10222 Elf_Internal_Sym *sym;
10225 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10227 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10228 if (gprel16_reloc_p (r_type)
10229 || r_type == R_MIPS_GPREL32
10230 || literal_reloc_p (r_type))
10232 rel->r_addend += _bfd_get_gp_value (input_bfd);
10233 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10236 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10237 sym = local_syms + r_symndx;
10239 /* Adjust REL's addend to account for section merging. */
10240 if (!bfd_link_relocatable (info))
10242 sec = local_sections[r_symndx];
10243 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10246 /* This would normally be done by the rela_normal code in elflink.c. */
10247 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10248 rel->r_addend += local_sections[r_symndx]->output_offset;
10252 /* Handle relocations against symbols from removed linkonce sections,
10253 or sections discarded by a linker script. We use this wrapper around
10254 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10255 on 64-bit ELF targets. In this case for any relocation handled, which
10256 always be the first in a triplet, the remaining two have to be processed
10257 together with the first, even if they are R_MIPS_NONE. It is the symbol
10258 index referred by the first reloc that applies to all the three and the
10259 remaining two never refer to an object symbol. And it is the final
10260 relocation (the last non-null one) that determines the output field of
10261 the whole relocation so retrieve the corresponding howto structure for
10262 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10264 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10265 and therefore requires to be pasted in a loop. It also defines a block
10266 and does not protect any of its arguments, hence the extra brackets. */
10269 mips_reloc_against_discarded_section (bfd *output_bfd,
10270 struct bfd_link_info *info,
10271 bfd *input_bfd, asection *input_section,
10272 Elf_Internal_Rela **rel,
10273 const Elf_Internal_Rela **relend,
10274 bfd_boolean rel_reloc,
10275 reloc_howto_type *howto,
10276 bfd_byte *contents)
10278 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10279 int count = bed->s->int_rels_per_ext_rel;
10280 unsigned int r_type;
10283 for (i = count - 1; i > 0; i--)
10285 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10286 if (r_type != R_MIPS_NONE)
10288 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10294 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10295 (*rel), count, (*relend),
10296 howto, i, contents);
10301 /* Relocate a MIPS ELF section. */
10304 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10305 bfd *input_bfd, asection *input_section,
10306 bfd_byte *contents, Elf_Internal_Rela *relocs,
10307 Elf_Internal_Sym *local_syms,
10308 asection **local_sections)
10310 Elf_Internal_Rela *rel;
10311 const Elf_Internal_Rela *relend;
10312 bfd_vma addend = 0;
10313 bfd_boolean use_saved_addend_p = FALSE;
10315 relend = relocs + input_section->reloc_count;
10316 for (rel = relocs; rel < relend; ++rel)
10320 reloc_howto_type *howto;
10321 bfd_boolean cross_mode_jump_p = FALSE;
10322 /* TRUE if the relocation is a RELA relocation, rather than a
10324 bfd_boolean rela_relocation_p = TRUE;
10325 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10327 unsigned long r_symndx;
10329 Elf_Internal_Shdr *symtab_hdr;
10330 struct elf_link_hash_entry *h;
10331 bfd_boolean rel_reloc;
10333 rel_reloc = (NEWABI_P (input_bfd)
10334 && mips_elf_rel_relocation_p (input_bfd, input_section,
10336 /* Find the relocation howto for this relocation. */
10337 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10339 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10340 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10341 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10343 sec = local_sections[r_symndx];
10348 unsigned long extsymoff;
10351 if (!elf_bad_symtab (input_bfd))
10352 extsymoff = symtab_hdr->sh_info;
10353 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10354 while (h->root.type == bfd_link_hash_indirect
10355 || h->root.type == bfd_link_hash_warning)
10356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10359 if (h->root.type == bfd_link_hash_defined
10360 || h->root.type == bfd_link_hash_defweak)
10361 sec = h->root.u.def.section;
10364 if (sec != NULL && discarded_section (sec))
10366 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10367 input_section, &rel, &relend,
10368 rel_reloc, howto, contents);
10372 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10374 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10375 64-bit code, but make sure all their addresses are in the
10376 lowermost or uppermost 32-bit section of the 64-bit address
10377 space. Thus, when they use an R_MIPS_64 they mean what is
10378 usually meant by R_MIPS_32, with the exception that the
10379 stored value is sign-extended to 64 bits. */
10380 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10382 /* On big-endian systems, we need to lie about the position
10384 if (bfd_big_endian (input_bfd))
10385 rel->r_offset += 4;
10388 if (!use_saved_addend_p)
10390 /* If these relocations were originally of the REL variety,
10391 we must pull the addend out of the field that will be
10392 relocated. Otherwise, we simply use the contents of the
10393 RELA relocation. */
10394 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10397 rela_relocation_p = FALSE;
10398 addend = mips_elf_read_rel_addend (input_bfd, rel,
10400 if (hi16_reloc_p (r_type)
10401 || (got16_reloc_p (r_type)
10402 && mips_elf_local_relocation_p (input_bfd, rel,
10405 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10406 contents, &addend))
10409 name = h->root.root.string;
10411 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10412 local_syms + r_symndx,
10415 /* xgettext:c-format */
10416 (_("%pB: can't find matching LO16 reloc against `%s'"
10417 " for %s at %#" PRIx64 " in section `%pA'"),
10419 howto->name, (uint64_t) rel->r_offset, input_section);
10423 addend <<= howto->rightshift;
10426 addend = rel->r_addend;
10427 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10428 local_syms, local_sections, rel);
10431 if (bfd_link_relocatable (info))
10433 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10434 && bfd_big_endian (input_bfd))
10435 rel->r_offset -= 4;
10437 if (!rela_relocation_p && rel->r_addend)
10439 addend += rel->r_addend;
10440 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10441 addend = mips_elf_high (addend);
10442 else if (r_type == R_MIPS_HIGHER)
10443 addend = mips_elf_higher (addend);
10444 else if (r_type == R_MIPS_HIGHEST)
10445 addend = mips_elf_highest (addend);
10447 addend >>= howto->rightshift;
10449 /* We use the source mask, rather than the destination
10450 mask because the place to which we are writing will be
10451 source of the addend in the final link. */
10452 addend &= howto->src_mask;
10454 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10455 /* See the comment above about using R_MIPS_64 in the 32-bit
10456 ABI. Here, we need to update the addend. It would be
10457 possible to get away with just using the R_MIPS_32 reloc
10458 but for endianness. */
10464 if (addend & ((bfd_vma) 1 << 31))
10466 sign_bits = ((bfd_vma) 1 << 32) - 1;
10473 /* If we don't know that we have a 64-bit type,
10474 do two separate stores. */
10475 if (bfd_big_endian (input_bfd))
10477 /* Store the sign-bits (which are most significant)
10479 low_bits = sign_bits;
10480 high_bits = addend;
10485 high_bits = sign_bits;
10487 bfd_put_32 (input_bfd, low_bits,
10488 contents + rel->r_offset);
10489 bfd_put_32 (input_bfd, high_bits,
10490 contents + rel->r_offset + 4);
10494 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10495 input_bfd, input_section,
10500 /* Go on to the next relocation. */
10504 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10505 relocations for the same offset. In that case we are
10506 supposed to treat the output of each relocation as the addend
10508 if (rel + 1 < relend
10509 && rel->r_offset == rel[1].r_offset
10510 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10511 use_saved_addend_p = TRUE;
10513 use_saved_addend_p = FALSE;
10515 /* Figure out what value we are supposed to relocate. */
10516 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10517 input_section, contents,
10518 info, rel, addend, howto,
10519 local_syms, local_sections,
10520 &value, &name, &cross_mode_jump_p,
10521 use_saved_addend_p))
10523 case bfd_reloc_continue:
10524 /* There's nothing to do. */
10527 case bfd_reloc_undefined:
10528 /* mips_elf_calculate_relocation already called the
10529 undefined_symbol callback. There's no real point in
10530 trying to perform the relocation at this point, so we
10531 just skip ahead to the next relocation. */
10534 case bfd_reloc_notsupported:
10535 msg = _("internal error: unsupported relocation error");
10536 info->callbacks->warning
10537 (info, msg, name, input_bfd, input_section, rel->r_offset);
10540 case bfd_reloc_overflow:
10541 if (use_saved_addend_p)
10542 /* Ignore overflow until we reach the last relocation for
10543 a given location. */
10547 struct mips_elf_link_hash_table *htab;
10549 htab = mips_elf_hash_table (info);
10550 BFD_ASSERT (htab != NULL);
10551 BFD_ASSERT (name != NULL);
10552 if (!htab->small_data_overflow_reported
10553 && (gprel16_reloc_p (howto->type)
10554 || literal_reloc_p (howto->type)))
10556 msg = _("small-data section exceeds 64KB;"
10557 " lower small-data size limit (see option -G)");
10559 htab->small_data_overflow_reported = TRUE;
10560 (*info->callbacks->einfo) ("%P: %s\n", msg);
10562 (*info->callbacks->reloc_overflow)
10563 (info, NULL, name, howto->name, (bfd_vma) 0,
10564 input_bfd, input_section, rel->r_offset);
10571 case bfd_reloc_outofrange:
10573 if (jal_reloc_p (howto->type))
10574 msg = (cross_mode_jump_p
10575 ? _("cannot convert a jump to JALX "
10576 "for a non-word-aligned address")
10577 : (howto->type == R_MIPS16_26
10578 ? _("jump to a non-word-aligned address")
10579 : _("jump to a non-instruction-aligned address")));
10580 else if (b_reloc_p (howto->type))
10581 msg = (cross_mode_jump_p
10582 ? _("cannot convert a branch to JALX "
10583 "for a non-word-aligned address")
10584 : _("branch to a non-instruction-aligned address"));
10585 else if (aligned_pcrel_reloc_p (howto->type))
10586 msg = _("PC-relative load from unaligned address");
10589 info->callbacks->einfo
10590 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10593 /* Fall through. */
10600 /* If we've got another relocation for the address, keep going
10601 until we reach the last one. */
10602 if (use_saved_addend_p)
10608 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10609 /* See the comment above about using R_MIPS_64 in the 32-bit
10610 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10611 that calculated the right value. Now, however, we
10612 sign-extend the 32-bit result to 64-bits, and store it as a
10613 64-bit value. We are especially generous here in that we
10614 go to extreme lengths to support this usage on systems with
10615 only a 32-bit VMA. */
10621 if (value & ((bfd_vma) 1 << 31))
10623 sign_bits = ((bfd_vma) 1 << 32) - 1;
10630 /* If we don't know that we have a 64-bit type,
10631 do two separate stores. */
10632 if (bfd_big_endian (input_bfd))
10634 /* Undo what we did above. */
10635 rel->r_offset -= 4;
10636 /* Store the sign-bits (which are most significant)
10638 low_bits = sign_bits;
10644 high_bits = sign_bits;
10646 bfd_put_32 (input_bfd, low_bits,
10647 contents + rel->r_offset);
10648 bfd_put_32 (input_bfd, high_bits,
10649 contents + rel->r_offset + 4);
10653 /* Actually perform the relocation. */
10654 if (! mips_elf_perform_relocation (info, howto, rel, value,
10655 input_bfd, input_section,
10656 contents, cross_mode_jump_p))
10663 /* A function that iterates over each entry in la25_stubs and fills
10664 in the code for each one. DATA points to a mips_htab_traverse_info. */
10667 mips_elf_create_la25_stub (void **slot, void *data)
10669 struct mips_htab_traverse_info *hti;
10670 struct mips_elf_link_hash_table *htab;
10671 struct mips_elf_la25_stub *stub;
10674 bfd_vma offset, target, target_high, target_low;
10676 bfd_signed_vma pcrel_offset = 0;
10678 stub = (struct mips_elf_la25_stub *) *slot;
10679 hti = (struct mips_htab_traverse_info *) data;
10680 htab = mips_elf_hash_table (hti->info);
10681 BFD_ASSERT (htab != NULL);
10683 /* Create the section contents, if we haven't already. */
10684 s = stub->stub_section;
10688 loc = bfd_malloc (s->size);
10697 /* Work out where in the section this stub should go. */
10698 offset = stub->offset;
10700 /* We add 8 here to account for the LUI/ADDIU instructions
10701 before the branch instruction. This cannot be moved down to
10702 where pcrel_offset is calculated as 's' is updated in
10703 mips_elf_get_la25_target. */
10704 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10706 /* Work out the target address. */
10707 target = mips_elf_get_la25_target (stub, &s);
10708 target += s->output_section->vma + s->output_offset;
10710 target_high = ((target + 0x8000) >> 16) & 0xffff;
10711 target_low = (target & 0xffff);
10713 /* Calculate the PC of the compact branch instruction (for the case where
10714 compact branches are used for either microMIPSR6 or MIPSR6 with
10715 compact branches. Add 4-bytes to account for BC using the PC of the
10716 next instruction as the base. */
10717 pcrel_offset = target - (branch_pc + 4);
10719 if (stub->stub_section != htab->strampoline)
10721 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10722 of the section and write the two instructions at the end. */
10723 memset (loc, 0, offset);
10725 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10727 bfd_put_micromips_32 (hti->output_bfd,
10728 LA25_LUI_MICROMIPS (target_high),
10730 bfd_put_micromips_32 (hti->output_bfd,
10731 LA25_ADDIU_MICROMIPS (target_low),
10736 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10737 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10742 /* This is trampoline. */
10744 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10746 bfd_put_micromips_32 (hti->output_bfd,
10747 LA25_LUI_MICROMIPS (target_high), loc);
10748 bfd_put_micromips_32 (hti->output_bfd,
10749 LA25_J_MICROMIPS (target), loc + 4);
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10752 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10756 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10757 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10759 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10760 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10764 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10765 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10767 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10773 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10774 adjust it appropriately now. */
10777 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10778 const char *name, Elf_Internal_Sym *sym)
10780 /* The linker script takes care of providing names and values for
10781 these, but we must place them into the right sections. */
10782 static const char* const text_section_symbols[] = {
10785 "__dso_displacement",
10787 "__program_header_table",
10791 static const char* const data_section_symbols[] = {
10799 const char* const *p;
10802 for (i = 0; i < 2; ++i)
10803 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10806 if (strcmp (*p, name) == 0)
10808 /* All of these symbols are given type STT_SECTION by the
10810 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10811 sym->st_other = STO_PROTECTED;
10813 /* The IRIX linker puts these symbols in special sections. */
10815 sym->st_shndx = SHN_MIPS_TEXT;
10817 sym->st_shndx = SHN_MIPS_DATA;
10823 /* Finish up dynamic symbol handling. We set the contents of various
10824 dynamic sections here. */
10827 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10828 struct bfd_link_info *info,
10829 struct elf_link_hash_entry *h,
10830 Elf_Internal_Sym *sym)
10834 struct mips_got_info *g, *gg;
10837 struct mips_elf_link_hash_table *htab;
10838 struct mips_elf_link_hash_entry *hmips;
10840 htab = mips_elf_hash_table (info);
10841 BFD_ASSERT (htab != NULL);
10842 dynobj = elf_hash_table (info)->dynobj;
10843 hmips = (struct mips_elf_link_hash_entry *) h;
10845 BFD_ASSERT (!htab->is_vxworks);
10847 if (h->plt.plist != NULL
10848 && (h->plt.plist->mips_offset != MINUS_ONE
10849 || h->plt.plist->comp_offset != MINUS_ONE))
10851 /* We've decided to create a PLT entry for this symbol. */
10853 bfd_vma header_address, got_address;
10854 bfd_vma got_address_high, got_address_low, load;
10858 got_index = h->plt.plist->gotplt_index;
10860 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10861 BFD_ASSERT (h->dynindx != -1);
10862 BFD_ASSERT (htab->root.splt != NULL);
10863 BFD_ASSERT (got_index != MINUS_ONE);
10864 BFD_ASSERT (!h->def_regular);
10866 /* Calculate the address of the PLT header. */
10867 isa_bit = htab->plt_header_is_comp;
10868 header_address = (htab->root.splt->output_section->vma
10869 + htab->root.splt->output_offset + isa_bit);
10871 /* Calculate the address of the .got.plt entry. */
10872 got_address = (htab->root.sgotplt->output_section->vma
10873 + htab->root.sgotplt->output_offset
10874 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10876 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10877 got_address_low = got_address & 0xffff;
10879 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10880 cannot be loaded in two instructions. */
10881 if (ABI_64_P (output_bfd)
10882 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10885 /* xgettext:c-format */
10886 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10887 "supported; consider using `-Ttext-segment=...'"),
10889 htab->root.sgotplt->output_section,
10890 (int64_t) got_address);
10891 bfd_set_error (bfd_error_no_error);
10895 /* Initially point the .got.plt entry at the PLT header. */
10896 loc = (htab->root.sgotplt->contents
10897 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10898 if (ABI_64_P (output_bfd))
10899 bfd_put_64 (output_bfd, header_address, loc);
10901 bfd_put_32 (output_bfd, header_address, loc);
10903 /* Now handle the PLT itself. First the standard entry (the order
10904 does not matter, we just have to pick one). */
10905 if (h->plt.plist->mips_offset != MINUS_ONE)
10907 const bfd_vma *plt_entry;
10908 bfd_vma plt_offset;
10910 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10912 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10914 /* Find out where the .plt entry should go. */
10915 loc = htab->root.splt->contents + plt_offset;
10917 /* Pick the load opcode. */
10918 load = MIPS_ELF_LOAD_WORD (output_bfd);
10920 /* Fill in the PLT entry itself. */
10922 if (MIPSR6_P (output_bfd))
10923 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10924 : mipsr6_exec_plt_entry;
10926 plt_entry = mips_exec_plt_entry;
10927 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10928 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10931 if (! LOAD_INTERLOCKS_P (output_bfd)
10932 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10934 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10935 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10939 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10940 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10945 /* Now the compressed entry. They come after any standard ones. */
10946 if (h->plt.plist->comp_offset != MINUS_ONE)
10948 bfd_vma plt_offset;
10950 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10951 + h->plt.plist->comp_offset);
10953 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10955 /* Find out where the .plt entry should go. */
10956 loc = htab->root.splt->contents + plt_offset;
10958 /* Fill in the PLT entry itself. */
10959 if (!MICROMIPS_P (output_bfd))
10961 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10963 bfd_put_16 (output_bfd, plt_entry[0], loc);
10964 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10965 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10966 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10967 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10968 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10969 bfd_put_32 (output_bfd, got_address, loc + 12);
10971 else if (htab->insn32)
10973 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10975 bfd_put_16 (output_bfd, plt_entry[0], loc);
10976 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10977 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10978 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10979 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10980 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10981 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10982 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10986 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10987 bfd_signed_vma gotpc_offset;
10988 bfd_vma loc_address;
10990 BFD_ASSERT (got_address % 4 == 0);
10992 loc_address = (htab->root.splt->output_section->vma
10993 + htab->root.splt->output_offset + plt_offset);
10994 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10996 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10997 if (gotpc_offset + 0x1000000 >= 0x2000000)
11000 /* xgettext:c-format */
11001 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11002 "beyond the range of ADDIUPC"),
11004 htab->root.sgotplt->output_section,
11005 (int64_t) gotpc_offset,
11006 htab->root.splt->output_section);
11007 bfd_set_error (bfd_error_no_error);
11010 bfd_put_16 (output_bfd,
11011 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11012 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11013 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11014 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11015 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11016 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11020 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11021 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11022 got_index - 2, h->dynindx,
11023 R_MIPS_JUMP_SLOT, got_address);
11025 /* We distinguish between PLT entries and lazy-binding stubs by
11026 giving the former an st_other value of STO_MIPS_PLT. Set the
11027 flag and leave the value if there are any relocations in the
11028 binary where pointer equality matters. */
11029 sym->st_shndx = SHN_UNDEF;
11030 if (h->pointer_equality_needed)
11031 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11039 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11041 /* We've decided to create a lazy-binding stub. */
11042 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11043 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11044 bfd_vma stub_size = htab->function_stub_size;
11045 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11046 bfd_vma isa_bit = micromips_p;
11047 bfd_vma stub_big_size;
11050 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11051 else if (htab->insn32)
11052 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11054 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11056 /* This symbol has a stub. Set it up. */
11058 BFD_ASSERT (h->dynindx != -1);
11060 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11062 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11063 sign extension at runtime in the stub, resulting in a negative
11065 if (h->dynindx & ~0x7fffffff)
11068 /* Fill the stub. */
11072 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11077 bfd_put_micromips_32 (output_bfd,
11078 STUB_MOVE32_MICROMIPS, stub + idx);
11083 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11086 if (stub_size == stub_big_size)
11088 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11090 bfd_put_micromips_32 (output_bfd,
11091 STUB_LUI_MICROMIPS (dynindx_hi),
11097 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11103 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11107 /* If a large stub is not required and sign extension is not a
11108 problem, then use legacy code in the stub. */
11109 if (stub_size == stub_big_size)
11110 bfd_put_micromips_32 (output_bfd,
11111 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11113 else if (h->dynindx & ~0x7fff)
11114 bfd_put_micromips_32 (output_bfd,
11115 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11118 bfd_put_micromips_32 (output_bfd,
11119 STUB_LI16S_MICROMIPS (output_bfd,
11126 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11128 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11130 if (stub_size == stub_big_size)
11132 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11137 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11139 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11143 /* If a large stub is not required and sign extension is not a
11144 problem, then use legacy code in the stub. */
11145 if (stub_size == stub_big_size)
11146 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11148 else if (h->dynindx & ~0x7fff)
11149 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11152 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11156 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11157 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11160 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11161 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11164 /* Mark the symbol as undefined. stub_offset != -1 occurs
11165 only for the referenced symbol. */
11166 sym->st_shndx = SHN_UNDEF;
11168 /* The run-time linker uses the st_value field of the symbol
11169 to reset the global offset table entry for this external
11170 to its stub address when unlinking a shared object. */
11171 sym->st_value = (htab->sstubs->output_section->vma
11172 + htab->sstubs->output_offset
11173 + h->plt.plist->stub_offset
11175 sym->st_other = other;
11178 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11179 refer to the stub, since only the stub uses the standard calling
11181 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11183 BFD_ASSERT (hmips->need_fn_stub);
11184 sym->st_value = (hmips->fn_stub->output_section->vma
11185 + hmips->fn_stub->output_offset);
11186 sym->st_size = hmips->fn_stub->size;
11187 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11190 BFD_ASSERT (h->dynindx != -1
11191 || h->forced_local);
11193 sgot = htab->root.sgot;
11194 g = htab->got_info;
11195 BFD_ASSERT (g != NULL);
11197 /* Run through the global symbol table, creating GOT entries for all
11198 the symbols that need them. */
11199 if (hmips->global_got_area != GGA_NONE)
11204 value = sym->st_value;
11205 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11206 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11209 if (hmips->global_got_area != GGA_NONE && g->next)
11211 struct mips_got_entry e, *p;
11217 e.abfd = output_bfd;
11220 e.tls_type = GOT_TLS_NONE;
11222 for (g = g->next; g->next != gg; g = g->next)
11225 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11228 offset = p->gotidx;
11229 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11230 if (bfd_link_pic (info)
11231 || (elf_hash_table (info)->dynamic_sections_created
11233 && p->d.h->root.def_dynamic
11234 && !p->d.h->root.def_regular))
11236 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11237 the various compatibility problems, it's easier to mock
11238 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11239 mips_elf_create_dynamic_relocation to calculate the
11240 appropriate addend. */
11241 Elf_Internal_Rela rel[3];
11243 memset (rel, 0, sizeof (rel));
11244 if (ABI_64_P (output_bfd))
11245 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11247 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11248 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11251 if (! (mips_elf_create_dynamic_relocation
11252 (output_bfd, info, rel,
11253 e.d.h, NULL, sym->st_value, &entry, sgot)))
11257 entry = sym->st_value;
11258 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11263 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11264 name = h->root.root.string;
11265 if (h == elf_hash_table (info)->hdynamic
11266 || h == elf_hash_table (info)->hgot)
11267 sym->st_shndx = SHN_ABS;
11268 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11269 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11271 sym->st_shndx = SHN_ABS;
11272 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11275 else if (SGI_COMPAT (output_bfd))
11277 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11278 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11280 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11281 sym->st_other = STO_PROTECTED;
11283 sym->st_shndx = SHN_MIPS_DATA;
11285 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11287 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11288 sym->st_other = STO_PROTECTED;
11289 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11290 sym->st_shndx = SHN_ABS;
11292 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11294 if (h->type == STT_FUNC)
11295 sym->st_shndx = SHN_MIPS_TEXT;
11296 else if (h->type == STT_OBJECT)
11297 sym->st_shndx = SHN_MIPS_DATA;
11301 /* Emit a copy reloc, if needed. */
11307 BFD_ASSERT (h->dynindx != -1);
11308 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11310 s = mips_elf_rel_dyn_section (info, FALSE);
11311 symval = (h->root.u.def.section->output_section->vma
11312 + h->root.u.def.section->output_offset
11313 + h->root.u.def.value);
11314 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11315 h->dynindx, R_MIPS_COPY, symval);
11318 /* Handle the IRIX6-specific symbols. */
11319 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11320 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11322 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11323 to treat compressed symbols like any other. */
11324 if (ELF_ST_IS_MIPS16 (sym->st_other))
11326 BFD_ASSERT (sym->st_value & 1);
11327 sym->st_other -= STO_MIPS16;
11329 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11331 BFD_ASSERT (sym->st_value & 1);
11332 sym->st_other -= STO_MICROMIPS;
11338 /* Likewise, for VxWorks. */
11341 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11342 struct bfd_link_info *info,
11343 struct elf_link_hash_entry *h,
11344 Elf_Internal_Sym *sym)
11348 struct mips_got_info *g;
11349 struct mips_elf_link_hash_table *htab;
11350 struct mips_elf_link_hash_entry *hmips;
11352 htab = mips_elf_hash_table (info);
11353 BFD_ASSERT (htab != NULL);
11354 dynobj = elf_hash_table (info)->dynobj;
11355 hmips = (struct mips_elf_link_hash_entry *) h;
11357 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11360 bfd_vma plt_address, got_address, got_offset, branch_offset;
11361 Elf_Internal_Rela rel;
11362 static const bfd_vma *plt_entry;
11363 bfd_vma gotplt_index;
11364 bfd_vma plt_offset;
11366 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11367 gotplt_index = h->plt.plist->gotplt_index;
11369 BFD_ASSERT (h->dynindx != -1);
11370 BFD_ASSERT (htab->root.splt != NULL);
11371 BFD_ASSERT (gotplt_index != MINUS_ONE);
11372 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11374 /* Calculate the address of the .plt entry. */
11375 plt_address = (htab->root.splt->output_section->vma
11376 + htab->root.splt->output_offset
11379 /* Calculate the address of the .got.plt entry. */
11380 got_address = (htab->root.sgotplt->output_section->vma
11381 + htab->root.sgotplt->output_offset
11382 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11384 /* Calculate the offset of the .got.plt entry from
11385 _GLOBAL_OFFSET_TABLE_. */
11386 got_offset = mips_elf_gotplt_index (info, h);
11388 /* Calculate the offset for the branch at the start of the PLT
11389 entry. The branch jumps to the beginning of .plt. */
11390 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11392 /* Fill in the initial value of the .got.plt entry. */
11393 bfd_put_32 (output_bfd, plt_address,
11394 (htab->root.sgotplt->contents
11395 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11397 /* Find out where the .plt entry should go. */
11398 loc = htab->root.splt->contents + plt_offset;
11400 if (bfd_link_pic (info))
11402 plt_entry = mips_vxworks_shared_plt_entry;
11403 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11404 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11408 bfd_vma got_address_high, got_address_low;
11410 plt_entry = mips_vxworks_exec_plt_entry;
11411 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11412 got_address_low = got_address & 0xffff;
11414 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11415 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11416 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11417 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11418 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11419 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11420 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11421 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11423 loc = (htab->srelplt2->contents
11424 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11426 /* Emit a relocation for the .got.plt entry. */
11427 rel.r_offset = got_address;
11428 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11429 rel.r_addend = plt_offset;
11430 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11432 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11433 loc += sizeof (Elf32_External_Rela);
11434 rel.r_offset = plt_address + 8;
11435 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11436 rel.r_addend = got_offset;
11437 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11439 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11440 loc += sizeof (Elf32_External_Rela);
11442 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11443 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11446 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11447 loc = (htab->root.srelplt->contents
11448 + gotplt_index * sizeof (Elf32_External_Rela));
11449 rel.r_offset = got_address;
11450 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11452 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11454 if (!h->def_regular)
11455 sym->st_shndx = SHN_UNDEF;
11458 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11460 sgot = htab->root.sgot;
11461 g = htab->got_info;
11462 BFD_ASSERT (g != NULL);
11464 /* See if this symbol has an entry in the GOT. */
11465 if (hmips->global_got_area != GGA_NONE)
11468 Elf_Internal_Rela outrel;
11472 /* Install the symbol value in the GOT. */
11473 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11474 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11476 /* Add a dynamic relocation for it. */
11477 s = mips_elf_rel_dyn_section (info, FALSE);
11478 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11479 outrel.r_offset = (sgot->output_section->vma
11480 + sgot->output_offset
11482 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11483 outrel.r_addend = 0;
11484 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11487 /* Emit a copy reloc, if needed. */
11490 Elf_Internal_Rela rel;
11494 BFD_ASSERT (h->dynindx != -1);
11496 rel.r_offset = (h->root.u.def.section->output_section->vma
11497 + h->root.u.def.section->output_offset
11498 + h->root.u.def.value);
11499 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11501 if (h->root.u.def.section == htab->root.sdynrelro)
11502 srel = htab->root.sreldynrelro;
11504 srel = htab->root.srelbss;
11505 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11507 ++srel->reloc_count;
11510 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11512 sym->st_value &= ~1;
11517 /* Write out a plt0 entry to the beginning of .plt. */
11520 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11523 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11524 static const bfd_vma *plt_entry;
11525 struct mips_elf_link_hash_table *htab;
11527 htab = mips_elf_hash_table (info);
11528 BFD_ASSERT (htab != NULL);
11530 if (ABI_64_P (output_bfd))
11531 plt_entry = (htab->compact_branches
11532 ? mipsr6_n64_exec_plt0_entry_compact
11533 : mips_n64_exec_plt0_entry);
11534 else if (ABI_N32_P (output_bfd))
11535 plt_entry = (htab->compact_branches
11536 ? mipsr6_n32_exec_plt0_entry_compact
11537 : mips_n32_exec_plt0_entry);
11538 else if (!htab->plt_header_is_comp)
11539 plt_entry = (htab->compact_branches
11540 ? mipsr6_o32_exec_plt0_entry_compact
11541 : mips_o32_exec_plt0_entry);
11542 else if (htab->insn32)
11543 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11545 plt_entry = micromips_o32_exec_plt0_entry;
11547 /* Calculate the value of .got.plt. */
11548 gotplt_value = (htab->root.sgotplt->output_section->vma
11549 + htab->root.sgotplt->output_offset);
11550 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11551 gotplt_value_low = gotplt_value & 0xffff;
11553 /* The PLT sequence is not safe for N64 if .got.plt's address can
11554 not be loaded in two instructions. */
11555 if (ABI_64_P (output_bfd)
11556 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11559 /* xgettext:c-format */
11560 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11561 "supported; consider using `-Ttext-segment=...'"),
11563 htab->root.sgotplt->output_section,
11564 (int64_t) gotplt_value);
11565 bfd_set_error (bfd_error_no_error);
11569 /* Install the PLT header. */
11570 loc = htab->root.splt->contents;
11571 if (plt_entry == micromips_o32_exec_plt0_entry)
11573 bfd_vma gotpc_offset;
11574 bfd_vma loc_address;
11577 BFD_ASSERT (gotplt_value % 4 == 0);
11579 loc_address = (htab->root.splt->output_section->vma
11580 + htab->root.splt->output_offset);
11581 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11583 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11584 if (gotpc_offset + 0x1000000 >= 0x2000000)
11587 /* xgettext:c-format */
11588 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11589 "beyond the range of ADDIUPC"),
11591 htab->root.sgotplt->output_section,
11592 (int64_t) gotpc_offset,
11593 htab->root.splt->output_section);
11594 bfd_set_error (bfd_error_no_error);
11597 bfd_put_16 (output_bfd,
11598 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11599 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11600 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11601 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11603 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11607 bfd_put_16 (output_bfd, plt_entry[0], loc);
11608 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11609 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11610 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11611 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11612 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11613 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11614 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11618 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11619 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11620 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11621 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11622 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11623 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11624 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11625 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11631 /* Install the PLT header for a VxWorks executable and finalize the
11632 contents of .rela.plt.unloaded. */
11635 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11637 Elf_Internal_Rela rela;
11639 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11640 static const bfd_vma *plt_entry;
11641 struct mips_elf_link_hash_table *htab;
11643 htab = mips_elf_hash_table (info);
11644 BFD_ASSERT (htab != NULL);
11646 plt_entry = mips_vxworks_exec_plt0_entry;
11648 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11649 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11650 + htab->root.hgot->root.u.def.section->output_offset
11651 + htab->root.hgot->root.u.def.value);
11653 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11654 got_value_low = got_value & 0xffff;
11656 /* Calculate the address of the PLT header. */
11657 plt_address = (htab->root.splt->output_section->vma
11658 + htab->root.splt->output_offset);
11660 /* Install the PLT header. */
11661 loc = htab->root.splt->contents;
11662 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11663 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11664 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11665 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11666 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11667 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11669 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11670 loc = htab->srelplt2->contents;
11671 rela.r_offset = plt_address;
11672 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11674 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11675 loc += sizeof (Elf32_External_Rela);
11677 /* Output the relocation for the following addiu of
11678 %lo(_GLOBAL_OFFSET_TABLE_). */
11679 rela.r_offset += 4;
11680 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11681 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11682 loc += sizeof (Elf32_External_Rela);
11684 /* Fix up the remaining relocations. They may have the wrong
11685 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11686 in which symbols were output. */
11687 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11689 Elf_Internal_Rela rel;
11691 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11692 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11693 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11694 loc += sizeof (Elf32_External_Rela);
11696 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11697 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11698 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11699 loc += sizeof (Elf32_External_Rela);
11701 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11702 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11703 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11704 loc += sizeof (Elf32_External_Rela);
11708 /* Install the PLT header for a VxWorks shared library. */
11711 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11714 struct mips_elf_link_hash_table *htab;
11716 htab = mips_elf_hash_table (info);
11717 BFD_ASSERT (htab != NULL);
11719 /* We just need to copy the entry byte-by-byte. */
11720 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11721 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11722 htab->root.splt->contents + i * 4);
11725 /* Finish up the dynamic sections. */
11728 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11729 struct bfd_link_info *info)
11734 struct mips_got_info *gg, *g;
11735 struct mips_elf_link_hash_table *htab;
11737 htab = mips_elf_hash_table (info);
11738 BFD_ASSERT (htab != NULL);
11740 dynobj = elf_hash_table (info)->dynobj;
11742 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11744 sgot = htab->root.sgot;
11745 gg = htab->got_info;
11747 if (elf_hash_table (info)->dynamic_sections_created)
11750 int dyn_to_skip = 0, dyn_skipped = 0;
11752 BFD_ASSERT (sdyn != NULL);
11753 BFD_ASSERT (gg != NULL);
11755 g = mips_elf_bfd_got (output_bfd, FALSE);
11756 BFD_ASSERT (g != NULL);
11758 for (b = sdyn->contents;
11759 b < sdyn->contents + sdyn->size;
11760 b += MIPS_ELF_DYN_SIZE (dynobj))
11762 Elf_Internal_Dyn dyn;
11766 bfd_boolean swap_out_p;
11768 /* Read in the current dynamic entry. */
11769 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11771 /* Assume that we're going to modify it and write it out. */
11777 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11781 BFD_ASSERT (htab->is_vxworks);
11782 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11786 /* Rewrite DT_STRSZ. */
11788 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11792 s = htab->root.sgot;
11793 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11796 case DT_MIPS_PLTGOT:
11797 s = htab->root.sgotplt;
11798 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11801 case DT_MIPS_RLD_VERSION:
11802 dyn.d_un.d_val = 1; /* XXX */
11805 case DT_MIPS_FLAGS:
11806 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11809 case DT_MIPS_TIME_STAMP:
11813 dyn.d_un.d_val = t;
11817 case DT_MIPS_ICHECKSUM:
11819 swap_out_p = FALSE;
11822 case DT_MIPS_IVERSION:
11824 swap_out_p = FALSE;
11827 case DT_MIPS_BASE_ADDRESS:
11828 s = output_bfd->sections;
11829 BFD_ASSERT (s != NULL);
11830 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11833 case DT_MIPS_LOCAL_GOTNO:
11834 dyn.d_un.d_val = g->local_gotno;
11837 case DT_MIPS_UNREFEXTNO:
11838 /* The index into the dynamic symbol table which is the
11839 entry of the first external symbol that is not
11840 referenced within the same object. */
11841 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11844 case DT_MIPS_GOTSYM:
11845 if (htab->global_gotsym)
11847 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11850 /* In case if we don't have global got symbols we default
11851 to setting DT_MIPS_GOTSYM to the same value as
11852 DT_MIPS_SYMTABNO. */
11853 /* Fall through. */
11855 case DT_MIPS_SYMTABNO:
11857 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11858 s = bfd_get_linker_section (dynobj, name);
11861 dyn.d_un.d_val = s->size / elemsize;
11863 dyn.d_un.d_val = 0;
11866 case DT_MIPS_HIPAGENO:
11867 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11870 case DT_MIPS_RLD_MAP:
11872 struct elf_link_hash_entry *h;
11873 h = mips_elf_hash_table (info)->rld_symbol;
11876 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11877 swap_out_p = FALSE;
11880 s = h->root.u.def.section;
11882 /* The MIPS_RLD_MAP tag stores the absolute address of the
11884 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11885 + h->root.u.def.value);
11889 case DT_MIPS_RLD_MAP_REL:
11891 struct elf_link_hash_entry *h;
11892 bfd_vma dt_addr, rld_addr;
11893 h = mips_elf_hash_table (info)->rld_symbol;
11896 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11897 swap_out_p = FALSE;
11900 s = h->root.u.def.section;
11902 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11903 pointer, relative to the address of the tag. */
11904 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11905 + (b - sdyn->contents));
11906 rld_addr = (s->output_section->vma + s->output_offset
11907 + h->root.u.def.value);
11908 dyn.d_un.d_ptr = rld_addr - dt_addr;
11912 case DT_MIPS_OPTIONS:
11913 s = (bfd_get_section_by_name
11914 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11915 dyn.d_un.d_ptr = s->vma;
11919 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11920 if (htab->is_vxworks)
11921 dyn.d_un.d_val = DT_RELA;
11923 dyn.d_un.d_val = DT_REL;
11927 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11928 dyn.d_un.d_val = htab->root.srelplt->size;
11932 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11933 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11934 + htab->root.srelplt->output_offset);
11938 /* If we didn't need any text relocations after all, delete
11939 the dynamic tag. */
11940 if (!(info->flags & DF_TEXTREL))
11942 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11943 swap_out_p = FALSE;
11948 /* If we didn't need any text relocations after all, clear
11949 DF_TEXTREL from DT_FLAGS. */
11950 if (!(info->flags & DF_TEXTREL))
11951 dyn.d_un.d_val &= ~DF_TEXTREL;
11953 swap_out_p = FALSE;
11957 swap_out_p = FALSE;
11958 if (htab->is_vxworks
11959 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11964 if (swap_out_p || dyn_skipped)
11965 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11966 (dynobj, &dyn, b - dyn_skipped);
11970 dyn_skipped += dyn_to_skip;
11975 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11976 if (dyn_skipped > 0)
11977 memset (b - dyn_skipped, 0, dyn_skipped);
11980 if (sgot != NULL && sgot->size > 0
11981 && !bfd_is_abs_section (sgot->output_section))
11983 if (htab->is_vxworks)
11985 /* The first entry of the global offset table points to the
11986 ".dynamic" section. The second is initialized by the
11987 loader and contains the shared library identifier.
11988 The third is also initialized by the loader and points
11989 to the lazy resolution stub. */
11990 MIPS_ELF_PUT_WORD (output_bfd,
11991 sdyn->output_offset + sdyn->output_section->vma,
11993 MIPS_ELF_PUT_WORD (output_bfd, 0,
11994 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11995 MIPS_ELF_PUT_WORD (output_bfd, 0,
11997 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12001 /* The first entry of the global offset table will be filled at
12002 runtime. The second entry will be used by some runtime loaders.
12003 This isn't the case of IRIX rld. */
12004 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12005 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12006 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12009 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12010 = MIPS_ELF_GOT_SIZE (output_bfd);
12013 /* Generate dynamic relocations for the non-primary gots. */
12014 if (gg != NULL && gg->next)
12016 Elf_Internal_Rela rel[3];
12017 bfd_vma addend = 0;
12019 memset (rel, 0, sizeof (rel));
12020 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12022 for (g = gg->next; g->next != gg; g = g->next)
12024 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12025 + g->next->tls_gotno;
12027 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12028 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12029 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12031 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12033 if (! bfd_link_pic (info))
12036 for (; got_index < g->local_gotno; got_index++)
12038 if (got_index >= g->assigned_low_gotno
12039 && got_index <= g->assigned_high_gotno)
12042 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12043 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12044 if (!(mips_elf_create_dynamic_relocation
12045 (output_bfd, info, rel, NULL,
12046 bfd_abs_section_ptr,
12047 0, &addend, sgot)))
12049 BFD_ASSERT (addend == 0);
12054 /* The generation of dynamic relocations for the non-primary gots
12055 adds more dynamic relocations. We cannot count them until
12058 if (elf_hash_table (info)->dynamic_sections_created)
12061 bfd_boolean swap_out_p;
12063 BFD_ASSERT (sdyn != NULL);
12065 for (b = sdyn->contents;
12066 b < sdyn->contents + sdyn->size;
12067 b += MIPS_ELF_DYN_SIZE (dynobj))
12069 Elf_Internal_Dyn dyn;
12072 /* Read in the current dynamic entry. */
12073 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12075 /* Assume that we're going to modify it and write it out. */
12081 /* Reduce DT_RELSZ to account for any relocations we
12082 decided not to make. This is for the n64 irix rld,
12083 which doesn't seem to apply any relocations if there
12084 are trailing null entries. */
12085 s = mips_elf_rel_dyn_section (info, FALSE);
12086 dyn.d_un.d_val = (s->reloc_count
12087 * (ABI_64_P (output_bfd)
12088 ? sizeof (Elf64_Mips_External_Rel)
12089 : sizeof (Elf32_External_Rel)));
12090 /* Adjust the section size too. Tools like the prelinker
12091 can reasonably expect the values to the same. */
12092 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12093 elf_section_data (s->output_section)->this_hdr.sh_size
12098 swap_out_p = FALSE;
12103 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12110 Elf32_compact_rel cpt;
12112 if (SGI_COMPAT (output_bfd))
12114 /* Write .compact_rel section out. */
12115 s = bfd_get_linker_section (dynobj, ".compact_rel");
12119 cpt.num = s->reloc_count;
12121 cpt.offset = (s->output_section->filepos
12122 + sizeof (Elf32_External_compact_rel));
12125 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12126 ((Elf32_External_compact_rel *)
12129 /* Clean up a dummy stub function entry in .text. */
12130 if (htab->sstubs != NULL)
12132 file_ptr dummy_offset;
12134 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12135 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12136 memset (htab->sstubs->contents + dummy_offset, 0,
12137 htab->function_stub_size);
12142 /* The psABI says that the dynamic relocations must be sorted in
12143 increasing order of r_symndx. The VxWorks EABI doesn't require
12144 this, and because the code below handles REL rather than RELA
12145 relocations, using it for VxWorks would be outright harmful. */
12146 if (!htab->is_vxworks)
12148 s = mips_elf_rel_dyn_section (info, FALSE);
12150 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12152 reldyn_sorting_bfd = output_bfd;
12154 if (ABI_64_P (output_bfd))
12155 qsort ((Elf64_External_Rel *) s->contents + 1,
12156 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12157 sort_dynamic_relocs_64);
12159 qsort ((Elf32_External_Rel *) s->contents + 1,
12160 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12161 sort_dynamic_relocs);
12166 if (htab->root.splt && htab->root.splt->size > 0)
12168 if (htab->is_vxworks)
12170 if (bfd_link_pic (info))
12171 mips_vxworks_finish_shared_plt (output_bfd, info);
12173 mips_vxworks_finish_exec_plt (output_bfd, info);
12177 BFD_ASSERT (!bfd_link_pic (info));
12178 if (!mips_finish_exec_plt (output_bfd, info))
12186 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12189 mips_set_isa_flags (bfd *abfd)
12193 switch (bfd_get_mach (abfd))
12196 case bfd_mach_mips3000:
12197 val = E_MIPS_ARCH_1;
12200 case bfd_mach_mips3900:
12201 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12204 case bfd_mach_mips6000:
12205 val = E_MIPS_ARCH_2;
12208 case bfd_mach_mips4010:
12209 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12212 case bfd_mach_mips4000:
12213 case bfd_mach_mips4300:
12214 case bfd_mach_mips4400:
12215 case bfd_mach_mips4600:
12216 val = E_MIPS_ARCH_3;
12219 case bfd_mach_mips4100:
12220 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12223 case bfd_mach_mips4111:
12224 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12227 case bfd_mach_mips4120:
12228 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12231 case bfd_mach_mips4650:
12232 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12235 case bfd_mach_mips5400:
12236 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12239 case bfd_mach_mips5500:
12240 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12243 case bfd_mach_mips5900:
12244 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12247 case bfd_mach_mips9000:
12248 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12251 case bfd_mach_mips5000:
12252 case bfd_mach_mips7000:
12253 case bfd_mach_mips8000:
12254 case bfd_mach_mips10000:
12255 case bfd_mach_mips12000:
12256 case bfd_mach_mips14000:
12257 case bfd_mach_mips16000:
12258 val = E_MIPS_ARCH_4;
12261 case bfd_mach_mips5:
12262 val = E_MIPS_ARCH_5;
12265 case bfd_mach_mips_loongson_2e:
12266 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12269 case bfd_mach_mips_loongson_2f:
12270 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12273 case bfd_mach_mips_sb1:
12274 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12277 case bfd_mach_mips_gs464:
12278 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12281 case bfd_mach_mips_gs464e:
12282 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12285 case bfd_mach_mips_gs264e:
12286 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12289 case bfd_mach_mips_octeon:
12290 case bfd_mach_mips_octeonp:
12291 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12294 case bfd_mach_mips_octeon3:
12295 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12298 case bfd_mach_mips_xlr:
12299 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12302 case bfd_mach_mips_octeon2:
12303 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12306 case bfd_mach_mipsisa32:
12307 val = E_MIPS_ARCH_32;
12310 case bfd_mach_mipsisa64:
12311 val = E_MIPS_ARCH_64;
12314 case bfd_mach_mipsisa32r2:
12315 case bfd_mach_mipsisa32r3:
12316 case bfd_mach_mipsisa32r5:
12317 val = E_MIPS_ARCH_32R2;
12320 case bfd_mach_mips_interaptiv_mr2:
12321 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12324 case bfd_mach_mipsisa64r2:
12325 case bfd_mach_mipsisa64r3:
12326 case bfd_mach_mipsisa64r5:
12327 val = E_MIPS_ARCH_64R2;
12330 case bfd_mach_mipsisa32r6:
12331 val = E_MIPS_ARCH_32R6;
12334 case bfd_mach_mipsisa64r6:
12335 val = E_MIPS_ARCH_64R6;
12338 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12339 elf_elfheader (abfd)->e_flags |= val;
12344 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12345 Don't do so for code sections. We want to keep ordering of HI16/LO16
12346 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12347 relocs to be sorted. */
12350 _bfd_mips_elf_sort_relocs_p (asection *sec)
12352 return (sec->flags & SEC_CODE) == 0;
12356 /* The final processing done just before writing out a MIPS ELF object
12357 file. This gets the MIPS architecture right based on the machine
12358 number. This is used by both the 32-bit and the 64-bit ABI. */
12361 _bfd_mips_elf_final_write_processing (bfd *abfd,
12362 bfd_boolean linker ATTRIBUTE_UNUSED)
12365 Elf_Internal_Shdr **hdrpp;
12369 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12370 is nonzero. This is for compatibility with old objects, which used
12371 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12372 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12373 mips_set_isa_flags (abfd);
12375 /* Set the sh_info field for .gptab sections and other appropriate
12376 info for each special section. */
12377 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12378 i < elf_numsections (abfd);
12381 switch ((*hdrpp)->sh_type)
12383 case SHT_MIPS_MSYM:
12384 case SHT_MIPS_LIBLIST:
12385 sec = bfd_get_section_by_name (abfd, ".dynstr");
12387 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12390 case SHT_MIPS_GPTAB:
12391 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12392 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12393 BFD_ASSERT (name != NULL
12394 && CONST_STRNEQ (name, ".gptab."));
12395 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12396 BFD_ASSERT (sec != NULL);
12397 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12400 case SHT_MIPS_CONTENT:
12401 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12402 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12403 BFD_ASSERT (name != NULL
12404 && CONST_STRNEQ (name, ".MIPS.content"));
12405 sec = bfd_get_section_by_name (abfd,
12406 name + sizeof ".MIPS.content" - 1);
12407 BFD_ASSERT (sec != NULL);
12408 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12411 case SHT_MIPS_SYMBOL_LIB:
12412 sec = bfd_get_section_by_name (abfd, ".dynsym");
12414 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12415 sec = bfd_get_section_by_name (abfd, ".liblist");
12417 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12420 case SHT_MIPS_EVENTS:
12421 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12422 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12423 BFD_ASSERT (name != NULL);
12424 if (CONST_STRNEQ (name, ".MIPS.events"))
12425 sec = bfd_get_section_by_name (abfd,
12426 name + sizeof ".MIPS.events" - 1);
12429 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12430 sec = bfd_get_section_by_name (abfd,
12432 + sizeof ".MIPS.post_rel" - 1));
12434 BFD_ASSERT (sec != NULL);
12435 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12442 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12446 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12447 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12452 /* See if we need a PT_MIPS_REGINFO segment. */
12453 s = bfd_get_section_by_name (abfd, ".reginfo");
12454 if (s && (s->flags & SEC_LOAD))
12457 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12458 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12461 /* See if we need a PT_MIPS_OPTIONS segment. */
12462 if (IRIX_COMPAT (abfd) == ict_irix6
12463 && bfd_get_section_by_name (abfd,
12464 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12467 /* See if we need a PT_MIPS_RTPROC segment. */
12468 if (IRIX_COMPAT (abfd) == ict_irix5
12469 && bfd_get_section_by_name (abfd, ".dynamic")
12470 && bfd_get_section_by_name (abfd, ".mdebug"))
12473 /* Allocate a PT_NULL header in dynamic objects. See
12474 _bfd_mips_elf_modify_segment_map for details. */
12475 if (!SGI_COMPAT (abfd)
12476 && bfd_get_section_by_name (abfd, ".dynamic"))
12482 /* Modify the segment map for an IRIX5 executable. */
12485 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12486 struct bfd_link_info *info)
12489 struct elf_segment_map *m, **pm;
12492 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12494 s = bfd_get_section_by_name (abfd, ".reginfo");
12495 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12497 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12498 if (m->p_type == PT_MIPS_REGINFO)
12503 m = bfd_zalloc (abfd, amt);
12507 m->p_type = PT_MIPS_REGINFO;
12509 m->sections[0] = s;
12511 /* We want to put it after the PHDR and INTERP segments. */
12512 pm = &elf_seg_map (abfd);
12514 && ((*pm)->p_type == PT_PHDR
12515 || (*pm)->p_type == PT_INTERP))
12523 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12525 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12526 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12528 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12529 if (m->p_type == PT_MIPS_ABIFLAGS)
12534 m = bfd_zalloc (abfd, amt);
12538 m->p_type = PT_MIPS_ABIFLAGS;
12540 m->sections[0] = s;
12542 /* We want to put it after the PHDR and INTERP segments. */
12543 pm = &elf_seg_map (abfd);
12545 && ((*pm)->p_type == PT_PHDR
12546 || (*pm)->p_type == PT_INTERP))
12554 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12555 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12556 PT_MIPS_OPTIONS segment immediately following the program header
12558 if (NEWABI_P (abfd)
12559 /* On non-IRIX6 new abi, we'll have already created a segment
12560 for this section, so don't create another. I'm not sure this
12561 is not also the case for IRIX 6, but I can't test it right
12563 && IRIX_COMPAT (abfd) == ict_irix6)
12565 for (s = abfd->sections; s; s = s->next)
12566 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12571 struct elf_segment_map *options_segment;
12573 pm = &elf_seg_map (abfd);
12575 && ((*pm)->p_type == PT_PHDR
12576 || (*pm)->p_type == PT_INTERP))
12579 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12581 amt = sizeof (struct elf_segment_map);
12582 options_segment = bfd_zalloc (abfd, amt);
12583 options_segment->next = *pm;
12584 options_segment->p_type = PT_MIPS_OPTIONS;
12585 options_segment->p_flags = PF_R;
12586 options_segment->p_flags_valid = TRUE;
12587 options_segment->count = 1;
12588 options_segment->sections[0] = s;
12589 *pm = options_segment;
12595 if (IRIX_COMPAT (abfd) == ict_irix5)
12597 /* If there are .dynamic and .mdebug sections, we make a room
12598 for the RTPROC header. FIXME: Rewrite without section names. */
12599 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12600 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12601 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12603 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12604 if (m->p_type == PT_MIPS_RTPROC)
12609 m = bfd_zalloc (abfd, amt);
12613 m->p_type = PT_MIPS_RTPROC;
12615 s = bfd_get_section_by_name (abfd, ".rtproc");
12620 m->p_flags_valid = 1;
12625 m->sections[0] = s;
12628 /* We want to put it after the DYNAMIC segment. */
12629 pm = &elf_seg_map (abfd);
12630 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12640 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12641 .dynstr, .dynsym, and .hash sections, and everything in
12643 for (pm = &elf_seg_map (abfd); *pm != NULL;
12645 if ((*pm)->p_type == PT_DYNAMIC)
12648 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12649 glibc's dynamic linker has traditionally derived the number of
12650 tags from the p_filesz field, and sometimes allocates stack
12651 arrays of that size. An overly-big PT_DYNAMIC segment can
12652 be actively harmful in such cases. Making PT_DYNAMIC contain
12653 other sections can also make life hard for the prelinker,
12654 which might move one of the other sections to a different
12655 PT_LOAD segment. */
12656 if (SGI_COMPAT (abfd)
12659 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12661 static const char *sec_names[] =
12663 ".dynamic", ".dynstr", ".dynsym", ".hash"
12667 struct elf_segment_map *n;
12669 low = ~(bfd_vma) 0;
12671 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12673 s = bfd_get_section_by_name (abfd, sec_names[i]);
12674 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12681 if (high < s->vma + sz)
12682 high = s->vma + sz;
12687 for (s = abfd->sections; s != NULL; s = s->next)
12688 if ((s->flags & SEC_LOAD) != 0
12690 && s->vma + s->size <= high)
12693 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12694 n = bfd_zalloc (abfd, amt);
12701 for (s = abfd->sections; s != NULL; s = s->next)
12703 if ((s->flags & SEC_LOAD) != 0
12705 && s->vma + s->size <= high)
12707 n->sections[i] = s;
12716 /* Allocate a spare program header in dynamic objects so that tools
12717 like the prelinker can add an extra PT_LOAD entry.
12719 If the prelinker needs to make room for a new PT_LOAD entry, its
12720 standard procedure is to move the first (read-only) sections into
12721 the new (writable) segment. However, the MIPS ABI requires
12722 .dynamic to be in a read-only segment, and the section will often
12723 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12725 Although the prelinker could in principle move .dynamic to a
12726 writable segment, it seems better to allocate a spare program
12727 header instead, and avoid the need to move any sections.
12728 There is a long tradition of allocating spare dynamic tags,
12729 so allocating a spare program header seems like a natural
12732 If INFO is NULL, we may be copying an already prelinked binary
12733 with objcopy or strip, so do not add this header. */
12735 && !SGI_COMPAT (abfd)
12736 && bfd_get_section_by_name (abfd, ".dynamic"))
12738 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12739 if ((*pm)->p_type == PT_NULL)
12743 m = bfd_zalloc (abfd, sizeof (*m));
12747 m->p_type = PT_NULL;
12755 /* Return the section that should be marked against GC for a given
12759 _bfd_mips_elf_gc_mark_hook (asection *sec,
12760 struct bfd_link_info *info,
12761 Elf_Internal_Rela *rel,
12762 struct elf_link_hash_entry *h,
12763 Elf_Internal_Sym *sym)
12765 /* ??? Do mips16 stub sections need to be handled special? */
12768 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12770 case R_MIPS_GNU_VTINHERIT:
12771 case R_MIPS_GNU_VTENTRY:
12775 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12778 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12781 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12782 elf_gc_mark_hook_fn gc_mark_hook)
12786 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12788 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12792 if (! is_mips_elf (sub))
12795 for (o = sub->sections; o != NULL; o = o->next)
12797 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12798 (bfd_get_section_name (sub, o)))
12800 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12808 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12809 hiding the old indirect symbol. Process additional relocation
12810 information. Also called for weakdefs, in which case we just let
12811 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12814 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12815 struct elf_link_hash_entry *dir,
12816 struct elf_link_hash_entry *ind)
12818 struct mips_elf_link_hash_entry *dirmips, *indmips;
12820 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12822 dirmips = (struct mips_elf_link_hash_entry *) dir;
12823 indmips = (struct mips_elf_link_hash_entry *) ind;
12824 /* Any absolute non-dynamic relocations against an indirect or weak
12825 definition will be against the target symbol. */
12826 if (indmips->has_static_relocs)
12827 dirmips->has_static_relocs = TRUE;
12829 if (ind->root.type != bfd_link_hash_indirect)
12832 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12833 if (indmips->readonly_reloc)
12834 dirmips->readonly_reloc = TRUE;
12835 if (indmips->no_fn_stub)
12836 dirmips->no_fn_stub = TRUE;
12837 if (indmips->fn_stub)
12839 dirmips->fn_stub = indmips->fn_stub;
12840 indmips->fn_stub = NULL;
12842 if (indmips->need_fn_stub)
12844 dirmips->need_fn_stub = TRUE;
12845 indmips->need_fn_stub = FALSE;
12847 if (indmips->call_stub)
12849 dirmips->call_stub = indmips->call_stub;
12850 indmips->call_stub = NULL;
12852 if (indmips->call_fp_stub)
12854 dirmips->call_fp_stub = indmips->call_fp_stub;
12855 indmips->call_fp_stub = NULL;
12857 if (indmips->global_got_area < dirmips->global_got_area)
12858 dirmips->global_got_area = indmips->global_got_area;
12859 if (indmips->global_got_area < GGA_NONE)
12860 indmips->global_got_area = GGA_NONE;
12861 if (indmips->has_nonpic_branches)
12862 dirmips->has_nonpic_branches = TRUE;
12865 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12866 to hide it. It has to remain global (it will also be protected) so as to
12867 be assigned a global GOT entry, which will then remain unchanged at load
12871 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12872 struct elf_link_hash_entry *entry,
12873 bfd_boolean force_local)
12875 struct mips_elf_link_hash_table *htab;
12877 htab = mips_elf_hash_table (info);
12878 BFD_ASSERT (htab != NULL);
12879 if (htab->use_absolute_zero
12880 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12883 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12886 #define PDR_SIZE 32
12889 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12890 struct bfd_link_info *info)
12893 bfd_boolean ret = FALSE;
12894 unsigned char *tdata;
12897 o = bfd_get_section_by_name (abfd, ".pdr");
12902 if (o->size % PDR_SIZE != 0)
12904 if (o->output_section != NULL
12905 && bfd_is_abs_section (o->output_section))
12908 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12912 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12913 info->keep_memory);
12920 cookie->rel = cookie->rels;
12921 cookie->relend = cookie->rels + o->reloc_count;
12923 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12925 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12934 mips_elf_section_data (o)->u.tdata = tdata;
12935 if (o->rawsize == 0)
12936 o->rawsize = o->size;
12937 o->size -= skip * PDR_SIZE;
12943 if (! info->keep_memory)
12944 free (cookie->rels);
12950 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12952 if (strcmp (sec->name, ".pdr") == 0)
12958 _bfd_mips_elf_write_section (bfd *output_bfd,
12959 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12960 asection *sec, bfd_byte *contents)
12962 bfd_byte *to, *from, *end;
12965 if (strcmp (sec->name, ".pdr") != 0)
12968 if (mips_elf_section_data (sec)->u.tdata == NULL)
12972 end = contents + sec->size;
12973 for (from = contents, i = 0;
12975 from += PDR_SIZE, i++)
12977 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12980 memcpy (to, from, PDR_SIZE);
12983 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12984 sec->output_offset, sec->size);
12988 /* microMIPS code retains local labels for linker relaxation. Omit them
12989 from output by default for clarity. */
12992 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12994 return _bfd_elf_is_local_label_name (abfd, sym->name);
12997 /* MIPS ELF uses a special find_nearest_line routine in order the
12998 handle the ECOFF debugging information. */
13000 struct mips_elf_find_line
13002 struct ecoff_debug_info d;
13003 struct ecoff_find_line i;
13007 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13008 asection *section, bfd_vma offset,
13009 const char **filename_ptr,
13010 const char **functionname_ptr,
13011 unsigned int *line_ptr,
13012 unsigned int *discriminator_ptr)
13016 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13017 filename_ptr, functionname_ptr,
13018 line_ptr, discriminator_ptr,
13019 dwarf_debug_sections,
13020 ABI_64_P (abfd) ? 8 : 0,
13021 &elf_tdata (abfd)->dwarf2_find_line_info)
13022 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13023 filename_ptr, functionname_ptr,
13026 /* PR 22789: If the function name or filename was not found through
13027 the debug information, then try an ordinary lookup instead. */
13028 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13029 || (filename_ptr != NULL && *filename_ptr == NULL))
13031 /* Do not override already discovered names. */
13032 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13033 functionname_ptr = NULL;
13035 if (filename_ptr != NULL && *filename_ptr != NULL)
13036 filename_ptr = NULL;
13038 _bfd_elf_find_function (abfd, symbols, section, offset,
13039 filename_ptr, functionname_ptr);
13045 msec = bfd_get_section_by_name (abfd, ".mdebug");
13048 flagword origflags;
13049 struct mips_elf_find_line *fi;
13050 const struct ecoff_debug_swap * const swap =
13051 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13053 /* If we are called during a link, mips_elf_final_link may have
13054 cleared the SEC_HAS_CONTENTS field. We force it back on here
13055 if appropriate (which it normally will be). */
13056 origflags = msec->flags;
13057 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13058 msec->flags |= SEC_HAS_CONTENTS;
13060 fi = mips_elf_tdata (abfd)->find_line_info;
13063 bfd_size_type external_fdr_size;
13066 struct fdr *fdr_ptr;
13067 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13069 fi = bfd_zalloc (abfd, amt);
13072 msec->flags = origflags;
13076 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13078 msec->flags = origflags;
13082 /* Swap in the FDR information. */
13083 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13084 fi->d.fdr = bfd_alloc (abfd, amt);
13085 if (fi->d.fdr == NULL)
13087 msec->flags = origflags;
13090 external_fdr_size = swap->external_fdr_size;
13091 fdr_ptr = fi->d.fdr;
13092 fraw_src = (char *) fi->d.external_fdr;
13093 fraw_end = (fraw_src
13094 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13095 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13096 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13098 mips_elf_tdata (abfd)->find_line_info = fi;
13100 /* Note that we don't bother to ever free this information.
13101 find_nearest_line is either called all the time, as in
13102 objdump -l, so the information should be saved, or it is
13103 rarely called, as in ld error messages, so the memory
13104 wasted is unimportant. Still, it would probably be a
13105 good idea for free_cached_info to throw it away. */
13108 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13109 &fi->i, filename_ptr, functionname_ptr,
13112 msec->flags = origflags;
13116 msec->flags = origflags;
13119 /* Fall back on the generic ELF find_nearest_line routine. */
13121 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13122 filename_ptr, functionname_ptr,
13123 line_ptr, discriminator_ptr);
13127 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13128 const char **filename_ptr,
13129 const char **functionname_ptr,
13130 unsigned int *line_ptr)
13133 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13134 functionname_ptr, line_ptr,
13135 & elf_tdata (abfd)->dwarf2_find_line_info);
13140 /* When are writing out the .options or .MIPS.options section,
13141 remember the bytes we are writing out, so that we can install the
13142 GP value in the section_processing routine. */
13145 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13146 const void *location,
13147 file_ptr offset, bfd_size_type count)
13149 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13153 if (elf_section_data (section) == NULL)
13155 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13156 section->used_by_bfd = bfd_zalloc (abfd, amt);
13157 if (elf_section_data (section) == NULL)
13160 c = mips_elf_section_data (section)->u.tdata;
13163 c = bfd_zalloc (abfd, section->size);
13166 mips_elf_section_data (section)->u.tdata = c;
13169 memcpy (c + offset, location, count);
13172 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13176 /* This is almost identical to bfd_generic_get_... except that some
13177 MIPS relocations need to be handled specially. Sigh. */
13180 _bfd_elf_mips_get_relocated_section_contents
13182 struct bfd_link_info *link_info,
13183 struct bfd_link_order *link_order,
13185 bfd_boolean relocatable,
13188 /* Get enough memory to hold the stuff */
13189 bfd *input_bfd = link_order->u.indirect.section->owner;
13190 asection *input_section = link_order->u.indirect.section;
13193 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13194 arelent **reloc_vector = NULL;
13197 if (reloc_size < 0)
13200 reloc_vector = bfd_malloc (reloc_size);
13201 if (reloc_vector == NULL && reloc_size != 0)
13204 /* read in the section */
13205 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13206 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13209 reloc_count = bfd_canonicalize_reloc (input_bfd,
13213 if (reloc_count < 0)
13216 if (reloc_count > 0)
13221 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13224 struct bfd_hash_entry *h;
13225 struct bfd_link_hash_entry *lh;
13226 /* Skip all this stuff if we aren't mixing formats. */
13227 if (abfd && input_bfd
13228 && abfd->xvec == input_bfd->xvec)
13232 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13233 lh = (struct bfd_link_hash_entry *) h;
13240 case bfd_link_hash_undefined:
13241 case bfd_link_hash_undefweak:
13242 case bfd_link_hash_common:
13245 case bfd_link_hash_defined:
13246 case bfd_link_hash_defweak:
13248 gp = lh->u.def.value;
13250 case bfd_link_hash_indirect:
13251 case bfd_link_hash_warning:
13253 /* @@FIXME ignoring warning for now */
13255 case bfd_link_hash_new:
13264 for (parent = reloc_vector; *parent != NULL; parent++)
13266 char *error_message = NULL;
13267 bfd_reloc_status_type r;
13269 /* Specific to MIPS: Deal with relocation types that require
13270 knowing the gp of the output bfd. */
13271 asymbol *sym = *(*parent)->sym_ptr_ptr;
13273 /* If we've managed to find the gp and have a special
13274 function for the relocation then go ahead, else default
13275 to the generic handling. */
13277 && (*parent)->howto->special_function
13278 == _bfd_mips_elf32_gprel16_reloc)
13279 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13280 input_section, relocatable,
13283 r = bfd_perform_relocation (input_bfd, *parent, data,
13285 relocatable ? abfd : NULL,
13290 asection *os = input_section->output_section;
13292 /* A partial link, so keep the relocs */
13293 os->orelocation[os->reloc_count] = *parent;
13297 if (r != bfd_reloc_ok)
13301 case bfd_reloc_undefined:
13302 (*link_info->callbacks->undefined_symbol)
13303 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13304 input_bfd, input_section, (*parent)->address, TRUE);
13306 case bfd_reloc_dangerous:
13307 BFD_ASSERT (error_message != NULL);
13308 (*link_info->callbacks->reloc_dangerous)
13309 (link_info, error_message,
13310 input_bfd, input_section, (*parent)->address);
13312 case bfd_reloc_overflow:
13313 (*link_info->callbacks->reloc_overflow)
13315 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13316 (*parent)->howto->name, (*parent)->addend,
13317 input_bfd, input_section, (*parent)->address);
13319 case bfd_reloc_outofrange:
13328 if (reloc_vector != NULL)
13329 free (reloc_vector);
13333 if (reloc_vector != NULL)
13334 free (reloc_vector);
13339 mips_elf_relax_delete_bytes (bfd *abfd,
13340 asection *sec, bfd_vma addr, int count)
13342 Elf_Internal_Shdr *symtab_hdr;
13343 unsigned int sec_shndx;
13344 bfd_byte *contents;
13345 Elf_Internal_Rela *irel, *irelend;
13346 Elf_Internal_Sym *isym;
13347 Elf_Internal_Sym *isymend;
13348 struct elf_link_hash_entry **sym_hashes;
13349 struct elf_link_hash_entry **end_hashes;
13350 struct elf_link_hash_entry **start_hashes;
13351 unsigned int symcount;
13353 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13354 contents = elf_section_data (sec)->this_hdr.contents;
13356 irel = elf_section_data (sec)->relocs;
13357 irelend = irel + sec->reloc_count;
13359 /* Actually delete the bytes. */
13360 memmove (contents + addr, contents + addr + count,
13361 (size_t) (sec->size - addr - count));
13362 sec->size -= count;
13364 /* Adjust all the relocs. */
13365 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13367 /* Get the new reloc address. */
13368 if (irel->r_offset > addr)
13369 irel->r_offset -= count;
13372 BFD_ASSERT (addr % 2 == 0);
13373 BFD_ASSERT (count % 2 == 0);
13375 /* Adjust the local symbols defined in this section. */
13376 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13377 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13378 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13379 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13380 isym->st_value -= count;
13382 /* Now adjust the global symbols defined in this section. */
13383 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13384 - symtab_hdr->sh_info);
13385 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13386 end_hashes = sym_hashes + symcount;
13388 for (; sym_hashes < end_hashes; sym_hashes++)
13390 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13392 if ((sym_hash->root.type == bfd_link_hash_defined
13393 || sym_hash->root.type == bfd_link_hash_defweak)
13394 && sym_hash->root.u.def.section == sec)
13396 bfd_vma value = sym_hash->root.u.def.value;
13398 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13399 value &= MINUS_TWO;
13401 sym_hash->root.u.def.value -= count;
13409 /* Opcodes needed for microMIPS relaxation as found in
13410 opcodes/micromips-opc.c. */
13412 struct opcode_descriptor {
13413 unsigned long match;
13414 unsigned long mask;
13417 /* The $ra register aka $31. */
13421 /* 32-bit instruction format register fields. */
13423 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13424 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13426 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13428 #define OP16_VALID_REG(r) \
13429 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13432 /* 32-bit and 16-bit branches. */
13434 static const struct opcode_descriptor b_insns_32[] = {
13435 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13436 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13437 { 0, 0 } /* End marker for find_match(). */
13440 static const struct opcode_descriptor bc_insn_32 =
13441 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13443 static const struct opcode_descriptor bz_insn_32 =
13444 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13446 static const struct opcode_descriptor bzal_insn_32 =
13447 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13449 static const struct opcode_descriptor beq_insn_32 =
13450 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13452 static const struct opcode_descriptor b_insn_16 =
13453 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13455 static const struct opcode_descriptor bz_insn_16 =
13456 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13459 /* 32-bit and 16-bit branch EQ and NE zero. */
13461 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13462 eq and second the ne. This convention is used when replacing a
13463 32-bit BEQ/BNE with the 16-bit version. */
13465 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13467 static const struct opcode_descriptor bz_rs_insns_32[] = {
13468 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13469 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13470 { 0, 0 } /* End marker for find_match(). */
13473 static const struct opcode_descriptor bz_rt_insns_32[] = {
13474 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13475 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13476 { 0, 0 } /* End marker for find_match(). */
13479 static const struct opcode_descriptor bzc_insns_32[] = {
13480 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13481 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13482 { 0, 0 } /* End marker for find_match(). */
13485 static const struct opcode_descriptor bz_insns_16[] = {
13486 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13487 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13488 { 0, 0 } /* End marker for find_match(). */
13491 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13493 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13494 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13497 /* 32-bit instructions with a delay slot. */
13499 static const struct opcode_descriptor jal_insn_32_bd16 =
13500 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13502 static const struct opcode_descriptor jal_insn_32_bd32 =
13503 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13505 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13506 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13508 static const struct opcode_descriptor j_insn_32 =
13509 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13511 static const struct opcode_descriptor jalr_insn_32 =
13512 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13514 /* This table can be compacted, because no opcode replacement is made. */
13516 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13517 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13519 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13520 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13522 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13523 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13524 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13525 { 0, 0 } /* End marker for find_match(). */
13528 /* This table can be compacted, because no opcode replacement is made. */
13530 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13531 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13533 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13534 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13535 { 0, 0 } /* End marker for find_match(). */
13539 /* 16-bit instructions with a delay slot. */
13541 static const struct opcode_descriptor jalr_insn_16_bd16 =
13542 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13544 static const struct opcode_descriptor jalr_insn_16_bd32 =
13545 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13547 static const struct opcode_descriptor jr_insn_16 =
13548 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13550 #define JR16_REG(opcode) ((opcode) & 0x1f)
13552 /* This table can be compacted, because no opcode replacement is made. */
13554 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13555 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13557 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13558 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13559 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13560 { 0, 0 } /* End marker for find_match(). */
13564 /* LUI instruction. */
13566 static const struct opcode_descriptor lui_insn =
13567 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13570 /* ADDIU instruction. */
13572 static const struct opcode_descriptor addiu_insn =
13573 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13575 static const struct opcode_descriptor addiupc_insn =
13576 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13578 #define ADDIUPC_REG_FIELD(r) \
13579 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13582 /* Relaxable instructions in a JAL delay slot: MOVE. */
13584 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13585 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13586 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13587 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13589 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13590 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13592 static const struct opcode_descriptor move_insns_32[] = {
13593 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13594 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13595 { 0, 0 } /* End marker for find_match(). */
13598 static const struct opcode_descriptor move_insn_16 =
13599 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13602 /* NOP instructions. */
13604 static const struct opcode_descriptor nop_insn_32 =
13605 { /* "nop", "", */ 0x00000000, 0xffffffff };
13607 static const struct opcode_descriptor nop_insn_16 =
13608 { /* "nop", "", */ 0x0c00, 0xffff };
13611 /* Instruction match support. */
13613 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13616 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13618 unsigned long indx;
13620 for (indx = 0; insn[indx].mask != 0; indx++)
13621 if (MATCH (opcode, insn[indx]))
13628 /* Branch and delay slot decoding support. */
13630 /* If PTR points to what *might* be a 16-bit branch or jump, then
13631 return the minimum length of its delay slot, otherwise return 0.
13632 Non-zero results are not definitive as we might be checking against
13633 the second half of another instruction. */
13636 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13638 unsigned long opcode;
13641 opcode = bfd_get_16 (abfd, ptr);
13642 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13643 /* 16-bit branch/jump with a 32-bit delay slot. */
13645 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13646 || find_match (opcode, ds_insns_16_bd16) >= 0)
13647 /* 16-bit branch/jump with a 16-bit delay slot. */
13650 /* No delay slot. */
13656 /* If PTR points to what *might* be a 32-bit branch or jump, then
13657 return the minimum length of its delay slot, otherwise return 0.
13658 Non-zero results are not definitive as we might be checking against
13659 the second half of another instruction. */
13662 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13664 unsigned long opcode;
13667 opcode = bfd_get_micromips_32 (abfd, ptr);
13668 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13669 /* 32-bit branch/jump with a 32-bit delay slot. */
13671 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13672 /* 32-bit branch/jump with a 16-bit delay slot. */
13675 /* No delay slot. */
13681 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13682 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13685 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13687 unsigned long opcode;
13689 opcode = bfd_get_16 (abfd, ptr);
13690 if (MATCH (opcode, b_insn_16)
13692 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13694 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13695 /* BEQZ16, BNEZ16 */
13696 || (MATCH (opcode, jalr_insn_16_bd32)
13698 && reg != JR16_REG (opcode) && reg != RA))
13704 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13705 then return TRUE, otherwise FALSE. */
13708 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13710 unsigned long opcode;
13712 opcode = bfd_get_micromips_32 (abfd, ptr);
13713 if (MATCH (opcode, j_insn_32)
13715 || MATCH (opcode, bc_insn_32)
13716 /* BC1F, BC1T, BC2F, BC2T */
13717 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13719 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13720 /* BGEZ, BGTZ, BLEZ, BLTZ */
13721 || (MATCH (opcode, bzal_insn_32)
13722 /* BGEZAL, BLTZAL */
13723 && reg != OP32_SREG (opcode) && reg != RA)
13724 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13725 /* JALR, JALR.HB, BEQ, BNE */
13726 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13732 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13733 IRELEND) at OFFSET indicate that there must be a compact branch there,
13734 then return TRUE, otherwise FALSE. */
13737 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13738 const Elf_Internal_Rela *internal_relocs,
13739 const Elf_Internal_Rela *irelend)
13741 const Elf_Internal_Rela *irel;
13742 unsigned long opcode;
13744 opcode = bfd_get_micromips_32 (abfd, ptr);
13745 if (find_match (opcode, bzc_insns_32) < 0)
13748 for (irel = internal_relocs; irel < irelend; irel++)
13749 if (irel->r_offset == offset
13750 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13756 /* Bitsize checking. */
13757 #define IS_BITSIZE(val, N) \
13758 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13759 - (1ULL << ((N) - 1))) == (val))
13763 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13764 struct bfd_link_info *link_info,
13765 bfd_boolean *again)
13767 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13768 Elf_Internal_Shdr *symtab_hdr;
13769 Elf_Internal_Rela *internal_relocs;
13770 Elf_Internal_Rela *irel, *irelend;
13771 bfd_byte *contents = NULL;
13772 Elf_Internal_Sym *isymbuf = NULL;
13774 /* Assume nothing changes. */
13777 /* We don't have to do anything for a relocatable link, if
13778 this section does not have relocs, or if this is not a
13781 if (bfd_link_relocatable (link_info)
13782 || (sec->flags & SEC_RELOC) == 0
13783 || sec->reloc_count == 0
13784 || (sec->flags & SEC_CODE) == 0)
13787 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13789 /* Get a copy of the native relocations. */
13790 internal_relocs = (_bfd_elf_link_read_relocs
13791 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13792 link_info->keep_memory));
13793 if (internal_relocs == NULL)
13796 /* Walk through them looking for relaxing opportunities. */
13797 irelend = internal_relocs + sec->reloc_count;
13798 for (irel = internal_relocs; irel < irelend; irel++)
13800 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13801 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13802 bfd_boolean target_is_micromips_code_p;
13803 unsigned long opcode;
13809 /* The number of bytes to delete for relaxation and from where
13810 to delete these bytes starting at irel->r_offset. */
13814 /* If this isn't something that can be relaxed, then ignore
13816 if (r_type != R_MICROMIPS_HI16
13817 && r_type != R_MICROMIPS_PC16_S1
13818 && r_type != R_MICROMIPS_26_S1)
13821 /* Get the section contents if we haven't done so already. */
13822 if (contents == NULL)
13824 /* Get cached copy if it exists. */
13825 if (elf_section_data (sec)->this_hdr.contents != NULL)
13826 contents = elf_section_data (sec)->this_hdr.contents;
13827 /* Go get them off disk. */
13828 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13831 ptr = contents + irel->r_offset;
13833 /* Read this BFD's local symbols if we haven't done so already. */
13834 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13836 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13837 if (isymbuf == NULL)
13838 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13839 symtab_hdr->sh_info, 0,
13841 if (isymbuf == NULL)
13845 /* Get the value of the symbol referred to by the reloc. */
13846 if (r_symndx < symtab_hdr->sh_info)
13848 /* A local symbol. */
13849 Elf_Internal_Sym *isym;
13852 isym = isymbuf + r_symndx;
13853 if (isym->st_shndx == SHN_UNDEF)
13854 sym_sec = bfd_und_section_ptr;
13855 else if (isym->st_shndx == SHN_ABS)
13856 sym_sec = bfd_abs_section_ptr;
13857 else if (isym->st_shndx == SHN_COMMON)
13858 sym_sec = bfd_com_section_ptr;
13860 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13861 symval = (isym->st_value
13862 + sym_sec->output_section->vma
13863 + sym_sec->output_offset);
13864 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13868 unsigned long indx;
13869 struct elf_link_hash_entry *h;
13871 /* An external symbol. */
13872 indx = r_symndx - symtab_hdr->sh_info;
13873 h = elf_sym_hashes (abfd)[indx];
13874 BFD_ASSERT (h != NULL);
13876 if (h->root.type != bfd_link_hash_defined
13877 && h->root.type != bfd_link_hash_defweak)
13878 /* This appears to be a reference to an undefined
13879 symbol. Just ignore it -- it will be caught by the
13880 regular reloc processing. */
13883 symval = (h->root.u.def.value
13884 + h->root.u.def.section->output_section->vma
13885 + h->root.u.def.section->output_offset);
13886 target_is_micromips_code_p = (!h->needs_plt
13887 && ELF_ST_IS_MICROMIPS (h->other));
13891 /* For simplicity of coding, we are going to modify the
13892 section contents, the section relocs, and the BFD symbol
13893 table. We must tell the rest of the code not to free up this
13894 information. It would be possible to instead create a table
13895 of changes which have to be made, as is done in coff-mips.c;
13896 that would be more work, but would require less memory when
13897 the linker is run. */
13899 /* Only 32-bit instructions relaxed. */
13900 if (irel->r_offset + 4 > sec->size)
13903 opcode = bfd_get_micromips_32 (abfd, ptr);
13905 /* This is the pc-relative distance from the instruction the
13906 relocation is applied to, to the symbol referred. */
13908 - (sec->output_section->vma + sec->output_offset)
13911 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13912 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13913 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13915 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13917 where pcrval has first to be adjusted to apply against the LO16
13918 location (we make the adjustment later on, when we have figured
13919 out the offset). */
13920 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13922 bfd_boolean bzc = FALSE;
13923 unsigned long nextopc;
13927 /* Give up if the previous reloc was a HI16 against this symbol
13929 if (irel > internal_relocs
13930 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13931 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13934 /* Or if the next reloc is not a LO16 against this symbol. */
13935 if (irel + 1 >= irelend
13936 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13937 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13940 /* Or if the second next reloc is a LO16 against this symbol too. */
13941 if (irel + 2 >= irelend
13942 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13943 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13946 /* See if the LUI instruction *might* be in a branch delay slot.
13947 We check whether what looks like a 16-bit branch or jump is
13948 actually an immediate argument to a compact branch, and let
13949 it through if so. */
13950 if (irel->r_offset >= 2
13951 && check_br16_dslot (abfd, ptr - 2)
13952 && !(irel->r_offset >= 4
13953 && (bzc = check_relocated_bzc (abfd,
13954 ptr - 4, irel->r_offset - 4,
13955 internal_relocs, irelend))))
13957 if (irel->r_offset >= 4
13959 && check_br32_dslot (abfd, ptr - 4))
13962 reg = OP32_SREG (opcode);
13964 /* We only relax adjacent instructions or ones separated with
13965 a branch or jump that has a delay slot. The branch or jump
13966 must not fiddle with the register used to hold the address.
13967 Subtract 4 for the LUI itself. */
13968 offset = irel[1].r_offset - irel[0].r_offset;
13969 switch (offset - 4)
13974 if (check_br16 (abfd, ptr + 4, reg))
13978 if (check_br32 (abfd, ptr + 4, reg))
13985 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13987 /* Give up unless the same register is used with both
13989 if (OP32_SREG (nextopc) != reg)
13992 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13993 and rounding up to take masking of the two LSBs into account. */
13994 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13996 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13997 if (IS_BITSIZE (symval, 16))
13999 /* Fix the relocation's type. */
14000 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14002 /* Instructions using R_MICROMIPS_LO16 have the base or
14003 source register in bits 20:16. This register becomes $0
14004 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14005 nextopc &= ~0x001f0000;
14006 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14007 contents + irel[1].r_offset);
14010 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14011 We add 4 to take LUI deletion into account while checking
14012 the PC-relative distance. */
14013 else if (symval % 4 == 0
14014 && IS_BITSIZE (pcrval + 4, 25)
14015 && MATCH (nextopc, addiu_insn)
14016 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14017 && OP16_VALID_REG (OP32_TREG (nextopc)))
14019 /* Fix the relocation's type. */
14020 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14022 /* Replace ADDIU with the ADDIUPC version. */
14023 nextopc = (addiupc_insn.match
14024 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14026 bfd_put_micromips_32 (abfd, nextopc,
14027 contents + irel[1].r_offset);
14030 /* Can't do anything, give up, sigh... */
14034 /* Fix the relocation's type. */
14035 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14037 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14042 /* Compact branch relaxation -- due to the multitude of macros
14043 employed by the compiler/assembler, compact branches are not
14044 always generated. Obviously, this can/will be fixed elsewhere,
14045 but there is no drawback in double checking it here. */
14046 else if (r_type == R_MICROMIPS_PC16_S1
14047 && irel->r_offset + 5 < sec->size
14048 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14049 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14051 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14052 nop_insn_16) ? 2 : 0))
14053 || (irel->r_offset + 7 < sec->size
14054 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14056 nop_insn_32) ? 4 : 0))))
14060 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14062 /* Replace BEQZ/BNEZ with the compact version. */
14063 opcode = (bzc_insns_32[fndopc].match
14064 | BZC32_REG_FIELD (reg)
14065 | (opcode & 0xffff)); /* Addend value. */
14067 bfd_put_micromips_32 (abfd, opcode, ptr);
14069 /* Delete the delay slot NOP: two or four bytes from
14070 irel->offset + 4; delcnt has already been set above. */
14074 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14075 to check the distance from the next instruction, so subtract 2. */
14077 && r_type == R_MICROMIPS_PC16_S1
14078 && IS_BITSIZE (pcrval - 2, 11)
14079 && find_match (opcode, b_insns_32) >= 0)
14081 /* Fix the relocation's type. */
14082 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14084 /* Replace the 32-bit opcode with a 16-bit opcode. */
14087 | (opcode & 0x3ff)), /* Addend value. */
14090 /* Delete 2 bytes from irel->r_offset + 2. */
14095 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14096 to check the distance from the next instruction, so subtract 2. */
14098 && r_type == R_MICROMIPS_PC16_S1
14099 && IS_BITSIZE (pcrval - 2, 8)
14100 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14101 && OP16_VALID_REG (OP32_SREG (opcode)))
14102 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14103 && OP16_VALID_REG (OP32_TREG (opcode)))))
14107 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14109 /* Fix the relocation's type. */
14110 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14112 /* Replace the 32-bit opcode with a 16-bit opcode. */
14114 (bz_insns_16[fndopc].match
14115 | BZ16_REG_FIELD (reg)
14116 | (opcode & 0x7f)), /* Addend value. */
14119 /* Delete 2 bytes from irel->r_offset + 2. */
14124 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14126 && r_type == R_MICROMIPS_26_S1
14127 && target_is_micromips_code_p
14128 && irel->r_offset + 7 < sec->size
14129 && MATCH (opcode, jal_insn_32_bd32))
14131 unsigned long n32opc;
14132 bfd_boolean relaxed = FALSE;
14134 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14136 if (MATCH (n32opc, nop_insn_32))
14138 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14139 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14143 else if (find_match (n32opc, move_insns_32) >= 0)
14145 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14147 (move_insn_16.match
14148 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14149 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14154 /* Other 32-bit instructions relaxable to 16-bit
14155 instructions will be handled here later. */
14159 /* JAL with 32-bit delay slot that is changed to a JALS
14160 with 16-bit delay slot. */
14161 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14163 /* Delete 2 bytes from irel->r_offset + 6. */
14171 /* Note that we've changed the relocs, section contents, etc. */
14172 elf_section_data (sec)->relocs = internal_relocs;
14173 elf_section_data (sec)->this_hdr.contents = contents;
14174 symtab_hdr->contents = (unsigned char *) isymbuf;
14176 /* Delete bytes depending on the delcnt and deloff. */
14177 if (!mips_elf_relax_delete_bytes (abfd, sec,
14178 irel->r_offset + deloff, delcnt))
14181 /* That will change things, so we should relax again.
14182 Note that this is not required, and it may be slow. */
14187 if (isymbuf != NULL
14188 && symtab_hdr->contents != (unsigned char *) isymbuf)
14190 if (! link_info->keep_memory)
14194 /* Cache the symbols for elf_link_input_bfd. */
14195 symtab_hdr->contents = (unsigned char *) isymbuf;
14199 if (contents != NULL
14200 && elf_section_data (sec)->this_hdr.contents != contents)
14202 if (! link_info->keep_memory)
14206 /* Cache the section contents for elf_link_input_bfd. */
14207 elf_section_data (sec)->this_hdr.contents = contents;
14211 if (internal_relocs != NULL
14212 && elf_section_data (sec)->relocs != internal_relocs)
14213 free (internal_relocs);
14218 if (isymbuf != NULL
14219 && symtab_hdr->contents != (unsigned char *) isymbuf)
14221 if (contents != NULL
14222 && elf_section_data (sec)->this_hdr.contents != contents)
14224 if (internal_relocs != NULL
14225 && elf_section_data (sec)->relocs != internal_relocs)
14226 free (internal_relocs);
14231 /* Create a MIPS ELF linker hash table. */
14233 struct bfd_link_hash_table *
14234 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14236 struct mips_elf_link_hash_table *ret;
14237 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14239 ret = bfd_zmalloc (amt);
14243 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14244 mips_elf_link_hash_newfunc,
14245 sizeof (struct mips_elf_link_hash_entry),
14251 ret->root.init_plt_refcount.plist = NULL;
14252 ret->root.init_plt_offset.plist = NULL;
14254 return &ret->root.root;
14257 /* Likewise, but indicate that the target is VxWorks. */
14259 struct bfd_link_hash_table *
14260 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14262 struct bfd_link_hash_table *ret;
14264 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14267 struct mips_elf_link_hash_table *htab;
14269 htab = (struct mips_elf_link_hash_table *) ret;
14270 htab->use_plts_and_copy_relocs = TRUE;
14271 htab->is_vxworks = TRUE;
14276 /* A function that the linker calls if we are allowed to use PLTs
14277 and copy relocs. */
14280 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14282 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14285 /* A function that the linker calls to select between all or only
14286 32-bit microMIPS instructions, and between making or ignoring
14287 branch relocation checks for invalid transitions between ISA modes.
14288 Also record whether we have been configured for a GNU target. */
14291 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14292 bfd_boolean ignore_branch_isa,
14293 bfd_boolean gnu_target)
14295 mips_elf_hash_table (info)->insn32 = insn32;
14296 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14297 mips_elf_hash_table (info)->gnu_target = gnu_target;
14300 /* A function that the linker calls to enable use of compact branches in
14301 linker generated code for MIPSR6. */
14304 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14306 mips_elf_hash_table (info)->compact_branches = on;
14310 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14312 struct mips_mach_extension
14314 unsigned long extension, base;
14318 /* An array describing how BFD machines relate to one another. The entries
14319 are ordered topologically with MIPS I extensions listed last. */
14321 static const struct mips_mach_extension mips_mach_extensions[] =
14323 /* MIPS64r2 extensions. */
14324 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14325 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14326 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14327 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14328 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14329 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14330 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14332 /* MIPS64 extensions. */
14333 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14334 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14335 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14337 /* MIPS V extensions. */
14338 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14340 /* R10000 extensions. */
14341 { bfd_mach_mips12000, bfd_mach_mips10000 },
14342 { bfd_mach_mips14000, bfd_mach_mips10000 },
14343 { bfd_mach_mips16000, bfd_mach_mips10000 },
14345 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14346 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14347 better to allow vr5400 and vr5500 code to be merged anyway, since
14348 many libraries will just use the core ISA. Perhaps we could add
14349 some sort of ASE flag if this ever proves a problem. */
14350 { bfd_mach_mips5500, bfd_mach_mips5400 },
14351 { bfd_mach_mips5400, bfd_mach_mips5000 },
14353 /* MIPS IV extensions. */
14354 { bfd_mach_mips5, bfd_mach_mips8000 },
14355 { bfd_mach_mips10000, bfd_mach_mips8000 },
14356 { bfd_mach_mips5000, bfd_mach_mips8000 },
14357 { bfd_mach_mips7000, bfd_mach_mips8000 },
14358 { bfd_mach_mips9000, bfd_mach_mips8000 },
14360 /* VR4100 extensions. */
14361 { bfd_mach_mips4120, bfd_mach_mips4100 },
14362 { bfd_mach_mips4111, bfd_mach_mips4100 },
14364 /* MIPS III extensions. */
14365 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14366 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14367 { bfd_mach_mips8000, bfd_mach_mips4000 },
14368 { bfd_mach_mips4650, bfd_mach_mips4000 },
14369 { bfd_mach_mips4600, bfd_mach_mips4000 },
14370 { bfd_mach_mips4400, bfd_mach_mips4000 },
14371 { bfd_mach_mips4300, bfd_mach_mips4000 },
14372 { bfd_mach_mips4100, bfd_mach_mips4000 },
14373 { bfd_mach_mips5900, bfd_mach_mips4000 },
14375 /* MIPS32r3 extensions. */
14376 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14378 /* MIPS32r2 extensions. */
14379 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14381 /* MIPS32 extensions. */
14382 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14384 /* MIPS II extensions. */
14385 { bfd_mach_mips4000, bfd_mach_mips6000 },
14386 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14387 { bfd_mach_mips4010, bfd_mach_mips6000 },
14389 /* MIPS I extensions. */
14390 { bfd_mach_mips6000, bfd_mach_mips3000 },
14391 { bfd_mach_mips3900, bfd_mach_mips3000 }
14394 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14397 mips_mach_extends_p (unsigned long base, unsigned long extension)
14401 if (extension == base)
14404 if (base == bfd_mach_mipsisa32
14405 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14408 if (base == bfd_mach_mipsisa32r2
14409 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14412 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14413 if (extension == mips_mach_extensions[i].extension)
14415 extension = mips_mach_extensions[i].base;
14416 if (extension == base)
14423 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14425 static unsigned long
14426 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14430 case AFL_EXT_3900: return bfd_mach_mips3900;
14431 case AFL_EXT_4010: return bfd_mach_mips4010;
14432 case AFL_EXT_4100: return bfd_mach_mips4100;
14433 case AFL_EXT_4111: return bfd_mach_mips4111;
14434 case AFL_EXT_4120: return bfd_mach_mips4120;
14435 case AFL_EXT_4650: return bfd_mach_mips4650;
14436 case AFL_EXT_5400: return bfd_mach_mips5400;
14437 case AFL_EXT_5500: return bfd_mach_mips5500;
14438 case AFL_EXT_5900: return bfd_mach_mips5900;
14439 case AFL_EXT_10000: return bfd_mach_mips10000;
14440 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14441 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14442 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14443 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14444 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14445 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14446 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14447 default: return bfd_mach_mips3000;
14451 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14454 bfd_mips_isa_ext (bfd *abfd)
14456 switch (bfd_get_mach (abfd))
14458 case bfd_mach_mips3900: return AFL_EXT_3900;
14459 case bfd_mach_mips4010: return AFL_EXT_4010;
14460 case bfd_mach_mips4100: return AFL_EXT_4100;
14461 case bfd_mach_mips4111: return AFL_EXT_4111;
14462 case bfd_mach_mips4120: return AFL_EXT_4120;
14463 case bfd_mach_mips4650: return AFL_EXT_4650;
14464 case bfd_mach_mips5400: return AFL_EXT_5400;
14465 case bfd_mach_mips5500: return AFL_EXT_5500;
14466 case bfd_mach_mips5900: return AFL_EXT_5900;
14467 case bfd_mach_mips10000: return AFL_EXT_10000;
14468 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14469 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14470 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14471 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14472 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14473 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14474 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14475 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14476 case bfd_mach_mips_interaptiv_mr2:
14477 return AFL_EXT_INTERAPTIV_MR2;
14482 /* Encode ISA level and revision as a single value. */
14483 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14485 /* Decode a single value into level and revision. */
14486 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14487 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14489 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14492 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14495 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14497 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14498 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14499 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14500 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14501 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14502 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14503 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14504 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14505 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14506 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14507 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14510 /* xgettext:c-format */
14511 (_("%pB: unknown architecture %s"),
14512 abfd, bfd_printable_name (abfd));
14515 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14517 abiflags->isa_level = ISA_LEVEL (new_isa);
14518 abiflags->isa_rev = ISA_REV (new_isa);
14521 /* Update the isa_ext if ABFD describes a further extension. */
14522 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14523 bfd_get_mach (abfd)))
14524 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14527 /* Return true if the given ELF header flags describe a 32-bit binary. */
14530 mips_32bit_flags_p (flagword flags)
14532 return ((flags & EF_MIPS_32BITMODE) != 0
14533 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14534 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14535 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14536 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14537 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14538 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14539 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14542 /* Infer the content of the ABI flags based on the elf header. */
14545 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14547 obj_attribute *in_attr;
14549 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14550 update_mips_abiflags_isa (abfd, abiflags);
14552 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14553 abiflags->gpr_size = AFL_REG_32;
14555 abiflags->gpr_size = AFL_REG_64;
14557 abiflags->cpr1_size = AFL_REG_NONE;
14559 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14560 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14562 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14563 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14564 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14565 && abiflags->gpr_size == AFL_REG_32))
14566 abiflags->cpr1_size = AFL_REG_32;
14567 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14568 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14569 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14570 abiflags->cpr1_size = AFL_REG_64;
14572 abiflags->cpr2_size = AFL_REG_NONE;
14574 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14575 abiflags->ases |= AFL_ASE_MDMX;
14576 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14577 abiflags->ases |= AFL_ASE_MIPS16;
14578 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14579 abiflags->ases |= AFL_ASE_MICROMIPS;
14581 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14582 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14583 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14584 && abiflags->isa_level >= 32
14585 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14586 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14589 /* We need to use a special link routine to handle the .reginfo and
14590 the .mdebug sections. We need to merge all instances of these
14591 sections together, not write them all out sequentially. */
14594 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14597 struct bfd_link_order *p;
14598 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14599 asection *rtproc_sec, *abiflags_sec;
14600 Elf32_RegInfo reginfo;
14601 struct ecoff_debug_info debug;
14602 struct mips_htab_traverse_info hti;
14603 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14604 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14605 HDRR *symhdr = &debug.symbolic_header;
14606 void *mdebug_handle = NULL;
14611 struct mips_elf_link_hash_table *htab;
14613 static const char * const secname[] =
14615 ".text", ".init", ".fini", ".data",
14616 ".rodata", ".sdata", ".sbss", ".bss"
14618 static const int sc[] =
14620 scText, scInit, scFini, scData,
14621 scRData, scSData, scSBss, scBss
14624 htab = mips_elf_hash_table (info);
14625 BFD_ASSERT (htab != NULL);
14627 /* Sort the dynamic symbols so that those with GOT entries come after
14629 if (!mips_elf_sort_hash_table (abfd, info))
14632 /* Create any scheduled LA25 stubs. */
14634 hti.output_bfd = abfd;
14636 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14640 /* Get a value for the GP register. */
14641 if (elf_gp (abfd) == 0)
14643 struct bfd_link_hash_entry *h;
14645 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14646 if (h != NULL && h->type == bfd_link_hash_defined)
14647 elf_gp (abfd) = (h->u.def.value
14648 + h->u.def.section->output_section->vma
14649 + h->u.def.section->output_offset);
14650 else if (htab->is_vxworks
14651 && (h = bfd_link_hash_lookup (info->hash,
14652 "_GLOBAL_OFFSET_TABLE_",
14653 FALSE, FALSE, TRUE))
14654 && h->type == bfd_link_hash_defined)
14655 elf_gp (abfd) = (h->u.def.section->output_section->vma
14656 + h->u.def.section->output_offset
14658 else if (bfd_link_relocatable (info))
14660 bfd_vma lo = MINUS_ONE;
14662 /* Find the GP-relative section with the lowest offset. */
14663 for (o = abfd->sections; o != NULL; o = o->next)
14665 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14668 /* And calculate GP relative to that. */
14669 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14673 /* If the relocate_section function needs to do a reloc
14674 involving the GP value, it should make a reloc_dangerous
14675 callback to warn that GP is not defined. */
14679 /* Go through the sections and collect the .reginfo and .mdebug
14681 abiflags_sec = NULL;
14682 reginfo_sec = NULL;
14684 gptab_data_sec = NULL;
14685 gptab_bss_sec = NULL;
14686 for (o = abfd->sections; o != NULL; o = o->next)
14688 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14690 /* We have found the .MIPS.abiflags section in the output file.
14691 Look through all the link_orders comprising it and remove them.
14692 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14693 for (p = o->map_head.link_order; p != NULL; p = p->next)
14695 asection *input_section;
14697 if (p->type != bfd_indirect_link_order)
14699 if (p->type == bfd_data_link_order)
14704 input_section = p->u.indirect.section;
14706 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14707 elf_link_input_bfd ignores this section. */
14708 input_section->flags &= ~SEC_HAS_CONTENTS;
14711 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14712 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14714 /* Skip this section later on (I don't think this currently
14715 matters, but someday it might). */
14716 o->map_head.link_order = NULL;
14721 if (strcmp (o->name, ".reginfo") == 0)
14723 memset (®info, 0, sizeof reginfo);
14725 /* We have found the .reginfo section in the output file.
14726 Look through all the link_orders comprising it and merge
14727 the information together. */
14728 for (p = o->map_head.link_order; p != NULL; p = p->next)
14730 asection *input_section;
14732 Elf32_External_RegInfo ext;
14736 if (p->type != bfd_indirect_link_order)
14738 if (p->type == bfd_data_link_order)
14743 input_section = p->u.indirect.section;
14744 input_bfd = input_section->owner;
14746 sz = (input_section->size < sizeof (ext)
14747 ? input_section->size : sizeof (ext));
14748 memset (&ext, 0, sizeof (ext));
14749 if (! bfd_get_section_contents (input_bfd, input_section,
14753 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14755 reginfo.ri_gprmask |= sub.ri_gprmask;
14756 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14757 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14758 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14759 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14761 /* ri_gp_value is set by the function
14762 `_bfd_mips_elf_section_processing' when the section is
14763 finally written out. */
14765 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14766 elf_link_input_bfd ignores this section. */
14767 input_section->flags &= ~SEC_HAS_CONTENTS;
14770 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14771 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14773 /* Skip this section later on (I don't think this currently
14774 matters, but someday it might). */
14775 o->map_head.link_order = NULL;
14780 if (strcmp (o->name, ".mdebug") == 0)
14782 struct extsym_info einfo;
14785 /* We have found the .mdebug section in the output file.
14786 Look through all the link_orders comprising it and merge
14787 the information together. */
14788 symhdr->magic = swap->sym_magic;
14789 /* FIXME: What should the version stamp be? */
14790 symhdr->vstamp = 0;
14791 symhdr->ilineMax = 0;
14792 symhdr->cbLine = 0;
14793 symhdr->idnMax = 0;
14794 symhdr->ipdMax = 0;
14795 symhdr->isymMax = 0;
14796 symhdr->ioptMax = 0;
14797 symhdr->iauxMax = 0;
14798 symhdr->issMax = 0;
14799 symhdr->issExtMax = 0;
14800 symhdr->ifdMax = 0;
14802 symhdr->iextMax = 0;
14804 /* We accumulate the debugging information itself in the
14805 debug_info structure. */
14807 debug.external_dnr = NULL;
14808 debug.external_pdr = NULL;
14809 debug.external_sym = NULL;
14810 debug.external_opt = NULL;
14811 debug.external_aux = NULL;
14813 debug.ssext = debug.ssext_end = NULL;
14814 debug.external_fdr = NULL;
14815 debug.external_rfd = NULL;
14816 debug.external_ext = debug.external_ext_end = NULL;
14818 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14819 if (mdebug_handle == NULL)
14823 esym.cobol_main = 0;
14827 esym.asym.iss = issNil;
14828 esym.asym.st = stLocal;
14829 esym.asym.reserved = 0;
14830 esym.asym.index = indexNil;
14832 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14834 esym.asym.sc = sc[i];
14835 s = bfd_get_section_by_name (abfd, secname[i]);
14838 esym.asym.value = s->vma;
14839 last = s->vma + s->size;
14842 esym.asym.value = last;
14843 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14844 secname[i], &esym))
14848 for (p = o->map_head.link_order; p != NULL; p = p->next)
14850 asection *input_section;
14852 const struct ecoff_debug_swap *input_swap;
14853 struct ecoff_debug_info input_debug;
14857 if (p->type != bfd_indirect_link_order)
14859 if (p->type == bfd_data_link_order)
14864 input_section = p->u.indirect.section;
14865 input_bfd = input_section->owner;
14867 if (!is_mips_elf (input_bfd))
14869 /* I don't know what a non MIPS ELF bfd would be
14870 doing with a .mdebug section, but I don't really
14871 want to deal with it. */
14875 input_swap = (get_elf_backend_data (input_bfd)
14876 ->elf_backend_ecoff_debug_swap);
14878 BFD_ASSERT (p->size == input_section->size);
14880 /* The ECOFF linking code expects that we have already
14881 read in the debugging information and set up an
14882 ecoff_debug_info structure, so we do that now. */
14883 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14887 if (! (bfd_ecoff_debug_accumulate
14888 (mdebug_handle, abfd, &debug, swap, input_bfd,
14889 &input_debug, input_swap, info)))
14892 /* Loop through the external symbols. For each one with
14893 interesting information, try to find the symbol in
14894 the linker global hash table and save the information
14895 for the output external symbols. */
14896 eraw_src = input_debug.external_ext;
14897 eraw_end = (eraw_src
14898 + (input_debug.symbolic_header.iextMax
14899 * input_swap->external_ext_size));
14901 eraw_src < eraw_end;
14902 eraw_src += input_swap->external_ext_size)
14906 struct mips_elf_link_hash_entry *h;
14908 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14909 if (ext.asym.sc == scNil
14910 || ext.asym.sc == scUndefined
14911 || ext.asym.sc == scSUndefined)
14914 name = input_debug.ssext + ext.asym.iss;
14915 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14916 name, FALSE, FALSE, TRUE);
14917 if (h == NULL || h->esym.ifd != -2)
14922 BFD_ASSERT (ext.ifd
14923 < input_debug.symbolic_header.ifdMax);
14924 ext.ifd = input_debug.ifdmap[ext.ifd];
14930 /* Free up the information we just read. */
14931 free (input_debug.line);
14932 free (input_debug.external_dnr);
14933 free (input_debug.external_pdr);
14934 free (input_debug.external_sym);
14935 free (input_debug.external_opt);
14936 free (input_debug.external_aux);
14937 free (input_debug.ss);
14938 free (input_debug.ssext);
14939 free (input_debug.external_fdr);
14940 free (input_debug.external_rfd);
14941 free (input_debug.external_ext);
14943 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14944 elf_link_input_bfd ignores this section. */
14945 input_section->flags &= ~SEC_HAS_CONTENTS;
14948 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14950 /* Create .rtproc section. */
14951 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14952 if (rtproc_sec == NULL)
14954 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14955 | SEC_LINKER_CREATED | SEC_READONLY);
14957 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14960 if (rtproc_sec == NULL
14961 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14965 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14971 /* Build the external symbol information. */
14974 einfo.debug = &debug;
14976 einfo.failed = FALSE;
14977 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14978 mips_elf_output_extsym, &einfo);
14982 /* Set the size of the .mdebug section. */
14983 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14985 /* Skip this section later on (I don't think this currently
14986 matters, but someday it might). */
14987 o->map_head.link_order = NULL;
14992 if (CONST_STRNEQ (o->name, ".gptab."))
14994 const char *subname;
14997 Elf32_External_gptab *ext_tab;
15000 /* The .gptab.sdata and .gptab.sbss sections hold
15001 information describing how the small data area would
15002 change depending upon the -G switch. These sections
15003 not used in executables files. */
15004 if (! bfd_link_relocatable (info))
15006 for (p = o->map_head.link_order; p != NULL; p = p->next)
15008 asection *input_section;
15010 if (p->type != bfd_indirect_link_order)
15012 if (p->type == bfd_data_link_order)
15017 input_section = p->u.indirect.section;
15019 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15020 elf_link_input_bfd ignores this section. */
15021 input_section->flags &= ~SEC_HAS_CONTENTS;
15024 /* Skip this section later on (I don't think this
15025 currently matters, but someday it might). */
15026 o->map_head.link_order = NULL;
15028 /* Really remove the section. */
15029 bfd_section_list_remove (abfd, o);
15030 --abfd->section_count;
15035 /* There is one gptab for initialized data, and one for
15036 uninitialized data. */
15037 if (strcmp (o->name, ".gptab.sdata") == 0)
15038 gptab_data_sec = o;
15039 else if (strcmp (o->name, ".gptab.sbss") == 0)
15044 /* xgettext:c-format */
15045 (_("%pB: illegal section name `%pA'"), abfd, o);
15046 bfd_set_error (bfd_error_nonrepresentable_section);
15050 /* The linker script always combines .gptab.data and
15051 .gptab.sdata into .gptab.sdata, and likewise for
15052 .gptab.bss and .gptab.sbss. It is possible that there is
15053 no .sdata or .sbss section in the output file, in which
15054 case we must change the name of the output section. */
15055 subname = o->name + sizeof ".gptab" - 1;
15056 if (bfd_get_section_by_name (abfd, subname) == NULL)
15058 if (o == gptab_data_sec)
15059 o->name = ".gptab.data";
15061 o->name = ".gptab.bss";
15062 subname = o->name + sizeof ".gptab" - 1;
15063 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15066 /* Set up the first entry. */
15068 amt = c * sizeof (Elf32_gptab);
15069 tab = bfd_malloc (amt);
15072 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15073 tab[0].gt_header.gt_unused = 0;
15075 /* Combine the input sections. */
15076 for (p = o->map_head.link_order; p != NULL; p = p->next)
15078 asection *input_section;
15080 bfd_size_type size;
15081 unsigned long last;
15082 bfd_size_type gpentry;
15084 if (p->type != bfd_indirect_link_order)
15086 if (p->type == bfd_data_link_order)
15091 input_section = p->u.indirect.section;
15092 input_bfd = input_section->owner;
15094 /* Combine the gptab entries for this input section one
15095 by one. We know that the input gptab entries are
15096 sorted by ascending -G value. */
15097 size = input_section->size;
15099 for (gpentry = sizeof (Elf32_External_gptab);
15101 gpentry += sizeof (Elf32_External_gptab))
15103 Elf32_External_gptab ext_gptab;
15104 Elf32_gptab int_gptab;
15110 if (! (bfd_get_section_contents
15111 (input_bfd, input_section, &ext_gptab, gpentry,
15112 sizeof (Elf32_External_gptab))))
15118 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15120 val = int_gptab.gt_entry.gt_g_value;
15121 add = int_gptab.gt_entry.gt_bytes - last;
15124 for (look = 1; look < c; look++)
15126 if (tab[look].gt_entry.gt_g_value >= val)
15127 tab[look].gt_entry.gt_bytes += add;
15129 if (tab[look].gt_entry.gt_g_value == val)
15135 Elf32_gptab *new_tab;
15138 /* We need a new table entry. */
15139 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15140 new_tab = bfd_realloc (tab, amt);
15141 if (new_tab == NULL)
15147 tab[c].gt_entry.gt_g_value = val;
15148 tab[c].gt_entry.gt_bytes = add;
15150 /* Merge in the size for the next smallest -G
15151 value, since that will be implied by this new
15154 for (look = 1; look < c; look++)
15156 if (tab[look].gt_entry.gt_g_value < val
15158 || (tab[look].gt_entry.gt_g_value
15159 > tab[max].gt_entry.gt_g_value)))
15163 tab[c].gt_entry.gt_bytes +=
15164 tab[max].gt_entry.gt_bytes;
15169 last = int_gptab.gt_entry.gt_bytes;
15172 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15173 elf_link_input_bfd ignores this section. */
15174 input_section->flags &= ~SEC_HAS_CONTENTS;
15177 /* The table must be sorted by -G value. */
15179 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15181 /* Swap out the table. */
15182 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15183 ext_tab = bfd_alloc (abfd, amt);
15184 if (ext_tab == NULL)
15190 for (j = 0; j < c; j++)
15191 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15194 o->size = c * sizeof (Elf32_External_gptab);
15195 o->contents = (bfd_byte *) ext_tab;
15197 /* Skip this section later on (I don't think this currently
15198 matters, but someday it might). */
15199 o->map_head.link_order = NULL;
15203 /* Invoke the regular ELF backend linker to do all the work. */
15204 if (!bfd_elf_final_link (abfd, info))
15207 /* Now write out the computed sections. */
15209 if (abiflags_sec != NULL)
15211 Elf_External_ABIFlags_v0 ext;
15212 Elf_Internal_ABIFlags_v0 *abiflags;
15214 abiflags = &mips_elf_tdata (abfd)->abiflags;
15216 /* Set up the abiflags if no valid input sections were found. */
15217 if (!mips_elf_tdata (abfd)->abiflags_valid)
15219 infer_mips_abiflags (abfd, abiflags);
15220 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15222 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15223 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15227 if (reginfo_sec != NULL)
15229 Elf32_External_RegInfo ext;
15231 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
15232 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15236 if (mdebug_sec != NULL)
15238 BFD_ASSERT (abfd->output_has_begun);
15239 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15241 mdebug_sec->filepos))
15244 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15247 if (gptab_data_sec != NULL)
15249 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15250 gptab_data_sec->contents,
15251 0, gptab_data_sec->size))
15255 if (gptab_bss_sec != NULL)
15257 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15258 gptab_bss_sec->contents,
15259 0, gptab_bss_sec->size))
15263 if (SGI_COMPAT (abfd))
15265 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15266 if (rtproc_sec != NULL)
15268 if (! bfd_set_section_contents (abfd, rtproc_sec,
15269 rtproc_sec->contents,
15270 0, rtproc_sec->size))
15278 /* Merge object file header flags from IBFD into OBFD. Raise an error
15279 if there are conflicting settings. */
15282 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15284 bfd *obfd = info->output_bfd;
15285 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15286 flagword old_flags;
15287 flagword new_flags;
15290 new_flags = elf_elfheader (ibfd)->e_flags;
15291 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15292 old_flags = elf_elfheader (obfd)->e_flags;
15294 /* Check flag compatibility. */
15296 new_flags &= ~EF_MIPS_NOREORDER;
15297 old_flags &= ~EF_MIPS_NOREORDER;
15299 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15300 doesn't seem to matter. */
15301 new_flags &= ~EF_MIPS_XGOT;
15302 old_flags &= ~EF_MIPS_XGOT;
15304 /* MIPSpro generates ucode info in n64 objects. Again, we should
15305 just be able to ignore this. */
15306 new_flags &= ~EF_MIPS_UCODE;
15307 old_flags &= ~EF_MIPS_UCODE;
15309 /* DSOs should only be linked with CPIC code. */
15310 if ((ibfd->flags & DYNAMIC) != 0)
15311 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15313 if (new_flags == old_flags)
15318 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15319 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15322 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15327 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15328 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15329 if (! (new_flags & EF_MIPS_PIC))
15330 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15332 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15333 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15335 /* Compare the ISAs. */
15336 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15339 (_("%pB: linking 32-bit code with 64-bit code"),
15343 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15345 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15346 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15348 /* Copy the architecture info from IBFD to OBFD. Also copy
15349 the 32-bit flag (if set) so that we continue to recognise
15350 OBFD as a 32-bit binary. */
15351 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15352 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15353 elf_elfheader (obfd)->e_flags
15354 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15356 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15357 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15359 /* Copy across the ABI flags if OBFD doesn't use them
15360 and if that was what caused us to treat IBFD as 32-bit. */
15361 if ((old_flags & EF_MIPS_ABI) == 0
15362 && mips_32bit_flags_p (new_flags)
15363 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15364 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15368 /* The ISAs aren't compatible. */
15370 /* xgettext:c-format */
15371 (_("%pB: linking %s module with previous %s modules"),
15373 bfd_printable_name (ibfd),
15374 bfd_printable_name (obfd));
15379 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15380 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15382 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15383 does set EI_CLASS differently from any 32-bit ABI. */
15384 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15385 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15386 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15388 /* Only error if both are set (to different values). */
15389 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15390 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15391 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15394 /* xgettext:c-format */
15395 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15397 elf_mips_abi_name (ibfd),
15398 elf_mips_abi_name (obfd));
15401 new_flags &= ~EF_MIPS_ABI;
15402 old_flags &= ~EF_MIPS_ABI;
15405 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15406 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15407 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15409 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15410 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15411 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15412 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15413 int micro_mis = old_m16 && new_micro;
15414 int m16_mis = old_micro && new_m16;
15416 if (m16_mis || micro_mis)
15419 /* xgettext:c-format */
15420 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15422 m16_mis ? "MIPS16" : "microMIPS",
15423 m16_mis ? "microMIPS" : "MIPS16");
15427 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15429 new_flags &= ~ EF_MIPS_ARCH_ASE;
15430 old_flags &= ~ EF_MIPS_ARCH_ASE;
15433 /* Compare NaN encodings. */
15434 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15436 /* xgettext:c-format */
15437 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15439 (new_flags & EF_MIPS_NAN2008
15440 ? "-mnan=2008" : "-mnan=legacy"),
15441 (old_flags & EF_MIPS_NAN2008
15442 ? "-mnan=2008" : "-mnan=legacy"));
15444 new_flags &= ~EF_MIPS_NAN2008;
15445 old_flags &= ~EF_MIPS_NAN2008;
15448 /* Compare FP64 state. */
15449 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15451 /* xgettext:c-format */
15452 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15454 (new_flags & EF_MIPS_FP64
15455 ? "-mfp64" : "-mfp32"),
15456 (old_flags & EF_MIPS_FP64
15457 ? "-mfp64" : "-mfp32"));
15459 new_flags &= ~EF_MIPS_FP64;
15460 old_flags &= ~EF_MIPS_FP64;
15463 /* Warn about any other mismatches */
15464 if (new_flags != old_flags)
15466 /* xgettext:c-format */
15468 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15470 ibfd, new_flags, old_flags);
15477 /* Merge object attributes from IBFD into OBFD. Raise an error if
15478 there are conflicting attributes. */
15480 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15482 bfd *obfd = info->output_bfd;
15483 obj_attribute *in_attr;
15484 obj_attribute *out_attr;
15488 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15489 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15490 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15491 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15493 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15495 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15496 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15498 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15500 /* This is the first object. Copy the attributes. */
15501 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15503 /* Use the Tag_null value to indicate the attributes have been
15505 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15510 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15511 non-conflicting ones. */
15512 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15513 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15517 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15518 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15519 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15520 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15521 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15522 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15523 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15524 || in_fp == Val_GNU_MIPS_ABI_FP_64
15525 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15527 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15528 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15530 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15531 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15532 || out_fp == Val_GNU_MIPS_ABI_FP_64
15533 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15534 /* Keep the current setting. */;
15535 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15536 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15538 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15539 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15541 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15542 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15543 /* Keep the current setting. */;
15544 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15546 const char *out_string, *in_string;
15548 out_string = _bfd_mips_fp_abi_string (out_fp);
15549 in_string = _bfd_mips_fp_abi_string (in_fp);
15550 /* First warn about cases involving unrecognised ABIs. */
15551 if (!out_string && !in_string)
15552 /* xgettext:c-format */
15554 (_("warning: %pB uses unknown floating point ABI %d "
15555 "(set by %pB), %pB uses unknown floating point ABI %d"),
15556 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15557 else if (!out_string)
15559 /* xgettext:c-format */
15560 (_("warning: %pB uses unknown floating point ABI %d "
15561 "(set by %pB), %pB uses %s"),
15562 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15563 else if (!in_string)
15565 /* xgettext:c-format */
15566 (_("warning: %pB uses %s (set by %pB), "
15567 "%pB uses unknown floating point ABI %d"),
15568 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15571 /* If one of the bfds is soft-float, the other must be
15572 hard-float. The exact choice of hard-float ABI isn't
15573 really relevant to the error message. */
15574 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15575 out_string = "-mhard-float";
15576 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15577 in_string = "-mhard-float";
15579 /* xgettext:c-format */
15580 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15581 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15586 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15587 non-conflicting ones. */
15588 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15590 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15591 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15592 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15593 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15594 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15596 case Val_GNU_MIPS_ABI_MSA_128:
15598 /* xgettext:c-format */
15599 (_("warning: %pB uses %s (set by %pB), "
15600 "%pB uses unknown MSA ABI %d"),
15601 obfd, "-mmsa", abi_msa_bfd,
15602 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15606 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15608 case Val_GNU_MIPS_ABI_MSA_128:
15610 /* xgettext:c-format */
15611 (_("warning: %pB uses unknown MSA ABI %d "
15612 "(set by %pB), %pB uses %s"),
15613 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15614 abi_msa_bfd, ibfd, "-mmsa");
15619 /* xgettext:c-format */
15620 (_("warning: %pB uses unknown MSA ABI %d "
15621 "(set by %pB), %pB uses unknown MSA ABI %d"),
15622 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15623 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15629 /* Merge Tag_compatibility attributes and any common GNU ones. */
15630 return _bfd_elf_merge_object_attributes (ibfd, info);
15633 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15634 there are conflicting settings. */
15637 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15639 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15640 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15641 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15643 /* Update the output abiflags fp_abi using the computed fp_abi. */
15644 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15646 #define max(a, b) ((a) > (b) ? (a) : (b))
15647 /* Merge abiflags. */
15648 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15649 in_tdata->abiflags.isa_level);
15650 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15651 in_tdata->abiflags.isa_rev);
15652 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15653 in_tdata->abiflags.gpr_size);
15654 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15655 in_tdata->abiflags.cpr1_size);
15656 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15657 in_tdata->abiflags.cpr2_size);
15659 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15660 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15665 /* Merge backend specific data from an object file to the output
15666 object file when linking. */
15669 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15671 bfd *obfd = info->output_bfd;
15672 struct mips_elf_obj_tdata *out_tdata;
15673 struct mips_elf_obj_tdata *in_tdata;
15674 bfd_boolean null_input_bfd = TRUE;
15678 /* Check if we have the same endianness. */
15679 if (! _bfd_generic_verify_endian_match (ibfd, info))
15682 (_("%pB: endianness incompatible with that of the selected emulation"),
15687 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15690 in_tdata = mips_elf_tdata (ibfd);
15691 out_tdata = mips_elf_tdata (obfd);
15693 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15696 (_("%pB: ABI is incompatible with that of the selected emulation"),
15701 /* Check to see if the input BFD actually contains any sections. If not,
15702 then it has no attributes, and its flags may not have been initialized
15703 either, but it cannot actually cause any incompatibility. */
15704 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15706 /* Ignore synthetic sections and empty .text, .data and .bss sections
15707 which are automatically generated by gas. Also ignore fake
15708 (s)common sections, since merely defining a common symbol does
15709 not affect compatibility. */
15710 if ((sec->flags & SEC_IS_COMMON) == 0
15711 && strcmp (sec->name, ".reginfo")
15712 && strcmp (sec->name, ".mdebug")
15714 || (strcmp (sec->name, ".text")
15715 && strcmp (sec->name, ".data")
15716 && strcmp (sec->name, ".bss"))))
15718 null_input_bfd = FALSE;
15722 if (null_input_bfd)
15725 /* Populate abiflags using existing information. */
15726 if (in_tdata->abiflags_valid)
15728 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15729 Elf_Internal_ABIFlags_v0 in_abiflags;
15730 Elf_Internal_ABIFlags_v0 abiflags;
15732 /* Set up the FP ABI attribute from the abiflags if it is not already
15734 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15735 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15737 infer_mips_abiflags (ibfd, &abiflags);
15738 in_abiflags = in_tdata->abiflags;
15740 /* It is not possible to infer the correct ISA revision
15741 for R3 or R5 so drop down to R2 for the checks. */
15742 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15743 in_abiflags.isa_rev = 2;
15745 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15746 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15748 (_("%pB: warning: inconsistent ISA between e_flags and "
15749 ".MIPS.abiflags"), ibfd);
15750 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15751 && in_abiflags.fp_abi != abiflags.fp_abi)
15753 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15754 ".MIPS.abiflags"), ibfd);
15755 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15757 (_("%pB: warning: inconsistent ASEs between e_flags and "
15758 ".MIPS.abiflags"), ibfd);
15759 /* The isa_ext is allowed to be an extension of what can be inferred
15761 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15762 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15764 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15765 ".MIPS.abiflags"), ibfd);
15766 if (in_abiflags.flags2 != 0)
15768 (_("%pB: warning: unexpected flag in the flags2 field of "
15769 ".MIPS.abiflags (0x%lx)"), ibfd,
15770 in_abiflags.flags2);
15774 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15775 in_tdata->abiflags_valid = TRUE;
15778 if (!out_tdata->abiflags_valid)
15780 /* Copy input abiflags if output abiflags are not already valid. */
15781 out_tdata->abiflags = in_tdata->abiflags;
15782 out_tdata->abiflags_valid = TRUE;
15785 if (! elf_flags_init (obfd))
15787 elf_flags_init (obfd) = TRUE;
15788 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15789 elf_elfheader (obfd)->e_ident[EI_CLASS]
15790 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15792 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15793 && (bfd_get_arch_info (obfd)->the_default
15794 || mips_mach_extends_p (bfd_get_mach (obfd),
15795 bfd_get_mach (ibfd))))
15797 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15798 bfd_get_mach (ibfd)))
15801 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15802 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15808 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15810 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15812 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15816 bfd_set_error (bfd_error_bad_value);
15823 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15826 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15828 BFD_ASSERT (!elf_flags_init (abfd)
15829 || elf_elfheader (abfd)->e_flags == flags);
15831 elf_elfheader (abfd)->e_flags = flags;
15832 elf_flags_init (abfd) = TRUE;
15837 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15841 default: return "";
15842 case DT_MIPS_RLD_VERSION:
15843 return "MIPS_RLD_VERSION";
15844 case DT_MIPS_TIME_STAMP:
15845 return "MIPS_TIME_STAMP";
15846 case DT_MIPS_ICHECKSUM:
15847 return "MIPS_ICHECKSUM";
15848 case DT_MIPS_IVERSION:
15849 return "MIPS_IVERSION";
15850 case DT_MIPS_FLAGS:
15851 return "MIPS_FLAGS";
15852 case DT_MIPS_BASE_ADDRESS:
15853 return "MIPS_BASE_ADDRESS";
15855 return "MIPS_MSYM";
15856 case DT_MIPS_CONFLICT:
15857 return "MIPS_CONFLICT";
15858 case DT_MIPS_LIBLIST:
15859 return "MIPS_LIBLIST";
15860 case DT_MIPS_LOCAL_GOTNO:
15861 return "MIPS_LOCAL_GOTNO";
15862 case DT_MIPS_CONFLICTNO:
15863 return "MIPS_CONFLICTNO";
15864 case DT_MIPS_LIBLISTNO:
15865 return "MIPS_LIBLISTNO";
15866 case DT_MIPS_SYMTABNO:
15867 return "MIPS_SYMTABNO";
15868 case DT_MIPS_UNREFEXTNO:
15869 return "MIPS_UNREFEXTNO";
15870 case DT_MIPS_GOTSYM:
15871 return "MIPS_GOTSYM";
15872 case DT_MIPS_HIPAGENO:
15873 return "MIPS_HIPAGENO";
15874 case DT_MIPS_RLD_MAP:
15875 return "MIPS_RLD_MAP";
15876 case DT_MIPS_RLD_MAP_REL:
15877 return "MIPS_RLD_MAP_REL";
15878 case DT_MIPS_DELTA_CLASS:
15879 return "MIPS_DELTA_CLASS";
15880 case DT_MIPS_DELTA_CLASS_NO:
15881 return "MIPS_DELTA_CLASS_NO";
15882 case DT_MIPS_DELTA_INSTANCE:
15883 return "MIPS_DELTA_INSTANCE";
15884 case DT_MIPS_DELTA_INSTANCE_NO:
15885 return "MIPS_DELTA_INSTANCE_NO";
15886 case DT_MIPS_DELTA_RELOC:
15887 return "MIPS_DELTA_RELOC";
15888 case DT_MIPS_DELTA_RELOC_NO:
15889 return "MIPS_DELTA_RELOC_NO";
15890 case DT_MIPS_DELTA_SYM:
15891 return "MIPS_DELTA_SYM";
15892 case DT_MIPS_DELTA_SYM_NO:
15893 return "MIPS_DELTA_SYM_NO";
15894 case DT_MIPS_DELTA_CLASSSYM:
15895 return "MIPS_DELTA_CLASSSYM";
15896 case DT_MIPS_DELTA_CLASSSYM_NO:
15897 return "MIPS_DELTA_CLASSSYM_NO";
15898 case DT_MIPS_CXX_FLAGS:
15899 return "MIPS_CXX_FLAGS";
15900 case DT_MIPS_PIXIE_INIT:
15901 return "MIPS_PIXIE_INIT";
15902 case DT_MIPS_SYMBOL_LIB:
15903 return "MIPS_SYMBOL_LIB";
15904 case DT_MIPS_LOCALPAGE_GOTIDX:
15905 return "MIPS_LOCALPAGE_GOTIDX";
15906 case DT_MIPS_LOCAL_GOTIDX:
15907 return "MIPS_LOCAL_GOTIDX";
15908 case DT_MIPS_HIDDEN_GOTIDX:
15909 return "MIPS_HIDDEN_GOTIDX";
15910 case DT_MIPS_PROTECTED_GOTIDX:
15911 return "MIPS_PROTECTED_GOT_IDX";
15912 case DT_MIPS_OPTIONS:
15913 return "MIPS_OPTIONS";
15914 case DT_MIPS_INTERFACE:
15915 return "MIPS_INTERFACE";
15916 case DT_MIPS_DYNSTR_ALIGN:
15917 return "DT_MIPS_DYNSTR_ALIGN";
15918 case DT_MIPS_INTERFACE_SIZE:
15919 return "DT_MIPS_INTERFACE_SIZE";
15920 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15921 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15922 case DT_MIPS_PERF_SUFFIX:
15923 return "DT_MIPS_PERF_SUFFIX";
15924 case DT_MIPS_COMPACT_SIZE:
15925 return "DT_MIPS_COMPACT_SIZE";
15926 case DT_MIPS_GP_VALUE:
15927 return "DT_MIPS_GP_VALUE";
15928 case DT_MIPS_AUX_DYNAMIC:
15929 return "DT_MIPS_AUX_DYNAMIC";
15930 case DT_MIPS_PLTGOT:
15931 return "DT_MIPS_PLTGOT";
15932 case DT_MIPS_RWPLT:
15933 return "DT_MIPS_RWPLT";
15937 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15941 _bfd_mips_fp_abi_string (int fp)
15945 /* These strings aren't translated because they're simply
15947 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15948 return "-mdouble-float";
15950 case Val_GNU_MIPS_ABI_FP_SINGLE:
15951 return "-msingle-float";
15953 case Val_GNU_MIPS_ABI_FP_SOFT:
15954 return "-msoft-float";
15956 case Val_GNU_MIPS_ABI_FP_OLD_64:
15957 return _("-mips32r2 -mfp64 (12 callee-saved)");
15959 case Val_GNU_MIPS_ABI_FP_XX:
15962 case Val_GNU_MIPS_ABI_FP_64:
15963 return "-mgp32 -mfp64";
15965 case Val_GNU_MIPS_ABI_FP_64A:
15966 return "-mgp32 -mfp64 -mno-odd-spreg";
15974 print_mips_ases (FILE *file, unsigned int mask)
15976 if (mask & AFL_ASE_DSP)
15977 fputs ("\n\tDSP ASE", file);
15978 if (mask & AFL_ASE_DSPR2)
15979 fputs ("\n\tDSP R2 ASE", file);
15980 if (mask & AFL_ASE_DSPR3)
15981 fputs ("\n\tDSP R3 ASE", file);
15982 if (mask & AFL_ASE_EVA)
15983 fputs ("\n\tEnhanced VA Scheme", file);
15984 if (mask & AFL_ASE_MCU)
15985 fputs ("\n\tMCU (MicroController) ASE", file);
15986 if (mask & AFL_ASE_MDMX)
15987 fputs ("\n\tMDMX ASE", file);
15988 if (mask & AFL_ASE_MIPS3D)
15989 fputs ("\n\tMIPS-3D ASE", file);
15990 if (mask & AFL_ASE_MT)
15991 fputs ("\n\tMT ASE", file);
15992 if (mask & AFL_ASE_SMARTMIPS)
15993 fputs ("\n\tSmartMIPS ASE", file);
15994 if (mask & AFL_ASE_VIRT)
15995 fputs ("\n\tVZ ASE", file);
15996 if (mask & AFL_ASE_MSA)
15997 fputs ("\n\tMSA ASE", file);
15998 if (mask & AFL_ASE_MIPS16)
15999 fputs ("\n\tMIPS16 ASE", file);
16000 if (mask & AFL_ASE_MICROMIPS)
16001 fputs ("\n\tMICROMIPS ASE", file);
16002 if (mask & AFL_ASE_XPA)
16003 fputs ("\n\tXPA ASE", file);
16004 if (mask & AFL_ASE_MIPS16E2)
16005 fputs ("\n\tMIPS16e2 ASE", file);
16006 if (mask & AFL_ASE_CRC)
16007 fputs ("\n\tCRC ASE", file);
16008 if (mask & AFL_ASE_GINV)
16009 fputs ("\n\tGINV ASE", file);
16010 if (mask & AFL_ASE_LOONGSON_MMI)
16011 fputs ("\n\tLoongson MMI ASE", file);
16012 if (mask & AFL_ASE_LOONGSON_CAM)
16013 fputs ("\n\tLoongson CAM ASE", file);
16014 if (mask & AFL_ASE_LOONGSON_EXT)
16015 fputs ("\n\tLoongson EXT ASE", file);
16016 if (mask & AFL_ASE_LOONGSON_EXT2)
16017 fputs ("\n\tLoongson EXT2 ASE", file);
16019 fprintf (file, "\n\t%s", _("None"));
16020 else if ((mask & ~AFL_ASE_MASK) != 0)
16021 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16025 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16030 fputs (_("None"), file);
16033 fputs ("RMI XLR", file);
16035 case AFL_EXT_OCTEON3:
16036 fputs ("Cavium Networks Octeon3", file);
16038 case AFL_EXT_OCTEON2:
16039 fputs ("Cavium Networks Octeon2", file);
16041 case AFL_EXT_OCTEONP:
16042 fputs ("Cavium Networks OcteonP", file);
16044 case AFL_EXT_OCTEON:
16045 fputs ("Cavium Networks Octeon", file);
16048 fputs ("Toshiba R5900", file);
16051 fputs ("MIPS R4650", file);
16054 fputs ("LSI R4010", file);
16057 fputs ("NEC VR4100", file);
16060 fputs ("Toshiba R3900", file);
16062 case AFL_EXT_10000:
16063 fputs ("MIPS R10000", file);
16066 fputs ("Broadcom SB-1", file);
16069 fputs ("NEC VR4111/VR4181", file);
16072 fputs ("NEC VR4120", file);
16075 fputs ("NEC VR5400", file);
16078 fputs ("NEC VR5500", file);
16080 case AFL_EXT_LOONGSON_2E:
16081 fputs ("ST Microelectronics Loongson 2E", file);
16083 case AFL_EXT_LOONGSON_2F:
16084 fputs ("ST Microelectronics Loongson 2F", file);
16086 case AFL_EXT_INTERAPTIV_MR2:
16087 fputs ("Imagination interAptiv MR2", file);
16090 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16096 print_mips_fp_abi_value (FILE *file, int val)
16100 case Val_GNU_MIPS_ABI_FP_ANY:
16101 fprintf (file, _("Hard or soft float\n"));
16103 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16104 fprintf (file, _("Hard float (double precision)\n"));
16106 case Val_GNU_MIPS_ABI_FP_SINGLE:
16107 fprintf (file, _("Hard float (single precision)\n"));
16109 case Val_GNU_MIPS_ABI_FP_SOFT:
16110 fprintf (file, _("Soft float\n"));
16112 case Val_GNU_MIPS_ABI_FP_OLD_64:
16113 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16115 case Val_GNU_MIPS_ABI_FP_XX:
16116 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16118 case Val_GNU_MIPS_ABI_FP_64:
16119 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16121 case Val_GNU_MIPS_ABI_FP_64A:
16122 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16125 fprintf (file, "??? (%d)\n", val);
16131 get_mips_reg_size (int reg_size)
16133 return (reg_size == AFL_REG_NONE) ? 0
16134 : (reg_size == AFL_REG_32) ? 32
16135 : (reg_size == AFL_REG_64) ? 64
16136 : (reg_size == AFL_REG_128) ? 128
16141 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16145 BFD_ASSERT (abfd != NULL && ptr != NULL);
16147 /* Print normal ELF private data. */
16148 _bfd_elf_print_private_bfd_data (abfd, ptr);
16150 /* xgettext:c-format */
16151 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16153 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16154 fprintf (file, _(" [abi=O32]"));
16155 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16156 fprintf (file, _(" [abi=O64]"));
16157 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16158 fprintf (file, _(" [abi=EABI32]"));
16159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16160 fprintf (file, _(" [abi=EABI64]"));
16161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16162 fprintf (file, _(" [abi unknown]"));
16163 else if (ABI_N32_P (abfd))
16164 fprintf (file, _(" [abi=N32]"));
16165 else if (ABI_64_P (abfd))
16166 fprintf (file, _(" [abi=64]"));
16168 fprintf (file, _(" [no abi set]"));
16170 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16171 fprintf (file, " [mips1]");
16172 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16173 fprintf (file, " [mips2]");
16174 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16175 fprintf (file, " [mips3]");
16176 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16177 fprintf (file, " [mips4]");
16178 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16179 fprintf (file, " [mips5]");
16180 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16181 fprintf (file, " [mips32]");
16182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16183 fprintf (file, " [mips64]");
16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16185 fprintf (file, " [mips32r2]");
16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16187 fprintf (file, " [mips64r2]");
16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16189 fprintf (file, " [mips32r6]");
16190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16191 fprintf (file, " [mips64r6]");
16193 fprintf (file, _(" [unknown ISA]"));
16195 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16196 fprintf (file, " [mdmx]");
16198 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16199 fprintf (file, " [mips16]");
16201 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16202 fprintf (file, " [micromips]");
16204 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16205 fprintf (file, " [nan2008]");
16207 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16208 fprintf (file, " [old fp64]");
16210 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16211 fprintf (file, " [32bitmode]");
16213 fprintf (file, _(" [not 32bitmode]"));
16215 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16216 fprintf (file, " [noreorder]");
16218 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16219 fprintf (file, " [PIC]");
16221 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16222 fprintf (file, " [CPIC]");
16224 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16225 fprintf (file, " [XGOT]");
16227 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16228 fprintf (file, " [UCODE]");
16230 fputc ('\n', file);
16232 if (mips_elf_tdata (abfd)->abiflags_valid)
16234 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16235 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16236 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16237 if (abiflags->isa_rev > 1)
16238 fprintf (file, "r%d", abiflags->isa_rev);
16239 fprintf (file, "\nGPR size: %d",
16240 get_mips_reg_size (abiflags->gpr_size));
16241 fprintf (file, "\nCPR1 size: %d",
16242 get_mips_reg_size (abiflags->cpr1_size));
16243 fprintf (file, "\nCPR2 size: %d",
16244 get_mips_reg_size (abiflags->cpr2_size));
16245 fputs ("\nFP ABI: ", file);
16246 print_mips_fp_abi_value (file, abiflags->fp_abi);
16247 fputs ("ISA Extension: ", file);
16248 print_mips_isa_ext (file, abiflags->isa_ext);
16249 fputs ("\nASEs:", file);
16250 print_mips_ases (file, abiflags->ases);
16251 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16252 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16253 fputc ('\n', file);
16259 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16261 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16262 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16263 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16264 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16265 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16266 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16267 { NULL, 0, 0, 0, 0 }
16270 /* Merge non visibility st_other attributes. Ensure that the
16271 STO_OPTIONAL flag is copied into h->other, even if this is not a
16272 definiton of the symbol. */
16274 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16275 const Elf_Internal_Sym *isym,
16276 bfd_boolean definition,
16277 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16279 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16281 unsigned char other;
16283 other = (definition ? isym->st_other : h->other);
16284 other &= ~ELF_ST_VISIBILITY (-1);
16285 h->other = other | ELF_ST_VISIBILITY (h->other);
16289 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16290 h->other |= STO_OPTIONAL;
16293 /* Decide whether an undefined symbol is special and can be ignored.
16294 This is the case for OPTIONAL symbols on IRIX. */
16296 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16298 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16302 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16304 return (sym->st_shndx == SHN_COMMON
16305 || sym->st_shndx == SHN_MIPS_ACOMMON
16306 || sym->st_shndx == SHN_MIPS_SCOMMON);
16309 /* Return address for Ith PLT stub in section PLT, for relocation REL
16310 or (bfd_vma) -1 if it should not be included. */
16313 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16314 const arelent *rel ATTRIBUTE_UNUSED)
16317 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16318 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16321 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16322 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16323 and .got.plt and also the slots may be of a different size each we walk
16324 the PLT manually fetching instructions and matching them against known
16325 patterns. To make things easier standard MIPS slots, if any, always come
16326 first. As we don't create proper ELF symbols we use the UDATA.I member
16327 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16328 with the ST_OTHER member of the ELF symbol. */
16331 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16332 long symcount ATTRIBUTE_UNUSED,
16333 asymbol **syms ATTRIBUTE_UNUSED,
16334 long dynsymcount, asymbol **dynsyms,
16337 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16338 static const char microsuffix[] = "@micromipsplt";
16339 static const char m16suffix[] = "@mips16plt";
16340 static const char mipssuffix[] = "@plt";
16342 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16344 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16345 Elf_Internal_Shdr *hdr;
16346 bfd_byte *plt_data;
16347 bfd_vma plt_offset;
16348 unsigned int other;
16349 bfd_vma entry_size;
16368 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16371 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16372 if (relplt == NULL)
16375 hdr = &elf_section_data (relplt)->this_hdr;
16376 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16379 plt = bfd_get_section_by_name (abfd, ".plt");
16383 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16384 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16386 p = relplt->relocation;
16388 /* Calculating the exact amount of space required for symbols would
16389 require two passes over the PLT, so just pessimise assuming two
16390 PLT slots per relocation. */
16391 count = relplt->size / hdr->sh_entsize;
16392 counti = count * bed->s->int_rels_per_ext_rel;
16393 size = 2 * count * sizeof (asymbol);
16394 size += count * (sizeof (mipssuffix) +
16395 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16396 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16397 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16399 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16400 size += sizeof (asymbol) + sizeof (pltname);
16402 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16405 if (plt->size < 16)
16408 s = *ret = bfd_malloc (size);
16411 send = s + 2 * count + 1;
16413 names = (char *) send;
16414 nend = (char *) s + size;
16417 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16418 if (opcode == 0x3302fffe)
16422 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16423 other = STO_MICROMIPS;
16425 else if (opcode == 0x0398c1d0)
16429 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16430 other = STO_MICROMIPS;
16434 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16439 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16443 s->udata.i = other;
16444 memcpy (names, pltname, sizeof (pltname));
16445 names += sizeof (pltname);
16449 for (plt_offset = plt0_size;
16450 plt_offset + 8 <= plt->size && s < send;
16451 plt_offset += entry_size)
16453 bfd_vma gotplt_addr;
16454 const char *suffix;
16459 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16461 /* Check if the second word matches the expected MIPS16 instruction. */
16462 if (opcode == 0x651aeb00)
16466 /* Truncated table??? */
16467 if (plt_offset + 16 > plt->size)
16469 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16470 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16471 suffixlen = sizeof (m16suffix);
16472 suffix = m16suffix;
16473 other = STO_MIPS16;
16475 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16476 else if (opcode == 0xff220000)
16480 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16481 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16482 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16484 gotplt_addr = gotplt_hi + gotplt_lo;
16485 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16486 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16487 suffixlen = sizeof (microsuffix);
16488 suffix = microsuffix;
16489 other = STO_MICROMIPS;
16491 /* Likewise the expected microMIPS instruction (insn32 mode). */
16492 else if ((opcode & 0xffff0000) == 0xff2f0000)
16494 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16495 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16496 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16497 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16498 gotplt_addr = gotplt_hi + gotplt_lo;
16499 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16500 suffixlen = sizeof (microsuffix);
16501 suffix = microsuffix;
16502 other = STO_MICROMIPS;
16504 /* Otherwise assume standard MIPS code. */
16507 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16508 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16509 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16510 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16511 gotplt_addr = gotplt_hi + gotplt_lo;
16512 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16513 suffixlen = sizeof (mipssuffix);
16514 suffix = mipssuffix;
16517 /* Truncated table??? */
16518 if (plt_offset + entry_size > plt->size)
16522 i < count && p[pi].address != gotplt_addr;
16523 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16530 *s = **p[pi].sym_ptr_ptr;
16531 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16532 we are defining a symbol, ensure one of them is set. */
16533 if ((s->flags & BSF_LOCAL) == 0)
16534 s->flags |= BSF_GLOBAL;
16535 s->flags |= BSF_SYNTHETIC;
16537 s->value = plt_offset;
16539 s->udata.i = other;
16541 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16542 namelen = len + suffixlen;
16543 if (names + namelen > nend)
16546 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16548 memcpy (names, suffix, suffixlen);
16549 names += suffixlen;
16552 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16561 /* Return the ABI flags associated with ABFD if available. */
16563 Elf_Internal_ABIFlags_v0 *
16564 bfd_mips_elf_get_abiflags (bfd *abfd)
16566 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16568 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16571 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16572 field. Taken from `libc-abis.h' generated at GNU libc build time.
16573 Using a MIPS_ prefix as other libc targets use different values. */
16576 MIPS_LIBC_ABI_DEFAULT = 0,
16577 MIPS_LIBC_ABI_MIPS_PLT,
16578 MIPS_LIBC_ABI_UNIQUE,
16579 MIPS_LIBC_ABI_MIPS_O32_FP64,
16580 MIPS_LIBC_ABI_ABSOLUTE,
16585 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16587 struct mips_elf_link_hash_table *htab = NULL;
16588 Elf_Internal_Ehdr *i_ehdrp;
16590 i_ehdrp = elf_elfheader (abfd);
16593 htab = mips_elf_hash_table (link_info);
16594 BFD_ASSERT (htab != NULL);
16597 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16598 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16600 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16601 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16602 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16604 /* Mark that we need support for absolute symbols in the dynamic loader. */
16605 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16606 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16608 _bfd_elf_post_process_headers (abfd, link_info);
16612 _bfd_mips_elf_compact_eh_encoding
16613 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16615 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16618 /* Return the opcode for can't unwind. */
16621 _bfd_mips_elf_cant_unwind_opcode
16622 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16624 return COMPACT_EH_CANT_UNWIND_OPCODE;