1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
23 /* This file handles RISC-V ELF targets. */
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
37 #define MINUS_ONE ((bfd_vma)0 - 1)
39 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
41 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
43 /* The name of the dynamic interpreter. This is put in the .interp
46 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
47 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
49 #define ELF_ARCH bfd_arch_riscv
50 #define ELF_TARGET_ID RISCV_ELF_DATA
51 #define ELF_MACHINE_CODE EM_RISCV
52 #define ELF_MAXPAGESIZE 0x1000
53 #define ELF_COMMONPAGESIZE 0x1000
55 /* The RISC-V linker needs to keep track of the number of relocs that it
56 decides to copy as dynamic relocs in check_relocs for each symbol.
57 This is so that it can later discard them if they are found to be
58 unnecessary. We store the information in a field extending the
59 regular ELF linker hash table. */
61 struct riscv_elf_dyn_relocs
63 struct riscv_elf_dyn_relocs *next;
65 /* The input section of the reloc. */
68 /* Total number of relocs copied for the input section. */
71 /* Number of pc-relative relocs copied for the input section. */
72 bfd_size_type pc_count;
75 /* RISC-V ELF linker hash entry. */
77 struct riscv_elf_link_hash_entry
79 struct elf_link_hash_entry elf;
81 /* Track dynamic relocs copied for this symbol. */
82 struct riscv_elf_dyn_relocs *dyn_relocs;
92 #define riscv_elf_hash_entry(ent) \
93 ((struct riscv_elf_link_hash_entry *)(ent))
95 struct _bfd_riscv_elf_obj_tdata
97 struct elf_obj_tdata root;
99 /* tls_type for each local got entry. */
100 char *local_got_tls_type;
103 #define _bfd_riscv_elf_tdata(abfd) \
104 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
106 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
107 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
109 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
110 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
111 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
113 #define is_riscv_elf(bfd) \
114 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
115 && elf_tdata (bfd) != NULL \
116 && elf_object_id (bfd) == RISCV_ELF_DATA)
118 #include "elf/common.h"
119 #include "elf/internal.h"
121 struct riscv_elf_link_hash_table
123 struct elf_link_hash_table elf;
125 /* Short-cuts to get to dynamic linker sections. */
128 /* Small local sym to section mapping cache. */
129 struct sym_cache sym_cache;
131 /* The max alignment of output sections. */
132 bfd_vma max_alignment;
136 /* Get the RISC-V ELF linker hash table from a link_info structure. */
137 #define riscv_elf_hash_table(p) \
138 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
139 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
142 riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
144 Elf_Internal_Rela *dst)
146 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
150 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
152 const struct elf_backend_data *bed;
155 bed = get_elf_backend_data (abfd);
156 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
157 bed->s->swap_reloca_out (abfd, rel, loc);
162 #define PLT_HEADER_INSNS 8
163 #define PLT_ENTRY_INSNS 4
164 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
165 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
167 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
169 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
171 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
174 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
176 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
177 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
181 # define MATCH_LREG MATCH_LW
183 # define MATCH_LREG MATCH_LD
186 /* Generate a PLT header. */
189 riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
191 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
192 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
194 /* auipc t2, %hi(.got.plt)
195 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
196 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
197 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
198 addi t0, t2, %lo(.got.plt) # &.got.plt
199 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
200 l[w|d] t0, PTRSIZE(t0) # link map
203 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
204 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
205 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
206 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
207 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
208 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
209 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
210 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
213 /* Generate a PLT entry. */
216 riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
218 /* auipc t3, %hi(.got.plt entry)
219 l[w|d] t3, %lo(.got.plt entry)(t3)
223 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
224 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
225 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
226 entry[3] = RISCV_NOP;
229 /* Create an entry in an RISC-V ELF linker hash table. */
231 static struct bfd_hash_entry *
232 link_hash_newfunc (struct bfd_hash_entry *entry,
233 struct bfd_hash_table *table, const char *string)
235 /* Allocate the structure if it has not already been allocated by a
240 bfd_hash_allocate (table,
241 sizeof (struct riscv_elf_link_hash_entry));
246 /* Call the allocation method of the superclass. */
247 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
250 struct riscv_elf_link_hash_entry *eh;
252 eh = (struct riscv_elf_link_hash_entry *) entry;
253 eh->dyn_relocs = NULL;
254 eh->tls_type = GOT_UNKNOWN;
260 /* Create a RISC-V ELF linker hash table. */
262 static struct bfd_link_hash_table *
263 riscv_elf_link_hash_table_create (bfd *abfd)
265 struct riscv_elf_link_hash_table *ret;
266 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
268 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
272 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
273 sizeof (struct riscv_elf_link_hash_entry),
280 ret->max_alignment = (bfd_vma) -1;
281 return &ret->elf.root;
284 /* Create the .got section. */
287 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
291 struct elf_link_hash_entry *h;
292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
293 struct elf_link_hash_table *htab = elf_hash_table (info);
295 /* This function may be called more than once. */
296 if (htab->sgot != NULL)
299 flags = bed->dynamic_sec_flags;
301 s = bfd_make_section_anyway_with_flags (abfd,
302 (bed->rela_plts_and_copies_p
303 ? ".rela.got" : ".rel.got"),
304 (bed->dynamic_sec_flags
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
311 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
313 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 /* The first bit of the global offset table is the header. */
318 s->size += bed->got_header_size;
320 if (bed->want_got_plt)
322 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
324 || !bfd_set_section_alignment (abfd, s,
325 bed->s->log_file_align))
329 /* Reserve room for the header. */
330 s->size += GOTPLT_HEADER_SIZE;
333 if (bed->want_got_sym)
335 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
336 section. We don't do this in the linker script because we don't want
337 to define the symbol if we are not creating a global offset
339 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
340 "_GLOBAL_OFFSET_TABLE_");
341 elf_hash_table (info)->hgot = h;
349 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
350 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
354 riscv_elf_create_dynamic_sections (bfd *dynobj,
355 struct bfd_link_info *info)
357 struct riscv_elf_link_hash_table *htab;
359 htab = riscv_elf_hash_table (info);
360 BFD_ASSERT (htab != NULL);
362 if (!riscv_elf_create_got_section (dynobj, info))
365 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
368 if (!bfd_link_pic (info))
371 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
372 SEC_ALLOC | SEC_THREAD_LOCAL);
375 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
376 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
382 /* Copy the extra info we tack onto an elf_link_hash_entry. */
385 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
386 struct elf_link_hash_entry *dir,
387 struct elf_link_hash_entry *ind)
389 struct riscv_elf_link_hash_entry *edir, *eind;
391 edir = (struct riscv_elf_link_hash_entry *) dir;
392 eind = (struct riscv_elf_link_hash_entry *) ind;
394 if (eind->dyn_relocs != NULL)
396 if (edir->dyn_relocs != NULL)
398 struct riscv_elf_dyn_relocs **pp;
399 struct riscv_elf_dyn_relocs *p;
401 /* Add reloc counts against the indirect sym to the direct sym
402 list. Merge any entries against the same section. */
403 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
405 struct riscv_elf_dyn_relocs *q;
407 for (q = edir->dyn_relocs; q != NULL; q = q->next)
408 if (q->sec == p->sec)
410 q->pc_count += p->pc_count;
411 q->count += p->count;
418 *pp = edir->dyn_relocs;
421 edir->dyn_relocs = eind->dyn_relocs;
422 eind->dyn_relocs = NULL;
425 if (ind->root.type == bfd_link_hash_indirect
426 && dir->got.refcount <= 0)
428 edir->tls_type = eind->tls_type;
429 eind->tls_type = GOT_UNKNOWN;
431 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
435 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
436 unsigned long symndx, char tls_type)
438 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
440 *new_tls_type |= tls_type;
441 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
443 (*_bfd_error_handler)
444 (_("%B: `%s' accessed both as normal and thread local symbol"),
445 abfd, h ? h->root.root.string : "<local>");
452 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
453 struct elf_link_hash_entry *h, long symndx)
455 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
456 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
458 if (htab->elf.sgot == NULL)
460 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
466 h->got.refcount += 1;
470 /* This is a global offset table entry for a local symbol. */
471 if (elf_local_got_refcounts (abfd) == NULL)
473 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
474 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
476 _bfd_riscv_elf_local_got_tls_type (abfd)
477 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
479 elf_local_got_refcounts (abfd) [symndx] += 1;
485 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
487 (*_bfd_error_handler)
488 (_("%B: relocation %s against `%s' can not be used when making a shared "
489 "object; recompile with -fPIC"),
490 abfd, riscv_elf_rtype_to_howto (r_type)->name,
491 h != NULL ? h->root.root.string : "a local symbol");
492 bfd_set_error (bfd_error_bad_value);
495 /* Look through the relocs for a section during the first phase, and
496 allocate space in the global offset table or procedure linkage
500 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
501 asection *sec, const Elf_Internal_Rela *relocs)
503 struct riscv_elf_link_hash_table *htab;
504 Elf_Internal_Shdr *symtab_hdr;
505 struct elf_link_hash_entry **sym_hashes;
506 const Elf_Internal_Rela *rel;
507 asection *sreloc = NULL;
509 if (bfd_link_relocatable (info))
512 htab = riscv_elf_hash_table (info);
513 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
514 sym_hashes = elf_sym_hashes (abfd);
516 if (htab->elf.dynobj == NULL)
517 htab->elf.dynobj = abfd;
519 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
522 unsigned int r_symndx;
523 struct elf_link_hash_entry *h;
525 r_symndx = ELFNN_R_SYM (rel->r_info);
526 r_type = ELFNN_R_TYPE (rel->r_info);
528 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
530 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
535 if (r_symndx < symtab_hdr->sh_info)
539 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
540 while (h->root.type == bfd_link_hash_indirect
541 || h->root.type == bfd_link_hash_warning)
542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
544 /* PR15323, ref flags aren't set for references in the same
546 h->root.non_ir_ref_regular = 1;
551 case R_RISCV_TLS_GD_HI20:
552 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
553 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
557 case R_RISCV_TLS_GOT_HI20:
558 if (bfd_link_pic (info))
559 info->flags |= DF_STATIC_TLS;
560 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
561 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
565 case R_RISCV_GOT_HI20:
566 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
567 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
571 case R_RISCV_CALL_PLT:
572 /* This symbol requires a procedure linkage table entry. We
573 actually build the entry in adjust_dynamic_symbol,
574 because this might be a case of linking PIC code without
575 linking in any dynamic objects, in which case we don't
576 need to generate a procedure linkage table after all. */
581 h->plt.refcount += 1;
588 case R_RISCV_RVC_BRANCH:
589 case R_RISCV_RVC_JUMP:
590 case R_RISCV_PCREL_HI20:
591 /* In shared libraries, these relocs are known to bind locally. */
592 if (bfd_link_pic (info))
596 case R_RISCV_TPREL_HI20:
597 if (!bfd_link_executable (info))
598 return bad_static_reloc (abfd, r_type, h);
600 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
604 if (bfd_link_pic (info))
605 return bad_static_reloc (abfd, r_type, h);
609 case R_RISCV_JUMP_SLOT:
610 case R_RISCV_RELATIVE:
616 /* This reloc might not bind locally. */
620 if (h != NULL && !bfd_link_pic (info))
622 /* We may need a .plt entry if the function this reloc
623 refers to is in a shared lib. */
624 h->plt.refcount += 1;
627 /* If we are creating a shared library, and this is a reloc
628 against a global symbol, or a non PC relative reloc
629 against a local symbol, then we need to copy the reloc
630 into the shared library. However, if we are linking with
631 -Bsymbolic, we do not need to copy a reloc against a
632 global symbol which is defined in an object we are
633 including in the link (i.e., DEF_REGULAR is set). At
634 this point we have not seen all the input files, so it is
635 possible that DEF_REGULAR is not set now but will be set
636 later (it is never cleared). In case of a weak definition,
637 DEF_REGULAR may be cleared later by a strong definition in
638 a shared library. We account for that possibility below by
639 storing information in the relocs_copied field of the hash
640 table entry. A similar situation occurs when creating
641 shared libraries and symbol visibility changes render the
644 If on the other hand, we are creating an executable, we
645 may need to keep relocations for symbols satisfied by a
646 dynamic library if we manage to avoid copy relocs for the
648 if ((bfd_link_pic (info)
649 && (sec->flags & SEC_ALLOC) != 0
650 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
653 || h->root.type == bfd_link_hash_defweak
654 || !h->def_regular))))
655 || (!bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
658 && (h->root.type == bfd_link_hash_defweak
659 || !h->def_regular)))
661 struct riscv_elf_dyn_relocs *p;
662 struct riscv_elf_dyn_relocs **head;
664 /* When creating a shared object, we must copy these
665 relocs into the output file. We create a reloc
666 section in dynobj and make room for the reloc. */
669 sreloc = _bfd_elf_make_dynamic_reloc_section
670 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
671 abfd, /*rela?*/ TRUE);
677 /* If this is a global symbol, we count the number of
678 relocations we need for this symbol. */
680 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
683 /* Track dynamic relocs needed for local syms too.
684 We really need local syms available to do this
689 Elf_Internal_Sym *isym;
691 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
696 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
700 vpp = &elf_section_data (s)->local_dynrel;
701 head = (struct riscv_elf_dyn_relocs **) vpp;
705 if (p == NULL || p->sec != sec)
707 bfd_size_type amt = sizeof *p;
708 p = ((struct riscv_elf_dyn_relocs *)
709 bfd_alloc (htab->elf.dynobj, amt));
720 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
725 case R_RISCV_GNU_VTINHERIT:
726 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
730 case R_RISCV_GNU_VTENTRY:
731 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
744 riscv_elf_gc_mark_hook (asection *sec,
745 struct bfd_link_info *info,
746 Elf_Internal_Rela *rel,
747 struct elf_link_hash_entry *h,
748 Elf_Internal_Sym *sym)
751 switch (ELFNN_R_TYPE (rel->r_info))
753 case R_RISCV_GNU_VTINHERIT:
754 case R_RISCV_GNU_VTENTRY:
758 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
761 /* Update the got entry reference counts for the section being removed. */
764 riscv_elf_gc_sweep_hook (bfd *abfd,
765 struct bfd_link_info *info,
767 const Elf_Internal_Rela *relocs)
769 const Elf_Internal_Rela *rel, *relend;
770 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
771 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
772 bfd_signed_vma *local_got_refcounts = elf_local_got_refcounts (abfd);
774 if (bfd_link_relocatable (info))
777 elf_section_data (sec)->local_dynrel = NULL;
779 for (rel = relocs, relend = relocs + sec->reloc_count; rel < relend; rel++)
781 unsigned long r_symndx;
782 struct elf_link_hash_entry *h = NULL;
784 r_symndx = ELFNN_R_SYM (rel->r_info);
785 if (r_symndx >= symtab_hdr->sh_info)
787 struct riscv_elf_link_hash_entry *eh;
788 struct riscv_elf_dyn_relocs **pp;
789 struct riscv_elf_dyn_relocs *p;
791 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
792 while (h->root.type == bfd_link_hash_indirect
793 || h->root.type == bfd_link_hash_warning)
794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
795 eh = (struct riscv_elf_link_hash_entry *) h;
796 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
799 /* Everything must go for SEC. */
805 switch (ELFNN_R_TYPE (rel->r_info))
807 case R_RISCV_GOT_HI20:
808 case R_RISCV_TLS_GOT_HI20:
809 case R_RISCV_TLS_GD_HI20:
812 if (h->got.refcount > 0)
817 if (local_got_refcounts &&
818 local_got_refcounts[r_symndx] > 0)
819 local_got_refcounts[r_symndx]--;
824 case R_RISCV_PCREL_HI20:
826 case R_RISCV_JUMP_SLOT:
827 case R_RISCV_RELATIVE:
833 case R_RISCV_RVC_BRANCH:
834 case R_RISCV_RVC_JUMP:
835 if (bfd_link_pic (info))
839 case R_RISCV_CALL_PLT:
842 if (h->plt.refcount > 0)
855 /* Adjust a symbol defined by a dynamic object and referenced by a
856 regular object. The current definition is in some section of the
857 dynamic object, but we're not including those sections. We have to
858 change the definition to something the rest of the link can
862 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
863 struct elf_link_hash_entry *h)
865 struct riscv_elf_link_hash_table *htab;
866 struct riscv_elf_link_hash_entry * eh;
867 struct riscv_elf_dyn_relocs *p;
871 htab = riscv_elf_hash_table (info);
872 BFD_ASSERT (htab != NULL);
874 dynobj = htab->elf.dynobj;
876 /* Make sure we know what is going on here. */
877 BFD_ASSERT (dynobj != NULL
879 || h->type == STT_GNU_IFUNC
880 || h->u.weakdef != NULL
883 && !h->def_regular)));
885 /* If this is a function, put it in the procedure linkage table. We
886 will fill in the contents of the procedure linkage table later
887 (although we could actually do it here). */
888 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
890 if (h->plt.refcount <= 0
891 || SYMBOL_CALLS_LOCAL (info, h)
892 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
893 && h->root.type == bfd_link_hash_undefweak))
895 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
896 input file, but the symbol was never referred to by a dynamic
897 object, or if all references were garbage collected. In such
898 a case, we don't actually need to build a PLT entry. */
899 h->plt.offset = (bfd_vma) -1;
906 h->plt.offset = (bfd_vma) -1;
908 /* If this is a weak symbol, and there is a real definition, the
909 processor independent code will have arranged for us to see the
910 real definition first, and we can just use the same value. */
911 if (h->u.weakdef != NULL)
913 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
914 || h->u.weakdef->root.type == bfd_link_hash_defweak);
915 h->root.u.def.section = h->u.weakdef->root.u.def.section;
916 h->root.u.def.value = h->u.weakdef->root.u.def.value;
920 /* This is a reference to a symbol defined by a dynamic object which
921 is not a function. */
923 /* If we are creating a shared library, we must presume that the
924 only references to the symbol are via the global offset table.
925 For such cases we need not do anything here; the relocations will
926 be handled correctly by relocate_section. */
927 if (bfd_link_pic (info))
930 /* If there are no references to this symbol that do not use the
931 GOT, we don't need to generate a copy reloc. */
935 /* If -z nocopyreloc was given, we won't generate them either. */
936 if (info->nocopyreloc)
942 eh = (struct riscv_elf_link_hash_entry *) h;
943 for (p = eh->dyn_relocs; p != NULL; p = p->next)
945 s = p->sec->output_section;
946 if (s != NULL && (s->flags & SEC_READONLY) != 0)
950 /* If we didn't find any dynamic relocs in read-only sections, then
951 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
958 /* We must allocate the symbol in our .dynbss section, which will
959 become part of the .bss section of the executable. There will be
960 an entry for this symbol in the .dynsym section. The dynamic
961 object will contain position independent code, so all references
962 from the dynamic object to this symbol will go through the global
963 offset table. The dynamic linker will use the .dynsym entry to
964 determine the address it must put in the global offset table, so
965 both the dynamic object and the regular object will refer to the
966 same memory location for the variable. */
968 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
969 to copy the initial value out of the dynamic object and into the
970 runtime process image. We need to remember the offset into the
971 .rel.bss section we are going to use. */
972 if (eh->tls_type & ~GOT_NORMAL)
975 srel = htab->elf.srelbss;
977 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
979 s = htab->elf.sdynrelro;
980 srel = htab->elf.sreldynrelro;
984 s = htab->elf.sdynbss;
985 srel = htab->elf.srelbss;
987 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
989 srel->size += sizeof (ElfNN_External_Rela);
993 return _bfd_elf_adjust_dynamic_copy (info, h, s);
996 /* Allocate space in .plt, .got and associated reloc sections for
1000 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1002 struct bfd_link_info *info;
1003 struct riscv_elf_link_hash_table *htab;
1004 struct riscv_elf_link_hash_entry *eh;
1005 struct riscv_elf_dyn_relocs *p;
1007 if (h->root.type == bfd_link_hash_indirect)
1010 info = (struct bfd_link_info *) inf;
1011 htab = riscv_elf_hash_table (info);
1012 BFD_ASSERT (htab != NULL);
1014 if (htab->elf.dynamic_sections_created
1015 && h->plt.refcount > 0)
1017 /* Make sure this symbol is output as a dynamic symbol.
1018 Undefined weak syms won't yet be marked as dynamic. */
1019 if (h->dynindx == -1
1020 && !h->forced_local)
1022 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1026 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
1028 asection *s = htab->elf.splt;
1031 s->size = PLT_HEADER_SIZE;
1033 h->plt.offset = s->size;
1035 /* Make room for this entry. */
1036 s->size += PLT_ENTRY_SIZE;
1038 /* We also need to make an entry in the .got.plt section. */
1039 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
1041 /* We also need to make an entry in the .rela.plt section. */
1042 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
1044 /* If this symbol is not defined in a regular file, and we are
1045 not generating a shared library, then set the symbol to this
1046 location in the .plt. This is required to make function
1047 pointers compare as equal between the normal executable and
1048 the shared library. */
1049 if (! bfd_link_pic (info)
1052 h->root.u.def.section = s;
1053 h->root.u.def.value = h->plt.offset;
1058 h->plt.offset = (bfd_vma) -1;
1064 h->plt.offset = (bfd_vma) -1;
1068 if (h->got.refcount > 0)
1072 int tls_type = riscv_elf_hash_entry (h)->tls_type;
1074 /* Make sure this symbol is output as a dynamic symbol.
1075 Undefined weak syms won't yet be marked as dynamic. */
1076 if (h->dynindx == -1
1077 && !h->forced_local)
1079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1084 h->got.offset = s->size;
1085 dyn = htab->elf.dynamic_sections_created;
1086 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1088 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1089 if (tls_type & GOT_TLS_GD)
1091 s->size += 2 * RISCV_ELF_WORD_BYTES;
1092 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1095 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1096 if (tls_type & GOT_TLS_IE)
1098 s->size += RISCV_ELF_WORD_BYTES;
1099 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1104 s->size += RISCV_ELF_WORD_BYTES;
1105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1106 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1110 h->got.offset = (bfd_vma) -1;
1112 eh = (struct riscv_elf_link_hash_entry *) h;
1113 if (eh->dyn_relocs == NULL)
1116 /* In the shared -Bsymbolic case, discard space allocated for
1117 dynamic pc-relative relocs against symbols which turn out to be
1118 defined in regular objects. For the normal shared case, discard
1119 space for pc-relative relocs that have become local due to symbol
1120 visibility changes. */
1122 if (bfd_link_pic (info))
1124 if (SYMBOL_CALLS_LOCAL (info, h))
1126 struct riscv_elf_dyn_relocs **pp;
1128 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1130 p->count -= p->pc_count;
1139 /* Also discard relocs on undefined weak syms with non-default
1141 if (eh->dyn_relocs != NULL
1142 && h->root.type == bfd_link_hash_undefweak)
1144 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1145 eh->dyn_relocs = NULL;
1147 /* Make sure undefined weak symbols are output as a dynamic
1149 else if (h->dynindx == -1
1150 && !h->forced_local)
1152 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1159 /* For the non-shared case, discard space for relocs against
1160 symbols which turn out to need copy relocs or are not
1166 || (htab->elf.dynamic_sections_created
1167 && (h->root.type == bfd_link_hash_undefweak
1168 || h->root.type == bfd_link_hash_undefined))))
1170 /* Make sure this symbol is output as a dynamic symbol.
1171 Undefined weak syms won't yet be marked as dynamic. */
1172 if (h->dynindx == -1
1173 && !h->forced_local)
1175 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1179 /* If that succeeded, we know we'll be keeping all the
1181 if (h->dynindx != -1)
1185 eh->dyn_relocs = NULL;
1190 /* Finally, allocate space. */
1191 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1193 asection *sreloc = elf_section_data (p->sec)->sreloc;
1194 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1200 /* Find any dynamic relocs that apply to read-only sections. */
1203 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1205 struct riscv_elf_link_hash_entry *eh;
1206 struct riscv_elf_dyn_relocs *p;
1208 eh = (struct riscv_elf_link_hash_entry *) h;
1209 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1211 asection *s = p->sec->output_section;
1213 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1215 ((struct bfd_link_info *) inf)->flags |= DF_TEXTREL;
1223 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1225 struct riscv_elf_link_hash_table *htab;
1230 htab = riscv_elf_hash_table (info);
1231 BFD_ASSERT (htab != NULL);
1232 dynobj = htab->elf.dynobj;
1233 BFD_ASSERT (dynobj != NULL);
1235 if (elf_hash_table (info)->dynamic_sections_created)
1237 /* Set the contents of the .interp section to the interpreter. */
1238 if (bfd_link_executable (info) && !info->nointerp)
1240 s = bfd_get_linker_section (dynobj, ".interp");
1241 BFD_ASSERT (s != NULL);
1242 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1243 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1247 /* Set up .got offsets for local syms, and space for local dynamic
1249 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1251 bfd_signed_vma *local_got;
1252 bfd_signed_vma *end_local_got;
1253 char *local_tls_type;
1254 bfd_size_type locsymcount;
1255 Elf_Internal_Shdr *symtab_hdr;
1258 if (! is_riscv_elf (ibfd))
1261 for (s = ibfd->sections; s != NULL; s = s->next)
1263 struct riscv_elf_dyn_relocs *p;
1265 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1267 if (!bfd_is_abs_section (p->sec)
1268 && bfd_is_abs_section (p->sec->output_section))
1270 /* Input section has been discarded, either because
1271 it is a copy of a linkonce section or due to
1272 linker script /DISCARD/, so we'll be discarding
1275 else if (p->count != 0)
1277 srel = elf_section_data (p->sec)->sreloc;
1278 srel->size += p->count * sizeof (ElfNN_External_Rela);
1279 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1280 info->flags |= DF_TEXTREL;
1285 local_got = elf_local_got_refcounts (ibfd);
1289 symtab_hdr = &elf_symtab_hdr (ibfd);
1290 locsymcount = symtab_hdr->sh_info;
1291 end_local_got = local_got + locsymcount;
1292 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1294 srel = htab->elf.srelgot;
1295 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1299 *local_got = s->size;
1300 s->size += RISCV_ELF_WORD_BYTES;
1301 if (*local_tls_type & GOT_TLS_GD)
1302 s->size += RISCV_ELF_WORD_BYTES;
1303 if (bfd_link_pic (info)
1304 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1305 srel->size += sizeof (ElfNN_External_Rela);
1308 *local_got = (bfd_vma) -1;
1312 /* Allocate global sym .plt and .got entries, and space for global
1313 sym dynamic relocs. */
1314 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1316 if (htab->elf.sgotplt)
1318 struct elf_link_hash_entry *got;
1319 got = elf_link_hash_lookup (elf_hash_table (info),
1320 "_GLOBAL_OFFSET_TABLE_",
1321 FALSE, FALSE, FALSE);
1323 /* Don't allocate .got.plt section if there are no GOT nor PLT
1324 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1326 || !got->ref_regular_nonweak)
1327 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1328 && (htab->elf.splt == NULL
1329 || htab->elf.splt->size == 0)
1330 && (htab->elf.sgot == NULL
1331 || (htab->elf.sgot->size
1332 == get_elf_backend_data (output_bfd)->got_header_size)))
1333 htab->elf.sgotplt->size = 0;
1336 /* The check_relocs and adjust_dynamic_symbol entry points have
1337 determined the sizes of the various dynamic sections. Allocate
1339 for (s = dynobj->sections; s != NULL; s = s->next)
1341 if ((s->flags & SEC_LINKER_CREATED) == 0)
1344 if (s == htab->elf.splt
1345 || s == htab->elf.sgot
1346 || s == htab->elf.sgotplt
1347 || s == htab->elf.sdynbss
1348 || s == htab->elf.sdynrelro)
1350 /* Strip this section if we don't need it; see the
1353 else if (strncmp (s->name, ".rela", 5) == 0)
1357 /* We use the reloc_count field as a counter if we need
1358 to copy relocs into the output file. */
1364 /* It's not one of our sections. */
1370 /* If we don't need this section, strip it from the
1371 output file. This is mostly to handle .rela.bss and
1372 .rela.plt. We must create both sections in
1373 create_dynamic_sections, because they must be created
1374 before the linker maps input sections to output
1375 sections. The linker does that before
1376 adjust_dynamic_symbol is called, and it is that
1377 function which decides whether anything needs to go
1378 into these sections. */
1379 s->flags |= SEC_EXCLUDE;
1383 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1386 /* Allocate memory for the section contents. Zero the memory
1387 for the benefit of .rela.plt, which has 4 unused entries
1388 at the beginning, and we don't want garbage. */
1389 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1390 if (s->contents == NULL)
1394 if (elf_hash_table (info)->dynamic_sections_created)
1396 /* Add some entries to the .dynamic section. We fill in the
1397 values later, in riscv_elf_finish_dynamic_sections, but we
1398 must add the entries now so that we get the correct size for
1399 the .dynamic section. The DT_DEBUG entry is filled in by the
1400 dynamic linker and used by the debugger. */
1401 #define add_dynamic_entry(TAG, VAL) \
1402 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1404 if (bfd_link_executable (info))
1406 if (!add_dynamic_entry (DT_DEBUG, 0))
1410 if (htab->elf.srelplt->size != 0)
1412 if (!add_dynamic_entry (DT_PLTGOT, 0)
1413 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1414 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1415 || !add_dynamic_entry (DT_JMPREL, 0))
1419 if (!add_dynamic_entry (DT_RELA, 0)
1420 || !add_dynamic_entry (DT_RELASZ, 0)
1421 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1424 /* If any dynamic relocs apply to a read-only section,
1425 then we need a DT_TEXTREL entry. */
1426 if ((info->flags & DF_TEXTREL) == 0)
1427 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
1429 if (info->flags & DF_TEXTREL)
1431 if (!add_dynamic_entry (DT_TEXTREL, 0))
1435 #undef add_dynamic_entry
1441 #define DTP_OFFSET 0x800
1443 /* Return the relocation value for a TLS dtp-relative reloc. */
1446 dtpoff (struct bfd_link_info *info, bfd_vma address)
1448 /* If tls_sec is NULL, we should have signalled an error already. */
1449 if (elf_hash_table (info)->tls_sec == NULL)
1451 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1454 /* Return the relocation value for a static TLS tp-relative relocation. */
1457 tpoff (struct bfd_link_info *info, bfd_vma address)
1459 /* If tls_sec is NULL, we should have signalled an error already. */
1460 if (elf_hash_table (info)->tls_sec == NULL)
1462 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1465 /* Return the global pointer's value, or 0 if it is not in use. */
1468 riscv_global_pointer_value (struct bfd_link_info *info)
1470 struct bfd_link_hash_entry *h;
1472 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1473 if (h == NULL || h->type != bfd_link_hash_defined)
1476 return h->u.def.value + sec_addr (h->u.def.section);
1479 /* Emplace a static relocation. */
1481 static bfd_reloc_status_type
1482 perform_relocation (const reloc_howto_type *howto,
1483 const Elf_Internal_Rela *rel,
1485 asection *input_section,
1489 if (howto->pc_relative)
1490 value -= sec_addr (input_section) + rel->r_offset;
1491 value += rel->r_addend;
1493 switch (ELFNN_R_TYPE (rel->r_info))
1496 case R_RISCV_TPREL_HI20:
1497 case R_RISCV_PCREL_HI20:
1498 case R_RISCV_GOT_HI20:
1499 case R_RISCV_TLS_GOT_HI20:
1500 case R_RISCV_TLS_GD_HI20:
1501 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1502 return bfd_reloc_overflow;
1503 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1506 case R_RISCV_LO12_I:
1507 case R_RISCV_GPREL_I:
1508 case R_RISCV_TPREL_LO12_I:
1509 case R_RISCV_TPREL_I:
1510 case R_RISCV_PCREL_LO12_I:
1511 value = ENCODE_ITYPE_IMM (value);
1514 case R_RISCV_LO12_S:
1515 case R_RISCV_GPREL_S:
1516 case R_RISCV_TPREL_LO12_S:
1517 case R_RISCV_TPREL_S:
1518 case R_RISCV_PCREL_LO12_S:
1519 value = ENCODE_STYPE_IMM (value);
1523 case R_RISCV_CALL_PLT:
1524 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1525 return bfd_reloc_overflow;
1526 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1527 | (ENCODE_ITYPE_IMM (value) << 32);
1531 if (!VALID_UJTYPE_IMM (value))
1532 return bfd_reloc_overflow;
1533 value = ENCODE_UJTYPE_IMM (value);
1536 case R_RISCV_BRANCH:
1537 if (!VALID_SBTYPE_IMM (value))
1538 return bfd_reloc_overflow;
1539 value = ENCODE_SBTYPE_IMM (value);
1542 case R_RISCV_RVC_BRANCH:
1543 if (!VALID_RVC_B_IMM (value))
1544 return bfd_reloc_overflow;
1545 value = ENCODE_RVC_B_IMM (value);
1548 case R_RISCV_RVC_JUMP:
1549 if (!VALID_RVC_J_IMM (value))
1550 return bfd_reloc_overflow;
1551 value = ENCODE_RVC_J_IMM (value);
1554 case R_RISCV_RVC_LUI:
1555 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1556 return bfd_reloc_overflow;
1557 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1575 case R_RISCV_32_PCREL:
1576 case R_RISCV_TLS_DTPREL32:
1577 case R_RISCV_TLS_DTPREL64:
1581 return bfd_reloc_notsupported;
1584 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1585 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1586 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1588 return bfd_reloc_ok;
1591 /* Remember all PC-relative high-part relocs we've encountered to help us
1592 later resolve the corresponding low-part relocs. */
1598 } riscv_pcrel_hi_reloc;
1600 typedef struct riscv_pcrel_lo_reloc
1602 asection * input_section;
1603 struct bfd_link_info * info;
1604 reloc_howto_type * howto;
1605 const Elf_Internal_Rela * reloc;
1608 bfd_byte * contents;
1609 struct riscv_pcrel_lo_reloc * next;
1610 } riscv_pcrel_lo_reloc;
1615 riscv_pcrel_lo_reloc *lo_relocs;
1616 } riscv_pcrel_relocs;
1619 riscv_pcrel_reloc_hash (const void *entry)
1621 const riscv_pcrel_hi_reloc *e = entry;
1622 return (hashval_t)(e->address >> 2);
1626 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1628 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1629 return e1->address == e2->address;
1633 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1636 p->lo_relocs = NULL;
1637 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1638 riscv_pcrel_reloc_eq, free);
1639 return p->hi_relocs != NULL;
1643 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1645 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1649 riscv_pcrel_lo_reloc *next = cur->next;
1654 htab_delete (p->hi_relocs);
1658 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1659 struct bfd_link_info *info,
1663 const reloc_howto_type *howto,
1666 /* We may need to reference low addreses in PC-relative modes even when the
1667 * PC is far away from these addresses. For example, undefweak references
1668 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1669 * addresses that we can link PC-relative programs at, the linker can't
1670 * actually relocate references to those symbols. In order to allow these
1671 * programs to work we simply convert the PC-relative auipc sequences to
1672 * 0-relative lui sequences. */
1673 if (bfd_link_pic (info))
1676 /* If it's possible to reference the symbol using auipc we do so, as that's
1677 * more in the spirit of the PC-relative relocations we're processing. */
1678 bfd_vma offset = addr - pc;
1679 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1682 /* If it's impossible to reference this with a LUI-based offset then don't
1683 * bother to convert it at all so users still see the PC-relative relocation
1684 * in the truncation message. */
1685 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1688 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1690 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1691 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1692 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1697 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1698 bfd_vma value, bfd_boolean absolute)
1700 bfd_vma offset = absolute ? value : value - addr;
1701 riscv_pcrel_hi_reloc entry = {addr, offset};
1702 riscv_pcrel_hi_reloc **slot =
1703 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1705 BFD_ASSERT (*slot == NULL);
1706 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1714 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1715 asection *input_section,
1716 struct bfd_link_info *info,
1717 reloc_howto_type *howto,
1718 const Elf_Internal_Rela *reloc,
1723 riscv_pcrel_lo_reloc *entry;
1724 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1727 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1728 name, contents, p->lo_relocs};
1729 p->lo_relocs = entry;
1734 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1736 riscv_pcrel_lo_reloc *r;
1738 for (r = p->lo_relocs; r != NULL; r = r->next)
1740 bfd *input_bfd = r->input_section->owner;
1742 riscv_pcrel_hi_reloc search = {r->addr, 0};
1743 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1746 ((*r->info->callbacks->reloc_overflow)
1747 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1748 input_bfd, r->input_section, r->reloc->r_offset));
1752 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1753 input_bfd, r->contents);
1759 /* Relocate a RISC-V ELF section.
1761 The RELOCATE_SECTION function is called by the new ELF backend linker
1762 to handle the relocations for a section.
1764 The relocs are always passed as Rela structures.
1766 This function is responsible for adjusting the section contents as
1767 necessary, and (if generating a relocatable output file) adjusting
1768 the reloc addend as necessary.
1770 This function does not have to worry about setting the reloc
1771 address or the reloc symbol index.
1773 LOCAL_SYMS is a pointer to the swapped in local symbols.
1775 LOCAL_SECTIONS is an array giving the section in the input file
1776 corresponding to the st_shndx field of each local symbol.
1778 The global hash table entry for the global symbols can be found
1779 via elf_sym_hashes (input_bfd).
1781 When generating relocatable output, this function must handle
1782 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1783 going to be the section symbol corresponding to the output
1784 section, which means that the addend must be adjusted
1788 riscv_elf_relocate_section (bfd *output_bfd,
1789 struct bfd_link_info *info,
1791 asection *input_section,
1793 Elf_Internal_Rela *relocs,
1794 Elf_Internal_Sym *local_syms,
1795 asection **local_sections)
1797 Elf_Internal_Rela *rel;
1798 Elf_Internal_Rela *relend;
1799 riscv_pcrel_relocs pcrel_relocs;
1800 bfd_boolean ret = FALSE;
1801 asection *sreloc = elf_section_data (input_section)->sreloc;
1802 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1803 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1804 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1805 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1806 bfd_boolean absolute;
1808 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1811 relend = relocs + input_section->reloc_count;
1812 for (rel = relocs; rel < relend; rel++)
1814 unsigned long r_symndx;
1815 struct elf_link_hash_entry *h;
1816 Elf_Internal_Sym *sym;
1819 bfd_reloc_status_type r = bfd_reloc_ok;
1821 bfd_vma off, ie_off;
1822 bfd_boolean unresolved_reloc, is_ie = FALSE;
1823 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1824 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1825 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1826 const char *msg = NULL;
1828 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1831 /* This is a final link. */
1832 r_symndx = ELFNN_R_SYM (rel->r_info);
1836 unresolved_reloc = FALSE;
1837 if (r_symndx < symtab_hdr->sh_info)
1839 sym = local_syms + r_symndx;
1840 sec = local_sections[r_symndx];
1841 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1845 bfd_boolean warned, ignored;
1847 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1848 r_symndx, symtab_hdr, sym_hashes,
1850 unresolved_reloc, warned, ignored);
1853 /* To avoid generating warning messages about truncated
1854 relocations, set the relocation's address to be the same as
1855 the start of this section. */
1856 if (input_section->output_section != NULL)
1857 relocation = input_section->output_section->vma;
1863 if (sec != NULL && discarded_section (sec))
1864 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1865 rel, 1, relend, howto, 0, contents);
1867 if (bfd_link_relocatable (info))
1871 name = h->root.root.string;
1874 name = (bfd_elf_string_from_elf_section
1875 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1876 if (name == NULL || *name == '\0')
1877 name = bfd_section_name (input_bfd, sec);
1884 case R_RISCV_TPREL_ADD:
1886 case R_RISCV_JUMP_SLOT:
1887 case R_RISCV_RELATIVE:
1888 /* These require nothing of us at all. */
1892 case R_RISCV_BRANCH:
1893 case R_RISCV_RVC_BRANCH:
1894 case R_RISCV_RVC_LUI:
1895 case R_RISCV_LO12_I:
1896 case R_RISCV_LO12_S:
1901 case R_RISCV_32_PCREL:
1902 /* These require no special handling beyond perform_relocation. */
1905 case R_RISCV_GOT_HI20:
1908 bfd_boolean dyn, pic;
1910 off = h->got.offset;
1911 BFD_ASSERT (off != (bfd_vma) -1);
1912 dyn = elf_hash_table (info)->dynamic_sections_created;
1913 pic = bfd_link_pic (info);
1915 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1916 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1918 /* This is actually a static link, or it is a
1919 -Bsymbolic link and the symbol is defined
1920 locally, or the symbol was forced to be local
1921 because of a version file. We must initialize
1922 this entry in the global offset table. Since the
1923 offset must always be a multiple of the word size,
1924 we use the least significant bit to record whether
1925 we have initialized it already.
1927 When doing a dynamic link, we create a .rela.got
1928 relocation entry to initialize the value. This
1929 is done in the finish_dynamic_symbol routine. */
1934 bfd_put_NN (output_bfd, relocation,
1935 htab->elf.sgot->contents + off);
1940 unresolved_reloc = FALSE;
1944 BFD_ASSERT (local_got_offsets != NULL
1945 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1947 off = local_got_offsets[r_symndx];
1949 /* The offset must always be a multiple of the word size.
1950 So, we can use the least significant bit to record
1951 whether we have already processed this entry. */
1956 if (bfd_link_pic (info))
1959 Elf_Internal_Rela outrel;
1961 /* We need to generate a R_RISCV_RELATIVE reloc
1962 for the dynamic linker. */
1963 s = htab->elf.srelgot;
1964 BFD_ASSERT (s != NULL);
1966 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1968 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1969 outrel.r_addend = relocation;
1971 riscv_elf_append_rela (output_bfd, s, &outrel);
1974 bfd_put_NN (output_bfd, relocation,
1975 htab->elf.sgot->contents + off);
1976 local_got_offsets[r_symndx] |= 1;
1979 relocation = sec_addr (htab->elf.sgot) + off;
1980 absolute = riscv_zero_pcrel_hi_reloc (rel,
1987 r_type = ELFNN_R_TYPE (rel->r_info);
1988 howto = riscv_elf_rtype_to_howto (r_type);
1989 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1990 relocation, absolute))
1991 r = bfd_reloc_overflow;
1999 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
2000 contents + rel->r_offset);
2001 relocation = old_value + relocation;
2011 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
2012 contents + rel->r_offset);
2013 relocation = old_value - relocation;
2017 case R_RISCV_CALL_PLT:
2020 case R_RISCV_RVC_JUMP:
2021 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
2023 /* Refer to the PLT entry. */
2024 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
2025 unresolved_reloc = FALSE;
2029 case R_RISCV_TPREL_HI20:
2030 relocation = tpoff (info, relocation);
2033 case R_RISCV_TPREL_LO12_I:
2034 case R_RISCV_TPREL_LO12_S:
2035 relocation = tpoff (info, relocation);
2038 case R_RISCV_TPREL_I:
2039 case R_RISCV_TPREL_S:
2040 relocation = tpoff (info, relocation);
2041 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2043 /* We can use tp as the base register. */
2044 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2045 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2046 insn |= X_TP << OP_SH_RS1;
2047 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2050 r = bfd_reloc_overflow;
2053 case R_RISCV_GPREL_I:
2054 case R_RISCV_GPREL_S:
2056 bfd_vma gp = riscv_global_pointer_value (info);
2057 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2058 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2060 /* We can use x0 or gp as the base register. */
2061 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2062 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2065 rel->r_addend -= gp;
2066 insn |= X_GP << OP_SH_RS1;
2068 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2071 r = bfd_reloc_overflow;
2075 case R_RISCV_PCREL_HI20:
2076 absolute = riscv_zero_pcrel_hi_reloc (rel,
2083 r_type = ELFNN_R_TYPE (rel->r_info);
2084 howto = riscv_elf_rtype_to_howto (r_type);
2085 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2086 relocation + rel->r_addend,
2088 r = bfd_reloc_overflow;
2091 case R_RISCV_PCREL_LO12_I:
2092 case R_RISCV_PCREL_LO12_S:
2093 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2094 howto, rel, relocation, name,
2097 r = bfd_reloc_overflow;
2100 case R_RISCV_TLS_DTPREL32:
2101 case R_RISCV_TLS_DTPREL64:
2102 relocation = dtpoff (info, relocation);
2107 if ((input_section->flags & SEC_ALLOC) == 0)
2110 if ((bfd_link_pic (info)
2112 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2113 || h->root.type != bfd_link_hash_undefweak)
2114 && (! howto->pc_relative
2115 || !SYMBOL_CALLS_LOCAL (info, h)))
2116 || (!bfd_link_pic (info)
2122 || h->root.type == bfd_link_hash_undefweak
2123 || h->root.type == bfd_link_hash_undefined)))
2125 Elf_Internal_Rela outrel;
2126 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2128 /* When generating a shared object, these relocations
2129 are copied into the output file to be resolved at run
2133 _bfd_elf_section_offset (output_bfd, info, input_section,
2135 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2136 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2137 outrel.r_offset += sec_addr (input_section);
2139 if (skip_dynamic_relocation)
2140 memset (&outrel, 0, sizeof outrel);
2141 else if (h != NULL && h->dynindx != -1
2142 && !(bfd_link_pic (info)
2143 && SYMBOLIC_BIND (info, h)
2146 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2147 outrel.r_addend = rel->r_addend;
2151 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2152 outrel.r_addend = relocation + rel->r_addend;
2155 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2156 if (skip_static_relocation)
2161 case R_RISCV_TLS_GOT_HI20:
2165 case R_RISCV_TLS_GD_HI20:
2168 off = h->got.offset;
2173 off = local_got_offsets[r_symndx];
2174 local_got_offsets[r_symndx] |= 1;
2177 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2178 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2179 /* If this symbol is referenced by both GD and IE TLS, the IE
2180 reference's GOT slot follows the GD reference's slots. */
2182 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2183 ie_off = 2 * GOT_ENTRY_SIZE;
2189 Elf_Internal_Rela outrel;
2191 bfd_boolean need_relocs = FALSE;
2193 if (htab->elf.srelgot == NULL)
2198 bfd_boolean dyn, pic;
2199 dyn = htab->elf.dynamic_sections_created;
2200 pic = bfd_link_pic (info);
2202 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2203 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2207 /* The GOT entries have not been initialized yet. Do it
2208 now, and emit any relocations. */
2209 if ((bfd_link_pic (info) || indx != 0)
2211 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2212 || h->root.type != bfd_link_hash_undefweak))
2215 if (tls_type & GOT_TLS_GD)
2219 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2220 outrel.r_addend = 0;
2221 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2222 bfd_put_NN (output_bfd, 0,
2223 htab->elf.sgot->contents + off);
2224 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2227 BFD_ASSERT (! unresolved_reloc);
2228 bfd_put_NN (output_bfd,
2229 dtpoff (info, relocation),
2230 (htab->elf.sgot->contents + off +
2231 RISCV_ELF_WORD_BYTES));
2235 bfd_put_NN (output_bfd, 0,
2236 (htab->elf.sgot->contents + off +
2237 RISCV_ELF_WORD_BYTES));
2238 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2239 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2240 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2245 /* If we are not emitting relocations for a
2246 general dynamic reference, then we must be in a
2247 static link or an executable link with the
2248 symbol binding locally. Mark it as belonging
2249 to module 1, the executable. */
2250 bfd_put_NN (output_bfd, 1,
2251 htab->elf.sgot->contents + off);
2252 bfd_put_NN (output_bfd,
2253 dtpoff (info, relocation),
2254 (htab->elf.sgot->contents + off +
2255 RISCV_ELF_WORD_BYTES));
2259 if (tls_type & GOT_TLS_IE)
2263 bfd_put_NN (output_bfd, 0,
2264 htab->elf.sgot->contents + off + ie_off);
2265 outrel.r_offset = sec_addr (htab->elf.sgot)
2267 outrel.r_addend = 0;
2269 outrel.r_addend = tpoff (info, relocation);
2270 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2271 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2275 bfd_put_NN (output_bfd, tpoff (info, relocation),
2276 htab->elf.sgot->contents + off + ie_off);
2281 BFD_ASSERT (off < (bfd_vma) -2);
2282 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2283 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2285 r = bfd_reloc_overflow;
2286 unresolved_reloc = FALSE;
2290 r = bfd_reloc_notsupported;
2293 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2294 because such sections are not SEC_ALLOC and thus ld.so will
2295 not process them. */
2296 if (unresolved_reloc
2297 && !((input_section->flags & SEC_DEBUGGING) != 0
2299 && _bfd_elf_section_offset (output_bfd, info, input_section,
2300 rel->r_offset) != (bfd_vma) -1)
2302 (*_bfd_error_handler)
2303 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
2308 h->root.root.string);
2312 if (r == bfd_reloc_ok)
2313 r = perform_relocation (howto, rel, relocation, input_section,
2314 input_bfd, contents);
2321 case bfd_reloc_overflow:
2322 info->callbacks->reloc_overflow
2323 (info, (h ? &h->root : NULL), name, howto->name,
2324 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2327 case bfd_reloc_undefined:
2328 info->callbacks->undefined_symbol
2329 (info, name, input_bfd, input_section, rel->r_offset,
2333 case bfd_reloc_outofrange:
2334 msg = _("internal error: out of range error");
2337 case bfd_reloc_notsupported:
2338 msg = _("internal error: unsupported relocation error");
2341 case bfd_reloc_dangerous:
2342 msg = _("internal error: dangerous relocation");
2346 msg = _("internal error: unknown error");
2351 info->callbacks->warning
2352 (info, msg, name, input_bfd, input_section, rel->r_offset);
2356 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2358 riscv_free_pcrel_relocs (&pcrel_relocs);
2362 /* Finish up dynamic symbol handling. We set the contents of various
2363 dynamic sections here. */
2366 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2367 struct bfd_link_info *info,
2368 struct elf_link_hash_entry *h,
2369 Elf_Internal_Sym *sym)
2371 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2372 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2374 if (h->plt.offset != (bfd_vma) -1)
2376 /* We've decided to create a PLT entry for this symbol. */
2378 bfd_vma i, header_address, plt_idx, got_address;
2379 uint32_t plt_entry[PLT_ENTRY_INSNS];
2380 Elf_Internal_Rela rela;
2382 BFD_ASSERT (h->dynindx != -1);
2384 /* Calculate the address of the PLT header. */
2385 header_address = sec_addr (htab->elf.splt);
2387 /* Calculate the index of the entry. */
2388 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2390 /* Calculate the address of the .got.plt entry. */
2391 got_address = riscv_elf_got_plt_val (plt_idx, info);
2393 /* Find out where the .plt entry should go. */
2394 loc = htab->elf.splt->contents + h->plt.offset;
2396 /* Fill in the PLT entry itself. */
2397 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2399 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2400 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2402 /* Fill in the initial value of the .got.plt entry. */
2403 loc = htab->elf.sgotplt->contents
2404 + (got_address - sec_addr (htab->elf.sgotplt));
2405 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2407 /* Fill in the entry in the .rela.plt section. */
2408 rela.r_offset = got_address;
2410 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2412 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2413 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2415 if (!h->def_regular)
2417 /* Mark the symbol as undefined, rather than as defined in
2418 the .plt section. Leave the value alone. */
2419 sym->st_shndx = SHN_UNDEF;
2420 /* If the symbol is weak, we do need to clear the value.
2421 Otherwise, the PLT entry would provide a definition for
2422 the symbol even if the symbol wasn't defined anywhere,
2423 and so the symbol would never be NULL. */
2424 if (!h->ref_regular_nonweak)
2429 if (h->got.offset != (bfd_vma) -1
2430 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
2434 Elf_Internal_Rela rela;
2436 /* This symbol has an entry in the GOT. Set it up. */
2438 sgot = htab->elf.sgot;
2439 srela = htab->elf.srelgot;
2440 BFD_ASSERT (sgot != NULL && srela != NULL);
2442 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2444 /* If this is a -Bsymbolic link, and the symbol is defined
2445 locally, we just want to emit a RELATIVE reloc. Likewise if
2446 the symbol was forced to be local because of a version file.
2447 The entry in the global offset table will already have been
2448 initialized in the relocate_section function. */
2449 if (bfd_link_pic (info)
2450 && (info->symbolic || h->dynindx == -1)
2453 asection *sec = h->root.u.def.section;
2454 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2455 rela.r_addend = (h->root.u.def.value
2456 + sec->output_section->vma
2457 + sec->output_offset);
2461 BFD_ASSERT (h->dynindx != -1);
2462 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2466 bfd_put_NN (output_bfd, 0,
2467 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2468 riscv_elf_append_rela (output_bfd, srela, &rela);
2473 Elf_Internal_Rela rela;
2476 /* This symbols needs a copy reloc. Set it up. */
2477 BFD_ASSERT (h->dynindx != -1);
2479 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2480 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2482 if (h->root.u.def.section == htab->elf.sdynrelro)
2483 s = htab->elf.sreldynrelro;
2485 s = htab->elf.srelbss;
2486 riscv_elf_append_rela (output_bfd, s, &rela);
2489 /* Mark some specially defined symbols as absolute. */
2490 if (h == htab->elf.hdynamic
2491 || (h == htab->elf.hgot || h == htab->elf.hplt))
2492 sym->st_shndx = SHN_ABS;
2497 /* Finish up the dynamic sections. */
2500 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2501 bfd *dynobj, asection *sdyn)
2503 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2504 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2505 size_t dynsize = bed->s->sizeof_dyn;
2506 bfd_byte *dyncon, *dynconend;
2508 dynconend = sdyn->contents + sdyn->size;
2509 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2511 Elf_Internal_Dyn dyn;
2514 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2519 s = htab->elf.sgotplt;
2520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2523 s = htab->elf.srelplt;
2524 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2527 s = htab->elf.srelplt;
2528 dyn.d_un.d_val = s->size;
2534 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2540 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2541 struct bfd_link_info *info)
2545 struct riscv_elf_link_hash_table *htab;
2547 htab = riscv_elf_hash_table (info);
2548 BFD_ASSERT (htab != NULL);
2549 dynobj = htab->elf.dynobj;
2551 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2553 if (elf_hash_table (info)->dynamic_sections_created)
2558 splt = htab->elf.splt;
2559 BFD_ASSERT (splt != NULL && sdyn != NULL);
2561 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2566 /* Fill in the head and tail entries in the procedure linkage table. */
2570 uint32_t plt_header[PLT_HEADER_INSNS];
2571 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2572 sec_addr (splt), plt_header);
2574 for (i = 0; i < PLT_HEADER_INSNS; i++)
2575 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2577 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2582 if (htab->elf.sgotplt)
2584 asection *output_section = htab->elf.sgotplt->output_section;
2586 if (bfd_is_abs_section (output_section))
2588 (*_bfd_error_handler)
2589 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2593 if (htab->elf.sgotplt->size > 0)
2595 /* Write the first two entries in .got.plt, needed for the dynamic
2597 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2598 bfd_put_NN (output_bfd, (bfd_vma) 0,
2599 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2602 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2607 asection *output_section = htab->elf.sgot->output_section;
2609 if (htab->elf.sgot->size > 0)
2611 /* Set the first entry in the global offset table to the address of
2612 the dynamic section. */
2613 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2614 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2617 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2623 /* Return address for Ith PLT stub in section PLT, for relocation REL
2624 or (bfd_vma) -1 if it should not be included. */
2627 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2628 const arelent *rel ATTRIBUTE_UNUSED)
2630 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2633 static enum elf_reloc_type_class
2634 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2635 const asection *rel_sec ATTRIBUTE_UNUSED,
2636 const Elf_Internal_Rela *rela)
2638 switch (ELFNN_R_TYPE (rela->r_info))
2640 case R_RISCV_RELATIVE:
2641 return reloc_class_relative;
2642 case R_RISCV_JUMP_SLOT:
2643 return reloc_class_plt;
2645 return reloc_class_copy;
2647 return reloc_class_normal;
2651 /* Merge backend specific data from an object file to the output
2652 object file when linking. */
2655 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2657 bfd *obfd = info->output_bfd;
2658 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2659 flagword old_flags = elf_elfheader (obfd)->e_flags;
2661 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2664 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2666 (*_bfd_error_handler)
2667 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2668 " target emulation `%s' does not match `%s'"),
2669 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
2673 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2676 if (! elf_flags_init (obfd))
2678 elf_flags_init (obfd) = TRUE;
2679 elf_elfheader (obfd)->e_flags = new_flags;
2683 /* Disallow linking different float ABIs. */
2684 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
2686 (*_bfd_error_handler)
2687 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2691 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2692 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2697 bfd_set_error (bfd_error_bad_value);
2701 /* Delete some bytes from a section while relaxing. */
2704 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count)
2706 unsigned int i, symcount;
2707 bfd_vma toaddr = sec->size;
2708 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2709 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2710 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2711 struct bfd_elf_section_data *data = elf_section_data (sec);
2712 bfd_byte *contents = data->this_hdr.contents;
2714 /* Actually delete the bytes. */
2716 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2718 /* Adjust the location of all of the relocs. Note that we need not
2719 adjust the addends, since all PC-relative references must be against
2720 symbols, which we will adjust below. */
2721 for (i = 0; i < sec->reloc_count; i++)
2722 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2723 data->relocs[i].r_offset -= count;
2725 /* Adjust the local symbols defined in this section. */
2726 for (i = 0; i < symtab_hdr->sh_info; i++)
2728 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2729 if (sym->st_shndx == sec_shndx)
2731 /* If the symbol is in the range of memory we just moved, we
2732 have to adjust its value. */
2733 if (sym->st_value > addr && sym->st_value <= toaddr)
2734 sym->st_value -= count;
2736 /* If the symbol *spans* the bytes we just deleted (i.e. its
2737 *end* is in the moved bytes but its *start* isn't), then we
2738 must adjust its size. */
2739 if (sym->st_value <= addr
2740 && sym->st_value + sym->st_size > addr
2741 && sym->st_value + sym->st_size <= toaddr)
2742 sym->st_size -= count;
2746 /* Now adjust the global symbols defined in this section. */
2747 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2748 - symtab_hdr->sh_info);
2750 for (i = 0; i < symcount; i++)
2752 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2754 if ((sym_hash->root.type == bfd_link_hash_defined
2755 || sym_hash->root.type == bfd_link_hash_defweak)
2756 && sym_hash->root.u.def.section == sec)
2758 /* As above, adjust the value if needed. */
2759 if (sym_hash->root.u.def.value > addr
2760 && sym_hash->root.u.def.value <= toaddr)
2761 sym_hash->root.u.def.value -= count;
2763 /* As above, adjust the size if needed. */
2764 if (sym_hash->root.u.def.value <= addr
2765 && sym_hash->root.u.def.value + sym_hash->size > addr
2766 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2767 sym_hash->size -= count;
2774 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2775 struct bfd_link_info *,
2776 Elf_Internal_Rela *,
2777 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *);
2779 /* Relax AUIPC + JALR into JAL. */
2782 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2783 struct bfd_link_info *link_info,
2784 Elf_Internal_Rela *rel,
2786 bfd_vma max_alignment,
2787 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2790 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2791 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2792 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2793 bfd_vma auipc, jalr;
2794 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2796 /* If the call crosses section boundaries, an alignment directive could
2797 cause the PC-relative offset to later increase. */
2798 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2799 foff += (foff < 0 ? -max_alignment : max_alignment);
2801 /* See if this function call can be shortened. */
2802 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2805 /* Shorten the function call. */
2806 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2808 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2809 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2810 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2811 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2813 if (rvc && (rd == 0 || rd == X_RA))
2815 /* Relax to C.J[AL] rd, addr. */
2816 r_type = R_RISCV_RVC_JUMP;
2817 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2820 else if (VALID_UJTYPE_IMM (foff))
2822 /* Relax to JAL rd, addr. */
2823 r_type = R_RISCV_JAL;
2824 auipc = MATCH_JAL | (rd << OP_SH_RD);
2826 else /* near_zero */
2828 /* Relax to JALR rd, x0, addr. */
2829 r_type = R_RISCV_LO12_I;
2830 auipc = MATCH_JALR | (rd << OP_SH_RD);
2833 /* Replace the R_RISCV_CALL reloc. */
2834 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2835 /* Replace the AUIPC. */
2836 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2838 /* Delete unnecessary JALR. */
2840 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len);
2843 /* Traverse all output sections and return the max alignment. */
2846 _bfd_riscv_get_max_alignment (asection *sec)
2848 unsigned int max_alignment_power = 0;
2851 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2853 if (o->alignment_power > max_alignment_power)
2854 max_alignment_power = o->alignment_power;
2857 return (bfd_vma) 1 << max_alignment_power;
2860 /* Relax non-PIC global variable references. */
2863 _bfd_riscv_relax_lui (bfd *abfd,
2866 struct bfd_link_info *link_info,
2867 Elf_Internal_Rela *rel,
2869 bfd_vma max_alignment,
2870 bfd_vma reserve_size,
2873 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2874 bfd_vma gp = riscv_global_pointer_value (link_info);
2875 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2877 /* Mergeable symbols and code might later move out of range. */
2878 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2881 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2885 /* If gp and the symbol are in the same output section, then
2886 consider only that section's alignment. */
2887 struct bfd_link_hash_entry *h =
2888 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2890 if (h->u.def.section->output_section == sym_sec->output_section)
2891 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2894 /* Is the reference in range of x0 or gp?
2895 Valid gp range conservatively because of alignment issue. */
2896 if (VALID_ITYPE_IMM (symval)
2898 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2900 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
2902 unsigned sym = ELFNN_R_SYM (rel->r_info);
2903 switch (ELFNN_R_TYPE (rel->r_info))
2905 case R_RISCV_LO12_I:
2906 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2909 case R_RISCV_LO12_S:
2910 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2914 /* We can delete the unnecessary LUI and reloc. */
2915 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2917 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2924 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
2925 account for this assuming page alignment at worst. */
2927 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
2928 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
2929 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
2931 /* Replace LUI with C.LUI if legal (i.e., rd != x2/sp). */
2932 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
2933 if (((lui >> OP_SH_RD) & OP_MASK_RD) == X_SP)
2936 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
2937 bfd_put_32 (abfd, lui, contents + rel->r_offset);
2939 /* Replace the R_RISCV_HI20 reloc. */
2940 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
2943 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2);
2949 /* Relax non-PIC TLS references. */
2952 _bfd_riscv_relax_tls_le (bfd *abfd,
2954 asection *sym_sec ATTRIBUTE_UNUSED,
2955 struct bfd_link_info *link_info,
2956 Elf_Internal_Rela *rel,
2958 bfd_vma max_alignment ATTRIBUTE_UNUSED,
2959 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2962 /* See if this symbol is in range of tp. */
2963 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
2966 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2967 switch (ELFNN_R_TYPE (rel->r_info))
2969 case R_RISCV_TPREL_LO12_I:
2970 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
2973 case R_RISCV_TPREL_LO12_S:
2974 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
2977 case R_RISCV_TPREL_HI20:
2978 case R_RISCV_TPREL_ADD:
2979 /* We can delete the unnecessary instruction and reloc. */
2980 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2982 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2989 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
2992 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
2994 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
2995 Elf_Internal_Rela *rel,
2997 bfd_vma max_alignment ATTRIBUTE_UNUSED,
2998 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2999 bfd_boolean *again ATTRIBUTE_UNUSED)
3001 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3002 bfd_vma alignment = 1, pos;
3003 while (alignment <= rel->r_addend)
3006 symval -= rel->r_addend;
3007 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3008 bfd_vma nop_bytes = aligned_addr - symval;
3010 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3011 sec->sec_flg0 = TRUE;
3013 /* Make sure there are enough NOPs to actually achieve the alignment. */
3014 if (rel->r_addend < nop_bytes)
3016 (*_bfd_error_handler)
3017 (_("%B(%A+0x%lx): %d bytes required for alignment"
3018 "to %d-byte boundary, but only %d present"),
3019 abfd, sym_sec, rel->r_offset, nop_bytes, alignment, rel->r_addend);
3020 bfd_set_error (bfd_error_bad_value);
3024 /* Delete the reloc. */
3025 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3027 /* If the number of NOPs is already correct, there's nothing to do. */
3028 if (nop_bytes == rel->r_addend)
3031 /* Write as many RISC-V NOPs as we need. */
3032 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3033 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3035 /* Write a final RVC NOP if need be. */
3036 if (nop_bytes % 4 != 0)
3037 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3039 /* Delete the excess bytes. */
3040 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3041 rel->r_addend - nop_bytes);
3044 /* Relax a section. Pass 0 shortens code sequences unless disabled.
3045 Pass 1, which cannot be disabled, handles code alignment directives. */
3048 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3049 struct bfd_link_info *info,
3052 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3053 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3054 struct bfd_elf_section_data *data = elf_section_data (sec);
3055 Elf_Internal_Rela *relocs;
3056 bfd_boolean ret = FALSE;
3058 bfd_vma max_alignment, reserve_size = 0;
3062 if (bfd_link_relocatable (info)
3064 || (sec->flags & SEC_RELOC) == 0
3065 || sec->reloc_count == 0
3066 || (info->disable_target_specific_optimizations
3067 && info->relax_pass == 0))
3070 /* Read this BFD's relocs if we haven't done so already. */
3072 relocs = data->relocs;
3073 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3074 info->keep_memory)))
3079 max_alignment = htab->max_alignment;
3080 if (max_alignment == (bfd_vma) -1)
3082 max_alignment = _bfd_riscv_get_max_alignment (sec);
3083 htab->max_alignment = max_alignment;
3087 max_alignment = _bfd_riscv_get_max_alignment (sec);
3089 /* Examine and consider relaxing each reloc. */
3090 for (i = 0; i < sec->reloc_count; i++)
3093 Elf_Internal_Rela *rel = relocs + i;
3094 relax_func_t relax_func;
3095 int type = ELFNN_R_TYPE (rel->r_info);
3098 if (info->relax_pass == 0)
3100 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3101 relax_func = _bfd_riscv_relax_call;
3102 else if (type == R_RISCV_HI20
3103 || type == R_RISCV_LO12_I
3104 || type == R_RISCV_LO12_S)
3105 relax_func = _bfd_riscv_relax_lui;
3106 else if (type == R_RISCV_TPREL_HI20
3107 || type == R_RISCV_TPREL_ADD
3108 || type == R_RISCV_TPREL_LO12_I
3109 || type == R_RISCV_TPREL_LO12_S)
3110 relax_func = _bfd_riscv_relax_tls_le;
3114 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3115 if (i == sec->reloc_count - 1
3116 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3117 || rel->r_offset != (rel + 1)->r_offset)
3120 /* Skip over the R_RISCV_RELAX. */
3123 else if (type == R_RISCV_ALIGN)
3124 relax_func = _bfd_riscv_relax_align;
3128 data->relocs = relocs;
3130 /* Read this BFD's contents if we haven't done so already. */
3131 if (!data->this_hdr.contents
3132 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3135 /* Read this BFD's symbols if we haven't done so already. */
3136 if (symtab_hdr->sh_info != 0
3137 && !symtab_hdr->contents
3138 && !(symtab_hdr->contents =
3139 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3140 symtab_hdr->sh_info,
3141 0, NULL, NULL, NULL)))
3144 /* Get the value of the symbol referred to by the reloc. */
3145 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3147 /* A local symbol. */
3148 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3149 + ELFNN_R_SYM (rel->r_info));
3150 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3151 ? 0 : isym->st_size - rel->r_addend;
3153 if (isym->st_shndx == SHN_UNDEF)
3154 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3157 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3158 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3159 if (sec_addr (sym_sec) == 0)
3161 symval = sec_addr (sym_sec) + isym->st_value;
3167 struct elf_link_hash_entry *h;
3169 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3170 h = elf_sym_hashes (abfd)[indx];
3172 while (h->root.type == bfd_link_hash_indirect
3173 || h->root.type == bfd_link_hash_warning)
3174 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3176 if (h->plt.offset != MINUS_ONE)
3177 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3178 else if (h->root.u.def.section->output_section == NULL
3179 || (h->root.type != bfd_link_hash_defined
3180 && h->root.type != bfd_link_hash_defweak))
3183 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3185 if (h->type != STT_FUNC)
3187 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3188 sym_sec = h->root.u.def.section;
3191 symval += rel->r_addend;
3193 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3194 max_alignment, reserve_size, again))
3201 if (relocs != data->relocs)
3208 # define PRSTATUS_SIZE 0 /* FIXME */
3209 # define PRSTATUS_OFFSET_PR_CURSIG 12
3210 # define PRSTATUS_OFFSET_PR_PID 24
3211 # define PRSTATUS_OFFSET_PR_REG 72
3212 # define ELF_GREGSET_T_SIZE 128
3213 # define PRPSINFO_SIZE 128
3214 # define PRPSINFO_OFFSET_PR_PID 16
3215 # define PRPSINFO_OFFSET_PR_FNAME 32
3216 # define PRPSINFO_OFFSET_PR_PSARGS 48
3218 # define PRSTATUS_SIZE 376
3219 # define PRSTATUS_OFFSET_PR_CURSIG 12
3220 # define PRSTATUS_OFFSET_PR_PID 32
3221 # define PRSTATUS_OFFSET_PR_REG 112
3222 # define ELF_GREGSET_T_SIZE 256
3223 # define PRPSINFO_SIZE 136
3224 # define PRPSINFO_OFFSET_PR_PID 24
3225 # define PRPSINFO_OFFSET_PR_FNAME 40
3226 # define PRPSINFO_OFFSET_PR_PSARGS 56
3229 /* Support for core dump NOTE sections. */
3232 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3234 switch (note->descsz)
3239 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3241 elf_tdata (abfd)->core->signal
3242 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3245 elf_tdata (abfd)->core->lwpid
3246 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3250 /* Make a ".reg/999" section. */
3251 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3252 note->descpos + PRSTATUS_OFFSET_PR_REG);
3256 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3258 switch (note->descsz)
3263 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3265 elf_tdata (abfd)->core->pid
3266 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3269 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3270 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3273 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3274 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3278 /* Note that for some reason, a spurious space is tacked
3279 onto the end of the args in some (at least one anyway)
3280 implementations, so strip it off if it exists. */
3283 char *command = elf_tdata (abfd)->core->command;
3284 int n = strlen (command);
3286 if (0 < n && command[n - 1] == ' ')
3287 command[n - 1] = '\0';
3293 /* Set the right mach type. */
3295 riscv_elf_object_p (bfd *abfd)
3297 /* There are only two mach types in RISCV currently. */
3298 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3299 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3301 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3307 #define TARGET_LITTLE_SYM riscv_elfNN_vec
3308 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
3310 #define elf_backend_reloc_type_class riscv_reloc_type_class
3312 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3313 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3314 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3315 #define bfd_elfNN_bfd_merge_private_bfd_data \
3316 _bfd_riscv_elf_merge_private_bfd_data
3318 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3319 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3320 #define elf_backend_check_relocs riscv_elf_check_relocs
3321 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3322 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3323 #define elf_backend_relocate_section riscv_elf_relocate_section
3324 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3325 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3326 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3327 #define elf_backend_gc_sweep_hook riscv_elf_gc_sweep_hook
3328 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3329 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3330 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3331 #define elf_backend_object_p riscv_elf_object_p
3332 #define elf_info_to_howto_rel NULL
3333 #define elf_info_to_howto riscv_info_to_howto_rela
3334 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3336 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3338 #define elf_backend_can_gc_sections 1
3339 #define elf_backend_can_refcount 1
3340 #define elf_backend_want_got_plt 1
3341 #define elf_backend_plt_readonly 1
3342 #define elf_backend_plt_alignment 4
3343 #define elf_backend_want_plt_sym 1
3344 #define elf_backend_got_header_size (ARCH_SIZE / 8)
3345 #define elf_backend_want_dynrelro 1
3346 #define elf_backend_rela_normal 1
3347 #define elf_backend_default_execstack 0
3349 #include "elfNN-target.h"