1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
23 /* This file handles RISC-V ELF targets. */
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
40 #define MINUS_ONE ((bfd_vma)0 - 1)
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
46 /* The name of the dynamic interpreter. This is put in the .interp
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
58 /* RISC-V ELF linker hash entry. */
60 struct riscv_elf_link_hash_entry
62 struct elf_link_hash_entry elf;
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
78 struct _bfd_riscv_elf_obj_tdata
80 struct elf_obj_tdata root;
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
101 #include "elf/common.h"
102 #include "elf/internal.h"
104 struct riscv_elf_link_hash_table
106 struct elf_link_hash_table elf;
108 /* Short-cuts to get to dynamic linker sections. */
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
125 riscv_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
127 Elf_Internal_Rela *dst)
129 cache_ptr->howto = riscv_elf_rtype_to_howto (ELFNN_R_TYPE (dst->r_info));
133 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
135 const struct elf_backend_data *bed;
138 bed = get_elf_backend_data (abfd);
139 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
140 bed->s->swap_reloca_out (abfd, rel, loc);
145 #define PLT_HEADER_INSNS 8
146 #define PLT_ENTRY_INSNS 4
147 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
148 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
150 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
152 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
154 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
157 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
159 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
160 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
164 # define MATCH_LREG MATCH_LW
166 # define MATCH_LREG MATCH_LD
169 /* Generate a PLT header. */
172 riscv_make_plt_header (bfd_vma gotplt_addr, bfd_vma addr, uint32_t *entry)
174 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
175 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
177 /* auipc t2, %hi(.got.plt)
178 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
179 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
180 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
181 addi t0, t2, %lo(.got.plt) # &.got.plt
182 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
183 l[w|d] t0, PTRSIZE(t0) # link map
186 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
187 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
188 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
189 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
190 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
191 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
192 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
193 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
196 /* Generate a PLT entry. */
199 riscv_make_plt_entry (bfd_vma got, bfd_vma addr, uint32_t *entry)
201 /* auipc t3, %hi(.got.plt entry)
202 l[w|d] t3, %lo(.got.plt entry)(t3)
206 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
207 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
208 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
209 entry[3] = RISCV_NOP;
212 /* Create an entry in an RISC-V ELF linker hash table. */
214 static struct bfd_hash_entry *
215 link_hash_newfunc (struct bfd_hash_entry *entry,
216 struct bfd_hash_table *table, const char *string)
218 /* Allocate the structure if it has not already been allocated by a
223 bfd_hash_allocate (table,
224 sizeof (struct riscv_elf_link_hash_entry));
229 /* Call the allocation method of the superclass. */
230 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
233 struct riscv_elf_link_hash_entry *eh;
235 eh = (struct riscv_elf_link_hash_entry *) entry;
236 eh->dyn_relocs = NULL;
237 eh->tls_type = GOT_UNKNOWN;
243 /* Create a RISC-V ELF linker hash table. */
245 static struct bfd_link_hash_table *
246 riscv_elf_link_hash_table_create (bfd *abfd)
248 struct riscv_elf_link_hash_table *ret;
249 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
251 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
255 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
256 sizeof (struct riscv_elf_link_hash_entry),
263 ret->max_alignment = (bfd_vma) -1;
264 return &ret->elf.root;
267 /* Create the .got section. */
270 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
274 struct elf_link_hash_entry *h;
275 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
276 struct elf_link_hash_table *htab = elf_hash_table (info);
278 /* This function may be called more than once. */
279 if (htab->sgot != NULL)
282 flags = bed->dynamic_sec_flags;
284 s = bfd_make_section_anyway_with_flags (abfd,
285 (bed->rela_plts_and_copies_p
286 ? ".rela.got" : ".rel.got"),
287 (bed->dynamic_sec_flags
290 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
294 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
296 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
300 /* The first bit of the global offset table is the header. */
301 s->size += bed->got_header_size;
303 if (bed->want_got_plt)
305 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
307 || !bfd_set_section_alignment (abfd, s,
308 bed->s->log_file_align))
312 /* Reserve room for the header. */
313 s->size += GOTPLT_HEADER_SIZE;
316 if (bed->want_got_sym)
318 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
319 section. We don't do this in the linker script because we don't want
320 to define the symbol if we are not creating a global offset
322 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
323 "_GLOBAL_OFFSET_TABLE_");
324 elf_hash_table (info)->hgot = h;
332 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
333 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
337 riscv_elf_create_dynamic_sections (bfd *dynobj,
338 struct bfd_link_info *info)
340 struct riscv_elf_link_hash_table *htab;
342 htab = riscv_elf_hash_table (info);
343 BFD_ASSERT (htab != NULL);
345 if (!riscv_elf_create_got_section (dynobj, info))
348 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
351 if (!bfd_link_pic (info))
354 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
355 SEC_ALLOC | SEC_THREAD_LOCAL);
358 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
359 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
365 /* Copy the extra info we tack onto an elf_link_hash_entry. */
368 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
369 struct elf_link_hash_entry *dir,
370 struct elf_link_hash_entry *ind)
372 struct riscv_elf_link_hash_entry *edir, *eind;
374 edir = (struct riscv_elf_link_hash_entry *) dir;
375 eind = (struct riscv_elf_link_hash_entry *) ind;
377 if (eind->dyn_relocs != NULL)
379 if (edir->dyn_relocs != NULL)
381 struct elf_dyn_relocs **pp;
382 struct elf_dyn_relocs *p;
384 /* Add reloc counts against the indirect sym to the direct sym
385 list. Merge any entries against the same section. */
386 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
388 struct elf_dyn_relocs *q;
390 for (q = edir->dyn_relocs; q != NULL; q = q->next)
391 if (q->sec == p->sec)
393 q->pc_count += p->pc_count;
394 q->count += p->count;
401 *pp = edir->dyn_relocs;
404 edir->dyn_relocs = eind->dyn_relocs;
405 eind->dyn_relocs = NULL;
408 if (ind->root.type == bfd_link_hash_indirect
409 && dir->got.refcount <= 0)
411 edir->tls_type = eind->tls_type;
412 eind->tls_type = GOT_UNKNOWN;
414 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
418 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
419 unsigned long symndx, char tls_type)
421 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
423 *new_tls_type |= tls_type;
424 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
426 (*_bfd_error_handler)
427 (_("%B: `%s' accessed both as normal and thread local symbol"),
428 abfd, h ? h->root.root.string : "<local>");
435 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
436 struct elf_link_hash_entry *h, long symndx)
438 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
439 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
441 if (htab->elf.sgot == NULL)
443 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
449 h->got.refcount += 1;
453 /* This is a global offset table entry for a local symbol. */
454 if (elf_local_got_refcounts (abfd) == NULL)
456 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
457 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
459 _bfd_riscv_elf_local_got_tls_type (abfd)
460 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
462 elf_local_got_refcounts (abfd) [symndx] += 1;
468 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
470 (*_bfd_error_handler)
471 (_("%B: relocation %s against `%s' can not be used when making a shared "
472 "object; recompile with -fPIC"),
473 abfd, riscv_elf_rtype_to_howto (r_type)->name,
474 h != NULL ? h->root.root.string : "a local symbol");
475 bfd_set_error (bfd_error_bad_value);
478 /* Look through the relocs for a section during the first phase, and
479 allocate space in the global offset table or procedure linkage
483 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
484 asection *sec, const Elf_Internal_Rela *relocs)
486 struct riscv_elf_link_hash_table *htab;
487 Elf_Internal_Shdr *symtab_hdr;
488 struct elf_link_hash_entry **sym_hashes;
489 const Elf_Internal_Rela *rel;
490 asection *sreloc = NULL;
492 if (bfd_link_relocatable (info))
495 htab = riscv_elf_hash_table (info);
496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
497 sym_hashes = elf_sym_hashes (abfd);
499 if (htab->elf.dynobj == NULL)
500 htab->elf.dynobj = abfd;
502 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
505 unsigned int r_symndx;
506 struct elf_link_hash_entry *h;
508 r_symndx = ELFNN_R_SYM (rel->r_info);
509 r_type = ELFNN_R_TYPE (rel->r_info);
511 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
513 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
518 if (r_symndx < symtab_hdr->sh_info)
522 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
523 while (h->root.type == bfd_link_hash_indirect
524 || h->root.type == bfd_link_hash_warning)
525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
530 case R_RISCV_TLS_GD_HI20:
531 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
532 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
536 case R_RISCV_TLS_GOT_HI20:
537 if (bfd_link_pic (info))
538 info->flags |= DF_STATIC_TLS;
539 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
540 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
544 case R_RISCV_GOT_HI20:
545 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
546 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
550 case R_RISCV_CALL_PLT:
551 /* This symbol requires a procedure linkage table entry. We
552 actually build the entry in adjust_dynamic_symbol,
553 because this might be a case of linking PIC code without
554 linking in any dynamic objects, in which case we don't
555 need to generate a procedure linkage table after all. */
560 h->plt.refcount += 1;
567 case R_RISCV_RVC_BRANCH:
568 case R_RISCV_RVC_JUMP:
569 case R_RISCV_PCREL_HI20:
570 /* In shared libraries, these relocs are known to bind locally. */
571 if (bfd_link_pic (info))
575 case R_RISCV_TPREL_HI20:
576 if (!bfd_link_executable (info))
577 return bad_static_reloc (abfd, r_type, h);
579 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
583 if (bfd_link_pic (info))
584 return bad_static_reloc (abfd, r_type, h);
588 case R_RISCV_JUMP_SLOT:
589 case R_RISCV_RELATIVE:
595 /* This reloc might not bind locally. */
599 if (h != NULL && !bfd_link_pic (info))
601 /* We may need a .plt entry if the function this reloc
602 refers to is in a shared lib. */
603 h->plt.refcount += 1;
606 /* If we are creating a shared library, and this is a reloc
607 against a global symbol, or a non PC relative reloc
608 against a local symbol, then we need to copy the reloc
609 into the shared library. However, if we are linking with
610 -Bsymbolic, we do not need to copy a reloc against a
611 global symbol which is defined in an object we are
612 including in the link (i.e., DEF_REGULAR is set). At
613 this point we have not seen all the input files, so it is
614 possible that DEF_REGULAR is not set now but will be set
615 later (it is never cleared). In case of a weak definition,
616 DEF_REGULAR may be cleared later by a strong definition in
617 a shared library. We account for that possibility below by
618 storing information in the relocs_copied field of the hash
619 table entry. A similar situation occurs when creating
620 shared libraries and symbol visibility changes render the
623 If on the other hand, we are creating an executable, we
624 may need to keep relocations for symbols satisfied by a
625 dynamic library if we manage to avoid copy relocs for the
627 if ((bfd_link_pic (info)
628 && (sec->flags & SEC_ALLOC) != 0
629 && (! riscv_elf_rtype_to_howto (r_type)->pc_relative
632 || h->root.type == bfd_link_hash_defweak
633 || !h->def_regular))))
634 || (!bfd_link_pic (info)
635 && (sec->flags & SEC_ALLOC) != 0
637 && (h->root.type == bfd_link_hash_defweak
638 || !h->def_regular)))
640 struct elf_dyn_relocs *p;
641 struct elf_dyn_relocs **head;
643 /* When creating a shared object, we must copy these
644 relocs into the output file. We create a reloc
645 section in dynobj and make room for the reloc. */
648 sreloc = _bfd_elf_make_dynamic_reloc_section
649 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
650 abfd, /*rela?*/ TRUE);
656 /* If this is a global symbol, we count the number of
657 relocations we need for this symbol. */
659 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
662 /* Track dynamic relocs needed for local syms too.
663 We really need local syms available to do this
668 Elf_Internal_Sym *isym;
670 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
675 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
679 vpp = &elf_section_data (s)->local_dynrel;
680 head = (struct elf_dyn_relocs **) vpp;
684 if (p == NULL || p->sec != sec)
686 bfd_size_type amt = sizeof *p;
687 p = ((struct elf_dyn_relocs *)
688 bfd_alloc (htab->elf.dynobj, amt));
699 p->pc_count += riscv_elf_rtype_to_howto (r_type)->pc_relative;
704 case R_RISCV_GNU_VTINHERIT:
705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
709 case R_RISCV_GNU_VTENTRY:
710 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
723 riscv_elf_gc_mark_hook (asection *sec,
724 struct bfd_link_info *info,
725 Elf_Internal_Rela *rel,
726 struct elf_link_hash_entry *h,
727 Elf_Internal_Sym *sym)
730 switch (ELFNN_R_TYPE (rel->r_info))
732 case R_RISCV_GNU_VTINHERIT:
733 case R_RISCV_GNU_VTENTRY:
737 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
740 /* Find dynamic relocs for H that apply to read-only sections. */
743 readonly_dynrelocs (struct elf_link_hash_entry *h)
745 struct elf_dyn_relocs *p;
747 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
749 asection *s = p->sec->output_section;
751 if (s != NULL && (s->flags & SEC_READONLY) != 0)
757 /* Adjust a symbol defined by a dynamic object and referenced by a
758 regular object. The current definition is in some section of the
759 dynamic object, but we're not including those sections. We have to
760 change the definition to something the rest of the link can
764 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
765 struct elf_link_hash_entry *h)
767 struct riscv_elf_link_hash_table *htab;
768 struct riscv_elf_link_hash_entry * eh;
772 htab = riscv_elf_hash_table (info);
773 BFD_ASSERT (htab != NULL);
775 dynobj = htab->elf.dynobj;
777 /* Make sure we know what is going on here. */
778 BFD_ASSERT (dynobj != NULL
780 || h->type == STT_GNU_IFUNC
784 && !h->def_regular)));
786 /* If this is a function, put it in the procedure linkage table. We
787 will fill in the contents of the procedure linkage table later
788 (although we could actually do it here). */
789 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
791 if (h->plt.refcount <= 0
792 || SYMBOL_CALLS_LOCAL (info, h)
793 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
794 && h->root.type == bfd_link_hash_undefweak))
796 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
797 input file, but the symbol was never referred to by a dynamic
798 object, or if all references were garbage collected. In such
799 a case, we don't actually need to build a PLT entry. */
800 h->plt.offset = (bfd_vma) -1;
807 h->plt.offset = (bfd_vma) -1;
809 /* If this is a weak symbol, and there is a real definition, the
810 processor independent code will have arranged for us to see the
811 real definition first, and we can just use the same value. */
814 struct elf_link_hash_entry *def = weakdef (h);
815 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
816 h->root.u.def.section = def->root.u.def.section;
817 h->root.u.def.value = def->root.u.def.value;
821 /* This is a reference to a symbol defined by a dynamic object which
822 is not a function. */
824 /* If we are creating a shared library, we must presume that the
825 only references to the symbol are via the global offset table.
826 For such cases we need not do anything here; the relocations will
827 be handled correctly by relocate_section. */
828 if (bfd_link_pic (info))
831 /* If there are no references to this symbol that do not use the
832 GOT, we don't need to generate a copy reloc. */
836 /* If -z nocopyreloc was given, we won't generate them either. */
837 if (info->nocopyreloc)
843 /* If we don't find any dynamic relocs in read-only sections, then
844 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
845 if (!readonly_dynrelocs (h))
851 /* We must allocate the symbol in our .dynbss section, which will
852 become part of the .bss section of the executable. There will be
853 an entry for this symbol in the .dynsym section. The dynamic
854 object will contain position independent code, so all references
855 from the dynamic object to this symbol will go through the global
856 offset table. The dynamic linker will use the .dynsym entry to
857 determine the address it must put in the global offset table, so
858 both the dynamic object and the regular object will refer to the
859 same memory location for the variable. */
861 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
862 to copy the initial value out of the dynamic object and into the
863 runtime process image. We need to remember the offset into the
864 .rel.bss section we are going to use. */
865 eh = (struct riscv_elf_link_hash_entry *) h;
866 if (eh->tls_type & ~GOT_NORMAL)
869 srel = htab->elf.srelbss;
871 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
873 s = htab->elf.sdynrelro;
874 srel = htab->elf.sreldynrelro;
878 s = htab->elf.sdynbss;
879 srel = htab->elf.srelbss;
881 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
883 srel->size += sizeof (ElfNN_External_Rela);
887 return _bfd_elf_adjust_dynamic_copy (info, h, s);
890 /* Allocate space in .plt, .got and associated reloc sections for
894 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
896 struct bfd_link_info *info;
897 struct riscv_elf_link_hash_table *htab;
898 struct riscv_elf_link_hash_entry *eh;
899 struct elf_dyn_relocs *p;
901 if (h->root.type == bfd_link_hash_indirect)
904 info = (struct bfd_link_info *) inf;
905 htab = riscv_elf_hash_table (info);
906 BFD_ASSERT (htab != NULL);
908 if (htab->elf.dynamic_sections_created
909 && h->plt.refcount > 0)
911 /* Make sure this symbol is output as a dynamic symbol.
912 Undefined weak syms won't yet be marked as dynamic. */
916 if (! bfd_elf_link_record_dynamic_symbol (info, h))
920 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
922 asection *s = htab->elf.splt;
925 s->size = PLT_HEADER_SIZE;
927 h->plt.offset = s->size;
929 /* Make room for this entry. */
930 s->size += PLT_ENTRY_SIZE;
932 /* We also need to make an entry in the .got.plt section. */
933 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
935 /* We also need to make an entry in the .rela.plt section. */
936 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
938 /* If this symbol is not defined in a regular file, and we are
939 not generating a shared library, then set the symbol to this
940 location in the .plt. This is required to make function
941 pointers compare as equal between the normal executable and
942 the shared library. */
943 if (! bfd_link_pic (info)
946 h->root.u.def.section = s;
947 h->root.u.def.value = h->plt.offset;
952 h->plt.offset = (bfd_vma) -1;
958 h->plt.offset = (bfd_vma) -1;
962 if (h->got.refcount > 0)
966 int tls_type = riscv_elf_hash_entry (h)->tls_type;
968 /* Make sure this symbol is output as a dynamic symbol.
969 Undefined weak syms won't yet be marked as dynamic. */
973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
978 h->got.offset = s->size;
979 dyn = htab->elf.dynamic_sections_created;
980 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
982 /* TLS_GD needs two dynamic relocs and two GOT slots. */
983 if (tls_type & GOT_TLS_GD)
985 s->size += 2 * RISCV_ELF_WORD_BYTES;
986 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
989 /* TLS_IE needs one dynamic reloc and one GOT slot. */
990 if (tls_type & GOT_TLS_IE)
992 s->size += RISCV_ELF_WORD_BYTES;
993 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
998 s->size += RISCV_ELF_WORD_BYTES;
999 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h))
1000 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1004 h->got.offset = (bfd_vma) -1;
1006 eh = (struct riscv_elf_link_hash_entry *) h;
1007 if (eh->dyn_relocs == NULL)
1010 /* In the shared -Bsymbolic case, discard space allocated for
1011 dynamic pc-relative relocs against symbols which turn out to be
1012 defined in regular objects. For the normal shared case, discard
1013 space for pc-relative relocs that have become local due to symbol
1014 visibility changes. */
1016 if (bfd_link_pic (info))
1018 if (SYMBOL_CALLS_LOCAL (info, h))
1020 struct elf_dyn_relocs **pp;
1022 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1024 p->count -= p->pc_count;
1033 /* Also discard relocs on undefined weak syms with non-default
1035 if (eh->dyn_relocs != NULL
1036 && h->root.type == bfd_link_hash_undefweak)
1038 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1039 eh->dyn_relocs = NULL;
1041 /* Make sure undefined weak symbols are output as a dynamic
1043 else if (h->dynindx == -1
1044 && !h->forced_local)
1046 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1053 /* For the non-shared case, discard space for relocs against
1054 symbols which turn out to need copy relocs or are not
1060 || (htab->elf.dynamic_sections_created
1061 && (h->root.type == bfd_link_hash_undefweak
1062 || h->root.type == bfd_link_hash_undefined))))
1064 /* Make sure this symbol is output as a dynamic symbol.
1065 Undefined weak syms won't yet be marked as dynamic. */
1066 if (h->dynindx == -1
1067 && !h->forced_local)
1069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1073 /* If that succeeded, we know we'll be keeping all the
1075 if (h->dynindx != -1)
1079 eh->dyn_relocs = NULL;
1084 /* Finally, allocate space. */
1085 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1087 asection *sreloc = elf_section_data (p->sec)->sreloc;
1088 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1094 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1095 read-only sections. */
1098 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1102 if (h->root.type == bfd_link_hash_indirect)
1105 sec = readonly_dynrelocs (h);
1108 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1110 info->flags |= DF_TEXTREL;
1111 info->callbacks->minfo
1112 (_("%B: dynamic relocation against `%T' in read-only section `%A'\n"),
1113 sec->owner, h->root.root.string, sec);
1115 /* Not an error, just cut short the traversal. */
1122 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1124 struct riscv_elf_link_hash_table *htab;
1129 htab = riscv_elf_hash_table (info);
1130 BFD_ASSERT (htab != NULL);
1131 dynobj = htab->elf.dynobj;
1132 BFD_ASSERT (dynobj != NULL);
1134 if (elf_hash_table (info)->dynamic_sections_created)
1136 /* Set the contents of the .interp section to the interpreter. */
1137 if (bfd_link_executable (info) && !info->nointerp)
1139 s = bfd_get_linker_section (dynobj, ".interp");
1140 BFD_ASSERT (s != NULL);
1141 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1142 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1146 /* Set up .got offsets for local syms, and space for local dynamic
1148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1150 bfd_signed_vma *local_got;
1151 bfd_signed_vma *end_local_got;
1152 char *local_tls_type;
1153 bfd_size_type locsymcount;
1154 Elf_Internal_Shdr *symtab_hdr;
1157 if (! is_riscv_elf (ibfd))
1160 for (s = ibfd->sections; s != NULL; s = s->next)
1162 struct elf_dyn_relocs *p;
1164 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1166 if (!bfd_is_abs_section (p->sec)
1167 && bfd_is_abs_section (p->sec->output_section))
1169 /* Input section has been discarded, either because
1170 it is a copy of a linkonce section or due to
1171 linker script /DISCARD/, so we'll be discarding
1174 else if (p->count != 0)
1176 srel = elf_section_data (p->sec)->sreloc;
1177 srel->size += p->count * sizeof (ElfNN_External_Rela);
1178 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1179 info->flags |= DF_TEXTREL;
1184 local_got = elf_local_got_refcounts (ibfd);
1188 symtab_hdr = &elf_symtab_hdr (ibfd);
1189 locsymcount = symtab_hdr->sh_info;
1190 end_local_got = local_got + locsymcount;
1191 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1193 srel = htab->elf.srelgot;
1194 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1198 *local_got = s->size;
1199 s->size += RISCV_ELF_WORD_BYTES;
1200 if (*local_tls_type & GOT_TLS_GD)
1201 s->size += RISCV_ELF_WORD_BYTES;
1202 if (bfd_link_pic (info)
1203 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1204 srel->size += sizeof (ElfNN_External_Rela);
1207 *local_got = (bfd_vma) -1;
1211 /* Allocate global sym .plt and .got entries, and space for global
1212 sym dynamic relocs. */
1213 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1215 if (htab->elf.sgotplt)
1217 struct elf_link_hash_entry *got;
1218 got = elf_link_hash_lookup (elf_hash_table (info),
1219 "_GLOBAL_OFFSET_TABLE_",
1220 FALSE, FALSE, FALSE);
1222 /* Don't allocate .got.plt section if there are no GOT nor PLT
1223 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1225 || !got->ref_regular_nonweak)
1226 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1227 && (htab->elf.splt == NULL
1228 || htab->elf.splt->size == 0)
1229 && (htab->elf.sgot == NULL
1230 || (htab->elf.sgot->size
1231 == get_elf_backend_data (output_bfd)->got_header_size)))
1232 htab->elf.sgotplt->size = 0;
1235 /* The check_relocs and adjust_dynamic_symbol entry points have
1236 determined the sizes of the various dynamic sections. Allocate
1238 for (s = dynobj->sections; s != NULL; s = s->next)
1240 if ((s->flags & SEC_LINKER_CREATED) == 0)
1243 if (s == htab->elf.splt
1244 || s == htab->elf.sgot
1245 || s == htab->elf.sgotplt
1246 || s == htab->elf.sdynbss
1247 || s == htab->elf.sdynrelro)
1249 /* Strip this section if we don't need it; see the
1252 else if (strncmp (s->name, ".rela", 5) == 0)
1256 /* We use the reloc_count field as a counter if we need
1257 to copy relocs into the output file. */
1263 /* It's not one of our sections. */
1269 /* If we don't need this section, strip it from the
1270 output file. This is mostly to handle .rela.bss and
1271 .rela.plt. We must create both sections in
1272 create_dynamic_sections, because they must be created
1273 before the linker maps input sections to output
1274 sections. The linker does that before
1275 adjust_dynamic_symbol is called, and it is that
1276 function which decides whether anything needs to go
1277 into these sections. */
1278 s->flags |= SEC_EXCLUDE;
1282 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1285 /* Allocate memory for the section contents. Zero the memory
1286 for the benefit of .rela.plt, which has 4 unused entries
1287 at the beginning, and we don't want garbage. */
1288 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1289 if (s->contents == NULL)
1293 if (elf_hash_table (info)->dynamic_sections_created)
1295 /* Add some entries to the .dynamic section. We fill in the
1296 values later, in riscv_elf_finish_dynamic_sections, but we
1297 must add the entries now so that we get the correct size for
1298 the .dynamic section. The DT_DEBUG entry is filled in by the
1299 dynamic linker and used by the debugger. */
1300 #define add_dynamic_entry(TAG, VAL) \
1301 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1303 if (bfd_link_executable (info))
1305 if (!add_dynamic_entry (DT_DEBUG, 0))
1309 if (htab->elf.srelplt->size != 0)
1311 if (!add_dynamic_entry (DT_PLTGOT, 0)
1312 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1313 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1314 || !add_dynamic_entry (DT_JMPREL, 0))
1318 if (!add_dynamic_entry (DT_RELA, 0)
1319 || !add_dynamic_entry (DT_RELASZ, 0)
1320 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1323 /* If any dynamic relocs apply to a read-only section,
1324 then we need a DT_TEXTREL entry. */
1325 if ((info->flags & DF_TEXTREL) == 0)
1326 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1328 if (info->flags & DF_TEXTREL)
1330 if (!add_dynamic_entry (DT_TEXTREL, 0))
1334 #undef add_dynamic_entry
1340 #define DTP_OFFSET 0x800
1342 /* Return the relocation value for a TLS dtp-relative reloc. */
1345 dtpoff (struct bfd_link_info *info, bfd_vma address)
1347 /* If tls_sec is NULL, we should have signalled an error already. */
1348 if (elf_hash_table (info)->tls_sec == NULL)
1350 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1353 /* Return the relocation value for a static TLS tp-relative relocation. */
1356 tpoff (struct bfd_link_info *info, bfd_vma address)
1358 /* If tls_sec is NULL, we should have signalled an error already. */
1359 if (elf_hash_table (info)->tls_sec == NULL)
1361 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1364 /* Return the global pointer's value, or 0 if it is not in use. */
1367 riscv_global_pointer_value (struct bfd_link_info *info)
1369 struct bfd_link_hash_entry *h;
1371 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1372 if (h == NULL || h->type != bfd_link_hash_defined)
1375 return h->u.def.value + sec_addr (h->u.def.section);
1378 /* Emplace a static relocation. */
1380 static bfd_reloc_status_type
1381 perform_relocation (const reloc_howto_type *howto,
1382 const Elf_Internal_Rela *rel,
1384 asection *input_section,
1388 if (howto->pc_relative)
1389 value -= sec_addr (input_section) + rel->r_offset;
1390 value += rel->r_addend;
1392 switch (ELFNN_R_TYPE (rel->r_info))
1395 case R_RISCV_TPREL_HI20:
1396 case R_RISCV_PCREL_HI20:
1397 case R_RISCV_GOT_HI20:
1398 case R_RISCV_TLS_GOT_HI20:
1399 case R_RISCV_TLS_GD_HI20:
1400 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1401 return bfd_reloc_overflow;
1402 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1405 case R_RISCV_LO12_I:
1406 case R_RISCV_GPREL_I:
1407 case R_RISCV_TPREL_LO12_I:
1408 case R_RISCV_TPREL_I:
1409 case R_RISCV_PCREL_LO12_I:
1410 value = ENCODE_ITYPE_IMM (value);
1413 case R_RISCV_LO12_S:
1414 case R_RISCV_GPREL_S:
1415 case R_RISCV_TPREL_LO12_S:
1416 case R_RISCV_TPREL_S:
1417 case R_RISCV_PCREL_LO12_S:
1418 value = ENCODE_STYPE_IMM (value);
1422 case R_RISCV_CALL_PLT:
1423 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1424 return bfd_reloc_overflow;
1425 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1426 | (ENCODE_ITYPE_IMM (value) << 32);
1430 if (!VALID_UJTYPE_IMM (value))
1431 return bfd_reloc_overflow;
1432 value = ENCODE_UJTYPE_IMM (value);
1435 case R_RISCV_BRANCH:
1436 if (!VALID_SBTYPE_IMM (value))
1437 return bfd_reloc_overflow;
1438 value = ENCODE_SBTYPE_IMM (value);
1441 case R_RISCV_RVC_BRANCH:
1442 if (!VALID_RVC_B_IMM (value))
1443 return bfd_reloc_overflow;
1444 value = ENCODE_RVC_B_IMM (value);
1447 case R_RISCV_RVC_JUMP:
1448 if (!VALID_RVC_J_IMM (value))
1449 return bfd_reloc_overflow;
1450 value = ENCODE_RVC_J_IMM (value);
1453 case R_RISCV_RVC_LUI:
1454 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1474 case R_RISCV_32_PCREL:
1475 case R_RISCV_TLS_DTPREL32:
1476 case R_RISCV_TLS_DTPREL64:
1479 case R_RISCV_DELETE:
1480 return bfd_reloc_ok;
1483 return bfd_reloc_notsupported;
1486 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1487 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1488 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1490 return bfd_reloc_ok;
1493 /* Remember all PC-relative high-part relocs we've encountered to help us
1494 later resolve the corresponding low-part relocs. */
1500 } riscv_pcrel_hi_reloc;
1502 typedef struct riscv_pcrel_lo_reloc
1504 asection * input_section;
1505 struct bfd_link_info * info;
1506 reloc_howto_type * howto;
1507 const Elf_Internal_Rela * reloc;
1510 bfd_byte * contents;
1511 struct riscv_pcrel_lo_reloc * next;
1512 } riscv_pcrel_lo_reloc;
1517 riscv_pcrel_lo_reloc *lo_relocs;
1518 } riscv_pcrel_relocs;
1521 riscv_pcrel_reloc_hash (const void *entry)
1523 const riscv_pcrel_hi_reloc *e = entry;
1524 return (hashval_t)(e->address >> 2);
1528 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1530 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1531 return e1->address == e2->address;
1535 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1538 p->lo_relocs = NULL;
1539 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1540 riscv_pcrel_reloc_eq, free);
1541 return p->hi_relocs != NULL;
1545 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1547 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1551 riscv_pcrel_lo_reloc *next = cur->next;
1556 htab_delete (p->hi_relocs);
1560 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1561 struct bfd_link_info *info,
1565 const reloc_howto_type *howto,
1568 /* We may need to reference low addreses in PC-relative modes even when the
1569 * PC is far away from these addresses. For example, undefweak references
1570 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1571 * addresses that we can link PC-relative programs at, the linker can't
1572 * actually relocate references to those symbols. In order to allow these
1573 * programs to work we simply convert the PC-relative auipc sequences to
1574 * 0-relative lui sequences. */
1575 if (bfd_link_pic (info))
1578 /* If it's possible to reference the symbol using auipc we do so, as that's
1579 * more in the spirit of the PC-relative relocations we're processing. */
1580 bfd_vma offset = addr - pc;
1581 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1584 /* If it's impossible to reference this with a LUI-based offset then don't
1585 * bother to convert it at all so users still see the PC-relative relocation
1586 * in the truncation message. */
1587 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1590 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1592 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1593 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1594 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1599 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1600 bfd_vma value, bfd_boolean absolute)
1602 bfd_vma offset = absolute ? value : value - addr;
1603 riscv_pcrel_hi_reloc entry = {addr, offset};
1604 riscv_pcrel_hi_reloc **slot =
1605 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1607 BFD_ASSERT (*slot == NULL);
1608 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1616 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1617 asection *input_section,
1618 struct bfd_link_info *info,
1619 reloc_howto_type *howto,
1620 const Elf_Internal_Rela *reloc,
1625 riscv_pcrel_lo_reloc *entry;
1626 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1629 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1630 name, contents, p->lo_relocs};
1631 p->lo_relocs = entry;
1636 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1638 riscv_pcrel_lo_reloc *r;
1640 for (r = p->lo_relocs; r != NULL; r = r->next)
1642 bfd *input_bfd = r->input_section->owner;
1644 riscv_pcrel_hi_reloc search = {r->addr, 0};
1645 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1648 ((*r->info->callbacks->reloc_overflow)
1649 (r->info, NULL, r->name, r->howto->name, (bfd_vma) 0,
1650 input_bfd, r->input_section, r->reloc->r_offset));
1654 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1655 input_bfd, r->contents);
1661 /* Relocate a RISC-V ELF section.
1663 The RELOCATE_SECTION function is called by the new ELF backend linker
1664 to handle the relocations for a section.
1666 The relocs are always passed as Rela structures.
1668 This function is responsible for adjusting the section contents as
1669 necessary, and (if generating a relocatable output file) adjusting
1670 the reloc addend as necessary.
1672 This function does not have to worry about setting the reloc
1673 address or the reloc symbol index.
1675 LOCAL_SYMS is a pointer to the swapped in local symbols.
1677 LOCAL_SECTIONS is an array giving the section in the input file
1678 corresponding to the st_shndx field of each local symbol.
1680 The global hash table entry for the global symbols can be found
1681 via elf_sym_hashes (input_bfd).
1683 When generating relocatable output, this function must handle
1684 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1685 going to be the section symbol corresponding to the output
1686 section, which means that the addend must be adjusted
1690 riscv_elf_relocate_section (bfd *output_bfd,
1691 struct bfd_link_info *info,
1693 asection *input_section,
1695 Elf_Internal_Rela *relocs,
1696 Elf_Internal_Sym *local_syms,
1697 asection **local_sections)
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701 riscv_pcrel_relocs pcrel_relocs;
1702 bfd_boolean ret = FALSE;
1703 asection *sreloc = elf_section_data (input_section)->sreloc;
1704 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1705 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1706 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1707 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1708 bfd_boolean absolute;
1710 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1713 relend = relocs + input_section->reloc_count;
1714 for (rel = relocs; rel < relend; rel++)
1716 unsigned long r_symndx;
1717 struct elf_link_hash_entry *h;
1718 Elf_Internal_Sym *sym;
1721 bfd_reloc_status_type r = bfd_reloc_ok;
1723 bfd_vma off, ie_off;
1724 bfd_boolean unresolved_reloc, is_ie = FALSE;
1725 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1726 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1727 reloc_howto_type *howto = riscv_elf_rtype_to_howto (r_type);
1728 const char *msg = NULL;
1730 if (r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1733 /* This is a final link. */
1734 r_symndx = ELFNN_R_SYM (rel->r_info);
1738 unresolved_reloc = FALSE;
1739 if (r_symndx < symtab_hdr->sh_info)
1741 sym = local_syms + r_symndx;
1742 sec = local_sections[r_symndx];
1743 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1747 bfd_boolean warned, ignored;
1749 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1750 r_symndx, symtab_hdr, sym_hashes,
1752 unresolved_reloc, warned, ignored);
1755 /* To avoid generating warning messages about truncated
1756 relocations, set the relocation's address to be the same as
1757 the start of this section. */
1758 if (input_section->output_section != NULL)
1759 relocation = input_section->output_section->vma;
1765 if (sec != NULL && discarded_section (sec))
1766 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1767 rel, 1, relend, howto, 0, contents);
1769 if (bfd_link_relocatable (info))
1773 name = h->root.root.string;
1776 name = (bfd_elf_string_from_elf_section
1777 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1778 if (name == NULL || *name == '\0')
1779 name = bfd_section_name (input_bfd, sec);
1786 case R_RISCV_TPREL_ADD:
1788 case R_RISCV_JUMP_SLOT:
1789 case R_RISCV_RELATIVE:
1790 /* These require nothing of us at all. */
1794 case R_RISCV_BRANCH:
1795 case R_RISCV_RVC_BRANCH:
1796 case R_RISCV_RVC_LUI:
1797 case R_RISCV_LO12_I:
1798 case R_RISCV_LO12_S:
1803 case R_RISCV_32_PCREL:
1804 case R_RISCV_DELETE:
1805 /* These require no special handling beyond perform_relocation. */
1808 case R_RISCV_GOT_HI20:
1811 bfd_boolean dyn, pic;
1813 off = h->got.offset;
1814 BFD_ASSERT (off != (bfd_vma) -1);
1815 dyn = elf_hash_table (info)->dynamic_sections_created;
1816 pic = bfd_link_pic (info);
1818 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1819 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1821 /* This is actually a static link, or it is a
1822 -Bsymbolic link and the symbol is defined
1823 locally, or the symbol was forced to be local
1824 because of a version file. We must initialize
1825 this entry in the global offset table. Since the
1826 offset must always be a multiple of the word size,
1827 we use the least significant bit to record whether
1828 we have initialized it already.
1830 When doing a dynamic link, we create a .rela.got
1831 relocation entry to initialize the value. This
1832 is done in the finish_dynamic_symbol routine. */
1837 bfd_put_NN (output_bfd, relocation,
1838 htab->elf.sgot->contents + off);
1843 unresolved_reloc = FALSE;
1847 BFD_ASSERT (local_got_offsets != NULL
1848 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1850 off = local_got_offsets[r_symndx];
1852 /* The offset must always be a multiple of the word size.
1853 So, we can use the least significant bit to record
1854 whether we have already processed this entry. */
1859 if (bfd_link_pic (info))
1862 Elf_Internal_Rela outrel;
1864 /* We need to generate a R_RISCV_RELATIVE reloc
1865 for the dynamic linker. */
1866 s = htab->elf.srelgot;
1867 BFD_ASSERT (s != NULL);
1869 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1871 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1872 outrel.r_addend = relocation;
1874 riscv_elf_append_rela (output_bfd, s, &outrel);
1877 bfd_put_NN (output_bfd, relocation,
1878 htab->elf.sgot->contents + off);
1879 local_got_offsets[r_symndx] |= 1;
1882 relocation = sec_addr (htab->elf.sgot) + off;
1883 absolute = riscv_zero_pcrel_hi_reloc (rel,
1890 r_type = ELFNN_R_TYPE (rel->r_info);
1891 howto = riscv_elf_rtype_to_howto (r_type);
1892 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1893 relocation, absolute))
1894 r = bfd_reloc_overflow;
1902 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1903 contents + rel->r_offset);
1904 relocation = old_value + relocation;
1914 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1915 contents + rel->r_offset);
1916 relocation = old_value - relocation;
1920 case R_RISCV_CALL_PLT:
1923 case R_RISCV_RVC_JUMP:
1924 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1926 /* Refer to the PLT entry. */
1927 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1928 unresolved_reloc = FALSE;
1932 case R_RISCV_TPREL_HI20:
1933 relocation = tpoff (info, relocation);
1936 case R_RISCV_TPREL_LO12_I:
1937 case R_RISCV_TPREL_LO12_S:
1938 relocation = tpoff (info, relocation);
1941 case R_RISCV_TPREL_I:
1942 case R_RISCV_TPREL_S:
1943 relocation = tpoff (info, relocation);
1944 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
1946 /* We can use tp as the base register. */
1947 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1948 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1949 insn |= X_TP << OP_SH_RS1;
1950 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1953 r = bfd_reloc_overflow;
1956 case R_RISCV_GPREL_I:
1957 case R_RISCV_GPREL_S:
1959 bfd_vma gp = riscv_global_pointer_value (info);
1960 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
1961 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
1963 /* We can use x0 or gp as the base register. */
1964 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
1965 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1968 rel->r_addend -= gp;
1969 insn |= X_GP << OP_SH_RS1;
1971 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
1974 r = bfd_reloc_overflow;
1978 case R_RISCV_PCREL_HI20:
1979 absolute = riscv_zero_pcrel_hi_reloc (rel,
1986 r_type = ELFNN_R_TYPE (rel->r_info);
1987 howto = riscv_elf_rtype_to_howto (r_type);
1988 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1989 relocation + rel->r_addend,
1991 r = bfd_reloc_overflow;
1994 case R_RISCV_PCREL_LO12_I:
1995 case R_RISCV_PCREL_LO12_S:
1996 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
1997 howto, rel, relocation, name,
2000 r = bfd_reloc_overflow;
2003 case R_RISCV_TLS_DTPREL32:
2004 case R_RISCV_TLS_DTPREL64:
2005 relocation = dtpoff (info, relocation);
2010 if ((input_section->flags & SEC_ALLOC) == 0)
2013 if ((bfd_link_pic (info)
2015 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2016 || h->root.type != bfd_link_hash_undefweak)
2017 && (! howto->pc_relative
2018 || !SYMBOL_CALLS_LOCAL (info, h)))
2019 || (!bfd_link_pic (info)
2025 || h->root.type == bfd_link_hash_undefweak
2026 || h->root.type == bfd_link_hash_undefined)))
2028 Elf_Internal_Rela outrel;
2029 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2031 /* When generating a shared object, these relocations
2032 are copied into the output file to be resolved at run
2036 _bfd_elf_section_offset (output_bfd, info, input_section,
2038 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2039 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2040 outrel.r_offset += sec_addr (input_section);
2042 if (skip_dynamic_relocation)
2043 memset (&outrel, 0, sizeof outrel);
2044 else if (h != NULL && h->dynindx != -1
2045 && !(bfd_link_pic (info)
2046 && SYMBOLIC_BIND (info, h)
2049 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2050 outrel.r_addend = rel->r_addend;
2054 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2055 outrel.r_addend = relocation + rel->r_addend;
2058 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2059 if (skip_static_relocation)
2064 case R_RISCV_TLS_GOT_HI20:
2068 case R_RISCV_TLS_GD_HI20:
2071 off = h->got.offset;
2076 off = local_got_offsets[r_symndx];
2077 local_got_offsets[r_symndx] |= 1;
2080 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2081 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2082 /* If this symbol is referenced by both GD and IE TLS, the IE
2083 reference's GOT slot follows the GD reference's slots. */
2085 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2086 ie_off = 2 * GOT_ENTRY_SIZE;
2092 Elf_Internal_Rela outrel;
2094 bfd_boolean need_relocs = FALSE;
2096 if (htab->elf.srelgot == NULL)
2101 bfd_boolean dyn, pic;
2102 dyn = htab->elf.dynamic_sections_created;
2103 pic = bfd_link_pic (info);
2105 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2106 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2110 /* The GOT entries have not been initialized yet. Do it
2111 now, and emit any relocations. */
2112 if ((bfd_link_pic (info) || indx != 0)
2114 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2118 if (tls_type & GOT_TLS_GD)
2122 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2123 outrel.r_addend = 0;
2124 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2125 bfd_put_NN (output_bfd, 0,
2126 htab->elf.sgot->contents + off);
2127 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2130 BFD_ASSERT (! unresolved_reloc);
2131 bfd_put_NN (output_bfd,
2132 dtpoff (info, relocation),
2133 (htab->elf.sgot->contents + off +
2134 RISCV_ELF_WORD_BYTES));
2138 bfd_put_NN (output_bfd, 0,
2139 (htab->elf.sgot->contents + off +
2140 RISCV_ELF_WORD_BYTES));
2141 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2142 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2143 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2148 /* If we are not emitting relocations for a
2149 general dynamic reference, then we must be in a
2150 static link or an executable link with the
2151 symbol binding locally. Mark it as belonging
2152 to module 1, the executable. */
2153 bfd_put_NN (output_bfd, 1,
2154 htab->elf.sgot->contents + off);
2155 bfd_put_NN (output_bfd,
2156 dtpoff (info, relocation),
2157 (htab->elf.sgot->contents + off +
2158 RISCV_ELF_WORD_BYTES));
2162 if (tls_type & GOT_TLS_IE)
2166 bfd_put_NN (output_bfd, 0,
2167 htab->elf.sgot->contents + off + ie_off);
2168 outrel.r_offset = sec_addr (htab->elf.sgot)
2170 outrel.r_addend = 0;
2172 outrel.r_addend = tpoff (info, relocation);
2173 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2174 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2178 bfd_put_NN (output_bfd, tpoff (info, relocation),
2179 htab->elf.sgot->contents + off + ie_off);
2184 BFD_ASSERT (off < (bfd_vma) -2);
2185 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2186 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2188 r = bfd_reloc_overflow;
2189 unresolved_reloc = FALSE;
2193 r = bfd_reloc_notsupported;
2196 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2197 because such sections are not SEC_ALLOC and thus ld.so will
2198 not process them. */
2199 if (unresolved_reloc
2200 && !((input_section->flags & SEC_DEBUGGING) != 0
2202 && _bfd_elf_section_offset (output_bfd, info, input_section,
2203 rel->r_offset) != (bfd_vma) -1)
2205 (*_bfd_error_handler)
2206 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
2211 h->root.root.string);
2215 if (r == bfd_reloc_ok)
2216 r = perform_relocation (howto, rel, relocation, input_section,
2217 input_bfd, contents);
2224 case bfd_reloc_overflow:
2225 info->callbacks->reloc_overflow
2226 (info, (h ? &h->root : NULL), name, howto->name,
2227 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2230 case bfd_reloc_undefined:
2231 info->callbacks->undefined_symbol
2232 (info, name, input_bfd, input_section, rel->r_offset,
2236 case bfd_reloc_outofrange:
2237 msg = _("internal error: out of range error");
2240 case bfd_reloc_notsupported:
2241 msg = _("internal error: unsupported relocation error");
2244 case bfd_reloc_dangerous:
2245 msg = _("internal error: dangerous relocation");
2249 msg = _("internal error: unknown error");
2254 info->callbacks->warning
2255 (info, msg, name, input_bfd, input_section, rel->r_offset);
2259 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2261 riscv_free_pcrel_relocs (&pcrel_relocs);
2265 /* Finish up dynamic symbol handling. We set the contents of various
2266 dynamic sections here. */
2269 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2270 struct bfd_link_info *info,
2271 struct elf_link_hash_entry *h,
2272 Elf_Internal_Sym *sym)
2274 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2275 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2277 if (h->plt.offset != (bfd_vma) -1)
2279 /* We've decided to create a PLT entry for this symbol. */
2281 bfd_vma i, header_address, plt_idx, got_address;
2282 uint32_t plt_entry[PLT_ENTRY_INSNS];
2283 Elf_Internal_Rela rela;
2285 BFD_ASSERT (h->dynindx != -1);
2287 /* Calculate the address of the PLT header. */
2288 header_address = sec_addr (htab->elf.splt);
2290 /* Calculate the index of the entry. */
2291 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2293 /* Calculate the address of the .got.plt entry. */
2294 got_address = riscv_elf_got_plt_val (plt_idx, info);
2296 /* Find out where the .plt entry should go. */
2297 loc = htab->elf.splt->contents + h->plt.offset;
2299 /* Fill in the PLT entry itself. */
2300 riscv_make_plt_entry (got_address, header_address + h->plt.offset,
2302 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2303 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2305 /* Fill in the initial value of the .got.plt entry. */
2306 loc = htab->elf.sgotplt->contents
2307 + (got_address - sec_addr (htab->elf.sgotplt));
2308 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2310 /* Fill in the entry in the .rela.plt section. */
2311 rela.r_offset = got_address;
2313 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2315 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2316 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2318 if (!h->def_regular)
2320 /* Mark the symbol as undefined, rather than as defined in
2321 the .plt section. Leave the value alone. */
2322 sym->st_shndx = SHN_UNDEF;
2323 /* If the symbol is weak, we do need to clear the value.
2324 Otherwise, the PLT entry would provide a definition for
2325 the symbol even if the symbol wasn't defined anywhere,
2326 and so the symbol would never be NULL. */
2327 if (!h->ref_regular_nonweak)
2332 if (h->got.offset != (bfd_vma) -1
2333 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
2337 Elf_Internal_Rela rela;
2339 /* This symbol has an entry in the GOT. Set it up. */
2341 sgot = htab->elf.sgot;
2342 srela = htab->elf.srelgot;
2343 BFD_ASSERT (sgot != NULL && srela != NULL);
2345 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2347 /* If this is a -Bsymbolic link, and the symbol is defined
2348 locally, we just want to emit a RELATIVE reloc. Likewise if
2349 the symbol was forced to be local because of a version file.
2350 The entry in the global offset table will already have been
2351 initialized in the relocate_section function. */
2352 if (bfd_link_pic (info)
2353 && (info->symbolic || h->dynindx == -1)
2356 asection *sec = h->root.u.def.section;
2357 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2358 rela.r_addend = (h->root.u.def.value
2359 + sec->output_section->vma
2360 + sec->output_offset);
2364 BFD_ASSERT (h->dynindx != -1);
2365 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2369 bfd_put_NN (output_bfd, 0,
2370 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2371 riscv_elf_append_rela (output_bfd, srela, &rela);
2376 Elf_Internal_Rela rela;
2379 /* This symbols needs a copy reloc. Set it up. */
2380 BFD_ASSERT (h->dynindx != -1);
2382 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2383 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2385 if (h->root.u.def.section == htab->elf.sdynrelro)
2386 s = htab->elf.sreldynrelro;
2388 s = htab->elf.srelbss;
2389 riscv_elf_append_rela (output_bfd, s, &rela);
2392 /* Mark some specially defined symbols as absolute. */
2393 if (h == htab->elf.hdynamic
2394 || (h == htab->elf.hgot || h == htab->elf.hplt))
2395 sym->st_shndx = SHN_ABS;
2400 /* Finish up the dynamic sections. */
2403 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2404 bfd *dynobj, asection *sdyn)
2406 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2407 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2408 size_t dynsize = bed->s->sizeof_dyn;
2409 bfd_byte *dyncon, *dynconend;
2411 dynconend = sdyn->contents + sdyn->size;
2412 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2414 Elf_Internal_Dyn dyn;
2417 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2422 s = htab->elf.sgotplt;
2423 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2426 s = htab->elf.srelplt;
2427 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2430 s = htab->elf.srelplt;
2431 dyn.d_un.d_val = s->size;
2437 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2443 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2444 struct bfd_link_info *info)
2448 struct riscv_elf_link_hash_table *htab;
2450 htab = riscv_elf_hash_table (info);
2451 BFD_ASSERT (htab != NULL);
2452 dynobj = htab->elf.dynobj;
2454 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2456 if (elf_hash_table (info)->dynamic_sections_created)
2461 splt = htab->elf.splt;
2462 BFD_ASSERT (splt != NULL && sdyn != NULL);
2464 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2469 /* Fill in the head and tail entries in the procedure linkage table. */
2473 uint32_t plt_header[PLT_HEADER_INSNS];
2474 riscv_make_plt_header (sec_addr (htab->elf.sgotplt),
2475 sec_addr (splt), plt_header);
2477 for (i = 0; i < PLT_HEADER_INSNS; i++)
2478 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2480 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2485 if (htab->elf.sgotplt)
2487 asection *output_section = htab->elf.sgotplt->output_section;
2489 if (bfd_is_abs_section (output_section))
2491 (*_bfd_error_handler)
2492 (_("discarded output section: `%A'"), htab->elf.sgotplt);
2496 if (htab->elf.sgotplt->size > 0)
2498 /* Write the first two entries in .got.plt, needed for the dynamic
2500 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2501 bfd_put_NN (output_bfd, (bfd_vma) 0,
2502 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2505 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2510 asection *output_section = htab->elf.sgot->output_section;
2512 if (htab->elf.sgot->size > 0)
2514 /* Set the first entry in the global offset table to the address of
2515 the dynamic section. */
2516 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2517 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2520 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2526 /* Return address for Ith PLT stub in section PLT, for relocation REL
2527 or (bfd_vma) -1 if it should not be included. */
2530 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2531 const arelent *rel ATTRIBUTE_UNUSED)
2533 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2536 static enum elf_reloc_type_class
2537 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2538 const asection *rel_sec ATTRIBUTE_UNUSED,
2539 const Elf_Internal_Rela *rela)
2541 switch (ELFNN_R_TYPE (rela->r_info))
2543 case R_RISCV_RELATIVE:
2544 return reloc_class_relative;
2545 case R_RISCV_JUMP_SLOT:
2546 return reloc_class_plt;
2548 return reloc_class_copy;
2550 return reloc_class_normal;
2554 /* Merge backend specific data from an object file to the output
2555 object file when linking. */
2558 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2560 bfd *obfd = info->output_bfd;
2561 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2562 flagword old_flags = elf_elfheader (obfd)->e_flags;
2564 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2567 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2569 (*_bfd_error_handler)
2570 (_("%B: ABI is incompatible with that of the selected emulation:\n"
2571 " target emulation `%s' does not match `%s'"),
2572 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
2576 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2579 if (! elf_flags_init (obfd))
2581 elf_flags_init (obfd) = TRUE;
2582 elf_elfheader (obfd)->e_flags = new_flags;
2586 /* Disallow linking different float ABIs. */
2587 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
2589 (*_bfd_error_handler)
2590 (_("%B: can't link hard-float modules with soft-float modules"), ibfd);
2594 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2595 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2600 bfd_set_error (bfd_error_bad_value);
2604 /* Delete some bytes from a section while relaxing. */
2607 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count)
2609 unsigned int i, symcount;
2610 bfd_vma toaddr = sec->size;
2611 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2612 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2613 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2614 struct bfd_elf_section_data *data = elf_section_data (sec);
2615 bfd_byte *contents = data->this_hdr.contents;
2617 /* Actually delete the bytes. */
2619 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2621 /* Adjust the location of all of the relocs. Note that we need not
2622 adjust the addends, since all PC-relative references must be against
2623 symbols, which we will adjust below. */
2624 for (i = 0; i < sec->reloc_count; i++)
2625 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2626 data->relocs[i].r_offset -= count;
2628 /* Adjust the local symbols defined in this section. */
2629 for (i = 0; i < symtab_hdr->sh_info; i++)
2631 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2632 if (sym->st_shndx == sec_shndx)
2634 /* If the symbol is in the range of memory we just moved, we
2635 have to adjust its value. */
2636 if (sym->st_value > addr && sym->st_value <= toaddr)
2637 sym->st_value -= count;
2639 /* If the symbol *spans* the bytes we just deleted (i.e. its
2640 *end* is in the moved bytes but its *start* isn't), then we
2641 must adjust its size. */
2642 if (sym->st_value <= addr
2643 && sym->st_value + sym->st_size > addr
2644 && sym->st_value + sym->st_size <= toaddr)
2645 sym->st_size -= count;
2649 /* Now adjust the global symbols defined in this section. */
2650 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2651 - symtab_hdr->sh_info);
2653 for (i = 0; i < symcount; i++)
2655 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2657 if ((sym_hash->root.type == bfd_link_hash_defined
2658 || sym_hash->root.type == bfd_link_hash_defweak)
2659 && sym_hash->root.u.def.section == sec)
2661 /* As above, adjust the value if needed. */
2662 if (sym_hash->root.u.def.value > addr
2663 && sym_hash->root.u.def.value <= toaddr)
2664 sym_hash->root.u.def.value -= count;
2666 /* As above, adjust the size if needed. */
2667 if (sym_hash->root.u.def.value <= addr
2668 && sym_hash->root.u.def.value + sym_hash->size > addr
2669 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2670 sym_hash->size -= count;
2677 /* A second format for recording PC-relative hi relocations. This stores the
2678 information required to relax them to GP-relative addresses. */
2680 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2681 struct riscv_pcgp_hi_reloc
2688 riscv_pcgp_hi_reloc *next;
2691 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2692 struct riscv_pcgp_lo_reloc
2695 riscv_pcgp_lo_reloc *next;
2700 riscv_pcgp_hi_reloc *hi;
2701 riscv_pcgp_lo_reloc *lo;
2702 } riscv_pcgp_relocs;
2705 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2713 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2714 bfd *abfd ATTRIBUTE_UNUSED,
2715 asection *sec ATTRIBUTE_UNUSED)
2717 riscv_pcgp_hi_reloc *c;
2718 riscv_pcgp_lo_reloc *l;
2720 for (c = p->hi; c != NULL;)
2722 riscv_pcgp_hi_reloc *next = c->next;
2727 for (l = p->lo; l != NULL;)
2729 riscv_pcgp_lo_reloc *next = l->next;
2736 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2737 bfd_vma hi_addend, bfd_vma hi_addr,
2738 unsigned hi_sym, asection *sym_sec)
2740 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2743 new->hi_sec_off = hi_sec_off;
2744 new->hi_addend = hi_addend;
2745 new->hi_addr = hi_addr;
2746 new->hi_sym = hi_sym;
2747 new->sym_sec = sym_sec;
2753 static riscv_pcgp_hi_reloc *
2754 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2756 riscv_pcgp_hi_reloc *c;
2758 for (c = p->hi; c != NULL; c = c->next)
2759 if (c->hi_sec_off == hi_sec_off)
2765 riscv_delete_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2767 bfd_boolean out = FALSE;
2768 riscv_pcgp_hi_reloc *c;
2770 for (c = p->hi; c != NULL; c = c->next)
2771 if (c->hi_sec_off == hi_sec_off)
2778 riscv_use_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2780 bfd_boolean out = FALSE;
2781 riscv_pcgp_hi_reloc *c;
2783 for (c = p->hi; c != NULL; c = c->next)
2784 if (c->hi_sec_off == hi_sec_off)
2791 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2793 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2796 new->hi_sec_off = hi_sec_off;
2803 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2805 riscv_pcgp_lo_reloc *c;
2807 for (c = p->lo; c != NULL; c = c->next)
2808 if (c->hi_sec_off == hi_sec_off)
2814 riscv_delete_pcgp_lo_reloc (riscv_pcgp_relocs *p ATTRIBUTE_UNUSED,
2815 bfd_vma lo_sec_off ATTRIBUTE_UNUSED,
2816 size_t bytes ATTRIBUTE_UNUSED)
2821 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2822 struct bfd_link_info *,
2823 Elf_Internal_Rela *,
2824 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2825 riscv_pcgp_relocs *);
2827 /* Relax AUIPC + JALR into JAL. */
2830 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2831 struct bfd_link_info *link_info,
2832 Elf_Internal_Rela *rel,
2834 bfd_vma max_alignment,
2835 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2837 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2839 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2840 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2841 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2842 bfd_vma auipc, jalr;
2843 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2845 /* If the call crosses section boundaries, an alignment directive could
2846 cause the PC-relative offset to later increase. */
2847 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2848 foff += (foff < 0 ? -max_alignment : max_alignment);
2850 /* See if this function call can be shortened. */
2851 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2854 /* Shorten the function call. */
2855 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2857 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2858 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2859 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
2860 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
2862 if (rvc && (rd == 0 || rd == X_RA))
2864 /* Relax to C.J[AL] rd, addr. */
2865 r_type = R_RISCV_RVC_JUMP;
2866 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
2869 else if (VALID_UJTYPE_IMM (foff))
2871 /* Relax to JAL rd, addr. */
2872 r_type = R_RISCV_JAL;
2873 auipc = MATCH_JAL | (rd << OP_SH_RD);
2875 else /* near_zero */
2877 /* Relax to JALR rd, x0, addr. */
2878 r_type = R_RISCV_LO12_I;
2879 auipc = MATCH_JALR | (rd << OP_SH_RD);
2882 /* Replace the R_RISCV_CALL reloc. */
2883 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
2884 /* Replace the AUIPC. */
2885 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
2887 /* Delete unnecessary JALR. */
2889 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len);
2892 /* Traverse all output sections and return the max alignment. */
2895 _bfd_riscv_get_max_alignment (asection *sec)
2897 unsigned int max_alignment_power = 0;
2900 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
2902 if (o->alignment_power > max_alignment_power)
2903 max_alignment_power = o->alignment_power;
2906 return (bfd_vma) 1 << max_alignment_power;
2909 /* Relax non-PIC global variable references. */
2912 _bfd_riscv_relax_lui (bfd *abfd,
2915 struct bfd_link_info *link_info,
2916 Elf_Internal_Rela *rel,
2918 bfd_vma max_alignment,
2919 bfd_vma reserve_size,
2921 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2923 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2924 bfd_vma gp = riscv_global_pointer_value (link_info);
2925 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2927 /* Mergeable symbols and code might later move out of range. */
2928 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
2931 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
2935 /* If gp and the symbol are in the same output section, then
2936 consider only that section's alignment. */
2937 struct bfd_link_hash_entry *h =
2938 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
2940 if (h->u.def.section->output_section == sym_sec->output_section)
2941 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
2944 /* Is the reference in range of x0 or gp?
2945 Valid gp range conservatively because of alignment issue. */
2946 if (VALID_ITYPE_IMM (symval)
2948 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
2950 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
2952 unsigned sym = ELFNN_R_SYM (rel->r_info);
2953 switch (ELFNN_R_TYPE (rel->r_info))
2955 case R_RISCV_LO12_I:
2956 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
2959 case R_RISCV_LO12_S:
2960 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
2964 /* We can delete the unnecessary LUI and reloc. */
2965 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
2967 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
2974 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
2975 account for this assuming page alignment at worst. */
2977 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
2978 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
2979 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
2981 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
2982 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
2983 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
2984 if (rd == 0 || rd == X_SP)
2987 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
2988 bfd_put_32 (abfd, lui, contents + rel->r_offset);
2990 /* Replace the R_RISCV_HI20 reloc. */
2991 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
2994 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2);
3000 /* Relax non-PIC TLS references. */
3003 _bfd_riscv_relax_tls_le (bfd *abfd,
3005 asection *sym_sec ATTRIBUTE_UNUSED,
3006 struct bfd_link_info *link_info,
3007 Elf_Internal_Rela *rel,
3009 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3010 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3012 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3014 /* See if this symbol is in range of tp. */
3015 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3018 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3019 switch (ELFNN_R_TYPE (rel->r_info))
3021 case R_RISCV_TPREL_LO12_I:
3022 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3025 case R_RISCV_TPREL_LO12_S:
3026 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3029 case R_RISCV_TPREL_HI20:
3030 case R_RISCV_TPREL_ADD:
3031 /* We can delete the unnecessary instruction and reloc. */
3032 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3034 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4);
3041 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3044 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3046 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3047 Elf_Internal_Rela *rel,
3049 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3050 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3051 bfd_boolean *again ATTRIBUTE_UNUSED,
3052 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3054 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3055 bfd_vma alignment = 1, pos;
3056 while (alignment <= rel->r_addend)
3059 symval -= rel->r_addend;
3060 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3061 bfd_vma nop_bytes = aligned_addr - symval;
3063 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3064 sec->sec_flg0 = TRUE;
3066 /* Make sure there are enough NOPs to actually achieve the alignment. */
3067 if (rel->r_addend < nop_bytes)
3069 (*_bfd_error_handler)
3070 (_("%B(%A+0x%lx): %d bytes required for alignment "
3071 "to %d-byte boundary, but only %d present"),
3072 abfd, sym_sec, rel->r_offset, nop_bytes, alignment, rel->r_addend);
3073 bfd_set_error (bfd_error_bad_value);
3077 /* Delete the reloc. */
3078 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3080 /* If the number of NOPs is already correct, there's nothing to do. */
3081 if (nop_bytes == rel->r_addend)
3084 /* Write as many RISC-V NOPs as we need. */
3085 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3086 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3088 /* Write a final RVC NOP if need be. */
3089 if (nop_bytes % 4 != 0)
3090 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3092 /* Delete the excess bytes. */
3093 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3094 rel->r_addend - nop_bytes);
3097 /* Relax PC-relative references to GP-relative references. */
3100 _bfd_riscv_relax_pc (bfd *abfd,
3103 struct bfd_link_info *link_info,
3104 Elf_Internal_Rela *rel,
3106 bfd_vma max_alignment,
3107 bfd_vma reserve_size,
3108 bfd_boolean *again ATTRIBUTE_UNUSED,
3109 riscv_pcgp_relocs *pcgp_relocs)
3111 bfd_vma gp = riscv_global_pointer_value (link_info);
3113 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3115 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3116 * actual target address. */
3117 riscv_pcgp_hi_reloc hi_reloc = {0};
3118 switch (ELFNN_R_TYPE (rel->r_info))
3120 case R_RISCV_PCREL_LO12_I:
3121 case R_RISCV_PCREL_LO12_S:
3123 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3124 symval - sec_addr(sym_sec));
3127 riscv_record_pcgp_lo_reloc (pcgp_relocs, symval - sec_addr(sym_sec));
3132 symval = hi_reloc.hi_addr;
3133 sym_sec = hi_reloc.sym_sec;
3134 if (!riscv_use_pcgp_hi_reloc(pcgp_relocs, hi->hi_sec_off))
3135 (*_bfd_error_handler)
3136 (_("%B(%A+0x%lx): Unable to clear RISCV_PCREL_HI20 reloc"
3137 "for cooresponding RISCV_PCREL_LO12 reloc"),
3138 abfd, sec, rel->r_offset);
3142 case R_RISCV_PCREL_HI20:
3143 /* Mergeable symbols and code might later move out of range. */
3144 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3147 /* If the cooresponding lo relocation has already been seen then it's not
3148 * safe to relax this relocation. */
3149 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3160 /* If gp and the symbol are in the same output section, then
3161 consider only that section's alignment. */
3162 struct bfd_link_hash_entry *h =
3163 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3164 if (h->u.def.section->output_section == sym_sec->output_section)
3165 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3168 /* Is the reference in range of x0 or gp?
3169 Valid gp range conservatively because of alignment issue. */
3170 if (VALID_ITYPE_IMM (symval)
3172 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3174 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3176 unsigned sym = hi_reloc.hi_sym;
3177 switch (ELFNN_R_TYPE (rel->r_info))
3179 case R_RISCV_PCREL_LO12_I:
3180 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3181 rel->r_addend += hi_reloc.hi_addend;
3182 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3184 case R_RISCV_PCREL_LO12_S:
3185 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3186 rel->r_addend += hi_reloc.hi_addend;
3187 return riscv_delete_pcgp_lo_reloc (pcgp_relocs, rel->r_offset, 4);
3189 case R_RISCV_PCREL_HI20:
3190 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3194 ELFNN_R_SYM(rel->r_info),
3196 /* We can delete the unnecessary AUIPC and reloc. */
3197 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3199 return riscv_delete_pcgp_hi_reloc (pcgp_relocs, rel->r_offset);
3209 /* Relax PC-relative references to GP-relative references. */
3212 _bfd_riscv_relax_delete (bfd *abfd,
3214 asection *sym_sec ATTRIBUTE_UNUSED,
3215 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3216 Elf_Internal_Rela *rel,
3217 bfd_vma symval ATTRIBUTE_UNUSED,
3218 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3219 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3220 bfd_boolean *again ATTRIBUTE_UNUSED,
3221 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3223 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend))
3225 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3229 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3230 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3231 disabled, handles code alignment directives. */
3234 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3235 struct bfd_link_info *info,
3238 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3239 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3240 struct bfd_elf_section_data *data = elf_section_data (sec);
3241 Elf_Internal_Rela *relocs;
3242 bfd_boolean ret = FALSE;
3244 bfd_vma max_alignment, reserve_size = 0;
3245 riscv_pcgp_relocs pcgp_relocs;
3249 if (bfd_link_relocatable (info)
3251 || (sec->flags & SEC_RELOC) == 0
3252 || sec->reloc_count == 0
3253 || (info->disable_target_specific_optimizations
3254 && info->relax_pass == 0))
3257 riscv_init_pcgp_relocs (&pcgp_relocs);
3259 /* Read this BFD's relocs if we haven't done so already. */
3261 relocs = data->relocs;
3262 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3263 info->keep_memory)))
3268 max_alignment = htab->max_alignment;
3269 if (max_alignment == (bfd_vma) -1)
3271 max_alignment = _bfd_riscv_get_max_alignment (sec);
3272 htab->max_alignment = max_alignment;
3276 max_alignment = _bfd_riscv_get_max_alignment (sec);
3278 /* Examine and consider relaxing each reloc. */
3279 for (i = 0; i < sec->reloc_count; i++)
3282 Elf_Internal_Rela *rel = relocs + i;
3283 relax_func_t relax_func;
3284 int type = ELFNN_R_TYPE (rel->r_info);
3288 if (info->relax_pass == 0)
3290 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3291 relax_func = _bfd_riscv_relax_call;
3292 else if (type == R_RISCV_HI20
3293 || type == R_RISCV_LO12_I
3294 || type == R_RISCV_LO12_S)
3295 relax_func = _bfd_riscv_relax_lui;
3296 else if (!bfd_link_pic(info)
3297 && (type == R_RISCV_PCREL_HI20
3298 || type == R_RISCV_PCREL_LO12_I
3299 || type == R_RISCV_PCREL_LO12_S))
3300 relax_func = _bfd_riscv_relax_pc;
3301 else if (type == R_RISCV_TPREL_HI20
3302 || type == R_RISCV_TPREL_ADD
3303 || type == R_RISCV_TPREL_LO12_I
3304 || type == R_RISCV_TPREL_LO12_S)
3305 relax_func = _bfd_riscv_relax_tls_le;
3309 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3310 if (i == sec->reloc_count - 1
3311 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3312 || rel->r_offset != (rel + 1)->r_offset)
3315 /* Skip over the R_RISCV_RELAX. */
3318 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3319 relax_func = _bfd_riscv_relax_delete;
3320 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3321 relax_func = _bfd_riscv_relax_align;
3325 data->relocs = relocs;
3327 /* Read this BFD's contents if we haven't done so already. */
3328 if (!data->this_hdr.contents
3329 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3332 /* Read this BFD's symbols if we haven't done so already. */
3333 if (symtab_hdr->sh_info != 0
3334 && !symtab_hdr->contents
3335 && !(symtab_hdr->contents =
3336 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3337 symtab_hdr->sh_info,
3338 0, NULL, NULL, NULL)))
3341 /* Get the value of the symbol referred to by the reloc. */
3342 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3344 /* A local symbol. */
3345 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3346 + ELFNN_R_SYM (rel->r_info));
3347 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3348 ? 0 : isym->st_size - rel->r_addend;
3350 if (isym->st_shndx == SHN_UNDEF)
3351 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3354 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3355 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3356 if (sec_addr (sym_sec) == 0)
3358 symval = sec_addr (sym_sec) + isym->st_value;
3364 struct elf_link_hash_entry *h;
3366 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3367 h = elf_sym_hashes (abfd)[indx];
3369 while (h->root.type == bfd_link_hash_indirect
3370 || h->root.type == bfd_link_hash_warning)
3371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3373 if (h->plt.offset != MINUS_ONE)
3374 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3375 else if (h->root.u.def.section->output_section == NULL
3376 || (h->root.type != bfd_link_hash_defined
3377 && h->root.type != bfd_link_hash_defweak))
3380 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3382 if (h->type != STT_FUNC)
3384 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3385 sym_sec = h->root.u.def.section;
3388 symval += rel->r_addend;
3390 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3391 max_alignment, reserve_size, again,
3399 if (relocs != data->relocs)
3401 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
3407 # define PRSTATUS_SIZE 0 /* FIXME */
3408 # define PRSTATUS_OFFSET_PR_CURSIG 12
3409 # define PRSTATUS_OFFSET_PR_PID 24
3410 # define PRSTATUS_OFFSET_PR_REG 72
3411 # define ELF_GREGSET_T_SIZE 128
3412 # define PRPSINFO_SIZE 128
3413 # define PRPSINFO_OFFSET_PR_PID 16
3414 # define PRPSINFO_OFFSET_PR_FNAME 32
3415 # define PRPSINFO_OFFSET_PR_PSARGS 48
3417 # define PRSTATUS_SIZE 376
3418 # define PRSTATUS_OFFSET_PR_CURSIG 12
3419 # define PRSTATUS_OFFSET_PR_PID 32
3420 # define PRSTATUS_OFFSET_PR_REG 112
3421 # define ELF_GREGSET_T_SIZE 256
3422 # define PRPSINFO_SIZE 136
3423 # define PRPSINFO_OFFSET_PR_PID 24
3424 # define PRPSINFO_OFFSET_PR_FNAME 40
3425 # define PRPSINFO_OFFSET_PR_PSARGS 56
3428 /* Support for core dump NOTE sections. */
3431 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3433 switch (note->descsz)
3438 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3440 elf_tdata (abfd)->core->signal
3441 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3444 elf_tdata (abfd)->core->lwpid
3445 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3449 /* Make a ".reg/999" section. */
3450 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3451 note->descpos + PRSTATUS_OFFSET_PR_REG);
3455 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3457 switch (note->descsz)
3462 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3464 elf_tdata (abfd)->core->pid
3465 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3468 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3469 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3472 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3473 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3477 /* Note that for some reason, a spurious space is tacked
3478 onto the end of the args in some (at least one anyway)
3479 implementations, so strip it off if it exists. */
3482 char *command = elf_tdata (abfd)->core->command;
3483 int n = strlen (command);
3485 if (0 < n && command[n - 1] == ' ')
3486 command[n - 1] = '\0';
3492 /* Set the right mach type. */
3494 riscv_elf_object_p (bfd *abfd)
3496 /* There are only two mach types in RISCV currently. */
3497 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3498 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3500 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3506 #define TARGET_LITTLE_SYM riscv_elfNN_vec
3507 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
3509 #define elf_backend_reloc_type_class riscv_reloc_type_class
3511 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3512 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3513 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3514 #define bfd_elfNN_bfd_merge_private_bfd_data \
3515 _bfd_riscv_elf_merge_private_bfd_data
3517 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3518 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3519 #define elf_backend_check_relocs riscv_elf_check_relocs
3520 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3521 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3522 #define elf_backend_relocate_section riscv_elf_relocate_section
3523 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3524 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3525 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3526 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3527 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3528 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3529 #define elf_backend_object_p riscv_elf_object_p
3530 #define elf_info_to_howto_rel NULL
3531 #define elf_info_to_howto riscv_info_to_howto_rela
3532 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3534 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3536 #define elf_backend_can_gc_sections 1
3537 #define elf_backend_can_refcount 1
3538 #define elf_backend_want_got_plt 1
3539 #define elf_backend_plt_readonly 1
3540 #define elf_backend_plt_alignment 4
3541 #define elf_backend_want_plt_sym 1
3542 #define elf_backend_got_header_size (ARCH_SIZE / 8)
3543 #define elf_backend_want_dynrelro 1
3544 #define elf_backend_rela_normal 1
3545 #define elf_backend_default_execstack 0
3547 #include "elfNN-target.h"