1 /* RISC-V-specific support for NN-bit ELF.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4 Contributed by Andrew Waterman (andrew@sifive.com).
5 Based on TILE-Gx and MIPS targets.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING3. If not,
21 see <http://www.gnu.org/licenses/>. */
23 /* This file handles RISC-V ELF targets. */
31 #include "elfxx-riscv.h"
32 #include "elf/riscv.h"
33 #include "opcode/riscv.h"
35 /* Internal relocations used exclusively by the relaxation pass. */
36 #define R_RISCV_DELETE (R_RISCV_max + 1)
40 #define MINUS_ONE ((bfd_vma)0 - 1)
42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3)
44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES)
46 /* The name of the dynamic interpreter. This is put in the .interp
49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1"
50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1"
52 #define ELF_ARCH bfd_arch_riscv
53 #define ELF_TARGET_ID RISCV_ELF_DATA
54 #define ELF_MACHINE_CODE EM_RISCV
55 #define ELF_MAXPAGESIZE 0x1000
56 #define ELF_COMMONPAGESIZE 0x1000
58 /* RISC-V ELF linker hash entry. */
60 struct riscv_elf_link_hash_entry
62 struct elf_link_hash_entry elf;
64 /* Track dynamic relocs copied for this symbol. */
65 struct elf_dyn_relocs *dyn_relocs;
75 #define riscv_elf_hash_entry(ent) \
76 ((struct riscv_elf_link_hash_entry *)(ent))
78 struct _bfd_riscv_elf_obj_tdata
80 struct elf_obj_tdata root;
82 /* tls_type for each local got entry. */
83 char *local_got_tls_type;
86 #define _bfd_riscv_elf_tdata(abfd) \
87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any)
89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \
90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type)
92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \
93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \
94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx]))
96 #define is_riscv_elf(bfd) \
97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
98 && elf_tdata (bfd) != NULL \
99 && elf_object_id (bfd) == RISCV_ELF_DATA)
101 #include "elf/common.h"
102 #include "elf/internal.h"
104 struct riscv_elf_link_hash_table
106 struct elf_link_hash_table elf;
108 /* Short-cuts to get to dynamic linker sections. */
111 /* Small local sym to section mapping cache. */
112 struct sym_cache sym_cache;
114 /* The max alignment of output sections. */
115 bfd_vma max_alignment;
119 /* Get the RISC-V ELF linker hash table from a link_info structure. */
120 #define riscv_elf_hash_table(p) \
121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL)
125 riscv_info_to_howto_rela (bfd *abfd,
127 Elf_Internal_Rela *dst)
129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info));
130 return cache_ptr->howto != NULL;
134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
136 const struct elf_backend_data *bed;
139 bed = get_elf_backend_data (abfd);
140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
141 bed->s->swap_reloca_out (abfd, rel, loc);
146 #define PLT_HEADER_INSNS 8
147 #define PLT_ENTRY_INSNS 4
148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4)
149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4)
151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES
153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE)
155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset)
158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info)
160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt)
161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE);
165 # define MATCH_LREG MATCH_LW
167 # define MATCH_LREG MATCH_LD
170 /* Generate a PLT header. */
173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr,
176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr);
177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr);
179 /* RVE has no t3 register, so this won't work, and is not supported. */
180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
187 /* auipc t2, %hi(.got.plt)
188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12
189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve
190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset
191 addi t0, t2, %lo(.got.plt) # &.got.plt
192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset
193 l[w|d] t0, PTRSIZE(t0) # link map
196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high);
197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3);
198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low);
199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12));
200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low);
201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES);
202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES);
203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0);
208 /* Generate a PLT entry. */
211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr,
214 /* RVE has no t3 register, so this won't work, and is not supported. */
215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE)
217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"),
222 /* auipc t3, %hi(.got.plt entry)
223 l[w|d] t3, %lo(.got.plt entry)(t3)
227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr));
228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr));
229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0);
230 entry[3] = RISCV_NOP;
235 /* Create an entry in an RISC-V ELF linker hash table. */
237 static struct bfd_hash_entry *
238 link_hash_newfunc (struct bfd_hash_entry *entry,
239 struct bfd_hash_table *table, const char *string)
241 /* Allocate the structure if it has not already been allocated by a
246 bfd_hash_allocate (table,
247 sizeof (struct riscv_elf_link_hash_entry));
252 /* Call the allocation method of the superclass. */
253 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
256 struct riscv_elf_link_hash_entry *eh;
258 eh = (struct riscv_elf_link_hash_entry *) entry;
259 eh->dyn_relocs = NULL;
260 eh->tls_type = GOT_UNKNOWN;
266 /* Create a RISC-V ELF linker hash table. */
268 static struct bfd_link_hash_table *
269 riscv_elf_link_hash_table_create (bfd *abfd)
271 struct riscv_elf_link_hash_table *ret;
272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table);
274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt);
278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
279 sizeof (struct riscv_elf_link_hash_entry),
286 ret->max_alignment = (bfd_vma) -1;
287 return &ret->elf.root;
290 /* Create the .got section. */
293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
297 struct elf_link_hash_entry *h;
298 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
299 struct elf_link_hash_table *htab = elf_hash_table (info);
301 /* This function may be called more than once. */
302 if (htab->sgot != NULL)
305 flags = bed->dynamic_sec_flags;
307 s = bfd_make_section_anyway_with_flags (abfd,
308 (bed->rela_plts_and_copies_p
309 ? ".rela.got" : ".rel.got"),
310 (bed->dynamic_sec_flags
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
323 /* The first bit of the global offset table is the header. */
324 s->size += bed->got_header_size;
326 if (bed->want_got_plt)
328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
330 || !bfd_set_section_alignment (abfd, s,
331 bed->s->log_file_align))
335 /* Reserve room for the header. */
336 s->size += GOTPLT_HEADER_SIZE;
339 if (bed->want_got_sym)
341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
342 section. We don't do this in the linker script because we don't want
343 to define the symbol if we are not creating a global offset
345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got,
346 "_GLOBAL_OFFSET_TABLE_");
347 elf_hash_table (info)->hgot = h;
355 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
360 riscv_elf_create_dynamic_sections (bfd *dynobj,
361 struct bfd_link_info *info)
363 struct riscv_elf_link_hash_table *htab;
365 htab = riscv_elf_hash_table (info);
366 BFD_ASSERT (htab != NULL);
368 if (!riscv_elf_create_got_section (dynobj, info))
371 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
374 if (!bfd_link_pic (info))
377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn",
378 (SEC_ALLOC | SEC_THREAD_LOCAL
379 | SEC_LINKER_CREATED));
382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata)))
389 /* Copy the extra info we tack onto an elf_link_hash_entry. */
392 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info,
393 struct elf_link_hash_entry *dir,
394 struct elf_link_hash_entry *ind)
396 struct riscv_elf_link_hash_entry *edir, *eind;
398 edir = (struct riscv_elf_link_hash_entry *) dir;
399 eind = (struct riscv_elf_link_hash_entry *) ind;
401 if (eind->dyn_relocs != NULL)
403 if (edir->dyn_relocs != NULL)
405 struct elf_dyn_relocs **pp;
406 struct elf_dyn_relocs *p;
408 /* Add reloc counts against the indirect sym to the direct sym
409 list. Merge any entries against the same section. */
410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
412 struct elf_dyn_relocs *q;
414 for (q = edir->dyn_relocs; q != NULL; q = q->next)
415 if (q->sec == p->sec)
417 q->pc_count += p->pc_count;
418 q->count += p->count;
425 *pp = edir->dyn_relocs;
428 edir->dyn_relocs = eind->dyn_relocs;
429 eind->dyn_relocs = NULL;
432 if (ind->root.type == bfd_link_hash_indirect
433 && dir->got.refcount <= 0)
435 edir->tls_type = eind->tls_type;
436 eind->tls_type = GOT_UNKNOWN;
438 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
442 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h,
443 unsigned long symndx, char tls_type)
445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx);
447 *new_tls_type |= tls_type;
448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL))
450 (*_bfd_error_handler)
451 (_("%pB: `%s' accessed both as normal and thread local symbol"),
452 abfd, h ? h->root.root.string : "<local>");
459 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info,
460 struct elf_link_hash_entry *h, long symndx)
462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
465 if (htab->elf.sgot == NULL)
467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info))
473 h->got.refcount += 1;
477 /* This is a global offset table entry for a local symbol. */
478 if (elf_local_got_refcounts (abfd) == NULL)
480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1);
481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size)))
483 _bfd_riscv_elf_local_got_tls_type (abfd)
484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info);
486 elf_local_got_refcounts (abfd) [symndx] += 1;
492 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h)
494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
496 (*_bfd_error_handler)
497 (_("%pB: relocation %s against `%s' can not be used when making a shared "
498 "object; recompile with -fPIC"),
499 abfd, r ? r->name : _("<unknown>"),
500 h != NULL ? h->root.root.string : "a local symbol");
501 bfd_set_error (bfd_error_bad_value);
504 /* Look through the relocs for a section during the first phase, and
505 allocate space in the global offset table or procedure linkage
509 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
510 asection *sec, const Elf_Internal_Rela *relocs)
512 struct riscv_elf_link_hash_table *htab;
513 Elf_Internal_Shdr *symtab_hdr;
514 struct elf_link_hash_entry **sym_hashes;
515 const Elf_Internal_Rela *rel;
516 asection *sreloc = NULL;
518 if (bfd_link_relocatable (info))
521 htab = riscv_elf_hash_table (info);
522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 sym_hashes = elf_sym_hashes (abfd);
525 if (htab->elf.dynobj == NULL)
526 htab->elf.dynobj = abfd;
528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++)
531 unsigned int r_symndx;
532 struct elf_link_hash_entry *h;
534 r_symndx = ELFNN_R_SYM (rel->r_info);
535 r_type = ELFNN_R_TYPE (rel->r_info);
537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"),
544 if (r_symndx < symtab_hdr->sh_info)
548 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
549 while (h->root.type == bfd_link_hash_indirect
550 || h->root.type == bfd_link_hash_warning)
551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
556 case R_RISCV_TLS_GD_HI20:
557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD))
562 case R_RISCV_TLS_GOT_HI20:
563 if (bfd_link_pic (info))
564 info->flags |= DF_STATIC_TLS;
565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE))
570 case R_RISCV_GOT_HI20:
571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx)
572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL))
576 case R_RISCV_CALL_PLT:
577 /* This symbol requires a procedure linkage table entry. We
578 actually build the entry in adjust_dynamic_symbol,
579 because this might be a case of linking PIC code without
580 linking in any dynamic objects, in which case we don't
581 need to generate a procedure linkage table after all. */
586 h->plt.refcount += 1;
593 case R_RISCV_RVC_BRANCH:
594 case R_RISCV_RVC_JUMP:
595 case R_RISCV_PCREL_HI20:
596 /* In shared libraries, these relocs are known to bind locally. */
597 if (bfd_link_pic (info))
601 case R_RISCV_TPREL_HI20:
602 if (!bfd_link_executable (info))
603 return bad_static_reloc (abfd, r_type, h);
605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE);
609 if (bfd_link_pic (info))
610 return bad_static_reloc (abfd, r_type, h);
614 case R_RISCV_JUMP_SLOT:
615 case R_RISCV_RELATIVE:
621 /* This reloc might not bind locally. */
625 if (h != NULL && !bfd_link_pic (info))
627 /* We may need a .plt entry if the function this reloc
628 refers to is in a shared lib. */
629 h->plt.refcount += 1;
632 /* If we are creating a shared library, and this is a reloc
633 against a global symbol, or a non PC relative reloc
634 against a local symbol, then we need to copy the reloc
635 into the shared library. However, if we are linking with
636 -Bsymbolic, we do not need to copy a reloc against a
637 global symbol which is defined in an object we are
638 including in the link (i.e., DEF_REGULAR is set). At
639 this point we have not seen all the input files, so it is
640 possible that DEF_REGULAR is not set now but will be set
641 later (it is never cleared). In case of a weak definition,
642 DEF_REGULAR may be cleared later by a strong definition in
643 a shared library. We account for that possibility below by
644 storing information in the relocs_copied field of the hash
645 table entry. A similar situation occurs when creating
646 shared libraries and symbol visibility changes render the
649 If on the other hand, we are creating an executable, we
650 may need to keep relocations for symbols satisfied by a
651 dynamic library if we manage to avoid copy relocs for the
653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type);
655 if ((bfd_link_pic (info)
656 && (sec->flags & SEC_ALLOC) != 0
657 && ((r != NULL && ! r->pc_relative)
660 || h->root.type == bfd_link_hash_defweak
661 || !h->def_regular))))
662 || (!bfd_link_pic (info)
663 && (sec->flags & SEC_ALLOC) != 0
665 && (h->root.type == bfd_link_hash_defweak
666 || !h->def_regular)))
668 struct elf_dyn_relocs *p;
669 struct elf_dyn_relocs **head;
671 /* When creating a shared object, we must copy these
672 relocs into the output file. We create a reloc
673 section in dynobj and make room for the reloc. */
676 sreloc = _bfd_elf_make_dynamic_reloc_section
677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES,
678 abfd, /*rela?*/ TRUE);
684 /* If this is a global symbol, we count the number of
685 relocations we need for this symbol. */
687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs;
690 /* Track dynamic relocs needed for local syms too.
691 We really need local syms available to do this
696 Elf_Internal_Sym *isym;
698 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
703 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
707 vpp = &elf_section_data (s)->local_dynrel;
708 head = (struct elf_dyn_relocs **) vpp;
712 if (p == NULL || p->sec != sec)
714 bfd_size_type amt = sizeof *p;
715 p = ((struct elf_dyn_relocs *)
716 bfd_alloc (htab->elf.dynobj, amt));
727 p->pc_count += r == NULL ? 0 : r->pc_relative;
732 case R_RISCV_GNU_VTINHERIT:
733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
737 case R_RISCV_GNU_VTENTRY:
738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
751 riscv_elf_gc_mark_hook (asection *sec,
752 struct bfd_link_info *info,
753 Elf_Internal_Rela *rel,
754 struct elf_link_hash_entry *h,
755 Elf_Internal_Sym *sym)
758 switch (ELFNN_R_TYPE (rel->r_info))
760 case R_RISCV_GNU_VTINHERIT:
761 case R_RISCV_GNU_VTENTRY:
765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
768 /* Find dynamic relocs for H that apply to read-only sections. */
771 readonly_dynrelocs (struct elf_link_hash_entry *h)
773 struct elf_dyn_relocs *p;
775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
777 asection *s = p->sec->output_section;
779 if (s != NULL && (s->flags & SEC_READONLY) != 0)
785 /* Adjust a symbol defined by a dynamic object and referenced by a
786 regular object. The current definition is in some section of the
787 dynamic object, but we're not including those sections. We have to
788 change the definition to something the rest of the link can
792 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
793 struct elf_link_hash_entry *h)
795 struct riscv_elf_link_hash_table *htab;
796 struct riscv_elf_link_hash_entry * eh;
800 htab = riscv_elf_hash_table (info);
801 BFD_ASSERT (htab != NULL);
803 dynobj = htab->elf.dynobj;
805 /* Make sure we know what is going on here. */
806 BFD_ASSERT (dynobj != NULL
808 || h->type == STT_GNU_IFUNC
812 && !h->def_regular)));
814 /* If this is a function, put it in the procedure linkage table. We
815 will fill in the contents of the procedure linkage table later
816 (although we could actually do it here). */
817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
819 if (h->plt.refcount <= 0
820 || SYMBOL_CALLS_LOCAL (info, h)
821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
822 && h->root.type == bfd_link_hash_undefweak))
824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an
825 input file, but the symbol was never referred to by a dynamic
826 object, or if all references were garbage collected. In such
827 a case, we don't actually need to build a PLT entry. */
828 h->plt.offset = (bfd_vma) -1;
835 h->plt.offset = (bfd_vma) -1;
837 /* If this is a weak symbol, and there is a real definition, the
838 processor independent code will have arranged for us to see the
839 real definition first, and we can just use the same value. */
842 struct elf_link_hash_entry *def = weakdef (h);
843 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
844 h->root.u.def.section = def->root.u.def.section;
845 h->root.u.def.value = def->root.u.def.value;
849 /* This is a reference to a symbol defined by a dynamic object which
850 is not a function. */
852 /* If we are creating a shared library, we must presume that the
853 only references to the symbol are via the global offset table.
854 For such cases we need not do anything here; the relocations will
855 be handled correctly by relocate_section. */
856 if (bfd_link_pic (info))
859 /* If there are no references to this symbol that do not use the
860 GOT, we don't need to generate a copy reloc. */
864 /* If -z nocopyreloc was given, we won't generate them either. */
865 if (info->nocopyreloc)
871 /* If we don't find any dynamic relocs in read-only sections, then
872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
873 if (!readonly_dynrelocs (h))
879 /* We must allocate the symbol in our .dynbss section, which will
880 become part of the .bss section of the executable. There will be
881 an entry for this symbol in the .dynsym section. The dynamic
882 object will contain position independent code, so all references
883 from the dynamic object to this symbol will go through the global
884 offset table. The dynamic linker will use the .dynsym entry to
885 determine the address it must put in the global offset table, so
886 both the dynamic object and the regular object will refer to the
887 same memory location for the variable. */
889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker
890 to copy the initial value out of the dynamic object and into the
891 runtime process image. We need to remember the offset into the
892 .rel.bss section we are going to use. */
893 eh = (struct riscv_elf_link_hash_entry *) h;
894 if (eh->tls_type & ~GOT_NORMAL)
897 srel = htab->elf.srelbss;
899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
901 s = htab->elf.sdynrelro;
902 srel = htab->elf.sreldynrelro;
906 s = htab->elf.sdynbss;
907 srel = htab->elf.srelbss;
909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
911 srel->size += sizeof (ElfNN_External_Rela);
915 return _bfd_elf_adjust_dynamic_copy (info, h, s);
918 /* Allocate space in .plt, .got and associated reloc sections for
922 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
924 struct bfd_link_info *info;
925 struct riscv_elf_link_hash_table *htab;
926 struct riscv_elf_link_hash_entry *eh;
927 struct elf_dyn_relocs *p;
929 if (h->root.type == bfd_link_hash_indirect)
932 info = (struct bfd_link_info *) inf;
933 htab = riscv_elf_hash_table (info);
934 BFD_ASSERT (htab != NULL);
936 if (htab->elf.dynamic_sections_created
937 && h->plt.refcount > 0)
939 /* Make sure this symbol is output as a dynamic symbol.
940 Undefined weak syms won't yet be marked as dynamic. */
944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h))
950 asection *s = htab->elf.splt;
953 s->size = PLT_HEADER_SIZE;
955 h->plt.offset = s->size;
957 /* Make room for this entry. */
958 s->size += PLT_ENTRY_SIZE;
960 /* We also need to make an entry in the .got.plt section. */
961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
963 /* We also need to make an entry in the .rela.plt section. */
964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela);
966 /* If this symbol is not defined in a regular file, and we are
967 not generating a shared library, then set the symbol to this
968 location in the .plt. This is required to make function
969 pointers compare as equal between the normal executable and
970 the shared library. */
971 if (! bfd_link_pic (info)
974 h->root.u.def.section = s;
975 h->root.u.def.value = h->plt.offset;
980 h->plt.offset = (bfd_vma) -1;
986 h->plt.offset = (bfd_vma) -1;
990 if (h->got.refcount > 0)
994 int tls_type = riscv_elf_hash_entry (h)->tls_type;
996 /* Make sure this symbol is output as a dynamic symbol.
997 Undefined weak syms won't yet be marked as dynamic. */
1001 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1006 h->got.offset = s->size;
1007 dyn = htab->elf.dynamic_sections_created;
1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE))
1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */
1011 if (tls_type & GOT_TLS_GD)
1013 s->size += 2 * RISCV_ELF_WORD_BYTES;
1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela);
1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */
1018 if (tls_type & GOT_TLS_IE)
1020 s->size += RISCV_ELF_WORD_BYTES;
1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1026 s->size += RISCV_ELF_WORD_BYTES;
1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela);
1033 h->got.offset = (bfd_vma) -1;
1035 eh = (struct riscv_elf_link_hash_entry *) h;
1036 if (eh->dyn_relocs == NULL)
1039 /* In the shared -Bsymbolic case, discard space allocated for
1040 dynamic pc-relative relocs against symbols which turn out to be
1041 defined in regular objects. For the normal shared case, discard
1042 space for pc-relative relocs that have become local due to symbol
1043 visibility changes. */
1045 if (bfd_link_pic (info))
1047 if (SYMBOL_CALLS_LOCAL (info, h))
1049 struct elf_dyn_relocs **pp;
1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1053 p->count -= p->pc_count;
1062 /* Also discard relocs on undefined weak syms with non-default
1064 if (eh->dyn_relocs != NULL
1065 && h->root.type == bfd_link_hash_undefweak)
1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
1069 eh->dyn_relocs = NULL;
1071 /* Make sure undefined weak symbols are output as a dynamic
1073 else if (h->dynindx == -1
1074 && !h->forced_local)
1076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1083 /* For the non-shared case, discard space for relocs against
1084 symbols which turn out to need copy relocs or are not
1090 || (htab->elf.dynamic_sections_created
1091 && (h->root.type == bfd_link_hash_undefweak
1092 || h->root.type == bfd_link_hash_undefined))))
1094 /* Make sure this symbol is output as a dynamic symbol.
1095 Undefined weak syms won't yet be marked as dynamic. */
1096 if (h->dynindx == -1
1097 && !h->forced_local)
1099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1103 /* If that succeeded, we know we'll be keeping all the
1105 if (h->dynindx != -1)
1109 eh->dyn_relocs = NULL;
1114 /* Finally, allocate space. */
1115 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1117 asection *sreloc = elf_section_data (p->sec)->sreloc;
1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela);
1124 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
1125 read-only sections. */
1128 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
1132 if (h->root.type == bfd_link_hash_indirect)
1135 sec = readonly_dynrelocs (h);
1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
1140 info->flags |= DF_TEXTREL;
1141 info->callbacks->minfo
1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
1143 sec->owner, h->root.root.string, sec);
1145 /* Not an error, just cut short the traversal. */
1152 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1154 struct riscv_elf_link_hash_table *htab;
1159 htab = riscv_elf_hash_table (info);
1160 BFD_ASSERT (htab != NULL);
1161 dynobj = htab->elf.dynobj;
1162 BFD_ASSERT (dynobj != NULL);
1164 if (elf_hash_table (info)->dynamic_sections_created)
1166 /* Set the contents of the .interp section to the interpreter. */
1167 if (bfd_link_executable (info) && !info->nointerp)
1169 s = bfd_get_linker_section (dynobj, ".interp");
1170 BFD_ASSERT (s != NULL);
1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1;
1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER;
1176 /* Set up .got offsets for local syms, and space for local dynamic
1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1180 bfd_signed_vma *local_got;
1181 bfd_signed_vma *end_local_got;
1182 char *local_tls_type;
1183 bfd_size_type locsymcount;
1184 Elf_Internal_Shdr *symtab_hdr;
1187 if (! is_riscv_elf (ibfd))
1190 for (s = ibfd->sections; s != NULL; s = s->next)
1192 struct elf_dyn_relocs *p;
1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
1196 if (!bfd_is_abs_section (p->sec)
1197 && bfd_is_abs_section (p->sec->output_section))
1199 /* Input section has been discarded, either because
1200 it is a copy of a linkonce section or due to
1201 linker script /DISCARD/, so we'll be discarding
1204 else if (p->count != 0)
1206 srel = elf_section_data (p->sec)->sreloc;
1207 srel->size += p->count * sizeof (ElfNN_External_Rela);
1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1209 info->flags |= DF_TEXTREL;
1214 local_got = elf_local_got_refcounts (ibfd);
1218 symtab_hdr = &elf_symtab_hdr (ibfd);
1219 locsymcount = symtab_hdr->sh_info;
1220 end_local_got = local_got + locsymcount;
1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd);
1223 srel = htab->elf.srelgot;
1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1228 *local_got = s->size;
1229 s->size += RISCV_ELF_WORD_BYTES;
1230 if (*local_tls_type & GOT_TLS_GD)
1231 s->size += RISCV_ELF_WORD_BYTES;
1232 if (bfd_link_pic (info)
1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)))
1234 srel->size += sizeof (ElfNN_External_Rela);
1237 *local_got = (bfd_vma) -1;
1241 /* Allocate global sym .plt and .got entries, and space for global
1242 sym dynamic relocs. */
1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
1245 if (htab->elf.sgotplt)
1247 struct elf_link_hash_entry *got;
1248 got = elf_link_hash_lookup (elf_hash_table (info),
1249 "_GLOBAL_OFFSET_TABLE_",
1250 FALSE, FALSE, FALSE);
1252 /* Don't allocate .got.plt section if there are no GOT nor PLT
1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
1255 || !got->ref_regular_nonweak)
1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE)
1257 && (htab->elf.splt == NULL
1258 || htab->elf.splt->size == 0)
1259 && (htab->elf.sgot == NULL
1260 || (htab->elf.sgot->size
1261 == get_elf_backend_data (output_bfd)->got_header_size)))
1262 htab->elf.sgotplt->size = 0;
1265 /* The check_relocs and adjust_dynamic_symbol entry points have
1266 determined the sizes of the various dynamic sections. Allocate
1268 for (s = dynobj->sections; s != NULL; s = s->next)
1270 if ((s->flags & SEC_LINKER_CREATED) == 0)
1273 if (s == htab->elf.splt
1274 || s == htab->elf.sgot
1275 || s == htab->elf.sgotplt
1276 || s == htab->elf.sdynbss
1277 || s == htab->elf.sdynrelro
1278 || s == htab->sdyntdata)
1280 /* Strip this section if we don't need it; see the
1283 else if (strncmp (s->name, ".rela", 5) == 0)
1287 /* We use the reloc_count field as a counter if we need
1288 to copy relocs into the output file. */
1294 /* It's not one of our sections. */
1300 /* If we don't need this section, strip it from the
1301 output file. This is mostly to handle .rela.bss and
1302 .rela.plt. We must create both sections in
1303 create_dynamic_sections, because they must be created
1304 before the linker maps input sections to output
1305 sections. The linker does that before
1306 adjust_dynamic_symbol is called, and it is that
1307 function which decides whether anything needs to go
1308 into these sections. */
1309 s->flags |= SEC_EXCLUDE;
1313 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1316 /* Allocate memory for the section contents. Zero the memory
1317 for the benefit of .rela.plt, which has 4 unused entries
1318 at the beginning, and we don't want garbage. */
1319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1320 if (s->contents == NULL)
1324 if (elf_hash_table (info)->dynamic_sections_created)
1326 /* Add some entries to the .dynamic section. We fill in the
1327 values later, in riscv_elf_finish_dynamic_sections, but we
1328 must add the entries now so that we get the correct size for
1329 the .dynamic section. The DT_DEBUG entry is filled in by the
1330 dynamic linker and used by the debugger. */
1331 #define add_dynamic_entry(TAG, VAL) \
1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1334 if (bfd_link_executable (info))
1336 if (!add_dynamic_entry (DT_DEBUG, 0))
1340 if (htab->elf.srelplt->size != 0)
1342 if (!add_dynamic_entry (DT_PLTGOT, 0)
1343 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1344 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1345 || !add_dynamic_entry (DT_JMPREL, 0))
1349 if (!add_dynamic_entry (DT_RELA, 0)
1350 || !add_dynamic_entry (DT_RELASZ, 0)
1351 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
1354 /* If any dynamic relocs apply to a read-only section,
1355 then we need a DT_TEXTREL entry. */
1356 if ((info->flags & DF_TEXTREL) == 0)
1357 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
1359 if (info->flags & DF_TEXTREL)
1361 if (!add_dynamic_entry (DT_TEXTREL, 0))
1365 #undef add_dynamic_entry
1371 #define DTP_OFFSET 0x800
1373 /* Return the relocation value for a TLS dtp-relative reloc. */
1376 dtpoff (struct bfd_link_info *info, bfd_vma address)
1378 /* If tls_sec is NULL, we should have signalled an error already. */
1379 if (elf_hash_table (info)->tls_sec == NULL)
1381 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET;
1384 /* Return the relocation value for a static TLS tp-relative relocation. */
1387 tpoff (struct bfd_link_info *info, bfd_vma address)
1389 /* If tls_sec is NULL, we should have signalled an error already. */
1390 if (elf_hash_table (info)->tls_sec == NULL)
1392 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET;
1395 /* Return the global pointer's value, or 0 if it is not in use. */
1398 riscv_global_pointer_value (struct bfd_link_info *info)
1400 struct bfd_link_hash_entry *h;
1402 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
1403 if (h == NULL || h->type != bfd_link_hash_defined)
1406 return h->u.def.value + sec_addr (h->u.def.section);
1409 /* Emplace a static relocation. */
1411 static bfd_reloc_status_type
1412 perform_relocation (const reloc_howto_type *howto,
1413 const Elf_Internal_Rela *rel,
1415 asection *input_section,
1419 if (howto->pc_relative)
1420 value -= sec_addr (input_section) + rel->r_offset;
1421 value += rel->r_addend;
1423 switch (ELFNN_R_TYPE (rel->r_info))
1426 case R_RISCV_TPREL_HI20:
1427 case R_RISCV_PCREL_HI20:
1428 case R_RISCV_GOT_HI20:
1429 case R_RISCV_TLS_GOT_HI20:
1430 case R_RISCV_TLS_GD_HI20:
1431 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1432 return bfd_reloc_overflow;
1433 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value));
1436 case R_RISCV_LO12_I:
1437 case R_RISCV_GPREL_I:
1438 case R_RISCV_TPREL_LO12_I:
1439 case R_RISCV_TPREL_I:
1440 case R_RISCV_PCREL_LO12_I:
1441 value = ENCODE_ITYPE_IMM (value);
1444 case R_RISCV_LO12_S:
1445 case R_RISCV_GPREL_S:
1446 case R_RISCV_TPREL_LO12_S:
1447 case R_RISCV_TPREL_S:
1448 case R_RISCV_PCREL_LO12_S:
1449 value = ENCODE_STYPE_IMM (value);
1453 case R_RISCV_CALL_PLT:
1454 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)))
1455 return bfd_reloc_overflow;
1456 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))
1457 | (ENCODE_ITYPE_IMM (value) << 32);
1461 if (!VALID_UJTYPE_IMM (value))
1462 return bfd_reloc_overflow;
1463 value = ENCODE_UJTYPE_IMM (value);
1466 case R_RISCV_BRANCH:
1467 if (!VALID_SBTYPE_IMM (value))
1468 return bfd_reloc_overflow;
1469 value = ENCODE_SBTYPE_IMM (value);
1472 case R_RISCV_RVC_BRANCH:
1473 if (!VALID_RVC_B_IMM (value))
1474 return bfd_reloc_overflow;
1475 value = ENCODE_RVC_B_IMM (value);
1478 case R_RISCV_RVC_JUMP:
1479 if (!VALID_RVC_J_IMM (value))
1480 return bfd_reloc_overflow;
1481 value = ENCODE_RVC_J_IMM (value);
1484 case R_RISCV_RVC_LUI:
1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)))
1486 return bfd_reloc_overflow;
1487 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value));
1505 case R_RISCV_32_PCREL:
1506 case R_RISCV_TLS_DTPREL32:
1507 case R_RISCV_TLS_DTPREL64:
1510 case R_RISCV_DELETE:
1511 return bfd_reloc_ok;
1514 return bfd_reloc_notsupported;
1517 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset);
1518 word = (word & ~howto->dst_mask) | (value & howto->dst_mask);
1519 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset);
1521 return bfd_reloc_ok;
1524 /* Remember all PC-relative high-part relocs we've encountered to help us
1525 later resolve the corresponding low-part relocs. */
1531 } riscv_pcrel_hi_reloc;
1533 typedef struct riscv_pcrel_lo_reloc
1535 asection * input_section;
1536 struct bfd_link_info * info;
1537 reloc_howto_type * howto;
1538 const Elf_Internal_Rela * reloc;
1541 bfd_byte * contents;
1542 struct riscv_pcrel_lo_reloc * next;
1543 } riscv_pcrel_lo_reloc;
1548 riscv_pcrel_lo_reloc *lo_relocs;
1549 } riscv_pcrel_relocs;
1552 riscv_pcrel_reloc_hash (const void *entry)
1554 const riscv_pcrel_hi_reloc *e = entry;
1555 return (hashval_t)(e->address >> 2);
1559 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2)
1561 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2;
1562 return e1->address == e2->address;
1566 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p)
1569 p->lo_relocs = NULL;
1570 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash,
1571 riscv_pcrel_reloc_eq, free);
1572 return p->hi_relocs != NULL;
1576 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p)
1578 riscv_pcrel_lo_reloc *cur = p->lo_relocs;
1582 riscv_pcrel_lo_reloc *next = cur->next;
1587 htab_delete (p->hi_relocs);
1591 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel,
1592 struct bfd_link_info *info,
1596 const reloc_howto_type *howto,
1599 /* We may need to reference low addreses in PC-relative modes even when the
1600 * PC is far away from these addresses. For example, undefweak references
1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary
1602 * addresses that we can link PC-relative programs at, the linker can't
1603 * actually relocate references to those symbols. In order to allow these
1604 * programs to work we simply convert the PC-relative auipc sequences to
1605 * 0-relative lui sequences. */
1606 if (bfd_link_pic (info))
1609 /* If it's possible to reference the symbol using auipc we do so, as that's
1610 * more in the spirit of the PC-relative relocations we're processing. */
1611 bfd_vma offset = addr - pc;
1612 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset)))
1615 /* If it's impossible to reference this with a LUI-based offset then don't
1616 * bother to convert it at all so users still see the PC-relative relocation
1617 * in the truncation message. */
1618 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr)))
1621 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20);
1623 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset);
1624 insn = (insn & ~MASK_AUIPC) | MATCH_LUI;
1625 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset);
1630 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr,
1631 bfd_vma value, bfd_boolean absolute)
1633 bfd_vma offset = absolute ? value : value - addr;
1634 riscv_pcrel_hi_reloc entry = {addr, offset};
1635 riscv_pcrel_hi_reloc **slot =
1636 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT);
1638 BFD_ASSERT (*slot == NULL);
1639 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc));
1647 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p,
1648 asection *input_section,
1649 struct bfd_link_info *info,
1650 reloc_howto_type *howto,
1651 const Elf_Internal_Rela *reloc,
1656 riscv_pcrel_lo_reloc *entry;
1657 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc));
1660 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr,
1661 name, contents, p->lo_relocs};
1662 p->lo_relocs = entry;
1667 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p)
1669 riscv_pcrel_lo_reloc *r;
1671 for (r = p->lo_relocs; r != NULL; r = r->next)
1673 bfd *input_bfd = r->input_section->owner;
1675 riscv_pcrel_hi_reloc search = {r->addr, 0};
1676 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search);
1678 /* Check for overflow into bit 11 when adding reloc addend. */
1679 || (! (entry->value & 0x800)
1680 && ((entry->value + r->reloc->r_addend) & 0x800)))
1682 char *string = (entry == NULL
1683 ? "%pcrel_lo missing matching %pcrel_hi"
1684 : "%pcrel_lo overflow with an addend");
1685 (*r->info->callbacks->reloc_dangerous)
1686 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset);
1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section,
1691 input_bfd, r->contents);
1697 /* Relocate a RISC-V ELF section.
1699 The RELOCATE_SECTION function is called by the new ELF backend linker
1700 to handle the relocations for a section.
1702 The relocs are always passed as Rela structures.
1704 This function is responsible for adjusting the section contents as
1705 necessary, and (if generating a relocatable output file) adjusting
1706 the reloc addend as necessary.
1708 This function does not have to worry about setting the reloc
1709 address or the reloc symbol index.
1711 LOCAL_SYMS is a pointer to the swapped in local symbols.
1713 LOCAL_SECTIONS is an array giving the section in the input file
1714 corresponding to the st_shndx field of each local symbol.
1716 The global hash table entry for the global symbols can be found
1717 via elf_sym_hashes (input_bfd).
1719 When generating relocatable output, this function must handle
1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
1721 going to be the section symbol corresponding to the output
1722 section, which means that the addend must be adjusted
1726 riscv_elf_relocate_section (bfd *output_bfd,
1727 struct bfd_link_info *info,
1729 asection *input_section,
1731 Elf_Internal_Rela *relocs,
1732 Elf_Internal_Sym *local_syms,
1733 asection **local_sections)
1735 Elf_Internal_Rela *rel;
1736 Elf_Internal_Rela *relend;
1737 riscv_pcrel_relocs pcrel_relocs;
1738 bfd_boolean ret = FALSE;
1739 asection *sreloc = elf_section_data (input_section)->sreloc;
1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd);
1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd);
1744 bfd_boolean absolute;
1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs))
1749 relend = relocs + input_section->reloc_count;
1750 for (rel = relocs; rel < relend; rel++)
1752 unsigned long r_symndx;
1753 struct elf_link_hash_entry *h;
1754 Elf_Internal_Sym *sym;
1757 bfd_reloc_status_type r = bfd_reloc_ok;
1759 bfd_vma off, ie_off;
1760 bfd_boolean unresolved_reloc, is_ie = FALSE;
1761 bfd_vma pc = sec_addr (input_section) + rel->r_offset;
1762 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type;
1763 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1764 const char *msg = NULL;
1765 bfd_boolean resolved_to_zero;
1768 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY)
1771 /* This is a final link. */
1772 r_symndx = ELFNN_R_SYM (rel->r_info);
1776 unresolved_reloc = FALSE;
1777 if (r_symndx < symtab_hdr->sh_info)
1779 sym = local_syms + r_symndx;
1780 sec = local_sections[r_symndx];
1781 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1785 bfd_boolean warned, ignored;
1787 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1788 r_symndx, symtab_hdr, sym_hashes,
1790 unresolved_reloc, warned, ignored);
1793 /* To avoid generating warning messages about truncated
1794 relocations, set the relocation's address to be the same as
1795 the start of this section. */
1796 if (input_section->output_section != NULL)
1797 relocation = input_section->output_section->vma;
1803 if (sec != NULL && discarded_section (sec))
1804 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1805 rel, 1, relend, howto, 0, contents);
1807 if (bfd_link_relocatable (info))
1811 name = h->root.root.string;
1814 name = (bfd_elf_string_from_elf_section
1815 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1816 if (name == NULL || *name == '\0')
1817 name = bfd_section_name (input_bfd, sec);
1820 resolved_to_zero = (h != NULL
1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
1827 case R_RISCV_TPREL_ADD:
1829 case R_RISCV_JUMP_SLOT:
1830 case R_RISCV_RELATIVE:
1831 /* These require nothing of us at all. */
1835 case R_RISCV_BRANCH:
1836 case R_RISCV_RVC_BRANCH:
1837 case R_RISCV_RVC_LUI:
1838 case R_RISCV_LO12_I:
1839 case R_RISCV_LO12_S:
1844 case R_RISCV_32_PCREL:
1845 case R_RISCV_DELETE:
1846 /* These require no special handling beyond perform_relocation. */
1849 case R_RISCV_GOT_HI20:
1852 bfd_boolean dyn, pic;
1854 off = h->got.offset;
1855 BFD_ASSERT (off != (bfd_vma) -1);
1856 dyn = elf_hash_table (info)->dynamic_sections_created;
1857 pic = bfd_link_pic (info);
1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
1860 || (pic && SYMBOL_REFERENCES_LOCAL (info, h)))
1862 /* This is actually a static link, or it is a
1863 -Bsymbolic link and the symbol is defined
1864 locally, or the symbol was forced to be local
1865 because of a version file. We must initialize
1866 this entry in the global offset table. Since the
1867 offset must always be a multiple of the word size,
1868 we use the least significant bit to record whether
1869 we have initialized it already.
1871 When doing a dynamic link, we create a .rela.got
1872 relocation entry to initialize the value. This
1873 is done in the finish_dynamic_symbol routine. */
1878 bfd_put_NN (output_bfd, relocation,
1879 htab->elf.sgot->contents + off);
1884 unresolved_reloc = FALSE;
1888 BFD_ASSERT (local_got_offsets != NULL
1889 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1891 off = local_got_offsets[r_symndx];
1893 /* The offset must always be a multiple of the word size.
1894 So, we can use the least significant bit to record
1895 whether we have already processed this entry. */
1900 if (bfd_link_pic (info))
1903 Elf_Internal_Rela outrel;
1905 /* We need to generate a R_RISCV_RELATIVE reloc
1906 for the dynamic linker. */
1907 s = htab->elf.srelgot;
1908 BFD_ASSERT (s != NULL);
1910 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE);
1913 outrel.r_addend = relocation;
1915 riscv_elf_append_rela (output_bfd, s, &outrel);
1918 bfd_put_NN (output_bfd, relocation,
1919 htab->elf.sgot->contents + off);
1920 local_got_offsets[r_symndx] |= 1;
1923 relocation = sec_addr (htab->elf.sgot) + off;
1924 absolute = riscv_zero_pcrel_hi_reloc (rel,
1931 r_type = ELFNN_R_TYPE (rel->r_info);
1932 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
1934 r = bfd_reloc_notsupported;
1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
1936 relocation, absolute))
1937 r = bfd_reloc_overflow;
1945 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1946 contents + rel->r_offset);
1947 relocation = old_value + relocation;
1957 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd,
1958 contents + rel->r_offset);
1959 relocation = old_value - relocation;
1964 /* Handle a call to an undefined weak function. This won't be
1965 relaxed, so we have to handle it here. */
1966 if (h != NULL && h->root.type == bfd_link_hash_undefweak
1967 && h->plt.offset == MINUS_ONE)
1969 /* We can use x0 as the base register. */
1970 bfd_vma insn = bfd_get_32 (input_bfd,
1971 contents + rel->r_offset + 4);
1972 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
1973 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4);
1974 /* Set the relocation value so that we get 0 after the pc
1975 relative adjustment. */
1976 relocation = sec_addr (input_section) + rel->r_offset;
1980 case R_RISCV_CALL_PLT:
1982 case R_RISCV_RVC_JUMP:
1983 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE)
1985 /* Refer to the PLT entry. */
1986 relocation = sec_addr (htab->elf.splt) + h->plt.offset;
1987 unresolved_reloc = FALSE;
1991 case R_RISCV_TPREL_HI20:
1992 relocation = tpoff (info, relocation);
1995 case R_RISCV_TPREL_LO12_I:
1996 case R_RISCV_TPREL_LO12_S:
1997 relocation = tpoff (info, relocation);
2000 case R_RISCV_TPREL_I:
2001 case R_RISCV_TPREL_S:
2002 relocation = tpoff (info, relocation);
2003 if (VALID_ITYPE_IMM (relocation + rel->r_addend))
2005 /* We can use tp as the base register. */
2006 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2007 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2008 insn |= X_TP << OP_SH_RS1;
2009 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2012 r = bfd_reloc_overflow;
2015 case R_RISCV_GPREL_I:
2016 case R_RISCV_GPREL_S:
2018 bfd_vma gp = riscv_global_pointer_value (info);
2019 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend);
2020 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp))
2022 /* We can use x0 or gp as the base register. */
2023 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 insn &= ~(OP_MASK_RS1 << OP_SH_RS1);
2027 rel->r_addend -= gp;
2028 insn |= X_GP << OP_SH_RS1;
2030 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
2033 r = bfd_reloc_overflow;
2037 case R_RISCV_PCREL_HI20:
2038 absolute = riscv_zero_pcrel_hi_reloc (rel,
2045 r_type = ELFNN_R_TYPE (rel->r_info);
2046 howto = riscv_elf_rtype_to_howto (input_bfd, r_type);
2048 r = bfd_reloc_notsupported;
2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2050 relocation + rel->r_addend,
2052 r = bfd_reloc_overflow;
2055 case R_RISCV_PCREL_LO12_I:
2056 case R_RISCV_PCREL_LO12_S:
2057 /* We don't allow section symbols plus addends as the auipc address,
2058 because then riscv_relax_delete_bytes would have to search through
2059 all relocs to update these addends. This is also ambiguous, as
2060 we do allow offsets to be added to the target address, which are
2061 not to be used to find the auipc address. */
2062 if ((ELF_ST_TYPE (sym->st_info) == STT_SECTION) && rel->r_addend)
2064 r = bfd_reloc_dangerous;
2068 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info,
2069 howto, rel, relocation, name,
2072 r = bfd_reloc_overflow;
2075 case R_RISCV_TLS_DTPREL32:
2076 case R_RISCV_TLS_DTPREL64:
2077 relocation = dtpoff (info, relocation);
2082 if ((input_section->flags & SEC_ALLOC) == 0)
2085 if ((bfd_link_pic (info)
2087 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2088 && !resolved_to_zero)
2089 || h->root.type != bfd_link_hash_undefweak)
2090 && (! howto->pc_relative
2091 || !SYMBOL_CALLS_LOCAL (info, h)))
2092 || (!bfd_link_pic (info)
2098 || h->root.type == bfd_link_hash_undefweak
2099 || h->root.type == bfd_link_hash_undefined)))
2101 Elf_Internal_Rela outrel;
2102 bfd_boolean skip_static_relocation, skip_dynamic_relocation;
2104 /* When generating a shared object, these relocations
2105 are copied into the output file to be resolved at run
2109 _bfd_elf_section_offset (output_bfd, info, input_section,
2111 skip_static_relocation = outrel.r_offset != (bfd_vma) -2;
2112 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2;
2113 outrel.r_offset += sec_addr (input_section);
2115 if (skip_dynamic_relocation)
2116 memset (&outrel, 0, sizeof outrel);
2117 else if (h != NULL && h->dynindx != -1
2118 && !(bfd_link_pic (info)
2119 && SYMBOLIC_BIND (info, h)
2122 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
2123 outrel.r_addend = rel->r_addend;
2127 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2128 outrel.r_addend = relocation + rel->r_addend;
2131 riscv_elf_append_rela (output_bfd, sreloc, &outrel);
2132 if (skip_static_relocation)
2137 case R_RISCV_TLS_GOT_HI20:
2141 case R_RISCV_TLS_GD_HI20:
2144 off = h->got.offset;
2149 off = local_got_offsets[r_symndx];
2150 local_got_offsets[r_symndx] |= 1;
2153 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx);
2154 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD));
2155 /* If this symbol is referenced by both GD and IE TLS, the IE
2156 reference's GOT slot follows the GD reference's slots. */
2158 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE))
2159 ie_off = 2 * GOT_ENTRY_SIZE;
2165 Elf_Internal_Rela outrel;
2167 bfd_boolean need_relocs = FALSE;
2169 if (htab->elf.srelgot == NULL)
2174 bfd_boolean dyn, pic;
2175 dyn = htab->elf.dynamic_sections_created;
2176 pic = bfd_link_pic (info);
2178 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h)
2179 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h)))
2183 /* The GOT entries have not been initialized yet. Do it
2184 now, and emit any relocations. */
2185 if ((bfd_link_pic (info) || indx != 0)
2187 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2188 || h->root.type != bfd_link_hash_undefweak))
2191 if (tls_type & GOT_TLS_GD)
2195 outrel.r_offset = sec_addr (htab->elf.sgot) + off;
2196 outrel.r_addend = 0;
2197 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN);
2198 bfd_put_NN (output_bfd, 0,
2199 htab->elf.sgot->contents + off);
2200 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2203 BFD_ASSERT (! unresolved_reloc);
2204 bfd_put_NN (output_bfd,
2205 dtpoff (info, relocation),
2206 (htab->elf.sgot->contents + off +
2207 RISCV_ELF_WORD_BYTES));
2211 bfd_put_NN (output_bfd, 0,
2212 (htab->elf.sgot->contents + off +
2213 RISCV_ELF_WORD_BYTES));
2214 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN);
2215 outrel.r_offset += RISCV_ELF_WORD_BYTES;
2216 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2221 /* If we are not emitting relocations for a
2222 general dynamic reference, then we must be in a
2223 static link or an executable link with the
2224 symbol binding locally. Mark it as belonging
2225 to module 1, the executable. */
2226 bfd_put_NN (output_bfd, 1,
2227 htab->elf.sgot->contents + off);
2228 bfd_put_NN (output_bfd,
2229 dtpoff (info, relocation),
2230 (htab->elf.sgot->contents + off +
2231 RISCV_ELF_WORD_BYTES));
2235 if (tls_type & GOT_TLS_IE)
2239 bfd_put_NN (output_bfd, 0,
2240 htab->elf.sgot->contents + off + ie_off);
2241 outrel.r_offset = sec_addr (htab->elf.sgot)
2243 outrel.r_addend = 0;
2245 outrel.r_addend = tpoff (info, relocation);
2246 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN);
2247 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
2251 bfd_put_NN (output_bfd, tpoff (info, relocation),
2252 htab->elf.sgot->contents + off + ie_off);
2257 BFD_ASSERT (off < (bfd_vma) -2);
2258 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0);
2259 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc,
2261 r = bfd_reloc_overflow;
2262 unresolved_reloc = FALSE;
2266 r = bfd_reloc_notsupported;
2269 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2270 because such sections are not SEC_ALLOC and thus ld.so will
2271 not process them. */
2272 if (unresolved_reloc
2273 && !((input_section->flags & SEC_DEBUGGING) != 0
2275 && _bfd_elf_section_offset (output_bfd, info, input_section,
2276 rel->r_offset) != (bfd_vma) -1)
2278 (*_bfd_error_handler)
2279 (_("%pB(%pA+%#" PRIx64 "): "
2280 "unresolvable %s relocation against symbol `%s'"),
2283 (uint64_t) rel->r_offset,
2285 h->root.root.string);
2289 if (r == bfd_reloc_ok)
2290 r = perform_relocation (howto, rel, relocation, input_section,
2291 input_bfd, contents);
2298 case bfd_reloc_overflow:
2299 info->callbacks->reloc_overflow
2300 (info, (h ? &h->root : NULL), name, howto->name,
2301 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2304 case bfd_reloc_undefined:
2305 info->callbacks->undefined_symbol
2306 (info, name, input_bfd, input_section, rel->r_offset,
2310 case bfd_reloc_outofrange:
2311 msg = _("%X%P: internal error: out of range error\n");
2314 case bfd_reloc_notsupported:
2315 msg = _("%X%P: internal error: unsupported relocation error\n");
2318 case bfd_reloc_dangerous:
2319 info->callbacks->reloc_dangerous
2320 (info, "%pcrel_lo section symbol with an addend", input_bfd,
2321 input_section, rel->r_offset);
2325 msg = _("%X%P: internal error: unknown error\n");
2330 info->callbacks->einfo (msg);
2332 /* We already reported the error via a callback, so don't try to report
2333 it again by returning false. That leads to spurious errors. */
2338 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs);
2340 riscv_free_pcrel_relocs (&pcrel_relocs);
2344 /* Finish up dynamic symbol handling. We set the contents of various
2345 dynamic sections here. */
2348 riscv_elf_finish_dynamic_symbol (bfd *output_bfd,
2349 struct bfd_link_info *info,
2350 struct elf_link_hash_entry *h,
2351 Elf_Internal_Sym *sym)
2353 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2354 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2356 if (h->plt.offset != (bfd_vma) -1)
2358 /* We've decided to create a PLT entry for this symbol. */
2360 bfd_vma i, header_address, plt_idx, got_address;
2361 uint32_t plt_entry[PLT_ENTRY_INSNS];
2362 Elf_Internal_Rela rela;
2364 BFD_ASSERT (h->dynindx != -1);
2366 /* Calculate the address of the PLT header. */
2367 header_address = sec_addr (htab->elf.splt);
2369 /* Calculate the index of the entry. */
2370 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
2372 /* Calculate the address of the .got.plt entry. */
2373 got_address = riscv_elf_got_plt_val (plt_idx, info);
2375 /* Find out where the .plt entry should go. */
2376 loc = htab->elf.splt->contents + h->plt.offset;
2378 /* Fill in the PLT entry itself. */
2379 if (! riscv_make_plt_entry (output_bfd, got_address,
2380 header_address + h->plt.offset,
2384 for (i = 0; i < PLT_ENTRY_INSNS; i++)
2385 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i);
2387 /* Fill in the initial value of the .got.plt entry. */
2388 loc = htab->elf.sgotplt->contents
2389 + (got_address - sec_addr (htab->elf.sgotplt));
2390 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc);
2392 /* Fill in the entry in the .rela.plt section. */
2393 rela.r_offset = got_address;
2395 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT);
2397 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela);
2398 bed->s->swap_reloca_out (output_bfd, &rela, loc);
2400 if (!h->def_regular)
2402 /* Mark the symbol as undefined, rather than as defined in
2403 the .plt section. Leave the value alone. */
2404 sym->st_shndx = SHN_UNDEF;
2405 /* If the symbol is weak, we do need to clear the value.
2406 Otherwise, the PLT entry would provide a definition for
2407 the symbol even if the symbol wasn't defined anywhere,
2408 and so the symbol would never be NULL. */
2409 if (!h->ref_regular_nonweak)
2414 if (h->got.offset != (bfd_vma) -1
2415 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE))
2416 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2420 Elf_Internal_Rela rela;
2422 /* This symbol has an entry in the GOT. Set it up. */
2424 sgot = htab->elf.sgot;
2425 srela = htab->elf.srelgot;
2426 BFD_ASSERT (sgot != NULL && srela != NULL);
2428 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1);
2430 /* If this is a local symbol reference, we just want to emit a RELATIVE
2431 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or
2432 the symbol was forced to be local because of a version file.
2433 The entry in the global offset table will already have been
2434 initialized in the relocate_section function. */
2435 if (bfd_link_pic (info)
2436 && SYMBOL_REFERENCES_LOCAL (info, h))
2438 BFD_ASSERT((h->got.offset & 1) != 0);
2439 asection *sec = h->root.u.def.section;
2440 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE);
2441 rela.r_addend = (h->root.u.def.value
2442 + sec->output_section->vma
2443 + sec->output_offset);
2447 BFD_ASSERT((h->got.offset & 1) == 0);
2448 BFD_ASSERT (h->dynindx != -1);
2449 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN);
2453 bfd_put_NN (output_bfd, 0,
2454 sgot->contents + (h->got.offset & ~(bfd_vma) 1));
2455 riscv_elf_append_rela (output_bfd, srela, &rela);
2460 Elf_Internal_Rela rela;
2463 /* This symbols needs a copy reloc. Set it up. */
2464 BFD_ASSERT (h->dynindx != -1);
2466 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value;
2467 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY);
2469 if (h->root.u.def.section == htab->elf.sdynrelro)
2470 s = htab->elf.sreldynrelro;
2472 s = htab->elf.srelbss;
2473 riscv_elf_append_rela (output_bfd, s, &rela);
2476 /* Mark some specially defined symbols as absolute. */
2477 if (h == htab->elf.hdynamic
2478 || (h == htab->elf.hgot || h == htab->elf.hplt))
2479 sym->st_shndx = SHN_ABS;
2484 /* Finish up the dynamic sections. */
2487 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
2488 bfd *dynobj, asection *sdyn)
2490 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
2491 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
2492 size_t dynsize = bed->s->sizeof_dyn;
2493 bfd_byte *dyncon, *dynconend;
2495 dynconend = sdyn->contents + sdyn->size;
2496 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
2498 Elf_Internal_Dyn dyn;
2501 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
2506 s = htab->elf.sgotplt;
2507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2510 s = htab->elf.srelplt;
2511 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514 s = htab->elf.srelplt;
2515 dyn.d_un.d_val = s->size;
2521 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
2527 riscv_elf_finish_dynamic_sections (bfd *output_bfd,
2528 struct bfd_link_info *info)
2532 struct riscv_elf_link_hash_table *htab;
2534 htab = riscv_elf_hash_table (info);
2535 BFD_ASSERT (htab != NULL);
2536 dynobj = htab->elf.dynobj;
2538 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2540 if (elf_hash_table (info)->dynamic_sections_created)
2545 splt = htab->elf.splt;
2546 BFD_ASSERT (splt != NULL && sdyn != NULL);
2548 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn);
2553 /* Fill in the head and tail entries in the procedure linkage table. */
2557 uint32_t plt_header[PLT_HEADER_INSNS];
2558 ret = riscv_make_plt_header (output_bfd,
2559 sec_addr (htab->elf.sgotplt),
2560 sec_addr (splt), plt_header);
2564 for (i = 0; i < PLT_HEADER_INSNS; i++)
2565 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i);
2567 elf_section_data (splt->output_section)->this_hdr.sh_entsize
2572 if (htab->elf.sgotplt)
2574 asection *output_section = htab->elf.sgotplt->output_section;
2576 if (bfd_is_abs_section (output_section))
2578 (*_bfd_error_handler)
2579 (_("discarded output section: `%pA'"), htab->elf.sgotplt);
2583 if (htab->elf.sgotplt->size > 0)
2585 /* Write the first two entries in .got.plt, needed for the dynamic
2587 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents);
2588 bfd_put_NN (output_bfd, (bfd_vma) 0,
2589 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
2592 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2597 asection *output_section = htab->elf.sgot->output_section;
2599 if (htab->elf.sgot->size > 0)
2601 /* Set the first entry in the global offset table to the address of
2602 the dynamic section. */
2603 bfd_vma val = sdyn ? sec_addr (sdyn) : 0;
2604 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents);
2607 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
2613 /* Return address for Ith PLT stub in section PLT, for relocation REL
2614 or (bfd_vma) -1 if it should not be included. */
2617 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt,
2618 const arelent *rel ATTRIBUTE_UNUSED)
2620 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE;
2623 static enum elf_reloc_type_class
2624 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2625 const asection *rel_sec ATTRIBUTE_UNUSED,
2626 const Elf_Internal_Rela *rela)
2628 switch (ELFNN_R_TYPE (rela->r_info))
2630 case R_RISCV_RELATIVE:
2631 return reloc_class_relative;
2632 case R_RISCV_JUMP_SLOT:
2633 return reloc_class_plt;
2635 return reloc_class_copy;
2637 return reloc_class_normal;
2641 /* Given the ELF header flags in FLAGS, it returns a string that describes the
2645 riscv_float_abi_string (flagword flags)
2647 switch (flags & EF_RISCV_FLOAT_ABI)
2649 case EF_RISCV_FLOAT_ABI_SOFT:
2650 return "soft-float";
2652 case EF_RISCV_FLOAT_ABI_SINGLE:
2653 return "single-float";
2655 case EF_RISCV_FLOAT_ABI_DOUBLE:
2656 return "double-float";
2658 case EF_RISCV_FLOAT_ABI_QUAD:
2659 return "quad-float";
2666 /* Merge backend specific data from an object file to the output
2667 object file when linking. */
2670 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
2672 bfd *obfd = info->output_bfd;
2673 flagword new_flags = elf_elfheader (ibfd)->e_flags;
2674 flagword old_flags = elf_elfheader (obfd)->e_flags;
2676 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd))
2679 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
2681 (*_bfd_error_handler)
2682 (_("%pB: ABI is incompatible with that of the selected emulation:\n"
2683 " target emulation `%s' does not match `%s'"),
2684 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd));
2688 if (!_bfd_elf_merge_object_attributes (ibfd, info))
2691 if (! elf_flags_init (obfd))
2693 elf_flags_init (obfd) = TRUE;
2694 elf_elfheader (obfd)->e_flags = new_flags;
2698 /* Disallow linking different float ABIs. */
2699 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI)
2701 (*_bfd_error_handler)
2702 (_("%pB: can't link %s modules with %s modules"), ibfd,
2703 riscv_float_abi_string (new_flags),
2704 riscv_float_abi_string (old_flags));
2708 /* Disallow linking RVE and non-RVE. */
2709 if ((old_flags ^ new_flags) & EF_RISCV_RVE)
2711 (*_bfd_error_handler)
2712 (_("%pB: can't link RVE with other target"), ibfd);
2716 /* Allow linking RVC and non-RVC, and keep the RVC flag. */
2717 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC;
2722 bfd_set_error (bfd_error_bad_value);
2726 /* Delete some bytes from a section while relaxing. */
2729 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count,
2730 struct bfd_link_info *link_info)
2732 unsigned int i, symcount;
2733 bfd_vma toaddr = sec->size;
2734 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd);
2735 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2736 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2737 struct bfd_elf_section_data *data = elf_section_data (sec);
2738 bfd_byte *contents = data->this_hdr.contents;
2740 /* Actually delete the bytes. */
2742 memmove (contents + addr, contents + addr + count, toaddr - addr - count);
2744 /* Adjust the location of all of the relocs. Note that we need not
2745 adjust the addends, since all PC-relative references must be against
2746 symbols, which we will adjust below. */
2747 for (i = 0; i < sec->reloc_count; i++)
2748 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr)
2749 data->relocs[i].r_offset -= count;
2751 /* Adjust the local symbols defined in this section. */
2752 for (i = 0; i < symtab_hdr->sh_info; i++)
2754 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i;
2755 if (sym->st_shndx == sec_shndx)
2757 /* If the symbol is in the range of memory we just moved, we
2758 have to adjust its value. */
2759 if (sym->st_value > addr && sym->st_value <= toaddr)
2760 sym->st_value -= count;
2762 /* If the symbol *spans* the bytes we just deleted (i.e. its
2763 *end* is in the moved bytes but its *start* isn't), then we
2764 must adjust its size.
2766 This test needs to use the original value of st_value, otherwise
2767 we might accidentally decrease size when deleting bytes right
2768 before the symbol. But since deleted relocs can't span across
2769 symbols, we can't have both a st_value and a st_size decrease,
2770 so it is simpler to just use an else. */
2771 else if (sym->st_value <= addr
2772 && sym->st_value + sym->st_size > addr
2773 && sym->st_value + sym->st_size <= toaddr)
2774 sym->st_size -= count;
2778 /* Now adjust the global symbols defined in this section. */
2779 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym))
2780 - symtab_hdr->sh_info);
2782 for (i = 0; i < symcount; i++)
2784 struct elf_link_hash_entry *sym_hash = sym_hashes[i];
2786 /* The '--wrap SYMBOL' option is causing a pain when the object file,
2787 containing the definition of __wrap_SYMBOL, includes a direct
2788 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference
2789 the same symbol (which is __wrap_SYMBOL), but still exist as two
2790 different symbols in 'sym_hashes', we don't want to adjust
2791 the global symbol __wrap_SYMBOL twice. */
2792 /* The same problem occurs with symbols that are versioned_hidden, as
2793 foo becomes an alias for foo@BAR, and hence they need the same
2795 if (link_info->wrap_hash != NULL
2796 || sym_hash->versioned == versioned_hidden)
2798 struct elf_link_hash_entry **cur_sym_hashes;
2800 /* Loop only over the symbols which have already been checked. */
2801 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i];
2804 /* If the current symbol is identical to 'sym_hash', that means
2805 the symbol was already adjusted (or at least checked). */
2806 if (*cur_sym_hashes == sym_hash)
2809 /* Don't adjust the symbol again. */
2810 if (cur_sym_hashes < &sym_hashes[i])
2814 if ((sym_hash->root.type == bfd_link_hash_defined
2815 || sym_hash->root.type == bfd_link_hash_defweak)
2816 && sym_hash->root.u.def.section == sec)
2818 /* As above, adjust the value if needed. */
2819 if (sym_hash->root.u.def.value > addr
2820 && sym_hash->root.u.def.value <= toaddr)
2821 sym_hash->root.u.def.value -= count;
2823 /* As above, adjust the size if needed. */
2824 else if (sym_hash->root.u.def.value <= addr
2825 && sym_hash->root.u.def.value + sym_hash->size > addr
2826 && sym_hash->root.u.def.value + sym_hash->size <= toaddr)
2827 sym_hash->size -= count;
2834 /* A second format for recording PC-relative hi relocations. This stores the
2835 information required to relax them to GP-relative addresses. */
2837 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc;
2838 struct riscv_pcgp_hi_reloc
2845 riscv_pcgp_hi_reloc *next;
2848 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc;
2849 struct riscv_pcgp_lo_reloc
2852 riscv_pcgp_lo_reloc *next;
2857 riscv_pcgp_hi_reloc *hi;
2858 riscv_pcgp_lo_reloc *lo;
2859 } riscv_pcgp_relocs;
2861 /* Initialize the pcgp reloc info in P. */
2864 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p)
2871 /* Free the pcgp reloc info in P. */
2874 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p,
2875 bfd *abfd ATTRIBUTE_UNUSED,
2876 asection *sec ATTRIBUTE_UNUSED)
2878 riscv_pcgp_hi_reloc *c;
2879 riscv_pcgp_lo_reloc *l;
2881 for (c = p->hi; c != NULL;)
2883 riscv_pcgp_hi_reloc *next = c->next;
2888 for (l = p->lo; l != NULL;)
2890 riscv_pcgp_lo_reloc *next = l->next;
2896 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index.
2897 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to
2898 relax the corresponding lo part reloc. */
2901 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off,
2902 bfd_vma hi_addend, bfd_vma hi_addr,
2903 unsigned hi_sym, asection *sym_sec)
2905 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new));
2908 new->hi_sec_off = hi_sec_off;
2909 new->hi_addend = hi_addend;
2910 new->hi_addr = hi_addr;
2911 new->hi_sym = hi_sym;
2912 new->sym_sec = sym_sec;
2918 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
2919 This is used by a lo part reloc to find the corresponding hi part reloc. */
2921 static riscv_pcgp_hi_reloc *
2922 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2924 riscv_pcgp_hi_reloc *c;
2926 for (c = p->hi; c != NULL; c = c->next)
2927 if (c->hi_sec_off == hi_sec_off)
2932 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info.
2933 This is used to record relocs that can't be relaxed. */
2936 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2938 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new));
2941 new->hi_sec_off = hi_sec_off;
2947 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index.
2948 This is used by a hi part reloc to find the corresponding lo part reloc. */
2951 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off)
2953 riscv_pcgp_lo_reloc *c;
2955 for (c = p->lo; c != NULL; c = c->next)
2956 if (c->hi_sec_off == hi_sec_off)
2961 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *,
2962 struct bfd_link_info *,
2963 Elf_Internal_Rela *,
2964 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *,
2965 riscv_pcgp_relocs *);
2967 /* Relax AUIPC + JALR into JAL. */
2970 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec,
2971 struct bfd_link_info *link_info,
2972 Elf_Internal_Rela *rel,
2974 bfd_vma max_alignment,
2975 bfd_vma reserve_size ATTRIBUTE_UNUSED,
2977 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
2979 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
2980 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset);
2981 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH;
2982 bfd_vma auipc, jalr;
2983 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
2985 /* If the call crosses section boundaries, an alignment directive could
2986 cause the PC-relative offset to later increase. */
2987 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section)
2988 foff += (foff < 0 ? -max_alignment : max_alignment);
2990 /* See if this function call can be shortened. */
2991 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero))
2994 /* Shorten the function call. */
2995 BFD_ASSERT (rel->r_offset + 8 <= sec->size);
2997 auipc = bfd_get_32 (abfd, contents + rel->r_offset);
2998 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4);
2999 rd = (jalr >> OP_SH_RD) & OP_MASK_RD;
3000 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32;
3002 if (rvc && (rd == 0 || rd == X_RA))
3004 /* Relax to C.J[AL] rd, addr. */
3005 r_type = R_RISCV_RVC_JUMP;
3006 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL;
3009 else if (VALID_UJTYPE_IMM (foff))
3011 /* Relax to JAL rd, addr. */
3012 r_type = R_RISCV_JAL;
3013 auipc = MATCH_JAL | (rd << OP_SH_RD);
3015 else /* near_zero */
3017 /* Relax to JALR rd, x0, addr. */
3018 r_type = R_RISCV_LO12_I;
3019 auipc = MATCH_JALR | (rd << OP_SH_RD);
3022 /* Replace the R_RISCV_CALL reloc. */
3023 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type);
3024 /* Replace the AUIPC. */
3025 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset);
3027 /* Delete unnecessary JALR. */
3029 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len,
3033 /* Traverse all output sections and return the max alignment. */
3036 _bfd_riscv_get_max_alignment (asection *sec)
3038 unsigned int max_alignment_power = 0;
3041 for (o = sec->output_section->owner->sections; o != NULL; o = o->next)
3043 if (o->alignment_power > max_alignment_power)
3044 max_alignment_power = o->alignment_power;
3047 return (bfd_vma) 1 << max_alignment_power;
3050 /* Relax non-PIC global variable references. */
3053 _bfd_riscv_relax_lui (bfd *abfd,
3056 struct bfd_link_info *link_info,
3057 Elf_Internal_Rela *rel,
3059 bfd_vma max_alignment,
3060 bfd_vma reserve_size,
3062 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3064 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3065 bfd_vma gp = riscv_global_pointer_value (link_info);
3066 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC;
3068 /* Mergeable symbols and code might later move out of range. */
3069 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3072 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3076 /* If gp and the symbol are in the same output section, then
3077 consider only that section's alignment. */
3078 struct bfd_link_hash_entry *h =
3079 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE,
3081 if (h->u.def.section->output_section == sym_sec->output_section)
3082 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3085 /* Is the reference in range of x0 or gp?
3086 Valid gp range conservatively because of alignment issue. */
3087 if (VALID_ITYPE_IMM (symval)
3089 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3091 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3093 unsigned sym = ELFNN_R_SYM (rel->r_info);
3094 switch (ELFNN_R_TYPE (rel->r_info))
3096 case R_RISCV_LO12_I:
3097 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3100 case R_RISCV_LO12_S:
3101 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3105 /* We can delete the unnecessary LUI and reloc. */
3106 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3108 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4,
3116 /* Can we relax LUI to C.LUI? Alignment might move the section forward;
3117 account for this assuming page alignment at worst. */
3119 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20
3120 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval))
3121 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE)))
3123 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */
3124 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset);
3125 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD;
3126 if (rd == 0 || rd == X_SP)
3129 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI;
3130 bfd_put_32 (abfd, lui, contents + rel->r_offset);
3132 /* Replace the R_RISCV_HI20 reloc. */
3133 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI);
3136 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2,
3143 /* Relax non-PIC TLS references. */
3146 _bfd_riscv_relax_tls_le (bfd *abfd,
3148 asection *sym_sec ATTRIBUTE_UNUSED,
3149 struct bfd_link_info *link_info,
3150 Elf_Internal_Rela *rel,
3152 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3153 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3155 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED)
3157 /* See if this symbol is in range of tp. */
3158 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0)
3161 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3162 switch (ELFNN_R_TYPE (rel->r_info))
3164 case R_RISCV_TPREL_LO12_I:
3165 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I);
3168 case R_RISCV_TPREL_LO12_S:
3169 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S);
3172 case R_RISCV_TPREL_HI20:
3173 case R_RISCV_TPREL_ADD:
3174 /* We can delete the unnecessary instruction and reloc. */
3175 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3177 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info);
3184 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */
3187 _bfd_riscv_relax_align (bfd *abfd, asection *sec,
3189 struct bfd_link_info *link_info,
3190 Elf_Internal_Rela *rel,
3192 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3193 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3194 bfd_boolean *again ATTRIBUTE_UNUSED,
3195 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED)
3197 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
3198 bfd_vma alignment = 1, pos;
3199 while (alignment <= rel->r_addend)
3202 symval -= rel->r_addend;
3203 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment;
3204 bfd_vma nop_bytes = aligned_addr - symval;
3206 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */
3207 sec->sec_flg0 = TRUE;
3209 /* Make sure there are enough NOPs to actually achieve the alignment. */
3210 if (rel->r_addend < nop_bytes)
3213 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment "
3214 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"),
3215 abfd, sym_sec, (uint64_t) rel->r_offset,
3216 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend);
3217 bfd_set_error (bfd_error_bad_value);
3221 /* Delete the reloc. */
3222 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE);
3224 /* If the number of NOPs is already correct, there's nothing to do. */
3225 if (nop_bytes == rel->r_addend)
3228 /* Write as many RISC-V NOPs as we need. */
3229 for (pos = 0; pos < (nop_bytes & -4); pos += 4)
3230 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos);
3232 /* Write a final RVC NOP if need be. */
3233 if (nop_bytes % 4 != 0)
3234 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos);
3236 /* Delete the excess bytes. */
3237 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes,
3238 rel->r_addend - nop_bytes, link_info);
3241 /* Relax PC-relative references to GP-relative references. */
3244 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED,
3247 struct bfd_link_info *link_info,
3248 Elf_Internal_Rela *rel,
3250 bfd_vma max_alignment,
3251 bfd_vma reserve_size,
3252 bfd_boolean *again ATTRIBUTE_UNUSED,
3253 riscv_pcgp_relocs *pcgp_relocs)
3255 bfd_vma gp = riscv_global_pointer_value (link_info);
3257 BFD_ASSERT (rel->r_offset + 4 <= sec->size);
3259 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the
3260 * actual target address. */
3261 riscv_pcgp_hi_reloc hi_reloc;
3262 memset (&hi_reloc, 0, sizeof (hi_reloc));
3263 switch (ELFNN_R_TYPE (rel->r_info))
3265 case R_RISCV_PCREL_LO12_I:
3266 case R_RISCV_PCREL_LO12_S:
3268 /* If the %lo has an addend, it isn't for the label pointing at the
3269 hi part instruction, but rather for the symbol pointed at by the
3270 hi part instruction. So we must subtract it here for the lookup.
3271 It is still used below in the final symbol address. */
3272 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend;
3273 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs,
3277 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off);
3282 symval = hi_reloc.hi_addr;
3283 sym_sec = hi_reloc.sym_sec;
3287 case R_RISCV_PCREL_HI20:
3288 /* Mergeable symbols and code might later move out of range. */
3289 if (sym_sec->flags & (SEC_MERGE | SEC_CODE))
3292 /* If the cooresponding lo relocation has already been seen then it's not
3293 * safe to relax this relocation. */
3294 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset))
3305 /* If gp and the symbol are in the same output section, then
3306 consider only that section's alignment. */
3307 struct bfd_link_hash_entry *h =
3308 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE);
3309 if (h->u.def.section->output_section == sym_sec->output_section)
3310 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power;
3313 /* Is the reference in range of x0 or gp?
3314 Valid gp range conservatively because of alignment issue. */
3315 if (VALID_ITYPE_IMM (symval)
3317 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size))
3319 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size)))
3321 unsigned sym = hi_reloc.hi_sym;
3322 switch (ELFNN_R_TYPE (rel->r_info))
3324 case R_RISCV_PCREL_LO12_I:
3325 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I);
3326 rel->r_addend += hi_reloc.hi_addend;
3329 case R_RISCV_PCREL_LO12_S:
3330 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S);
3331 rel->r_addend += hi_reloc.hi_addend;
3334 case R_RISCV_PCREL_HI20:
3335 riscv_record_pcgp_hi_reloc (pcgp_relocs,
3339 ELFNN_R_SYM(rel->r_info),
3341 /* We can delete the unnecessary AUIPC and reloc. */
3342 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE);
3354 /* Relax PC-relative references to GP-relative references. */
3357 _bfd_riscv_relax_delete (bfd *abfd,
3359 asection *sym_sec ATTRIBUTE_UNUSED,
3360 struct bfd_link_info *link_info,
3361 Elf_Internal_Rela *rel,
3362 bfd_vma symval ATTRIBUTE_UNUSED,
3363 bfd_vma max_alignment ATTRIBUTE_UNUSED,
3364 bfd_vma reserve_size ATTRIBUTE_UNUSED,
3365 bfd_boolean *again ATTRIBUTE_UNUSED,
3366 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED)
3368 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend,
3371 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE);
3375 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1
3376 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be
3377 disabled, handles code alignment directives. */
3380 _bfd_riscv_relax_section (bfd *abfd, asection *sec,
3381 struct bfd_link_info *info,
3384 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd);
3385 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info);
3386 struct bfd_elf_section_data *data = elf_section_data (sec);
3387 Elf_Internal_Rela *relocs;
3388 bfd_boolean ret = FALSE;
3390 bfd_vma max_alignment, reserve_size = 0;
3391 riscv_pcgp_relocs pcgp_relocs;
3395 if (bfd_link_relocatable (info)
3397 || (sec->flags & SEC_RELOC) == 0
3398 || sec->reloc_count == 0
3399 || (info->disable_target_specific_optimizations
3400 && info->relax_pass == 0))
3403 riscv_init_pcgp_relocs (&pcgp_relocs);
3405 /* Read this BFD's relocs if we haven't done so already. */
3407 relocs = data->relocs;
3408 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3409 info->keep_memory)))
3414 max_alignment = htab->max_alignment;
3415 if (max_alignment == (bfd_vma) -1)
3417 max_alignment = _bfd_riscv_get_max_alignment (sec);
3418 htab->max_alignment = max_alignment;
3422 max_alignment = _bfd_riscv_get_max_alignment (sec);
3424 /* Examine and consider relaxing each reloc. */
3425 for (i = 0; i < sec->reloc_count; i++)
3428 Elf_Internal_Rela *rel = relocs + i;
3429 relax_func_t relax_func;
3430 int type = ELFNN_R_TYPE (rel->r_info);
3434 if (info->relax_pass == 0)
3436 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT)
3437 relax_func = _bfd_riscv_relax_call;
3438 else if (type == R_RISCV_HI20
3439 || type == R_RISCV_LO12_I
3440 || type == R_RISCV_LO12_S)
3441 relax_func = _bfd_riscv_relax_lui;
3442 else if (!bfd_link_pic(info)
3443 && (type == R_RISCV_PCREL_HI20
3444 || type == R_RISCV_PCREL_LO12_I
3445 || type == R_RISCV_PCREL_LO12_S))
3446 relax_func = _bfd_riscv_relax_pc;
3447 else if (type == R_RISCV_TPREL_HI20
3448 || type == R_RISCV_TPREL_ADD
3449 || type == R_RISCV_TPREL_LO12_I
3450 || type == R_RISCV_TPREL_LO12_S)
3451 relax_func = _bfd_riscv_relax_tls_le;
3455 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */
3456 if (i == sec->reloc_count - 1
3457 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX
3458 || rel->r_offset != (rel + 1)->r_offset)
3461 /* Skip over the R_RISCV_RELAX. */
3464 else if (info->relax_pass == 1 && type == R_RISCV_DELETE)
3465 relax_func = _bfd_riscv_relax_delete;
3466 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN)
3467 relax_func = _bfd_riscv_relax_align;
3471 data->relocs = relocs;
3473 /* Read this BFD's contents if we haven't done so already. */
3474 if (!data->this_hdr.contents
3475 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents))
3478 /* Read this BFD's symbols if we haven't done so already. */
3479 if (symtab_hdr->sh_info != 0
3480 && !symtab_hdr->contents
3481 && !(symtab_hdr->contents =
3482 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr,
3483 symtab_hdr->sh_info,
3484 0, NULL, NULL, NULL)))
3487 /* Get the value of the symbol referred to by the reloc. */
3488 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info)
3490 /* A local symbol. */
3491 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents
3492 + ELFNN_R_SYM (rel->r_info));
3493 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size
3494 ? 0 : isym->st_size - rel->r_addend;
3496 if (isym->st_shndx == SHN_UNDEF)
3497 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset;
3500 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd));
3501 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section;
3503 /* The purpose of this code is unknown. It breaks linker scripts
3504 for embedded development that place sections at address zero.
3505 This code is believed to be unnecessary. Disabling it but not
3506 yet removing it, in case something breaks. */
3507 if (sec_addr (sym_sec) == 0)
3510 symval = sec_addr (sym_sec) + isym->st_value;
3516 struct elf_link_hash_entry *h;
3518 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info;
3519 h = elf_sym_hashes (abfd)[indx];
3521 while (h->root.type == bfd_link_hash_indirect
3522 || h->root.type == bfd_link_hash_warning)
3523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3525 if (h->plt.offset != MINUS_ONE)
3526 symval = sec_addr (htab->elf.splt) + h->plt.offset;
3527 else if (h->root.u.def.section->output_section == NULL
3528 || (h->root.type != bfd_link_hash_defined
3529 && h->root.type != bfd_link_hash_defweak))
3532 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value;
3534 if (h->type != STT_FUNC)
3536 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend;
3537 sym_sec = h->root.u.def.section;
3540 symval += rel->r_addend;
3542 if (!relax_func (abfd, sec, sym_sec, info, rel, symval,
3543 max_alignment, reserve_size, again,
3551 if (relocs != data->relocs)
3553 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec);
3559 # define PRSTATUS_SIZE 0 /* FIXME */
3560 # define PRSTATUS_OFFSET_PR_CURSIG 12
3561 # define PRSTATUS_OFFSET_PR_PID 24
3562 # define PRSTATUS_OFFSET_PR_REG 72
3563 # define ELF_GREGSET_T_SIZE 128
3564 # define PRPSINFO_SIZE 128
3565 # define PRPSINFO_OFFSET_PR_PID 16
3566 # define PRPSINFO_OFFSET_PR_FNAME 32
3567 # define PRPSINFO_OFFSET_PR_PSARGS 48
3569 # define PRSTATUS_SIZE 376
3570 # define PRSTATUS_OFFSET_PR_CURSIG 12
3571 # define PRSTATUS_OFFSET_PR_PID 32
3572 # define PRSTATUS_OFFSET_PR_REG 112
3573 # define ELF_GREGSET_T_SIZE 256
3574 # define PRPSINFO_SIZE 136
3575 # define PRPSINFO_OFFSET_PR_PID 24
3576 # define PRPSINFO_OFFSET_PR_FNAME 40
3577 # define PRPSINFO_OFFSET_PR_PSARGS 56
3580 /* Support for core dump NOTE sections. */
3583 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3585 switch (note->descsz)
3590 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */
3592 elf_tdata (abfd)->core->signal
3593 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG);
3596 elf_tdata (abfd)->core->lwpid
3597 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID);
3601 /* Make a ".reg/999" section. */
3602 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE,
3603 note->descpos + PRSTATUS_OFFSET_PR_REG);
3607 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3609 switch (note->descsz)
3614 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */
3616 elf_tdata (abfd)->core->pid
3617 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID);
3620 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup
3621 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16);
3624 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup
3625 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80);
3629 /* Note that for some reason, a spurious space is tacked
3630 onto the end of the args in some (at least one anyway)
3631 implementations, so strip it off if it exists. */
3634 char *command = elf_tdata (abfd)->core->command;
3635 int n = strlen (command);
3637 if (0 < n && command[n - 1] == ' ')
3638 command[n - 1] = '\0';
3644 /* Set the right mach type. */
3646 riscv_elf_object_p (bfd *abfd)
3648 /* There are only two mach types in RISCV currently. */
3649 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0)
3650 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32);
3652 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64);
3658 #define TARGET_LITTLE_SYM riscv_elfNN_vec
3659 #define TARGET_LITTLE_NAME "elfNN-littleriscv"
3661 #define elf_backend_reloc_type_class riscv_reloc_type_class
3663 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup
3664 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create
3665 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup
3666 #define bfd_elfNN_bfd_merge_private_bfd_data \
3667 _bfd_riscv_elf_merge_private_bfd_data
3669 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol
3670 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections
3671 #define elf_backend_check_relocs riscv_elf_check_relocs
3672 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol
3673 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections
3674 #define elf_backend_relocate_section riscv_elf_relocate_section
3675 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol
3676 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections
3677 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook
3678 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val
3679 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus
3680 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo
3681 #define elf_backend_object_p riscv_elf_object_p
3682 #define elf_info_to_howto_rel NULL
3683 #define elf_info_to_howto riscv_info_to_howto_rela
3684 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section
3686 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3688 #define elf_backend_can_gc_sections 1
3689 #define elf_backend_can_refcount 1
3690 #define elf_backend_want_got_plt 1
3691 #define elf_backend_plt_readonly 1
3692 #define elf_backend_plt_alignment 4
3693 #define elf_backend_want_plt_sym 1
3694 #define elf_backend_got_header_size (ARCH_SIZE / 8)
3695 #define elf_backend_want_dynrelro 1
3696 #define elf_backend_rela_normal 1
3697 #define elf_backend_default_execstack 0
3699 #include "elfNN-target.h"