1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 elfNN_aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elfNN_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elfNN_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elfNN_aarch64_relocate_section ()
124 Calls elfNN_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elfNN_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
142 #include "bfd_stdint.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
212 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
214 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
215 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
238 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
239 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
245 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
246 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
247 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
252 #define ELIMINATE_COPY_RELOCS 1
254 /* Return size of a relocation entry. HTAB is the bfd's
255 elf_aarch64_link_hash_entry. */
256 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
258 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
259 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
260 #define PLT_ENTRY_SIZE (32)
261 #define PLT_SMALL_ENTRY_SIZE (16)
262 #define PLT_TLSDESC_ENTRY_SIZE (32)
264 /* Encoding of the nop instruction. */
265 #define INSN_NOP 0xd503201f
267 #define aarch64_compute_jump_table_size(htab) \
268 (((htab)->root.srelplt == NULL) ? 0 \
269 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
271 /* The first entry in a procedure linkage table looks like this
272 if the distance between the PLTGOT and the PLT is < 4GB use
273 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
274 in x16 and needs to work out PLTGOT[1] by using an address of
275 [x16,#-GOT_ENTRY_SIZE]. */
276 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
278 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
279 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
281 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
282 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
284 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
285 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
287 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
288 0x1f, 0x20, 0x03, 0xd5, /* nop */
289 0x1f, 0x20, 0x03, 0xd5, /* nop */
290 0x1f, 0x20, 0x03, 0xd5, /* nop */
293 /* Per function entry in a procedure linkage table looks like this
294 if the distance between the PLTGOT and the PLT is < 4GB use
295 these PLT entries. */
296 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
298 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
300 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
301 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
303 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
304 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
306 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
309 static const bfd_byte
310 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
312 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
313 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
314 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
316 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
317 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
319 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
320 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
322 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
323 0x1f, 0x20, 0x03, 0xd5, /* nop */
324 0x1f, 0x20, 0x03, 0xd5, /* nop */
327 #define elf_info_to_howto elfNN_aarch64_info_to_howto
328 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
330 #define AARCH64_ELF_ABI_VERSION 0
332 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
333 #define ALL_ONES (~ (bfd_vma) 0)
335 /* Indexed by the bfd interal reloc enumerators.
336 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
339 static reloc_howto_type elfNN_aarch64_howto_table[] =
343 /* Basic data relocations. */
345 /* Deprecated, but retained for backwards compatibility. */
346 HOWTO64 (R_AARCH64_NULL, /* type */
348 3, /* size (0 = byte, 1 = short, 2 = long) */
350 FALSE, /* pc_relative */
352 complain_overflow_dont, /* complain_on_overflow */
353 bfd_elf_generic_reloc, /* special_function */
354 "R_AARCH64_NULL", /* name */
355 FALSE, /* partial_inplace */
358 FALSE), /* pcrel_offset */
359 HOWTO (R_AARCH64_NONE, /* type */
361 3, /* size (0 = byte, 1 = short, 2 = long) */
363 FALSE, /* pc_relative */
365 complain_overflow_dont, /* complain_on_overflow */
366 bfd_elf_generic_reloc, /* special_function */
367 "R_AARCH64_NONE", /* name */
368 FALSE, /* partial_inplace */
371 FALSE), /* pcrel_offset */
374 HOWTO64 (AARCH64_R (ABS64), /* type */
376 4, /* size (4 = long long) */
378 FALSE, /* pc_relative */
380 complain_overflow_unsigned, /* complain_on_overflow */
381 bfd_elf_generic_reloc, /* special_function */
382 AARCH64_R_STR (ABS64), /* name */
383 FALSE, /* partial_inplace */
384 ALL_ONES, /* src_mask */
385 ALL_ONES, /* dst_mask */
386 FALSE), /* pcrel_offset */
389 HOWTO (AARCH64_R (ABS32), /* type */
391 2, /* size (0 = byte, 1 = short, 2 = long) */
393 FALSE, /* pc_relative */
395 complain_overflow_unsigned, /* complain_on_overflow */
396 bfd_elf_generic_reloc, /* special_function */
397 AARCH64_R_STR (ABS32), /* name */
398 FALSE, /* partial_inplace */
399 0xffffffff, /* src_mask */
400 0xffffffff, /* dst_mask */
401 FALSE), /* pcrel_offset */
404 HOWTO (AARCH64_R (ABS16), /* type */
406 1, /* size (0 = byte, 1 = short, 2 = long) */
408 FALSE, /* pc_relative */
410 complain_overflow_unsigned, /* complain_on_overflow */
411 bfd_elf_generic_reloc, /* special_function */
412 AARCH64_R_STR (ABS16), /* name */
413 FALSE, /* partial_inplace */
414 0xffff, /* src_mask */
415 0xffff, /* dst_mask */
416 FALSE), /* pcrel_offset */
418 /* .xword: (S+A-P) */
419 HOWTO64 (AARCH64_R (PREL64), /* type */
421 4, /* size (4 = long long) */
423 TRUE, /* pc_relative */
425 complain_overflow_signed, /* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 AARCH64_R_STR (PREL64), /* name */
428 FALSE, /* partial_inplace */
429 ALL_ONES, /* src_mask */
430 ALL_ONES, /* dst_mask */
431 TRUE), /* pcrel_offset */
434 HOWTO (AARCH64_R (PREL32), /* type */
436 2, /* size (0 = byte, 1 = short, 2 = long) */
438 TRUE, /* pc_relative */
440 complain_overflow_signed, /* complain_on_overflow */
441 bfd_elf_generic_reloc, /* special_function */
442 AARCH64_R_STR (PREL32), /* name */
443 FALSE, /* partial_inplace */
444 0xffffffff, /* src_mask */
445 0xffffffff, /* dst_mask */
446 TRUE), /* pcrel_offset */
449 HOWTO (AARCH64_R (PREL16), /* type */
451 1, /* size (0 = byte, 1 = short, 2 = long) */
453 TRUE, /* pc_relative */
455 complain_overflow_signed, /* complain_on_overflow */
456 bfd_elf_generic_reloc, /* special_function */
457 AARCH64_R_STR (PREL16), /* name */
458 FALSE, /* partial_inplace */
459 0xffff, /* src_mask */
460 0xffff, /* dst_mask */
461 TRUE), /* pcrel_offset */
463 /* Group relocations to create a 16, 32, 48 or 64 bit
464 unsigned data or abs address inline. */
466 /* MOVZ: ((S+A) >> 0) & 0xffff */
467 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
471 FALSE, /* pc_relative */
473 complain_overflow_unsigned, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* special_function */
475 AARCH64_R_STR (MOVW_UABS_G0), /* name */
476 FALSE, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
481 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
482 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 FALSE, /* pc_relative */
488 complain_overflow_dont, /* complain_on_overflow */
489 bfd_elf_generic_reloc, /* special_function */
490 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
491 FALSE, /* partial_inplace */
492 0xffff, /* src_mask */
493 0xffff, /* dst_mask */
494 FALSE), /* pcrel_offset */
496 /* MOVZ: ((S+A) >> 16) & 0xffff */
497 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
501 FALSE, /* pc_relative */
503 complain_overflow_unsigned, /* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 AARCH64_R_STR (MOVW_UABS_G1), /* name */
506 FALSE, /* partial_inplace */
507 0xffff, /* src_mask */
508 0xffff, /* dst_mask */
509 FALSE), /* pcrel_offset */
511 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
512 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 FALSE, /* pc_relative */
518 complain_overflow_dont, /* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
521 FALSE, /* partial_inplace */
522 0xffff, /* src_mask */
523 0xffff, /* dst_mask */
524 FALSE), /* pcrel_offset */
526 /* MOVZ: ((S+A) >> 32) & 0xffff */
527 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
531 FALSE, /* pc_relative */
533 complain_overflow_unsigned, /* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 AARCH64_R_STR (MOVW_UABS_G2), /* name */
536 FALSE, /* partial_inplace */
537 0xffff, /* src_mask */
538 0xffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
541 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
542 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
546 FALSE, /* pc_relative */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
551 FALSE, /* partial_inplace */
552 0xffff, /* src_mask */
553 0xffff, /* dst_mask */
554 FALSE), /* pcrel_offset */
556 /* MOVZ: ((S+A) >> 48) & 0xffff */
557 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
561 FALSE, /* pc_relative */
563 complain_overflow_unsigned, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 AARCH64_R_STR (MOVW_UABS_G3), /* name */
566 FALSE, /* partial_inplace */
567 0xffff, /* src_mask */
568 0xffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
571 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
572 signed data or abs address inline. Will change instruction
573 to MOVN or MOVZ depending on sign of calculated value. */
575 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
576 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
580 FALSE, /* pc_relative */
582 complain_overflow_signed, /* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 AARCH64_R_STR (MOVW_SABS_G0), /* name */
585 FALSE, /* partial_inplace */
586 0xffff, /* src_mask */
587 0xffff, /* dst_mask */
588 FALSE), /* pcrel_offset */
590 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
591 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
595 FALSE, /* pc_relative */
597 complain_overflow_signed, /* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 AARCH64_R_STR (MOVW_SABS_G1), /* name */
600 FALSE, /* partial_inplace */
601 0xffff, /* src_mask */
602 0xffff, /* dst_mask */
603 FALSE), /* pcrel_offset */
605 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
606 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
610 FALSE, /* pc_relative */
612 complain_overflow_signed, /* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 AARCH64_R_STR (MOVW_SABS_G2), /* name */
615 FALSE, /* partial_inplace */
616 0xffff, /* src_mask */
617 0xffff, /* dst_mask */
618 FALSE), /* pcrel_offset */
620 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
621 addresses: PG(x) is (x & ~0xfff). */
623 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
624 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
628 TRUE, /* pc_relative */
630 complain_overflow_signed, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (LD_PREL_LO19), /* name */
633 FALSE, /* partial_inplace */
634 0x7ffff, /* src_mask */
635 0x7ffff, /* dst_mask */
636 TRUE), /* pcrel_offset */
638 /* ADR: (S+A-P) & 0x1fffff */
639 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
643 TRUE, /* pc_relative */
645 complain_overflow_signed, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (ADR_PREL_LO21), /* name */
648 FALSE, /* partial_inplace */
649 0x1fffff, /* src_mask */
650 0x1fffff, /* dst_mask */
651 TRUE), /* pcrel_offset */
653 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
654 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
658 TRUE, /* pc_relative */
660 complain_overflow_signed, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
663 FALSE, /* partial_inplace */
664 0x1fffff, /* src_mask */
665 0x1fffff, /* dst_mask */
666 TRUE), /* pcrel_offset */
668 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
669 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
673 TRUE, /* pc_relative */
675 complain_overflow_dont, /* complain_on_overflow */
676 bfd_elf_generic_reloc, /* special_function */
677 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
678 FALSE, /* partial_inplace */
679 0x1fffff, /* src_mask */
680 0x1fffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
683 /* ADD: (S+A) & 0xfff [no overflow check] */
684 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
688 FALSE, /* pc_relative */
690 complain_overflow_dont, /* complain_on_overflow */
691 bfd_elf_generic_reloc, /* special_function */
692 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
693 FALSE, /* partial_inplace */
694 0x3ffc00, /* src_mask */
695 0x3ffc00, /* dst_mask */
696 FALSE), /* pcrel_offset */
698 /* LD/ST8: (S+A) & 0xfff */
699 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 FALSE, /* pc_relative */
705 complain_overflow_dont, /* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
708 FALSE, /* partial_inplace */
709 0xfff, /* src_mask */
710 0xfff, /* dst_mask */
711 FALSE), /* pcrel_offset */
713 /* Relocations for control-flow instructions. */
715 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
716 HOWTO (AARCH64_R (TSTBR14), /* type */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
720 TRUE, /* pc_relative */
722 complain_overflow_signed, /* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 AARCH64_R_STR (TSTBR14), /* name */
725 FALSE, /* partial_inplace */
726 0x3fff, /* src_mask */
727 0x3fff, /* dst_mask */
728 TRUE), /* pcrel_offset */
730 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
731 HOWTO (AARCH64_R (CONDBR19), /* type */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
735 TRUE, /* pc_relative */
737 complain_overflow_signed, /* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 AARCH64_R_STR (CONDBR19), /* name */
740 FALSE, /* partial_inplace */
741 0x7ffff, /* src_mask */
742 0x7ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
745 /* B: ((S+A-P) >> 2) & 0x3ffffff */
746 HOWTO (AARCH64_R (JUMP26), /* type */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
750 TRUE, /* pc_relative */
752 complain_overflow_signed, /* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 AARCH64_R_STR (JUMP26), /* name */
755 FALSE, /* partial_inplace */
756 0x3ffffff, /* src_mask */
757 0x3ffffff, /* dst_mask */
758 TRUE), /* pcrel_offset */
760 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
761 HOWTO (AARCH64_R (CALL26), /* type */
763 2, /* size (0 = byte, 1 = short, 2 = long) */
765 TRUE, /* pc_relative */
767 complain_overflow_signed, /* complain_on_overflow */
768 bfd_elf_generic_reloc, /* special_function */
769 AARCH64_R_STR (CALL26), /* name */
770 FALSE, /* partial_inplace */
771 0x3ffffff, /* src_mask */
772 0x3ffffff, /* dst_mask */
773 TRUE), /* pcrel_offset */
775 /* LD/ST16: (S+A) & 0xffe */
776 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
778 2, /* size (0 = byte, 1 = short, 2 = long) */
780 FALSE, /* pc_relative */
782 complain_overflow_dont, /* complain_on_overflow */
783 bfd_elf_generic_reloc, /* special_function */
784 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
785 FALSE, /* partial_inplace */
786 0xffe, /* src_mask */
787 0xffe, /* dst_mask */
788 FALSE), /* pcrel_offset */
790 /* LD/ST32: (S+A) & 0xffc */
791 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
795 FALSE, /* pc_relative */
797 complain_overflow_dont, /* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
800 FALSE, /* partial_inplace */
801 0xffc, /* src_mask */
802 0xffc, /* dst_mask */
803 FALSE), /* pcrel_offset */
805 /* LD/ST64: (S+A) & 0xff8 */
806 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 FALSE, /* pc_relative */
812 complain_overflow_dont, /* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
815 FALSE, /* partial_inplace */
816 0xff8, /* src_mask */
817 0xff8, /* dst_mask */
818 FALSE), /* pcrel_offset */
820 /* LD/ST128: (S+A) & 0xff0 */
821 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
825 FALSE, /* pc_relative */
827 complain_overflow_dont, /* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
830 FALSE, /* partial_inplace */
831 0xff0, /* src_mask */
832 0xff0, /* dst_mask */
833 FALSE), /* pcrel_offset */
835 /* Set a load-literal immediate field to bits
836 0x1FFFFC of G(S)-P */
837 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
839 2, /* size (0 = byte,1 = short,2 = long) */
841 TRUE, /* pc_relative */
843 complain_overflow_signed, /* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 AARCH64_R_STR (GOT_LD_PREL19), /* name */
846 FALSE, /* partial_inplace */
847 0xffffe0, /* src_mask */
848 0xffffe0, /* dst_mask */
849 TRUE), /* pcrel_offset */
851 /* Get to the page for the GOT entry for the symbol
852 (G(S) - P) using an ADRP instruction. */
853 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
855 2, /* size (0 = byte, 1 = short, 2 = long) */
857 TRUE, /* pc_relative */
859 complain_overflow_dont, /* complain_on_overflow */
860 bfd_elf_generic_reloc, /* special_function */
861 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
862 FALSE, /* partial_inplace */
863 0x1fffff, /* src_mask */
864 0x1fffff, /* dst_mask */
865 TRUE), /* pcrel_offset */
867 /* LD64: GOT offset G(S) & 0xff8 */
868 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
870 2, /* size (0 = byte, 1 = short, 2 = long) */
872 FALSE, /* pc_relative */
874 complain_overflow_dont, /* complain_on_overflow */
875 bfd_elf_generic_reloc, /* special_function */
876 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
877 FALSE, /* partial_inplace */
878 0xff8, /* src_mask */
879 0xff8, /* dst_mask */
880 FALSE), /* pcrel_offset */
882 /* LD32: GOT offset G(S) & 0xffc */
883 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
885 2, /* size (0 = byte, 1 = short, 2 = long) */
887 FALSE, /* pc_relative */
889 complain_overflow_dont, /* complain_on_overflow */
890 bfd_elf_generic_reloc, /* special_function */
891 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
892 FALSE, /* partial_inplace */
893 0xffc, /* src_mask */
894 0xffc, /* dst_mask */
895 FALSE), /* pcrel_offset */
897 /* Lower 16 bits of GOT offset for the symbol. */
898 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
900 2, /* size (0 = byte, 1 = short, 2 = long) */
902 FALSE, /* pc_relative */
904 complain_overflow_dont, /* complain_on_overflow */
905 bfd_elf_generic_reloc, /* special_function */
906 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
907 FALSE, /* partial_inplace */
908 0xffff, /* src_mask */
909 0xffff, /* dst_mask */
910 FALSE), /* pcrel_offset */
912 /* Higher 16 bits of GOT offset for the symbol. */
913 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
917 FALSE, /* pc_relative */
919 complain_overflow_unsigned, /* complain_on_overflow */
920 bfd_elf_generic_reloc, /* special_function */
921 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
922 FALSE, /* partial_inplace */
923 0xffff, /* src_mask */
924 0xffff, /* dst_mask */
925 FALSE), /* pcrel_offset */
927 /* LD64: GOT offset for the symbol. */
928 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
932 FALSE, /* pc_relative */
934 complain_overflow_unsigned, /* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
937 FALSE, /* partial_inplace */
938 0x7ff8, /* src_mask */
939 0x7ff8, /* dst_mask */
940 FALSE), /* pcrel_offset */
942 /* LD32: GOT offset to the page address of GOT table.
943 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
944 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
946 2, /* size (0 = byte, 1 = short, 2 = long) */
948 FALSE, /* pc_relative */
950 complain_overflow_unsigned, /* complain_on_overflow */
951 bfd_elf_generic_reloc, /* special_function */
952 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
953 FALSE, /* partial_inplace */
954 0x5ffc, /* src_mask */
955 0x5ffc, /* dst_mask */
956 FALSE), /* pcrel_offset */
958 /* LD64: GOT offset to the page address of GOT table.
959 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
960 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
964 FALSE, /* pc_relative */
966 complain_overflow_unsigned, /* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
969 FALSE, /* partial_inplace */
970 0x7ff8, /* src_mask */
971 0x7ff8, /* dst_mask */
972 FALSE), /* pcrel_offset */
974 /* Get to the page for the GOT entry for the symbol
975 (G(S) - P) using an ADRP instruction. */
976 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
978 2, /* size (0 = byte, 1 = short, 2 = long) */
980 TRUE, /* pc_relative */
982 complain_overflow_dont, /* complain_on_overflow */
983 bfd_elf_generic_reloc, /* special_function */
984 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
985 FALSE, /* partial_inplace */
986 0x1fffff, /* src_mask */
987 0x1fffff, /* dst_mask */
988 TRUE), /* pcrel_offset */
990 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
992 2, /* size (0 = byte, 1 = short, 2 = long) */
994 TRUE, /* pc_relative */
996 complain_overflow_dont, /* complain_on_overflow */
997 bfd_elf_generic_reloc, /* special_function */
998 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
999 FALSE, /* partial_inplace */
1000 0x1fffff, /* src_mask */
1001 0x1fffff, /* dst_mask */
1002 TRUE), /* pcrel_offset */
1004 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1005 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1007 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 FALSE, /* pc_relative */
1011 complain_overflow_dont, /* complain_on_overflow */
1012 bfd_elf_generic_reloc, /* special_function */
1013 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1014 FALSE, /* partial_inplace */
1015 0xfff, /* src_mask */
1016 0xfff, /* dst_mask */
1017 FALSE), /* pcrel_offset */
1019 /* Lower 16 bits of GOT offset to tls_index. */
1020 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 FALSE, /* pc_relative */
1026 complain_overflow_dont, /* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1029 FALSE, /* partial_inplace */
1030 0xffff, /* src_mask */
1031 0xffff, /* dst_mask */
1032 FALSE), /* pcrel_offset */
1034 /* Higher 16 bits of GOT offset to tls_index. */
1035 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1036 16, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 FALSE, /* pc_relative */
1041 complain_overflow_unsigned, /* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1044 FALSE, /* partial_inplace */
1045 0xffff, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1049 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1050 12, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 FALSE, /* pc_relative */
1055 complain_overflow_dont, /* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1058 FALSE, /* partial_inplace */
1059 0x1fffff, /* src_mask */
1060 0x1fffff, /* dst_mask */
1061 FALSE), /* pcrel_offset */
1063 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 FALSE, /* pc_relative */
1069 complain_overflow_dont, /* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1072 FALSE, /* partial_inplace */
1073 0xff8, /* src_mask */
1074 0xff8, /* dst_mask */
1075 FALSE), /* pcrel_offset */
1077 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 FALSE, /* pc_relative */
1083 complain_overflow_dont, /* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1086 FALSE, /* partial_inplace */
1087 0xffc, /* src_mask */
1088 0xffc, /* dst_mask */
1089 FALSE), /* pcrel_offset */
1091 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 FALSE, /* pc_relative */
1097 complain_overflow_dont, /* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1100 FALSE, /* partial_inplace */
1101 0x1ffffc, /* src_mask */
1102 0x1ffffc, /* dst_mask */
1103 FALSE), /* pcrel_offset */
1105 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 FALSE, /* pc_relative */
1111 complain_overflow_dont, /* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1114 FALSE, /* partial_inplace */
1115 0xffff, /* src_mask */
1116 0xffff, /* dst_mask */
1117 FALSE), /* pcrel_offset */
1119 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1120 16, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 FALSE, /* pc_relative */
1125 complain_overflow_unsigned, /* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1128 FALSE, /* partial_inplace */
1129 0xffff, /* src_mask */
1130 0xffff, /* dst_mask */
1131 FALSE), /* pcrel_offset */
1133 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1134 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1135 12, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 FALSE, /* pc_relative */
1140 complain_overflow_unsigned, /* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1143 FALSE, /* partial_inplace */
1144 0xfff, /* src_mask */
1145 0xfff, /* dst_mask */
1146 FALSE), /* pcrel_offset */
1148 /* Unsigned 12 bit byte offset to module TLS base address. */
1149 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1153 FALSE, /* pc_relative */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1158 FALSE, /* partial_inplace */
1159 0xfff, /* src_mask */
1160 0xfff, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1163 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1164 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1166 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 FALSE, /* pc_relative */
1170 complain_overflow_dont, /* complain_on_overflow */
1171 bfd_elf_generic_reloc, /* special_function */
1172 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1173 FALSE, /* partial_inplace */
1174 0xfff, /* src_mask */
1175 0xfff, /* dst_mask */
1176 FALSE), /* pcrel_offset */
1178 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1179 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 FALSE, /* pc_relative */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xfff, /* src_mask */
1190 0xfff, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1193 /* Get to the page for the GOT entry for the symbol
1194 (G(S) - P) using an ADRP instruction. */
1195 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1196 12, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1199 TRUE, /* pc_relative */
1201 complain_overflow_signed, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1209 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1211 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 TRUE, /* pc_relative */
1215 complain_overflow_signed, /* complain_on_overflow */
1216 bfd_elf_generic_reloc, /* special_function */
1217 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1218 FALSE, /* partial_inplace */
1219 0x1fffff, /* src_mask */
1220 0x1fffff, /* dst_mask */
1221 TRUE), /* pcrel_offset */
1223 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1224 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1226 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 FALSE, /* pc_relative */
1230 complain_overflow_unsigned, /* complain_on_overflow */
1231 bfd_elf_generic_reloc, /* special_function */
1232 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1233 FALSE, /* partial_inplace */
1234 0x1ffc00, /* src_mask */
1235 0x1ffc00, /* dst_mask */
1236 FALSE), /* pcrel_offset */
1238 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1239 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 FALSE, /* pc_relative */
1245 complain_overflow_dont, /* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1248 FALSE, /* partial_inplace */
1249 0x1ffc00, /* src_mask */
1250 0x1ffc00, /* dst_mask */
1251 FALSE), /* pcrel_offset */
1253 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1254 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 FALSE, /* pc_relative */
1260 complain_overflow_unsigned, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1263 FALSE, /* partial_inplace */
1264 0x3ffc00, /* src_mask */
1265 0x3ffc00, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1268 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1269 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 FALSE, /* pc_relative */
1275 complain_overflow_dont, /* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1278 FALSE, /* partial_inplace */
1279 0xffc00, /* src_mask */
1280 0xffc00, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1283 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1284 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 FALSE, /* pc_relative */
1290 complain_overflow_unsigned, /* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1293 FALSE, /* partial_inplace */
1294 0x3ffc00, /* src_mask */
1295 0x3ffc00, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1298 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1299 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1303 FALSE, /* pc_relative */
1305 complain_overflow_dont, /* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1308 FALSE, /* partial_inplace */
1309 0x7fc00, /* src_mask */
1310 0x7fc00, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1313 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1314 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1316 2, /* size (0 = byte, 1 = short, 2 = long) */
1318 FALSE, /* pc_relative */
1320 complain_overflow_unsigned, /* complain_on_overflow */
1321 bfd_elf_generic_reloc, /* special_function */
1322 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1323 FALSE, /* partial_inplace */
1324 0x3ffc00, /* src_mask */
1325 0x3ffc00, /* dst_mask */
1326 FALSE), /* pcrel_offset */
1328 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1329 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1331 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 FALSE, /* pc_relative */
1335 complain_overflow_dont, /* complain_on_overflow */
1336 bfd_elf_generic_reloc, /* special_function */
1337 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1338 FALSE, /* partial_inplace */
1339 0x3ffc00, /* src_mask */
1340 0x3ffc00, /* dst_mask */
1341 FALSE), /* pcrel_offset */
1343 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1344 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 FALSE, /* pc_relative */
1350 complain_overflow_unsigned, /* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1353 FALSE, /* partial_inplace */
1354 0xffff, /* src_mask */
1355 0xffff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1358 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1359 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 FALSE, /* pc_relative */
1365 complain_overflow_dont, /* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1368 FALSE, /* partial_inplace */
1369 0xffff, /* src_mask */
1370 0xffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1373 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1374 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1375 16, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE, /* pc_relative */
1380 complain_overflow_unsigned, /* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1383 FALSE, /* partial_inplace */
1384 0xffff, /* src_mask */
1385 0xffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1388 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1389 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1390 16, /* rightshift */
1391 2, /* size (0 = byte, 1 = short, 2 = long) */
1393 FALSE, /* pc_relative */
1395 complain_overflow_dont, /* complain_on_overflow */
1396 bfd_elf_generic_reloc, /* special_function */
1397 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1398 FALSE, /* partial_inplace */
1399 0xffff, /* src_mask */
1400 0xffff, /* dst_mask */
1401 FALSE), /* pcrel_offset */
1403 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1404 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1405 32, /* rightshift */
1406 2, /* size (0 = byte, 1 = short, 2 = long) */
1408 FALSE, /* pc_relative */
1410 complain_overflow_unsigned, /* complain_on_overflow */
1411 bfd_elf_generic_reloc, /* special_function */
1412 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1413 FALSE, /* partial_inplace */
1414 0xffff, /* src_mask */
1415 0xffff, /* dst_mask */
1416 FALSE), /* pcrel_offset */
1418 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1419 32, /* rightshift */
1420 2, /* size (0 = byte, 1 = short, 2 = long) */
1422 FALSE, /* pc_relative */
1424 complain_overflow_unsigned, /* complain_on_overflow */
1425 bfd_elf_generic_reloc, /* special_function */
1426 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1427 FALSE, /* partial_inplace */
1428 0xffff, /* src_mask */
1429 0xffff, /* dst_mask */
1430 FALSE), /* pcrel_offset */
1432 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1433 16, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1436 FALSE, /* pc_relative */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 bfd_elf_generic_reloc, /* special_function */
1440 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1441 FALSE, /* partial_inplace */
1442 0xffff, /* src_mask */
1443 0xffff, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1446 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1447 16, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 FALSE, /* pc_relative */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 bfd_elf_generic_reloc, /* special_function */
1454 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1455 FALSE, /* partial_inplace */
1456 0xffff, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1460 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1464 FALSE, /* pc_relative */
1466 complain_overflow_dont, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1474 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1478 FALSE, /* pc_relative */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffff, /* src_mask */
1485 0xffff, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1488 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1489 12, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 FALSE, /* pc_relative */
1494 complain_overflow_unsigned, /* complain_on_overflow */
1495 bfd_elf_generic_reloc, /* special_function */
1496 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1497 FALSE, /* partial_inplace */
1498 0xfff, /* src_mask */
1499 0xfff, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1502 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 FALSE, /* pc_relative */
1508 complain_overflow_unsigned, /* complain_on_overflow */
1509 bfd_elf_generic_reloc, /* special_function */
1510 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1511 FALSE, /* partial_inplace */
1512 0xfff, /* src_mask */
1513 0xfff, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1516 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1518 2, /* size (0 = byte, 1 = short, 2 = long) */
1520 FALSE, /* pc_relative */
1522 complain_overflow_dont, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1525 FALSE, /* partial_inplace */
1526 0xfff, /* src_mask */
1527 0xfff, /* dst_mask */
1528 FALSE), /* pcrel_offset */
1530 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1532 2, /* size (0 = byte, 1 = short, 2 = long) */
1534 TRUE, /* pc_relative */
1536 complain_overflow_dont, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1539 FALSE, /* partial_inplace */
1540 0x0ffffe0, /* src_mask */
1541 0x0ffffe0, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1544 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1546 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 TRUE, /* pc_relative */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 bfd_elf_generic_reloc, /* special_function */
1552 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1553 FALSE, /* partial_inplace */
1554 0x1fffff, /* src_mask */
1555 0x1fffff, /* dst_mask */
1556 TRUE), /* pcrel_offset */
1558 /* Get to the page for the GOT entry for the symbol
1559 (G(S) - P) using an ADRP instruction. */
1560 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1561 12, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 TRUE, /* pc_relative */
1566 complain_overflow_dont, /* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1569 FALSE, /* partial_inplace */
1570 0x1fffff, /* src_mask */
1571 0x1fffff, /* dst_mask */
1572 TRUE), /* pcrel_offset */
1574 /* LD64: GOT offset G(S) & 0xff8. */
1575 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE, /* pc_relative */
1581 complain_overflow_dont, /* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1584 FALSE, /* partial_inplace */
1585 0xff8, /* src_mask */
1586 0xff8, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1589 /* LD32: GOT offset G(S) & 0xffc. */
1590 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1594 FALSE, /* pc_relative */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffc, /* src_mask */
1601 0xffc, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1604 /* ADD: GOT offset G(S) & 0xfff. */
1605 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1607 2, /* size (0 = byte, 1 = short, 2 = long) */
1609 FALSE, /* pc_relative */
1611 complain_overflow_dont,/* complain_on_overflow */
1612 bfd_elf_generic_reloc, /* special_function */
1613 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1614 FALSE, /* partial_inplace */
1615 0xfff, /* src_mask */
1616 0xfff, /* dst_mask */
1617 FALSE), /* pcrel_offset */
1619 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1620 16, /* rightshift */
1621 2, /* size (0 = byte, 1 = short, 2 = long) */
1623 FALSE, /* pc_relative */
1625 complain_overflow_unsigned, /* complain_on_overflow */
1626 bfd_elf_generic_reloc, /* special_function */
1627 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1628 FALSE, /* partial_inplace */
1629 0xffff, /* src_mask */
1630 0xffff, /* dst_mask */
1631 FALSE), /* pcrel_offset */
1633 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1635 2, /* size (0 = byte, 1 = short, 2 = long) */
1637 FALSE, /* pc_relative */
1639 complain_overflow_dont, /* complain_on_overflow */
1640 bfd_elf_generic_reloc, /* special_function */
1641 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1642 FALSE, /* partial_inplace */
1643 0xffff, /* src_mask */
1644 0xffff, /* dst_mask */
1645 FALSE), /* pcrel_offset */
1647 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1651 FALSE, /* pc_relative */
1653 complain_overflow_dont, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSDESC_LDR), /* name */
1656 FALSE, /* partial_inplace */
1659 FALSE), /* pcrel_offset */
1661 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1663 2, /* size (0 = byte, 1 = short, 2 = long) */
1665 FALSE, /* pc_relative */
1667 complain_overflow_dont, /* complain_on_overflow */
1668 bfd_elf_generic_reloc, /* special_function */
1669 AARCH64_R_STR (TLSDESC_ADD), /* name */
1670 FALSE, /* partial_inplace */
1673 FALSE), /* pcrel_offset */
1675 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1677 2, /* size (0 = byte, 1 = short, 2 = long) */
1679 FALSE, /* pc_relative */
1681 complain_overflow_dont, /* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 AARCH64_R_STR (TLSDESC_CALL), /* name */
1684 FALSE, /* partial_inplace */
1687 FALSE), /* pcrel_offset */
1689 HOWTO (AARCH64_R (COPY), /* type */
1691 2, /* size (0 = byte, 1 = short, 2 = long) */
1693 FALSE, /* pc_relative */
1695 complain_overflow_bitfield, /* complain_on_overflow */
1696 bfd_elf_generic_reloc, /* special_function */
1697 AARCH64_R_STR (COPY), /* name */
1698 TRUE, /* partial_inplace */
1699 0xffffffff, /* src_mask */
1700 0xffffffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1703 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1705 2, /* size (0 = byte, 1 = short, 2 = long) */
1707 FALSE, /* pc_relative */
1709 complain_overflow_bitfield, /* complain_on_overflow */
1710 bfd_elf_generic_reloc, /* special_function */
1711 AARCH64_R_STR (GLOB_DAT), /* name */
1712 TRUE, /* partial_inplace */
1713 0xffffffff, /* src_mask */
1714 0xffffffff, /* dst_mask */
1715 FALSE), /* pcrel_offset */
1717 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1719 2, /* size (0 = byte, 1 = short, 2 = long) */
1721 FALSE, /* pc_relative */
1723 complain_overflow_bitfield, /* complain_on_overflow */
1724 bfd_elf_generic_reloc, /* special_function */
1725 AARCH64_R_STR (JUMP_SLOT), /* name */
1726 TRUE, /* partial_inplace */
1727 0xffffffff, /* src_mask */
1728 0xffffffff, /* dst_mask */
1729 FALSE), /* pcrel_offset */
1731 HOWTO (AARCH64_R (RELATIVE), /* type */
1733 2, /* size (0 = byte, 1 = short, 2 = long) */
1735 FALSE, /* pc_relative */
1737 complain_overflow_bitfield, /* complain_on_overflow */
1738 bfd_elf_generic_reloc, /* special_function */
1739 AARCH64_R_STR (RELATIVE), /* name */
1740 TRUE, /* partial_inplace */
1741 ALL_ONES, /* src_mask */
1742 ALL_ONES, /* dst_mask */
1743 FALSE), /* pcrel_offset */
1745 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1747 2, /* size (0 = byte, 1 = short, 2 = long) */
1749 FALSE, /* pc_relative */
1751 complain_overflow_dont, /* complain_on_overflow */
1752 bfd_elf_generic_reloc, /* special_function */
1754 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1756 AARCH64_R_STR (TLS_DTPMOD), /* name */
1758 FALSE, /* partial_inplace */
1760 ALL_ONES, /* dst_mask */
1761 FALSE), /* pc_reloffset */
1763 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1765 2, /* size (0 = byte, 1 = short, 2 = long) */
1767 FALSE, /* pc_relative */
1769 complain_overflow_dont, /* complain_on_overflow */
1770 bfd_elf_generic_reloc, /* special_function */
1772 AARCH64_R_STR (TLS_DTPREL64), /* name */
1774 AARCH64_R_STR (TLS_DTPREL), /* name */
1776 FALSE, /* partial_inplace */
1778 ALL_ONES, /* dst_mask */
1779 FALSE), /* pcrel_offset */
1781 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1785 FALSE, /* pc_relative */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1790 AARCH64_R_STR (TLS_TPREL64), /* name */
1792 AARCH64_R_STR (TLS_TPREL), /* name */
1794 FALSE, /* partial_inplace */
1796 ALL_ONES, /* dst_mask */
1797 FALSE), /* pcrel_offset */
1799 HOWTO (AARCH64_R (TLSDESC), /* type */
1801 2, /* size (0 = byte, 1 = short, 2 = long) */
1803 FALSE, /* pc_relative */
1805 complain_overflow_dont, /* complain_on_overflow */
1806 bfd_elf_generic_reloc, /* special_function */
1807 AARCH64_R_STR (TLSDESC), /* name */
1808 FALSE, /* partial_inplace */
1810 ALL_ONES, /* dst_mask */
1811 FALSE), /* pcrel_offset */
1813 HOWTO (AARCH64_R (IRELATIVE), /* type */
1815 2, /* size (0 = byte, 1 = short, 2 = long) */
1817 FALSE, /* pc_relative */
1819 complain_overflow_bitfield, /* complain_on_overflow */
1820 bfd_elf_generic_reloc, /* special_function */
1821 AARCH64_R_STR (IRELATIVE), /* name */
1822 FALSE, /* partial_inplace */
1824 ALL_ONES, /* dst_mask */
1825 FALSE), /* pcrel_offset */
1830 static reloc_howto_type elfNN_aarch64_howto_none =
1831 HOWTO (R_AARCH64_NONE, /* type */
1833 3, /* size (0 = byte, 1 = short, 2 = long) */
1835 FALSE, /* pc_relative */
1837 complain_overflow_dont,/* complain_on_overflow */
1838 bfd_elf_generic_reloc, /* special_function */
1839 "R_AARCH64_NONE", /* name */
1840 FALSE, /* partial_inplace */
1843 FALSE); /* pcrel_offset */
1845 /* Given HOWTO, return the bfd internal relocation enumerator. */
1847 static bfd_reloc_code_real_type
1848 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1851 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1852 const ptrdiff_t offset
1853 = howto - elfNN_aarch64_howto_table;
1855 if (offset > 0 && offset < size - 1)
1856 return BFD_RELOC_AARCH64_RELOC_START + offset;
1858 if (howto == &elfNN_aarch64_howto_none)
1859 return BFD_RELOC_AARCH64_NONE;
1861 return BFD_RELOC_AARCH64_RELOC_START;
1864 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1866 static bfd_reloc_code_real_type
1867 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1869 static bfd_boolean initialized_p = FALSE;
1870 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1871 static unsigned int offsets[R_AARCH64_end];
1877 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1878 if (elfNN_aarch64_howto_table[i].type != 0)
1879 offsets[elfNN_aarch64_howto_table[i].type] = i;
1881 initialized_p = TRUE;
1884 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1885 return BFD_RELOC_AARCH64_NONE;
1887 /* PR 17512: file: b371e70a. */
1888 if (r_type >= R_AARCH64_end)
1890 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1891 bfd_set_error (bfd_error_bad_value);
1892 return BFD_RELOC_AARCH64_NONE;
1895 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1898 struct elf_aarch64_reloc_map
1900 bfd_reloc_code_real_type from;
1901 bfd_reloc_code_real_type to;
1904 /* Map bfd generic reloc to AArch64-specific reloc. */
1905 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1907 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1909 /* Basic data relocations. */
1910 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1911 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1912 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1913 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1914 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1915 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1916 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1919 /* Given the bfd internal relocation enumerator in CODE, return the
1920 corresponding howto entry. */
1922 static reloc_howto_type *
1923 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1927 /* Convert bfd generic reloc to AArch64-specific reloc. */
1928 if (code < BFD_RELOC_AARCH64_RELOC_START
1929 || code > BFD_RELOC_AARCH64_RELOC_END)
1930 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1931 if (elf_aarch64_reloc_map[i].from == code)
1933 code = elf_aarch64_reloc_map[i].to;
1937 if (code > BFD_RELOC_AARCH64_RELOC_START
1938 && code < BFD_RELOC_AARCH64_RELOC_END)
1939 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1940 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1942 if (code == BFD_RELOC_AARCH64_NONE)
1943 return &elfNN_aarch64_howto_none;
1948 static reloc_howto_type *
1949 elfNN_aarch64_howto_from_type (unsigned int r_type)
1951 bfd_reloc_code_real_type val;
1952 reloc_howto_type *howto;
1957 bfd_set_error (bfd_error_bad_value);
1962 if (r_type == R_AARCH64_NONE)
1963 return &elfNN_aarch64_howto_none;
1965 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1966 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1971 bfd_set_error (bfd_error_bad_value);
1976 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1977 Elf_Internal_Rela *elf_reloc)
1979 unsigned int r_type;
1981 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1982 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1985 static reloc_howto_type *
1986 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1987 bfd_reloc_code_real_type code)
1989 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1994 bfd_set_error (bfd_error_bad_value);
1998 static reloc_howto_type *
1999 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2004 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2005 if (elfNN_aarch64_howto_table[i].name != NULL
2006 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2007 return &elfNN_aarch64_howto_table[i];
2012 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2013 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2014 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2015 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2017 /* The linker script knows the section names for placement.
2018 The entry_names are used to do simple name mangling on the stubs.
2019 Given a function name, and its type, the stub can be found. The
2020 name can be changed. The only requirement is the %s be present. */
2021 #define STUB_ENTRY_NAME "__%s_veneer"
2023 /* The name of the dynamic interpreter. This is put in the .interp
2025 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2027 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2028 (((1 << 25) - 1) << 2)
2029 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2032 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2033 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2036 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2038 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2039 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2043 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2045 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2046 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2047 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2050 static const uint32_t aarch64_adrp_branch_stub [] =
2052 0x90000010, /* adrp ip0, X */
2053 /* R_AARCH64_ADR_HI21_PCREL(X) */
2054 0x91000210, /* add ip0, ip0, :lo12:X */
2055 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2056 0xd61f0200, /* br ip0 */
2059 static const uint32_t aarch64_long_branch_stub[] =
2062 0x58000090, /* ldr ip0, 1f */
2064 0x18000090, /* ldr wip0, 1f */
2066 0x10000011, /* adr ip1, #0 */
2067 0x8b110210, /* add ip0, ip0, ip1 */
2068 0xd61f0200, /* br ip0 */
2069 0x00000000, /* 1: .xword or .word
2070 R_AARCH64_PRELNN(X) + 12
2075 static const uint32_t aarch64_erratum_835769_stub[] =
2077 0x00000000, /* Placeholder for multiply accumulate. */
2078 0x14000000, /* b <label> */
2081 static const uint32_t aarch64_erratum_843419_stub[] =
2083 0x00000000, /* Placeholder for LDR instruction. */
2084 0x14000000, /* b <label> */
2087 /* Section name for stubs is the associated section name plus this
2089 #define STUB_SUFFIX ".stub"
2091 enum elf_aarch64_stub_type
2094 aarch64_stub_adrp_branch,
2095 aarch64_stub_long_branch,
2096 aarch64_stub_erratum_835769_veneer,
2097 aarch64_stub_erratum_843419_veneer,
2100 struct elf_aarch64_stub_hash_entry
2102 /* Base hash table entry structure. */
2103 struct bfd_hash_entry root;
2105 /* The stub section. */
2108 /* Offset within stub_sec of the beginning of this stub. */
2109 bfd_vma stub_offset;
2111 /* Given the symbol's value and its section we can determine its final
2112 value when building the stubs (so the stub knows where to jump). */
2113 bfd_vma target_value;
2114 asection *target_section;
2116 enum elf_aarch64_stub_type stub_type;
2118 /* The symbol table entry, if any, that this was derived from. */
2119 struct elf_aarch64_link_hash_entry *h;
2121 /* Destination symbol type */
2122 unsigned char st_type;
2124 /* Where this stub is being called from, or, in the case of combined
2125 stub sections, the first input section in the group. */
2128 /* The name for the local symbol at the start of this stub. The
2129 stub name in the hash table has to be unique; this does not, so
2130 it can be friendlier. */
2133 /* The instruction which caused this stub to be generated (only valid for
2134 erratum 835769 workaround stubs at present). */
2135 uint32_t veneered_insn;
2137 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2138 bfd_vma adrp_offset;
2141 /* Used to build a map of a section. This is required for mixed-endian
2144 typedef struct elf_elf_section_map
2149 elf_aarch64_section_map;
2152 typedef struct _aarch64_elf_section_data
2154 struct bfd_elf_section_data elf;
2155 unsigned int mapcount;
2156 unsigned int mapsize;
2157 elf_aarch64_section_map *map;
2159 _aarch64_elf_section_data;
2161 #define elf_aarch64_section_data(sec) \
2162 ((_aarch64_elf_section_data *) elf_section_data (sec))
2164 /* The size of the thread control block which is defined to be two pointers. */
2165 #define TCB_SIZE (ARCH_SIZE/8)*2
2167 struct elf_aarch64_local_symbol
2169 unsigned int got_type;
2170 bfd_signed_vma got_refcount;
2173 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2174 offset is from the end of the jump table and reserved entries
2177 The magic value (bfd_vma) -1 indicates that an offset has not be
2179 bfd_vma tlsdesc_got_jump_table_offset;
2182 struct elf_aarch64_obj_tdata
2184 struct elf_obj_tdata root;
2186 /* local symbol descriptors */
2187 struct elf_aarch64_local_symbol *locals;
2189 /* Zero to warn when linking objects with incompatible enum sizes. */
2190 int no_enum_size_warning;
2192 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2193 int no_wchar_size_warning;
2196 #define elf_aarch64_tdata(bfd) \
2197 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2199 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2201 #define is_aarch64_elf(bfd) \
2202 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2203 && elf_tdata (bfd) != NULL \
2204 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2207 elfNN_aarch64_mkobject (bfd *abfd)
2209 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2213 #define elf_aarch64_hash_entry(ent) \
2214 ((struct elf_aarch64_link_hash_entry *)(ent))
2216 #define GOT_UNKNOWN 0
2217 #define GOT_NORMAL 1
2218 #define GOT_TLS_GD 2
2219 #define GOT_TLS_IE 4
2220 #define GOT_TLSDESC_GD 8
2222 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2224 /* AArch64 ELF linker hash entry. */
2225 struct elf_aarch64_link_hash_entry
2227 struct elf_link_hash_entry root;
2229 /* Track dynamic relocs copied for this symbol. */
2230 struct elf_dyn_relocs *dyn_relocs;
2232 /* Since PLT entries have variable size, we need to record the
2233 index into .got.plt instead of recomputing it from the PLT
2235 bfd_signed_vma plt_got_offset;
2237 /* Bit mask representing the type of GOT entry(s) if any required by
2239 unsigned int got_type;
2241 /* A pointer to the most recently used stub hash entry against this
2243 struct elf_aarch64_stub_hash_entry *stub_cache;
2245 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2246 is from the end of the jump table and reserved entries within the PLTGOT.
2248 The magic value (bfd_vma) -1 indicates that an offset has not
2250 bfd_vma tlsdesc_got_jump_table_offset;
2254 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2256 unsigned long r_symndx)
2259 return elf_aarch64_hash_entry (h)->got_type;
2261 if (! elf_aarch64_locals (abfd))
2264 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2267 /* Get the AArch64 elf linker hash table from a link_info structure. */
2268 #define elf_aarch64_hash_table(info) \
2269 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2271 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf_aarch64_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2275 /* AArch64 ELF linker hash table. */
2276 struct elf_aarch64_link_hash_table
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2281 /* Nonzero to force PIC branch veneers. */
2284 /* Fix erratum 835769. */
2285 int fix_erratum_835769;
2287 /* Fix erratum 843419. */
2288 int fix_erratum_843419;
2290 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2291 int fix_erratum_843419_adr;
2293 /* Don't apply link-time values for dynamic relocations. */
2294 int no_apply_dynamic_relocs;
2296 /* The number of bytes in the initial entry in the PLT. */
2297 bfd_size_type plt_header_size;
2299 /* The number of bytes in the subsequent PLT etries. */
2300 bfd_size_type plt_entry_size;
2302 /* Small local sym cache. */
2303 struct sym_cache sym_cache;
2305 /* For convenience in allocate_dynrelocs. */
2308 /* The amount of space used by the reserved portion of the sgotplt
2309 section, plus whatever space is used by the jump slots. */
2310 bfd_vma sgotplt_jump_table_size;
2312 /* The stub hash table. */
2313 struct bfd_hash_table stub_hash_table;
2315 /* Linker stub bfd. */
2318 /* Linker call-backs. */
2319 asection *(*add_stub_section) (const char *, asection *);
2320 void (*layout_sections_again) (void);
2322 /* Array to keep track of which stub sections have been created, and
2323 information on stub grouping. */
2326 /* This is the section to which stubs in the group will be
2329 /* The stub section. */
2333 /* Assorted information used by elfNN_aarch64_size_stubs. */
2334 unsigned int bfd_count;
2335 unsigned int top_index;
2336 asection **input_list;
2338 /* The offset into splt of the PLT entry for the TLS descriptor
2339 resolver. Special values are 0, if not necessary (or not found
2340 to be necessary yet), and -1 if needed but not determined
2342 bfd_vma tlsdesc_plt;
2344 /* The GOT offset for the lazy trampoline. Communicated to the
2345 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2346 indicates an offset is not allocated. */
2347 bfd_vma dt_tlsdesc_got;
2349 /* Used by local STT_GNU_IFUNC symbols. */
2350 htab_t loc_hash_table;
2351 void * loc_hash_memory;
2354 /* Create an entry in an AArch64 ELF linker hash table. */
2356 static struct bfd_hash_entry *
2357 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2358 struct bfd_hash_table *table,
2361 struct elf_aarch64_link_hash_entry *ret =
2362 (struct elf_aarch64_link_hash_entry *) entry;
2364 /* Allocate the structure if it has not already been allocated by a
2367 ret = bfd_hash_allocate (table,
2368 sizeof (struct elf_aarch64_link_hash_entry));
2370 return (struct bfd_hash_entry *) ret;
2372 /* Call the allocation method of the superclass. */
2373 ret = ((struct elf_aarch64_link_hash_entry *)
2374 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2378 ret->dyn_relocs = NULL;
2379 ret->got_type = GOT_UNKNOWN;
2380 ret->plt_got_offset = (bfd_vma) - 1;
2381 ret->stub_cache = NULL;
2382 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2385 return (struct bfd_hash_entry *) ret;
2388 /* Initialize an entry in the stub hash table. */
2390 static struct bfd_hash_entry *
2391 stub_hash_newfunc (struct bfd_hash_entry *entry,
2392 struct bfd_hash_table *table, const char *string)
2394 /* Allocate the structure if it has not already been allocated by a
2398 entry = bfd_hash_allocate (table,
2400 elf_aarch64_stub_hash_entry));
2405 /* Call the allocation method of the superclass. */
2406 entry = bfd_hash_newfunc (entry, table, string);
2409 struct elf_aarch64_stub_hash_entry *eh;
2411 /* Initialize the local fields. */
2412 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2413 eh->adrp_offset = 0;
2414 eh->stub_sec = NULL;
2415 eh->stub_offset = 0;
2416 eh->target_value = 0;
2417 eh->target_section = NULL;
2418 eh->stub_type = aarch64_stub_none;
2426 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2427 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2428 as global symbol. We reuse indx and dynstr_index for local symbol
2429 hash since they aren't used by global symbols in this backend. */
2432 elfNN_aarch64_local_htab_hash (const void *ptr)
2434 struct elf_link_hash_entry *h
2435 = (struct elf_link_hash_entry *) ptr;
2436 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2439 /* Compare local hash entries. */
2442 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2444 struct elf_link_hash_entry *h1
2445 = (struct elf_link_hash_entry *) ptr1;
2446 struct elf_link_hash_entry *h2
2447 = (struct elf_link_hash_entry *) ptr2;
2449 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2452 /* Find and/or create a hash entry for local symbol. */
2454 static struct elf_link_hash_entry *
2455 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2456 bfd *abfd, const Elf_Internal_Rela *rel,
2459 struct elf_aarch64_link_hash_entry e, *ret;
2460 asection *sec = abfd->sections;
2461 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2462 ELFNN_R_SYM (rel->r_info));
2465 e.root.indx = sec->id;
2466 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2467 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2468 create ? INSERT : NO_INSERT);
2475 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2479 ret = (struct elf_aarch64_link_hash_entry *)
2480 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2481 sizeof (struct elf_aarch64_link_hash_entry));
2484 memset (ret, 0, sizeof (*ret));
2485 ret->root.indx = sec->id;
2486 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2487 ret->root.dynindx = -1;
2493 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2496 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2497 struct elf_link_hash_entry *dir,
2498 struct elf_link_hash_entry *ind)
2500 struct elf_aarch64_link_hash_entry *edir, *eind;
2502 edir = (struct elf_aarch64_link_hash_entry *) dir;
2503 eind = (struct elf_aarch64_link_hash_entry *) ind;
2505 if (eind->dyn_relocs != NULL)
2507 if (edir->dyn_relocs != NULL)
2509 struct elf_dyn_relocs **pp;
2510 struct elf_dyn_relocs *p;
2512 /* Add reloc counts against the indirect sym to the direct sym
2513 list. Merge any entries against the same section. */
2514 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2516 struct elf_dyn_relocs *q;
2518 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2519 if (q->sec == p->sec)
2521 q->pc_count += p->pc_count;
2522 q->count += p->count;
2529 *pp = edir->dyn_relocs;
2532 edir->dyn_relocs = eind->dyn_relocs;
2533 eind->dyn_relocs = NULL;
2536 if (ind->root.type == bfd_link_hash_indirect)
2538 /* Copy over PLT info. */
2539 if (dir->got.refcount <= 0)
2541 edir->got_type = eind->got_type;
2542 eind->got_type = GOT_UNKNOWN;
2546 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2549 /* Destroy an AArch64 elf linker hash table. */
2552 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2554 struct elf_aarch64_link_hash_table *ret
2555 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2557 if (ret->loc_hash_table)
2558 htab_delete (ret->loc_hash_table);
2559 if (ret->loc_hash_memory)
2560 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2562 bfd_hash_table_free (&ret->stub_hash_table);
2563 _bfd_elf_link_hash_table_free (obfd);
2566 /* Create an AArch64 elf linker hash table. */
2568 static struct bfd_link_hash_table *
2569 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2571 struct elf_aarch64_link_hash_table *ret;
2572 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2574 ret = bfd_zmalloc (amt);
2578 if (!_bfd_elf_link_hash_table_init
2579 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2580 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2586 ret->plt_header_size = PLT_ENTRY_SIZE;
2587 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2589 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2591 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2592 sizeof (struct elf_aarch64_stub_hash_entry)))
2594 _bfd_elf_link_hash_table_free (abfd);
2598 ret->loc_hash_table = htab_try_create (1024,
2599 elfNN_aarch64_local_htab_hash,
2600 elfNN_aarch64_local_htab_eq,
2602 ret->loc_hash_memory = objalloc_create ();
2603 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2605 elfNN_aarch64_link_hash_table_free (abfd);
2608 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2610 return &ret->root.root;
2614 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2615 bfd_vma offset, bfd_vma value)
2617 reloc_howto_type *howto;
2620 howto = elfNN_aarch64_howto_from_type (r_type);
2621 place = (input_section->output_section->vma + input_section->output_offset
2624 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2625 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2626 return _bfd_aarch64_elf_put_addend (input_bfd,
2627 input_section->contents + offset, r_type,
2631 static enum elf_aarch64_stub_type
2632 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2634 if (aarch64_valid_for_adrp_p (value, place))
2635 return aarch64_stub_adrp_branch;
2636 return aarch64_stub_long_branch;
2639 /* Determine the type of stub needed, if any, for a call. */
2641 static enum elf_aarch64_stub_type
2642 aarch64_type_of_stub (asection *input_sec,
2643 const Elf_Internal_Rela *rel,
2645 unsigned char st_type,
2646 bfd_vma destination)
2649 bfd_signed_vma branch_offset;
2650 unsigned int r_type;
2651 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2653 if (st_type != STT_FUNC
2654 && (sym_sec == input_sec))
2657 /* Determine where the call point is. */
2658 location = (input_sec->output_offset
2659 + input_sec->output_section->vma + rel->r_offset);
2661 branch_offset = (bfd_signed_vma) (destination - location);
2663 r_type = ELFNN_R_TYPE (rel->r_info);
2665 /* We don't want to redirect any old unconditional jump in this way,
2666 only one which is being used for a sibcall, where it is
2667 acceptable for the IP0 and IP1 registers to be clobbered. */
2668 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2669 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2670 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2672 stub_type = aarch64_stub_long_branch;
2678 /* Build a name for an entry in the stub hash table. */
2681 elfNN_aarch64_stub_name (const asection *input_section,
2682 const asection *sym_sec,
2683 const struct elf_aarch64_link_hash_entry *hash,
2684 const Elf_Internal_Rela *rel)
2691 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2692 stub_name = bfd_malloc (len);
2693 if (stub_name != NULL)
2694 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2695 (unsigned int) input_section->id,
2696 hash->root.root.root.string,
2701 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2702 stub_name = bfd_malloc (len);
2703 if (stub_name != NULL)
2704 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2705 (unsigned int) input_section->id,
2706 (unsigned int) sym_sec->id,
2707 (unsigned int) ELFNN_R_SYM (rel->r_info),
2714 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2715 executable PLT slots where the executable never takes the address of those
2716 functions, the function symbols are not added to the hash table. */
2719 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2721 if (h->plt.offset != (bfd_vma) -1
2723 && !h->pointer_equality_needed)
2726 return _bfd_elf_hash_symbol (h);
2730 /* Look up an entry in the stub hash. Stub entries are cached because
2731 creating the stub name takes a bit of time. */
2733 static struct elf_aarch64_stub_hash_entry *
2734 elfNN_aarch64_get_stub_entry (const asection *input_section,
2735 const asection *sym_sec,
2736 struct elf_link_hash_entry *hash,
2737 const Elf_Internal_Rela *rel,
2738 struct elf_aarch64_link_hash_table *htab)
2740 struct elf_aarch64_stub_hash_entry *stub_entry;
2741 struct elf_aarch64_link_hash_entry *h =
2742 (struct elf_aarch64_link_hash_entry *) hash;
2743 const asection *id_sec;
2745 if ((input_section->flags & SEC_CODE) == 0)
2748 /* If this input section is part of a group of sections sharing one
2749 stub section, then use the id of the first section in the group.
2750 Stub names need to include a section id, as there may well be
2751 more than one stub used to reach say, printf, and we need to
2752 distinguish between them. */
2753 id_sec = htab->stub_group[input_section->id].link_sec;
2755 if (h != NULL && h->stub_cache != NULL
2756 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2758 stub_entry = h->stub_cache;
2764 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2765 if (stub_name == NULL)
2768 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2769 stub_name, FALSE, FALSE);
2771 h->stub_cache = stub_entry;
2780 /* Create a stub section. */
2783 _bfd_aarch64_create_stub_section (asection *section,
2784 struct elf_aarch64_link_hash_table *htab)
2790 namelen = strlen (section->name);
2791 len = namelen + sizeof (STUB_SUFFIX);
2792 s_name = bfd_alloc (htab->stub_bfd, len);
2796 memcpy (s_name, section->name, namelen);
2797 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2798 return (*htab->add_stub_section) (s_name, section);
2802 /* Find or create a stub section for a link section.
2804 Fix or create the stub section used to collect stubs attached to
2805 the specified link section. */
2808 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2809 struct elf_aarch64_link_hash_table *htab)
2811 if (htab->stub_group[link_section->id].stub_sec == NULL)
2812 htab->stub_group[link_section->id].stub_sec
2813 = _bfd_aarch64_create_stub_section (link_section, htab);
2814 return htab->stub_group[link_section->id].stub_sec;
2818 /* Find or create a stub section in the stub group for an input
2822 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2823 struct elf_aarch64_link_hash_table *htab)
2825 asection *link_sec = htab->stub_group[section->id].link_sec;
2826 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2830 /* Add a new stub entry in the stub group associated with an input
2831 section to the stub hash. Not all fields of the new stub entry are
2834 static struct elf_aarch64_stub_hash_entry *
2835 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2837 struct elf_aarch64_link_hash_table *htab)
2841 struct elf_aarch64_stub_hash_entry *stub_entry;
2843 link_sec = htab->stub_group[section->id].link_sec;
2844 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2846 /* Enter this entry into the linker stub hash table. */
2847 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2849 if (stub_entry == NULL)
2851 /* xgettext:c-format */
2852 _bfd_error_handler (_("%B: cannot create stub entry %s"),
2853 section->owner, stub_name);
2857 stub_entry->stub_sec = stub_sec;
2858 stub_entry->stub_offset = 0;
2859 stub_entry->id_sec = link_sec;
2864 /* Add a new stub entry in the final stub section to the stub hash.
2865 Not all fields of the new stub entry are initialised. */
2867 static struct elf_aarch64_stub_hash_entry *
2868 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2869 asection *link_section,
2870 struct elf_aarch64_link_hash_table *htab)
2873 struct elf_aarch64_stub_hash_entry *stub_entry;
2875 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2876 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2878 if (stub_entry == NULL)
2880 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
2884 stub_entry->stub_sec = stub_sec;
2885 stub_entry->stub_offset = 0;
2886 stub_entry->id_sec = link_section;
2893 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2894 void *in_arg ATTRIBUTE_UNUSED)
2896 struct elf_aarch64_stub_hash_entry *stub_entry;
2901 bfd_vma veneered_insn_loc;
2902 bfd_vma veneer_entry_loc;
2903 bfd_signed_vma branch_offset = 0;
2904 unsigned int template_size;
2905 const uint32_t *template;
2908 /* Massage our args to the form they really have. */
2909 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2911 stub_sec = stub_entry->stub_sec;
2913 /* Make a note of the offset within the stubs for this entry. */
2914 stub_entry->stub_offset = stub_sec->size;
2915 loc = stub_sec->contents + stub_entry->stub_offset;
2917 stub_bfd = stub_sec->owner;
2919 /* This is the address of the stub destination. */
2920 sym_value = (stub_entry->target_value
2921 + stub_entry->target_section->output_offset
2922 + stub_entry->target_section->output_section->vma);
2924 if (stub_entry->stub_type == aarch64_stub_long_branch)
2926 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2927 + stub_sec->output_offset);
2929 /* See if we can relax the stub. */
2930 if (aarch64_valid_for_adrp_p (sym_value, place))
2931 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2934 switch (stub_entry->stub_type)
2936 case aarch64_stub_adrp_branch:
2937 template = aarch64_adrp_branch_stub;
2938 template_size = sizeof (aarch64_adrp_branch_stub);
2940 case aarch64_stub_long_branch:
2941 template = aarch64_long_branch_stub;
2942 template_size = sizeof (aarch64_long_branch_stub);
2944 case aarch64_stub_erratum_835769_veneer:
2945 template = aarch64_erratum_835769_stub;
2946 template_size = sizeof (aarch64_erratum_835769_stub);
2948 case aarch64_stub_erratum_843419_veneer:
2949 template = aarch64_erratum_843419_stub;
2950 template_size = sizeof (aarch64_erratum_843419_stub);
2956 for (i = 0; i < (template_size / sizeof template[0]); i++)
2958 bfd_putl32 (template[i], loc);
2962 template_size = (template_size + 7) & ~7;
2963 stub_sec->size += template_size;
2965 switch (stub_entry->stub_type)
2967 case aarch64_stub_adrp_branch:
2968 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2969 stub_entry->stub_offset, sym_value))
2970 /* The stub would not have been relaxed if the offset was out
2974 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2975 stub_entry->stub_offset + 4, sym_value))
2979 case aarch64_stub_long_branch:
2980 /* We want the value relative to the address 12 bytes back from the
2982 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2983 stub_entry->stub_offset + 16, sym_value + 12))
2987 case aarch64_stub_erratum_835769_veneer:
2988 veneered_insn_loc = stub_entry->target_section->output_section->vma
2989 + stub_entry->target_section->output_offset
2990 + stub_entry->target_value;
2991 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2992 + stub_entry->stub_sec->output_offset
2993 + stub_entry->stub_offset;
2994 branch_offset = veneered_insn_loc - veneer_entry_loc;
2995 branch_offset >>= 2;
2996 branch_offset &= 0x3ffffff;
2997 bfd_putl32 (stub_entry->veneered_insn,
2998 stub_sec->contents + stub_entry->stub_offset);
2999 bfd_putl32 (template[1] | branch_offset,
3000 stub_sec->contents + stub_entry->stub_offset + 4);
3003 case aarch64_stub_erratum_843419_veneer:
3004 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3005 stub_entry->stub_offset + 4, sym_value + 4))
3016 /* As above, but don't actually build the stub. Just bump offset so
3017 we know stub section sizes. */
3020 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3021 void *in_arg ATTRIBUTE_UNUSED)
3023 struct elf_aarch64_stub_hash_entry *stub_entry;
3026 /* Massage our args to the form they really have. */
3027 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3029 switch (stub_entry->stub_type)
3031 case aarch64_stub_adrp_branch:
3032 size = sizeof (aarch64_adrp_branch_stub);
3034 case aarch64_stub_long_branch:
3035 size = sizeof (aarch64_long_branch_stub);
3037 case aarch64_stub_erratum_835769_veneer:
3038 size = sizeof (aarch64_erratum_835769_stub);
3040 case aarch64_stub_erratum_843419_veneer:
3041 size = sizeof (aarch64_erratum_843419_stub);
3047 size = (size + 7) & ~7;
3048 stub_entry->stub_sec->size += size;
3052 /* External entry points for sizing and building linker stubs. */
3054 /* Set up various things so that we can make a list of input sections
3055 for each output section included in the link. Returns -1 on error,
3056 0 when no stubs will be needed, and 1 on success. */
3059 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3060 struct bfd_link_info *info)
3063 unsigned int bfd_count;
3064 unsigned int top_id, top_index;
3066 asection **input_list, **list;
3068 struct elf_aarch64_link_hash_table *htab =
3069 elf_aarch64_hash_table (info);
3071 if (!is_elf_hash_table (htab))
3074 /* Count the number of input BFDs and find the top input section id. */
3075 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3076 input_bfd != NULL; input_bfd = input_bfd->link.next)
3079 for (section = input_bfd->sections;
3080 section != NULL; section = section->next)
3082 if (top_id < section->id)
3083 top_id = section->id;
3086 htab->bfd_count = bfd_count;
3088 amt = sizeof (struct map_stub) * (top_id + 1);
3089 htab->stub_group = bfd_zmalloc (amt);
3090 if (htab->stub_group == NULL)
3093 /* We can't use output_bfd->section_count here to find the top output
3094 section index as some sections may have been removed, and
3095 _bfd_strip_section_from_output doesn't renumber the indices. */
3096 for (section = output_bfd->sections, top_index = 0;
3097 section != NULL; section = section->next)
3099 if (top_index < section->index)
3100 top_index = section->index;
3103 htab->top_index = top_index;
3104 amt = sizeof (asection *) * (top_index + 1);
3105 input_list = bfd_malloc (amt);
3106 htab->input_list = input_list;
3107 if (input_list == NULL)
3110 /* For sections we aren't interested in, mark their entries with a
3111 value we can check later. */
3112 list = input_list + top_index;
3114 *list = bfd_abs_section_ptr;
3115 while (list-- != input_list);
3117 for (section = output_bfd->sections;
3118 section != NULL; section = section->next)
3120 if ((section->flags & SEC_CODE) != 0)
3121 input_list[section->index] = NULL;
3127 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3128 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3130 /* The linker repeatedly calls this function for each input section,
3131 in the order that input sections are linked into output sections.
3132 Build lists of input sections to determine groupings between which
3133 we may insert linker stubs. */
3136 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3138 struct elf_aarch64_link_hash_table *htab =
3139 elf_aarch64_hash_table (info);
3141 if (isec->output_section->index <= htab->top_index)
3143 asection **list = htab->input_list + isec->output_section->index;
3145 if (*list != bfd_abs_section_ptr)
3147 /* Steal the link_sec pointer for our list. */
3148 /* This happens to make the list in reverse order,
3149 which is what we want. */
3150 PREV_SEC (isec) = *list;
3156 /* See whether we can group stub sections together. Grouping stub
3157 sections may result in fewer stubs. More importantly, we need to
3158 put all .init* and .fini* stubs at the beginning of the .init or
3159 .fini output sections respectively, because glibc splits the
3160 _init and _fini functions into multiple parts. Putting a stub in
3161 the middle of a function is not a good idea. */
3164 group_sections (struct elf_aarch64_link_hash_table *htab,
3165 bfd_size_type stub_group_size,
3166 bfd_boolean stubs_always_before_branch)
3168 asection **list = htab->input_list + htab->top_index;
3172 asection *tail = *list;
3174 if (tail == bfd_abs_section_ptr)
3177 while (tail != NULL)
3181 bfd_size_type total;
3185 while ((prev = PREV_SEC (curr)) != NULL
3186 && ((total += curr->output_offset - prev->output_offset)
3190 /* OK, the size from the start of CURR to the end is less
3191 than stub_group_size and thus can be handled by one stub
3192 section. (Or the tail section is itself larger than
3193 stub_group_size, in which case we may be toast.)
3194 We should really be keeping track of the total size of
3195 stubs added here, as stubs contribute to the final output
3199 prev = PREV_SEC (tail);
3200 /* Set up this stub group. */
3201 htab->stub_group[tail->id].link_sec = curr;
3203 while (tail != curr && (tail = prev) != NULL);
3205 /* But wait, there's more! Input sections up to stub_group_size
3206 bytes before the stub section can be handled by it too. */
3207 if (!stubs_always_before_branch)
3211 && ((total += tail->output_offset - prev->output_offset)
3215 prev = PREV_SEC (tail);
3216 htab->stub_group[tail->id].link_sec = curr;
3222 while (list-- != htab->input_list);
3224 free (htab->input_list);
3229 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3231 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3232 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3233 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3234 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3235 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3236 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3238 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3239 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3240 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3241 #define AARCH64_ZR 0x1f
3243 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3244 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3246 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3247 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3248 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3249 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3250 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3251 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3252 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3253 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3254 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3255 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3256 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3257 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3258 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3259 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3260 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3261 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3262 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3263 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3265 /* Classify an INSN if it is indeed a load/store.
3267 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3269 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3272 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3275 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3276 bfd_boolean *pair, bfd_boolean *load)
3284 /* Bail out quickly if INSN doesn't fall into the load-store
3286 if (!AARCH64_LDST (insn))
3291 if (AARCH64_LDST_EX (insn))
3293 *rt = AARCH64_RT (insn);
3295 if (AARCH64_BIT (insn, 21) == 1)
3298 *rt2 = AARCH64_RT2 (insn);
3300 *load = AARCH64_LD (insn);
3303 else if (AARCH64_LDST_NAP (insn)
3304 || AARCH64_LDSTP_PI (insn)
3305 || AARCH64_LDSTP_O (insn)
3306 || AARCH64_LDSTP_PRE (insn))
3309 *rt = AARCH64_RT (insn);
3310 *rt2 = AARCH64_RT2 (insn);
3311 *load = AARCH64_LD (insn);
3314 else if (AARCH64_LDST_PCREL (insn)
3315 || AARCH64_LDST_UI (insn)
3316 || AARCH64_LDST_PIIMM (insn)
3317 || AARCH64_LDST_U (insn)
3318 || AARCH64_LDST_PREIMM (insn)
3319 || AARCH64_LDST_RO (insn)
3320 || AARCH64_LDST_UIMM (insn))
3322 *rt = AARCH64_RT (insn);
3324 if (AARCH64_LDST_PCREL (insn))
3326 opc = AARCH64_BITS (insn, 22, 2);
3327 v = AARCH64_BIT (insn, 26);
3328 opc_v = opc | (v << 2);
3329 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3330 || opc_v == 5 || opc_v == 7);
3333 else if (AARCH64_LDST_SIMD_M (insn)
3334 || AARCH64_LDST_SIMD_M_PI (insn))
3336 *rt = AARCH64_RT (insn);
3337 *load = AARCH64_BIT (insn, 22);
3338 opcode = (insn >> 12) & 0xf;
3365 else if (AARCH64_LDST_SIMD_S (insn)
3366 || AARCH64_LDST_SIMD_S_PI (insn))
3368 *rt = AARCH64_RT (insn);
3369 r = (insn >> 21) & 1;
3370 *load = AARCH64_BIT (insn, 22);
3371 opcode = (insn >> 13) & 0x7;
3383 *rt2 = *rt + (r == 0 ? 2 : 3);
3391 *rt2 = *rt + (r == 0 ? 2 : 3);
3403 /* Return TRUE if INSN is multiply-accumulate. */
3406 aarch64_mlxl_p (uint32_t insn)
3408 uint32_t op31 = AARCH64_OP31 (insn);
3410 if (AARCH64_MAC (insn)
3411 && (op31 == 0 || op31 == 1 || op31 == 5)
3412 /* Exclude MUL instructions which are encoded as a multiple accumulate
3414 && AARCH64_RA (insn) != AARCH64_ZR)
3420 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3421 it is possible for a 64-bit multiply-accumulate instruction to generate an
3422 incorrect result. The details are quite complex and hard to
3423 determine statically, since branches in the code may exist in some
3424 circumstances, but all cases end with a memory (load, store, or
3425 prefetch) instruction followed immediately by the multiply-accumulate
3426 operation. We employ a linker patching technique, by moving the potentially
3427 affected multiply-accumulate instruction into a patch region and replacing
3428 the original instruction with a branch to the patch. This function checks
3429 if INSN_1 is the memory operation followed by a multiply-accumulate
3430 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3431 if INSN_1 and INSN_2 are safe. */
3434 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3444 if (aarch64_mlxl_p (insn_2)
3445 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3447 /* Any SIMD memory op is independent of the subsequent MLA
3448 by definition of the erratum. */
3449 if (AARCH64_BIT (insn_1, 26))
3452 /* If not SIMD, check for integer memory ops and MLA relationship. */
3453 rn = AARCH64_RN (insn_2);
3454 ra = AARCH64_RA (insn_2);
3455 rm = AARCH64_RM (insn_2);
3457 /* If this is a load and there's a true(RAW) dependency, we are safe
3458 and this is not an erratum sequence. */
3460 (rt == rn || rt == rm || rt == ra
3461 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3464 /* We conservatively put out stubs for all other cases (including
3472 /* Used to order a list of mapping symbols by address. */
3475 elf_aarch64_compare_mapping (const void *a, const void *b)
3477 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3478 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3480 if (amap->vma > bmap->vma)
3482 else if (amap->vma < bmap->vma)
3484 else if (amap->type > bmap->type)
3485 /* Ensure results do not depend on the host qsort for objects with
3486 multiple mapping symbols at the same address by sorting on type
3489 else if (amap->type < bmap->type)
3497 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3499 char *stub_name = (char *) bfd_malloc
3500 (strlen ("__erratum_835769_veneer_") + 16);
3501 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3505 /* Scan for Cortex-A53 erratum 835769 sequence.
3507 Return TRUE else FALSE on abnormal termination. */
3510 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3511 struct bfd_link_info *info,
3512 unsigned int *num_fixes_p)
3515 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3516 unsigned int num_fixes = *num_fixes_p;
3521 for (section = input_bfd->sections;
3523 section = section->next)
3525 bfd_byte *contents = NULL;
3526 struct _aarch64_elf_section_data *sec_data;
3529 if (elf_section_type (section) != SHT_PROGBITS
3530 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3531 || (section->flags & SEC_EXCLUDE) != 0
3532 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3533 || (section->output_section == bfd_abs_section_ptr))
3536 if (elf_section_data (section)->this_hdr.contents != NULL)
3537 contents = elf_section_data (section)->this_hdr.contents;
3538 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3541 sec_data = elf_aarch64_section_data (section);
3543 qsort (sec_data->map, sec_data->mapcount,
3544 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3546 for (span = 0; span < sec_data->mapcount; span++)
3548 unsigned int span_start = sec_data->map[span].vma;
3549 unsigned int span_end = ((span == sec_data->mapcount - 1)
3550 ? sec_data->map[0].vma + section->size
3551 : sec_data->map[span + 1].vma);
3553 char span_type = sec_data->map[span].type;
3555 if (span_type == 'd')
3558 for (i = span_start; i + 4 < span_end; i += 4)
3560 uint32_t insn_1 = bfd_getl32 (contents + i);
3561 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3563 if (aarch64_erratum_sequence (insn_1, insn_2))
3565 struct elf_aarch64_stub_hash_entry *stub_entry;
3566 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3570 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3576 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3577 stub_entry->target_section = section;
3578 stub_entry->target_value = i + 4;
3579 stub_entry->veneered_insn = insn_2;
3580 stub_entry->output_name = stub_name;
3585 if (elf_section_data (section)->this_hdr.contents == NULL)
3589 *num_fixes_p = num_fixes;
3595 /* Test if instruction INSN is ADRP. */
3598 _bfd_aarch64_adrp_p (uint32_t insn)
3600 return ((insn & 0x9f000000) == 0x90000000);
3604 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3607 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3615 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3618 && AARCH64_LDST_UIMM (insn_3)
3619 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3623 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3625 Return TRUE if section CONTENTS at offset I contains one of the
3626 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3627 seen set P_VENEER_I to the offset of the final LOAD/STORE
3628 instruction in the sequence.
3632 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3633 bfd_vma i, bfd_vma span_end,
3634 bfd_vma *p_veneer_i)
3636 uint32_t insn_1 = bfd_getl32 (contents + i);
3638 if (!_bfd_aarch64_adrp_p (insn_1))
3641 if (span_end < i + 12)
3644 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3645 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3647 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3650 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3652 *p_veneer_i = i + 8;
3656 if (span_end < i + 16)
3659 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3661 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3663 *p_veneer_i = i + 12;
3671 /* Resize all stub sections. */
3674 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3678 /* OK, we've added some stubs. Find out the new size of the
3680 for (section = htab->stub_bfd->sections;
3681 section != NULL; section = section->next)
3683 /* Ignore non-stub sections. */
3684 if (!strstr (section->name, STUB_SUFFIX))
3689 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3691 for (section = htab->stub_bfd->sections;
3692 section != NULL; section = section->next)
3694 if (!strstr (section->name, STUB_SUFFIX))
3700 /* Ensure all stub sections have a size which is a multiple of
3701 4096. This is important in order to ensure that the insertion
3702 of stub sections does not in itself move existing code around
3703 in such a way that new errata sequences are created. */
3704 if (htab->fix_erratum_843419)
3706 section->size = BFD_ALIGN (section->size, 0x1000);
3711 /* Construct an erratum 843419 workaround stub name.
3715 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3718 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3719 char *stub_name = bfd_malloc (len);
3721 if (stub_name != NULL)
3722 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3723 input_section->owner->id,
3729 /* Build a stub_entry structure describing an 843419 fixup.
3731 The stub_entry constructed is populated with the bit pattern INSN
3732 of the instruction located at OFFSET within input SECTION.
3734 Returns TRUE on success. */
3737 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3738 bfd_vma adrp_offset,
3739 bfd_vma ldst_offset,
3741 struct bfd_link_info *info)
3743 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3745 struct elf_aarch64_stub_hash_entry *stub_entry;
3747 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3748 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3756 /* We always place an 843419 workaround veneer in the stub section
3757 attached to the input section in which an erratum sequence has
3758 been found. This ensures that later in the link process (in
3759 elfNN_aarch64_write_section) when we copy the veneered
3760 instruction from the input section into the stub section the
3761 copied instruction will have had any relocations applied to it.
3762 If we placed workaround veneers in any other stub section then we
3763 could not assume that all relocations have been processed on the
3764 corresponding input section at the point we output the stub
3768 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3769 if (stub_entry == NULL)
3775 stub_entry->adrp_offset = adrp_offset;
3776 stub_entry->target_value = ldst_offset;
3777 stub_entry->target_section = section;
3778 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3779 stub_entry->veneered_insn = insn;
3780 stub_entry->output_name = stub_name;
3786 /* Scan an input section looking for the signature of erratum 843419.
3788 Scans input SECTION in INPUT_BFD looking for erratum 843419
3789 signatures, for each signature found a stub_entry is created
3790 describing the location of the erratum for subsequent fixup.
3792 Return TRUE on successful scan, FALSE on failure to scan.
3796 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3797 struct bfd_link_info *info)
3799 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3804 if (elf_section_type (section) != SHT_PROGBITS
3805 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3806 || (section->flags & SEC_EXCLUDE) != 0
3807 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3808 || (section->output_section == bfd_abs_section_ptr))
3813 bfd_byte *contents = NULL;
3814 struct _aarch64_elf_section_data *sec_data;
3817 if (elf_section_data (section)->this_hdr.contents != NULL)
3818 contents = elf_section_data (section)->this_hdr.contents;
3819 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3822 sec_data = elf_aarch64_section_data (section);
3824 qsort (sec_data->map, sec_data->mapcount,
3825 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3827 for (span = 0; span < sec_data->mapcount; span++)
3829 unsigned int span_start = sec_data->map[span].vma;
3830 unsigned int span_end = ((span == sec_data->mapcount - 1)
3831 ? sec_data->map[0].vma + section->size
3832 : sec_data->map[span + 1].vma);
3834 char span_type = sec_data->map[span].type;
3836 if (span_type == 'd')
3839 for (i = span_start; i + 8 < span_end; i += 4)
3841 bfd_vma vma = (section->output_section->vma
3842 + section->output_offset
3846 if (_bfd_aarch64_erratum_843419_p
3847 (contents, vma, i, span_end, &veneer_i))
3849 uint32_t insn = bfd_getl32 (contents + veneer_i);
3851 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3858 if (elf_section_data (section)->this_hdr.contents == NULL)
3867 /* Determine and set the size of the stub section for a final link.
3869 The basic idea here is to examine all the relocations looking for
3870 PC-relative calls to a target that is unreachable with a "bl"
3874 elfNN_aarch64_size_stubs (bfd *output_bfd,
3876 struct bfd_link_info *info,
3877 bfd_signed_vma group_size,
3878 asection * (*add_stub_section) (const char *,
3880 void (*layout_sections_again) (void))
3882 bfd_size_type stub_group_size;
3883 bfd_boolean stubs_always_before_branch;
3884 bfd_boolean stub_changed = FALSE;
3885 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3886 unsigned int num_erratum_835769_fixes = 0;
3888 /* Propagate mach to stub bfd, because it may not have been
3889 finalized when we created stub_bfd. */
3890 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3891 bfd_get_mach (output_bfd));
3893 /* Stash our params away. */
3894 htab->stub_bfd = stub_bfd;
3895 htab->add_stub_section = add_stub_section;
3896 htab->layout_sections_again = layout_sections_again;
3897 stubs_always_before_branch = group_size < 0;
3899 stub_group_size = -group_size;
3901 stub_group_size = group_size;
3903 if (stub_group_size == 1)
3905 /* Default values. */
3906 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3907 stub_group_size = 127 * 1024 * 1024;
3910 group_sections (htab, stub_group_size, stubs_always_before_branch);
3912 (*htab->layout_sections_again) ();
3914 if (htab->fix_erratum_835769)
3918 for (input_bfd = info->input_bfds;
3919 input_bfd != NULL; input_bfd = input_bfd->link.next)
3920 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3921 &num_erratum_835769_fixes))
3924 _bfd_aarch64_resize_stubs (htab);
3925 (*htab->layout_sections_again) ();
3928 if (htab->fix_erratum_843419)
3932 for (input_bfd = info->input_bfds;
3934 input_bfd = input_bfd->link.next)
3938 for (section = input_bfd->sections;
3940 section = section->next)
3941 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3945 _bfd_aarch64_resize_stubs (htab);
3946 (*htab->layout_sections_again) ();
3953 for (input_bfd = info->input_bfds;
3954 input_bfd != NULL; input_bfd = input_bfd->link.next)
3956 Elf_Internal_Shdr *symtab_hdr;
3958 Elf_Internal_Sym *local_syms = NULL;
3960 /* We'll need the symbol table in a second. */
3961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3962 if (symtab_hdr->sh_info == 0)
3965 /* Walk over each section attached to the input bfd. */
3966 for (section = input_bfd->sections;
3967 section != NULL; section = section->next)
3969 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3971 /* If there aren't any relocs, then there's nothing more
3973 if ((section->flags & SEC_RELOC) == 0
3974 || section->reloc_count == 0
3975 || (section->flags & SEC_CODE) == 0)
3978 /* If this section is a link-once section that will be
3979 discarded, then don't create any stubs. */
3980 if (section->output_section == NULL
3981 || section->output_section->owner != output_bfd)
3984 /* Get the relocs. */
3986 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3987 NULL, info->keep_memory);
3988 if (internal_relocs == NULL)
3989 goto error_ret_free_local;
3991 /* Now examine each relocation. */
3992 irela = internal_relocs;
3993 irelaend = irela + section->reloc_count;
3994 for (; irela < irelaend; irela++)
3996 unsigned int r_type, r_indx;
3997 enum elf_aarch64_stub_type stub_type;
3998 struct elf_aarch64_stub_hash_entry *stub_entry;
4001 bfd_vma destination;
4002 struct elf_aarch64_link_hash_entry *hash;
4003 const char *sym_name;
4005 const asection *id_sec;
4006 unsigned char st_type;
4009 r_type = ELFNN_R_TYPE (irela->r_info);
4010 r_indx = ELFNN_R_SYM (irela->r_info);
4012 if (r_type >= (unsigned int) R_AARCH64_end)
4014 bfd_set_error (bfd_error_bad_value);
4015 error_ret_free_internal:
4016 if (elf_section_data (section)->relocs == NULL)
4017 free (internal_relocs);
4018 goto error_ret_free_local;
4021 /* Only look for stubs on unconditional branch and
4022 branch and link instructions. */
4023 if (r_type != (unsigned int) AARCH64_R (CALL26)
4024 && r_type != (unsigned int) AARCH64_R (JUMP26))
4027 /* Now determine the call target, its name, value,
4034 if (r_indx < symtab_hdr->sh_info)
4036 /* It's a local symbol. */
4037 Elf_Internal_Sym *sym;
4038 Elf_Internal_Shdr *hdr;
4040 if (local_syms == NULL)
4043 = (Elf_Internal_Sym *) symtab_hdr->contents;
4044 if (local_syms == NULL)
4046 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4047 symtab_hdr->sh_info, 0,
4049 if (local_syms == NULL)
4050 goto error_ret_free_internal;
4053 sym = local_syms + r_indx;
4054 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4055 sym_sec = hdr->bfd_section;
4057 /* This is an undefined symbol. It can never
4061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4062 sym_value = sym->st_value;
4063 destination = (sym_value + irela->r_addend
4064 + sym_sec->output_offset
4065 + sym_sec->output_section->vma);
4066 st_type = ELF_ST_TYPE (sym->st_info);
4068 = bfd_elf_string_from_elf_section (input_bfd,
4069 symtab_hdr->sh_link,
4076 e_indx = r_indx - symtab_hdr->sh_info;
4077 hash = ((struct elf_aarch64_link_hash_entry *)
4078 elf_sym_hashes (input_bfd)[e_indx]);
4080 while (hash->root.root.type == bfd_link_hash_indirect
4081 || hash->root.root.type == bfd_link_hash_warning)
4082 hash = ((struct elf_aarch64_link_hash_entry *)
4083 hash->root.root.u.i.link);
4085 if (hash->root.root.type == bfd_link_hash_defined
4086 || hash->root.root.type == bfd_link_hash_defweak)
4088 struct elf_aarch64_link_hash_table *globals =
4089 elf_aarch64_hash_table (info);
4090 sym_sec = hash->root.root.u.def.section;
4091 sym_value = hash->root.root.u.def.value;
4092 /* For a destination in a shared library,
4093 use the PLT stub as target address to
4094 decide whether a branch stub is
4096 if (globals->root.splt != NULL && hash != NULL
4097 && hash->root.plt.offset != (bfd_vma) - 1)
4099 sym_sec = globals->root.splt;
4100 sym_value = hash->root.plt.offset;
4101 if (sym_sec->output_section != NULL)
4102 destination = (sym_value
4103 + sym_sec->output_offset
4105 sym_sec->output_section->vma);
4107 else if (sym_sec->output_section != NULL)
4108 destination = (sym_value + irela->r_addend
4109 + sym_sec->output_offset
4110 + sym_sec->output_section->vma);
4112 else if (hash->root.root.type == bfd_link_hash_undefined
4113 || (hash->root.root.type
4114 == bfd_link_hash_undefweak))
4116 /* For a shared library, use the PLT stub as
4117 target address to decide whether a long
4118 branch stub is needed.
4119 For absolute code, they cannot be handled. */
4120 struct elf_aarch64_link_hash_table *globals =
4121 elf_aarch64_hash_table (info);
4123 if (globals->root.splt != NULL && hash != NULL
4124 && hash->root.plt.offset != (bfd_vma) - 1)
4126 sym_sec = globals->root.splt;
4127 sym_value = hash->root.plt.offset;
4128 if (sym_sec->output_section != NULL)
4129 destination = (sym_value
4130 + sym_sec->output_offset
4132 sym_sec->output_section->vma);
4139 bfd_set_error (bfd_error_bad_value);
4140 goto error_ret_free_internal;
4142 st_type = ELF_ST_TYPE (hash->root.type);
4143 sym_name = hash->root.root.root.string;
4146 /* Determine what (if any) linker stub is needed. */
4147 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4148 st_type, destination);
4149 if (stub_type == aarch64_stub_none)
4152 /* Support for grouping stub sections. */
4153 id_sec = htab->stub_group[section->id].link_sec;
4155 /* Get the name of this stub. */
4156 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4159 goto error_ret_free_internal;
4162 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4163 stub_name, FALSE, FALSE);
4164 if (stub_entry != NULL)
4166 /* The proper stub has already been created. */
4171 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4172 (stub_name, section, htab);
4173 if (stub_entry == NULL)
4176 goto error_ret_free_internal;
4179 stub_entry->target_value = sym_value + irela->r_addend;
4180 stub_entry->target_section = sym_sec;
4181 stub_entry->stub_type = stub_type;
4182 stub_entry->h = hash;
4183 stub_entry->st_type = st_type;
4185 if (sym_name == NULL)
4186 sym_name = "unnamed";
4187 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4188 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4189 if (stub_entry->output_name == NULL)
4192 goto error_ret_free_internal;
4195 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4198 stub_changed = TRUE;
4201 /* We're done with the internal relocs, free them. */
4202 if (elf_section_data (section)->relocs == NULL)
4203 free (internal_relocs);
4210 _bfd_aarch64_resize_stubs (htab);
4212 /* Ask the linker to do its stuff. */
4213 (*htab->layout_sections_again) ();
4214 stub_changed = FALSE;
4219 error_ret_free_local:
4223 /* Build all the stubs associated with the current output file. The
4224 stubs are kept in a hash table attached to the main linker hash
4225 table. We also set up the .plt entries for statically linked PIC
4226 functions here. This function is called via aarch64_elf_finish in the
4230 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4233 struct bfd_hash_table *table;
4234 struct elf_aarch64_link_hash_table *htab;
4236 htab = elf_aarch64_hash_table (info);
4238 for (stub_sec = htab->stub_bfd->sections;
4239 stub_sec != NULL; stub_sec = stub_sec->next)
4243 /* Ignore non-stub sections. */
4244 if (!strstr (stub_sec->name, STUB_SUFFIX))
4247 /* Allocate memory to hold the linker stubs. */
4248 size = stub_sec->size;
4249 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4250 if (stub_sec->contents == NULL && size != 0)
4254 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4255 stub_sec->size += 4;
4258 /* Build the stubs as directed by the stub hash table. */
4259 table = &htab->stub_hash_table;
4260 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4266 /* Add an entry to the code/data map for section SEC. */
4269 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4271 struct _aarch64_elf_section_data *sec_data =
4272 elf_aarch64_section_data (sec);
4273 unsigned int newidx;
4275 if (sec_data->map == NULL)
4277 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4278 sec_data->mapcount = 0;
4279 sec_data->mapsize = 1;
4282 newidx = sec_data->mapcount++;
4284 if (sec_data->mapcount > sec_data->mapsize)
4286 sec_data->mapsize *= 2;
4287 sec_data->map = bfd_realloc_or_free
4288 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4293 sec_data->map[newidx].vma = vma;
4294 sec_data->map[newidx].type = type;
4299 /* Initialise maps of insn/data for input BFDs. */
4301 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4303 Elf_Internal_Sym *isymbuf;
4304 Elf_Internal_Shdr *hdr;
4305 unsigned int i, localsyms;
4307 /* Make sure that we are dealing with an AArch64 elf binary. */
4308 if (!is_aarch64_elf (abfd))
4311 if ((abfd->flags & DYNAMIC) != 0)
4314 hdr = &elf_symtab_hdr (abfd);
4315 localsyms = hdr->sh_info;
4317 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4318 should contain the number of local symbols, which should come before any
4319 global symbols. Mapping symbols are always local. */
4320 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4322 /* No internal symbols read? Skip this BFD. */
4323 if (isymbuf == NULL)
4326 for (i = 0; i < localsyms; i++)
4328 Elf_Internal_Sym *isym = &isymbuf[i];
4329 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4332 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4334 name = bfd_elf_string_from_elf_section (abfd,
4338 if (bfd_is_aarch64_special_symbol_name
4339 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4340 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4345 /* Set option values needed during linking. */
4347 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4348 struct bfd_link_info *link_info,
4350 int no_wchar_warn, int pic_veneer,
4351 int fix_erratum_835769,
4352 int fix_erratum_843419,
4353 int no_apply_dynamic_relocs)
4355 struct elf_aarch64_link_hash_table *globals;
4357 globals = elf_aarch64_hash_table (link_info);
4358 globals->pic_veneer = pic_veneer;
4359 globals->fix_erratum_835769 = fix_erratum_835769;
4360 globals->fix_erratum_843419 = fix_erratum_843419;
4361 globals->fix_erratum_843419_adr = TRUE;
4362 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4364 BFD_ASSERT (is_aarch64_elf (output_bfd));
4365 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4366 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4370 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4371 struct elf_aarch64_link_hash_table
4372 *globals, struct bfd_link_info *info,
4373 bfd_vma value, bfd *output_bfd,
4374 bfd_boolean *unresolved_reloc_p)
4376 bfd_vma off = (bfd_vma) - 1;
4377 asection *basegot = globals->root.sgot;
4378 bfd_boolean dyn = globals->root.dynamic_sections_created;
4382 BFD_ASSERT (basegot != NULL);
4383 off = h->got.offset;
4384 BFD_ASSERT (off != (bfd_vma) - 1);
4385 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4386 || (bfd_link_pic (info)
4387 && SYMBOL_REFERENCES_LOCAL (info, h))
4388 || (ELF_ST_VISIBILITY (h->other)
4389 && h->root.type == bfd_link_hash_undefweak))
4391 /* This is actually a static link, or it is a -Bsymbolic link
4392 and the symbol is defined locally. We must initialize this
4393 entry in the global offset table. Since the offset must
4394 always be a multiple of 8 (4 in the case of ILP32), we use
4395 the least significant bit to record whether we have
4396 initialized it already.
4397 When doing a dynamic link, we create a .rel(a).got relocation
4398 entry to initialize the value. This is done in the
4399 finish_dynamic_symbol routine. */
4404 bfd_put_NN (output_bfd, value, basegot->contents + off);
4409 *unresolved_reloc_p = FALSE;
4411 off = off + basegot->output_section->vma + basegot->output_offset;
4417 /* Change R_TYPE to a more efficient access model where possible,
4418 return the new reloc type. */
4420 static bfd_reloc_code_real_type
4421 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4422 struct elf_link_hash_entry *h)
4424 bfd_boolean is_local = h == NULL;
4428 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4429 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4431 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4432 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4434 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4436 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4439 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4441 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4442 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4444 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4446 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4447 : BFD_RELOC_AARCH64_NONE);
4449 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4451 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4452 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4454 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4456 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4457 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4459 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4460 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4462 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4463 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4465 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4466 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4468 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4469 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4471 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4474 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4476 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4477 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4479 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4480 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4481 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4482 /* Instructions with these relocations will become NOPs. */
4483 return BFD_RELOC_AARCH64_NONE;
4485 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4486 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4487 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4488 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4491 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4493 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4494 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4496 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4498 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4499 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4510 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4514 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4515 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4516 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4517 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4518 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4519 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4520 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4521 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4522 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4525 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4526 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4527 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4528 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4529 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4530 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4531 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4532 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4535 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4536 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4537 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4538 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4539 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4540 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4541 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4542 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4543 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4544 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4545 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4546 return GOT_TLSDESC_GD;
4548 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4549 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4550 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4551 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4552 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4553 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4563 aarch64_can_relax_tls (bfd *input_bfd,
4564 struct bfd_link_info *info,
4565 bfd_reloc_code_real_type r_type,
4566 struct elf_link_hash_entry *h,
4567 unsigned long r_symndx)
4569 unsigned int symbol_got_type;
4570 unsigned int reloc_got_type;
4572 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4575 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4576 reloc_got_type = aarch64_reloc_got_type (r_type);
4578 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4581 if (bfd_link_pic (info))
4584 if (h && h->root.type == bfd_link_hash_undefweak)
4590 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4593 static bfd_reloc_code_real_type
4594 aarch64_tls_transition (bfd *input_bfd,
4595 struct bfd_link_info *info,
4596 unsigned int r_type,
4597 struct elf_link_hash_entry *h,
4598 unsigned long r_symndx)
4600 bfd_reloc_code_real_type bfd_r_type
4601 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4603 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4606 return aarch64_tls_transition_without_check (bfd_r_type, h);
4609 /* Return the base VMA address which should be subtracted from real addresses
4610 when resolving R_AARCH64_TLS_DTPREL relocation. */
4613 dtpoff_base (struct bfd_link_info *info)
4615 /* If tls_sec is NULL, we should have signalled an error already. */
4616 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4617 return elf_hash_table (info)->tls_sec->vma;
4620 /* Return the base VMA address which should be subtracted from real addresses
4621 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4624 tpoff_base (struct bfd_link_info *info)
4626 struct elf_link_hash_table *htab = elf_hash_table (info);
4628 /* If tls_sec is NULL, we should have signalled an error already. */
4629 BFD_ASSERT (htab->tls_sec != NULL);
4631 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4632 htab->tls_sec->alignment_power);
4633 return htab->tls_sec->vma - base;
4637 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4638 unsigned long r_symndx)
4640 /* Calculate the address of the GOT entry for symbol
4641 referred to in h. */
4643 return &h->got.offset;
4647 struct elf_aarch64_local_symbol *l;
4649 l = elf_aarch64_locals (input_bfd);
4650 return &l[r_symndx].got_offset;
4655 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4656 unsigned long r_symndx)
4659 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4664 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4665 unsigned long r_symndx)
4668 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4673 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4674 unsigned long r_symndx)
4677 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4683 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4684 unsigned long r_symndx)
4686 /* Calculate the address of the GOT entry for symbol
4687 referred to in h. */
4690 struct elf_aarch64_link_hash_entry *eh;
4691 eh = (struct elf_aarch64_link_hash_entry *) h;
4692 return &eh->tlsdesc_got_jump_table_offset;
4697 struct elf_aarch64_local_symbol *l;
4699 l = elf_aarch64_locals (input_bfd);
4700 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4705 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4706 unsigned long r_symndx)
4709 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4714 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4715 struct elf_link_hash_entry *h,
4716 unsigned long r_symndx)
4719 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4724 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4725 unsigned long r_symndx)
4728 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4733 /* Data for make_branch_to_erratum_835769_stub(). */
4735 struct erratum_835769_branch_to_stub_data
4737 struct bfd_link_info *info;
4738 asection *output_section;
4742 /* Helper to insert branches to erratum 835769 stubs in the right
4743 places for a particular section. */
4746 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4749 struct elf_aarch64_stub_hash_entry *stub_entry;
4750 struct erratum_835769_branch_to_stub_data *data;
4752 unsigned long branch_insn = 0;
4753 bfd_vma veneered_insn_loc, veneer_entry_loc;
4754 bfd_signed_vma branch_offset;
4755 unsigned int target;
4758 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4759 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4761 if (stub_entry->target_section != data->output_section
4762 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4765 contents = data->contents;
4766 veneered_insn_loc = stub_entry->target_section->output_section->vma
4767 + stub_entry->target_section->output_offset
4768 + stub_entry->target_value;
4769 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4770 + stub_entry->stub_sec->output_offset
4771 + stub_entry->stub_offset;
4772 branch_offset = veneer_entry_loc - veneered_insn_loc;
4774 abfd = stub_entry->target_section->owner;
4775 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4777 (_("%B: error: Erratum 835769 stub out "
4778 "of range (input file too large)"), abfd);
4780 target = stub_entry->target_value;
4781 branch_insn = 0x14000000;
4782 branch_offset >>= 2;
4783 branch_offset &= 0x3ffffff;
4784 branch_insn |= branch_offset;
4785 bfd_putl32 (branch_insn, &contents[target]);
4792 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4795 struct elf_aarch64_stub_hash_entry *stub_entry
4796 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4797 struct erratum_835769_branch_to_stub_data *data
4798 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4799 struct bfd_link_info *info;
4800 struct elf_aarch64_link_hash_table *htab;
4808 contents = data->contents;
4809 section = data->output_section;
4811 htab = elf_aarch64_hash_table (info);
4813 if (stub_entry->target_section != section
4814 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4817 insn = bfd_getl32 (contents + stub_entry->target_value);
4819 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4821 place = (section->output_section->vma + section->output_offset
4822 + stub_entry->adrp_offset);
4823 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4825 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4828 bfd_signed_vma imm =
4829 (_bfd_aarch64_sign_extend
4830 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4833 if (htab->fix_erratum_843419_adr
4834 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4836 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4837 | AARCH64_RT (insn));
4838 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4842 bfd_vma veneered_insn_loc;
4843 bfd_vma veneer_entry_loc;
4844 bfd_signed_vma branch_offset;
4845 uint32_t branch_insn;
4847 veneered_insn_loc = stub_entry->target_section->output_section->vma
4848 + stub_entry->target_section->output_offset
4849 + stub_entry->target_value;
4850 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4851 + stub_entry->stub_sec->output_offset
4852 + stub_entry->stub_offset;
4853 branch_offset = veneer_entry_loc - veneered_insn_loc;
4855 abfd = stub_entry->target_section->owner;
4856 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4858 (_("%B: error: Erratum 843419 stub out "
4859 "of range (input file too large)"), abfd);
4861 branch_insn = 0x14000000;
4862 branch_offset >>= 2;
4863 branch_offset &= 0x3ffffff;
4864 branch_insn |= branch_offset;
4865 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4872 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4873 struct bfd_link_info *link_info,
4878 struct elf_aarch64_link_hash_table *globals =
4879 elf_aarch64_hash_table (link_info);
4881 if (globals == NULL)
4884 /* Fix code to point to erratum 835769 stubs. */
4885 if (globals->fix_erratum_835769)
4887 struct erratum_835769_branch_to_stub_data data;
4889 data.info = link_info;
4890 data.output_section = sec;
4891 data.contents = contents;
4892 bfd_hash_traverse (&globals->stub_hash_table,
4893 make_branch_to_erratum_835769_stub, &data);
4896 if (globals->fix_erratum_843419)
4898 struct erratum_835769_branch_to_stub_data data;
4900 data.info = link_info;
4901 data.output_section = sec;
4902 data.contents = contents;
4903 bfd_hash_traverse (&globals->stub_hash_table,
4904 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4910 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
4913 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
4915 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
4916 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
4917 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
4918 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
4919 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
4922 /* Perform a relocation as part of a final link. The input relocation type
4923 should be TLS relaxed. */
4925 static bfd_reloc_status_type
4926 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4929 asection *input_section,
4931 Elf_Internal_Rela *rel,
4933 struct bfd_link_info *info,
4935 struct elf_link_hash_entry *h,
4936 bfd_boolean *unresolved_reloc_p,
4937 bfd_boolean save_addend,
4938 bfd_vma *saved_addend,
4939 Elf_Internal_Sym *sym)
4941 Elf_Internal_Shdr *symtab_hdr;
4942 unsigned int r_type = howto->type;
4943 bfd_reloc_code_real_type bfd_r_type
4944 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4945 unsigned long r_symndx;
4946 bfd_byte *hit_data = contents + rel->r_offset;
4947 bfd_vma place, off, got_entry_addr;
4948 bfd_signed_vma signed_addend;
4949 struct elf_aarch64_link_hash_table *globals;
4950 bfd_boolean weak_undef_p;
4951 bfd_boolean relative_reloc;
4953 bfd_vma orig_value = value;
4955 globals = elf_aarch64_hash_table (info);
4957 symtab_hdr = &elf_symtab_hdr (input_bfd);
4959 BFD_ASSERT (is_aarch64_elf (input_bfd));
4961 r_symndx = ELFNN_R_SYM (rel->r_info);
4963 place = input_section->output_section->vma
4964 + input_section->output_offset + rel->r_offset;
4966 /* Get addend, accumulating the addend for consecutive relocs
4967 which refer to the same offset. */
4968 signed_addend = saved_addend ? *saved_addend : 0;
4969 signed_addend += rel->r_addend;
4971 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4972 : bfd_is_und_section (sym_sec));
4974 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4975 it here if it is defined in a non-shared object. */
4977 && h->type == STT_GNU_IFUNC
4984 if ((input_section->flags & SEC_ALLOC) == 0
4985 || h->plt.offset == (bfd_vma) -1)
4988 /* STT_GNU_IFUNC symbol must go through PLT. */
4989 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4990 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4995 if (h->root.root.string)
4996 name = h->root.root.string;
4998 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5001 /* xgettext:c-format */
5002 (_("%B: relocation %s against STT_GNU_IFUNC "
5003 "symbol `%s' isn't handled by %s"), input_bfd,
5004 howto->name, name, __FUNCTION__);
5005 bfd_set_error (bfd_error_bad_value);
5008 case BFD_RELOC_AARCH64_NN:
5009 if (rel->r_addend != 0)
5011 if (h->root.root.string)
5012 name = h->root.root.string;
5014 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5017 /* xgettext:c-format */
5018 (_("%B: relocation %s against STT_GNU_IFUNC "
5019 "symbol `%s' has non-zero addend: %Ld"),
5020 input_bfd, howto->name, name, rel->r_addend);
5021 bfd_set_error (bfd_error_bad_value);
5025 /* Generate dynamic relocation only when there is a
5026 non-GOT reference in a shared object. */
5027 if (bfd_link_pic (info) && h->non_got_ref)
5029 Elf_Internal_Rela outrel;
5032 /* Need a dynamic relocation to get the real function
5034 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5038 if (outrel.r_offset == (bfd_vma) -1
5039 || outrel.r_offset == (bfd_vma) -2)
5042 outrel.r_offset += (input_section->output_section->vma
5043 + input_section->output_offset);
5045 if (h->dynindx == -1
5047 || bfd_link_executable (info))
5049 /* This symbol is resolved locally. */
5050 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5051 outrel.r_addend = (h->root.u.def.value
5052 + h->root.u.def.section->output_section->vma
5053 + h->root.u.def.section->output_offset);
5057 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5058 outrel.r_addend = 0;
5061 sreloc = globals->root.irelifunc;
5062 elf_append_rela (output_bfd, sreloc, &outrel);
5064 /* If this reloc is against an external symbol, we
5065 do not want to fiddle with the addend. Otherwise,
5066 we need to include the symbol value so that it
5067 becomes an addend for the dynamic reloc. For an
5068 internal symbol, we have updated addend. */
5069 return bfd_reloc_ok;
5072 case BFD_RELOC_AARCH64_CALL26:
5073 case BFD_RELOC_AARCH64_JUMP26:
5074 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5077 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5079 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5080 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5081 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5082 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5083 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5084 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5085 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5086 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5087 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5088 base_got = globals->root.sgot;
5089 off = h->got.offset;
5091 if (base_got == NULL)
5094 if (off == (bfd_vma) -1)
5098 /* We can't use h->got.offset here to save state, or
5099 even just remember the offset, as finish_dynamic_symbol
5100 would use that as offset into .got. */
5102 if (globals->root.splt != NULL)
5104 plt_index = ((h->plt.offset - globals->plt_header_size) /
5105 globals->plt_entry_size);
5106 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5107 base_got = globals->root.sgotplt;
5111 plt_index = h->plt.offset / globals->plt_entry_size;
5112 off = plt_index * GOT_ENTRY_SIZE;
5113 base_got = globals->root.igotplt;
5116 if (h->dynindx == -1
5120 /* This references the local definition. We must
5121 initialize this entry in the global offset table.
5122 Since the offset must always be a multiple of 8,
5123 we use the least significant bit to record
5124 whether we have initialized it already.
5126 When doing a dynamic link, we create a .rela.got
5127 relocation entry to initialize the value. This
5128 is done in the finish_dynamic_symbol routine. */
5133 bfd_put_NN (output_bfd, value,
5134 base_got->contents + off);
5135 /* Note that this is harmless as -1 | 1 still is -1. */
5139 value = (base_got->output_section->vma
5140 + base_got->output_offset + off);
5143 value = aarch64_calculate_got_entry_vma (h, globals, info,
5145 unresolved_reloc_p);
5147 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5148 addend = (globals->root.sgot->output_section->vma
5149 + globals->root.sgot->output_offset);
5151 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5152 addend, weak_undef_p);
5153 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5154 case BFD_RELOC_AARCH64_ADD_LO12:
5155 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5162 case BFD_RELOC_AARCH64_NONE:
5163 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5164 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5165 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5166 *unresolved_reloc_p = FALSE;
5167 return bfd_reloc_ok;
5169 case BFD_RELOC_AARCH64_NN:
5171 /* When generating a shared object or relocatable executable, these
5172 relocations are copied into the output file to be resolved at
5174 if (((bfd_link_pic (info)
5175 || globals->root.is_relocatable_executable)
5176 && (input_section->flags & SEC_ALLOC)
5178 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5179 || h->root.type != bfd_link_hash_undefweak))
5180 /* Or we are creating an executable, we may need to keep relocations
5181 for symbols satisfied by a dynamic library if we manage to avoid
5182 copy relocs for the symbol. */
5183 || (ELIMINATE_COPY_RELOCS
5184 && !bfd_link_pic (info)
5186 && (input_section->flags & SEC_ALLOC)
5191 || h->root.type == bfd_link_hash_undefweak
5192 || h->root.type == bfd_link_hash_undefined)))
5194 Elf_Internal_Rela outrel;
5196 bfd_boolean skip, relocate;
5199 *unresolved_reloc_p = FALSE;
5204 outrel.r_addend = signed_addend;
5206 _bfd_elf_section_offset (output_bfd, info, input_section,
5208 if (outrel.r_offset == (bfd_vma) - 1)
5210 else if (outrel.r_offset == (bfd_vma) - 2)
5216 outrel.r_offset += (input_section->output_section->vma
5217 + input_section->output_offset);
5220 memset (&outrel, 0, sizeof outrel);
5223 && (!bfd_link_pic (info)
5224 || !(bfd_link_pie (info)
5225 || SYMBOLIC_BIND (info, h))
5226 || !h->def_regular))
5227 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5232 /* On SVR4-ish systems, the dynamic loader cannot
5233 relocate the text and data segments independently,
5234 so the symbol does not matter. */
5236 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5237 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5238 outrel.r_addend += value;
5241 sreloc = elf_section_data (input_section)->sreloc;
5242 if (sreloc == NULL || sreloc->contents == NULL)
5243 return bfd_reloc_notsupported;
5245 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5246 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5248 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5250 /* Sanity to check that we have previously allocated
5251 sufficient space in the relocation section for the
5252 number of relocations we actually want to emit. */
5256 /* If this reloc is against an external symbol, we do not want to
5257 fiddle with the addend. Otherwise, we need to include the symbol
5258 value so that it becomes an addend for the dynamic reloc. */
5260 return bfd_reloc_ok;
5262 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5263 contents, rel->r_offset, value,
5267 value += signed_addend;
5270 case BFD_RELOC_AARCH64_CALL26:
5271 case BFD_RELOC_AARCH64_JUMP26:
5273 asection *splt = globals->root.splt;
5274 bfd_boolean via_plt_p =
5275 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5277 /* A call to an undefined weak symbol is converted to a jump to
5278 the next instruction unless a PLT entry will be created.
5279 The jump to the next instruction is optimized as a NOP.
5280 Do the same for local undefined symbols. */
5281 if (weak_undef_p && ! via_plt_p)
5283 bfd_putl32 (INSN_NOP, hit_data);
5284 return bfd_reloc_ok;
5287 /* If the call goes through a PLT entry, make sure to
5288 check distance to the right destination address. */
5290 value = (splt->output_section->vma
5291 + splt->output_offset + h->plt.offset);
5293 /* Check if a stub has to be inserted because the destination
5295 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5297 /* If the branch destination is directed to plt stub, "value" will be
5298 the final destination, otherwise we should plus signed_addend, it may
5299 contain non-zero value, for example call to local function symbol
5300 which are turned into "sec_sym + sec_off", and sec_off is kept in
5302 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5304 /* The target is out of reach, so redirect the branch to
5305 the local stub for this function. */
5306 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5308 if (stub_entry != NULL)
5310 value = (stub_entry->stub_offset
5311 + stub_entry->stub_sec->output_offset
5312 + stub_entry->stub_sec->output_section->vma);
5314 /* We have redirected the destination to stub entry address,
5315 so ignore any addend record in the original rela entry. */
5319 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5320 signed_addend, weak_undef_p);
5321 *unresolved_reloc_p = FALSE;
5324 case BFD_RELOC_AARCH64_16_PCREL:
5325 case BFD_RELOC_AARCH64_32_PCREL:
5326 case BFD_RELOC_AARCH64_64_PCREL:
5327 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5328 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5329 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5330 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5331 if (bfd_link_pic (info)
5332 && (input_section->flags & SEC_ALLOC) != 0
5333 && (input_section->flags & SEC_READONLY) != 0
5334 && !SYMBOL_REFERENCES_LOCAL (info, h))
5336 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5339 /* xgettext:c-format */
5340 (_("%B: relocation %s against symbol `%s' which may bind "
5341 "externally can not be used when making a shared object; "
5342 "recompile with -fPIC"),
5343 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5344 h->root.root.string);
5345 bfd_set_error (bfd_error_bad_value);
5350 case BFD_RELOC_AARCH64_16:
5352 case BFD_RELOC_AARCH64_32:
5354 case BFD_RELOC_AARCH64_ADD_LO12:
5355 case BFD_RELOC_AARCH64_BRANCH19:
5356 case BFD_RELOC_AARCH64_LDST128_LO12:
5357 case BFD_RELOC_AARCH64_LDST16_LO12:
5358 case BFD_RELOC_AARCH64_LDST32_LO12:
5359 case BFD_RELOC_AARCH64_LDST64_LO12:
5360 case BFD_RELOC_AARCH64_LDST8_LO12:
5361 case BFD_RELOC_AARCH64_MOVW_G0:
5362 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5363 case BFD_RELOC_AARCH64_MOVW_G0_S:
5364 case BFD_RELOC_AARCH64_MOVW_G1:
5365 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5366 case BFD_RELOC_AARCH64_MOVW_G1_S:
5367 case BFD_RELOC_AARCH64_MOVW_G2:
5368 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5369 case BFD_RELOC_AARCH64_MOVW_G2_S:
5370 case BFD_RELOC_AARCH64_MOVW_G3:
5371 case BFD_RELOC_AARCH64_TSTBR14:
5372 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5373 signed_addend, weak_undef_p);
5376 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5377 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5378 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5379 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5380 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5381 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5382 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5383 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5384 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5385 if (globals->root.sgot == NULL)
5386 BFD_ASSERT (h != NULL);
5388 relative_reloc = FALSE;
5393 /* If a symbol is not dynamic and is not undefined weak, bind it
5394 locally and generate a RELATIVE relocation under PIC mode.
5396 NOTE: one symbol may be referenced by several relocations, we
5397 should only generate one RELATIVE relocation for that symbol.
5398 Therefore, check GOT offset mark first. */
5399 if (h->dynindx == -1
5401 && h->root.type != bfd_link_hash_undefweak
5402 && bfd_link_pic (info)
5403 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5404 relative_reloc = TRUE;
5406 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5408 unresolved_reloc_p);
5409 /* Record the GOT entry address which will be used when generating
5410 RELATIVE relocation. */
5412 got_entry_addr = value;
5414 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5415 addend = (globals->root.sgot->output_section->vma
5416 + globals->root.sgot->output_offset);
5417 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5418 addend, weak_undef_p);
5423 struct elf_aarch64_local_symbol *locals
5424 = elf_aarch64_locals (input_bfd);
5428 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5430 /* xgettext:c-format */
5431 (_("%B: Local symbol descriptor table be NULL when applying "
5432 "relocation %s against local symbol"),
5433 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5437 off = symbol_got_offset (input_bfd, h, r_symndx);
5438 base_got = globals->root.sgot;
5439 got_entry_addr = (base_got->output_section->vma
5440 + base_got->output_offset + off);
5442 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5444 bfd_put_64 (output_bfd, value, base_got->contents + off);
5446 /* For local symbol, we have done absolute relocation in static
5447 linking stage. While for shared library, we need to update the
5448 content of GOT entry according to the shared object's runtime
5449 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5450 for dynamic linker. */
5451 if (bfd_link_pic (info))
5452 relative_reloc = TRUE;
5454 symbol_got_offset_mark (input_bfd, h, r_symndx);
5457 /* Update the relocation value to GOT entry addr as we have transformed
5458 the direct data access into indirect data access through GOT. */
5459 value = got_entry_addr;
5461 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5462 addend = base_got->output_section->vma + base_got->output_offset;
5464 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5465 addend, weak_undef_p);
5471 Elf_Internal_Rela outrel;
5473 s = globals->root.srelgot;
5477 outrel.r_offset = got_entry_addr;
5478 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5479 outrel.r_addend = orig_value;
5480 elf_append_rela (output_bfd, s, &outrel);
5484 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5485 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5486 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5487 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5488 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5489 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5490 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5491 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5492 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5493 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5494 if (globals->root.sgot == NULL)
5495 return bfd_reloc_notsupported;
5497 value = (symbol_got_offset (input_bfd, h, r_symndx)
5498 + globals->root.sgot->output_section->vma
5499 + globals->root.sgot->output_offset);
5501 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5503 *unresolved_reloc_p = FALSE;
5506 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5507 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5508 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5509 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5510 if (globals->root.sgot == NULL)
5511 return bfd_reloc_notsupported;
5513 value = symbol_got_offset (input_bfd, h, r_symndx);
5514 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5516 *unresolved_reloc_p = FALSE;
5519 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5520 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5521 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5522 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5523 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5524 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5525 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5526 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5527 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5528 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5529 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5530 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5531 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5532 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5533 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5534 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5535 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5536 signed_addend - dtpoff_base (info),
5540 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5541 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5542 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5543 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5544 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5545 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5546 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5547 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5548 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5549 signed_addend - tpoff_base (info),
5551 *unresolved_reloc_p = FALSE;
5554 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5555 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5556 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5557 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5558 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5559 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5560 if (globals->root.sgot == NULL)
5561 return bfd_reloc_notsupported;
5562 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5563 + globals->root.sgotplt->output_section->vma
5564 + globals->root.sgotplt->output_offset
5565 + globals->sgotplt_jump_table_size);
5567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5569 *unresolved_reloc_p = FALSE;
5572 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5573 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5574 if (globals->root.sgot == NULL)
5575 return bfd_reloc_notsupported;
5577 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5578 + globals->root.sgotplt->output_section->vma
5579 + globals->root.sgotplt->output_offset
5580 + globals->sgotplt_jump_table_size);
5582 value -= (globals->root.sgot->output_section->vma
5583 + globals->root.sgot->output_offset);
5585 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5587 *unresolved_reloc_p = FALSE;
5591 return bfd_reloc_notsupported;
5595 *saved_addend = value;
5597 /* Only apply the final relocation in a sequence. */
5599 return bfd_reloc_continue;
5601 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5605 /* LP64 and ILP32 operates on x- and w-registers respectively.
5606 Next definitions take into account the difference between
5607 corresponding machine codes. R means x-register if the target
5608 arch is LP64, and w-register if the target is ILP32. */
5611 # define add_R0_R0 (0x91000000)
5612 # define add_R0_R0_R1 (0x8b000020)
5613 # define add_R0_R1 (0x91400020)
5614 # define ldr_R0 (0x58000000)
5615 # define ldr_R0_mask(i) (i & 0xffffffe0)
5616 # define ldr_R0_x0 (0xf9400000)
5617 # define ldr_hw_R0 (0xf2a00000)
5618 # define movk_R0 (0xf2800000)
5619 # define movz_R0 (0xd2a00000)
5620 # define movz_hw_R0 (0xd2c00000)
5621 #else /*ARCH_SIZE == 32 */
5622 # define add_R0_R0 (0x11000000)
5623 # define add_R0_R0_R1 (0x0b000020)
5624 # define add_R0_R1 (0x11400020)
5625 # define ldr_R0 (0x18000000)
5626 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5627 # define ldr_R0_x0 (0xb9400000)
5628 # define ldr_hw_R0 (0x72a00000)
5629 # define movk_R0 (0x72800000)
5630 # define movz_R0 (0x52a00000)
5631 # define movz_hw_R0 (0x52c00000)
5634 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5635 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5638 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5639 is to then call final_link_relocate. Return other values in the
5642 static bfd_reloc_status_type
5643 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5644 bfd *input_bfd, bfd_byte *contents,
5645 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5647 bfd_boolean is_local = h == NULL;
5648 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5651 BFD_ASSERT (globals && input_bfd && contents && rel);
5653 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5655 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5656 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5659 /* GD->LE relaxation:
5660 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5662 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5664 Where R is x for LP64, and w for ILP32. */
5665 bfd_putl32 (movz_R0, contents + rel->r_offset);
5666 return bfd_reloc_continue;
5670 /* GD->IE relaxation:
5671 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5673 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5675 return bfd_reloc_continue;
5678 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5682 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5685 /* Tiny TLSDESC->LE relaxation:
5686 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5687 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5691 Where R is x for LP64, and w for ILP32. */
5692 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5693 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5695 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5696 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5697 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5699 bfd_putl32 (movz_R0, contents + rel->r_offset);
5700 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
5701 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5702 return bfd_reloc_continue;
5706 /* Tiny TLSDESC->IE relaxation:
5707 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5708 adr x0, :tlsdesc:var => nop
5712 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5713 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5715 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5716 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5718 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5719 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5720 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5721 return bfd_reloc_continue;
5724 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5727 /* Tiny GD->LE relaxation:
5728 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5729 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
5730 nop => add R0, R0, #:tprel_lo12_nc:x
5732 Where R is x for LP64, and x for Ilp32. */
5734 /* First kill the tls_get_addr reloc on the bl instruction. */
5735 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5737 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5738 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
5739 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
5741 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5742 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5743 rel[1].r_offset = rel->r_offset + 8;
5745 /* Move the current relocation to the second instruction in
5748 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5749 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5750 return bfd_reloc_continue;
5754 /* Tiny GD->IE relaxation:
5755 adr x0, :tlsgd:var => ldr R0, :gottprel:var
5756 bl __tls_get_addr => mrs x1, tpidr_el0
5757 nop => add R0, R0, R1
5759 Where R is x for LP64, and w for Ilp32. */
5761 /* First kill the tls_get_addr reloc on the bl instruction. */
5762 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5763 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5765 bfd_putl32 (ldr_R0, contents + rel->r_offset);
5766 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5767 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5768 return bfd_reloc_continue;
5772 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5773 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
5774 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
5775 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
5779 /* Large GD->LE relaxation:
5780 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
5781 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
5782 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
5783 bl __tls_get_addr => mrs x1, tpidr_el0
5784 nop => add x0, x0, x1
5786 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5787 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5788 rel[2].r_offset = rel->r_offset + 8;
5790 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
5791 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
5792 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
5793 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5794 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5798 /* Large GD->IE relaxation:
5799 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
5800 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
5801 add x0, gp, x0 => ldr x0, [gp, x0]
5802 bl __tls_get_addr => mrs x1, tpidr_el0
5803 nop => add x0, x0, x1
5805 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5806 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
5807 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
5808 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
5809 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
5811 return bfd_reloc_continue;
5813 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5814 return bfd_reloc_continue;
5817 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5818 return bfd_reloc_continue;
5820 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5823 /* GD->LE relaxation:
5824 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5826 Where R is x for lp64 mode, and w for ILP32 mode. */
5827 bfd_putl32 (movk_R0, contents + rel->r_offset);
5828 return bfd_reloc_continue;
5832 /* GD->IE relaxation:
5833 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
5835 Where R is x for lp64 mode, and w for ILP32 mode. */
5836 insn = bfd_getl32 (contents + rel->r_offset);
5837 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5838 return bfd_reloc_continue;
5841 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5844 /* GD->LE relaxation
5845 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
5846 bl __tls_get_addr => mrs x1, tpidr_el0
5847 nop => add R0, R1, R0
5849 Where R is x for lp64 mode, and w for ILP32 mode. */
5851 /* First kill the tls_get_addr reloc on the bl instruction. */
5852 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5853 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5855 bfd_putl32 (movk_R0, contents + rel->r_offset);
5856 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5857 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
5858 return bfd_reloc_continue;
5862 /* GD->IE relaxation
5863 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
5864 BL __tls_get_addr => mrs x1, tpidr_el0
5866 NOP => add R0, R1, R0
5868 Where R is x for lp64 mode, and w for ilp32 mode. */
5870 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5872 /* Remove the relocation on the BL instruction. */
5873 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5875 /* We choose to fixup the BL and NOP instructions using the
5876 offset from the second relocation to allow flexibility in
5877 scheduling instructions between the ADD and BL. */
5878 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
5879 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5880 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
5881 return bfd_reloc_continue;
5884 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5885 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5886 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5887 /* GD->IE/LE relaxation:
5888 add x0, x0, #:tlsdesc_lo12:var => nop
5891 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5892 return bfd_reloc_ok;
5894 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5897 /* GD->LE relaxation:
5898 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
5900 Where R is x for lp64 mode, and w for ILP32 mode. */
5901 bfd_putl32 (movk_R0, contents + rel->r_offset);
5902 return bfd_reloc_continue;
5906 /* GD->IE relaxation:
5907 ldr xd, [gp, xn] => ldr R0, [gp, xn]
5909 Where R is x for lp64 mode, and w for ILP32 mode. */
5910 insn = bfd_getl32 (contents + rel->r_offset);
5911 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
5912 return bfd_reloc_ok;
5915 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5916 /* GD->LE relaxation:
5917 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
5919 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
5921 Where R is x for lp64 mode, and w for ILP32 mode. */
5923 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
5924 return bfd_reloc_continue;
5926 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5929 /* GD->LE relaxation:
5930 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
5932 Where R is x for lp64 mode, and w for ILP32 mode. */
5933 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
5934 return bfd_reloc_continue;
5938 /* GD->IE relaxation:
5939 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
5941 Where R is x for lp64 mode, and w for ILP32 mode. */
5942 insn = bfd_getl32 (contents + rel->r_offset);
5943 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5944 return bfd_reloc_continue;
5947 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5948 /* IE->LE relaxation:
5949 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
5951 Where R is x for lp64 mode, and w for ILP32 mode. */
5954 insn = bfd_getl32 (contents + rel->r_offset);
5955 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
5957 return bfd_reloc_continue;
5959 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5960 /* IE->LE relaxation:
5961 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
5963 Where R is x for lp64 mode, and w for ILP32 mode. */
5966 insn = bfd_getl32 (contents + rel->r_offset);
5967 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
5969 return bfd_reloc_continue;
5971 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5972 /* LD->LE relaxation (tiny):
5973 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5974 bl __tls_get_addr => add R0, R0, TCB_SIZE
5976 Where R is x for lp64 mode, and w for ilp32 mode. */
5979 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5980 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5981 /* No need of CALL26 relocation for tls_get_addr. */
5982 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5983 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5984 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
5985 contents + rel->r_offset + 4);
5986 return bfd_reloc_ok;
5988 return bfd_reloc_continue;
5990 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5991 /* LD->LE relaxation (small):
5992 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5996 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5997 return bfd_reloc_ok;
5999 return bfd_reloc_continue;
6001 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6002 /* LD->LE relaxation (small):
6003 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6004 bl __tls_get_addr => nop
6006 Where R is x for lp64 mode, and w for ilp32 mode. */
6009 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6010 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6011 /* No need of CALL26 relocation for tls_get_addr. */
6012 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6013 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6014 contents + rel->r_offset + 0);
6015 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6016 return bfd_reloc_ok;
6018 return bfd_reloc_continue;
6021 return bfd_reloc_continue;
6024 return bfd_reloc_ok;
6027 /* Relocate an AArch64 ELF section. */
6030 elfNN_aarch64_relocate_section (bfd *output_bfd,
6031 struct bfd_link_info *info,
6033 asection *input_section,
6035 Elf_Internal_Rela *relocs,
6036 Elf_Internal_Sym *local_syms,
6037 asection **local_sections)
6039 Elf_Internal_Shdr *symtab_hdr;
6040 struct elf_link_hash_entry **sym_hashes;
6041 Elf_Internal_Rela *rel;
6042 Elf_Internal_Rela *relend;
6044 struct elf_aarch64_link_hash_table *globals;
6045 bfd_boolean save_addend = FALSE;
6048 globals = elf_aarch64_hash_table (info);
6050 symtab_hdr = &elf_symtab_hdr (input_bfd);
6051 sym_hashes = elf_sym_hashes (input_bfd);
6054 relend = relocs + input_section->reloc_count;
6055 for (; rel < relend; rel++)
6057 unsigned int r_type;
6058 bfd_reloc_code_real_type bfd_r_type;
6059 bfd_reloc_code_real_type relaxed_bfd_r_type;
6060 reloc_howto_type *howto;
6061 unsigned long r_symndx;
6062 Elf_Internal_Sym *sym;
6064 struct elf_link_hash_entry *h;
6066 bfd_reloc_status_type r;
6069 bfd_boolean unresolved_reloc = FALSE;
6070 char *error_message = NULL;
6072 r_symndx = ELFNN_R_SYM (rel->r_info);
6073 r_type = ELFNN_R_TYPE (rel->r_info);
6075 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
6076 howto = bfd_reloc.howto;
6080 /* xgettext:c-format */
6082 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
6083 input_bfd, r_type, input_section);
6086 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6092 if (r_symndx < symtab_hdr->sh_info)
6094 sym = local_syms + r_symndx;
6095 sym_type = ELFNN_ST_TYPE (sym->st_info);
6096 sec = local_sections[r_symndx];
6098 /* An object file might have a reference to a local
6099 undefined symbol. This is a daft object file, but we
6100 should at least do something about it. */
6101 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6102 && bfd_is_und_section (sec)
6103 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6104 (*info->callbacks->undefined_symbol)
6105 (info, bfd_elf_string_from_elf_section
6106 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6107 input_bfd, input_section, rel->r_offset, TRUE);
6109 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6111 /* Relocate against local STT_GNU_IFUNC symbol. */
6112 if (!bfd_link_relocatable (info)
6113 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6115 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6120 /* Set STT_GNU_IFUNC symbol value. */
6121 h->root.u.def.value = sym->st_value;
6122 h->root.u.def.section = sec;
6127 bfd_boolean warned, ignored;
6129 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6130 r_symndx, symtab_hdr, sym_hashes,
6132 unresolved_reloc, warned, ignored);
6137 if (sec != NULL && discarded_section (sec))
6138 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6139 rel, 1, relend, howto, 0, contents);
6141 if (bfd_link_relocatable (info))
6145 name = h->root.root.string;
6148 name = (bfd_elf_string_from_elf_section
6149 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6150 if (name == NULL || *name == '\0')
6151 name = bfd_section_name (input_bfd, sec);
6155 && r_type != R_AARCH64_NONE
6156 && r_type != R_AARCH64_NULL
6158 || h->root.type == bfd_link_hash_defined
6159 || h->root.type == bfd_link_hash_defweak)
6160 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6163 ((sym_type == STT_TLS
6164 /* xgettext:c-format */
6165 ? _("%B(%A+%#Lx): %s used with TLS symbol %s")
6166 /* xgettext:c-format */
6167 : _("%B(%A+%#Lx): %s used with non-TLS symbol %s")),
6169 input_section, rel->r_offset, howto->name, name);
6172 /* We relax only if we can see that there can be a valid transition
6173 from a reloc type to another.
6174 We call elfNN_aarch64_final_link_relocate unless we're completely
6175 done, i.e., the relaxation produced the final output we want. */
6177 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6179 if (relaxed_bfd_r_type != bfd_r_type)
6181 bfd_r_type = relaxed_bfd_r_type;
6182 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6183 BFD_ASSERT (howto != NULL);
6184 r_type = howto->type;
6185 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6186 unresolved_reloc = 0;
6189 r = bfd_reloc_continue;
6191 /* There may be multiple consecutive relocations for the
6192 same offset. In that case we are supposed to treat the
6193 output of each relocation as the addend for the next. */
6194 if (rel + 1 < relend
6195 && rel->r_offset == rel[1].r_offset
6196 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6197 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6200 save_addend = FALSE;
6202 if (r == bfd_reloc_continue)
6203 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6204 input_section, contents, rel,
6205 relocation, info, sec,
6206 h, &unresolved_reloc,
6207 save_addend, &addend, sym);
6209 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
6211 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6212 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6213 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6214 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6215 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6216 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6217 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6218 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6219 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6221 bfd_boolean need_relocs = FALSE;
6226 off = symbol_got_offset (input_bfd, h, r_symndx);
6227 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6230 (bfd_link_pic (info) || indx != 0) &&
6232 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6233 || h->root.type != bfd_link_hash_undefweak);
6235 BFD_ASSERT (globals->root.srelgot != NULL);
6239 Elf_Internal_Rela rela;
6240 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6242 rela.r_offset = globals->root.sgot->output_section->vma +
6243 globals->root.sgot->output_offset + off;
6246 loc = globals->root.srelgot->contents;
6247 loc += globals->root.srelgot->reloc_count++
6248 * RELOC_SIZE (htab);
6249 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6251 bfd_reloc_code_real_type real_type =
6252 elfNN_aarch64_bfd_reloc_from_type (r_type);
6254 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6255 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6256 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6258 /* For local dynamic, don't generate DTPREL in any case.
6259 Initialize the DTPREL slot into zero, so we get module
6260 base address when invoke runtime TLS resolver. */
6261 bfd_put_NN (output_bfd, 0,
6262 globals->root.sgot->contents + off
6267 bfd_put_NN (output_bfd,
6268 relocation - dtpoff_base (info),
6269 globals->root.sgot->contents + off
6274 /* This TLS symbol is global. We emit a
6275 relocation to fixup the tls offset at load
6278 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6281 (globals->root.sgot->output_section->vma
6282 + globals->root.sgot->output_offset + off
6285 loc = globals->root.srelgot->contents;
6286 loc += globals->root.srelgot->reloc_count++
6287 * RELOC_SIZE (globals);
6288 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6289 bfd_put_NN (output_bfd, (bfd_vma) 0,
6290 globals->root.sgot->contents + off
6296 bfd_put_NN (output_bfd, (bfd_vma) 1,
6297 globals->root.sgot->contents + off);
6298 bfd_put_NN (output_bfd,
6299 relocation - dtpoff_base (info),
6300 globals->root.sgot->contents + off
6304 symbol_got_offset_mark (input_bfd, h, r_symndx);
6308 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6309 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6310 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6311 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6312 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6313 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6315 bfd_boolean need_relocs = FALSE;
6320 off = symbol_got_offset (input_bfd, h, r_symndx);
6322 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6325 (bfd_link_pic (info) || indx != 0) &&
6327 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6328 || h->root.type != bfd_link_hash_undefweak);
6330 BFD_ASSERT (globals->root.srelgot != NULL);
6334 Elf_Internal_Rela rela;
6337 rela.r_addend = relocation - dtpoff_base (info);
6341 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6342 rela.r_offset = globals->root.sgot->output_section->vma +
6343 globals->root.sgot->output_offset + off;
6345 loc = globals->root.srelgot->contents;
6346 loc += globals->root.srelgot->reloc_count++
6347 * RELOC_SIZE (htab);
6349 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6351 bfd_put_NN (output_bfd, rela.r_addend,
6352 globals->root.sgot->contents + off);
6355 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6356 globals->root.sgot->contents + off);
6358 symbol_got_offset_mark (input_bfd, h, r_symndx);
6362 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6363 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6364 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6365 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6366 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6367 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6368 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6369 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6371 bfd_boolean need_relocs = FALSE;
6372 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6373 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6375 need_relocs = (h == NULL
6376 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6377 || h->root.type != bfd_link_hash_undefweak);
6379 BFD_ASSERT (globals->root.srelgot != NULL);
6380 BFD_ASSERT (globals->root.sgot != NULL);
6385 Elf_Internal_Rela rela;
6386 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6389 rela.r_offset = (globals->root.sgotplt->output_section->vma
6390 + globals->root.sgotplt->output_offset
6391 + off + globals->sgotplt_jump_table_size);
6394 rela.r_addend = relocation - dtpoff_base (info);
6396 /* Allocate the next available slot in the PLT reloc
6397 section to hold our R_AARCH64_TLSDESC, the next
6398 available slot is determined from reloc_count,
6399 which we step. But note, reloc_count was
6400 artifically moved down while allocating slots for
6401 real PLT relocs such that all of the PLT relocs
6402 will fit above the initial reloc_count and the
6403 extra stuff will fit below. */
6404 loc = globals->root.srelplt->contents;
6405 loc += globals->root.srelplt->reloc_count++
6406 * RELOC_SIZE (globals);
6408 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6410 bfd_put_NN (output_bfd, (bfd_vma) 0,
6411 globals->root.sgotplt->contents + off +
6412 globals->sgotplt_jump_table_size);
6413 bfd_put_NN (output_bfd, (bfd_vma) 0,
6414 globals->root.sgotplt->contents + off +
6415 globals->sgotplt_jump_table_size +
6419 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6426 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6427 because such sections are not SEC_ALLOC and thus ld.so will
6428 not process them. */
6429 if (unresolved_reloc
6430 && !((input_section->flags & SEC_DEBUGGING) != 0
6432 && _bfd_elf_section_offset (output_bfd, info, input_section,
6433 +rel->r_offset) != (bfd_vma) - 1)
6436 /* xgettext:c-format */
6437 (_("%B(%A+%#Lx): unresolvable %s relocation against symbol `%s'"),
6438 input_bfd, input_section, rel->r_offset, howto->name,
6439 h->root.root.string);
6443 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6445 bfd_reloc_code_real_type real_r_type
6446 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6450 case bfd_reloc_overflow:
6451 (*info->callbacks->reloc_overflow)
6452 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6453 input_bfd, input_section, rel->r_offset);
6454 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6455 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6457 (*info->callbacks->warning)
6459 _("Too many GOT entries for -fpic, "
6460 "please recompile with -fPIC"),
6461 name, input_bfd, input_section, rel->r_offset);
6464 /* Overflow can occur when a variable is referenced with a type
6465 that has a larger alignment than the type with which it was
6467 file1.c: extern int foo; int a (void) { return foo; }
6468 file2.c: char bar, foo, baz;
6469 If the variable is placed into a data section at an offset
6470 that is incompatible with the larger alignment requirement
6471 overflow will occur. (Strictly speaking this is not overflow
6472 but rather an alignment problem, but the bfd_reloc_ error
6473 enum does not have a value to cover that situation).
6475 Try to catch this situation here and provide a more helpful
6476 error message to the user. */
6477 if (addend & ((1 << howto->rightshift) - 1)
6478 /* FIXME: Are we testing all of the appropriate reloc
6480 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6481 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6482 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6483 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6484 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6486 info->callbacks->warning
6487 (info, _("One possible cause of this error is that the \
6488 symbol is being referenced in the indicated code as if it had a larger \
6489 alignment than was declared where it was defined."),
6490 name, input_bfd, input_section, rel->r_offset);
6494 case bfd_reloc_undefined:
6495 (*info->callbacks->undefined_symbol)
6496 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6499 case bfd_reloc_outofrange:
6500 error_message = _("out of range");
6503 case bfd_reloc_notsupported:
6504 error_message = _("unsupported relocation");
6507 case bfd_reloc_dangerous:
6508 /* error_message should already be set. */
6512 error_message = _("unknown error");
6516 BFD_ASSERT (error_message != NULL);
6517 (*info->callbacks->reloc_dangerous)
6518 (info, error_message, input_bfd, input_section, rel->r_offset);
6530 /* Set the right machine number. */
6533 elfNN_aarch64_object_p (bfd *abfd)
6536 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6538 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6543 /* Function to keep AArch64 specific flags in the ELF header. */
6546 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6548 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6553 elf_elfheader (abfd)->e_flags = flags;
6554 elf_flags_init (abfd) = TRUE;
6560 /* Merge backend specific data from an object file to the output
6561 object file when linking. */
6564 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6566 bfd *obfd = info->output_bfd;
6569 bfd_boolean flags_compatible = TRUE;
6572 /* Check if we have the same endianess. */
6573 if (!_bfd_generic_verify_endian_match (ibfd, info))
6576 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6579 /* The input BFD must have had its flags initialised. */
6580 /* The following seems bogus to me -- The flags are initialized in
6581 the assembler but I don't think an elf_flags_init field is
6582 written into the object. */
6583 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6585 in_flags = elf_elfheader (ibfd)->e_flags;
6586 out_flags = elf_elfheader (obfd)->e_flags;
6588 if (!elf_flags_init (obfd))
6590 /* If the input is the default architecture and had the default
6591 flags then do not bother setting the flags for the output
6592 architecture, instead allow future merges to do this. If no
6593 future merges ever set these flags then they will retain their
6594 uninitialised values, which surprise surprise, correspond
6595 to the default values. */
6596 if (bfd_get_arch_info (ibfd)->the_default
6597 && elf_elfheader (ibfd)->e_flags == 0)
6600 elf_flags_init (obfd) = TRUE;
6601 elf_elfheader (obfd)->e_flags = in_flags;
6603 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6604 && bfd_get_arch_info (obfd)->the_default)
6605 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6606 bfd_get_mach (ibfd));
6611 /* Identical flags must be compatible. */
6612 if (in_flags == out_flags)
6615 /* Check to see if the input BFD actually contains any sections. If
6616 not, its flags may not have been initialised either, but it
6617 cannot actually cause any incompatiblity. Do not short-circuit
6618 dynamic objects; their section list may be emptied by
6619 elf_link_add_object_symbols.
6621 Also check to see if there are no code sections in the input.
6622 In this case there is no need to check for code specific flags.
6623 XXX - do we need to worry about floating-point format compatability
6624 in data sections ? */
6625 if (!(ibfd->flags & DYNAMIC))
6627 bfd_boolean null_input_bfd = TRUE;
6628 bfd_boolean only_data_sections = TRUE;
6630 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6632 if ((bfd_get_section_flags (ibfd, sec)
6633 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6634 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6635 only_data_sections = FALSE;
6637 null_input_bfd = FALSE;
6641 if (null_input_bfd || only_data_sections)
6645 return flags_compatible;
6648 /* Display the flags field. */
6651 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6653 FILE *file = (FILE *) ptr;
6654 unsigned long flags;
6656 BFD_ASSERT (abfd != NULL && ptr != NULL);
6658 /* Print normal ELF private data. */
6659 _bfd_elf_print_private_bfd_data (abfd, ptr);
6661 flags = elf_elfheader (abfd)->e_flags;
6662 /* Ignore init flag - it may not be set, despite the flags field
6663 containing valid data. */
6665 /* xgettext:c-format */
6666 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6669 fprintf (file, _("<Unrecognised flag bits set>"));
6676 /* Update the got entry reference counts for the section being removed. */
6679 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6680 struct bfd_link_info *info,
6682 const Elf_Internal_Rela * relocs)
6684 struct elf_aarch64_link_hash_table *htab;
6685 Elf_Internal_Shdr *symtab_hdr;
6686 struct elf_link_hash_entry **sym_hashes;
6687 struct elf_aarch64_local_symbol *locals;
6688 const Elf_Internal_Rela *rel, *relend;
6690 if (bfd_link_relocatable (info))
6693 htab = elf_aarch64_hash_table (info);
6698 elf_section_data (sec)->local_dynrel = NULL;
6700 symtab_hdr = &elf_symtab_hdr (abfd);
6701 sym_hashes = elf_sym_hashes (abfd);
6703 locals = elf_aarch64_locals (abfd);
6705 relend = relocs + sec->reloc_count;
6706 for (rel = relocs; rel < relend; rel++)
6708 unsigned long r_symndx;
6709 unsigned int r_type;
6710 struct elf_link_hash_entry *h = NULL;
6712 r_symndx = ELFNN_R_SYM (rel->r_info);
6714 if (r_symndx >= symtab_hdr->sh_info)
6717 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6718 while (h->root.type == bfd_link_hash_indirect
6719 || h->root.type == bfd_link_hash_warning)
6720 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6724 Elf_Internal_Sym *isym;
6726 /* A local symbol. */
6727 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6730 /* Check relocation against local STT_GNU_IFUNC symbol. */
6732 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6734 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6742 struct elf_aarch64_link_hash_entry *eh;
6743 struct elf_dyn_relocs **pp;
6744 struct elf_dyn_relocs *p;
6746 eh = (struct elf_aarch64_link_hash_entry *) h;
6748 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6751 /* Everything must go for SEC. */
6757 r_type = ELFNN_R_TYPE (rel->r_info);
6758 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6760 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6761 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6762 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6763 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6764 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6765 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6766 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6767 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6768 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6769 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6770 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6771 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6772 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6773 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6774 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6775 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6776 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6777 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6778 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6779 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6780 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6781 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6782 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6783 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6784 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6785 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6786 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6787 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6788 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6789 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6790 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6793 if (h->got.refcount > 0)
6794 h->got.refcount -= 1;
6796 if (h->type == STT_GNU_IFUNC)
6798 if (h->plt.refcount > 0)
6799 h->plt.refcount -= 1;
6802 else if (locals != NULL)
6804 if (locals[r_symndx].got_refcount > 0)
6805 locals[r_symndx].got_refcount -= 1;
6809 case BFD_RELOC_AARCH64_CALL26:
6810 case BFD_RELOC_AARCH64_JUMP26:
6811 /* If this is a local symbol then we resolve it
6812 directly without creating a PLT entry. */
6816 if (h->plt.refcount > 0)
6817 h->plt.refcount -= 1;
6820 case BFD_RELOC_AARCH64_ADD_LO12:
6821 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6822 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6823 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6824 case BFD_RELOC_AARCH64_LDST128_LO12:
6825 case BFD_RELOC_AARCH64_LDST16_LO12:
6826 case BFD_RELOC_AARCH64_LDST32_LO12:
6827 case BFD_RELOC_AARCH64_LDST64_LO12:
6828 case BFD_RELOC_AARCH64_LDST8_LO12:
6829 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
6830 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6831 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6832 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6833 case BFD_RELOC_AARCH64_MOVW_G3:
6834 case BFD_RELOC_AARCH64_NN:
6835 if (h != NULL && !bfd_link_pic (info))
6837 if (h->plt.refcount > 0)
6838 h->plt.refcount -= 1;
6850 /* Return true if we need copy relocation against EH. */
6853 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
6855 struct elf_dyn_relocs *p;
6858 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6860 /* If there is any pc-relative reference, we need to keep copy relocation
6861 to avoid propagating the relocation into runtime that current glibc
6862 does not support. */
6866 s = p->sec->output_section;
6867 /* Need copy relocation if it's against read-only section. */
6868 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6875 /* Adjust a symbol defined by a dynamic object and referenced by a
6876 regular object. The current definition is in some section of the
6877 dynamic object, but we're not including those sections. We have to
6878 change the definition to something the rest of the link can
6882 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6883 struct elf_link_hash_entry *h)
6885 struct elf_aarch64_link_hash_table *htab;
6888 /* If this is a function, put it in the procedure linkage table. We
6889 will fill in the contents of the procedure linkage table later,
6890 when we know the address of the .got section. */
6891 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6893 if (h->plt.refcount <= 0
6894 || (h->type != STT_GNU_IFUNC
6895 && (SYMBOL_CALLS_LOCAL (info, h)
6896 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6897 && h->root.type == bfd_link_hash_undefweak))))
6899 /* This case can occur if we saw a CALL26 reloc in
6900 an input file, but the symbol wasn't referred to
6901 by a dynamic object or all references were
6902 garbage collected. In which case we can end up
6904 h->plt.offset = (bfd_vma) - 1;
6911 /* Otherwise, reset to -1. */
6912 h->plt.offset = (bfd_vma) - 1;
6915 /* If this is a weak symbol, and there is a real definition, the
6916 processor independent code will have arranged for us to see the
6917 real definition first, and we can just use the same value. */
6918 if (h->u.weakdef != NULL)
6920 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6921 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6922 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6923 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6924 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6925 h->non_got_ref = h->u.weakdef->non_got_ref;
6929 /* If we are creating a shared library, we must presume that the
6930 only references to the symbol are via the global offset table.
6931 For such cases we need not do anything here; the relocations will
6932 be handled correctly by relocate_section. */
6933 if (bfd_link_pic (info))
6936 /* If there are no references to this symbol that do not use the
6937 GOT, we don't need to generate a copy reloc. */
6938 if (!h->non_got_ref)
6941 /* If -z nocopyreloc was given, we won't generate them either. */
6942 if (info->nocopyreloc)
6948 if (ELIMINATE_COPY_RELOCS)
6950 struct elf_aarch64_link_hash_entry *eh;
6951 /* If we didn't find any dynamic relocs in read-only sections, then
6952 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6953 eh = (struct elf_aarch64_link_hash_entry *) h;
6954 if (!need_copy_relocation_p (eh))
6961 /* We must allocate the symbol in our .dynbss section, which will
6962 become part of the .bss section of the executable. There will be
6963 an entry for this symbol in the .dynsym section. The dynamic
6964 object will contain position independent code, so all references
6965 from the dynamic object to this symbol will go through the global
6966 offset table. The dynamic linker will use the .dynsym entry to
6967 determine the address it must put in the global offset table, so
6968 both the dynamic object and the regular object will refer to the
6969 same memory location for the variable. */
6971 htab = elf_aarch64_hash_table (info);
6973 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6974 to copy the initial value out of the dynamic object and into the
6975 runtime process image. */
6976 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6978 s = htab->root.sdynrelro;
6979 srel = htab->root.sreldynrelro;
6983 s = htab->root.sdynbss;
6984 srel = htab->root.srelbss;
6986 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6988 srel->size += RELOC_SIZE (htab);
6992 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6997 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6999 struct elf_aarch64_local_symbol *locals;
7000 locals = elf_aarch64_locals (abfd);
7003 locals = (struct elf_aarch64_local_symbol *)
7004 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7007 elf_aarch64_locals (abfd) = locals;
7012 /* Create the .got section to hold the global offset table. */
7015 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7017 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7020 struct elf_link_hash_entry *h;
7021 struct elf_link_hash_table *htab = elf_hash_table (info);
7023 /* This function may be called more than once. */
7024 if (htab->sgot != NULL)
7027 flags = bed->dynamic_sec_flags;
7029 s = bfd_make_section_anyway_with_flags (abfd,
7030 (bed->rela_plts_and_copies_p
7031 ? ".rela.got" : ".rel.got"),
7032 (bed->dynamic_sec_flags
7035 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7039 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7041 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7044 htab->sgot->size += GOT_ENTRY_SIZE;
7046 if (bed->want_got_sym)
7048 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7049 (or .got.plt) section. We don't do this in the linker script
7050 because we don't want to define the symbol if we are not creating
7051 a global offset table. */
7052 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7053 "_GLOBAL_OFFSET_TABLE_");
7054 elf_hash_table (info)->hgot = h;
7059 if (bed->want_got_plt)
7061 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7063 || !bfd_set_section_alignment (abfd, s,
7064 bed->s->log_file_align))
7069 /* The first bit of the global offset table is the header. */
7070 s->size += bed->got_header_size;
7075 /* Look through the relocs for a section during the first phase. */
7078 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7079 asection *sec, const Elf_Internal_Rela *relocs)
7081 Elf_Internal_Shdr *symtab_hdr;
7082 struct elf_link_hash_entry **sym_hashes;
7083 const Elf_Internal_Rela *rel;
7084 const Elf_Internal_Rela *rel_end;
7087 struct elf_aarch64_link_hash_table *htab;
7089 if (bfd_link_relocatable (info))
7092 BFD_ASSERT (is_aarch64_elf (abfd));
7094 htab = elf_aarch64_hash_table (info);
7097 symtab_hdr = &elf_symtab_hdr (abfd);
7098 sym_hashes = elf_sym_hashes (abfd);
7100 rel_end = relocs + sec->reloc_count;
7101 for (rel = relocs; rel < rel_end; rel++)
7103 struct elf_link_hash_entry *h;
7104 unsigned int r_symndx;
7105 unsigned int r_type;
7106 bfd_reloc_code_real_type bfd_r_type;
7107 Elf_Internal_Sym *isym;
7109 r_symndx = ELFNN_R_SYM (rel->r_info);
7110 r_type = ELFNN_R_TYPE (rel->r_info);
7112 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7114 /* xgettext:c-format */
7115 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd, r_symndx);
7119 if (r_symndx < symtab_hdr->sh_info)
7121 /* A local symbol. */
7122 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7127 /* Check relocation against local STT_GNU_IFUNC symbol. */
7128 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7130 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7135 /* Fake a STT_GNU_IFUNC symbol. */
7136 h->type = STT_GNU_IFUNC;
7139 h->forced_local = 1;
7140 h->root.type = bfd_link_hash_defined;
7147 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7148 while (h->root.type == bfd_link_hash_indirect
7149 || h->root.type == bfd_link_hash_warning)
7150 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7152 /* PR15323, ref flags aren't set for references in the same
7154 h->root.non_ir_ref_regular = 1;
7157 /* Could be done earlier, if h were already available. */
7158 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7162 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7163 This shows up in particular in an R_AARCH64_PREL64 in large model
7164 when calculating the pc-relative address to .got section which is
7165 used to initialize the gp register. */
7166 if (h->root.root.string
7167 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7169 if (htab->root.dynobj == NULL)
7170 htab->root.dynobj = abfd;
7172 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7175 BFD_ASSERT (h == htab->root.hgot);
7178 /* Create the ifunc sections for static executables. If we
7179 never see an indirect function symbol nor we are building
7180 a static executable, those sections will be empty and
7181 won't appear in output. */
7187 case BFD_RELOC_AARCH64_ADD_LO12:
7188 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7189 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7190 case BFD_RELOC_AARCH64_CALL26:
7191 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7192 case BFD_RELOC_AARCH64_JUMP26:
7193 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7194 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7195 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7196 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7197 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7198 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7199 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7200 case BFD_RELOC_AARCH64_NN:
7201 if (htab->root.dynobj == NULL)
7202 htab->root.dynobj = abfd;
7203 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7208 /* It is referenced by a non-shared object. */
7210 h->root.non_ir_ref_regular = 1;
7215 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7216 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7217 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7218 case BFD_RELOC_AARCH64_MOVW_G3:
7219 if (bfd_link_pic (info))
7221 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7223 /* xgettext:c-format */
7224 (_("%B: relocation %s against `%s' can not be used when making "
7225 "a shared object; recompile with -fPIC"),
7226 abfd, elfNN_aarch64_howto_table[howto_index].name,
7227 (h) ? h->root.root.string : "a local symbol");
7228 bfd_set_error (bfd_error_bad_value);
7233 case BFD_RELOC_AARCH64_16_PCREL:
7234 case BFD_RELOC_AARCH64_32_PCREL:
7235 case BFD_RELOC_AARCH64_64_PCREL:
7236 case BFD_RELOC_AARCH64_ADD_LO12:
7237 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7238 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7239 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7240 case BFD_RELOC_AARCH64_LDST128_LO12:
7241 case BFD_RELOC_AARCH64_LDST16_LO12:
7242 case BFD_RELOC_AARCH64_LDST32_LO12:
7243 case BFD_RELOC_AARCH64_LDST64_LO12:
7244 case BFD_RELOC_AARCH64_LDST8_LO12:
7245 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7246 if (h == NULL || bfd_link_pic (info))
7250 case BFD_RELOC_AARCH64_NN:
7252 /* We don't need to handle relocs into sections not going into
7253 the "real" output. */
7254 if ((sec->flags & SEC_ALLOC) == 0)
7259 if (!bfd_link_pic (info))
7262 h->plt.refcount += 1;
7263 h->pointer_equality_needed = 1;
7266 /* No need to do anything if we're not creating a shared
7268 if (!(bfd_link_pic (info)
7269 /* If on the other hand, we are creating an executable, we
7270 may need to keep relocations for symbols satisfied by a
7271 dynamic library if we manage to avoid copy relocs for the
7274 NOTE: Currently, there is no support of copy relocs
7275 elimination on pc-relative relocation types, because there is
7276 no dynamic relocation support for them in glibc. We still
7277 record the dynamic symbol reference for them. This is
7278 because one symbol may be referenced by both absolute
7279 relocation (for example, BFD_RELOC_AARCH64_NN) and
7280 pc-relative relocation. We need full symbol reference
7281 information to make correct decision later in
7282 elfNN_aarch64_adjust_dynamic_symbol. */
7283 || (ELIMINATE_COPY_RELOCS
7284 && !bfd_link_pic (info)
7286 && (h->root.type == bfd_link_hash_defweak
7287 || !h->def_regular))))
7291 struct elf_dyn_relocs *p;
7292 struct elf_dyn_relocs **head;
7293 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7295 /* We must copy these reloc types into the output file.
7296 Create a reloc section in dynobj and make room for
7300 if (htab->root.dynobj == NULL)
7301 htab->root.dynobj = abfd;
7303 sreloc = _bfd_elf_make_dynamic_reloc_section
7304 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7310 /* If this is a global symbol, we count the number of
7311 relocations we need for this symbol. */
7314 struct elf_aarch64_link_hash_entry *eh;
7315 eh = (struct elf_aarch64_link_hash_entry *) h;
7316 head = &eh->dyn_relocs;
7320 /* Track dynamic relocs needed for local syms too.
7321 We really need local syms available to do this
7327 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7332 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7336 /* Beware of type punned pointers vs strict aliasing
7338 vpp = &(elf_section_data (s)->local_dynrel);
7339 head = (struct elf_dyn_relocs **) vpp;
7343 if (p == NULL || p->sec != sec)
7345 bfd_size_type amt = sizeof *p;
7346 p = ((struct elf_dyn_relocs *)
7347 bfd_zalloc (htab->root.dynobj, amt));
7357 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7362 /* RR: We probably want to keep a consistency check that
7363 there are no dangling GOT_PAGE relocs. */
7364 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7365 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7366 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7367 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7368 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7369 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7370 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7371 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7372 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7373 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7374 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7375 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7376 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7377 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7378 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7379 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7380 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7381 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7382 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7383 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7384 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7385 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7386 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7387 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7388 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7389 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7390 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7391 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7392 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7393 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7394 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7395 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7396 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7397 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7400 unsigned old_got_type;
7402 got_type = aarch64_reloc_got_type (bfd_r_type);
7406 h->got.refcount += 1;
7407 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7411 struct elf_aarch64_local_symbol *locals;
7413 if (!elfNN_aarch64_allocate_local_symbols
7414 (abfd, symtab_hdr->sh_info))
7417 locals = elf_aarch64_locals (abfd);
7418 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7419 locals[r_symndx].got_refcount += 1;
7420 old_got_type = locals[r_symndx].got_type;
7423 /* If a variable is accessed with both general dynamic TLS
7424 methods, two slots may be created. */
7425 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7426 got_type |= old_got_type;
7428 /* We will already have issued an error message if there
7429 is a TLS/non-TLS mismatch, based on the symbol type.
7430 So just combine any TLS types needed. */
7431 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7432 && got_type != GOT_NORMAL)
7433 got_type |= old_got_type;
7435 /* If the symbol is accessed by both IE and GD methods, we
7436 are able to relax. Turn off the GD flag, without
7437 messing up with any other kind of TLS types that may be
7439 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7440 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7442 if (old_got_type != got_type)
7445 elf_aarch64_hash_entry (h)->got_type = got_type;
7448 struct elf_aarch64_local_symbol *locals;
7449 locals = elf_aarch64_locals (abfd);
7450 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7451 locals[r_symndx].got_type = got_type;
7455 if (htab->root.dynobj == NULL)
7456 htab->root.dynobj = abfd;
7457 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7462 case BFD_RELOC_AARCH64_CALL26:
7463 case BFD_RELOC_AARCH64_JUMP26:
7464 /* If this is a local symbol then we resolve it
7465 directly without creating a PLT entry. */
7470 if (h->plt.refcount <= 0)
7471 h->plt.refcount = 1;
7473 h->plt.refcount += 1;
7484 /* Treat mapping symbols as special target symbols. */
7487 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7490 return bfd_is_aarch64_special_symbol_name (sym->name,
7491 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7494 /* This is a copy of elf_find_function () from elf.c except that
7495 AArch64 mapping symbols are ignored when looking for function names. */
7498 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7502 const char **filename_ptr,
7503 const char **functionname_ptr)
7505 const char *filename = NULL;
7506 asymbol *func = NULL;
7507 bfd_vma low_func = 0;
7510 for (p = symbols; *p != NULL; p++)
7514 q = (elf_symbol_type *) * p;
7516 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7521 filename = bfd_asymbol_name (&q->symbol);
7525 /* Skip mapping symbols. */
7526 if ((q->symbol.flags & BSF_LOCAL)
7527 && (bfd_is_aarch64_special_symbol_name
7528 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7531 if (bfd_get_section (&q->symbol) == section
7532 && q->symbol.value >= low_func && q->symbol.value <= offset)
7534 func = (asymbol *) q;
7535 low_func = q->symbol.value;
7545 *filename_ptr = filename;
7546 if (functionname_ptr)
7547 *functionname_ptr = bfd_asymbol_name (func);
7553 /* Find the nearest line to a particular section and offset, for error
7554 reporting. This code is a duplicate of the code in elf.c, except
7555 that it uses aarch64_elf_find_function. */
7558 elfNN_aarch64_find_nearest_line (bfd *abfd,
7562 const char **filename_ptr,
7563 const char **functionname_ptr,
7564 unsigned int *line_ptr,
7565 unsigned int *discriminator_ptr)
7567 bfd_boolean found = FALSE;
7569 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7570 filename_ptr, functionname_ptr,
7571 line_ptr, discriminator_ptr,
7572 dwarf_debug_sections, 0,
7573 &elf_tdata (abfd)->dwarf2_find_line_info))
7575 if (!*functionname_ptr)
7576 aarch64_elf_find_function (abfd, symbols, section, offset,
7577 *filename_ptr ? NULL : filename_ptr,
7583 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7584 toolchain uses DWARF1. */
7586 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7587 &found, filename_ptr,
7588 functionname_ptr, line_ptr,
7589 &elf_tdata (abfd)->line_info))
7592 if (found && (*functionname_ptr || *line_ptr))
7595 if (symbols == NULL)
7598 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7599 filename_ptr, functionname_ptr))
7607 elfNN_aarch64_find_inliner_info (bfd *abfd,
7608 const char **filename_ptr,
7609 const char **functionname_ptr,
7610 unsigned int *line_ptr)
7613 found = _bfd_dwarf2_find_inliner_info
7614 (abfd, filename_ptr,
7615 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7621 elfNN_aarch64_post_process_headers (bfd *abfd,
7622 struct bfd_link_info *link_info)
7624 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7626 i_ehdrp = elf_elfheader (abfd);
7627 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7629 _bfd_elf_post_process_headers (abfd, link_info);
7632 static enum elf_reloc_type_class
7633 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7634 const asection *rel_sec ATTRIBUTE_UNUSED,
7635 const Elf_Internal_Rela *rela)
7637 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7639 if (htab->root.dynsym != NULL
7640 && htab->root.dynsym->contents != NULL)
7642 /* Check relocation against STT_GNU_IFUNC symbol if there are
7644 bfd *abfd = info->output_bfd;
7645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7646 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7647 if (r_symndx != STN_UNDEF)
7649 Elf_Internal_Sym sym;
7650 if (!bed->s->swap_symbol_in (abfd,
7651 (htab->root.dynsym->contents
7652 + r_symndx * bed->s->sizeof_sym),
7655 /* xgettext:c-format */
7656 _bfd_error_handler (_("%B symbol number %lu references"
7657 " nonexistent SHT_SYMTAB_SHNDX section"),
7659 /* Ideally an error class should be returned here. */
7661 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7662 return reloc_class_ifunc;
7666 switch ((int) ELFNN_R_TYPE (rela->r_info))
7668 case AARCH64_R (IRELATIVE):
7669 return reloc_class_ifunc;
7670 case AARCH64_R (RELATIVE):
7671 return reloc_class_relative;
7672 case AARCH64_R (JUMP_SLOT):
7673 return reloc_class_plt;
7674 case AARCH64_R (COPY):
7675 return reloc_class_copy;
7677 return reloc_class_normal;
7681 /* Handle an AArch64 specific section when reading an object file. This is
7682 called when bfd_section_from_shdr finds a section with an unknown
7686 elfNN_aarch64_section_from_shdr (bfd *abfd,
7687 Elf_Internal_Shdr *hdr,
7688 const char *name, int shindex)
7690 /* There ought to be a place to keep ELF backend specific flags, but
7691 at the moment there isn't one. We just keep track of the
7692 sections by their name, instead. Fortunately, the ABI gives
7693 names for all the AArch64 specific sections, so we will probably get
7695 switch (hdr->sh_type)
7697 case SHT_AARCH64_ATTRIBUTES:
7704 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7710 /* A structure used to record a list of sections, independently
7711 of the next and prev fields in the asection structure. */
7712 typedef struct section_list
7715 struct section_list *next;
7716 struct section_list *prev;
7720 /* Unfortunately we need to keep a list of sections for which
7721 an _aarch64_elf_section_data structure has been allocated. This
7722 is because it is possible for functions like elfNN_aarch64_write_section
7723 to be called on a section which has had an elf_data_structure
7724 allocated for it (and so the used_by_bfd field is valid) but
7725 for which the AArch64 extended version of this structure - the
7726 _aarch64_elf_section_data structure - has not been allocated. */
7727 static section_list *sections_with_aarch64_elf_section_data = NULL;
7730 record_section_with_aarch64_elf_section_data (asection *sec)
7732 struct section_list *entry;
7734 entry = bfd_malloc (sizeof (*entry));
7738 entry->next = sections_with_aarch64_elf_section_data;
7740 if (entry->next != NULL)
7741 entry->next->prev = entry;
7742 sections_with_aarch64_elf_section_data = entry;
7745 static struct section_list *
7746 find_aarch64_elf_section_entry (asection *sec)
7748 struct section_list *entry;
7749 static struct section_list *last_entry = NULL;
7751 /* This is a short cut for the typical case where the sections are added
7752 to the sections_with_aarch64_elf_section_data list in forward order and
7753 then looked up here in backwards order. This makes a real difference
7754 to the ld-srec/sec64k.exp linker test. */
7755 entry = sections_with_aarch64_elf_section_data;
7756 if (last_entry != NULL)
7758 if (last_entry->sec == sec)
7760 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7761 entry = last_entry->next;
7764 for (; entry; entry = entry->next)
7765 if (entry->sec == sec)
7769 /* Record the entry prior to this one - it is the entry we are
7770 most likely to want to locate next time. Also this way if we
7771 have been called from
7772 unrecord_section_with_aarch64_elf_section_data () we will not
7773 be caching a pointer that is about to be freed. */
7774 last_entry = entry->prev;
7780 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7782 struct section_list *entry;
7784 entry = find_aarch64_elf_section_entry (sec);
7788 if (entry->prev != NULL)
7789 entry->prev->next = entry->next;
7790 if (entry->next != NULL)
7791 entry->next->prev = entry->prev;
7792 if (entry == sections_with_aarch64_elf_section_data)
7793 sections_with_aarch64_elf_section_data = entry->next;
7802 struct bfd_link_info *info;
7805 int (*func) (void *, const char *, Elf_Internal_Sym *,
7806 asection *, struct elf_link_hash_entry *);
7807 } output_arch_syminfo;
7809 enum map_symbol_type
7816 /* Output a single mapping symbol. */
7819 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7820 enum map_symbol_type type, bfd_vma offset)
7822 static const char *names[2] = { "$x", "$d" };
7823 Elf_Internal_Sym sym;
7825 sym.st_value = (osi->sec->output_section->vma
7826 + osi->sec->output_offset + offset);
7829 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7830 sym.st_shndx = osi->sec_shndx;
7831 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7834 /* Output a single local symbol for a generated stub. */
7837 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7838 bfd_vma offset, bfd_vma size)
7840 Elf_Internal_Sym sym;
7842 sym.st_value = (osi->sec->output_section->vma
7843 + osi->sec->output_offset + offset);
7846 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7847 sym.st_shndx = osi->sec_shndx;
7848 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7852 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7854 struct elf_aarch64_stub_hash_entry *stub_entry;
7858 output_arch_syminfo *osi;
7860 /* Massage our args to the form they really have. */
7861 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7862 osi = (output_arch_syminfo *) in_arg;
7864 stub_sec = stub_entry->stub_sec;
7866 /* Ensure this stub is attached to the current section being
7868 if (stub_sec != osi->sec)
7871 addr = (bfd_vma) stub_entry->stub_offset;
7873 stub_name = stub_entry->output_name;
7875 switch (stub_entry->stub_type)
7877 case aarch64_stub_adrp_branch:
7878 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7879 sizeof (aarch64_adrp_branch_stub)))
7881 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7884 case aarch64_stub_long_branch:
7885 if (!elfNN_aarch64_output_stub_sym
7886 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7888 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7890 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7893 case aarch64_stub_erratum_835769_veneer:
7894 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7895 sizeof (aarch64_erratum_835769_stub)))
7897 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7900 case aarch64_stub_erratum_843419_veneer:
7901 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7902 sizeof (aarch64_erratum_843419_stub)))
7904 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7915 /* Output mapping symbols for linker generated sections. */
7918 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7919 struct bfd_link_info *info,
7921 int (*func) (void *, const char *,
7924 struct elf_link_hash_entry
7927 output_arch_syminfo osi;
7928 struct elf_aarch64_link_hash_table *htab;
7930 htab = elf_aarch64_hash_table (info);
7936 /* Long calls stubs. */
7937 if (htab->stub_bfd && htab->stub_bfd->sections)
7941 for (stub_sec = htab->stub_bfd->sections;
7942 stub_sec != NULL; stub_sec = stub_sec->next)
7944 /* Ignore non-stub sections. */
7945 if (!strstr (stub_sec->name, STUB_SUFFIX))
7950 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7951 (output_bfd, osi.sec->output_section);
7953 /* The first instruction in a stub is always a branch. */
7954 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7957 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7962 /* Finally, output mapping symbols for the PLT. */
7963 if (!htab->root.splt || htab->root.splt->size == 0)
7966 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7967 (output_bfd, htab->root.splt->output_section);
7968 osi.sec = htab->root.splt;
7970 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7976 /* Allocate target specific section data. */
7979 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7981 if (!sec->used_by_bfd)
7983 _aarch64_elf_section_data *sdata;
7984 bfd_size_type amt = sizeof (*sdata);
7986 sdata = bfd_zalloc (abfd, amt);
7989 sec->used_by_bfd = sdata;
7992 record_section_with_aarch64_elf_section_data (sec);
7994 return _bfd_elf_new_section_hook (abfd, sec);
7999 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8001 void *ignore ATTRIBUTE_UNUSED)
8003 unrecord_section_with_aarch64_elf_section_data (sec);
8007 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8010 bfd_map_over_sections (abfd,
8011 unrecord_section_via_map_over_sections, NULL);
8013 return _bfd_elf_close_and_cleanup (abfd);
8017 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8020 bfd_map_over_sections (abfd,
8021 unrecord_section_via_map_over_sections, NULL);
8023 return _bfd_free_cached_info (abfd);
8026 /* Create dynamic sections. This is different from the ARM backend in that
8027 the got, plt, gotplt and their relocation sections are all created in the
8028 standard part of the bfd elf backend. */
8031 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8032 struct bfd_link_info *info)
8034 /* We need to create .got section. */
8035 if (!aarch64_elf_create_got_section (dynobj, info))
8038 return _bfd_elf_create_dynamic_sections (dynobj, info);
8042 /* Allocate space in .plt, .got and associated reloc sections for
8046 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8048 struct bfd_link_info *info;
8049 struct elf_aarch64_link_hash_table *htab;
8050 struct elf_aarch64_link_hash_entry *eh;
8051 struct elf_dyn_relocs *p;
8053 /* An example of a bfd_link_hash_indirect symbol is versioned
8054 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8055 -> __gxx_personality_v0(bfd_link_hash_defined)
8057 There is no need to process bfd_link_hash_indirect symbols here
8058 because we will also be presented with the concrete instance of
8059 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8060 called to copy all relevant data from the generic to the concrete
8062 if (h->root.type == bfd_link_hash_indirect)
8065 if (h->root.type == bfd_link_hash_warning)
8066 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8068 info = (struct bfd_link_info *) inf;
8069 htab = elf_aarch64_hash_table (info);
8071 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8072 here if it is defined and referenced in a non-shared object. */
8073 if (h->type == STT_GNU_IFUNC
8076 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8078 /* Make sure this symbol is output as a dynamic symbol.
8079 Undefined weak syms won't yet be marked as dynamic. */
8080 if (h->dynindx == -1 && !h->forced_local
8081 && h->root.type == bfd_link_hash_undefweak)
8083 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8087 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8089 asection *s = htab->root.splt;
8091 /* If this is the first .plt entry, make room for the special
8094 s->size += htab->plt_header_size;
8096 h->plt.offset = s->size;
8098 /* If this symbol is not defined in a regular file, and we are
8099 not generating a shared library, then set the symbol to this
8100 location in the .plt. This is required to make function
8101 pointers compare as equal between the normal executable and
8102 the shared library. */
8103 if (!bfd_link_pic (info) && !h->def_regular)
8105 h->root.u.def.section = s;
8106 h->root.u.def.value = h->plt.offset;
8109 /* Make room for this entry. For now we only create the
8110 small model PLT entries. We later need to find a way
8111 of relaxing into these from the large model PLT entries. */
8112 s->size += PLT_SMALL_ENTRY_SIZE;
8114 /* We also need to make an entry in the .got.plt section, which
8115 will be placed in the .got section by the linker script. */
8116 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8118 /* We also need to make an entry in the .rela.plt section. */
8119 htab->root.srelplt->size += RELOC_SIZE (htab);
8121 /* We need to ensure that all GOT entries that serve the PLT
8122 are consecutive with the special GOT slots [0] [1] and
8123 [2]. Any addtional relocations, such as
8124 R_AARCH64_TLSDESC, must be placed after the PLT related
8125 entries. We abuse the reloc_count such that during
8126 sizing we adjust reloc_count to indicate the number of
8127 PLT related reserved entries. In subsequent phases when
8128 filling in the contents of the reloc entries, PLT related
8129 entries are placed by computing their PLT index (0
8130 .. reloc_count). While other none PLT relocs are placed
8131 at the slot indicated by reloc_count and reloc_count is
8134 htab->root.srelplt->reloc_count++;
8138 h->plt.offset = (bfd_vma) - 1;
8144 h->plt.offset = (bfd_vma) - 1;
8148 eh = (struct elf_aarch64_link_hash_entry *) h;
8149 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8151 if (h->got.refcount > 0)
8154 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8156 h->got.offset = (bfd_vma) - 1;
8158 dyn = htab->root.dynamic_sections_created;
8160 /* Make sure this symbol is output as a dynamic symbol.
8161 Undefined weak syms won't yet be marked as dynamic. */
8162 if (dyn && h->dynindx == -1 && !h->forced_local
8163 && h->root.type == bfd_link_hash_undefweak)
8165 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8169 if (got_type == GOT_UNKNOWN)
8172 else if (got_type == GOT_NORMAL)
8174 h->got.offset = htab->root.sgot->size;
8175 htab->root.sgot->size += GOT_ENTRY_SIZE;
8176 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8177 || h->root.type != bfd_link_hash_undefweak)
8178 && (bfd_link_pic (info)
8179 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8181 htab->root.srelgot->size += RELOC_SIZE (htab);
8187 if (got_type & GOT_TLSDESC_GD)
8189 eh->tlsdesc_got_jump_table_offset =
8190 (htab->root.sgotplt->size
8191 - aarch64_compute_jump_table_size (htab));
8192 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8193 h->got.offset = (bfd_vma) - 2;
8196 if (got_type & GOT_TLS_GD)
8198 h->got.offset = htab->root.sgot->size;
8199 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8202 if (got_type & GOT_TLS_IE)
8204 h->got.offset = htab->root.sgot->size;
8205 htab->root.sgot->size += GOT_ENTRY_SIZE;
8208 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8209 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8210 || h->root.type != bfd_link_hash_undefweak)
8211 && (bfd_link_pic (info)
8213 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8215 if (got_type & GOT_TLSDESC_GD)
8217 htab->root.srelplt->size += RELOC_SIZE (htab);
8218 /* Note reloc_count not incremented here! We have
8219 already adjusted reloc_count for this relocation
8222 /* TLSDESC PLT is now needed, but not yet determined. */
8223 htab->tlsdesc_plt = (bfd_vma) - 1;
8226 if (got_type & GOT_TLS_GD)
8227 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8229 if (got_type & GOT_TLS_IE)
8230 htab->root.srelgot->size += RELOC_SIZE (htab);
8236 h->got.offset = (bfd_vma) - 1;
8239 if (eh->dyn_relocs == NULL)
8242 /* In the shared -Bsymbolic case, discard space allocated for
8243 dynamic pc-relative relocs against symbols which turn out to be
8244 defined in regular objects. For the normal shared case, discard
8245 space for pc-relative relocs that have become local due to symbol
8246 visibility changes. */
8248 if (bfd_link_pic (info))
8250 /* Relocs that use pc_count are those that appear on a call
8251 insn, or certain REL relocs that can generated via assembly.
8252 We want calls to protected symbols to resolve directly to the
8253 function rather than going via the plt. If people want
8254 function pointer comparisons to work as expected then they
8255 should avoid writing weird assembly. */
8256 if (SYMBOL_CALLS_LOCAL (info, h))
8258 struct elf_dyn_relocs **pp;
8260 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8262 p->count -= p->pc_count;
8271 /* Also discard relocs on undefined weak syms with non-default
8273 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8275 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8276 eh->dyn_relocs = NULL;
8278 /* Make sure undefined weak symbols are output as a dynamic
8280 else if (h->dynindx == -1
8282 && h->root.type == bfd_link_hash_undefweak
8283 && !bfd_elf_link_record_dynamic_symbol (info, h))
8288 else if (ELIMINATE_COPY_RELOCS)
8290 /* For the non-shared case, discard space for relocs against
8291 symbols which turn out to need copy relocs or are not
8297 || (htab->root.dynamic_sections_created
8298 && (h->root.type == bfd_link_hash_undefweak
8299 || h->root.type == bfd_link_hash_undefined))))
8301 /* Make sure this symbol is output as a dynamic symbol.
8302 Undefined weak syms won't yet be marked as dynamic. */
8303 if (h->dynindx == -1
8305 && h->root.type == bfd_link_hash_undefweak
8306 && !bfd_elf_link_record_dynamic_symbol (info, h))
8309 /* If that succeeded, we know we'll be keeping all the
8311 if (h->dynindx != -1)
8315 eh->dyn_relocs = NULL;
8320 /* Finally, allocate space. */
8321 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8325 sreloc = elf_section_data (p->sec)->sreloc;
8327 BFD_ASSERT (sreloc != NULL);
8329 sreloc->size += p->count * RELOC_SIZE (htab);
8335 /* Allocate space in .plt, .got and associated reloc sections for
8336 ifunc dynamic relocs. */
8339 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8342 struct bfd_link_info *info;
8343 struct elf_aarch64_link_hash_table *htab;
8344 struct elf_aarch64_link_hash_entry *eh;
8346 /* An example of a bfd_link_hash_indirect symbol is versioned
8347 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8348 -> __gxx_personality_v0(bfd_link_hash_defined)
8350 There is no need to process bfd_link_hash_indirect symbols here
8351 because we will also be presented with the concrete instance of
8352 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8353 called to copy all relevant data from the generic to the concrete
8355 if (h->root.type == bfd_link_hash_indirect)
8358 if (h->root.type == bfd_link_hash_warning)
8359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8361 info = (struct bfd_link_info *) inf;
8362 htab = elf_aarch64_hash_table (info);
8364 eh = (struct elf_aarch64_link_hash_entry *) h;
8366 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8367 here if it is defined and referenced in a non-shared object. */
8368 if (h->type == STT_GNU_IFUNC
8370 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8373 htab->plt_entry_size,
8374 htab->plt_header_size,
8380 /* Allocate space in .plt, .got and associated reloc sections for
8381 local dynamic relocs. */
8384 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8386 struct elf_link_hash_entry *h
8387 = (struct elf_link_hash_entry *) *slot;
8389 if (h->type != STT_GNU_IFUNC
8393 || h->root.type != bfd_link_hash_defined)
8396 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8399 /* Allocate space in .plt, .got and associated reloc sections for
8400 local ifunc dynamic relocs. */
8403 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8405 struct elf_link_hash_entry *h
8406 = (struct elf_link_hash_entry *) *slot;
8408 if (h->type != STT_GNU_IFUNC
8412 || h->root.type != bfd_link_hash_defined)
8415 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8418 /* Find any dynamic relocs that apply to read-only sections. */
8421 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8423 struct elf_aarch64_link_hash_entry * eh;
8424 struct elf_dyn_relocs * p;
8426 eh = (struct elf_aarch64_link_hash_entry *) h;
8427 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8429 asection *s = p->sec;
8431 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8433 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8435 info->flags |= DF_TEXTREL;
8437 /* Not an error, just cut short the traversal. */
8444 /* This is the most important function of all . Innocuosly named
8448 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8449 struct bfd_link_info *info)
8451 struct elf_aarch64_link_hash_table *htab;
8457 htab = elf_aarch64_hash_table ((info));
8458 dynobj = htab->root.dynobj;
8460 BFD_ASSERT (dynobj != NULL);
8462 if (htab->root.dynamic_sections_created)
8464 if (bfd_link_executable (info) && !info->nointerp)
8466 s = bfd_get_linker_section (dynobj, ".interp");
8469 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8470 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8474 /* Set up .got offsets for local syms, and space for local dynamic
8476 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8478 struct elf_aarch64_local_symbol *locals = NULL;
8479 Elf_Internal_Shdr *symtab_hdr;
8483 if (!is_aarch64_elf (ibfd))
8486 for (s = ibfd->sections; s != NULL; s = s->next)
8488 struct elf_dyn_relocs *p;
8490 for (p = (struct elf_dyn_relocs *)
8491 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8493 if (!bfd_is_abs_section (p->sec)
8494 && bfd_is_abs_section (p->sec->output_section))
8496 /* Input section has been discarded, either because
8497 it is a copy of a linkonce section or due to
8498 linker script /DISCARD/, so we'll be discarding
8501 else if (p->count != 0)
8503 srel = elf_section_data (p->sec)->sreloc;
8504 srel->size += p->count * RELOC_SIZE (htab);
8505 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8506 info->flags |= DF_TEXTREL;
8511 locals = elf_aarch64_locals (ibfd);
8515 symtab_hdr = &elf_symtab_hdr (ibfd);
8516 srel = htab->root.srelgot;
8517 for (i = 0; i < symtab_hdr->sh_info; i++)
8519 locals[i].got_offset = (bfd_vma) - 1;
8520 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8521 if (locals[i].got_refcount > 0)
8523 unsigned got_type = locals[i].got_type;
8524 if (got_type & GOT_TLSDESC_GD)
8526 locals[i].tlsdesc_got_jump_table_offset =
8527 (htab->root.sgotplt->size
8528 - aarch64_compute_jump_table_size (htab));
8529 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8530 locals[i].got_offset = (bfd_vma) - 2;
8533 if (got_type & GOT_TLS_GD)
8535 locals[i].got_offset = htab->root.sgot->size;
8536 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8539 if (got_type & GOT_TLS_IE
8540 || got_type & GOT_NORMAL)
8542 locals[i].got_offset = htab->root.sgot->size;
8543 htab->root.sgot->size += GOT_ENTRY_SIZE;
8546 if (got_type == GOT_UNKNOWN)
8550 if (bfd_link_pic (info))
8552 if (got_type & GOT_TLSDESC_GD)
8554 htab->root.srelplt->size += RELOC_SIZE (htab);
8555 /* Note RELOC_COUNT not incremented here! */
8556 htab->tlsdesc_plt = (bfd_vma) - 1;
8559 if (got_type & GOT_TLS_GD)
8560 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8562 if (got_type & GOT_TLS_IE
8563 || got_type & GOT_NORMAL)
8564 htab->root.srelgot->size += RELOC_SIZE (htab);
8569 locals[i].got_refcount = (bfd_vma) - 1;
8575 /* Allocate global sym .plt and .got entries, and space for global
8576 sym dynamic relocs. */
8577 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8580 /* Allocate global ifunc sym .plt and .got entries, and space for global
8581 ifunc sym dynamic relocs. */
8582 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8585 /* Allocate .plt and .got entries, and space for local symbols. */
8586 htab_traverse (htab->loc_hash_table,
8587 elfNN_aarch64_allocate_local_dynrelocs,
8590 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8591 htab_traverse (htab->loc_hash_table,
8592 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8595 /* For every jump slot reserved in the sgotplt, reloc_count is
8596 incremented. However, when we reserve space for TLS descriptors,
8597 it's not incremented, so in order to compute the space reserved
8598 for them, it suffices to multiply the reloc count by the jump
8601 if (htab->root.srelplt)
8602 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8604 if (htab->tlsdesc_plt)
8606 if (htab->root.splt->size == 0)
8607 htab->root.splt->size += PLT_ENTRY_SIZE;
8609 htab->tlsdesc_plt = htab->root.splt->size;
8610 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8612 /* If we're not using lazy TLS relocations, don't generate the
8613 GOT entry required. */
8614 if (!(info->flags & DF_BIND_NOW))
8616 htab->dt_tlsdesc_got = htab->root.sgot->size;
8617 htab->root.sgot->size += GOT_ENTRY_SIZE;
8621 /* Init mapping symbols information to use later to distingush between
8622 code and data while scanning for errata. */
8623 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8624 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8626 if (!is_aarch64_elf (ibfd))
8628 bfd_elfNN_aarch64_init_maps (ibfd);
8631 /* We now have determined the sizes of the various dynamic sections.
8632 Allocate memory for them. */
8634 for (s = dynobj->sections; s != NULL; s = s->next)
8636 if ((s->flags & SEC_LINKER_CREATED) == 0)
8639 if (s == htab->root.splt
8640 || s == htab->root.sgot
8641 || s == htab->root.sgotplt
8642 || s == htab->root.iplt
8643 || s == htab->root.igotplt
8644 || s == htab->root.sdynbss
8645 || s == htab->root.sdynrelro)
8647 /* Strip this section if we don't need it; see the
8650 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8652 if (s->size != 0 && s != htab->root.srelplt)
8655 /* We use the reloc_count field as a counter if we need
8656 to copy relocs into the output file. */
8657 if (s != htab->root.srelplt)
8662 /* It's not one of our sections, so don't allocate space. */
8668 /* If we don't need this section, strip it from the
8669 output file. This is mostly to handle .rela.bss and
8670 .rela.plt. We must create both sections in
8671 create_dynamic_sections, because they must be created
8672 before the linker maps input sections to output
8673 sections. The linker does that before
8674 adjust_dynamic_symbol is called, and it is that
8675 function which decides whether anything needs to go
8676 into these sections. */
8677 s->flags |= SEC_EXCLUDE;
8681 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8684 /* Allocate memory for the section contents. We use bfd_zalloc
8685 here in case unused entries are not reclaimed before the
8686 section's contents are written out. This should not happen,
8687 but this way if it does, we get a R_AARCH64_NONE reloc instead
8689 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8690 if (s->contents == NULL)
8694 if (htab->root.dynamic_sections_created)
8696 /* Add some entries to the .dynamic section. We fill in the
8697 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8698 must add the entries now so that we get the correct size for
8699 the .dynamic section. The DT_DEBUG entry is filled in by the
8700 dynamic linker and used by the debugger. */
8701 #define add_dynamic_entry(TAG, VAL) \
8702 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8704 if (bfd_link_executable (info))
8706 if (!add_dynamic_entry (DT_DEBUG, 0))
8710 if (htab->root.splt->size != 0)
8712 if (!add_dynamic_entry (DT_PLTGOT, 0)
8713 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8714 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8715 || !add_dynamic_entry (DT_JMPREL, 0))
8718 if (htab->tlsdesc_plt
8719 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8720 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8726 if (!add_dynamic_entry (DT_RELA, 0)
8727 || !add_dynamic_entry (DT_RELASZ, 0)
8728 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8731 /* If any dynamic relocs apply to a read-only section,
8732 then we need a DT_TEXTREL entry. */
8733 if ((info->flags & DF_TEXTREL) == 0)
8734 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8737 if ((info->flags & DF_TEXTREL) != 0)
8739 if (!add_dynamic_entry (DT_TEXTREL, 0))
8744 #undef add_dynamic_entry
8750 elf_aarch64_update_plt_entry (bfd *output_bfd,
8751 bfd_reloc_code_real_type r_type,
8752 bfd_byte *plt_entry, bfd_vma value)
8754 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8756 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8760 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8761 struct elf_aarch64_link_hash_table
8762 *htab, bfd *output_bfd,
8763 struct bfd_link_info *info)
8765 bfd_byte *plt_entry;
8768 bfd_vma gotplt_entry_address;
8769 bfd_vma plt_entry_address;
8770 Elf_Internal_Rela rela;
8772 asection *plt, *gotplt, *relplt;
8774 /* When building a static executable, use .iplt, .igot.plt and
8775 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8776 if (htab->root.splt != NULL)
8778 plt = htab->root.splt;
8779 gotplt = htab->root.sgotplt;
8780 relplt = htab->root.srelplt;
8784 plt = htab->root.iplt;
8785 gotplt = htab->root.igotplt;
8786 relplt = htab->root.irelplt;
8789 /* Get the index in the procedure linkage table which
8790 corresponds to this symbol. This is the index of this symbol
8791 in all the symbols for which we are making plt entries. The
8792 first entry in the procedure linkage table is reserved.
8794 Get the offset into the .got table of the entry that
8795 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8796 bytes. The first three are reserved for the dynamic linker.
8798 For static executables, we don't reserve anything. */
8800 if (plt == htab->root.splt)
8802 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8803 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8807 plt_index = h->plt.offset / htab->plt_entry_size;
8808 got_offset = plt_index * GOT_ENTRY_SIZE;
8811 plt_entry = plt->contents + h->plt.offset;
8812 plt_entry_address = plt->output_section->vma
8813 + plt->output_offset + h->plt.offset;
8814 gotplt_entry_address = gotplt->output_section->vma +
8815 gotplt->output_offset + got_offset;
8817 /* Copy in the boiler-plate for the PLTn entry. */
8818 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8820 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8821 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8822 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8824 PG (gotplt_entry_address) -
8825 PG (plt_entry_address));
8827 /* Fill in the lo12 bits for the load from the pltgot. */
8828 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8830 PG_OFFSET (gotplt_entry_address));
8832 /* Fill in the lo12 bits for the add from the pltgot entry. */
8833 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8835 PG_OFFSET (gotplt_entry_address));
8837 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8838 bfd_put_NN (output_bfd,
8839 plt->output_section->vma + plt->output_offset,
8840 gotplt->contents + got_offset);
8842 rela.r_offset = gotplt_entry_address;
8844 if (h->dynindx == -1
8845 || ((bfd_link_executable (info)
8846 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8848 && h->type == STT_GNU_IFUNC))
8850 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8851 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8852 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8853 rela.r_addend = (h->root.u.def.value
8854 + h->root.u.def.section->output_section->vma
8855 + h->root.u.def.section->output_offset);
8859 /* Fill in the entry in the .rela.plt section. */
8860 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8864 /* Compute the relocation entry to used based on PLT index and do
8865 not adjust reloc_count. The reloc_count has already been adjusted
8866 to account for this entry. */
8867 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8868 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8871 /* Size sections even though they're not dynamic. We use it to setup
8872 _TLS_MODULE_BASE_, if needed. */
8875 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8876 struct bfd_link_info *info)
8880 if (bfd_link_relocatable (info))
8883 tls_sec = elf_hash_table (info)->tls_sec;
8887 struct elf_link_hash_entry *tlsbase;
8889 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8890 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8894 struct bfd_link_hash_entry *h = NULL;
8895 const struct elf_backend_data *bed =
8896 get_elf_backend_data (output_bfd);
8898 if (!(_bfd_generic_link_add_one_symbol
8899 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8900 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8903 tlsbase->type = STT_TLS;
8904 tlsbase = (struct elf_link_hash_entry *) h;
8905 tlsbase->def_regular = 1;
8906 tlsbase->other = STV_HIDDEN;
8907 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8914 /* Finish up dynamic symbol handling. We set the contents of various
8915 dynamic sections here. */
8918 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8919 struct bfd_link_info *info,
8920 struct elf_link_hash_entry *h,
8921 Elf_Internal_Sym *sym)
8923 struct elf_aarch64_link_hash_table *htab;
8924 htab = elf_aarch64_hash_table (info);
8926 if (h->plt.offset != (bfd_vma) - 1)
8928 asection *plt, *gotplt, *relplt;
8930 /* This symbol has an entry in the procedure linkage table. Set
8933 /* When building a static executable, use .iplt, .igot.plt and
8934 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8935 if (htab->root.splt != NULL)
8937 plt = htab->root.splt;
8938 gotplt = htab->root.sgotplt;
8939 relplt = htab->root.srelplt;
8943 plt = htab->root.iplt;
8944 gotplt = htab->root.igotplt;
8945 relplt = htab->root.irelplt;
8948 /* This symbol has an entry in the procedure linkage table. Set
8950 if ((h->dynindx == -1
8951 && !((h->forced_local || bfd_link_executable (info))
8953 && h->type == STT_GNU_IFUNC))
8959 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8960 if (!h->def_regular)
8962 /* Mark the symbol as undefined, rather than as defined in
8963 the .plt section. */
8964 sym->st_shndx = SHN_UNDEF;
8965 /* If the symbol is weak we need to clear the value.
8966 Otherwise, the PLT entry would provide a definition for
8967 the symbol even if the symbol wasn't defined anywhere,
8968 and so the symbol would never be NULL. Leave the value if
8969 there were any relocations where pointer equality matters
8970 (this is a clue for the dynamic linker, to make function
8971 pointer comparisons work between an application and shared
8973 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8978 if (h->got.offset != (bfd_vma) - 1
8979 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8981 Elf_Internal_Rela rela;
8984 /* This symbol has an entry in the global offset table. Set it
8986 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8989 rela.r_offset = (htab->root.sgot->output_section->vma
8990 + htab->root.sgot->output_offset
8991 + (h->got.offset & ~(bfd_vma) 1));
8994 && h->type == STT_GNU_IFUNC)
8996 if (bfd_link_pic (info))
8998 /* Generate R_AARCH64_GLOB_DAT. */
9005 if (!h->pointer_equality_needed)
9008 /* For non-shared object, we can't use .got.plt, which
9009 contains the real function address if we need pointer
9010 equality. We load the GOT entry with the PLT entry. */
9011 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9012 bfd_put_NN (output_bfd, (plt->output_section->vma
9013 + plt->output_offset
9015 htab->root.sgot->contents
9016 + (h->got.offset & ~(bfd_vma) 1));
9020 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9022 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9025 BFD_ASSERT ((h->got.offset & 1) != 0);
9026 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9027 rela.r_addend = (h->root.u.def.value
9028 + h->root.u.def.section->output_section->vma
9029 + h->root.u.def.section->output_offset);
9034 BFD_ASSERT ((h->got.offset & 1) == 0);
9035 bfd_put_NN (output_bfd, (bfd_vma) 0,
9036 htab->root.sgot->contents + h->got.offset);
9037 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9041 loc = htab->root.srelgot->contents;
9042 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9043 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9048 Elf_Internal_Rela rela;
9052 /* This symbol needs a copy reloc. Set it up. */
9053 if (h->dynindx == -1
9054 || (h->root.type != bfd_link_hash_defined
9055 && h->root.type != bfd_link_hash_defweak)
9056 || htab->root.srelbss == NULL)
9059 rela.r_offset = (h->root.u.def.value
9060 + h->root.u.def.section->output_section->vma
9061 + h->root.u.def.section->output_offset);
9062 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9064 if (h->root.u.def.section == htab->root.sdynrelro)
9065 s = htab->root.sreldynrelro;
9067 s = htab->root.srelbss;
9068 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9069 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9072 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9073 be NULL for local symbols. */
9075 && (h == elf_hash_table (info)->hdynamic
9076 || h == elf_hash_table (info)->hgot))
9077 sym->st_shndx = SHN_ABS;
9082 /* Finish up local dynamic symbol handling. We set the contents of
9083 various dynamic sections here. */
9086 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9088 struct elf_link_hash_entry *h
9089 = (struct elf_link_hash_entry *) *slot;
9090 struct bfd_link_info *info
9091 = (struct bfd_link_info *) inf;
9093 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9098 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9099 struct elf_aarch64_link_hash_table
9102 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9103 small and large plts and at the minute just generates
9106 /* PLT0 of the small PLT looks like this in ELF64 -
9107 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9108 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9109 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9111 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9112 // GOTPLT entry for this.
9114 PLT0 will be slightly different in ELF32 due to different got entry
9116 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9120 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9122 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9125 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9126 + htab->root.sgotplt->output_offset
9127 + GOT_ENTRY_SIZE * 2);
9129 plt_base = htab->root.splt->output_section->vma +
9130 htab->root.splt->output_offset;
9132 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9133 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9134 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9135 htab->root.splt->contents + 4,
9136 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9138 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9139 htab->root.splt->contents + 8,
9140 PG_OFFSET (plt_got_2nd_ent));
9142 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9143 htab->root.splt->contents + 12,
9144 PG_OFFSET (plt_got_2nd_ent));
9148 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9149 struct bfd_link_info *info)
9151 struct elf_aarch64_link_hash_table *htab;
9155 htab = elf_aarch64_hash_table (info);
9156 dynobj = htab->root.dynobj;
9157 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9159 if (htab->root.dynamic_sections_created)
9161 ElfNN_External_Dyn *dyncon, *dynconend;
9163 if (sdyn == NULL || htab->root.sgot == NULL)
9166 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9167 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9168 for (; dyncon < dynconend; dyncon++)
9170 Elf_Internal_Dyn dyn;
9173 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9181 s = htab->root.sgotplt;
9182 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9186 s = htab->root.srelplt;
9187 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9191 s = htab->root.srelplt;
9192 dyn.d_un.d_val = s->size;
9195 case DT_TLSDESC_PLT:
9196 s = htab->root.splt;
9197 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9198 + htab->tlsdesc_plt;
9201 case DT_TLSDESC_GOT:
9202 s = htab->root.sgot;
9203 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9204 + htab->dt_tlsdesc_got;
9208 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9213 /* Fill in the special first entry in the procedure linkage table. */
9214 if (htab->root.splt && htab->root.splt->size > 0)
9216 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9218 elf_section_data (htab->root.splt->output_section)->
9219 this_hdr.sh_entsize = htab->plt_entry_size;
9222 if (htab->tlsdesc_plt)
9224 bfd_put_NN (output_bfd, (bfd_vma) 0,
9225 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9227 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9228 elfNN_aarch64_tlsdesc_small_plt_entry,
9229 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9232 bfd_vma adrp1_addr =
9233 htab->root.splt->output_section->vma
9234 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9236 bfd_vma adrp2_addr = adrp1_addr + 4;
9239 htab->root.sgot->output_section->vma
9240 + htab->root.sgot->output_offset;
9242 bfd_vma pltgot_addr =
9243 htab->root.sgotplt->output_section->vma
9244 + htab->root.sgotplt->output_offset;
9246 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9248 bfd_byte *plt_entry =
9249 htab->root.splt->contents + htab->tlsdesc_plt;
9251 /* adrp x2, DT_TLSDESC_GOT */
9252 elf_aarch64_update_plt_entry (output_bfd,
9253 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9255 (PG (dt_tlsdesc_got)
9256 - PG (adrp1_addr)));
9259 elf_aarch64_update_plt_entry (output_bfd,
9260 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9263 - PG (adrp2_addr)));
9265 /* ldr x2, [x2, #0] */
9266 elf_aarch64_update_plt_entry (output_bfd,
9267 BFD_RELOC_AARCH64_LDSTNN_LO12,
9269 PG_OFFSET (dt_tlsdesc_got));
9272 elf_aarch64_update_plt_entry (output_bfd,
9273 BFD_RELOC_AARCH64_ADD_LO12,
9275 PG_OFFSET (pltgot_addr));
9280 if (htab->root.sgotplt)
9282 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9285 (_("discarded output section: `%A'"), htab->root.sgotplt);
9289 /* Fill in the first three entries in the global offset table. */
9290 if (htab->root.sgotplt->size > 0)
9292 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9294 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9295 bfd_put_NN (output_bfd,
9297 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9298 bfd_put_NN (output_bfd,
9300 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9303 if (htab->root.sgot)
9305 if (htab->root.sgot->size > 0)
9308 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9309 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9313 elf_section_data (htab->root.sgotplt->output_section)->
9314 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9317 if (htab->root.sgot && htab->root.sgot->size > 0)
9318 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9321 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9322 htab_traverse (htab->loc_hash_table,
9323 elfNN_aarch64_finish_local_dynamic_symbol,
9329 /* Return address for Ith PLT stub in section PLT, for relocation REL
9330 or (bfd_vma) -1 if it should not be included. */
9333 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9334 const arelent *rel ATTRIBUTE_UNUSED)
9336 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9339 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9340 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9341 It also allows a period initiated suffix to be added to the symbol, ie:
9342 "$[adtx]\.[:sym_char]+". */
9345 is_aarch64_mapping_symbol (const char * name)
9347 return name != NULL /* Paranoia. */
9348 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9349 the mapping symbols could have acquired a prefix.
9350 We do not support this here, since such symbols no
9351 longer conform to the ARM ELF ABI. */
9352 && (name[1] == 'd' || name[1] == 'x')
9353 && (name[2] == 0 || name[2] == '.');
9354 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9355 any characters that follow the period are legal characters for the body
9356 of a symbol's name. For now we just assume that this is the case. */
9359 /* Make sure that mapping symbols in object files are not removed via the
9360 "strip --strip-unneeded" tool. These symbols might needed in order to
9361 correctly generate linked files. Once an object file has been linked,
9362 it should be safe to remove them. */
9365 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9367 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9368 && sym->section != bfd_abs_section_ptr
9369 && is_aarch64_mapping_symbol (sym->name))
9370 sym->flags |= BSF_KEEP;
9374 /* We use this so we can override certain functions
9375 (though currently we don't). */
9377 const struct elf_size_info elfNN_aarch64_size_info =
9379 sizeof (ElfNN_External_Ehdr),
9380 sizeof (ElfNN_External_Phdr),
9381 sizeof (ElfNN_External_Shdr),
9382 sizeof (ElfNN_External_Rel),
9383 sizeof (ElfNN_External_Rela),
9384 sizeof (ElfNN_External_Sym),
9385 sizeof (ElfNN_External_Dyn),
9386 sizeof (Elf_External_Note),
9387 4, /* Hash table entry size. */
9388 1, /* Internal relocs per external relocs. */
9389 ARCH_SIZE, /* Arch size. */
9390 LOG_FILE_ALIGN, /* Log_file_align. */
9391 ELFCLASSNN, EV_CURRENT,
9392 bfd_elfNN_write_out_phdrs,
9393 bfd_elfNN_write_shdrs_and_ehdr,
9394 bfd_elfNN_checksum_contents,
9395 bfd_elfNN_write_relocs,
9396 bfd_elfNN_swap_symbol_in,
9397 bfd_elfNN_swap_symbol_out,
9398 bfd_elfNN_slurp_reloc_table,
9399 bfd_elfNN_slurp_symbol_table,
9400 bfd_elfNN_swap_dyn_in,
9401 bfd_elfNN_swap_dyn_out,
9402 bfd_elfNN_swap_reloc_in,
9403 bfd_elfNN_swap_reloc_out,
9404 bfd_elfNN_swap_reloca_in,
9405 bfd_elfNN_swap_reloca_out
9408 #define ELF_ARCH bfd_arch_aarch64
9409 #define ELF_MACHINE_CODE EM_AARCH64
9410 #define ELF_MAXPAGESIZE 0x10000
9411 #define ELF_MINPAGESIZE 0x1000
9412 #define ELF_COMMONPAGESIZE 0x1000
9414 #define bfd_elfNN_close_and_cleanup \
9415 elfNN_aarch64_close_and_cleanup
9417 #define bfd_elfNN_bfd_free_cached_info \
9418 elfNN_aarch64_bfd_free_cached_info
9420 #define bfd_elfNN_bfd_is_target_special_symbol \
9421 elfNN_aarch64_is_target_special_symbol
9423 #define bfd_elfNN_bfd_link_hash_table_create \
9424 elfNN_aarch64_link_hash_table_create
9426 #define bfd_elfNN_bfd_merge_private_bfd_data \
9427 elfNN_aarch64_merge_private_bfd_data
9429 #define bfd_elfNN_bfd_print_private_bfd_data \
9430 elfNN_aarch64_print_private_bfd_data
9432 #define bfd_elfNN_bfd_reloc_type_lookup \
9433 elfNN_aarch64_reloc_type_lookup
9435 #define bfd_elfNN_bfd_reloc_name_lookup \
9436 elfNN_aarch64_reloc_name_lookup
9438 #define bfd_elfNN_bfd_set_private_flags \
9439 elfNN_aarch64_set_private_flags
9441 #define bfd_elfNN_find_inliner_info \
9442 elfNN_aarch64_find_inliner_info
9444 #define bfd_elfNN_find_nearest_line \
9445 elfNN_aarch64_find_nearest_line
9447 #define bfd_elfNN_mkobject \
9448 elfNN_aarch64_mkobject
9450 #define bfd_elfNN_new_section_hook \
9451 elfNN_aarch64_new_section_hook
9453 #define elf_backend_adjust_dynamic_symbol \
9454 elfNN_aarch64_adjust_dynamic_symbol
9456 #define elf_backend_always_size_sections \
9457 elfNN_aarch64_always_size_sections
9459 #define elf_backend_check_relocs \
9460 elfNN_aarch64_check_relocs
9462 #define elf_backend_copy_indirect_symbol \
9463 elfNN_aarch64_copy_indirect_symbol
9465 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9466 to them in our hash. */
9467 #define elf_backend_create_dynamic_sections \
9468 elfNN_aarch64_create_dynamic_sections
9470 #define elf_backend_init_index_section \
9471 _bfd_elf_init_2_index_sections
9473 #define elf_backend_finish_dynamic_sections \
9474 elfNN_aarch64_finish_dynamic_sections
9476 #define elf_backend_finish_dynamic_symbol \
9477 elfNN_aarch64_finish_dynamic_symbol
9479 #define elf_backend_gc_sweep_hook \
9480 elfNN_aarch64_gc_sweep_hook
9482 #define elf_backend_object_p \
9483 elfNN_aarch64_object_p
9485 #define elf_backend_output_arch_local_syms \
9486 elfNN_aarch64_output_arch_local_syms
9488 #define elf_backend_plt_sym_val \
9489 elfNN_aarch64_plt_sym_val
9491 #define elf_backend_post_process_headers \
9492 elfNN_aarch64_post_process_headers
9494 #define elf_backend_relocate_section \
9495 elfNN_aarch64_relocate_section
9497 #define elf_backend_reloc_type_class \
9498 elfNN_aarch64_reloc_type_class
9500 #define elf_backend_section_from_shdr \
9501 elfNN_aarch64_section_from_shdr
9503 #define elf_backend_size_dynamic_sections \
9504 elfNN_aarch64_size_dynamic_sections
9506 #define elf_backend_size_info \
9507 elfNN_aarch64_size_info
9509 #define elf_backend_write_section \
9510 elfNN_aarch64_write_section
9512 #define elf_backend_symbol_processing \
9513 elfNN_aarch64_backend_symbol_processing
9515 #define elf_backend_can_refcount 1
9516 #define elf_backend_can_gc_sections 1
9517 #define elf_backend_plt_readonly 1
9518 #define elf_backend_want_got_plt 1
9519 #define elf_backend_want_plt_sym 0
9520 #define elf_backend_want_dynrelro 1
9521 #define elf_backend_may_use_rel_p 0
9522 #define elf_backend_may_use_rela_p 1
9523 #define elf_backend_default_use_rela_p 1
9524 #define elf_backend_rela_normal 1
9525 #define elf_backend_dtrel_excludes_plt 1
9526 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9527 #define elf_backend_default_execstack 0
9528 #define elf_backend_extern_protected_data 1
9529 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9531 #undef elf_backend_obj_attrs_section
9532 #define elf_backend_obj_attrs_section ".ARM.attributes"
9534 #include "elfNN-target.h"
9536 /* CloudABI support. */
9538 #undef TARGET_LITTLE_SYM
9539 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9540 #undef TARGET_LITTLE_NAME
9541 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9542 #undef TARGET_BIG_SYM
9543 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9544 #undef TARGET_BIG_NAME
9545 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9548 #define ELF_OSABI ELFOSABI_CLOUDABI
9551 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9553 #include "elfNN-target.h"