1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 elfNN_aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elfNN_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elfNN_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elfNN_aarch64_relocate_section ()
124 Calls elfNN_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elfNN_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
142 #include "bfd_stdint.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
207 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
209 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
210 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
220 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
221 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
222 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
223 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
226 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
227 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
240 #define ELIMINATE_COPY_RELOCS 0
242 /* Return size of a relocation entry. HTAB is the bfd's
243 elf_aarch64_link_hash_entry. */
244 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
246 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
247 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
248 #define PLT_ENTRY_SIZE (32)
249 #define PLT_SMALL_ENTRY_SIZE (16)
250 #define PLT_TLSDESC_ENTRY_SIZE (32)
252 /* Encoding of the nop instruction */
253 #define INSN_NOP 0xd503201f
255 #define aarch64_compute_jump_table_size(htab) \
256 (((htab)->root.srelplt == NULL) ? 0 \
257 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
259 /* The first entry in a procedure linkage table looks like this
260 if the distance between the PLTGOT and the PLT is < 4GB use
261 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
262 in x16 and needs to work out PLTGOT[1] by using an address of
263 [x16,#-GOT_ENTRY_SIZE]. */
264 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
266 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
267 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
269 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
270 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
272 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
273 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
275 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
276 0x1f, 0x20, 0x03, 0xd5, /* nop */
277 0x1f, 0x20, 0x03, 0xd5, /* nop */
278 0x1f, 0x20, 0x03, 0xd5, /* nop */
281 /* Per function entry in a procedure linkage table looks like this
282 if the distance between the PLTGOT and the PLT is < 4GB use
283 these PLT entries. */
284 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
286 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
288 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
289 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
291 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
292 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
294 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
297 static const bfd_byte
298 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
300 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
301 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
302 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
304 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
305 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
307 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
308 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
310 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
311 0x1f, 0x20, 0x03, 0xd5, /* nop */
312 0x1f, 0x20, 0x03, 0xd5, /* nop */
315 #define elf_info_to_howto elfNN_aarch64_info_to_howto
316 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
318 #define AARCH64_ELF_ABI_VERSION 0
320 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
321 #define ALL_ONES (~ (bfd_vma) 0)
323 /* Indexed by the bfd interal reloc enumerators.
324 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
327 static reloc_howto_type elfNN_aarch64_howto_table[] =
331 /* Basic data relocations. */
334 HOWTO (R_AARCH64_NULL, /* type */
336 3, /* size (0 = byte, 1 = short, 2 = long) */
338 FALSE, /* pc_relative */
340 complain_overflow_dont, /* complain_on_overflow */
341 bfd_elf_generic_reloc, /* special_function */
342 "R_AARCH64_NULL", /* name */
343 FALSE, /* partial_inplace */
346 FALSE), /* pcrel_offset */
348 HOWTO (R_AARCH64_NONE, /* type */
350 3, /* size (0 = byte, 1 = short, 2 = long) */
352 FALSE, /* pc_relative */
354 complain_overflow_dont, /* complain_on_overflow */
355 bfd_elf_generic_reloc, /* special_function */
356 "R_AARCH64_NONE", /* name */
357 FALSE, /* partial_inplace */
360 FALSE), /* pcrel_offset */
364 HOWTO64 (AARCH64_R (ABS64), /* type */
366 4, /* size (4 = long long) */
368 FALSE, /* pc_relative */
370 complain_overflow_unsigned, /* complain_on_overflow */
371 bfd_elf_generic_reloc, /* special_function */
372 AARCH64_R_STR (ABS64), /* name */
373 FALSE, /* partial_inplace */
374 ALL_ONES, /* src_mask */
375 ALL_ONES, /* dst_mask */
376 FALSE), /* pcrel_offset */
379 HOWTO (AARCH64_R (ABS32), /* type */
381 2, /* size (0 = byte, 1 = short, 2 = long) */
383 FALSE, /* pc_relative */
385 complain_overflow_unsigned, /* complain_on_overflow */
386 bfd_elf_generic_reloc, /* special_function */
387 AARCH64_R_STR (ABS32), /* name */
388 FALSE, /* partial_inplace */
389 0xffffffff, /* src_mask */
390 0xffffffff, /* dst_mask */
391 FALSE), /* pcrel_offset */
394 HOWTO (AARCH64_R (ABS16), /* type */
396 1, /* size (0 = byte, 1 = short, 2 = long) */
398 FALSE, /* pc_relative */
400 complain_overflow_unsigned, /* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
402 AARCH64_R_STR (ABS16), /* name */
403 FALSE, /* partial_inplace */
404 0xffff, /* src_mask */
405 0xffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
408 /* .xword: (S+A-P) */
409 HOWTO64 (AARCH64_R (PREL64), /* type */
411 4, /* size (4 = long long) */
413 TRUE, /* pc_relative */
415 complain_overflow_signed, /* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 AARCH64_R_STR (PREL64), /* name */
418 FALSE, /* partial_inplace */
419 ALL_ONES, /* src_mask */
420 ALL_ONES, /* dst_mask */
421 TRUE), /* pcrel_offset */
424 HOWTO (AARCH64_R (PREL32), /* type */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
428 TRUE, /* pc_relative */
430 complain_overflow_signed, /* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 AARCH64_R_STR (PREL32), /* name */
433 FALSE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 TRUE), /* pcrel_offset */
439 HOWTO (AARCH64_R (PREL16), /* type */
441 1, /* size (0 = byte, 1 = short, 2 = long) */
443 TRUE, /* pc_relative */
445 complain_overflow_signed, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* special_function */
447 AARCH64_R_STR (PREL16), /* name */
448 FALSE, /* partial_inplace */
449 0xffff, /* src_mask */
450 0xffff, /* dst_mask */
451 TRUE), /* pcrel_offset */
453 /* Group relocations to create a 16, 32, 48 or 64 bit
454 unsigned data or abs address inline. */
456 /* MOVZ: ((S+A) >> 0) & 0xffff */
457 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
461 FALSE, /* pc_relative */
463 complain_overflow_unsigned, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (MOVW_UABS_G0), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
471 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
472 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
474 2, /* size (0 = byte, 1 = short, 2 = long) */
476 FALSE, /* pc_relative */
478 complain_overflow_dont, /* complain_on_overflow */
479 bfd_elf_generic_reloc, /* special_function */
480 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
481 FALSE, /* partial_inplace */
482 0xffff, /* src_mask */
483 0xffff, /* dst_mask */
484 FALSE), /* pcrel_offset */
486 /* MOVZ: ((S+A) >> 16) & 0xffff */
487 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
489 2, /* size (0 = byte, 1 = short, 2 = long) */
491 FALSE, /* pc_relative */
493 complain_overflow_unsigned, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 AARCH64_R_STR (MOVW_UABS_G1), /* name */
496 FALSE, /* partial_inplace */
497 0xffff, /* src_mask */
498 0xffff, /* dst_mask */
499 FALSE), /* pcrel_offset */
501 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
502 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
506 FALSE, /* pc_relative */
508 complain_overflow_dont, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
511 FALSE, /* partial_inplace */
512 0xffff, /* src_mask */
513 0xffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
516 /* MOVZ: ((S+A) >> 32) & 0xffff */
517 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
521 FALSE, /* pc_relative */
523 complain_overflow_unsigned, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 AARCH64_R_STR (MOVW_UABS_G2), /* name */
526 FALSE, /* partial_inplace */
527 0xffff, /* src_mask */
528 0xffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
531 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
532 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
534 2, /* size (0 = byte, 1 = short, 2 = long) */
536 FALSE, /* pc_relative */
538 complain_overflow_dont, /* complain_on_overflow */
539 bfd_elf_generic_reloc, /* special_function */
540 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
541 FALSE, /* partial_inplace */
542 0xffff, /* src_mask */
543 0xffff, /* dst_mask */
544 FALSE), /* pcrel_offset */
546 /* MOVZ: ((S+A) >> 48) & 0xffff */
547 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
551 FALSE, /* pc_relative */
553 complain_overflow_unsigned, /* complain_on_overflow */
554 bfd_elf_generic_reloc, /* special_function */
555 AARCH64_R_STR (MOVW_UABS_G3), /* name */
556 FALSE, /* partial_inplace */
557 0xffff, /* src_mask */
558 0xffff, /* dst_mask */
559 FALSE), /* pcrel_offset */
561 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
562 signed data or abs address inline. Will change instruction
563 to MOVN or MOVZ depending on sign of calculated value. */
565 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
566 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
568 2, /* size (0 = byte, 1 = short, 2 = long) */
570 FALSE, /* pc_relative */
572 complain_overflow_signed, /* complain_on_overflow */
573 bfd_elf_generic_reloc, /* special_function */
574 AARCH64_R_STR (MOVW_SABS_G0), /* name */
575 FALSE, /* partial_inplace */
576 0xffff, /* src_mask */
577 0xffff, /* dst_mask */
578 FALSE), /* pcrel_offset */
580 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
581 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
585 FALSE, /* pc_relative */
587 complain_overflow_signed, /* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 AARCH64_R_STR (MOVW_SABS_G1), /* name */
590 FALSE, /* partial_inplace */
591 0xffff, /* src_mask */
592 0xffff, /* dst_mask */
593 FALSE), /* pcrel_offset */
595 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
596 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
600 FALSE, /* pc_relative */
602 complain_overflow_signed, /* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 AARCH64_R_STR (MOVW_SABS_G2), /* name */
605 FALSE, /* partial_inplace */
606 0xffff, /* src_mask */
607 0xffff, /* dst_mask */
608 FALSE), /* pcrel_offset */
610 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
611 addresses: PG(x) is (x & ~0xfff). */
613 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
614 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
618 TRUE, /* pc_relative */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (LD_PREL_LO19), /* name */
623 FALSE, /* partial_inplace */
624 0x7ffff, /* src_mask */
625 0x7ffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
628 /* ADR: (S+A-P) & 0x1fffff */
629 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
633 TRUE, /* pc_relative */
635 complain_overflow_signed, /* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 AARCH64_R_STR (ADR_PREL_LO21), /* name */
638 FALSE, /* partial_inplace */
639 0x1fffff, /* src_mask */
640 0x1fffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
643 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
644 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
646 2, /* size (0 = byte, 1 = short, 2 = long) */
648 TRUE, /* pc_relative */
650 complain_overflow_signed, /* complain_on_overflow */
651 bfd_elf_generic_reloc, /* special_function */
652 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
653 FALSE, /* partial_inplace */
654 0x1fffff, /* src_mask */
655 0x1fffff, /* dst_mask */
656 TRUE), /* pcrel_offset */
658 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
659 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
661 2, /* size (0 = byte, 1 = short, 2 = long) */
663 TRUE, /* pc_relative */
665 complain_overflow_dont, /* complain_on_overflow */
666 bfd_elf_generic_reloc, /* special_function */
667 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
668 FALSE, /* partial_inplace */
669 0x1fffff, /* src_mask */
670 0x1fffff, /* dst_mask */
671 TRUE), /* pcrel_offset */
673 /* ADD: (S+A) & 0xfff [no overflow check] */
674 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
678 FALSE, /* pc_relative */
680 complain_overflow_dont, /* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
683 FALSE, /* partial_inplace */
684 0x3ffc00, /* src_mask */
685 0x3ffc00, /* dst_mask */
686 FALSE), /* pcrel_offset */
688 /* LD/ST8: (S+A) & 0xfff */
689 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
693 FALSE, /* pc_relative */
695 complain_overflow_dont, /* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
698 FALSE, /* partial_inplace */
699 0xfff, /* src_mask */
700 0xfff, /* dst_mask */
701 FALSE), /* pcrel_offset */
703 /* Relocations for control-flow instructions. */
705 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
706 HOWTO (AARCH64_R (TSTBR14), /* type */
708 2, /* size (0 = byte, 1 = short, 2 = long) */
710 TRUE, /* pc_relative */
712 complain_overflow_signed, /* complain_on_overflow */
713 bfd_elf_generic_reloc, /* special_function */
714 AARCH64_R_STR (TSTBR14), /* name */
715 FALSE, /* partial_inplace */
716 0x3fff, /* src_mask */
717 0x3fff, /* dst_mask */
718 TRUE), /* pcrel_offset */
720 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
721 HOWTO (AARCH64_R (CONDBR19), /* type */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
725 TRUE, /* pc_relative */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (CONDBR19), /* name */
730 FALSE, /* partial_inplace */
731 0x7ffff, /* src_mask */
732 0x7ffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
735 /* B: ((S+A-P) >> 2) & 0x3ffffff */
736 HOWTO (AARCH64_R (JUMP26), /* type */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
740 TRUE, /* pc_relative */
742 complain_overflow_signed, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (JUMP26), /* name */
745 FALSE, /* partial_inplace */
746 0x3ffffff, /* src_mask */
747 0x3ffffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
750 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
751 HOWTO (AARCH64_R (CALL26), /* type */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
755 TRUE, /* pc_relative */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (CALL26), /* name */
760 FALSE, /* partial_inplace */
761 0x3ffffff, /* src_mask */
762 0x3ffffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
765 /* LD/ST16: (S+A) & 0xffe */
766 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
770 FALSE, /* pc_relative */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffe, /* src_mask */
777 0xffe, /* dst_mask */
778 FALSE), /* pcrel_offset */
780 /* LD/ST32: (S+A) & 0xffc */
781 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
785 FALSE, /* pc_relative */
787 complain_overflow_dont, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
790 FALSE, /* partial_inplace */
791 0xffc, /* src_mask */
792 0xffc, /* dst_mask */
793 FALSE), /* pcrel_offset */
795 /* LD/ST64: (S+A) & 0xff8 */
796 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
800 FALSE, /* pc_relative */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xff8, /* src_mask */
807 0xff8, /* dst_mask */
808 FALSE), /* pcrel_offset */
810 /* LD/ST128: (S+A) & 0xff0 */
811 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
815 FALSE, /* pc_relative */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
820 FALSE, /* partial_inplace */
821 0xff0, /* src_mask */
822 0xff0, /* dst_mask */
823 FALSE), /* pcrel_offset */
825 /* Set a load-literal immediate field to bits
826 0x1FFFFC of G(S)-P */
827 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
829 2, /* size (0 = byte,1 = short,2 = long) */
831 TRUE, /* pc_relative */
833 complain_overflow_signed, /* complain_on_overflow */
834 bfd_elf_generic_reloc, /* special_function */
835 AARCH64_R_STR (GOT_LD_PREL19), /* name */
836 FALSE, /* partial_inplace */
837 0xffffe0, /* src_mask */
838 0xffffe0, /* dst_mask */
839 TRUE), /* pcrel_offset */
841 /* Get to the page for the GOT entry for the symbol
842 (G(S) - P) using an ADRP instruction. */
843 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
847 TRUE, /* pc_relative */
849 complain_overflow_dont, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
852 FALSE, /* partial_inplace */
853 0x1fffff, /* src_mask */
854 0x1fffff, /* dst_mask */
855 TRUE), /* pcrel_offset */
857 /* LD64: GOT offset G(S) & 0xff8 */
858 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
862 FALSE, /* pc_relative */
864 complain_overflow_dont, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
867 FALSE, /* partial_inplace */
868 0xff8, /* src_mask */
869 0xff8, /* dst_mask */
870 FALSE), /* pcrel_offset */
872 /* LD32: GOT offset G(S) & 0xffc */
873 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
877 FALSE, /* pc_relative */
879 complain_overflow_dont, /* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
882 FALSE, /* partial_inplace */
883 0xffc, /* src_mask */
884 0xffc, /* dst_mask */
885 FALSE), /* pcrel_offset */
887 /* Lower 16 bits of GOT offset for the symbol. */
888 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
890 2, /* size (0 = byte, 1 = short, 2 = long) */
892 FALSE, /* pc_relative */
894 complain_overflow_dont, /* complain_on_overflow */
895 bfd_elf_generic_reloc, /* special_function */
896 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
897 FALSE, /* partial_inplace */
898 0xffff, /* src_mask */
899 0xffff, /* dst_mask */
900 FALSE), /* pcrel_offset */
902 /* Higher 16 bits of GOT offset for the symbol. */
903 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
907 FALSE, /* pc_relative */
909 complain_overflow_unsigned, /* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
912 FALSE, /* partial_inplace */
913 0xffff, /* src_mask */
914 0xffff, /* dst_mask */
915 FALSE), /* pcrel_offset */
917 /* LD64: GOT offset for the symbol. */
918 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
922 FALSE, /* pc_relative */
924 complain_overflow_unsigned, /* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
927 FALSE, /* partial_inplace */
928 0x7ff8, /* src_mask */
929 0x7ff8, /* dst_mask */
930 FALSE), /* pcrel_offset */
932 /* LD32: GOT offset to the page address of GOT table.
933 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
934 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
936 2, /* size (0 = byte, 1 = short, 2 = long) */
938 FALSE, /* pc_relative */
940 complain_overflow_unsigned, /* complain_on_overflow */
941 bfd_elf_generic_reloc, /* special_function */
942 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
943 FALSE, /* partial_inplace */
944 0x5ffc, /* src_mask */
945 0x5ffc, /* dst_mask */
946 FALSE), /* pcrel_offset */
948 /* LD64: GOT offset to the page address of GOT table.
949 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
950 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
954 FALSE, /* pc_relative */
956 complain_overflow_unsigned, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
959 FALSE, /* partial_inplace */
960 0x7ff8, /* src_mask */
961 0x7ff8, /* dst_mask */
962 FALSE), /* pcrel_offset */
964 /* Get to the page for the GOT entry for the symbol
965 (G(S) - P) using an ADRP instruction. */
966 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
970 TRUE, /* pc_relative */
972 complain_overflow_dont, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
975 FALSE, /* partial_inplace */
976 0x1fffff, /* src_mask */
977 0x1fffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
980 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
984 TRUE, /* pc_relative */
986 complain_overflow_dont, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
989 FALSE, /* partial_inplace */
990 0x1fffff, /* src_mask */
991 0x1fffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
994 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
995 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
997 2, /* size (0 = byte, 1 = short, 2 = long) */
999 FALSE, /* pc_relative */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1004 FALSE, /* partial_inplace */
1005 0xfff, /* src_mask */
1006 0xfff, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1009 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1010 16, /* rightshift */
1011 2, /* size (0 = byte, 1 = short, 2 = long) */
1013 FALSE, /* pc_relative */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 bfd_elf_generic_reloc, /* special_function */
1017 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1018 FALSE, /* partial_inplace */
1019 0xffff, /* src_mask */
1020 0xffff, /* dst_mask */
1021 FALSE), /* pcrel_offset */
1023 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1025 2, /* size (0 = byte, 1 = short, 2 = long) */
1027 FALSE, /* pc_relative */
1029 complain_overflow_dont, /* complain_on_overflow */
1030 bfd_elf_generic_reloc, /* special_function */
1031 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1032 FALSE, /* partial_inplace */
1033 0xffff, /* src_mask */
1034 0xffff, /* dst_mask */
1035 FALSE), /* pcrel_offset */
1037 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1038 12, /* rightshift */
1039 2, /* size (0 = byte, 1 = short, 2 = long) */
1041 FALSE, /* pc_relative */
1043 complain_overflow_dont, /* complain_on_overflow */
1044 bfd_elf_generic_reloc, /* special_function */
1045 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1046 FALSE, /* partial_inplace */
1047 0x1fffff, /* src_mask */
1048 0x1fffff, /* dst_mask */
1049 FALSE), /* pcrel_offset */
1051 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1053 2, /* size (0 = byte, 1 = short, 2 = long) */
1055 FALSE, /* pc_relative */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 bfd_elf_generic_reloc, /* special_function */
1059 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1060 FALSE, /* partial_inplace */
1061 0xff8, /* src_mask */
1062 0xff8, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1065 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1067 2, /* size (0 = byte, 1 = short, 2 = long) */
1069 FALSE, /* pc_relative */
1071 complain_overflow_dont, /* complain_on_overflow */
1072 bfd_elf_generic_reloc, /* special_function */
1073 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1074 FALSE, /* partial_inplace */
1075 0xffc, /* src_mask */
1076 0xffc, /* dst_mask */
1077 FALSE), /* pcrel_offset */
1079 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1081 2, /* size (0 = byte, 1 = short, 2 = long) */
1083 FALSE, /* pc_relative */
1085 complain_overflow_dont, /* complain_on_overflow */
1086 bfd_elf_generic_reloc, /* special_function */
1087 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1088 FALSE, /* partial_inplace */
1089 0x1ffffc, /* src_mask */
1090 0x1ffffc, /* dst_mask */
1091 FALSE), /* pcrel_offset */
1093 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1094 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1095 12, /* rightshift */
1096 2, /* size (0 = byte, 1 = short, 2 = long) */
1098 FALSE, /* pc_relative */
1100 complain_overflow_unsigned, /* complain_on_overflow */
1101 bfd_elf_generic_reloc, /* special_function */
1102 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1103 FALSE, /* partial_inplace */
1104 0xfff, /* src_mask */
1105 0xfff, /* dst_mask */
1106 FALSE), /* pcrel_offset */
1108 /* Unsigned 12 bit byte offset to module TLS base address. */
1109 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1111 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 FALSE, /* pc_relative */
1115 complain_overflow_unsigned, /* complain_on_overflow */
1116 bfd_elf_generic_reloc, /* special_function */
1117 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1118 FALSE, /* partial_inplace */
1119 0xfff, /* src_mask */
1120 0xfff, /* dst_mask */
1121 FALSE), /* pcrel_offset */
1123 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1124 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1128 FALSE, /* pc_relative */
1130 complain_overflow_dont, /* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1133 FALSE, /* partial_inplace */
1134 0xfff, /* src_mask */
1135 0xfff, /* dst_mask */
1136 FALSE), /* pcrel_offset */
1138 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1139 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1141 2, /* size (0 = byte, 1 = short, 2 = long) */
1143 FALSE, /* pc_relative */
1145 complain_overflow_dont, /* complain_on_overflow */
1146 bfd_elf_generic_reloc, /* special_function */
1147 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1148 FALSE, /* partial_inplace */
1149 0xfff, /* src_mask */
1150 0xfff, /* dst_mask */
1151 FALSE), /* pcrel_offset */
1153 /* Get to the page for the GOT entry for the symbol
1154 (G(S) - P) using an ADRP instruction. */
1155 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1156 12, /* rightshift */
1157 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 TRUE, /* pc_relative */
1161 complain_overflow_signed, /* complain_on_overflow */
1162 bfd_elf_generic_reloc, /* special_function */
1163 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1164 FALSE, /* partial_inplace */
1165 0x1fffff, /* src_mask */
1166 0x1fffff, /* dst_mask */
1167 TRUE), /* pcrel_offset */
1169 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1173 TRUE, /* pc_relative */
1175 complain_overflow_signed, /* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1178 FALSE, /* partial_inplace */
1179 0x1fffff, /* src_mask */
1180 0x1fffff, /* dst_mask */
1181 TRUE), /* pcrel_offset */
1183 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1184 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 FALSE, /* pc_relative */
1190 complain_overflow_unsigned, /* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1193 FALSE, /* partial_inplace */
1194 0x1ffc00, /* src_mask */
1195 0x1ffc00, /* dst_mask */
1196 FALSE), /* pcrel_offset */
1198 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1199 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1203 FALSE, /* pc_relative */
1205 complain_overflow_dont, /* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1208 FALSE, /* partial_inplace */
1209 0x1ffc00, /* src_mask */
1210 0x1ffc00, /* dst_mask */
1211 FALSE), /* pcrel_offset */
1213 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1214 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1216 2, /* size (0 = byte, 1 = short, 2 = long) */
1218 FALSE, /* pc_relative */
1220 complain_overflow_unsigned, /* complain_on_overflow */
1221 bfd_elf_generic_reloc, /* special_function */
1222 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1223 FALSE, /* partial_inplace */
1224 0x3ffc00, /* src_mask */
1225 0x3ffc00, /* dst_mask */
1226 FALSE), /* pcrel_offset */
1228 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1229 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1231 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 FALSE, /* pc_relative */
1235 complain_overflow_dont, /* complain_on_overflow */
1236 bfd_elf_generic_reloc, /* special_function */
1237 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1238 FALSE, /* partial_inplace */
1239 0xffc00, /* src_mask */
1240 0xffc00, /* dst_mask */
1241 FALSE), /* pcrel_offset */
1243 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1244 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 FALSE, /* pc_relative */
1250 complain_overflow_unsigned, /* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1253 FALSE, /* partial_inplace */
1254 0x3ffc00, /* src_mask */
1255 0x3ffc00, /* dst_mask */
1256 FALSE), /* pcrel_offset */
1258 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1259 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 FALSE, /* pc_relative */
1265 complain_overflow_dont, /* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1268 FALSE, /* partial_inplace */
1269 0x7fc00, /* src_mask */
1270 0x7fc00, /* dst_mask */
1271 FALSE), /* pcrel_offset */
1273 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1274 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 FALSE, /* pc_relative */
1280 complain_overflow_unsigned, /* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1283 FALSE, /* partial_inplace */
1284 0x3ffc00, /* src_mask */
1285 0x3ffc00, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1288 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1289 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 FALSE, /* pc_relative */
1295 complain_overflow_dont, /* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1298 FALSE, /* partial_inplace */
1299 0x3ffc00, /* src_mask */
1300 0x3ffc00, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1303 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1304 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1308 FALSE, /* pc_relative */
1310 complain_overflow_unsigned, /* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1313 FALSE, /* partial_inplace */
1314 0xffff, /* src_mask */
1315 0xffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1318 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1319 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1321 2, /* size (0 = byte, 1 = short, 2 = long) */
1323 FALSE, /* pc_relative */
1325 complain_overflow_dont, /* complain_on_overflow */
1326 bfd_elf_generic_reloc, /* special_function */
1327 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1328 FALSE, /* partial_inplace */
1329 0xffff, /* src_mask */
1330 0xffff, /* dst_mask */
1331 FALSE), /* pcrel_offset */
1333 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1334 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1335 16, /* rightshift */
1336 2, /* size (0 = byte, 1 = short, 2 = long) */
1338 FALSE, /* pc_relative */
1340 complain_overflow_unsigned, /* complain_on_overflow */
1341 bfd_elf_generic_reloc, /* special_function */
1342 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1343 FALSE, /* partial_inplace */
1344 0xffff, /* src_mask */
1345 0xffff, /* dst_mask */
1346 FALSE), /* pcrel_offset */
1348 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1349 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1350 16, /* rightshift */
1351 2, /* size (0 = byte, 1 = short, 2 = long) */
1353 FALSE, /* pc_relative */
1355 complain_overflow_dont, /* complain_on_overflow */
1356 bfd_elf_generic_reloc, /* special_function */
1357 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1358 FALSE, /* partial_inplace */
1359 0xffff, /* src_mask */
1360 0xffff, /* dst_mask */
1361 FALSE), /* pcrel_offset */
1363 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1364 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1365 32, /* rightshift */
1366 2, /* size (0 = byte, 1 = short, 2 = long) */
1368 FALSE, /* pc_relative */
1370 complain_overflow_unsigned, /* complain_on_overflow */
1371 bfd_elf_generic_reloc, /* special_function */
1372 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1373 FALSE, /* partial_inplace */
1374 0xffff, /* src_mask */
1375 0xffff, /* dst_mask */
1376 FALSE), /* pcrel_offset */
1378 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1379 32, /* rightshift */
1380 2, /* size (0 = byte, 1 = short, 2 = long) */
1382 FALSE, /* pc_relative */
1384 complain_overflow_unsigned, /* complain_on_overflow */
1385 bfd_elf_generic_reloc, /* special_function */
1386 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1387 FALSE, /* partial_inplace */
1388 0xffff, /* src_mask */
1389 0xffff, /* dst_mask */
1390 FALSE), /* pcrel_offset */
1392 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1393 16, /* rightshift */
1394 2, /* size (0 = byte, 1 = short, 2 = long) */
1396 FALSE, /* pc_relative */
1398 complain_overflow_dont, /* complain_on_overflow */
1399 bfd_elf_generic_reloc, /* special_function */
1400 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1401 FALSE, /* partial_inplace */
1402 0xffff, /* src_mask */
1403 0xffff, /* dst_mask */
1404 FALSE), /* pcrel_offset */
1406 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1407 16, /* rightshift */
1408 2, /* size (0 = byte, 1 = short, 2 = long) */
1410 FALSE, /* pc_relative */
1412 complain_overflow_dont, /* complain_on_overflow */
1413 bfd_elf_generic_reloc, /* special_function */
1414 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1415 FALSE, /* partial_inplace */
1416 0xffff, /* src_mask */
1417 0xffff, /* dst_mask */
1418 FALSE), /* pcrel_offset */
1420 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1422 2, /* size (0 = byte, 1 = short, 2 = long) */
1424 FALSE, /* pc_relative */
1426 complain_overflow_dont, /* complain_on_overflow */
1427 bfd_elf_generic_reloc, /* special_function */
1428 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1429 FALSE, /* partial_inplace */
1430 0xffff, /* src_mask */
1431 0xffff, /* dst_mask */
1432 FALSE), /* pcrel_offset */
1434 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1436 2, /* size (0 = byte, 1 = short, 2 = long) */
1438 FALSE, /* pc_relative */
1440 complain_overflow_dont, /* complain_on_overflow */
1441 bfd_elf_generic_reloc, /* special_function */
1442 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1443 FALSE, /* partial_inplace */
1444 0xffff, /* src_mask */
1445 0xffff, /* dst_mask */
1446 FALSE), /* pcrel_offset */
1448 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1449 12, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1452 FALSE, /* pc_relative */
1454 complain_overflow_unsigned, /* complain_on_overflow */
1455 bfd_elf_generic_reloc, /* special_function */
1456 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1457 FALSE, /* partial_inplace */
1458 0xfff, /* src_mask */
1459 0xfff, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1462 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1464 2, /* size (0 = byte, 1 = short, 2 = long) */
1466 FALSE, /* pc_relative */
1468 complain_overflow_unsigned, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1471 FALSE, /* partial_inplace */
1472 0xfff, /* src_mask */
1473 0xfff, /* dst_mask */
1474 FALSE), /* pcrel_offset */
1476 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1478 2, /* size (0 = byte, 1 = short, 2 = long) */
1480 FALSE, /* pc_relative */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1485 FALSE, /* partial_inplace */
1486 0xfff, /* src_mask */
1487 0xfff, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1490 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 TRUE, /* pc_relative */
1496 complain_overflow_dont, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1499 FALSE, /* partial_inplace */
1500 0x0ffffe0, /* src_mask */
1501 0x0ffffe0, /* dst_mask */
1502 TRUE), /* pcrel_offset */
1504 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 TRUE, /* pc_relative */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1513 FALSE, /* partial_inplace */
1514 0x1fffff, /* src_mask */
1515 0x1fffff, /* dst_mask */
1516 TRUE), /* pcrel_offset */
1518 /* Get to the page for the GOT entry for the symbol
1519 (G(S) - P) using an ADRP instruction. */
1520 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1521 12, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1524 TRUE, /* pc_relative */
1526 complain_overflow_dont, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1529 FALSE, /* partial_inplace */
1530 0x1fffff, /* src_mask */
1531 0x1fffff, /* dst_mask */
1532 TRUE), /* pcrel_offset */
1534 /* LD64: GOT offset G(S) & 0xff8. */
1535 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */
1537 2, /* size (0 = byte, 1 = short, 2 = long) */
1539 FALSE, /* pc_relative */
1541 complain_overflow_dont, /* complain_on_overflow */
1542 bfd_elf_generic_reloc, /* special_function */
1543 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */
1544 FALSE, /* partial_inplace */
1545 0xff8, /* src_mask */
1546 0xff8, /* dst_mask */
1547 FALSE), /* pcrel_offset */
1549 /* LD32: GOT offset G(S) & 0xffc. */
1550 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1552 2, /* size (0 = byte, 1 = short, 2 = long) */
1554 FALSE, /* pc_relative */
1556 complain_overflow_dont, /* complain_on_overflow */
1557 bfd_elf_generic_reloc, /* special_function */
1558 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1559 FALSE, /* partial_inplace */
1560 0xffc, /* src_mask */
1561 0xffc, /* dst_mask */
1562 FALSE), /* pcrel_offset */
1564 /* ADD: GOT offset G(S) & 0xfff. */
1565 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */
1567 2, /* size (0 = byte, 1 = short, 2 = long) */
1569 FALSE, /* pc_relative */
1571 complain_overflow_dont, /* complain_on_overflow */
1572 bfd_elf_generic_reloc, /* special_function */
1573 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */
1574 FALSE, /* partial_inplace */
1575 0xfff, /* src_mask */
1576 0xfff, /* dst_mask */
1577 FALSE), /* pcrel_offset */
1579 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1583 FALSE, /* pc_relative */
1585 complain_overflow_dont, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1593 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1595 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 FALSE, /* pc_relative */
1599 complain_overflow_dont, /* complain_on_overflow */
1600 bfd_elf_generic_reloc, /* special_function */
1601 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1602 FALSE, /* partial_inplace */
1603 0xffff, /* src_mask */
1604 0xffff, /* dst_mask */
1605 FALSE), /* pcrel_offset */
1607 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1609 2, /* size (0 = byte, 1 = short, 2 = long) */
1611 FALSE, /* pc_relative */
1613 complain_overflow_dont, /* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 AARCH64_R_STR (TLSDESC_LDR), /* name */
1616 FALSE, /* partial_inplace */
1619 FALSE), /* pcrel_offset */
1621 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1623 2, /* size (0 = byte, 1 = short, 2 = long) */
1625 FALSE, /* pc_relative */
1627 complain_overflow_dont, /* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 AARCH64_R_STR (TLSDESC_ADD), /* name */
1630 FALSE, /* partial_inplace */
1633 FALSE), /* pcrel_offset */
1635 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1637 2, /* size (0 = byte, 1 = short, 2 = long) */
1639 FALSE, /* pc_relative */
1641 complain_overflow_dont, /* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 AARCH64_R_STR (TLSDESC_CALL), /* name */
1644 FALSE, /* partial_inplace */
1647 FALSE), /* pcrel_offset */
1649 HOWTO (AARCH64_R (COPY), /* type */
1651 2, /* size (0 = byte, 1 = short, 2 = long) */
1653 FALSE, /* pc_relative */
1655 complain_overflow_bitfield, /* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 AARCH64_R_STR (COPY), /* name */
1658 TRUE, /* partial_inplace */
1659 0xffffffff, /* src_mask */
1660 0xffffffff, /* dst_mask */
1661 FALSE), /* pcrel_offset */
1663 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1665 2, /* size (0 = byte, 1 = short, 2 = long) */
1667 FALSE, /* pc_relative */
1669 complain_overflow_bitfield, /* complain_on_overflow */
1670 bfd_elf_generic_reloc, /* special_function */
1671 AARCH64_R_STR (GLOB_DAT), /* name */
1672 TRUE, /* partial_inplace */
1673 0xffffffff, /* src_mask */
1674 0xffffffff, /* dst_mask */
1675 FALSE), /* pcrel_offset */
1677 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1679 2, /* size (0 = byte, 1 = short, 2 = long) */
1681 FALSE, /* pc_relative */
1683 complain_overflow_bitfield, /* complain_on_overflow */
1684 bfd_elf_generic_reloc, /* special_function */
1685 AARCH64_R_STR (JUMP_SLOT), /* name */
1686 TRUE, /* partial_inplace */
1687 0xffffffff, /* src_mask */
1688 0xffffffff, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1691 HOWTO (AARCH64_R (RELATIVE), /* type */
1693 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 FALSE, /* pc_relative */
1697 complain_overflow_bitfield, /* complain_on_overflow */
1698 bfd_elf_generic_reloc, /* special_function */
1699 AARCH64_R_STR (RELATIVE), /* name */
1700 TRUE, /* partial_inplace */
1701 ALL_ONES, /* src_mask */
1702 ALL_ONES, /* dst_mask */
1703 FALSE), /* pcrel_offset */
1705 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1707 2, /* size (0 = byte, 1 = short, 2 = long) */
1709 FALSE, /* pc_relative */
1711 complain_overflow_dont, /* complain_on_overflow */
1712 bfd_elf_generic_reloc, /* special_function */
1714 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1716 AARCH64_R_STR (TLS_DTPMOD), /* name */
1718 FALSE, /* partial_inplace */
1720 ALL_ONES, /* dst_mask */
1721 FALSE), /* pc_reloffset */
1723 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
1725 2, /* size (0 = byte, 1 = short, 2 = long) */
1727 FALSE, /* pc_relative */
1729 complain_overflow_dont, /* complain_on_overflow */
1730 bfd_elf_generic_reloc, /* special_function */
1732 AARCH64_R_STR (TLS_DTPREL64), /* name */
1734 AARCH64_R_STR (TLS_DTPREL), /* name */
1736 FALSE, /* partial_inplace */
1738 ALL_ONES, /* dst_mask */
1739 FALSE), /* pcrel_offset */
1741 HOWTO (AARCH64_R (TLS_TPREL), /* type */
1743 2, /* size (0 = byte, 1 = short, 2 = long) */
1745 FALSE, /* pc_relative */
1747 complain_overflow_dont, /* complain_on_overflow */
1748 bfd_elf_generic_reloc, /* special_function */
1750 AARCH64_R_STR (TLS_TPREL64), /* name */
1752 AARCH64_R_STR (TLS_TPREL), /* name */
1754 FALSE, /* partial_inplace */
1756 ALL_ONES, /* dst_mask */
1757 FALSE), /* pcrel_offset */
1759 HOWTO (AARCH64_R (TLSDESC), /* type */
1761 2, /* size (0 = byte, 1 = short, 2 = long) */
1763 FALSE, /* pc_relative */
1765 complain_overflow_dont, /* complain_on_overflow */
1766 bfd_elf_generic_reloc, /* special_function */
1767 AARCH64_R_STR (TLSDESC), /* name */
1768 FALSE, /* partial_inplace */
1770 ALL_ONES, /* dst_mask */
1771 FALSE), /* pcrel_offset */
1773 HOWTO (AARCH64_R (IRELATIVE), /* type */
1775 2, /* size (0 = byte, 1 = short, 2 = long) */
1777 FALSE, /* pc_relative */
1779 complain_overflow_bitfield, /* complain_on_overflow */
1780 bfd_elf_generic_reloc, /* special_function */
1781 AARCH64_R_STR (IRELATIVE), /* name */
1782 FALSE, /* partial_inplace */
1784 ALL_ONES, /* dst_mask */
1785 FALSE), /* pcrel_offset */
1790 static reloc_howto_type elfNN_aarch64_howto_none =
1791 HOWTO (R_AARCH64_NONE, /* type */
1793 3, /* size (0 = byte, 1 = short, 2 = long) */
1795 FALSE, /* pc_relative */
1797 complain_overflow_dont,/* complain_on_overflow */
1798 bfd_elf_generic_reloc, /* special_function */
1799 "R_AARCH64_NONE", /* name */
1800 FALSE, /* partial_inplace */
1803 FALSE); /* pcrel_offset */
1805 /* Given HOWTO, return the bfd internal relocation enumerator. */
1807 static bfd_reloc_code_real_type
1808 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
1811 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
1812 const ptrdiff_t offset
1813 = howto - elfNN_aarch64_howto_table;
1815 if (offset > 0 && offset < size - 1)
1816 return BFD_RELOC_AARCH64_RELOC_START + offset;
1818 if (howto == &elfNN_aarch64_howto_none)
1819 return BFD_RELOC_AARCH64_NONE;
1821 return BFD_RELOC_AARCH64_RELOC_START;
1824 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1826 static bfd_reloc_code_real_type
1827 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type)
1829 static bfd_boolean initialized_p = FALSE;
1830 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1831 static unsigned int offsets[R_AARCH64_end];
1833 if (initialized_p == FALSE)
1837 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1838 if (elfNN_aarch64_howto_table[i].type != 0)
1839 offsets[elfNN_aarch64_howto_table[i].type] = i;
1841 initialized_p = TRUE;
1844 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
1845 return BFD_RELOC_AARCH64_NONE;
1847 /* PR 17512: file: b371e70a. */
1848 if (r_type >= R_AARCH64_end)
1850 _bfd_error_handler (_("Invalid AArch64 reloc number: %d"), r_type);
1851 bfd_set_error (bfd_error_bad_value);
1852 return BFD_RELOC_AARCH64_NONE;
1855 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
1858 struct elf_aarch64_reloc_map
1860 bfd_reloc_code_real_type from;
1861 bfd_reloc_code_real_type to;
1864 /* Map bfd generic reloc to AArch64-specific reloc. */
1865 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
1867 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
1869 /* Basic data relocations. */
1870 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
1871 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
1872 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
1873 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
1874 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
1875 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
1876 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
1879 /* Given the bfd internal relocation enumerator in CODE, return the
1880 corresponding howto entry. */
1882 static reloc_howto_type *
1883 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
1887 /* Convert bfd generic reloc to AArch64-specific reloc. */
1888 if (code < BFD_RELOC_AARCH64_RELOC_START
1889 || code > BFD_RELOC_AARCH64_RELOC_END)
1890 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
1891 if (elf_aarch64_reloc_map[i].from == code)
1893 code = elf_aarch64_reloc_map[i].to;
1897 if (code > BFD_RELOC_AARCH64_RELOC_START
1898 && code < BFD_RELOC_AARCH64_RELOC_END)
1899 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
1900 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
1902 if (code == BFD_RELOC_AARCH64_NONE)
1903 return &elfNN_aarch64_howto_none;
1908 static reloc_howto_type *
1909 elfNN_aarch64_howto_from_type (unsigned int r_type)
1911 bfd_reloc_code_real_type val;
1912 reloc_howto_type *howto;
1917 bfd_set_error (bfd_error_bad_value);
1922 if (r_type == R_AARCH64_NONE)
1923 return &elfNN_aarch64_howto_none;
1925 val = elfNN_aarch64_bfd_reloc_from_type (r_type);
1926 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
1931 bfd_set_error (bfd_error_bad_value);
1936 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
1937 Elf_Internal_Rela *elf_reloc)
1939 unsigned int r_type;
1941 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
1942 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type);
1945 static reloc_howto_type *
1946 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1947 bfd_reloc_code_real_type code)
1949 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
1954 bfd_set_error (bfd_error_bad_value);
1958 static reloc_howto_type *
1959 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1964 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
1965 if (elfNN_aarch64_howto_table[i].name != NULL
1966 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
1967 return &elfNN_aarch64_howto_table[i];
1972 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
1973 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1974 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
1975 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1977 /* The linker script knows the section names for placement.
1978 The entry_names are used to do simple name mangling on the stubs.
1979 Given a function name, and its type, the stub can be found. The
1980 name can be changed. The only requirement is the %s be present. */
1981 #define STUB_ENTRY_NAME "__%s_veneer"
1983 /* The name of the dynamic interpreter. This is put in the .interp
1985 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1987 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1988 (((1 << 25) - 1) << 2)
1989 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1992 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1993 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1996 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
1998 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
1999 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2003 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2005 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2006 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2007 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2010 static const uint32_t aarch64_adrp_branch_stub [] =
2012 0x90000010, /* adrp ip0, X */
2013 /* R_AARCH64_ADR_HI21_PCREL(X) */
2014 0x91000210, /* add ip0, ip0, :lo12:X */
2015 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2016 0xd61f0200, /* br ip0 */
2019 static const uint32_t aarch64_long_branch_stub[] =
2022 0x58000090, /* ldr ip0, 1f */
2024 0x18000090, /* ldr wip0, 1f */
2026 0x10000011, /* adr ip1, #0 */
2027 0x8b110210, /* add ip0, ip0, ip1 */
2028 0xd61f0200, /* br ip0 */
2029 0x00000000, /* 1: .xword or .word
2030 R_AARCH64_PRELNN(X) + 12
2035 static const uint32_t aarch64_erratum_835769_stub[] =
2037 0x00000000, /* Placeholder for multiply accumulate. */
2038 0x14000000, /* b <label> */
2041 static const uint32_t aarch64_erratum_843419_stub[] =
2043 0x00000000, /* Placeholder for LDR instruction. */
2044 0x14000000, /* b <label> */
2047 /* Section name for stubs is the associated section name plus this
2049 #define STUB_SUFFIX ".stub"
2051 enum elf_aarch64_stub_type
2054 aarch64_stub_adrp_branch,
2055 aarch64_stub_long_branch,
2056 aarch64_stub_erratum_835769_veneer,
2057 aarch64_stub_erratum_843419_veneer,
2060 struct elf_aarch64_stub_hash_entry
2062 /* Base hash table entry structure. */
2063 struct bfd_hash_entry root;
2065 /* The stub section. */
2068 /* Offset within stub_sec of the beginning of this stub. */
2069 bfd_vma stub_offset;
2071 /* Given the symbol's value and its section we can determine its final
2072 value when building the stubs (so the stub knows where to jump). */
2073 bfd_vma target_value;
2074 asection *target_section;
2076 enum elf_aarch64_stub_type stub_type;
2078 /* The symbol table entry, if any, that this was derived from. */
2079 struct elf_aarch64_link_hash_entry *h;
2081 /* Destination symbol type */
2082 unsigned char st_type;
2084 /* Where this stub is being called from, or, in the case of combined
2085 stub sections, the first input section in the group. */
2088 /* The name for the local symbol at the start of this stub. The
2089 stub name in the hash table has to be unique; this does not, so
2090 it can be friendlier. */
2093 /* The instruction which caused this stub to be generated (only valid for
2094 erratum 835769 workaround stubs at present). */
2095 uint32_t veneered_insn;
2097 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2098 bfd_vma adrp_offset;
2101 /* Used to build a map of a section. This is required for mixed-endian
2104 typedef struct elf_elf_section_map
2109 elf_aarch64_section_map;
2112 typedef struct _aarch64_elf_section_data
2114 struct bfd_elf_section_data elf;
2115 unsigned int mapcount;
2116 unsigned int mapsize;
2117 elf_aarch64_section_map *map;
2119 _aarch64_elf_section_data;
2121 #define elf_aarch64_section_data(sec) \
2122 ((_aarch64_elf_section_data *) elf_section_data (sec))
2124 /* The size of the thread control block which is defined to be two pointers. */
2125 #define TCB_SIZE (ARCH_SIZE/8)*2
2127 struct elf_aarch64_local_symbol
2129 unsigned int got_type;
2130 bfd_signed_vma got_refcount;
2133 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2134 offset is from the end of the jump table and reserved entries
2137 The magic value (bfd_vma) -1 indicates that an offset has not be
2139 bfd_vma tlsdesc_got_jump_table_offset;
2142 struct elf_aarch64_obj_tdata
2144 struct elf_obj_tdata root;
2146 /* local symbol descriptors */
2147 struct elf_aarch64_local_symbol *locals;
2149 /* Zero to warn when linking objects with incompatible enum sizes. */
2150 int no_enum_size_warning;
2152 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2153 int no_wchar_size_warning;
2156 #define elf_aarch64_tdata(bfd) \
2157 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2159 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2161 #define is_aarch64_elf(bfd) \
2162 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2163 && elf_tdata (bfd) != NULL \
2164 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2167 elfNN_aarch64_mkobject (bfd *abfd)
2169 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2173 #define elf_aarch64_hash_entry(ent) \
2174 ((struct elf_aarch64_link_hash_entry *)(ent))
2176 #define GOT_UNKNOWN 0
2177 #define GOT_NORMAL 1
2178 #define GOT_TLS_GD 2
2179 #define GOT_TLS_IE 4
2180 #define GOT_TLSDESC_GD 8
2182 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2184 /* AArch64 ELF linker hash entry. */
2185 struct elf_aarch64_link_hash_entry
2187 struct elf_link_hash_entry root;
2189 /* Track dynamic relocs copied for this symbol. */
2190 struct elf_dyn_relocs *dyn_relocs;
2192 /* Since PLT entries have variable size, we need to record the
2193 index into .got.plt instead of recomputing it from the PLT
2195 bfd_signed_vma plt_got_offset;
2197 /* Bit mask representing the type of GOT entry(s) if any required by
2199 unsigned int got_type;
2201 /* A pointer to the most recently used stub hash entry against this
2203 struct elf_aarch64_stub_hash_entry *stub_cache;
2205 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2206 is from the end of the jump table and reserved entries within the PLTGOT.
2208 The magic value (bfd_vma) -1 indicates that an offset has not
2210 bfd_vma tlsdesc_got_jump_table_offset;
2214 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2216 unsigned long r_symndx)
2219 return elf_aarch64_hash_entry (h)->got_type;
2221 if (! elf_aarch64_locals (abfd))
2224 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2227 /* Get the AArch64 elf linker hash table from a link_info structure. */
2228 #define elf_aarch64_hash_table(info) \
2229 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2231 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2232 ((struct elf_aarch64_stub_hash_entry *) \
2233 bfd_hash_lookup ((table), (string), (create), (copy)))
2235 /* AArch64 ELF linker hash table. */
2236 struct elf_aarch64_link_hash_table
2238 /* The main hash table. */
2239 struct elf_link_hash_table root;
2241 /* Nonzero to force PIC branch veneers. */
2244 /* Fix erratum 835769. */
2245 int fix_erratum_835769;
2247 /* Fix erratum 843419. */
2248 int fix_erratum_843419;
2250 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2251 int fix_erratum_843419_adr;
2253 /* The number of bytes in the initial entry in the PLT. */
2254 bfd_size_type plt_header_size;
2256 /* The number of bytes in the subsequent PLT etries. */
2257 bfd_size_type plt_entry_size;
2259 /* Short-cuts to get to dynamic linker sections. */
2263 /* Small local sym cache. */
2264 struct sym_cache sym_cache;
2266 /* For convenience in allocate_dynrelocs. */
2269 /* The amount of space used by the reserved portion of the sgotplt
2270 section, plus whatever space is used by the jump slots. */
2271 bfd_vma sgotplt_jump_table_size;
2273 /* The stub hash table. */
2274 struct bfd_hash_table stub_hash_table;
2276 /* Linker stub bfd. */
2279 /* Linker call-backs. */
2280 asection *(*add_stub_section) (const char *, asection *);
2281 void (*layout_sections_again) (void);
2283 /* Array to keep track of which stub sections have been created, and
2284 information on stub grouping. */
2287 /* This is the section to which stubs in the group will be
2290 /* The stub section. */
2294 /* Assorted information used by elfNN_aarch64_size_stubs. */
2295 unsigned int bfd_count;
2296 unsigned int top_index;
2297 asection **input_list;
2299 /* The offset into splt of the PLT entry for the TLS descriptor
2300 resolver. Special values are 0, if not necessary (or not found
2301 to be necessary yet), and -1 if needed but not determined
2303 bfd_vma tlsdesc_plt;
2305 /* The GOT offset for the lazy trampoline. Communicated to the
2306 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2307 indicates an offset is not allocated. */
2308 bfd_vma dt_tlsdesc_got;
2310 /* Used by local STT_GNU_IFUNC symbols. */
2311 htab_t loc_hash_table;
2312 void * loc_hash_memory;
2315 /* Create an entry in an AArch64 ELF linker hash table. */
2317 static struct bfd_hash_entry *
2318 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2319 struct bfd_hash_table *table,
2322 struct elf_aarch64_link_hash_entry *ret =
2323 (struct elf_aarch64_link_hash_entry *) entry;
2325 /* Allocate the structure if it has not already been allocated by a
2328 ret = bfd_hash_allocate (table,
2329 sizeof (struct elf_aarch64_link_hash_entry));
2331 return (struct bfd_hash_entry *) ret;
2333 /* Call the allocation method of the superclass. */
2334 ret = ((struct elf_aarch64_link_hash_entry *)
2335 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2339 ret->dyn_relocs = NULL;
2340 ret->got_type = GOT_UNKNOWN;
2341 ret->plt_got_offset = (bfd_vma) - 1;
2342 ret->stub_cache = NULL;
2343 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2346 return (struct bfd_hash_entry *) ret;
2349 /* Initialize an entry in the stub hash table. */
2351 static struct bfd_hash_entry *
2352 stub_hash_newfunc (struct bfd_hash_entry *entry,
2353 struct bfd_hash_table *table, const char *string)
2355 /* Allocate the structure if it has not already been allocated by a
2359 entry = bfd_hash_allocate (table,
2361 elf_aarch64_stub_hash_entry));
2366 /* Call the allocation method of the superclass. */
2367 entry = bfd_hash_newfunc (entry, table, string);
2370 struct elf_aarch64_stub_hash_entry *eh;
2372 /* Initialize the local fields. */
2373 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2374 eh->adrp_offset = 0;
2375 eh->stub_sec = NULL;
2376 eh->stub_offset = 0;
2377 eh->target_value = 0;
2378 eh->target_section = NULL;
2379 eh->stub_type = aarch64_stub_none;
2387 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2388 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2389 as global symbol. We reuse indx and dynstr_index for local symbol
2390 hash since they aren't used by global symbols in this backend. */
2393 elfNN_aarch64_local_htab_hash (const void *ptr)
2395 struct elf_link_hash_entry *h
2396 = (struct elf_link_hash_entry *) ptr;
2397 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2400 /* Compare local hash entries. */
2403 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2405 struct elf_link_hash_entry *h1
2406 = (struct elf_link_hash_entry *) ptr1;
2407 struct elf_link_hash_entry *h2
2408 = (struct elf_link_hash_entry *) ptr2;
2410 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2413 /* Find and/or create a hash entry for local symbol. */
2415 static struct elf_link_hash_entry *
2416 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2417 bfd *abfd, const Elf_Internal_Rela *rel,
2420 struct elf_aarch64_link_hash_entry e, *ret;
2421 asection *sec = abfd->sections;
2422 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2423 ELFNN_R_SYM (rel->r_info));
2426 e.root.indx = sec->id;
2427 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2428 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2429 create ? INSERT : NO_INSERT);
2436 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2440 ret = (struct elf_aarch64_link_hash_entry *)
2441 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2442 sizeof (struct elf_aarch64_link_hash_entry));
2445 memset (ret, 0, sizeof (*ret));
2446 ret->root.indx = sec->id;
2447 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2448 ret->root.dynindx = -1;
2454 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2457 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2458 struct elf_link_hash_entry *dir,
2459 struct elf_link_hash_entry *ind)
2461 struct elf_aarch64_link_hash_entry *edir, *eind;
2463 edir = (struct elf_aarch64_link_hash_entry *) dir;
2464 eind = (struct elf_aarch64_link_hash_entry *) ind;
2466 if (eind->dyn_relocs != NULL)
2468 if (edir->dyn_relocs != NULL)
2470 struct elf_dyn_relocs **pp;
2471 struct elf_dyn_relocs *p;
2473 /* Add reloc counts against the indirect sym to the direct sym
2474 list. Merge any entries against the same section. */
2475 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2477 struct elf_dyn_relocs *q;
2479 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2480 if (q->sec == p->sec)
2482 q->pc_count += p->pc_count;
2483 q->count += p->count;
2490 *pp = edir->dyn_relocs;
2493 edir->dyn_relocs = eind->dyn_relocs;
2494 eind->dyn_relocs = NULL;
2497 if (ind->root.type == bfd_link_hash_indirect)
2499 /* Copy over PLT info. */
2500 if (dir->got.refcount <= 0)
2502 edir->got_type = eind->got_type;
2503 eind->got_type = GOT_UNKNOWN;
2507 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2510 /* Destroy an AArch64 elf linker hash table. */
2513 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2515 struct elf_aarch64_link_hash_table *ret
2516 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2518 if (ret->loc_hash_table)
2519 htab_delete (ret->loc_hash_table);
2520 if (ret->loc_hash_memory)
2521 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2523 bfd_hash_table_free (&ret->stub_hash_table);
2524 _bfd_elf_link_hash_table_free (obfd);
2527 /* Create an AArch64 elf linker hash table. */
2529 static struct bfd_link_hash_table *
2530 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2532 struct elf_aarch64_link_hash_table *ret;
2533 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2535 ret = bfd_zmalloc (amt);
2539 if (!_bfd_elf_link_hash_table_init
2540 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2541 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2547 ret->plt_header_size = PLT_ENTRY_SIZE;
2548 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2550 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2552 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2553 sizeof (struct elf_aarch64_stub_hash_entry)))
2555 _bfd_elf_link_hash_table_free (abfd);
2559 ret->loc_hash_table = htab_try_create (1024,
2560 elfNN_aarch64_local_htab_hash,
2561 elfNN_aarch64_local_htab_eq,
2563 ret->loc_hash_memory = objalloc_create ();
2564 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2566 elfNN_aarch64_link_hash_table_free (abfd);
2569 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2571 return &ret->root.root;
2575 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2576 bfd_vma offset, bfd_vma value)
2578 reloc_howto_type *howto;
2581 howto = elfNN_aarch64_howto_from_type (r_type);
2582 place = (input_section->output_section->vma + input_section->output_offset
2585 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type);
2586 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2587 return _bfd_aarch64_elf_put_addend (input_bfd,
2588 input_section->contents + offset, r_type,
2592 static enum elf_aarch64_stub_type
2593 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2595 if (aarch64_valid_for_adrp_p (value, place))
2596 return aarch64_stub_adrp_branch;
2597 return aarch64_stub_long_branch;
2600 /* Determine the type of stub needed, if any, for a call. */
2602 static enum elf_aarch64_stub_type
2603 aarch64_type_of_stub (struct bfd_link_info *info,
2604 asection *input_sec,
2605 const Elf_Internal_Rela *rel,
2607 unsigned char st_type,
2608 struct elf_aarch64_link_hash_entry *hash,
2609 bfd_vma destination)
2612 bfd_signed_vma branch_offset;
2613 unsigned int r_type;
2614 struct elf_aarch64_link_hash_table *globals;
2615 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2616 bfd_boolean via_plt_p;
2618 if (st_type != STT_FUNC
2619 && (sym_sec != bfd_abs_section_ptr))
2622 globals = elf_aarch64_hash_table (info);
2623 via_plt_p = (globals->root.splt != NULL && hash != NULL
2624 && hash->root.plt.offset != (bfd_vma) - 1);
2625 /* Make sure call to plt stub can fit into the branch range. */
2627 destination = (globals->root.splt->output_section->vma
2628 + globals->root.splt->output_offset
2629 + hash->root.plt.offset);
2631 /* Determine where the call point is. */
2632 location = (input_sec->output_offset
2633 + input_sec->output_section->vma + rel->r_offset);
2635 branch_offset = (bfd_signed_vma) (destination - location);
2637 r_type = ELFNN_R_TYPE (rel->r_info);
2639 /* We don't want to redirect any old unconditional jump in this way,
2640 only one which is being used for a sibcall, where it is
2641 acceptable for the IP0 and IP1 registers to be clobbered. */
2642 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2643 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2644 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2646 stub_type = aarch64_stub_long_branch;
2652 /* Build a name for an entry in the stub hash table. */
2655 elfNN_aarch64_stub_name (const asection *input_section,
2656 const asection *sym_sec,
2657 const struct elf_aarch64_link_hash_entry *hash,
2658 const Elf_Internal_Rela *rel)
2665 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2666 stub_name = bfd_malloc (len);
2667 if (stub_name != NULL)
2668 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2669 (unsigned int) input_section->id,
2670 hash->root.root.root.string,
2675 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2676 stub_name = bfd_malloc (len);
2677 if (stub_name != NULL)
2678 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2679 (unsigned int) input_section->id,
2680 (unsigned int) sym_sec->id,
2681 (unsigned int) ELFNN_R_SYM (rel->r_info),
2688 /* Look up an entry in the stub hash. Stub entries are cached because
2689 creating the stub name takes a bit of time. */
2691 static struct elf_aarch64_stub_hash_entry *
2692 elfNN_aarch64_get_stub_entry (const asection *input_section,
2693 const asection *sym_sec,
2694 struct elf_link_hash_entry *hash,
2695 const Elf_Internal_Rela *rel,
2696 struct elf_aarch64_link_hash_table *htab)
2698 struct elf_aarch64_stub_hash_entry *stub_entry;
2699 struct elf_aarch64_link_hash_entry *h =
2700 (struct elf_aarch64_link_hash_entry *) hash;
2701 const asection *id_sec;
2703 if ((input_section->flags & SEC_CODE) == 0)
2706 /* If this input section is part of a group of sections sharing one
2707 stub section, then use the id of the first section in the group.
2708 Stub names need to include a section id, as there may well be
2709 more than one stub used to reach say, printf, and we need to
2710 distinguish between them. */
2711 id_sec = htab->stub_group[input_section->id].link_sec;
2713 if (h != NULL && h->stub_cache != NULL
2714 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
2716 stub_entry = h->stub_cache;
2722 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
2723 if (stub_name == NULL)
2726 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
2727 stub_name, FALSE, FALSE);
2729 h->stub_cache = stub_entry;
2738 /* Create a stub section. */
2741 _bfd_aarch64_create_stub_section (asection *section,
2742 struct elf_aarch64_link_hash_table *htab)
2748 namelen = strlen (section->name);
2749 len = namelen + sizeof (STUB_SUFFIX);
2750 s_name = bfd_alloc (htab->stub_bfd, len);
2754 memcpy (s_name, section->name, namelen);
2755 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
2756 return (*htab->add_stub_section) (s_name, section);
2760 /* Find or create a stub section for a link section.
2762 Fix or create the stub section used to collect stubs attached to
2763 the specified link section. */
2766 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
2767 struct elf_aarch64_link_hash_table *htab)
2769 if (htab->stub_group[link_section->id].stub_sec == NULL)
2770 htab->stub_group[link_section->id].stub_sec
2771 = _bfd_aarch64_create_stub_section (link_section, htab);
2772 return htab->stub_group[link_section->id].stub_sec;
2776 /* Find or create a stub section in the stub group for an input
2780 _bfd_aarch64_create_or_find_stub_sec (asection *section,
2781 struct elf_aarch64_link_hash_table *htab)
2783 asection *link_sec = htab->stub_group[section->id].link_sec;
2784 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
2788 /* Add a new stub entry in the stub group associated with an input
2789 section to the stub hash. Not all fields of the new stub entry are
2792 static struct elf_aarch64_stub_hash_entry *
2793 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
2795 struct elf_aarch64_link_hash_table *htab)
2799 struct elf_aarch64_stub_hash_entry *stub_entry;
2801 link_sec = htab->stub_group[section->id].link_sec;
2802 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
2804 /* Enter this entry into the linker stub hash table. */
2805 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2807 if (stub_entry == NULL)
2809 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
2810 section->owner, stub_name);
2814 stub_entry->stub_sec = stub_sec;
2815 stub_entry->stub_offset = 0;
2816 stub_entry->id_sec = link_sec;
2821 /* Add a new stub entry in the final stub section to the stub hash.
2822 Not all fields of the new stub entry are initialised. */
2824 static struct elf_aarch64_stub_hash_entry *
2825 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
2826 asection *link_section,
2827 struct elf_aarch64_link_hash_table *htab)
2830 struct elf_aarch64_stub_hash_entry *stub_entry;
2832 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
2833 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
2835 if (stub_entry == NULL)
2837 (*_bfd_error_handler) (_("cannot create stub entry %s"), stub_name);
2841 stub_entry->stub_sec = stub_sec;
2842 stub_entry->stub_offset = 0;
2843 stub_entry->id_sec = link_section;
2850 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
2851 void *in_arg ATTRIBUTE_UNUSED)
2853 struct elf_aarch64_stub_hash_entry *stub_entry;
2858 bfd_vma veneered_insn_loc;
2859 bfd_vma veneer_entry_loc;
2860 bfd_signed_vma branch_offset = 0;
2861 unsigned int template_size;
2862 const uint32_t *template;
2865 /* Massage our args to the form they really have. */
2866 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2868 stub_sec = stub_entry->stub_sec;
2870 /* Make a note of the offset within the stubs for this entry. */
2871 stub_entry->stub_offset = stub_sec->size;
2872 loc = stub_sec->contents + stub_entry->stub_offset;
2874 stub_bfd = stub_sec->owner;
2876 /* This is the address of the stub destination. */
2877 sym_value = (stub_entry->target_value
2878 + stub_entry->target_section->output_offset
2879 + stub_entry->target_section->output_section->vma);
2881 if (stub_entry->stub_type == aarch64_stub_long_branch)
2883 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
2884 + stub_sec->output_offset);
2886 /* See if we can relax the stub. */
2887 if (aarch64_valid_for_adrp_p (sym_value, place))
2888 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
2891 switch (stub_entry->stub_type)
2893 case aarch64_stub_adrp_branch:
2894 template = aarch64_adrp_branch_stub;
2895 template_size = sizeof (aarch64_adrp_branch_stub);
2897 case aarch64_stub_long_branch:
2898 template = aarch64_long_branch_stub;
2899 template_size = sizeof (aarch64_long_branch_stub);
2901 case aarch64_stub_erratum_835769_veneer:
2902 template = aarch64_erratum_835769_stub;
2903 template_size = sizeof (aarch64_erratum_835769_stub);
2905 case aarch64_stub_erratum_843419_veneer:
2906 template = aarch64_erratum_843419_stub;
2907 template_size = sizeof (aarch64_erratum_843419_stub);
2913 for (i = 0; i < (template_size / sizeof template[0]); i++)
2915 bfd_putl32 (template[i], loc);
2919 template_size = (template_size + 7) & ~7;
2920 stub_sec->size += template_size;
2922 switch (stub_entry->stub_type)
2924 case aarch64_stub_adrp_branch:
2925 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
2926 stub_entry->stub_offset, sym_value))
2927 /* The stub would not have been relaxed if the offset was out
2931 if (aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
2932 stub_entry->stub_offset + 4, sym_value))
2936 case aarch64_stub_long_branch:
2937 /* We want the value relative to the address 12 bytes back from the
2939 if (aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
2940 stub_entry->stub_offset + 16, sym_value + 12))
2944 case aarch64_stub_erratum_835769_veneer:
2945 veneered_insn_loc = stub_entry->target_section->output_section->vma
2946 + stub_entry->target_section->output_offset
2947 + stub_entry->target_value;
2948 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
2949 + stub_entry->stub_sec->output_offset
2950 + stub_entry->stub_offset;
2951 branch_offset = veneered_insn_loc - veneer_entry_loc;
2952 branch_offset >>= 2;
2953 branch_offset &= 0x3ffffff;
2954 bfd_putl32 (stub_entry->veneered_insn,
2955 stub_sec->contents + stub_entry->stub_offset);
2956 bfd_putl32 (template[1] | branch_offset,
2957 stub_sec->contents + stub_entry->stub_offset + 4);
2960 case aarch64_stub_erratum_843419_veneer:
2961 if (aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
2962 stub_entry->stub_offset + 4, sym_value + 4))
2973 /* As above, but don't actually build the stub. Just bump offset so
2974 we know stub section sizes. */
2977 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
2978 void *in_arg ATTRIBUTE_UNUSED)
2980 struct elf_aarch64_stub_hash_entry *stub_entry;
2983 /* Massage our args to the form they really have. */
2984 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
2986 switch (stub_entry->stub_type)
2988 case aarch64_stub_adrp_branch:
2989 size = sizeof (aarch64_adrp_branch_stub);
2991 case aarch64_stub_long_branch:
2992 size = sizeof (aarch64_long_branch_stub);
2994 case aarch64_stub_erratum_835769_veneer:
2995 size = sizeof (aarch64_erratum_835769_stub);
2997 case aarch64_stub_erratum_843419_veneer:
2998 size = sizeof (aarch64_erratum_843419_stub);
3004 size = (size + 7) & ~7;
3005 stub_entry->stub_sec->size += size;
3009 /* External entry points for sizing and building linker stubs. */
3011 /* Set up various things so that we can make a list of input sections
3012 for each output section included in the link. Returns -1 on error,
3013 0 when no stubs will be needed, and 1 on success. */
3016 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3017 struct bfd_link_info *info)
3020 unsigned int bfd_count;
3021 unsigned int top_id, top_index;
3023 asection **input_list, **list;
3025 struct elf_aarch64_link_hash_table *htab =
3026 elf_aarch64_hash_table (info);
3028 if (!is_elf_hash_table (htab))
3031 /* Count the number of input BFDs and find the top input section id. */
3032 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3033 input_bfd != NULL; input_bfd = input_bfd->link.next)
3036 for (section = input_bfd->sections;
3037 section != NULL; section = section->next)
3039 if (top_id < section->id)
3040 top_id = section->id;
3043 htab->bfd_count = bfd_count;
3045 amt = sizeof (struct map_stub) * (top_id + 1);
3046 htab->stub_group = bfd_zmalloc (amt);
3047 if (htab->stub_group == NULL)
3050 /* We can't use output_bfd->section_count here to find the top output
3051 section index as some sections may have been removed, and
3052 _bfd_strip_section_from_output doesn't renumber the indices. */
3053 for (section = output_bfd->sections, top_index = 0;
3054 section != NULL; section = section->next)
3056 if (top_index < section->index)
3057 top_index = section->index;
3060 htab->top_index = top_index;
3061 amt = sizeof (asection *) * (top_index + 1);
3062 input_list = bfd_malloc (amt);
3063 htab->input_list = input_list;
3064 if (input_list == NULL)
3067 /* For sections we aren't interested in, mark their entries with a
3068 value we can check later. */
3069 list = input_list + top_index;
3071 *list = bfd_abs_section_ptr;
3072 while (list-- != input_list);
3074 for (section = output_bfd->sections;
3075 section != NULL; section = section->next)
3077 if ((section->flags & SEC_CODE) != 0)
3078 input_list[section->index] = NULL;
3084 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3085 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3087 /* The linker repeatedly calls this function for each input section,
3088 in the order that input sections are linked into output sections.
3089 Build lists of input sections to determine groupings between which
3090 we may insert linker stubs. */
3093 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3095 struct elf_aarch64_link_hash_table *htab =
3096 elf_aarch64_hash_table (info);
3098 if (isec->output_section->index <= htab->top_index)
3100 asection **list = htab->input_list + isec->output_section->index;
3102 if (*list != bfd_abs_section_ptr)
3104 /* Steal the link_sec pointer for our list. */
3105 /* This happens to make the list in reverse order,
3106 which is what we want. */
3107 PREV_SEC (isec) = *list;
3113 /* See whether we can group stub sections together. Grouping stub
3114 sections may result in fewer stubs. More importantly, we need to
3115 put all .init* and .fini* stubs at the beginning of the .init or
3116 .fini output sections respectively, because glibc splits the
3117 _init and _fini functions into multiple parts. Putting a stub in
3118 the middle of a function is not a good idea. */
3121 group_sections (struct elf_aarch64_link_hash_table *htab,
3122 bfd_size_type stub_group_size,
3123 bfd_boolean stubs_always_before_branch)
3125 asection **list = htab->input_list + htab->top_index;
3129 asection *tail = *list;
3131 if (tail == bfd_abs_section_ptr)
3134 while (tail != NULL)
3138 bfd_size_type total;
3142 while ((prev = PREV_SEC (curr)) != NULL
3143 && ((total += curr->output_offset - prev->output_offset)
3147 /* OK, the size from the start of CURR to the end is less
3148 than stub_group_size and thus can be handled by one stub
3149 section. (Or the tail section is itself larger than
3150 stub_group_size, in which case we may be toast.)
3151 We should really be keeping track of the total size of
3152 stubs added here, as stubs contribute to the final output
3156 prev = PREV_SEC (tail);
3157 /* Set up this stub group. */
3158 htab->stub_group[tail->id].link_sec = curr;
3160 while (tail != curr && (tail = prev) != NULL);
3162 /* But wait, there's more! Input sections up to stub_group_size
3163 bytes before the stub section can be handled by it too. */
3164 if (!stubs_always_before_branch)
3168 && ((total += tail->output_offset - prev->output_offset)
3172 prev = PREV_SEC (tail);
3173 htab->stub_group[tail->id].link_sec = curr;
3179 while (list-- != htab->input_list);
3181 free (htab->input_list);
3186 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3188 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3189 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3190 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3191 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3192 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3193 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3195 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3196 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3197 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3198 #define AARCH64_ZR 0x1f
3200 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3201 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3203 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3204 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3205 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3206 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3207 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3208 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3209 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3210 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3211 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3212 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3213 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3214 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3215 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3216 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3217 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3218 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3219 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3220 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3222 /* Classify an INSN if it is indeed a load/store.
3224 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3226 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3229 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned.
3234 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3235 bfd_boolean *pair, bfd_boolean *load)
3243 /* Bail out quickly if INSN doesn't fall into the the load-store
3245 if (!AARCH64_LDST (insn))
3250 if (AARCH64_LDST_EX (insn))
3252 *rt = AARCH64_RT (insn);
3254 if (AARCH64_BIT (insn, 21) == 1)
3257 *rt2 = AARCH64_RT2 (insn);
3259 *load = AARCH64_LD (insn);
3262 else if (AARCH64_LDST_NAP (insn)
3263 || AARCH64_LDSTP_PI (insn)
3264 || AARCH64_LDSTP_O (insn)
3265 || AARCH64_LDSTP_PRE (insn))
3268 *rt = AARCH64_RT (insn);
3269 *rt2 = AARCH64_RT2 (insn);
3270 *load = AARCH64_LD (insn);
3273 else if (AARCH64_LDST_PCREL (insn)
3274 || AARCH64_LDST_UI (insn)
3275 || AARCH64_LDST_PIIMM (insn)
3276 || AARCH64_LDST_U (insn)
3277 || AARCH64_LDST_PREIMM (insn)
3278 || AARCH64_LDST_RO (insn)
3279 || AARCH64_LDST_UIMM (insn))
3281 *rt = AARCH64_RT (insn);
3283 if (AARCH64_LDST_PCREL (insn))
3285 opc = AARCH64_BITS (insn, 22, 2);
3286 v = AARCH64_BIT (insn, 26);
3287 opc_v = opc | (v << 2);
3288 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3289 || opc_v == 5 || opc_v == 7);
3292 else if (AARCH64_LDST_SIMD_M (insn)
3293 || AARCH64_LDST_SIMD_M_PI (insn))
3295 *rt = AARCH64_RT (insn);
3296 *load = AARCH64_BIT (insn, 22);
3297 opcode = (insn >> 12) & 0xf;
3324 else if (AARCH64_LDST_SIMD_S (insn)
3325 || AARCH64_LDST_SIMD_S_PI (insn))
3327 *rt = AARCH64_RT (insn);
3328 r = (insn >> 21) & 1;
3329 *load = AARCH64_BIT (insn, 22);
3330 opcode = (insn >> 13) & 0x7;
3342 *rt2 = *rt + (r == 0 ? 2 : 3);
3350 *rt2 = *rt + (r == 0 ? 2 : 3);
3362 /* Return TRUE if INSN is multiply-accumulate. */
3365 aarch64_mlxl_p (uint32_t insn)
3367 uint32_t op31 = AARCH64_OP31 (insn);
3369 if (AARCH64_MAC (insn)
3370 && (op31 == 0 || op31 == 1 || op31 == 5)
3371 /* Exclude MUL instructions which are encoded as a multiple accumulate
3373 && AARCH64_RA (insn) != AARCH64_ZR)
3379 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3380 it is possible for a 64-bit multiply-accumulate instruction to generate an
3381 incorrect result. The details are quite complex and hard to
3382 determine statically, since branches in the code may exist in some
3383 circumstances, but all cases end with a memory (load, store, or
3384 prefetch) instruction followed immediately by the multiply-accumulate
3385 operation. We employ a linker patching technique, by moving the potentially
3386 affected multiply-accumulate instruction into a patch region and replacing
3387 the original instruction with a branch to the patch. This function checks
3388 if INSN_1 is the memory operation followed by a multiply-accumulate
3389 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3390 if INSN_1 and INSN_2 are safe. */
3393 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3403 if (aarch64_mlxl_p (insn_2)
3404 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3406 /* Any SIMD memory op is independent of the subsequent MLA
3407 by definition of the erratum. */
3408 if (AARCH64_BIT (insn_1, 26))
3411 /* If not SIMD, check for integer memory ops and MLA relationship. */
3412 rn = AARCH64_RN (insn_2);
3413 ra = AARCH64_RA (insn_2);
3414 rm = AARCH64_RM (insn_2);
3416 /* If this is a load and there's a true(RAW) dependency, we are safe
3417 and this is not an erratum sequence. */
3419 (rt == rn || rt == rm || rt == ra
3420 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3423 /* We conservatively put out stubs for all other cases (including
3431 /* Used to order a list of mapping symbols by address. */
3434 elf_aarch64_compare_mapping (const void *a, const void *b)
3436 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3437 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3439 if (amap->vma > bmap->vma)
3441 else if (amap->vma < bmap->vma)
3443 else if (amap->type > bmap->type)
3444 /* Ensure results do not depend on the host qsort for objects with
3445 multiple mapping symbols at the same address by sorting on type
3448 else if (amap->type < bmap->type)
3456 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3458 char *stub_name = (char *) bfd_malloc
3459 (strlen ("__erratum_835769_veneer_") + 16);
3460 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3464 /* Scan for Cortex-A53 erratum 835769 sequence.
3466 Return TRUE else FALSE on abnormal termination. */
3469 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3470 struct bfd_link_info *info,
3471 unsigned int *num_fixes_p)
3474 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3475 unsigned int num_fixes = *num_fixes_p;
3480 for (section = input_bfd->sections;
3482 section = section->next)
3484 bfd_byte *contents = NULL;
3485 struct _aarch64_elf_section_data *sec_data;
3488 if (elf_section_type (section) != SHT_PROGBITS
3489 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3490 || (section->flags & SEC_EXCLUDE) != 0
3491 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3492 || (section->output_section == bfd_abs_section_ptr))
3495 if (elf_section_data (section)->this_hdr.contents != NULL)
3496 contents = elf_section_data (section)->this_hdr.contents;
3497 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3500 sec_data = elf_aarch64_section_data (section);
3502 qsort (sec_data->map, sec_data->mapcount,
3503 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3505 for (span = 0; span < sec_data->mapcount; span++)
3507 unsigned int span_start = sec_data->map[span].vma;
3508 unsigned int span_end = ((span == sec_data->mapcount - 1)
3509 ? sec_data->map[0].vma + section->size
3510 : sec_data->map[span + 1].vma);
3512 char span_type = sec_data->map[span].type;
3514 if (span_type == 'd')
3517 for (i = span_start; i + 4 < span_end; i += 4)
3519 uint32_t insn_1 = bfd_getl32 (contents + i);
3520 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3522 if (aarch64_erratum_sequence (insn_1, insn_2))
3524 struct elf_aarch64_stub_hash_entry *stub_entry;
3525 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3529 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3535 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3536 stub_entry->target_section = section;
3537 stub_entry->target_value = i + 4;
3538 stub_entry->veneered_insn = insn_2;
3539 stub_entry->output_name = stub_name;
3544 if (elf_section_data (section)->this_hdr.contents == NULL)
3548 *num_fixes_p = num_fixes;
3554 /* Test if instruction INSN is ADRP. */
3557 _bfd_aarch64_adrp_p (uint32_t insn)
3559 return ((insn & 0x9f000000) == 0x90000000);
3563 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3566 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3574 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3577 && AARCH64_LDST_UIMM (insn_3)
3578 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3582 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3584 Return TRUE if section CONTENTS at offset I contains one of the
3585 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3586 seen set P_VENEER_I to the offset of the final LOAD/STORE
3587 instruction in the sequence.
3591 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3592 bfd_vma i, bfd_vma span_end,
3593 bfd_vma *p_veneer_i)
3595 uint32_t insn_1 = bfd_getl32 (contents + i);
3597 if (!_bfd_aarch64_adrp_p (insn_1))
3600 if (span_end < i + 12)
3603 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3604 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3606 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3609 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3611 *p_veneer_i = i + 8;
3615 if (span_end < i + 16)
3618 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3620 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3622 *p_veneer_i = i + 12;
3630 /* Resize all stub sections. */
3633 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3637 /* OK, we've added some stubs. Find out the new size of the
3639 for (section = htab->stub_bfd->sections;
3640 section != NULL; section = section->next)
3642 /* Ignore non-stub sections. */
3643 if (!strstr (section->name, STUB_SUFFIX))
3648 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3650 for (section = htab->stub_bfd->sections;
3651 section != NULL; section = section->next)
3653 if (!strstr (section->name, STUB_SUFFIX))
3659 /* Ensure all stub sections have a size which is a multiple of
3660 4096. This is important in order to ensure that the insertion
3661 of stub sections does not in itself move existing code around
3662 in such a way that new errata sequences are created. */
3663 if (htab->fix_erratum_843419)
3665 section->size = BFD_ALIGN (section->size, 0x1000);
3670 /* Construct an erratum 843419 workaround stub name.
3674 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3677 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3678 char *stub_name = bfd_malloc (len);
3680 if (stub_name != NULL)
3681 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3682 input_section->owner->id,
3688 /* Build a stub_entry structure describing an 843419 fixup.
3690 The stub_entry constructed is populated with the bit pattern INSN
3691 of the instruction located at OFFSET within input SECTION.
3693 Returns TRUE on success. */
3696 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3697 bfd_vma adrp_offset,
3698 bfd_vma ldst_offset,
3700 struct bfd_link_info *info)
3702 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3704 struct elf_aarch64_stub_hash_entry *stub_entry;
3706 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3707 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3715 /* We always place an 843419 workaround veneer in the stub section
3716 attached to the input section in which an erratum sequence has
3717 been found. This ensures that later in the link process (in
3718 elfNN_aarch64_write_section) when we copy the veneered
3719 instruction from the input section into the stub section the
3720 copied instruction will have had any relocations applied to it.
3721 If we placed workaround veneers in any other stub section then we
3722 could not assume that all relocations have been processed on the
3723 corresponding input section at the point we output the stub
3727 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
3728 if (stub_entry == NULL)
3734 stub_entry->adrp_offset = adrp_offset;
3735 stub_entry->target_value = ldst_offset;
3736 stub_entry->target_section = section;
3737 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
3738 stub_entry->veneered_insn = insn;
3739 stub_entry->output_name = stub_name;
3745 /* Scan an input section looking for the signature of erratum 843419.
3747 Scans input SECTION in INPUT_BFD looking for erratum 843419
3748 signatures, for each signature found a stub_entry is created
3749 describing the location of the erratum for subsequent fixup.
3751 Return TRUE on successful scan, FALSE on failure to scan.
3755 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
3756 struct bfd_link_info *info)
3758 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3763 if (elf_section_type (section) != SHT_PROGBITS
3764 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3765 || (section->flags & SEC_EXCLUDE) != 0
3766 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3767 || (section->output_section == bfd_abs_section_ptr))
3772 bfd_byte *contents = NULL;
3773 struct _aarch64_elf_section_data *sec_data;
3776 if (elf_section_data (section)->this_hdr.contents != NULL)
3777 contents = elf_section_data (section)->this_hdr.contents;
3778 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3781 sec_data = elf_aarch64_section_data (section);
3783 qsort (sec_data->map, sec_data->mapcount,
3784 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3786 for (span = 0; span < sec_data->mapcount; span++)
3788 unsigned int span_start = sec_data->map[span].vma;
3789 unsigned int span_end = ((span == sec_data->mapcount - 1)
3790 ? sec_data->map[0].vma + section->size
3791 : sec_data->map[span + 1].vma);
3793 char span_type = sec_data->map[span].type;
3795 if (span_type == 'd')
3798 for (i = span_start; i + 8 < span_end; i += 4)
3800 bfd_vma vma = (section->output_section->vma
3801 + section->output_offset
3805 if (_bfd_aarch64_erratum_843419_p
3806 (contents, vma, i, span_end, &veneer_i))
3808 uint32_t insn = bfd_getl32 (contents + veneer_i);
3810 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
3817 if (elf_section_data (section)->this_hdr.contents == NULL)
3826 /* Determine and set the size of the stub section for a final link.
3828 The basic idea here is to examine all the relocations looking for
3829 PC-relative calls to a target that is unreachable with a "bl"
3833 elfNN_aarch64_size_stubs (bfd *output_bfd,
3835 struct bfd_link_info *info,
3836 bfd_signed_vma group_size,
3837 asection * (*add_stub_section) (const char *,
3839 void (*layout_sections_again) (void))
3841 bfd_size_type stub_group_size;
3842 bfd_boolean stubs_always_before_branch;
3843 bfd_boolean stub_changed = FALSE;
3844 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3845 unsigned int num_erratum_835769_fixes = 0;
3847 /* Propagate mach to stub bfd, because it may not have been
3848 finalized when we created stub_bfd. */
3849 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3850 bfd_get_mach (output_bfd));
3852 /* Stash our params away. */
3853 htab->stub_bfd = stub_bfd;
3854 htab->add_stub_section = add_stub_section;
3855 htab->layout_sections_again = layout_sections_again;
3856 stubs_always_before_branch = group_size < 0;
3858 stub_group_size = -group_size;
3860 stub_group_size = group_size;
3862 if (stub_group_size == 1)
3864 /* Default values. */
3865 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
3866 stub_group_size = 127 * 1024 * 1024;
3869 group_sections (htab, stub_group_size, stubs_always_before_branch);
3871 (*htab->layout_sections_again) ();
3873 if (htab->fix_erratum_835769)
3877 for (input_bfd = info->input_bfds;
3878 input_bfd != NULL; input_bfd = input_bfd->link.next)
3879 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
3880 &num_erratum_835769_fixes))
3883 _bfd_aarch64_resize_stubs (htab);
3884 (*htab->layout_sections_again) ();
3887 if (htab->fix_erratum_843419)
3891 for (input_bfd = info->input_bfds;
3893 input_bfd = input_bfd->link.next)
3897 for (section = input_bfd->sections;
3899 section = section->next)
3900 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
3904 _bfd_aarch64_resize_stubs (htab);
3905 (*htab->layout_sections_again) ();
3912 for (input_bfd = info->input_bfds;
3913 input_bfd != NULL; input_bfd = input_bfd->link.next)
3915 Elf_Internal_Shdr *symtab_hdr;
3917 Elf_Internal_Sym *local_syms = NULL;
3919 /* We'll need the symbol table in a second. */
3920 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3921 if (symtab_hdr->sh_info == 0)
3924 /* Walk over each section attached to the input bfd. */
3925 for (section = input_bfd->sections;
3926 section != NULL; section = section->next)
3928 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3930 /* If there aren't any relocs, then there's nothing more
3932 if ((section->flags & SEC_RELOC) == 0
3933 || section->reloc_count == 0
3934 || (section->flags & SEC_CODE) == 0)
3937 /* If this section is a link-once section that will be
3938 discarded, then don't create any stubs. */
3939 if (section->output_section == NULL
3940 || section->output_section->owner != output_bfd)
3943 /* Get the relocs. */
3945 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3946 NULL, info->keep_memory);
3947 if (internal_relocs == NULL)
3948 goto error_ret_free_local;
3950 /* Now examine each relocation. */
3951 irela = internal_relocs;
3952 irelaend = irela + section->reloc_count;
3953 for (; irela < irelaend; irela++)
3955 unsigned int r_type, r_indx;
3956 enum elf_aarch64_stub_type stub_type;
3957 struct elf_aarch64_stub_hash_entry *stub_entry;
3960 bfd_vma destination;
3961 struct elf_aarch64_link_hash_entry *hash;
3962 const char *sym_name;
3964 const asection *id_sec;
3965 unsigned char st_type;
3968 r_type = ELFNN_R_TYPE (irela->r_info);
3969 r_indx = ELFNN_R_SYM (irela->r_info);
3971 if (r_type >= (unsigned int) R_AARCH64_end)
3973 bfd_set_error (bfd_error_bad_value);
3974 error_ret_free_internal:
3975 if (elf_section_data (section)->relocs == NULL)
3976 free (internal_relocs);
3977 goto error_ret_free_local;
3980 /* Only look for stubs on unconditional branch and
3981 branch and link instructions. */
3982 if (r_type != (unsigned int) AARCH64_R (CALL26)
3983 && r_type != (unsigned int) AARCH64_R (JUMP26))
3986 /* Now determine the call target, its name, value,
3993 if (r_indx < symtab_hdr->sh_info)
3995 /* It's a local symbol. */
3996 Elf_Internal_Sym *sym;
3997 Elf_Internal_Shdr *hdr;
3999 if (local_syms == NULL)
4002 = (Elf_Internal_Sym *) symtab_hdr->contents;
4003 if (local_syms == NULL)
4005 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4006 symtab_hdr->sh_info, 0,
4008 if (local_syms == NULL)
4009 goto error_ret_free_internal;
4012 sym = local_syms + r_indx;
4013 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4014 sym_sec = hdr->bfd_section;
4016 /* This is an undefined symbol. It can never
4020 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4021 sym_value = sym->st_value;
4022 destination = (sym_value + irela->r_addend
4023 + sym_sec->output_offset
4024 + sym_sec->output_section->vma);
4025 st_type = ELF_ST_TYPE (sym->st_info);
4027 = bfd_elf_string_from_elf_section (input_bfd,
4028 symtab_hdr->sh_link,
4035 e_indx = r_indx - symtab_hdr->sh_info;
4036 hash = ((struct elf_aarch64_link_hash_entry *)
4037 elf_sym_hashes (input_bfd)[e_indx]);
4039 while (hash->root.root.type == bfd_link_hash_indirect
4040 || hash->root.root.type == bfd_link_hash_warning)
4041 hash = ((struct elf_aarch64_link_hash_entry *)
4042 hash->root.root.u.i.link);
4044 if (hash->root.root.type == bfd_link_hash_defined
4045 || hash->root.root.type == bfd_link_hash_defweak)
4047 struct elf_aarch64_link_hash_table *globals =
4048 elf_aarch64_hash_table (info);
4049 sym_sec = hash->root.root.u.def.section;
4050 sym_value = hash->root.root.u.def.value;
4051 /* For a destination in a shared library,
4052 use the PLT stub as target address to
4053 decide whether a branch stub is
4055 if (globals->root.splt != NULL && hash != NULL
4056 && hash->root.plt.offset != (bfd_vma) - 1)
4058 sym_sec = globals->root.splt;
4059 sym_value = hash->root.plt.offset;
4060 if (sym_sec->output_section != NULL)
4061 destination = (sym_value
4062 + sym_sec->output_offset
4064 sym_sec->output_section->vma);
4066 else if (sym_sec->output_section != NULL)
4067 destination = (sym_value + irela->r_addend
4068 + sym_sec->output_offset
4069 + sym_sec->output_section->vma);
4071 else if (hash->root.root.type == bfd_link_hash_undefined
4072 || (hash->root.root.type
4073 == bfd_link_hash_undefweak))
4075 /* For a shared library, use the PLT stub as
4076 target address to decide whether a long
4077 branch stub is needed.
4078 For absolute code, they cannot be handled. */
4079 struct elf_aarch64_link_hash_table *globals =
4080 elf_aarch64_hash_table (info);
4082 if (globals->root.splt != NULL && hash != NULL
4083 && hash->root.plt.offset != (bfd_vma) - 1)
4085 sym_sec = globals->root.splt;
4086 sym_value = hash->root.plt.offset;
4087 if (sym_sec->output_section != NULL)
4088 destination = (sym_value
4089 + sym_sec->output_offset
4091 sym_sec->output_section->vma);
4098 bfd_set_error (bfd_error_bad_value);
4099 goto error_ret_free_internal;
4101 st_type = ELF_ST_TYPE (hash->root.type);
4102 sym_name = hash->root.root.root.string;
4105 /* Determine what (if any) linker stub is needed. */
4106 stub_type = aarch64_type_of_stub
4107 (info, section, irela, sym_sec, st_type, hash, destination);
4108 if (stub_type == aarch64_stub_none)
4111 /* Support for grouping stub sections. */
4112 id_sec = htab->stub_group[section->id].link_sec;
4114 /* Get the name of this stub. */
4115 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4118 goto error_ret_free_internal;
4121 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4122 stub_name, FALSE, FALSE);
4123 if (stub_entry != NULL)
4125 /* The proper stub has already been created. */
4130 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4131 (stub_name, section, htab);
4132 if (stub_entry == NULL)
4135 goto error_ret_free_internal;
4138 stub_entry->target_value = sym_value;
4139 stub_entry->target_section = sym_sec;
4140 stub_entry->stub_type = stub_type;
4141 stub_entry->h = hash;
4142 stub_entry->st_type = st_type;
4144 if (sym_name == NULL)
4145 sym_name = "unnamed";
4146 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4147 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4148 if (stub_entry->output_name == NULL)
4151 goto error_ret_free_internal;
4154 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4157 stub_changed = TRUE;
4160 /* We're done with the internal relocs, free them. */
4161 if (elf_section_data (section)->relocs == NULL)
4162 free (internal_relocs);
4169 _bfd_aarch64_resize_stubs (htab);
4171 /* Ask the linker to do its stuff. */
4172 (*htab->layout_sections_again) ();
4173 stub_changed = FALSE;
4178 error_ret_free_local:
4182 /* Build all the stubs associated with the current output file. The
4183 stubs are kept in a hash table attached to the main linker hash
4184 table. We also set up the .plt entries for statically linked PIC
4185 functions here. This function is called via aarch64_elf_finish in the
4189 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4192 struct bfd_hash_table *table;
4193 struct elf_aarch64_link_hash_table *htab;
4195 htab = elf_aarch64_hash_table (info);
4197 for (stub_sec = htab->stub_bfd->sections;
4198 stub_sec != NULL; stub_sec = stub_sec->next)
4202 /* Ignore non-stub sections. */
4203 if (!strstr (stub_sec->name, STUB_SUFFIX))
4206 /* Allocate memory to hold the linker stubs. */
4207 size = stub_sec->size;
4208 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4209 if (stub_sec->contents == NULL && size != 0)
4213 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4214 stub_sec->size += 4;
4217 /* Build the stubs as directed by the stub hash table. */
4218 table = &htab->stub_hash_table;
4219 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4225 /* Add an entry to the code/data map for section SEC. */
4228 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4230 struct _aarch64_elf_section_data *sec_data =
4231 elf_aarch64_section_data (sec);
4232 unsigned int newidx;
4234 if (sec_data->map == NULL)
4236 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4237 sec_data->mapcount = 0;
4238 sec_data->mapsize = 1;
4241 newidx = sec_data->mapcount++;
4243 if (sec_data->mapcount > sec_data->mapsize)
4245 sec_data->mapsize *= 2;
4246 sec_data->map = bfd_realloc_or_free
4247 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4252 sec_data->map[newidx].vma = vma;
4253 sec_data->map[newidx].type = type;
4258 /* Initialise maps of insn/data for input BFDs. */
4260 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4262 Elf_Internal_Sym *isymbuf;
4263 Elf_Internal_Shdr *hdr;
4264 unsigned int i, localsyms;
4266 /* Make sure that we are dealing with an AArch64 elf binary. */
4267 if (!is_aarch64_elf (abfd))
4270 if ((abfd->flags & DYNAMIC) != 0)
4273 hdr = &elf_symtab_hdr (abfd);
4274 localsyms = hdr->sh_info;
4276 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4277 should contain the number of local symbols, which should come before any
4278 global symbols. Mapping symbols are always local. */
4279 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4281 /* No internal symbols read? Skip this BFD. */
4282 if (isymbuf == NULL)
4285 for (i = 0; i < localsyms; i++)
4287 Elf_Internal_Sym *isym = &isymbuf[i];
4288 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4291 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4293 name = bfd_elf_string_from_elf_section (abfd,
4297 if (bfd_is_aarch64_special_symbol_name
4298 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4299 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4304 /* Set option values needed during linking. */
4306 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4307 struct bfd_link_info *link_info,
4309 int no_wchar_warn, int pic_veneer,
4310 int fix_erratum_835769,
4311 int fix_erratum_843419)
4313 struct elf_aarch64_link_hash_table *globals;
4315 globals = elf_aarch64_hash_table (link_info);
4316 globals->pic_veneer = pic_veneer;
4317 globals->fix_erratum_835769 = fix_erratum_835769;
4318 globals->fix_erratum_843419 = fix_erratum_843419;
4319 globals->fix_erratum_843419_adr = TRUE;
4321 BFD_ASSERT (is_aarch64_elf (output_bfd));
4322 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4323 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4327 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4328 struct elf_aarch64_link_hash_table
4329 *globals, struct bfd_link_info *info,
4330 bfd_vma value, bfd *output_bfd,
4331 bfd_boolean *unresolved_reloc_p)
4333 bfd_vma off = (bfd_vma) - 1;
4334 asection *basegot = globals->root.sgot;
4335 bfd_boolean dyn = globals->root.dynamic_sections_created;
4339 BFD_ASSERT (basegot != NULL);
4340 off = h->got.offset;
4341 BFD_ASSERT (off != (bfd_vma) - 1);
4342 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4343 || (bfd_link_pic (info)
4344 && SYMBOL_REFERENCES_LOCAL (info, h))
4345 || (ELF_ST_VISIBILITY (h->other)
4346 && h->root.type == bfd_link_hash_undefweak))
4348 /* This is actually a static link, or it is a -Bsymbolic link
4349 and the symbol is defined locally. We must initialize this
4350 entry in the global offset table. Since the offset must
4351 always be a multiple of 8 (4 in the case of ILP32), we use
4352 the least significant bit to record whether we have
4353 initialized it already.
4354 When doing a dynamic link, we create a .rel(a).got relocation
4355 entry to initialize the value. This is done in the
4356 finish_dynamic_symbol routine. */
4361 bfd_put_NN (output_bfd, value, basegot->contents + off);
4366 *unresolved_reloc_p = FALSE;
4368 off = off + basegot->output_section->vma + basegot->output_offset;
4374 /* Change R_TYPE to a more efficient access model where possible,
4375 return the new reloc type. */
4377 static bfd_reloc_code_real_type
4378 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4379 struct elf_link_hash_entry *h)
4381 bfd_boolean is_local = h == NULL;
4385 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4386 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4388 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4389 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4391 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4393 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4396 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4398 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4399 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4401 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4402 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4404 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4405 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4407 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4408 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4410 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4411 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4413 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4416 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4418 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4419 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4421 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4422 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4423 /* Instructions with these relocations will become NOPs. */
4424 return BFD_RELOC_AARCH64_NONE;
4426 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4427 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4428 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4429 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4439 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4443 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4444 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4445 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4446 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4447 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4448 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4449 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4450 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4451 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4454 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4455 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4456 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4457 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4458 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4459 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4462 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
4463 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4464 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4465 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4466 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4467 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
4468 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4469 return GOT_TLSDESC_GD;
4471 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4472 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4473 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4474 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4484 aarch64_can_relax_tls (bfd *input_bfd,
4485 struct bfd_link_info *info,
4486 bfd_reloc_code_real_type r_type,
4487 struct elf_link_hash_entry *h,
4488 unsigned long r_symndx)
4490 unsigned int symbol_got_type;
4491 unsigned int reloc_got_type;
4493 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4496 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4497 reloc_got_type = aarch64_reloc_got_type (r_type);
4499 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4502 if (bfd_link_pic (info))
4505 if (h && h->root.type == bfd_link_hash_undefweak)
4511 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4514 static bfd_reloc_code_real_type
4515 aarch64_tls_transition (bfd *input_bfd,
4516 struct bfd_link_info *info,
4517 unsigned int r_type,
4518 struct elf_link_hash_entry *h,
4519 unsigned long r_symndx)
4521 bfd_reloc_code_real_type bfd_r_type
4522 = elfNN_aarch64_bfd_reloc_from_type (r_type);
4524 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4527 return aarch64_tls_transition_without_check (bfd_r_type, h);
4530 /* Return the base VMA address which should be subtracted from real addresses
4531 when resolving R_AARCH64_TLS_DTPREL relocation. */
4534 dtpoff_base (struct bfd_link_info *info)
4536 /* If tls_sec is NULL, we should have signalled an error already. */
4537 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4538 return elf_hash_table (info)->tls_sec->vma;
4541 /* Return the base VMA address which should be subtracted from real addresses
4542 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4545 tpoff_base (struct bfd_link_info *info)
4547 struct elf_link_hash_table *htab = elf_hash_table (info);
4549 /* If tls_sec is NULL, we should have signalled an error already. */
4550 BFD_ASSERT (htab->tls_sec != NULL);
4552 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4553 htab->tls_sec->alignment_power);
4554 return htab->tls_sec->vma - base;
4558 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4559 unsigned long r_symndx)
4561 /* Calculate the address of the GOT entry for symbol
4562 referred to in h. */
4564 return &h->got.offset;
4568 struct elf_aarch64_local_symbol *l;
4570 l = elf_aarch64_locals (input_bfd);
4571 return &l[r_symndx].got_offset;
4576 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4577 unsigned long r_symndx)
4580 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4585 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4586 unsigned long r_symndx)
4589 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4594 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4595 unsigned long r_symndx)
4598 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4604 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4605 unsigned long r_symndx)
4607 /* Calculate the address of the GOT entry for symbol
4608 referred to in h. */
4611 struct elf_aarch64_link_hash_entry *eh;
4612 eh = (struct elf_aarch64_link_hash_entry *) h;
4613 return &eh->tlsdesc_got_jump_table_offset;
4618 struct elf_aarch64_local_symbol *l;
4620 l = elf_aarch64_locals (input_bfd);
4621 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4626 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4627 unsigned long r_symndx)
4630 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4635 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4636 struct elf_link_hash_entry *h,
4637 unsigned long r_symndx)
4640 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4645 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4646 unsigned long r_symndx)
4649 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4654 /* Data for make_branch_to_erratum_835769_stub(). */
4656 struct erratum_835769_branch_to_stub_data
4658 struct bfd_link_info *info;
4659 asection *output_section;
4663 /* Helper to insert branches to erratum 835769 stubs in the right
4664 places for a particular section. */
4667 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
4670 struct elf_aarch64_stub_hash_entry *stub_entry;
4671 struct erratum_835769_branch_to_stub_data *data;
4673 unsigned long branch_insn = 0;
4674 bfd_vma veneered_insn_loc, veneer_entry_loc;
4675 bfd_signed_vma branch_offset;
4676 unsigned int target;
4679 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4680 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
4682 if (stub_entry->target_section != data->output_section
4683 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
4686 contents = data->contents;
4687 veneered_insn_loc = stub_entry->target_section->output_section->vma
4688 + stub_entry->target_section->output_offset
4689 + stub_entry->target_value;
4690 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4691 + stub_entry->stub_sec->output_offset
4692 + stub_entry->stub_offset;
4693 branch_offset = veneer_entry_loc - veneered_insn_loc;
4695 abfd = stub_entry->target_section->owner;
4696 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4697 (*_bfd_error_handler)
4698 (_("%B: error: Erratum 835769 stub out "
4699 "of range (input file too large)"), abfd);
4701 target = stub_entry->target_value;
4702 branch_insn = 0x14000000;
4703 branch_offset >>= 2;
4704 branch_offset &= 0x3ffffff;
4705 branch_insn |= branch_offset;
4706 bfd_putl32 (branch_insn, &contents[target]);
4713 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
4716 struct elf_aarch64_stub_hash_entry *stub_entry
4717 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
4718 struct erratum_835769_branch_to_stub_data *data
4719 = (struct erratum_835769_branch_to_stub_data *) in_arg;
4720 struct bfd_link_info *info;
4721 struct elf_aarch64_link_hash_table *htab;
4729 contents = data->contents;
4730 section = data->output_section;
4732 htab = elf_aarch64_hash_table (info);
4734 if (stub_entry->target_section != section
4735 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
4738 insn = bfd_getl32 (contents + stub_entry->target_value);
4740 stub_entry->stub_sec->contents + stub_entry->stub_offset);
4742 place = (section->output_section->vma + section->output_offset
4743 + stub_entry->adrp_offset);
4744 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
4746 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
4749 bfd_signed_vma imm =
4750 (_bfd_aarch64_sign_extend
4751 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
4754 if (htab->fix_erratum_843419_adr
4755 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
4757 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
4758 | AARCH64_RT (insn));
4759 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
4763 bfd_vma veneered_insn_loc;
4764 bfd_vma veneer_entry_loc;
4765 bfd_signed_vma branch_offset;
4766 uint32_t branch_insn;
4768 veneered_insn_loc = stub_entry->target_section->output_section->vma
4769 + stub_entry->target_section->output_offset
4770 + stub_entry->target_value;
4771 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
4772 + stub_entry->stub_sec->output_offset
4773 + stub_entry->stub_offset;
4774 branch_offset = veneer_entry_loc - veneered_insn_loc;
4776 abfd = stub_entry->target_section->owner;
4777 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
4778 (*_bfd_error_handler)
4779 (_("%B: error: Erratum 843419 stub out "
4780 "of range (input file too large)"), abfd);
4782 branch_insn = 0x14000000;
4783 branch_offset >>= 2;
4784 branch_offset &= 0x3ffffff;
4785 branch_insn |= branch_offset;
4786 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
4793 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
4794 struct bfd_link_info *link_info,
4799 struct elf_aarch64_link_hash_table *globals =
4800 elf_aarch64_hash_table (link_info);
4802 if (globals == NULL)
4805 /* Fix code to point to erratum 835769 stubs. */
4806 if (globals->fix_erratum_835769)
4808 struct erratum_835769_branch_to_stub_data data;
4810 data.info = link_info;
4811 data.output_section = sec;
4812 data.contents = contents;
4813 bfd_hash_traverse (&globals->stub_hash_table,
4814 make_branch_to_erratum_835769_stub, &data);
4817 if (globals->fix_erratum_843419)
4819 struct erratum_835769_branch_to_stub_data data;
4821 data.info = link_info;
4822 data.output_section = sec;
4823 data.contents = contents;
4824 bfd_hash_traverse (&globals->stub_hash_table,
4825 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
4831 /* Perform a relocation as part of a final link. */
4832 static bfd_reloc_status_type
4833 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
4836 asection *input_section,
4838 Elf_Internal_Rela *rel,
4840 struct bfd_link_info *info,
4842 struct elf_link_hash_entry *h,
4843 bfd_boolean *unresolved_reloc_p,
4844 bfd_boolean save_addend,
4845 bfd_vma *saved_addend,
4846 Elf_Internal_Sym *sym)
4848 Elf_Internal_Shdr *symtab_hdr;
4849 unsigned int r_type = howto->type;
4850 bfd_reloc_code_real_type bfd_r_type
4851 = elfNN_aarch64_bfd_reloc_from_howto (howto);
4852 bfd_reloc_code_real_type new_bfd_r_type;
4853 unsigned long r_symndx;
4854 bfd_byte *hit_data = contents + rel->r_offset;
4856 bfd_signed_vma signed_addend;
4857 struct elf_aarch64_link_hash_table *globals;
4858 bfd_boolean weak_undef_p;
4861 globals = elf_aarch64_hash_table (info);
4863 symtab_hdr = &elf_symtab_hdr (input_bfd);
4865 BFD_ASSERT (is_aarch64_elf (input_bfd));
4867 r_symndx = ELFNN_R_SYM (rel->r_info);
4869 /* It is possible to have linker relaxations on some TLS access
4870 models. Update our information here. */
4871 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx);
4872 if (new_bfd_r_type != bfd_r_type)
4874 bfd_r_type = new_bfd_r_type;
4875 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
4876 BFD_ASSERT (howto != NULL);
4877 r_type = howto->type;
4880 place = input_section->output_section->vma
4881 + input_section->output_offset + rel->r_offset;
4883 /* Get addend, accumulating the addend for consecutive relocs
4884 which refer to the same offset. */
4885 signed_addend = saved_addend ? *saved_addend : 0;
4886 signed_addend += rel->r_addend;
4888 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
4889 : bfd_is_und_section (sym_sec));
4891 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
4892 it here if it is defined in a non-shared object. */
4894 && h->type == STT_GNU_IFUNC
4901 if ((input_section->flags & SEC_ALLOC) == 0
4902 || h->plt.offset == (bfd_vma) -1)
4905 /* STT_GNU_IFUNC symbol must go through PLT. */
4906 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
4907 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
4912 if (h->root.root.string)
4913 name = h->root.root.string;
4915 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4917 (*_bfd_error_handler)
4918 (_("%B: relocation %s against STT_GNU_IFUNC "
4919 "symbol `%s' isn't handled by %s"), input_bfd,
4920 howto->name, name, __FUNCTION__);
4921 bfd_set_error (bfd_error_bad_value);
4924 case BFD_RELOC_AARCH64_NN:
4925 if (rel->r_addend != 0)
4927 if (h->root.root.string)
4928 name = h->root.root.string;
4930 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
4932 (*_bfd_error_handler)
4933 (_("%B: relocation %s against STT_GNU_IFUNC "
4934 "symbol `%s' has non-zero addend: %d"),
4935 input_bfd, howto->name, name, rel->r_addend);
4936 bfd_set_error (bfd_error_bad_value);
4940 /* Generate dynamic relocation only when there is a
4941 non-GOT reference in a shared object. */
4942 if (bfd_link_pic (info) && h->non_got_ref)
4944 Elf_Internal_Rela outrel;
4947 /* Need a dynamic relocation to get the real function
4949 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
4953 if (outrel.r_offset == (bfd_vma) -1
4954 || outrel.r_offset == (bfd_vma) -2)
4957 outrel.r_offset += (input_section->output_section->vma
4958 + input_section->output_offset);
4960 if (h->dynindx == -1
4962 || bfd_link_executable (info))
4964 /* This symbol is resolved locally. */
4965 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
4966 outrel.r_addend = (h->root.u.def.value
4967 + h->root.u.def.section->output_section->vma
4968 + h->root.u.def.section->output_offset);
4972 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
4973 outrel.r_addend = 0;
4976 sreloc = globals->root.irelifunc;
4977 elf_append_rela (output_bfd, sreloc, &outrel);
4979 /* If this reloc is against an external symbol, we
4980 do not want to fiddle with the addend. Otherwise,
4981 we need to include the symbol value so that it
4982 becomes an addend for the dynamic reloc. For an
4983 internal symbol, we have updated addend. */
4984 return bfd_reloc_ok;
4987 case BFD_RELOC_AARCH64_CALL26:
4988 case BFD_RELOC_AARCH64_JUMP26:
4989 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
4992 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
4994 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4995 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4996 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4997 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4998 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4999 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5000 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5001 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5002 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5003 base_got = globals->root.sgot;
5004 off = h->got.offset;
5006 if (base_got == NULL)
5009 if (off == (bfd_vma) -1)
5013 /* We can't use h->got.offset here to save state, or
5014 even just remember the offset, as finish_dynamic_symbol
5015 would use that as offset into .got. */
5017 if (globals->root.splt != NULL)
5019 plt_index = ((h->plt.offset - globals->plt_header_size) /
5020 globals->plt_entry_size);
5021 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5022 base_got = globals->root.sgotplt;
5026 plt_index = h->plt.offset / globals->plt_entry_size;
5027 off = plt_index * GOT_ENTRY_SIZE;
5028 base_got = globals->root.igotplt;
5031 if (h->dynindx == -1
5035 /* This references the local definition. We must
5036 initialize this entry in the global offset table.
5037 Since the offset must always be a multiple of 8,
5038 we use the least significant bit to record
5039 whether we have initialized it already.
5041 When doing a dynamic link, we create a .rela.got
5042 relocation entry to initialize the value. This
5043 is done in the finish_dynamic_symbol routine. */
5048 bfd_put_NN (output_bfd, value,
5049 base_got->contents + off);
5050 /* Note that this is harmless as -1 | 1 still is -1. */
5054 value = (base_got->output_section->vma
5055 + base_got->output_offset + off);
5058 value = aarch64_calculate_got_entry_vma (h, globals, info,
5060 unresolved_reloc_p);
5064 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5065 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5066 addend = (globals->root.sgot->output_section->vma
5067 + globals->root.sgot->output_offset);
5069 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5070 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5071 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5072 value = (value - globals->root.sgot->output_section->vma
5073 - globals->root.sgot->output_offset);
5078 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5079 addend, weak_undef_p);
5080 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5081 case BFD_RELOC_AARCH64_ADD_LO12:
5082 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5089 case BFD_RELOC_AARCH64_NONE:
5090 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5091 *unresolved_reloc_p = FALSE;
5092 return bfd_reloc_ok;
5094 case BFD_RELOC_AARCH64_NN:
5096 /* When generating a shared object or relocatable executable, these
5097 relocations are copied into the output file to be resolved at
5099 if (((bfd_link_pic (info) == TRUE)
5100 || globals->root.is_relocatable_executable)
5101 && (input_section->flags & SEC_ALLOC)
5103 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5104 || h->root.type != bfd_link_hash_undefweak))
5106 Elf_Internal_Rela outrel;
5108 bfd_boolean skip, relocate;
5111 *unresolved_reloc_p = FALSE;
5116 outrel.r_addend = signed_addend;
5118 _bfd_elf_section_offset (output_bfd, info, input_section,
5120 if (outrel.r_offset == (bfd_vma) - 1)
5122 else if (outrel.r_offset == (bfd_vma) - 2)
5128 outrel.r_offset += (input_section->output_section->vma
5129 + input_section->output_offset);
5132 memset (&outrel, 0, sizeof outrel);
5135 && (!bfd_link_pic (info)
5136 || !SYMBOLIC_BIND (info, h)
5137 || !h->def_regular))
5138 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5143 /* On SVR4-ish systems, the dynamic loader cannot
5144 relocate the text and data segments independently,
5145 so the symbol does not matter. */
5147 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5148 outrel.r_addend += value;
5151 sreloc = elf_section_data (input_section)->sreloc;
5152 if (sreloc == NULL || sreloc->contents == NULL)
5153 return bfd_reloc_notsupported;
5155 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5156 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5158 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5160 /* Sanity to check that we have previously allocated
5161 sufficient space in the relocation section for the
5162 number of relocations we actually want to emit. */
5166 /* If this reloc is against an external symbol, we do not want to
5167 fiddle with the addend. Otherwise, we need to include the symbol
5168 value so that it becomes an addend for the dynamic reloc. */
5170 return bfd_reloc_ok;
5172 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5173 contents, rel->r_offset, value,
5177 value += signed_addend;
5180 case BFD_RELOC_AARCH64_CALL26:
5181 case BFD_RELOC_AARCH64_JUMP26:
5183 asection *splt = globals->root.splt;
5184 bfd_boolean via_plt_p =
5185 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5187 /* A call to an undefined weak symbol is converted to a jump to
5188 the next instruction unless a PLT entry will be created.
5189 The jump to the next instruction is optimized as a NOP.
5190 Do the same for local undefined symbols. */
5191 if (weak_undef_p && ! via_plt_p)
5193 bfd_putl32 (INSN_NOP, hit_data);
5194 return bfd_reloc_ok;
5197 /* If the call goes through a PLT entry, make sure to
5198 check distance to the right destination address. */
5200 value = (splt->output_section->vma
5201 + splt->output_offset + h->plt.offset);
5203 /* Check if a stub has to be inserted because the destination
5205 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5206 if (! aarch64_valid_branch_p (value, place))
5207 /* The target is out of reach, so redirect the branch to
5208 the local stub for this function. */
5209 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5211 if (stub_entry != NULL)
5212 value = (stub_entry->stub_offset
5213 + stub_entry->stub_sec->output_offset
5214 + stub_entry->stub_sec->output_section->vma);
5216 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5217 signed_addend, weak_undef_p);
5218 *unresolved_reloc_p = FALSE;
5221 case BFD_RELOC_AARCH64_16_PCREL:
5222 case BFD_RELOC_AARCH64_32_PCREL:
5223 case BFD_RELOC_AARCH64_64_PCREL:
5224 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5225 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5226 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5227 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5228 if (bfd_link_pic (info)
5229 && (input_section->flags & SEC_ALLOC) != 0
5230 && (input_section->flags & SEC_READONLY) != 0
5234 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5236 (*_bfd_error_handler)
5237 (_("%B: relocation %s against external symbol `%s' can not be used"
5238 " when making a shared object; recompile with -fPIC"),
5239 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5240 h->root.root.string);
5241 bfd_set_error (bfd_error_bad_value);
5245 case BFD_RELOC_AARCH64_16:
5247 case BFD_RELOC_AARCH64_32:
5249 case BFD_RELOC_AARCH64_ADD_LO12:
5250 case BFD_RELOC_AARCH64_BRANCH19:
5251 case BFD_RELOC_AARCH64_LDST128_LO12:
5252 case BFD_RELOC_AARCH64_LDST16_LO12:
5253 case BFD_RELOC_AARCH64_LDST32_LO12:
5254 case BFD_RELOC_AARCH64_LDST64_LO12:
5255 case BFD_RELOC_AARCH64_LDST8_LO12:
5256 case BFD_RELOC_AARCH64_MOVW_G0:
5257 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5258 case BFD_RELOC_AARCH64_MOVW_G0_S:
5259 case BFD_RELOC_AARCH64_MOVW_G1:
5260 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5261 case BFD_RELOC_AARCH64_MOVW_G1_S:
5262 case BFD_RELOC_AARCH64_MOVW_G2:
5263 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5264 case BFD_RELOC_AARCH64_MOVW_G2_S:
5265 case BFD_RELOC_AARCH64_MOVW_G3:
5266 case BFD_RELOC_AARCH64_TSTBR14:
5267 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5268 signed_addend, weak_undef_p);
5271 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5272 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5273 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5274 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5275 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5276 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5277 if (globals->root.sgot == NULL)
5278 BFD_ASSERT (h != NULL);
5283 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5285 unresolved_reloc_p);
5286 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5287 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5288 addend = (globals->root.sgot->output_section->vma
5289 + globals->root.sgot->output_offset);
5290 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5291 addend, weak_undef_p);
5296 struct elf_aarch64_local_symbol *locals
5297 = elf_aarch64_locals (input_bfd);
5301 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5302 (*_bfd_error_handler)
5303 (_("%B: Local symbol descriptor table be NULL when applying "
5304 "relocation %s against local symbol"),
5305 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5309 off = symbol_got_offset (input_bfd, h, r_symndx);
5310 base_got = globals->root.sgot;
5311 bfd_vma got_entry_addr = (base_got->output_section->vma
5312 + base_got->output_offset + off);
5314 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5316 bfd_put_64 (output_bfd, value, base_got->contents + off);
5318 if (bfd_link_pic (info))
5321 Elf_Internal_Rela outrel;
5323 /* For local symbol, we have done absolute relocation in static
5324 linking stageh. While for share library, we need to update
5325 the content of GOT entry according to the share objects
5326 loading base address. So we need to generate a
5327 R_AARCH64_RELATIVE reloc for dynamic linker. */
5328 s = globals->root.srelgot;
5332 outrel.r_offset = got_entry_addr;
5333 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5334 outrel.r_addend = value;
5335 elf_append_rela (output_bfd, s, &outrel);
5338 symbol_got_offset_mark (input_bfd, h, r_symndx);
5341 /* Update the relocation value to GOT entry addr as we have transformed
5342 the direct data access into indirect data access through GOT. */
5343 value = got_entry_addr;
5345 if (bfd_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5346 || bfd_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
5347 addend = base_got->output_section->vma + base_got->output_offset;
5349 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5350 addend, weak_undef_p);
5355 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5356 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5357 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5359 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5361 unresolved_reloc_p);
5364 struct elf_aarch64_local_symbol *locals
5365 = elf_aarch64_locals (input_bfd);
5369 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5370 (*_bfd_error_handler)
5371 (_("%B: Local symbol descriptor table be NULL when applying "
5372 "relocation %s against local symbol"),
5373 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5377 off = symbol_got_offset (input_bfd, h, r_symndx);
5378 base_got = globals->root.sgot;
5379 if (base_got == NULL)
5382 bfd_vma got_entry_addr = (base_got->output_section->vma
5383 + base_got->output_offset + off);
5385 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5387 bfd_put_64 (output_bfd, value, base_got->contents + off);
5389 if (bfd_link_pic (info))
5392 Elf_Internal_Rela outrel;
5394 /* For local symbol, we have done absolute relocation in static
5395 linking stage. While for share library, we need to update
5396 the content of GOT entry according to the share objects
5397 loading base address. So we need to generate a
5398 R_AARCH64_RELATIVE reloc for dynamic linker. */
5399 s = globals->root.srelgot;
5403 outrel.r_offset = got_entry_addr;
5404 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5405 outrel.r_addend = value;
5406 elf_append_rela (output_bfd, s, &outrel);
5409 symbol_got_offset_mark (input_bfd, h, r_symndx);
5413 /* Update the relocation value to GOT entry addr as we have transformed
5414 the direct data access into indirect data access through GOT. */
5415 value = symbol_got_offset (input_bfd, h, r_symndx);
5416 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5418 *unresolved_reloc_p = FALSE;
5421 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5422 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5423 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5424 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5425 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5426 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5427 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5428 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5429 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5430 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5431 if (globals->root.sgot == NULL)
5432 return bfd_reloc_notsupported;
5434 value = (symbol_got_offset (input_bfd, h, r_symndx)
5435 + globals->root.sgot->output_section->vma
5436 + globals->root.sgot->output_offset);
5438 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5440 *unresolved_reloc_p = FALSE;
5443 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5444 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5445 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5446 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5447 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5448 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5449 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5450 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5451 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5452 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5453 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5454 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5455 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5456 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5457 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5458 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5459 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5460 signed_addend - dtpoff_base (info),
5464 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5465 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5466 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5467 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5468 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5469 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5470 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5471 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5472 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5473 signed_addend - tpoff_base (info),
5475 *unresolved_reloc_p = FALSE;
5478 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5479 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5480 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5481 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5482 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5483 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
5484 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5485 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5486 if (globals->root.sgot == NULL)
5487 return bfd_reloc_notsupported;
5488 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5489 + globals->root.sgotplt->output_section->vma
5490 + globals->root.sgotplt->output_offset
5491 + globals->sgotplt_jump_table_size);
5493 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5495 *unresolved_reloc_p = FALSE;
5499 return bfd_reloc_notsupported;
5503 *saved_addend = value;
5505 /* Only apply the final relocation in a sequence. */
5507 return bfd_reloc_continue;
5509 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5513 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5514 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5517 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5518 is to then call final_link_relocate. Return other values in the
5521 static bfd_reloc_status_type
5522 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5523 bfd *input_bfd, bfd_byte *contents,
5524 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5526 bfd_boolean is_local = h == NULL;
5527 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5530 BFD_ASSERT (globals && input_bfd && contents && rel);
5532 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5534 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5535 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5538 /* GD->LE relaxation:
5539 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
5541 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
5543 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5544 return bfd_reloc_continue;
5548 /* GD->IE relaxation:
5549 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5551 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5553 return bfd_reloc_continue;
5556 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5560 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5563 /* Tiny TLSDESC->LE relaxation:
5564 ldr x1, :tlsdesc:var => movz x0, #:tprel_g1:var
5565 adr x0, :tlsdesc:var => movk x0, #:tprel_g0_nc:var
5569 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5570 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5572 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5573 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
5574 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5576 bfd_putl32 (0xd2a00000, contents + rel->r_offset);
5577 bfd_putl32 (0xf2800000, contents + rel->r_offset + 4);
5578 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5579 return bfd_reloc_continue;
5583 /* Tiny TLSDESC->IE relaxation:
5584 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
5585 adr x0, :tlsdesc:var => nop
5589 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
5590 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
5592 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5593 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5595 bfd_putl32 (0x58000000, contents + rel->r_offset);
5596 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
5597 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
5598 return bfd_reloc_continue;
5601 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5604 /* Tiny GD->LE relaxation:
5605 adr x0, :tlsgd:var => mrs x1, tpidr_el0
5606 bl __tls_get_addr => add x0, x1, #:tprel_hi12:x, lsl #12
5607 nop => add x0, x0, #:tprel_lo12_nc:x
5610 /* First kill the tls_get_addr reloc on the bl instruction. */
5611 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5613 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
5614 bfd_putl32 (0x91400020, contents + rel->r_offset + 4);
5615 bfd_putl32 (0x91000000, contents + rel->r_offset + 8);
5617 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5618 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
5619 rel[1].r_offset = rel->r_offset + 8;
5621 /* Move the current relocation to the second instruction in
5624 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
5625 AARCH64_R (TLSLE_ADD_TPREL_HI12));
5626 return bfd_reloc_continue;
5630 /* Tiny GD->IE relaxation:
5631 adr x0, :tlsgd:var => ldr x0, :gottprel:var
5632 bl __tls_get_addr => mrs x1, tpidr_el0
5633 nop => add x0, x0, x1
5636 /* First kill the tls_get_addr reloc on the bl instruction. */
5637 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5638 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5640 bfd_putl32 (0x58000000, contents + rel->r_offset);
5641 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5642 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5643 return bfd_reloc_continue;
5646 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5647 return bfd_reloc_continue;
5649 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
5652 /* GD->LE relaxation:
5653 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
5655 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5656 return bfd_reloc_continue;
5660 /* GD->IE relaxation:
5661 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
5663 insn = bfd_getl32 (contents + rel->r_offset);
5665 bfd_putl32 (insn, contents + rel->r_offset);
5666 return bfd_reloc_continue;
5669 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5672 /* GD->LE relaxation
5673 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
5674 bl __tls_get_addr => mrs x1, tpidr_el0
5675 nop => add x0, x1, x0
5678 /* First kill the tls_get_addr reloc on the bl instruction. */
5679 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5680 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5682 bfd_putl32 (0xf2800000, contents + rel->r_offset);
5683 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
5684 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8);
5685 return bfd_reloc_continue;
5689 /* GD->IE relaxation
5690 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
5691 BL __tls_get_addr => mrs x1, tpidr_el0
5693 NOP => add x0, x1, x0
5696 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5698 /* Remove the relocation on the BL instruction. */
5699 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5701 bfd_putl32 (0xf9400000, contents + rel->r_offset);
5703 /* We choose to fixup the BL and NOP instructions using the
5704 offset from the second relocation to allow flexibility in
5705 scheduling instructions between the ADD and BL. */
5706 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
5707 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4);
5708 return bfd_reloc_continue;
5711 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
5712 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5713 /* GD->IE/LE relaxation:
5714 add x0, x0, #:tlsdesc_lo12:var => nop
5717 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
5718 return bfd_reloc_ok;
5720 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5721 /* IE->LE relaxation:
5722 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
5726 insn = bfd_getl32 (contents + rel->r_offset);
5727 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset);
5729 return bfd_reloc_continue;
5731 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
5732 /* IE->LE relaxation:
5733 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
5737 insn = bfd_getl32 (contents + rel->r_offset);
5738 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset);
5740 return bfd_reloc_continue;
5742 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5743 /* LD->LE relaxation (tiny):
5744 adr x0, :tlsldm:x => mrs x0, tpidr_el0
5745 bl __tls_get_addr => add x0, x0, TCB_SIZE
5749 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5750 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5751 /* No need of CALL26 relocation for tls_get_addr. */
5752 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5753 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
5754 bfd_putl32 (0x91004000, contents + rel->r_offset + 4);
5755 return bfd_reloc_ok;
5757 return bfd_reloc_continue;
5759 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5760 /* LD->LE relaxation (small):
5761 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
5765 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
5766 return bfd_reloc_ok;
5768 return bfd_reloc_continue;
5770 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5771 /* LD->LE relaxation (small):
5772 add x0, #:tlsldm_lo12:x => add x0, x0, TCB_SIZE
5773 bl __tls_get_addr => nop
5777 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
5778 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
5779 /* No need of CALL26 relocation for tls_get_addr. */
5780 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
5781 bfd_putl32 (0x91004000, contents + rel->r_offset + 0);
5782 bfd_putl32 (0xd503201f, contents + rel->r_offset + 4);
5783 return bfd_reloc_ok;
5785 return bfd_reloc_continue;
5788 return bfd_reloc_continue;
5791 return bfd_reloc_ok;
5794 /* Relocate an AArch64 ELF section. */
5797 elfNN_aarch64_relocate_section (bfd *output_bfd,
5798 struct bfd_link_info *info,
5800 asection *input_section,
5802 Elf_Internal_Rela *relocs,
5803 Elf_Internal_Sym *local_syms,
5804 asection **local_sections)
5806 Elf_Internal_Shdr *symtab_hdr;
5807 struct elf_link_hash_entry **sym_hashes;
5808 Elf_Internal_Rela *rel;
5809 Elf_Internal_Rela *relend;
5811 struct elf_aarch64_link_hash_table *globals;
5812 bfd_boolean save_addend = FALSE;
5815 globals = elf_aarch64_hash_table (info);
5817 symtab_hdr = &elf_symtab_hdr (input_bfd);
5818 sym_hashes = elf_sym_hashes (input_bfd);
5821 relend = relocs + input_section->reloc_count;
5822 for (; rel < relend; rel++)
5824 unsigned int r_type;
5825 bfd_reloc_code_real_type bfd_r_type;
5826 bfd_reloc_code_real_type relaxed_bfd_r_type;
5827 reloc_howto_type *howto;
5828 unsigned long r_symndx;
5829 Elf_Internal_Sym *sym;
5831 struct elf_link_hash_entry *h;
5833 bfd_reloc_status_type r;
5836 bfd_boolean unresolved_reloc = FALSE;
5837 char *error_message = NULL;
5839 r_symndx = ELFNN_R_SYM (rel->r_info);
5840 r_type = ELFNN_R_TYPE (rel->r_info);
5842 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type);
5843 howto = bfd_reloc.howto;
5847 (*_bfd_error_handler)
5848 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
5849 input_bfd, input_section, r_type);
5852 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
5858 if (r_symndx < symtab_hdr->sh_info)
5860 sym = local_syms + r_symndx;
5861 sym_type = ELFNN_ST_TYPE (sym->st_info);
5862 sec = local_sections[r_symndx];
5864 /* An object file might have a reference to a local
5865 undefined symbol. This is a daft object file, but we
5866 should at least do something about it. */
5867 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
5868 && bfd_is_und_section (sec)
5869 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
5871 if (!info->callbacks->undefined_symbol
5872 (info, bfd_elf_string_from_elf_section
5873 (input_bfd, symtab_hdr->sh_link, sym->st_name),
5874 input_bfd, input_section, rel->r_offset, TRUE))
5878 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
5880 /* Relocate against local STT_GNU_IFUNC symbol. */
5881 if (!bfd_link_relocatable (info)
5882 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
5884 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
5889 /* Set STT_GNU_IFUNC symbol value. */
5890 h->root.u.def.value = sym->st_value;
5891 h->root.u.def.section = sec;
5896 bfd_boolean warned, ignored;
5898 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
5899 r_symndx, symtab_hdr, sym_hashes,
5901 unresolved_reloc, warned, ignored);
5906 if (sec != NULL && discarded_section (sec))
5907 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
5908 rel, 1, relend, howto, 0, contents);
5910 if (bfd_link_relocatable (info))
5914 name = h->root.root.string;
5917 name = (bfd_elf_string_from_elf_section
5918 (input_bfd, symtab_hdr->sh_link, sym->st_name));
5919 if (name == NULL || *name == '\0')
5920 name = bfd_section_name (input_bfd, sec);
5924 && r_type != R_AARCH64_NONE
5925 && r_type != R_AARCH64_NULL
5927 || h->root.type == bfd_link_hash_defined
5928 || h->root.type == bfd_link_hash_defweak)
5929 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
5931 (*_bfd_error_handler)
5932 ((sym_type == STT_TLS
5933 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
5934 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
5936 input_section, (long) rel->r_offset, howto->name, name);
5939 /* We relax only if we can see that there can be a valid transition
5940 from a reloc type to another.
5941 We call elfNN_aarch64_final_link_relocate unless we're completely
5942 done, i.e., the relaxation produced the final output we want. */
5944 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
5946 if (relaxed_bfd_r_type != bfd_r_type)
5948 bfd_r_type = relaxed_bfd_r_type;
5949 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
5950 BFD_ASSERT (howto != NULL);
5951 r_type = howto->type;
5952 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
5953 unresolved_reloc = 0;
5956 r = bfd_reloc_continue;
5958 /* There may be multiple consecutive relocations for the
5959 same offset. In that case we are supposed to treat the
5960 output of each relocation as the addend for the next. */
5961 if (rel + 1 < relend
5962 && rel->r_offset == rel[1].r_offset
5963 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
5964 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
5967 save_addend = FALSE;
5969 if (r == bfd_reloc_continue)
5970 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
5971 input_section, contents, rel,
5972 relocation, info, sec,
5973 h, &unresolved_reloc,
5974 save_addend, &addend, sym);
5976 switch (elfNN_aarch64_bfd_reloc_from_type (r_type))
5978 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5979 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5980 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5981 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5982 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5983 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5984 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5986 bfd_boolean need_relocs = FALSE;
5991 off = symbol_got_offset (input_bfd, h, r_symndx);
5992 indx = h && h->dynindx != -1 ? h->dynindx : 0;
5995 (bfd_link_pic (info) || indx != 0) &&
5997 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5998 || h->root.type != bfd_link_hash_undefweak);
6000 BFD_ASSERT (globals->root.srelgot != NULL);
6004 Elf_Internal_Rela rela;
6005 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6007 rela.r_offset = globals->root.sgot->output_section->vma +
6008 globals->root.sgot->output_offset + off;
6011 loc = globals->root.srelgot->contents;
6012 loc += globals->root.srelgot->reloc_count++
6013 * RELOC_SIZE (htab);
6014 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6016 bfd_reloc_code_real_type real_type =
6017 elfNN_aarch64_bfd_reloc_from_type (r_type);
6019 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6020 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6021 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6023 /* For local dynamic, don't generate DTPREL in any case.
6024 Initialize the DTPREL slot into zero, so we get module
6025 base address when invoke runtime TLS resolver. */
6026 bfd_put_NN (output_bfd, 0,
6027 globals->root.sgot->contents + off
6032 bfd_put_NN (output_bfd,
6033 relocation - dtpoff_base (info),
6034 globals->root.sgot->contents + off
6039 /* This TLS symbol is global. We emit a
6040 relocation to fixup the tls offset at load
6043 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6046 (globals->root.sgot->output_section->vma
6047 + globals->root.sgot->output_offset + off
6050 loc = globals->root.srelgot->contents;
6051 loc += globals->root.srelgot->reloc_count++
6052 * RELOC_SIZE (globals);
6053 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6054 bfd_put_NN (output_bfd, (bfd_vma) 0,
6055 globals->root.sgot->contents + off
6061 bfd_put_NN (output_bfd, (bfd_vma) 1,
6062 globals->root.sgot->contents + off);
6063 bfd_put_NN (output_bfd,
6064 relocation - dtpoff_base (info),
6065 globals->root.sgot->contents + off
6069 symbol_got_offset_mark (input_bfd, h, r_symndx);
6073 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6074 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6075 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6076 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6078 bfd_boolean need_relocs = FALSE;
6083 off = symbol_got_offset (input_bfd, h, r_symndx);
6085 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6088 (bfd_link_pic (info) || indx != 0) &&
6090 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6091 || h->root.type != bfd_link_hash_undefweak);
6093 BFD_ASSERT (globals->root.srelgot != NULL);
6097 Elf_Internal_Rela rela;
6100 rela.r_addend = relocation - dtpoff_base (info);
6104 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6105 rela.r_offset = globals->root.sgot->output_section->vma +
6106 globals->root.sgot->output_offset + off;
6108 loc = globals->root.srelgot->contents;
6109 loc += globals->root.srelgot->reloc_count++
6110 * RELOC_SIZE (htab);
6112 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6114 bfd_put_NN (output_bfd, rela.r_addend,
6115 globals->root.sgot->contents + off);
6118 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6119 globals->root.sgot->contents + off);
6121 symbol_got_offset_mark (input_bfd, h, r_symndx);
6125 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6126 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6127 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6128 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6129 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6130 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6132 bfd_boolean need_relocs = FALSE;
6133 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6134 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6136 need_relocs = (h == NULL
6137 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6138 || h->root.type != bfd_link_hash_undefweak);
6140 BFD_ASSERT (globals->root.srelgot != NULL);
6141 BFD_ASSERT (globals->root.sgot != NULL);
6146 Elf_Internal_Rela rela;
6147 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6150 rela.r_offset = (globals->root.sgotplt->output_section->vma
6151 + globals->root.sgotplt->output_offset
6152 + off + globals->sgotplt_jump_table_size);
6155 rela.r_addend = relocation - dtpoff_base (info);
6157 /* Allocate the next available slot in the PLT reloc
6158 section to hold our R_AARCH64_TLSDESC, the next
6159 available slot is determined from reloc_count,
6160 which we step. But note, reloc_count was
6161 artifically moved down while allocating slots for
6162 real PLT relocs such that all of the PLT relocs
6163 will fit above the initial reloc_count and the
6164 extra stuff will fit below. */
6165 loc = globals->root.srelplt->contents;
6166 loc += globals->root.srelplt->reloc_count++
6167 * RELOC_SIZE (globals);
6169 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6171 bfd_put_NN (output_bfd, (bfd_vma) 0,
6172 globals->root.sgotplt->contents + off +
6173 globals->sgotplt_jump_table_size);
6174 bfd_put_NN (output_bfd, (bfd_vma) 0,
6175 globals->root.sgotplt->contents + off +
6176 globals->sgotplt_jump_table_size +
6180 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6191 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6192 because such sections are not SEC_ALLOC and thus ld.so will
6193 not process them. */
6194 if (unresolved_reloc
6195 && !((input_section->flags & SEC_DEBUGGING) != 0
6197 && _bfd_elf_section_offset (output_bfd, info, input_section,
6198 +rel->r_offset) != (bfd_vma) - 1)
6200 (*_bfd_error_handler)
6202 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6203 input_bfd, input_section, (long) rel->r_offset, howto->name,
6204 h->root.root.string);
6208 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6210 bfd_reloc_code_real_type real_r_type
6211 = elfNN_aarch64_bfd_reloc_from_type (r_type);
6215 case bfd_reloc_overflow:
6216 if (!(*info->callbacks->reloc_overflow)
6217 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6218 input_bfd, input_section, rel->r_offset))
6220 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6221 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6223 (*info->callbacks->warning)
6225 _("Too many GOT entries for -fpic, "
6226 "please recompile with -fPIC"),
6227 name, input_bfd, input_section, rel->r_offset);
6232 case bfd_reloc_undefined:
6233 if (!((*info->callbacks->undefined_symbol)
6234 (info, name, input_bfd, input_section,
6235 rel->r_offset, TRUE)))
6239 case bfd_reloc_outofrange:
6240 error_message = _("out of range");
6243 case bfd_reloc_notsupported:
6244 error_message = _("unsupported relocation");
6247 case bfd_reloc_dangerous:
6248 /* error_message should already be set. */
6252 error_message = _("unknown error");
6256 BFD_ASSERT (error_message != NULL);
6257 if (!((*info->callbacks->reloc_dangerous)
6258 (info, error_message, input_bfd, input_section,
6269 /* Set the right machine number. */
6272 elfNN_aarch64_object_p (bfd *abfd)
6275 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6277 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6282 /* Function to keep AArch64 specific flags in the ELF header. */
6285 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6287 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6292 elf_elfheader (abfd)->e_flags = flags;
6293 elf_flags_init (abfd) = TRUE;
6299 /* Merge backend specific data from an object file to the output
6300 object file when linking. */
6303 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
6307 bfd_boolean flags_compatible = TRUE;
6310 /* Check if we have the same endianess. */
6311 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
6314 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6317 /* The input BFD must have had its flags initialised. */
6318 /* The following seems bogus to me -- The flags are initialized in
6319 the assembler but I don't think an elf_flags_init field is
6320 written into the object. */
6321 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6323 in_flags = elf_elfheader (ibfd)->e_flags;
6324 out_flags = elf_elfheader (obfd)->e_flags;
6326 if (!elf_flags_init (obfd))
6328 /* If the input is the default architecture and had the default
6329 flags then do not bother setting the flags for the output
6330 architecture, instead allow future merges to do this. If no
6331 future merges ever set these flags then they will retain their
6332 uninitialised values, which surprise surprise, correspond
6333 to the default values. */
6334 if (bfd_get_arch_info (ibfd)->the_default
6335 && elf_elfheader (ibfd)->e_flags == 0)
6338 elf_flags_init (obfd) = TRUE;
6339 elf_elfheader (obfd)->e_flags = in_flags;
6341 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6342 && bfd_get_arch_info (obfd)->the_default)
6343 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6344 bfd_get_mach (ibfd));
6349 /* Identical flags must be compatible. */
6350 if (in_flags == out_flags)
6353 /* Check to see if the input BFD actually contains any sections. If
6354 not, its flags may not have been initialised either, but it
6355 cannot actually cause any incompatiblity. Do not short-circuit
6356 dynamic objects; their section list may be emptied by
6357 elf_link_add_object_symbols.
6359 Also check to see if there are no code sections in the input.
6360 In this case there is no need to check for code specific flags.
6361 XXX - do we need to worry about floating-point format compatability
6362 in data sections ? */
6363 if (!(ibfd->flags & DYNAMIC))
6365 bfd_boolean null_input_bfd = TRUE;
6366 bfd_boolean only_data_sections = TRUE;
6368 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6370 if ((bfd_get_section_flags (ibfd, sec)
6371 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6372 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6373 only_data_sections = FALSE;
6375 null_input_bfd = FALSE;
6379 if (null_input_bfd || only_data_sections)
6383 return flags_compatible;
6386 /* Display the flags field. */
6389 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6391 FILE *file = (FILE *) ptr;
6392 unsigned long flags;
6394 BFD_ASSERT (abfd != NULL && ptr != NULL);
6396 /* Print normal ELF private data. */
6397 _bfd_elf_print_private_bfd_data (abfd, ptr);
6399 flags = elf_elfheader (abfd)->e_flags;
6400 /* Ignore init flag - it may not be set, despite the flags field
6401 containing valid data. */
6403 /* xgettext:c-format */
6404 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6407 fprintf (file, _("<Unrecognised flag bits set>"));
6414 /* Update the got entry reference counts for the section being removed. */
6417 elfNN_aarch64_gc_sweep_hook (bfd *abfd,
6418 struct bfd_link_info *info,
6420 const Elf_Internal_Rela * relocs)
6422 struct elf_aarch64_link_hash_table *htab;
6423 Elf_Internal_Shdr *symtab_hdr;
6424 struct elf_link_hash_entry **sym_hashes;
6425 struct elf_aarch64_local_symbol *locals;
6426 const Elf_Internal_Rela *rel, *relend;
6428 if (bfd_link_relocatable (info))
6431 htab = elf_aarch64_hash_table (info);
6436 elf_section_data (sec)->local_dynrel = NULL;
6438 symtab_hdr = &elf_symtab_hdr (abfd);
6439 sym_hashes = elf_sym_hashes (abfd);
6441 locals = elf_aarch64_locals (abfd);
6443 relend = relocs + sec->reloc_count;
6444 for (rel = relocs; rel < relend; rel++)
6446 unsigned long r_symndx;
6447 unsigned int r_type;
6448 struct elf_link_hash_entry *h = NULL;
6450 r_symndx = ELFNN_R_SYM (rel->r_info);
6452 if (r_symndx >= symtab_hdr->sh_info)
6455 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6456 while (h->root.type == bfd_link_hash_indirect
6457 || h->root.type == bfd_link_hash_warning)
6458 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6462 Elf_Internal_Sym *isym;
6464 /* A local symbol. */
6465 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6468 /* Check relocation against local STT_GNU_IFUNC symbol. */
6470 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6472 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE);
6480 struct elf_aarch64_link_hash_entry *eh;
6481 struct elf_dyn_relocs **pp;
6482 struct elf_dyn_relocs *p;
6484 eh = (struct elf_aarch64_link_hash_entry *) h;
6486 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
6489 /* Everything must go for SEC. */
6495 r_type = ELFNN_R_TYPE (rel->r_info);
6496 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx))
6498 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6499 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6500 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6501 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6502 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6503 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6504 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6505 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6506 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6507 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6508 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6509 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6510 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6511 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6512 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6513 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6514 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6515 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6516 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6517 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6518 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6519 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6520 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6521 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6522 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6525 if (h->got.refcount > 0)
6526 h->got.refcount -= 1;
6528 if (h->type == STT_GNU_IFUNC)
6530 if (h->plt.refcount > 0)
6531 h->plt.refcount -= 1;
6534 else if (locals != NULL)
6536 if (locals[r_symndx].got_refcount > 0)
6537 locals[r_symndx].got_refcount -= 1;
6541 case BFD_RELOC_AARCH64_CALL26:
6542 case BFD_RELOC_AARCH64_JUMP26:
6543 /* If this is a local symbol then we resolve it
6544 directly without creating a PLT entry. */
6548 if (h->plt.refcount > 0)
6549 h->plt.refcount -= 1;
6552 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6553 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6554 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
6555 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6556 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6557 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6558 case BFD_RELOC_AARCH64_MOVW_G3:
6559 case BFD_RELOC_AARCH64_NN:
6560 if (h != NULL && bfd_link_executable (info))
6562 if (h->plt.refcount > 0)
6563 h->plt.refcount -= 1;
6575 /* Adjust a symbol defined by a dynamic object and referenced by a
6576 regular object. The current definition is in some section of the
6577 dynamic object, but we're not including those sections. We have to
6578 change the definition to something the rest of the link can
6582 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
6583 struct elf_link_hash_entry *h)
6585 struct elf_aarch64_link_hash_table *htab;
6588 /* If this is a function, put it in the procedure linkage table. We
6589 will fill in the contents of the procedure linkage table later,
6590 when we know the address of the .got section. */
6591 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
6593 if (h->plt.refcount <= 0
6594 || (h->type != STT_GNU_IFUNC
6595 && (SYMBOL_CALLS_LOCAL (info, h)
6596 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6597 && h->root.type == bfd_link_hash_undefweak))))
6599 /* This case can occur if we saw a CALL26 reloc in
6600 an input file, but the symbol wasn't referred to
6601 by a dynamic object or all references were
6602 garbage collected. In which case we can end up
6604 h->plt.offset = (bfd_vma) - 1;
6611 /* Otherwise, reset to -1. */
6612 h->plt.offset = (bfd_vma) - 1;
6615 /* If this is a weak symbol, and there is a real definition, the
6616 processor independent code will have arranged for us to see the
6617 real definition first, and we can just use the same value. */
6618 if (h->u.weakdef != NULL)
6620 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6621 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6622 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6623 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6624 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
6625 h->non_got_ref = h->u.weakdef->non_got_ref;
6629 /* If we are creating a shared library, we must presume that the
6630 only references to the symbol are via the global offset table.
6631 For such cases we need not do anything here; the relocations will
6632 be handled correctly by relocate_section. */
6633 if (bfd_link_pic (info))
6636 /* If there are no references to this symbol that do not use the
6637 GOT, we don't need to generate a copy reloc. */
6638 if (!h->non_got_ref)
6641 /* If -z nocopyreloc was given, we won't generate them either. */
6642 if (info->nocopyreloc)
6648 /* We must allocate the symbol in our .dynbss section, which will
6649 become part of the .bss section of the executable. There will be
6650 an entry for this symbol in the .dynsym section. The dynamic
6651 object will contain position independent code, so all references
6652 from the dynamic object to this symbol will go through the global
6653 offset table. The dynamic linker will use the .dynsym entry to
6654 determine the address it must put in the global offset table, so
6655 both the dynamic object and the regular object will refer to the
6656 same memory location for the variable. */
6658 htab = elf_aarch64_hash_table (info);
6660 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
6661 to copy the initial value out of the dynamic object and into the
6662 runtime process image. */
6663 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6665 htab->srelbss->size += RELOC_SIZE (htab);
6671 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6676 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
6678 struct elf_aarch64_local_symbol *locals;
6679 locals = elf_aarch64_locals (abfd);
6682 locals = (struct elf_aarch64_local_symbol *)
6683 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
6686 elf_aarch64_locals (abfd) = locals;
6691 /* Create the .got section to hold the global offset table. */
6694 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
6696 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6699 struct elf_link_hash_entry *h;
6700 struct elf_link_hash_table *htab = elf_hash_table (info);
6702 /* This function may be called more than once. */
6703 s = bfd_get_linker_section (abfd, ".got");
6707 flags = bed->dynamic_sec_flags;
6709 s = bfd_make_section_anyway_with_flags (abfd,
6710 (bed->rela_plts_and_copies_p
6711 ? ".rela.got" : ".rel.got"),
6712 (bed->dynamic_sec_flags
6715 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6719 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
6721 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
6724 htab->sgot->size += GOT_ENTRY_SIZE;
6726 if (bed->want_got_sym)
6728 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
6729 (or .got.plt) section. We don't do this in the linker script
6730 because we don't want to define the symbol if we are not creating
6731 a global offset table. */
6732 h = _bfd_elf_define_linkage_sym (abfd, info, s,
6733 "_GLOBAL_OFFSET_TABLE_");
6734 elf_hash_table (info)->hgot = h;
6739 if (bed->want_got_plt)
6741 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
6743 || !bfd_set_section_alignment (abfd, s,
6744 bed->s->log_file_align))
6749 /* The first bit of the global offset table is the header. */
6750 s->size += bed->got_header_size;
6755 /* Look through the relocs for a section during the first phase. */
6758 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
6759 asection *sec, const Elf_Internal_Rela *relocs)
6761 Elf_Internal_Shdr *symtab_hdr;
6762 struct elf_link_hash_entry **sym_hashes;
6763 const Elf_Internal_Rela *rel;
6764 const Elf_Internal_Rela *rel_end;
6767 struct elf_aarch64_link_hash_table *htab;
6769 if (bfd_link_relocatable (info))
6772 BFD_ASSERT (is_aarch64_elf (abfd));
6774 htab = elf_aarch64_hash_table (info);
6777 symtab_hdr = &elf_symtab_hdr (abfd);
6778 sym_hashes = elf_sym_hashes (abfd);
6780 rel_end = relocs + sec->reloc_count;
6781 for (rel = relocs; rel < rel_end; rel++)
6783 struct elf_link_hash_entry *h;
6784 unsigned long r_symndx;
6785 unsigned int r_type;
6786 bfd_reloc_code_real_type bfd_r_type;
6787 Elf_Internal_Sym *isym;
6789 r_symndx = ELFNN_R_SYM (rel->r_info);
6790 r_type = ELFNN_R_TYPE (rel->r_info);
6792 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
6794 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
6799 if (r_symndx < symtab_hdr->sh_info)
6801 /* A local symbol. */
6802 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6807 /* Check relocation against local STT_GNU_IFUNC symbol. */
6808 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
6810 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
6815 /* Fake a STT_GNU_IFUNC symbol. */
6816 h->type = STT_GNU_IFUNC;
6819 h->forced_local = 1;
6820 h->root.type = bfd_link_hash_defined;
6827 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6828 while (h->root.type == bfd_link_hash_indirect
6829 || h->root.type == bfd_link_hash_warning)
6830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6832 /* PR15323, ref flags aren't set for references in the same
6834 h->root.non_ir_ref = 1;
6837 /* Could be done earlier, if h were already available. */
6838 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
6842 /* Create the ifunc sections for static executables. If we
6843 never see an indirect function symbol nor we are building
6844 a static executable, those sections will be empty and
6845 won't appear in output. */
6851 case BFD_RELOC_AARCH64_ADD_LO12:
6852 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6853 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6854 case BFD_RELOC_AARCH64_CALL26:
6855 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6856 case BFD_RELOC_AARCH64_JUMP26:
6857 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6858 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6859 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6860 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6861 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6862 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6863 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6864 case BFD_RELOC_AARCH64_NN:
6865 if (htab->root.dynobj == NULL)
6866 htab->root.dynobj = abfd;
6867 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
6872 /* It is referenced by a non-shared object. */
6874 h->root.non_ir_ref = 1;
6879 case BFD_RELOC_AARCH64_NN:
6881 /* We don't need to handle relocs into sections not going into
6882 the "real" output. */
6883 if ((sec->flags & SEC_ALLOC) == 0)
6888 if (!bfd_link_pic (info))
6891 h->plt.refcount += 1;
6892 h->pointer_equality_needed = 1;
6895 /* No need to do anything if we're not creating a shared
6897 if (! bfd_link_pic (info))
6901 struct elf_dyn_relocs *p;
6902 struct elf_dyn_relocs **head;
6904 /* We must copy these reloc types into the output file.
6905 Create a reloc section in dynobj and make room for
6909 if (htab->root.dynobj == NULL)
6910 htab->root.dynobj = abfd;
6912 sreloc = _bfd_elf_make_dynamic_reloc_section
6913 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
6919 /* If this is a global symbol, we count the number of
6920 relocations we need for this symbol. */
6923 struct elf_aarch64_link_hash_entry *eh;
6924 eh = (struct elf_aarch64_link_hash_entry *) h;
6925 head = &eh->dyn_relocs;
6929 /* Track dynamic relocs needed for local syms too.
6930 We really need local syms available to do this
6936 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
6941 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
6945 /* Beware of type punned pointers vs strict aliasing
6947 vpp = &(elf_section_data (s)->local_dynrel);
6948 head = (struct elf_dyn_relocs **) vpp;
6952 if (p == NULL || p->sec != sec)
6954 bfd_size_type amt = sizeof *p;
6955 p = ((struct elf_dyn_relocs *)
6956 bfd_zalloc (htab->root.dynobj, amt));
6969 /* RR: We probably want to keep a consistency check that
6970 there are no dangling GOT_PAGE relocs. */
6971 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6972 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6973 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
6974 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6975 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
6976 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
6977 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6978 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
6979 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
6980 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6981 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6982 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6983 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6984 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
6985 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6986 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6987 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6988 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6989 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6990 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6991 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6992 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6993 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6994 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6995 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6998 unsigned old_got_type;
7000 got_type = aarch64_reloc_got_type (bfd_r_type);
7004 h->got.refcount += 1;
7005 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7009 struct elf_aarch64_local_symbol *locals;
7011 if (!elfNN_aarch64_allocate_local_symbols
7012 (abfd, symtab_hdr->sh_info))
7015 locals = elf_aarch64_locals (abfd);
7016 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7017 locals[r_symndx].got_refcount += 1;
7018 old_got_type = locals[r_symndx].got_type;
7021 /* If a variable is accessed with both general dynamic TLS
7022 methods, two slots may be created. */
7023 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7024 got_type |= old_got_type;
7026 /* We will already have issued an error message if there
7027 is a TLS/non-TLS mismatch, based on the symbol type.
7028 So just combine any TLS types needed. */
7029 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7030 && got_type != GOT_NORMAL)
7031 got_type |= old_got_type;
7033 /* If the symbol is accessed by both IE and GD methods, we
7034 are able to relax. Turn off the GD flag, without
7035 messing up with any other kind of TLS types that may be
7037 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7038 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7040 if (old_got_type != got_type)
7043 elf_aarch64_hash_entry (h)->got_type = got_type;
7046 struct elf_aarch64_local_symbol *locals;
7047 locals = elf_aarch64_locals (abfd);
7048 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7049 locals[r_symndx].got_type = got_type;
7053 if (htab->root.dynobj == NULL)
7054 htab->root.dynobj = abfd;
7055 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7060 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7061 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7062 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7063 case BFD_RELOC_AARCH64_MOVW_G3:
7064 if (bfd_link_pic (info))
7066 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7067 (*_bfd_error_handler)
7068 (_("%B: relocation %s against `%s' can not be used when making "
7069 "a shared object; recompile with -fPIC"),
7070 abfd, elfNN_aarch64_howto_table[howto_index].name,
7071 (h) ? h->root.root.string : "a local symbol");
7072 bfd_set_error (bfd_error_bad_value);
7076 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7077 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7078 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7079 if (h != NULL && bfd_link_executable (info))
7081 /* If this reloc is in a read-only section, we might
7082 need a copy reloc. We can't check reliably at this
7083 stage whether the section is read-only, as input
7084 sections have not yet been mapped to output sections.
7085 Tentatively set the flag for now, and correct in
7086 adjust_dynamic_symbol. */
7088 h->plt.refcount += 1;
7089 h->pointer_equality_needed = 1;
7091 /* FIXME:: RR need to handle these in shared libraries
7092 and essentially bomb out as these being non-PIC
7093 relocations in shared libraries. */
7096 case BFD_RELOC_AARCH64_CALL26:
7097 case BFD_RELOC_AARCH64_JUMP26:
7098 /* If this is a local symbol then we resolve it
7099 directly without creating a PLT entry. */
7104 if (h->plt.refcount <= 0)
7105 h->plt.refcount = 1;
7107 h->plt.refcount += 1;
7118 /* Treat mapping symbols as special target symbols. */
7121 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7124 return bfd_is_aarch64_special_symbol_name (sym->name,
7125 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7128 /* This is a copy of elf_find_function () from elf.c except that
7129 AArch64 mapping symbols are ignored when looking for function names. */
7132 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7136 const char **filename_ptr,
7137 const char **functionname_ptr)
7139 const char *filename = NULL;
7140 asymbol *func = NULL;
7141 bfd_vma low_func = 0;
7144 for (p = symbols; *p != NULL; p++)
7148 q = (elf_symbol_type *) * p;
7150 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7155 filename = bfd_asymbol_name (&q->symbol);
7159 /* Skip mapping symbols. */
7160 if ((q->symbol.flags & BSF_LOCAL)
7161 && (bfd_is_aarch64_special_symbol_name
7162 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7165 if (bfd_get_section (&q->symbol) == section
7166 && q->symbol.value >= low_func && q->symbol.value <= offset)
7168 func = (asymbol *) q;
7169 low_func = q->symbol.value;
7179 *filename_ptr = filename;
7180 if (functionname_ptr)
7181 *functionname_ptr = bfd_asymbol_name (func);
7187 /* Find the nearest line to a particular section and offset, for error
7188 reporting. This code is a duplicate of the code in elf.c, except
7189 that it uses aarch64_elf_find_function. */
7192 elfNN_aarch64_find_nearest_line (bfd *abfd,
7196 const char **filename_ptr,
7197 const char **functionname_ptr,
7198 unsigned int *line_ptr,
7199 unsigned int *discriminator_ptr)
7201 bfd_boolean found = FALSE;
7203 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7204 filename_ptr, functionname_ptr,
7205 line_ptr, discriminator_ptr,
7206 dwarf_debug_sections, 0,
7207 &elf_tdata (abfd)->dwarf2_find_line_info))
7209 if (!*functionname_ptr)
7210 aarch64_elf_find_function (abfd, symbols, section, offset,
7211 *filename_ptr ? NULL : filename_ptr,
7217 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7218 toolchain uses DWARF1. */
7220 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7221 &found, filename_ptr,
7222 functionname_ptr, line_ptr,
7223 &elf_tdata (abfd)->line_info))
7226 if (found && (*functionname_ptr || *line_ptr))
7229 if (symbols == NULL)
7232 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7233 filename_ptr, functionname_ptr))
7241 elfNN_aarch64_find_inliner_info (bfd *abfd,
7242 const char **filename_ptr,
7243 const char **functionname_ptr,
7244 unsigned int *line_ptr)
7247 found = _bfd_dwarf2_find_inliner_info
7248 (abfd, filename_ptr,
7249 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7255 elfNN_aarch64_post_process_headers (bfd *abfd,
7256 struct bfd_link_info *link_info)
7258 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7260 i_ehdrp = elf_elfheader (abfd);
7261 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7263 _bfd_elf_post_process_headers (abfd, link_info);
7266 static enum elf_reloc_type_class
7267 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7268 const asection *rel_sec ATTRIBUTE_UNUSED,
7269 const Elf_Internal_Rela *rela)
7271 switch ((int) ELFNN_R_TYPE (rela->r_info))
7273 case AARCH64_R (RELATIVE):
7274 return reloc_class_relative;
7275 case AARCH64_R (JUMP_SLOT):
7276 return reloc_class_plt;
7277 case AARCH64_R (COPY):
7278 return reloc_class_copy;
7280 return reloc_class_normal;
7284 /* Handle an AArch64 specific section when reading an object file. This is
7285 called when bfd_section_from_shdr finds a section with an unknown
7289 elfNN_aarch64_section_from_shdr (bfd *abfd,
7290 Elf_Internal_Shdr *hdr,
7291 const char *name, int shindex)
7293 /* There ought to be a place to keep ELF backend specific flags, but
7294 at the moment there isn't one. We just keep track of the
7295 sections by their name, instead. Fortunately, the ABI gives
7296 names for all the AArch64 specific sections, so we will probably get
7298 switch (hdr->sh_type)
7300 case SHT_AARCH64_ATTRIBUTES:
7307 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7313 /* A structure used to record a list of sections, independently
7314 of the next and prev fields in the asection structure. */
7315 typedef struct section_list
7318 struct section_list *next;
7319 struct section_list *prev;
7323 /* Unfortunately we need to keep a list of sections for which
7324 an _aarch64_elf_section_data structure has been allocated. This
7325 is because it is possible for functions like elfNN_aarch64_write_section
7326 to be called on a section which has had an elf_data_structure
7327 allocated for it (and so the used_by_bfd field is valid) but
7328 for which the AArch64 extended version of this structure - the
7329 _aarch64_elf_section_data structure - has not been allocated. */
7330 static section_list *sections_with_aarch64_elf_section_data = NULL;
7333 record_section_with_aarch64_elf_section_data (asection *sec)
7335 struct section_list *entry;
7337 entry = bfd_malloc (sizeof (*entry));
7341 entry->next = sections_with_aarch64_elf_section_data;
7343 if (entry->next != NULL)
7344 entry->next->prev = entry;
7345 sections_with_aarch64_elf_section_data = entry;
7348 static struct section_list *
7349 find_aarch64_elf_section_entry (asection *sec)
7351 struct section_list *entry;
7352 static struct section_list *last_entry = NULL;
7354 /* This is a short cut for the typical case where the sections are added
7355 to the sections_with_aarch64_elf_section_data list in forward order and
7356 then looked up here in backwards order. This makes a real difference
7357 to the ld-srec/sec64k.exp linker test. */
7358 entry = sections_with_aarch64_elf_section_data;
7359 if (last_entry != NULL)
7361 if (last_entry->sec == sec)
7363 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7364 entry = last_entry->next;
7367 for (; entry; entry = entry->next)
7368 if (entry->sec == sec)
7372 /* Record the entry prior to this one - it is the entry we are
7373 most likely to want to locate next time. Also this way if we
7374 have been called from
7375 unrecord_section_with_aarch64_elf_section_data () we will not
7376 be caching a pointer that is about to be freed. */
7377 last_entry = entry->prev;
7383 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7385 struct section_list *entry;
7387 entry = find_aarch64_elf_section_entry (sec);
7391 if (entry->prev != NULL)
7392 entry->prev->next = entry->next;
7393 if (entry->next != NULL)
7394 entry->next->prev = entry->prev;
7395 if (entry == sections_with_aarch64_elf_section_data)
7396 sections_with_aarch64_elf_section_data = entry->next;
7405 struct bfd_link_info *info;
7408 int (*func) (void *, const char *, Elf_Internal_Sym *,
7409 asection *, struct elf_link_hash_entry *);
7410 } output_arch_syminfo;
7412 enum map_symbol_type
7419 /* Output a single mapping symbol. */
7422 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7423 enum map_symbol_type type, bfd_vma offset)
7425 static const char *names[2] = { "$x", "$d" };
7426 Elf_Internal_Sym sym;
7428 sym.st_value = (osi->sec->output_section->vma
7429 + osi->sec->output_offset + offset);
7432 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7433 sym.st_shndx = osi->sec_shndx;
7434 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
7437 /* Output a single local symbol for a generated stub. */
7440 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
7441 bfd_vma offset, bfd_vma size)
7443 Elf_Internal_Sym sym;
7445 sym.st_value = (osi->sec->output_section->vma
7446 + osi->sec->output_offset + offset);
7449 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7450 sym.st_shndx = osi->sec_shndx;
7451 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
7455 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7457 struct elf_aarch64_stub_hash_entry *stub_entry;
7461 output_arch_syminfo *osi;
7463 /* Massage our args to the form they really have. */
7464 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
7465 osi = (output_arch_syminfo *) in_arg;
7467 stub_sec = stub_entry->stub_sec;
7469 /* Ensure this stub is attached to the current section being
7471 if (stub_sec != osi->sec)
7474 addr = (bfd_vma) stub_entry->stub_offset;
7476 stub_name = stub_entry->output_name;
7478 switch (stub_entry->stub_type)
7480 case aarch64_stub_adrp_branch:
7481 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7482 sizeof (aarch64_adrp_branch_stub)))
7484 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7487 case aarch64_stub_long_branch:
7488 if (!elfNN_aarch64_output_stub_sym
7489 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
7491 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7493 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
7496 case aarch64_stub_erratum_835769_veneer:
7497 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7498 sizeof (aarch64_erratum_835769_stub)))
7500 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7503 case aarch64_stub_erratum_843419_veneer:
7504 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
7505 sizeof (aarch64_erratum_843419_stub)))
7507 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
7518 /* Output mapping symbols for linker generated sections. */
7521 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
7522 struct bfd_link_info *info,
7524 int (*func) (void *, const char *,
7527 struct elf_link_hash_entry
7530 output_arch_syminfo osi;
7531 struct elf_aarch64_link_hash_table *htab;
7533 htab = elf_aarch64_hash_table (info);
7539 /* Long calls stubs. */
7540 if (htab->stub_bfd && htab->stub_bfd->sections)
7544 for (stub_sec = htab->stub_bfd->sections;
7545 stub_sec != NULL; stub_sec = stub_sec->next)
7547 /* Ignore non-stub sections. */
7548 if (!strstr (stub_sec->name, STUB_SUFFIX))
7553 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7554 (output_bfd, osi.sec->output_section);
7556 /* The first instruction in a stub is always a branch. */
7557 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
7560 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
7565 /* Finally, output mapping symbols for the PLT. */
7566 if (!htab->root.splt || htab->root.splt->size == 0)
7569 osi.sec_shndx = _bfd_elf_section_from_bfd_section
7570 (output_bfd, htab->root.splt->output_section);
7571 osi.sec = htab->root.splt;
7573 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
7579 /* Allocate target specific section data. */
7582 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
7584 if (!sec->used_by_bfd)
7586 _aarch64_elf_section_data *sdata;
7587 bfd_size_type amt = sizeof (*sdata);
7589 sdata = bfd_zalloc (abfd, amt);
7592 sec->used_by_bfd = sdata;
7595 record_section_with_aarch64_elf_section_data (sec);
7597 return _bfd_elf_new_section_hook (abfd, sec);
7602 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
7604 void *ignore ATTRIBUTE_UNUSED)
7606 unrecord_section_with_aarch64_elf_section_data (sec);
7610 elfNN_aarch64_close_and_cleanup (bfd *abfd)
7613 bfd_map_over_sections (abfd,
7614 unrecord_section_via_map_over_sections, NULL);
7616 return _bfd_elf_close_and_cleanup (abfd);
7620 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
7623 bfd_map_over_sections (abfd,
7624 unrecord_section_via_map_over_sections, NULL);
7626 return _bfd_free_cached_info (abfd);
7629 /* Create dynamic sections. This is different from the ARM backend in that
7630 the got, plt, gotplt and their relocation sections are all created in the
7631 standard part of the bfd elf backend. */
7634 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
7635 struct bfd_link_info *info)
7637 struct elf_aarch64_link_hash_table *htab;
7639 /* We need to create .got section. */
7640 if (!aarch64_elf_create_got_section (dynobj, info))
7643 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
7646 htab = elf_aarch64_hash_table (info);
7647 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
7648 if (!bfd_link_pic (info))
7649 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
7651 if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
7658 /* Allocate space in .plt, .got and associated reloc sections for
7662 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7664 struct bfd_link_info *info;
7665 struct elf_aarch64_link_hash_table *htab;
7666 struct elf_aarch64_link_hash_entry *eh;
7667 struct elf_dyn_relocs *p;
7669 /* An example of a bfd_link_hash_indirect symbol is versioned
7670 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7671 -> __gxx_personality_v0(bfd_link_hash_defined)
7673 There is no need to process bfd_link_hash_indirect symbols here
7674 because we will also be presented with the concrete instance of
7675 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7676 called to copy all relevant data from the generic to the concrete
7679 if (h->root.type == bfd_link_hash_indirect)
7682 if (h->root.type == bfd_link_hash_warning)
7683 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7685 info = (struct bfd_link_info *) inf;
7686 htab = elf_aarch64_hash_table (info);
7688 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7689 here if it is defined and referenced in a non-shared object. */
7690 if (h->type == STT_GNU_IFUNC
7693 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
7695 /* Make sure this symbol is output as a dynamic symbol.
7696 Undefined weak syms won't yet be marked as dynamic. */
7697 if (h->dynindx == -1 && !h->forced_local)
7699 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7703 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
7705 asection *s = htab->root.splt;
7707 /* If this is the first .plt entry, make room for the special
7710 s->size += htab->plt_header_size;
7712 h->plt.offset = s->size;
7714 /* If this symbol is not defined in a regular file, and we are
7715 not generating a shared library, then set the symbol to this
7716 location in the .plt. This is required to make function
7717 pointers compare as equal between the normal executable and
7718 the shared library. */
7719 if (!bfd_link_pic (info) && !h->def_regular)
7721 h->root.u.def.section = s;
7722 h->root.u.def.value = h->plt.offset;
7725 /* Make room for this entry. For now we only create the
7726 small model PLT entries. We later need to find a way
7727 of relaxing into these from the large model PLT entries. */
7728 s->size += PLT_SMALL_ENTRY_SIZE;
7730 /* We also need to make an entry in the .got.plt section, which
7731 will be placed in the .got section by the linker script. */
7732 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
7734 /* We also need to make an entry in the .rela.plt section. */
7735 htab->root.srelplt->size += RELOC_SIZE (htab);
7737 /* We need to ensure that all GOT entries that serve the PLT
7738 are consecutive with the special GOT slots [0] [1] and
7739 [2]. Any addtional relocations, such as
7740 R_AARCH64_TLSDESC, must be placed after the PLT related
7741 entries. We abuse the reloc_count such that during
7742 sizing we adjust reloc_count to indicate the number of
7743 PLT related reserved entries. In subsequent phases when
7744 filling in the contents of the reloc entries, PLT related
7745 entries are placed by computing their PLT index (0
7746 .. reloc_count). While other none PLT relocs are placed
7747 at the slot indicated by reloc_count and reloc_count is
7750 htab->root.srelplt->reloc_count++;
7754 h->plt.offset = (bfd_vma) - 1;
7760 h->plt.offset = (bfd_vma) - 1;
7764 eh = (struct elf_aarch64_link_hash_entry *) h;
7765 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
7767 if (h->got.refcount > 0)
7770 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
7772 h->got.offset = (bfd_vma) - 1;
7774 dyn = htab->root.dynamic_sections_created;
7776 /* Make sure this symbol is output as a dynamic symbol.
7777 Undefined weak syms won't yet be marked as dynamic. */
7778 if (dyn && h->dynindx == -1 && !h->forced_local)
7780 if (!bfd_elf_link_record_dynamic_symbol (info, h))
7784 if (got_type == GOT_UNKNOWN)
7787 else if (got_type == GOT_NORMAL)
7789 h->got.offset = htab->root.sgot->size;
7790 htab->root.sgot->size += GOT_ENTRY_SIZE;
7791 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7792 || h->root.type != bfd_link_hash_undefweak)
7793 && (bfd_link_pic (info)
7794 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7796 htab->root.srelgot->size += RELOC_SIZE (htab);
7802 if (got_type & GOT_TLSDESC_GD)
7804 eh->tlsdesc_got_jump_table_offset =
7805 (htab->root.sgotplt->size
7806 - aarch64_compute_jump_table_size (htab));
7807 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
7808 h->got.offset = (bfd_vma) - 2;
7811 if (got_type & GOT_TLS_GD)
7813 h->got.offset = htab->root.sgot->size;
7814 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
7817 if (got_type & GOT_TLS_IE)
7819 h->got.offset = htab->root.sgot->size;
7820 htab->root.sgot->size += GOT_ENTRY_SIZE;
7823 indx = h && h->dynindx != -1 ? h->dynindx : 0;
7824 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7825 || h->root.type != bfd_link_hash_undefweak)
7826 && (bfd_link_pic (info)
7828 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
7830 if (got_type & GOT_TLSDESC_GD)
7832 htab->root.srelplt->size += RELOC_SIZE (htab);
7833 /* Note reloc_count not incremented here! We have
7834 already adjusted reloc_count for this relocation
7837 /* TLSDESC PLT is now needed, but not yet determined. */
7838 htab->tlsdesc_plt = (bfd_vma) - 1;
7841 if (got_type & GOT_TLS_GD)
7842 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
7844 if (got_type & GOT_TLS_IE)
7845 htab->root.srelgot->size += RELOC_SIZE (htab);
7851 h->got.offset = (bfd_vma) - 1;
7854 if (eh->dyn_relocs == NULL)
7857 /* In the shared -Bsymbolic case, discard space allocated for
7858 dynamic pc-relative relocs against symbols which turn out to be
7859 defined in regular objects. For the normal shared case, discard
7860 space for pc-relative relocs that have become local due to symbol
7861 visibility changes. */
7863 if (bfd_link_pic (info))
7865 /* Relocs that use pc_count are those that appear on a call
7866 insn, or certain REL relocs that can generated via assembly.
7867 We want calls to protected symbols to resolve directly to the
7868 function rather than going via the plt. If people want
7869 function pointer comparisons to work as expected then they
7870 should avoid writing weird assembly. */
7871 if (SYMBOL_CALLS_LOCAL (info, h))
7873 struct elf_dyn_relocs **pp;
7875 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
7877 p->count -= p->pc_count;
7886 /* Also discard relocs on undefined weak syms with non-default
7888 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
7890 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7891 eh->dyn_relocs = NULL;
7893 /* Make sure undefined weak symbols are output as a dynamic
7895 else if (h->dynindx == -1
7897 && !bfd_elf_link_record_dynamic_symbol (info, h))
7902 else if (ELIMINATE_COPY_RELOCS)
7904 /* For the non-shared case, discard space for relocs against
7905 symbols which turn out to need copy relocs or are not
7911 || (htab->root.dynamic_sections_created
7912 && (h->root.type == bfd_link_hash_undefweak
7913 || h->root.type == bfd_link_hash_undefined))))
7915 /* Make sure this symbol is output as a dynamic symbol.
7916 Undefined weak syms won't yet be marked as dynamic. */
7917 if (h->dynindx == -1
7919 && !bfd_elf_link_record_dynamic_symbol (info, h))
7922 /* If that succeeded, we know we'll be keeping all the
7924 if (h->dynindx != -1)
7928 eh->dyn_relocs = NULL;
7933 /* Finally, allocate space. */
7934 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7938 sreloc = elf_section_data (p->sec)->sreloc;
7940 BFD_ASSERT (sreloc != NULL);
7942 sreloc->size += p->count * RELOC_SIZE (htab);
7948 /* Allocate space in .plt, .got and associated reloc sections for
7949 ifunc dynamic relocs. */
7952 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
7955 struct bfd_link_info *info;
7956 struct elf_aarch64_link_hash_table *htab;
7957 struct elf_aarch64_link_hash_entry *eh;
7959 /* An example of a bfd_link_hash_indirect symbol is versioned
7960 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
7961 -> __gxx_personality_v0(bfd_link_hash_defined)
7963 There is no need to process bfd_link_hash_indirect symbols here
7964 because we will also be presented with the concrete instance of
7965 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
7966 called to copy all relevant data from the generic to the concrete
7969 if (h->root.type == bfd_link_hash_indirect)
7972 if (h->root.type == bfd_link_hash_warning)
7973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7975 info = (struct bfd_link_info *) inf;
7976 htab = elf_aarch64_hash_table (info);
7978 eh = (struct elf_aarch64_link_hash_entry *) h;
7980 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
7981 here if it is defined and referenced in a non-shared object. */
7982 if (h->type == STT_GNU_IFUNC
7984 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
7986 htab->plt_entry_size,
7987 htab->plt_header_size,
7992 /* Allocate space in .plt, .got and associated reloc sections for
7993 local dynamic relocs. */
7996 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
7998 struct elf_link_hash_entry *h
7999 = (struct elf_link_hash_entry *) *slot;
8001 if (h->type != STT_GNU_IFUNC
8005 || h->root.type != bfd_link_hash_defined)
8008 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8011 /* Allocate space in .plt, .got and associated reloc sections for
8012 local ifunc dynamic relocs. */
8015 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8017 struct elf_link_hash_entry *h
8018 = (struct elf_link_hash_entry *) *slot;
8020 if (h->type != STT_GNU_IFUNC
8024 || h->root.type != bfd_link_hash_defined)
8027 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8030 /* Find any dynamic relocs that apply to read-only sections. */
8033 aarch64_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
8035 struct elf_aarch64_link_hash_entry * eh;
8036 struct elf_dyn_relocs * p;
8038 eh = (struct elf_aarch64_link_hash_entry *) h;
8039 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8041 asection *s = p->sec;
8043 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8045 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8047 info->flags |= DF_TEXTREL;
8049 /* Not an error, just cut short the traversal. */
8056 /* This is the most important function of all . Innocuosly named
8059 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8060 struct bfd_link_info *info)
8062 struct elf_aarch64_link_hash_table *htab;
8068 htab = elf_aarch64_hash_table ((info));
8069 dynobj = htab->root.dynobj;
8071 BFD_ASSERT (dynobj != NULL);
8073 if (htab->root.dynamic_sections_created)
8075 if (bfd_link_executable (info) && !info->nointerp)
8077 s = bfd_get_linker_section (dynobj, ".interp");
8080 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8081 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8085 /* Set up .got offsets for local syms, and space for local dynamic
8087 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8089 struct elf_aarch64_local_symbol *locals = NULL;
8090 Elf_Internal_Shdr *symtab_hdr;
8094 if (!is_aarch64_elf (ibfd))
8097 for (s = ibfd->sections; s != NULL; s = s->next)
8099 struct elf_dyn_relocs *p;
8101 for (p = (struct elf_dyn_relocs *)
8102 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8104 if (!bfd_is_abs_section (p->sec)
8105 && bfd_is_abs_section (p->sec->output_section))
8107 /* Input section has been discarded, either because
8108 it is a copy of a linkonce section or due to
8109 linker script /DISCARD/, so we'll be discarding
8112 else if (p->count != 0)
8114 srel = elf_section_data (p->sec)->sreloc;
8115 srel->size += p->count * RELOC_SIZE (htab);
8116 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8117 info->flags |= DF_TEXTREL;
8122 locals = elf_aarch64_locals (ibfd);
8126 symtab_hdr = &elf_symtab_hdr (ibfd);
8127 srel = htab->root.srelgot;
8128 for (i = 0; i < symtab_hdr->sh_info; i++)
8130 locals[i].got_offset = (bfd_vma) - 1;
8131 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8132 if (locals[i].got_refcount > 0)
8134 unsigned got_type = locals[i].got_type;
8135 if (got_type & GOT_TLSDESC_GD)
8137 locals[i].tlsdesc_got_jump_table_offset =
8138 (htab->root.sgotplt->size
8139 - aarch64_compute_jump_table_size (htab));
8140 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8141 locals[i].got_offset = (bfd_vma) - 2;
8144 if (got_type & GOT_TLS_GD)
8146 locals[i].got_offset = htab->root.sgot->size;
8147 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8150 if (got_type & GOT_TLS_IE
8151 || got_type & GOT_NORMAL)
8153 locals[i].got_offset = htab->root.sgot->size;
8154 htab->root.sgot->size += GOT_ENTRY_SIZE;
8157 if (got_type == GOT_UNKNOWN)
8161 if (bfd_link_pic (info))
8163 if (got_type & GOT_TLSDESC_GD)
8165 htab->root.srelplt->size += RELOC_SIZE (htab);
8166 /* Note RELOC_COUNT not incremented here! */
8167 htab->tlsdesc_plt = (bfd_vma) - 1;
8170 if (got_type & GOT_TLS_GD)
8171 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8173 if (got_type & GOT_TLS_IE
8174 || got_type & GOT_NORMAL)
8175 htab->root.srelgot->size += RELOC_SIZE (htab);
8180 locals[i].got_refcount = (bfd_vma) - 1;
8186 /* Allocate global sym .plt and .got entries, and space for global
8187 sym dynamic relocs. */
8188 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8191 /* Allocate global ifunc sym .plt and .got entries, and space for global
8192 ifunc sym dynamic relocs. */
8193 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8196 /* Allocate .plt and .got entries, and space for local symbols. */
8197 htab_traverse (htab->loc_hash_table,
8198 elfNN_aarch64_allocate_local_dynrelocs,
8201 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8202 htab_traverse (htab->loc_hash_table,
8203 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8206 /* For every jump slot reserved in the sgotplt, reloc_count is
8207 incremented. However, when we reserve space for TLS descriptors,
8208 it's not incremented, so in order to compute the space reserved
8209 for them, it suffices to multiply the reloc count by the jump
8212 if (htab->root.srelplt)
8213 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8215 if (htab->tlsdesc_plt)
8217 if (htab->root.splt->size == 0)
8218 htab->root.splt->size += PLT_ENTRY_SIZE;
8220 htab->tlsdesc_plt = htab->root.splt->size;
8221 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8223 /* If we're not using lazy TLS relocations, don't generate the
8224 GOT entry required. */
8225 if (!(info->flags & DF_BIND_NOW))
8227 htab->dt_tlsdesc_got = htab->root.sgot->size;
8228 htab->root.sgot->size += GOT_ENTRY_SIZE;
8232 /* Init mapping symbols information to use later to distingush between
8233 code and data while scanning for errata. */
8234 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8235 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8237 if (!is_aarch64_elf (ibfd))
8239 bfd_elfNN_aarch64_init_maps (ibfd);
8242 /* We now have determined the sizes of the various dynamic sections.
8243 Allocate memory for them. */
8245 for (s = dynobj->sections; s != NULL; s = s->next)
8247 if ((s->flags & SEC_LINKER_CREATED) == 0)
8250 if (s == htab->root.splt
8251 || s == htab->root.sgot
8252 || s == htab->root.sgotplt
8253 || s == htab->root.iplt
8254 || s == htab->root.igotplt || s == htab->sdynbss)
8256 /* Strip this section if we don't need it; see the
8259 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8261 if (s->size != 0 && s != htab->root.srelplt)
8264 /* We use the reloc_count field as a counter if we need
8265 to copy relocs into the output file. */
8266 if (s != htab->root.srelplt)
8271 /* It's not one of our sections, so don't allocate space. */
8277 /* If we don't need this section, strip it from the
8278 output file. This is mostly to handle .rela.bss and
8279 .rela.plt. We must create both sections in
8280 create_dynamic_sections, because they must be created
8281 before the linker maps input sections to output
8282 sections. The linker does that before
8283 adjust_dynamic_symbol is called, and it is that
8284 function which decides whether anything needs to go
8285 into these sections. */
8287 s->flags |= SEC_EXCLUDE;
8291 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8294 /* Allocate memory for the section contents. We use bfd_zalloc
8295 here in case unused entries are not reclaimed before the
8296 section's contents are written out. This should not happen,
8297 but this way if it does, we get a R_AARCH64_NONE reloc instead
8299 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8300 if (s->contents == NULL)
8304 if (htab->root.dynamic_sections_created)
8306 /* Add some entries to the .dynamic section. We fill in the
8307 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8308 must add the entries now so that we get the correct size for
8309 the .dynamic section. The DT_DEBUG entry is filled in by the
8310 dynamic linker and used by the debugger. */
8311 #define add_dynamic_entry(TAG, VAL) \
8312 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8314 if (bfd_link_executable (info))
8316 if (!add_dynamic_entry (DT_DEBUG, 0))
8320 if (htab->root.splt->size != 0)
8322 if (!add_dynamic_entry (DT_PLTGOT, 0)
8323 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8324 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8325 || !add_dynamic_entry (DT_JMPREL, 0))
8328 if (htab->tlsdesc_plt
8329 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8330 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8336 if (!add_dynamic_entry (DT_RELA, 0)
8337 || !add_dynamic_entry (DT_RELASZ, 0)
8338 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8341 /* If any dynamic relocs apply to a read-only section,
8342 then we need a DT_TEXTREL entry. */
8343 if ((info->flags & DF_TEXTREL) == 0)
8344 elf_link_hash_traverse (& htab->root, aarch64_readonly_dynrelocs,
8347 if ((info->flags & DF_TEXTREL) != 0)
8349 if (!add_dynamic_entry (DT_TEXTREL, 0))
8354 #undef add_dynamic_entry
8360 elf_aarch64_update_plt_entry (bfd *output_bfd,
8361 bfd_reloc_code_real_type r_type,
8362 bfd_byte *plt_entry, bfd_vma value)
8364 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8366 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8370 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8371 struct elf_aarch64_link_hash_table
8372 *htab, bfd *output_bfd,
8373 struct bfd_link_info *info)
8375 bfd_byte *plt_entry;
8378 bfd_vma gotplt_entry_address;
8379 bfd_vma plt_entry_address;
8380 Elf_Internal_Rela rela;
8382 asection *plt, *gotplt, *relplt;
8384 /* When building a static executable, use .iplt, .igot.plt and
8385 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8386 if (htab->root.splt != NULL)
8388 plt = htab->root.splt;
8389 gotplt = htab->root.sgotplt;
8390 relplt = htab->root.srelplt;
8394 plt = htab->root.iplt;
8395 gotplt = htab->root.igotplt;
8396 relplt = htab->root.irelplt;
8399 /* Get the index in the procedure linkage table which
8400 corresponds to this symbol. This is the index of this symbol
8401 in all the symbols for which we are making plt entries. The
8402 first entry in the procedure linkage table is reserved.
8404 Get the offset into the .got table of the entry that
8405 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8406 bytes. The first three are reserved for the dynamic linker.
8408 For static executables, we don't reserve anything. */
8410 if (plt == htab->root.splt)
8412 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8413 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8417 plt_index = h->plt.offset / htab->plt_entry_size;
8418 got_offset = plt_index * GOT_ENTRY_SIZE;
8421 plt_entry = plt->contents + h->plt.offset;
8422 plt_entry_address = plt->output_section->vma
8423 + plt->output_offset + h->plt.offset;
8424 gotplt_entry_address = gotplt->output_section->vma +
8425 gotplt->output_offset + got_offset;
8427 /* Copy in the boiler-plate for the PLTn entry. */
8428 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8430 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8431 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8432 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8434 PG (gotplt_entry_address) -
8435 PG (plt_entry_address));
8437 /* Fill in the lo12 bits for the load from the pltgot. */
8438 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8440 PG_OFFSET (gotplt_entry_address));
8442 /* Fill in the lo12 bits for the add from the pltgot entry. */
8443 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8445 PG_OFFSET (gotplt_entry_address));
8447 /* All the GOTPLT Entries are essentially initialized to PLT0. */
8448 bfd_put_NN (output_bfd,
8449 plt->output_section->vma + plt->output_offset,
8450 gotplt->contents + got_offset);
8452 rela.r_offset = gotplt_entry_address;
8454 if (h->dynindx == -1
8455 || ((bfd_link_executable (info)
8456 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8458 && h->type == STT_GNU_IFUNC))
8460 /* If an STT_GNU_IFUNC symbol is locally defined, generate
8461 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
8462 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
8463 rela.r_addend = (h->root.u.def.value
8464 + h->root.u.def.section->output_section->vma
8465 + h->root.u.def.section->output_offset);
8469 /* Fill in the entry in the .rela.plt section. */
8470 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
8474 /* Compute the relocation entry to used based on PLT index and do
8475 not adjust reloc_count. The reloc_count has already been adjusted
8476 to account for this entry. */
8477 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
8478 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8481 /* Size sections even though they're not dynamic. We use it to setup
8482 _TLS_MODULE_BASE_, if needed. */
8485 elfNN_aarch64_always_size_sections (bfd *output_bfd,
8486 struct bfd_link_info *info)
8490 if (bfd_link_relocatable (info))
8493 tls_sec = elf_hash_table (info)->tls_sec;
8497 struct elf_link_hash_entry *tlsbase;
8499 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
8500 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
8504 struct bfd_link_hash_entry *h = NULL;
8505 const struct elf_backend_data *bed =
8506 get_elf_backend_data (output_bfd);
8508 if (!(_bfd_generic_link_add_one_symbol
8509 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
8510 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
8513 tlsbase->type = STT_TLS;
8514 tlsbase = (struct elf_link_hash_entry *) h;
8515 tlsbase->def_regular = 1;
8516 tlsbase->other = STV_HIDDEN;
8517 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
8524 /* Finish up dynamic symbol handling. We set the contents of various
8525 dynamic sections here. */
8527 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
8528 struct bfd_link_info *info,
8529 struct elf_link_hash_entry *h,
8530 Elf_Internal_Sym *sym)
8532 struct elf_aarch64_link_hash_table *htab;
8533 htab = elf_aarch64_hash_table (info);
8535 if (h->plt.offset != (bfd_vma) - 1)
8537 asection *plt, *gotplt, *relplt;
8539 /* This symbol has an entry in the procedure linkage table. Set
8542 /* When building a static executable, use .iplt, .igot.plt and
8543 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8544 if (htab->root.splt != NULL)
8546 plt = htab->root.splt;
8547 gotplt = htab->root.sgotplt;
8548 relplt = htab->root.srelplt;
8552 plt = htab->root.iplt;
8553 gotplt = htab->root.igotplt;
8554 relplt = htab->root.irelplt;
8557 /* This symbol has an entry in the procedure linkage table. Set
8559 if ((h->dynindx == -1
8560 && !((h->forced_local || bfd_link_executable (info))
8562 && h->type == STT_GNU_IFUNC))
8568 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
8569 if (!h->def_regular)
8571 /* Mark the symbol as undefined, rather than as defined in
8572 the .plt section. */
8573 sym->st_shndx = SHN_UNDEF;
8574 /* If the symbol is weak we need to clear the value.
8575 Otherwise, the PLT entry would provide a definition for
8576 the symbol even if the symbol wasn't defined anywhere,
8577 and so the symbol would never be NULL. Leave the value if
8578 there were any relocations where pointer equality matters
8579 (this is a clue for the dynamic linker, to make function
8580 pointer comparisons work between an application and shared
8582 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
8587 if (h->got.offset != (bfd_vma) - 1
8588 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL)
8590 Elf_Internal_Rela rela;
8593 /* This symbol has an entry in the global offset table. Set it
8595 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
8598 rela.r_offset = (htab->root.sgot->output_section->vma
8599 + htab->root.sgot->output_offset
8600 + (h->got.offset & ~(bfd_vma) 1));
8603 && h->type == STT_GNU_IFUNC)
8605 if (bfd_link_pic (info))
8607 /* Generate R_AARCH64_GLOB_DAT. */
8614 if (!h->pointer_equality_needed)
8617 /* For non-shared object, we can't use .got.plt, which
8618 contains the real function address if we need pointer
8619 equality. We load the GOT entry with the PLT entry. */
8620 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
8621 bfd_put_NN (output_bfd, (plt->output_section->vma
8622 + plt->output_offset
8624 htab->root.sgot->contents
8625 + (h->got.offset & ~(bfd_vma) 1));
8629 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
8631 if (!h->def_regular)
8634 BFD_ASSERT ((h->got.offset & 1) != 0);
8635 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
8636 rela.r_addend = (h->root.u.def.value
8637 + h->root.u.def.section->output_section->vma
8638 + h->root.u.def.section->output_offset);
8643 BFD_ASSERT ((h->got.offset & 1) == 0);
8644 bfd_put_NN (output_bfd, (bfd_vma) 0,
8645 htab->root.sgot->contents + h->got.offset);
8646 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
8650 loc = htab->root.srelgot->contents;
8651 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
8652 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8657 Elf_Internal_Rela rela;
8660 /* This symbol needs a copy reloc. Set it up. */
8662 if (h->dynindx == -1
8663 || (h->root.type != bfd_link_hash_defined
8664 && h->root.type != bfd_link_hash_defweak)
8665 || htab->srelbss == NULL)
8668 rela.r_offset = (h->root.u.def.value
8669 + h->root.u.def.section->output_section->vma
8670 + h->root.u.def.section->output_offset);
8671 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
8673 loc = htab->srelbss->contents;
8674 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
8675 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
8678 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
8679 be NULL for local symbols. */
8681 && (h == elf_hash_table (info)->hdynamic
8682 || h == elf_hash_table (info)->hgot))
8683 sym->st_shndx = SHN_ABS;
8688 /* Finish up local dynamic symbol handling. We set the contents of
8689 various dynamic sections here. */
8692 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
8694 struct elf_link_hash_entry *h
8695 = (struct elf_link_hash_entry *) *slot;
8696 struct bfd_link_info *info
8697 = (struct bfd_link_info *) inf;
8699 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
8704 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
8705 struct elf_aarch64_link_hash_table
8708 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
8709 small and large plts and at the minute just generates
8712 /* PLT0 of the small PLT looks like this in ELF64 -
8713 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
8714 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
8715 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
8717 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
8718 // GOTPLT entry for this.
8720 PLT0 will be slightly different in ELF32 due to different got entry
8723 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
8727 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
8729 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
8732 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
8733 + htab->root.sgotplt->output_offset
8734 + GOT_ENTRY_SIZE * 2);
8736 plt_base = htab->root.splt->output_section->vma +
8737 htab->root.splt->output_offset;
8739 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8740 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
8741 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8742 htab->root.splt->contents + 4,
8743 PG (plt_got_2nd_ent) - PG (plt_base + 4));
8745 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
8746 htab->root.splt->contents + 8,
8747 PG_OFFSET (plt_got_2nd_ent));
8749 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
8750 htab->root.splt->contents + 12,
8751 PG_OFFSET (plt_got_2nd_ent));
8755 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
8756 struct bfd_link_info *info)
8758 struct elf_aarch64_link_hash_table *htab;
8762 htab = elf_aarch64_hash_table (info);
8763 dynobj = htab->root.dynobj;
8764 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
8766 if (htab->root.dynamic_sections_created)
8768 ElfNN_External_Dyn *dyncon, *dynconend;
8770 if (sdyn == NULL || htab->root.sgot == NULL)
8773 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
8774 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
8775 for (; dyncon < dynconend; dyncon++)
8777 Elf_Internal_Dyn dyn;
8780 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
8788 s = htab->root.sgotplt;
8789 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8793 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma;
8797 s = htab->root.srelplt;
8798 dyn.d_un.d_val = s->size;
8802 /* The procedure linkage table relocs (DT_JMPREL) should
8803 not be included in the overall relocs (DT_RELA).
8804 Therefore, we override the DT_RELASZ entry here to
8805 make it not include the JMPREL relocs. Since the
8806 linker script arranges for .rela.plt to follow all
8807 other relocation sections, we don't have to worry
8808 about changing the DT_RELA entry. */
8809 if (htab->root.srelplt != NULL)
8811 s = htab->root.srelplt;
8812 dyn.d_un.d_val -= s->size;
8816 case DT_TLSDESC_PLT:
8817 s = htab->root.splt;
8818 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8819 + htab->tlsdesc_plt;
8822 case DT_TLSDESC_GOT:
8823 s = htab->root.sgot;
8824 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
8825 + htab->dt_tlsdesc_got;
8829 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
8834 /* Fill in the special first entry in the procedure linkage table. */
8835 if (htab->root.splt && htab->root.splt->size > 0)
8837 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
8839 elf_section_data (htab->root.splt->output_section)->
8840 this_hdr.sh_entsize = htab->plt_entry_size;
8843 if (htab->tlsdesc_plt)
8845 bfd_put_NN (output_bfd, (bfd_vma) 0,
8846 htab->root.sgot->contents + htab->dt_tlsdesc_got);
8848 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
8849 elfNN_aarch64_tlsdesc_small_plt_entry,
8850 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
8853 bfd_vma adrp1_addr =
8854 htab->root.splt->output_section->vma
8855 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
8857 bfd_vma adrp2_addr = adrp1_addr + 4;
8860 htab->root.sgot->output_section->vma
8861 + htab->root.sgot->output_offset;
8863 bfd_vma pltgot_addr =
8864 htab->root.sgotplt->output_section->vma
8865 + htab->root.sgotplt->output_offset;
8867 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
8869 bfd_byte *plt_entry =
8870 htab->root.splt->contents + htab->tlsdesc_plt;
8872 /* adrp x2, DT_TLSDESC_GOT */
8873 elf_aarch64_update_plt_entry (output_bfd,
8874 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8876 (PG (dt_tlsdesc_got)
8877 - PG (adrp1_addr)));
8880 elf_aarch64_update_plt_entry (output_bfd,
8881 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
8884 - PG (adrp2_addr)));
8886 /* ldr x2, [x2, #0] */
8887 elf_aarch64_update_plt_entry (output_bfd,
8888 BFD_RELOC_AARCH64_LDSTNN_LO12,
8890 PG_OFFSET (dt_tlsdesc_got));
8893 elf_aarch64_update_plt_entry (output_bfd,
8894 BFD_RELOC_AARCH64_ADD_LO12,
8896 PG_OFFSET (pltgot_addr));
8901 if (htab->root.sgotplt)
8903 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
8905 (*_bfd_error_handler)
8906 (_("discarded output section: `%A'"), htab->root.sgotplt);
8910 /* Fill in the first three entries in the global offset table. */
8911 if (htab->root.sgotplt->size > 0)
8913 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
8915 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
8916 bfd_put_NN (output_bfd,
8918 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
8919 bfd_put_NN (output_bfd,
8921 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
8924 if (htab->root.sgot)
8926 if (htab->root.sgot->size > 0)
8929 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
8930 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
8934 elf_section_data (htab->root.sgotplt->output_section)->
8935 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
8938 if (htab->root.sgot && htab->root.sgot->size > 0)
8939 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
8942 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
8943 htab_traverse (htab->loc_hash_table,
8944 elfNN_aarch64_finish_local_dynamic_symbol,
8950 /* Return address for Ith PLT stub in section PLT, for relocation REL
8951 or (bfd_vma) -1 if it should not be included. */
8954 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
8955 const arelent *rel ATTRIBUTE_UNUSED)
8957 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
8961 /* We use this so we can override certain functions
8962 (though currently we don't). */
8964 const struct elf_size_info elfNN_aarch64_size_info =
8966 sizeof (ElfNN_External_Ehdr),
8967 sizeof (ElfNN_External_Phdr),
8968 sizeof (ElfNN_External_Shdr),
8969 sizeof (ElfNN_External_Rel),
8970 sizeof (ElfNN_External_Rela),
8971 sizeof (ElfNN_External_Sym),
8972 sizeof (ElfNN_External_Dyn),
8973 sizeof (Elf_External_Note),
8974 4, /* Hash table entry size. */
8975 1, /* Internal relocs per external relocs. */
8976 ARCH_SIZE, /* Arch size. */
8977 LOG_FILE_ALIGN, /* Log_file_align. */
8978 ELFCLASSNN, EV_CURRENT,
8979 bfd_elfNN_write_out_phdrs,
8980 bfd_elfNN_write_shdrs_and_ehdr,
8981 bfd_elfNN_checksum_contents,
8982 bfd_elfNN_write_relocs,
8983 bfd_elfNN_swap_symbol_in,
8984 bfd_elfNN_swap_symbol_out,
8985 bfd_elfNN_slurp_reloc_table,
8986 bfd_elfNN_slurp_symbol_table,
8987 bfd_elfNN_swap_dyn_in,
8988 bfd_elfNN_swap_dyn_out,
8989 bfd_elfNN_swap_reloc_in,
8990 bfd_elfNN_swap_reloc_out,
8991 bfd_elfNN_swap_reloca_in,
8992 bfd_elfNN_swap_reloca_out
8995 #define ELF_ARCH bfd_arch_aarch64
8996 #define ELF_MACHINE_CODE EM_AARCH64
8997 #define ELF_MAXPAGESIZE 0x10000
8998 #define ELF_MINPAGESIZE 0x1000
8999 #define ELF_COMMONPAGESIZE 0x1000
9001 #define bfd_elfNN_close_and_cleanup \
9002 elfNN_aarch64_close_and_cleanup
9004 #define bfd_elfNN_bfd_free_cached_info \
9005 elfNN_aarch64_bfd_free_cached_info
9007 #define bfd_elfNN_bfd_is_target_special_symbol \
9008 elfNN_aarch64_is_target_special_symbol
9010 #define bfd_elfNN_bfd_link_hash_table_create \
9011 elfNN_aarch64_link_hash_table_create
9013 #define bfd_elfNN_bfd_merge_private_bfd_data \
9014 elfNN_aarch64_merge_private_bfd_data
9016 #define bfd_elfNN_bfd_print_private_bfd_data \
9017 elfNN_aarch64_print_private_bfd_data
9019 #define bfd_elfNN_bfd_reloc_type_lookup \
9020 elfNN_aarch64_reloc_type_lookup
9022 #define bfd_elfNN_bfd_reloc_name_lookup \
9023 elfNN_aarch64_reloc_name_lookup
9025 #define bfd_elfNN_bfd_set_private_flags \
9026 elfNN_aarch64_set_private_flags
9028 #define bfd_elfNN_find_inliner_info \
9029 elfNN_aarch64_find_inliner_info
9031 #define bfd_elfNN_find_nearest_line \
9032 elfNN_aarch64_find_nearest_line
9034 #define bfd_elfNN_mkobject \
9035 elfNN_aarch64_mkobject
9037 #define bfd_elfNN_new_section_hook \
9038 elfNN_aarch64_new_section_hook
9040 #define elf_backend_adjust_dynamic_symbol \
9041 elfNN_aarch64_adjust_dynamic_symbol
9043 #define elf_backend_always_size_sections \
9044 elfNN_aarch64_always_size_sections
9046 #define elf_backend_check_relocs \
9047 elfNN_aarch64_check_relocs
9049 #define elf_backend_copy_indirect_symbol \
9050 elfNN_aarch64_copy_indirect_symbol
9052 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9053 to them in our hash. */
9054 #define elf_backend_create_dynamic_sections \
9055 elfNN_aarch64_create_dynamic_sections
9057 #define elf_backend_init_index_section \
9058 _bfd_elf_init_2_index_sections
9060 #define elf_backend_finish_dynamic_sections \
9061 elfNN_aarch64_finish_dynamic_sections
9063 #define elf_backend_finish_dynamic_symbol \
9064 elfNN_aarch64_finish_dynamic_symbol
9066 #define elf_backend_gc_sweep_hook \
9067 elfNN_aarch64_gc_sweep_hook
9069 #define elf_backend_object_p \
9070 elfNN_aarch64_object_p
9072 #define elf_backend_output_arch_local_syms \
9073 elfNN_aarch64_output_arch_local_syms
9075 #define elf_backend_plt_sym_val \
9076 elfNN_aarch64_plt_sym_val
9078 #define elf_backend_post_process_headers \
9079 elfNN_aarch64_post_process_headers
9081 #define elf_backend_relocate_section \
9082 elfNN_aarch64_relocate_section
9084 #define elf_backend_reloc_type_class \
9085 elfNN_aarch64_reloc_type_class
9087 #define elf_backend_section_from_shdr \
9088 elfNN_aarch64_section_from_shdr
9090 #define elf_backend_size_dynamic_sections \
9091 elfNN_aarch64_size_dynamic_sections
9093 #define elf_backend_size_info \
9094 elfNN_aarch64_size_info
9096 #define elf_backend_write_section \
9097 elfNN_aarch64_write_section
9099 #define elf_backend_can_refcount 1
9100 #define elf_backend_can_gc_sections 1
9101 #define elf_backend_plt_readonly 1
9102 #define elf_backend_want_got_plt 1
9103 #define elf_backend_want_plt_sym 0
9104 #define elf_backend_may_use_rel_p 0
9105 #define elf_backend_may_use_rela_p 1
9106 #define elf_backend_default_use_rela_p 1
9107 #define elf_backend_rela_normal 1
9108 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9109 #define elf_backend_default_execstack 0
9110 #define elf_backend_extern_protected_data 1
9112 #undef elf_backend_obj_attrs_section
9113 #define elf_backend_obj_attrs_section ".ARM.attributes"
9115 #include "elfNN-target.h"