2 Copyright 1995, 1996 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* ELF linker code. */
22 static boolean elf_link_add_object_symbols
23 PARAMS ((bfd *, struct bfd_link_info *));
24 static boolean elf_link_add_archive_symbols
25 PARAMS ((bfd *, struct bfd_link_info *));
26 static boolean elf_export_symbol
27 PARAMS ((struct elf_link_hash_entry *, PTR));
28 static boolean elf_adjust_dynamic_symbol
29 PARAMS ((struct elf_link_hash_entry *, PTR));
31 /* This struct is used to pass information to routines called via
32 elf_link_hash_traverse which must return failure. */
34 struct elf_info_failed
37 struct bfd_link_info *info;
40 /* Given an ELF BFD, add symbols to the global hash table as
44 elf_bfd_link_add_symbols (abfd, info)
46 struct bfd_link_info *info;
48 switch (bfd_get_format (abfd))
51 return elf_link_add_object_symbols (abfd, info);
53 return elf_link_add_archive_symbols (abfd, info);
55 bfd_set_error (bfd_error_wrong_format);
61 /* Add symbols from an ELF archive file to the linker hash table. We
62 don't use _bfd_generic_link_add_archive_symbols because of a
63 problem which arises on UnixWare. The UnixWare libc.so is an
64 archive which includes an entry libc.so.1 which defines a bunch of
65 symbols. The libc.so archive also includes a number of other
66 object files, which also define symbols, some of which are the same
67 as those defined in libc.so.1. Correct linking requires that we
68 consider each object file in turn, and include it if it defines any
69 symbols we need. _bfd_generic_link_add_archive_symbols does not do
70 this; it looks through the list of undefined symbols, and includes
71 any object file which defines them. When this algorithm is used on
72 UnixWare, it winds up pulling in libc.so.1 early and defining a
73 bunch of symbols. This means that some of the other objects in the
74 archive are not included in the link, which is incorrect since they
75 precede libc.so.1 in the archive.
77 Fortunately, ELF archive handling is simpler than that done by
78 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
79 oddities. In ELF, if we find a symbol in the archive map, and the
80 symbol is currently undefined, we know that we must pull in that
83 Unfortunately, we do have to make multiple passes over the symbol
84 table until nothing further is resolved. */
87 elf_link_add_archive_symbols (abfd, info)
89 struct bfd_link_info *info;
92 boolean *defined = NULL;
93 boolean *included = NULL;
97 if (! bfd_has_map (abfd))
99 /* An empty archive is a special case. */
100 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
102 bfd_set_error (bfd_error_no_armap);
106 /* Keep track of all symbols we know to be already defined, and all
107 files we know to be already included. This is to speed up the
108 second and subsequent passes. */
109 c = bfd_ardata (abfd)->symdef_count;
112 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
113 included = (boolean *) bfd_malloc (c * sizeof (boolean));
114 if (defined == (boolean *) NULL || included == (boolean *) NULL)
116 memset (defined, 0, c * sizeof (boolean));
117 memset (included, 0, c * sizeof (boolean));
119 symdefs = bfd_ardata (abfd)->symdefs;
132 symdefend = symdef + c;
133 for (i = 0; symdef < symdefend; symdef++, i++)
135 struct elf_link_hash_entry *h;
137 struct bfd_link_hash_entry *undefs_tail;
140 if (defined[i] || included[i])
142 if (symdef->file_offset == last)
148 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
149 false, false, false);
150 if (h == (struct elf_link_hash_entry *) NULL)
152 if (h->root.type != bfd_link_hash_undefined)
154 if (h->root.type != bfd_link_hash_undefweak)
159 /* We need to include this archive member. */
161 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
162 if (element == (bfd *) NULL)
165 if (! bfd_check_format (element, bfd_object))
168 /* Doublecheck that we have not included this object
169 already--it should be impossible, but there may be
170 something wrong with the archive. */
171 if (element->archive_pass != 0)
173 bfd_set_error (bfd_error_bad_value);
176 element->archive_pass = 1;
178 undefs_tail = info->hash->undefs_tail;
180 if (! (*info->callbacks->add_archive_element) (info, element,
183 if (! elf_link_add_object_symbols (element, info))
186 /* If there are any new undefined symbols, we need to make
187 another pass through the archive in order to see whether
188 they can be defined. FIXME: This isn't perfect, because
189 common symbols wind up on undefs_tail and because an
190 undefined symbol which is defined later on in this pass
191 does not require another pass. This isn't a bug, but it
192 does make the code less efficient than it could be. */
193 if (undefs_tail != info->hash->undefs_tail)
196 /* Look backward to mark all symbols from this object file
197 which we have already seen in this pass. */
201 included[mark] = true;
206 while (symdefs[mark].file_offset == symdef->file_offset);
208 /* We mark subsequent symbols from this object file as we go
209 on through the loop. */
210 last = symdef->file_offset;
221 if (defined != (boolean *) NULL)
223 if (included != (boolean *) NULL)
228 /* Add symbols from an ELF object file to the linker hash table. */
231 elf_link_add_object_symbols (abfd, info)
233 struct bfd_link_info *info;
235 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
236 const Elf_Internal_Sym *,
237 const char **, flagword *,
238 asection **, bfd_vma *));
239 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
240 asection *, const Elf_Internal_Rela *));
242 Elf_Internal_Shdr *hdr;
246 Elf_External_Sym *buf = NULL;
247 struct elf_link_hash_entry **sym_hash;
249 Elf_External_Dyn *dynbuf = NULL;
250 struct elf_link_hash_entry *weaks;
251 Elf_External_Sym *esym;
252 Elf_External_Sym *esymend;
254 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
255 collect = get_elf_backend_data (abfd)->collect;
257 /* As a GNU extension, any input sections which are named
258 .gnu.warning.SYMBOL are treated as warning symbols for the given
259 symbol. This differs from .gnu.warning sections, which generate
260 warnings when they are included in an output file. */
265 for (s = abfd->sections; s != NULL; s = s->next)
269 name = bfd_get_section_name (abfd, s);
270 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
275 sz = bfd_section_size (abfd, s);
276 msg = (char *) bfd_alloc (abfd, sz);
280 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
283 if (! (_bfd_generic_link_add_one_symbol
285 name + sizeof ".gnu.warning." - 1,
286 BSF_WARNING, s, (bfd_vma) 0, msg, false, collect,
287 (struct bfd_link_hash_entry **) NULL)))
290 if (! info->relocateable)
292 /* Clobber the section size so that the warning does
293 not get copied into the output file. */
300 /* A stripped shared library might only have a dynamic symbol table,
301 not a regular symbol table. In that case we can still go ahead
302 and link using the dynamic symbol table. */
303 if (elf_onesymtab (abfd) == 0
304 && elf_dynsymtab (abfd) != 0)
306 elf_onesymtab (abfd) = elf_dynsymtab (abfd);
307 elf_tdata (abfd)->symtab_hdr = elf_tdata (abfd)->dynsymtab_hdr;
310 hdr = &elf_tdata (abfd)->symtab_hdr;
311 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
313 /* The sh_info field of the symtab header tells us where the
314 external symbols start. We don't care about the local symbols at
316 if (elf_bad_symtab (abfd))
318 extsymcount = symcount;
323 extsymcount = symcount - hdr->sh_info;
324 extsymoff = hdr->sh_info;
327 buf = ((Elf_External_Sym *)
328 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
329 if (buf == NULL && extsymcount != 0)
332 /* We store a pointer to the hash table entry for each external
334 sym_hash = ((struct elf_link_hash_entry **)
336 extsymcount * sizeof (struct elf_link_hash_entry *)));
337 if (sym_hash == NULL)
339 elf_sym_hashes (abfd) = sym_hash;
341 if (elf_elfheader (abfd)->e_type != ET_DYN)
345 /* If we are creating a shared library, create all the dynamic
346 sections immediately. We need to attach them to something,
347 so we attach them to this BFD, provided it is the right
348 format. FIXME: If there are no input BFD's of the same
349 format as the output, we can't make a shared library. */
351 && ! elf_hash_table (info)->dynamic_sections_created
352 && abfd->xvec == info->hash->creator)
354 if (! elf_link_create_dynamic_sections (abfd, info))
363 bfd_size_type oldsize;
364 bfd_size_type strindex;
368 /* You can't use -r against a dynamic object. Also, there's no
369 hope of using a dynamic object which does not exactly match
370 the format of the output file. */
371 if (info->relocateable
372 || info->hash->creator != abfd->xvec)
374 bfd_set_error (bfd_error_invalid_operation);
378 /* Find the name to use in a DT_NEEDED entry that refers to this
379 object. If the object has a DT_SONAME entry, we use it.
380 Otherwise, if the generic linker stuck something in
381 elf_dt_name, we use that. Otherwise, we just use the file
382 name. If the generic linker put a null string into
383 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
384 there is a DT_SONAME entry. */
386 name = bfd_get_filename (abfd);
387 if (elf_dt_name (abfd) != NULL)
389 name = elf_dt_name (abfd);
393 s = bfd_get_section_by_name (abfd, ".dynamic");
396 Elf_External_Dyn *extdyn;
397 Elf_External_Dyn *extdynend;
401 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
405 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
406 (file_ptr) 0, s->_raw_size))
409 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
412 link = elf_elfsections (abfd)[elfsec]->sh_link;
415 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
416 for (; extdyn < extdynend; extdyn++)
418 Elf_Internal_Dyn dyn;
420 elf_swap_dyn_in (abfd, extdyn, &dyn);
421 if (dyn.d_tag == DT_SONAME)
423 name = bfd_elf_string_from_elf_section (abfd, link,
428 if (dyn.d_tag == DT_NEEDED)
430 struct bfd_link_needed_list *n, **pn;
433 n = ((struct bfd_link_needed_list *)
434 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
435 fnm = bfd_elf_string_from_elf_section (abfd, link,
437 if (n == NULL || fnm == NULL)
439 anm = bfd_alloc (abfd, strlen (fnm) + 1);
446 for (pn = &elf_hash_table (info)->needed;
458 /* We do not want to include any of the sections in a dynamic
459 object in the output file. We hack by simply clobbering the
460 list of sections in the BFD. This could be handled more
461 cleanly by, say, a new section flag; the existing
462 SEC_NEVER_LOAD flag is not the one we want, because that one
463 still implies that the section takes up space in the output
465 abfd->sections = NULL;
466 abfd->section_count = 0;
468 /* If this is the first dynamic object found in the link, create
469 the special sections required for dynamic linking. */
470 if (! elf_hash_table (info)->dynamic_sections_created)
472 if (! elf_link_create_dynamic_sections (abfd, info))
478 /* Add a DT_NEEDED entry for this dynamic object. */
479 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
480 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
482 if (strindex == (bfd_size_type) -1)
485 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
488 Elf_External_Dyn *dyncon, *dynconend;
490 /* The hash table size did not change, which means that
491 the dynamic object name was already entered. If we
492 have already included this dynamic object in the
493 link, just ignore it. There is no reason to include
494 a particular dynamic object more than once. */
495 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
497 BFD_ASSERT (sdyn != NULL);
499 dyncon = (Elf_External_Dyn *) sdyn->contents;
500 dynconend = (Elf_External_Dyn *) (sdyn->contents +
502 for (; dyncon < dynconend; dyncon++)
504 Elf_Internal_Dyn dyn;
506 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
508 if (dyn.d_tag == DT_NEEDED
509 && dyn.d_un.d_val == strindex)
518 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
522 /* Save the SONAME, if there is one, because sometimes the
523 linker emulation code will need to know it. */
525 name = bfd_get_filename (abfd);
526 elf_dt_name (abfd) = name;
530 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
532 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
533 != extsymcount * sizeof (Elf_External_Sym)))
538 esymend = buf + extsymcount;
539 for (esym = buf; esym < esymend; esym++, sym_hash++)
541 Elf_Internal_Sym sym;
547 struct elf_link_hash_entry *h;
549 boolean size_change_ok, type_change_ok;
552 elf_swap_symbol_in (abfd, esym, &sym);
554 flags = BSF_NO_FLAGS;
556 value = sym.st_value;
559 bind = ELF_ST_BIND (sym.st_info);
560 if (bind == STB_LOCAL)
562 /* This should be impossible, since ELF requires that all
563 global symbols follow all local symbols, and that sh_info
564 point to the first global symbol. Unfortunatealy, Irix 5
568 else if (bind == STB_GLOBAL)
570 if (sym.st_shndx != SHN_UNDEF
571 && sym.st_shndx != SHN_COMMON)
576 else if (bind == STB_WEAK)
580 /* Leave it up to the processor backend. */
583 if (sym.st_shndx == SHN_UNDEF)
584 sec = bfd_und_section_ptr;
585 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
587 sec = section_from_elf_index (abfd, sym.st_shndx);
591 sec = bfd_abs_section_ptr;
593 else if (sym.st_shndx == SHN_ABS)
594 sec = bfd_abs_section_ptr;
595 else if (sym.st_shndx == SHN_COMMON)
597 sec = bfd_com_section_ptr;
598 /* What ELF calls the size we call the value. What ELF
599 calls the value we call the alignment. */
604 /* Leave it up to the processor backend. */
607 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
608 if (name == (const char *) NULL)
613 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
617 /* The hook function sets the name to NULL if this symbol
618 should be skipped for some reason. */
619 if (name == (const char *) NULL)
623 /* Sanity check that all possibilities were handled. */
624 if (sec == (asection *) NULL)
626 bfd_set_error (bfd_error_bad_value);
630 if (bfd_is_und_section (sec)
631 || bfd_is_com_section (sec))
636 size_change_ok = false;
637 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
638 if (info->hash->creator->flavour == bfd_target_elf_flavour)
640 /* We need to look up the symbol now in order to get some of
641 the dynamic object handling right. We pass the hash
642 table entry in to _bfd_generic_link_add_one_symbol so
643 that it does not have to look it up again. */
644 if (! bfd_is_und_section (sec))
645 h = elf_link_hash_lookup (elf_hash_table (info), name,
648 h = ((struct elf_link_hash_entry *)
649 bfd_wrapped_link_hash_lookup (abfd, info, name, true,
655 if (h->root.type == bfd_link_hash_new)
656 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
658 while (h->root.type == bfd_link_hash_indirect
659 || h->root.type == bfd_link_hash_warning)
660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
662 /* It's OK to change the type if it used to be a weak
664 if (h->root.type == bfd_link_hash_defweak
665 || h->root.type == bfd_link_hash_undefweak)
666 type_change_ok = true;
668 /* It's OK to change the size if it used to be a weak
669 definition, or if it used to be undefined, or if we will
670 be overriding an old definition. */
672 || h->root.type == bfd_link_hash_undefined)
673 size_change_ok = true;
675 /* If we are looking at a dynamic object, and this is a
676 definition, we need to see if it has already been defined
677 by some other object. If it has, we want to use the
678 existing definition, and we do not want to report a
679 multiple symbol definition error; we do this by
680 clobbering sec to be bfd_und_section_ptr. We treat a
681 common symbol as a definition if the symbol in the shared
682 library is a function, since common symbols always
683 represent variables; this can cause confusion in
684 principle, but any such confusion would seem to indicate
685 an erroneous program or shared library. */
686 if (dynamic && definition)
688 if (h->root.type == bfd_link_hash_defined
689 || h->root.type == bfd_link_hash_defweak
690 || (h->root.type == bfd_link_hash_common
692 || ELF_ST_TYPE (sym.st_info) == STT_FUNC)))
694 sec = bfd_und_section_ptr;
696 size_change_ok = true;
697 if (h->root.type == bfd_link_hash_common)
698 type_change_ok = true;
702 /* Similarly, if we are not looking at a dynamic object, and
703 we have a definition, we want to override any definition
704 we may have from a dynamic object. Symbols from regular
705 files always take precedence over symbols from dynamic
706 objects, even if they are defined after the dynamic
707 object in the link. */
710 || (bfd_is_com_section (sec)
711 && (h->root.type == bfd_link_hash_defweak
712 || h->type == STT_FUNC)))
713 && (h->root.type == bfd_link_hash_defined
714 || h->root.type == bfd_link_hash_defweak)
715 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
716 && (bfd_get_flavour (h->root.u.def.section->owner)
717 == bfd_target_elf_flavour)
718 && (elf_elfheader (h->root.u.def.section->owner)->e_type
721 /* Change the hash table entry to undefined, and let
722 _bfd_generic_link_add_one_symbol do the right thing
723 with the new definition. */
724 h->root.type = bfd_link_hash_undefined;
725 h->root.u.undef.abfd = h->root.u.def.section->owner;
726 size_change_ok = true;
727 if (bfd_is_com_section (sec))
728 type_change_ok = true;
732 if (! (_bfd_generic_link_add_one_symbol
733 (info, abfd, name, flags, sec, value, (const char *) NULL,
734 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
738 while (h->root.type == bfd_link_hash_indirect
739 || h->root.type == bfd_link_hash_warning)
740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
746 && (flags & BSF_WEAK) != 0
747 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
748 && info->hash->creator->flavour == bfd_target_elf_flavour
749 && h->weakdef == NULL)
751 /* Keep a list of all weak defined non function symbols from
752 a dynamic object, using the weakdef field. Later in this
753 function we will set the weakdef field to the correct
754 value. We only put non-function symbols from dynamic
755 objects on this list, because that happens to be the only
756 time we need to know the normal symbol corresponding to a
757 weak symbol, and the information is time consuming to
758 figure out. If the weakdef field is not already NULL,
759 then this symbol was already defined by some previous
760 dynamic object, and we will be using that previous
761 definition anyhow. */
768 /* Get the alignment of a common symbol. */
769 if (sym.st_shndx == SHN_COMMON
770 && h->root.type == bfd_link_hash_common)
771 h->root.u.c.p->alignment_power = bfd_log2 (sym.st_value);
773 if (info->hash->creator->flavour == bfd_target_elf_flavour)
779 /* Remember the symbol size and type. */
781 && (definition || h->size == 0))
783 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
784 (*_bfd_error_handler)
785 ("Warning: size of symbol `%s' changed from %lu to %lu in %s",
786 name, (unsigned long) h->size, (unsigned long) sym.st_size,
787 bfd_get_filename (abfd));
789 h->size = sym.st_size;
791 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
792 && (definition || h->type == STT_NOTYPE))
794 if (h->type != STT_NOTYPE
795 && h->type != ELF_ST_TYPE (sym.st_info)
797 (*_bfd_error_handler)
798 ("Warning: type of symbol `%s' changed from %d to %d in %s",
799 name, h->type, ELF_ST_TYPE (sym.st_info),
800 bfd_get_filename (abfd));
802 h->type = ELF_ST_TYPE (sym.st_info);
805 if (sym.st_other != 0
806 && (definition || h->other == 0))
807 h->other = sym.st_other;
809 /* Set a flag in the hash table entry indicating the type of
810 reference or definition we just found. Keep a count of
811 the number of dynamic symbols we find. A dynamic symbol
812 is one which is referenced or defined by both a regular
813 object and a shared object. */
814 old_flags = h->elf_link_hash_flags;
819 new_flag = ELF_LINK_HASH_REF_REGULAR;
821 new_flag = ELF_LINK_HASH_DEF_REGULAR;
823 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
824 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
830 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
832 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
833 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
834 | ELF_LINK_HASH_REF_REGULAR)) != 0
835 || (h->weakdef != NULL
837 && h->weakdef->dynindx != -1))
841 h->elf_link_hash_flags |= new_flag;
842 if (dynsym && h->dynindx == -1)
844 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
846 if (h->weakdef != NULL
848 && h->weakdef->dynindx == -1)
850 if (! _bfd_elf_link_record_dynamic_symbol (info,
858 /* Now set the weakdefs field correctly for all the weak defined
859 symbols we found. The only way to do this is to search all the
860 symbols. Since we only need the information for non functions in
861 dynamic objects, that's the only time we actually put anything on
862 the list WEAKS. We need this information so that if a regular
863 object refers to a symbol defined weakly in a dynamic object, the
864 real symbol in the dynamic object is also put in the dynamic
865 symbols; we also must arrange for both symbols to point to the
866 same memory location. We could handle the general case of symbol
867 aliasing, but a general symbol alias can only be generated in
868 assembler code, handling it correctly would be very time
869 consuming, and other ELF linkers don't handle general aliasing
871 while (weaks != NULL)
873 struct elf_link_hash_entry *hlook;
876 struct elf_link_hash_entry **hpp;
877 struct elf_link_hash_entry **hppend;
880 weaks = hlook->weakdef;
881 hlook->weakdef = NULL;
883 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
884 || hlook->root.type == bfd_link_hash_defweak
885 || hlook->root.type == bfd_link_hash_common
886 || hlook->root.type == bfd_link_hash_indirect);
887 slook = hlook->root.u.def.section;
888 vlook = hlook->root.u.def.value;
890 hpp = elf_sym_hashes (abfd);
891 hppend = hpp + extsymcount;
892 for (; hpp < hppend; hpp++)
894 struct elf_link_hash_entry *h;
897 if (h != NULL && h != hlook
898 && h->root.type == bfd_link_hash_defined
899 && h->root.u.def.section == slook
900 && h->root.u.def.value == vlook)
904 /* If the weak definition is in the list of dynamic
905 symbols, make sure the real definition is put there
907 if (hlook->dynindx != -1
910 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
914 /* If the real definition is in the list of dynamic
915 symbols, make sure the weak definition is put there
916 as well. If we don't do this, then the dynamic
917 loader might not merge the entries for the real
918 definition and the weak definition. */
920 && hlook->dynindx == -1)
922 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
937 /* If this object is the same format as the output object, and it is
938 not a shared library, then let the backend look through the
941 This is required to build global offset table entries and to
942 arrange for dynamic relocs. It is not required for the
943 particular common case of linking non PIC code, even when linking
944 against shared libraries, but unfortunately there is no way of
945 knowing whether an object file has been compiled PIC or not.
946 Looking through the relocs is not particularly time consuming.
947 The problem is that we must either (1) keep the relocs in memory,
948 which causes the linker to require additional runtime memory or
949 (2) read the relocs twice from the input file, which wastes time.
950 This would be a good case for using mmap.
952 I have no idea how to handle linking PIC code into a file of a
953 different format. It probably can't be done. */
954 check_relocs = get_elf_backend_data (abfd)->check_relocs;
956 && abfd->xvec == info->hash->creator
957 && check_relocs != NULL)
961 for (o = abfd->sections; o != NULL; o = o->next)
963 Elf_Internal_Rela *internal_relocs;
966 if ((o->flags & SEC_RELOC) == 0
967 || o->reloc_count == 0)
970 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
971 (abfd, o, (PTR) NULL,
972 (Elf_Internal_Rela *) NULL,
974 if (internal_relocs == NULL)
977 ok = (*check_relocs) (abfd, info, o, internal_relocs);
979 if (! info->keep_memory)
980 free (internal_relocs);
987 /* If this is a non-traditional, non-relocateable link, try to
988 optimize the handling of the .stab/.stabstr sections. */
990 && ! info->relocateable
991 && ! info->traditional_format
992 && info->hash->creator->flavour == bfd_target_elf_flavour
993 && (info->strip != strip_all && info->strip != strip_debugger))
995 asection *stab, *stabstr;
997 stab = bfd_get_section_by_name (abfd, ".stab");
1000 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1002 if (stabstr != NULL)
1004 struct bfd_elf_section_data *secdata;
1006 secdata = elf_section_data (stab);
1007 if (! _bfd_link_section_stabs (abfd,
1008 &elf_hash_table (info)->stab_info,
1010 &secdata->stab_info))
1026 /* Create some sections which will be filled in with dynamic linking
1027 information. ABFD is an input file which requires dynamic sections
1028 to be created. The dynamic sections take up virtual memory space
1029 when the final executable is run, so we need to create them before
1030 addresses are assigned to the output sections. We work out the
1031 actual contents and size of these sections later. */
1034 elf_link_create_dynamic_sections (abfd, info)
1036 struct bfd_link_info *info;
1039 register asection *s;
1040 struct elf_link_hash_entry *h;
1041 struct elf_backend_data *bed;
1043 if (elf_hash_table (info)->dynamic_sections_created)
1046 /* Make sure that all dynamic sections use the same input BFD. */
1047 if (elf_hash_table (info)->dynobj == NULL)
1048 elf_hash_table (info)->dynobj = abfd;
1050 abfd = elf_hash_table (info)->dynobj;
1052 /* Note that we set the SEC_IN_MEMORY flag for all of these
1054 flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
1056 /* A dynamically linked executable has a .interp section, but a
1057 shared library does not. */
1060 s = bfd_make_section (abfd, ".interp");
1062 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1066 s = bfd_make_section (abfd, ".dynsym");
1068 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1069 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1072 s = bfd_make_section (abfd, ".dynstr");
1074 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1077 /* Create a strtab to hold the dynamic symbol names. */
1078 if (elf_hash_table (info)->dynstr == NULL)
1080 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1081 if (elf_hash_table (info)->dynstr == NULL)
1085 s = bfd_make_section (abfd, ".dynamic");
1087 || ! bfd_set_section_flags (abfd, s, flags)
1088 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1091 /* The special symbol _DYNAMIC is always set to the start of the
1092 .dynamic section. This call occurs before we have processed the
1093 symbols for any dynamic object, so we don't have to worry about
1094 overriding a dynamic definition. We could set _DYNAMIC in a
1095 linker script, but we only want to define it if we are, in fact,
1096 creating a .dynamic section. We don't want to define it if there
1097 is no .dynamic section, since on some ELF platforms the start up
1098 code examines it to decide how to initialize the process. */
1100 if (! (_bfd_generic_link_add_one_symbol
1101 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1102 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1103 (struct bfd_link_hash_entry **) &h)))
1105 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1106 h->type = STT_OBJECT;
1109 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1112 s = bfd_make_section (abfd, ".hash");
1114 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1115 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1118 /* Let the backend create the rest of the sections. This lets the
1119 backend set the right flags. The backend will normally create
1120 the .got and .plt sections. */
1121 bed = get_elf_backend_data (abfd);
1122 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1125 elf_hash_table (info)->dynamic_sections_created = true;
1130 /* Add an entry to the .dynamic table. */
1133 elf_add_dynamic_entry (info, tag, val)
1134 struct bfd_link_info *info;
1138 Elf_Internal_Dyn dyn;
1142 bfd_byte *newcontents;
1144 dynobj = elf_hash_table (info)->dynobj;
1146 s = bfd_get_section_by_name (dynobj, ".dynamic");
1147 BFD_ASSERT (s != NULL);
1149 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1150 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1151 if (newcontents == NULL)
1155 dyn.d_un.d_val = val;
1156 elf_swap_dyn_out (dynobj, &dyn,
1157 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1159 s->_raw_size = newsize;
1160 s->contents = newcontents;
1166 /* Read and swap the relocs for a section. They may have been cached.
1167 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1168 they are used as buffers to read into. They are known to be large
1169 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1170 value is allocated using either malloc or bfd_alloc, according to
1171 the KEEP_MEMORY argument. */
1174 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1178 PTR external_relocs;
1179 Elf_Internal_Rela *internal_relocs;
1180 boolean keep_memory;
1182 Elf_Internal_Shdr *rel_hdr;
1184 Elf_Internal_Rela *alloc2 = NULL;
1186 if (elf_section_data (o)->relocs != NULL)
1187 return elf_section_data (o)->relocs;
1189 if (o->reloc_count == 0)
1192 rel_hdr = &elf_section_data (o)->rel_hdr;
1194 if (internal_relocs == NULL)
1198 size = o->reloc_count * sizeof (Elf_Internal_Rela);
1200 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
1202 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
1203 if (internal_relocs == NULL)
1207 if (external_relocs == NULL)
1209 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
1212 external_relocs = alloc1;
1215 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
1216 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
1217 != rel_hdr->sh_size))
1220 /* Swap in the relocs. For convenience, we always produce an
1221 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
1223 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
1225 Elf_External_Rel *erel;
1226 Elf_External_Rel *erelend;
1227 Elf_Internal_Rela *irela;
1229 erel = (Elf_External_Rel *) external_relocs;
1230 erelend = erel + o->reloc_count;
1231 irela = internal_relocs;
1232 for (; erel < erelend; erel++, irela++)
1234 Elf_Internal_Rel irel;
1236 elf_swap_reloc_in (abfd, erel, &irel);
1237 irela->r_offset = irel.r_offset;
1238 irela->r_info = irel.r_info;
1239 irela->r_addend = 0;
1244 Elf_External_Rela *erela;
1245 Elf_External_Rela *erelaend;
1246 Elf_Internal_Rela *irela;
1248 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
1250 erela = (Elf_External_Rela *) external_relocs;
1251 erelaend = erela + o->reloc_count;
1252 irela = internal_relocs;
1253 for (; erela < erelaend; erela++, irela++)
1254 elf_swap_reloca_in (abfd, erela, irela);
1257 /* Cache the results for next time, if we can. */
1259 elf_section_data (o)->relocs = internal_relocs;
1264 /* Don't free alloc2, since if it was allocated we are passing it
1265 back (under the name of internal_relocs). */
1267 return internal_relocs;
1278 /* Record an assignment to a symbol made by a linker script. We need
1279 this in case some dynamic object refers to this symbol. */
1283 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
1285 struct bfd_link_info *info;
1289 struct elf_link_hash_entry *h;
1291 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1294 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
1298 if (h->root.type == bfd_link_hash_new)
1299 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
1301 /* If this symbol is being provided by the linker script, and it is
1302 currently defined by a dynamic object, but not by a regular
1303 object, then mark it as undefined so that the generic linker will
1304 force the correct value. */
1306 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1307 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1308 h->root.type = bfd_link_hash_undefined;
1310 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1311 h->type = STT_OBJECT;
1313 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1314 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
1316 && h->dynindx == -1)
1318 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1321 /* If this is a weak defined symbol, and we know a corresponding
1322 real symbol from the same dynamic object, make sure the real
1323 symbol is also made into a dynamic symbol. */
1324 if (h->weakdef != NULL
1325 && h->weakdef->dynindx == -1)
1327 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
1336 /* Array used to determine the number of hash table buckets to use
1337 based on the number of symbols there are. If there are fewer than
1338 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
1339 fewer than 37 we use 17 buckets, and so forth. We never use more
1340 than 32771 buckets. */
1342 static const size_t elf_buckets[] =
1344 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
1348 /* Set up the sizes and contents of the ELF dynamic sections. This is
1349 called by the ELF linker emulation before_allocation routine. We
1350 must set the sizes of the sections before the linker sets the
1351 addresses of the various sections. */
1354 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
1355 export_dynamic, info, sinterpptr)
1359 boolean export_dynamic;
1360 struct bfd_link_info *info;
1361 asection **sinterpptr;
1364 struct elf_backend_data *bed;
1368 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1371 dynobj = elf_hash_table (info)->dynobj;
1373 /* If there were no dynamic objects in the link, there is nothing to
1378 /* If we are supposed to export all symbols into the dynamic symbol
1379 table (this is not the normal case), then do so. */
1382 struct elf_info_failed eif;
1386 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
1392 if (elf_hash_table (info)->dynamic_sections_created)
1394 struct elf_info_failed eif;
1395 struct elf_link_hash_entry *h;
1396 bfd_size_type strsize;
1398 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
1399 BFD_ASSERT (*sinterpptr != NULL || info->shared);
1405 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, soname,
1407 if (indx == (bfd_size_type) -1
1408 || ! elf_add_dynamic_entry (info, DT_SONAME, indx))
1414 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
1422 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
1424 if (indx == (bfd_size_type) -1
1425 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
1429 /* Find all symbols which were defined in a dynamic object and make
1430 the backend pick a reasonable value for them. */
1433 elf_link_hash_traverse (elf_hash_table (info),
1434 elf_adjust_dynamic_symbol,
1439 /* Add some entries to the .dynamic section. We fill in some of the
1440 values later, in elf_bfd_final_link, but we must add the entries
1441 now so that we know the final size of the .dynamic section. */
1442 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
1445 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
1446 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
1448 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
1451 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
1454 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
1455 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
1457 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
1460 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1461 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
1462 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
1463 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
1464 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
1465 || ! elf_add_dynamic_entry (info, DT_SYMENT,
1466 sizeof (Elf_External_Sym)))
1470 /* The backend must work out the sizes of all the other dynamic
1472 bed = get_elf_backend_data (output_bfd);
1473 if (! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
1476 if (elf_hash_table (info)->dynamic_sections_created)
1481 size_t bucketcount = 0;
1482 Elf_Internal_Sym isym;
1484 /* Set the size of the .dynsym and .hash sections. We counted
1485 the number of dynamic symbols in elf_link_add_object_symbols.
1486 We will build the contents of .dynsym and .hash when we build
1487 the final symbol table, because until then we do not know the
1488 correct value to give the symbols. We built the .dynstr
1489 section as we went along in elf_link_add_object_symbols. */
1490 dynsymcount = elf_hash_table (info)->dynsymcount;
1491 s = bfd_get_section_by_name (dynobj, ".dynsym");
1492 BFD_ASSERT (s != NULL);
1493 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
1494 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1495 if (s->contents == NULL && s->_raw_size != 0)
1498 /* The first entry in .dynsym is a dummy symbol. */
1505 elf_swap_symbol_out (output_bfd, &isym,
1506 (PTR) (Elf_External_Sym *) s->contents);
1508 for (i = 0; elf_buckets[i] != 0; i++)
1510 bucketcount = elf_buckets[i];
1511 if (dynsymcount < elf_buckets[i + 1])
1515 s = bfd_get_section_by_name (dynobj, ".hash");
1516 BFD_ASSERT (s != NULL);
1517 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
1518 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
1519 if (s->contents == NULL)
1521 memset (s->contents, 0, (size_t) s->_raw_size);
1523 put_word (output_bfd, bucketcount, s->contents);
1524 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
1526 elf_hash_table (info)->bucketcount = bucketcount;
1528 s = bfd_get_section_by_name (dynobj, ".dynstr");
1529 BFD_ASSERT (s != NULL);
1530 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1532 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
1540 /* This routine is used to export all defined symbols into the dynamic
1541 symbol table. It is called via elf_link_hash_traverse. */
1544 elf_export_symbol (h, data)
1545 struct elf_link_hash_entry *h;
1548 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1550 if (h->dynindx == -1
1551 && (h->elf_link_hash_flags
1552 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1554 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1565 /* Make the backend pick a good value for a dynamic symbol. This is
1566 called via elf_link_hash_traverse, and also calls itself
1570 elf_adjust_dynamic_symbol (h, data)
1571 struct elf_link_hash_entry *h;
1574 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1576 struct elf_backend_data *bed;
1578 /* If this symbol was mentioned in a non-ELF file, try to set
1579 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
1580 permit a non-ELF file to correctly refer to a symbol defined in
1581 an ELF dynamic object. */
1582 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
1584 if (h->root.type != bfd_link_hash_defined
1585 && h->root.type != bfd_link_hash_defweak)
1586 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1589 if (h->root.u.def.section->owner != NULL
1590 && (bfd_get_flavour (h->root.u.def.section->owner)
1591 == bfd_target_elf_flavour))
1592 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1594 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1597 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1598 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1600 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
1608 /* If this is a final link, and the symbol was defined as a common
1609 symbol in a regular object file, and there was no definition in
1610 any dynamic object, then the linker will have allocated space for
1611 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
1612 flag will not have been set. */
1613 if (h->root.type == bfd_link_hash_defined
1614 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1615 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
1616 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1617 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
1618 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1620 /* If -Bsymbolic was used (which means to bind references to global
1621 symbols to the definition within the shared object), and this
1622 symbol was defined in a regular object, then it actually doesn't
1623 need a PLT entry. */
1624 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1625 && eif->info->shared
1626 && eif->info->symbolic
1627 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1628 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
1630 /* If this symbol does not require a PLT entry, and it is not
1631 defined by a dynamic object, or is not referenced by a regular
1632 object, ignore it. We do have to handle a weak defined symbol,
1633 even if no regular object refers to it, if we decided to add it
1634 to the dynamic symbol table. FIXME: Do we normally need to worry
1635 about symbols which are defined by one dynamic object and
1636 referenced by another one? */
1637 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
1638 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1639 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1640 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
1641 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
1644 /* If we've already adjusted this symbol, don't do it again. This
1645 can happen via a recursive call. */
1646 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1649 /* Don't look at this symbol again. Note that we must set this
1650 after checking the above conditions, because we may look at a
1651 symbol once, decide not to do anything, and then get called
1652 recursively later after REF_REGULAR is set below. */
1653 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
1655 /* If this is a weak definition, and we know a real definition, and
1656 the real symbol is not itself defined by a regular object file,
1657 then get a good value for the real definition. We handle the
1658 real symbol first, for the convenience of the backend routine.
1660 Note that there is a confusing case here. If the real definition
1661 is defined by a regular object file, we don't get the real symbol
1662 from the dynamic object, but we do get the weak symbol. If the
1663 processor backend uses a COPY reloc, then if some routine in the
1664 dynamic object changes the real symbol, we will not see that
1665 change in the corresponding weak symbol. This is the way other
1666 ELF linkers work as well, and seems to be a result of the shared
1669 I will clarify this issue. Most SVR4 shared libraries define the
1670 variable _timezone and define timezone as a weak synonym. The
1671 tzset call changes _timezone. If you write
1672 extern int timezone;
1674 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
1675 you might expect that, since timezone is a synonym for _timezone,
1676 the same number will print both times. However, if the processor
1677 backend uses a COPY reloc, then actually timezone will be copied
1678 into your process image, and, since you define _timezone
1679 yourself, _timezone will not. Thus timezone and _timezone will
1680 wind up at different memory locations. The tzset call will set
1681 _timezone, leaving timezone unchanged. */
1683 if (h->weakdef != NULL)
1685 struct elf_link_hash_entry *weakdef;
1687 BFD_ASSERT (h->root.type == bfd_link_hash_defined
1688 || h->root.type == bfd_link_hash_defweak);
1689 weakdef = h->weakdef;
1690 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
1691 || weakdef->root.type == bfd_link_hash_defweak);
1692 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
1693 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
1695 /* This symbol is defined by a regular object file, so we
1696 will not do anything special. Clear weakdef for the
1697 convenience of the processor backend. */
1702 /* There is an implicit reference by a regular object file
1703 via the weak symbol. */
1704 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
1705 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
1710 dynobj = elf_hash_table (eif->info)->dynobj;
1711 bed = get_elf_backend_data (dynobj);
1712 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
1721 /* Final phase of ELF linker. */
1723 /* A structure we use to avoid passing large numbers of arguments. */
1725 struct elf_final_link_info
1727 /* General link information. */
1728 struct bfd_link_info *info;
1731 /* Symbol string table. */
1732 struct bfd_strtab_hash *symstrtab;
1733 /* .dynsym section. */
1734 asection *dynsym_sec;
1735 /* .hash section. */
1737 /* Buffer large enough to hold contents of any section. */
1739 /* Buffer large enough to hold external relocs of any section. */
1740 PTR external_relocs;
1741 /* Buffer large enough to hold internal relocs of any section. */
1742 Elf_Internal_Rela *internal_relocs;
1743 /* Buffer large enough to hold external local symbols of any input
1745 Elf_External_Sym *external_syms;
1746 /* Buffer large enough to hold internal local symbols of any input
1748 Elf_Internal_Sym *internal_syms;
1749 /* Array large enough to hold a symbol index for each local symbol
1750 of any input BFD. */
1752 /* Array large enough to hold a section pointer for each local
1753 symbol of any input BFD. */
1754 asection **sections;
1755 /* Buffer to hold swapped out symbols. */
1756 Elf_External_Sym *symbuf;
1757 /* Number of swapped out symbols in buffer. */
1758 size_t symbuf_count;
1759 /* Number of symbols which fit in symbuf. */
1763 static boolean elf_link_output_sym
1764 PARAMS ((struct elf_final_link_info *, const char *,
1765 Elf_Internal_Sym *, asection *));
1766 static boolean elf_link_flush_output_syms
1767 PARAMS ((struct elf_final_link_info *));
1768 static boolean elf_link_output_extsym
1769 PARAMS ((struct elf_link_hash_entry *, PTR));
1770 static boolean elf_link_input_bfd
1771 PARAMS ((struct elf_final_link_info *, bfd *));
1772 static boolean elf_reloc_link_order
1773 PARAMS ((bfd *, struct bfd_link_info *, asection *,
1774 struct bfd_link_order *));
1776 /* This struct is used to pass information to routines called via
1777 elf_link_hash_traverse which must return failure. */
1779 struct elf_finfo_failed
1782 struct elf_final_link_info *finfo;
1785 /* Do the final step of an ELF link. */
1788 elf_bfd_final_link (abfd, info)
1790 struct bfd_link_info *info;
1794 struct elf_final_link_info finfo;
1795 register asection *o;
1796 register struct bfd_link_order *p;
1798 size_t max_contents_size;
1799 size_t max_external_reloc_size;
1800 size_t max_internal_reloc_count;
1801 size_t max_sym_count;
1803 Elf_Internal_Sym elfsym;
1805 Elf_Internal_Shdr *symtab_hdr;
1806 Elf_Internal_Shdr *symstrtab_hdr;
1807 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1808 struct elf_finfo_failed eif;
1811 abfd->flags |= DYNAMIC;
1813 dynamic = elf_hash_table (info)->dynamic_sections_created;
1814 dynobj = elf_hash_table (info)->dynobj;
1817 finfo.output_bfd = abfd;
1818 finfo.symstrtab = elf_stringtab_init ();
1819 if (finfo.symstrtab == NULL)
1823 finfo.dynsym_sec = NULL;
1824 finfo.hash_sec = NULL;
1828 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
1829 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
1830 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
1832 finfo.contents = NULL;
1833 finfo.external_relocs = NULL;
1834 finfo.internal_relocs = NULL;
1835 finfo.external_syms = NULL;
1836 finfo.internal_syms = NULL;
1837 finfo.indices = NULL;
1838 finfo.sections = NULL;
1839 finfo.symbuf = NULL;
1840 finfo.symbuf_count = 0;
1842 /* Count up the number of relocations we will output for each output
1843 section, so that we know the sizes of the reloc sections. We
1844 also figure out some maximum sizes. */
1845 max_contents_size = 0;
1846 max_external_reloc_size = 0;
1847 max_internal_reloc_count = 0;
1849 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
1853 for (p = o->link_order_head; p != NULL; p = p->next)
1855 if (p->type == bfd_section_reloc_link_order
1856 || p->type == bfd_symbol_reloc_link_order)
1858 else if (p->type == bfd_indirect_link_order)
1862 sec = p->u.indirect.section;
1864 /* Mark all sections which are to be included in the
1865 link. This will normally be every section. We need
1866 to do this so that we can identify any sections which
1867 the linker has decided to not include. */
1868 sec->linker_mark = true;
1870 if (info->relocateable)
1871 o->reloc_count += sec->reloc_count;
1873 if (sec->_raw_size > max_contents_size)
1874 max_contents_size = sec->_raw_size;
1875 if (sec->_cooked_size > max_contents_size)
1876 max_contents_size = sec->_cooked_size;
1878 /* We are interested in just local symbols, not all
1880 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour)
1884 if (elf_bad_symtab (sec->owner))
1885 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
1886 / sizeof (Elf_External_Sym));
1888 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
1890 if (sym_count > max_sym_count)
1891 max_sym_count = sym_count;
1893 if ((sec->flags & SEC_RELOC) != 0)
1897 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
1898 if (ext_size > max_external_reloc_size)
1899 max_external_reloc_size = ext_size;
1900 if (sec->reloc_count > max_internal_reloc_count)
1901 max_internal_reloc_count = sec->reloc_count;
1907 if (o->reloc_count > 0)
1908 o->flags |= SEC_RELOC;
1911 /* Explicitly clear the SEC_RELOC flag. The linker tends to
1912 set it (this is probably a bug) and if it is set
1913 assign_section_numbers will create a reloc section. */
1914 o->flags &=~ SEC_RELOC;
1917 /* If the SEC_ALLOC flag is not set, force the section VMA to
1918 zero. This is done in elf_fake_sections as well, but forcing
1919 the VMA to 0 here will ensure that relocs against these
1920 sections are handled correctly. */
1921 if ((o->flags & SEC_ALLOC) == 0
1922 && ! o->user_set_vma)
1926 /* Figure out the file positions for everything but the symbol table
1927 and the relocs. We set symcount to force assign_section_numbers
1928 to create a symbol table. */
1929 abfd->symcount = info->strip == strip_all ? 0 : 1;
1930 BFD_ASSERT (! abfd->output_has_begun);
1931 if (! _bfd_elf_compute_section_file_positions (abfd, info))
1934 /* That created the reloc sections. Set their sizes, and assign
1935 them file positions, and allocate some buffers. */
1936 for (o = abfd->sections; o != NULL; o = o->next)
1938 if ((o->flags & SEC_RELOC) != 0)
1940 Elf_Internal_Shdr *rel_hdr;
1941 register struct elf_link_hash_entry **p, **pend;
1943 rel_hdr = &elf_section_data (o)->rel_hdr;
1945 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
1947 /* The contents field must last into write_object_contents,
1948 so we allocate it with bfd_alloc rather than malloc. */
1949 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
1950 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
1953 p = ((struct elf_link_hash_entry **)
1954 bfd_malloc (o->reloc_count
1955 * sizeof (struct elf_link_hash_entry *)));
1956 if (p == NULL && o->reloc_count != 0)
1958 elf_section_data (o)->rel_hashes = p;
1959 pend = p + o->reloc_count;
1960 for (; p < pend; p++)
1963 /* Use the reloc_count field as an index when outputting the
1969 _bfd_elf_assign_file_positions_for_relocs (abfd);
1971 /* We have now assigned file positions for all the sections except
1972 .symtab and .strtab. We start the .symtab section at the current
1973 file position, and write directly to it. We build the .strtab
1974 section in memory. */
1976 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1977 /* sh_name is set in prep_headers. */
1978 symtab_hdr->sh_type = SHT_SYMTAB;
1979 symtab_hdr->sh_flags = 0;
1980 symtab_hdr->sh_addr = 0;
1981 symtab_hdr->sh_size = 0;
1982 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
1983 /* sh_link is set in assign_section_numbers. */
1984 /* sh_info is set below. */
1985 /* sh_offset is set just below. */
1986 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
1988 off = elf_tdata (abfd)->next_file_pos;
1989 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
1991 /* Note that at this point elf_tdata (abfd)->next_file_pos is
1992 incorrect. We do not yet know the size of the .symtab section.
1993 We correct next_file_pos below, after we do know the size. */
1995 /* Allocate a buffer to hold swapped out symbols. This is to avoid
1996 continuously seeking to the right position in the file. */
1997 if (! info->keep_memory || max_sym_count < 20)
1998 finfo.symbuf_size = 20;
2000 finfo.symbuf_size = max_sym_count;
2001 finfo.symbuf = ((Elf_External_Sym *)
2002 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
2003 if (finfo.symbuf == NULL)
2006 /* Start writing out the symbol table. The first symbol is always a
2008 if (info->strip != strip_all || info->relocateable)
2010 elfsym.st_value = 0;
2013 elfsym.st_other = 0;
2014 elfsym.st_shndx = SHN_UNDEF;
2015 if (! elf_link_output_sym (&finfo, (const char *) NULL,
2016 &elfsym, bfd_und_section_ptr))
2021 /* Some standard ELF linkers do this, but we don't because it causes
2022 bootstrap comparison failures. */
2023 /* Output a file symbol for the output file as the second symbol.
2024 We output this even if we are discarding local symbols, although
2025 I'm not sure if this is correct. */
2026 elfsym.st_value = 0;
2028 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
2029 elfsym.st_other = 0;
2030 elfsym.st_shndx = SHN_ABS;
2031 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
2032 &elfsym, bfd_abs_section_ptr))
2036 /* Output a symbol for each section. We output these even if we are
2037 discarding local symbols, since they are used for relocs. These
2038 symbols have no names. We store the index of each one in the
2039 index field of the section, so that we can find it again when
2040 outputting relocs. */
2041 if (info->strip != strip_all || info->relocateable)
2043 elfsym.st_value = 0;
2045 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
2046 elfsym.st_other = 0;
2047 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
2049 o = section_from_elf_index (abfd, i);
2051 o->target_index = abfd->symcount;
2052 elfsym.st_shndx = i;
2053 if (! elf_link_output_sym (&finfo, (const char *) NULL,
2059 /* Allocate some memory to hold information read in from the input
2061 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
2062 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
2063 finfo.internal_relocs = ((Elf_Internal_Rela *)
2064 bfd_malloc (max_internal_reloc_count
2065 * sizeof (Elf_Internal_Rela)));
2066 finfo.external_syms = ((Elf_External_Sym *)
2067 bfd_malloc (max_sym_count
2068 * sizeof (Elf_External_Sym)));
2069 finfo.internal_syms = ((Elf_Internal_Sym *)
2070 bfd_malloc (max_sym_count
2071 * sizeof (Elf_Internal_Sym)));
2072 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
2073 finfo.sections = ((asection **)
2074 bfd_malloc (max_sym_count * sizeof (asection *)));
2075 if ((finfo.contents == NULL && max_contents_size != 0)
2076 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
2077 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
2078 || (finfo.external_syms == NULL && max_sym_count != 0)
2079 || (finfo.internal_syms == NULL && max_sym_count != 0)
2080 || (finfo.indices == NULL && max_sym_count != 0)
2081 || (finfo.sections == NULL && max_sym_count != 0))
2084 /* Since ELF permits relocations to be against local symbols, we
2085 must have the local symbols available when we do the relocations.
2086 Since we would rather only read the local symbols once, and we
2087 would rather not keep them in memory, we handle all the
2088 relocations for a single input file at the same time.
2090 Unfortunately, there is no way to know the total number of local
2091 symbols until we have seen all of them, and the local symbol
2092 indices precede the global symbol indices. This means that when
2093 we are generating relocateable output, and we see a reloc against
2094 a global symbol, we can not know the symbol index until we have
2095 finished examining all the local symbols to see which ones we are
2096 going to output. To deal with this, we keep the relocations in
2097 memory, and don't output them until the end of the link. This is
2098 an unfortunate waste of memory, but I don't see a good way around
2099 it. Fortunately, it only happens when performing a relocateable
2100 link, which is not the common case. FIXME: If keep_memory is set
2101 we could write the relocs out and then read them again; I don't
2102 know how bad the memory loss will be. */
2104 for (sub = info->input_bfds; sub != NULL; sub = sub->next)
2105 sub->output_has_begun = false;
2106 for (o = abfd->sections; o != NULL; o = o->next)
2108 for (p = o->link_order_head; p != NULL; p = p->next)
2110 if (p->type == bfd_indirect_link_order
2111 && (bfd_get_flavour (p->u.indirect.section->owner)
2112 == bfd_target_elf_flavour))
2114 sub = p->u.indirect.section->owner;
2115 if (! sub->output_has_begun)
2117 if (! elf_link_input_bfd (&finfo, sub))
2119 sub->output_has_begun = true;
2122 else if (p->type == bfd_section_reloc_link_order
2123 || p->type == bfd_symbol_reloc_link_order)
2125 if (! elf_reloc_link_order (abfd, info, o, p))
2130 if (! _bfd_default_link_order (abfd, info, o, p))
2136 /* That wrote out all the local symbols. Finish up the symbol table
2137 with the global symbols. */
2139 /* The sh_info field records the index of the first non local
2141 symtab_hdr->sh_info = abfd->symcount;
2143 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
2145 /* We get the global symbols from the hash table. */
2148 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
2153 /* Flush all symbols to the file. */
2154 if (! elf_link_flush_output_syms (&finfo))
2157 /* Now we know the size of the symtab section. */
2158 off += symtab_hdr->sh_size;
2160 /* Finish up and write out the symbol string table (.strtab)
2162 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
2163 /* sh_name was set in prep_headers. */
2164 symstrtab_hdr->sh_type = SHT_STRTAB;
2165 symstrtab_hdr->sh_flags = 0;
2166 symstrtab_hdr->sh_addr = 0;
2167 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
2168 symstrtab_hdr->sh_entsize = 0;
2169 symstrtab_hdr->sh_link = 0;
2170 symstrtab_hdr->sh_info = 0;
2171 /* sh_offset is set just below. */
2172 symstrtab_hdr->sh_addralign = 1;
2174 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
2175 elf_tdata (abfd)->next_file_pos = off;
2177 if (abfd->symcount > 0)
2179 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
2180 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
2184 /* Adjust the relocs to have the correct symbol indices. */
2185 for (o = abfd->sections; o != NULL; o = o->next)
2187 struct elf_link_hash_entry **rel_hash;
2188 Elf_Internal_Shdr *rel_hdr;
2190 if ((o->flags & SEC_RELOC) == 0)
2193 rel_hash = elf_section_data (o)->rel_hashes;
2194 rel_hdr = &elf_section_data (o)->rel_hdr;
2195 for (i = 0; i < o->reloc_count; i++, rel_hash++)
2197 if (*rel_hash == NULL)
2200 BFD_ASSERT ((*rel_hash)->indx >= 0);
2202 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2204 Elf_External_Rel *erel;
2205 Elf_Internal_Rel irel;
2207 erel = (Elf_External_Rel *) rel_hdr->contents + i;
2208 elf_swap_reloc_in (abfd, erel, &irel);
2209 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
2210 ELF_R_TYPE (irel.r_info));
2211 elf_swap_reloc_out (abfd, &irel, erel);
2215 Elf_External_Rela *erela;
2216 Elf_Internal_Rela irela;
2218 BFD_ASSERT (rel_hdr->sh_entsize
2219 == sizeof (Elf_External_Rela));
2221 erela = (Elf_External_Rela *) rel_hdr->contents + i;
2222 elf_swap_reloca_in (abfd, erela, &irela);
2223 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
2224 ELF_R_TYPE (irela.r_info));
2225 elf_swap_reloca_out (abfd, &irela, erela);
2229 /* Set the reloc_count field to 0 to prevent write_relocs from
2230 trying to swap the relocs out itself. */
2234 /* If we are linking against a dynamic object, or generating a
2235 shared library, finish up the dynamic linking information. */
2238 Elf_External_Dyn *dyncon, *dynconend;
2240 /* Fix up .dynamic entries. */
2241 o = bfd_get_section_by_name (dynobj, ".dynamic");
2242 BFD_ASSERT (o != NULL);
2244 dyncon = (Elf_External_Dyn *) o->contents;
2245 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
2246 for (; dyncon < dynconend; dyncon++)
2248 Elf_Internal_Dyn dyn;
2252 elf_swap_dyn_in (dynobj, dyncon, &dyn);
2259 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
2260 magic _init and _fini symbols. This is pretty ugly,
2261 but we are compatible. */
2269 struct elf_link_hash_entry *h;
2271 h = elf_link_hash_lookup (elf_hash_table (info), name,
2272 false, false, true);
2274 && (h->root.type == bfd_link_hash_defined
2275 || h->root.type == bfd_link_hash_defweak))
2277 dyn.d_un.d_val = h->root.u.def.value;
2278 o = h->root.u.def.section;
2279 if (o->output_section != NULL)
2280 dyn.d_un.d_val += (o->output_section->vma
2281 + o->output_offset);
2284 /* The symbol is imported from another shared
2285 library and does not apply to this one. */
2289 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2303 o = bfd_get_section_by_name (abfd, name);
2304 BFD_ASSERT (o != NULL);
2305 dyn.d_un.d_ptr = o->vma;
2306 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2313 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
2318 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
2320 Elf_Internal_Shdr *hdr;
2322 hdr = elf_elfsections (abfd)[i];
2323 if (hdr->sh_type == type
2324 && (hdr->sh_flags & SHF_ALLOC) != 0)
2326 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
2327 dyn.d_un.d_val += hdr->sh_size;
2330 if (dyn.d_un.d_val == 0
2331 || hdr->sh_addr < dyn.d_un.d_val)
2332 dyn.d_un.d_val = hdr->sh_addr;
2336 elf_swap_dyn_out (dynobj, &dyn, dyncon);
2342 /* If we have created any dynamic sections, then output them. */
2345 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
2348 for (o = dynobj->sections; o != NULL; o = o->next)
2350 if ((o->flags & SEC_HAS_CONTENTS) == 0
2351 || o->_raw_size == 0)
2353 if ((o->flags & SEC_IN_MEMORY) == 0)
2355 /* At this point, we are only interested in sections
2356 created by elf_link_create_dynamic_sections. FIXME:
2357 This test is fragile. */
2360 if ((elf_section_data (o->output_section)->this_hdr.sh_type
2362 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
2364 if (! bfd_set_section_contents (abfd, o->output_section,
2365 o->contents, o->output_offset,
2373 /* The contents of the .dynstr section are actually in a
2375 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
2376 if (bfd_seek (abfd, off, SEEK_SET) != 0
2377 || ! _bfd_stringtab_emit (abfd,
2378 elf_hash_table (info)->dynstr))
2384 /* If we have optimized stabs strings, output them. */
2385 if (elf_hash_table (info)->stab_info != NULL)
2387 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
2391 if (finfo.symstrtab != NULL)
2392 _bfd_stringtab_free (finfo.symstrtab);
2393 if (finfo.contents != NULL)
2394 free (finfo.contents);
2395 if (finfo.external_relocs != NULL)
2396 free (finfo.external_relocs);
2397 if (finfo.internal_relocs != NULL)
2398 free (finfo.internal_relocs);
2399 if (finfo.external_syms != NULL)
2400 free (finfo.external_syms);
2401 if (finfo.internal_syms != NULL)
2402 free (finfo.internal_syms);
2403 if (finfo.indices != NULL)
2404 free (finfo.indices);
2405 if (finfo.sections != NULL)
2406 free (finfo.sections);
2407 if (finfo.symbuf != NULL)
2408 free (finfo.symbuf);
2409 for (o = abfd->sections; o != NULL; o = o->next)
2411 if ((o->flags & SEC_RELOC) != 0
2412 && elf_section_data (o)->rel_hashes != NULL)
2413 free (elf_section_data (o)->rel_hashes);
2416 elf_tdata (abfd)->linker = true;
2421 if (finfo.symstrtab != NULL)
2422 _bfd_stringtab_free (finfo.symstrtab);
2423 if (finfo.contents != NULL)
2424 free (finfo.contents);
2425 if (finfo.external_relocs != NULL)
2426 free (finfo.external_relocs);
2427 if (finfo.internal_relocs != NULL)
2428 free (finfo.internal_relocs);
2429 if (finfo.external_syms != NULL)
2430 free (finfo.external_syms);
2431 if (finfo.internal_syms != NULL)
2432 free (finfo.internal_syms);
2433 if (finfo.indices != NULL)
2434 free (finfo.indices);
2435 if (finfo.sections != NULL)
2436 free (finfo.sections);
2437 if (finfo.symbuf != NULL)
2438 free (finfo.symbuf);
2439 for (o = abfd->sections; o != NULL; o = o->next)
2441 if ((o->flags & SEC_RELOC) != 0
2442 && elf_section_data (o)->rel_hashes != NULL)
2443 free (elf_section_data (o)->rel_hashes);
2449 /* Add a symbol to the output symbol table. */
2452 elf_link_output_sym (finfo, name, elfsym, input_sec)
2453 struct elf_final_link_info *finfo;
2455 Elf_Internal_Sym *elfsym;
2456 asection *input_sec;
2458 boolean (*output_symbol_hook) PARAMS ((bfd *,
2459 struct bfd_link_info *info,
2464 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
2465 elf_backend_link_output_symbol_hook;
2466 if (output_symbol_hook != NULL)
2468 if (! ((*output_symbol_hook)
2469 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
2473 if (name == (const char *) NULL || *name == '\0')
2474 elfsym->st_name = 0;
2477 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
2480 if (elfsym->st_name == (unsigned long) -1)
2484 if (finfo->symbuf_count >= finfo->symbuf_size)
2486 if (! elf_link_flush_output_syms (finfo))
2490 elf_swap_symbol_out (finfo->output_bfd, elfsym,
2491 (PTR) (finfo->symbuf + finfo->symbuf_count));
2492 ++finfo->symbuf_count;
2494 ++finfo->output_bfd->symcount;
2499 /* Flush the output symbols to the file. */
2502 elf_link_flush_output_syms (finfo)
2503 struct elf_final_link_info *finfo;
2505 if (finfo->symbuf_count > 0)
2507 Elf_Internal_Shdr *symtab;
2509 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
2511 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
2513 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
2514 sizeof (Elf_External_Sym), finfo->output_bfd)
2515 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
2518 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
2520 finfo->symbuf_count = 0;
2526 /* Add an external symbol to the symbol table. This is called from
2527 the hash table traversal routine. */
2530 elf_link_output_extsym (h, data)
2531 struct elf_link_hash_entry *h;
2534 struct elf_finfo_failed *eif = (struct elf_finfo_failed *) data;
2535 struct elf_final_link_info *finfo = eif->finfo;
2537 Elf_Internal_Sym sym;
2538 asection *input_sec;
2540 /* If we are not creating a shared library, and this symbol is
2541 referenced by a shared library but is not defined anywhere, then
2542 warn that it is undefined. If we do not do this, the runtime
2543 linker will complain that the symbol is undefined when the
2544 program is run. We don't have to worry about symbols that are
2545 referenced by regular files, because we will already have issued
2546 warnings for them. */
2547 if (! finfo->info->relocateable
2548 && ! finfo->info->shared
2549 && h->root.type == bfd_link_hash_undefined
2550 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
2551 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2553 if (! ((*finfo->info->callbacks->undefined_symbol)
2554 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
2555 (asection *) NULL, 0)))
2562 /* We don't want to output symbols that have never been mentioned by
2563 a regular file, or that we have been told to strip. However, if
2564 h->indx is set to -2, the symbol is used by a reloc and we must
2568 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2569 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
2570 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2571 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
2573 else if (finfo->info->strip == strip_all
2574 || (finfo->info->strip == strip_some
2575 && bfd_hash_lookup (finfo->info->keep_hash,
2576 h->root.root.string,
2577 false, false) == NULL))
2582 /* If we're stripping it, and it's not a dynamic symbol, there's
2583 nothing else to do. */
2584 if (strip && h->dynindx == -1)
2588 sym.st_size = h->size;
2589 sym.st_other = h->other;
2590 if (h->root.type == bfd_link_hash_undefweak
2591 || h->root.type == bfd_link_hash_defweak)
2592 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
2594 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
2596 switch (h->root.type)
2599 case bfd_link_hash_new:
2603 case bfd_link_hash_undefined:
2604 input_sec = bfd_und_section_ptr;
2605 sym.st_shndx = SHN_UNDEF;
2608 case bfd_link_hash_undefweak:
2609 input_sec = bfd_und_section_ptr;
2610 sym.st_shndx = SHN_UNDEF;
2613 case bfd_link_hash_defined:
2614 case bfd_link_hash_defweak:
2616 input_sec = h->root.u.def.section;
2617 if (input_sec->output_section != NULL)
2620 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
2621 input_sec->output_section);
2622 if (sym.st_shndx == (unsigned short) -1)
2628 /* ELF symbols in relocateable files are section relative,
2629 but in nonrelocateable files they are virtual
2631 sym.st_value = h->root.u.def.value + input_sec->output_offset;
2632 if (! finfo->info->relocateable)
2633 sym.st_value += input_sec->output_section->vma;
2637 BFD_ASSERT ((bfd_get_flavour (input_sec->owner)
2638 == bfd_target_elf_flavour)
2639 && elf_elfheader (input_sec->owner)->e_type == ET_DYN);
2640 sym.st_shndx = SHN_UNDEF;
2641 input_sec = bfd_und_section_ptr;
2646 case bfd_link_hash_common:
2647 input_sec = bfd_com_section_ptr;
2648 sym.st_shndx = SHN_COMMON;
2649 sym.st_value = 1 << h->root.u.c.p->alignment_power;
2652 case bfd_link_hash_indirect:
2653 case bfd_link_hash_warning:
2654 /* We can't represent these symbols in ELF. A warning symbol
2655 may have come from a .gnu.warning.SYMBOL section anyhow. We
2656 just put the target symbol in the hash table. If the target
2657 symbol does not really exist, don't do anything. */
2658 if (h->root.u.i.link->type == bfd_link_hash_new)
2660 return (elf_link_output_extsym
2661 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
2664 /* If this symbol should be put in the .dynsym section, then put it
2665 there now. We have already know the symbol index. We also fill
2666 in the entry in the .hash section. */
2667 if (h->dynindx != -1
2668 && elf_hash_table (finfo->info)->dynamic_sections_created)
2670 struct elf_backend_data *bed;
2673 bfd_byte *bucketpos;
2676 sym.st_name = h->dynstr_index;
2678 /* Give the processor backend a chance to tweak the symbol
2679 value, and also to finish up anything that needs to be done
2681 bed = get_elf_backend_data (finfo->output_bfd);
2682 if (! ((*bed->elf_backend_finish_dynamic_symbol)
2683 (finfo->output_bfd, finfo->info, h, &sym)))
2689 elf_swap_symbol_out (finfo->output_bfd, &sym,
2690 (PTR) (((Elf_External_Sym *)
2691 finfo->dynsym_sec->contents)
2694 bucketcount = elf_hash_table (finfo->info)->bucketcount;
2695 bucket = (bfd_elf_hash ((const unsigned char *) h->root.root.string)
2697 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
2698 + (bucket + 2) * (ARCH_SIZE / 8));
2699 chain = get_word (finfo->output_bfd, bucketpos);
2700 put_word (finfo->output_bfd, h->dynindx, bucketpos);
2701 put_word (finfo->output_bfd, chain,
2702 ((bfd_byte *) finfo->hash_sec->contents
2703 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
2706 /* If we're stripping it, then it was just a dynamic symbol, and
2707 there's nothing else to do. */
2711 h->indx = finfo->output_bfd->symcount;
2713 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
2722 /* Link an input file into the linker output file. This function
2723 handles all the sections and relocations of the input file at once.
2724 This is so that we only have to read the local symbols once, and
2725 don't have to keep them in memory. */
2728 elf_link_input_bfd (finfo, input_bfd)
2729 struct elf_final_link_info *finfo;
2732 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
2733 bfd *, asection *, bfd_byte *,
2734 Elf_Internal_Rela *,
2735 Elf_Internal_Sym *, asection **));
2737 Elf_Internal_Shdr *symtab_hdr;
2740 Elf_External_Sym *external_syms;
2741 Elf_External_Sym *esym;
2742 Elf_External_Sym *esymend;
2743 Elf_Internal_Sym *isym;
2745 asection **ppsection;
2748 output_bfd = finfo->output_bfd;
2750 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
2752 /* If this is a dynamic object, we don't want to do anything here:
2753 we don't want the local symbols, and we don't want the section
2755 if (elf_elfheader (input_bfd)->e_type == ET_DYN)
2758 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2759 if (elf_bad_symtab (input_bfd))
2761 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
2766 locsymcount = symtab_hdr->sh_info;
2767 extsymoff = symtab_hdr->sh_info;
2770 /* Read the local symbols. */
2771 if (symtab_hdr->contents != NULL)
2772 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
2773 else if (locsymcount == 0)
2774 external_syms = NULL;
2777 external_syms = finfo->external_syms;
2778 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
2779 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
2780 locsymcount, input_bfd)
2781 != locsymcount * sizeof (Elf_External_Sym)))
2785 /* Swap in the local symbols and write out the ones which we know
2786 are going into the output file. */
2787 esym = external_syms;
2788 esymend = esym + locsymcount;
2789 isym = finfo->internal_syms;
2790 pindex = finfo->indices;
2791 ppsection = finfo->sections;
2792 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
2796 Elf_Internal_Sym osym;
2798 elf_swap_symbol_in (input_bfd, esym, isym);
2801 if (elf_bad_symtab (input_bfd))
2803 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
2810 if (isym->st_shndx == SHN_UNDEF)
2811 isec = bfd_und_section_ptr;
2812 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
2813 isec = section_from_elf_index (input_bfd, isym->st_shndx);
2814 else if (isym->st_shndx == SHN_ABS)
2815 isec = bfd_abs_section_ptr;
2816 else if (isym->st_shndx == SHN_COMMON)
2817 isec = bfd_com_section_ptr;
2826 /* Don't output the first, undefined, symbol. */
2827 if (esym == external_syms)
2830 /* If we are stripping all symbols, we don't want to output this
2832 if (finfo->info->strip == strip_all)
2835 /* We never output section symbols. Instead, we use the section
2836 symbol of the corresponding section in the output file. */
2837 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
2840 /* If we are discarding all local symbols, we don't want to
2841 output this one. If we are generating a relocateable output
2842 file, then some of the local symbols may be required by
2843 relocs; we output them below as we discover that they are
2845 if (finfo->info->discard == discard_all)
2848 /* Get the name of the symbol. */
2849 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
2854 /* See if we are discarding symbols with this name. */
2855 if ((finfo->info->strip == strip_some
2856 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
2858 || (finfo->info->discard == discard_l
2859 && strncmp (name, finfo->info->lprefix,
2860 finfo->info->lprefix_len) == 0))
2863 /* If we get here, we are going to output this symbol. */
2867 /* Adjust the section index for the output file. */
2868 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
2869 isec->output_section);
2870 if (osym.st_shndx == (unsigned short) -1)
2873 *pindex = output_bfd->symcount;
2875 /* ELF symbols in relocateable files are section relative, but
2876 in executable files they are virtual addresses. Note that
2877 this code assumes that all ELF sections have an associated
2878 BFD section with a reasonable value for output_offset; below
2879 we assume that they also have a reasonable value for
2880 output_section. Any special sections must be set up to meet
2881 these requirements. */
2882 osym.st_value += isec->output_offset;
2883 if (! finfo->info->relocateable)
2884 osym.st_value += isec->output_section->vma;
2886 if (! elf_link_output_sym (finfo, name, &osym, isec))
2890 /* Relocate the contents of each section. */
2891 for (o = input_bfd->sections; o != NULL; o = o->next)
2895 if (! o->linker_mark)
2897 /* This section was omitted from the link. */
2901 if ((o->flags & SEC_HAS_CONTENTS) == 0
2902 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
2905 if ((o->flags & SEC_IN_MEMORY) != 0
2906 && input_bfd == elf_hash_table (finfo->info)->dynobj)
2908 /* Section was created by elf_link_create_dynamic_sections.
2909 FIXME: This test is fragile. */
2913 /* Get the contents of the section. They have been cached by a
2914 relaxation routine. Note that o is a section in an input
2915 file, so the contents field will not have been set by any of
2916 the routines which work on output files. */
2917 if (elf_section_data (o)->this_hdr.contents != NULL)
2918 contents = elf_section_data (o)->this_hdr.contents;
2921 contents = finfo->contents;
2922 if (! bfd_get_section_contents (input_bfd, o, contents,
2923 (file_ptr) 0, o->_raw_size))
2927 if ((o->flags & SEC_RELOC) != 0)
2929 Elf_Internal_Rela *internal_relocs;
2931 /* Get the swapped relocs. */
2932 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2933 (input_bfd, o, finfo->external_relocs,
2934 finfo->internal_relocs, false));
2935 if (internal_relocs == NULL
2936 && o->reloc_count > 0)
2939 /* Relocate the section by invoking a back end routine.
2941 The back end routine is responsible for adjusting the
2942 section contents as necessary, and (if using Rela relocs
2943 and generating a relocateable output file) adjusting the
2944 reloc addend as necessary.
2946 The back end routine does not have to worry about setting
2947 the reloc address or the reloc symbol index.
2949 The back end routine is given a pointer to the swapped in
2950 internal symbols, and can access the hash table entries
2951 for the external symbols via elf_sym_hashes (input_bfd).
2953 When generating relocateable output, the back end routine
2954 must handle STB_LOCAL/STT_SECTION symbols specially. The
2955 output symbol is going to be a section symbol
2956 corresponding to the output section, which will require
2957 the addend to be adjusted. */
2959 if (! (*relocate_section) (output_bfd, finfo->info,
2960 input_bfd, o, contents,
2962 finfo->internal_syms,
2966 if (finfo->info->relocateable)
2968 Elf_Internal_Rela *irela;
2969 Elf_Internal_Rela *irelaend;
2970 struct elf_link_hash_entry **rel_hash;
2971 Elf_Internal_Shdr *input_rel_hdr;
2972 Elf_Internal_Shdr *output_rel_hdr;
2974 /* Adjust the reloc addresses and symbol indices. */
2976 irela = internal_relocs;
2977 irelaend = irela + o->reloc_count;
2978 rel_hash = (elf_section_data (o->output_section)->rel_hashes
2979 + o->output_section->reloc_count);
2980 for (; irela < irelaend; irela++, rel_hash++)
2982 unsigned long r_symndx;
2983 Elf_Internal_Sym *isym;
2986 irela->r_offset += o->output_offset;
2988 r_symndx = ELF_R_SYM (irela->r_info);
2993 if (r_symndx >= locsymcount
2994 || (elf_bad_symtab (input_bfd)
2995 && finfo->sections[r_symndx] == NULL))
2999 /* This is a reloc against a global symbol. We
3000 have not yet output all the local symbols, so
3001 we do not know the symbol index of any global
3002 symbol. We set the rel_hash entry for this
3003 reloc to point to the global hash table entry
3004 for this symbol. The symbol index is then
3005 set at the end of elf_bfd_final_link. */
3006 indx = r_symndx - extsymoff;
3007 *rel_hash = elf_sym_hashes (input_bfd)[indx];
3009 /* Setting the index to -2 tells
3010 elf_link_output_extsym that this symbol is
3012 BFD_ASSERT ((*rel_hash)->indx < 0);
3013 (*rel_hash)->indx = -2;
3018 /* This is a reloc against a local symbol. */
3021 isym = finfo->internal_syms + r_symndx;
3022 sec = finfo->sections[r_symndx];
3023 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3025 /* I suppose the backend ought to fill in the
3026 section of any STT_SECTION symbol against a
3027 processor specific section. */
3028 if (sec != NULL && bfd_is_abs_section (sec))
3030 else if (sec == NULL || sec->owner == NULL)
3032 bfd_set_error (bfd_error_bad_value);
3037 r_symndx = sec->output_section->target_index;
3038 BFD_ASSERT (r_symndx != 0);
3043 if (finfo->indices[r_symndx] == -1)
3049 if (finfo->info->strip == strip_all)
3051 /* You can't do ld -r -s. */
3052 bfd_set_error (bfd_error_invalid_operation);
3056 /* This symbol was skipped earlier, but
3057 since it is needed by a reloc, we
3058 must output it now. */
3059 link = symtab_hdr->sh_link;
3060 name = bfd_elf_string_from_elf_section (input_bfd,
3066 osec = sec->output_section;
3068 _bfd_elf_section_from_bfd_section (output_bfd,
3070 if (isym->st_shndx == (unsigned short) -1)
3073 isym->st_value += sec->output_offset;
3074 if (! finfo->info->relocateable)
3075 isym->st_value += osec->vma;
3077 finfo->indices[r_symndx] = output_bfd->symcount;
3079 if (! elf_link_output_sym (finfo, name, isym, sec))
3083 r_symndx = finfo->indices[r_symndx];
3086 irela->r_info = ELF_R_INFO (r_symndx,
3087 ELF_R_TYPE (irela->r_info));
3090 /* Swap out the relocs. */
3091 input_rel_hdr = &elf_section_data (o)->rel_hdr;
3092 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
3093 BFD_ASSERT (output_rel_hdr->sh_entsize
3094 == input_rel_hdr->sh_entsize);
3095 irela = internal_relocs;
3096 irelaend = irela + o->reloc_count;
3097 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3099 Elf_External_Rel *erel;
3101 erel = ((Elf_External_Rel *) output_rel_hdr->contents
3102 + o->output_section->reloc_count);
3103 for (; irela < irelaend; irela++, erel++)
3105 Elf_Internal_Rel irel;
3107 irel.r_offset = irela->r_offset;
3108 irel.r_info = irela->r_info;
3109 BFD_ASSERT (irela->r_addend == 0);
3110 elf_swap_reloc_out (output_bfd, &irel, erel);
3115 Elf_External_Rela *erela;
3117 BFD_ASSERT (input_rel_hdr->sh_entsize
3118 == sizeof (Elf_External_Rela));
3119 erela = ((Elf_External_Rela *) output_rel_hdr->contents
3120 + o->output_section->reloc_count);
3121 for (; irela < irelaend; irela++, erela++)
3122 elf_swap_reloca_out (output_bfd, irela, erela);
3125 o->output_section->reloc_count += o->reloc_count;
3129 /* Write out the modified section contents. */
3130 if (elf_section_data (o)->stab_info == NULL)
3132 if (! bfd_set_section_contents (output_bfd, o->output_section,
3133 contents, o->output_offset,
3134 (o->_cooked_size != 0
3141 if (! _bfd_write_section_stabs (output_bfd, o,
3142 &elf_section_data (o)->stab_info,
3151 /* Generate a reloc when linking an ELF file. This is a reloc
3152 requested by the linker, and does come from any input file. This
3153 is used to build constructor and destructor tables when linking
3157 elf_reloc_link_order (output_bfd, info, output_section, link_order)
3159 struct bfd_link_info *info;
3160 asection *output_section;
3161 struct bfd_link_order *link_order;
3163 reloc_howto_type *howto;
3167 struct elf_link_hash_entry **rel_hash_ptr;
3168 Elf_Internal_Shdr *rel_hdr;
3170 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
3173 bfd_set_error (bfd_error_bad_value);
3177 addend = link_order->u.reloc.p->addend;
3179 /* Figure out the symbol index. */
3180 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
3181 + output_section->reloc_count);
3182 if (link_order->type == bfd_section_reloc_link_order)
3184 indx = link_order->u.reloc.p->u.section->target_index;
3185 BFD_ASSERT (indx != 0);
3186 *rel_hash_ptr = NULL;
3190 struct elf_link_hash_entry *h;
3192 /* Treat a reloc against a defined symbol as though it were
3193 actually against the section. */
3194 h = ((struct elf_link_hash_entry *)
3195 bfd_wrapped_link_hash_lookup (output_bfd, info,
3196 link_order->u.reloc.p->u.name,
3197 false, false, true));
3199 && (h->root.type == bfd_link_hash_defined
3200 || h->root.type == bfd_link_hash_defweak))
3204 section = h->root.u.def.section;
3205 indx = section->output_section->target_index;
3206 *rel_hash_ptr = NULL;
3207 /* It seems that we ought to add the symbol value to the
3208 addend here, but in practice it has already been added
3209 because it was passed to constructor_callback. */
3210 addend += section->output_section->vma + section->output_offset;
3214 /* Setting the index to -2 tells elf_link_output_extsym that
3215 this symbol is used by a reloc. */
3222 if (! ((*info->callbacks->unattached_reloc)
3223 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
3224 (asection *) NULL, (bfd_vma) 0)))
3230 /* If this is an inplace reloc, we must write the addend into the
3232 if (howto->partial_inplace && addend != 0)
3235 bfd_reloc_status_type rstat;
3239 size = bfd_get_reloc_size (howto);
3240 buf = (bfd_byte *) bfd_zmalloc (size);
3241 if (buf == (bfd_byte *) NULL)
3243 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
3249 case bfd_reloc_outofrange:
3251 case bfd_reloc_overflow:
3252 if (! ((*info->callbacks->reloc_overflow)
3254 (link_order->type == bfd_section_reloc_link_order
3255 ? bfd_section_name (output_bfd,
3256 link_order->u.reloc.p->u.section)
3257 : link_order->u.reloc.p->u.name),
3258 howto->name, addend, (bfd *) NULL, (asection *) NULL,
3266 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
3267 (file_ptr) link_order->offset, size);
3273 /* The address of a reloc is relative to the section in a
3274 relocateable file, and is a virtual address in an executable
3276 offset = link_order->offset;
3277 if (! info->relocateable)
3278 offset += output_section->vma;
3280 rel_hdr = &elf_section_data (output_section)->rel_hdr;
3282 if (rel_hdr->sh_type == SHT_REL)
3284 Elf_Internal_Rel irel;
3285 Elf_External_Rel *erel;
3287 irel.r_offset = offset;
3288 irel.r_info = ELF_R_INFO (indx, howto->type);
3289 erel = ((Elf_External_Rel *) rel_hdr->contents
3290 + output_section->reloc_count);
3291 elf_swap_reloc_out (output_bfd, &irel, erel);
3295 Elf_Internal_Rela irela;
3296 Elf_External_Rela *erela;
3298 irela.r_offset = offset;
3299 irela.r_info = ELF_R_INFO (indx, howto->type);
3300 irela.r_addend = addend;
3301 erela = ((Elf_External_Rela *) rel_hdr->contents
3302 + output_section->reloc_count);
3303 elf_swap_reloca_out (output_bfd, &irela, erela);
3306 ++output_section->reloc_count;
3312 /* Allocate a pointer to live in a linker created section. */
3315 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
3317 struct bfd_link_info *info;
3318 elf_linker_section_t *lsect;
3319 struct elf_link_hash_entry *h;
3320 const Elf_Internal_Rela *rel;
3322 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
3323 elf_linker_section_pointers_t *linker_section_ptr;
3324 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
3326 BFD_ASSERT (lsect != NULL);
3328 /* Is this a global symbol? */
3331 /* Has this symbol already been allocated, if so, our work is done */
3332 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
3337 ptr_linker_section_ptr = &h->linker_section_pointer;
3338 /* Make sure this symbol is output as a dynamic symbol. */
3339 if (h->dynindx == -1)
3341 if (! elf_link_record_dynamic_symbol (info, h))
3345 if (lsect->rel_section)
3346 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3349 else /* Allocation of a pointer to a local symbol */
3351 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
3353 /* Allocate a table to hold the local symbols if first time */
3356 int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
3357 register unsigned int i;
3359 ptr = (elf_linker_section_pointers_t **)
3360 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
3365 elf_local_ptr_offsets (abfd) = ptr;
3366 for (i = 0; i < num_symbols; i++)
3367 ptr[i] = (elf_linker_section_pointers_t *)0;
3370 /* Has this symbol already been allocated, if so, our work is done */
3371 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
3376 ptr_linker_section_ptr = &ptr[r_symndx];
3380 /* If we are generating a shared object, we need to
3381 output a R_<xxx>_RELATIVE reloc so that the
3382 dynamic linker can adjust this GOT entry. */
3383 BFD_ASSERT (lsect->rel_section != NULL);
3384 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
3388 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
3389 from internal memory. */
3390 BFD_ASSERT (ptr_linker_section_ptr != NULL);
3391 linker_section_ptr = (elf_linker_section_pointers_t *)
3392 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
3394 if (!linker_section_ptr)
3397 linker_section_ptr->next = *ptr_linker_section_ptr;
3398 linker_section_ptr->addend = rel->r_addend;
3399 linker_section_ptr->which = lsect->which;
3400 linker_section_ptr->written_address_p = false;
3401 *ptr_linker_section_ptr = linker_section_ptr;
3404 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
3406 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
3407 lsect->hole_offset += ARCH_SIZE / 8;
3408 lsect->sym_offset += ARCH_SIZE / 8;
3409 if (lsect->sym_hash) /* Bump up symbol value if needed */
3411 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
3413 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
3414 lsect->sym_hash->root.root.string,
3415 (long)ARCH_SIZE / 8,
3416 (long)lsect->sym_hash->root.u.def.value);
3422 linker_section_ptr->offset = lsect->section->_raw_size;
3424 lsect->section->_raw_size += ARCH_SIZE / 8;
3427 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
3428 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
3436 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
3439 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
3442 /* Fill in the address for a pointer generated in alinker section. */
3445 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
3448 struct bfd_link_info *info;
3449 elf_linker_section_t *lsect;
3450 struct elf_link_hash_entry *h;
3452 const Elf_Internal_Rela *rel;
3455 elf_linker_section_pointers_t *linker_section_ptr;
3457 BFD_ASSERT (lsect != NULL);
3459 if (h != NULL) /* global symbol */
3461 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
3465 BFD_ASSERT (linker_section_ptr != NULL);
3467 if (! elf_hash_table (info)->dynamic_sections_created
3470 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3472 /* This is actually a static link, or it is a
3473 -Bsymbolic link and the symbol is defined
3474 locally. We must initialize this entry in the
3477 When doing a dynamic link, we create a .rela.<xxx>
3478 relocation entry to initialize the value. This
3479 is done in the finish_dynamic_symbol routine. */
3480 if (!linker_section_ptr->written_address_p)
3482 linker_section_ptr->written_address_p = true;
3483 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
3484 lsect->section->contents + linker_section_ptr->offset);
3488 else /* local symbol */
3490 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
3491 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
3492 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
3493 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
3497 BFD_ASSERT (linker_section_ptr != NULL);
3499 /* Write out pointer if it hasn't been rewritten out before */
3500 if (!linker_section_ptr->written_address_p)
3502 linker_section_ptr->written_address_p = true;
3503 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
3504 lsect->section->contents + linker_section_ptr->offset);
3508 asection *srel = lsect->rel_section;
3509 Elf_Internal_Rela outrel;
3511 /* We need to generate a relative reloc for the dynamic linker. */
3513 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
3516 BFD_ASSERT (srel != NULL);
3518 outrel.r_offset = (lsect->section->output_section->vma
3519 + lsect->section->output_offset
3520 + linker_section_ptr->offset);
3521 outrel.r_info = ELF_R_INFO (0, relative_reloc);
3522 outrel.r_addend = 0;
3523 elf_swap_reloca_out (output_bfd, &outrel,
3524 (((Elf_External_Rela *)
3525 lsect->section->contents)
3526 + lsect->section->reloc_count));
3527 ++lsect->section->reloc_count;
3532 relocation = (lsect->section->output_offset
3533 + linker_section_ptr->offset
3534 - lsect->hole_offset
3535 - lsect->sym_offset);
3538 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
3539 lsect->name, (long)relocation, (long)relocation);
3542 /* Subtract out the addend, because it will get added back in by the normal
3544 return relocation - linker_section_ptr->addend;