1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
194 if (elf_hash_table (info)->dynamic_sections_created)
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
226 || ! bfd_set_section_alignment (abfd, s, 1))
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 if (info->emit_gnu_hash)
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (bed->elf_backend_create_dynamic_sections == NULL
289 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 if (bed->want_plt_sym)
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 if (! _bfd_elf_create_got_section (abfd, info))
352 if (bed->want_dynbss)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
362 | SEC_LINKER_CREATED));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
423 if (!elf_hash_table (info)->is_relocatable_executable)
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460 if (indx == (bfd_size_type) -1)
462 h->dynstr_index = indx;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 case bfd_link_hash_warning:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h->verinfo.verdef = NULL;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info->relocatable
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 size_t *count = (size_t *) data;
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 size_t *count = (size_t *) data;
743 if (!h->forced_local)
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
759 struct elf_link_hash_table *htab;
761 switch (elf_section_data (p)->this_hdr.sh_type)
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
789 /* There shouldn't be section relative relocations
790 against any other section. */
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
807 unsigned long dynsymcount = 0;
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
819 elf_section_data (p)->dynindx = 0;
821 *section_sym_count = dynsymcount;
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
827 if (elf_hash_table (info)->dynlocal)
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
844 elf_hash_table (info)->dynsymcount = dynsymcount;
848 /* Merge st_other field. */
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 unsigned char hvis, symvis, other, nvis;
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 nvis = hvis < symvis ? hvis : symvis;
892 h->other = other | nvis;
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
912 Elf_Internal_Sym *sym,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
935 bind = ELF_ST_BIND (sym->st_info);
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 bed = get_elf_backend_data (abfd);
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
962 /* For merging, we only care about real symbols. */
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
977 if (h->root.type == bfd_link_hash_new)
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
986 switch (h->root.type)
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1067 && !info->export_dynamic
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1096 if (h->type == STT_TLS)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1132 bfd_set_error (bfd_error_bad_value);
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1141 if (!bfd_is_und_section (sec))
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1165 /* Make sure this symbol is dynamic. */
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1191 struct elf_link_hash_entry *vh = *sym_hash;
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1243 /* FIXME: Should we check type and size for protected symbol? */
1249 if (bind == STB_GNU_UNIQUE)
1250 h->unique_global = 1;
1252 /* If a new weak symbol definition comes from a regular file and the
1253 old symbol comes from a dynamic library, we treat the new one as
1254 strong. Similarly, an old weak symbol definition from a regular
1255 file is treated as strong when the new symbol comes from a dynamic
1256 library. Further, an old weak symbol from a dynamic library is
1257 treated as strong if the new symbol is from a dynamic library.
1258 This reflects the way glibc's ld.so works.
1260 Do this before setting *type_change_ok or *size_change_ok so that
1261 we warn properly when dynamic library symbols are overridden. */
1263 if (newdef && !newdyn && olddyn)
1265 if (olddef && newdyn)
1268 /* Allow changes between different types of function symbol. */
1269 if (newfunc && oldfunc)
1270 *type_change_ok = TRUE;
1272 /* It's OK to change the type if either the existing symbol or the
1273 new symbol is weak. A type change is also OK if the old symbol
1274 is undefined and the new symbol is defined. */
1279 && h->root.type == bfd_link_hash_undefined))
1280 *type_change_ok = TRUE;
1282 /* It's OK to change the size if either the existing symbol or the
1283 new symbol is weak, or if the old symbol is undefined. */
1286 || h->root.type == bfd_link_hash_undefined)
1287 *size_change_ok = TRUE;
1289 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1290 symbol, respectively, appears to be a common symbol in a dynamic
1291 object. If a symbol appears in an uninitialized section, and is
1292 not weak, and is not a function, then it may be a common symbol
1293 which was resolved when the dynamic object was created. We want
1294 to treat such symbols specially, because they raise special
1295 considerations when setting the symbol size: if the symbol
1296 appears as a common symbol in a regular object, and the size in
1297 the regular object is larger, we must make sure that we use the
1298 larger size. This problematic case can always be avoided in C,
1299 but it must be handled correctly when using Fortran shared
1302 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1303 likewise for OLDDYNCOMMON and OLDDEF.
1305 Note that this test is just a heuristic, and that it is quite
1306 possible to have an uninitialized symbol in a shared object which
1307 is really a definition, rather than a common symbol. This could
1308 lead to some minor confusion when the symbol really is a common
1309 symbol in some regular object. However, I think it will be
1315 && (sec->flags & SEC_ALLOC) != 0
1316 && (sec->flags & SEC_LOAD) == 0
1319 newdyncommon = TRUE;
1321 newdyncommon = FALSE;
1325 && h->root.type == bfd_link_hash_defined
1327 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1328 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 olddyncommon = TRUE;
1333 olddyncommon = FALSE;
1335 /* We now know everything about the old and new symbols. We ask the
1336 backend to check if we can merge them. */
1337 if (bed->merge_symbol
1338 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1339 pold_alignment, skip, override,
1340 type_change_ok, size_change_ok,
1341 &newdyn, &newdef, &newdyncommon, &newweak,
1343 &olddyn, &olddef, &olddyncommon, &oldweak,
1347 /* If both the old and the new symbols look like common symbols in a
1348 dynamic object, set the size of the symbol to the larger of the
1353 && sym->st_size != h->size)
1355 /* Since we think we have two common symbols, issue a multiple
1356 common warning if desired. Note that we only warn if the
1357 size is different. If the size is the same, we simply let
1358 the old symbol override the new one as normally happens with
1359 symbols defined in dynamic objects. */
1361 if (! ((*info->callbacks->multiple_common)
1362 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1368 *size_change_ok = TRUE;
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1393 newdyncommon = FALSE;
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 && h->root.type == bfd_link_hash_common)
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1428 /* Don't skip new non-IR weak syms. */
1429 if (!(oldbfd != NULL
1430 && (oldbfd->flags & BFD_PLUGIN) != 0
1431 && (abfd->flags & BFD_PLUGIN) == 0))
1434 /* Merge st_other. If the symbol already has a dynamic index,
1435 but visibility says it should not be visible, turn it into a
1437 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1438 if (h->dynindx != -1)
1439 switch (ELF_ST_VISIBILITY (h->other))
1443 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1448 /* If the old symbol is from a dynamic object, and the new symbol is
1449 a definition which is not from a dynamic object, then the new
1450 symbol overrides the old symbol. Symbols from regular files
1451 always take precedence over symbols from dynamic objects, even if
1452 they are defined after the dynamic object in the link.
1454 As above, we again permit a common symbol in a regular object to
1455 override a definition in a shared object if the shared object
1456 symbol is a function or is weak. */
1461 || (bfd_is_com_section (sec)
1462 && (oldweak || oldfunc)))
1467 /* Change the hash table entry to undefined, and let
1468 _bfd_generic_link_add_one_symbol do the right thing with the
1471 h->root.type = bfd_link_hash_undefined;
1472 h->root.u.undef.abfd = h->root.u.def.section->owner;
1473 *size_change_ok = TRUE;
1476 olddyncommon = FALSE;
1478 /* We again permit a type change when a common symbol may be
1479 overriding a function. */
1481 if (bfd_is_com_section (sec))
1485 /* If a common symbol overrides a function, make sure
1486 that it isn't defined dynamically nor has type
1489 h->type = STT_NOTYPE;
1491 *type_change_ok = TRUE;
1494 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1497 /* This union may have been set to be non-NULL when this symbol
1498 was seen in a dynamic object. We must force the union to be
1499 NULL, so that it is correct for a regular symbol. */
1500 h->verinfo.vertree = NULL;
1503 /* Handle the special case of a new common symbol merging with an
1504 old symbol that looks like it might be a common symbol defined in
1505 a shared object. Note that we have already handled the case in
1506 which a new common symbol should simply override the definition
1507 in the shared library. */
1510 && bfd_is_com_section (sec)
1513 /* It would be best if we could set the hash table entry to a
1514 common symbol, but we don't know what to use for the section
1515 or the alignment. */
1516 if (! ((*info->callbacks->multiple_common)
1517 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1523 if (h->size > *pvalue)
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1532 olddyncommon = FALSE;
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1543 h->verinfo.vertree = NULL;
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 flip->root.type = h->root.type;
1552 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1553 h->root.type = bfd_link_hash_indirect;
1554 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1555 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1559 flip->ref_dynamic = 1;
1566 /* This function is called to create an indirect symbol from the
1567 default for the symbol with the default version if needed. The
1568 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1569 set DYNSYM if the new indirect symbol is dynamic. */
1572 _bfd_elf_add_default_symbol (bfd *abfd,
1573 struct bfd_link_info *info,
1574 struct elf_link_hash_entry *h,
1576 Elf_Internal_Sym *sym,
1579 bfd_boolean *dynsym,
1580 bfd_boolean override)
1582 bfd_boolean type_change_ok;
1583 bfd_boolean size_change_ok;
1586 struct elf_link_hash_entry *hi;
1587 struct bfd_link_hash_entry *bh;
1588 const struct elf_backend_data *bed;
1589 bfd_boolean collect;
1590 bfd_boolean dynamic;
1592 size_t len, shortlen;
1595 /* If this symbol has a version, and it is the default version, we
1596 create an indirect symbol from the default name to the fully
1597 decorated name. This will cause external references which do not
1598 specify a version to be bound to this version of the symbol. */
1599 p = strchr (name, ELF_VER_CHR);
1600 if (p == NULL || p[1] != ELF_VER_CHR)
1605 /* We are overridden by an old definition. We need to check if we
1606 need to create the indirect symbol from the default name. */
1607 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 BFD_ASSERT (hi != NULL);
1612 while (hi->root.type == bfd_link_hash_indirect
1613 || hi->root.type == bfd_link_hash_warning)
1615 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1621 bed = get_elf_backend_data (abfd);
1622 collect = bed->collect;
1623 dynamic = (abfd->flags & DYNAMIC) != 0;
1625 shortlen = p - name;
1626 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1627 if (shortname == NULL)
1629 memcpy (shortname, name, shortlen);
1630 shortname[shortlen] = '\0';
1632 /* We are going to create a new symbol. Merge it with any existing
1633 symbol with this name. For the purposes of the merge, act as
1634 though we were defining the symbol we just defined, although we
1635 actually going to define an indirect symbol. */
1636 type_change_ok = FALSE;
1637 size_change_ok = FALSE;
1639 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1640 NULL, &hi, &skip, &override,
1641 &type_change_ok, &size_change_ok))
1650 if (! (_bfd_generic_link_add_one_symbol
1651 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1652 0, name, FALSE, collect, &bh)))
1654 hi = (struct elf_link_hash_entry *) bh;
1658 /* In this case the symbol named SHORTNAME is overriding the
1659 indirect symbol we want to add. We were planning on making
1660 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1661 is the name without a version. NAME is the fully versioned
1662 name, and it is the default version.
1664 Overriding means that we already saw a definition for the
1665 symbol SHORTNAME in a regular object, and it is overriding
1666 the symbol defined in the dynamic object.
1668 When this happens, we actually want to change NAME, the
1669 symbol we just added, to refer to SHORTNAME. This will cause
1670 references to NAME in the shared object to become references
1671 to SHORTNAME in the regular object. This is what we expect
1672 when we override a function in a shared object: that the
1673 references in the shared object will be mapped to the
1674 definition in the regular object. */
1676 while (hi->root.type == bfd_link_hash_indirect
1677 || hi->root.type == bfd_link_hash_warning)
1678 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 h->root.type = bfd_link_hash_indirect;
1681 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1685 hi->ref_dynamic = 1;
1689 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1694 /* Now set HI to H, so that the following code will set the
1695 other fields correctly. */
1699 /* Check if HI is a warning symbol. */
1700 if (hi->root.type == bfd_link_hash_warning)
1701 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703 /* If there is a duplicate definition somewhere, then HI may not
1704 point to an indirect symbol. We will have reported an error to
1705 the user in that case. */
1707 if (hi->root.type == bfd_link_hash_indirect)
1709 struct elf_link_hash_entry *ht;
1711 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1712 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714 /* See if the new flags lead us to realize that the symbol must
1720 if (! info->executable
1726 if (hi->ref_regular)
1732 /* We also need to define an indirection from the nondefault version
1736 len = strlen (name);
1737 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1738 if (shortname == NULL)
1740 memcpy (shortname, name, shortlen);
1741 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 /* Once again, merge with any existing symbol. */
1744 type_change_ok = FALSE;
1745 size_change_ok = FALSE;
1747 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1748 NULL, &hi, &skip, &override,
1749 &type_change_ok, &size_change_ok))
1757 /* Here SHORTNAME is a versioned name, so we don't expect to see
1758 the type of override we do in the case above unless it is
1759 overridden by a versioned definition. */
1760 if (hi->root.type != bfd_link_hash_defined
1761 && hi->root.type != bfd_link_hash_defweak)
1762 (*_bfd_error_handler)
1763 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1769 if (! (_bfd_generic_link_add_one_symbol
1770 (info, abfd, shortname, BSF_INDIRECT,
1771 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 hi = (struct elf_link_hash_entry *) bh;
1775 /* If there is a duplicate definition somewhere, then HI may not
1776 point to an indirect symbol. We will have reported an error
1777 to the user in that case. */
1779 if (hi->root.type == bfd_link_hash_indirect)
1781 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783 /* See if the new flags lead us to realize that the symbol
1789 if (! info->executable
1795 if (hi->ref_regular)
1805 /* This routine is used to export all defined symbols into the dynamic
1806 symbol table. It is called via elf_link_hash_traverse. */
1809 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813 /* Ignore indirect symbols. These are added by the versioning code. */
1814 if (h->root.type == bfd_link_hash_indirect)
1817 /* Ignore this if we won't export it. */
1818 if (!eif->info->export_dynamic && !h->dynamic)
1821 if (h->dynindx == -1
1822 && (h->def_regular || h->ref_regular)
1823 && ! bfd_hide_sym_by_version (eif->info->version_info,
1824 h->root.root.string))
1826 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 /* Look through the symbols which are defined in other shared
1837 libraries and referenced here. Update the list of version
1838 dependencies. This will be put into the .gnu.version_r section.
1839 This function is called via elf_link_hash_traverse. */
1842 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1845 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1846 Elf_Internal_Verneed *t;
1847 Elf_Internal_Vernaux *a;
1850 /* We only care about symbols defined in shared objects with version
1855 || h->verinfo.verdef == NULL)
1858 /* See if we already know about this version. */
1859 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1863 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1866 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1867 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1873 /* This is a new version. Add it to tree we are building. */
1878 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1881 rinfo->failed = TRUE;
1885 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1886 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1887 elf_tdata (rinfo->info->output_bfd)->verref = t;
1891 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1894 rinfo->failed = TRUE;
1898 /* Note that we are copying a string pointer here, and testing it
1899 above. If bfd_elf_string_from_elf_section is ever changed to
1900 discard the string data when low in memory, this will have to be
1902 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1904 a->vna_flags = h->verinfo.verdef->vd_flags;
1905 a->vna_nextptr = t->vn_auxptr;
1907 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1910 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1917 /* Figure out appropriate versions for all the symbols. We may not
1918 have the version number script until we have read all of the input
1919 files, so until that point we don't know which symbols should be
1920 local. This function is called via elf_link_hash_traverse. */
1923 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1925 struct elf_info_failed *sinfo;
1926 struct bfd_link_info *info;
1927 const struct elf_backend_data *bed;
1928 struct elf_info_failed eif;
1932 sinfo = (struct elf_info_failed *) data;
1935 /* Fix the symbol flags. */
1938 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1941 sinfo->failed = TRUE;
1945 /* We only need version numbers for symbols defined in regular
1947 if (!h->def_regular)
1950 bed = get_elf_backend_data (info->output_bfd);
1951 p = strchr (h->root.root.string, ELF_VER_CHR);
1952 if (p != NULL && h->verinfo.vertree == NULL)
1954 struct bfd_elf_version_tree *t;
1959 /* There are two consecutive ELF_VER_CHR characters if this is
1960 not a hidden symbol. */
1962 if (*p == ELF_VER_CHR)
1968 /* If there is no version string, we can just return out. */
1976 /* Look for the version. If we find it, it is no longer weak. */
1977 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1979 if (strcmp (t->name, p) == 0)
1983 struct bfd_elf_version_expr *d;
1985 len = p - h->root.root.string;
1986 alc = (char *) bfd_malloc (len);
1989 sinfo->failed = TRUE;
1992 memcpy (alc, h->root.root.string, len - 1);
1993 alc[len - 1] = '\0';
1994 if (alc[len - 2] == ELF_VER_CHR)
1995 alc[len - 2] = '\0';
1997 h->verinfo.vertree = t;
2001 if (t->globals.list != NULL)
2002 d = (*t->match) (&t->globals, NULL, alc);
2004 /* See if there is anything to force this symbol to
2006 if (d == NULL && t->locals.list != NULL)
2008 d = (*t->match) (&t->locals, NULL, alc);
2011 && ! info->export_dynamic)
2012 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2020 /* If we are building an application, we need to create a
2021 version node for this version. */
2022 if (t == NULL && info->executable)
2024 struct bfd_elf_version_tree **pp;
2027 /* If we aren't going to export this symbol, we don't need
2028 to worry about it. */
2029 if (h->dynindx == -1)
2033 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2036 sinfo->failed = TRUE;
2041 t->name_indx = (unsigned int) -1;
2045 /* Don't count anonymous version tag. */
2046 if (sinfo->info->version_info != NULL
2047 && sinfo->info->version_info->vernum == 0)
2049 for (pp = &sinfo->info->version_info;
2053 t->vernum = version_index;
2057 h->verinfo.vertree = t;
2061 /* We could not find the version for a symbol when
2062 generating a shared archive. Return an error. */
2063 (*_bfd_error_handler)
2064 (_("%B: version node not found for symbol %s"),
2065 info->output_bfd, h->root.root.string);
2066 bfd_set_error (bfd_error_bad_value);
2067 sinfo->failed = TRUE;
2075 /* If we don't have a version for this symbol, see if we can find
2077 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2082 = bfd_find_version_for_sym (sinfo->info->version_info,
2083 h->root.root.string, &hide);
2084 if (h->verinfo.vertree != NULL && hide)
2085 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2091 /* Read and swap the relocs from the section indicated by SHDR. This
2092 may be either a REL or a RELA section. The relocations are
2093 translated into RELA relocations and stored in INTERNAL_RELOCS,
2094 which should have already been allocated to contain enough space.
2095 The EXTERNAL_RELOCS are a buffer where the external form of the
2096 relocations should be stored.
2098 Returns FALSE if something goes wrong. */
2101 elf_link_read_relocs_from_section (bfd *abfd,
2103 Elf_Internal_Shdr *shdr,
2104 void *external_relocs,
2105 Elf_Internal_Rela *internal_relocs)
2107 const struct elf_backend_data *bed;
2108 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2109 const bfd_byte *erela;
2110 const bfd_byte *erelaend;
2111 Elf_Internal_Rela *irela;
2112 Elf_Internal_Shdr *symtab_hdr;
2115 /* Position ourselves at the start of the section. */
2116 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2119 /* Read the relocations. */
2120 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2124 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2126 bed = get_elf_backend_data (abfd);
2128 /* Convert the external relocations to the internal format. */
2129 if (shdr->sh_entsize == bed->s->sizeof_rel)
2130 swap_in = bed->s->swap_reloc_in;
2131 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2132 swap_in = bed->s->swap_reloca_in;
2135 bfd_set_error (bfd_error_wrong_format);
2139 erela = (const bfd_byte *) external_relocs;
2140 erelaend = erela + shdr->sh_size;
2141 irela = internal_relocs;
2142 while (erela < erelaend)
2146 (*swap_in) (abfd, erela, irela);
2147 r_symndx = ELF32_R_SYM (irela->r_info);
2148 if (bed->s->arch_size == 64)
2152 if ((size_t) r_symndx >= nsyms)
2154 (*_bfd_error_handler)
2155 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2156 " for offset 0x%lx in section `%A'"),
2158 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2159 bfd_set_error (bfd_error_bad_value);
2163 else if (r_symndx != STN_UNDEF)
2165 (*_bfd_error_handler)
2166 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2167 " when the object file has no symbol table"),
2169 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2170 bfd_set_error (bfd_error_bad_value);
2173 irela += bed->s->int_rels_per_ext_rel;
2174 erela += shdr->sh_entsize;
2180 /* Read and swap the relocs for a section O. They may have been
2181 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2182 not NULL, they are used as buffers to read into. They are known to
2183 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2184 the return value is allocated using either malloc or bfd_alloc,
2185 according to the KEEP_MEMORY argument. If O has two relocation
2186 sections (both REL and RELA relocations), then the REL_HDR
2187 relocations will appear first in INTERNAL_RELOCS, followed by the
2188 RELA_HDR relocations. */
2191 _bfd_elf_link_read_relocs (bfd *abfd,
2193 void *external_relocs,
2194 Elf_Internal_Rela *internal_relocs,
2195 bfd_boolean keep_memory)
2197 void *alloc1 = NULL;
2198 Elf_Internal_Rela *alloc2 = NULL;
2199 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2200 struct bfd_elf_section_data *esdo = elf_section_data (o);
2201 Elf_Internal_Rela *internal_rela_relocs;
2203 if (esdo->relocs != NULL)
2204 return esdo->relocs;
2206 if (o->reloc_count == 0)
2209 if (internal_relocs == NULL)
2213 size = o->reloc_count;
2214 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2216 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2218 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2219 if (internal_relocs == NULL)
2223 if (external_relocs == NULL)
2225 bfd_size_type size = 0;
2228 size += esdo->rel.hdr->sh_size;
2230 size += esdo->rela.hdr->sh_size;
2232 alloc1 = bfd_malloc (size);
2235 external_relocs = alloc1;
2238 internal_rela_relocs = internal_relocs;
2241 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2245 external_relocs = (((bfd_byte *) external_relocs)
2246 + esdo->rel.hdr->sh_size);
2247 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2248 * bed->s->int_rels_per_ext_rel);
2252 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2254 internal_rela_relocs)))
2257 /* Cache the results for next time, if we can. */
2259 esdo->relocs = internal_relocs;
2264 /* Don't free alloc2, since if it was allocated we are passing it
2265 back (under the name of internal_relocs). */
2267 return internal_relocs;
2275 bfd_release (abfd, alloc2);
2282 /* Compute the size of, and allocate space for, REL_HDR which is the
2283 section header for a section containing relocations for O. */
2286 _bfd_elf_link_size_reloc_section (bfd *abfd,
2287 struct bfd_elf_section_reloc_data *reldata)
2289 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2291 /* That allows us to calculate the size of the section. */
2292 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2294 /* The contents field must last into write_object_contents, so we
2295 allocate it with bfd_alloc rather than malloc. Also since we
2296 cannot be sure that the contents will actually be filled in,
2297 we zero the allocated space. */
2298 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2299 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2302 if (reldata->hashes == NULL && reldata->count)
2304 struct elf_link_hash_entry **p;
2306 p = (struct elf_link_hash_entry **)
2307 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2311 reldata->hashes = p;
2317 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2318 originated from the section given by INPUT_REL_HDR) to the
2322 _bfd_elf_link_output_relocs (bfd *output_bfd,
2323 asection *input_section,
2324 Elf_Internal_Shdr *input_rel_hdr,
2325 Elf_Internal_Rela *internal_relocs,
2326 struct elf_link_hash_entry **rel_hash
2329 Elf_Internal_Rela *irela;
2330 Elf_Internal_Rela *irelaend;
2332 struct bfd_elf_section_reloc_data *output_reldata;
2333 asection *output_section;
2334 const struct elf_backend_data *bed;
2335 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2336 struct bfd_elf_section_data *esdo;
2338 output_section = input_section->output_section;
2340 bed = get_elf_backend_data (output_bfd);
2341 esdo = elf_section_data (output_section);
2342 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2344 output_reldata = &esdo->rel;
2345 swap_out = bed->s->swap_reloc_out;
2347 else if (esdo->rela.hdr
2348 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2350 output_reldata = &esdo->rela;
2351 swap_out = bed->s->swap_reloca_out;
2355 (*_bfd_error_handler)
2356 (_("%B: relocation size mismatch in %B section %A"),
2357 output_bfd, input_section->owner, input_section);
2358 bfd_set_error (bfd_error_wrong_format);
2362 erel = output_reldata->hdr->contents;
2363 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2364 irela = internal_relocs;
2365 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2366 * bed->s->int_rels_per_ext_rel);
2367 while (irela < irelaend)
2369 (*swap_out) (output_bfd, irela, erel);
2370 irela += bed->s->int_rels_per_ext_rel;
2371 erel += input_rel_hdr->sh_entsize;
2374 /* Bump the counter, so that we know where to add the next set of
2376 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2381 /* Make weak undefined symbols in PIE dynamic. */
2384 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2385 struct elf_link_hash_entry *h)
2389 && h->root.type == bfd_link_hash_undefweak)
2390 return bfd_elf_link_record_dynamic_symbol (info, h);
2395 /* Fix up the flags for a symbol. This handles various cases which
2396 can only be fixed after all the input files are seen. This is
2397 currently called by both adjust_dynamic_symbol and
2398 assign_sym_version, which is unnecessary but perhaps more robust in
2399 the face of future changes. */
2402 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2403 struct elf_info_failed *eif)
2405 const struct elf_backend_data *bed;
2407 /* If this symbol was mentioned in a non-ELF file, try to set
2408 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2409 permit a non-ELF file to correctly refer to a symbol defined in
2410 an ELF dynamic object. */
2413 while (h->root.type == bfd_link_hash_indirect)
2414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2416 if (h->root.type != bfd_link_hash_defined
2417 && h->root.type != bfd_link_hash_defweak)
2420 h->ref_regular_nonweak = 1;
2424 if (h->root.u.def.section->owner != NULL
2425 && (bfd_get_flavour (h->root.u.def.section->owner)
2426 == bfd_target_elf_flavour))
2429 h->ref_regular_nonweak = 1;
2435 if (h->dynindx == -1
2439 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2448 /* Unfortunately, NON_ELF is only correct if the symbol
2449 was first seen in a non-ELF file. Fortunately, if the symbol
2450 was first seen in an ELF file, we're probably OK unless the
2451 symbol was defined in a non-ELF file. Catch that case here.
2452 FIXME: We're still in trouble if the symbol was first seen in
2453 a dynamic object, and then later in a non-ELF regular object. */
2454 if ((h->root.type == bfd_link_hash_defined
2455 || h->root.type == bfd_link_hash_defweak)
2457 && (h->root.u.def.section->owner != NULL
2458 ? (bfd_get_flavour (h->root.u.def.section->owner)
2459 != bfd_target_elf_flavour)
2460 : (bfd_is_abs_section (h->root.u.def.section)
2461 && !h->def_dynamic)))
2465 /* Backend specific symbol fixup. */
2466 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2467 if (bed->elf_backend_fixup_symbol
2468 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2471 /* If this is a final link, and the symbol was defined as a common
2472 symbol in a regular object file, and there was no definition in
2473 any dynamic object, then the linker will have allocated space for
2474 the symbol in a common section but the DEF_REGULAR
2475 flag will not have been set. */
2476 if (h->root.type == bfd_link_hash_defined
2480 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2483 /* If -Bsymbolic was used (which means to bind references to global
2484 symbols to the definition within the shared object), and this
2485 symbol was defined in a regular object, then it actually doesn't
2486 need a PLT entry. Likewise, if the symbol has non-default
2487 visibility. If the symbol has hidden or internal visibility, we
2488 will force it local. */
2490 && eif->info->shared
2491 && is_elf_hash_table (eif->info->hash)
2492 && (SYMBOLIC_BIND (eif->info, h)
2493 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2496 bfd_boolean force_local;
2498 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2499 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2500 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2503 /* If a weak undefined symbol has non-default visibility, we also
2504 hide it from the dynamic linker. */
2505 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2506 && h->root.type == bfd_link_hash_undefweak)
2507 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2509 /* If this is a weak defined symbol in a dynamic object, and we know
2510 the real definition in the dynamic object, copy interesting flags
2511 over to the real definition. */
2512 if (h->u.weakdef != NULL)
2514 struct elf_link_hash_entry *weakdef;
2516 weakdef = h->u.weakdef;
2517 while (h->root.type == bfd_link_hash_indirect)
2518 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2520 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2521 || h->root.type == bfd_link_hash_defweak);
2522 BFD_ASSERT (weakdef->def_dynamic);
2524 /* If the real definition is defined by a regular object file,
2525 don't do anything special. See the longer description in
2526 _bfd_elf_adjust_dynamic_symbol, below. */
2527 if (weakdef->def_regular)
2528 h->u.weakdef = NULL;
2531 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2532 || weakdef->root.type == bfd_link_hash_defweak);
2533 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2540 /* Make the backend pick a good value for a dynamic symbol. This is
2541 called via elf_link_hash_traverse, and also calls itself
2545 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2547 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2549 const struct elf_backend_data *bed;
2551 if (! is_elf_hash_table (eif->info->hash))
2554 /* Ignore indirect symbols. These are added by the versioning code. */
2555 if (h->root.type == bfd_link_hash_indirect)
2558 /* Fix the symbol flags. */
2559 if (! _bfd_elf_fix_symbol_flags (h, eif))
2562 /* If this symbol does not require a PLT entry, and it is not
2563 defined by a dynamic object, or is not referenced by a regular
2564 object, ignore it. We do have to handle a weak defined symbol,
2565 even if no regular object refers to it, if we decided to add it
2566 to the dynamic symbol table. FIXME: Do we normally need to worry
2567 about symbols which are defined by one dynamic object and
2568 referenced by another one? */
2570 && h->type != STT_GNU_IFUNC
2574 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2576 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2580 /* If we've already adjusted this symbol, don't do it again. This
2581 can happen via a recursive call. */
2582 if (h->dynamic_adjusted)
2585 /* Don't look at this symbol again. Note that we must set this
2586 after checking the above conditions, because we may look at a
2587 symbol once, decide not to do anything, and then get called
2588 recursively later after REF_REGULAR is set below. */
2589 h->dynamic_adjusted = 1;
2591 /* If this is a weak definition, and we know a real definition, and
2592 the real symbol is not itself defined by a regular object file,
2593 then get a good value for the real definition. We handle the
2594 real symbol first, for the convenience of the backend routine.
2596 Note that there is a confusing case here. If the real definition
2597 is defined by a regular object file, we don't get the real symbol
2598 from the dynamic object, but we do get the weak symbol. If the
2599 processor backend uses a COPY reloc, then if some routine in the
2600 dynamic object changes the real symbol, we will not see that
2601 change in the corresponding weak symbol. This is the way other
2602 ELF linkers work as well, and seems to be a result of the shared
2605 I will clarify this issue. Most SVR4 shared libraries define the
2606 variable _timezone and define timezone as a weak synonym. The
2607 tzset call changes _timezone. If you write
2608 extern int timezone;
2610 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2611 you might expect that, since timezone is a synonym for _timezone,
2612 the same number will print both times. However, if the processor
2613 backend uses a COPY reloc, then actually timezone will be copied
2614 into your process image, and, since you define _timezone
2615 yourself, _timezone will not. Thus timezone and _timezone will
2616 wind up at different memory locations. The tzset call will set
2617 _timezone, leaving timezone unchanged. */
2619 if (h->u.weakdef != NULL)
2621 /* If we get to this point, there is an implicit reference to
2622 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2623 h->u.weakdef->ref_regular = 1;
2625 /* Ensure that the backend adjust_dynamic_symbol function sees
2626 H->U.WEAKDEF before H by recursively calling ourselves. */
2627 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2631 /* If a symbol has no type and no size and does not require a PLT
2632 entry, then we are probably about to do the wrong thing here: we
2633 are probably going to create a COPY reloc for an empty object.
2634 This case can arise when a shared object is built with assembly
2635 code, and the assembly code fails to set the symbol type. */
2637 && h->type == STT_NOTYPE
2639 (*_bfd_error_handler)
2640 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2641 h->root.root.string);
2643 dynobj = elf_hash_table (eif->info)->dynobj;
2644 bed = get_elf_backend_data (dynobj);
2646 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2655 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2659 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2662 unsigned int power_of_two;
2664 asection *sec = h->root.u.def.section;
2666 /* The section aligment of definition is the maximum alignment
2667 requirement of symbols defined in the section. Since we don't
2668 know the symbol alignment requirement, we start with the
2669 maximum alignment and check low bits of the symbol address
2670 for the minimum alignment. */
2671 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2672 mask = ((bfd_vma) 1 << power_of_two) - 1;
2673 while ((h->root.u.def.value & mask) != 0)
2679 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2682 /* Adjust the section alignment if needed. */
2683 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2688 /* We make sure that the symbol will be aligned properly. */
2689 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2691 /* Define the symbol as being at this point in DYNBSS. */
2692 h->root.u.def.section = dynbss;
2693 h->root.u.def.value = dynbss->size;
2695 /* Increment the size of DYNBSS to make room for the symbol. */
2696 dynbss->size += h->size;
2701 /* Adjust all external symbols pointing into SEC_MERGE sections
2702 to reflect the object merging within the sections. */
2705 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2709 if ((h->root.type == bfd_link_hash_defined
2710 || h->root.type == bfd_link_hash_defweak)
2711 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2712 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2714 bfd *output_bfd = (bfd *) data;
2716 h->root.u.def.value =
2717 _bfd_merged_section_offset (output_bfd,
2718 &h->root.u.def.section,
2719 elf_section_data (sec)->sec_info,
2720 h->root.u.def.value);
2726 /* Returns false if the symbol referred to by H should be considered
2727 to resolve local to the current module, and true if it should be
2728 considered to bind dynamically. */
2731 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2732 struct bfd_link_info *info,
2733 bfd_boolean not_local_protected)
2735 bfd_boolean binding_stays_local_p;
2736 const struct elf_backend_data *bed;
2737 struct elf_link_hash_table *hash_table;
2742 while (h->root.type == bfd_link_hash_indirect
2743 || h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2746 /* If it was forced local, then clearly it's not dynamic. */
2747 if (h->dynindx == -1)
2749 if (h->forced_local)
2752 /* Identify the cases where name binding rules say that a
2753 visible symbol resolves locally. */
2754 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2756 switch (ELF_ST_VISIBILITY (h->other))
2763 hash_table = elf_hash_table (info);
2764 if (!is_elf_hash_table (hash_table))
2767 bed = get_elf_backend_data (hash_table->dynobj);
2769 /* Proper resolution for function pointer equality may require
2770 that these symbols perhaps be resolved dynamically, even though
2771 we should be resolving them to the current module. */
2772 if (!not_local_protected || !bed->is_function_type (h->type))
2773 binding_stays_local_p = TRUE;
2780 /* If it isn't defined locally, then clearly it's dynamic. */
2781 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2784 /* Otherwise, the symbol is dynamic if binding rules don't tell
2785 us that it remains local. */
2786 return !binding_stays_local_p;
2789 /* Return true if the symbol referred to by H should be considered
2790 to resolve local to the current module, and false otherwise. Differs
2791 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2792 undefined symbols. The two functions are virtually identical except
2793 for the place where forced_local and dynindx == -1 are tested. If
2794 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2795 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2796 the symbol is local only for defined symbols.
2797 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2798 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2799 treatment of undefined weak symbols. For those that do not make
2800 undefined weak symbols dynamic, both functions may return false. */
2803 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2804 struct bfd_link_info *info,
2805 bfd_boolean local_protected)
2807 const struct elf_backend_data *bed;
2808 struct elf_link_hash_table *hash_table;
2810 /* If it's a local sym, of course we resolve locally. */
2814 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2815 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2816 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2819 /* Common symbols that become definitions don't get the DEF_REGULAR
2820 flag set, so test it first, and don't bail out. */
2821 if (ELF_COMMON_DEF_P (h))
2823 /* If we don't have a definition in a regular file, then we can't
2824 resolve locally. The sym is either undefined or dynamic. */
2825 else if (!h->def_regular)
2828 /* Forced local symbols resolve locally. */
2829 if (h->forced_local)
2832 /* As do non-dynamic symbols. */
2833 if (h->dynindx == -1)
2836 /* At this point, we know the symbol is defined and dynamic. In an
2837 executable it must resolve locally, likewise when building symbolic
2838 shared libraries. */
2839 if (info->executable || SYMBOLIC_BIND (info, h))
2842 /* Now deal with defined dynamic symbols in shared libraries. Ones
2843 with default visibility might not resolve locally. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2847 hash_table = elf_hash_table (info);
2848 if (!is_elf_hash_table (hash_table))
2851 bed = get_elf_backend_data (hash_table->dynobj);
2853 /* STV_PROTECTED non-function symbols are local. */
2854 if (!bed->is_function_type (h->type))
2857 /* Function pointer equality tests may require that STV_PROTECTED
2858 symbols be treated as dynamic symbols. If the address of a
2859 function not defined in an executable is set to that function's
2860 plt entry in the executable, then the address of the function in
2861 a shared library must also be the plt entry in the executable. */
2862 return local_protected;
2865 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2866 aligned. Returns the first TLS output section. */
2868 struct bfd_section *
2869 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2871 struct bfd_section *sec, *tls;
2872 unsigned int align = 0;
2874 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2875 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2879 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2880 if (sec->alignment_power > align)
2881 align = sec->alignment_power;
2883 elf_hash_table (info)->tls_sec = tls;
2885 /* Ensure the alignment of the first section is the largest alignment,
2886 so that the tls segment starts aligned. */
2888 tls->alignment_power = align;
2893 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2895 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2896 Elf_Internal_Sym *sym)
2898 const struct elf_backend_data *bed;
2900 /* Local symbols do not count, but target specific ones might. */
2901 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2902 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2905 bed = get_elf_backend_data (abfd);
2906 /* Function symbols do not count. */
2907 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2910 /* If the section is undefined, then so is the symbol. */
2911 if (sym->st_shndx == SHN_UNDEF)
2914 /* If the symbol is defined in the common section, then
2915 it is a common definition and so does not count. */
2916 if (bed->common_definition (sym))
2919 /* If the symbol is in a target specific section then we
2920 must rely upon the backend to tell us what it is. */
2921 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2922 /* FIXME - this function is not coded yet:
2924 return _bfd_is_global_symbol_definition (abfd, sym);
2926 Instead for now assume that the definition is not global,
2927 Even if this is wrong, at least the linker will behave
2928 in the same way that it used to do. */
2934 /* Search the symbol table of the archive element of the archive ABFD
2935 whose archive map contains a mention of SYMDEF, and determine if
2936 the symbol is defined in this element. */
2938 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2940 Elf_Internal_Shdr * hdr;
2941 bfd_size_type symcount;
2942 bfd_size_type extsymcount;
2943 bfd_size_type extsymoff;
2944 Elf_Internal_Sym *isymbuf;
2945 Elf_Internal_Sym *isym;
2946 Elf_Internal_Sym *isymend;
2949 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2953 if (! bfd_check_format (abfd, bfd_object))
2956 /* If we have already included the element containing this symbol in the
2957 link then we do not need to include it again. Just claim that any symbol
2958 it contains is not a definition, so that our caller will not decide to
2959 (re)include this element. */
2960 if (abfd->archive_pass)
2963 /* Select the appropriate symbol table. */
2964 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2965 hdr = &elf_tdata (abfd)->symtab_hdr;
2967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2969 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2971 /* The sh_info field of the symtab header tells us where the
2972 external symbols start. We don't care about the local symbols. */
2973 if (elf_bad_symtab (abfd))
2975 extsymcount = symcount;
2980 extsymcount = symcount - hdr->sh_info;
2981 extsymoff = hdr->sh_info;
2984 if (extsymcount == 0)
2987 /* Read in the symbol table. */
2988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2990 if (isymbuf == NULL)
2993 /* Scan the symbol table looking for SYMDEF. */
2995 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2999 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3004 if (strcmp (name, symdef->name) == 0)
3006 result = is_global_data_symbol_definition (abfd, isym);
3016 /* Add an entry to the .dynamic table. */
3019 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3023 struct elf_link_hash_table *hash_table;
3024 const struct elf_backend_data *bed;
3026 bfd_size_type newsize;
3027 bfd_byte *newcontents;
3028 Elf_Internal_Dyn dyn;
3030 hash_table = elf_hash_table (info);
3031 if (! is_elf_hash_table (hash_table))
3034 bed = get_elf_backend_data (hash_table->dynobj);
3035 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3036 BFD_ASSERT (s != NULL);
3038 newsize = s->size + bed->s->sizeof_dyn;
3039 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3040 if (newcontents == NULL)
3044 dyn.d_un.d_val = val;
3045 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3048 s->contents = newcontents;
3053 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3054 otherwise just check whether one already exists. Returns -1 on error,
3055 1 if a DT_NEEDED tag already exists, and 0 on success. */
3058 elf_add_dt_needed_tag (bfd *abfd,
3059 struct bfd_link_info *info,
3063 struct elf_link_hash_table *hash_table;
3064 bfd_size_type oldsize;
3065 bfd_size_type strindex;
3067 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3070 hash_table = elf_hash_table (info);
3071 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3072 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3073 if (strindex == (bfd_size_type) -1)
3076 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3079 const struct elf_backend_data *bed;
3082 bed = get_elf_backend_data (hash_table->dynobj);
3083 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3085 for (extdyn = sdyn->contents;
3086 extdyn < sdyn->contents + sdyn->size;
3087 extdyn += bed->s->sizeof_dyn)
3089 Elf_Internal_Dyn dyn;
3091 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3092 if (dyn.d_tag == DT_NEEDED
3093 && dyn.d_un.d_val == strindex)
3095 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3103 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3106 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3110 /* We were just checking for existence of the tag. */
3111 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3117 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3119 for (; needed != NULL; needed = needed->next)
3120 if (strcmp (soname, needed->name) == 0)
3126 /* Sort symbol by value and section. */
3128 elf_sort_symbol (const void *arg1, const void *arg2)
3130 const struct elf_link_hash_entry *h1;
3131 const struct elf_link_hash_entry *h2;
3132 bfd_signed_vma vdiff;
3134 h1 = *(const struct elf_link_hash_entry **) arg1;
3135 h2 = *(const struct elf_link_hash_entry **) arg2;
3136 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3138 return vdiff > 0 ? 1 : -1;
3141 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3143 return sdiff > 0 ? 1 : -1;
3148 /* This function is used to adjust offsets into .dynstr for
3149 dynamic symbols. This is called via elf_link_hash_traverse. */
3152 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3154 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3156 if (h->dynindx != -1)
3157 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3161 /* Assign string offsets in .dynstr, update all structures referencing
3165 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3167 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3168 struct elf_link_local_dynamic_entry *entry;
3169 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3170 bfd *dynobj = hash_table->dynobj;
3173 const struct elf_backend_data *bed;
3176 _bfd_elf_strtab_finalize (dynstr);
3177 size = _bfd_elf_strtab_size (dynstr);
3179 bed = get_elf_backend_data (dynobj);
3180 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3181 BFD_ASSERT (sdyn != NULL);
3183 /* Update all .dynamic entries referencing .dynstr strings. */
3184 for (extdyn = sdyn->contents;
3185 extdyn < sdyn->contents + sdyn->size;
3186 extdyn += bed->s->sizeof_dyn)
3188 Elf_Internal_Dyn dyn;
3190 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3194 dyn.d_un.d_val = size;
3204 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3209 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3212 /* Now update local dynamic symbols. */
3213 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3214 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3215 entry->isym.st_name);
3217 /* And the rest of dynamic symbols. */
3218 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3220 /* Adjust version definitions. */
3221 if (elf_tdata (output_bfd)->cverdefs)
3226 Elf_Internal_Verdef def;
3227 Elf_Internal_Verdaux defaux;
3229 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3233 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3235 p += sizeof (Elf_External_Verdef);
3236 if (def.vd_aux != sizeof (Elf_External_Verdef))
3238 for (i = 0; i < def.vd_cnt; ++i)
3240 _bfd_elf_swap_verdaux_in (output_bfd,
3241 (Elf_External_Verdaux *) p, &defaux);
3242 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3244 _bfd_elf_swap_verdaux_out (output_bfd,
3245 &defaux, (Elf_External_Verdaux *) p);
3246 p += sizeof (Elf_External_Verdaux);
3249 while (def.vd_next);
3252 /* Adjust version references. */
3253 if (elf_tdata (output_bfd)->verref)
3258 Elf_Internal_Verneed need;
3259 Elf_Internal_Vernaux needaux;
3261 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3265 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3267 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3268 _bfd_elf_swap_verneed_out (output_bfd, &need,
3269 (Elf_External_Verneed *) p);
3270 p += sizeof (Elf_External_Verneed);
3271 for (i = 0; i < need.vn_cnt; ++i)
3273 _bfd_elf_swap_vernaux_in (output_bfd,
3274 (Elf_External_Vernaux *) p, &needaux);
3275 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3277 _bfd_elf_swap_vernaux_out (output_bfd,
3279 (Elf_External_Vernaux *) p);
3280 p += sizeof (Elf_External_Vernaux);
3283 while (need.vn_next);
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290 The default is to only match when the INPUT and OUTPUT are exactly
3294 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3295 const bfd_target *output)
3297 return input == output;
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301 This version is used when different targets for the same architecture
3302 are virtually identical. */
3305 _bfd_elf_relocs_compatible (const bfd_target *input,
3306 const bfd_target *output)
3308 const struct elf_backend_data *obed, *ibed;
3310 if (input == output)
3313 ibed = xvec_get_elf_backend_data (input);
3314 obed = xvec_get_elf_backend_data (output);
3316 if (ibed->arch != obed->arch)
3319 /* If both backends are using this function, deem them compatible. */
3320 return ibed->relocs_compatible == obed->relocs_compatible;
3323 /* Add symbols from an ELF object file to the linker hash table. */
3326 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3328 Elf_Internal_Ehdr *ehdr;
3329 Elf_Internal_Shdr *hdr;
3330 bfd_size_type symcount;
3331 bfd_size_type extsymcount;
3332 bfd_size_type extsymoff;
3333 struct elf_link_hash_entry **sym_hash;
3334 bfd_boolean dynamic;
3335 Elf_External_Versym *extversym = NULL;
3336 Elf_External_Versym *ever;
3337 struct elf_link_hash_entry *weaks;
3338 struct elf_link_hash_entry **nondeflt_vers = NULL;
3339 bfd_size_type nondeflt_vers_cnt = 0;
3340 Elf_Internal_Sym *isymbuf = NULL;
3341 Elf_Internal_Sym *isym;
3342 Elf_Internal_Sym *isymend;
3343 const struct elf_backend_data *bed;
3344 bfd_boolean add_needed;
3345 struct elf_link_hash_table *htab;
3347 void *alloc_mark = NULL;
3348 struct bfd_hash_entry **old_table = NULL;
3349 unsigned int old_size = 0;
3350 unsigned int old_count = 0;
3351 void *old_tab = NULL;
3354 struct bfd_link_hash_entry *old_undefs = NULL;
3355 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3356 long old_dynsymcount = 0;
3358 size_t hashsize = 0;
3360 htab = elf_hash_table (info);
3361 bed = get_elf_backend_data (abfd);
3363 if ((abfd->flags & DYNAMIC) == 0)
3369 /* You can't use -r against a dynamic object. Also, there's no
3370 hope of using a dynamic object which does not exactly match
3371 the format of the output file. */
3372 if (info->relocatable
3373 || !is_elf_hash_table (htab)
3374 || info->output_bfd->xvec != abfd->xvec)
3376 if (info->relocatable)
3377 bfd_set_error (bfd_error_invalid_operation);
3379 bfd_set_error (bfd_error_wrong_format);
3384 ehdr = elf_elfheader (abfd);
3385 if (info->warn_alternate_em
3386 && bed->elf_machine_code != ehdr->e_machine
3387 && ((bed->elf_machine_alt1 != 0
3388 && ehdr->e_machine == bed->elf_machine_alt1)
3389 || (bed->elf_machine_alt2 != 0
3390 && ehdr->e_machine == bed->elf_machine_alt2)))
3391 info->callbacks->einfo
3392 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3393 ehdr->e_machine, abfd, bed->elf_machine_code);
3395 /* As a GNU extension, any input sections which are named
3396 .gnu.warning.SYMBOL are treated as warning symbols for the given
3397 symbol. This differs from .gnu.warning sections, which generate
3398 warnings when they are included in an output file. */
3399 /* PR 12761: Also generate this warning when building shared libraries. */
3400 if (info->executable || info->shared)
3404 for (s = abfd->sections; s != NULL; s = s->next)
3408 name = bfd_get_section_name (abfd, s);
3409 if (CONST_STRNEQ (name, ".gnu.warning."))
3414 name += sizeof ".gnu.warning." - 1;
3416 /* If this is a shared object, then look up the symbol
3417 in the hash table. If it is there, and it is already
3418 been defined, then we will not be using the entry
3419 from this shared object, so we don't need to warn.
3420 FIXME: If we see the definition in a regular object
3421 later on, we will warn, but we shouldn't. The only
3422 fix is to keep track of what warnings we are supposed
3423 to emit, and then handle them all at the end of the
3427 struct elf_link_hash_entry *h;
3429 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3431 /* FIXME: What about bfd_link_hash_common? */
3433 && (h->root.type == bfd_link_hash_defined
3434 || h->root.type == bfd_link_hash_defweak))
3436 /* We don't want to issue this warning. Clobber
3437 the section size so that the warning does not
3438 get copied into the output file. */
3445 msg = (char *) bfd_alloc (abfd, sz + 1);
3449 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3454 if (! (_bfd_generic_link_add_one_symbol
3455 (info, abfd, name, BSF_WARNING, s, 0, msg,
3456 FALSE, bed->collect, NULL)))
3459 if (! info->relocatable)
3461 /* Clobber the section size so that the warning does
3462 not get copied into the output file. */
3465 /* Also set SEC_EXCLUDE, so that symbols defined in
3466 the warning section don't get copied to the output. */
3467 s->flags |= SEC_EXCLUDE;
3476 /* If we are creating a shared library, create all the dynamic
3477 sections immediately. We need to attach them to something,
3478 so we attach them to this BFD, provided it is the right
3479 format. FIXME: If there are no input BFD's of the same
3480 format as the output, we can't make a shared library. */
3482 && is_elf_hash_table (htab)
3483 && info->output_bfd->xvec == abfd->xvec
3484 && !htab->dynamic_sections_created)
3486 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3490 else if (!is_elf_hash_table (htab))
3495 const char *soname = NULL;
3497 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3500 /* ld --just-symbols and dynamic objects don't mix very well.
3501 ld shouldn't allow it. */
3502 if ((s = abfd->sections) != NULL
3503 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3506 /* If this dynamic lib was specified on the command line with
3507 --as-needed in effect, then we don't want to add a DT_NEEDED
3508 tag unless the lib is actually used. Similary for libs brought
3509 in by another lib's DT_NEEDED. When --no-add-needed is used
3510 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3511 any dynamic library in DT_NEEDED tags in the dynamic lib at
3513 add_needed = (elf_dyn_lib_class (abfd)
3514 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3515 | DYN_NO_NEEDED)) == 0;
3517 s = bfd_get_section_by_name (abfd, ".dynamic");
3522 unsigned int elfsec;
3523 unsigned long shlink;
3525 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3532 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3533 if (elfsec == SHN_BAD)
3534 goto error_free_dyn;
3535 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3537 for (extdyn = dynbuf;
3538 extdyn < dynbuf + s->size;
3539 extdyn += bed->s->sizeof_dyn)
3541 Elf_Internal_Dyn dyn;
3543 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3544 if (dyn.d_tag == DT_SONAME)
3546 unsigned int tagv = dyn.d_un.d_val;
3547 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3549 goto error_free_dyn;
3551 if (dyn.d_tag == DT_NEEDED)
3553 struct bfd_link_needed_list *n, **pn;
3555 unsigned int tagv = dyn.d_un.d_val;
3557 amt = sizeof (struct bfd_link_needed_list);
3558 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3559 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 if (n == NULL || fnm == NULL)
3561 goto error_free_dyn;
3562 amt = strlen (fnm) + 1;
3563 anm = (char *) bfd_alloc (abfd, amt);
3565 goto error_free_dyn;
3566 memcpy (anm, fnm, amt);
3570 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3574 if (dyn.d_tag == DT_RUNPATH)
3576 struct bfd_link_needed_list *n, **pn;
3578 unsigned int tagv = dyn.d_un.d_val;
3580 amt = sizeof (struct bfd_link_needed_list);
3581 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3582 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3583 if (n == NULL || fnm == NULL)
3584 goto error_free_dyn;
3585 amt = strlen (fnm) + 1;
3586 anm = (char *) bfd_alloc (abfd, amt);
3588 goto error_free_dyn;
3589 memcpy (anm, fnm, amt);
3593 for (pn = & runpath;
3599 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3600 if (!runpath && dyn.d_tag == DT_RPATH)
3602 struct bfd_link_needed_list *n, **pn;
3604 unsigned int tagv = dyn.d_un.d_val;
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = (char *) bfd_alloc (abfd, amt);
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3625 if (dyn.d_tag == DT_AUDIT)
3627 unsigned int tagv = dyn.d_un.d_val;
3628 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3635 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3636 frees all more recently bfd_alloc'd blocks as well. */
3642 struct bfd_link_needed_list **pn;
3643 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3648 /* We do not want to include any of the sections in a dynamic
3649 object in the output file. We hack by simply clobbering the
3650 list of sections in the BFD. This could be handled more
3651 cleanly by, say, a new section flag; the existing
3652 SEC_NEVER_LOAD flag is not the one we want, because that one
3653 still implies that the section takes up space in the output
3655 bfd_section_list_clear (abfd);
3657 /* Find the name to use in a DT_NEEDED entry that refers to this
3658 object. If the object has a DT_SONAME entry, we use it.
3659 Otherwise, if the generic linker stuck something in
3660 elf_dt_name, we use that. Otherwise, we just use the file
3662 if (soname == NULL || *soname == '\0')
3664 soname = elf_dt_name (abfd);
3665 if (soname == NULL || *soname == '\0')
3666 soname = bfd_get_filename (abfd);
3669 /* Save the SONAME because sometimes the linker emulation code
3670 will need to know it. */
3671 elf_dt_name (abfd) = soname;
3673 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3677 /* If we have already included this dynamic object in the
3678 link, just ignore it. There is no reason to include a
3679 particular dynamic object more than once. */
3683 /* Save the DT_AUDIT entry for the linker emulation code. */
3684 elf_dt_audit (abfd) = audit;
3687 /* If this is a dynamic object, we always link against the .dynsym
3688 symbol table, not the .symtab symbol table. The dynamic linker
3689 will only see the .dynsym symbol table, so there is no reason to
3690 look at .symtab for a dynamic object. */
3692 if (! dynamic || elf_dynsymtab (abfd) == 0)
3693 hdr = &elf_tdata (abfd)->symtab_hdr;
3695 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3697 symcount = hdr->sh_size / bed->s->sizeof_sym;
3699 /* The sh_info field of the symtab header tells us where the
3700 external symbols start. We don't care about the local symbols at
3702 if (elf_bad_symtab (abfd))
3704 extsymcount = symcount;
3709 extsymcount = symcount - hdr->sh_info;
3710 extsymoff = hdr->sh_info;
3714 if (extsymcount != 0)
3716 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3718 if (isymbuf == NULL)
3721 /* We store a pointer to the hash table entry for each external
3723 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3724 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3725 if (sym_hash == NULL)
3726 goto error_free_sym;
3727 elf_sym_hashes (abfd) = sym_hash;
3732 /* Read in any version definitions. */
3733 if (!_bfd_elf_slurp_version_tables (abfd,
3734 info->default_imported_symver))
3735 goto error_free_sym;
3737 /* Read in the symbol versions, but don't bother to convert them
3738 to internal format. */
3739 if (elf_dynversym (abfd) != 0)
3741 Elf_Internal_Shdr *versymhdr;
3743 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3744 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3745 if (extversym == NULL)
3746 goto error_free_sym;
3747 amt = versymhdr->sh_size;
3748 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3749 || bfd_bread (extversym, amt, abfd) != amt)
3750 goto error_free_vers;
3754 /* If we are loading an as-needed shared lib, save the symbol table
3755 state before we start adding symbols. If the lib turns out
3756 to be unneeded, restore the state. */
3757 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3762 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3764 struct bfd_hash_entry *p;
3765 struct elf_link_hash_entry *h;
3767 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3769 h = (struct elf_link_hash_entry *) p;
3770 entsize += htab->root.table.entsize;
3771 if (h->root.type == bfd_link_hash_warning)
3772 entsize += htab->root.table.entsize;
3776 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3777 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3778 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3779 if (old_tab == NULL)
3780 goto error_free_vers;
3782 /* Remember the current objalloc pointer, so that all mem for
3783 symbols added can later be reclaimed. */
3784 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3785 if (alloc_mark == NULL)
3786 goto error_free_vers;
3788 /* Make a special call to the linker "notice" function to
3789 tell it that we are about to handle an as-needed lib. */
3790 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3791 notice_as_needed, 0, NULL))
3792 goto error_free_vers;
3794 /* Clone the symbol table and sym hashes. Remember some
3795 pointers into the symbol table, and dynamic symbol count. */
3796 old_hash = (char *) old_tab + tabsize;
3797 old_ent = (char *) old_hash + hashsize;
3798 memcpy (old_tab, htab->root.table.table, tabsize);
3799 memcpy (old_hash, sym_hash, hashsize);
3800 old_undefs = htab->root.undefs;
3801 old_undefs_tail = htab->root.undefs_tail;
3802 old_table = htab->root.table.table;
3803 old_size = htab->root.table.size;
3804 old_count = htab->root.table.count;
3805 old_dynsymcount = htab->dynsymcount;
3807 for (i = 0; i < htab->root.table.size; i++)
3809 struct bfd_hash_entry *p;
3810 struct elf_link_hash_entry *h;
3812 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3814 memcpy (old_ent, p, htab->root.table.entsize);
3815 old_ent = (char *) old_ent + htab->root.table.entsize;
3816 h = (struct elf_link_hash_entry *) p;
3817 if (h->root.type == bfd_link_hash_warning)
3819 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3820 old_ent = (char *) old_ent + htab->root.table.entsize;
3827 ever = extversym != NULL ? extversym + extsymoff : NULL;
3828 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3830 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3834 asection *sec, *new_sec;
3837 struct elf_link_hash_entry *h;
3838 bfd_boolean definition;
3839 bfd_boolean size_change_ok;
3840 bfd_boolean type_change_ok;
3841 bfd_boolean new_weakdef;
3842 bfd_boolean override;
3844 unsigned int old_alignment;
3846 bfd * undef_bfd = NULL;
3850 flags = BSF_NO_FLAGS;
3852 value = isym->st_value;
3854 common = bed->common_definition (isym);
3856 bind = ELF_ST_BIND (isym->st_info);
3860 /* This should be impossible, since ELF requires that all
3861 global symbols follow all local symbols, and that sh_info
3862 point to the first global symbol. Unfortunately, Irix 5
3867 if (isym->st_shndx != SHN_UNDEF && !common)
3875 case STB_GNU_UNIQUE:
3876 flags = BSF_GNU_UNIQUE;
3880 /* Leave it up to the processor backend. */
3884 if (isym->st_shndx == SHN_UNDEF)
3885 sec = bfd_und_section_ptr;
3886 else if (isym->st_shndx == SHN_ABS)
3887 sec = bfd_abs_section_ptr;
3888 else if (isym->st_shndx == SHN_COMMON)
3890 sec = bfd_com_section_ptr;
3891 /* What ELF calls the size we call the value. What ELF
3892 calls the value we call the alignment. */
3893 value = isym->st_size;
3897 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3899 sec = bfd_abs_section_ptr;
3900 else if (elf_discarded_section (sec))
3902 /* Symbols from discarded section are undefined. We keep
3904 sec = bfd_und_section_ptr;
3905 isym->st_shndx = SHN_UNDEF;
3907 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3911 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3914 goto error_free_vers;
3916 if (isym->st_shndx == SHN_COMMON
3917 && (abfd->flags & BFD_PLUGIN) != 0)
3919 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3923 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3925 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3927 goto error_free_vers;
3931 else if (isym->st_shndx == SHN_COMMON
3932 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3933 && !info->relocatable)
3935 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3939 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3940 | SEC_LINKER_CREATED);
3941 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3943 goto error_free_vers;
3947 else if (bed->elf_add_symbol_hook)
3949 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3951 goto error_free_vers;
3953 /* The hook function sets the name to NULL if this symbol
3954 should be skipped for some reason. */
3959 /* Sanity check that all possibilities were handled. */
3962 bfd_set_error (bfd_error_bad_value);
3963 goto error_free_vers;
3966 if (bfd_is_und_section (sec)
3967 || bfd_is_com_section (sec))
3972 size_change_ok = FALSE;
3973 type_change_ok = bed->type_change_ok;
3978 if (is_elf_hash_table (htab))
3980 Elf_Internal_Versym iver;
3981 unsigned int vernum = 0;
3984 /* If this is a definition of a symbol which was previously
3985 referenced in a non-weak manner then make a note of the bfd
3986 that contained the reference. This is used if we need to
3987 refer to the source of the reference later on. */
3988 if (! bfd_is_und_section (sec))
3990 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3993 && h->root.type == bfd_link_hash_undefined
3994 && h->root.u.undef.abfd)
3995 undef_bfd = h->root.u.undef.abfd;
4000 if (info->default_imported_symver)
4001 /* Use the default symbol version created earlier. */
4002 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4007 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4009 vernum = iver.vs_vers & VERSYM_VERSION;
4011 /* If this is a hidden symbol, or if it is not version
4012 1, we append the version name to the symbol name.
4013 However, we do not modify a non-hidden absolute symbol
4014 if it is not a function, because it might be the version
4015 symbol itself. FIXME: What if it isn't? */
4016 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4018 && (!bfd_is_abs_section (sec)
4019 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4022 size_t namelen, verlen, newlen;
4025 if (isym->st_shndx != SHN_UNDEF)
4027 if (vernum > elf_tdata (abfd)->cverdefs)
4029 else if (vernum > 1)
4031 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4037 (*_bfd_error_handler)
4038 (_("%B: %s: invalid version %u (max %d)"),
4040 elf_tdata (abfd)->cverdefs);
4041 bfd_set_error (bfd_error_bad_value);
4042 goto error_free_vers;
4047 /* We cannot simply test for the number of
4048 entries in the VERNEED section since the
4049 numbers for the needed versions do not start
4051 Elf_Internal_Verneed *t;
4054 for (t = elf_tdata (abfd)->verref;
4058 Elf_Internal_Vernaux *a;
4060 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4062 if (a->vna_other == vernum)
4064 verstr = a->vna_nodename;
4073 (*_bfd_error_handler)
4074 (_("%B: %s: invalid needed version %d"),
4075 abfd, name, vernum);
4076 bfd_set_error (bfd_error_bad_value);
4077 goto error_free_vers;
4081 namelen = strlen (name);
4082 verlen = strlen (verstr);
4083 newlen = namelen + verlen + 2;
4084 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4085 && isym->st_shndx != SHN_UNDEF)
4088 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4089 if (newname == NULL)
4090 goto error_free_vers;
4091 memcpy (newname, name, namelen);
4092 p = newname + namelen;
4094 /* If this is a defined non-hidden version symbol,
4095 we add another @ to the name. This indicates the
4096 default version of the symbol. */
4097 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4098 && isym->st_shndx != SHN_UNDEF)
4100 memcpy (p, verstr, verlen + 1);
4105 /* If necessary, make a second attempt to locate the bfd
4106 containing an unresolved, non-weak reference to the
4108 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4110 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4113 && h->root.type == bfd_link_hash_undefined
4114 && h->root.u.undef.abfd)
4115 undef_bfd = h->root.u.undef.abfd;
4118 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4119 &value, &old_alignment,
4120 sym_hash, &skip, &override,
4121 &type_change_ok, &size_change_ok))
4122 goto error_free_vers;
4131 while (h->root.type == bfd_link_hash_indirect
4132 || h->root.type == bfd_link_hash_warning)
4133 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4135 /* Remember the old alignment if this is a common symbol, so
4136 that we don't reduce the alignment later on. We can't
4137 check later, because _bfd_generic_link_add_one_symbol
4138 will set a default for the alignment which we want to
4139 override. We also remember the old bfd where the existing
4140 definition comes from. */
4141 switch (h->root.type)
4146 case bfd_link_hash_defined:
4147 case bfd_link_hash_defweak:
4148 old_bfd = h->root.u.def.section->owner;
4151 case bfd_link_hash_common:
4152 old_bfd = h->root.u.c.p->section->owner;
4153 old_alignment = h->root.u.c.p->alignment_power;
4157 if (elf_tdata (abfd)->verdef != NULL
4161 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4164 if (! (_bfd_generic_link_add_one_symbol
4165 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4166 (struct bfd_link_hash_entry **) sym_hash)))
4167 goto error_free_vers;
4170 while (h->root.type == bfd_link_hash_indirect
4171 || h->root.type == bfd_link_hash_warning)
4172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4175 if (is_elf_hash_table (htab))
4176 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4178 new_weakdef = FALSE;
4181 && (flags & BSF_WEAK) != 0
4182 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4183 && is_elf_hash_table (htab)
4184 && h->u.weakdef == NULL)
4186 /* Keep a list of all weak defined non function symbols from
4187 a dynamic object, using the weakdef field. Later in this
4188 function we will set the weakdef field to the correct
4189 value. We only put non-function symbols from dynamic
4190 objects on this list, because that happens to be the only
4191 time we need to know the normal symbol corresponding to a
4192 weak symbol, and the information is time consuming to
4193 figure out. If the weakdef field is not already NULL,
4194 then this symbol was already defined by some previous
4195 dynamic object, and we will be using that previous
4196 definition anyhow. */
4198 h->u.weakdef = weaks;
4203 /* Set the alignment of a common symbol. */
4204 if ((common || bfd_is_com_section (sec))
4205 && h->root.type == bfd_link_hash_common)
4210 align = bfd_log2 (isym->st_value);
4213 /* The new symbol is a common symbol in a shared object.
4214 We need to get the alignment from the section. */
4215 align = new_sec->alignment_power;
4217 if (align > old_alignment)
4218 h->root.u.c.p->alignment_power = align;
4220 h->root.u.c.p->alignment_power = old_alignment;
4223 if (is_elf_hash_table (htab))
4227 /* Check the alignment when a common symbol is involved. This
4228 can change when a common symbol is overridden by a normal
4229 definition or a common symbol is ignored due to the old
4230 normal definition. We need to make sure the maximum
4231 alignment is maintained. */
4232 if ((old_alignment || common)
4233 && h->root.type != bfd_link_hash_common)
4235 unsigned int common_align;
4236 unsigned int normal_align;
4237 unsigned int symbol_align;
4241 symbol_align = ffs (h->root.u.def.value) - 1;
4242 if (h->root.u.def.section->owner != NULL
4243 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4245 normal_align = h->root.u.def.section->alignment_power;
4246 if (normal_align > symbol_align)
4247 normal_align = symbol_align;
4250 normal_align = symbol_align;
4254 common_align = old_alignment;
4255 common_bfd = old_bfd;
4260 common_align = bfd_log2 (isym->st_value);
4262 normal_bfd = old_bfd;
4265 if (normal_align < common_align)
4267 /* PR binutils/2735 */
4268 if (normal_bfd == NULL)
4269 (*_bfd_error_handler)
4270 (_("Warning: alignment %u of common symbol `%s' in %B"
4271 " is greater than the alignment (%u) of its section %A"),
4272 common_bfd, h->root.u.def.section,
4273 1 << common_align, name, 1 << normal_align);
4275 (*_bfd_error_handler)
4276 (_("Warning: alignment %u of symbol `%s' in %B"
4277 " is smaller than %u in %B"),
4278 normal_bfd, common_bfd,
4279 1 << normal_align, name, 1 << common_align);
4283 /* Remember the symbol size if it isn't undefined. */
4284 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4285 && (definition || h->size == 0))
4288 && h->size != isym->st_size
4289 && ! size_change_ok)
4290 (*_bfd_error_handler)
4291 (_("Warning: size of symbol `%s' changed"
4292 " from %lu in %B to %lu in %B"),
4294 name, (unsigned long) h->size,
4295 (unsigned long) isym->st_size);
4297 h->size = isym->st_size;
4300 /* If this is a common symbol, then we always want H->SIZE
4301 to be the size of the common symbol. The code just above
4302 won't fix the size if a common symbol becomes larger. We
4303 don't warn about a size change here, because that is
4304 covered by --warn-common. Allow changed between different
4306 if (h->root.type == bfd_link_hash_common)
4307 h->size = h->root.u.c.size;
4309 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4310 && (definition || h->type == STT_NOTYPE))
4312 unsigned int type = ELF_ST_TYPE (isym->st_info);
4314 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4316 if (type == STT_GNU_IFUNC
4317 && (abfd->flags & DYNAMIC) != 0)
4320 if (h->type != type)
4322 if (h->type != STT_NOTYPE && ! type_change_ok)
4323 (*_bfd_error_handler)
4324 (_("Warning: type of symbol `%s' changed"
4325 " from %d to %d in %B"),
4326 abfd, name, h->type, type);
4332 /* Merge st_other field. */
4333 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4335 /* Set a flag in the hash table entry indicating the type of
4336 reference or definition we just found. Keep a count of
4337 the number of dynamic symbols we find. A dynamic symbol
4338 is one which is referenced or defined by both a regular
4339 object and a shared object. */
4346 if (bind != STB_WEAK)
4347 h->ref_regular_nonweak = 1;
4359 if (! info->executable
4372 || (h->u.weakdef != NULL
4374 && h->u.weakdef->dynindx != -1))
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4380 /* We don't want to make debug symbol dynamic. */
4385 h->target_internal = isym->st_target_internal;
4387 /* Check to see if we need to add an indirect symbol for
4388 the default name. */
4389 if (definition || h->root.type == bfd_link_hash_common)
4390 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4391 &sec, &value, &dynsym,
4393 goto error_free_vers;
4395 if (definition && !dynamic)
4397 char *p = strchr (name, ELF_VER_CHR);
4398 if (p != NULL && p[1] != ELF_VER_CHR)
4400 /* Queue non-default versions so that .symver x, x@FOO
4401 aliases can be checked. */
4404 amt = ((isymend - isym + 1)
4405 * sizeof (struct elf_link_hash_entry *));
4407 (struct elf_link_hash_entry **) bfd_malloc (amt);
4409 goto error_free_vers;
4411 nondeflt_vers[nondeflt_vers_cnt++] = h;
4415 if (dynsym && h->dynindx == -1)
4417 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4418 goto error_free_vers;
4419 if (h->u.weakdef != NULL
4421 && h->u.weakdef->dynindx == -1)
4423 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4424 goto error_free_vers;
4427 else if (dynsym && h->dynindx != -1)
4428 /* If the symbol already has a dynamic index, but
4429 visibility says it should not be visible, turn it into
4431 switch (ELF_ST_VISIBILITY (h->other))
4435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4445 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4446 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4449 const char *soname = elf_dt_name (abfd);
4451 /* A symbol from a library loaded via DT_NEEDED of some
4452 other library is referenced by a regular object.
4453 Add a DT_NEEDED entry for it. Issue an error if
4454 --no-add-needed is used and the reference was not
4456 if (undef_bfd != NULL
4457 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4459 (*_bfd_error_handler)
4460 (_("%B: undefined reference to symbol '%s'"),
4462 (*_bfd_error_handler)
4463 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4465 bfd_set_error (bfd_error_invalid_operation);
4466 goto error_free_vers;
4469 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4470 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4473 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4475 goto error_free_vers;
4477 BFD_ASSERT (ret == 0);
4482 if (extversym != NULL)
4488 if (isymbuf != NULL)
4494 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4498 /* Restore the symbol table. */
4499 if (bed->as_needed_cleanup)
4500 (*bed->as_needed_cleanup) (abfd, info);
4501 old_hash = (char *) old_tab + tabsize;
4502 old_ent = (char *) old_hash + hashsize;
4503 sym_hash = elf_sym_hashes (abfd);
4504 htab->root.table.table = old_table;
4505 htab->root.table.size = old_size;
4506 htab->root.table.count = old_count;
4507 memcpy (htab->root.table.table, old_tab, tabsize);
4508 memcpy (sym_hash, old_hash, hashsize);
4509 htab->root.undefs = old_undefs;
4510 htab->root.undefs_tail = old_undefs_tail;
4511 for (i = 0; i < htab->root.table.size; i++)
4513 struct bfd_hash_entry *p;
4514 struct elf_link_hash_entry *h;
4516 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4518 h = (struct elf_link_hash_entry *) p;
4519 if (h->root.type == bfd_link_hash_warning)
4520 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4521 if (h->dynindx >= old_dynsymcount)
4522 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4535 /* Make a special call to the linker "notice" function to
4536 tell it that symbols added for crefs may need to be removed. */
4537 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4538 notice_not_needed, 0, NULL))
4539 goto error_free_vers;
4542 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4544 if (nondeflt_vers != NULL)
4545 free (nondeflt_vers);
4549 if (old_tab != NULL)
4551 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4552 notice_needed, 0, NULL))
4553 goto error_free_vers;
4558 /* Now that all the symbols from this input file are created, handle
4559 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4560 if (nondeflt_vers != NULL)
4562 bfd_size_type cnt, symidx;
4564 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4566 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4567 char *shortname, *p;
4569 p = strchr (h->root.root.string, ELF_VER_CHR);
4571 || (h->root.type != bfd_link_hash_defined
4572 && h->root.type != bfd_link_hash_defweak))
4575 amt = p - h->root.root.string;
4576 shortname = (char *) bfd_malloc (amt + 1);
4578 goto error_free_vers;
4579 memcpy (shortname, h->root.root.string, amt);
4580 shortname[amt] = '\0';
4582 hi = (struct elf_link_hash_entry *)
4583 bfd_link_hash_lookup (&htab->root, shortname,
4584 FALSE, FALSE, FALSE);
4586 && hi->root.type == h->root.type
4587 && hi->root.u.def.value == h->root.u.def.value
4588 && hi->root.u.def.section == h->root.u.def.section)
4590 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4591 hi->root.type = bfd_link_hash_indirect;
4592 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4593 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4594 sym_hash = elf_sym_hashes (abfd);
4596 for (symidx = 0; symidx < extsymcount; ++symidx)
4597 if (sym_hash[symidx] == hi)
4599 sym_hash[symidx] = h;
4605 free (nondeflt_vers);
4606 nondeflt_vers = NULL;
4609 /* Now set the weakdefs field correctly for all the weak defined
4610 symbols we found. The only way to do this is to search all the
4611 symbols. Since we only need the information for non functions in
4612 dynamic objects, that's the only time we actually put anything on
4613 the list WEAKS. We need this information so that if a regular
4614 object refers to a symbol defined weakly in a dynamic object, the
4615 real symbol in the dynamic object is also put in the dynamic
4616 symbols; we also must arrange for both symbols to point to the
4617 same memory location. We could handle the general case of symbol
4618 aliasing, but a general symbol alias can only be generated in
4619 assembler code, handling it correctly would be very time
4620 consuming, and other ELF linkers don't handle general aliasing
4624 struct elf_link_hash_entry **hpp;
4625 struct elf_link_hash_entry **hppend;
4626 struct elf_link_hash_entry **sorted_sym_hash;
4627 struct elf_link_hash_entry *h;
4630 /* Since we have to search the whole symbol list for each weak
4631 defined symbol, search time for N weak defined symbols will be
4632 O(N^2). Binary search will cut it down to O(NlogN). */
4633 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4634 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4635 if (sorted_sym_hash == NULL)
4637 sym_hash = sorted_sym_hash;
4638 hpp = elf_sym_hashes (abfd);
4639 hppend = hpp + extsymcount;
4641 for (; hpp < hppend; hpp++)
4645 && h->root.type == bfd_link_hash_defined
4646 && !bed->is_function_type (h->type))
4654 qsort (sorted_sym_hash, sym_count,
4655 sizeof (struct elf_link_hash_entry *),
4658 while (weaks != NULL)
4660 struct elf_link_hash_entry *hlook;
4667 weaks = hlook->u.weakdef;
4668 hlook->u.weakdef = NULL;
4670 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4671 || hlook->root.type == bfd_link_hash_defweak
4672 || hlook->root.type == bfd_link_hash_common
4673 || hlook->root.type == bfd_link_hash_indirect);
4674 slook = hlook->root.u.def.section;
4675 vlook = hlook->root.u.def.value;
4682 bfd_signed_vma vdiff;
4684 h = sorted_sym_hash [idx];
4685 vdiff = vlook - h->root.u.def.value;
4692 long sdiff = slook->id - h->root.u.def.section->id;
4705 /* We didn't find a value/section match. */
4709 for (i = ilook; i < sym_count; i++)
4711 h = sorted_sym_hash [i];
4713 /* Stop if value or section doesn't match. */
4714 if (h->root.u.def.value != vlook
4715 || h->root.u.def.section != slook)
4717 else if (h != hlook)
4719 hlook->u.weakdef = h;
4721 /* If the weak definition is in the list of dynamic
4722 symbols, make sure the real definition is put
4724 if (hlook->dynindx != -1 && h->dynindx == -1)
4726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4729 free (sorted_sym_hash);
4734 /* If the real definition is in the list of dynamic
4735 symbols, make sure the weak definition is put
4736 there as well. If we don't do this, then the
4737 dynamic loader might not merge the entries for the
4738 real definition and the weak definition. */
4739 if (h->dynindx != -1 && hlook->dynindx == -1)
4741 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4742 goto err_free_sym_hash;
4749 free (sorted_sym_hash);
4752 if (bed->check_directives
4753 && !(*bed->check_directives) (abfd, info))
4756 /* If this object is the same format as the output object, and it is
4757 not a shared library, then let the backend look through the
4760 This is required to build global offset table entries and to
4761 arrange for dynamic relocs. It is not required for the
4762 particular common case of linking non PIC code, even when linking
4763 against shared libraries, but unfortunately there is no way of
4764 knowing whether an object file has been compiled PIC or not.
4765 Looking through the relocs is not particularly time consuming.
4766 The problem is that we must either (1) keep the relocs in memory,
4767 which causes the linker to require additional runtime memory or
4768 (2) read the relocs twice from the input file, which wastes time.
4769 This would be a good case for using mmap.
4771 I have no idea how to handle linking PIC code into a file of a
4772 different format. It probably can't be done. */
4774 && is_elf_hash_table (htab)
4775 && bed->check_relocs != NULL
4776 && elf_object_id (abfd) == elf_hash_table_id (htab)
4777 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4781 for (o = abfd->sections; o != NULL; o = o->next)
4783 Elf_Internal_Rela *internal_relocs;
4786 if ((o->flags & SEC_RELOC) == 0
4787 || o->reloc_count == 0
4788 || ((info->strip == strip_all || info->strip == strip_debugger)
4789 && (o->flags & SEC_DEBUGGING) != 0)
4790 || bfd_is_abs_section (o->output_section))
4793 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4795 if (internal_relocs == NULL)
4798 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4800 if (elf_section_data (o)->relocs != internal_relocs)
4801 free (internal_relocs);
4808 /* If this is a non-traditional link, try to optimize the handling
4809 of the .stab/.stabstr sections. */
4811 && ! info->traditional_format
4812 && is_elf_hash_table (htab)
4813 && (info->strip != strip_all && info->strip != strip_debugger))
4817 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4818 if (stabstr != NULL)
4820 bfd_size_type string_offset = 0;
4823 for (stab = abfd->sections; stab; stab = stab->next)
4824 if (CONST_STRNEQ (stab->name, ".stab")
4825 && (!stab->name[5] ||
4826 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4827 && (stab->flags & SEC_MERGE) == 0
4828 && !bfd_is_abs_section (stab->output_section))
4830 struct bfd_elf_section_data *secdata;
4832 secdata = elf_section_data (stab);
4833 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4834 stabstr, &secdata->sec_info,
4837 if (secdata->sec_info)
4838 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4843 if (is_elf_hash_table (htab) && add_needed)
4845 /* Add this bfd to the loaded list. */
4846 struct elf_link_loaded_list *n;
4848 n = (struct elf_link_loaded_list *)
4849 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4853 n->next = htab->loaded;
4860 if (old_tab != NULL)
4862 if (nondeflt_vers != NULL)
4863 free (nondeflt_vers);
4864 if (extversym != NULL)
4867 if (isymbuf != NULL)
4873 /* Return the linker hash table entry of a symbol that might be
4874 satisfied by an archive symbol. Return -1 on error. */
4876 struct elf_link_hash_entry *
4877 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4878 struct bfd_link_info *info,
4881 struct elf_link_hash_entry *h;
4885 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4889 /* If this is a default version (the name contains @@), look up the
4890 symbol again with only one `@' as well as without the version.
4891 The effect is that references to the symbol with and without the
4892 version will be matched by the default symbol in the archive. */
4894 p = strchr (name, ELF_VER_CHR);
4895 if (p == NULL || p[1] != ELF_VER_CHR)
4898 /* First check with only one `@'. */
4899 len = strlen (name);
4900 copy = (char *) bfd_alloc (abfd, len);
4902 return (struct elf_link_hash_entry *) 0 - 1;
4904 first = p - name + 1;
4905 memcpy (copy, name, first);
4906 memcpy (copy + first, name + first + 1, len - first);
4908 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4911 /* We also need to check references to the symbol without the
4913 copy[first - 1] = '\0';
4914 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4915 FALSE, FALSE, TRUE);
4918 bfd_release (abfd, copy);
4922 /* Add symbols from an ELF archive file to the linker hash table. We
4923 don't use _bfd_generic_link_add_archive_symbols because of a
4924 problem which arises on UnixWare. The UnixWare libc.so is an
4925 archive which includes an entry libc.so.1 which defines a bunch of
4926 symbols. The libc.so archive also includes a number of other
4927 object files, which also define symbols, some of which are the same
4928 as those defined in libc.so.1. Correct linking requires that we
4929 consider each object file in turn, and include it if it defines any
4930 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4931 this; it looks through the list of undefined symbols, and includes
4932 any object file which defines them. When this algorithm is used on
4933 UnixWare, it winds up pulling in libc.so.1 early and defining a
4934 bunch of symbols. This means that some of the other objects in the
4935 archive are not included in the link, which is incorrect since they
4936 precede libc.so.1 in the archive.
4938 Fortunately, ELF archive handling is simpler than that done by
4939 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4940 oddities. In ELF, if we find a symbol in the archive map, and the
4941 symbol is currently undefined, we know that we must pull in that
4944 Unfortunately, we do have to make multiple passes over the symbol
4945 table until nothing further is resolved. */
4948 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4951 bfd_boolean *defined = NULL;
4952 bfd_boolean *included = NULL;
4956 const struct elf_backend_data *bed;
4957 struct elf_link_hash_entry * (*archive_symbol_lookup)
4958 (bfd *, struct bfd_link_info *, const char *);
4960 if (! bfd_has_map (abfd))
4962 /* An empty archive is a special case. */
4963 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4965 bfd_set_error (bfd_error_no_armap);
4969 /* Keep track of all symbols we know to be already defined, and all
4970 files we know to be already included. This is to speed up the
4971 second and subsequent passes. */
4972 c = bfd_ardata (abfd)->symdef_count;
4976 amt *= sizeof (bfd_boolean);
4977 defined = (bfd_boolean *) bfd_zmalloc (amt);
4978 included = (bfd_boolean *) bfd_zmalloc (amt);
4979 if (defined == NULL || included == NULL)
4982 symdefs = bfd_ardata (abfd)->symdefs;
4983 bed = get_elf_backend_data (abfd);
4984 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4997 symdefend = symdef + c;
4998 for (i = 0; symdef < symdefend; symdef++, i++)
5000 struct elf_link_hash_entry *h;
5002 struct bfd_link_hash_entry *undefs_tail;
5005 if (defined[i] || included[i])
5007 if (symdef->file_offset == last)
5013 h = archive_symbol_lookup (abfd, info, symdef->name);
5014 if (h == (struct elf_link_hash_entry *) 0 - 1)
5020 if (h->root.type == bfd_link_hash_common)
5022 /* We currently have a common symbol. The archive map contains
5023 a reference to this symbol, so we may want to include it. We
5024 only want to include it however, if this archive element
5025 contains a definition of the symbol, not just another common
5028 Unfortunately some archivers (including GNU ar) will put
5029 declarations of common symbols into their archive maps, as
5030 well as real definitions, so we cannot just go by the archive
5031 map alone. Instead we must read in the element's symbol
5032 table and check that to see what kind of symbol definition
5034 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5037 else if (h->root.type != bfd_link_hash_undefined)
5039 if (h->root.type != bfd_link_hash_undefweak)
5044 /* We need to include this archive member. */
5045 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5046 if (element == NULL)
5049 if (! bfd_check_format (element, bfd_object))
5052 /* Doublecheck that we have not included this object
5053 already--it should be impossible, but there may be
5054 something wrong with the archive. */
5055 if (element->archive_pass != 0)
5057 bfd_set_error (bfd_error_bad_value);
5060 element->archive_pass = 1;
5062 undefs_tail = info->hash->undefs_tail;
5064 if (!(*info->callbacks
5065 ->add_archive_element) (info, element, symdef->name, &element))
5067 if (!bfd_link_add_symbols (element, info))
5070 /* If there are any new undefined symbols, we need to make
5071 another pass through the archive in order to see whether
5072 they can be defined. FIXME: This isn't perfect, because
5073 common symbols wind up on undefs_tail and because an
5074 undefined symbol which is defined later on in this pass
5075 does not require another pass. This isn't a bug, but it
5076 does make the code less efficient than it could be. */
5077 if (undefs_tail != info->hash->undefs_tail)
5080 /* Look backward to mark all symbols from this object file
5081 which we have already seen in this pass. */
5085 included[mark] = TRUE;
5090 while (symdefs[mark].file_offset == symdef->file_offset);
5092 /* We mark subsequent symbols from this object file as we go
5093 on through the loop. */
5094 last = symdef->file_offset;
5105 if (defined != NULL)
5107 if (included != NULL)
5112 /* Given an ELF BFD, add symbols to the global hash table as
5116 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5118 switch (bfd_get_format (abfd))
5121 return elf_link_add_object_symbols (abfd, info);
5123 return elf_link_add_archive_symbols (abfd, info);
5125 bfd_set_error (bfd_error_wrong_format);
5130 struct hash_codes_info
5132 unsigned long *hashcodes;
5136 /* This function will be called though elf_link_hash_traverse to store
5137 all hash value of the exported symbols in an array. */
5140 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5142 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5148 /* Ignore indirect symbols. These are added by the versioning code. */
5149 if (h->dynindx == -1)
5152 name = h->root.root.string;
5153 p = strchr (name, ELF_VER_CHR);
5156 alc = (char *) bfd_malloc (p - name + 1);
5162 memcpy (alc, name, p - name);
5163 alc[p - name] = '\0';
5167 /* Compute the hash value. */
5168 ha = bfd_elf_hash (name);
5170 /* Store the found hash value in the array given as the argument. */
5171 *(inf->hashcodes)++ = ha;
5173 /* And store it in the struct so that we can put it in the hash table
5175 h->u.elf_hash_value = ha;
5183 struct collect_gnu_hash_codes
5186 const struct elf_backend_data *bed;
5187 unsigned long int nsyms;
5188 unsigned long int maskbits;
5189 unsigned long int *hashcodes;
5190 unsigned long int *hashval;
5191 unsigned long int *indx;
5192 unsigned long int *counts;
5195 long int min_dynindx;
5196 unsigned long int bucketcount;
5197 unsigned long int symindx;
5198 long int local_indx;
5199 long int shift1, shift2;
5200 unsigned long int mask;
5204 /* This function will be called though elf_link_hash_traverse to store
5205 all hash value of the exported symbols in an array. */
5208 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5210 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5216 /* Ignore indirect symbols. These are added by the versioning code. */
5217 if (h->dynindx == -1)
5220 /* Ignore also local symbols and undefined symbols. */
5221 if (! (*s->bed->elf_hash_symbol) (h))
5224 name = h->root.root.string;
5225 p = strchr (name, ELF_VER_CHR);
5228 alc = (char *) bfd_malloc (p - name + 1);
5234 memcpy (alc, name, p - name);
5235 alc[p - name] = '\0';
5239 /* Compute the hash value. */
5240 ha = bfd_elf_gnu_hash (name);
5242 /* Store the found hash value in the array for compute_bucket_count,
5243 and also for .dynsym reordering purposes. */
5244 s->hashcodes[s->nsyms] = ha;
5245 s->hashval[h->dynindx] = ha;
5247 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5248 s->min_dynindx = h->dynindx;
5256 /* This function will be called though elf_link_hash_traverse to do
5257 final dynaminc symbol renumbering. */
5260 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5262 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5263 unsigned long int bucket;
5264 unsigned long int val;
5266 /* Ignore indirect symbols. */
5267 if (h->dynindx == -1)
5270 /* Ignore also local symbols and undefined symbols. */
5271 if (! (*s->bed->elf_hash_symbol) (h))
5273 if (h->dynindx >= s->min_dynindx)
5274 h->dynindx = s->local_indx++;
5278 bucket = s->hashval[h->dynindx] % s->bucketcount;
5279 val = (s->hashval[h->dynindx] >> s->shift1)
5280 & ((s->maskbits >> s->shift1) - 1);
5281 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5283 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5284 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5285 if (s->counts[bucket] == 1)
5286 /* Last element terminates the chain. */
5288 bfd_put_32 (s->output_bfd, val,
5289 s->contents + (s->indx[bucket] - s->symindx) * 4);
5290 --s->counts[bucket];
5291 h->dynindx = s->indx[bucket]++;
5295 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5298 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5300 return !(h->forced_local
5301 || h->root.type == bfd_link_hash_undefined
5302 || h->root.type == bfd_link_hash_undefweak
5303 || ((h->root.type == bfd_link_hash_defined
5304 || h->root.type == bfd_link_hash_defweak)
5305 && h->root.u.def.section->output_section == NULL));
5308 /* Array used to determine the number of hash table buckets to use
5309 based on the number of symbols there are. If there are fewer than
5310 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5311 fewer than 37 we use 17 buckets, and so forth. We never use more
5312 than 32771 buckets. */
5314 static const size_t elf_buckets[] =
5316 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5320 /* Compute bucket count for hashing table. We do not use a static set
5321 of possible tables sizes anymore. Instead we determine for all
5322 possible reasonable sizes of the table the outcome (i.e., the
5323 number of collisions etc) and choose the best solution. The
5324 weighting functions are not too simple to allow the table to grow
5325 without bounds. Instead one of the weighting factors is the size.
5326 Therefore the result is always a good payoff between few collisions
5327 (= short chain lengths) and table size. */
5329 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5330 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5331 unsigned long int nsyms,
5334 size_t best_size = 0;
5335 unsigned long int i;
5337 /* We have a problem here. The following code to optimize the table
5338 size requires an integer type with more the 32 bits. If
5339 BFD_HOST_U_64_BIT is set we know about such a type. */
5340 #ifdef BFD_HOST_U_64_BIT
5345 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5346 bfd *dynobj = elf_hash_table (info)->dynobj;
5347 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5348 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5349 unsigned long int *counts;
5351 unsigned int no_improvement_count = 0;
5353 /* Possible optimization parameters: if we have NSYMS symbols we say
5354 that the hashing table must at least have NSYMS/4 and at most
5356 minsize = nsyms / 4;
5359 best_size = maxsize = nsyms * 2;
5364 if ((best_size & 31) == 0)
5368 /* Create array where we count the collisions in. We must use bfd_malloc
5369 since the size could be large. */
5371 amt *= sizeof (unsigned long int);
5372 counts = (unsigned long int *) bfd_malloc (amt);
5376 /* Compute the "optimal" size for the hash table. The criteria is a
5377 minimal chain length. The minor criteria is (of course) the size
5379 for (i = minsize; i < maxsize; ++i)
5381 /* Walk through the array of hashcodes and count the collisions. */
5382 BFD_HOST_U_64_BIT max;
5383 unsigned long int j;
5384 unsigned long int fact;
5386 if (gnu_hash && (i & 31) == 0)
5389 memset (counts, '\0', i * sizeof (unsigned long int));
5391 /* Determine how often each hash bucket is used. */
5392 for (j = 0; j < nsyms; ++j)
5393 ++counts[hashcodes[j] % i];
5395 /* For the weight function we need some information about the
5396 pagesize on the target. This is information need not be 100%
5397 accurate. Since this information is not available (so far) we
5398 define it here to a reasonable default value. If it is crucial
5399 to have a better value some day simply define this value. */
5400 # ifndef BFD_TARGET_PAGESIZE
5401 # define BFD_TARGET_PAGESIZE (4096)
5404 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5406 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5409 /* Variant 1: optimize for short chains. We add the squares
5410 of all the chain lengths (which favors many small chain
5411 over a few long chains). */
5412 for (j = 0; j < i; ++j)
5413 max += counts[j] * counts[j];
5415 /* This adds penalties for the overall size of the table. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5419 /* Variant 2: Optimize a lot more for small table. Here we
5420 also add squares of the size but we also add penalties for
5421 empty slots (the +1 term). */
5422 for (j = 0; j < i; ++j)
5423 max += (1 + counts[j]) * (1 + counts[j]);
5425 /* The overall size of the table is considered, but not as
5426 strong as in variant 1, where it is squared. */
5427 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5431 /* Compare with current best results. */
5432 if (max < best_chlen)
5436 no_improvement_count = 0;
5438 /* PR 11843: Avoid futile long searches for the best bucket size
5439 when there are a large number of symbols. */
5440 else if (++no_improvement_count == 100)
5447 #endif /* defined (BFD_HOST_U_64_BIT) */
5449 /* This is the fallback solution if no 64bit type is available or if we
5450 are not supposed to spend much time on optimizations. We select the
5451 bucket count using a fixed set of numbers. */
5452 for (i = 0; elf_buckets[i] != 0; i++)
5454 best_size = elf_buckets[i];
5455 if (nsyms < elf_buckets[i + 1])
5458 if (gnu_hash && best_size < 2)
5465 /* Size any SHT_GROUP section for ld -r. */
5468 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5472 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5473 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5474 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5479 /* Set up the sizes and contents of the ELF dynamic sections. This is
5480 called by the ELF linker emulation before_allocation routine. We
5481 must set the sizes of the sections before the linker sets the
5482 addresses of the various sections. */
5485 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5488 const char *filter_shlib,
5490 const char *depaudit,
5491 const char * const *auxiliary_filters,
5492 struct bfd_link_info *info,
5493 asection **sinterpptr)
5495 bfd_size_type soname_indx;
5497 const struct elf_backend_data *bed;
5498 struct elf_info_failed asvinfo;
5502 soname_indx = (bfd_size_type) -1;
5504 if (!is_elf_hash_table (info->hash))
5507 bed = get_elf_backend_data (output_bfd);
5508 if (info->execstack)
5509 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5510 else if (info->noexecstack)
5511 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5515 asection *notesec = NULL;
5518 for (inputobj = info->input_bfds;
5520 inputobj = inputobj->link_next)
5525 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5527 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5530 if (s->flags & SEC_CODE)
5534 else if (bed->default_execstack)
5539 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5540 if (exec && info->relocatable
5541 && notesec->output_section != bfd_abs_section_ptr)
5542 notesec->output_section->flags |= SEC_CODE;
5546 /* Any syms created from now on start with -1 in
5547 got.refcount/offset and plt.refcount/offset. */
5548 elf_hash_table (info)->init_got_refcount
5549 = elf_hash_table (info)->init_got_offset;
5550 elf_hash_table (info)->init_plt_refcount
5551 = elf_hash_table (info)->init_plt_offset;
5553 if (info->relocatable
5554 && !_bfd_elf_size_group_sections (info))
5557 /* The backend may have to create some sections regardless of whether
5558 we're dynamic or not. */
5559 if (bed->elf_backend_always_size_sections
5560 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5563 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5566 dynobj = elf_hash_table (info)->dynobj;
5568 /* If there were no dynamic objects in the link, there is nothing to
5573 if (elf_hash_table (info)->dynamic_sections_created)
5575 struct elf_info_failed eif;
5576 struct elf_link_hash_entry *h;
5578 struct bfd_elf_version_tree *t;
5579 struct bfd_elf_version_expr *d;
5581 bfd_boolean all_defined;
5583 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5584 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5588 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5590 if (soname_indx == (bfd_size_type) -1
5591 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5597 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5599 info->flags |= DF_SYMBOLIC;
5606 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5608 if (indx == (bfd_size_type) -1
5609 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5612 if (info->new_dtags)
5614 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5615 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5620 if (filter_shlib != NULL)
5624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 filter_shlib, TRUE);
5626 if (indx == (bfd_size_type) -1
5627 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5631 if (auxiliary_filters != NULL)
5633 const char * const *p;
5635 for (p = auxiliary_filters; *p != NULL; p++)
5639 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5641 if (indx == (bfd_size_type) -1
5642 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5651 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5653 if (indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5658 if (depaudit != NULL)
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5672 /* If we are supposed to export all symbols into the dynamic symbol
5673 table (this is not the normal case), then do so. */
5674 if (info->export_dynamic
5675 || (info->executable && info->dynamic))
5677 elf_link_hash_traverse (elf_hash_table (info),
5678 _bfd_elf_export_symbol,
5684 /* Make all global versions with definition. */
5685 for (t = info->version_info; t != NULL; t = t->next)
5686 for (d = t->globals.list; d != NULL; d = d->next)
5687 if (!d->symver && d->literal)
5689 const char *verstr, *name;
5690 size_t namelen, verlen, newlen;
5691 char *newname, *p, leading_char;
5692 struct elf_link_hash_entry *newh;
5694 leading_char = bfd_get_symbol_leading_char (output_bfd);
5696 namelen = strlen (name) + (leading_char != '\0');
5698 verlen = strlen (verstr);
5699 newlen = namelen + verlen + 3;
5701 newname = (char *) bfd_malloc (newlen);
5702 if (newname == NULL)
5704 newname[0] = leading_char;
5705 memcpy (newname + (leading_char != '\0'), name, namelen);
5707 /* Check the hidden versioned definition. */
5708 p = newname + namelen;
5710 memcpy (p, verstr, verlen + 1);
5711 newh = elf_link_hash_lookup (elf_hash_table (info),
5712 newname, FALSE, FALSE,
5715 || (newh->root.type != bfd_link_hash_defined
5716 && newh->root.type != bfd_link_hash_defweak))
5718 /* Check the default versioned definition. */
5720 memcpy (p, verstr, verlen + 1);
5721 newh = elf_link_hash_lookup (elf_hash_table (info),
5722 newname, FALSE, FALSE,
5727 /* Mark this version if there is a definition and it is
5728 not defined in a shared object. */
5730 && !newh->def_dynamic
5731 && (newh->root.type == bfd_link_hash_defined
5732 || newh->root.type == bfd_link_hash_defweak))
5736 /* Attach all the symbols to their version information. */
5737 asvinfo.info = info;
5738 asvinfo.failed = FALSE;
5740 elf_link_hash_traverse (elf_hash_table (info),
5741 _bfd_elf_link_assign_sym_version,
5746 if (!info->allow_undefined_version)
5748 /* Check if all global versions have a definition. */
5750 for (t = info->version_info; t != NULL; t = t->next)
5751 for (d = t->globals.list; d != NULL; d = d->next)
5752 if (d->literal && !d->symver && !d->script)
5754 (*_bfd_error_handler)
5755 (_("%s: undefined version: %s"),
5756 d->pattern, t->name);
5757 all_defined = FALSE;
5762 bfd_set_error (bfd_error_bad_value);
5767 /* Find all symbols which were defined in a dynamic object and make
5768 the backend pick a reasonable value for them. */
5769 elf_link_hash_traverse (elf_hash_table (info),
5770 _bfd_elf_adjust_dynamic_symbol,
5775 /* Add some entries to the .dynamic section. We fill in some of the
5776 values later, in bfd_elf_final_link, but we must add the entries
5777 now so that we know the final size of the .dynamic section. */
5779 /* If there are initialization and/or finalization functions to
5780 call then add the corresponding DT_INIT/DT_FINI entries. */
5781 h = (info->init_function
5782 ? elf_link_hash_lookup (elf_hash_table (info),
5783 info->init_function, FALSE,
5790 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5793 h = (info->fini_function
5794 ? elf_link_hash_lookup (elf_hash_table (info),
5795 info->fini_function, FALSE,
5802 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5806 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5807 if (s != NULL && s->linker_has_input)
5809 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5810 if (! info->executable)
5815 for (sub = info->input_bfds; sub != NULL;
5816 sub = sub->link_next)
5817 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5818 for (o = sub->sections; o != NULL; o = o->next)
5819 if (elf_section_data (o)->this_hdr.sh_type
5820 == SHT_PREINIT_ARRAY)
5822 (*_bfd_error_handler)
5823 (_("%B: .preinit_array section is not allowed in DSO"),
5828 bfd_set_error (bfd_error_nonrepresentable_section);
5832 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5833 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5836 s = bfd_get_section_by_name (output_bfd, ".init_array");
5837 if (s != NULL && s->linker_has_input)
5839 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5840 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5843 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5844 if (s != NULL && s->linker_has_input)
5846 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5847 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5851 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5852 /* If .dynstr is excluded from the link, we don't want any of
5853 these tags. Strictly, we should be checking each section
5854 individually; This quick check covers for the case where
5855 someone does a /DISCARD/ : { *(*) }. */
5856 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5858 bfd_size_type strsize;
5860 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5861 if ((info->emit_hash
5862 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5863 || (info->emit_gnu_hash
5864 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5865 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5866 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5867 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5868 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5869 bed->s->sizeof_sym))
5874 /* The backend must work out the sizes of all the other dynamic
5876 if (bed->elf_backend_size_dynamic_sections
5877 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5880 if (elf_hash_table (info)->dynamic_sections_created)
5882 unsigned long section_sym_count;
5883 struct bfd_elf_version_tree *verdefs;
5886 /* Set up the version definition section. */
5887 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5888 BFD_ASSERT (s != NULL);
5890 /* We may have created additional version definitions if we are
5891 just linking a regular application. */
5892 verdefs = info->version_info;
5894 /* Skip anonymous version tag. */
5895 if (verdefs != NULL && verdefs->vernum == 0)
5896 verdefs = verdefs->next;
5898 if (verdefs == NULL && !info->create_default_symver)
5899 s->flags |= SEC_EXCLUDE;
5904 struct bfd_elf_version_tree *t;
5906 Elf_Internal_Verdef def;
5907 Elf_Internal_Verdaux defaux;
5908 struct bfd_link_hash_entry *bh;
5909 struct elf_link_hash_entry *h;
5915 /* Make space for the base version. */
5916 size += sizeof (Elf_External_Verdef);
5917 size += sizeof (Elf_External_Verdaux);
5920 /* Make space for the default version. */
5921 if (info->create_default_symver)
5923 size += sizeof (Elf_External_Verdef);
5927 for (t = verdefs; t != NULL; t = t->next)
5929 struct bfd_elf_version_deps *n;
5931 /* Don't emit base version twice. */
5935 size += sizeof (Elf_External_Verdef);
5936 size += sizeof (Elf_External_Verdaux);
5939 for (n = t->deps; n != NULL; n = n->next)
5940 size += sizeof (Elf_External_Verdaux);
5944 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5945 if (s->contents == NULL && s->size != 0)
5948 /* Fill in the version definition section. */
5952 def.vd_version = VER_DEF_CURRENT;
5953 def.vd_flags = VER_FLG_BASE;
5956 if (info->create_default_symver)
5958 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5959 def.vd_next = sizeof (Elf_External_Verdef);
5963 def.vd_aux = sizeof (Elf_External_Verdef);
5964 def.vd_next = (sizeof (Elf_External_Verdef)
5965 + sizeof (Elf_External_Verdaux));
5968 if (soname_indx != (bfd_size_type) -1)
5970 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5972 def.vd_hash = bfd_elf_hash (soname);
5973 defaux.vda_name = soname_indx;
5980 name = lbasename (output_bfd->filename);
5981 def.vd_hash = bfd_elf_hash (name);
5982 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5984 if (indx == (bfd_size_type) -1)
5986 defaux.vda_name = indx;
5988 defaux.vda_next = 0;
5990 _bfd_elf_swap_verdef_out (output_bfd, &def,
5991 (Elf_External_Verdef *) p);
5992 p += sizeof (Elf_External_Verdef);
5993 if (info->create_default_symver)
5995 /* Add a symbol representing this version. */
5997 if (! (_bfd_generic_link_add_one_symbol
5998 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6000 get_elf_backend_data (dynobj)->collect, &bh)))
6002 h = (struct elf_link_hash_entry *) bh;
6005 h->type = STT_OBJECT;
6006 h->verinfo.vertree = NULL;
6008 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6011 /* Create a duplicate of the base version with the same
6012 aux block, but different flags. */
6015 def.vd_aux = sizeof (Elf_External_Verdef);
6017 def.vd_next = (sizeof (Elf_External_Verdef)
6018 + sizeof (Elf_External_Verdaux));
6021 _bfd_elf_swap_verdef_out (output_bfd, &def,
6022 (Elf_External_Verdef *) p);
6023 p += sizeof (Elf_External_Verdef);
6025 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6026 (Elf_External_Verdaux *) p);
6027 p += sizeof (Elf_External_Verdaux);
6029 for (t = verdefs; t != NULL; t = t->next)
6032 struct bfd_elf_version_deps *n;
6034 /* Don't emit the base version twice. */
6039 for (n = t->deps; n != NULL; n = n->next)
6042 /* Add a symbol representing this version. */
6044 if (! (_bfd_generic_link_add_one_symbol
6045 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6047 get_elf_backend_data (dynobj)->collect, &bh)))
6049 h = (struct elf_link_hash_entry *) bh;
6052 h->type = STT_OBJECT;
6053 h->verinfo.vertree = t;
6055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6058 def.vd_version = VER_DEF_CURRENT;
6060 if (t->globals.list == NULL
6061 && t->locals.list == NULL
6063 def.vd_flags |= VER_FLG_WEAK;
6064 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6065 def.vd_cnt = cdeps + 1;
6066 def.vd_hash = bfd_elf_hash (t->name);
6067 def.vd_aux = sizeof (Elf_External_Verdef);
6070 /* If a basever node is next, it *must* be the last node in
6071 the chain, otherwise Verdef construction breaks. */
6072 if (t->next != NULL && t->next->vernum == 0)
6073 BFD_ASSERT (t->next->next == NULL);
6075 if (t->next != NULL && t->next->vernum != 0)
6076 def.vd_next = (sizeof (Elf_External_Verdef)
6077 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6079 _bfd_elf_swap_verdef_out (output_bfd, &def,
6080 (Elf_External_Verdef *) p);
6081 p += sizeof (Elf_External_Verdef);
6083 defaux.vda_name = h->dynstr_index;
6084 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6086 defaux.vda_next = 0;
6087 if (t->deps != NULL)
6088 defaux.vda_next = sizeof (Elf_External_Verdaux);
6089 t->name_indx = defaux.vda_name;
6091 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6092 (Elf_External_Verdaux *) p);
6093 p += sizeof (Elf_External_Verdaux);
6095 for (n = t->deps; n != NULL; n = n->next)
6097 if (n->version_needed == NULL)
6099 /* This can happen if there was an error in the
6101 defaux.vda_name = 0;
6105 defaux.vda_name = n->version_needed->name_indx;
6106 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6109 if (n->next == NULL)
6110 defaux.vda_next = 0;
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6114 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6115 (Elf_External_Verdaux *) p);
6116 p += sizeof (Elf_External_Verdaux);
6120 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6121 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6124 elf_tdata (output_bfd)->cverdefs = cdefs;
6127 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6129 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6132 else if (info->flags & DF_BIND_NOW)
6134 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6140 if (info->executable)
6141 info->flags_1 &= ~ (DF_1_INITFIRST
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6148 /* Work out the size of the version reference section. */
6150 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6151 BFD_ASSERT (s != NULL);
6153 struct elf_find_verdep_info sinfo;
6156 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6157 if (sinfo.vers == 0)
6159 sinfo.failed = FALSE;
6161 elf_link_hash_traverse (elf_hash_table (info),
6162 _bfd_elf_link_find_version_dependencies,
6167 if (elf_tdata (output_bfd)->verref == NULL)
6168 s->flags |= SEC_EXCLUDE;
6171 Elf_Internal_Verneed *t;
6176 /* Build the version dependency section. */
6179 for (t = elf_tdata (output_bfd)->verref;
6183 Elf_Internal_Vernaux *a;
6185 size += sizeof (Elf_External_Verneed);
6187 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6188 size += sizeof (Elf_External_Vernaux);
6192 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6193 if (s->contents == NULL)
6197 for (t = elf_tdata (output_bfd)->verref;
6202 Elf_Internal_Vernaux *a;
6206 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6209 t->vn_version = VER_NEED_CURRENT;
6211 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6212 elf_dt_name (t->vn_bfd) != NULL
6213 ? elf_dt_name (t->vn_bfd)
6214 : lbasename (t->vn_bfd->filename),
6216 if (indx == (bfd_size_type) -1)
6219 t->vn_aux = sizeof (Elf_External_Verneed);
6220 if (t->vn_nextref == NULL)
6223 t->vn_next = (sizeof (Elf_External_Verneed)
6224 + caux * sizeof (Elf_External_Vernaux));
6226 _bfd_elf_swap_verneed_out (output_bfd, t,
6227 (Elf_External_Verneed *) p);
6228 p += sizeof (Elf_External_Verneed);
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6233 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6234 a->vna_nodename, FALSE);
6235 if (indx == (bfd_size_type) -1)
6238 if (a->vna_nextptr == NULL)
6241 a->vna_next = sizeof (Elf_External_Vernaux);
6243 _bfd_elf_swap_vernaux_out (output_bfd, a,
6244 (Elf_External_Vernaux *) p);
6245 p += sizeof (Elf_External_Vernaux);
6249 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6250 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6253 elf_tdata (output_bfd)->cverrefs = crefs;
6257 if ((elf_tdata (output_bfd)->cverrefs == 0
6258 && elf_tdata (output_bfd)->cverdefs == 0)
6259 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6260 §ion_sym_count) == 0)
6262 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6263 s->flags |= SEC_EXCLUDE;
6269 /* Find the first non-excluded output section. We'll use its
6270 section symbol for some emitted relocs. */
6272 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6276 for (s = output_bfd->sections; s != NULL; s = s->next)
6277 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6278 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6280 elf_hash_table (info)->text_index_section = s;
6285 /* Find two non-excluded output sections, one for code, one for data.
6286 We'll use their section symbols for some emitted relocs. */
6288 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6292 /* Data first, since setting text_index_section changes
6293 _bfd_elf_link_omit_section_dynsym. */
6294 for (s = output_bfd->sections; s != NULL; s = s->next)
6295 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6296 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6298 elf_hash_table (info)->data_index_section = s;
6302 for (s = output_bfd->sections; s != NULL; s = s->next)
6303 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6304 == (SEC_ALLOC | SEC_READONLY))
6305 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6307 elf_hash_table (info)->text_index_section = s;
6311 if (elf_hash_table (info)->text_index_section == NULL)
6312 elf_hash_table (info)->text_index_section
6313 = elf_hash_table (info)->data_index_section;
6317 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6319 const struct elf_backend_data *bed;
6321 if (!is_elf_hash_table (info->hash))
6324 bed = get_elf_backend_data (output_bfd);
6325 (*bed->elf_backend_init_index_section) (output_bfd, info);
6327 if (elf_hash_table (info)->dynamic_sections_created)
6331 bfd_size_type dynsymcount;
6332 unsigned long section_sym_count;
6333 unsigned int dtagcount;
6335 dynobj = elf_hash_table (info)->dynobj;
6337 /* Assign dynsym indicies. In a shared library we generate a
6338 section symbol for each output section, which come first.
6339 Next come all of the back-end allocated local dynamic syms,
6340 followed by the rest of the global symbols. */
6342 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6343 §ion_sym_count);
6345 /* Work out the size of the symbol version section. */
6346 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6347 BFD_ASSERT (s != NULL);
6348 if (dynsymcount != 0
6349 && (s->flags & SEC_EXCLUDE) == 0)
6351 s->size = dynsymcount * sizeof (Elf_External_Versym);
6352 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6353 if (s->contents == NULL)
6356 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6360 /* Set the size of the .dynsym and .hash sections. We counted
6361 the number of dynamic symbols in elf_link_add_object_symbols.
6362 We will build the contents of .dynsym and .hash when we build
6363 the final symbol table, because until then we do not know the
6364 correct value to give the symbols. We built the .dynstr
6365 section as we went along in elf_link_add_object_symbols. */
6366 s = bfd_get_section_by_name (dynobj, ".dynsym");
6367 BFD_ASSERT (s != NULL);
6368 s->size = dynsymcount * bed->s->sizeof_sym;
6370 if (dynsymcount != 0)
6372 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6373 if (s->contents == NULL)
6376 /* The first entry in .dynsym is a dummy symbol.
6377 Clear all the section syms, in case we don't output them all. */
6378 ++section_sym_count;
6379 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6382 elf_hash_table (info)->bucketcount = 0;
6384 /* Compute the size of the hashing table. As a side effect this
6385 computes the hash values for all the names we export. */
6386 if (info->emit_hash)
6388 unsigned long int *hashcodes;
6389 struct hash_codes_info hashinf;
6391 unsigned long int nsyms;
6393 size_t hash_entry_size;
6395 /* Compute the hash values for all exported symbols. At the same
6396 time store the values in an array so that we could use them for
6398 amt = dynsymcount * sizeof (unsigned long int);
6399 hashcodes = (unsigned long int *) bfd_malloc (amt);
6400 if (hashcodes == NULL)
6402 hashinf.hashcodes = hashcodes;
6403 hashinf.error = FALSE;
6405 /* Put all hash values in HASHCODES. */
6406 elf_link_hash_traverse (elf_hash_table (info),
6407 elf_collect_hash_codes, &hashinf);
6414 nsyms = hashinf.hashcodes - hashcodes;
6416 = compute_bucket_count (info, hashcodes, nsyms, 0);
6419 if (bucketcount == 0)
6422 elf_hash_table (info)->bucketcount = bucketcount;
6424 s = bfd_get_section_by_name (dynobj, ".hash");
6425 BFD_ASSERT (s != NULL);
6426 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6427 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6428 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6429 if (s->contents == NULL)
6432 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6433 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6434 s->contents + hash_entry_size);
6437 if (info->emit_gnu_hash)
6440 unsigned char *contents;
6441 struct collect_gnu_hash_codes cinfo;
6445 memset (&cinfo, 0, sizeof (cinfo));
6447 /* Compute the hash values for all exported symbols. At the same
6448 time store the values in an array so that we could use them for
6450 amt = dynsymcount * 2 * sizeof (unsigned long int);
6451 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6452 if (cinfo.hashcodes == NULL)
6455 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6456 cinfo.min_dynindx = -1;
6457 cinfo.output_bfd = output_bfd;
6460 /* Put all hash values in HASHCODES. */
6461 elf_link_hash_traverse (elf_hash_table (info),
6462 elf_collect_gnu_hash_codes, &cinfo);
6465 free (cinfo.hashcodes);
6470 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6472 if (bucketcount == 0)
6474 free (cinfo.hashcodes);
6478 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6479 BFD_ASSERT (s != NULL);
6481 if (cinfo.nsyms == 0)
6483 /* Empty .gnu.hash section is special. */
6484 BFD_ASSERT (cinfo.min_dynindx == -1);
6485 free (cinfo.hashcodes);
6486 s->size = 5 * 4 + bed->s->arch_size / 8;
6487 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6488 if (contents == NULL)
6490 s->contents = contents;
6491 /* 1 empty bucket. */
6492 bfd_put_32 (output_bfd, 1, contents);
6493 /* SYMIDX above the special symbol 0. */
6494 bfd_put_32 (output_bfd, 1, contents + 4);
6495 /* Just one word for bitmask. */
6496 bfd_put_32 (output_bfd, 1, contents + 8);
6497 /* Only hash fn bloom filter. */
6498 bfd_put_32 (output_bfd, 0, contents + 12);
6499 /* No hashes are valid - empty bitmask. */
6500 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6501 /* No hashes in the only bucket. */
6502 bfd_put_32 (output_bfd, 0,
6503 contents + 16 + bed->s->arch_size / 8);
6507 unsigned long int maskwords, maskbitslog2, x;
6508 BFD_ASSERT (cinfo.min_dynindx != -1);
6512 while ((x >>= 1) != 0)
6514 if (maskbitslog2 < 3)
6516 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6517 maskbitslog2 = maskbitslog2 + 3;
6519 maskbitslog2 = maskbitslog2 + 2;
6520 if (bed->s->arch_size == 64)
6522 if (maskbitslog2 == 5)
6528 cinfo.mask = (1 << cinfo.shift1) - 1;
6529 cinfo.shift2 = maskbitslog2;
6530 cinfo.maskbits = 1 << maskbitslog2;
6531 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6532 amt = bucketcount * sizeof (unsigned long int) * 2;
6533 amt += maskwords * sizeof (bfd_vma);
6534 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6535 if (cinfo.bitmask == NULL)
6537 free (cinfo.hashcodes);
6541 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6542 cinfo.indx = cinfo.counts + bucketcount;
6543 cinfo.symindx = dynsymcount - cinfo.nsyms;
6544 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6546 /* Determine how often each hash bucket is used. */
6547 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6548 for (i = 0; i < cinfo.nsyms; ++i)
6549 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6551 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6552 if (cinfo.counts[i] != 0)
6554 cinfo.indx[i] = cnt;
6555 cnt += cinfo.counts[i];
6557 BFD_ASSERT (cnt == dynsymcount);
6558 cinfo.bucketcount = bucketcount;
6559 cinfo.local_indx = cinfo.min_dynindx;
6561 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6562 s->size += cinfo.maskbits / 8;
6563 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6564 if (contents == NULL)
6566 free (cinfo.bitmask);
6567 free (cinfo.hashcodes);
6571 s->contents = contents;
6572 bfd_put_32 (output_bfd, bucketcount, contents);
6573 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6574 bfd_put_32 (output_bfd, maskwords, contents + 8);
6575 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6576 contents += 16 + cinfo.maskbits / 8;
6578 for (i = 0; i < bucketcount; ++i)
6580 if (cinfo.counts[i] == 0)
6581 bfd_put_32 (output_bfd, 0, contents);
6583 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6587 cinfo.contents = contents;
6589 /* Renumber dynamic symbols, populate .gnu.hash section. */
6590 elf_link_hash_traverse (elf_hash_table (info),
6591 elf_renumber_gnu_hash_syms, &cinfo);
6593 contents = s->contents + 16;
6594 for (i = 0; i < maskwords; ++i)
6596 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6598 contents += bed->s->arch_size / 8;
6601 free (cinfo.bitmask);
6602 free (cinfo.hashcodes);
6606 s = bfd_get_section_by_name (dynobj, ".dynstr");
6607 BFD_ASSERT (s != NULL);
6609 elf_finalize_dynstr (output_bfd, info);
6611 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6613 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6614 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6621 /* Indicate that we are only retrieving symbol values from this
6625 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6627 if (is_elf_hash_table (info->hash))
6628 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6629 _bfd_generic_link_just_syms (sec, info);
6632 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6635 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6638 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6639 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6642 /* Finish SHF_MERGE section merging. */
6645 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6650 if (!is_elf_hash_table (info->hash))
6653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6654 if ((ibfd->flags & DYNAMIC) == 0)
6655 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6656 if ((sec->flags & SEC_MERGE) != 0
6657 && !bfd_is_abs_section (sec->output_section))
6659 struct bfd_elf_section_data *secdata;
6661 secdata = elf_section_data (sec);
6662 if (! _bfd_add_merge_section (abfd,
6663 &elf_hash_table (info)->merge_info,
6664 sec, &secdata->sec_info))
6666 else if (secdata->sec_info)
6667 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6670 if (elf_hash_table (info)->merge_info != NULL)
6671 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6672 merge_sections_remove_hook);
6676 /* Create an entry in an ELF linker hash table. */
6678 struct bfd_hash_entry *
6679 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6680 struct bfd_hash_table *table,
6683 /* Allocate the structure if it has not already been allocated by a
6687 entry = (struct bfd_hash_entry *)
6688 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6693 /* Call the allocation method of the superclass. */
6694 entry = _bfd_link_hash_newfunc (entry, table, string);
6697 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6698 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6700 /* Set local fields. */
6703 ret->got = htab->init_got_refcount;
6704 ret->plt = htab->init_plt_refcount;
6705 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6706 - offsetof (struct elf_link_hash_entry, size)));
6707 /* Assume that we have been called by a non-ELF symbol reader.
6708 This flag is then reset by the code which reads an ELF input
6709 file. This ensures that a symbol created by a non-ELF symbol
6710 reader will have the flag set correctly. */
6717 /* Copy data from an indirect symbol to its direct symbol, hiding the
6718 old indirect symbol. Also used for copying flags to a weakdef. */
6721 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6722 struct elf_link_hash_entry *dir,
6723 struct elf_link_hash_entry *ind)
6725 struct elf_link_hash_table *htab;
6727 /* Copy down any references that we may have already seen to the
6728 symbol which just became indirect. */
6730 dir->ref_dynamic |= ind->ref_dynamic;
6731 dir->ref_regular |= ind->ref_regular;
6732 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6733 dir->non_got_ref |= ind->non_got_ref;
6734 dir->needs_plt |= ind->needs_plt;
6735 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6737 if (ind->root.type != bfd_link_hash_indirect)
6740 /* Copy over the global and procedure linkage table refcount entries.
6741 These may have been already set up by a check_relocs routine. */
6742 htab = elf_hash_table (info);
6743 if (ind->got.refcount > htab->init_got_refcount.refcount)
6745 if (dir->got.refcount < 0)
6746 dir->got.refcount = 0;
6747 dir->got.refcount += ind->got.refcount;
6748 ind->got.refcount = htab->init_got_refcount.refcount;
6751 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6753 if (dir->plt.refcount < 0)
6754 dir->plt.refcount = 0;
6755 dir->plt.refcount += ind->plt.refcount;
6756 ind->plt.refcount = htab->init_plt_refcount.refcount;
6759 if (ind->dynindx != -1)
6761 if (dir->dynindx != -1)
6762 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6763 dir->dynindx = ind->dynindx;
6764 dir->dynstr_index = ind->dynstr_index;
6766 ind->dynstr_index = 0;
6771 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6772 struct elf_link_hash_entry *h,
6773 bfd_boolean force_local)
6775 /* STT_GNU_IFUNC symbol must go through PLT. */
6776 if (h->type != STT_GNU_IFUNC)
6778 h->plt = elf_hash_table (info)->init_plt_offset;
6783 h->forced_local = 1;
6784 if (h->dynindx != -1)
6787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6793 /* Initialize an ELF linker hash table. */
6796 _bfd_elf_link_hash_table_init
6797 (struct elf_link_hash_table *table,
6799 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6800 struct bfd_hash_table *,
6802 unsigned int entsize,
6803 enum elf_target_id target_id)
6806 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6808 memset (table, 0, sizeof * table);
6809 table->init_got_refcount.refcount = can_refcount - 1;
6810 table->init_plt_refcount.refcount = can_refcount - 1;
6811 table->init_got_offset.offset = -(bfd_vma) 1;
6812 table->init_plt_offset.offset = -(bfd_vma) 1;
6813 /* The first dynamic symbol is a dummy. */
6814 table->dynsymcount = 1;
6816 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6818 table->root.type = bfd_link_elf_hash_table;
6819 table->hash_table_id = target_id;
6824 /* Create an ELF linker hash table. */
6826 struct bfd_link_hash_table *
6827 _bfd_elf_link_hash_table_create (bfd *abfd)
6829 struct elf_link_hash_table *ret;
6830 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6832 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6836 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6837 sizeof (struct elf_link_hash_entry),
6847 /* This is a hook for the ELF emulation code in the generic linker to
6848 tell the backend linker what file name to use for the DT_NEEDED
6849 entry for a dynamic object. */
6852 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6854 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6855 && bfd_get_format (abfd) == bfd_object)
6856 elf_dt_name (abfd) = name;
6860 bfd_elf_get_dyn_lib_class (bfd *abfd)
6863 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6864 && bfd_get_format (abfd) == bfd_object)
6865 lib_class = elf_dyn_lib_class (abfd);
6872 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6874 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6875 && bfd_get_format (abfd) == bfd_object)
6876 elf_dyn_lib_class (abfd) = lib_class;
6879 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6880 the linker ELF emulation code. */
6882 struct bfd_link_needed_list *
6883 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6884 struct bfd_link_info *info)
6886 if (! is_elf_hash_table (info->hash))
6888 return elf_hash_table (info)->needed;
6891 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6892 hook for the linker ELF emulation code. */
6894 struct bfd_link_needed_list *
6895 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6896 struct bfd_link_info *info)
6898 if (! is_elf_hash_table (info->hash))
6900 return elf_hash_table (info)->runpath;
6903 /* Get the name actually used for a dynamic object for a link. This
6904 is the SONAME entry if there is one. Otherwise, it is the string
6905 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6908 bfd_elf_get_dt_soname (bfd *abfd)
6910 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6911 && bfd_get_format (abfd) == bfd_object)
6912 return elf_dt_name (abfd);
6916 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6917 the ELF linker emulation code. */
6920 bfd_elf_get_bfd_needed_list (bfd *abfd,
6921 struct bfd_link_needed_list **pneeded)
6924 bfd_byte *dynbuf = NULL;
6925 unsigned int elfsec;
6926 unsigned long shlink;
6927 bfd_byte *extdyn, *extdynend;
6929 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6933 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6934 || bfd_get_format (abfd) != bfd_object)
6937 s = bfd_get_section_by_name (abfd, ".dynamic");
6938 if (s == NULL || s->size == 0)
6941 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6944 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6945 if (elfsec == SHN_BAD)
6948 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6950 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6951 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6954 extdynend = extdyn + s->size;
6955 for (; extdyn < extdynend; extdyn += extdynsize)
6957 Elf_Internal_Dyn dyn;
6959 (*swap_dyn_in) (abfd, extdyn, &dyn);
6961 if (dyn.d_tag == DT_NULL)
6964 if (dyn.d_tag == DT_NEEDED)
6967 struct bfd_link_needed_list *l;
6968 unsigned int tagv = dyn.d_un.d_val;
6971 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6976 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6997 struct elf_symbuf_symbol
6999 unsigned long st_name; /* Symbol name, index in string tbl */
7000 unsigned char st_info; /* Type and binding attributes */
7001 unsigned char st_other; /* Visibilty, and target specific */
7004 struct elf_symbuf_head
7006 struct elf_symbuf_symbol *ssym;
7007 bfd_size_type count;
7008 unsigned int st_shndx;
7015 Elf_Internal_Sym *isym;
7016 struct elf_symbuf_symbol *ssym;
7021 /* Sort references to symbols by ascending section number. */
7024 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7026 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7027 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7029 return s1->st_shndx - s2->st_shndx;
7033 elf_sym_name_compare (const void *arg1, const void *arg2)
7035 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7036 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7037 return strcmp (s1->name, s2->name);
7040 static struct elf_symbuf_head *
7041 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7043 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7044 struct elf_symbuf_symbol *ssym;
7045 struct elf_symbuf_head *ssymbuf, *ssymhead;
7046 bfd_size_type i, shndx_count, total_size;
7048 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7052 for (ind = indbuf, i = 0; i < symcount; i++)
7053 if (isymbuf[i].st_shndx != SHN_UNDEF)
7054 *ind++ = &isymbuf[i];
7057 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7058 elf_sort_elf_symbol);
7061 if (indbufend > indbuf)
7062 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7063 if (ind[0]->st_shndx != ind[1]->st_shndx)
7066 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7067 + (indbufend - indbuf) * sizeof (*ssym));
7068 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7069 if (ssymbuf == NULL)
7075 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7076 ssymbuf->ssym = NULL;
7077 ssymbuf->count = shndx_count;
7078 ssymbuf->st_shndx = 0;
7079 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7081 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7084 ssymhead->ssym = ssym;
7085 ssymhead->count = 0;
7086 ssymhead->st_shndx = (*ind)->st_shndx;
7088 ssym->st_name = (*ind)->st_name;
7089 ssym->st_info = (*ind)->st_info;
7090 ssym->st_other = (*ind)->st_other;
7093 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7094 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7101 /* Check if 2 sections define the same set of local and global
7105 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7106 struct bfd_link_info *info)
7109 const struct elf_backend_data *bed1, *bed2;
7110 Elf_Internal_Shdr *hdr1, *hdr2;
7111 bfd_size_type symcount1, symcount2;
7112 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7113 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7114 Elf_Internal_Sym *isym, *isymend;
7115 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7116 bfd_size_type count1, count2, i;
7117 unsigned int shndx1, shndx2;
7123 /* Both sections have to be in ELF. */
7124 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7125 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7128 if (elf_section_type (sec1) != elf_section_type (sec2))
7131 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7132 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7133 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7136 bed1 = get_elf_backend_data (bfd1);
7137 bed2 = get_elf_backend_data (bfd2);
7138 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7139 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7140 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7141 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7143 if (symcount1 == 0 || symcount2 == 0)
7149 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7150 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7152 if (ssymbuf1 == NULL)
7154 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7156 if (isymbuf1 == NULL)
7159 if (!info->reduce_memory_overheads)
7160 elf_tdata (bfd1)->symbuf = ssymbuf1
7161 = elf_create_symbuf (symcount1, isymbuf1);
7164 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7166 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7168 if (isymbuf2 == NULL)
7171 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7172 elf_tdata (bfd2)->symbuf = ssymbuf2
7173 = elf_create_symbuf (symcount2, isymbuf2);
7176 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7178 /* Optimized faster version. */
7179 bfd_size_type lo, hi, mid;
7180 struct elf_symbol *symp;
7181 struct elf_symbuf_symbol *ssym, *ssymend;
7184 hi = ssymbuf1->count;
7189 mid = (lo + hi) / 2;
7190 if (shndx1 < ssymbuf1[mid].st_shndx)
7192 else if (shndx1 > ssymbuf1[mid].st_shndx)
7196 count1 = ssymbuf1[mid].count;
7203 hi = ssymbuf2->count;
7208 mid = (lo + hi) / 2;
7209 if (shndx2 < ssymbuf2[mid].st_shndx)
7211 else if (shndx2 > ssymbuf2[mid].st_shndx)
7215 count2 = ssymbuf2[mid].count;
7221 if (count1 == 0 || count2 == 0 || count1 != count2)
7224 symtable1 = (struct elf_symbol *)
7225 bfd_malloc (count1 * sizeof (struct elf_symbol));
7226 symtable2 = (struct elf_symbol *)
7227 bfd_malloc (count2 * sizeof (struct elf_symbol));
7228 if (symtable1 == NULL || symtable2 == NULL)
7232 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7233 ssym < ssymend; ssym++, symp++)
7235 symp->u.ssym = ssym;
7236 symp->name = bfd_elf_string_from_elf_section (bfd1,
7242 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7243 ssym < ssymend; ssym++, symp++)
7245 symp->u.ssym = ssym;
7246 symp->name = bfd_elf_string_from_elf_section (bfd2,
7251 /* Sort symbol by name. */
7252 qsort (symtable1, count1, sizeof (struct elf_symbol),
7253 elf_sym_name_compare);
7254 qsort (symtable2, count1, sizeof (struct elf_symbol),
7255 elf_sym_name_compare);
7257 for (i = 0; i < count1; i++)
7258 /* Two symbols must have the same binding, type and name. */
7259 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7260 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7261 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7268 symtable1 = (struct elf_symbol *)
7269 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7270 symtable2 = (struct elf_symbol *)
7271 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7272 if (symtable1 == NULL || symtable2 == NULL)
7275 /* Count definitions in the section. */
7277 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7278 if (isym->st_shndx == shndx1)
7279 symtable1[count1++].u.isym = isym;
7282 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7283 if (isym->st_shndx == shndx2)
7284 symtable2[count2++].u.isym = isym;
7286 if (count1 == 0 || count2 == 0 || count1 != count2)
7289 for (i = 0; i < count1; i++)
7291 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7292 symtable1[i].u.isym->st_name);
7294 for (i = 0; i < count2; i++)
7296 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7297 symtable2[i].u.isym->st_name);
7299 /* Sort symbol by name. */
7300 qsort (symtable1, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302 qsort (symtable2, count1, sizeof (struct elf_symbol),
7303 elf_sym_name_compare);
7305 for (i = 0; i < count1; i++)
7306 /* Two symbols must have the same binding, type and name. */
7307 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7308 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7309 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7327 /* Return TRUE if 2 section types are compatible. */
7330 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7331 bfd *bbfd, const asection *bsec)
7335 || abfd->xvec->flavour != bfd_target_elf_flavour
7336 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7339 return elf_section_type (asec) == elf_section_type (bsec);
7342 /* Final phase of ELF linker. */
7344 /* A structure we use to avoid passing large numbers of arguments. */
7346 struct elf_final_link_info
7348 /* General link information. */
7349 struct bfd_link_info *info;
7352 /* Symbol string table. */
7353 struct bfd_strtab_hash *symstrtab;
7354 /* .dynsym section. */
7355 asection *dynsym_sec;
7356 /* .hash section. */
7358 /* symbol version section (.gnu.version). */
7359 asection *symver_sec;
7360 /* Buffer large enough to hold contents of any section. */
7362 /* Buffer large enough to hold external relocs of any section. */
7363 void *external_relocs;
7364 /* Buffer large enough to hold internal relocs of any section. */
7365 Elf_Internal_Rela *internal_relocs;
7366 /* Buffer large enough to hold external local symbols of any input
7368 bfd_byte *external_syms;
7369 /* And a buffer for symbol section indices. */
7370 Elf_External_Sym_Shndx *locsym_shndx;
7371 /* Buffer large enough to hold internal local symbols of any input
7373 Elf_Internal_Sym *internal_syms;
7374 /* Array large enough to hold a symbol index for each local symbol
7375 of any input BFD. */
7377 /* Array large enough to hold a section pointer for each local
7378 symbol of any input BFD. */
7379 asection **sections;
7380 /* Buffer to hold swapped out symbols. */
7382 /* And one for symbol section indices. */
7383 Elf_External_Sym_Shndx *symshndxbuf;
7384 /* Number of swapped out symbols in buffer. */
7385 size_t symbuf_count;
7386 /* Number of symbols which fit in symbuf. */
7388 /* And same for symshndxbuf. */
7389 size_t shndxbuf_size;
7392 /* This struct is used to pass information to elf_link_output_extsym. */
7394 struct elf_outext_info
7397 bfd_boolean localsyms;
7398 struct elf_final_link_info *finfo;
7402 /* Support for evaluating a complex relocation.
7404 Complex relocations are generalized, self-describing relocations. The
7405 implementation of them consists of two parts: complex symbols, and the
7406 relocations themselves.
7408 The relocations are use a reserved elf-wide relocation type code (R_RELC
7409 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7410 information (start bit, end bit, word width, etc) into the addend. This
7411 information is extracted from CGEN-generated operand tables within gas.
7413 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7414 internal) representing prefix-notation expressions, including but not
7415 limited to those sorts of expressions normally encoded as addends in the
7416 addend field. The symbol mangling format is:
7419 | <unary-operator> ':' <node>
7420 | <binary-operator> ':' <node> ':' <node>
7423 <literal> := 's' <digits=N> ':' <N character symbol name>
7424 | 'S' <digits=N> ':' <N character section name>
7428 <binary-operator> := as in C
7429 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7432 set_symbol_value (bfd *bfd_with_globals,
7433 Elf_Internal_Sym *isymbuf,
7438 struct elf_link_hash_entry **sym_hashes;
7439 struct elf_link_hash_entry *h;
7440 size_t extsymoff = locsymcount;
7442 if (symidx < locsymcount)
7444 Elf_Internal_Sym *sym;
7446 sym = isymbuf + symidx;
7447 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7449 /* It is a local symbol: move it to the
7450 "absolute" section and give it a value. */
7451 sym->st_shndx = SHN_ABS;
7452 sym->st_value = val;
7455 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7459 /* It is a global symbol: set its link type
7460 to "defined" and give it a value. */
7462 sym_hashes = elf_sym_hashes (bfd_with_globals);
7463 h = sym_hashes [symidx - extsymoff];
7464 while (h->root.type == bfd_link_hash_indirect
7465 || h->root.type == bfd_link_hash_warning)
7466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7467 h->root.type = bfd_link_hash_defined;
7468 h->root.u.def.value = val;
7469 h->root.u.def.section = bfd_abs_section_ptr;
7473 resolve_symbol (const char *name,
7475 struct elf_final_link_info *finfo,
7477 Elf_Internal_Sym *isymbuf,
7480 Elf_Internal_Sym *sym;
7481 struct bfd_link_hash_entry *global_entry;
7482 const char *candidate = NULL;
7483 Elf_Internal_Shdr *symtab_hdr;
7486 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7488 for (i = 0; i < locsymcount; ++ i)
7492 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7495 candidate = bfd_elf_string_from_elf_section (input_bfd,
7496 symtab_hdr->sh_link,
7499 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7500 name, candidate, (unsigned long) sym->st_value);
7502 if (candidate && strcmp (candidate, name) == 0)
7504 asection *sec = finfo->sections [i];
7506 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7507 *result += sec->output_offset + sec->output_section->vma;
7509 printf ("Found symbol with value %8.8lx\n",
7510 (unsigned long) *result);
7516 /* Hmm, haven't found it yet. perhaps it is a global. */
7517 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7518 FALSE, FALSE, TRUE);
7522 if (global_entry->type == bfd_link_hash_defined
7523 || global_entry->type == bfd_link_hash_defweak)
7525 *result = (global_entry->u.def.value
7526 + global_entry->u.def.section->output_section->vma
7527 + global_entry->u.def.section->output_offset);
7529 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7530 global_entry->root.string, (unsigned long) *result);
7539 resolve_section (const char *name,
7546 for (curr = sections; curr; curr = curr->next)
7547 if (strcmp (curr->name, name) == 0)
7549 *result = curr->vma;
7553 /* Hmm. still haven't found it. try pseudo-section names. */
7554 for (curr = sections; curr; curr = curr->next)
7556 len = strlen (curr->name);
7557 if (len > strlen (name))
7560 if (strncmp (curr->name, name, len) == 0)
7562 if (strncmp (".end", name + len, 4) == 0)
7564 *result = curr->vma + curr->size;
7568 /* Insert more pseudo-section names here, if you like. */
7576 undefined_reference (const char *reftype, const char *name)
7578 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7583 eval_symbol (bfd_vma *result,
7586 struct elf_final_link_info *finfo,
7588 Elf_Internal_Sym *isymbuf,
7597 const char *sym = *symp;
7599 bfd_boolean symbol_is_section = FALSE;
7604 if (len < 1 || len > sizeof (symbuf))
7606 bfd_set_error (bfd_error_invalid_operation);
7619 *result = strtoul (sym, (char **) symp, 16);
7623 symbol_is_section = TRUE;
7626 symlen = strtol (sym, (char **) symp, 10);
7627 sym = *symp + 1; /* Skip the trailing ':'. */
7629 if (symend < sym || symlen + 1 > sizeof (symbuf))
7631 bfd_set_error (bfd_error_invalid_operation);
7635 memcpy (symbuf, sym, symlen);
7636 symbuf[symlen] = '\0';
7637 *symp = sym + symlen;
7639 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7640 the symbol as a section, or vice-versa. so we're pretty liberal in our
7641 interpretation here; section means "try section first", not "must be a
7642 section", and likewise with symbol. */
7644 if (symbol_is_section)
7646 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7647 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7648 isymbuf, locsymcount))
7650 undefined_reference ("section", symbuf);
7656 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7657 isymbuf, locsymcount)
7658 && !resolve_section (symbuf, finfo->output_bfd->sections,
7661 undefined_reference ("symbol", symbuf);
7668 /* All that remains are operators. */
7670 #define UNARY_OP(op) \
7671 if (strncmp (sym, #op, strlen (#op)) == 0) \
7673 sym += strlen (#op); \
7677 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7678 isymbuf, locsymcount, signed_p)) \
7681 *result = op ((bfd_signed_vma) a); \
7687 #define BINARY_OP(op) \
7688 if (strncmp (sym, #op, strlen (#op)) == 0) \
7690 sym += strlen (#op); \
7694 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7695 isymbuf, locsymcount, signed_p)) \
7698 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7699 isymbuf, locsymcount, signed_p)) \
7702 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7732 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7733 bfd_set_error (bfd_error_invalid_operation);
7739 put_value (bfd_vma size,
7740 unsigned long chunksz,
7745 location += (size - chunksz);
7747 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7755 bfd_put_8 (input_bfd, x, location);
7758 bfd_put_16 (input_bfd, x, location);
7761 bfd_put_32 (input_bfd, x, location);
7765 bfd_put_64 (input_bfd, x, location);
7775 get_value (bfd_vma size,
7776 unsigned long chunksz,
7782 for (; size; size -= chunksz, location += chunksz)
7790 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7793 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7796 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7800 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7811 decode_complex_addend (unsigned long *start, /* in bits */
7812 unsigned long *oplen, /* in bits */
7813 unsigned long *len, /* in bits */
7814 unsigned long *wordsz, /* in bytes */
7815 unsigned long *chunksz, /* in bytes */
7816 unsigned long *lsb0_p,
7817 unsigned long *signed_p,
7818 unsigned long *trunc_p,
7819 unsigned long encoded)
7821 * start = encoded & 0x3F;
7822 * len = (encoded >> 6) & 0x3F;
7823 * oplen = (encoded >> 12) & 0x3F;
7824 * wordsz = (encoded >> 18) & 0xF;
7825 * chunksz = (encoded >> 22) & 0xF;
7826 * lsb0_p = (encoded >> 27) & 1;
7827 * signed_p = (encoded >> 28) & 1;
7828 * trunc_p = (encoded >> 29) & 1;
7831 bfd_reloc_status_type
7832 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7833 asection *input_section ATTRIBUTE_UNUSED,
7835 Elf_Internal_Rela *rel,
7838 bfd_vma shift, x, mask;
7839 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7840 bfd_reloc_status_type r;
7842 /* Perform this reloc, since it is complex.
7843 (this is not to say that it necessarily refers to a complex
7844 symbol; merely that it is a self-describing CGEN based reloc.
7845 i.e. the addend has the complete reloc information (bit start, end,
7846 word size, etc) encoded within it.). */
7848 decode_complex_addend (&start, &oplen, &len, &wordsz,
7849 &chunksz, &lsb0_p, &signed_p,
7850 &trunc_p, rel->r_addend);
7852 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7855 shift = (start + 1) - len;
7857 shift = (8 * wordsz) - (start + len);
7859 /* FIXME: octets_per_byte. */
7860 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7863 printf ("Doing complex reloc: "
7864 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7865 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7866 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7867 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7868 oplen, (unsigned long) x, (unsigned long) mask,
7869 (unsigned long) relocation);
7874 /* Now do an overflow check. */
7875 r = bfd_check_overflow ((signed_p
7876 ? complain_overflow_signed
7877 : complain_overflow_unsigned),
7878 len, 0, (8 * wordsz),
7882 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7885 printf (" relocation: %8.8lx\n"
7886 " shifted mask: %8.8lx\n"
7887 " shifted/masked reloc: %8.8lx\n"
7888 " result: %8.8lx\n",
7889 (unsigned long) relocation, (unsigned long) (mask << shift),
7890 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7892 /* FIXME: octets_per_byte. */
7893 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7897 /* When performing a relocatable link, the input relocations are
7898 preserved. But, if they reference global symbols, the indices
7899 referenced must be updated. Update all the relocations found in
7903 elf_link_adjust_relocs (bfd *abfd,
7904 struct bfd_elf_section_reloc_data *reldata)
7907 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7909 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7910 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7911 bfd_vma r_type_mask;
7913 unsigned int count = reldata->count;
7914 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7916 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7918 swap_in = bed->s->swap_reloc_in;
7919 swap_out = bed->s->swap_reloc_out;
7921 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7923 swap_in = bed->s->swap_reloca_in;
7924 swap_out = bed->s->swap_reloca_out;
7929 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7932 if (bed->s->arch_size == 32)
7939 r_type_mask = 0xffffffff;
7943 erela = reldata->hdr->contents;
7944 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7946 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7949 if (*rel_hash == NULL)
7952 BFD_ASSERT ((*rel_hash)->indx >= 0);
7954 (*swap_in) (abfd, erela, irela);
7955 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7956 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7957 | (irela[j].r_info & r_type_mask));
7958 (*swap_out) (abfd, irela, erela);
7962 struct elf_link_sort_rela
7968 enum elf_reloc_type_class type;
7969 /* We use this as an array of size int_rels_per_ext_rel. */
7970 Elf_Internal_Rela rela[1];
7974 elf_link_sort_cmp1 (const void *A, const void *B)
7976 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7977 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7978 int relativea, relativeb;
7980 relativea = a->type == reloc_class_relative;
7981 relativeb = b->type == reloc_class_relative;
7983 if (relativea < relativeb)
7985 if (relativea > relativeb)
7987 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7989 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7991 if (a->rela->r_offset < b->rela->r_offset)
7993 if (a->rela->r_offset > b->rela->r_offset)
7999 elf_link_sort_cmp2 (const void *A, const void *B)
8001 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8002 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8005 if (a->u.offset < b->u.offset)
8007 if (a->u.offset > b->u.offset)
8009 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8010 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8015 if (a->rela->r_offset < b->rela->r_offset)
8017 if (a->rela->r_offset > b->rela->r_offset)
8023 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8025 asection *dynamic_relocs;
8028 bfd_size_type count, size;
8029 size_t i, ret, sort_elt, ext_size;
8030 bfd_byte *sort, *s_non_relative, *p;
8031 struct elf_link_sort_rela *sq;
8032 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8033 int i2e = bed->s->int_rels_per_ext_rel;
8034 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8036 struct bfd_link_order *lo;
8038 bfd_boolean use_rela;
8040 /* Find a dynamic reloc section. */
8041 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8042 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8043 if (rela_dyn != NULL && rela_dyn->size > 0
8044 && rel_dyn != NULL && rel_dyn->size > 0)
8046 bfd_boolean use_rela_initialised = FALSE;
8048 /* This is just here to stop gcc from complaining.
8049 It's initialization checking code is not perfect. */
8052 /* Both sections are present. Examine the sizes
8053 of the indirect sections to help us choose. */
8054 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8055 if (lo->type == bfd_indirect_link_order)
8057 asection *o = lo->u.indirect.section;
8059 if ((o->size % bed->s->sizeof_rela) == 0)
8061 if ((o->size % bed->s->sizeof_rel) == 0)
8062 /* Section size is divisible by both rel and rela sizes.
8063 It is of no help to us. */
8067 /* Section size is only divisible by rela. */
8068 if (use_rela_initialised && (use_rela == FALSE))
8071 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8072 bfd_set_error (bfd_error_invalid_operation);
8078 use_rela_initialised = TRUE;
8082 else if ((o->size % bed->s->sizeof_rel) == 0)
8084 /* Section size is only divisible by rel. */
8085 if (use_rela_initialised && (use_rela == TRUE))
8088 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8089 bfd_set_error (bfd_error_invalid_operation);
8095 use_rela_initialised = TRUE;
8100 /* The section size is not divisible by either - something is wrong. */
8102 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8103 bfd_set_error (bfd_error_invalid_operation);
8108 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8109 if (lo->type == bfd_indirect_link_order)
8111 asection *o = lo->u.indirect.section;
8113 if ((o->size % bed->s->sizeof_rela) == 0)
8115 if ((o->size % bed->s->sizeof_rel) == 0)
8116 /* Section size is divisible by both rel and rela sizes.
8117 It is of no help to us. */
8121 /* Section size is only divisible by rela. */
8122 if (use_rela_initialised && (use_rela == FALSE))
8125 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8126 bfd_set_error (bfd_error_invalid_operation);
8132 use_rela_initialised = TRUE;
8136 else if ((o->size % bed->s->sizeof_rel) == 0)
8138 /* Section size is only divisible by rel. */
8139 if (use_rela_initialised && (use_rela == TRUE))
8142 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8143 bfd_set_error (bfd_error_invalid_operation);
8149 use_rela_initialised = TRUE;
8154 /* The section size is not divisible by either - something is wrong. */
8156 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8157 bfd_set_error (bfd_error_invalid_operation);
8162 if (! use_rela_initialised)
8166 else if (rela_dyn != NULL && rela_dyn->size > 0)
8168 else if (rel_dyn != NULL && rel_dyn->size > 0)
8175 dynamic_relocs = rela_dyn;
8176 ext_size = bed->s->sizeof_rela;
8177 swap_in = bed->s->swap_reloca_in;
8178 swap_out = bed->s->swap_reloca_out;
8182 dynamic_relocs = rel_dyn;
8183 ext_size = bed->s->sizeof_rel;
8184 swap_in = bed->s->swap_reloc_in;
8185 swap_out = bed->s->swap_reloc_out;
8189 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8190 if (lo->type == bfd_indirect_link_order)
8191 size += lo->u.indirect.section->size;
8193 if (size != dynamic_relocs->size)
8196 sort_elt = (sizeof (struct elf_link_sort_rela)
8197 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8199 count = dynamic_relocs->size / ext_size;
8202 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8206 (*info->callbacks->warning)
8207 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8211 if (bed->s->arch_size == 32)
8212 r_sym_mask = ~(bfd_vma) 0xff;
8214 r_sym_mask = ~(bfd_vma) 0xffffffff;
8216 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8217 if (lo->type == bfd_indirect_link_order)
8219 bfd_byte *erel, *erelend;
8220 asection *o = lo->u.indirect.section;
8222 if (o->contents == NULL && o->size != 0)
8224 /* This is a reloc section that is being handled as a normal
8225 section. See bfd_section_from_shdr. We can't combine
8226 relocs in this case. */
8231 erelend = o->contents + o->size;
8232 /* FIXME: octets_per_byte. */
8233 p = sort + o->output_offset / ext_size * sort_elt;
8235 while (erel < erelend)
8237 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8239 (*swap_in) (abfd, erel, s->rela);
8240 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8241 s->u.sym_mask = r_sym_mask;
8247 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8249 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8251 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8252 if (s->type != reloc_class_relative)
8258 sq = (struct elf_link_sort_rela *) s_non_relative;
8259 for (; i < count; i++, p += sort_elt)
8261 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8262 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8264 sp->u.offset = sq->rela->r_offset;
8267 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8269 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8270 if (lo->type == bfd_indirect_link_order)
8272 bfd_byte *erel, *erelend;
8273 asection *o = lo->u.indirect.section;
8276 erelend = o->contents + o->size;
8277 /* FIXME: octets_per_byte. */
8278 p = sort + o->output_offset / ext_size * sort_elt;
8279 while (erel < erelend)
8281 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8282 (*swap_out) (abfd, s->rela, erel);
8289 *psec = dynamic_relocs;
8293 /* Flush the output symbols to the file. */
8296 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8297 const struct elf_backend_data *bed)
8299 if (finfo->symbuf_count > 0)
8301 Elf_Internal_Shdr *hdr;
8305 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8306 pos = hdr->sh_offset + hdr->sh_size;
8307 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8308 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8309 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8312 hdr->sh_size += amt;
8313 finfo->symbuf_count = 0;
8319 /* Add a symbol to the output symbol table. */
8322 elf_link_output_sym (struct elf_final_link_info *finfo,
8324 Elf_Internal_Sym *elfsym,
8325 asection *input_sec,
8326 struct elf_link_hash_entry *h)
8329 Elf_External_Sym_Shndx *destshndx;
8330 int (*output_symbol_hook)
8331 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8332 struct elf_link_hash_entry *);
8333 const struct elf_backend_data *bed;
8335 bed = get_elf_backend_data (finfo->output_bfd);
8336 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8337 if (output_symbol_hook != NULL)
8339 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8344 if (name == NULL || *name == '\0')
8345 elfsym->st_name = 0;
8346 else if (input_sec->flags & SEC_EXCLUDE)
8347 elfsym->st_name = 0;
8350 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8352 if (elfsym->st_name == (unsigned long) -1)
8356 if (finfo->symbuf_count >= finfo->symbuf_size)
8358 if (! elf_link_flush_output_syms (finfo, bed))
8362 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8363 destshndx = finfo->symshndxbuf;
8364 if (destshndx != NULL)
8366 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8370 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8371 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8373 if (destshndx == NULL)
8375 finfo->symshndxbuf = destshndx;
8376 memset ((char *) destshndx + amt, 0, amt);
8377 finfo->shndxbuf_size *= 2;
8379 destshndx += bfd_get_symcount (finfo->output_bfd);
8382 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8383 finfo->symbuf_count += 1;
8384 bfd_get_symcount (finfo->output_bfd) += 1;
8389 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8392 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8394 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8395 && sym->st_shndx < SHN_LORESERVE)
8397 /* The gABI doesn't support dynamic symbols in output sections
8399 (*_bfd_error_handler)
8400 (_("%B: Too many sections: %d (>= %d)"),
8401 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8402 bfd_set_error (bfd_error_nonrepresentable_section);
8408 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8409 allowing an unsatisfied unversioned symbol in the DSO to match a
8410 versioned symbol that would normally require an explicit version.
8411 We also handle the case that a DSO references a hidden symbol
8412 which may be satisfied by a versioned symbol in another DSO. */
8415 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8416 const struct elf_backend_data *bed,
8417 struct elf_link_hash_entry *h)
8420 struct elf_link_loaded_list *loaded;
8422 if (!is_elf_hash_table (info->hash))
8425 switch (h->root.type)
8431 case bfd_link_hash_undefined:
8432 case bfd_link_hash_undefweak:
8433 abfd = h->root.u.undef.abfd;
8434 if ((abfd->flags & DYNAMIC) == 0
8435 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8439 case bfd_link_hash_defined:
8440 case bfd_link_hash_defweak:
8441 abfd = h->root.u.def.section->owner;
8444 case bfd_link_hash_common:
8445 abfd = h->root.u.c.p->section->owner;
8448 BFD_ASSERT (abfd != NULL);
8450 for (loaded = elf_hash_table (info)->loaded;
8452 loaded = loaded->next)
8455 Elf_Internal_Shdr *hdr;
8456 bfd_size_type symcount;
8457 bfd_size_type extsymcount;
8458 bfd_size_type extsymoff;
8459 Elf_Internal_Shdr *versymhdr;
8460 Elf_Internal_Sym *isym;
8461 Elf_Internal_Sym *isymend;
8462 Elf_Internal_Sym *isymbuf;
8463 Elf_External_Versym *ever;
8464 Elf_External_Versym *extversym;
8466 input = loaded->abfd;
8468 /* We check each DSO for a possible hidden versioned definition. */
8470 || (input->flags & DYNAMIC) == 0
8471 || elf_dynversym (input) == 0)
8474 hdr = &elf_tdata (input)->dynsymtab_hdr;
8476 symcount = hdr->sh_size / bed->s->sizeof_sym;
8477 if (elf_bad_symtab (input))
8479 extsymcount = symcount;
8484 extsymcount = symcount - hdr->sh_info;
8485 extsymoff = hdr->sh_info;
8488 if (extsymcount == 0)
8491 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8493 if (isymbuf == NULL)
8496 /* Read in any version definitions. */
8497 versymhdr = &elf_tdata (input)->dynversym_hdr;
8498 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8499 if (extversym == NULL)
8502 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8503 || (bfd_bread (extversym, versymhdr->sh_size, input)
8504 != versymhdr->sh_size))
8512 ever = extversym + extsymoff;
8513 isymend = isymbuf + extsymcount;
8514 for (isym = isymbuf; isym < isymend; isym++, ever++)
8517 Elf_Internal_Versym iver;
8518 unsigned short version_index;
8520 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8521 || isym->st_shndx == SHN_UNDEF)
8524 name = bfd_elf_string_from_elf_section (input,
8527 if (strcmp (name, h->root.root.string) != 0)
8530 _bfd_elf_swap_versym_in (input, ever, &iver);
8532 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8534 && h->forced_local))
8536 /* If we have a non-hidden versioned sym, then it should
8537 have provided a definition for the undefined sym unless
8538 it is defined in a non-shared object and forced local.
8543 version_index = iver.vs_vers & VERSYM_VERSION;
8544 if (version_index == 1 || version_index == 2)
8546 /* This is the base or first version. We can use it. */
8560 /* Add an external symbol to the symbol table. This is called from
8561 the hash table traversal routine. When generating a shared object,
8562 we go through the symbol table twice. The first time we output
8563 anything that might have been forced to local scope in a version
8564 script. The second time we output the symbols that are still
8568 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8570 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8571 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8572 struct elf_final_link_info *finfo = eoinfo->finfo;
8574 Elf_Internal_Sym sym;
8575 asection *input_sec;
8576 const struct elf_backend_data *bed;
8580 if (h->root.type == bfd_link_hash_warning)
8582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8583 if (h->root.type == bfd_link_hash_new)
8587 /* Decide whether to output this symbol in this pass. */
8588 if (eoinfo->localsyms)
8590 if (!h->forced_local)
8595 if (h->forced_local)
8599 bed = get_elf_backend_data (finfo->output_bfd);
8601 if (h->root.type == bfd_link_hash_undefined)
8603 /* If we have an undefined symbol reference here then it must have
8604 come from a shared library that is being linked in. (Undefined
8605 references in regular files have already been handled unless
8606 they are in unreferenced sections which are removed by garbage
8608 bfd_boolean ignore_undef = FALSE;
8610 /* Some symbols may be special in that the fact that they're
8611 undefined can be safely ignored - let backend determine that. */
8612 if (bed->elf_backend_ignore_undef_symbol)
8613 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8615 /* If we are reporting errors for this situation then do so now. */
8618 && (!h->ref_regular || finfo->info->gc_sections)
8619 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8620 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8622 if (! (finfo->info->callbacks->undefined_symbol
8623 (finfo->info, h->root.root.string,
8624 h->ref_regular ? NULL : h->root.u.undef.abfd,
8625 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8627 bfd_set_error (bfd_error_bad_value);
8628 eoinfo->failed = TRUE;
8634 /* We should also warn if a forced local symbol is referenced from
8635 shared libraries. */
8636 if (! finfo->info->relocatable
8637 && (! finfo->info->shared)
8642 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8647 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8648 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8649 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8650 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8652 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8653 def_bfd = finfo->output_bfd;
8654 if (h->root.u.def.section != bfd_abs_section_ptr)
8655 def_bfd = h->root.u.def.section->owner;
8656 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8657 h->root.root.string);
8658 bfd_set_error (bfd_error_bad_value);
8659 eoinfo->failed = TRUE;
8663 /* We don't want to output symbols that have never been mentioned by
8664 a regular file, or that we have been told to strip. However, if
8665 h->indx is set to -2, the symbol is used by a reloc and we must
8669 else if ((h->def_dynamic
8671 || h->root.type == bfd_link_hash_new)
8675 else if (finfo->info->strip == strip_all)
8677 else if (finfo->info->strip == strip_some
8678 && bfd_hash_lookup (finfo->info->keep_hash,
8679 h->root.root.string, FALSE, FALSE) == NULL)
8681 else if (finfo->info->strip_discarded
8682 && (h->root.type == bfd_link_hash_defined
8683 || h->root.type == bfd_link_hash_defweak)
8684 && elf_discarded_section (h->root.u.def.section))
8686 else if ((h->root.type == bfd_link_hash_undefined
8687 || h->root.type == bfd_link_hash_undefweak)
8688 && h->root.u.undef.abfd != NULL
8689 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8694 /* If we're stripping it, and it's not a dynamic symbol, there's
8695 nothing else to do unless it is a forced local symbol or a
8696 STT_GNU_IFUNC symbol. */
8699 && h->type != STT_GNU_IFUNC
8700 && !h->forced_local)
8704 sym.st_size = h->size;
8705 sym.st_other = h->other;
8706 if (h->forced_local)
8708 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8709 /* Turn off visibility on local symbol. */
8710 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8712 else if (h->unique_global)
8713 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8714 else if (h->root.type == bfd_link_hash_undefweak
8715 || h->root.type == bfd_link_hash_defweak)
8716 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8718 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8719 sym.st_target_internal = h->target_internal;
8721 switch (h->root.type)
8724 case bfd_link_hash_new:
8725 case bfd_link_hash_warning:
8729 case bfd_link_hash_undefined:
8730 case bfd_link_hash_undefweak:
8731 input_sec = bfd_und_section_ptr;
8732 sym.st_shndx = SHN_UNDEF;
8735 case bfd_link_hash_defined:
8736 case bfd_link_hash_defweak:
8738 input_sec = h->root.u.def.section;
8739 if (input_sec->output_section != NULL)
8742 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8743 input_sec->output_section);
8744 if (sym.st_shndx == SHN_BAD)
8746 (*_bfd_error_handler)
8747 (_("%B: could not find output section %A for input section %A"),
8748 finfo->output_bfd, input_sec->output_section, input_sec);
8749 bfd_set_error (bfd_error_nonrepresentable_section);
8750 eoinfo->failed = TRUE;
8754 /* ELF symbols in relocatable files are section relative,
8755 but in nonrelocatable files they are virtual
8757 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8758 if (! finfo->info->relocatable)
8760 sym.st_value += input_sec->output_section->vma;
8761 if (h->type == STT_TLS)
8763 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8764 if (tls_sec != NULL)
8765 sym.st_value -= tls_sec->vma;
8768 /* The TLS section may have been garbage collected. */
8769 BFD_ASSERT (finfo->info->gc_sections
8770 && !input_sec->gc_mark);
8777 BFD_ASSERT (input_sec->owner == NULL
8778 || (input_sec->owner->flags & DYNAMIC) != 0);
8779 sym.st_shndx = SHN_UNDEF;
8780 input_sec = bfd_und_section_ptr;
8785 case bfd_link_hash_common:
8786 input_sec = h->root.u.c.p->section;
8787 sym.st_shndx = bed->common_section_index (input_sec);
8788 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8791 case bfd_link_hash_indirect:
8792 /* These symbols are created by symbol versioning. They point
8793 to the decorated version of the name. For example, if the
8794 symbol foo@@GNU_1.2 is the default, which should be used when
8795 foo is used with no version, then we add an indirect symbol
8796 foo which points to foo@@GNU_1.2. We ignore these symbols,
8797 since the indirected symbol is already in the hash table. */
8801 /* Give the processor backend a chance to tweak the symbol value,
8802 and also to finish up anything that needs to be done for this
8803 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8804 forced local syms when non-shared is due to a historical quirk.
8805 STT_GNU_IFUNC symbol must go through PLT. */
8806 if ((h->type == STT_GNU_IFUNC
8808 && !finfo->info->relocatable)
8809 || ((h->dynindx != -1
8811 && ((finfo->info->shared
8812 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8813 || h->root.type != bfd_link_hash_undefweak))
8814 || !h->forced_local)
8815 && elf_hash_table (finfo->info)->dynamic_sections_created))
8817 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8818 (finfo->output_bfd, finfo->info, h, &sym)))
8820 eoinfo->failed = TRUE;
8825 /* If we are marking the symbol as undefined, and there are no
8826 non-weak references to this symbol from a regular object, then
8827 mark the symbol as weak undefined; if there are non-weak
8828 references, mark the symbol as strong. We can't do this earlier,
8829 because it might not be marked as undefined until the
8830 finish_dynamic_symbol routine gets through with it. */
8831 if (sym.st_shndx == SHN_UNDEF
8833 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8834 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8837 unsigned int type = ELF_ST_TYPE (sym.st_info);
8839 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8840 if (type == STT_GNU_IFUNC)
8843 if (h->ref_regular_nonweak)
8844 bindtype = STB_GLOBAL;
8846 bindtype = STB_WEAK;
8847 sym.st_info = ELF_ST_INFO (bindtype, type);
8850 /* If this is a symbol defined in a dynamic library, don't use the
8851 symbol size from the dynamic library. Relinking an executable
8852 against a new library may introduce gratuitous changes in the
8853 executable's symbols if we keep the size. */
8854 if (sym.st_shndx == SHN_UNDEF
8859 /* If a non-weak symbol with non-default visibility is not defined
8860 locally, it is a fatal error. */
8861 if (! finfo->info->relocatable
8862 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8863 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8864 && h->root.type == bfd_link_hash_undefined
8869 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8870 msg = _("%B: protected symbol `%s' isn't defined");
8871 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8872 msg = _("%B: internal symbol `%s' isn't defined");
8874 msg = _("%B: hidden symbol `%s' isn't defined");
8875 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8876 bfd_set_error (bfd_error_bad_value);
8877 eoinfo->failed = TRUE;
8881 /* If this symbol should be put in the .dynsym section, then put it
8882 there now. We already know the symbol index. We also fill in
8883 the entry in the .hash section. */
8884 if (h->dynindx != -1
8885 && elf_hash_table (finfo->info)->dynamic_sections_created)
8889 sym.st_name = h->dynstr_index;
8890 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8891 if (! check_dynsym (finfo->output_bfd, &sym))
8893 eoinfo->failed = TRUE;
8896 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8898 if (finfo->hash_sec != NULL)
8900 size_t hash_entry_size;
8901 bfd_byte *bucketpos;
8906 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8907 bucket = h->u.elf_hash_value % bucketcount;
8910 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8911 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8912 + (bucket + 2) * hash_entry_size);
8913 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8914 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8915 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8916 ((bfd_byte *) finfo->hash_sec->contents
8917 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8920 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8922 Elf_Internal_Versym iversym;
8923 Elf_External_Versym *eversym;
8925 if (!h->def_regular)
8927 if (h->verinfo.verdef == NULL)
8928 iversym.vs_vers = 0;
8930 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8934 if (h->verinfo.vertree == NULL)
8935 iversym.vs_vers = 1;
8937 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8938 if (finfo->info->create_default_symver)
8943 iversym.vs_vers |= VERSYM_HIDDEN;
8945 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8946 eversym += h->dynindx;
8947 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8951 /* If we're stripping it, then it was just a dynamic symbol, and
8952 there's nothing else to do. */
8953 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8956 indx = bfd_get_symcount (finfo->output_bfd);
8957 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8960 eoinfo->failed = TRUE;
8965 else if (h->indx == -2)
8971 /* Return TRUE if special handling is done for relocs in SEC against
8972 symbols defined in discarded sections. */
8975 elf_section_ignore_discarded_relocs (asection *sec)
8977 const struct elf_backend_data *bed;
8979 switch (sec->sec_info_type)
8981 case ELF_INFO_TYPE_STABS:
8982 case ELF_INFO_TYPE_EH_FRAME:
8988 bed = get_elf_backend_data (sec->owner);
8989 if (bed->elf_backend_ignore_discarded_relocs != NULL
8990 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8996 /* Return a mask saying how ld should treat relocations in SEC against
8997 symbols defined in discarded sections. If this function returns
8998 COMPLAIN set, ld will issue a warning message. If this function
8999 returns PRETEND set, and the discarded section was link-once and the
9000 same size as the kept link-once section, ld will pretend that the
9001 symbol was actually defined in the kept section. Otherwise ld will
9002 zero the reloc (at least that is the intent, but some cooperation by
9003 the target dependent code is needed, particularly for REL targets). */
9006 _bfd_elf_default_action_discarded (asection *sec)
9008 if (sec->flags & SEC_DEBUGGING)
9011 if (strcmp (".eh_frame", sec->name) == 0)
9014 if (strcmp (".gcc_except_table", sec->name) == 0)
9017 return COMPLAIN | PRETEND;
9020 /* Find a match between a section and a member of a section group. */
9023 match_group_member (asection *sec, asection *group,
9024 struct bfd_link_info *info)
9026 asection *first = elf_next_in_group (group);
9027 asection *s = first;
9031 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9034 s = elf_next_in_group (s);
9042 /* Check if the kept section of a discarded section SEC can be used
9043 to replace it. Return the replacement if it is OK. Otherwise return
9047 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9051 kept = sec->kept_section;
9054 if ((kept->flags & SEC_GROUP) != 0)
9055 kept = match_group_member (sec, kept, info);
9057 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9058 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9060 sec->kept_section = kept;
9065 /* Link an input file into the linker output file. This function
9066 handles all the sections and relocations of the input file at once.
9067 This is so that we only have to read the local symbols once, and
9068 don't have to keep them in memory. */
9071 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9073 int (*relocate_section)
9074 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9075 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9077 Elf_Internal_Shdr *symtab_hdr;
9080 Elf_Internal_Sym *isymbuf;
9081 Elf_Internal_Sym *isym;
9082 Elf_Internal_Sym *isymend;
9084 asection **ppsection;
9086 const struct elf_backend_data *bed;
9087 struct elf_link_hash_entry **sym_hashes;
9088 bfd_size_type address_size;
9089 bfd_vma r_type_mask;
9092 output_bfd = finfo->output_bfd;
9093 bed = get_elf_backend_data (output_bfd);
9094 relocate_section = bed->elf_backend_relocate_section;
9096 /* If this is a dynamic object, we don't want to do anything here:
9097 we don't want the local symbols, and we don't want the section
9099 if ((input_bfd->flags & DYNAMIC) != 0)
9102 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9103 if (elf_bad_symtab (input_bfd))
9105 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9110 locsymcount = symtab_hdr->sh_info;
9111 extsymoff = symtab_hdr->sh_info;
9114 /* Read the local symbols. */
9115 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9116 if (isymbuf == NULL && locsymcount != 0)
9118 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9119 finfo->internal_syms,
9120 finfo->external_syms,
9121 finfo->locsym_shndx);
9122 if (isymbuf == NULL)
9126 /* Find local symbol sections and adjust values of symbols in
9127 SEC_MERGE sections. Write out those local symbols we know are
9128 going into the output file. */
9129 isymend = isymbuf + locsymcount;
9130 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9132 isym++, pindex++, ppsection++)
9136 Elf_Internal_Sym osym;
9142 if (elf_bad_symtab (input_bfd))
9144 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9151 if (isym->st_shndx == SHN_UNDEF)
9152 isec = bfd_und_section_ptr;
9153 else if (isym->st_shndx == SHN_ABS)
9154 isec = bfd_abs_section_ptr;
9155 else if (isym->st_shndx == SHN_COMMON)
9156 isec = bfd_com_section_ptr;
9159 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9162 /* Don't attempt to output symbols with st_shnx in the
9163 reserved range other than SHN_ABS and SHN_COMMON. */
9167 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9168 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9170 _bfd_merged_section_offset (output_bfd, &isec,
9171 elf_section_data (isec)->sec_info,
9177 /* Don't output the first, undefined, symbol. */
9178 if (ppsection == finfo->sections)
9181 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9183 /* We never output section symbols. Instead, we use the
9184 section symbol of the corresponding section in the output
9189 /* If we are stripping all symbols, we don't want to output this
9191 if (finfo->info->strip == strip_all)
9194 /* If we are discarding all local symbols, we don't want to
9195 output this one. If we are generating a relocatable output
9196 file, then some of the local symbols may be required by
9197 relocs; we output them below as we discover that they are
9199 if (finfo->info->discard == discard_all)
9202 /* If this symbol is defined in a section which we are
9203 discarding, we don't need to keep it. */
9204 if (isym->st_shndx != SHN_UNDEF
9205 && isym->st_shndx < SHN_LORESERVE
9206 && bfd_section_removed_from_list (output_bfd,
9207 isec->output_section))
9210 /* Get the name of the symbol. */
9211 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9216 /* See if we are discarding symbols with this name. */
9217 if ((finfo->info->strip == strip_some
9218 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9220 || (((finfo->info->discard == discard_sec_merge
9221 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9222 || finfo->info->discard == discard_l)
9223 && bfd_is_local_label_name (input_bfd, name)))
9228 /* Adjust the section index for the output file. */
9229 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9230 isec->output_section);
9231 if (osym.st_shndx == SHN_BAD)
9234 /* ELF symbols in relocatable files are section relative, but
9235 in executable files they are virtual addresses. Note that
9236 this code assumes that all ELF sections have an associated
9237 BFD section with a reasonable value for output_offset; below
9238 we assume that they also have a reasonable value for
9239 output_section. Any special sections must be set up to meet
9240 these requirements. */
9241 osym.st_value += isec->output_offset;
9242 if (! finfo->info->relocatable)
9244 osym.st_value += isec->output_section->vma;
9245 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9247 /* STT_TLS symbols are relative to PT_TLS segment base. */
9248 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9249 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9253 indx = bfd_get_symcount (output_bfd);
9254 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9261 if (bed->s->arch_size == 32)
9269 r_type_mask = 0xffffffff;
9274 /* Relocate the contents of each section. */
9275 sym_hashes = elf_sym_hashes (input_bfd);
9276 for (o = input_bfd->sections; o != NULL; o = o->next)
9280 if (! o->linker_mark)
9282 /* This section was omitted from the link. */
9286 if (finfo->info->relocatable
9287 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9289 /* Deal with the group signature symbol. */
9290 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9291 unsigned long symndx = sec_data->this_hdr.sh_info;
9292 asection *osec = o->output_section;
9294 if (symndx >= locsymcount
9295 || (elf_bad_symtab (input_bfd)
9296 && finfo->sections[symndx] == NULL))
9298 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9299 while (h->root.type == bfd_link_hash_indirect
9300 || h->root.type == bfd_link_hash_warning)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302 /* Arrange for symbol to be output. */
9304 elf_section_data (osec)->this_hdr.sh_info = -2;
9306 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9308 /* We'll use the output section target_index. */
9309 asection *sec = finfo->sections[symndx]->output_section;
9310 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9314 if (finfo->indices[symndx] == -1)
9316 /* Otherwise output the local symbol now. */
9317 Elf_Internal_Sym sym = isymbuf[symndx];
9318 asection *sec = finfo->sections[symndx]->output_section;
9323 name = bfd_elf_string_from_elf_section (input_bfd,
9324 symtab_hdr->sh_link,
9329 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9331 if (sym.st_shndx == SHN_BAD)
9334 sym.st_value += o->output_offset;
9336 indx = bfd_get_symcount (output_bfd);
9337 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9341 finfo->indices[symndx] = indx;
9345 elf_section_data (osec)->this_hdr.sh_info
9346 = finfo->indices[symndx];
9350 if ((o->flags & SEC_HAS_CONTENTS) == 0
9351 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9354 if ((o->flags & SEC_LINKER_CREATED) != 0)
9356 /* Section was created by _bfd_elf_link_create_dynamic_sections
9361 /* Get the contents of the section. They have been cached by a
9362 relaxation routine. Note that o is a section in an input
9363 file, so the contents field will not have been set by any of
9364 the routines which work on output files. */
9365 if (elf_section_data (o)->this_hdr.contents != NULL)
9366 contents = elf_section_data (o)->this_hdr.contents;
9369 contents = finfo->contents;
9370 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9374 if ((o->flags & SEC_RELOC) != 0)
9376 Elf_Internal_Rela *internal_relocs;
9377 Elf_Internal_Rela *rel, *relend;
9378 int action_discarded;
9381 /* Get the swapped relocs. */
9383 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9384 finfo->internal_relocs, FALSE);
9385 if (internal_relocs == NULL
9386 && o->reloc_count > 0)
9389 /* We need to reverse-copy input .ctors/.dtors sections if
9390 they are placed in .init_array/.finit_array for output. */
9391 if (o->size > address_size
9392 && ((strncmp (o->name, ".ctors", 6) == 0
9393 && strcmp (o->output_section->name,
9394 ".init_array") == 0)
9395 || (strncmp (o->name, ".dtors", 6) == 0
9396 && strcmp (o->output_section->name,
9397 ".fini_array") == 0))
9398 && (o->name[6] == 0 || o->name[6] == '.'))
9400 if (o->size != o->reloc_count * address_size)
9402 (*_bfd_error_handler)
9403 (_("error: %B: size of section %A is not "
9404 "multiple of address size"),
9406 bfd_set_error (bfd_error_on_input);
9409 o->flags |= SEC_ELF_REVERSE_COPY;
9412 action_discarded = -1;
9413 if (!elf_section_ignore_discarded_relocs (o))
9414 action_discarded = (*bed->action_discarded) (o);
9416 /* Run through the relocs evaluating complex reloc symbols and
9417 looking for relocs against symbols from discarded sections
9418 or section symbols from removed link-once sections.
9419 Complain about relocs against discarded sections. Zero
9420 relocs against removed link-once sections. */
9422 rel = internal_relocs;
9423 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9424 for ( ; rel < relend; rel++)
9426 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9427 unsigned int s_type;
9428 asection **ps, *sec;
9429 struct elf_link_hash_entry *h = NULL;
9430 const char *sym_name;
9432 if (r_symndx == STN_UNDEF)
9435 if (r_symndx >= locsymcount
9436 || (elf_bad_symtab (input_bfd)
9437 && finfo->sections[r_symndx] == NULL))
9439 h = sym_hashes[r_symndx - extsymoff];
9441 /* Badly formatted input files can contain relocs that
9442 reference non-existant symbols. Check here so that
9443 we do not seg fault. */
9448 sprintf_vma (buffer, rel->r_info);
9449 (*_bfd_error_handler)
9450 (_("error: %B contains a reloc (0x%s) for section %A "
9451 "that references a non-existent global symbol"),
9452 input_bfd, o, buffer);
9453 bfd_set_error (bfd_error_bad_value);
9457 while (h->root.type == bfd_link_hash_indirect
9458 || h->root.type == bfd_link_hash_warning)
9459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9464 if (h->root.type == bfd_link_hash_defined
9465 || h->root.type == bfd_link_hash_defweak)
9466 ps = &h->root.u.def.section;
9468 sym_name = h->root.root.string;
9472 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9474 s_type = ELF_ST_TYPE (sym->st_info);
9475 ps = &finfo->sections[r_symndx];
9476 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9480 if ((s_type == STT_RELC || s_type == STT_SRELC)
9481 && !finfo->info->relocatable)
9484 bfd_vma dot = (rel->r_offset
9485 + o->output_offset + o->output_section->vma);
9487 printf ("Encountered a complex symbol!");
9488 printf (" (input_bfd %s, section %s, reloc %ld\n",
9489 input_bfd->filename, o->name,
9490 (long) (rel - internal_relocs));
9491 printf (" symbol: idx %8.8lx, name %s\n",
9492 r_symndx, sym_name);
9493 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9494 (unsigned long) rel->r_info,
9495 (unsigned long) rel->r_offset);
9497 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9498 isymbuf, locsymcount, s_type == STT_SRELC))
9501 /* Symbol evaluated OK. Update to absolute value. */
9502 set_symbol_value (input_bfd, isymbuf, locsymcount,
9507 if (action_discarded != -1 && ps != NULL)
9509 /* Complain if the definition comes from a
9510 discarded section. */
9511 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9513 BFD_ASSERT (r_symndx != STN_UNDEF);
9514 if (action_discarded & COMPLAIN)
9515 (*finfo->info->callbacks->einfo)
9516 (_("%X`%s' referenced in section `%A' of %B: "
9517 "defined in discarded section `%A' of %B\n"),
9518 sym_name, o, input_bfd, sec, sec->owner);
9520 /* Try to do the best we can to support buggy old
9521 versions of gcc. Pretend that the symbol is
9522 really defined in the kept linkonce section.
9523 FIXME: This is quite broken. Modifying the
9524 symbol here means we will be changing all later
9525 uses of the symbol, not just in this section. */
9526 if (action_discarded & PRETEND)
9530 kept = _bfd_elf_check_kept_section (sec,
9542 /* Relocate the section by invoking a back end routine.
9544 The back end routine is responsible for adjusting the
9545 section contents as necessary, and (if using Rela relocs
9546 and generating a relocatable output file) adjusting the
9547 reloc addend as necessary.
9549 The back end routine does not have to worry about setting
9550 the reloc address or the reloc symbol index.
9552 The back end routine is given a pointer to the swapped in
9553 internal symbols, and can access the hash table entries
9554 for the external symbols via elf_sym_hashes (input_bfd).
9556 When generating relocatable output, the back end routine
9557 must handle STB_LOCAL/STT_SECTION symbols specially. The
9558 output symbol is going to be a section symbol
9559 corresponding to the output section, which will require
9560 the addend to be adjusted. */
9562 ret = (*relocate_section) (output_bfd, finfo->info,
9563 input_bfd, o, contents,
9571 || finfo->info->relocatable
9572 || finfo->info->emitrelocations)
9574 Elf_Internal_Rela *irela;
9575 Elf_Internal_Rela *irelaend, *irelamid;
9576 bfd_vma last_offset;
9577 struct elf_link_hash_entry **rel_hash;
9578 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9579 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9580 unsigned int next_erel;
9581 bfd_boolean rela_normal;
9582 struct bfd_elf_section_data *esdi, *esdo;
9584 esdi = elf_section_data (o);
9585 esdo = elf_section_data (o->output_section);
9586 rela_normal = FALSE;
9588 /* Adjust the reloc addresses and symbol indices. */
9590 irela = internal_relocs;
9591 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9592 rel_hash = esdo->rel.hashes + esdo->rel.count;
9593 /* We start processing the REL relocs, if any. When we reach
9594 IRELAMID in the loop, we switch to the RELA relocs. */
9596 if (esdi->rel.hdr != NULL)
9597 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9598 * bed->s->int_rels_per_ext_rel);
9599 rel_hash_list = rel_hash;
9600 rela_hash_list = NULL;
9601 last_offset = o->output_offset;
9602 if (!finfo->info->relocatable)
9603 last_offset += o->output_section->vma;
9604 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9606 unsigned long r_symndx;
9608 Elf_Internal_Sym sym;
9610 if (next_erel == bed->s->int_rels_per_ext_rel)
9616 if (irela == irelamid)
9618 rel_hash = esdo->rela.hashes + esdo->rela.count;
9619 rela_hash_list = rel_hash;
9620 rela_normal = bed->rela_normal;
9623 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9626 if (irela->r_offset >= (bfd_vma) -2)
9628 /* This is a reloc for a deleted entry or somesuch.
9629 Turn it into an R_*_NONE reloc, at the same
9630 offset as the last reloc. elf_eh_frame.c and
9631 bfd_elf_discard_info rely on reloc offsets
9633 irela->r_offset = last_offset;
9635 irela->r_addend = 0;
9639 irela->r_offset += o->output_offset;
9641 /* Relocs in an executable have to be virtual addresses. */
9642 if (!finfo->info->relocatable)
9643 irela->r_offset += o->output_section->vma;
9645 last_offset = irela->r_offset;
9647 r_symndx = irela->r_info >> r_sym_shift;
9648 if (r_symndx == STN_UNDEF)
9651 if (r_symndx >= locsymcount
9652 || (elf_bad_symtab (input_bfd)
9653 && finfo->sections[r_symndx] == NULL))
9655 struct elf_link_hash_entry *rh;
9658 /* This is a reloc against a global symbol. We
9659 have not yet output all the local symbols, so
9660 we do not know the symbol index of any global
9661 symbol. We set the rel_hash entry for this
9662 reloc to point to the global hash table entry
9663 for this symbol. The symbol index is then
9664 set at the end of bfd_elf_final_link. */
9665 indx = r_symndx - extsymoff;
9666 rh = elf_sym_hashes (input_bfd)[indx];
9667 while (rh->root.type == bfd_link_hash_indirect
9668 || rh->root.type == bfd_link_hash_warning)
9669 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9671 /* Setting the index to -2 tells
9672 elf_link_output_extsym that this symbol is
9674 BFD_ASSERT (rh->indx < 0);
9682 /* This is a reloc against a local symbol. */
9685 sym = isymbuf[r_symndx];
9686 sec = finfo->sections[r_symndx];
9687 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9689 /* I suppose the backend ought to fill in the
9690 section of any STT_SECTION symbol against a
9691 processor specific section. */
9692 r_symndx = STN_UNDEF;
9693 if (bfd_is_abs_section (sec))
9695 else if (sec == NULL || sec->owner == NULL)
9697 bfd_set_error (bfd_error_bad_value);
9702 asection *osec = sec->output_section;
9704 /* If we have discarded a section, the output
9705 section will be the absolute section. In
9706 case of discarded SEC_MERGE sections, use
9707 the kept section. relocate_section should
9708 have already handled discarded linkonce
9710 if (bfd_is_abs_section (osec)
9711 && sec->kept_section != NULL
9712 && sec->kept_section->output_section != NULL)
9714 osec = sec->kept_section->output_section;
9715 irela->r_addend -= osec->vma;
9718 if (!bfd_is_abs_section (osec))
9720 r_symndx = osec->target_index;
9721 if (r_symndx == STN_UNDEF)
9723 struct elf_link_hash_table *htab;
9726 htab = elf_hash_table (finfo->info);
9727 oi = htab->text_index_section;
9728 if ((osec->flags & SEC_READONLY) == 0
9729 && htab->data_index_section != NULL)
9730 oi = htab->data_index_section;
9734 irela->r_addend += osec->vma - oi->vma;
9735 r_symndx = oi->target_index;
9739 BFD_ASSERT (r_symndx != STN_UNDEF);
9743 /* Adjust the addend according to where the
9744 section winds up in the output section. */
9746 irela->r_addend += sec->output_offset;
9750 if (finfo->indices[r_symndx] == -1)
9752 unsigned long shlink;
9757 if (finfo->info->strip == strip_all)
9759 /* You can't do ld -r -s. */
9760 bfd_set_error (bfd_error_invalid_operation);
9764 /* This symbol was skipped earlier, but
9765 since it is needed by a reloc, we
9766 must output it now. */
9767 shlink = symtab_hdr->sh_link;
9768 name = (bfd_elf_string_from_elf_section
9769 (input_bfd, shlink, sym.st_name));
9773 osec = sec->output_section;
9775 _bfd_elf_section_from_bfd_section (output_bfd,
9777 if (sym.st_shndx == SHN_BAD)
9780 sym.st_value += sec->output_offset;
9781 if (! finfo->info->relocatable)
9783 sym.st_value += osec->vma;
9784 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9786 /* STT_TLS symbols are relative to PT_TLS
9788 BFD_ASSERT (elf_hash_table (finfo->info)
9790 sym.st_value -= (elf_hash_table (finfo->info)
9795 indx = bfd_get_symcount (output_bfd);
9796 ret = elf_link_output_sym (finfo, name, &sym, sec,
9801 finfo->indices[r_symndx] = indx;
9806 r_symndx = finfo->indices[r_symndx];
9809 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9810 | (irela->r_info & r_type_mask));
9813 /* Swap out the relocs. */
9814 input_rel_hdr = esdi->rel.hdr;
9815 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9817 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9822 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9823 * bed->s->int_rels_per_ext_rel);
9824 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9827 input_rela_hdr = esdi->rela.hdr;
9828 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9830 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9839 /* Write out the modified section contents. */
9840 if (bed->elf_backend_write_section
9841 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9844 /* Section written out. */
9846 else switch (o->sec_info_type)
9848 case ELF_INFO_TYPE_STABS:
9849 if (! (_bfd_write_section_stabs
9851 &elf_hash_table (finfo->info)->stab_info,
9852 o, &elf_section_data (o)->sec_info, contents)))
9855 case ELF_INFO_TYPE_MERGE:
9856 if (! _bfd_write_merged_section (output_bfd, o,
9857 elf_section_data (o)->sec_info))
9860 case ELF_INFO_TYPE_EH_FRAME:
9862 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9869 /* FIXME: octets_per_byte. */
9870 if (! (o->flags & SEC_EXCLUDE))
9872 file_ptr offset = (file_ptr) o->output_offset;
9873 bfd_size_type todo = o->size;
9874 if ((o->flags & SEC_ELF_REVERSE_COPY))
9876 /* Reverse-copy input section to output. */
9879 todo -= address_size;
9880 if (! bfd_set_section_contents (output_bfd,
9888 offset += address_size;
9892 else if (! bfd_set_section_contents (output_bfd,
9906 /* Generate a reloc when linking an ELF file. This is a reloc
9907 requested by the linker, and does not come from any input file. This
9908 is used to build constructor and destructor tables when linking
9912 elf_reloc_link_order (bfd *output_bfd,
9913 struct bfd_link_info *info,
9914 asection *output_section,
9915 struct bfd_link_order *link_order)
9917 reloc_howto_type *howto;
9921 struct bfd_elf_section_reloc_data *reldata;
9922 struct elf_link_hash_entry **rel_hash_ptr;
9923 Elf_Internal_Shdr *rel_hdr;
9924 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9925 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9928 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9930 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9933 bfd_set_error (bfd_error_bad_value);
9937 addend = link_order->u.reloc.p->addend;
9940 reldata = &esdo->rel;
9941 else if (esdo->rela.hdr)
9942 reldata = &esdo->rela;
9949 /* Figure out the symbol index. */
9950 rel_hash_ptr = reldata->hashes + reldata->count;
9951 if (link_order->type == bfd_section_reloc_link_order)
9953 indx = link_order->u.reloc.p->u.section->target_index;
9954 BFD_ASSERT (indx != 0);
9955 *rel_hash_ptr = NULL;
9959 struct elf_link_hash_entry *h;
9961 /* Treat a reloc against a defined symbol as though it were
9962 actually against the section. */
9963 h = ((struct elf_link_hash_entry *)
9964 bfd_wrapped_link_hash_lookup (output_bfd, info,
9965 link_order->u.reloc.p->u.name,
9966 FALSE, FALSE, TRUE));
9968 && (h->root.type == bfd_link_hash_defined
9969 || h->root.type == bfd_link_hash_defweak))
9973 section = h->root.u.def.section;
9974 indx = section->output_section->target_index;
9975 *rel_hash_ptr = NULL;
9976 /* It seems that we ought to add the symbol value to the
9977 addend here, but in practice it has already been added
9978 because it was passed to constructor_callback. */
9979 addend += section->output_section->vma + section->output_offset;
9983 /* Setting the index to -2 tells elf_link_output_extsym that
9984 this symbol is used by a reloc. */
9991 if (! ((*info->callbacks->unattached_reloc)
9992 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9998 /* If this is an inplace reloc, we must write the addend into the
10000 if (howto->partial_inplace && addend != 0)
10002 bfd_size_type size;
10003 bfd_reloc_status_type rstat;
10006 const char *sym_name;
10008 size = (bfd_size_type) bfd_get_reloc_size (howto);
10009 buf = (bfd_byte *) bfd_zmalloc (size);
10012 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10019 case bfd_reloc_outofrange:
10022 case bfd_reloc_overflow:
10023 if (link_order->type == bfd_section_reloc_link_order)
10024 sym_name = bfd_section_name (output_bfd,
10025 link_order->u.reloc.p->u.section);
10027 sym_name = link_order->u.reloc.p->u.name;
10028 if (! ((*info->callbacks->reloc_overflow)
10029 (info, NULL, sym_name, howto->name, addend, NULL,
10030 NULL, (bfd_vma) 0)))
10037 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10038 link_order->offset, size);
10044 /* The address of a reloc is relative to the section in a
10045 relocatable file, and is a virtual address in an executable
10047 offset = link_order->offset;
10048 if (! info->relocatable)
10049 offset += output_section->vma;
10051 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10053 irel[i].r_offset = offset;
10054 irel[i].r_info = 0;
10055 irel[i].r_addend = 0;
10057 if (bed->s->arch_size == 32)
10058 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10060 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10062 rel_hdr = reldata->hdr;
10063 erel = rel_hdr->contents;
10064 if (rel_hdr->sh_type == SHT_REL)
10066 erel += reldata->count * bed->s->sizeof_rel;
10067 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10071 irel[0].r_addend = addend;
10072 erel += reldata->count * bed->s->sizeof_rela;
10073 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10082 /* Get the output vma of the section pointed to by the sh_link field. */
10085 elf_get_linked_section_vma (struct bfd_link_order *p)
10087 Elf_Internal_Shdr **elf_shdrp;
10091 s = p->u.indirect.section;
10092 elf_shdrp = elf_elfsections (s->owner);
10093 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10094 elfsec = elf_shdrp[elfsec]->sh_link;
10096 The Intel C compiler generates SHT_IA_64_UNWIND with
10097 SHF_LINK_ORDER. But it doesn't set the sh_link or
10098 sh_info fields. Hence we could get the situation
10099 where elfsec is 0. */
10102 const struct elf_backend_data *bed
10103 = get_elf_backend_data (s->owner);
10104 if (bed->link_order_error_handler)
10105 bed->link_order_error_handler
10106 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10111 s = elf_shdrp[elfsec]->bfd_section;
10112 return s->output_section->vma + s->output_offset;
10117 /* Compare two sections based on the locations of the sections they are
10118 linked to. Used by elf_fixup_link_order. */
10121 compare_link_order (const void * a, const void * b)
10126 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10127 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10130 return apos > bpos;
10134 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10135 order as their linked sections. Returns false if this could not be done
10136 because an output section includes both ordered and unordered
10137 sections. Ideally we'd do this in the linker proper. */
10140 elf_fixup_link_order (bfd *abfd, asection *o)
10142 int seen_linkorder;
10145 struct bfd_link_order *p;
10147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10149 struct bfd_link_order **sections;
10150 asection *s, *other_sec, *linkorder_sec;
10154 linkorder_sec = NULL;
10156 seen_linkorder = 0;
10157 for (p = o->map_head.link_order; p != NULL; p = p->next)
10159 if (p->type == bfd_indirect_link_order)
10161 s = p->u.indirect.section;
10163 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10164 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10165 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10166 && elfsec < elf_numsections (sub)
10167 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10168 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10182 if (seen_other && seen_linkorder)
10184 if (other_sec && linkorder_sec)
10185 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10187 linkorder_sec->owner, other_sec,
10190 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10192 bfd_set_error (bfd_error_bad_value);
10197 if (!seen_linkorder)
10200 sections = (struct bfd_link_order **)
10201 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10202 if (sections == NULL)
10204 seen_linkorder = 0;
10206 for (p = o->map_head.link_order; p != NULL; p = p->next)
10208 sections[seen_linkorder++] = p;
10210 /* Sort the input sections in the order of their linked section. */
10211 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10212 compare_link_order);
10214 /* Change the offsets of the sections. */
10216 for (n = 0; n < seen_linkorder; n++)
10218 s = sections[n]->u.indirect.section;
10219 offset &= ~(bfd_vma) 0 << s->alignment_power;
10220 s->output_offset = offset;
10221 sections[n]->offset = offset;
10222 /* FIXME: octets_per_byte. */
10223 offset += sections[n]->size;
10231 /* Do the final step of an ELF link. */
10234 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10236 bfd_boolean dynamic;
10237 bfd_boolean emit_relocs;
10239 struct elf_final_link_info finfo;
10241 struct bfd_link_order *p;
10243 bfd_size_type max_contents_size;
10244 bfd_size_type max_external_reloc_size;
10245 bfd_size_type max_internal_reloc_count;
10246 bfd_size_type max_sym_count;
10247 bfd_size_type max_sym_shndx_count;
10249 Elf_Internal_Sym elfsym;
10251 Elf_Internal_Shdr *symtab_hdr;
10252 Elf_Internal_Shdr *symtab_shndx_hdr;
10253 Elf_Internal_Shdr *symstrtab_hdr;
10254 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10255 struct elf_outext_info eoinfo;
10256 bfd_boolean merged;
10257 size_t relativecount = 0;
10258 asection *reldyn = 0;
10260 asection *attr_section = NULL;
10261 bfd_vma attr_size = 0;
10262 const char *std_attrs_section;
10264 if (! is_elf_hash_table (info->hash))
10268 abfd->flags |= DYNAMIC;
10270 dynamic = elf_hash_table (info)->dynamic_sections_created;
10271 dynobj = elf_hash_table (info)->dynobj;
10273 emit_relocs = (info->relocatable
10274 || info->emitrelocations);
10277 finfo.output_bfd = abfd;
10278 finfo.symstrtab = _bfd_elf_stringtab_init ();
10279 if (finfo.symstrtab == NULL)
10284 finfo.dynsym_sec = NULL;
10285 finfo.hash_sec = NULL;
10286 finfo.symver_sec = NULL;
10290 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10291 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10292 BFD_ASSERT (finfo.dynsym_sec != NULL);
10293 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10294 /* Note that it is OK if symver_sec is NULL. */
10297 finfo.contents = NULL;
10298 finfo.external_relocs = NULL;
10299 finfo.internal_relocs = NULL;
10300 finfo.external_syms = NULL;
10301 finfo.locsym_shndx = NULL;
10302 finfo.internal_syms = NULL;
10303 finfo.indices = NULL;
10304 finfo.sections = NULL;
10305 finfo.symbuf = NULL;
10306 finfo.symshndxbuf = NULL;
10307 finfo.symbuf_count = 0;
10308 finfo.shndxbuf_size = 0;
10310 /* The object attributes have been merged. Remove the input
10311 sections from the link, and set the contents of the output
10313 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10314 for (o = abfd->sections; o != NULL; o = o->next)
10316 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10317 || strcmp (o->name, ".gnu.attributes") == 0)
10319 for (p = o->map_head.link_order; p != NULL; p = p->next)
10321 asection *input_section;
10323 if (p->type != bfd_indirect_link_order)
10325 input_section = p->u.indirect.section;
10326 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10327 elf_link_input_bfd ignores this section. */
10328 input_section->flags &= ~SEC_HAS_CONTENTS;
10331 attr_size = bfd_elf_obj_attr_size (abfd);
10334 bfd_set_section_size (abfd, o, attr_size);
10336 /* Skip this section later on. */
10337 o->map_head.link_order = NULL;
10340 o->flags |= SEC_EXCLUDE;
10344 /* Count up the number of relocations we will output for each output
10345 section, so that we know the sizes of the reloc sections. We
10346 also figure out some maximum sizes. */
10347 max_contents_size = 0;
10348 max_external_reloc_size = 0;
10349 max_internal_reloc_count = 0;
10351 max_sym_shndx_count = 0;
10353 for (o = abfd->sections; o != NULL; o = o->next)
10355 struct bfd_elf_section_data *esdo = elf_section_data (o);
10356 o->reloc_count = 0;
10358 for (p = o->map_head.link_order; p != NULL; p = p->next)
10360 unsigned int reloc_count = 0;
10361 struct bfd_elf_section_data *esdi = NULL;
10363 if (p->type == bfd_section_reloc_link_order
10364 || p->type == bfd_symbol_reloc_link_order)
10366 else if (p->type == bfd_indirect_link_order)
10370 sec = p->u.indirect.section;
10371 esdi = elf_section_data (sec);
10373 /* Mark all sections which are to be included in the
10374 link. This will normally be every section. We need
10375 to do this so that we can identify any sections which
10376 the linker has decided to not include. */
10377 sec->linker_mark = TRUE;
10379 if (sec->flags & SEC_MERGE)
10382 if (info->relocatable || info->emitrelocations)
10383 reloc_count = sec->reloc_count;
10384 else if (bed->elf_backend_count_relocs)
10385 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10387 if (sec->rawsize > max_contents_size)
10388 max_contents_size = sec->rawsize;
10389 if (sec->size > max_contents_size)
10390 max_contents_size = sec->size;
10392 /* We are interested in just local symbols, not all
10394 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10395 && (sec->owner->flags & DYNAMIC) == 0)
10399 if (elf_bad_symtab (sec->owner))
10400 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10401 / bed->s->sizeof_sym);
10403 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10405 if (sym_count > max_sym_count)
10406 max_sym_count = sym_count;
10408 if (sym_count > max_sym_shndx_count
10409 && elf_symtab_shndx (sec->owner) != 0)
10410 max_sym_shndx_count = sym_count;
10412 if ((sec->flags & SEC_RELOC) != 0)
10414 size_t ext_size = 0;
10416 if (esdi->rel.hdr != NULL)
10417 ext_size = esdi->rel.hdr->sh_size;
10418 if (esdi->rela.hdr != NULL)
10419 ext_size += esdi->rela.hdr->sh_size;
10421 if (ext_size > max_external_reloc_size)
10422 max_external_reloc_size = ext_size;
10423 if (sec->reloc_count > max_internal_reloc_count)
10424 max_internal_reloc_count = sec->reloc_count;
10429 if (reloc_count == 0)
10432 o->reloc_count += reloc_count;
10434 if (p->type == bfd_indirect_link_order
10435 && (info->relocatable || info->emitrelocations))
10438 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10439 if (esdi->rela.hdr)
10440 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10445 esdo->rela.count += reloc_count;
10447 esdo->rel.count += reloc_count;
10451 if (o->reloc_count > 0)
10452 o->flags |= SEC_RELOC;
10455 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10456 set it (this is probably a bug) and if it is set
10457 assign_section_numbers will create a reloc section. */
10458 o->flags &=~ SEC_RELOC;
10461 /* If the SEC_ALLOC flag is not set, force the section VMA to
10462 zero. This is done in elf_fake_sections as well, but forcing
10463 the VMA to 0 here will ensure that relocs against these
10464 sections are handled correctly. */
10465 if ((o->flags & SEC_ALLOC) == 0
10466 && ! o->user_set_vma)
10470 if (! info->relocatable && merged)
10471 elf_link_hash_traverse (elf_hash_table (info),
10472 _bfd_elf_link_sec_merge_syms, abfd);
10474 /* Figure out the file positions for everything but the symbol table
10475 and the relocs. We set symcount to force assign_section_numbers
10476 to create a symbol table. */
10477 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10478 BFD_ASSERT (! abfd->output_has_begun);
10479 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10482 /* Set sizes, and assign file positions for reloc sections. */
10483 for (o = abfd->sections; o != NULL; o = o->next)
10485 struct bfd_elf_section_data *esdo = elf_section_data (o);
10486 if ((o->flags & SEC_RELOC) != 0)
10489 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10493 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10497 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10498 to count upwards while actually outputting the relocations. */
10499 esdo->rel.count = 0;
10500 esdo->rela.count = 0;
10503 _bfd_elf_assign_file_positions_for_relocs (abfd);
10505 /* We have now assigned file positions for all the sections except
10506 .symtab and .strtab. We start the .symtab section at the current
10507 file position, and write directly to it. We build the .strtab
10508 section in memory. */
10509 bfd_get_symcount (abfd) = 0;
10510 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10511 /* sh_name is set in prep_headers. */
10512 symtab_hdr->sh_type = SHT_SYMTAB;
10513 /* sh_flags, sh_addr and sh_size all start off zero. */
10514 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10515 /* sh_link is set in assign_section_numbers. */
10516 /* sh_info is set below. */
10517 /* sh_offset is set just below. */
10518 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10520 off = elf_tdata (abfd)->next_file_pos;
10521 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10523 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10524 incorrect. We do not yet know the size of the .symtab section.
10525 We correct next_file_pos below, after we do know the size. */
10527 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10528 continuously seeking to the right position in the file. */
10529 if (! info->keep_memory || max_sym_count < 20)
10530 finfo.symbuf_size = 20;
10532 finfo.symbuf_size = max_sym_count;
10533 amt = finfo.symbuf_size;
10534 amt *= bed->s->sizeof_sym;
10535 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10536 if (finfo.symbuf == NULL)
10538 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10540 /* Wild guess at number of output symbols. realloc'd as needed. */
10541 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10542 finfo.shndxbuf_size = amt;
10543 amt *= sizeof (Elf_External_Sym_Shndx);
10544 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10545 if (finfo.symshndxbuf == NULL)
10549 /* Start writing out the symbol table. The first symbol is always a
10551 if (info->strip != strip_all
10554 elfsym.st_value = 0;
10555 elfsym.st_size = 0;
10556 elfsym.st_info = 0;
10557 elfsym.st_other = 0;
10558 elfsym.st_shndx = SHN_UNDEF;
10559 elfsym.st_target_internal = 0;
10560 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10565 /* Output a symbol for each section. We output these even if we are
10566 discarding local symbols, since they are used for relocs. These
10567 symbols have no names. We store the index of each one in the
10568 index field of the section, so that we can find it again when
10569 outputting relocs. */
10570 if (info->strip != strip_all
10573 elfsym.st_size = 0;
10574 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10575 elfsym.st_other = 0;
10576 elfsym.st_value = 0;
10577 elfsym.st_target_internal = 0;
10578 for (i = 1; i < elf_numsections (abfd); i++)
10580 o = bfd_section_from_elf_index (abfd, i);
10583 o->target_index = bfd_get_symcount (abfd);
10584 elfsym.st_shndx = i;
10585 if (!info->relocatable)
10586 elfsym.st_value = o->vma;
10587 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10593 /* Allocate some memory to hold information read in from the input
10595 if (max_contents_size != 0)
10597 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10598 if (finfo.contents == NULL)
10602 if (max_external_reloc_size != 0)
10604 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10605 if (finfo.external_relocs == NULL)
10609 if (max_internal_reloc_count != 0)
10611 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10612 amt *= sizeof (Elf_Internal_Rela);
10613 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10614 if (finfo.internal_relocs == NULL)
10618 if (max_sym_count != 0)
10620 amt = max_sym_count * bed->s->sizeof_sym;
10621 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10622 if (finfo.external_syms == NULL)
10625 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10626 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10627 if (finfo.internal_syms == NULL)
10630 amt = max_sym_count * sizeof (long);
10631 finfo.indices = (long int *) bfd_malloc (amt);
10632 if (finfo.indices == NULL)
10635 amt = max_sym_count * sizeof (asection *);
10636 finfo.sections = (asection **) bfd_malloc (amt);
10637 if (finfo.sections == NULL)
10641 if (max_sym_shndx_count != 0)
10643 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10644 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10645 if (finfo.locsym_shndx == NULL)
10649 if (elf_hash_table (info)->tls_sec)
10651 bfd_vma base, end = 0;
10654 for (sec = elf_hash_table (info)->tls_sec;
10655 sec && (sec->flags & SEC_THREAD_LOCAL);
10658 bfd_size_type size = sec->size;
10661 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10663 struct bfd_link_order *ord = sec->map_tail.link_order;
10666 size = ord->offset + ord->size;
10668 end = sec->vma + size;
10670 base = elf_hash_table (info)->tls_sec->vma;
10671 /* Only align end of TLS section if static TLS doesn't have special
10672 alignment requirements. */
10673 if (bed->static_tls_alignment == 1)
10674 end = align_power (end,
10675 elf_hash_table (info)->tls_sec->alignment_power);
10676 elf_hash_table (info)->tls_size = end - base;
10679 /* Reorder SHF_LINK_ORDER sections. */
10680 for (o = abfd->sections; o != NULL; o = o->next)
10682 if (!elf_fixup_link_order (abfd, o))
10686 /* Since ELF permits relocations to be against local symbols, we
10687 must have the local symbols available when we do the relocations.
10688 Since we would rather only read the local symbols once, and we
10689 would rather not keep them in memory, we handle all the
10690 relocations for a single input file at the same time.
10692 Unfortunately, there is no way to know the total number of local
10693 symbols until we have seen all of them, and the local symbol
10694 indices precede the global symbol indices. This means that when
10695 we are generating relocatable output, and we see a reloc against
10696 a global symbol, we can not know the symbol index until we have
10697 finished examining all the local symbols to see which ones we are
10698 going to output. To deal with this, we keep the relocations in
10699 memory, and don't output them until the end of the link. This is
10700 an unfortunate waste of memory, but I don't see a good way around
10701 it. Fortunately, it only happens when performing a relocatable
10702 link, which is not the common case. FIXME: If keep_memory is set
10703 we could write the relocs out and then read them again; I don't
10704 know how bad the memory loss will be. */
10706 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10707 sub->output_has_begun = FALSE;
10708 for (o = abfd->sections; o != NULL; o = o->next)
10710 for (p = o->map_head.link_order; p != NULL; p = p->next)
10712 if (p->type == bfd_indirect_link_order
10713 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10714 == bfd_target_elf_flavour)
10715 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10717 if (! sub->output_has_begun)
10719 if (! elf_link_input_bfd (&finfo, sub))
10721 sub->output_has_begun = TRUE;
10724 else if (p->type == bfd_section_reloc_link_order
10725 || p->type == bfd_symbol_reloc_link_order)
10727 if (! elf_reloc_link_order (abfd, info, o, p))
10732 if (! _bfd_default_link_order (abfd, info, o, p))
10734 if (p->type == bfd_indirect_link_order
10735 && (bfd_get_flavour (sub)
10736 == bfd_target_elf_flavour)
10737 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10738 != bed->s->elfclass))
10740 const char *iclass, *oclass;
10742 if (bed->s->elfclass == ELFCLASS64)
10744 iclass = "ELFCLASS32";
10745 oclass = "ELFCLASS64";
10749 iclass = "ELFCLASS64";
10750 oclass = "ELFCLASS32";
10753 bfd_set_error (bfd_error_wrong_format);
10754 (*_bfd_error_handler)
10755 (_("%B: file class %s incompatible with %s"),
10756 sub, iclass, oclass);
10765 /* Free symbol buffer if needed. */
10766 if (!info->reduce_memory_overheads)
10768 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10769 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10770 && elf_tdata (sub)->symbuf)
10772 free (elf_tdata (sub)->symbuf);
10773 elf_tdata (sub)->symbuf = NULL;
10777 /* Output any global symbols that got converted to local in a
10778 version script or due to symbol visibility. We do this in a
10779 separate step since ELF requires all local symbols to appear
10780 prior to any global symbols. FIXME: We should only do this if
10781 some global symbols were, in fact, converted to become local.
10782 FIXME: Will this work correctly with the Irix 5 linker? */
10783 eoinfo.failed = FALSE;
10784 eoinfo.finfo = &finfo;
10785 eoinfo.localsyms = TRUE;
10786 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10790 /* If backend needs to output some local symbols not present in the hash
10791 table, do it now. */
10792 if (bed->elf_backend_output_arch_local_syms)
10794 typedef int (*out_sym_func)
10795 (void *, const char *, Elf_Internal_Sym *, asection *,
10796 struct elf_link_hash_entry *);
10798 if (! ((*bed->elf_backend_output_arch_local_syms)
10799 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10803 /* That wrote out all the local symbols. Finish up the symbol table
10804 with the global symbols. Even if we want to strip everything we
10805 can, we still need to deal with those global symbols that got
10806 converted to local in a version script. */
10808 /* The sh_info field records the index of the first non local symbol. */
10809 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10812 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10814 Elf_Internal_Sym sym;
10815 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10816 long last_local = 0;
10818 /* Write out the section symbols for the output sections. */
10819 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10825 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10827 sym.st_target_internal = 0;
10829 for (s = abfd->sections; s != NULL; s = s->next)
10835 dynindx = elf_section_data (s)->dynindx;
10838 indx = elf_section_data (s)->this_idx;
10839 BFD_ASSERT (indx > 0);
10840 sym.st_shndx = indx;
10841 if (! check_dynsym (abfd, &sym))
10843 sym.st_value = s->vma;
10844 dest = dynsym + dynindx * bed->s->sizeof_sym;
10845 if (last_local < dynindx)
10846 last_local = dynindx;
10847 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10851 /* Write out the local dynsyms. */
10852 if (elf_hash_table (info)->dynlocal)
10854 struct elf_link_local_dynamic_entry *e;
10855 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10860 /* Copy the internal symbol and turn off visibility.
10861 Note that we saved a word of storage and overwrote
10862 the original st_name with the dynstr_index. */
10864 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10866 s = bfd_section_from_elf_index (e->input_bfd,
10871 elf_section_data (s->output_section)->this_idx;
10872 if (! check_dynsym (abfd, &sym))
10874 sym.st_value = (s->output_section->vma
10876 + e->isym.st_value);
10879 if (last_local < e->dynindx)
10880 last_local = e->dynindx;
10882 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10883 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10887 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10891 /* We get the global symbols from the hash table. */
10892 eoinfo.failed = FALSE;
10893 eoinfo.localsyms = FALSE;
10894 eoinfo.finfo = &finfo;
10895 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10899 /* If backend needs to output some symbols not present in the hash
10900 table, do it now. */
10901 if (bed->elf_backend_output_arch_syms)
10903 typedef int (*out_sym_func)
10904 (void *, const char *, Elf_Internal_Sym *, asection *,
10905 struct elf_link_hash_entry *);
10907 if (! ((*bed->elf_backend_output_arch_syms)
10908 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10912 /* Flush all symbols to the file. */
10913 if (! elf_link_flush_output_syms (&finfo, bed))
10916 /* Now we know the size of the symtab section. */
10917 off += symtab_hdr->sh_size;
10919 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10920 if (symtab_shndx_hdr->sh_name != 0)
10922 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10923 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10924 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10925 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10926 symtab_shndx_hdr->sh_size = amt;
10928 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10931 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10932 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10937 /* Finish up and write out the symbol string table (.strtab)
10939 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10940 /* sh_name was set in prep_headers. */
10941 symstrtab_hdr->sh_type = SHT_STRTAB;
10942 symstrtab_hdr->sh_flags = 0;
10943 symstrtab_hdr->sh_addr = 0;
10944 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10945 symstrtab_hdr->sh_entsize = 0;
10946 symstrtab_hdr->sh_link = 0;
10947 symstrtab_hdr->sh_info = 0;
10948 /* sh_offset is set just below. */
10949 symstrtab_hdr->sh_addralign = 1;
10951 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10952 elf_tdata (abfd)->next_file_pos = off;
10954 if (bfd_get_symcount (abfd) > 0)
10956 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10957 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10961 /* Adjust the relocs to have the correct symbol indices. */
10962 for (o = abfd->sections; o != NULL; o = o->next)
10964 struct bfd_elf_section_data *esdo = elf_section_data (o);
10965 if ((o->flags & SEC_RELOC) == 0)
10968 if (esdo->rel.hdr != NULL)
10969 elf_link_adjust_relocs (abfd, &esdo->rel);
10970 if (esdo->rela.hdr != NULL)
10971 elf_link_adjust_relocs (abfd, &esdo->rela);
10973 /* Set the reloc_count field to 0 to prevent write_relocs from
10974 trying to swap the relocs out itself. */
10975 o->reloc_count = 0;
10978 if (dynamic && info->combreloc && dynobj != NULL)
10979 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10981 /* If we are linking against a dynamic object, or generating a
10982 shared library, finish up the dynamic linking information. */
10985 bfd_byte *dyncon, *dynconend;
10987 /* Fix up .dynamic entries. */
10988 o = bfd_get_section_by_name (dynobj, ".dynamic");
10989 BFD_ASSERT (o != NULL);
10991 dyncon = o->contents;
10992 dynconend = o->contents + o->size;
10993 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10995 Elf_Internal_Dyn dyn;
10999 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11006 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11008 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11010 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11011 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11014 dyn.d_un.d_val = relativecount;
11021 name = info->init_function;
11024 name = info->fini_function;
11027 struct elf_link_hash_entry *h;
11029 h = elf_link_hash_lookup (elf_hash_table (info), name,
11030 FALSE, FALSE, TRUE);
11032 && (h->root.type == bfd_link_hash_defined
11033 || h->root.type == bfd_link_hash_defweak))
11035 dyn.d_un.d_ptr = h->root.u.def.value;
11036 o = h->root.u.def.section;
11037 if (o->output_section != NULL)
11038 dyn.d_un.d_ptr += (o->output_section->vma
11039 + o->output_offset);
11042 /* The symbol is imported from another shared
11043 library and does not apply to this one. */
11044 dyn.d_un.d_ptr = 0;
11051 case DT_PREINIT_ARRAYSZ:
11052 name = ".preinit_array";
11054 case DT_INIT_ARRAYSZ:
11055 name = ".init_array";
11057 case DT_FINI_ARRAYSZ:
11058 name = ".fini_array";
11060 o = bfd_get_section_by_name (abfd, name);
11063 (*_bfd_error_handler)
11064 (_("%B: could not find output section %s"), abfd, name);
11068 (*_bfd_error_handler)
11069 (_("warning: %s section has zero size"), name);
11070 dyn.d_un.d_val = o->size;
11073 case DT_PREINIT_ARRAY:
11074 name = ".preinit_array";
11076 case DT_INIT_ARRAY:
11077 name = ".init_array";
11079 case DT_FINI_ARRAY:
11080 name = ".fini_array";
11087 name = ".gnu.hash";
11096 name = ".gnu.version_d";
11099 name = ".gnu.version_r";
11102 name = ".gnu.version";
11104 o = bfd_get_section_by_name (abfd, name);
11107 (*_bfd_error_handler)
11108 (_("%B: could not find output section %s"), abfd, name);
11111 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11113 (*_bfd_error_handler)
11114 (_("warning: section '%s' is being made into a note"), name);
11115 bfd_set_error (bfd_error_nonrepresentable_section);
11118 dyn.d_un.d_ptr = o->vma;
11125 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11129 dyn.d_un.d_val = 0;
11130 dyn.d_un.d_ptr = 0;
11131 for (i = 1; i < elf_numsections (abfd); i++)
11133 Elf_Internal_Shdr *hdr;
11135 hdr = elf_elfsections (abfd)[i];
11136 if (hdr->sh_type == type
11137 && (hdr->sh_flags & SHF_ALLOC) != 0)
11139 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11140 dyn.d_un.d_val += hdr->sh_size;
11143 if (dyn.d_un.d_ptr == 0
11144 || hdr->sh_addr < dyn.d_un.d_ptr)
11145 dyn.d_un.d_ptr = hdr->sh_addr;
11151 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11155 /* If we have created any dynamic sections, then output them. */
11156 if (dynobj != NULL)
11158 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11161 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11162 if (info->warn_shared_textrel && info->shared)
11164 bfd_byte *dyncon, *dynconend;
11166 /* Fix up .dynamic entries. */
11167 o = bfd_get_section_by_name (dynobj, ".dynamic");
11168 BFD_ASSERT (o != NULL);
11170 dyncon = o->contents;
11171 dynconend = o->contents + o->size;
11172 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11174 Elf_Internal_Dyn dyn;
11176 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11178 if (dyn.d_tag == DT_TEXTREL)
11180 info->callbacks->einfo
11181 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11187 for (o = dynobj->sections; o != NULL; o = o->next)
11189 if ((o->flags & SEC_HAS_CONTENTS) == 0
11191 || o->output_section == bfd_abs_section_ptr)
11193 if ((o->flags & SEC_LINKER_CREATED) == 0)
11195 /* At this point, we are only interested in sections
11196 created by _bfd_elf_link_create_dynamic_sections. */
11199 if (elf_hash_table (info)->stab_info.stabstr == o)
11201 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11203 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11205 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11207 /* FIXME: octets_per_byte. */
11208 if (! bfd_set_section_contents (abfd, o->output_section,
11210 (file_ptr) o->output_offset,
11216 /* The contents of the .dynstr section are actually in a
11218 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11219 if (bfd_seek (abfd, off, SEEK_SET) != 0
11220 || ! _bfd_elf_strtab_emit (abfd,
11221 elf_hash_table (info)->dynstr))
11227 if (info->relocatable)
11229 bfd_boolean failed = FALSE;
11231 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11236 /* If we have optimized stabs strings, output them. */
11237 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11239 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11243 if (info->eh_frame_hdr)
11245 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11249 if (finfo.symstrtab != NULL)
11250 _bfd_stringtab_free (finfo.symstrtab);
11251 if (finfo.contents != NULL)
11252 free (finfo.contents);
11253 if (finfo.external_relocs != NULL)
11254 free (finfo.external_relocs);
11255 if (finfo.internal_relocs != NULL)
11256 free (finfo.internal_relocs);
11257 if (finfo.external_syms != NULL)
11258 free (finfo.external_syms);
11259 if (finfo.locsym_shndx != NULL)
11260 free (finfo.locsym_shndx);
11261 if (finfo.internal_syms != NULL)
11262 free (finfo.internal_syms);
11263 if (finfo.indices != NULL)
11264 free (finfo.indices);
11265 if (finfo.sections != NULL)
11266 free (finfo.sections);
11267 if (finfo.symbuf != NULL)
11268 free (finfo.symbuf);
11269 if (finfo.symshndxbuf != NULL)
11270 free (finfo.symshndxbuf);
11271 for (o = abfd->sections; o != NULL; o = o->next)
11273 struct bfd_elf_section_data *esdo = elf_section_data (o);
11274 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11275 free (esdo->rel.hashes);
11276 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11277 free (esdo->rela.hashes);
11280 elf_tdata (abfd)->linker = TRUE;
11284 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11285 if (contents == NULL)
11286 return FALSE; /* Bail out and fail. */
11287 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11288 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11295 if (finfo.symstrtab != NULL)
11296 _bfd_stringtab_free (finfo.symstrtab);
11297 if (finfo.contents != NULL)
11298 free (finfo.contents);
11299 if (finfo.external_relocs != NULL)
11300 free (finfo.external_relocs);
11301 if (finfo.internal_relocs != NULL)
11302 free (finfo.internal_relocs);
11303 if (finfo.external_syms != NULL)
11304 free (finfo.external_syms);
11305 if (finfo.locsym_shndx != NULL)
11306 free (finfo.locsym_shndx);
11307 if (finfo.internal_syms != NULL)
11308 free (finfo.internal_syms);
11309 if (finfo.indices != NULL)
11310 free (finfo.indices);
11311 if (finfo.sections != NULL)
11312 free (finfo.sections);
11313 if (finfo.symbuf != NULL)
11314 free (finfo.symbuf);
11315 if (finfo.symshndxbuf != NULL)
11316 free (finfo.symshndxbuf);
11317 for (o = abfd->sections; o != NULL; o = o->next)
11319 struct bfd_elf_section_data *esdo = elf_section_data (o);
11320 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11321 free (esdo->rel.hashes);
11322 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11323 free (esdo->rela.hashes);
11329 /* Initialize COOKIE for input bfd ABFD. */
11332 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11333 struct bfd_link_info *info, bfd *abfd)
11335 Elf_Internal_Shdr *symtab_hdr;
11336 const struct elf_backend_data *bed;
11338 bed = get_elf_backend_data (abfd);
11339 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11341 cookie->abfd = abfd;
11342 cookie->sym_hashes = elf_sym_hashes (abfd);
11343 cookie->bad_symtab = elf_bad_symtab (abfd);
11344 if (cookie->bad_symtab)
11346 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11347 cookie->extsymoff = 0;
11351 cookie->locsymcount = symtab_hdr->sh_info;
11352 cookie->extsymoff = symtab_hdr->sh_info;
11355 if (bed->s->arch_size == 32)
11356 cookie->r_sym_shift = 8;
11358 cookie->r_sym_shift = 32;
11360 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11361 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11363 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11364 cookie->locsymcount, 0,
11366 if (cookie->locsyms == NULL)
11368 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11371 if (info->keep_memory)
11372 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11377 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11380 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11382 Elf_Internal_Shdr *symtab_hdr;
11384 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11385 if (cookie->locsyms != NULL
11386 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11387 free (cookie->locsyms);
11390 /* Initialize the relocation information in COOKIE for input section SEC
11391 of input bfd ABFD. */
11394 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11395 struct bfd_link_info *info, bfd *abfd,
11398 const struct elf_backend_data *bed;
11400 if (sec->reloc_count == 0)
11402 cookie->rels = NULL;
11403 cookie->relend = NULL;
11407 bed = get_elf_backend_data (abfd);
11409 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11410 info->keep_memory);
11411 if (cookie->rels == NULL)
11413 cookie->rel = cookie->rels;
11414 cookie->relend = (cookie->rels
11415 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11417 cookie->rel = cookie->rels;
11421 /* Free the memory allocated by init_reloc_cookie_rels,
11425 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11428 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11429 free (cookie->rels);
11432 /* Initialize the whole of COOKIE for input section SEC. */
11435 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11436 struct bfd_link_info *info,
11439 if (!init_reloc_cookie (cookie, info, sec->owner))
11441 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11446 fini_reloc_cookie (cookie, sec->owner);
11451 /* Free the memory allocated by init_reloc_cookie_for_section,
11455 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11458 fini_reloc_cookie_rels (cookie, sec);
11459 fini_reloc_cookie (cookie, sec->owner);
11462 /* Garbage collect unused sections. */
11464 /* Default gc_mark_hook. */
11467 _bfd_elf_gc_mark_hook (asection *sec,
11468 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11469 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11470 struct elf_link_hash_entry *h,
11471 Elf_Internal_Sym *sym)
11473 const char *sec_name;
11477 switch (h->root.type)
11479 case bfd_link_hash_defined:
11480 case bfd_link_hash_defweak:
11481 return h->root.u.def.section;
11483 case bfd_link_hash_common:
11484 return h->root.u.c.p->section;
11486 case bfd_link_hash_undefined:
11487 case bfd_link_hash_undefweak:
11488 /* To work around a glibc bug, keep all XXX input sections
11489 when there is an as yet undefined reference to __start_XXX
11490 or __stop_XXX symbols. The linker will later define such
11491 symbols for orphan input sections that have a name
11492 representable as a C identifier. */
11493 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11494 sec_name = h->root.root.string + 8;
11495 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11496 sec_name = h->root.root.string + 7;
11500 if (sec_name && *sec_name != '\0')
11504 for (i = info->input_bfds; i; i = i->link_next)
11506 sec = bfd_get_section_by_name (i, sec_name);
11508 sec->flags |= SEC_KEEP;
11518 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11523 /* COOKIE->rel describes a relocation against section SEC, which is
11524 a section we've decided to keep. Return the section that contains
11525 the relocation symbol, or NULL if no section contains it. */
11528 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11529 elf_gc_mark_hook_fn gc_mark_hook,
11530 struct elf_reloc_cookie *cookie)
11532 unsigned long r_symndx;
11533 struct elf_link_hash_entry *h;
11535 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11536 if (r_symndx == STN_UNDEF)
11539 if (r_symndx >= cookie->locsymcount
11540 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11542 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11543 while (h->root.type == bfd_link_hash_indirect
11544 || h->root.type == bfd_link_hash_warning)
11545 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11546 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11549 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11550 &cookie->locsyms[r_symndx]);
11553 /* COOKIE->rel describes a relocation against section SEC, which is
11554 a section we've decided to keep. Mark the section that contains
11555 the relocation symbol. */
11558 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11560 elf_gc_mark_hook_fn gc_mark_hook,
11561 struct elf_reloc_cookie *cookie)
11565 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11566 if (rsec && !rsec->gc_mark)
11568 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11570 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11576 /* The mark phase of garbage collection. For a given section, mark
11577 it and any sections in this section's group, and all the sections
11578 which define symbols to which it refers. */
11581 _bfd_elf_gc_mark (struct bfd_link_info *info,
11583 elf_gc_mark_hook_fn gc_mark_hook)
11586 asection *group_sec, *eh_frame;
11590 /* Mark all the sections in the group. */
11591 group_sec = elf_section_data (sec)->next_in_group;
11592 if (group_sec && !group_sec->gc_mark)
11593 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11596 /* Look through the section relocs. */
11598 eh_frame = elf_eh_frame_section (sec->owner);
11599 if ((sec->flags & SEC_RELOC) != 0
11600 && sec->reloc_count > 0
11601 && sec != eh_frame)
11603 struct elf_reloc_cookie cookie;
11605 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11609 for (; cookie.rel < cookie.relend; cookie.rel++)
11610 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11615 fini_reloc_cookie_for_section (&cookie, sec);
11619 if (ret && eh_frame && elf_fde_list (sec))
11621 struct elf_reloc_cookie cookie;
11623 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11627 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11628 gc_mark_hook, &cookie))
11630 fini_reloc_cookie_for_section (&cookie, eh_frame);
11637 /* Keep debug and special sections. */
11640 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11641 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11645 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11648 bfd_boolean some_kept;
11650 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11653 /* Ensure all linker created sections are kept, and see whether
11654 any other section is already marked. */
11656 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11658 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11660 else if (isec->gc_mark)
11664 /* If no section in this file will be kept, then we can
11665 toss out debug sections. */
11669 /* Keep debug and special sections like .comment when they are
11670 not part of a group. */
11671 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11672 if (elf_next_in_group (isec) == NULL
11673 && ((isec->flags & SEC_DEBUGGING) != 0
11674 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11680 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11682 struct elf_gc_sweep_symbol_info
11684 struct bfd_link_info *info;
11685 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11690 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11692 if ((h->root.type == bfd_link_hash_defined
11693 || h->root.type == bfd_link_hash_defweak)
11694 && !h->root.u.def.section->gc_mark
11695 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11697 struct elf_gc_sweep_symbol_info *inf =
11698 (struct elf_gc_sweep_symbol_info *) data;
11699 (*inf->hide_symbol) (inf->info, h, TRUE);
11705 /* The sweep phase of garbage collection. Remove all garbage sections. */
11707 typedef bfd_boolean (*gc_sweep_hook_fn)
11708 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11711 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11714 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11715 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11716 unsigned long section_sym_count;
11717 struct elf_gc_sweep_symbol_info sweep_info;
11719 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11723 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11726 for (o = sub->sections; o != NULL; o = o->next)
11728 /* When any section in a section group is kept, we keep all
11729 sections in the section group. If the first member of
11730 the section group is excluded, we will also exclude the
11732 if (o->flags & SEC_GROUP)
11734 asection *first = elf_next_in_group (o);
11735 o->gc_mark = first->gc_mark;
11741 /* Skip sweeping sections already excluded. */
11742 if (o->flags & SEC_EXCLUDE)
11745 /* Since this is early in the link process, it is simple
11746 to remove a section from the output. */
11747 o->flags |= SEC_EXCLUDE;
11749 if (info->print_gc_sections && o->size != 0)
11750 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11752 /* But we also have to update some of the relocation
11753 info we collected before. */
11755 && (o->flags & SEC_RELOC) != 0
11756 && o->reloc_count > 0
11757 && !bfd_is_abs_section (o->output_section))
11759 Elf_Internal_Rela *internal_relocs;
11763 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11764 info->keep_memory);
11765 if (internal_relocs == NULL)
11768 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11770 if (elf_section_data (o)->relocs != internal_relocs)
11771 free (internal_relocs);
11779 /* Remove the symbols that were in the swept sections from the dynamic
11780 symbol table. GCFIXME: Anyone know how to get them out of the
11781 static symbol table as well? */
11782 sweep_info.info = info;
11783 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11784 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11787 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
11791 /* Propagate collected vtable information. This is called through
11792 elf_link_hash_traverse. */
11795 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11797 /* Those that are not vtables. */
11798 if (h->vtable == NULL || h->vtable->parent == NULL)
11801 /* Those vtables that do not have parents, we cannot merge. */
11802 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11805 /* If we've already been done, exit. */
11806 if (h->vtable->used && h->vtable->used[-1])
11809 /* Make sure the parent's table is up to date. */
11810 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11812 if (h->vtable->used == NULL)
11814 /* None of this table's entries were referenced. Re-use the
11816 h->vtable->used = h->vtable->parent->vtable->used;
11817 h->vtable->size = h->vtable->parent->vtable->size;
11822 bfd_boolean *cu, *pu;
11824 /* Or the parent's entries into ours. */
11825 cu = h->vtable->used;
11827 pu = h->vtable->parent->vtable->used;
11830 const struct elf_backend_data *bed;
11831 unsigned int log_file_align;
11833 bed = get_elf_backend_data (h->root.u.def.section->owner);
11834 log_file_align = bed->s->log_file_align;
11835 n = h->vtable->parent->vtable->size >> log_file_align;
11850 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11853 bfd_vma hstart, hend;
11854 Elf_Internal_Rela *relstart, *relend, *rel;
11855 const struct elf_backend_data *bed;
11856 unsigned int log_file_align;
11858 /* Take care of both those symbols that do not describe vtables as
11859 well as those that are not loaded. */
11860 if (h->vtable == NULL || h->vtable->parent == NULL)
11863 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11864 || h->root.type == bfd_link_hash_defweak);
11866 sec = h->root.u.def.section;
11867 hstart = h->root.u.def.value;
11868 hend = hstart + h->size;
11870 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11872 return *(bfd_boolean *) okp = FALSE;
11873 bed = get_elf_backend_data (sec->owner);
11874 log_file_align = bed->s->log_file_align;
11876 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11878 for (rel = relstart; rel < relend; ++rel)
11879 if (rel->r_offset >= hstart && rel->r_offset < hend)
11881 /* If the entry is in use, do nothing. */
11882 if (h->vtable->used
11883 && (rel->r_offset - hstart) < h->vtable->size)
11885 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11886 if (h->vtable->used[entry])
11889 /* Otherwise, kill it. */
11890 rel->r_offset = rel->r_info = rel->r_addend = 0;
11896 /* Mark sections containing dynamically referenced symbols. When
11897 building shared libraries, we must assume that any visible symbol is
11901 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11903 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11905 if ((h->root.type == bfd_link_hash_defined
11906 || h->root.type == bfd_link_hash_defweak)
11908 || (!info->executable
11910 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11911 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11912 && !bfd_hide_sym_by_version (info->version_info,
11913 h->root.root.string))))
11914 h->root.u.def.section->flags |= SEC_KEEP;
11919 /* Keep all sections containing symbols undefined on the command-line,
11920 and the section containing the entry symbol. */
11923 _bfd_elf_gc_keep (struct bfd_link_info *info)
11925 struct bfd_sym_chain *sym;
11927 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11929 struct elf_link_hash_entry *h;
11931 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11932 FALSE, FALSE, FALSE);
11935 && (h->root.type == bfd_link_hash_defined
11936 || h->root.type == bfd_link_hash_defweak)
11937 && !bfd_is_abs_section (h->root.u.def.section))
11938 h->root.u.def.section->flags |= SEC_KEEP;
11942 /* Do mark and sweep of unused sections. */
11945 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11947 bfd_boolean ok = TRUE;
11949 elf_gc_mark_hook_fn gc_mark_hook;
11950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11952 if (!bed->can_gc_sections
11953 || !is_elf_hash_table (info->hash))
11955 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11959 bed->gc_keep (info);
11961 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11962 at the .eh_frame section if we can mark the FDEs individually. */
11963 _bfd_elf_begin_eh_frame_parsing (info);
11964 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11967 struct elf_reloc_cookie cookie;
11969 sec = bfd_get_section_by_name (sub, ".eh_frame");
11970 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11972 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11973 if (elf_section_data (sec)->sec_info)
11974 elf_eh_frame_section (sub) = sec;
11975 fini_reloc_cookie_for_section (&cookie, sec);
11978 _bfd_elf_end_eh_frame_parsing (info);
11980 /* Apply transitive closure to the vtable entry usage info. */
11981 elf_link_hash_traverse (elf_hash_table (info),
11982 elf_gc_propagate_vtable_entries_used,
11987 /* Kill the vtable relocations that were not used. */
11988 elf_link_hash_traverse (elf_hash_table (info),
11989 elf_gc_smash_unused_vtentry_relocs,
11994 /* Mark dynamically referenced symbols. */
11995 if (elf_hash_table (info)->dynamic_sections_created)
11996 elf_link_hash_traverse (elf_hash_table (info),
11997 bed->gc_mark_dynamic_ref,
12000 /* Grovel through relocs to find out who stays ... */
12001 gc_mark_hook = bed->gc_mark_hook;
12002 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12006 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12009 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12010 Also treat note sections as a root, if the section is not part
12012 for (o = sub->sections; o != NULL; o = o->next)
12014 && (o->flags & SEC_EXCLUDE) == 0
12015 && ((o->flags & SEC_KEEP) != 0
12016 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12017 && elf_next_in_group (o) == NULL )))
12019 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12024 /* Allow the backend to mark additional target specific sections. */
12025 bed->gc_mark_extra_sections (info, gc_mark_hook);
12027 /* ... and mark SEC_EXCLUDE for those that go. */
12028 return elf_gc_sweep (abfd, info);
12031 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12034 bfd_elf_gc_record_vtinherit (bfd *abfd,
12036 struct elf_link_hash_entry *h,
12039 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12040 struct elf_link_hash_entry **search, *child;
12041 bfd_size_type extsymcount;
12042 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12044 /* The sh_info field of the symtab header tells us where the
12045 external symbols start. We don't care about the local symbols at
12047 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12048 if (!elf_bad_symtab (abfd))
12049 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12051 sym_hashes = elf_sym_hashes (abfd);
12052 sym_hashes_end = sym_hashes + extsymcount;
12054 /* Hunt down the child symbol, which is in this section at the same
12055 offset as the relocation. */
12056 for (search = sym_hashes; search != sym_hashes_end; ++search)
12058 if ((child = *search) != NULL
12059 && (child->root.type == bfd_link_hash_defined
12060 || child->root.type == bfd_link_hash_defweak)
12061 && child->root.u.def.section == sec
12062 && child->root.u.def.value == offset)
12066 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12067 abfd, sec, (unsigned long) offset);
12068 bfd_set_error (bfd_error_invalid_operation);
12072 if (!child->vtable)
12074 child->vtable = (struct elf_link_virtual_table_entry *)
12075 bfd_zalloc (abfd, sizeof (*child->vtable));
12076 if (!child->vtable)
12081 /* This *should* only be the absolute section. It could potentially
12082 be that someone has defined a non-global vtable though, which
12083 would be bad. It isn't worth paging in the local symbols to be
12084 sure though; that case should simply be handled by the assembler. */
12086 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12089 child->vtable->parent = h;
12094 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12097 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12098 asection *sec ATTRIBUTE_UNUSED,
12099 struct elf_link_hash_entry *h,
12102 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12103 unsigned int log_file_align = bed->s->log_file_align;
12107 h->vtable = (struct elf_link_virtual_table_entry *)
12108 bfd_zalloc (abfd, sizeof (*h->vtable));
12113 if (addend >= h->vtable->size)
12115 size_t size, bytes, file_align;
12116 bfd_boolean *ptr = h->vtable->used;
12118 /* While the symbol is undefined, we have to be prepared to handle
12120 file_align = 1 << log_file_align;
12121 if (h->root.type == bfd_link_hash_undefined)
12122 size = addend + file_align;
12126 if (addend >= size)
12128 /* Oops! We've got a reference past the defined end of
12129 the table. This is probably a bug -- shall we warn? */
12130 size = addend + file_align;
12133 size = (size + file_align - 1) & -file_align;
12135 /* Allocate one extra entry for use as a "done" flag for the
12136 consolidation pass. */
12137 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12141 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12147 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12148 * sizeof (bfd_boolean));
12149 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12153 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12158 /* And arrange for that done flag to be at index -1. */
12159 h->vtable->used = ptr + 1;
12160 h->vtable->size = size;
12163 h->vtable->used[addend >> log_file_align] = TRUE;
12168 /* Map an ELF section header flag to its corresponding string. */
12172 flagword flag_value;
12173 } elf_flags_to_name_table;
12175 static elf_flags_to_name_table elf_flags_to_names [] =
12177 { "SHF_WRITE", SHF_WRITE },
12178 { "SHF_ALLOC", SHF_ALLOC },
12179 { "SHF_EXECINSTR", SHF_EXECINSTR },
12180 { "SHF_MERGE", SHF_MERGE },
12181 { "SHF_STRINGS", SHF_STRINGS },
12182 { "SHF_INFO_LINK", SHF_INFO_LINK},
12183 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12184 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12185 { "SHF_GROUP", SHF_GROUP },
12186 { "SHF_TLS", SHF_TLS },
12187 { "SHF_MASKOS", SHF_MASKOS },
12188 { "SHF_EXCLUDE", SHF_EXCLUDE },
12192 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12193 struct flag_info *finfo)
12195 bfd *output_bfd = info->output_bfd;
12196 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12197 struct flag_info_list *tf = finfo->flag_list;
12199 int without_hex = 0;
12201 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12204 if (bed->elf_backend_lookup_section_flags_hook)
12207 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12211 if (tf->with == with_flags)
12212 with_hex |= hexval;
12213 else if (tf->with == without_flags)
12214 without_hex |= hexval;
12219 for (i = 0; i < 12; i++)
12221 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12223 if (tf->with == with_flags)
12224 with_hex |= elf_flags_to_names[i].flag_value;
12225 else if (tf->with == without_flags)
12226 without_hex |= elf_flags_to_names[i].flag_value;
12231 if (tf->valid == FALSE)
12233 info->callbacks->einfo
12234 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12238 finfo->flags_initialized = TRUE;
12239 finfo->only_with_flags |= with_hex;
12240 finfo->not_with_flags |= without_hex;
12245 struct alloc_got_off_arg {
12247 struct bfd_link_info *info;
12250 /* We need a special top-level link routine to convert got reference counts
12251 to real got offsets. */
12254 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12256 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12257 bfd *obfd = gofarg->info->output_bfd;
12258 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12260 if (h->got.refcount > 0)
12262 h->got.offset = gofarg->gotoff;
12263 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12266 h->got.offset = (bfd_vma) -1;
12271 /* And an accompanying bit to work out final got entry offsets once
12272 we're done. Should be called from final_link. */
12275 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12276 struct bfd_link_info *info)
12279 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12281 struct alloc_got_off_arg gofarg;
12283 BFD_ASSERT (abfd == info->output_bfd);
12285 if (! is_elf_hash_table (info->hash))
12288 /* The GOT offset is relative to the .got section, but the GOT header is
12289 put into the .got.plt section, if the backend uses it. */
12290 if (bed->want_got_plt)
12293 gotoff = bed->got_header_size;
12295 /* Do the local .got entries first. */
12296 for (i = info->input_bfds; i; i = i->link_next)
12298 bfd_signed_vma *local_got;
12299 bfd_size_type j, locsymcount;
12300 Elf_Internal_Shdr *symtab_hdr;
12302 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12305 local_got = elf_local_got_refcounts (i);
12309 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12310 if (elf_bad_symtab (i))
12311 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12313 locsymcount = symtab_hdr->sh_info;
12315 for (j = 0; j < locsymcount; ++j)
12317 if (local_got[j] > 0)
12319 local_got[j] = gotoff;
12320 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12323 local_got[j] = (bfd_vma) -1;
12327 /* Then the global .got entries. .plt refcounts are handled by
12328 adjust_dynamic_symbol */
12329 gofarg.gotoff = gotoff;
12330 gofarg.info = info;
12331 elf_link_hash_traverse (elf_hash_table (info),
12332 elf_gc_allocate_got_offsets,
12337 /* Many folk need no more in the way of final link than this, once
12338 got entry reference counting is enabled. */
12341 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12343 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12346 /* Invoke the regular ELF backend linker to do all the work. */
12347 return bfd_elf_final_link (abfd, info);
12351 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12353 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12355 if (rcookie->bad_symtab)
12356 rcookie->rel = rcookie->rels;
12358 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12360 unsigned long r_symndx;
12362 if (! rcookie->bad_symtab)
12363 if (rcookie->rel->r_offset > offset)
12365 if (rcookie->rel->r_offset != offset)
12368 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12369 if (r_symndx == STN_UNDEF)
12372 if (r_symndx >= rcookie->locsymcount
12373 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12375 struct elf_link_hash_entry *h;
12377 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12379 while (h->root.type == bfd_link_hash_indirect
12380 || h->root.type == bfd_link_hash_warning)
12381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12383 if ((h->root.type == bfd_link_hash_defined
12384 || h->root.type == bfd_link_hash_defweak)
12385 && elf_discarded_section (h->root.u.def.section))
12392 /* It's not a relocation against a global symbol,
12393 but it could be a relocation against a local
12394 symbol for a discarded section. */
12396 Elf_Internal_Sym *isym;
12398 /* Need to: get the symbol; get the section. */
12399 isym = &rcookie->locsyms[r_symndx];
12400 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12401 if (isec != NULL && elf_discarded_section (isec))
12409 /* Discard unneeded references to discarded sections.
12410 Returns TRUE if any section's size was changed. */
12411 /* This function assumes that the relocations are in sorted order,
12412 which is true for all known assemblers. */
12415 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12417 struct elf_reloc_cookie cookie;
12418 asection *stab, *eh;
12419 const struct elf_backend_data *bed;
12421 bfd_boolean ret = FALSE;
12423 if (info->traditional_format
12424 || !is_elf_hash_table (info->hash))
12427 _bfd_elf_begin_eh_frame_parsing (info);
12428 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12430 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12433 bed = get_elf_backend_data (abfd);
12435 if ((abfd->flags & DYNAMIC) != 0)
12439 if (!info->relocatable)
12441 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12444 || bfd_is_abs_section (eh->output_section)))
12448 stab = bfd_get_section_by_name (abfd, ".stab");
12450 && (stab->size == 0
12451 || bfd_is_abs_section (stab->output_section)
12452 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12457 && bed->elf_backend_discard_info == NULL)
12460 if (!init_reloc_cookie (&cookie, info, abfd))
12464 && stab->reloc_count > 0
12465 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12467 if (_bfd_discard_section_stabs (abfd, stab,
12468 elf_section_data (stab)->sec_info,
12469 bfd_elf_reloc_symbol_deleted_p,
12472 fini_reloc_cookie_rels (&cookie, stab);
12476 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12478 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12479 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12480 bfd_elf_reloc_symbol_deleted_p,
12483 fini_reloc_cookie_rels (&cookie, eh);
12486 if (bed->elf_backend_discard_info != NULL
12487 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12490 fini_reloc_cookie (&cookie, abfd);
12492 _bfd_elf_end_eh_frame_parsing (info);
12494 if (info->eh_frame_hdr
12495 && !info->relocatable
12496 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12503 _bfd_elf_section_already_linked (bfd *abfd,
12505 struct bfd_link_info *info)
12508 const char *name, *key;
12509 struct bfd_section_already_linked *l;
12510 struct bfd_section_already_linked_hash_entry *already_linked_list;
12512 if (sec->output_section == bfd_abs_section_ptr)
12515 flags = sec->flags;
12517 /* Return if it isn't a linkonce section. A comdat group section
12518 also has SEC_LINK_ONCE set. */
12519 if ((flags & SEC_LINK_ONCE) == 0)
12522 /* Don't put group member sections on our list of already linked
12523 sections. They are handled as a group via their group section. */
12524 if (elf_sec_group (sec) != NULL)
12527 /* For a SHT_GROUP section, use the group signature as the key. */
12529 if ((flags & SEC_GROUP) != 0
12530 && elf_next_in_group (sec) != NULL
12531 && elf_group_name (elf_next_in_group (sec)) != NULL)
12532 key = elf_group_name (elf_next_in_group (sec));
12535 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12536 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12537 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12540 /* Must be a user linkonce section that doesn't follow gcc's
12541 naming convention. In this case we won't be matching
12542 single member groups. */
12546 already_linked_list = bfd_section_already_linked_table_lookup (key);
12548 for (l = already_linked_list->entry; l != NULL; l = l->next)
12550 /* We may have 2 different types of sections on the list: group
12551 sections with a signature of <key> (<key> is some string),
12552 and linkonce sections named .gnu.linkonce.<type>.<key>.
12553 Match like sections. LTO plugin sections are an exception.
12554 They are always named .gnu.linkonce.t.<key> and match either
12555 type of section. */
12556 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12557 && ((flags & SEC_GROUP) != 0
12558 || strcmp (name, l->sec->name) == 0))
12559 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12561 /* The section has already been linked. See if we should
12562 issue a warning. */
12563 if (!_bfd_handle_already_linked (sec, l, info))
12566 if (flags & SEC_GROUP)
12568 asection *first = elf_next_in_group (sec);
12569 asection *s = first;
12573 s->output_section = bfd_abs_section_ptr;
12574 /* Record which group discards it. */
12575 s->kept_section = l->sec;
12576 s = elf_next_in_group (s);
12577 /* These lists are circular. */
12587 /* A single member comdat group section may be discarded by a
12588 linkonce section and vice versa. */
12589 if ((flags & SEC_GROUP) != 0)
12591 asection *first = elf_next_in_group (sec);
12593 if (first != NULL && elf_next_in_group (first) == first)
12594 /* Check this single member group against linkonce sections. */
12595 for (l = already_linked_list->entry; l != NULL; l = l->next)
12596 if ((l->sec->flags & SEC_GROUP) == 0
12597 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12599 first->output_section = bfd_abs_section_ptr;
12600 first->kept_section = l->sec;
12601 sec->output_section = bfd_abs_section_ptr;
12606 /* Check this linkonce section against single member groups. */
12607 for (l = already_linked_list->entry; l != NULL; l = l->next)
12608 if (l->sec->flags & SEC_GROUP)
12610 asection *first = elf_next_in_group (l->sec);
12613 && elf_next_in_group (first) == first
12614 && bfd_elf_match_symbols_in_sections (first, sec, info))
12616 sec->output_section = bfd_abs_section_ptr;
12617 sec->kept_section = first;
12622 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12623 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12624 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12625 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12626 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12627 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12628 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12629 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12630 The reverse order cannot happen as there is never a bfd with only the
12631 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12632 matter as here were are looking only for cross-bfd sections. */
12634 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12635 for (l = already_linked_list->entry; l != NULL; l = l->next)
12636 if ((l->sec->flags & SEC_GROUP) == 0
12637 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12639 if (abfd != l->sec->owner)
12640 sec->output_section = bfd_abs_section_ptr;
12644 /* This is the first section with this name. Record it. */
12645 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12646 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12647 return sec->output_section == bfd_abs_section_ptr;
12651 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12653 return sym->st_shndx == SHN_COMMON;
12657 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12663 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12665 return bfd_com_section_ptr;
12669 _bfd_elf_default_got_elt_size (bfd *abfd,
12670 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12671 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12672 bfd *ibfd ATTRIBUTE_UNUSED,
12673 unsigned long symndx ATTRIBUTE_UNUSED)
12675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12676 return bed->s->arch_size / 8;
12679 /* Routines to support the creation of dynamic relocs. */
12681 /* Returns the name of the dynamic reloc section associated with SEC. */
12683 static const char *
12684 get_dynamic_reloc_section_name (bfd * abfd,
12686 bfd_boolean is_rela)
12689 const char *old_name = bfd_get_section_name (NULL, sec);
12690 const char *prefix = is_rela ? ".rela" : ".rel";
12692 if (old_name == NULL)
12695 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12696 sprintf (name, "%s%s", prefix, old_name);
12701 /* Returns the dynamic reloc section associated with SEC.
12702 If necessary compute the name of the dynamic reloc section based
12703 on SEC's name (looked up in ABFD's string table) and the setting
12707 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12709 bfd_boolean is_rela)
12711 asection * reloc_sec = elf_section_data (sec)->sreloc;
12713 if (reloc_sec == NULL)
12715 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12719 reloc_sec = bfd_get_section_by_name (abfd, name);
12721 if (reloc_sec != NULL)
12722 elf_section_data (sec)->sreloc = reloc_sec;
12729 /* Returns the dynamic reloc section associated with SEC. If the
12730 section does not exist it is created and attached to the DYNOBJ
12731 bfd and stored in the SRELOC field of SEC's elf_section_data
12734 ALIGNMENT is the alignment for the newly created section and
12735 IS_RELA defines whether the name should be .rela.<SEC's name>
12736 or .rel.<SEC's name>. The section name is looked up in the
12737 string table associated with ABFD. */
12740 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12742 unsigned int alignment,
12744 bfd_boolean is_rela)
12746 asection * reloc_sec = elf_section_data (sec)->sreloc;
12748 if (reloc_sec == NULL)
12750 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12755 reloc_sec = bfd_get_section_by_name (dynobj, name);
12757 if (reloc_sec == NULL)
12761 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12762 if ((sec->flags & SEC_ALLOC) != 0)
12763 flags |= SEC_ALLOC | SEC_LOAD;
12765 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12766 if (reloc_sec != NULL)
12768 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12773 elf_section_data (sec)->sreloc = reloc_sec;
12779 /* Copy the ELF symbol type associated with a linker hash entry. */
12781 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12782 struct bfd_link_hash_entry * hdest,
12783 struct bfd_link_hash_entry * hsrc)
12785 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12786 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12788 ehdest->type = ehsrc->type;
12789 ehdest->target_internal = ehsrc->target_internal;
12792 /* Append a RELA relocation REL to section S in BFD. */
12795 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12798 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12799 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12800 bed->s->swap_reloca_out (abfd, rel, loc);
12803 /* Append a REL relocation REL to section S in BFD. */
12806 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12809 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12810 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12811 bed->s->swap_reloca_out (abfd, rel, loc);