1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
45 switch (bed->s->arch_size)
56 bfd_set_error (bfd_error_bad_value);
60 flags = bed->dynamic_sec_flags;
62 s = bfd_make_section (abfd, ".got");
64 || !bfd_set_section_flags (abfd, s, flags)
65 || !bfd_set_section_alignment (abfd, s, ptralign))
68 if (bed->want_got_plt)
70 s = bfd_make_section (abfd, ".got.plt");
72 || !bfd_set_section_flags (abfd, s, flags)
73 || !bfd_set_section_alignment (abfd, s, ptralign))
77 if (bed->want_got_sym)
79 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
80 (or .got.plt) section. We don't do this in the linker script
81 because we don't want to define the symbol if we are not creating
82 a global offset table. */
84 if (!(_bfd_generic_link_add_one_symbol
85 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
86 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
88 h = (struct elf_link_hash_entry *) bh;
91 h->other = STV_HIDDEN;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
106 /* Create a strtab to hold the dynamic symbol names. */
108 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
110 struct elf_link_hash_table *hash_table;
112 hash_table = elf_hash_table (info);
113 if (hash_table->dynobj == NULL)
114 hash_table->dynobj = abfd;
116 if (hash_table->dynstr == NULL)
118 hash_table->dynstr = _bfd_elf_strtab_init ();
119 if (hash_table->dynstr == NULL)
125 /* Create some sections which will be filled in with dynamic linking
126 information. ABFD is an input file which requires dynamic sections
127 to be created. The dynamic sections take up virtual memory space
128 when the final executable is run, so we need to create them before
129 addresses are assigned to the output sections. We work out the
130 actual contents and size of these sections later. */
133 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
136 register asection *s;
137 struct elf_link_hash_entry *h;
138 struct bfd_link_hash_entry *bh;
139 const struct elf_backend_data *bed;
141 if (! is_elf_hash_table (info->hash))
144 if (elf_hash_table (info)->dynamic_sections_created)
147 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
150 abfd = elf_hash_table (info)->dynobj;
151 bed = get_elf_backend_data (abfd);
153 flags = bed->dynamic_sec_flags;
155 /* A dynamically linked executable has a .interp section, but a
156 shared library does not. */
157 if (info->executable)
159 s = bfd_make_section (abfd, ".interp");
161 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
165 if (! info->traditional_format)
167 s = bfd_make_section (abfd, ".eh_frame_hdr");
169 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
170 || ! bfd_set_section_alignment (abfd, s, 2))
172 elf_hash_table (info)->eh_info.hdr_sec = s;
175 /* Create sections to hold version informations. These are removed
176 if they are not needed. */
177 s = bfd_make_section (abfd, ".gnu.version_d");
179 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
180 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
183 s = bfd_make_section (abfd, ".gnu.version");
185 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
186 || ! bfd_set_section_alignment (abfd, s, 1))
189 s = bfd_make_section (abfd, ".gnu.version_r");
191 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
192 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 s = bfd_make_section (abfd, ".dynsym");
197 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
198 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
201 s = bfd_make_section (abfd, ".dynstr");
203 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
206 s = bfd_make_section (abfd, ".dynamic");
208 || ! bfd_set_section_flags (abfd, s, flags)
209 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
212 /* The special symbol _DYNAMIC is always set to the start of the
213 .dynamic section. We could set _DYNAMIC in a linker script, but we
214 only want to define it if we are, in fact, creating a .dynamic
215 section. We don't want to define it if there is no .dynamic
216 section, since on some ELF platforms the start up code examines it
217 to decide how to initialize the process. */
218 h = elf_link_hash_lookup (elf_hash_table (info), "_DYNAMIC",
219 FALSE, FALSE, FALSE);
222 /* Zap symbol defined in an as-needed lib that wasn't linked.
223 This is a symptom of a larger problem: Absolute symbols
224 defined in shared libraries can't be overridden, because we
225 lose the link to the bfd which is via the symbol section. */
226 h->root.type = bfd_link_hash_new;
229 if (! (_bfd_generic_link_add_one_symbol
230 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
231 get_elf_backend_data (abfd)->collect, &bh)))
233 h = (struct elf_link_hash_entry *) bh;
235 h->type = STT_OBJECT;
237 if (! info->executable
238 && ! bfd_elf_link_record_dynamic_symbol (info, h))
241 s = bfd_make_section (abfd, ".hash");
243 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
244 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
246 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
248 /* Let the backend create the rest of the sections. This lets the
249 backend set the right flags. The backend will normally create
250 the .got and .plt sections. */
251 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
254 elf_hash_table (info)->dynamic_sections_created = TRUE;
259 /* Create dynamic sections when linking against a dynamic object. */
262 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
264 flagword flags, pltflags;
266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
268 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
269 .rel[a].bss sections. */
270 flags = bed->dynamic_sec_flags;
273 if (bed->plt_not_loaded)
274 /* We do not clear SEC_ALLOC here because we still want the OS to
275 allocate space for the section; it's just that there's nothing
276 to read in from the object file. */
277 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
279 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
280 if (bed->plt_readonly)
281 pltflags |= SEC_READONLY;
283 s = bfd_make_section (abfd, ".plt");
285 || ! bfd_set_section_flags (abfd, s, pltflags)
286 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
289 if (bed->want_plt_sym)
291 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
293 struct elf_link_hash_entry *h;
294 struct bfd_link_hash_entry *bh = NULL;
296 if (! (_bfd_generic_link_add_one_symbol
297 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
298 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
300 h = (struct elf_link_hash_entry *) bh;
302 h->type = STT_OBJECT;
304 if (! info->executable
305 && ! bfd_elf_link_record_dynamic_symbol (info, h))
309 s = bfd_make_section (abfd,
310 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
312 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
316 if (! _bfd_elf_create_got_section (abfd, info))
319 if (bed->want_dynbss)
321 /* The .dynbss section is a place to put symbols which are defined
322 by dynamic objects, are referenced by regular objects, and are
323 not functions. We must allocate space for them in the process
324 image and use a R_*_COPY reloc to tell the dynamic linker to
325 initialize them at run time. The linker script puts the .dynbss
326 section into the .bss section of the final image. */
327 s = bfd_make_section (abfd, ".dynbss");
329 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
332 /* The .rel[a].bss section holds copy relocs. This section is not
333 normally needed. We need to create it here, though, so that the
334 linker will map it to an output section. We can't just create it
335 only if we need it, because we will not know whether we need it
336 until we have seen all the input files, and the first time the
337 main linker code calls BFD after examining all the input files
338 (size_dynamic_sections) the input sections have already been
339 mapped to the output sections. If the section turns out not to
340 be needed, we can discard it later. We will never need this
341 section when generating a shared object, since they do not use
345 s = bfd_make_section (abfd,
346 (bed->default_use_rela_p
347 ? ".rela.bss" : ".rel.bss"));
349 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
358 /* Record a new dynamic symbol. We record the dynamic symbols as we
359 read the input files, since we need to have a list of all of them
360 before we can determine the final sizes of the output sections.
361 Note that we may actually call this function even though we are not
362 going to output any dynamic symbols; in some cases we know that a
363 symbol should be in the dynamic symbol table, but only if there is
367 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
368 struct elf_link_hash_entry *h)
370 if (h->dynindx == -1)
372 struct elf_strtab_hash *dynstr;
377 /* XXX: The ABI draft says the linker must turn hidden and
378 internal symbols into STB_LOCAL symbols when producing the
379 DSO. However, if ld.so honors st_other in the dynamic table,
380 this would not be necessary. */
381 switch (ELF_ST_VISIBILITY (h->other))
385 if (h->root.type != bfd_link_hash_undefined
386 && h->root.type != bfd_link_hash_undefweak)
389 if (!elf_hash_table (info)->is_relocatable_executable)
397 h->dynindx = elf_hash_table (info)->dynsymcount;
398 ++elf_hash_table (info)->dynsymcount;
400 dynstr = elf_hash_table (info)->dynstr;
403 /* Create a strtab to hold the dynamic symbol names. */
404 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 /* We don't put any version information in the dynamic string
411 name = h->root.root.string;
412 p = strchr (name, ELF_VER_CHR);
414 /* We know that the p points into writable memory. In fact,
415 there are only a few symbols that have read-only names, being
416 those like _GLOBAL_OFFSET_TABLE_ that are created specially
417 by the backends. Most symbols will have names pointing into
418 an ELF string table read from a file, or to objalloc memory. */
421 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
426 if (indx == (bfd_size_type) -1)
428 h->dynstr_index = indx;
434 /* Record an assignment to a symbol made by a linker script. We need
435 this in case some dynamic object refers to this symbol. */
438 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
439 struct bfd_link_info *info,
443 struct elf_link_hash_entry *h;
444 struct elf_link_hash_table *htab;
446 if (!is_elf_hash_table (info->hash))
449 htab = elf_hash_table (info);
450 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
454 /* Since we're defining the symbol, don't let it seem to have not
455 been defined. record_dynamic_symbol and size_dynamic_sections
456 may depend on this. */
457 if (h->root.type == bfd_link_hash_undefweak
458 || h->root.type == bfd_link_hash_undefined)
460 h->root.type = bfd_link_hash_new;
461 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
462 bfd_link_repair_undef_list (&htab->root);
465 if (h->root.type == bfd_link_hash_new)
468 /* If this symbol is being provided by the linker script, and it is
469 currently defined by a dynamic object, but not by a regular
470 object, then mark it as undefined so that the generic linker will
471 force the correct value. */
475 h->root.type = bfd_link_hash_undefined;
477 /* If this symbol is not being provided by the linker script, and it is
478 currently defined by a dynamic object, but not by a regular object,
479 then clear out any version information because the symbol will not be
480 associated with the dynamic object any more. */
484 h->verinfo.verdef = NULL;
488 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
490 if (!info->relocatable
492 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
493 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
499 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
502 if (! bfd_elf_link_record_dynamic_symbol (info, h))
505 /* If this is a weak defined symbol, and we know a corresponding
506 real symbol from the same dynamic object, make sure the real
507 symbol is also made into a dynamic symbol. */
508 if (h->u.weakdef != NULL
509 && h->u.weakdef->dynindx == -1)
511 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
519 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
520 success, and 2 on a failure caused by attempting to record a symbol
521 in a discarded section, eg. a discarded link-once section symbol. */
524 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
529 struct elf_link_local_dynamic_entry *entry;
530 struct elf_link_hash_table *eht;
531 struct elf_strtab_hash *dynstr;
532 unsigned long dynstr_index;
534 Elf_External_Sym_Shndx eshndx;
535 char esym[sizeof (Elf64_External_Sym)];
537 if (! is_elf_hash_table (info->hash))
540 /* See if the entry exists already. */
541 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
542 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
545 amt = sizeof (*entry);
546 entry = bfd_alloc (input_bfd, amt);
550 /* Go find the symbol, so that we can find it's name. */
551 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
552 1, input_indx, &entry->isym, esym, &eshndx))
554 bfd_release (input_bfd, entry);
558 if (entry->isym.st_shndx != SHN_UNDEF
559 && (entry->isym.st_shndx < SHN_LORESERVE
560 || entry->isym.st_shndx > SHN_HIRESERVE))
564 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
565 if (s == NULL || bfd_is_abs_section (s->output_section))
567 /* We can still bfd_release here as nothing has done another
568 bfd_alloc. We can't do this later in this function. */
569 bfd_release (input_bfd, entry);
574 name = (bfd_elf_string_from_elf_section
575 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
576 entry->isym.st_name));
578 dynstr = elf_hash_table (info)->dynstr;
581 /* Create a strtab to hold the dynamic symbol names. */
582 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
587 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
588 if (dynstr_index == (unsigned long) -1)
590 entry->isym.st_name = dynstr_index;
592 eht = elf_hash_table (info);
594 entry->next = eht->dynlocal;
595 eht->dynlocal = entry;
596 entry->input_bfd = input_bfd;
597 entry->input_indx = input_indx;
600 /* Whatever binding the symbol had before, it's now local. */
602 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
604 /* The dynindx will be set at the end of size_dynamic_sections. */
609 /* Return the dynindex of a local dynamic symbol. */
612 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
616 struct elf_link_local_dynamic_entry *e;
618 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
619 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
624 /* This function is used to renumber the dynamic symbols, if some of
625 them are removed because they are marked as local. This is called
626 via elf_link_hash_traverse. */
629 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
632 size_t *count = data;
634 if (h->root.type == bfd_link_hash_warning)
635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
640 if (h->dynindx != -1)
641 h->dynindx = ++(*count);
647 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
648 STB_LOCAL binding. */
651 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
654 size_t *count = data;
656 if (h->root.type == bfd_link_hash_warning)
657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
659 if (!h->forced_local)
662 if (h->dynindx != -1)
663 h->dynindx = ++(*count);
668 /* Return true if the dynamic symbol for a given section should be
669 omitted when creating a shared library. */
671 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
672 struct bfd_link_info *info,
675 switch (elf_section_data (p)->this_hdr.sh_type)
679 /* If sh_type is yet undecided, assume it could be
680 SHT_PROGBITS/SHT_NOBITS. */
682 if (strcmp (p->name, ".got") == 0
683 || strcmp (p->name, ".got.plt") == 0
684 || strcmp (p->name, ".plt") == 0)
687 bfd *dynobj = elf_hash_table (info)->dynobj;
690 && (ip = bfd_get_section_by_name (dynobj, p->name)) != NULL
691 && (ip->flags & SEC_LINKER_CREATED)
692 && ip->output_section == p)
697 /* There shouldn't be section relative relocations
698 against any other section. */
704 /* Assign dynsym indices. In a shared library we generate a section
705 symbol for each output section, which come first. Next come symbols
706 which have been forced to local binding. Then all of the back-end
707 allocated local dynamic syms, followed by the rest of the global
711 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
712 struct bfd_link_info *info,
713 unsigned long *section_sym_count)
715 unsigned long dynsymcount = 0;
717 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
719 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
721 for (p = output_bfd->sections; p ; p = p->next)
722 if ((p->flags & SEC_EXCLUDE) == 0
723 && (p->flags & SEC_ALLOC) != 0
724 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
725 elf_section_data (p)->dynindx = ++dynsymcount;
727 *section_sym_count = dynsymcount;
729 elf_link_hash_traverse (elf_hash_table (info),
730 elf_link_renumber_local_hash_table_dynsyms,
733 if (elf_hash_table (info)->dynlocal)
735 struct elf_link_local_dynamic_entry *p;
736 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
737 p->dynindx = ++dynsymcount;
740 elf_link_hash_traverse (elf_hash_table (info),
741 elf_link_renumber_hash_table_dynsyms,
744 /* There is an unused NULL entry at the head of the table which
745 we must account for in our count. Unless there weren't any
746 symbols, which means we'll have no table at all. */
747 if (dynsymcount != 0)
750 return elf_hash_table (info)->dynsymcount = dynsymcount;
753 /* This function is called when we want to define a new symbol. It
754 handles the various cases which arise when we find a definition in
755 a dynamic object, or when there is already a definition in a
756 dynamic object. The new symbol is described by NAME, SYM, PSEC,
757 and PVALUE. We set SYM_HASH to the hash table entry. We set
758 OVERRIDE if the old symbol is overriding a new definition. We set
759 TYPE_CHANGE_OK if it is OK for the type to change. We set
760 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
761 change, we mean that we shouldn't warn if the type or size does
762 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
763 object is overridden by a regular object. */
766 _bfd_elf_merge_symbol (bfd *abfd,
767 struct bfd_link_info *info,
769 Elf_Internal_Sym *sym,
772 unsigned int *pold_alignment,
773 struct elf_link_hash_entry **sym_hash,
775 bfd_boolean *override,
776 bfd_boolean *type_change_ok,
777 bfd_boolean *size_change_ok)
779 asection *sec, *oldsec;
780 struct elf_link_hash_entry *h;
781 struct elf_link_hash_entry *flip;
784 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
785 bfd_boolean newweak, oldweak;
791 bind = ELF_ST_BIND (sym->st_info);
793 if (! bfd_is_und_section (sec))
794 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
796 h = ((struct elf_link_hash_entry *)
797 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
802 /* This code is for coping with dynamic objects, and is only useful
803 if we are doing an ELF link. */
804 if (info->hash->creator != abfd->xvec)
807 /* For merging, we only care about real symbols. */
809 while (h->root.type == bfd_link_hash_indirect
810 || h->root.type == bfd_link_hash_warning)
811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
813 /* If we just created the symbol, mark it as being an ELF symbol.
814 Other than that, there is nothing to do--there is no merge issue
815 with a newly defined symbol--so we just return. */
817 if (h->root.type == bfd_link_hash_new)
823 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
826 switch (h->root.type)
833 case bfd_link_hash_undefined:
834 case bfd_link_hash_undefweak:
835 oldbfd = h->root.u.undef.abfd;
839 case bfd_link_hash_defined:
840 case bfd_link_hash_defweak:
841 oldbfd = h->root.u.def.section->owner;
842 oldsec = h->root.u.def.section;
845 case bfd_link_hash_common:
846 oldbfd = h->root.u.c.p->section->owner;
847 oldsec = h->root.u.c.p->section;
851 /* In cases involving weak versioned symbols, we may wind up trying
852 to merge a symbol with itself. Catch that here, to avoid the
853 confusion that results if we try to override a symbol with
854 itself. The additional tests catch cases like
855 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
856 dynamic object, which we do want to handle here. */
858 && ((abfd->flags & DYNAMIC) == 0
862 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
863 respectively, is from a dynamic object. */
865 if ((abfd->flags & DYNAMIC) != 0)
871 olddyn = (oldbfd->flags & DYNAMIC) != 0;
876 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
877 indices used by MIPS ELF. */
878 switch (h->root.type)
884 case bfd_link_hash_defined:
885 case bfd_link_hash_defweak:
886 hsec = h->root.u.def.section;
889 case bfd_link_hash_common:
890 hsec = h->root.u.c.p->section;
897 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
900 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
901 respectively, appear to be a definition rather than reference. */
903 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
908 if (h->root.type == bfd_link_hash_undefined
909 || h->root.type == bfd_link_hash_undefweak
910 || h->root.type == bfd_link_hash_common)
915 /* Check TLS symbol. */
916 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
917 && ELF_ST_TYPE (sym->st_info) != h->type)
920 bfd_boolean ntdef, tdef;
921 asection *ntsec, *tsec;
923 if (h->type == STT_TLS)
943 (*_bfd_error_handler)
944 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
945 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
946 else if (!tdef && !ntdef)
947 (*_bfd_error_handler)
948 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
949 tbfd, ntbfd, h->root.root.string);
951 (*_bfd_error_handler)
952 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
953 tbfd, tsec, ntbfd, h->root.root.string);
955 (*_bfd_error_handler)
956 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
957 tbfd, ntbfd, ntsec, h->root.root.string);
959 bfd_set_error (bfd_error_bad_value);
963 /* We need to remember if a symbol has a definition in a dynamic
964 object or is weak in all dynamic objects. Internal and hidden
965 visibility will make it unavailable to dynamic objects. */
966 if (newdyn && !h->dynamic_def)
968 if (!bfd_is_und_section (sec))
972 /* Check if this symbol is weak in all dynamic objects. If it
973 is the first time we see it in a dynamic object, we mark
974 if it is weak. Otherwise, we clear it. */
977 if (bind == STB_WEAK)
980 else if (bind != STB_WEAK)
985 /* If the old symbol has non-default visibility, we ignore the new
986 definition from a dynamic object. */
988 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
989 && !bfd_is_und_section (sec))
992 /* Make sure this symbol is dynamic. */
994 /* A protected symbol has external availability. Make sure it is
997 FIXME: Should we check type and size for protected symbol? */
998 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
999 return bfd_elf_link_record_dynamic_symbol (info, h);
1004 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1007 /* If the new symbol with non-default visibility comes from a
1008 relocatable file and the old definition comes from a dynamic
1009 object, we remove the old definition. */
1010 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1013 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1014 && bfd_is_und_section (sec))
1016 /* If the new symbol is undefined and the old symbol was
1017 also undefined before, we need to make sure
1018 _bfd_generic_link_add_one_symbol doesn't mess
1019 up the linker hash table undefs list. Since the old
1020 definition came from a dynamic object, it is still on the
1022 h->root.type = bfd_link_hash_undefined;
1023 h->root.u.undef.abfd = abfd;
1027 h->root.type = bfd_link_hash_new;
1028 h->root.u.undef.abfd = NULL;
1037 /* FIXME: Should we check type and size for protected symbol? */
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1048 /* If a new weak symbol definition comes from a regular file and the
1049 old symbol comes from a dynamic library, we treat the new one as
1050 strong. Similarly, an old weak symbol definition from a regular
1051 file is treated as strong when the new symbol comes from a dynamic
1052 library. Further, an old weak symbol from a dynamic library is
1053 treated as strong if the new symbol is from a dynamic library.
1054 This reflects the way glibc's ld.so works.
1056 Do this before setting *type_change_ok or *size_change_ok so that
1057 we warn properly when dynamic library symbols are overridden. */
1059 if (newdef && !newdyn && olddyn)
1061 if (olddef && newdyn)
1064 /* It's OK to change the type if either the existing symbol or the
1065 new symbol is weak. A type change is also OK if the old symbol
1066 is undefined and the new symbol is defined. */
1071 && h->root.type == bfd_link_hash_undefined))
1072 *type_change_ok = TRUE;
1074 /* It's OK to change the size if either the existing symbol or the
1075 new symbol is weak, or if the old symbol is undefined. */
1078 || h->root.type == bfd_link_hash_undefined)
1079 *size_change_ok = TRUE;
1081 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1082 symbol, respectively, appears to be a common symbol in a dynamic
1083 object. If a symbol appears in an uninitialized section, and is
1084 not weak, and is not a function, then it may be a common symbol
1085 which was resolved when the dynamic object was created. We want
1086 to treat such symbols specially, because they raise special
1087 considerations when setting the symbol size: if the symbol
1088 appears as a common symbol in a regular object, and the size in
1089 the regular object is larger, we must make sure that we use the
1090 larger size. This problematic case can always be avoided in C,
1091 but it must be handled correctly when using Fortran shared
1094 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1095 likewise for OLDDYNCOMMON and OLDDEF.
1097 Note that this test is just a heuristic, and that it is quite
1098 possible to have an uninitialized symbol in a shared object which
1099 is really a definition, rather than a common symbol. This could
1100 lead to some minor confusion when the symbol really is a common
1101 symbol in some regular object. However, I think it will be
1107 && (sec->flags & SEC_ALLOC) != 0
1108 && (sec->flags & SEC_LOAD) == 0
1110 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
1111 newdyncommon = TRUE;
1113 newdyncommon = FALSE;
1117 && h->root.type == bfd_link_hash_defined
1119 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1120 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1122 && h->type != STT_FUNC)
1123 olddyncommon = TRUE;
1125 olddyncommon = FALSE;
1127 /* If both the old and the new symbols look like common symbols in a
1128 dynamic object, set the size of the symbol to the larger of the
1133 && sym->st_size != h->size)
1135 /* Since we think we have two common symbols, issue a multiple
1136 common warning if desired. Note that we only warn if the
1137 size is different. If the size is the same, we simply let
1138 the old symbol override the new one as normally happens with
1139 symbols defined in dynamic objects. */
1141 if (! ((*info->callbacks->multiple_common)
1142 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1143 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1146 if (sym->st_size > h->size)
1147 h->size = sym->st_size;
1149 *size_change_ok = TRUE;
1152 /* If we are looking at a dynamic object, and we have found a
1153 definition, we need to see if the symbol was already defined by
1154 some other object. If so, we want to use the existing
1155 definition, and we do not want to report a multiple symbol
1156 definition error; we do this by clobbering *PSEC to be
1157 bfd_und_section_ptr.
1159 We treat a common symbol as a definition if the symbol in the
1160 shared library is a function, since common symbols always
1161 represent variables; this can cause confusion in principle, but
1162 any such confusion would seem to indicate an erroneous program or
1163 shared library. We also permit a common symbol in a regular
1164 object to override a weak symbol in a shared object. */
1169 || (h->root.type == bfd_link_hash_common
1171 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1175 newdyncommon = FALSE;
1177 *psec = sec = bfd_und_section_ptr;
1178 *size_change_ok = TRUE;
1180 /* If we get here when the old symbol is a common symbol, then
1181 we are explicitly letting it override a weak symbol or
1182 function in a dynamic object, and we don't want to warn about
1183 a type change. If the old symbol is a defined symbol, a type
1184 change warning may still be appropriate. */
1186 if (h->root.type == bfd_link_hash_common)
1187 *type_change_ok = TRUE;
1190 /* Handle the special case of an old common symbol merging with a
1191 new symbol which looks like a common symbol in a shared object.
1192 We change *PSEC and *PVALUE to make the new symbol look like a
1193 common symbol, and let _bfd_generic_link_add_one_symbol will do
1197 && h->root.type == bfd_link_hash_common)
1201 newdyncommon = FALSE;
1202 *pvalue = sym->st_size;
1203 *psec = sec = bfd_com_section_ptr;
1204 *size_change_ok = TRUE;
1207 /* Skip weak definitions of symbols that are already defined. */
1208 if (newdef && olddef && newweak && !oldweak)
1211 /* If the old symbol is from a dynamic object, and the new symbol is
1212 a definition which is not from a dynamic object, then the new
1213 symbol overrides the old symbol. Symbols from regular files
1214 always take precedence over symbols from dynamic objects, even if
1215 they are defined after the dynamic object in the link.
1217 As above, we again permit a common symbol in a regular object to
1218 override a definition in a shared object if the shared object
1219 symbol is a function or is weak. */
1224 || (bfd_is_com_section (sec)
1226 || h->type == STT_FUNC)))
1231 /* Change the hash table entry to undefined, and let
1232 _bfd_generic_link_add_one_symbol do the right thing with the
1235 h->root.type = bfd_link_hash_undefined;
1236 h->root.u.undef.abfd = h->root.u.def.section->owner;
1237 *size_change_ok = TRUE;
1240 olddyncommon = FALSE;
1242 /* We again permit a type change when a common symbol may be
1243 overriding a function. */
1245 if (bfd_is_com_section (sec))
1246 *type_change_ok = TRUE;
1248 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1251 /* This union may have been set to be non-NULL when this symbol
1252 was seen in a dynamic object. We must force the union to be
1253 NULL, so that it is correct for a regular symbol. */
1254 h->verinfo.vertree = NULL;
1257 /* Handle the special case of a new common symbol merging with an
1258 old symbol that looks like it might be a common symbol defined in
1259 a shared object. Note that we have already handled the case in
1260 which a new common symbol should simply override the definition
1261 in the shared library. */
1264 && bfd_is_com_section (sec)
1267 /* It would be best if we could set the hash table entry to a
1268 common symbol, but we don't know what to use for the section
1269 or the alignment. */
1270 if (! ((*info->callbacks->multiple_common)
1271 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1272 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1275 /* If the presumed common symbol in the dynamic object is
1276 larger, pretend that the new symbol has its size. */
1278 if (h->size > *pvalue)
1281 /* We need to remember the alignment required by the symbol
1282 in the dynamic object. */
1283 BFD_ASSERT (pold_alignment);
1284 *pold_alignment = h->root.u.def.section->alignment_power;
1287 olddyncommon = FALSE;
1289 h->root.type = bfd_link_hash_undefined;
1290 h->root.u.undef.abfd = h->root.u.def.section->owner;
1292 *size_change_ok = TRUE;
1293 *type_change_ok = TRUE;
1295 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1298 h->verinfo.vertree = NULL;
1303 /* Handle the case where we had a versioned symbol in a dynamic
1304 library and now find a definition in a normal object. In this
1305 case, we make the versioned symbol point to the normal one. */
1306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1307 flip->root.type = h->root.type;
1308 h->root.type = bfd_link_hash_indirect;
1309 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1310 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1311 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1315 flip->ref_dynamic = 1;
1322 /* This function is called to create an indirect symbol from the
1323 default for the symbol with the default version if needed. The
1324 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1325 set DYNSYM if the new indirect symbol is dynamic. */
1328 _bfd_elf_add_default_symbol (bfd *abfd,
1329 struct bfd_link_info *info,
1330 struct elf_link_hash_entry *h,
1332 Elf_Internal_Sym *sym,
1335 bfd_boolean *dynsym,
1336 bfd_boolean override)
1338 bfd_boolean type_change_ok;
1339 bfd_boolean size_change_ok;
1342 struct elf_link_hash_entry *hi;
1343 struct bfd_link_hash_entry *bh;
1344 const struct elf_backend_data *bed;
1345 bfd_boolean collect;
1346 bfd_boolean dynamic;
1348 size_t len, shortlen;
1351 /* If this symbol has a version, and it is the default version, we
1352 create an indirect symbol from the default name to the fully
1353 decorated name. This will cause external references which do not
1354 specify a version to be bound to this version of the symbol. */
1355 p = strchr (name, ELF_VER_CHR);
1356 if (p == NULL || p[1] != ELF_VER_CHR)
1361 /* We are overridden by an old definition. We need to check if we
1362 need to create the indirect symbol from the default name. */
1363 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1365 BFD_ASSERT (hi != NULL);
1368 while (hi->root.type == bfd_link_hash_indirect
1369 || hi->root.type == bfd_link_hash_warning)
1371 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1377 bed = get_elf_backend_data (abfd);
1378 collect = bed->collect;
1379 dynamic = (abfd->flags & DYNAMIC) != 0;
1381 shortlen = p - name;
1382 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1383 if (shortname == NULL)
1385 memcpy (shortname, name, shortlen);
1386 shortname[shortlen] = '\0';
1388 /* We are going to create a new symbol. Merge it with any existing
1389 symbol with this name. For the purposes of the merge, act as
1390 though we were defining the symbol we just defined, although we
1391 actually going to define an indirect symbol. */
1392 type_change_ok = FALSE;
1393 size_change_ok = FALSE;
1395 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1396 NULL, &hi, &skip, &override,
1397 &type_change_ok, &size_change_ok))
1406 if (! (_bfd_generic_link_add_one_symbol
1407 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1408 0, name, FALSE, collect, &bh)))
1410 hi = (struct elf_link_hash_entry *) bh;
1414 /* In this case the symbol named SHORTNAME is overriding the
1415 indirect symbol we want to add. We were planning on making
1416 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1417 is the name without a version. NAME is the fully versioned
1418 name, and it is the default version.
1420 Overriding means that we already saw a definition for the
1421 symbol SHORTNAME in a regular object, and it is overriding
1422 the symbol defined in the dynamic object.
1424 When this happens, we actually want to change NAME, the
1425 symbol we just added, to refer to SHORTNAME. This will cause
1426 references to NAME in the shared object to become references
1427 to SHORTNAME in the regular object. This is what we expect
1428 when we override a function in a shared object: that the
1429 references in the shared object will be mapped to the
1430 definition in the regular object. */
1432 while (hi->root.type == bfd_link_hash_indirect
1433 || hi->root.type == bfd_link_hash_warning)
1434 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1436 h->root.type = bfd_link_hash_indirect;
1437 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1441 hi->ref_dynamic = 1;
1445 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1450 /* Now set HI to H, so that the following code will set the
1451 other fields correctly. */
1455 /* If there is a duplicate definition somewhere, then HI may not
1456 point to an indirect symbol. We will have reported an error to
1457 the user in that case. */
1459 if (hi->root.type == bfd_link_hash_indirect)
1461 struct elf_link_hash_entry *ht;
1463 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1464 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1466 /* See if the new flags lead us to realize that the symbol must
1478 if (hi->ref_regular)
1484 /* We also need to define an indirection from the nondefault version
1488 len = strlen (name);
1489 shortname = bfd_hash_allocate (&info->hash->table, len);
1490 if (shortname == NULL)
1492 memcpy (shortname, name, shortlen);
1493 memcpy (shortname + shortlen, p + 1, len - shortlen);
1495 /* Once again, merge with any existing symbol. */
1496 type_change_ok = FALSE;
1497 size_change_ok = FALSE;
1499 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1500 NULL, &hi, &skip, &override,
1501 &type_change_ok, &size_change_ok))
1509 /* Here SHORTNAME is a versioned name, so we don't expect to see
1510 the type of override we do in the case above unless it is
1511 overridden by a versioned definition. */
1512 if (hi->root.type != bfd_link_hash_defined
1513 && hi->root.type != bfd_link_hash_defweak)
1514 (*_bfd_error_handler)
1515 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1521 if (! (_bfd_generic_link_add_one_symbol
1522 (info, abfd, shortname, BSF_INDIRECT,
1523 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1525 hi = (struct elf_link_hash_entry *) bh;
1527 /* If there is a duplicate definition somewhere, then HI may not
1528 point to an indirect symbol. We will have reported an error
1529 to the user in that case. */
1531 if (hi->root.type == bfd_link_hash_indirect)
1533 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1535 /* See if the new flags lead us to realize that the symbol
1547 if (hi->ref_regular)
1557 /* This routine is used to export all defined symbols into the dynamic
1558 symbol table. It is called via elf_link_hash_traverse. */
1561 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1563 struct elf_info_failed *eif = data;
1565 /* Ignore indirect symbols. These are added by the versioning code. */
1566 if (h->root.type == bfd_link_hash_indirect)
1569 if (h->root.type == bfd_link_hash_warning)
1570 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1572 if (h->dynindx == -1
1576 struct bfd_elf_version_tree *t;
1577 struct bfd_elf_version_expr *d;
1579 for (t = eif->verdefs; t != NULL; t = t->next)
1581 if (t->globals.list != NULL)
1583 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1588 if (t->locals.list != NULL)
1590 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1599 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1610 /* Look through the symbols which are defined in other shared
1611 libraries and referenced here. Update the list of version
1612 dependencies. This will be put into the .gnu.version_r section.
1613 This function is called via elf_link_hash_traverse. */
1616 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1619 struct elf_find_verdep_info *rinfo = data;
1620 Elf_Internal_Verneed *t;
1621 Elf_Internal_Vernaux *a;
1624 if (h->root.type == bfd_link_hash_warning)
1625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1627 /* We only care about symbols defined in shared objects with version
1632 || h->verinfo.verdef == NULL)
1635 /* See if we already know about this version. */
1636 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1638 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1641 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1642 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1648 /* This is a new version. Add it to tree we are building. */
1653 t = bfd_zalloc (rinfo->output_bfd, amt);
1656 rinfo->failed = TRUE;
1660 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1661 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1662 elf_tdata (rinfo->output_bfd)->verref = t;
1666 a = bfd_zalloc (rinfo->output_bfd, amt);
1668 /* Note that we are copying a string pointer here, and testing it
1669 above. If bfd_elf_string_from_elf_section is ever changed to
1670 discard the string data when low in memory, this will have to be
1672 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1674 a->vna_flags = h->verinfo.verdef->vd_flags;
1675 a->vna_nextptr = t->vn_auxptr;
1677 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1680 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1687 /* Figure out appropriate versions for all the symbols. We may not
1688 have the version number script until we have read all of the input
1689 files, so until that point we don't know which symbols should be
1690 local. This function is called via elf_link_hash_traverse. */
1693 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1695 struct elf_assign_sym_version_info *sinfo;
1696 struct bfd_link_info *info;
1697 const struct elf_backend_data *bed;
1698 struct elf_info_failed eif;
1705 if (h->root.type == bfd_link_hash_warning)
1706 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1708 /* Fix the symbol flags. */
1711 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1714 sinfo->failed = TRUE;
1718 /* We only need version numbers for symbols defined in regular
1720 if (!h->def_regular)
1723 bed = get_elf_backend_data (sinfo->output_bfd);
1724 p = strchr (h->root.root.string, ELF_VER_CHR);
1725 if (p != NULL && h->verinfo.vertree == NULL)
1727 struct bfd_elf_version_tree *t;
1732 /* There are two consecutive ELF_VER_CHR characters if this is
1733 not a hidden symbol. */
1735 if (*p == ELF_VER_CHR)
1741 /* If there is no version string, we can just return out. */
1749 /* Look for the version. If we find it, it is no longer weak. */
1750 for (t = sinfo->verdefs; t != NULL; t = t->next)
1752 if (strcmp (t->name, p) == 0)
1756 struct bfd_elf_version_expr *d;
1758 len = p - h->root.root.string;
1759 alc = bfd_malloc (len);
1762 memcpy (alc, h->root.root.string, len - 1);
1763 alc[len - 1] = '\0';
1764 if (alc[len - 2] == ELF_VER_CHR)
1765 alc[len - 2] = '\0';
1767 h->verinfo.vertree = t;
1771 if (t->globals.list != NULL)
1772 d = (*t->match) (&t->globals, NULL, alc);
1774 /* See if there is anything to force this symbol to
1776 if (d == NULL && t->locals.list != NULL)
1778 d = (*t->match) (&t->locals, NULL, alc);
1782 && ! info->export_dynamic)
1783 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1791 /* If we are building an application, we need to create a
1792 version node for this version. */
1793 if (t == NULL && info->executable)
1795 struct bfd_elf_version_tree **pp;
1798 /* If we aren't going to export this symbol, we don't need
1799 to worry about it. */
1800 if (h->dynindx == -1)
1804 t = bfd_zalloc (sinfo->output_bfd, amt);
1807 sinfo->failed = TRUE;
1812 t->name_indx = (unsigned int) -1;
1816 /* Don't count anonymous version tag. */
1817 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1819 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1821 t->vernum = version_index;
1825 h->verinfo.vertree = t;
1829 /* We could not find the version for a symbol when
1830 generating a shared archive. Return an error. */
1831 (*_bfd_error_handler)
1832 (_("%B: undefined versioned symbol name %s"),
1833 sinfo->output_bfd, h->root.root.string);
1834 bfd_set_error (bfd_error_bad_value);
1835 sinfo->failed = TRUE;
1843 /* If we don't have a version for this symbol, see if we can find
1845 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1847 struct bfd_elf_version_tree *t;
1848 struct bfd_elf_version_tree *local_ver;
1849 struct bfd_elf_version_expr *d;
1851 /* See if can find what version this symbol is in. If the
1852 symbol is supposed to be local, then don't actually register
1855 for (t = sinfo->verdefs; t != NULL; t = t->next)
1857 if (t->globals.list != NULL)
1859 bfd_boolean matched;
1863 while ((d = (*t->match) (&t->globals, d,
1864 h->root.root.string)) != NULL)
1869 /* There is a version without definition. Make
1870 the symbol the default definition for this
1872 h->verinfo.vertree = t;
1880 /* There is no undefined version for this symbol. Hide the
1882 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1885 if (t->locals.list != NULL)
1888 while ((d = (*t->match) (&t->locals, d,
1889 h->root.root.string)) != NULL)
1892 /* If the match is "*", keep looking for a more
1893 explicit, perhaps even global, match.
1894 XXX: Shouldn't this be !d->wildcard instead? */
1895 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1904 if (local_ver != NULL)
1906 h->verinfo.vertree = local_ver;
1907 if (h->dynindx != -1
1909 && ! info->export_dynamic)
1911 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1919 /* Read and swap the relocs from the section indicated by SHDR. This
1920 may be either a REL or a RELA section. The relocations are
1921 translated into RELA relocations and stored in INTERNAL_RELOCS,
1922 which should have already been allocated to contain enough space.
1923 The EXTERNAL_RELOCS are a buffer where the external form of the
1924 relocations should be stored.
1926 Returns FALSE if something goes wrong. */
1929 elf_link_read_relocs_from_section (bfd *abfd,
1931 Elf_Internal_Shdr *shdr,
1932 void *external_relocs,
1933 Elf_Internal_Rela *internal_relocs)
1935 const struct elf_backend_data *bed;
1936 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1937 const bfd_byte *erela;
1938 const bfd_byte *erelaend;
1939 Elf_Internal_Rela *irela;
1940 Elf_Internal_Shdr *symtab_hdr;
1943 /* Position ourselves at the start of the section. */
1944 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1947 /* Read the relocations. */
1948 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1951 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1952 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1954 bed = get_elf_backend_data (abfd);
1956 /* Convert the external relocations to the internal format. */
1957 if (shdr->sh_entsize == bed->s->sizeof_rel)
1958 swap_in = bed->s->swap_reloc_in;
1959 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1960 swap_in = bed->s->swap_reloca_in;
1963 bfd_set_error (bfd_error_wrong_format);
1967 erela = external_relocs;
1968 erelaend = erela + shdr->sh_size;
1969 irela = internal_relocs;
1970 while (erela < erelaend)
1974 (*swap_in) (abfd, erela, irela);
1975 r_symndx = ELF32_R_SYM (irela->r_info);
1976 if (bed->s->arch_size == 64)
1978 if ((size_t) r_symndx >= nsyms)
1980 (*_bfd_error_handler)
1981 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
1982 " for offset 0x%lx in section `%A'"),
1984 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
1985 bfd_set_error (bfd_error_bad_value);
1988 irela += bed->s->int_rels_per_ext_rel;
1989 erela += shdr->sh_entsize;
1995 /* Read and swap the relocs for a section O. They may have been
1996 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1997 not NULL, they are used as buffers to read into. They are known to
1998 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1999 the return value is allocated using either malloc or bfd_alloc,
2000 according to the KEEP_MEMORY argument. If O has two relocation
2001 sections (both REL and RELA relocations), then the REL_HDR
2002 relocations will appear first in INTERNAL_RELOCS, followed by the
2003 REL_HDR2 relocations. */
2006 _bfd_elf_link_read_relocs (bfd *abfd,
2008 void *external_relocs,
2009 Elf_Internal_Rela *internal_relocs,
2010 bfd_boolean keep_memory)
2012 Elf_Internal_Shdr *rel_hdr;
2013 void *alloc1 = NULL;
2014 Elf_Internal_Rela *alloc2 = NULL;
2015 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2017 if (elf_section_data (o)->relocs != NULL)
2018 return elf_section_data (o)->relocs;
2020 if (o->reloc_count == 0)
2023 rel_hdr = &elf_section_data (o)->rel_hdr;
2025 if (internal_relocs == NULL)
2029 size = o->reloc_count;
2030 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2032 internal_relocs = bfd_alloc (abfd, size);
2034 internal_relocs = alloc2 = bfd_malloc (size);
2035 if (internal_relocs == NULL)
2039 if (external_relocs == NULL)
2041 bfd_size_type size = rel_hdr->sh_size;
2043 if (elf_section_data (o)->rel_hdr2)
2044 size += elf_section_data (o)->rel_hdr2->sh_size;
2045 alloc1 = bfd_malloc (size);
2048 external_relocs = alloc1;
2051 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2055 if (elf_section_data (o)->rel_hdr2
2056 && (!elf_link_read_relocs_from_section
2058 elf_section_data (o)->rel_hdr2,
2059 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2060 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2061 * bed->s->int_rels_per_ext_rel))))
2064 /* Cache the results for next time, if we can. */
2066 elf_section_data (o)->relocs = internal_relocs;
2071 /* Don't free alloc2, since if it was allocated we are passing it
2072 back (under the name of internal_relocs). */
2074 return internal_relocs;
2084 /* Compute the size of, and allocate space for, REL_HDR which is the
2085 section header for a section containing relocations for O. */
2088 _bfd_elf_link_size_reloc_section (bfd *abfd,
2089 Elf_Internal_Shdr *rel_hdr,
2092 bfd_size_type reloc_count;
2093 bfd_size_type num_rel_hashes;
2095 /* Figure out how many relocations there will be. */
2096 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2097 reloc_count = elf_section_data (o)->rel_count;
2099 reloc_count = elf_section_data (o)->rel_count2;
2101 num_rel_hashes = o->reloc_count;
2102 if (num_rel_hashes < reloc_count)
2103 num_rel_hashes = reloc_count;
2105 /* That allows us to calculate the size of the section. */
2106 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2108 /* The contents field must last into write_object_contents, so we
2109 allocate it with bfd_alloc rather than malloc. Also since we
2110 cannot be sure that the contents will actually be filled in,
2111 we zero the allocated space. */
2112 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2113 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2116 /* We only allocate one set of hash entries, so we only do it the
2117 first time we are called. */
2118 if (elf_section_data (o)->rel_hashes == NULL
2121 struct elf_link_hash_entry **p;
2123 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2127 elf_section_data (o)->rel_hashes = p;
2133 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2134 originated from the section given by INPUT_REL_HDR) to the
2138 _bfd_elf_link_output_relocs (bfd *output_bfd,
2139 asection *input_section,
2140 Elf_Internal_Shdr *input_rel_hdr,
2141 Elf_Internal_Rela *internal_relocs)
2143 Elf_Internal_Rela *irela;
2144 Elf_Internal_Rela *irelaend;
2146 Elf_Internal_Shdr *output_rel_hdr;
2147 asection *output_section;
2148 unsigned int *rel_countp = NULL;
2149 const struct elf_backend_data *bed;
2150 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2152 output_section = input_section->output_section;
2153 output_rel_hdr = NULL;
2155 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2156 == input_rel_hdr->sh_entsize)
2158 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2159 rel_countp = &elf_section_data (output_section)->rel_count;
2161 else if (elf_section_data (output_section)->rel_hdr2
2162 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2163 == input_rel_hdr->sh_entsize))
2165 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2166 rel_countp = &elf_section_data (output_section)->rel_count2;
2170 (*_bfd_error_handler)
2171 (_("%B: relocation size mismatch in %B section %A"),
2172 output_bfd, input_section->owner, input_section);
2173 bfd_set_error (bfd_error_wrong_object_format);
2177 bed = get_elf_backend_data (output_bfd);
2178 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2179 swap_out = bed->s->swap_reloc_out;
2180 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2181 swap_out = bed->s->swap_reloca_out;
2185 erel = output_rel_hdr->contents;
2186 erel += *rel_countp * input_rel_hdr->sh_entsize;
2187 irela = internal_relocs;
2188 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2189 * bed->s->int_rels_per_ext_rel);
2190 while (irela < irelaend)
2192 (*swap_out) (output_bfd, irela, erel);
2193 irela += bed->s->int_rels_per_ext_rel;
2194 erel += input_rel_hdr->sh_entsize;
2197 /* Bump the counter, so that we know where to add the next set of
2199 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2204 /* Fix up the flags for a symbol. This handles various cases which
2205 can only be fixed after all the input files are seen. This is
2206 currently called by both adjust_dynamic_symbol and
2207 assign_sym_version, which is unnecessary but perhaps more robust in
2208 the face of future changes. */
2211 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2212 struct elf_info_failed *eif)
2214 /* If this symbol was mentioned in a non-ELF file, try to set
2215 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2216 permit a non-ELF file to correctly refer to a symbol defined in
2217 an ELF dynamic object. */
2220 while (h->root.type == bfd_link_hash_indirect)
2221 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2223 if (h->root.type != bfd_link_hash_defined
2224 && h->root.type != bfd_link_hash_defweak)
2227 h->ref_regular_nonweak = 1;
2231 if (h->root.u.def.section->owner != NULL
2232 && (bfd_get_flavour (h->root.u.def.section->owner)
2233 == bfd_target_elf_flavour))
2236 h->ref_regular_nonweak = 1;
2242 if (h->dynindx == -1
2246 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2255 /* Unfortunately, NON_ELF is only correct if the symbol
2256 was first seen in a non-ELF file. Fortunately, if the symbol
2257 was first seen in an ELF file, we're probably OK unless the
2258 symbol was defined in a non-ELF file. Catch that case here.
2259 FIXME: We're still in trouble if the symbol was first seen in
2260 a dynamic object, and then later in a non-ELF regular object. */
2261 if ((h->root.type == bfd_link_hash_defined
2262 || h->root.type == bfd_link_hash_defweak)
2264 && (h->root.u.def.section->owner != NULL
2265 ? (bfd_get_flavour (h->root.u.def.section->owner)
2266 != bfd_target_elf_flavour)
2267 : (bfd_is_abs_section (h->root.u.def.section)
2268 && !h->def_dynamic)))
2272 /* If this is a final link, and the symbol was defined as a common
2273 symbol in a regular object file, and there was no definition in
2274 any dynamic object, then the linker will have allocated space for
2275 the symbol in a common section but the DEF_REGULAR
2276 flag will not have been set. */
2277 if (h->root.type == bfd_link_hash_defined
2281 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2284 /* If -Bsymbolic was used (which means to bind references to global
2285 symbols to the definition within the shared object), and this
2286 symbol was defined in a regular object, then it actually doesn't
2287 need a PLT entry. Likewise, if the symbol has non-default
2288 visibility. If the symbol has hidden or internal visibility, we
2289 will force it local. */
2291 && eif->info->shared
2292 && is_elf_hash_table (eif->info->hash)
2293 && (eif->info->symbolic
2294 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2297 const struct elf_backend_data *bed;
2298 bfd_boolean force_local;
2300 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2302 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2303 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2304 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2307 /* If a weak undefined symbol has non-default visibility, we also
2308 hide it from the dynamic linker. */
2309 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2310 && h->root.type == bfd_link_hash_undefweak)
2312 const struct elf_backend_data *bed;
2313 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2314 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2317 /* If this is a weak defined symbol in a dynamic object, and we know
2318 the real definition in the dynamic object, copy interesting flags
2319 over to the real definition. */
2320 if (h->u.weakdef != NULL)
2322 struct elf_link_hash_entry *weakdef;
2324 weakdef = h->u.weakdef;
2325 if (h->root.type == bfd_link_hash_indirect)
2326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2328 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2329 || h->root.type == bfd_link_hash_defweak);
2330 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2331 || weakdef->root.type == bfd_link_hash_defweak);
2332 BFD_ASSERT (weakdef->def_dynamic);
2334 /* If the real definition is defined by a regular object file,
2335 don't do anything special. See the longer description in
2336 _bfd_elf_adjust_dynamic_symbol, below. */
2337 if (weakdef->def_regular)
2338 h->u.weakdef = NULL;
2341 const struct elf_backend_data *bed;
2343 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2344 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2351 /* Make the backend pick a good value for a dynamic symbol. This is
2352 called via elf_link_hash_traverse, and also calls itself
2356 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2358 struct elf_info_failed *eif = data;
2360 const struct elf_backend_data *bed;
2362 if (! is_elf_hash_table (eif->info->hash))
2365 if (h->root.type == bfd_link_hash_warning)
2367 h->plt = elf_hash_table (eif->info)->init_offset;
2368 h->got = elf_hash_table (eif->info)->init_offset;
2370 /* When warning symbols are created, they **replace** the "real"
2371 entry in the hash table, thus we never get to see the real
2372 symbol in a hash traversal. So look at it now. */
2373 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2376 /* Ignore indirect symbols. These are added by the versioning code. */
2377 if (h->root.type == bfd_link_hash_indirect)
2380 /* Fix the symbol flags. */
2381 if (! _bfd_elf_fix_symbol_flags (h, eif))
2384 /* If this symbol does not require a PLT entry, and it is not
2385 defined by a dynamic object, or is not referenced by a regular
2386 object, ignore it. We do have to handle a weak defined symbol,
2387 even if no regular object refers to it, if we decided to add it
2388 to the dynamic symbol table. FIXME: Do we normally need to worry
2389 about symbols which are defined by one dynamic object and
2390 referenced by another one? */
2395 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2397 h->plt = elf_hash_table (eif->info)->init_offset;
2401 /* If we've already adjusted this symbol, don't do it again. This
2402 can happen via a recursive call. */
2403 if (h->dynamic_adjusted)
2406 /* Don't look at this symbol again. Note that we must set this
2407 after checking the above conditions, because we may look at a
2408 symbol once, decide not to do anything, and then get called
2409 recursively later after REF_REGULAR is set below. */
2410 h->dynamic_adjusted = 1;
2412 /* If this is a weak definition, and we know a real definition, and
2413 the real symbol is not itself defined by a regular object file,
2414 then get a good value for the real definition. We handle the
2415 real symbol first, for the convenience of the backend routine.
2417 Note that there is a confusing case here. If the real definition
2418 is defined by a regular object file, we don't get the real symbol
2419 from the dynamic object, but we do get the weak symbol. If the
2420 processor backend uses a COPY reloc, then if some routine in the
2421 dynamic object changes the real symbol, we will not see that
2422 change in the corresponding weak symbol. This is the way other
2423 ELF linkers work as well, and seems to be a result of the shared
2426 I will clarify this issue. Most SVR4 shared libraries define the
2427 variable _timezone and define timezone as a weak synonym. The
2428 tzset call changes _timezone. If you write
2429 extern int timezone;
2431 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2432 you might expect that, since timezone is a synonym for _timezone,
2433 the same number will print both times. However, if the processor
2434 backend uses a COPY reloc, then actually timezone will be copied
2435 into your process image, and, since you define _timezone
2436 yourself, _timezone will not. Thus timezone and _timezone will
2437 wind up at different memory locations. The tzset call will set
2438 _timezone, leaving timezone unchanged. */
2440 if (h->u.weakdef != NULL)
2442 /* If we get to this point, we know there is an implicit
2443 reference by a regular object file via the weak symbol H.
2444 FIXME: Is this really true? What if the traversal finds
2445 H->U.WEAKDEF before it finds H? */
2446 h->u.weakdef->ref_regular = 1;
2448 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2452 /* If a symbol has no type and no size and does not require a PLT
2453 entry, then we are probably about to do the wrong thing here: we
2454 are probably going to create a COPY reloc for an empty object.
2455 This case can arise when a shared object is built with assembly
2456 code, and the assembly code fails to set the symbol type. */
2458 && h->type == STT_NOTYPE
2460 (*_bfd_error_handler)
2461 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2462 h->root.root.string);
2464 dynobj = elf_hash_table (eif->info)->dynobj;
2465 bed = get_elf_backend_data (dynobj);
2466 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2475 /* Adjust all external symbols pointing into SEC_MERGE sections
2476 to reflect the object merging within the sections. */
2479 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2483 if (h->root.type == bfd_link_hash_warning)
2484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2486 if ((h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak)
2488 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2489 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2491 bfd *output_bfd = data;
2493 h->root.u.def.value =
2494 _bfd_merged_section_offset (output_bfd,
2495 &h->root.u.def.section,
2496 elf_section_data (sec)->sec_info,
2497 h->root.u.def.value);
2503 /* Returns false if the symbol referred to by H should be considered
2504 to resolve local to the current module, and true if it should be
2505 considered to bind dynamically. */
2508 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2509 struct bfd_link_info *info,
2510 bfd_boolean ignore_protected)
2512 bfd_boolean binding_stays_local_p;
2517 while (h->root.type == bfd_link_hash_indirect
2518 || h->root.type == bfd_link_hash_warning)
2519 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2521 /* If it was forced local, then clearly it's not dynamic. */
2522 if (h->dynindx == -1)
2524 if (h->forced_local)
2527 /* Identify the cases where name binding rules say that a
2528 visible symbol resolves locally. */
2529 binding_stays_local_p = info->executable || info->symbolic;
2531 switch (ELF_ST_VISIBILITY (h->other))
2538 /* Proper resolution for function pointer equality may require
2539 that these symbols perhaps be resolved dynamically, even though
2540 we should be resolving them to the current module. */
2541 if (!ignore_protected || h->type != STT_FUNC)
2542 binding_stays_local_p = TRUE;
2549 /* If it isn't defined locally, then clearly it's dynamic. */
2550 if (!h->def_regular)
2553 /* Otherwise, the symbol is dynamic if binding rules don't tell
2554 us that it remains local. */
2555 return !binding_stays_local_p;
2558 /* Return true if the symbol referred to by H should be considered
2559 to resolve local to the current module, and false otherwise. Differs
2560 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2561 undefined symbols and weak symbols. */
2564 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2565 struct bfd_link_info *info,
2566 bfd_boolean local_protected)
2568 /* If it's a local sym, of course we resolve locally. */
2572 /* Common symbols that become definitions don't get the DEF_REGULAR
2573 flag set, so test it first, and don't bail out. */
2574 if (ELF_COMMON_DEF_P (h))
2576 /* If we don't have a definition in a regular file, then we can't
2577 resolve locally. The sym is either undefined or dynamic. */
2578 else if (!h->def_regular)
2581 /* Forced local symbols resolve locally. */
2582 if (h->forced_local)
2585 /* As do non-dynamic symbols. */
2586 if (h->dynindx == -1)
2589 /* At this point, we know the symbol is defined and dynamic. In an
2590 executable it must resolve locally, likewise when building symbolic
2591 shared libraries. */
2592 if (info->executable || info->symbolic)
2595 /* Now deal with defined dynamic symbols in shared libraries. Ones
2596 with default visibility might not resolve locally. */
2597 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2600 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2601 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2604 /* STV_PROTECTED non-function symbols are local. */
2605 if (h->type != STT_FUNC)
2608 /* Function pointer equality tests may require that STV_PROTECTED
2609 symbols be treated as dynamic symbols, even when we know that the
2610 dynamic linker will resolve them locally. */
2611 return local_protected;
2614 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2615 aligned. Returns the first TLS output section. */
2617 struct bfd_section *
2618 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2620 struct bfd_section *sec, *tls;
2621 unsigned int align = 0;
2623 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2624 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2628 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2629 if (sec->alignment_power > align)
2630 align = sec->alignment_power;
2632 elf_hash_table (info)->tls_sec = tls;
2634 /* Ensure the alignment of the first section is the largest alignment,
2635 so that the tls segment starts aligned. */
2637 tls->alignment_power = align;
2642 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2644 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2645 Elf_Internal_Sym *sym)
2647 /* Local symbols do not count, but target specific ones might. */
2648 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2649 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2652 /* Function symbols do not count. */
2653 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2656 /* If the section is undefined, then so is the symbol. */
2657 if (sym->st_shndx == SHN_UNDEF)
2660 /* If the symbol is defined in the common section, then
2661 it is a common definition and so does not count. */
2662 if (sym->st_shndx == SHN_COMMON)
2665 /* If the symbol is in a target specific section then we
2666 must rely upon the backend to tell us what it is. */
2667 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2668 /* FIXME - this function is not coded yet:
2670 return _bfd_is_global_symbol_definition (abfd, sym);
2672 Instead for now assume that the definition is not global,
2673 Even if this is wrong, at least the linker will behave
2674 in the same way that it used to do. */
2680 /* Search the symbol table of the archive element of the archive ABFD
2681 whose archive map contains a mention of SYMDEF, and determine if
2682 the symbol is defined in this element. */
2684 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2686 Elf_Internal_Shdr * hdr;
2687 bfd_size_type symcount;
2688 bfd_size_type extsymcount;
2689 bfd_size_type extsymoff;
2690 Elf_Internal_Sym *isymbuf;
2691 Elf_Internal_Sym *isym;
2692 Elf_Internal_Sym *isymend;
2695 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2699 if (! bfd_check_format (abfd, bfd_object))
2702 /* If we have already included the element containing this symbol in the
2703 link then we do not need to include it again. Just claim that any symbol
2704 it contains is not a definition, so that our caller will not decide to
2705 (re)include this element. */
2706 if (abfd->archive_pass)
2709 /* Select the appropriate symbol table. */
2710 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2711 hdr = &elf_tdata (abfd)->symtab_hdr;
2713 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2715 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2717 /* The sh_info field of the symtab header tells us where the
2718 external symbols start. We don't care about the local symbols. */
2719 if (elf_bad_symtab (abfd))
2721 extsymcount = symcount;
2726 extsymcount = symcount - hdr->sh_info;
2727 extsymoff = hdr->sh_info;
2730 if (extsymcount == 0)
2733 /* Read in the symbol table. */
2734 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2736 if (isymbuf == NULL)
2739 /* Scan the symbol table looking for SYMDEF. */
2741 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2745 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2750 if (strcmp (name, symdef->name) == 0)
2752 result = is_global_data_symbol_definition (abfd, isym);
2762 /* Add an entry to the .dynamic table. */
2765 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2769 struct elf_link_hash_table *hash_table;
2770 const struct elf_backend_data *bed;
2772 bfd_size_type newsize;
2773 bfd_byte *newcontents;
2774 Elf_Internal_Dyn dyn;
2776 hash_table = elf_hash_table (info);
2777 if (! is_elf_hash_table (hash_table))
2780 if (info->warn_shared_textrel && info->shared && tag == DT_TEXTREL)
2782 (_("warning: creating a DT_TEXTREL in a shared object."));
2784 bed = get_elf_backend_data (hash_table->dynobj);
2785 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2786 BFD_ASSERT (s != NULL);
2788 newsize = s->size + bed->s->sizeof_dyn;
2789 newcontents = bfd_realloc (s->contents, newsize);
2790 if (newcontents == NULL)
2794 dyn.d_un.d_val = val;
2795 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2798 s->contents = newcontents;
2803 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2804 otherwise just check whether one already exists. Returns -1 on error,
2805 1 if a DT_NEEDED tag already exists, and 0 on success. */
2808 elf_add_dt_needed_tag (bfd *abfd,
2809 struct bfd_link_info *info,
2813 struct elf_link_hash_table *hash_table;
2814 bfd_size_type oldsize;
2815 bfd_size_type strindex;
2817 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
2820 hash_table = elf_hash_table (info);
2821 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2822 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2823 if (strindex == (bfd_size_type) -1)
2826 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2829 const struct elf_backend_data *bed;
2832 bed = get_elf_backend_data (hash_table->dynobj);
2833 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2835 for (extdyn = sdyn->contents;
2836 extdyn < sdyn->contents + sdyn->size;
2837 extdyn += bed->s->sizeof_dyn)
2839 Elf_Internal_Dyn dyn;
2841 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2842 if (dyn.d_tag == DT_NEEDED
2843 && dyn.d_un.d_val == strindex)
2845 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2853 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
2856 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2860 /* We were just checking for existence of the tag. */
2861 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2866 /* Called via elf_link_hash_traverse, elf_smash_syms sets all symbols
2867 belonging to NOT_NEEDED to bfd_link_hash_new. We know there are no
2868 references from regular objects to these symbols.
2870 ??? Should we do something about references from other dynamic
2871 obects? If not, we potentially lose some warnings about undefined
2872 symbols. But how can we recover the initial undefined / undefweak
2875 struct elf_smash_syms_data
2878 struct elf_link_hash_table *htab;
2879 bfd_boolean twiddled;
2883 elf_smash_syms (struct elf_link_hash_entry *h, void *data)
2885 struct elf_smash_syms_data *inf = (struct elf_smash_syms_data *) data;
2886 struct bfd_link_hash_entry *bh;
2888 switch (h->root.type)
2891 case bfd_link_hash_new:
2894 case bfd_link_hash_undefined:
2895 if (h->root.u.undef.abfd != inf->not_needed)
2897 if (h->root.u.undef.weak != NULL
2898 && h->root.u.undef.weak != inf->not_needed)
2900 /* Symbol was undefweak in u.undef.weak bfd, and has become
2901 undefined in as-needed lib. Restore weak. */
2902 h->root.type = bfd_link_hash_undefweak;
2903 h->root.u.undef.abfd = h->root.u.undef.weak;
2904 if (h->root.u.undef.next != NULL
2905 || inf->htab->root.undefs_tail == &h->root)
2906 inf->twiddled = TRUE;
2911 case bfd_link_hash_undefweak:
2912 if (h->root.u.undef.abfd != inf->not_needed)
2916 case bfd_link_hash_defined:
2917 case bfd_link_hash_defweak:
2918 if (h->root.u.def.section->owner != inf->not_needed)
2922 case bfd_link_hash_common:
2923 if (h->root.u.c.p->section->owner != inf->not_needed)
2927 case bfd_link_hash_warning:
2928 case bfd_link_hash_indirect:
2929 elf_smash_syms ((struct elf_link_hash_entry *) h->root.u.i.link, data);
2930 if (h->root.u.i.link->type != bfd_link_hash_new)
2932 if (h->root.u.i.link->u.undef.abfd != inf->not_needed)
2937 /* There is no way we can undo symbol table state from defined or
2938 defweak back to undefined. */
2942 /* Set sym back to newly created state, but keep undef.next if it is
2943 being used as a list pointer. */
2944 bh = h->root.u.undef.next;
2947 if (bh != NULL || inf->htab->root.undefs_tail == &h->root)
2948 inf->twiddled = TRUE;
2949 (*inf->htab->root.table.newfunc) (&h->root.root,
2950 &inf->htab->root.table,
2951 h->root.root.string);
2952 h->root.u.undef.next = bh;
2953 h->root.u.undef.abfd = inf->not_needed;
2958 /* Sort symbol by value and section. */
2960 elf_sort_symbol (const void *arg1, const void *arg2)
2962 const struct elf_link_hash_entry *h1;
2963 const struct elf_link_hash_entry *h2;
2964 bfd_signed_vma vdiff;
2966 h1 = *(const struct elf_link_hash_entry **) arg1;
2967 h2 = *(const struct elf_link_hash_entry **) arg2;
2968 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2970 return vdiff > 0 ? 1 : -1;
2973 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2975 return sdiff > 0 ? 1 : -1;
2980 /* This function is used to adjust offsets into .dynstr for
2981 dynamic symbols. This is called via elf_link_hash_traverse. */
2984 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2986 struct elf_strtab_hash *dynstr = data;
2988 if (h->root.type == bfd_link_hash_warning)
2989 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2991 if (h->dynindx != -1)
2992 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2996 /* Assign string offsets in .dynstr, update all structures referencing
3000 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3002 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3003 struct elf_link_local_dynamic_entry *entry;
3004 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3005 bfd *dynobj = hash_table->dynobj;
3008 const struct elf_backend_data *bed;
3011 _bfd_elf_strtab_finalize (dynstr);
3012 size = _bfd_elf_strtab_size (dynstr);
3014 bed = get_elf_backend_data (dynobj);
3015 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3016 BFD_ASSERT (sdyn != NULL);
3018 /* Update all .dynamic entries referencing .dynstr strings. */
3019 for (extdyn = sdyn->contents;
3020 extdyn < sdyn->contents + sdyn->size;
3021 extdyn += bed->s->sizeof_dyn)
3023 Elf_Internal_Dyn dyn;
3025 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3029 dyn.d_un.d_val = size;
3037 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3042 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3045 /* Now update local dynamic symbols. */
3046 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3047 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3048 entry->isym.st_name);
3050 /* And the rest of dynamic symbols. */
3051 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3053 /* Adjust version definitions. */
3054 if (elf_tdata (output_bfd)->cverdefs)
3059 Elf_Internal_Verdef def;
3060 Elf_Internal_Verdaux defaux;
3062 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3066 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3068 p += sizeof (Elf_External_Verdef);
3069 if (def.vd_aux != sizeof (Elf_External_Verdef))
3071 for (i = 0; i < def.vd_cnt; ++i)
3073 _bfd_elf_swap_verdaux_in (output_bfd,
3074 (Elf_External_Verdaux *) p, &defaux);
3075 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3077 _bfd_elf_swap_verdaux_out (output_bfd,
3078 &defaux, (Elf_External_Verdaux *) p);
3079 p += sizeof (Elf_External_Verdaux);
3082 while (def.vd_next);
3085 /* Adjust version references. */
3086 if (elf_tdata (output_bfd)->verref)
3091 Elf_Internal_Verneed need;
3092 Elf_Internal_Vernaux needaux;
3094 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3098 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3100 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3101 _bfd_elf_swap_verneed_out (output_bfd, &need,
3102 (Elf_External_Verneed *) p);
3103 p += sizeof (Elf_External_Verneed);
3104 for (i = 0; i < need.vn_cnt; ++i)
3106 _bfd_elf_swap_vernaux_in (output_bfd,
3107 (Elf_External_Vernaux *) p, &needaux);
3108 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3110 _bfd_elf_swap_vernaux_out (output_bfd,
3112 (Elf_External_Vernaux *) p);
3113 p += sizeof (Elf_External_Vernaux);
3116 while (need.vn_next);
3122 /* Add symbols from an ELF object file to the linker hash table. */
3125 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3127 bfd_boolean (*add_symbol_hook)
3128 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
3129 const char **, flagword *, asection **, bfd_vma *);
3130 bfd_boolean (*check_relocs)
3131 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
3132 bfd_boolean (*check_directives)
3133 (bfd *, struct bfd_link_info *);
3134 bfd_boolean collect;
3135 Elf_Internal_Shdr *hdr;
3136 bfd_size_type symcount;
3137 bfd_size_type extsymcount;
3138 bfd_size_type extsymoff;
3139 struct elf_link_hash_entry **sym_hash;
3140 bfd_boolean dynamic;
3141 Elf_External_Versym *extversym = NULL;
3142 Elf_External_Versym *ever;
3143 struct elf_link_hash_entry *weaks;
3144 struct elf_link_hash_entry **nondeflt_vers = NULL;
3145 bfd_size_type nondeflt_vers_cnt = 0;
3146 Elf_Internal_Sym *isymbuf = NULL;
3147 Elf_Internal_Sym *isym;
3148 Elf_Internal_Sym *isymend;
3149 const struct elf_backend_data *bed;
3150 bfd_boolean add_needed;
3151 struct elf_link_hash_table * hash_table;
3154 hash_table = elf_hash_table (info);
3156 bed = get_elf_backend_data (abfd);
3157 add_symbol_hook = bed->elf_add_symbol_hook;
3158 collect = bed->collect;
3160 if ((abfd->flags & DYNAMIC) == 0)
3166 /* You can't use -r against a dynamic object. Also, there's no
3167 hope of using a dynamic object which does not exactly match
3168 the format of the output file. */
3169 if (info->relocatable
3170 || !is_elf_hash_table (hash_table)
3171 || hash_table->root.creator != abfd->xvec)
3173 if (info->relocatable)
3174 bfd_set_error (bfd_error_invalid_operation);
3176 bfd_set_error (bfd_error_wrong_format);
3181 /* As a GNU extension, any input sections which are named
3182 .gnu.warning.SYMBOL are treated as warning symbols for the given
3183 symbol. This differs from .gnu.warning sections, which generate
3184 warnings when they are included in an output file. */
3185 if (info->executable)
3189 for (s = abfd->sections; s != NULL; s = s->next)
3193 name = bfd_get_section_name (abfd, s);
3194 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
3199 name += sizeof ".gnu.warning." - 1;
3201 /* If this is a shared object, then look up the symbol
3202 in the hash table. If it is there, and it is already
3203 been defined, then we will not be using the entry
3204 from this shared object, so we don't need to warn.
3205 FIXME: If we see the definition in a regular object
3206 later on, we will warn, but we shouldn't. The only
3207 fix is to keep track of what warnings we are supposed
3208 to emit, and then handle them all at the end of the
3212 struct elf_link_hash_entry *h;
3214 h = elf_link_hash_lookup (hash_table, name,
3215 FALSE, FALSE, TRUE);
3217 /* FIXME: What about bfd_link_hash_common? */
3219 && (h->root.type == bfd_link_hash_defined
3220 || h->root.type == bfd_link_hash_defweak))
3222 /* We don't want to issue this warning. Clobber
3223 the section size so that the warning does not
3224 get copied into the output file. */
3231 msg = bfd_alloc (abfd, sz + 1);
3235 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3240 if (! (_bfd_generic_link_add_one_symbol
3241 (info, abfd, name, BSF_WARNING, s, 0, msg,
3242 FALSE, collect, NULL)))
3245 if (! info->relocatable)
3247 /* Clobber the section size so that the warning does
3248 not get copied into the output file. */
3251 /* Also set SEC_EXCLUDE, so that symbols defined in
3252 the warning section don't get copied to the output. */
3253 s->flags |= SEC_EXCLUDE;
3262 /* If we are creating a shared library, create all the dynamic
3263 sections immediately. We need to attach them to something,
3264 so we attach them to this BFD, provided it is the right
3265 format. FIXME: If there are no input BFD's of the same
3266 format as the output, we can't make a shared library. */
3268 && is_elf_hash_table (hash_table)
3269 && hash_table->root.creator == abfd->xvec
3270 && ! hash_table->dynamic_sections_created)
3272 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3276 else if (!is_elf_hash_table (hash_table))
3281 const char *soname = NULL;
3282 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3285 /* ld --just-symbols and dynamic objects don't mix very well.
3286 Test for --just-symbols by looking at info set up by
3287 _bfd_elf_link_just_syms. */
3288 if ((s = abfd->sections) != NULL
3289 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3292 /* If this dynamic lib was specified on the command line with
3293 --as-needed in effect, then we don't want to add a DT_NEEDED
3294 tag unless the lib is actually used. Similary for libs brought
3295 in by another lib's DT_NEEDED. When --no-add-needed is used
3296 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3297 any dynamic library in DT_NEEDED tags in the dynamic lib at
3299 add_needed = (elf_dyn_lib_class (abfd)
3300 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3301 | DYN_NO_NEEDED)) == 0;
3303 s = bfd_get_section_by_name (abfd, ".dynamic");
3309 unsigned long shlink;
3311 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3312 goto error_free_dyn;
3314 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3316 goto error_free_dyn;
3317 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3319 for (extdyn = dynbuf;
3320 extdyn < dynbuf + s->size;
3321 extdyn += bed->s->sizeof_dyn)
3323 Elf_Internal_Dyn dyn;
3325 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3326 if (dyn.d_tag == DT_SONAME)
3328 unsigned int tagv = dyn.d_un.d_val;
3329 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3331 goto error_free_dyn;
3333 if (dyn.d_tag == DT_NEEDED)
3335 struct bfd_link_needed_list *n, **pn;
3337 unsigned int tagv = dyn.d_un.d_val;
3339 amt = sizeof (struct bfd_link_needed_list);
3340 n = bfd_alloc (abfd, amt);
3341 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3342 if (n == NULL || fnm == NULL)
3343 goto error_free_dyn;
3344 amt = strlen (fnm) + 1;
3345 anm = bfd_alloc (abfd, amt);
3347 goto error_free_dyn;
3348 memcpy (anm, fnm, amt);
3352 for (pn = & hash_table->needed;
3358 if (dyn.d_tag == DT_RUNPATH)
3360 struct bfd_link_needed_list *n, **pn;
3362 unsigned int tagv = dyn.d_un.d_val;
3364 amt = sizeof (struct bfd_link_needed_list);
3365 n = bfd_alloc (abfd, amt);
3366 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3367 if (n == NULL || fnm == NULL)
3368 goto error_free_dyn;
3369 amt = strlen (fnm) + 1;
3370 anm = bfd_alloc (abfd, amt);
3372 goto error_free_dyn;
3373 memcpy (anm, fnm, amt);
3377 for (pn = & runpath;
3383 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3384 if (!runpath && dyn.d_tag == DT_RPATH)
3386 struct bfd_link_needed_list *n, **pn;
3388 unsigned int tagv = dyn.d_un.d_val;
3390 amt = sizeof (struct bfd_link_needed_list);
3391 n = bfd_alloc (abfd, amt);
3392 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3393 if (n == NULL || fnm == NULL)
3394 goto error_free_dyn;
3395 amt = strlen (fnm) + 1;
3396 anm = bfd_alloc (abfd, amt);
3403 memcpy (anm, fnm, amt);
3418 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3419 frees all more recently bfd_alloc'd blocks as well. */
3425 struct bfd_link_needed_list **pn;
3426 for (pn = & hash_table->runpath;
3433 /* We do not want to include any of the sections in a dynamic
3434 object in the output file. We hack by simply clobbering the
3435 list of sections in the BFD. This could be handled more
3436 cleanly by, say, a new section flag; the existing
3437 SEC_NEVER_LOAD flag is not the one we want, because that one
3438 still implies that the section takes up space in the output
3440 bfd_section_list_clear (abfd);
3442 /* Find the name to use in a DT_NEEDED entry that refers to this
3443 object. If the object has a DT_SONAME entry, we use it.
3444 Otherwise, if the generic linker stuck something in
3445 elf_dt_name, we use that. Otherwise, we just use the file
3447 if (soname == NULL || *soname == '\0')
3449 soname = elf_dt_name (abfd);
3450 if (soname == NULL || *soname == '\0')
3451 soname = bfd_get_filename (abfd);
3454 /* Save the SONAME because sometimes the linker emulation code
3455 will need to know it. */
3456 elf_dt_name (abfd) = soname;
3458 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3462 /* If we have already included this dynamic object in the
3463 link, just ignore it. There is no reason to include a
3464 particular dynamic object more than once. */
3469 /* If this is a dynamic object, we always link against the .dynsym
3470 symbol table, not the .symtab symbol table. The dynamic linker
3471 will only see the .dynsym symbol table, so there is no reason to
3472 look at .symtab for a dynamic object. */
3474 if (! dynamic || elf_dynsymtab (abfd) == 0)
3475 hdr = &elf_tdata (abfd)->symtab_hdr;
3477 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3479 symcount = hdr->sh_size / bed->s->sizeof_sym;
3481 /* The sh_info field of the symtab header tells us where the
3482 external symbols start. We don't care about the local symbols at
3484 if (elf_bad_symtab (abfd))
3486 extsymcount = symcount;
3491 extsymcount = symcount - hdr->sh_info;
3492 extsymoff = hdr->sh_info;
3496 if (extsymcount != 0)
3498 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3500 if (isymbuf == NULL)
3503 /* We store a pointer to the hash table entry for each external
3505 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3506 sym_hash = bfd_alloc (abfd, amt);
3507 if (sym_hash == NULL)
3508 goto error_free_sym;
3509 elf_sym_hashes (abfd) = sym_hash;
3514 /* Read in any version definitions. */
3515 if (!_bfd_elf_slurp_version_tables (abfd,
3516 info->default_imported_symver))
3517 goto error_free_sym;
3519 /* Read in the symbol versions, but don't bother to convert them
3520 to internal format. */
3521 if (elf_dynversym (abfd) != 0)
3523 Elf_Internal_Shdr *versymhdr;
3525 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3526 extversym = bfd_malloc (versymhdr->sh_size);
3527 if (extversym == NULL)
3528 goto error_free_sym;
3529 amt = versymhdr->sh_size;
3530 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3531 || bfd_bread (extversym, amt, abfd) != amt)
3532 goto error_free_vers;
3538 ever = extversym != NULL ? extversym + extsymoff : NULL;
3539 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3541 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3545 asection *sec, *new_sec;
3548 struct elf_link_hash_entry *h;
3549 bfd_boolean definition;
3550 bfd_boolean size_change_ok;
3551 bfd_boolean type_change_ok;
3552 bfd_boolean new_weakdef;
3553 bfd_boolean override;
3554 unsigned int old_alignment;
3559 flags = BSF_NO_FLAGS;
3561 value = isym->st_value;
3564 bind = ELF_ST_BIND (isym->st_info);
3565 if (bind == STB_LOCAL)
3567 /* This should be impossible, since ELF requires that all
3568 global symbols follow all local symbols, and that sh_info
3569 point to the first global symbol. Unfortunately, Irix 5
3573 else if (bind == STB_GLOBAL)
3575 if (isym->st_shndx != SHN_UNDEF
3576 && isym->st_shndx != SHN_COMMON)
3579 else if (bind == STB_WEAK)
3583 /* Leave it up to the processor backend. */
3586 if (isym->st_shndx == SHN_UNDEF)
3587 sec = bfd_und_section_ptr;
3588 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3590 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3592 sec = bfd_abs_section_ptr;
3593 else if (sec->kept_section)
3595 /* Symbols from discarded section are undefined, and have
3596 default visibility. */
3597 sec = bfd_und_section_ptr;
3598 isym->st_shndx = SHN_UNDEF;
3599 isym->st_other = STV_DEFAULT
3600 | (isym->st_other & ~ ELF_ST_VISIBILITY(-1));
3602 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3605 else if (isym->st_shndx == SHN_ABS)
3606 sec = bfd_abs_section_ptr;
3607 else if (isym->st_shndx == SHN_COMMON)
3609 sec = bfd_com_section_ptr;
3610 /* What ELF calls the size we call the value. What ELF
3611 calls the value we call the alignment. */
3612 value = isym->st_size;
3616 /* Leave it up to the processor backend. */
3619 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3622 goto error_free_vers;
3624 if (isym->st_shndx == SHN_COMMON
3625 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3627 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3631 tcomm = bfd_make_section (abfd, ".tcommon");
3633 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3635 | SEC_LINKER_CREATED
3636 | SEC_THREAD_LOCAL)))
3637 goto error_free_vers;
3641 else if (add_symbol_hook)
3643 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3645 goto error_free_vers;
3647 /* The hook function sets the name to NULL if this symbol
3648 should be skipped for some reason. */
3653 /* Sanity check that all possibilities were handled. */
3656 bfd_set_error (bfd_error_bad_value);
3657 goto error_free_vers;
3660 if (bfd_is_und_section (sec)
3661 || bfd_is_com_section (sec))
3666 size_change_ok = FALSE;
3667 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3672 if (is_elf_hash_table (hash_table))
3674 Elf_Internal_Versym iver;
3675 unsigned int vernum = 0;
3680 if (info->default_imported_symver)
3681 /* Use the default symbol version created earlier. */
3682 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3687 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3689 vernum = iver.vs_vers & VERSYM_VERSION;
3691 /* If this is a hidden symbol, or if it is not version
3692 1, we append the version name to the symbol name.
3693 However, we do not modify a non-hidden absolute
3694 symbol, because it might be the version symbol
3695 itself. FIXME: What if it isn't? */
3696 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3697 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3700 size_t namelen, verlen, newlen;
3703 if (isym->st_shndx != SHN_UNDEF)
3705 if (vernum > elf_tdata (abfd)->cverdefs)
3707 else if (vernum > 1)
3709 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3715 (*_bfd_error_handler)
3716 (_("%B: %s: invalid version %u (max %d)"),
3718 elf_tdata (abfd)->cverdefs);
3719 bfd_set_error (bfd_error_bad_value);
3720 goto error_free_vers;
3725 /* We cannot simply test for the number of
3726 entries in the VERNEED section since the
3727 numbers for the needed versions do not start
3729 Elf_Internal_Verneed *t;
3732 for (t = elf_tdata (abfd)->verref;
3736 Elf_Internal_Vernaux *a;
3738 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3740 if (a->vna_other == vernum)
3742 verstr = a->vna_nodename;
3751 (*_bfd_error_handler)
3752 (_("%B: %s: invalid needed version %d"),
3753 abfd, name, vernum);
3754 bfd_set_error (bfd_error_bad_value);
3755 goto error_free_vers;
3759 namelen = strlen (name);
3760 verlen = strlen (verstr);
3761 newlen = namelen + verlen + 2;
3762 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3763 && isym->st_shndx != SHN_UNDEF)
3766 newname = bfd_alloc (abfd, newlen);
3767 if (newname == NULL)
3768 goto error_free_vers;
3769 memcpy (newname, name, namelen);
3770 p = newname + namelen;
3772 /* If this is a defined non-hidden version symbol,
3773 we add another @ to the name. This indicates the
3774 default version of the symbol. */
3775 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3776 && isym->st_shndx != SHN_UNDEF)
3778 memcpy (p, verstr, verlen + 1);
3783 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
3784 &value, &old_alignment,
3785 sym_hash, &skip, &override,
3786 &type_change_ok, &size_change_ok))
3787 goto error_free_vers;
3796 while (h->root.type == bfd_link_hash_indirect
3797 || h->root.type == bfd_link_hash_warning)
3798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3800 /* Remember the old alignment if this is a common symbol, so
3801 that we don't reduce the alignment later on. We can't
3802 check later, because _bfd_generic_link_add_one_symbol
3803 will set a default for the alignment which we want to
3804 override. We also remember the old bfd where the existing
3805 definition comes from. */
3806 switch (h->root.type)
3811 case bfd_link_hash_defined:
3812 case bfd_link_hash_defweak:
3813 old_bfd = h->root.u.def.section->owner;
3816 case bfd_link_hash_common:
3817 old_bfd = h->root.u.c.p->section->owner;
3818 old_alignment = h->root.u.c.p->alignment_power;
3822 if (elf_tdata (abfd)->verdef != NULL
3826 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3829 if (! (_bfd_generic_link_add_one_symbol
3830 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3831 (struct bfd_link_hash_entry **) sym_hash)))
3832 goto error_free_vers;
3835 while (h->root.type == bfd_link_hash_indirect
3836 || h->root.type == bfd_link_hash_warning)
3837 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3840 new_weakdef = FALSE;
3843 && (flags & BSF_WEAK) != 0
3844 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3845 && is_elf_hash_table (hash_table)
3846 && h->u.weakdef == NULL)
3848 /* Keep a list of all weak defined non function symbols from
3849 a dynamic object, using the weakdef field. Later in this
3850 function we will set the weakdef field to the correct
3851 value. We only put non-function symbols from dynamic
3852 objects on this list, because that happens to be the only
3853 time we need to know the normal symbol corresponding to a
3854 weak symbol, and the information is time consuming to
3855 figure out. If the weakdef field is not already NULL,
3856 then this symbol was already defined by some previous
3857 dynamic object, and we will be using that previous
3858 definition anyhow. */
3860 h->u.weakdef = weaks;
3865 /* Set the alignment of a common symbol. */
3866 if ((isym->st_shndx == SHN_COMMON
3867 || bfd_is_com_section (sec))
3868 && h->root.type == bfd_link_hash_common)
3872 if (isym->st_shndx == SHN_COMMON)
3873 align = bfd_log2 (isym->st_value);
3876 /* The new symbol is a common symbol in a shared object.
3877 We need to get the alignment from the section. */
3878 align = new_sec->alignment_power;
3880 if (align > old_alignment
3881 /* Permit an alignment power of zero if an alignment of one
3882 is specified and no other alignments have been specified. */
3883 || (isym->st_value == 1 && old_alignment == 0))
3884 h->root.u.c.p->alignment_power = align;
3886 h->root.u.c.p->alignment_power = old_alignment;
3889 if (is_elf_hash_table (hash_table))
3893 /* Check the alignment when a common symbol is involved. This
3894 can change when a common symbol is overridden by a normal
3895 definition or a common symbol is ignored due to the old
3896 normal definition. We need to make sure the maximum
3897 alignment is maintained. */
3898 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3899 && h->root.type != bfd_link_hash_common)
3901 unsigned int common_align;
3902 unsigned int normal_align;
3903 unsigned int symbol_align;
3907 symbol_align = ffs (h->root.u.def.value) - 1;
3908 if (h->root.u.def.section->owner != NULL
3909 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3911 normal_align = h->root.u.def.section->alignment_power;
3912 if (normal_align > symbol_align)
3913 normal_align = symbol_align;
3916 normal_align = symbol_align;
3920 common_align = old_alignment;
3921 common_bfd = old_bfd;
3926 common_align = bfd_log2 (isym->st_value);
3928 normal_bfd = old_bfd;
3931 if (normal_align < common_align)
3932 (*_bfd_error_handler)
3933 (_("Warning: alignment %u of symbol `%s' in %B"
3934 " is smaller than %u in %B"),
3935 normal_bfd, common_bfd,
3936 1 << normal_align, name, 1 << common_align);
3939 /* Remember the symbol size and type. */
3940 if (isym->st_size != 0
3941 && (definition || h->size == 0))
3943 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3944 (*_bfd_error_handler)
3945 (_("Warning: size of symbol `%s' changed"
3946 " from %lu in %B to %lu in %B"),
3948 name, (unsigned long) h->size,
3949 (unsigned long) isym->st_size);
3951 h->size = isym->st_size;
3954 /* If this is a common symbol, then we always want H->SIZE
3955 to be the size of the common symbol. The code just above
3956 won't fix the size if a common symbol becomes larger. We
3957 don't warn about a size change here, because that is
3958 covered by --warn-common. */
3959 if (h->root.type == bfd_link_hash_common)
3960 h->size = h->root.u.c.size;
3962 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3963 && (definition || h->type == STT_NOTYPE))
3965 if (h->type != STT_NOTYPE
3966 && h->type != ELF_ST_TYPE (isym->st_info)
3967 && ! type_change_ok)
3968 (*_bfd_error_handler)
3969 (_("Warning: type of symbol `%s' changed"
3970 " from %d to %d in %B"),
3971 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
3973 h->type = ELF_ST_TYPE (isym->st_info);
3976 /* If st_other has a processor-specific meaning, specific
3977 code might be needed here. We never merge the visibility
3978 attribute with the one from a dynamic object. */
3979 if (bed->elf_backend_merge_symbol_attribute)
3980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3983 /* If this symbol has default visibility and the user has requested
3984 we not re-export it, then mark it as hidden. */
3985 if (definition && !dynamic
3987 || (abfd->my_archive && abfd->my_archive->no_export))
3988 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
3989 isym->st_other = STV_HIDDEN | (isym->st_other & ~ ELF_ST_VISIBILITY (-1));
3991 if (isym->st_other != 0 && !dynamic)
3993 unsigned char hvis, symvis, other, nvis;
3995 /* Take the balance of OTHER from the definition. */
3996 other = (definition ? isym->st_other : h->other);
3997 other &= ~ ELF_ST_VISIBILITY (-1);
3999 /* Combine visibilities, using the most constraining one. */
4000 hvis = ELF_ST_VISIBILITY (h->other);
4001 symvis = ELF_ST_VISIBILITY (isym->st_other);
4007 nvis = hvis < symvis ? hvis : symvis;
4009 h->other = other | nvis;
4012 /* Set a flag in the hash table entry indicating the type of
4013 reference or definition we just found. Keep a count of
4014 the number of dynamic symbols we find. A dynamic symbol
4015 is one which is referenced or defined by both a regular
4016 object and a shared object. */
4023 if (bind != STB_WEAK)
4024 h->ref_regular_nonweak = 1;
4028 if (! info->executable
4041 || (h->u.weakdef != NULL
4043 && h->u.weakdef->dynindx != -1))
4047 /* Check to see if we need to add an indirect symbol for
4048 the default name. */
4049 if (definition || h->root.type == bfd_link_hash_common)
4050 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4051 &sec, &value, &dynsym,
4053 goto error_free_vers;
4055 if (definition && !dynamic)
4057 char *p = strchr (name, ELF_VER_CHR);
4058 if (p != NULL && p[1] != ELF_VER_CHR)
4060 /* Queue non-default versions so that .symver x, x@FOO
4061 aliases can be checked. */
4062 if (! nondeflt_vers)
4064 amt = (isymend - isym + 1)
4065 * sizeof (struct elf_link_hash_entry *);
4066 nondeflt_vers = bfd_malloc (amt);
4068 nondeflt_vers [nondeflt_vers_cnt++] = h;
4072 if (dynsym && h->dynindx == -1)
4074 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4075 goto error_free_vers;
4076 if (h->u.weakdef != NULL
4078 && h->u.weakdef->dynindx == -1)
4080 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4081 goto error_free_vers;
4084 else if (dynsym && h->dynindx != -1)
4085 /* If the symbol already has a dynamic index, but
4086 visibility says it should not be visible, turn it into
4088 switch (ELF_ST_VISIBILITY (h->other))
4092 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4103 const char *soname = elf_dt_name (abfd);
4105 /* A symbol from a library loaded via DT_NEEDED of some
4106 other library is referenced by a regular object.
4107 Add a DT_NEEDED entry for it. Issue an error if
4108 --no-add-needed is used. */
4109 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4111 (*_bfd_error_handler)
4112 (_("%s: invalid DSO for symbol `%s' definition"),
4114 bfd_set_error (bfd_error_bad_value);
4115 goto error_free_vers;
4118 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4121 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4123 goto error_free_vers;
4125 BFD_ASSERT (ret == 0);
4130 /* Now that all the symbols from this input file are created, handle
4131 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4132 if (nondeflt_vers != NULL)
4134 bfd_size_type cnt, symidx;
4136 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4138 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4139 char *shortname, *p;
4141 p = strchr (h->root.root.string, ELF_VER_CHR);
4143 || (h->root.type != bfd_link_hash_defined
4144 && h->root.type != bfd_link_hash_defweak))
4147 amt = p - h->root.root.string;
4148 shortname = bfd_malloc (amt + 1);
4149 memcpy (shortname, h->root.root.string, amt);
4150 shortname[amt] = '\0';
4152 hi = (struct elf_link_hash_entry *)
4153 bfd_link_hash_lookup (&hash_table->root, shortname,
4154 FALSE, FALSE, FALSE);
4156 && hi->root.type == h->root.type
4157 && hi->root.u.def.value == h->root.u.def.value
4158 && hi->root.u.def.section == h->root.u.def.section)
4160 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4161 hi->root.type = bfd_link_hash_indirect;
4162 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4163 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
4164 sym_hash = elf_sym_hashes (abfd);
4166 for (symidx = 0; symidx < extsymcount; ++symidx)
4167 if (sym_hash[symidx] == hi)
4169 sym_hash[symidx] = h;
4175 free (nondeflt_vers);
4176 nondeflt_vers = NULL;
4179 if (extversym != NULL)
4185 if (isymbuf != NULL)
4190 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4192 /* Remove symbols defined in an as-needed shared lib that wasn't
4194 struct elf_smash_syms_data inf;
4195 inf.not_needed = abfd;
4196 inf.htab = hash_table;
4197 inf.twiddled = FALSE;
4198 elf_link_hash_traverse (hash_table, elf_smash_syms, &inf);
4200 bfd_link_repair_undef_list (&hash_table->root);
4204 /* Now set the weakdefs field correctly for all the weak defined
4205 symbols we found. The only way to do this is to search all the
4206 symbols. Since we only need the information for non functions in
4207 dynamic objects, that's the only time we actually put anything on
4208 the list WEAKS. We need this information so that if a regular
4209 object refers to a symbol defined weakly in a dynamic object, the
4210 real symbol in the dynamic object is also put in the dynamic
4211 symbols; we also must arrange for both symbols to point to the
4212 same memory location. We could handle the general case of symbol
4213 aliasing, but a general symbol alias can only be generated in
4214 assembler code, handling it correctly would be very time
4215 consuming, and other ELF linkers don't handle general aliasing
4219 struct elf_link_hash_entry **hpp;
4220 struct elf_link_hash_entry **hppend;
4221 struct elf_link_hash_entry **sorted_sym_hash;
4222 struct elf_link_hash_entry *h;
4225 /* Since we have to search the whole symbol list for each weak
4226 defined symbol, search time for N weak defined symbols will be
4227 O(N^2). Binary search will cut it down to O(NlogN). */
4228 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4229 sorted_sym_hash = bfd_malloc (amt);
4230 if (sorted_sym_hash == NULL)
4232 sym_hash = sorted_sym_hash;
4233 hpp = elf_sym_hashes (abfd);
4234 hppend = hpp + extsymcount;
4236 for (; hpp < hppend; hpp++)
4240 && h->root.type == bfd_link_hash_defined
4241 && h->type != STT_FUNC)
4249 qsort (sorted_sym_hash, sym_count,
4250 sizeof (struct elf_link_hash_entry *),
4253 while (weaks != NULL)
4255 struct elf_link_hash_entry *hlook;
4262 weaks = hlook->u.weakdef;
4263 hlook->u.weakdef = NULL;
4265 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4266 || hlook->root.type == bfd_link_hash_defweak
4267 || hlook->root.type == bfd_link_hash_common
4268 || hlook->root.type == bfd_link_hash_indirect);
4269 slook = hlook->root.u.def.section;
4270 vlook = hlook->root.u.def.value;
4277 bfd_signed_vma vdiff;
4279 h = sorted_sym_hash [idx];
4280 vdiff = vlook - h->root.u.def.value;
4287 long sdiff = slook->id - h->root.u.def.section->id;
4300 /* We didn't find a value/section match. */
4304 for (i = ilook; i < sym_count; i++)
4306 h = sorted_sym_hash [i];
4308 /* Stop if value or section doesn't match. */
4309 if (h->root.u.def.value != vlook
4310 || h->root.u.def.section != slook)
4312 else if (h != hlook)
4314 hlook->u.weakdef = h;
4316 /* If the weak definition is in the list of dynamic
4317 symbols, make sure the real definition is put
4319 if (hlook->dynindx != -1 && h->dynindx == -1)
4321 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4325 /* If the real definition is in the list of dynamic
4326 symbols, make sure the weak definition is put
4327 there as well. If we don't do this, then the
4328 dynamic loader might not merge the entries for the
4329 real definition and the weak definition. */
4330 if (h->dynindx != -1 && hlook->dynindx == -1)
4332 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4340 free (sorted_sym_hash);
4343 check_directives = get_elf_backend_data (abfd)->check_directives;
4344 if (check_directives)
4345 check_directives (abfd, info);
4347 /* If this object is the same format as the output object, and it is
4348 not a shared library, then let the backend look through the
4351 This is required to build global offset table entries and to
4352 arrange for dynamic relocs. It is not required for the
4353 particular common case of linking non PIC code, even when linking
4354 against shared libraries, but unfortunately there is no way of
4355 knowing whether an object file has been compiled PIC or not.
4356 Looking through the relocs is not particularly time consuming.
4357 The problem is that we must either (1) keep the relocs in memory,
4358 which causes the linker to require additional runtime memory or
4359 (2) read the relocs twice from the input file, which wastes time.
4360 This would be a good case for using mmap.
4362 I have no idea how to handle linking PIC code into a file of a
4363 different format. It probably can't be done. */
4364 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4366 && is_elf_hash_table (hash_table)
4367 && hash_table->root.creator == abfd->xvec
4368 && check_relocs != NULL)
4372 for (o = abfd->sections; o != NULL; o = o->next)
4374 Elf_Internal_Rela *internal_relocs;
4377 if ((o->flags & SEC_RELOC) == 0
4378 || o->reloc_count == 0
4379 || ((info->strip == strip_all || info->strip == strip_debugger)
4380 && (o->flags & SEC_DEBUGGING) != 0)
4381 || bfd_is_abs_section (o->output_section))
4384 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4386 if (internal_relocs == NULL)
4389 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4391 if (elf_section_data (o)->relocs != internal_relocs)
4392 free (internal_relocs);
4399 /* If this is a non-traditional link, try to optimize the handling
4400 of the .stab/.stabstr sections. */
4402 && ! info->traditional_format
4403 && is_elf_hash_table (hash_table)
4404 && (info->strip != strip_all && info->strip != strip_debugger))
4408 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4409 if (stabstr != NULL)
4411 bfd_size_type string_offset = 0;
4414 for (stab = abfd->sections; stab; stab = stab->next)
4415 if (strncmp (".stab", stab->name, 5) == 0
4416 && (!stab->name[5] ||
4417 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4418 && (stab->flags & SEC_MERGE) == 0
4419 && !bfd_is_abs_section (stab->output_section))
4421 struct bfd_elf_section_data *secdata;
4423 secdata = elf_section_data (stab);
4424 if (! _bfd_link_section_stabs (abfd,
4425 &hash_table->stab_info,
4430 if (secdata->sec_info)
4431 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4436 if (is_elf_hash_table (hash_table) && add_needed)
4438 /* Add this bfd to the loaded list. */
4439 struct elf_link_loaded_list *n;
4441 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4445 n->next = hash_table->loaded;
4446 hash_table->loaded = n;
4452 if (nondeflt_vers != NULL)
4453 free (nondeflt_vers);
4454 if (extversym != NULL)
4457 if (isymbuf != NULL)
4463 /* Return the linker hash table entry of a symbol that might be
4464 satisfied by an archive symbol. Return -1 on error. */
4466 struct elf_link_hash_entry *
4467 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4468 struct bfd_link_info *info,
4471 struct elf_link_hash_entry *h;
4475 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4479 /* If this is a default version (the name contains @@), look up the
4480 symbol again with only one `@' as well as without the version.
4481 The effect is that references to the symbol with and without the
4482 version will be matched by the default symbol in the archive. */
4484 p = strchr (name, ELF_VER_CHR);
4485 if (p == NULL || p[1] != ELF_VER_CHR)
4488 /* First check with only one `@'. */
4489 len = strlen (name);
4490 copy = bfd_alloc (abfd, len);
4492 return (struct elf_link_hash_entry *) 0 - 1;
4494 first = p - name + 1;
4495 memcpy (copy, name, first);
4496 memcpy (copy + first, name + first + 1, len - first);
4498 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4501 /* We also need to check references to the symbol without the
4503 copy[first - 1] = '\0';
4504 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4505 FALSE, FALSE, FALSE);
4508 bfd_release (abfd, copy);
4512 /* Add symbols from an ELF archive file to the linker hash table. We
4513 don't use _bfd_generic_link_add_archive_symbols because of a
4514 problem which arises on UnixWare. The UnixWare libc.so is an
4515 archive which includes an entry libc.so.1 which defines a bunch of
4516 symbols. The libc.so archive also includes a number of other
4517 object files, which also define symbols, some of which are the same
4518 as those defined in libc.so.1. Correct linking requires that we
4519 consider each object file in turn, and include it if it defines any
4520 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4521 this; it looks through the list of undefined symbols, and includes
4522 any object file which defines them. When this algorithm is used on
4523 UnixWare, it winds up pulling in libc.so.1 early and defining a
4524 bunch of symbols. This means that some of the other objects in the
4525 archive are not included in the link, which is incorrect since they
4526 precede libc.so.1 in the archive.
4528 Fortunately, ELF archive handling is simpler than that done by
4529 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4530 oddities. In ELF, if we find a symbol in the archive map, and the
4531 symbol is currently undefined, we know that we must pull in that
4534 Unfortunately, we do have to make multiple passes over the symbol
4535 table until nothing further is resolved. */
4538 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4541 bfd_boolean *defined = NULL;
4542 bfd_boolean *included = NULL;
4546 const struct elf_backend_data *bed;
4547 struct elf_link_hash_entry * (*archive_symbol_lookup)
4548 (bfd *, struct bfd_link_info *, const char *);
4550 if (! bfd_has_map (abfd))
4552 /* An empty archive is a special case. */
4553 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4555 bfd_set_error (bfd_error_no_armap);
4559 /* Keep track of all symbols we know to be already defined, and all
4560 files we know to be already included. This is to speed up the
4561 second and subsequent passes. */
4562 c = bfd_ardata (abfd)->symdef_count;
4566 amt *= sizeof (bfd_boolean);
4567 defined = bfd_zmalloc (amt);
4568 included = bfd_zmalloc (amt);
4569 if (defined == NULL || included == NULL)
4572 symdefs = bfd_ardata (abfd)->symdefs;
4573 bed = get_elf_backend_data (abfd);
4574 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4587 symdefend = symdef + c;
4588 for (i = 0; symdef < symdefend; symdef++, i++)
4590 struct elf_link_hash_entry *h;
4592 struct bfd_link_hash_entry *undefs_tail;
4595 if (defined[i] || included[i])
4597 if (symdef->file_offset == last)
4603 h = archive_symbol_lookup (abfd, info, symdef->name);
4604 if (h == (struct elf_link_hash_entry *) 0 - 1)
4610 if (h->root.type == bfd_link_hash_common)
4612 /* We currently have a common symbol. The archive map contains
4613 a reference to this symbol, so we may want to include it. We
4614 only want to include it however, if this archive element
4615 contains a definition of the symbol, not just another common
4618 Unfortunately some archivers (including GNU ar) will put
4619 declarations of common symbols into their archive maps, as
4620 well as real definitions, so we cannot just go by the archive
4621 map alone. Instead we must read in the element's symbol
4622 table and check that to see what kind of symbol definition
4624 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4627 else if (h->root.type != bfd_link_hash_undefined)
4629 if (h->root.type != bfd_link_hash_undefweak)
4634 /* We need to include this archive member. */
4635 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4636 if (element == NULL)
4639 if (! bfd_check_format (element, bfd_object))
4642 /* Doublecheck that we have not included this object
4643 already--it should be impossible, but there may be
4644 something wrong with the archive. */
4645 if (element->archive_pass != 0)
4647 bfd_set_error (bfd_error_bad_value);
4650 element->archive_pass = 1;
4652 undefs_tail = info->hash->undefs_tail;
4654 if (! (*info->callbacks->add_archive_element) (info, element,
4657 if (! bfd_link_add_symbols (element, info))
4660 /* If there are any new undefined symbols, we need to make
4661 another pass through the archive in order to see whether
4662 they can be defined. FIXME: This isn't perfect, because
4663 common symbols wind up on undefs_tail and because an
4664 undefined symbol which is defined later on in this pass
4665 does not require another pass. This isn't a bug, but it
4666 does make the code less efficient than it could be. */
4667 if (undefs_tail != info->hash->undefs_tail)
4670 /* Look backward to mark all symbols from this object file
4671 which we have already seen in this pass. */
4675 included[mark] = TRUE;
4680 while (symdefs[mark].file_offset == symdef->file_offset);
4682 /* We mark subsequent symbols from this object file as we go
4683 on through the loop. */
4684 last = symdef->file_offset;
4695 if (defined != NULL)
4697 if (included != NULL)
4702 /* Given an ELF BFD, add symbols to the global hash table as
4706 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4708 switch (bfd_get_format (abfd))
4711 return elf_link_add_object_symbols (abfd, info);
4713 return elf_link_add_archive_symbols (abfd, info);
4715 bfd_set_error (bfd_error_wrong_format);
4720 /* This function will be called though elf_link_hash_traverse to store
4721 all hash value of the exported symbols in an array. */
4724 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4726 unsigned long **valuep = data;
4732 if (h->root.type == bfd_link_hash_warning)
4733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4735 /* Ignore indirect symbols. These are added by the versioning code. */
4736 if (h->dynindx == -1)
4739 name = h->root.root.string;
4740 p = strchr (name, ELF_VER_CHR);
4743 alc = bfd_malloc (p - name + 1);
4744 memcpy (alc, name, p - name);
4745 alc[p - name] = '\0';
4749 /* Compute the hash value. */
4750 ha = bfd_elf_hash (name);
4752 /* Store the found hash value in the array given as the argument. */
4755 /* And store it in the struct so that we can put it in the hash table
4757 h->u.elf_hash_value = ha;
4765 /* Array used to determine the number of hash table buckets to use
4766 based on the number of symbols there are. If there are fewer than
4767 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4768 fewer than 37 we use 17 buckets, and so forth. We never use more
4769 than 32771 buckets. */
4771 static const size_t elf_buckets[] =
4773 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4777 /* Compute bucket count for hashing table. We do not use a static set
4778 of possible tables sizes anymore. Instead we determine for all
4779 possible reasonable sizes of the table the outcome (i.e., the
4780 number of collisions etc) and choose the best solution. The
4781 weighting functions are not too simple to allow the table to grow
4782 without bounds. Instead one of the weighting factors is the size.
4783 Therefore the result is always a good payoff between few collisions
4784 (= short chain lengths) and table size. */
4786 compute_bucket_count (struct bfd_link_info *info)
4788 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4789 size_t best_size = 0;
4790 unsigned long int *hashcodes;
4791 unsigned long int *hashcodesp;
4792 unsigned long int i;
4795 /* Compute the hash values for all exported symbols. At the same
4796 time store the values in an array so that we could use them for
4799 amt *= sizeof (unsigned long int);
4800 hashcodes = bfd_malloc (amt);
4801 if (hashcodes == NULL)
4803 hashcodesp = hashcodes;
4805 /* Put all hash values in HASHCODES. */
4806 elf_link_hash_traverse (elf_hash_table (info),
4807 elf_collect_hash_codes, &hashcodesp);
4809 /* We have a problem here. The following code to optimize the table
4810 size requires an integer type with more the 32 bits. If
4811 BFD_HOST_U_64_BIT is set we know about such a type. */
4812 #ifdef BFD_HOST_U_64_BIT
4815 unsigned long int nsyms = hashcodesp - hashcodes;
4818 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4819 unsigned long int *counts ;
4820 bfd *dynobj = elf_hash_table (info)->dynobj;
4821 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4823 /* Possible optimization parameters: if we have NSYMS symbols we say
4824 that the hashing table must at least have NSYMS/4 and at most
4826 minsize = nsyms / 4;
4829 best_size = maxsize = nsyms * 2;
4831 /* Create array where we count the collisions in. We must use bfd_malloc
4832 since the size could be large. */
4834 amt *= sizeof (unsigned long int);
4835 counts = bfd_malloc (amt);
4842 /* Compute the "optimal" size for the hash table. The criteria is a
4843 minimal chain length. The minor criteria is (of course) the size
4845 for (i = minsize; i < maxsize; ++i)
4847 /* Walk through the array of hashcodes and count the collisions. */
4848 BFD_HOST_U_64_BIT max;
4849 unsigned long int j;
4850 unsigned long int fact;
4852 memset (counts, '\0', i * sizeof (unsigned long int));
4854 /* Determine how often each hash bucket is used. */
4855 for (j = 0; j < nsyms; ++j)
4856 ++counts[hashcodes[j] % i];
4858 /* For the weight function we need some information about the
4859 pagesize on the target. This is information need not be 100%
4860 accurate. Since this information is not available (so far) we
4861 define it here to a reasonable default value. If it is crucial
4862 to have a better value some day simply define this value. */
4863 # ifndef BFD_TARGET_PAGESIZE
4864 # define BFD_TARGET_PAGESIZE (4096)
4867 /* We in any case need 2 + NSYMS entries for the size values and
4869 max = (2 + nsyms) * (bed->s->arch_size / 8);
4872 /* Variant 1: optimize for short chains. We add the squares
4873 of all the chain lengths (which favors many small chain
4874 over a few long chains). */
4875 for (j = 0; j < i; ++j)
4876 max += counts[j] * counts[j];
4878 /* This adds penalties for the overall size of the table. */
4879 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4882 /* Variant 2: Optimize a lot more for small table. Here we
4883 also add squares of the size but we also add penalties for
4884 empty slots (the +1 term). */
4885 for (j = 0; j < i; ++j)
4886 max += (1 + counts[j]) * (1 + counts[j]);
4888 /* The overall size of the table is considered, but not as
4889 strong as in variant 1, where it is squared. */
4890 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4894 /* Compare with current best results. */
4895 if (max < best_chlen)
4905 #endif /* defined (BFD_HOST_U_64_BIT) */
4907 /* This is the fallback solution if no 64bit type is available or if we
4908 are not supposed to spend much time on optimizations. We select the
4909 bucket count using a fixed set of numbers. */
4910 for (i = 0; elf_buckets[i] != 0; i++)
4912 best_size = elf_buckets[i];
4913 if (dynsymcount < elf_buckets[i + 1])
4918 /* Free the arrays we needed. */
4924 /* Set up the sizes and contents of the ELF dynamic sections. This is
4925 called by the ELF linker emulation before_allocation routine. We
4926 must set the sizes of the sections before the linker sets the
4927 addresses of the various sections. */
4930 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4933 const char *filter_shlib,
4934 const char * const *auxiliary_filters,
4935 struct bfd_link_info *info,
4936 asection **sinterpptr,
4937 struct bfd_elf_version_tree *verdefs)
4939 bfd_size_type soname_indx;
4941 const struct elf_backend_data *bed;
4942 struct elf_assign_sym_version_info asvinfo;
4946 soname_indx = (bfd_size_type) -1;
4948 if (!is_elf_hash_table (info->hash))
4951 elf_tdata (output_bfd)->relro = info->relro;
4952 if (info->execstack)
4953 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4954 else if (info->noexecstack)
4955 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4959 asection *notesec = NULL;
4962 for (inputobj = info->input_bfds;
4964 inputobj = inputobj->link_next)
4968 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
4970 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4973 if (s->flags & SEC_CODE)
4982 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4983 if (exec && info->relocatable
4984 && notesec->output_section != bfd_abs_section_ptr)
4985 notesec->output_section->flags |= SEC_CODE;
4989 /* Any syms created from now on start with -1 in
4990 got.refcount/offset and plt.refcount/offset. */
4991 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4993 /* The backend may have to create some sections regardless of whether
4994 we're dynamic or not. */
4995 bed = get_elf_backend_data (output_bfd);
4996 if (bed->elf_backend_always_size_sections
4997 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5000 dynobj = elf_hash_table (info)->dynobj;
5002 /* If there were no dynamic objects in the link, there is nothing to
5007 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5010 if (elf_hash_table (info)->dynamic_sections_created)
5012 struct elf_info_failed eif;
5013 struct elf_link_hash_entry *h;
5015 struct bfd_elf_version_tree *t;
5016 struct bfd_elf_version_expr *d;
5017 bfd_boolean all_defined;
5019 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5020 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5024 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5026 if (soname_indx == (bfd_size_type) -1
5027 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5033 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5035 info->flags |= DF_SYMBOLIC;
5042 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5044 if (indx == (bfd_size_type) -1
5045 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5048 if (info->new_dtags)
5050 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5051 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5056 if (filter_shlib != NULL)
5060 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5061 filter_shlib, TRUE);
5062 if (indx == (bfd_size_type) -1
5063 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5067 if (auxiliary_filters != NULL)
5069 const char * const *p;
5071 for (p = auxiliary_filters; *p != NULL; p++)
5075 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5077 if (indx == (bfd_size_type) -1
5078 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5084 eif.verdefs = verdefs;
5087 /* If we are supposed to export all symbols into the dynamic symbol
5088 table (this is not the normal case), then do so. */
5089 if (info->export_dynamic)
5091 elf_link_hash_traverse (elf_hash_table (info),
5092 _bfd_elf_export_symbol,
5098 /* Make all global versions with definition. */
5099 for (t = verdefs; t != NULL; t = t->next)
5100 for (d = t->globals.list; d != NULL; d = d->next)
5101 if (!d->symver && d->symbol)
5103 const char *verstr, *name;
5104 size_t namelen, verlen, newlen;
5106 struct elf_link_hash_entry *newh;
5109 namelen = strlen (name);
5111 verlen = strlen (verstr);
5112 newlen = namelen + verlen + 3;
5114 newname = bfd_malloc (newlen);
5115 if (newname == NULL)
5117 memcpy (newname, name, namelen);
5119 /* Check the hidden versioned definition. */
5120 p = newname + namelen;
5122 memcpy (p, verstr, verlen + 1);
5123 newh = elf_link_hash_lookup (elf_hash_table (info),
5124 newname, FALSE, FALSE,
5127 || (newh->root.type != bfd_link_hash_defined
5128 && newh->root.type != bfd_link_hash_defweak))
5130 /* Check the default versioned definition. */
5132 memcpy (p, verstr, verlen + 1);
5133 newh = elf_link_hash_lookup (elf_hash_table (info),
5134 newname, FALSE, FALSE,
5139 /* Mark this version if there is a definition and it is
5140 not defined in a shared object. */
5142 && !newh->def_dynamic
5143 && (newh->root.type == bfd_link_hash_defined
5144 || newh->root.type == bfd_link_hash_defweak))
5148 /* Attach all the symbols to their version information. */
5149 asvinfo.output_bfd = output_bfd;
5150 asvinfo.info = info;
5151 asvinfo.verdefs = verdefs;
5152 asvinfo.failed = FALSE;
5154 elf_link_hash_traverse (elf_hash_table (info),
5155 _bfd_elf_link_assign_sym_version,
5160 if (!info->allow_undefined_version)
5162 /* Check if all global versions have a definition. */
5164 for (t = verdefs; t != NULL; t = t->next)
5165 for (d = t->globals.list; d != NULL; d = d->next)
5166 if (!d->symver && !d->script)
5168 (*_bfd_error_handler)
5169 (_("%s: undefined version: %s"),
5170 d->pattern, t->name);
5171 all_defined = FALSE;
5176 bfd_set_error (bfd_error_bad_value);
5181 /* Find all symbols which were defined in a dynamic object and make
5182 the backend pick a reasonable value for them. */
5183 elf_link_hash_traverse (elf_hash_table (info),
5184 _bfd_elf_adjust_dynamic_symbol,
5189 /* Add some entries to the .dynamic section. We fill in some of the
5190 values later, in bfd_elf_final_link, but we must add the entries
5191 now so that we know the final size of the .dynamic section. */
5193 /* If there are initialization and/or finalization functions to
5194 call then add the corresponding DT_INIT/DT_FINI entries. */
5195 h = (info->init_function
5196 ? elf_link_hash_lookup (elf_hash_table (info),
5197 info->init_function, FALSE,
5204 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5207 h = (info->fini_function
5208 ? elf_link_hash_lookup (elf_hash_table (info),
5209 info->fini_function, FALSE,
5216 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5220 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
5222 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5223 if (! info->executable)
5228 for (sub = info->input_bfds; sub != NULL;
5229 sub = sub->link_next)
5230 for (o = sub->sections; o != NULL; o = o->next)
5231 if (elf_section_data (o)->this_hdr.sh_type
5232 == SHT_PREINIT_ARRAY)
5234 (*_bfd_error_handler)
5235 (_("%B: .preinit_array section is not allowed in DSO"),
5240 bfd_set_error (bfd_error_nonrepresentable_section);
5244 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5245 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5248 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
5250 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5251 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5254 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
5256 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5257 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5261 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5262 /* If .dynstr is excluded from the link, we don't want any of
5263 these tags. Strictly, we should be checking each section
5264 individually; This quick check covers for the case where
5265 someone does a /DISCARD/ : { *(*) }. */
5266 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5268 bfd_size_type strsize;
5270 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5271 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
5272 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5273 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5274 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5275 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5276 bed->s->sizeof_sym))
5281 /* The backend must work out the sizes of all the other dynamic
5283 if (bed->elf_backend_size_dynamic_sections
5284 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5287 if (elf_hash_table (info)->dynamic_sections_created)
5289 unsigned long section_sym_count;
5292 /* Set up the version definition section. */
5293 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5294 BFD_ASSERT (s != NULL);
5296 /* We may have created additional version definitions if we are
5297 just linking a regular application. */
5298 verdefs = asvinfo.verdefs;
5300 /* Skip anonymous version tag. */
5301 if (verdefs != NULL && verdefs->vernum == 0)
5302 verdefs = verdefs->next;
5304 if (verdefs == NULL && !info->create_default_symver)
5305 s->flags |= SEC_EXCLUDE;
5310 struct bfd_elf_version_tree *t;
5312 Elf_Internal_Verdef def;
5313 Elf_Internal_Verdaux defaux;
5314 struct bfd_link_hash_entry *bh;
5315 struct elf_link_hash_entry *h;
5321 /* Make space for the base version. */
5322 size += sizeof (Elf_External_Verdef);
5323 size += sizeof (Elf_External_Verdaux);
5326 /* Make space for the default version. */
5327 if (info->create_default_symver)
5329 size += sizeof (Elf_External_Verdef);
5333 for (t = verdefs; t != NULL; t = t->next)
5335 struct bfd_elf_version_deps *n;
5337 size += sizeof (Elf_External_Verdef);
5338 size += sizeof (Elf_External_Verdaux);
5341 for (n = t->deps; n != NULL; n = n->next)
5342 size += sizeof (Elf_External_Verdaux);
5346 s->contents = bfd_alloc (output_bfd, s->size);
5347 if (s->contents == NULL && s->size != 0)
5350 /* Fill in the version definition section. */
5354 def.vd_version = VER_DEF_CURRENT;
5355 def.vd_flags = VER_FLG_BASE;
5358 if (info->create_default_symver)
5360 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5361 def.vd_next = sizeof (Elf_External_Verdef);
5365 def.vd_aux = sizeof (Elf_External_Verdef);
5366 def.vd_next = (sizeof (Elf_External_Verdef)
5367 + sizeof (Elf_External_Verdaux));
5370 if (soname_indx != (bfd_size_type) -1)
5372 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5374 def.vd_hash = bfd_elf_hash (soname);
5375 defaux.vda_name = soname_indx;
5382 name = basename (output_bfd->filename);
5383 def.vd_hash = bfd_elf_hash (name);
5384 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5386 if (indx == (bfd_size_type) -1)
5388 defaux.vda_name = indx;
5390 defaux.vda_next = 0;
5392 _bfd_elf_swap_verdef_out (output_bfd, &def,
5393 (Elf_External_Verdef *) p);
5394 p += sizeof (Elf_External_Verdef);
5395 if (info->create_default_symver)
5397 /* Add a symbol representing this version. */
5399 if (! (_bfd_generic_link_add_one_symbol
5400 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5402 get_elf_backend_data (dynobj)->collect, &bh)))
5404 h = (struct elf_link_hash_entry *) bh;
5407 h->type = STT_OBJECT;
5408 h->verinfo.vertree = NULL;
5410 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5413 /* Create a duplicate of the base version with the same
5414 aux block, but different flags. */
5417 def.vd_aux = sizeof (Elf_External_Verdef);
5419 def.vd_next = (sizeof (Elf_External_Verdef)
5420 + sizeof (Elf_External_Verdaux));
5423 _bfd_elf_swap_verdef_out (output_bfd, &def,
5424 (Elf_External_Verdef *) p);
5425 p += sizeof (Elf_External_Verdef);
5427 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5428 (Elf_External_Verdaux *) p);
5429 p += sizeof (Elf_External_Verdaux);
5431 for (t = verdefs; t != NULL; t = t->next)
5434 struct bfd_elf_version_deps *n;
5437 for (n = t->deps; n != NULL; n = n->next)
5440 /* Add a symbol representing this version. */
5442 if (! (_bfd_generic_link_add_one_symbol
5443 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5445 get_elf_backend_data (dynobj)->collect, &bh)))
5447 h = (struct elf_link_hash_entry *) bh;
5450 h->type = STT_OBJECT;
5451 h->verinfo.vertree = t;
5453 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5456 def.vd_version = VER_DEF_CURRENT;
5458 if (t->globals.list == NULL
5459 && t->locals.list == NULL
5461 def.vd_flags |= VER_FLG_WEAK;
5462 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5463 def.vd_cnt = cdeps + 1;
5464 def.vd_hash = bfd_elf_hash (t->name);
5465 def.vd_aux = sizeof (Elf_External_Verdef);
5467 if (t->next != NULL)
5468 def.vd_next = (sizeof (Elf_External_Verdef)
5469 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5471 _bfd_elf_swap_verdef_out (output_bfd, &def,
5472 (Elf_External_Verdef *) p);
5473 p += sizeof (Elf_External_Verdef);
5475 defaux.vda_name = h->dynstr_index;
5476 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5478 defaux.vda_next = 0;
5479 if (t->deps != NULL)
5480 defaux.vda_next = sizeof (Elf_External_Verdaux);
5481 t->name_indx = defaux.vda_name;
5483 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5484 (Elf_External_Verdaux *) p);
5485 p += sizeof (Elf_External_Verdaux);
5487 for (n = t->deps; n != NULL; n = n->next)
5489 if (n->version_needed == NULL)
5491 /* This can happen if there was an error in the
5493 defaux.vda_name = 0;
5497 defaux.vda_name = n->version_needed->name_indx;
5498 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5501 if (n->next == NULL)
5502 defaux.vda_next = 0;
5504 defaux.vda_next = sizeof (Elf_External_Verdaux);
5506 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5507 (Elf_External_Verdaux *) p);
5508 p += sizeof (Elf_External_Verdaux);
5512 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5513 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5516 elf_tdata (output_bfd)->cverdefs = cdefs;
5519 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5521 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5524 else if (info->flags & DF_BIND_NOW)
5526 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5532 if (info->executable)
5533 info->flags_1 &= ~ (DF_1_INITFIRST
5536 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5540 /* Work out the size of the version reference section. */
5542 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5543 BFD_ASSERT (s != NULL);
5545 struct elf_find_verdep_info sinfo;
5547 sinfo.output_bfd = output_bfd;
5549 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5550 if (sinfo.vers == 0)
5552 sinfo.failed = FALSE;
5554 elf_link_hash_traverse (elf_hash_table (info),
5555 _bfd_elf_link_find_version_dependencies,
5558 if (elf_tdata (output_bfd)->verref == NULL)
5559 s->flags |= SEC_EXCLUDE;
5562 Elf_Internal_Verneed *t;
5567 /* Build the version definition section. */
5570 for (t = elf_tdata (output_bfd)->verref;
5574 Elf_Internal_Vernaux *a;
5576 size += sizeof (Elf_External_Verneed);
5578 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5579 size += sizeof (Elf_External_Vernaux);
5583 s->contents = bfd_alloc (output_bfd, s->size);
5584 if (s->contents == NULL)
5588 for (t = elf_tdata (output_bfd)->verref;
5593 Elf_Internal_Vernaux *a;
5597 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5600 t->vn_version = VER_NEED_CURRENT;
5602 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5603 elf_dt_name (t->vn_bfd) != NULL
5604 ? elf_dt_name (t->vn_bfd)
5605 : basename (t->vn_bfd->filename),
5607 if (indx == (bfd_size_type) -1)
5610 t->vn_aux = sizeof (Elf_External_Verneed);
5611 if (t->vn_nextref == NULL)
5614 t->vn_next = (sizeof (Elf_External_Verneed)
5615 + caux * sizeof (Elf_External_Vernaux));
5617 _bfd_elf_swap_verneed_out (output_bfd, t,
5618 (Elf_External_Verneed *) p);
5619 p += sizeof (Elf_External_Verneed);
5621 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5623 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5625 a->vna_nodename, FALSE);
5626 if (indx == (bfd_size_type) -1)
5629 if (a->vna_nextptr == NULL)
5632 a->vna_next = sizeof (Elf_External_Vernaux);
5634 _bfd_elf_swap_vernaux_out (output_bfd, a,
5635 (Elf_External_Vernaux *) p);
5636 p += sizeof (Elf_External_Vernaux);
5640 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5641 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5644 elf_tdata (output_bfd)->cverrefs = crefs;
5648 if ((elf_tdata (output_bfd)->cverrefs == 0
5649 && elf_tdata (output_bfd)->cverdefs == 0)
5650 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5651 §ion_sym_count) == 0)
5653 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5654 s->flags |= SEC_EXCLUDE;
5661 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
5663 if (!is_elf_hash_table (info->hash))
5666 if (elf_hash_table (info)->dynamic_sections_created)
5669 const struct elf_backend_data *bed;
5671 bfd_size_type dynsymcount;
5672 unsigned long section_sym_count;
5673 size_t bucketcount = 0;
5674 size_t hash_entry_size;
5675 unsigned int dtagcount;
5677 dynobj = elf_hash_table (info)->dynobj;
5679 /* Assign dynsym indicies. In a shared library we generate a
5680 section symbol for each output section, which come first.
5681 Next come all of the back-end allocated local dynamic syms,
5682 followed by the rest of the global symbols. */
5684 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
5685 §ion_sym_count);
5687 /* Work out the size of the symbol version section. */
5688 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5689 BFD_ASSERT (s != NULL);
5690 if (dynsymcount != 0
5691 && (s->flags & SEC_EXCLUDE) == 0)
5693 s->size = dynsymcount * sizeof (Elf_External_Versym);
5694 s->contents = bfd_zalloc (output_bfd, s->size);
5695 if (s->contents == NULL)
5698 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5702 /* Set the size of the .dynsym and .hash sections. We counted
5703 the number of dynamic symbols in elf_link_add_object_symbols.
5704 We will build the contents of .dynsym and .hash when we build
5705 the final symbol table, because until then we do not know the
5706 correct value to give the symbols. We built the .dynstr
5707 section as we went along in elf_link_add_object_symbols. */
5708 s = bfd_get_section_by_name (dynobj, ".dynsym");
5709 BFD_ASSERT (s != NULL);
5710 bed = get_elf_backend_data (output_bfd);
5711 s->size = dynsymcount * bed->s->sizeof_sym;
5713 if (dynsymcount != 0)
5715 s->contents = bfd_alloc (output_bfd, s->size);
5716 if (s->contents == NULL)
5719 /* The first entry in .dynsym is a dummy symbol.
5720 Clear all the section syms, in case we don't output them all. */
5721 ++section_sym_count;
5722 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
5725 /* Compute the size of the hashing table. As a side effect this
5726 computes the hash values for all the names we export. */
5727 bucketcount = compute_bucket_count (info);
5729 s = bfd_get_section_by_name (dynobj, ".hash");
5730 BFD_ASSERT (s != NULL);
5731 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5732 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5733 s->contents = bfd_zalloc (output_bfd, s->size);
5734 if (s->contents == NULL)
5737 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5738 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5739 s->contents + hash_entry_size);
5741 elf_hash_table (info)->bucketcount = bucketcount;
5743 s = bfd_get_section_by_name (dynobj, ".dynstr");
5744 BFD_ASSERT (s != NULL);
5746 elf_finalize_dynstr (output_bfd, info);
5748 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5750 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5751 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5758 /* Final phase of ELF linker. */
5760 /* A structure we use to avoid passing large numbers of arguments. */
5762 struct elf_final_link_info
5764 /* General link information. */
5765 struct bfd_link_info *info;
5768 /* Symbol string table. */
5769 struct bfd_strtab_hash *symstrtab;
5770 /* .dynsym section. */
5771 asection *dynsym_sec;
5772 /* .hash section. */
5774 /* symbol version section (.gnu.version). */
5775 asection *symver_sec;
5776 /* Buffer large enough to hold contents of any section. */
5778 /* Buffer large enough to hold external relocs of any section. */
5779 void *external_relocs;
5780 /* Buffer large enough to hold internal relocs of any section. */
5781 Elf_Internal_Rela *internal_relocs;
5782 /* Buffer large enough to hold external local symbols of any input
5784 bfd_byte *external_syms;
5785 /* And a buffer for symbol section indices. */
5786 Elf_External_Sym_Shndx *locsym_shndx;
5787 /* Buffer large enough to hold internal local symbols of any input
5789 Elf_Internal_Sym *internal_syms;
5790 /* Array large enough to hold a symbol index for each local symbol
5791 of any input BFD. */
5793 /* Array large enough to hold a section pointer for each local
5794 symbol of any input BFD. */
5795 asection **sections;
5796 /* Buffer to hold swapped out symbols. */
5798 /* And one for symbol section indices. */
5799 Elf_External_Sym_Shndx *symshndxbuf;
5800 /* Number of swapped out symbols in buffer. */
5801 size_t symbuf_count;
5802 /* Number of symbols which fit in symbuf. */
5804 /* And same for symshndxbuf. */
5805 size_t shndxbuf_size;
5808 /* This struct is used to pass information to elf_link_output_extsym. */
5810 struct elf_outext_info
5813 bfd_boolean localsyms;
5814 struct elf_final_link_info *finfo;
5817 /* When performing a relocatable link, the input relocations are
5818 preserved. But, if they reference global symbols, the indices
5819 referenced must be updated. Update all the relocations in
5820 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5823 elf_link_adjust_relocs (bfd *abfd,
5824 Elf_Internal_Shdr *rel_hdr,
5826 struct elf_link_hash_entry **rel_hash)
5829 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5831 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5832 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5833 bfd_vma r_type_mask;
5836 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5838 swap_in = bed->s->swap_reloc_in;
5839 swap_out = bed->s->swap_reloc_out;
5841 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5843 swap_in = bed->s->swap_reloca_in;
5844 swap_out = bed->s->swap_reloca_out;
5849 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5852 if (bed->s->arch_size == 32)
5859 r_type_mask = 0xffffffff;
5863 erela = rel_hdr->contents;
5864 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5866 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5869 if (*rel_hash == NULL)
5872 BFD_ASSERT ((*rel_hash)->indx >= 0);
5874 (*swap_in) (abfd, erela, irela);
5875 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5876 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5877 | (irela[j].r_info & r_type_mask));
5878 (*swap_out) (abfd, irela, erela);
5882 struct elf_link_sort_rela
5888 enum elf_reloc_type_class type;
5889 /* We use this as an array of size int_rels_per_ext_rel. */
5890 Elf_Internal_Rela rela[1];
5894 elf_link_sort_cmp1 (const void *A, const void *B)
5896 const struct elf_link_sort_rela *a = A;
5897 const struct elf_link_sort_rela *b = B;
5898 int relativea, relativeb;
5900 relativea = a->type == reloc_class_relative;
5901 relativeb = b->type == reloc_class_relative;
5903 if (relativea < relativeb)
5905 if (relativea > relativeb)
5907 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5909 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5911 if (a->rela->r_offset < b->rela->r_offset)
5913 if (a->rela->r_offset > b->rela->r_offset)
5919 elf_link_sort_cmp2 (const void *A, const void *B)
5921 const struct elf_link_sort_rela *a = A;
5922 const struct elf_link_sort_rela *b = B;
5925 if (a->u.offset < b->u.offset)
5927 if (a->u.offset > b->u.offset)
5929 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5930 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5935 if (a->rela->r_offset < b->rela->r_offset)
5937 if (a->rela->r_offset > b->rela->r_offset)
5943 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5946 bfd_size_type count, size;
5947 size_t i, ret, sort_elt, ext_size;
5948 bfd_byte *sort, *s_non_relative, *p;
5949 struct elf_link_sort_rela *sq;
5950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5951 int i2e = bed->s->int_rels_per_ext_rel;
5952 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5953 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5954 struct bfd_link_order *lo;
5957 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5958 if (reldyn == NULL || reldyn->size == 0)
5960 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5961 if (reldyn == NULL || reldyn->size == 0)
5963 ext_size = bed->s->sizeof_rel;
5964 swap_in = bed->s->swap_reloc_in;
5965 swap_out = bed->s->swap_reloc_out;
5969 ext_size = bed->s->sizeof_rela;
5970 swap_in = bed->s->swap_reloca_in;
5971 swap_out = bed->s->swap_reloca_out;
5973 count = reldyn->size / ext_size;
5976 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
5977 if (lo->type == bfd_indirect_link_order)
5979 asection *o = lo->u.indirect.section;
5983 if (size != reldyn->size)
5986 sort_elt = (sizeof (struct elf_link_sort_rela)
5987 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5988 sort = bfd_zmalloc (sort_elt * count);
5991 (*info->callbacks->warning)
5992 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5996 if (bed->s->arch_size == 32)
5997 r_sym_mask = ~(bfd_vma) 0xff;
5999 r_sym_mask = ~(bfd_vma) 0xffffffff;
6001 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6002 if (lo->type == bfd_indirect_link_order)
6004 bfd_byte *erel, *erelend;
6005 asection *o = lo->u.indirect.section;
6007 if (o->contents == NULL && o->size != 0)
6009 /* This is a reloc section that is being handled as a normal
6010 section. See bfd_section_from_shdr. We can't combine
6011 relocs in this case. */
6016 erelend = o->contents + o->size;
6017 p = sort + o->output_offset / ext_size * sort_elt;
6018 while (erel < erelend)
6020 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6021 (*swap_in) (abfd, erel, s->rela);
6022 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
6023 s->u.sym_mask = r_sym_mask;
6029 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
6031 for (i = 0, p = sort; i < count; i++, p += sort_elt)
6033 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6034 if (s->type != reloc_class_relative)
6040 sq = (struct elf_link_sort_rela *) s_non_relative;
6041 for (; i < count; i++, p += sort_elt)
6043 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
6044 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
6046 sp->u.offset = sq->rela->r_offset;
6049 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
6051 for (lo = reldyn->map_head.link_order; lo != NULL; lo = lo->next)
6052 if (lo->type == bfd_indirect_link_order)
6054 bfd_byte *erel, *erelend;
6055 asection *o = lo->u.indirect.section;
6058 erelend = o->contents + o->size;
6059 p = sort + o->output_offset / ext_size * sort_elt;
6060 while (erel < erelend)
6062 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
6063 (*swap_out) (abfd, s->rela, erel);
6074 /* Flush the output symbols to the file. */
6077 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
6078 const struct elf_backend_data *bed)
6080 if (finfo->symbuf_count > 0)
6082 Elf_Internal_Shdr *hdr;
6086 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
6087 pos = hdr->sh_offset + hdr->sh_size;
6088 amt = finfo->symbuf_count * bed->s->sizeof_sym;
6089 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
6090 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
6093 hdr->sh_size += amt;
6094 finfo->symbuf_count = 0;
6100 /* Add a symbol to the output symbol table. */
6103 elf_link_output_sym (struct elf_final_link_info *finfo,
6105 Elf_Internal_Sym *elfsym,
6106 asection *input_sec,
6107 struct elf_link_hash_entry *h)
6110 Elf_External_Sym_Shndx *destshndx;
6111 bfd_boolean (*output_symbol_hook)
6112 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
6113 struct elf_link_hash_entry *);
6114 const struct elf_backend_data *bed;
6116 bed = get_elf_backend_data (finfo->output_bfd);
6117 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
6118 if (output_symbol_hook != NULL)
6120 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
6124 if (name == NULL || *name == '\0')
6125 elfsym->st_name = 0;
6126 else if (input_sec->flags & SEC_EXCLUDE)
6127 elfsym->st_name = 0;
6130 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
6132 if (elfsym->st_name == (unsigned long) -1)
6136 if (finfo->symbuf_count >= finfo->symbuf_size)
6138 if (! elf_link_flush_output_syms (finfo, bed))
6142 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
6143 destshndx = finfo->symshndxbuf;
6144 if (destshndx != NULL)
6146 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
6150 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
6151 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
6152 if (destshndx == NULL)
6154 memset ((char *) destshndx + amt, 0, amt);
6155 finfo->shndxbuf_size *= 2;
6157 destshndx += bfd_get_symcount (finfo->output_bfd);
6160 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
6161 finfo->symbuf_count += 1;
6162 bfd_get_symcount (finfo->output_bfd) += 1;
6167 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
6168 allowing an unsatisfied unversioned symbol in the DSO to match a
6169 versioned symbol that would normally require an explicit version.
6170 We also handle the case that a DSO references a hidden symbol
6171 which may be satisfied by a versioned symbol in another DSO. */
6174 elf_link_check_versioned_symbol (struct bfd_link_info *info,
6175 const struct elf_backend_data *bed,
6176 struct elf_link_hash_entry *h)
6179 struct elf_link_loaded_list *loaded;
6181 if (!is_elf_hash_table (info->hash))
6184 switch (h->root.type)
6190 case bfd_link_hash_undefined:
6191 case bfd_link_hash_undefweak:
6192 abfd = h->root.u.undef.abfd;
6193 if ((abfd->flags & DYNAMIC) == 0
6194 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
6198 case bfd_link_hash_defined:
6199 case bfd_link_hash_defweak:
6200 abfd = h->root.u.def.section->owner;
6203 case bfd_link_hash_common:
6204 abfd = h->root.u.c.p->section->owner;
6207 BFD_ASSERT (abfd != NULL);
6209 for (loaded = elf_hash_table (info)->loaded;
6211 loaded = loaded->next)
6214 Elf_Internal_Shdr *hdr;
6215 bfd_size_type symcount;
6216 bfd_size_type extsymcount;
6217 bfd_size_type extsymoff;
6218 Elf_Internal_Shdr *versymhdr;
6219 Elf_Internal_Sym *isym;
6220 Elf_Internal_Sym *isymend;
6221 Elf_Internal_Sym *isymbuf;
6222 Elf_External_Versym *ever;
6223 Elf_External_Versym *extversym;
6225 input = loaded->abfd;
6227 /* We check each DSO for a possible hidden versioned definition. */
6229 || (input->flags & DYNAMIC) == 0
6230 || elf_dynversym (input) == 0)
6233 hdr = &elf_tdata (input)->dynsymtab_hdr;
6235 symcount = hdr->sh_size / bed->s->sizeof_sym;
6236 if (elf_bad_symtab (input))
6238 extsymcount = symcount;
6243 extsymcount = symcount - hdr->sh_info;
6244 extsymoff = hdr->sh_info;
6247 if (extsymcount == 0)
6250 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
6252 if (isymbuf == NULL)
6255 /* Read in any version definitions. */
6256 versymhdr = &elf_tdata (input)->dynversym_hdr;
6257 extversym = bfd_malloc (versymhdr->sh_size);
6258 if (extversym == NULL)
6261 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
6262 || (bfd_bread (extversym, versymhdr->sh_size, input)
6263 != versymhdr->sh_size))
6271 ever = extversym + extsymoff;
6272 isymend = isymbuf + extsymcount;
6273 for (isym = isymbuf; isym < isymend; isym++, ever++)
6276 Elf_Internal_Versym iver;
6277 unsigned short version_index;
6279 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
6280 || isym->st_shndx == SHN_UNDEF)
6283 name = bfd_elf_string_from_elf_section (input,
6286 if (strcmp (name, h->root.root.string) != 0)
6289 _bfd_elf_swap_versym_in (input, ever, &iver);
6291 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
6293 /* If we have a non-hidden versioned sym, then it should
6294 have provided a definition for the undefined sym. */
6298 version_index = iver.vs_vers & VERSYM_VERSION;
6299 if (version_index == 1 || version_index == 2)
6301 /* This is the base or first version. We can use it. */
6315 /* Add an external symbol to the symbol table. This is called from
6316 the hash table traversal routine. When generating a shared object,
6317 we go through the symbol table twice. The first time we output
6318 anything that might have been forced to local scope in a version
6319 script. The second time we output the symbols that are still
6323 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
6325 struct elf_outext_info *eoinfo = data;
6326 struct elf_final_link_info *finfo = eoinfo->finfo;
6328 Elf_Internal_Sym sym;
6329 asection *input_sec;
6330 const struct elf_backend_data *bed;
6332 if (h->root.type == bfd_link_hash_warning)
6334 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6335 if (h->root.type == bfd_link_hash_new)
6339 /* Decide whether to output this symbol in this pass. */
6340 if (eoinfo->localsyms)
6342 if (!h->forced_local)
6347 if (h->forced_local)
6351 bed = get_elf_backend_data (finfo->output_bfd);
6353 /* If we have an undefined symbol reference here then it must have
6354 come from a shared library that is being linked in. (Undefined
6355 references in regular files have already been handled). If we
6356 are reporting errors for this situation then do so now. */
6357 if (h->root.type == bfd_link_hash_undefined
6360 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
6361 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
6363 if (! ((*finfo->info->callbacks->undefined_symbol)
6364 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
6365 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
6367 eoinfo->failed = TRUE;
6372 /* We should also warn if a forced local symbol is referenced from
6373 shared libraries. */
6374 if (! finfo->info->relocatable
6375 && (! finfo->info->shared)
6380 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6382 (*_bfd_error_handler)
6383 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
6384 finfo->output_bfd, h->root.u.def.section->owner,
6385 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6387 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6388 ? "hidden" : "local",
6389 h->root.root.string);
6390 eoinfo->failed = TRUE;
6394 /* We don't want to output symbols that have never been mentioned by
6395 a regular file, or that we have been told to strip. However, if
6396 h->indx is set to -2, the symbol is used by a reloc and we must
6400 else if ((h->def_dynamic
6402 || h->root.type == bfd_link_hash_new)
6406 else if (finfo->info->strip == strip_all)
6408 else if (finfo->info->strip == strip_some
6409 && bfd_hash_lookup (finfo->info->keep_hash,
6410 h->root.root.string, FALSE, FALSE) == NULL)
6412 else if (finfo->info->strip_discarded
6413 && (h->root.type == bfd_link_hash_defined
6414 || h->root.type == bfd_link_hash_defweak)
6415 && elf_discarded_section (h->root.u.def.section))
6420 /* If we're stripping it, and it's not a dynamic symbol, there's
6421 nothing else to do unless it is a forced local symbol. */
6424 && !h->forced_local)
6428 sym.st_size = h->size;
6429 sym.st_other = h->other;
6430 if (h->forced_local)
6431 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6432 else if (h->root.type == bfd_link_hash_undefweak
6433 || h->root.type == bfd_link_hash_defweak)
6434 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6436 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6438 switch (h->root.type)
6441 case bfd_link_hash_new:
6442 case bfd_link_hash_warning:
6446 case bfd_link_hash_undefined:
6447 case bfd_link_hash_undefweak:
6448 input_sec = bfd_und_section_ptr;
6449 sym.st_shndx = SHN_UNDEF;
6452 case bfd_link_hash_defined:
6453 case bfd_link_hash_defweak:
6455 input_sec = h->root.u.def.section;
6456 if (input_sec->output_section != NULL)
6459 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6460 input_sec->output_section);
6461 if (sym.st_shndx == SHN_BAD)
6463 (*_bfd_error_handler)
6464 (_("%B: could not find output section %A for input section %A"),
6465 finfo->output_bfd, input_sec->output_section, input_sec);
6466 eoinfo->failed = TRUE;
6470 /* ELF symbols in relocatable files are section relative,
6471 but in nonrelocatable files they are virtual
6473 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6474 if (! finfo->info->relocatable)
6476 sym.st_value += input_sec->output_section->vma;
6477 if (h->type == STT_TLS)
6479 /* STT_TLS symbols are relative to PT_TLS segment
6481 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6482 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6488 BFD_ASSERT (input_sec->owner == NULL
6489 || (input_sec->owner->flags & DYNAMIC) != 0);
6490 sym.st_shndx = SHN_UNDEF;
6491 input_sec = bfd_und_section_ptr;
6496 case bfd_link_hash_common:
6497 input_sec = h->root.u.c.p->section;
6498 sym.st_shndx = SHN_COMMON;
6499 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6502 case bfd_link_hash_indirect:
6503 /* These symbols are created by symbol versioning. They point
6504 to the decorated version of the name. For example, if the
6505 symbol foo@@GNU_1.2 is the default, which should be used when
6506 foo is used with no version, then we add an indirect symbol
6507 foo which points to foo@@GNU_1.2. We ignore these symbols,
6508 since the indirected symbol is already in the hash table. */
6512 /* Give the processor backend a chance to tweak the symbol value,
6513 and also to finish up anything that needs to be done for this
6514 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6515 forced local syms when non-shared is due to a historical quirk. */
6516 if ((h->dynindx != -1
6518 && ((finfo->info->shared
6519 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6520 || h->root.type != bfd_link_hash_undefweak))
6521 || !h->forced_local)
6522 && elf_hash_table (finfo->info)->dynamic_sections_created)
6524 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6525 (finfo->output_bfd, finfo->info, h, &sym)))
6527 eoinfo->failed = TRUE;
6532 /* If we are marking the symbol as undefined, and there are no
6533 non-weak references to this symbol from a regular object, then
6534 mark the symbol as weak undefined; if there are non-weak
6535 references, mark the symbol as strong. We can't do this earlier,
6536 because it might not be marked as undefined until the
6537 finish_dynamic_symbol routine gets through with it. */
6538 if (sym.st_shndx == SHN_UNDEF
6540 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6541 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6545 if (h->ref_regular_nonweak)
6546 bindtype = STB_GLOBAL;
6548 bindtype = STB_WEAK;
6549 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6552 /* If a non-weak symbol with non-default visibility is not defined
6553 locally, it is a fatal error. */
6554 if (! finfo->info->relocatable
6555 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6556 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6557 && h->root.type == bfd_link_hash_undefined
6560 (*_bfd_error_handler)
6561 (_("%B: %s symbol `%s' isn't defined"),
6563 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6565 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6566 ? "internal" : "hidden",
6567 h->root.root.string);
6568 eoinfo->failed = TRUE;
6572 /* If this symbol should be put in the .dynsym section, then put it
6573 there now. We already know the symbol index. We also fill in
6574 the entry in the .hash section. */
6575 if (h->dynindx != -1
6576 && elf_hash_table (finfo->info)->dynamic_sections_created)
6580 size_t hash_entry_size;
6581 bfd_byte *bucketpos;
6585 sym.st_name = h->dynstr_index;
6586 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6587 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6589 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6590 bucket = h->u.elf_hash_value % bucketcount;
6592 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6593 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6594 + (bucket + 2) * hash_entry_size);
6595 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6596 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6597 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6598 ((bfd_byte *) finfo->hash_sec->contents
6599 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6601 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6603 Elf_Internal_Versym iversym;
6604 Elf_External_Versym *eversym;
6606 if (!h->def_regular)
6608 if (h->verinfo.verdef == NULL)
6609 iversym.vs_vers = 0;
6611 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6615 if (h->verinfo.vertree == NULL)
6616 iversym.vs_vers = 1;
6618 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6619 if (finfo->info->create_default_symver)
6624 iversym.vs_vers |= VERSYM_HIDDEN;
6626 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6627 eversym += h->dynindx;
6628 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6632 /* If we're stripping it, then it was just a dynamic symbol, and
6633 there's nothing else to do. */
6634 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6637 h->indx = bfd_get_symcount (finfo->output_bfd);
6639 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6641 eoinfo->failed = TRUE;
6648 /* Return TRUE if special handling is done for relocs in SEC against
6649 symbols defined in discarded sections. */
6652 elf_section_ignore_discarded_relocs (asection *sec)
6654 const struct elf_backend_data *bed;
6656 switch (sec->sec_info_type)
6658 case ELF_INFO_TYPE_STABS:
6659 case ELF_INFO_TYPE_EH_FRAME:
6665 bed = get_elf_backend_data (sec->owner);
6666 if (bed->elf_backend_ignore_discarded_relocs != NULL
6667 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6673 enum action_discarded
6679 /* Return a mask saying how ld should treat relocations in SEC against
6680 symbols defined in discarded sections. If this function returns
6681 COMPLAIN set, ld will issue a warning message. If this function
6682 returns PRETEND set, and the discarded section was link-once and the
6683 same size as the kept link-once section, ld will pretend that the
6684 symbol was actually defined in the kept section. Otherwise ld will
6685 zero the reloc (at least that is the intent, but some cooperation by
6686 the target dependent code is needed, particularly for REL targets). */
6689 elf_action_discarded (asection *sec)
6691 if (sec->flags & SEC_DEBUGGING)
6694 if (strcmp (".eh_frame", sec->name) == 0)
6697 if (strcmp (".gcc_except_table", sec->name) == 0)
6700 if (strcmp (".PARISC.unwind", sec->name) == 0)
6703 if (strcmp (".fixup", sec->name) == 0)
6706 return COMPLAIN | PRETEND;
6709 /* Find a match between a section and a member of a section group. */
6712 match_group_member (asection *sec, asection *group)
6714 asection *first = elf_next_in_group (group);
6715 asection *s = first;
6719 if (bfd_elf_match_symbols_in_sections (s, sec))
6729 /* Check if the kept section of a discarded section SEC can be used
6730 to replace it. Return the replacement if it is OK. Otherwise return
6734 _bfd_elf_check_kept_section (asection *sec)
6738 kept = sec->kept_section;
6741 if (elf_sec_group (sec) != NULL)
6742 kept = match_group_member (sec, kept);
6743 if (kept != NULL && sec->size != kept->size)
6749 /* Link an input file into the linker output file. This function
6750 handles all the sections and relocations of the input file at once.
6751 This is so that we only have to read the local symbols once, and
6752 don't have to keep them in memory. */
6755 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6757 bfd_boolean (*relocate_section)
6758 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6759 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6761 Elf_Internal_Shdr *symtab_hdr;
6764 Elf_Internal_Sym *isymbuf;
6765 Elf_Internal_Sym *isym;
6766 Elf_Internal_Sym *isymend;
6768 asection **ppsection;
6770 const struct elf_backend_data *bed;
6771 bfd_boolean emit_relocs;
6772 struct elf_link_hash_entry **sym_hashes;
6774 output_bfd = finfo->output_bfd;
6775 bed = get_elf_backend_data (output_bfd);
6776 relocate_section = bed->elf_backend_relocate_section;
6778 /* If this is a dynamic object, we don't want to do anything here:
6779 we don't want the local symbols, and we don't want the section
6781 if ((input_bfd->flags & DYNAMIC) != 0)
6784 emit_relocs = (finfo->info->relocatable
6785 || finfo->info->emitrelocations
6786 || bed->elf_backend_emit_relocs);
6788 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6789 if (elf_bad_symtab (input_bfd))
6791 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6796 locsymcount = symtab_hdr->sh_info;
6797 extsymoff = symtab_hdr->sh_info;
6800 /* Read the local symbols. */
6801 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6802 if (isymbuf == NULL && locsymcount != 0)
6804 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6805 finfo->internal_syms,
6806 finfo->external_syms,
6807 finfo->locsym_shndx);
6808 if (isymbuf == NULL)
6812 /* Find local symbol sections and adjust values of symbols in
6813 SEC_MERGE sections. Write out those local symbols we know are
6814 going into the output file. */
6815 isymend = isymbuf + locsymcount;
6816 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6818 isym++, pindex++, ppsection++)
6822 Elf_Internal_Sym osym;
6826 if (elf_bad_symtab (input_bfd))
6828 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6835 if (isym->st_shndx == SHN_UNDEF)
6836 isec = bfd_und_section_ptr;
6837 else if (isym->st_shndx < SHN_LORESERVE
6838 || isym->st_shndx > SHN_HIRESERVE)
6840 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6842 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6843 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6845 _bfd_merged_section_offset (output_bfd, &isec,
6846 elf_section_data (isec)->sec_info,
6849 else if (isym->st_shndx == SHN_ABS)
6850 isec = bfd_abs_section_ptr;
6851 else if (isym->st_shndx == SHN_COMMON)
6852 isec = bfd_com_section_ptr;
6861 /* Don't output the first, undefined, symbol. */
6862 if (ppsection == finfo->sections)
6865 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6867 /* We never output section symbols. Instead, we use the
6868 section symbol of the corresponding section in the output
6873 /* If we are stripping all symbols, we don't want to output this
6875 if (finfo->info->strip == strip_all)
6878 /* If we are discarding all local symbols, we don't want to
6879 output this one. If we are generating a relocatable output
6880 file, then some of the local symbols may be required by
6881 relocs; we output them below as we discover that they are
6883 if (finfo->info->discard == discard_all)
6886 /* If this symbol is defined in a section which we are
6887 discarding, we don't need to keep it, but note that
6888 linker_mark is only reliable for sections that have contents.
6889 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6890 as well as linker_mark. */
6891 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6893 || (! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6894 || (! finfo->info->relocatable
6895 && (isec->flags & SEC_EXCLUDE) != 0)))
6898 /* If the section is not in the output BFD's section list, it is not
6900 if (bfd_section_removed_from_list (output_bfd, isec->output_section))
6903 /* Get the name of the symbol. */
6904 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6909 /* See if we are discarding symbols with this name. */
6910 if ((finfo->info->strip == strip_some
6911 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6913 || (((finfo->info->discard == discard_sec_merge
6914 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6915 || finfo->info->discard == discard_l)
6916 && bfd_is_local_label_name (input_bfd, name)))
6919 /* If we get here, we are going to output this symbol. */
6923 /* Adjust the section index for the output file. */
6924 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6925 isec->output_section);
6926 if (osym.st_shndx == SHN_BAD)
6929 *pindex = bfd_get_symcount (output_bfd);
6931 /* ELF symbols in relocatable files are section relative, but
6932 in executable files they are virtual addresses. Note that
6933 this code assumes that all ELF sections have an associated
6934 BFD section with a reasonable value for output_offset; below
6935 we assume that they also have a reasonable value for
6936 output_section. Any special sections must be set up to meet
6937 these requirements. */
6938 osym.st_value += isec->output_offset;
6939 if (! finfo->info->relocatable)
6941 osym.st_value += isec->output_section->vma;
6942 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6944 /* STT_TLS symbols are relative to PT_TLS segment base. */
6945 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6946 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6950 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6954 /* Relocate the contents of each section. */
6955 sym_hashes = elf_sym_hashes (input_bfd);
6956 for (o = input_bfd->sections; o != NULL; o = o->next)
6960 if (! o->linker_mark)
6962 /* This section was omitted from the link. */
6966 if ((o->flags & SEC_HAS_CONTENTS) == 0
6967 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6970 if ((o->flags & SEC_LINKER_CREATED) != 0)
6972 /* Section was created by _bfd_elf_link_create_dynamic_sections
6977 /* Get the contents of the section. They have been cached by a
6978 relaxation routine. Note that o is a section in an input
6979 file, so the contents field will not have been set by any of
6980 the routines which work on output files. */
6981 if (elf_section_data (o)->this_hdr.contents != NULL)
6982 contents = elf_section_data (o)->this_hdr.contents;
6985 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6987 contents = finfo->contents;
6988 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6992 if ((o->flags & SEC_RELOC) != 0)
6994 Elf_Internal_Rela *internal_relocs;
6995 bfd_vma r_type_mask;
6998 /* Get the swapped relocs. */
7000 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
7001 finfo->internal_relocs, FALSE);
7002 if (internal_relocs == NULL
7003 && o->reloc_count > 0)
7006 if (bed->s->arch_size == 32)
7013 r_type_mask = 0xffffffff;
7017 /* Run through the relocs looking for any against symbols
7018 from discarded sections and section symbols from
7019 removed link-once sections. Complain about relocs
7020 against discarded sections. Zero relocs against removed
7021 link-once sections. Preserve debug information as much
7023 if (!elf_section_ignore_discarded_relocs (o))
7025 Elf_Internal_Rela *rel, *relend;
7026 unsigned int action = elf_action_discarded (o);
7028 rel = internal_relocs;
7029 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
7030 for ( ; rel < relend; rel++)
7032 unsigned long r_symndx = rel->r_info >> r_sym_shift;
7033 asection **ps, *sec;
7034 struct elf_link_hash_entry *h = NULL;
7035 const char *sym_name;
7037 if (r_symndx == STN_UNDEF)
7040 if (r_symndx >= locsymcount
7041 || (elf_bad_symtab (input_bfd)
7042 && finfo->sections[r_symndx] == NULL))
7044 h = sym_hashes[r_symndx - extsymoff];
7046 /* Badly formatted input files can contain relocs that
7047 reference non-existant symbols. Check here so that
7048 we do not seg fault. */
7053 sprintf_vma (buffer, rel->r_info);
7054 (*_bfd_error_handler)
7055 (_("error: %B contains a reloc (0x%s) for section %A "
7056 "that references a non-existent global symbol"),
7057 input_bfd, o, buffer);
7058 bfd_set_error (bfd_error_bad_value);
7062 while (h->root.type == bfd_link_hash_indirect
7063 || h->root.type == bfd_link_hash_warning)
7064 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7066 if (h->root.type != bfd_link_hash_defined
7067 && h->root.type != bfd_link_hash_defweak)
7070 ps = &h->root.u.def.section;
7071 sym_name = h->root.root.string;
7075 Elf_Internal_Sym *sym = isymbuf + r_symndx;
7076 ps = &finfo->sections[r_symndx];
7077 sym_name = bfd_elf_sym_name (input_bfd,
7082 /* Complain if the definition comes from a
7083 discarded section. */
7084 if ((sec = *ps) != NULL && elf_discarded_section (sec))
7086 BFD_ASSERT (r_symndx != 0);
7087 if (action & COMPLAIN)
7089 (*_bfd_error_handler)
7090 (_("`%s' referenced in section `%A' of %B: "
7091 "defined in discarded section `%A' of %B"),
7092 o, input_bfd, sec, sec->owner, sym_name);
7093 bfd_set_error (bfd_error_bad_value);
7097 /* Try to do the best we can to support buggy old
7098 versions of gcc. If we've warned, or this is
7099 debugging info, pretend that the symbol is
7100 really defined in the kept linkonce section.
7101 FIXME: This is quite broken. Modifying the
7102 symbol here means we will be changing all later
7103 uses of the symbol, not just in this section.
7104 The only thing that makes this half reasonable
7105 is that we warn in non-debug sections, and
7106 debug sections tend to come after other
7108 if (action & PRETEND)
7112 kept = _bfd_elf_check_kept_section (sec);
7120 /* Remove the symbol reference from the reloc, but
7121 don't kill the reloc completely. This is so that
7122 a zero value will be written into the section,
7123 which may have non-zero contents put there by the
7124 assembler. Zero in things like an eh_frame fde
7125 pc_begin allows stack unwinders to recognize the
7127 rel->r_info &= r_type_mask;
7133 /* Relocate the section by invoking a back end routine.
7135 The back end routine is responsible for adjusting the
7136 section contents as necessary, and (if using Rela relocs
7137 and generating a relocatable output file) adjusting the
7138 reloc addend as necessary.
7140 The back end routine does not have to worry about setting
7141 the reloc address or the reloc symbol index.
7143 The back end routine is given a pointer to the swapped in
7144 internal symbols, and can access the hash table entries
7145 for the external symbols via elf_sym_hashes (input_bfd).
7147 When generating relocatable output, the back end routine
7148 must handle STB_LOCAL/STT_SECTION symbols specially. The
7149 output symbol is going to be a section symbol
7150 corresponding to the output section, which will require
7151 the addend to be adjusted. */
7153 if (! (*relocate_section) (output_bfd, finfo->info,
7154 input_bfd, o, contents,
7162 Elf_Internal_Rela *irela;
7163 Elf_Internal_Rela *irelaend;
7164 bfd_vma last_offset;
7165 struct elf_link_hash_entry **rel_hash;
7166 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
7167 unsigned int next_erel;
7168 bfd_boolean (*reloc_emitter)
7169 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
7170 bfd_boolean rela_normal;
7172 input_rel_hdr = &elf_section_data (o)->rel_hdr;
7173 rela_normal = (bed->rela_normal
7174 && (input_rel_hdr->sh_entsize
7175 == bed->s->sizeof_rela));
7177 /* Adjust the reloc addresses and symbol indices. */
7179 irela = internal_relocs;
7180 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
7181 rel_hash = (elf_section_data (o->output_section)->rel_hashes
7182 + elf_section_data (o->output_section)->rel_count
7183 + elf_section_data (o->output_section)->rel_count2);
7184 last_offset = o->output_offset;
7185 if (!finfo->info->relocatable)
7186 last_offset += o->output_section->vma;
7187 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
7189 unsigned long r_symndx;
7191 Elf_Internal_Sym sym;
7193 if (next_erel == bed->s->int_rels_per_ext_rel)
7199 irela->r_offset = _bfd_elf_section_offset (output_bfd,
7202 if (irela->r_offset >= (bfd_vma) -2)
7204 /* This is a reloc for a deleted entry or somesuch.
7205 Turn it into an R_*_NONE reloc, at the same
7206 offset as the last reloc. elf_eh_frame.c and
7207 elf_bfd_discard_info rely on reloc offsets
7209 irela->r_offset = last_offset;
7211 irela->r_addend = 0;
7215 irela->r_offset += o->output_offset;
7217 /* Relocs in an executable have to be virtual addresses. */
7218 if (!finfo->info->relocatable)
7219 irela->r_offset += o->output_section->vma;
7221 last_offset = irela->r_offset;
7223 r_symndx = irela->r_info >> r_sym_shift;
7224 if (r_symndx == STN_UNDEF)
7227 if (r_symndx >= locsymcount
7228 || (elf_bad_symtab (input_bfd)
7229 && finfo->sections[r_symndx] == NULL))
7231 struct elf_link_hash_entry *rh;
7234 /* This is a reloc against a global symbol. We
7235 have not yet output all the local symbols, so
7236 we do not know the symbol index of any global
7237 symbol. We set the rel_hash entry for this
7238 reloc to point to the global hash table entry
7239 for this symbol. The symbol index is then
7240 set at the end of bfd_elf_final_link. */
7241 indx = r_symndx - extsymoff;
7242 rh = elf_sym_hashes (input_bfd)[indx];
7243 while (rh->root.type == bfd_link_hash_indirect
7244 || rh->root.type == bfd_link_hash_warning)
7245 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
7247 /* Setting the index to -2 tells
7248 elf_link_output_extsym that this symbol is
7250 BFD_ASSERT (rh->indx < 0);
7258 /* This is a reloc against a local symbol. */
7261 sym = isymbuf[r_symndx];
7262 sec = finfo->sections[r_symndx];
7263 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
7265 /* I suppose the backend ought to fill in the
7266 section of any STT_SECTION symbol against a
7267 processor specific section. */
7269 if (bfd_is_abs_section (sec))
7271 else if (sec == NULL || sec->owner == NULL)
7273 bfd_set_error (bfd_error_bad_value);
7278 asection *osec = sec->output_section;
7280 /* If we have discarded a section, the output
7281 section will be the absolute section. In
7282 case of discarded link-once and discarded
7283 SEC_MERGE sections, use the kept section. */
7284 if (bfd_is_abs_section (osec)
7285 && sec->kept_section != NULL
7286 && sec->kept_section->output_section != NULL)
7288 osec = sec->kept_section->output_section;
7289 irela->r_addend -= osec->vma;
7292 if (!bfd_is_abs_section (osec))
7294 r_symndx = osec->target_index;
7295 BFD_ASSERT (r_symndx != 0);
7299 /* Adjust the addend according to where the
7300 section winds up in the output section. */
7302 irela->r_addend += sec->output_offset;
7306 if (finfo->indices[r_symndx] == -1)
7308 unsigned long shlink;
7312 if (finfo->info->strip == strip_all)
7314 /* You can't do ld -r -s. */
7315 bfd_set_error (bfd_error_invalid_operation);
7319 /* This symbol was skipped earlier, but
7320 since it is needed by a reloc, we
7321 must output it now. */
7322 shlink = symtab_hdr->sh_link;
7323 name = (bfd_elf_string_from_elf_section
7324 (input_bfd, shlink, sym.st_name));
7328 osec = sec->output_section;
7330 _bfd_elf_section_from_bfd_section (output_bfd,
7332 if (sym.st_shndx == SHN_BAD)
7335 sym.st_value += sec->output_offset;
7336 if (! finfo->info->relocatable)
7338 sym.st_value += osec->vma;
7339 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
7341 /* STT_TLS symbols are relative to PT_TLS
7343 BFD_ASSERT (elf_hash_table (finfo->info)
7345 sym.st_value -= (elf_hash_table (finfo->info)
7350 finfo->indices[r_symndx]
7351 = bfd_get_symcount (output_bfd);
7353 if (! elf_link_output_sym (finfo, name, &sym, sec,
7358 r_symndx = finfo->indices[r_symndx];
7361 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
7362 | (irela->r_info & r_type_mask));
7365 /* Swap out the relocs. */
7366 if (bed->elf_backend_emit_relocs
7367 && !(finfo->info->relocatable
7368 || finfo->info->emitrelocations))
7369 reloc_emitter = bed->elf_backend_emit_relocs;
7371 reloc_emitter = _bfd_elf_link_output_relocs;
7373 if (input_rel_hdr->sh_size != 0
7374 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
7378 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
7379 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
7381 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
7382 * bed->s->int_rels_per_ext_rel);
7383 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
7390 /* Write out the modified section contents. */
7391 if (bed->elf_backend_write_section
7392 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
7394 /* Section written out. */
7396 else switch (o->sec_info_type)
7398 case ELF_INFO_TYPE_STABS:
7399 if (! (_bfd_write_section_stabs
7401 &elf_hash_table (finfo->info)->stab_info,
7402 o, &elf_section_data (o)->sec_info, contents)))
7405 case ELF_INFO_TYPE_MERGE:
7406 if (! _bfd_write_merged_section (output_bfd, o,
7407 elf_section_data (o)->sec_info))
7410 case ELF_INFO_TYPE_EH_FRAME:
7412 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
7419 if (! (o->flags & SEC_EXCLUDE)
7420 && ! bfd_set_section_contents (output_bfd, o->output_section,
7422 (file_ptr) o->output_offset,
7433 /* Generate a reloc when linking an ELF file. This is a reloc
7434 requested by the linker, and does come from any input file. This
7435 is used to build constructor and destructor tables when linking
7439 elf_reloc_link_order (bfd *output_bfd,
7440 struct bfd_link_info *info,
7441 asection *output_section,
7442 struct bfd_link_order *link_order)
7444 reloc_howto_type *howto;
7448 struct elf_link_hash_entry **rel_hash_ptr;
7449 Elf_Internal_Shdr *rel_hdr;
7450 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7451 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7455 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7458 bfd_set_error (bfd_error_bad_value);
7462 addend = link_order->u.reloc.p->addend;
7464 /* Figure out the symbol index. */
7465 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7466 + elf_section_data (output_section)->rel_count
7467 + elf_section_data (output_section)->rel_count2);
7468 if (link_order->type == bfd_section_reloc_link_order)
7470 indx = link_order->u.reloc.p->u.section->target_index;
7471 BFD_ASSERT (indx != 0);
7472 *rel_hash_ptr = NULL;
7476 struct elf_link_hash_entry *h;
7478 /* Treat a reloc against a defined symbol as though it were
7479 actually against the section. */
7480 h = ((struct elf_link_hash_entry *)
7481 bfd_wrapped_link_hash_lookup (output_bfd, info,
7482 link_order->u.reloc.p->u.name,
7483 FALSE, FALSE, TRUE));
7485 && (h->root.type == bfd_link_hash_defined
7486 || h->root.type == bfd_link_hash_defweak))
7490 section = h->root.u.def.section;
7491 indx = section->output_section->target_index;
7492 *rel_hash_ptr = NULL;
7493 /* It seems that we ought to add the symbol value to the
7494 addend here, but in practice it has already been added
7495 because it was passed to constructor_callback. */
7496 addend += section->output_section->vma + section->output_offset;
7500 /* Setting the index to -2 tells elf_link_output_extsym that
7501 this symbol is used by a reloc. */
7508 if (! ((*info->callbacks->unattached_reloc)
7509 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7515 /* If this is an inplace reloc, we must write the addend into the
7517 if (howto->partial_inplace && addend != 0)
7520 bfd_reloc_status_type rstat;
7523 const char *sym_name;
7525 size = bfd_get_reloc_size (howto);
7526 buf = bfd_zmalloc (size);
7529 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7536 case bfd_reloc_outofrange:
7539 case bfd_reloc_overflow:
7540 if (link_order->type == bfd_section_reloc_link_order)
7541 sym_name = bfd_section_name (output_bfd,
7542 link_order->u.reloc.p->u.section);
7544 sym_name = link_order->u.reloc.p->u.name;
7545 if (! ((*info->callbacks->reloc_overflow)
7546 (info, NULL, sym_name, howto->name, addend, NULL,
7547 NULL, (bfd_vma) 0)))
7554 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7555 link_order->offset, size);
7561 /* The address of a reloc is relative to the section in a
7562 relocatable file, and is a virtual address in an executable
7564 offset = link_order->offset;
7565 if (! info->relocatable)
7566 offset += output_section->vma;
7568 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7570 irel[i].r_offset = offset;
7572 irel[i].r_addend = 0;
7574 if (bed->s->arch_size == 32)
7575 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7577 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7579 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7580 erel = rel_hdr->contents;
7581 if (rel_hdr->sh_type == SHT_REL)
7583 erel += (elf_section_data (output_section)->rel_count
7584 * bed->s->sizeof_rel);
7585 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7589 irel[0].r_addend = addend;
7590 erel += (elf_section_data (output_section)->rel_count
7591 * bed->s->sizeof_rela);
7592 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7595 ++elf_section_data (output_section)->rel_count;
7601 /* Get the output vma of the section pointed to by the sh_link field. */
7604 elf_get_linked_section_vma (struct bfd_link_order *p)
7606 Elf_Internal_Shdr **elf_shdrp;
7610 s = p->u.indirect.section;
7611 elf_shdrp = elf_elfsections (s->owner);
7612 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
7613 elfsec = elf_shdrp[elfsec]->sh_link;
7615 The Intel C compiler generates SHT_IA_64_UNWIND with
7616 SHF_LINK_ORDER. But it doesn't set theh sh_link or
7617 sh_info fields. Hence we could get the situation
7618 where elfsec is 0. */
7621 const struct elf_backend_data *bed
7622 = get_elf_backend_data (s->owner);
7623 if (bed->link_order_error_handler)
7624 bed->link_order_error_handler
7625 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
7630 s = elf_shdrp[elfsec]->bfd_section;
7631 return s->output_section->vma + s->output_offset;
7636 /* Compare two sections based on the locations of the sections they are
7637 linked to. Used by elf_fixup_link_order. */
7640 compare_link_order (const void * a, const void * b)
7645 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
7646 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
7653 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
7654 order as their linked sections. Returns false if this could not be done
7655 because an output section includes both ordered and unordered
7656 sections. Ideally we'd do this in the linker proper. */
7659 elf_fixup_link_order (bfd *abfd, asection *o)
7664 struct bfd_link_order *p;
7666 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7668 struct bfd_link_order **sections;
7674 for (p = o->map_head.link_order; p != NULL; p = p->next)
7676 if (p->type == bfd_indirect_link_order
7677 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7678 == bfd_target_elf_flavour)
7679 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7681 s = p->u.indirect.section;
7682 elfsec = _bfd_elf_section_from_bfd_section (sub, s);
7684 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
7693 if (!seen_linkorder)
7696 if (seen_other && seen_linkorder)
7698 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
7700 bfd_set_error (bfd_error_bad_value);
7704 sections = (struct bfd_link_order **)
7705 xmalloc (seen_linkorder * sizeof (struct bfd_link_order *));
7708 for (p = o->map_head.link_order; p != NULL; p = p->next)
7710 sections[seen_linkorder++] = p;
7712 /* Sort the input sections in the order of their linked section. */
7713 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
7714 compare_link_order);
7716 /* Change the offsets of the sections. */
7718 for (n = 0; n < seen_linkorder; n++)
7720 s = sections[n]->u.indirect.section;
7721 offset &= ~(bfd_vma)((1 << s->alignment_power) - 1);
7722 s->output_offset = offset;
7723 sections[n]->offset = offset;
7724 offset += sections[n]->size;
7731 /* Do the final step of an ELF link. */
7734 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7736 bfd_boolean dynamic;
7737 bfd_boolean emit_relocs;
7739 struct elf_final_link_info finfo;
7740 register asection *o;
7741 register struct bfd_link_order *p;
7743 bfd_size_type max_contents_size;
7744 bfd_size_type max_external_reloc_size;
7745 bfd_size_type max_internal_reloc_count;
7746 bfd_size_type max_sym_count;
7747 bfd_size_type max_sym_shndx_count;
7749 Elf_Internal_Sym elfsym;
7751 Elf_Internal_Shdr *symtab_hdr;
7752 Elf_Internal_Shdr *symtab_shndx_hdr;
7753 Elf_Internal_Shdr *symstrtab_hdr;
7754 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7755 struct elf_outext_info eoinfo;
7757 size_t relativecount = 0;
7758 asection *reldyn = 0;
7761 if (! is_elf_hash_table (info->hash))
7765 abfd->flags |= DYNAMIC;
7767 dynamic = elf_hash_table (info)->dynamic_sections_created;
7768 dynobj = elf_hash_table (info)->dynobj;
7770 emit_relocs = (info->relocatable
7771 || info->emitrelocations
7772 || bed->elf_backend_emit_relocs);
7775 finfo.output_bfd = abfd;
7776 finfo.symstrtab = _bfd_elf_stringtab_init ();
7777 if (finfo.symstrtab == NULL)
7782 finfo.dynsym_sec = NULL;
7783 finfo.hash_sec = NULL;
7784 finfo.symver_sec = NULL;
7788 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7789 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7790 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7791 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7792 /* Note that it is OK if symver_sec is NULL. */
7795 finfo.contents = NULL;
7796 finfo.external_relocs = NULL;
7797 finfo.internal_relocs = NULL;
7798 finfo.external_syms = NULL;
7799 finfo.locsym_shndx = NULL;
7800 finfo.internal_syms = NULL;
7801 finfo.indices = NULL;
7802 finfo.sections = NULL;
7803 finfo.symbuf = NULL;
7804 finfo.symshndxbuf = NULL;
7805 finfo.symbuf_count = 0;
7806 finfo.shndxbuf_size = 0;
7808 /* Count up the number of relocations we will output for each output
7809 section, so that we know the sizes of the reloc sections. We
7810 also figure out some maximum sizes. */
7811 max_contents_size = 0;
7812 max_external_reloc_size = 0;
7813 max_internal_reloc_count = 0;
7815 max_sym_shndx_count = 0;
7817 for (o = abfd->sections; o != NULL; o = o->next)
7819 struct bfd_elf_section_data *esdo = elf_section_data (o);
7822 for (p = o->map_head.link_order; p != NULL; p = p->next)
7824 unsigned int reloc_count = 0;
7825 struct bfd_elf_section_data *esdi = NULL;
7826 unsigned int *rel_count1;
7828 if (p->type == bfd_section_reloc_link_order
7829 || p->type == bfd_symbol_reloc_link_order)
7831 else if (p->type == bfd_indirect_link_order)
7835 sec = p->u.indirect.section;
7836 esdi = elf_section_data (sec);
7838 /* Mark all sections which are to be included in the
7839 link. This will normally be every section. We need
7840 to do this so that we can identify any sections which
7841 the linker has decided to not include. */
7842 sec->linker_mark = TRUE;
7844 if (sec->flags & SEC_MERGE)
7847 if (info->relocatable || info->emitrelocations)
7848 reloc_count = sec->reloc_count;
7849 else if (bed->elf_backend_count_relocs)
7851 Elf_Internal_Rela * relocs;
7853 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7856 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7858 if (elf_section_data (o)->relocs != relocs)
7862 if (sec->rawsize > max_contents_size)
7863 max_contents_size = sec->rawsize;
7864 if (sec->size > max_contents_size)
7865 max_contents_size = sec->size;
7867 /* We are interested in just local symbols, not all
7869 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7870 && (sec->owner->flags & DYNAMIC) == 0)
7874 if (elf_bad_symtab (sec->owner))
7875 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7876 / bed->s->sizeof_sym);
7878 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7880 if (sym_count > max_sym_count)
7881 max_sym_count = sym_count;
7883 if (sym_count > max_sym_shndx_count
7884 && elf_symtab_shndx (sec->owner) != 0)
7885 max_sym_shndx_count = sym_count;
7887 if ((sec->flags & SEC_RELOC) != 0)
7891 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7892 if (ext_size > max_external_reloc_size)
7893 max_external_reloc_size = ext_size;
7894 if (sec->reloc_count > max_internal_reloc_count)
7895 max_internal_reloc_count = sec->reloc_count;
7900 if (reloc_count == 0)
7903 o->reloc_count += reloc_count;
7905 /* MIPS may have a mix of REL and RELA relocs on sections.
7906 To support this curious ABI we keep reloc counts in
7907 elf_section_data too. We must be careful to add the
7908 relocations from the input section to the right output
7909 count. FIXME: Get rid of one count. We have
7910 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7911 rel_count1 = &esdo->rel_count;
7914 bfd_boolean same_size;
7915 bfd_size_type entsize1;
7917 entsize1 = esdi->rel_hdr.sh_entsize;
7918 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7919 || entsize1 == bed->s->sizeof_rela);
7920 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7923 rel_count1 = &esdo->rel_count2;
7925 if (esdi->rel_hdr2 != NULL)
7927 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7928 unsigned int alt_count;
7929 unsigned int *rel_count2;
7931 BFD_ASSERT (entsize2 != entsize1
7932 && (entsize2 == bed->s->sizeof_rel
7933 || entsize2 == bed->s->sizeof_rela));
7935 rel_count2 = &esdo->rel_count2;
7937 rel_count2 = &esdo->rel_count;
7939 /* The following is probably too simplistic if the
7940 backend counts output relocs unusually. */
7941 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7942 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7943 *rel_count2 += alt_count;
7944 reloc_count -= alt_count;
7947 *rel_count1 += reloc_count;
7950 if (o->reloc_count > 0)
7951 o->flags |= SEC_RELOC;
7954 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7955 set it (this is probably a bug) and if it is set
7956 assign_section_numbers will create a reloc section. */
7957 o->flags &=~ SEC_RELOC;
7960 /* If the SEC_ALLOC flag is not set, force the section VMA to
7961 zero. This is done in elf_fake_sections as well, but forcing
7962 the VMA to 0 here will ensure that relocs against these
7963 sections are handled correctly. */
7964 if ((o->flags & SEC_ALLOC) == 0
7965 && ! o->user_set_vma)
7969 if (! info->relocatable && merged)
7970 elf_link_hash_traverse (elf_hash_table (info),
7971 _bfd_elf_link_sec_merge_syms, abfd);
7973 /* Figure out the file positions for everything but the symbol table
7974 and the relocs. We set symcount to force assign_section_numbers
7975 to create a symbol table. */
7976 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7977 BFD_ASSERT (! abfd->output_has_begun);
7978 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7981 /* Set sizes, and assign file positions for reloc sections. */
7982 for (o = abfd->sections; o != NULL; o = o->next)
7984 if ((o->flags & SEC_RELOC) != 0)
7986 if (!(_bfd_elf_link_size_reloc_section
7987 (abfd, &elf_section_data (o)->rel_hdr, o)))
7990 if (elf_section_data (o)->rel_hdr2
7991 && !(_bfd_elf_link_size_reloc_section
7992 (abfd, elf_section_data (o)->rel_hdr2, o)))
7996 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7997 to count upwards while actually outputting the relocations. */
7998 elf_section_data (o)->rel_count = 0;
7999 elf_section_data (o)->rel_count2 = 0;
8002 _bfd_elf_assign_file_positions_for_relocs (abfd);
8004 /* We have now assigned file positions for all the sections except
8005 .symtab and .strtab. We start the .symtab section at the current
8006 file position, and write directly to it. We build the .strtab
8007 section in memory. */
8008 bfd_get_symcount (abfd) = 0;
8009 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8010 /* sh_name is set in prep_headers. */
8011 symtab_hdr->sh_type = SHT_SYMTAB;
8012 /* sh_flags, sh_addr and sh_size all start off zero. */
8013 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8014 /* sh_link is set in assign_section_numbers. */
8015 /* sh_info is set below. */
8016 /* sh_offset is set just below. */
8017 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
8019 off = elf_tdata (abfd)->next_file_pos;
8020 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
8022 /* Note that at this point elf_tdata (abfd)->next_file_pos is
8023 incorrect. We do not yet know the size of the .symtab section.
8024 We correct next_file_pos below, after we do know the size. */
8026 /* Allocate a buffer to hold swapped out symbols. This is to avoid
8027 continuously seeking to the right position in the file. */
8028 if (! info->keep_memory || max_sym_count < 20)
8029 finfo.symbuf_size = 20;
8031 finfo.symbuf_size = max_sym_count;
8032 amt = finfo.symbuf_size;
8033 amt *= bed->s->sizeof_sym;
8034 finfo.symbuf = bfd_malloc (amt);
8035 if (finfo.symbuf == NULL)
8037 if (elf_numsections (abfd) > SHN_LORESERVE)
8039 /* Wild guess at number of output symbols. realloc'd as needed. */
8040 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
8041 finfo.shndxbuf_size = amt;
8042 amt *= sizeof (Elf_External_Sym_Shndx);
8043 finfo.symshndxbuf = bfd_zmalloc (amt);
8044 if (finfo.symshndxbuf == NULL)
8048 /* Start writing out the symbol table. The first symbol is always a
8050 if (info->strip != strip_all
8053 elfsym.st_value = 0;
8056 elfsym.st_other = 0;
8057 elfsym.st_shndx = SHN_UNDEF;
8058 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
8063 /* Output a symbol for each section. We output these even if we are
8064 discarding local symbols, since they are used for relocs. These
8065 symbols have no names. We store the index of each one in the
8066 index field of the section, so that we can find it again when
8067 outputting relocs. */
8068 if (info->strip != strip_all
8072 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8073 elfsym.st_other = 0;
8074 for (i = 1; i < elf_numsections (abfd); i++)
8076 o = bfd_section_from_elf_index (abfd, i);
8078 o->target_index = bfd_get_symcount (abfd);
8079 elfsym.st_shndx = i;
8080 if (info->relocatable || o == NULL)
8081 elfsym.st_value = 0;
8083 elfsym.st_value = o->vma;
8084 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
8086 if (i == SHN_LORESERVE - 1)
8087 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
8091 /* Allocate some memory to hold information read in from the input
8093 if (max_contents_size != 0)
8095 finfo.contents = bfd_malloc (max_contents_size);
8096 if (finfo.contents == NULL)
8100 if (max_external_reloc_size != 0)
8102 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
8103 if (finfo.external_relocs == NULL)
8107 if (max_internal_reloc_count != 0)
8109 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
8110 amt *= sizeof (Elf_Internal_Rela);
8111 finfo.internal_relocs = bfd_malloc (amt);
8112 if (finfo.internal_relocs == NULL)
8116 if (max_sym_count != 0)
8118 amt = max_sym_count * bed->s->sizeof_sym;
8119 finfo.external_syms = bfd_malloc (amt);
8120 if (finfo.external_syms == NULL)
8123 amt = max_sym_count * sizeof (Elf_Internal_Sym);
8124 finfo.internal_syms = bfd_malloc (amt);
8125 if (finfo.internal_syms == NULL)
8128 amt = max_sym_count * sizeof (long);
8129 finfo.indices = bfd_malloc (amt);
8130 if (finfo.indices == NULL)
8133 amt = max_sym_count * sizeof (asection *);
8134 finfo.sections = bfd_malloc (amt);
8135 if (finfo.sections == NULL)
8139 if (max_sym_shndx_count != 0)
8141 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
8142 finfo.locsym_shndx = bfd_malloc (amt);
8143 if (finfo.locsym_shndx == NULL)
8147 if (elf_hash_table (info)->tls_sec)
8149 bfd_vma base, end = 0;
8152 for (sec = elf_hash_table (info)->tls_sec;
8153 sec && (sec->flags & SEC_THREAD_LOCAL);
8156 bfd_vma size = sec->size;
8158 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
8160 struct bfd_link_order *o;
8162 for (o = sec->map_head.link_order; o != NULL; o = o->next)
8163 if (size < o->offset + o->size)
8164 size = o->offset + o->size;
8166 end = sec->vma + size;
8168 base = elf_hash_table (info)->tls_sec->vma;
8169 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
8170 elf_hash_table (info)->tls_size = end - base;
8173 /* Reorder SHF_LINK_ORDER sections. */
8174 for (o = abfd->sections; o != NULL; o = o->next)
8176 if (!elf_fixup_link_order (abfd, o))
8180 /* Since ELF permits relocations to be against local symbols, we
8181 must have the local symbols available when we do the relocations.
8182 Since we would rather only read the local symbols once, and we
8183 would rather not keep them in memory, we handle all the
8184 relocations for a single input file at the same time.
8186 Unfortunately, there is no way to know the total number of local
8187 symbols until we have seen all of them, and the local symbol
8188 indices precede the global symbol indices. This means that when
8189 we are generating relocatable output, and we see a reloc against
8190 a global symbol, we can not know the symbol index until we have
8191 finished examining all the local symbols to see which ones we are
8192 going to output. To deal with this, we keep the relocations in
8193 memory, and don't output them until the end of the link. This is
8194 an unfortunate waste of memory, but I don't see a good way around
8195 it. Fortunately, it only happens when performing a relocatable
8196 link, which is not the common case. FIXME: If keep_memory is set
8197 we could write the relocs out and then read them again; I don't
8198 know how bad the memory loss will be. */
8200 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8201 sub->output_has_begun = FALSE;
8202 for (o = abfd->sections; o != NULL; o = o->next)
8204 for (p = o->map_head.link_order; p != NULL; p = p->next)
8206 if (p->type == bfd_indirect_link_order
8207 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
8208 == bfd_target_elf_flavour)
8209 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
8211 if (! sub->output_has_begun)
8213 if (! elf_link_input_bfd (&finfo, sub))
8215 sub->output_has_begun = TRUE;
8218 else if (p->type == bfd_section_reloc_link_order
8219 || p->type == bfd_symbol_reloc_link_order)
8221 if (! elf_reloc_link_order (abfd, info, o, p))
8226 if (! _bfd_default_link_order (abfd, info, o, p))
8232 /* Output any global symbols that got converted to local in a
8233 version script or due to symbol visibility. We do this in a
8234 separate step since ELF requires all local symbols to appear
8235 prior to any global symbols. FIXME: We should only do this if
8236 some global symbols were, in fact, converted to become local.
8237 FIXME: Will this work correctly with the Irix 5 linker? */
8238 eoinfo.failed = FALSE;
8239 eoinfo.finfo = &finfo;
8240 eoinfo.localsyms = TRUE;
8241 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8246 /* That wrote out all the local symbols. Finish up the symbol table
8247 with the global symbols. Even if we want to strip everything we
8248 can, we still need to deal with those global symbols that got
8249 converted to local in a version script. */
8251 /* The sh_info field records the index of the first non local symbol. */
8252 symtab_hdr->sh_info = bfd_get_symcount (abfd);
8255 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
8257 Elf_Internal_Sym sym;
8258 bfd_byte *dynsym = finfo.dynsym_sec->contents;
8259 long last_local = 0;
8261 /* Write out the section symbols for the output sections. */
8262 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
8268 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8271 for (s = abfd->sections; s != NULL; s = s->next)
8277 dynindx = elf_section_data (s)->dynindx;
8280 indx = elf_section_data (s)->this_idx;
8281 BFD_ASSERT (indx > 0);
8282 sym.st_shndx = indx;
8283 sym.st_value = s->vma;
8284 dest = dynsym + dynindx * bed->s->sizeof_sym;
8285 if (last_local < dynindx)
8286 last_local = dynindx;
8287 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8291 /* Write out the local dynsyms. */
8292 if (elf_hash_table (info)->dynlocal)
8294 struct elf_link_local_dynamic_entry *e;
8295 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
8300 sym.st_size = e->isym.st_size;
8301 sym.st_other = e->isym.st_other;
8303 /* Copy the internal symbol as is.
8304 Note that we saved a word of storage and overwrote
8305 the original st_name with the dynstr_index. */
8308 if (e->isym.st_shndx != SHN_UNDEF
8309 && (e->isym.st_shndx < SHN_LORESERVE
8310 || e->isym.st_shndx > SHN_HIRESERVE))
8312 s = bfd_section_from_elf_index (e->input_bfd,
8316 elf_section_data (s->output_section)->this_idx;
8317 sym.st_value = (s->output_section->vma
8319 + e->isym.st_value);
8322 if (last_local < e->dynindx)
8323 last_local = e->dynindx;
8325 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
8326 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
8330 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
8334 /* We get the global symbols from the hash table. */
8335 eoinfo.failed = FALSE;
8336 eoinfo.localsyms = FALSE;
8337 eoinfo.finfo = &finfo;
8338 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
8343 /* If backend needs to output some symbols not present in the hash
8344 table, do it now. */
8345 if (bed->elf_backend_output_arch_syms)
8347 typedef bfd_boolean (*out_sym_func)
8348 (void *, const char *, Elf_Internal_Sym *, asection *,
8349 struct elf_link_hash_entry *);
8351 if (! ((*bed->elf_backend_output_arch_syms)
8352 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
8356 /* Flush all symbols to the file. */
8357 if (! elf_link_flush_output_syms (&finfo, bed))
8360 /* Now we know the size of the symtab section. */
8361 off += symtab_hdr->sh_size;
8363 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
8364 if (symtab_shndx_hdr->sh_name != 0)
8366 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8367 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8368 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8369 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
8370 symtab_shndx_hdr->sh_size = amt;
8372 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
8375 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
8376 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
8381 /* Finish up and write out the symbol string table (.strtab)
8383 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8384 /* sh_name was set in prep_headers. */
8385 symstrtab_hdr->sh_type = SHT_STRTAB;
8386 symstrtab_hdr->sh_flags = 0;
8387 symstrtab_hdr->sh_addr = 0;
8388 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
8389 symstrtab_hdr->sh_entsize = 0;
8390 symstrtab_hdr->sh_link = 0;
8391 symstrtab_hdr->sh_info = 0;
8392 /* sh_offset is set just below. */
8393 symstrtab_hdr->sh_addralign = 1;
8395 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
8396 elf_tdata (abfd)->next_file_pos = off;
8398 if (bfd_get_symcount (abfd) > 0)
8400 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
8401 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
8405 /* Adjust the relocs to have the correct symbol indices. */
8406 for (o = abfd->sections; o != NULL; o = o->next)
8408 if ((o->flags & SEC_RELOC) == 0)
8411 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
8412 elf_section_data (o)->rel_count,
8413 elf_section_data (o)->rel_hashes);
8414 if (elf_section_data (o)->rel_hdr2 != NULL)
8415 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
8416 elf_section_data (o)->rel_count2,
8417 (elf_section_data (o)->rel_hashes
8418 + elf_section_data (o)->rel_count));
8420 /* Set the reloc_count field to 0 to prevent write_relocs from
8421 trying to swap the relocs out itself. */
8425 if (dynamic && info->combreloc && dynobj != NULL)
8426 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
8428 /* If we are linking against a dynamic object, or generating a
8429 shared library, finish up the dynamic linking information. */
8432 bfd_byte *dyncon, *dynconend;
8434 /* Fix up .dynamic entries. */
8435 o = bfd_get_section_by_name (dynobj, ".dynamic");
8436 BFD_ASSERT (o != NULL);
8438 dyncon = o->contents;
8439 dynconend = o->contents + o->size;
8440 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
8442 Elf_Internal_Dyn dyn;
8446 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
8453 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
8455 switch (elf_section_data (reldyn)->this_hdr.sh_type)
8457 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
8458 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
8461 dyn.d_un.d_val = relativecount;
8468 name = info->init_function;
8471 name = info->fini_function;
8474 struct elf_link_hash_entry *h;
8476 h = elf_link_hash_lookup (elf_hash_table (info), name,
8477 FALSE, FALSE, TRUE);
8479 && (h->root.type == bfd_link_hash_defined
8480 || h->root.type == bfd_link_hash_defweak))
8482 dyn.d_un.d_val = h->root.u.def.value;
8483 o = h->root.u.def.section;
8484 if (o->output_section != NULL)
8485 dyn.d_un.d_val += (o->output_section->vma
8486 + o->output_offset);
8489 /* The symbol is imported from another shared
8490 library and does not apply to this one. */
8498 case DT_PREINIT_ARRAYSZ:
8499 name = ".preinit_array";
8501 case DT_INIT_ARRAYSZ:
8502 name = ".init_array";
8504 case DT_FINI_ARRAYSZ:
8505 name = ".fini_array";
8507 o = bfd_get_section_by_name (abfd, name);
8510 (*_bfd_error_handler)
8511 (_("%B: could not find output section %s"), abfd, name);
8515 (*_bfd_error_handler)
8516 (_("warning: %s section has zero size"), name);
8517 dyn.d_un.d_val = o->size;
8520 case DT_PREINIT_ARRAY:
8521 name = ".preinit_array";
8524 name = ".init_array";
8527 name = ".fini_array";
8540 name = ".gnu.version_d";
8543 name = ".gnu.version_r";
8546 name = ".gnu.version";
8548 o = bfd_get_section_by_name (abfd, name);
8551 (*_bfd_error_handler)
8552 (_("%B: could not find output section %s"), abfd, name);
8555 dyn.d_un.d_ptr = o->vma;
8562 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8567 for (i = 1; i < elf_numsections (abfd); i++)
8569 Elf_Internal_Shdr *hdr;
8571 hdr = elf_elfsections (abfd)[i];
8572 if (hdr->sh_type == type
8573 && (hdr->sh_flags & SHF_ALLOC) != 0)
8575 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8576 dyn.d_un.d_val += hdr->sh_size;
8579 if (dyn.d_un.d_val == 0
8580 || hdr->sh_addr < dyn.d_un.d_val)
8581 dyn.d_un.d_val = hdr->sh_addr;
8587 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8591 /* If we have created any dynamic sections, then output them. */
8594 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8597 for (o = dynobj->sections; o != NULL; o = o->next)
8599 if ((o->flags & SEC_HAS_CONTENTS) == 0
8601 || o->output_section == bfd_abs_section_ptr)
8603 if ((o->flags & SEC_LINKER_CREATED) == 0)
8605 /* At this point, we are only interested in sections
8606 created by _bfd_elf_link_create_dynamic_sections. */
8609 if (elf_hash_table (info)->stab_info.stabstr == o)
8611 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8613 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8615 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8617 if (! bfd_set_section_contents (abfd, o->output_section,
8619 (file_ptr) o->output_offset,
8625 /* The contents of the .dynstr section are actually in a
8627 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8628 if (bfd_seek (abfd, off, SEEK_SET) != 0
8629 || ! _bfd_elf_strtab_emit (abfd,
8630 elf_hash_table (info)->dynstr))
8636 if (info->relocatable)
8638 bfd_boolean failed = FALSE;
8640 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8645 /* If we have optimized stabs strings, output them. */
8646 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8648 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8652 if (info->eh_frame_hdr)
8654 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8658 if (finfo.symstrtab != NULL)
8659 _bfd_stringtab_free (finfo.symstrtab);
8660 if (finfo.contents != NULL)
8661 free (finfo.contents);
8662 if (finfo.external_relocs != NULL)
8663 free (finfo.external_relocs);
8664 if (finfo.internal_relocs != NULL)
8665 free (finfo.internal_relocs);
8666 if (finfo.external_syms != NULL)
8667 free (finfo.external_syms);
8668 if (finfo.locsym_shndx != NULL)
8669 free (finfo.locsym_shndx);
8670 if (finfo.internal_syms != NULL)
8671 free (finfo.internal_syms);
8672 if (finfo.indices != NULL)
8673 free (finfo.indices);
8674 if (finfo.sections != NULL)
8675 free (finfo.sections);
8676 if (finfo.symbuf != NULL)
8677 free (finfo.symbuf);
8678 if (finfo.symshndxbuf != NULL)
8679 free (finfo.symshndxbuf);
8680 for (o = abfd->sections; o != NULL; o = o->next)
8682 if ((o->flags & SEC_RELOC) != 0
8683 && elf_section_data (o)->rel_hashes != NULL)
8684 free (elf_section_data (o)->rel_hashes);
8687 elf_tdata (abfd)->linker = TRUE;
8692 if (finfo.symstrtab != NULL)
8693 _bfd_stringtab_free (finfo.symstrtab);
8694 if (finfo.contents != NULL)
8695 free (finfo.contents);
8696 if (finfo.external_relocs != NULL)
8697 free (finfo.external_relocs);
8698 if (finfo.internal_relocs != NULL)
8699 free (finfo.internal_relocs);
8700 if (finfo.external_syms != NULL)
8701 free (finfo.external_syms);
8702 if (finfo.locsym_shndx != NULL)
8703 free (finfo.locsym_shndx);
8704 if (finfo.internal_syms != NULL)
8705 free (finfo.internal_syms);
8706 if (finfo.indices != NULL)
8707 free (finfo.indices);
8708 if (finfo.sections != NULL)
8709 free (finfo.sections);
8710 if (finfo.symbuf != NULL)
8711 free (finfo.symbuf);
8712 if (finfo.symshndxbuf != NULL)
8713 free (finfo.symshndxbuf);
8714 for (o = abfd->sections; o != NULL; o = o->next)
8716 if ((o->flags & SEC_RELOC) != 0
8717 && elf_section_data (o)->rel_hashes != NULL)
8718 free (elf_section_data (o)->rel_hashes);
8724 /* Garbage collect unused sections. */
8726 /* The mark phase of garbage collection. For a given section, mark
8727 it and any sections in this section's group, and all the sections
8728 which define symbols to which it refers. */
8730 typedef asection * (*gc_mark_hook_fn)
8731 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8732 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8735 _bfd_elf_gc_mark (struct bfd_link_info *info,
8737 gc_mark_hook_fn gc_mark_hook)
8740 asection *group_sec;
8744 /* Mark all the sections in the group. */
8745 group_sec = elf_section_data (sec)->next_in_group;
8746 if (group_sec && !group_sec->gc_mark)
8747 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
8750 /* Look through the section relocs. */
8752 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8754 Elf_Internal_Rela *relstart, *rel, *relend;
8755 Elf_Internal_Shdr *symtab_hdr;
8756 struct elf_link_hash_entry **sym_hashes;
8759 bfd *input_bfd = sec->owner;
8760 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8761 Elf_Internal_Sym *isym = NULL;
8764 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8765 sym_hashes = elf_sym_hashes (input_bfd);
8767 /* Read the local symbols. */
8768 if (elf_bad_symtab (input_bfd))
8770 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8774 extsymoff = nlocsyms = symtab_hdr->sh_info;
8776 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8777 if (isym == NULL && nlocsyms != 0)
8779 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8785 /* Read the relocations. */
8786 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8788 if (relstart == NULL)
8793 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8795 if (bed->s->arch_size == 32)
8800 for (rel = relstart; rel < relend; rel++)
8802 unsigned long r_symndx;
8804 struct elf_link_hash_entry *h;
8806 r_symndx = rel->r_info >> r_sym_shift;
8810 if (r_symndx >= nlocsyms
8811 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8813 h = sym_hashes[r_symndx - extsymoff];
8814 while (h->root.type == bfd_link_hash_indirect
8815 || h->root.type == bfd_link_hash_warning)
8816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8817 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8821 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8824 if (rsec && !rsec->gc_mark)
8826 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8828 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
8837 if (elf_section_data (sec)->relocs != relstart)
8840 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8842 if (! info->keep_memory)
8845 symtab_hdr->contents = (unsigned char *) isym;
8852 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8855 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8859 if (h->root.type == bfd_link_hash_warning)
8860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8862 if (h->dynindx != -1
8863 && ((h->root.type != bfd_link_hash_defined
8864 && h->root.type != bfd_link_hash_defweak)
8865 || h->root.u.def.section->gc_mark))
8866 h->dynindx = (*idx)++;
8871 /* The sweep phase of garbage collection. Remove all garbage sections. */
8873 typedef bfd_boolean (*gc_sweep_hook_fn)
8874 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8877 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8881 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8885 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8888 for (o = sub->sections; o != NULL; o = o->next)
8890 /* Keep debug and special sections. */
8891 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
8892 || (o->flags & (SEC_ALLOC | SEC_LOAD)) == 0)
8898 /* Skip sweeping sections already excluded. */
8899 if (o->flags & SEC_EXCLUDE)
8902 /* Since this is early in the link process, it is simple
8903 to remove a section from the output. */
8904 o->flags |= SEC_EXCLUDE;
8906 /* But we also have to update some of the relocation
8907 info we collected before. */
8909 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8911 Elf_Internal_Rela *internal_relocs;
8915 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8917 if (internal_relocs == NULL)
8920 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8922 if (elf_section_data (o)->relocs != internal_relocs)
8923 free (internal_relocs);
8931 /* Remove the symbols that were in the swept sections from the dynamic
8932 symbol table. GCFIXME: Anyone know how to get them out of the
8933 static symbol table as well? */
8937 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8939 elf_hash_table (info)->dynsymcount = i;
8945 /* Propagate collected vtable information. This is called through
8946 elf_link_hash_traverse. */
8949 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8951 if (h->root.type == bfd_link_hash_warning)
8952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8954 /* Those that are not vtables. */
8955 if (h->vtable == NULL || h->vtable->parent == NULL)
8958 /* Those vtables that do not have parents, we cannot merge. */
8959 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
8962 /* If we've already been done, exit. */
8963 if (h->vtable->used && h->vtable->used[-1])
8966 /* Make sure the parent's table is up to date. */
8967 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
8969 if (h->vtable->used == NULL)
8971 /* None of this table's entries were referenced. Re-use the
8973 h->vtable->used = h->vtable->parent->vtable->used;
8974 h->vtable->size = h->vtable->parent->vtable->size;
8979 bfd_boolean *cu, *pu;
8981 /* Or the parent's entries into ours. */
8982 cu = h->vtable->used;
8984 pu = h->vtable->parent->vtable->used;
8987 const struct elf_backend_data *bed;
8988 unsigned int log_file_align;
8990 bed = get_elf_backend_data (h->root.u.def.section->owner);
8991 log_file_align = bed->s->log_file_align;
8992 n = h->vtable->parent->vtable->size >> log_file_align;
9007 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
9010 bfd_vma hstart, hend;
9011 Elf_Internal_Rela *relstart, *relend, *rel;
9012 const struct elf_backend_data *bed;
9013 unsigned int log_file_align;
9015 if (h->root.type == bfd_link_hash_warning)
9016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9018 /* Take care of both those symbols that do not describe vtables as
9019 well as those that are not loaded. */
9020 if (h->vtable == NULL || h->vtable->parent == NULL)
9023 BFD_ASSERT (h->root.type == bfd_link_hash_defined
9024 || h->root.type == bfd_link_hash_defweak);
9026 sec = h->root.u.def.section;
9027 hstart = h->root.u.def.value;
9028 hend = hstart + h->size;
9030 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
9032 return *(bfd_boolean *) okp = FALSE;
9033 bed = get_elf_backend_data (sec->owner);
9034 log_file_align = bed->s->log_file_align;
9036 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
9038 for (rel = relstart; rel < relend; ++rel)
9039 if (rel->r_offset >= hstart && rel->r_offset < hend)
9041 /* If the entry is in use, do nothing. */
9043 && (rel->r_offset - hstart) < h->vtable->size)
9045 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
9046 if (h->vtable->used[entry])
9049 /* Otherwise, kill it. */
9050 rel->r_offset = rel->r_info = rel->r_addend = 0;
9056 /* Mark sections containing dynamically referenced symbols. This is called
9057 through elf_link_hash_traverse. */
9060 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
9061 void *okp ATTRIBUTE_UNUSED)
9063 if (h->root.type == bfd_link_hash_warning)
9064 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9066 if ((h->root.type == bfd_link_hash_defined
9067 || h->root.type == bfd_link_hash_defweak)
9069 h->root.u.def.section->flags |= SEC_KEEP;
9074 /* Mark sections containing global symbols. This is called through
9075 elf_link_hash_traverse. */
9078 elf_mark_used_section (struct elf_link_hash_entry *h,
9079 void *data ATTRIBUTE_UNUSED)
9081 if (h->root.type == bfd_link_hash_warning)
9082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9084 if (h->root.type == bfd_link_hash_defined
9085 || h->root.type == bfd_link_hash_defweak)
9087 asection *s = h->root.u.def.section;
9088 if (s != NULL && s->output_section != NULL)
9089 s->output_section->flags |= SEC_KEEP;
9095 /* Do mark and sweep of unused sections. */
9098 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
9100 bfd_boolean ok = TRUE;
9102 asection * (*gc_mark_hook)
9103 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
9104 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
9106 if (!info->gc_sections)
9108 /* If we are called when info->gc_sections is 0, we will mark
9109 all sections containing global symbols for non-relocatable
9111 if (!info->relocatable)
9112 elf_link_hash_traverse (elf_hash_table (info),
9113 elf_mark_used_section, NULL);
9117 if (!get_elf_backend_data (abfd)->can_gc_sections
9118 || info->relocatable
9119 || info->emitrelocations
9121 || !is_elf_hash_table (info->hash))
9123 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
9127 /* Apply transitive closure to the vtable entry usage info. */
9128 elf_link_hash_traverse (elf_hash_table (info),
9129 elf_gc_propagate_vtable_entries_used,
9134 /* Kill the vtable relocations that were not used. */
9135 elf_link_hash_traverse (elf_hash_table (info),
9136 elf_gc_smash_unused_vtentry_relocs,
9141 /* Mark dynamically referenced symbols. */
9142 if (elf_hash_table (info)->dynamic_sections_created)
9143 elf_link_hash_traverse (elf_hash_table (info),
9144 elf_gc_mark_dynamic_ref_symbol,
9149 /* Grovel through relocs to find out who stays ... */
9150 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
9151 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9155 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
9158 for (o = sub->sections; o != NULL; o = o->next)
9160 if (o->flags & SEC_KEEP)
9162 /* _bfd_elf_discard_section_eh_frame knows how to discard
9163 orphaned FDEs so don't mark sections referenced by the
9164 EH frame section. */
9165 if (strcmp (o->name, ".eh_frame") == 0)
9167 else if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9173 /* ... and mark SEC_EXCLUDE for those that go. */
9174 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
9180 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
9183 bfd_elf_gc_record_vtinherit (bfd *abfd,
9185 struct elf_link_hash_entry *h,
9188 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
9189 struct elf_link_hash_entry **search, *child;
9190 bfd_size_type extsymcount;
9191 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9193 /* The sh_info field of the symtab header tells us where the
9194 external symbols start. We don't care about the local symbols at
9196 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
9197 if (!elf_bad_symtab (abfd))
9198 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
9200 sym_hashes = elf_sym_hashes (abfd);
9201 sym_hashes_end = sym_hashes + extsymcount;
9203 /* Hunt down the child symbol, which is in this section at the same
9204 offset as the relocation. */
9205 for (search = sym_hashes; search != sym_hashes_end; ++search)
9207 if ((child = *search) != NULL
9208 && (child->root.type == bfd_link_hash_defined
9209 || child->root.type == bfd_link_hash_defweak)
9210 && child->root.u.def.section == sec
9211 && child->root.u.def.value == offset)
9215 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
9216 abfd, sec, (unsigned long) offset);
9217 bfd_set_error (bfd_error_invalid_operation);
9223 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
9229 /* This *should* only be the absolute section. It could potentially
9230 be that someone has defined a non-global vtable though, which
9231 would be bad. It isn't worth paging in the local symbols to be
9232 sure though; that case should simply be handled by the assembler. */
9234 child->vtable->parent = (struct elf_link_hash_entry *) -1;
9237 child->vtable->parent = h;
9242 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
9245 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
9246 asection *sec ATTRIBUTE_UNUSED,
9247 struct elf_link_hash_entry *h,
9250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9251 unsigned int log_file_align = bed->s->log_file_align;
9255 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
9260 if (addend >= h->vtable->size)
9262 size_t size, bytes, file_align;
9263 bfd_boolean *ptr = h->vtable->used;
9265 /* While the symbol is undefined, we have to be prepared to handle
9267 file_align = 1 << log_file_align;
9268 if (h->root.type == bfd_link_hash_undefined)
9269 size = addend + file_align;
9275 /* Oops! We've got a reference past the defined end of
9276 the table. This is probably a bug -- shall we warn? */
9277 size = addend + file_align;
9280 size = (size + file_align - 1) & -file_align;
9282 /* Allocate one extra entry for use as a "done" flag for the
9283 consolidation pass. */
9284 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
9288 ptr = bfd_realloc (ptr - 1, bytes);
9294 oldbytes = (((h->vtable->size >> log_file_align) + 1)
9295 * sizeof (bfd_boolean));
9296 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
9300 ptr = bfd_zmalloc (bytes);
9305 /* And arrange for that done flag to be at index -1. */
9306 h->vtable->used = ptr + 1;
9307 h->vtable->size = size;
9310 h->vtable->used[addend >> log_file_align] = TRUE;
9315 struct alloc_got_off_arg {
9317 unsigned int got_elt_size;
9320 /* We need a special top-level link routine to convert got reference counts
9321 to real got offsets. */
9324 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
9326 struct alloc_got_off_arg *gofarg = arg;
9328 if (h->root.type == bfd_link_hash_warning)
9329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9331 if (h->got.refcount > 0)
9333 h->got.offset = gofarg->gotoff;
9334 gofarg->gotoff += gofarg->got_elt_size;
9337 h->got.offset = (bfd_vma) -1;
9342 /* And an accompanying bit to work out final got entry offsets once
9343 we're done. Should be called from final_link. */
9346 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
9347 struct bfd_link_info *info)
9350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9352 unsigned int got_elt_size = bed->s->arch_size / 8;
9353 struct alloc_got_off_arg gofarg;
9355 if (! is_elf_hash_table (info->hash))
9358 /* The GOT offset is relative to the .got section, but the GOT header is
9359 put into the .got.plt section, if the backend uses it. */
9360 if (bed->want_got_plt)
9363 gotoff = bed->got_header_size;
9365 /* Do the local .got entries first. */
9366 for (i = info->input_bfds; i; i = i->link_next)
9368 bfd_signed_vma *local_got;
9369 bfd_size_type j, locsymcount;
9370 Elf_Internal_Shdr *symtab_hdr;
9372 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
9375 local_got = elf_local_got_refcounts (i);
9379 symtab_hdr = &elf_tdata (i)->symtab_hdr;
9380 if (elf_bad_symtab (i))
9381 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9383 locsymcount = symtab_hdr->sh_info;
9385 for (j = 0; j < locsymcount; ++j)
9387 if (local_got[j] > 0)
9389 local_got[j] = gotoff;
9390 gotoff += got_elt_size;
9393 local_got[j] = (bfd_vma) -1;
9397 /* Then the global .got entries. .plt refcounts are handled by
9398 adjust_dynamic_symbol */
9399 gofarg.gotoff = gotoff;
9400 gofarg.got_elt_size = got_elt_size;
9401 elf_link_hash_traverse (elf_hash_table (info),
9402 elf_gc_allocate_got_offsets,
9407 /* Many folk need no more in the way of final link than this, once
9408 got entry reference counting is enabled. */
9411 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
9413 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
9416 /* Invoke the regular ELF backend linker to do all the work. */
9417 return bfd_elf_final_link (abfd, info);
9421 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
9423 struct elf_reloc_cookie *rcookie = cookie;
9425 if (rcookie->bad_symtab)
9426 rcookie->rel = rcookie->rels;
9428 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
9430 unsigned long r_symndx;
9432 if (! rcookie->bad_symtab)
9433 if (rcookie->rel->r_offset > offset)
9435 if (rcookie->rel->r_offset != offset)
9438 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
9439 if (r_symndx == SHN_UNDEF)
9442 if (r_symndx >= rcookie->locsymcount
9443 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
9445 struct elf_link_hash_entry *h;
9447 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
9449 while (h->root.type == bfd_link_hash_indirect
9450 || h->root.type == bfd_link_hash_warning)
9451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9453 if ((h->root.type == bfd_link_hash_defined
9454 || h->root.type == bfd_link_hash_defweak)
9455 && elf_discarded_section (h->root.u.def.section))
9462 /* It's not a relocation against a global symbol,
9463 but it could be a relocation against a local
9464 symbol for a discarded section. */
9466 Elf_Internal_Sym *isym;
9468 /* Need to: get the symbol; get the section. */
9469 isym = &rcookie->locsyms[r_symndx];
9470 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
9472 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
9473 if (isec != NULL && elf_discarded_section (isec))
9482 /* Discard unneeded references to discarded sections.
9483 Returns TRUE if any section's size was changed. */
9484 /* This function assumes that the relocations are in sorted order,
9485 which is true for all known assemblers. */
9488 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
9490 struct elf_reloc_cookie cookie;
9491 asection *stab, *eh;
9492 Elf_Internal_Shdr *symtab_hdr;
9493 const struct elf_backend_data *bed;
9496 bfd_boolean ret = FALSE;
9498 if (info->traditional_format
9499 || !is_elf_hash_table (info->hash))
9502 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
9504 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9507 bed = get_elf_backend_data (abfd);
9509 if ((abfd->flags & DYNAMIC) != 0)
9512 eh = bfd_get_section_by_name (abfd, ".eh_frame");
9513 if (info->relocatable
9516 || bfd_is_abs_section (eh->output_section))))
9519 stab = bfd_get_section_by_name (abfd, ".stab");
9522 || bfd_is_abs_section (stab->output_section)
9523 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
9528 && bed->elf_backend_discard_info == NULL)
9531 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9533 cookie.sym_hashes = elf_sym_hashes (abfd);
9534 cookie.bad_symtab = elf_bad_symtab (abfd);
9535 if (cookie.bad_symtab)
9537 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9538 cookie.extsymoff = 0;
9542 cookie.locsymcount = symtab_hdr->sh_info;
9543 cookie.extsymoff = symtab_hdr->sh_info;
9546 if (bed->s->arch_size == 32)
9547 cookie.r_sym_shift = 8;
9549 cookie.r_sym_shift = 32;
9551 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
9552 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
9554 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
9555 cookie.locsymcount, 0,
9557 if (cookie.locsyms == NULL)
9564 count = stab->reloc_count;
9566 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
9568 if (cookie.rels != NULL)
9570 cookie.rel = cookie.rels;
9571 cookie.relend = cookie.rels;
9572 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9573 if (_bfd_discard_section_stabs (abfd, stab,
9574 elf_section_data (stab)->sec_info,
9575 bfd_elf_reloc_symbol_deleted_p,
9578 if (elf_section_data (stab)->relocs != cookie.rels)
9586 count = eh->reloc_count;
9588 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
9590 cookie.rel = cookie.rels;
9591 cookie.relend = cookie.rels;
9592 if (cookie.rels != NULL)
9593 cookie.relend += count * bed->s->int_rels_per_ext_rel;
9595 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
9596 bfd_elf_reloc_symbol_deleted_p,
9600 if (cookie.rels != NULL
9601 && elf_section_data (eh)->relocs != cookie.rels)
9605 if (bed->elf_backend_discard_info != NULL
9606 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9609 if (cookie.locsyms != NULL
9610 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9612 if (! info->keep_memory)
9613 free (cookie.locsyms);
9615 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9619 if (info->eh_frame_hdr
9620 && !info->relocatable
9621 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
9628 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section * sec)
9631 const char *name, *p;
9632 struct bfd_section_already_linked *l;
9633 struct bfd_section_already_linked_hash_entry *already_linked_list;
9636 /* A single member comdat group section may be discarded by a
9637 linkonce section. See below. */
9638 if (sec->output_section == bfd_abs_section_ptr)
9643 /* Check if it belongs to a section group. */
9644 group = elf_sec_group (sec);
9646 /* Return if it isn't a linkonce section nor a member of a group. A
9647 comdat group section also has SEC_LINK_ONCE set. */
9648 if ((flags & SEC_LINK_ONCE) == 0 && group == NULL)
9653 /* If this is the member of a single member comdat group, check if
9654 the group should be discarded. */
9655 if (elf_next_in_group (sec) == sec
9656 && (group->flags & SEC_LINK_ONCE) != 0)
9662 /* FIXME: When doing a relocatable link, we may have trouble
9663 copying relocations in other sections that refer to local symbols
9664 in the section being discarded. Those relocations will have to
9665 be converted somehow; as of this writing I'm not sure that any of
9666 the backends handle that correctly.
9668 It is tempting to instead not discard link once sections when
9669 doing a relocatable link (technically, they should be discarded
9670 whenever we are building constructors). However, that fails,
9671 because the linker winds up combining all the link once sections
9672 into a single large link once section, which defeats the purpose
9673 of having link once sections in the first place.
9675 Also, not merging link once sections in a relocatable link
9676 causes trouble for MIPS ELF, which relies on link once semantics
9677 to handle the .reginfo section correctly. */
9679 name = bfd_get_section_name (abfd, sec);
9681 if (strncmp (name, ".gnu.linkonce.", sizeof (".gnu.linkonce.") - 1) == 0
9682 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
9687 already_linked_list = bfd_section_already_linked_table_lookup (p);
9689 for (l = already_linked_list->entry; l != NULL; l = l->next)
9691 /* We may have 3 different sections on the list: group section,
9692 comdat section and linkonce section. SEC may be a linkonce or
9693 group section. We match a group section with a group section,
9694 a linkonce section with a linkonce section, and ignore comdat
9696 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
9697 && strcmp (name, l->sec->name) == 0
9698 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
9700 /* The section has already been linked. See if we should
9702 switch (flags & SEC_LINK_DUPLICATES)
9707 case SEC_LINK_DUPLICATES_DISCARD:
9710 case SEC_LINK_DUPLICATES_ONE_ONLY:
9711 (*_bfd_error_handler)
9712 (_("%B: ignoring duplicate section `%A'"),
9716 case SEC_LINK_DUPLICATES_SAME_SIZE:
9717 if (sec->size != l->sec->size)
9718 (*_bfd_error_handler)
9719 (_("%B: duplicate section `%A' has different size"),
9723 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
9724 if (sec->size != l->sec->size)
9725 (*_bfd_error_handler)
9726 (_("%B: duplicate section `%A' has different size"),
9728 else if (sec->size != 0)
9730 bfd_byte *sec_contents, *l_sec_contents;
9732 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
9733 (*_bfd_error_handler)
9734 (_("%B: warning: could not read contents of section `%A'"),
9736 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
9738 (*_bfd_error_handler)
9739 (_("%B: warning: could not read contents of section `%A'"),
9740 l->sec->owner, l->sec);
9741 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
9742 (*_bfd_error_handler)
9743 (_("%B: warning: duplicate section `%A' has different contents"),
9747 free (sec_contents);
9749 free (l_sec_contents);
9754 /* Set the output_section field so that lang_add_section
9755 does not create a lang_input_section structure for this
9756 section. Since there might be a symbol in the section
9757 being discarded, we must retain a pointer to the section
9758 which we are really going to use. */
9759 sec->output_section = bfd_abs_section_ptr;
9760 sec->kept_section = l->sec;
9762 if (flags & SEC_GROUP)
9764 asection *first = elf_next_in_group (sec);
9765 asection *s = first;
9769 s->output_section = bfd_abs_section_ptr;
9770 /* Record which group discards it. */
9771 s->kept_section = l->sec;
9772 s = elf_next_in_group (s);
9773 /* These lists are circular. */
9785 /* If this is the member of a single member comdat group and the
9786 group hasn't be discarded, we check if it matches a linkonce
9787 section. We only record the discarded comdat group. Otherwise
9788 the undiscarded group will be discarded incorrectly later since
9789 itself has been recorded. */
9790 for (l = already_linked_list->entry; l != NULL; l = l->next)
9791 if ((l->sec->flags & SEC_GROUP) == 0
9792 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
9793 && bfd_elf_match_symbols_in_sections (l->sec,
9794 elf_next_in_group (sec)))
9796 elf_next_in_group (sec)->output_section = bfd_abs_section_ptr;
9797 elf_next_in_group (sec)->kept_section = l->sec;
9798 group->output_section = bfd_abs_section_ptr;
9805 /* There is no direct match. But for linkonce section, we should
9806 check if there is a match with comdat group member. We always
9807 record the linkonce section, discarded or not. */
9808 for (l = already_linked_list->entry; l != NULL; l = l->next)
9809 if (l->sec->flags & SEC_GROUP)
9811 asection *first = elf_next_in_group (l->sec);
9814 && elf_next_in_group (first) == first
9815 && bfd_elf_match_symbols_in_sections (first, sec))
9817 sec->output_section = bfd_abs_section_ptr;
9818 sec->kept_section = l->sec;
9823 /* This is the first section with this name. Record it. */
9824 bfd_section_already_linked_table_insert (already_linked_list, sec);
9828 bfd_elf_set_symbol (struct elf_link_hash_entry *h, bfd_vma val)
9830 h->root.type = bfd_link_hash_defined;
9831 h->root.u.def.section = bfd_abs_section_ptr;
9832 h->root.u.def.value = val;
9834 h->type = STT_OBJECT;
9835 h->other = STV_HIDDEN | (h->other & ~ ELF_ST_VISIBILITY (-1));
9836 h->forced_local = 1;
9839 /* Set NAME to VAL if the symbol exists and is undefined. */
9842 _bfd_elf_provide_symbol (struct bfd_link_info *info, const char *name,
9845 struct elf_link_hash_entry *h;
9847 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE,
9849 if (h != NULL && (h->root.type == bfd_link_hash_undefined
9850 || h->root.type == bfd_link_hash_undefweak))
9851 bfd_elf_set_symbol (h, val);
9854 /* Set START and END to boundaries of SEC if they exist and are
9858 _bfd_elf_provide_section_bound_symbols (struct bfd_link_info *info,
9863 struct elf_link_hash_entry *hs, *he;
9864 bfd_vma start_val, end_val;
9865 bfd_boolean do_start, do_end;
9867 /* Check if we need them or not first. */
9868 hs = elf_link_hash_lookup (elf_hash_table (info), start, FALSE,
9870 do_start = (hs != NULL
9871 && (hs->root.type == bfd_link_hash_undefined
9872 || hs->root.type == bfd_link_hash_undefweak));
9874 he = elf_link_hash_lookup (elf_hash_table (info), end, FALSE,
9876 do_end = (he != NULL
9877 && (he->root.type == bfd_link_hash_undefined
9878 || he->root.type == bfd_link_hash_undefweak));
9880 if (!do_start && !do_end)
9885 start_val = sec->vma;
9886 end_val = start_val + sec->size;
9890 /* We have to choose those values very carefully. Some targets,
9891 like alpha, may have relocation overflow with 0. "_edata"
9892 should be defined in all cases. */
9893 struct elf_link_hash_entry *h
9894 = elf_link_hash_lookup (elf_hash_table (info), "_edata",
9895 FALSE, FALSE, FALSE);
9896 if (h != NULL && h->root.type == bfd_link_hash_defined)
9897 start_val = h->root.u.def.value;
9900 end_val = start_val;
9904 bfd_elf_set_symbol (hs, start_val);
9907 bfd_elf_set_symbol (he, end_val);