1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
35 struct elf_info_failed
37 struct bfd_link_info *info;
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
44 struct elf_find_verdep_info
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
50 /* Whether we had a failure. */
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
57 /* Define a symbol in a dynamic linkage section. */
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
80 bed = get_elf_backend_data (abfd);
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 sec, 0, NULL, FALSE, bed->collect,
85 h = (struct elf_link_hash_entry *) bh;
88 h->root.linker_def = 1;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
579 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
580 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
583 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
585 if (!info->relocatable
587 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
588 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
594 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
600 /* If this is a weak defined symbol, and we know a corresponding
601 real symbol from the same dynamic object, make sure the real
602 symbol is also made into a dynamic symbol. */
603 if (h->u.weakdef != NULL
604 && h->u.weakdef->dynindx == -1)
606 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
614 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
615 success, and 2 on a failure caused by attempting to record a symbol
616 in a discarded section, eg. a discarded link-once section symbol. */
619 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
624 struct elf_link_local_dynamic_entry *entry;
625 struct elf_link_hash_table *eht;
626 struct elf_strtab_hash *dynstr;
627 unsigned long dynstr_index;
629 Elf_External_Sym_Shndx eshndx;
630 char esym[sizeof (Elf64_External_Sym)];
632 if (! is_elf_hash_table (info->hash))
635 /* See if the entry exists already. */
636 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
637 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
640 amt = sizeof (*entry);
641 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
645 /* Go find the symbol, so that we can find it's name. */
646 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
647 1, input_indx, &entry->isym, esym, &eshndx))
649 bfd_release (input_bfd, entry);
653 if (entry->isym.st_shndx != SHN_UNDEF
654 && entry->isym.st_shndx < SHN_LORESERVE)
658 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
659 if (s == NULL || bfd_is_abs_section (s->output_section))
661 /* We can still bfd_release here as nothing has done another
662 bfd_alloc. We can't do this later in this function. */
663 bfd_release (input_bfd, entry);
668 name = (bfd_elf_string_from_elf_section
669 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
670 entry->isym.st_name));
672 dynstr = elf_hash_table (info)->dynstr;
675 /* Create a strtab to hold the dynamic symbol names. */
676 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
681 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
682 if (dynstr_index == (unsigned long) -1)
684 entry->isym.st_name = dynstr_index;
686 eht = elf_hash_table (info);
688 entry->next = eht->dynlocal;
689 eht->dynlocal = entry;
690 entry->input_bfd = input_bfd;
691 entry->input_indx = input_indx;
694 /* Whatever binding the symbol had before, it's now local. */
696 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
698 /* The dynindx will be set at the end of size_dynamic_sections. */
703 /* Return the dynindex of a local dynamic symbol. */
706 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
710 struct elf_link_local_dynamic_entry *e;
712 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
713 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
718 /* This function is used to renumber the dynamic symbols, if some of
719 them are removed because they are marked as local. This is called
720 via elf_link_hash_traverse. */
723 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
726 size_t *count = (size_t *) data;
731 if (h->dynindx != -1)
732 h->dynindx = ++(*count);
738 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
739 STB_LOCAL binding. */
742 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
745 size_t *count = (size_t *) data;
747 if (!h->forced_local)
750 if (h->dynindx != -1)
751 h->dynindx = ++(*count);
756 /* Return true if the dynamic symbol for a given section should be
757 omitted when creating a shared library. */
759 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
760 struct bfd_link_info *info,
763 struct elf_link_hash_table *htab;
766 switch (elf_section_data (p)->this_hdr.sh_type)
770 /* If sh_type is yet undecided, assume it could be
771 SHT_PROGBITS/SHT_NOBITS. */
773 htab = elf_hash_table (info);
774 if (p == htab->tls_sec)
777 if (htab->text_index_section != NULL)
778 return p != htab->text_index_section && p != htab->data_index_section;
780 return (htab->dynobj != NULL
781 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
782 && ip->output_section == p);
784 /* There shouldn't be section relative relocations
785 against any other section. */
791 /* Assign dynsym indices. In a shared library we generate a section
792 symbol for each output section, which come first. Next come symbols
793 which have been forced to local binding. Then all of the back-end
794 allocated local dynamic syms, followed by the rest of the global
798 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
799 struct bfd_link_info *info,
800 unsigned long *section_sym_count)
802 unsigned long dynsymcount = 0;
804 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
806 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
808 for (p = output_bfd->sections; p ; p = p->next)
809 if ((p->flags & SEC_EXCLUDE) == 0
810 && (p->flags & SEC_ALLOC) != 0
811 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
812 elf_section_data (p)->dynindx = ++dynsymcount;
814 elf_section_data (p)->dynindx = 0;
816 *section_sym_count = dynsymcount;
818 elf_link_hash_traverse (elf_hash_table (info),
819 elf_link_renumber_local_hash_table_dynsyms,
822 if (elf_hash_table (info)->dynlocal)
824 struct elf_link_local_dynamic_entry *p;
825 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
826 p->dynindx = ++dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_hash_table_dynsyms,
833 /* There is an unused NULL entry at the head of the table which
834 we must account for in our count. Unless there weren't any
835 symbols, which means we'll have no table at all. */
836 if (dynsymcount != 0)
839 elf_hash_table (info)->dynsymcount = dynsymcount;
843 /* Merge st_other field. */
846 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
847 const Elf_Internal_Sym *isym, asection *sec,
848 bfd_boolean definition, bfd_boolean dynamic)
850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
852 /* If st_other has a processor-specific meaning, specific
853 code might be needed here. */
854 if (bed->elf_backend_merge_symbol_attribute)
855 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
860 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
861 unsigned hvis = ELF_ST_VISIBILITY (h->other);
863 /* Keep the most constraining visibility. Leave the remainder
864 of the st_other field to elf_backend_merge_symbol_attribute. */
865 if (symvis - 1 < hvis - 1)
866 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
869 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
870 && (sec->flags & SEC_READONLY) == 0)
871 h->protected_def = 1;
874 /* This function is called when we want to merge a new symbol with an
875 existing symbol. It handles the various cases which arise when we
876 find a definition in a dynamic object, or when there is already a
877 definition in a dynamic object. The new symbol is described by
878 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
879 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
880 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
881 of an old common symbol. We set OVERRIDE if the old symbol is
882 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
883 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
884 to change. By OK to change, we mean that we shouldn't warn if the
885 type or size does change. */
888 _bfd_elf_merge_symbol (bfd *abfd,
889 struct bfd_link_info *info,
891 Elf_Internal_Sym *sym,
894 struct elf_link_hash_entry **sym_hash,
896 bfd_boolean *pold_weak,
897 unsigned int *pold_alignment,
899 bfd_boolean *override,
900 bfd_boolean *type_change_ok,
901 bfd_boolean *size_change_ok)
903 asection *sec, *oldsec;
904 struct elf_link_hash_entry *h;
905 struct elf_link_hash_entry *hi;
906 struct elf_link_hash_entry *flip;
909 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
910 bfd_boolean newweak, oldweak, newfunc, oldfunc;
911 const struct elf_backend_data *bed;
917 bind = ELF_ST_BIND (sym->st_info);
919 if (! bfd_is_und_section (sec))
920 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
922 h = ((struct elf_link_hash_entry *)
923 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
928 bed = get_elf_backend_data (abfd);
930 /* For merging, we only care about real symbols. But we need to make
931 sure that indirect symbol dynamic flags are updated. */
933 while (h->root.type == bfd_link_hash_indirect
934 || h->root.type == bfd_link_hash_warning)
935 h = (struct elf_link_hash_entry *) h->root.u.i.link;
937 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
942 switch (h->root.type)
947 case bfd_link_hash_undefined:
948 case bfd_link_hash_undefweak:
949 oldbfd = h->root.u.undef.abfd;
952 case bfd_link_hash_defined:
953 case bfd_link_hash_defweak:
954 oldbfd = h->root.u.def.section->owner;
955 oldsec = h->root.u.def.section;
958 case bfd_link_hash_common:
959 oldbfd = h->root.u.c.p->section->owner;
960 oldsec = h->root.u.c.p->section;
962 *pold_alignment = h->root.u.c.p->alignment_power;
965 if (poldbfd && *poldbfd == NULL)
968 /* Differentiate strong and weak symbols. */
969 newweak = bind == STB_WEAK;
970 oldweak = (h->root.type == bfd_link_hash_defweak
971 || h->root.type == bfd_link_hash_undefweak);
973 *pold_weak = oldweak;
975 /* This code is for coping with dynamic objects, and is only useful
976 if we are doing an ELF link. */
977 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
980 /* We have to check it for every instance since the first few may be
981 references and not all compilers emit symbol type for undefined
983 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
985 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
986 respectively, is from a dynamic object. */
988 newdyn = (abfd->flags & DYNAMIC) != 0;
990 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
991 syms and defined syms in dynamic libraries respectively.
992 ref_dynamic on the other hand can be set for a symbol defined in
993 a dynamic library, and def_dynamic may not be set; When the
994 definition in a dynamic lib is overridden by a definition in the
995 executable use of the symbol in the dynamic lib becomes a
996 reference to the executable symbol. */
999 if (bfd_is_und_section (sec))
1001 if (bind != STB_WEAK)
1003 h->ref_dynamic_nonweak = 1;
1004 hi->ref_dynamic_nonweak = 1;
1010 hi->dynamic_def = 1;
1014 /* If we just created the symbol, mark it as being an ELF symbol.
1015 Other than that, there is nothing to do--there is no merge issue
1016 with a newly defined symbol--so we just return. */
1018 if (h->root.type == bfd_link_hash_new)
1024 /* In cases involving weak versioned symbols, we may wind up trying
1025 to merge a symbol with itself. Catch that here, to avoid the
1026 confusion that results if we try to override a symbol with
1027 itself. The additional tests catch cases like
1028 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1029 dynamic object, which we do want to handle here. */
1031 && (newweak || oldweak)
1032 && ((abfd->flags & DYNAMIC) == 0
1033 || !h->def_regular))
1038 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1039 else if (oldsec != NULL)
1041 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1042 indices used by MIPS ELF. */
1043 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1046 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1047 respectively, appear to be a definition rather than reference. */
1049 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1051 olddef = (h->root.type != bfd_link_hash_undefined
1052 && h->root.type != bfd_link_hash_undefweak
1053 && h->root.type != bfd_link_hash_common);
1055 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1056 respectively, appear to be a function. */
1058 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1059 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1061 oldfunc = (h->type != STT_NOTYPE
1062 && bed->is_function_type (h->type));
1064 /* When we try to create a default indirect symbol from the dynamic
1065 definition with the default version, we skip it if its type and
1066 the type of existing regular definition mismatch. */
1067 if (pold_alignment == NULL
1071 && (((olddef || h->root.type == bfd_link_hash_common)
1072 && ELF_ST_TYPE (sym->st_info) != h->type
1073 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1074 && h->type != STT_NOTYPE
1075 && !(newfunc && oldfunc))
1077 && ((h->type == STT_GNU_IFUNC)
1078 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1084 /* Check TLS symbols. We don't check undefined symbols introduced
1085 by "ld -u" which have no type (and oldbfd NULL), and we don't
1086 check symbols from plugins because they also have no type. */
1088 && (oldbfd->flags & BFD_PLUGIN) == 0
1089 && (abfd->flags & BFD_PLUGIN) == 0
1090 && ELF_ST_TYPE (sym->st_info) != h->type
1091 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1094 bfd_boolean ntdef, tdef;
1095 asection *ntsec, *tsec;
1097 if (h->type == STT_TLS)
1117 (*_bfd_error_handler)
1118 (_("%s: TLS definition in %B section %A "
1119 "mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B "
1124 "mismatches non-TLS reference in %B"),
1125 tbfd, ntbfd, h->root.root.string);
1127 (*_bfd_error_handler)
1128 (_("%s: TLS definition in %B section %A "
1129 "mismatches non-TLS reference in %B"),
1130 tbfd, tsec, ntbfd, h->root.root.string);
1132 (*_bfd_error_handler)
1133 (_("%s: TLS reference in %B "
1134 "mismatches non-TLS definition in %B section %A"),
1135 tbfd, ntbfd, ntsec, h->root.root.string);
1137 bfd_set_error (bfd_error_bad_value);
1141 /* If the old symbol has non-default visibility, we ignore the new
1142 definition from a dynamic object. */
1144 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1145 && !bfd_is_und_section (sec))
1148 /* Make sure this symbol is dynamic. */
1150 hi->ref_dynamic = 1;
1151 /* A protected symbol has external availability. Make sure it is
1152 recorded as dynamic.
1154 FIXME: Should we check type and size for protected symbol? */
1155 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1156 return bfd_elf_link_record_dynamic_symbol (info, h);
1161 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1164 /* If the new symbol with non-default visibility comes from a
1165 relocatable file and the old definition comes from a dynamic
1166 object, we remove the old definition. */
1167 if (hi->root.type == bfd_link_hash_indirect)
1169 /* Handle the case where the old dynamic definition is
1170 default versioned. We need to copy the symbol info from
1171 the symbol with default version to the normal one if it
1172 was referenced before. */
1175 hi->root.type = h->root.type;
1176 h->root.type = bfd_link_hash_indirect;
1177 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1179 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1180 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1182 /* If the new symbol is hidden or internal, completely undo
1183 any dynamic link state. */
1184 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1185 h->forced_local = 0;
1192 /* FIXME: Should we check type and size for protected symbol? */
1202 /* If the old symbol was undefined before, then it will still be
1203 on the undefs list. If the new symbol is undefined or
1204 common, we can't make it bfd_link_hash_new here, because new
1205 undefined or common symbols will be added to the undefs list
1206 by _bfd_generic_link_add_one_symbol. Symbols may not be
1207 added twice to the undefs list. Also, if the new symbol is
1208 undefweak then we don't want to lose the strong undef. */
1209 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1211 h->root.type = bfd_link_hash_undefined;
1212 h->root.u.undef.abfd = abfd;
1216 h->root.type = bfd_link_hash_new;
1217 h->root.u.undef.abfd = NULL;
1220 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1222 /* If the new symbol is hidden or internal, completely undo
1223 any dynamic link state. */
1224 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1225 h->forced_local = 0;
1231 /* FIXME: Should we check type and size for protected symbol? */
1237 /* If a new weak symbol definition comes from a regular file and the
1238 old symbol comes from a dynamic library, we treat the new one as
1239 strong. Similarly, an old weak symbol definition from a regular
1240 file is treated as strong when the new symbol comes from a dynamic
1241 library. Further, an old weak symbol from a dynamic library is
1242 treated as strong if the new symbol is from a dynamic library.
1243 This reflects the way glibc's ld.so works.
1245 Do this before setting *type_change_ok or *size_change_ok so that
1246 we warn properly when dynamic library symbols are overridden. */
1248 if (newdef && !newdyn && olddyn)
1250 if (olddef && newdyn)
1253 /* Allow changes between different types of function symbol. */
1254 if (newfunc && oldfunc)
1255 *type_change_ok = TRUE;
1257 /* It's OK to change the type if either the existing symbol or the
1258 new symbol is weak. A type change is also OK if the old symbol
1259 is undefined and the new symbol is defined. */
1264 && h->root.type == bfd_link_hash_undefined))
1265 *type_change_ok = TRUE;
1267 /* It's OK to change the size if either the existing symbol or the
1268 new symbol is weak, or if the old symbol is undefined. */
1271 || h->root.type == bfd_link_hash_undefined)
1272 *size_change_ok = TRUE;
1274 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1275 symbol, respectively, appears to be a common symbol in a dynamic
1276 object. If a symbol appears in an uninitialized section, and is
1277 not weak, and is not a function, then it may be a common symbol
1278 which was resolved when the dynamic object was created. We want
1279 to treat such symbols specially, because they raise special
1280 considerations when setting the symbol size: if the symbol
1281 appears as a common symbol in a regular object, and the size in
1282 the regular object is larger, we must make sure that we use the
1283 larger size. This problematic case can always be avoided in C,
1284 but it must be handled correctly when using Fortran shared
1287 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1288 likewise for OLDDYNCOMMON and OLDDEF.
1290 Note that this test is just a heuristic, and that it is quite
1291 possible to have an uninitialized symbol in a shared object which
1292 is really a definition, rather than a common symbol. This could
1293 lead to some minor confusion when the symbol really is a common
1294 symbol in some regular object. However, I think it will be
1300 && (sec->flags & SEC_ALLOC) != 0
1301 && (sec->flags & SEC_LOAD) == 0
1304 newdyncommon = TRUE;
1306 newdyncommon = FALSE;
1310 && h->root.type == bfd_link_hash_defined
1312 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1313 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1316 olddyncommon = TRUE;
1318 olddyncommon = FALSE;
1320 /* We now know everything about the old and new symbols. We ask the
1321 backend to check if we can merge them. */
1322 if (bed->merge_symbol != NULL)
1324 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1329 /* If both the old and the new symbols look like common symbols in a
1330 dynamic object, set the size of the symbol to the larger of the
1335 && sym->st_size != h->size)
1337 /* Since we think we have two common symbols, issue a multiple
1338 common warning if desired. Note that we only warn if the
1339 size is different. If the size is the same, we simply let
1340 the old symbol override the new one as normally happens with
1341 symbols defined in dynamic objects. */
1343 if (! ((*info->callbacks->multiple_common)
1344 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1347 if (sym->st_size > h->size)
1348 h->size = sym->st_size;
1350 *size_change_ok = TRUE;
1353 /* If we are looking at a dynamic object, and we have found a
1354 definition, we need to see if the symbol was already defined by
1355 some other object. If so, we want to use the existing
1356 definition, and we do not want to report a multiple symbol
1357 definition error; we do this by clobbering *PSEC to be
1358 bfd_und_section_ptr.
1360 We treat a common symbol as a definition if the symbol in the
1361 shared library is a function, since common symbols always
1362 represent variables; this can cause confusion in principle, but
1363 any such confusion would seem to indicate an erroneous program or
1364 shared library. We also permit a common symbol in a regular
1365 object to override a weak symbol in a shared object. */
1370 || (h->root.type == bfd_link_hash_common
1371 && (newweak || newfunc))))
1375 newdyncommon = FALSE;
1377 *psec = sec = bfd_und_section_ptr;
1378 *size_change_ok = TRUE;
1380 /* If we get here when the old symbol is a common symbol, then
1381 we are explicitly letting it override a weak symbol or
1382 function in a dynamic object, and we don't want to warn about
1383 a type change. If the old symbol is a defined symbol, a type
1384 change warning may still be appropriate. */
1386 if (h->root.type == bfd_link_hash_common)
1387 *type_change_ok = TRUE;
1390 /* Handle the special case of an old common symbol merging with a
1391 new symbol which looks like a common symbol in a shared object.
1392 We change *PSEC and *PVALUE to make the new symbol look like a
1393 common symbol, and let _bfd_generic_link_add_one_symbol do the
1397 && h->root.type == bfd_link_hash_common)
1401 newdyncommon = FALSE;
1402 *pvalue = sym->st_size;
1403 *psec = sec = bed->common_section (oldsec);
1404 *size_change_ok = TRUE;
1407 /* Skip weak definitions of symbols that are already defined. */
1408 if (newdef && olddef && newweak)
1410 /* Don't skip new non-IR weak syms. */
1411 if (!(oldbfd != NULL
1412 && (oldbfd->flags & BFD_PLUGIN) != 0
1413 && (abfd->flags & BFD_PLUGIN) == 0))
1419 /* Merge st_other. If the symbol already has a dynamic index,
1420 but visibility says it should not be visible, turn it into a
1422 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1423 if (h->dynindx != -1)
1424 switch (ELF_ST_VISIBILITY (h->other))
1428 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1433 /* If the old symbol is from a dynamic object, and the new symbol is
1434 a definition which is not from a dynamic object, then the new
1435 symbol overrides the old symbol. Symbols from regular files
1436 always take precedence over symbols from dynamic objects, even if
1437 they are defined after the dynamic object in the link.
1439 As above, we again permit a common symbol in a regular object to
1440 override a definition in a shared object if the shared object
1441 symbol is a function or is weak. */
1446 || (bfd_is_com_section (sec)
1447 && (oldweak || oldfunc)))
1452 /* Change the hash table entry to undefined, and let
1453 _bfd_generic_link_add_one_symbol do the right thing with the
1456 h->root.type = bfd_link_hash_undefined;
1457 h->root.u.undef.abfd = h->root.u.def.section->owner;
1458 *size_change_ok = TRUE;
1461 olddyncommon = FALSE;
1463 /* We again permit a type change when a common symbol may be
1464 overriding a function. */
1466 if (bfd_is_com_section (sec))
1470 /* If a common symbol overrides a function, make sure
1471 that it isn't defined dynamically nor has type
1474 h->type = STT_NOTYPE;
1476 *type_change_ok = TRUE;
1479 if (hi->root.type == bfd_link_hash_indirect)
1482 /* This union may have been set to be non-NULL when this symbol
1483 was seen in a dynamic object. We must force the union to be
1484 NULL, so that it is correct for a regular symbol. */
1485 h->verinfo.vertree = NULL;
1488 /* Handle the special case of a new common symbol merging with an
1489 old symbol that looks like it might be a common symbol defined in
1490 a shared object. Note that we have already handled the case in
1491 which a new common symbol should simply override the definition
1492 in the shared library. */
1495 && bfd_is_com_section (sec)
1498 /* It would be best if we could set the hash table entry to a
1499 common symbol, but we don't know what to use for the section
1500 or the alignment. */
1501 if (! ((*info->callbacks->multiple_common)
1502 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1505 /* If the presumed common symbol in the dynamic object is
1506 larger, pretend that the new symbol has its size. */
1508 if (h->size > *pvalue)
1511 /* We need to remember the alignment required by the symbol
1512 in the dynamic object. */
1513 BFD_ASSERT (pold_alignment);
1514 *pold_alignment = h->root.u.def.section->alignment_power;
1517 olddyncommon = FALSE;
1519 h->root.type = bfd_link_hash_undefined;
1520 h->root.u.undef.abfd = h->root.u.def.section->owner;
1522 *size_change_ok = TRUE;
1523 *type_change_ok = TRUE;
1525 if (hi->root.type == bfd_link_hash_indirect)
1528 h->verinfo.vertree = NULL;
1533 /* Handle the case where we had a versioned symbol in a dynamic
1534 library and now find a definition in a normal object. In this
1535 case, we make the versioned symbol point to the normal one. */
1536 flip->root.type = h->root.type;
1537 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1538 h->root.type = bfd_link_hash_indirect;
1539 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1540 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1544 flip->ref_dynamic = 1;
1551 /* This function is called to create an indirect symbol from the
1552 default for the symbol with the default version if needed. The
1553 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1554 set DYNSYM if the new indirect symbol is dynamic. */
1557 _bfd_elf_add_default_symbol (bfd *abfd,
1558 struct bfd_link_info *info,
1559 struct elf_link_hash_entry *h,
1561 Elf_Internal_Sym *sym,
1565 bfd_boolean *dynsym)
1567 bfd_boolean type_change_ok;
1568 bfd_boolean size_change_ok;
1571 struct elf_link_hash_entry *hi;
1572 struct bfd_link_hash_entry *bh;
1573 const struct elf_backend_data *bed;
1574 bfd_boolean collect;
1575 bfd_boolean dynamic;
1576 bfd_boolean override;
1578 size_t len, shortlen;
1581 /* If this symbol has a version, and it is the default version, we
1582 create an indirect symbol from the default name to the fully
1583 decorated name. This will cause external references which do not
1584 specify a version to be bound to this version of the symbol. */
1585 p = strchr (name, ELF_VER_CHR);
1586 if (p == NULL || p[1] != ELF_VER_CHR)
1589 bed = get_elf_backend_data (abfd);
1590 collect = bed->collect;
1591 dynamic = (abfd->flags & DYNAMIC) != 0;
1593 shortlen = p - name;
1594 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1595 if (shortname == NULL)
1597 memcpy (shortname, name, shortlen);
1598 shortname[shortlen] = '\0';
1600 /* We are going to create a new symbol. Merge it with any existing
1601 symbol with this name. For the purposes of the merge, act as
1602 though we were defining the symbol we just defined, although we
1603 actually going to define an indirect symbol. */
1604 type_change_ok = FALSE;
1605 size_change_ok = FALSE;
1607 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1608 &hi, poldbfd, NULL, NULL, &skip, &override,
1609 &type_change_ok, &size_change_ok))
1618 if (! (_bfd_generic_link_add_one_symbol
1619 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1620 0, name, FALSE, collect, &bh)))
1622 hi = (struct elf_link_hash_entry *) bh;
1626 /* In this case the symbol named SHORTNAME is overriding the
1627 indirect symbol we want to add. We were planning on making
1628 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1629 is the name without a version. NAME is the fully versioned
1630 name, and it is the default version.
1632 Overriding means that we already saw a definition for the
1633 symbol SHORTNAME in a regular object, and it is overriding
1634 the symbol defined in the dynamic object.
1636 When this happens, we actually want to change NAME, the
1637 symbol we just added, to refer to SHORTNAME. This will cause
1638 references to NAME in the shared object to become references
1639 to SHORTNAME in the regular object. This is what we expect
1640 when we override a function in a shared object: that the
1641 references in the shared object will be mapped to the
1642 definition in the regular object. */
1644 while (hi->root.type == bfd_link_hash_indirect
1645 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1648 h->root.type = bfd_link_hash_indirect;
1649 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1653 hi->ref_dynamic = 1;
1657 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1662 /* Now set HI to H, so that the following code will set the
1663 other fields correctly. */
1667 /* Check if HI is a warning symbol. */
1668 if (hi->root.type == bfd_link_hash_warning)
1669 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1671 /* If there is a duplicate definition somewhere, then HI may not
1672 point to an indirect symbol. We will have reported an error to
1673 the user in that case. */
1675 if (hi->root.type == bfd_link_hash_indirect)
1677 struct elf_link_hash_entry *ht;
1679 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1682 /* A reference to the SHORTNAME symbol from a dynamic library
1683 will be satisfied by the versioned symbol at runtime. In
1684 effect, we have a reference to the versioned symbol. */
1685 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1686 hi->dynamic_def |= ht->dynamic_def;
1688 /* See if the new flags lead us to realize that the symbol must
1694 if (! info->executable
1701 if (hi->ref_regular)
1707 /* We also need to define an indirection from the nondefault version
1711 len = strlen (name);
1712 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1713 if (shortname == NULL)
1715 memcpy (shortname, name, shortlen);
1716 memcpy (shortname + shortlen, p + 1, len - shortlen);
1718 /* Once again, merge with any existing symbol. */
1719 type_change_ok = FALSE;
1720 size_change_ok = FALSE;
1722 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1723 &hi, poldbfd, NULL, NULL, &skip, &override,
1724 &type_change_ok, &size_change_ok))
1732 /* Here SHORTNAME is a versioned name, so we don't expect to see
1733 the type of override we do in the case above unless it is
1734 overridden by a versioned definition. */
1735 if (hi->root.type != bfd_link_hash_defined
1736 && hi->root.type != bfd_link_hash_defweak)
1737 (*_bfd_error_handler)
1738 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1744 if (! (_bfd_generic_link_add_one_symbol
1745 (info, abfd, shortname, BSF_INDIRECT,
1746 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1748 hi = (struct elf_link_hash_entry *) bh;
1750 /* If there is a duplicate definition somewhere, then HI may not
1751 point to an indirect symbol. We will have reported an error
1752 to the user in that case. */
1754 if (hi->root.type == bfd_link_hash_indirect)
1756 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1757 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1758 hi->dynamic_def |= h->dynamic_def;
1760 /* See if the new flags lead us to realize that the symbol
1766 if (! info->executable
1772 if (hi->ref_regular)
1782 /* This routine is used to export all defined symbols into the dynamic
1783 symbol table. It is called via elf_link_hash_traverse. */
1786 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1788 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1790 /* Ignore indirect symbols. These are added by the versioning code. */
1791 if (h->root.type == bfd_link_hash_indirect)
1794 /* Ignore this if we won't export it. */
1795 if (!eif->info->export_dynamic && !h->dynamic)
1798 if (h->dynindx == -1
1799 && (h->def_regular || h->ref_regular)
1800 && ! bfd_hide_sym_by_version (eif->info->version_info,
1801 h->root.root.string))
1803 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1813 /* Look through the symbols which are defined in other shared
1814 libraries and referenced here. Update the list of version
1815 dependencies. This will be put into the .gnu.version_r section.
1816 This function is called via elf_link_hash_traverse. */
1819 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1822 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1823 Elf_Internal_Verneed *t;
1824 Elf_Internal_Vernaux *a;
1827 /* We only care about symbols defined in shared objects with version
1832 || h->verinfo.verdef == NULL
1833 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1834 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1837 /* See if we already know about this version. */
1838 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1842 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1845 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1846 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1852 /* This is a new version. Add it to tree we are building. */
1857 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1860 rinfo->failed = TRUE;
1864 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1865 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1866 elf_tdata (rinfo->info->output_bfd)->verref = t;
1870 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1873 rinfo->failed = TRUE;
1877 /* Note that we are copying a string pointer here, and testing it
1878 above. If bfd_elf_string_from_elf_section is ever changed to
1879 discard the string data when low in memory, this will have to be
1881 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1883 a->vna_flags = h->verinfo.verdef->vd_flags;
1884 a->vna_nextptr = t->vn_auxptr;
1886 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1889 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1896 /* Figure out appropriate versions for all the symbols. We may not
1897 have the version number script until we have read all of the input
1898 files, so until that point we don't know which symbols should be
1899 local. This function is called via elf_link_hash_traverse. */
1902 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1904 struct elf_info_failed *sinfo;
1905 struct bfd_link_info *info;
1906 const struct elf_backend_data *bed;
1907 struct elf_info_failed eif;
1911 sinfo = (struct elf_info_failed *) data;
1914 /* Fix the symbol flags. */
1917 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1920 sinfo->failed = TRUE;
1924 /* We only need version numbers for symbols defined in regular
1926 if (!h->def_regular)
1929 bed = get_elf_backend_data (info->output_bfd);
1930 p = strchr (h->root.root.string, ELF_VER_CHR);
1931 if (p != NULL && h->verinfo.vertree == NULL)
1933 struct bfd_elf_version_tree *t;
1938 /* There are two consecutive ELF_VER_CHR characters if this is
1939 not a hidden symbol. */
1941 if (*p == ELF_VER_CHR)
1947 /* If there is no version string, we can just return out. */
1955 /* Look for the version. If we find it, it is no longer weak. */
1956 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1958 if (strcmp (t->name, p) == 0)
1962 struct bfd_elf_version_expr *d;
1964 len = p - h->root.root.string;
1965 alc = (char *) bfd_malloc (len);
1968 sinfo->failed = TRUE;
1971 memcpy (alc, h->root.root.string, len - 1);
1972 alc[len - 1] = '\0';
1973 if (alc[len - 2] == ELF_VER_CHR)
1974 alc[len - 2] = '\0';
1976 h->verinfo.vertree = t;
1980 if (t->globals.list != NULL)
1981 d = (*t->match) (&t->globals, NULL, alc);
1983 /* See if there is anything to force this symbol to
1985 if (d == NULL && t->locals.list != NULL)
1987 d = (*t->match) (&t->locals, NULL, alc);
1990 && ! info->export_dynamic)
1991 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1999 /* If we are building an application, we need to create a
2000 version node for this version. */
2001 if (t == NULL && info->executable)
2003 struct bfd_elf_version_tree **pp;
2006 /* If we aren't going to export this symbol, we don't need
2007 to worry about it. */
2008 if (h->dynindx == -1)
2012 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2015 sinfo->failed = TRUE;
2020 t->name_indx = (unsigned int) -1;
2024 /* Don't count anonymous version tag. */
2025 if (sinfo->info->version_info != NULL
2026 && sinfo->info->version_info->vernum == 0)
2028 for (pp = &sinfo->info->version_info;
2032 t->vernum = version_index;
2036 h->verinfo.vertree = t;
2040 /* We could not find the version for a symbol when
2041 generating a shared archive. Return an error. */
2042 (*_bfd_error_handler)
2043 (_("%B: version node not found for symbol %s"),
2044 info->output_bfd, h->root.root.string);
2045 bfd_set_error (bfd_error_bad_value);
2046 sinfo->failed = TRUE;
2054 /* If we don't have a version for this symbol, see if we can find
2056 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2061 = bfd_find_version_for_sym (sinfo->info->version_info,
2062 h->root.root.string, &hide);
2063 if (h->verinfo.vertree != NULL && hide)
2064 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2070 /* Read and swap the relocs from the section indicated by SHDR. This
2071 may be either a REL or a RELA section. The relocations are
2072 translated into RELA relocations and stored in INTERNAL_RELOCS,
2073 which should have already been allocated to contain enough space.
2074 The EXTERNAL_RELOCS are a buffer where the external form of the
2075 relocations should be stored.
2077 Returns FALSE if something goes wrong. */
2080 elf_link_read_relocs_from_section (bfd *abfd,
2082 Elf_Internal_Shdr *shdr,
2083 void *external_relocs,
2084 Elf_Internal_Rela *internal_relocs)
2086 const struct elf_backend_data *bed;
2087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2088 const bfd_byte *erela;
2089 const bfd_byte *erelaend;
2090 Elf_Internal_Rela *irela;
2091 Elf_Internal_Shdr *symtab_hdr;
2094 /* Position ourselves at the start of the section. */
2095 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2098 /* Read the relocations. */
2099 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2102 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2103 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2105 bed = get_elf_backend_data (abfd);
2107 /* Convert the external relocations to the internal format. */
2108 if (shdr->sh_entsize == bed->s->sizeof_rel)
2109 swap_in = bed->s->swap_reloc_in;
2110 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2111 swap_in = bed->s->swap_reloca_in;
2114 bfd_set_error (bfd_error_wrong_format);
2118 erela = (const bfd_byte *) external_relocs;
2119 erelaend = erela + shdr->sh_size;
2120 irela = internal_relocs;
2121 while (erela < erelaend)
2125 (*swap_in) (abfd, erela, irela);
2126 r_symndx = ELF32_R_SYM (irela->r_info);
2127 if (bed->s->arch_size == 64)
2131 if ((size_t) r_symndx >= nsyms)
2133 (*_bfd_error_handler)
2134 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2135 " for offset 0x%lx in section `%A'"),
2137 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2138 bfd_set_error (bfd_error_bad_value);
2142 else if (r_symndx != STN_UNDEF)
2144 (*_bfd_error_handler)
2145 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2146 " when the object file has no symbol table"),
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2152 irela += bed->s->int_rels_per_ext_rel;
2153 erela += shdr->sh_entsize;
2159 /* Read and swap the relocs for a section O. They may have been
2160 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2161 not NULL, they are used as buffers to read into. They are known to
2162 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2163 the return value is allocated using either malloc or bfd_alloc,
2164 according to the KEEP_MEMORY argument. If O has two relocation
2165 sections (both REL and RELA relocations), then the REL_HDR
2166 relocations will appear first in INTERNAL_RELOCS, followed by the
2167 RELA_HDR relocations. */
2170 _bfd_elf_link_read_relocs (bfd *abfd,
2172 void *external_relocs,
2173 Elf_Internal_Rela *internal_relocs,
2174 bfd_boolean keep_memory)
2176 void *alloc1 = NULL;
2177 Elf_Internal_Rela *alloc2 = NULL;
2178 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2179 struct bfd_elf_section_data *esdo = elf_section_data (o);
2180 Elf_Internal_Rela *internal_rela_relocs;
2182 if (esdo->relocs != NULL)
2183 return esdo->relocs;
2185 if (o->reloc_count == 0)
2188 if (internal_relocs == NULL)
2192 size = o->reloc_count;
2193 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2195 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2197 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2198 if (internal_relocs == NULL)
2202 if (external_relocs == NULL)
2204 bfd_size_type size = 0;
2207 size += esdo->rel.hdr->sh_size;
2209 size += esdo->rela.hdr->sh_size;
2211 alloc1 = bfd_malloc (size);
2214 external_relocs = alloc1;
2217 internal_rela_relocs = internal_relocs;
2220 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2224 external_relocs = (((bfd_byte *) external_relocs)
2225 + esdo->rel.hdr->sh_size);
2226 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2227 * bed->s->int_rels_per_ext_rel);
2231 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2233 internal_rela_relocs)))
2236 /* Cache the results for next time, if we can. */
2238 esdo->relocs = internal_relocs;
2243 /* Don't free alloc2, since if it was allocated we are passing it
2244 back (under the name of internal_relocs). */
2246 return internal_relocs;
2254 bfd_release (abfd, alloc2);
2261 /* Compute the size of, and allocate space for, REL_HDR which is the
2262 section header for a section containing relocations for O. */
2265 _bfd_elf_link_size_reloc_section (bfd *abfd,
2266 struct bfd_elf_section_reloc_data *reldata)
2268 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2270 /* That allows us to calculate the size of the section. */
2271 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2273 /* The contents field must last into write_object_contents, so we
2274 allocate it with bfd_alloc rather than malloc. Also since we
2275 cannot be sure that the contents will actually be filled in,
2276 we zero the allocated space. */
2277 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2278 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2281 if (reldata->hashes == NULL && reldata->count)
2283 struct elf_link_hash_entry **p;
2285 p = ((struct elf_link_hash_entry **)
2286 bfd_zmalloc (reldata->count * sizeof (*p)));
2290 reldata->hashes = p;
2296 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2297 originated from the section given by INPUT_REL_HDR) to the
2301 _bfd_elf_link_output_relocs (bfd *output_bfd,
2302 asection *input_section,
2303 Elf_Internal_Shdr *input_rel_hdr,
2304 Elf_Internal_Rela *internal_relocs,
2305 struct elf_link_hash_entry **rel_hash
2308 Elf_Internal_Rela *irela;
2309 Elf_Internal_Rela *irelaend;
2311 struct bfd_elf_section_reloc_data *output_reldata;
2312 asection *output_section;
2313 const struct elf_backend_data *bed;
2314 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2315 struct bfd_elf_section_data *esdo;
2317 output_section = input_section->output_section;
2319 bed = get_elf_backend_data (output_bfd);
2320 esdo = elf_section_data (output_section);
2321 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2323 output_reldata = &esdo->rel;
2324 swap_out = bed->s->swap_reloc_out;
2326 else if (esdo->rela.hdr
2327 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2329 output_reldata = &esdo->rela;
2330 swap_out = bed->s->swap_reloca_out;
2334 (*_bfd_error_handler)
2335 (_("%B: relocation size mismatch in %B section %A"),
2336 output_bfd, input_section->owner, input_section);
2337 bfd_set_error (bfd_error_wrong_format);
2341 erel = output_reldata->hdr->contents;
2342 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2343 irela = internal_relocs;
2344 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2345 * bed->s->int_rels_per_ext_rel);
2346 while (irela < irelaend)
2348 (*swap_out) (output_bfd, irela, erel);
2349 irela += bed->s->int_rels_per_ext_rel;
2350 erel += input_rel_hdr->sh_entsize;
2353 /* Bump the counter, so that we know where to add the next set of
2355 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2360 /* Make weak undefined symbols in PIE dynamic. */
2363 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2364 struct elf_link_hash_entry *h)
2368 && h->root.type == bfd_link_hash_undefweak)
2369 return bfd_elf_link_record_dynamic_symbol (info, h);
2374 /* Fix up the flags for a symbol. This handles various cases which
2375 can only be fixed after all the input files are seen. This is
2376 currently called by both adjust_dynamic_symbol and
2377 assign_sym_version, which is unnecessary but perhaps more robust in
2378 the face of future changes. */
2381 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2382 struct elf_info_failed *eif)
2384 const struct elf_backend_data *bed;
2386 /* If this symbol was mentioned in a non-ELF file, try to set
2387 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2388 permit a non-ELF file to correctly refer to a symbol defined in
2389 an ELF dynamic object. */
2392 while (h->root.type == bfd_link_hash_indirect)
2393 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2395 if (h->root.type != bfd_link_hash_defined
2396 && h->root.type != bfd_link_hash_defweak)
2399 h->ref_regular_nonweak = 1;
2403 if (h->root.u.def.section->owner != NULL
2404 && (bfd_get_flavour (h->root.u.def.section->owner)
2405 == bfd_target_elf_flavour))
2408 h->ref_regular_nonweak = 1;
2414 if (h->dynindx == -1
2418 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2427 /* Unfortunately, NON_ELF is only correct if the symbol
2428 was first seen in a non-ELF file. Fortunately, if the symbol
2429 was first seen in an ELF file, we're probably OK unless the
2430 symbol was defined in a non-ELF file. Catch that case here.
2431 FIXME: We're still in trouble if the symbol was first seen in
2432 a dynamic object, and then later in a non-ELF regular object. */
2433 if ((h->root.type == bfd_link_hash_defined
2434 || h->root.type == bfd_link_hash_defweak)
2436 && (h->root.u.def.section->owner != NULL
2437 ? (bfd_get_flavour (h->root.u.def.section->owner)
2438 != bfd_target_elf_flavour)
2439 : (bfd_is_abs_section (h->root.u.def.section)
2440 && !h->def_dynamic)))
2444 /* Backend specific symbol fixup. */
2445 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2446 if (bed->elf_backend_fixup_symbol
2447 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2450 /* If this is a final link, and the symbol was defined as a common
2451 symbol in a regular object file, and there was no definition in
2452 any dynamic object, then the linker will have allocated space for
2453 the symbol in a common section but the DEF_REGULAR
2454 flag will not have been set. */
2455 if (h->root.type == bfd_link_hash_defined
2459 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2462 /* If -Bsymbolic was used (which means to bind references to global
2463 symbols to the definition within the shared object), and this
2464 symbol was defined in a regular object, then it actually doesn't
2465 need a PLT entry. Likewise, if the symbol has non-default
2466 visibility. If the symbol has hidden or internal visibility, we
2467 will force it local. */
2469 && eif->info->shared
2470 && is_elf_hash_table (eif->info->hash)
2471 && (SYMBOLIC_BIND (eif->info, h)
2472 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2475 bfd_boolean force_local;
2477 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2478 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2479 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2482 /* If a weak undefined symbol has non-default visibility, we also
2483 hide it from the dynamic linker. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2485 && h->root.type == bfd_link_hash_undefweak)
2486 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2488 /* If this is a weak defined symbol in a dynamic object, and we know
2489 the real definition in the dynamic object, copy interesting flags
2490 over to the real definition. */
2491 if (h->u.weakdef != NULL)
2493 /* If the real definition is defined by a regular object file,
2494 don't do anything special. See the longer description in
2495 _bfd_elf_adjust_dynamic_symbol, below. */
2496 if (h->u.weakdef->def_regular)
2497 h->u.weakdef = NULL;
2500 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2502 while (h->root.type == bfd_link_hash_indirect)
2503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2505 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2506 || h->root.type == bfd_link_hash_defweak);
2507 BFD_ASSERT (weakdef->def_dynamic);
2508 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2509 || weakdef->root.type == bfd_link_hash_defweak);
2510 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2517 /* Make the backend pick a good value for a dynamic symbol. This is
2518 called via elf_link_hash_traverse, and also calls itself
2522 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2524 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2526 const struct elf_backend_data *bed;
2528 if (! is_elf_hash_table (eif->info->hash))
2531 /* Ignore indirect symbols. These are added by the versioning code. */
2532 if (h->root.type == bfd_link_hash_indirect)
2535 /* Fix the symbol flags. */
2536 if (! _bfd_elf_fix_symbol_flags (h, eif))
2539 /* If this symbol does not require a PLT entry, and it is not
2540 defined by a dynamic object, or is not referenced by a regular
2541 object, ignore it. We do have to handle a weak defined symbol,
2542 even if no regular object refers to it, if we decided to add it
2543 to the dynamic symbol table. FIXME: Do we normally need to worry
2544 about symbols which are defined by one dynamic object and
2545 referenced by another one? */
2547 && h->type != STT_GNU_IFUNC
2551 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2553 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2557 /* If we've already adjusted this symbol, don't do it again. This
2558 can happen via a recursive call. */
2559 if (h->dynamic_adjusted)
2562 /* Don't look at this symbol again. Note that we must set this
2563 after checking the above conditions, because we may look at a
2564 symbol once, decide not to do anything, and then get called
2565 recursively later after REF_REGULAR is set below. */
2566 h->dynamic_adjusted = 1;
2568 /* If this is a weak definition, and we know a real definition, and
2569 the real symbol is not itself defined by a regular object file,
2570 then get a good value for the real definition. We handle the
2571 real symbol first, for the convenience of the backend routine.
2573 Note that there is a confusing case here. If the real definition
2574 is defined by a regular object file, we don't get the real symbol
2575 from the dynamic object, but we do get the weak symbol. If the
2576 processor backend uses a COPY reloc, then if some routine in the
2577 dynamic object changes the real symbol, we will not see that
2578 change in the corresponding weak symbol. This is the way other
2579 ELF linkers work as well, and seems to be a result of the shared
2582 I will clarify this issue. Most SVR4 shared libraries define the
2583 variable _timezone and define timezone as a weak synonym. The
2584 tzset call changes _timezone. If you write
2585 extern int timezone;
2587 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2588 you might expect that, since timezone is a synonym for _timezone,
2589 the same number will print both times. However, if the processor
2590 backend uses a COPY reloc, then actually timezone will be copied
2591 into your process image, and, since you define _timezone
2592 yourself, _timezone will not. Thus timezone and _timezone will
2593 wind up at different memory locations. The tzset call will set
2594 _timezone, leaving timezone unchanged. */
2596 if (h->u.weakdef != NULL)
2598 /* If we get to this point, there is an implicit reference to
2599 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2600 h->u.weakdef->ref_regular = 1;
2602 /* Ensure that the backend adjust_dynamic_symbol function sees
2603 H->U.WEAKDEF before H by recursively calling ourselves. */
2604 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2608 /* If a symbol has no type and no size and does not require a PLT
2609 entry, then we are probably about to do the wrong thing here: we
2610 are probably going to create a COPY reloc for an empty object.
2611 This case can arise when a shared object is built with assembly
2612 code, and the assembly code fails to set the symbol type. */
2614 && h->type == STT_NOTYPE
2616 (*_bfd_error_handler)
2617 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2618 h->root.root.string);
2620 dynobj = elf_hash_table (eif->info)->dynobj;
2621 bed = get_elf_backend_data (dynobj);
2623 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2632 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2636 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2637 struct elf_link_hash_entry *h,
2640 unsigned int power_of_two;
2642 asection *sec = h->root.u.def.section;
2644 /* The section aligment of definition is the maximum alignment
2645 requirement of symbols defined in the section. Since we don't
2646 know the symbol alignment requirement, we start with the
2647 maximum alignment and check low bits of the symbol address
2648 for the minimum alignment. */
2649 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2650 mask = ((bfd_vma) 1 << power_of_two) - 1;
2651 while ((h->root.u.def.value & mask) != 0)
2657 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2660 /* Adjust the section alignment if needed. */
2661 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2666 /* We make sure that the symbol will be aligned properly. */
2667 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2669 /* Define the symbol as being at this point in DYNBSS. */
2670 h->root.u.def.section = dynbss;
2671 h->root.u.def.value = dynbss->size;
2673 /* Increment the size of DYNBSS to make room for the symbol. */
2674 dynbss->size += h->size;
2676 /* No error if extern_protected_data is true. */
2677 if (h->protected_def
2678 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)
2679 info->callbacks->einfo
2680 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2681 h->root.root.string);
2686 /* Adjust all external symbols pointing into SEC_MERGE sections
2687 to reflect the object merging within the sections. */
2690 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2694 if ((h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2697 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2699 bfd *output_bfd = (bfd *) data;
2701 h->root.u.def.value =
2702 _bfd_merged_section_offset (output_bfd,
2703 &h->root.u.def.section,
2704 elf_section_data (sec)->sec_info,
2705 h->root.u.def.value);
2711 /* Returns false if the symbol referred to by H should be considered
2712 to resolve local to the current module, and true if it should be
2713 considered to bind dynamically. */
2716 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2717 struct bfd_link_info *info,
2718 bfd_boolean not_local_protected)
2720 bfd_boolean binding_stays_local_p;
2721 const struct elf_backend_data *bed;
2722 struct elf_link_hash_table *hash_table;
2727 while (h->root.type == bfd_link_hash_indirect
2728 || h->root.type == bfd_link_hash_warning)
2729 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2731 /* If it was forced local, then clearly it's not dynamic. */
2732 if (h->dynindx == -1)
2734 if (h->forced_local)
2737 /* Identify the cases where name binding rules say that a
2738 visible symbol resolves locally. */
2739 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2741 switch (ELF_ST_VISIBILITY (h->other))
2748 hash_table = elf_hash_table (info);
2749 if (!is_elf_hash_table (hash_table))
2752 bed = get_elf_backend_data (hash_table->dynobj);
2754 /* Proper resolution for function pointer equality may require
2755 that these symbols perhaps be resolved dynamically, even though
2756 we should be resolving them to the current module. */
2757 if (!not_local_protected || !bed->is_function_type (h->type))
2758 binding_stays_local_p = TRUE;
2765 /* If it isn't defined locally, then clearly it's dynamic. */
2766 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2769 /* Otherwise, the symbol is dynamic if binding rules don't tell
2770 us that it remains local. */
2771 return !binding_stays_local_p;
2774 /* Return true if the symbol referred to by H should be considered
2775 to resolve local to the current module, and false otherwise. Differs
2776 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2777 undefined symbols. The two functions are virtually identical except
2778 for the place where forced_local and dynindx == -1 are tested. If
2779 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2780 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2781 the symbol is local only for defined symbols.
2782 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2783 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2784 treatment of undefined weak symbols. For those that do not make
2785 undefined weak symbols dynamic, both functions may return false. */
2788 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2789 struct bfd_link_info *info,
2790 bfd_boolean local_protected)
2792 const struct elf_backend_data *bed;
2793 struct elf_link_hash_table *hash_table;
2795 /* If it's a local sym, of course we resolve locally. */
2799 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2800 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2801 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2804 /* Common symbols that become definitions don't get the DEF_REGULAR
2805 flag set, so test it first, and don't bail out. */
2806 if (ELF_COMMON_DEF_P (h))
2808 /* If we don't have a definition in a regular file, then we can't
2809 resolve locally. The sym is either undefined or dynamic. */
2810 else if (!h->def_regular)
2813 /* Forced local symbols resolve locally. */
2814 if (h->forced_local)
2817 /* As do non-dynamic symbols. */
2818 if (h->dynindx == -1)
2821 /* At this point, we know the symbol is defined and dynamic. In an
2822 executable it must resolve locally, likewise when building symbolic
2823 shared libraries. */
2824 if (info->executable || SYMBOLIC_BIND (info, h))
2827 /* Now deal with defined dynamic symbols in shared libraries. Ones
2828 with default visibility might not resolve locally. */
2829 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2832 hash_table = elf_hash_table (info);
2833 if (!is_elf_hash_table (hash_table))
2836 bed = get_elf_backend_data (hash_table->dynobj);
2838 /* If extern_protected_data is false, STV_PROTECTED non-function
2839 symbols are local. */
2840 if (!bed->extern_protected_data && !bed->is_function_type (h->type))
2843 /* Function pointer equality tests may require that STV_PROTECTED
2844 symbols be treated as dynamic symbols. If the address of a
2845 function not defined in an executable is set to that function's
2846 plt entry in the executable, then the address of the function in
2847 a shared library must also be the plt entry in the executable. */
2848 return local_protected;
2851 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2852 aligned. Returns the first TLS output section. */
2854 struct bfd_section *
2855 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2857 struct bfd_section *sec, *tls;
2858 unsigned int align = 0;
2860 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2861 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2865 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2866 if (sec->alignment_power > align)
2867 align = sec->alignment_power;
2869 elf_hash_table (info)->tls_sec = tls;
2871 /* Ensure the alignment of the first section is the largest alignment,
2872 so that the tls segment starts aligned. */
2874 tls->alignment_power = align;
2879 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2881 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2882 Elf_Internal_Sym *sym)
2884 const struct elf_backend_data *bed;
2886 /* Local symbols do not count, but target specific ones might. */
2887 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2888 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 bed = get_elf_backend_data (abfd);
2892 /* Function symbols do not count. */
2893 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 /* If the section is undefined, then so is the symbol. */
2897 if (sym->st_shndx == SHN_UNDEF)
2900 /* If the symbol is defined in the common section, then
2901 it is a common definition and so does not count. */
2902 if (bed->common_definition (sym))
2905 /* If the symbol is in a target specific section then we
2906 must rely upon the backend to tell us what it is. */
2907 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2908 /* FIXME - this function is not coded yet:
2910 return _bfd_is_global_symbol_definition (abfd, sym);
2912 Instead for now assume that the definition is not global,
2913 Even if this is wrong, at least the linker will behave
2914 in the same way that it used to do. */
2920 /* Search the symbol table of the archive element of the archive ABFD
2921 whose archive map contains a mention of SYMDEF, and determine if
2922 the symbol is defined in this element. */
2924 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2926 Elf_Internal_Shdr * hdr;
2927 bfd_size_type symcount;
2928 bfd_size_type extsymcount;
2929 bfd_size_type extsymoff;
2930 Elf_Internal_Sym *isymbuf;
2931 Elf_Internal_Sym *isym;
2932 Elf_Internal_Sym *isymend;
2935 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2939 /* Return FALSE if the object has been claimed by plugin. */
2940 if (abfd->plugin_format == bfd_plugin_yes)
2943 if (! bfd_check_format (abfd, bfd_object))
2946 /* Select the appropriate symbol table. */
2947 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2948 hdr = &elf_tdata (abfd)->symtab_hdr;
2950 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2952 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2954 /* The sh_info field of the symtab header tells us where the
2955 external symbols start. We don't care about the local symbols. */
2956 if (elf_bad_symtab (abfd))
2958 extsymcount = symcount;
2963 extsymcount = symcount - hdr->sh_info;
2964 extsymoff = hdr->sh_info;
2967 if (extsymcount == 0)
2970 /* Read in the symbol table. */
2971 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2973 if (isymbuf == NULL)
2976 /* Scan the symbol table looking for SYMDEF. */
2978 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2982 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2987 if (strcmp (name, symdef->name) == 0)
2989 result = is_global_data_symbol_definition (abfd, isym);
2999 /* Add an entry to the .dynamic table. */
3002 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3006 struct elf_link_hash_table *hash_table;
3007 const struct elf_backend_data *bed;
3009 bfd_size_type newsize;
3010 bfd_byte *newcontents;
3011 Elf_Internal_Dyn dyn;
3013 hash_table = elf_hash_table (info);
3014 if (! is_elf_hash_table (hash_table))
3017 bed = get_elf_backend_data (hash_table->dynobj);
3018 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3019 BFD_ASSERT (s != NULL);
3021 newsize = s->size + bed->s->sizeof_dyn;
3022 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3023 if (newcontents == NULL)
3027 dyn.d_un.d_val = val;
3028 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3031 s->contents = newcontents;
3036 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3037 otherwise just check whether one already exists. Returns -1 on error,
3038 1 if a DT_NEEDED tag already exists, and 0 on success. */
3041 elf_add_dt_needed_tag (bfd *abfd,
3042 struct bfd_link_info *info,
3046 struct elf_link_hash_table *hash_table;
3047 bfd_size_type strindex;
3049 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3052 hash_table = elf_hash_table (info);
3053 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3054 if (strindex == (bfd_size_type) -1)
3057 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3060 const struct elf_backend_data *bed;
3063 bed = get_elf_backend_data (hash_table->dynobj);
3064 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3066 for (extdyn = sdyn->contents;
3067 extdyn < sdyn->contents + sdyn->size;
3068 extdyn += bed->s->sizeof_dyn)
3070 Elf_Internal_Dyn dyn;
3072 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3073 if (dyn.d_tag == DT_NEEDED
3074 && dyn.d_un.d_val == strindex)
3076 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3084 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3087 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3091 /* We were just checking for existence of the tag. */
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3098 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3100 for (; needed != NULL; needed = needed->next)
3101 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3102 && strcmp (soname, needed->name) == 0)
3108 /* Sort symbol by value, section, and size. */
3110 elf_sort_symbol (const void *arg1, const void *arg2)
3112 const struct elf_link_hash_entry *h1;
3113 const struct elf_link_hash_entry *h2;
3114 bfd_signed_vma vdiff;
3116 h1 = *(const struct elf_link_hash_entry **) arg1;
3117 h2 = *(const struct elf_link_hash_entry **) arg2;
3118 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3120 return vdiff > 0 ? 1 : -1;
3123 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3125 return sdiff > 0 ? 1 : -1;
3127 vdiff = h1->size - h2->size;
3128 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3131 /* This function is used to adjust offsets into .dynstr for
3132 dynamic symbols. This is called via elf_link_hash_traverse. */
3135 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3137 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3139 if (h->dynindx != -1)
3140 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3144 /* Assign string offsets in .dynstr, update all structures referencing
3148 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3150 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3151 struct elf_link_local_dynamic_entry *entry;
3152 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3153 bfd *dynobj = hash_table->dynobj;
3156 const struct elf_backend_data *bed;
3159 _bfd_elf_strtab_finalize (dynstr);
3160 size = _bfd_elf_strtab_size (dynstr);
3162 bed = get_elf_backend_data (dynobj);
3163 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3164 BFD_ASSERT (sdyn != NULL);
3166 /* Update all .dynamic entries referencing .dynstr strings. */
3167 for (extdyn = sdyn->contents;
3168 extdyn < sdyn->contents + sdyn->size;
3169 extdyn += bed->s->sizeof_dyn)
3171 Elf_Internal_Dyn dyn;
3173 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3177 dyn.d_un.d_val = size;
3187 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3192 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3195 /* Now update local dynamic symbols. */
3196 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3197 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3198 entry->isym.st_name);
3200 /* And the rest of dynamic symbols. */
3201 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3203 /* Adjust version definitions. */
3204 if (elf_tdata (output_bfd)->cverdefs)
3209 Elf_Internal_Verdef def;
3210 Elf_Internal_Verdaux defaux;
3212 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3216 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3218 p += sizeof (Elf_External_Verdef);
3219 if (def.vd_aux != sizeof (Elf_External_Verdef))
3221 for (i = 0; i < def.vd_cnt; ++i)
3223 _bfd_elf_swap_verdaux_in (output_bfd,
3224 (Elf_External_Verdaux *) p, &defaux);
3225 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3227 _bfd_elf_swap_verdaux_out (output_bfd,
3228 &defaux, (Elf_External_Verdaux *) p);
3229 p += sizeof (Elf_External_Verdaux);
3232 while (def.vd_next);
3235 /* Adjust version references. */
3236 if (elf_tdata (output_bfd)->verref)
3241 Elf_Internal_Verneed need;
3242 Elf_Internal_Vernaux needaux;
3244 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3248 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3250 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3251 _bfd_elf_swap_verneed_out (output_bfd, &need,
3252 (Elf_External_Verneed *) p);
3253 p += sizeof (Elf_External_Verneed);
3254 for (i = 0; i < need.vn_cnt; ++i)
3256 _bfd_elf_swap_vernaux_in (output_bfd,
3257 (Elf_External_Vernaux *) p, &needaux);
3258 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3260 _bfd_elf_swap_vernaux_out (output_bfd,
3262 (Elf_External_Vernaux *) p);
3263 p += sizeof (Elf_External_Vernaux);
3266 while (need.vn_next);
3272 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3273 The default is to only match when the INPUT and OUTPUT are exactly
3277 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3278 const bfd_target *output)
3280 return input == output;
3283 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3284 This version is used when different targets for the same architecture
3285 are virtually identical. */
3288 _bfd_elf_relocs_compatible (const bfd_target *input,
3289 const bfd_target *output)
3291 const struct elf_backend_data *obed, *ibed;
3293 if (input == output)
3296 ibed = xvec_get_elf_backend_data (input);
3297 obed = xvec_get_elf_backend_data (output);
3299 if (ibed->arch != obed->arch)
3302 /* If both backends are using this function, deem them compatible. */
3303 return ibed->relocs_compatible == obed->relocs_compatible;
3306 /* Make a special call to the linker "notice" function to tell it that
3307 we are about to handle an as-needed lib, or have finished
3308 processing the lib. */
3311 _bfd_elf_notice_as_needed (bfd *ibfd,
3312 struct bfd_link_info *info,
3313 enum notice_asneeded_action act)
3315 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3318 /* Add symbols from an ELF object file to the linker hash table. */
3321 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3323 Elf_Internal_Ehdr *ehdr;
3324 Elf_Internal_Shdr *hdr;
3325 bfd_size_type symcount;
3326 bfd_size_type extsymcount;
3327 bfd_size_type extsymoff;
3328 struct elf_link_hash_entry **sym_hash;
3329 bfd_boolean dynamic;
3330 Elf_External_Versym *extversym = NULL;
3331 Elf_External_Versym *ever;
3332 struct elf_link_hash_entry *weaks;
3333 struct elf_link_hash_entry **nondeflt_vers = NULL;
3334 bfd_size_type nondeflt_vers_cnt = 0;
3335 Elf_Internal_Sym *isymbuf = NULL;
3336 Elf_Internal_Sym *isym;
3337 Elf_Internal_Sym *isymend;
3338 const struct elf_backend_data *bed;
3339 bfd_boolean add_needed;
3340 struct elf_link_hash_table *htab;
3342 void *alloc_mark = NULL;
3343 struct bfd_hash_entry **old_table = NULL;
3344 unsigned int old_size = 0;
3345 unsigned int old_count = 0;
3346 void *old_tab = NULL;
3348 struct bfd_link_hash_entry *old_undefs = NULL;
3349 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3350 long old_dynsymcount = 0;
3351 bfd_size_type old_dynstr_size = 0;
3354 bfd_boolean just_syms;
3356 htab = elf_hash_table (info);
3357 bed = get_elf_backend_data (abfd);
3359 if ((abfd->flags & DYNAMIC) == 0)
3365 /* You can't use -r against a dynamic object. Also, there's no
3366 hope of using a dynamic object which does not exactly match
3367 the format of the output file. */
3368 if (info->relocatable
3369 || !is_elf_hash_table (htab)
3370 || info->output_bfd->xvec != abfd->xvec)
3372 if (info->relocatable)
3373 bfd_set_error (bfd_error_invalid_operation);
3375 bfd_set_error (bfd_error_wrong_format);
3380 ehdr = elf_elfheader (abfd);
3381 if (info->warn_alternate_em
3382 && bed->elf_machine_code != ehdr->e_machine
3383 && ((bed->elf_machine_alt1 != 0
3384 && ehdr->e_machine == bed->elf_machine_alt1)
3385 || (bed->elf_machine_alt2 != 0
3386 && ehdr->e_machine == bed->elf_machine_alt2)))
3387 info->callbacks->einfo
3388 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3389 ehdr->e_machine, abfd, bed->elf_machine_code);
3391 /* As a GNU extension, any input sections which are named
3392 .gnu.warning.SYMBOL are treated as warning symbols for the given
3393 symbol. This differs from .gnu.warning sections, which generate
3394 warnings when they are included in an output file. */
3395 /* PR 12761: Also generate this warning when building shared libraries. */
3396 for (s = abfd->sections; s != NULL; s = s->next)
3400 name = bfd_get_section_name (abfd, s);
3401 if (CONST_STRNEQ (name, ".gnu.warning."))
3406 name += sizeof ".gnu.warning." - 1;
3408 /* If this is a shared object, then look up the symbol
3409 in the hash table. If it is there, and it is already
3410 been defined, then we will not be using the entry
3411 from this shared object, so we don't need to warn.
3412 FIXME: If we see the definition in a regular object
3413 later on, we will warn, but we shouldn't. The only
3414 fix is to keep track of what warnings we are supposed
3415 to emit, and then handle them all at the end of the
3419 struct elf_link_hash_entry *h;
3421 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3423 /* FIXME: What about bfd_link_hash_common? */
3425 && (h->root.type == bfd_link_hash_defined
3426 || h->root.type == bfd_link_hash_defweak))
3431 msg = (char *) bfd_alloc (abfd, sz + 1);
3435 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3440 if (! (_bfd_generic_link_add_one_symbol
3441 (info, abfd, name, BSF_WARNING, s, 0, msg,
3442 FALSE, bed->collect, NULL)))
3445 if (!info->relocatable && info->executable)
3447 /* Clobber the section size so that the warning does
3448 not get copied into the output file. */
3451 /* Also set SEC_EXCLUDE, so that symbols defined in
3452 the warning section don't get copied to the output. */
3453 s->flags |= SEC_EXCLUDE;
3458 just_syms = ((s = abfd->sections) != NULL
3459 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3464 /* If we are creating a shared library, create all the dynamic
3465 sections immediately. We need to attach them to something,
3466 so we attach them to this BFD, provided it is the right
3467 format and is not from ld --just-symbols. FIXME: If there
3468 are no input BFD's of the same format as the output, we can't
3469 make a shared library. */
3472 && is_elf_hash_table (htab)
3473 && info->output_bfd->xvec == abfd->xvec
3474 && !htab->dynamic_sections_created)
3476 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3480 else if (!is_elf_hash_table (htab))
3484 const char *soname = NULL;
3486 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3489 /* ld --just-symbols and dynamic objects don't mix very well.
3490 ld shouldn't allow it. */
3494 /* If this dynamic lib was specified on the command line with
3495 --as-needed in effect, then we don't want to add a DT_NEEDED
3496 tag unless the lib is actually used. Similary for libs brought
3497 in by another lib's DT_NEEDED. When --no-add-needed is used
3498 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3499 any dynamic library in DT_NEEDED tags in the dynamic lib at
3501 add_needed = (elf_dyn_lib_class (abfd)
3502 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3503 | DYN_NO_NEEDED)) == 0;
3505 s = bfd_get_section_by_name (abfd, ".dynamic");
3510 unsigned int elfsec;
3511 unsigned long shlink;
3513 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3520 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3521 if (elfsec == SHN_BAD)
3522 goto error_free_dyn;
3523 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3525 for (extdyn = dynbuf;
3526 extdyn < dynbuf + s->size;
3527 extdyn += bed->s->sizeof_dyn)
3529 Elf_Internal_Dyn dyn;
3531 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3532 if (dyn.d_tag == DT_SONAME)
3534 unsigned int tagv = dyn.d_un.d_val;
3535 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3537 goto error_free_dyn;
3539 if (dyn.d_tag == DT_NEEDED)
3541 struct bfd_link_needed_list *n, **pn;
3543 unsigned int tagv = dyn.d_un.d_val;
3545 amt = sizeof (struct bfd_link_needed_list);
3546 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3547 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (n == NULL || fnm == NULL)
3549 goto error_free_dyn;
3550 amt = strlen (fnm) + 1;
3551 anm = (char *) bfd_alloc (abfd, amt);
3553 goto error_free_dyn;
3554 memcpy (anm, fnm, amt);
3558 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 if (dyn.d_tag == DT_RUNPATH)
3564 struct bfd_link_needed_list *n, **pn;
3566 unsigned int tagv = dyn.d_un.d_val;
3568 amt = sizeof (struct bfd_link_needed_list);
3569 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3570 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (n == NULL || fnm == NULL)
3572 goto error_free_dyn;
3573 amt = strlen (fnm) + 1;
3574 anm = (char *) bfd_alloc (abfd, amt);
3576 goto error_free_dyn;
3577 memcpy (anm, fnm, amt);
3581 for (pn = & runpath;
3587 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3588 if (!runpath && dyn.d_tag == DT_RPATH)
3590 struct bfd_link_needed_list *n, **pn;
3592 unsigned int tagv = dyn.d_un.d_val;
3594 amt = sizeof (struct bfd_link_needed_list);
3595 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3596 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3597 if (n == NULL || fnm == NULL)
3598 goto error_free_dyn;
3599 amt = strlen (fnm) + 1;
3600 anm = (char *) bfd_alloc (abfd, amt);
3602 goto error_free_dyn;
3603 memcpy (anm, fnm, amt);
3613 if (dyn.d_tag == DT_AUDIT)
3615 unsigned int tagv = dyn.d_un.d_val;
3616 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3623 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3624 frees all more recently bfd_alloc'd blocks as well. */
3630 struct bfd_link_needed_list **pn;
3631 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3636 /* We do not want to include any of the sections in a dynamic
3637 object in the output file. We hack by simply clobbering the
3638 list of sections in the BFD. This could be handled more
3639 cleanly by, say, a new section flag; the existing
3640 SEC_NEVER_LOAD flag is not the one we want, because that one
3641 still implies that the section takes up space in the output
3643 bfd_section_list_clear (abfd);
3645 /* Find the name to use in a DT_NEEDED entry that refers to this
3646 object. If the object has a DT_SONAME entry, we use it.
3647 Otherwise, if the generic linker stuck something in
3648 elf_dt_name, we use that. Otherwise, we just use the file
3650 if (soname == NULL || *soname == '\0')
3652 soname = elf_dt_name (abfd);
3653 if (soname == NULL || *soname == '\0')
3654 soname = bfd_get_filename (abfd);
3657 /* Save the SONAME because sometimes the linker emulation code
3658 will need to know it. */
3659 elf_dt_name (abfd) = soname;
3661 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 /* If we have already included this dynamic object in the
3666 link, just ignore it. There is no reason to include a
3667 particular dynamic object more than once. */
3671 /* Save the DT_AUDIT entry for the linker emulation code. */
3672 elf_dt_audit (abfd) = audit;
3675 /* If this is a dynamic object, we always link against the .dynsym
3676 symbol table, not the .symtab symbol table. The dynamic linker
3677 will only see the .dynsym symbol table, so there is no reason to
3678 look at .symtab for a dynamic object. */
3680 if (! dynamic || elf_dynsymtab (abfd) == 0)
3681 hdr = &elf_tdata (abfd)->symtab_hdr;
3683 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3685 symcount = hdr->sh_size / bed->s->sizeof_sym;
3687 /* The sh_info field of the symtab header tells us where the
3688 external symbols start. We don't care about the local symbols at
3690 if (elf_bad_symtab (abfd))
3692 extsymcount = symcount;
3697 extsymcount = symcount - hdr->sh_info;
3698 extsymoff = hdr->sh_info;
3701 sym_hash = elf_sym_hashes (abfd);
3702 if (extsymcount != 0)
3704 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3706 if (isymbuf == NULL)
3709 if (sym_hash == NULL)
3711 /* We store a pointer to the hash table entry for each
3713 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3714 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3715 if (sym_hash == NULL)
3716 goto error_free_sym;
3717 elf_sym_hashes (abfd) = sym_hash;
3723 /* Read in any version definitions. */
3724 if (!_bfd_elf_slurp_version_tables (abfd,
3725 info->default_imported_symver))
3726 goto error_free_sym;
3728 /* Read in the symbol versions, but don't bother to convert them
3729 to internal format. */
3730 if (elf_dynversym (abfd) != 0)
3732 Elf_Internal_Shdr *versymhdr;
3734 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3735 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3736 if (extversym == NULL)
3737 goto error_free_sym;
3738 amt = versymhdr->sh_size;
3739 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3740 || bfd_bread (extversym, amt, abfd) != amt)
3741 goto error_free_vers;
3745 /* If we are loading an as-needed shared lib, save the symbol table
3746 state before we start adding symbols. If the lib turns out
3747 to be unneeded, restore the state. */
3748 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3753 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3755 struct bfd_hash_entry *p;
3756 struct elf_link_hash_entry *h;
3758 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3760 h = (struct elf_link_hash_entry *) p;
3761 entsize += htab->root.table.entsize;
3762 if (h->root.type == bfd_link_hash_warning)
3763 entsize += htab->root.table.entsize;
3767 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3768 old_tab = bfd_malloc (tabsize + entsize);
3769 if (old_tab == NULL)
3770 goto error_free_vers;
3772 /* Remember the current objalloc pointer, so that all mem for
3773 symbols added can later be reclaimed. */
3774 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3775 if (alloc_mark == NULL)
3776 goto error_free_vers;
3778 /* Make a special call to the linker "notice" function to
3779 tell it that we are about to handle an as-needed lib. */
3780 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3781 goto error_free_vers;
3783 /* Clone the symbol table. Remember some pointers into the
3784 symbol table, and dynamic symbol count. */
3785 old_ent = (char *) old_tab + tabsize;
3786 memcpy (old_tab, htab->root.table.table, tabsize);
3787 old_undefs = htab->root.undefs;
3788 old_undefs_tail = htab->root.undefs_tail;
3789 old_table = htab->root.table.table;
3790 old_size = htab->root.table.size;
3791 old_count = htab->root.table.count;
3792 old_dynsymcount = htab->dynsymcount;
3793 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3795 for (i = 0; i < htab->root.table.size; i++)
3797 struct bfd_hash_entry *p;
3798 struct elf_link_hash_entry *h;
3800 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 memcpy (old_ent, p, htab->root.table.entsize);
3803 old_ent = (char *) old_ent + htab->root.table.entsize;
3804 h = (struct elf_link_hash_entry *) p;
3805 if (h->root.type == bfd_link_hash_warning)
3807 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3808 old_ent = (char *) old_ent + htab->root.table.entsize;
3815 ever = extversym != NULL ? extversym + extsymoff : NULL;
3816 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3818 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3822 asection *sec, *new_sec;
3825 struct elf_link_hash_entry *h;
3826 struct elf_link_hash_entry *hi;
3827 bfd_boolean definition;
3828 bfd_boolean size_change_ok;
3829 bfd_boolean type_change_ok;
3830 bfd_boolean new_weakdef;
3831 bfd_boolean new_weak;
3832 bfd_boolean old_weak;
3833 bfd_boolean override;
3835 unsigned int old_alignment;
3840 flags = BSF_NO_FLAGS;
3842 value = isym->st_value;
3843 common = bed->common_definition (isym);
3845 bind = ELF_ST_BIND (isym->st_info);
3849 /* This should be impossible, since ELF requires that all
3850 global symbols follow all local symbols, and that sh_info
3851 point to the first global symbol. Unfortunately, Irix 5
3856 if (isym->st_shndx != SHN_UNDEF && !common)
3864 case STB_GNU_UNIQUE:
3865 flags = BSF_GNU_UNIQUE;
3869 /* Leave it up to the processor backend. */
3873 if (isym->st_shndx == SHN_UNDEF)
3874 sec = bfd_und_section_ptr;
3875 else if (isym->st_shndx == SHN_ABS)
3876 sec = bfd_abs_section_ptr;
3877 else if (isym->st_shndx == SHN_COMMON)
3879 sec = bfd_com_section_ptr;
3880 /* What ELF calls the size we call the value. What ELF
3881 calls the value we call the alignment. */
3882 value = isym->st_size;
3886 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3888 sec = bfd_abs_section_ptr;
3889 else if (discarded_section (sec))
3891 /* Symbols from discarded section are undefined. We keep
3893 sec = bfd_und_section_ptr;
3894 isym->st_shndx = SHN_UNDEF;
3896 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3900 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3903 goto error_free_vers;
3905 if (isym->st_shndx == SHN_COMMON
3906 && (abfd->flags & BFD_PLUGIN) != 0)
3908 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3912 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3914 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3916 goto error_free_vers;
3920 else if (isym->st_shndx == SHN_COMMON
3921 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3922 && !info->relocatable)
3924 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3928 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3929 | SEC_LINKER_CREATED);
3930 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3932 goto error_free_vers;
3936 else if (bed->elf_add_symbol_hook)
3938 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3940 goto error_free_vers;
3942 /* The hook function sets the name to NULL if this symbol
3943 should be skipped for some reason. */
3948 /* Sanity check that all possibilities were handled. */
3951 bfd_set_error (bfd_error_bad_value);
3952 goto error_free_vers;
3955 /* Silently discard TLS symbols from --just-syms. There's
3956 no way to combine a static TLS block with a new TLS block
3957 for this executable. */
3958 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3959 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3962 if (bfd_is_und_section (sec)
3963 || bfd_is_com_section (sec))
3968 size_change_ok = FALSE;
3969 type_change_ok = bed->type_change_ok;
3975 if (is_elf_hash_table (htab))
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4005 size_t namelen, verlen, newlen;
4008 if (isym->st_shndx != SHN_UNDEF)
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4012 else if (vernum > 1)
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4034 Elf_Internal_Verneed *t;
4037 for (t = elf_tdata (abfd)->verref;
4041 Elf_Internal_Vernaux *a;
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4045 if (a->vna_other == vernum)
4047 verstr = a->vna_nodename;
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4071 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4083 memcpy (p, verstr, verlen + 1);
4088 /* If this symbol has default visibility and the user has
4089 requested we not re-export it, then mark it as hidden. */
4093 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4094 isym->st_other = (STV_HIDDEN
4095 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4097 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4098 sym_hash, &old_bfd, &old_weak,
4099 &old_alignment, &skip, &override,
4100 &type_change_ok, &size_change_ok))
4101 goto error_free_vers;
4110 while (h->root.type == bfd_link_hash_indirect
4111 || h->root.type == bfd_link_hash_warning)
4112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4114 if (elf_tdata (abfd)->verdef != NULL
4117 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4120 if (! (_bfd_generic_link_add_one_symbol
4121 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4122 (struct bfd_link_hash_entry **) sym_hash)))
4123 goto error_free_vers;
4126 /* We need to make sure that indirect symbol dynamic flags are
4129 while (h->root.type == bfd_link_hash_indirect
4130 || h->root.type == bfd_link_hash_warning)
4131 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4135 new_weak = (flags & BSF_WEAK) != 0;
4136 new_weakdef = FALSE;
4140 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4141 && is_elf_hash_table (htab)
4142 && h->u.weakdef == NULL)
4144 /* Keep a list of all weak defined non function symbols from
4145 a dynamic object, using the weakdef field. Later in this
4146 function we will set the weakdef field to the correct
4147 value. We only put non-function symbols from dynamic
4148 objects on this list, because that happens to be the only
4149 time we need to know the normal symbol corresponding to a
4150 weak symbol, and the information is time consuming to
4151 figure out. If the weakdef field is not already NULL,
4152 then this symbol was already defined by some previous
4153 dynamic object, and we will be using that previous
4154 definition anyhow. */
4156 h->u.weakdef = weaks;
4161 /* Set the alignment of a common symbol. */
4162 if ((common || bfd_is_com_section (sec))
4163 && h->root.type == bfd_link_hash_common)
4168 align = bfd_log2 (isym->st_value);
4171 /* The new symbol is a common symbol in a shared object.
4172 We need to get the alignment from the section. */
4173 align = new_sec->alignment_power;
4175 if (align > old_alignment)
4176 h->root.u.c.p->alignment_power = align;
4178 h->root.u.c.p->alignment_power = old_alignment;
4181 if (is_elf_hash_table (htab))
4183 /* Set a flag in the hash table entry indicating the type of
4184 reference or definition we just found. A dynamic symbol
4185 is one which is referenced or defined by both a regular
4186 object and a shared object. */
4187 bfd_boolean dynsym = FALSE;
4189 /* Plugin symbols aren't normal. Don't set def_regular or
4190 ref_regular for them, or make them dynamic. */
4191 if ((abfd->flags & BFD_PLUGIN) != 0)
4198 if (bind != STB_WEAK)
4199 h->ref_regular_nonweak = 1;
4211 /* If the indirect symbol has been forced local, don't
4212 make the real symbol dynamic. */
4213 if ((h == hi || !hi->forced_local)
4214 && (! info->executable
4224 hi->ref_dynamic = 1;
4229 hi->def_dynamic = 1;
4232 /* If the indirect symbol has been forced local, don't
4233 make the real symbol dynamic. */
4234 if ((h == hi || !hi->forced_local)
4237 || (h->u.weakdef != NULL
4239 && h->u.weakdef->dynindx != -1)))
4243 /* Check to see if we need to add an indirect symbol for
4244 the default name. */
4246 || (!override && h->root.type == bfd_link_hash_common))
4247 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4248 sec, value, &old_bfd, &dynsym))
4249 goto error_free_vers;
4251 /* Check the alignment when a common symbol is involved. This
4252 can change when a common symbol is overridden by a normal
4253 definition or a common symbol is ignored due to the old
4254 normal definition. We need to make sure the maximum
4255 alignment is maintained. */
4256 if ((old_alignment || common)
4257 && h->root.type != bfd_link_hash_common)
4259 unsigned int common_align;
4260 unsigned int normal_align;
4261 unsigned int symbol_align;
4265 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4266 || h->root.type == bfd_link_hash_defweak);
4268 symbol_align = ffs (h->root.u.def.value) - 1;
4269 if (h->root.u.def.section->owner != NULL
4270 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4272 normal_align = h->root.u.def.section->alignment_power;
4273 if (normal_align > symbol_align)
4274 normal_align = symbol_align;
4277 normal_align = symbol_align;
4281 common_align = old_alignment;
4282 common_bfd = old_bfd;
4287 common_align = bfd_log2 (isym->st_value);
4289 normal_bfd = old_bfd;
4292 if (normal_align < common_align)
4294 /* PR binutils/2735 */
4295 if (normal_bfd == NULL)
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of common symbol `%s' in %B is"
4298 " greater than the alignment (%u) of its section %A"),
4299 common_bfd, h->root.u.def.section,
4300 1 << common_align, name, 1 << normal_align);
4302 (*_bfd_error_handler)
4303 (_("Warning: alignment %u of symbol `%s' in %B"
4304 " is smaller than %u in %B"),
4305 normal_bfd, common_bfd,
4306 1 << normal_align, name, 1 << common_align);
4310 /* Remember the symbol size if it isn't undefined. */
4311 if (isym->st_size != 0
4312 && isym->st_shndx != SHN_UNDEF
4313 && (definition || h->size == 0))
4316 && h->size != isym->st_size
4317 && ! size_change_ok)
4318 (*_bfd_error_handler)
4319 (_("Warning: size of symbol `%s' changed"
4320 " from %lu in %B to %lu in %B"),
4322 name, (unsigned long) h->size,
4323 (unsigned long) isym->st_size);
4325 h->size = isym->st_size;
4328 /* If this is a common symbol, then we always want H->SIZE
4329 to be the size of the common symbol. The code just above
4330 won't fix the size if a common symbol becomes larger. We
4331 don't warn about a size change here, because that is
4332 covered by --warn-common. Allow changes between different
4334 if (h->root.type == bfd_link_hash_common)
4335 h->size = h->root.u.c.size;
4337 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4338 && ((definition && !new_weak)
4339 || (old_weak && h->root.type == bfd_link_hash_common)
4340 || h->type == STT_NOTYPE))
4342 unsigned int type = ELF_ST_TYPE (isym->st_info);
4344 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4346 if (type == STT_GNU_IFUNC
4347 && (abfd->flags & DYNAMIC) != 0)
4350 if (h->type != type)
4352 if (h->type != STT_NOTYPE && ! type_change_ok)
4353 (*_bfd_error_handler)
4354 (_("Warning: type of symbol `%s' changed"
4355 " from %d to %d in %B"),
4356 abfd, name, h->type, type);
4362 /* Merge st_other field. */
4363 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4365 /* We don't want to make debug symbol dynamic. */
4366 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4369 /* Nor should we make plugin symbols dynamic. */
4370 if ((abfd->flags & BFD_PLUGIN) != 0)
4375 h->target_internal = isym->st_target_internal;
4376 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4379 if (definition && !dynamic)
4381 char *p = strchr (name, ELF_VER_CHR);
4382 if (p != NULL && p[1] != ELF_VER_CHR)
4384 /* Queue non-default versions so that .symver x, x@FOO
4385 aliases can be checked. */
4388 amt = ((isymend - isym + 1)
4389 * sizeof (struct elf_link_hash_entry *));
4391 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4393 goto error_free_vers;
4395 nondeflt_vers[nondeflt_vers_cnt++] = h;
4399 if (dynsym && h->dynindx == -1)
4401 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4402 goto error_free_vers;
4403 if (h->u.weakdef != NULL
4405 && h->u.weakdef->dynindx == -1)
4407 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4408 goto error_free_vers;
4411 else if (dynsym && h->dynindx != -1)
4412 /* If the symbol already has a dynamic index, but
4413 visibility says it should not be visible, turn it into
4415 switch (ELF_ST_VISIBILITY (h->other))
4419 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4424 /* Don't add DT_NEEDED for references from the dummy bfd. */
4428 && h->ref_regular_nonweak
4430 || (old_bfd->flags & BFD_PLUGIN) == 0))
4431 || (h->ref_dynamic_nonweak
4432 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4433 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4436 const char *soname = elf_dt_name (abfd);
4438 info->callbacks->minfo ("%!", soname, old_bfd,
4439 h->root.root.string);
4441 /* A symbol from a library loaded via DT_NEEDED of some
4442 other library is referenced by a regular object.
4443 Add a DT_NEEDED entry for it. Issue an error if
4444 --no-add-needed is used and the reference was not
4447 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4449 (*_bfd_error_handler)
4450 (_("%B: undefined reference to symbol '%s'"),
4452 bfd_set_error (bfd_error_missing_dso);
4453 goto error_free_vers;
4456 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4457 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4460 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4462 goto error_free_vers;
4464 BFD_ASSERT (ret == 0);
4469 if (extversym != NULL)
4475 if (isymbuf != NULL)
4481 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4485 /* Restore the symbol table. */
4486 old_ent = (char *) old_tab + tabsize;
4487 memset (elf_sym_hashes (abfd), 0,
4488 extsymcount * sizeof (struct elf_link_hash_entry *));
4489 htab->root.table.table = old_table;
4490 htab->root.table.size = old_size;
4491 htab->root.table.count = old_count;
4492 memcpy (htab->root.table.table, old_tab, tabsize);
4493 htab->root.undefs = old_undefs;
4494 htab->root.undefs_tail = old_undefs_tail;
4495 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4496 for (i = 0; i < htab->root.table.size; i++)
4498 struct bfd_hash_entry *p;
4499 struct elf_link_hash_entry *h;
4501 unsigned int alignment_power;
4503 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4505 h = (struct elf_link_hash_entry *) p;
4506 if (h->root.type == bfd_link_hash_warning)
4507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4508 if (h->dynindx >= old_dynsymcount
4509 && h->dynstr_index < old_dynstr_size)
4510 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4512 /* Preserve the maximum alignment and size for common
4513 symbols even if this dynamic lib isn't on DT_NEEDED
4514 since it can still be loaded at run time by another
4516 if (h->root.type == bfd_link_hash_common)
4518 size = h->root.u.c.size;
4519 alignment_power = h->root.u.c.p->alignment_power;
4524 alignment_power = 0;
4526 memcpy (p, old_ent, htab->root.table.entsize);
4527 old_ent = (char *) old_ent + htab->root.table.entsize;
4528 h = (struct elf_link_hash_entry *) p;
4529 if (h->root.type == bfd_link_hash_warning)
4531 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4532 old_ent = (char *) old_ent + htab->root.table.entsize;
4533 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4535 if (h->root.type == bfd_link_hash_common)
4537 if (size > h->root.u.c.size)
4538 h->root.u.c.size = size;
4539 if (alignment_power > h->root.u.c.p->alignment_power)
4540 h->root.u.c.p->alignment_power = alignment_power;
4545 /* Make a special call to the linker "notice" function to
4546 tell it that symbols added for crefs may need to be removed. */
4547 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4548 goto error_free_vers;
4551 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4553 if (nondeflt_vers != NULL)
4554 free (nondeflt_vers);
4558 if (old_tab != NULL)
4560 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4561 goto error_free_vers;
4566 /* Now that all the symbols from this input file are created, handle
4567 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4568 if (nondeflt_vers != NULL)
4570 bfd_size_type cnt, symidx;
4572 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4574 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4575 char *shortname, *p;
4577 p = strchr (h->root.root.string, ELF_VER_CHR);
4579 || (h->root.type != bfd_link_hash_defined
4580 && h->root.type != bfd_link_hash_defweak))
4583 amt = p - h->root.root.string;
4584 shortname = (char *) bfd_malloc (amt + 1);
4586 goto error_free_vers;
4587 memcpy (shortname, h->root.root.string, amt);
4588 shortname[amt] = '\0';
4590 hi = (struct elf_link_hash_entry *)
4591 bfd_link_hash_lookup (&htab->root, shortname,
4592 FALSE, FALSE, FALSE);
4594 && hi->root.type == h->root.type
4595 && hi->root.u.def.value == h->root.u.def.value
4596 && hi->root.u.def.section == h->root.u.def.section)
4598 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4599 hi->root.type = bfd_link_hash_indirect;
4600 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4601 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4602 sym_hash = elf_sym_hashes (abfd);
4604 for (symidx = 0; symidx < extsymcount; ++symidx)
4605 if (sym_hash[symidx] == hi)
4607 sym_hash[symidx] = h;
4613 free (nondeflt_vers);
4614 nondeflt_vers = NULL;
4617 /* Now set the weakdefs field correctly for all the weak defined
4618 symbols we found. The only way to do this is to search all the
4619 symbols. Since we only need the information for non functions in
4620 dynamic objects, that's the only time we actually put anything on
4621 the list WEAKS. We need this information so that if a regular
4622 object refers to a symbol defined weakly in a dynamic object, the
4623 real symbol in the dynamic object is also put in the dynamic
4624 symbols; we also must arrange for both symbols to point to the
4625 same memory location. We could handle the general case of symbol
4626 aliasing, but a general symbol alias can only be generated in
4627 assembler code, handling it correctly would be very time
4628 consuming, and other ELF linkers don't handle general aliasing
4632 struct elf_link_hash_entry **hpp;
4633 struct elf_link_hash_entry **hppend;
4634 struct elf_link_hash_entry **sorted_sym_hash;
4635 struct elf_link_hash_entry *h;
4638 /* Since we have to search the whole symbol list for each weak
4639 defined symbol, search time for N weak defined symbols will be
4640 O(N^2). Binary search will cut it down to O(NlogN). */
4641 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4642 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4643 if (sorted_sym_hash == NULL)
4645 sym_hash = sorted_sym_hash;
4646 hpp = elf_sym_hashes (abfd);
4647 hppend = hpp + extsymcount;
4649 for (; hpp < hppend; hpp++)
4653 && h->root.type == bfd_link_hash_defined
4654 && !bed->is_function_type (h->type))
4662 qsort (sorted_sym_hash, sym_count,
4663 sizeof (struct elf_link_hash_entry *),
4666 while (weaks != NULL)
4668 struct elf_link_hash_entry *hlook;
4671 size_t i, j, idx = 0;
4674 weaks = hlook->u.weakdef;
4675 hlook->u.weakdef = NULL;
4677 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4678 || hlook->root.type == bfd_link_hash_defweak
4679 || hlook->root.type == bfd_link_hash_common
4680 || hlook->root.type == bfd_link_hash_indirect);
4681 slook = hlook->root.u.def.section;
4682 vlook = hlook->root.u.def.value;
4688 bfd_signed_vma vdiff;
4690 h = sorted_sym_hash[idx];
4691 vdiff = vlook - h->root.u.def.value;
4698 long sdiff = slook->id - h->root.u.def.section->id;
4708 /* We didn't find a value/section match. */
4712 /* With multiple aliases, or when the weak symbol is already
4713 strongly defined, we have multiple matching symbols and
4714 the binary search above may land on any of them. Step
4715 one past the matching symbol(s). */
4718 h = sorted_sym_hash[idx];
4719 if (h->root.u.def.section != slook
4720 || h->root.u.def.value != vlook)
4724 /* Now look back over the aliases. Since we sorted by size
4725 as well as value and section, we'll choose the one with
4726 the largest size. */
4729 h = sorted_sym_hash[idx];
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.section != slook
4733 || h->root.u.def.value != vlook)
4735 else if (h != hlook)
4737 hlook->u.weakdef = h;
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4747 free (sorted_sym_hash);
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4767 free (sorted_sym_hash);
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && elf_object_id (abfd) == elf_hash_table_id (htab)
4795 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4799 for (o = abfd->sections; o != NULL; o = o->next)
4801 Elf_Internal_Rela *internal_relocs;
4804 if ((o->flags & SEC_RELOC) == 0
4805 || o->reloc_count == 0
4806 || ((info->strip == strip_all || info->strip == strip_debugger)
4807 && (o->flags & SEC_DEBUGGING) != 0)
4808 || bfd_is_abs_section (o->output_section))
4811 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4813 if (internal_relocs == NULL)
4816 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4818 if (elf_section_data (o)->relocs != internal_relocs)
4819 free (internal_relocs);
4826 /* If this is a non-traditional link, try to optimize the handling
4827 of the .stab/.stabstr sections. */
4829 && ! info->traditional_format
4830 && is_elf_hash_table (htab)
4831 && (info->strip != strip_all && info->strip != strip_debugger))
4835 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836 if (stabstr != NULL)
4838 bfd_size_type string_offset = 0;
4841 for (stab = abfd->sections; stab; stab = stab->next)
4842 if (CONST_STRNEQ (stab->name, ".stab")
4843 && (!stab->name[5] ||
4844 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 && (stab->flags & SEC_MERGE) == 0
4846 && !bfd_is_abs_section (stab->output_section))
4848 struct bfd_elf_section_data *secdata;
4850 secdata = elf_section_data (stab);
4851 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 stabstr, &secdata->sec_info,
4855 if (secdata->sec_info)
4856 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4861 if (is_elf_hash_table (htab) && add_needed)
4863 /* Add this bfd to the loaded list. */
4864 struct elf_link_loaded_list *n;
4866 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
4870 n->next = htab->loaded;
4877 if (old_tab != NULL)
4879 if (nondeflt_vers != NULL)
4880 free (nondeflt_vers);
4881 if (extversym != NULL)
4884 if (isymbuf != NULL)
4890 /* Return the linker hash table entry of a symbol that might be
4891 satisfied by an archive symbol. Return -1 on error. */
4893 struct elf_link_hash_entry *
4894 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4895 struct bfd_link_info *info,
4898 struct elf_link_hash_entry *h;
4902 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4906 /* If this is a default version (the name contains @@), look up the
4907 symbol again with only one `@' as well as without the version.
4908 The effect is that references to the symbol with and without the
4909 version will be matched by the default symbol in the archive. */
4911 p = strchr (name, ELF_VER_CHR);
4912 if (p == NULL || p[1] != ELF_VER_CHR)
4915 /* First check with only one `@'. */
4916 len = strlen (name);
4917 copy = (char *) bfd_alloc (abfd, len);
4919 return (struct elf_link_hash_entry *) 0 - 1;
4921 first = p - name + 1;
4922 memcpy (copy, name, first);
4923 memcpy (copy + first, name + first + 1, len - first);
4925 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4928 /* We also need to check references to the symbol without the
4930 copy[first - 1] = '\0';
4931 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4932 FALSE, FALSE, TRUE);
4935 bfd_release (abfd, copy);
4939 /* Add symbols from an ELF archive file to the linker hash table. We
4940 don't use _bfd_generic_link_add_archive_symbols because we need to
4941 handle versioned symbols.
4943 Fortunately, ELF archive handling is simpler than that done by
4944 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4945 oddities. In ELF, if we find a symbol in the archive map, and the
4946 symbol is currently undefined, we know that we must pull in that
4949 Unfortunately, we do have to make multiple passes over the symbol
4950 table until nothing further is resolved. */
4953 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4956 unsigned char *included = NULL;
4960 const struct elf_backend_data *bed;
4961 struct elf_link_hash_entry * (*archive_symbol_lookup)
4962 (bfd *, struct bfd_link_info *, const char *);
4964 if (! bfd_has_map (abfd))
4966 /* An empty archive is a special case. */
4967 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4969 bfd_set_error (bfd_error_no_armap);
4973 /* Keep track of all symbols we know to be already defined, and all
4974 files we know to be already included. This is to speed up the
4975 second and subsequent passes. */
4976 c = bfd_ardata (abfd)->symdef_count;
4980 amt *= sizeof (*included);
4981 included = (unsigned char *) bfd_zmalloc (amt);
4982 if (included == NULL)
4985 symdefs = bfd_ardata (abfd)->symdefs;
4986 bed = get_elf_backend_data (abfd);
4987 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5000 symdefend = symdef + c;
5001 for (i = 0; symdef < symdefend; symdef++, i++)
5003 struct elf_link_hash_entry *h;
5005 struct bfd_link_hash_entry *undefs_tail;
5010 if (symdef->file_offset == last)
5016 h = archive_symbol_lookup (abfd, info, symdef->name);
5017 if (h == (struct elf_link_hash_entry *) 0 - 1)
5023 if (h->root.type == bfd_link_hash_common)
5025 /* We currently have a common symbol. The archive map contains
5026 a reference to this symbol, so we may want to include it. We
5027 only want to include it however, if this archive element
5028 contains a definition of the symbol, not just another common
5031 Unfortunately some archivers (including GNU ar) will put
5032 declarations of common symbols into their archive maps, as
5033 well as real definitions, so we cannot just go by the archive
5034 map alone. Instead we must read in the element's symbol
5035 table and check that to see what kind of symbol definition
5037 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5040 else if (h->root.type != bfd_link_hash_undefined)
5042 if (h->root.type != bfd_link_hash_undefweak)
5043 /* Symbol must be defined. Don't check it again. */
5048 /* We need to include this archive member. */
5049 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5050 if (element == NULL)
5053 if (! bfd_check_format (element, bfd_object))
5056 undefs_tail = info->hash->undefs_tail;
5058 if (!(*info->callbacks
5059 ->add_archive_element) (info, element, symdef->name, &element))
5061 if (!bfd_link_add_symbols (element, info))
5064 /* If there are any new undefined symbols, we need to make
5065 another pass through the archive in order to see whether
5066 they can be defined. FIXME: This isn't perfect, because
5067 common symbols wind up on undefs_tail and because an
5068 undefined symbol which is defined later on in this pass
5069 does not require another pass. This isn't a bug, but it
5070 does make the code less efficient than it could be. */
5071 if (undefs_tail != info->hash->undefs_tail)
5074 /* Look backward to mark all symbols from this object file
5075 which we have already seen in this pass. */
5079 included[mark] = TRUE;
5084 while (symdefs[mark].file_offset == symdef->file_offset);
5086 /* We mark subsequent symbols from this object file as we go
5087 on through the loop. */
5088 last = symdef->file_offset;
5098 if (included != NULL)
5103 /* Given an ELF BFD, add symbols to the global hash table as
5107 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5109 switch (bfd_get_format (abfd))
5112 return elf_link_add_object_symbols (abfd, info);
5114 return elf_link_add_archive_symbols (abfd, info);
5116 bfd_set_error (bfd_error_wrong_format);
5121 struct hash_codes_info
5123 unsigned long *hashcodes;
5127 /* This function will be called though elf_link_hash_traverse to store
5128 all hash value of the exported symbols in an array. */
5131 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5133 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5139 /* Ignore indirect symbols. These are added by the versioning code. */
5140 if (h->dynindx == -1)
5143 name = h->root.root.string;
5144 p = strchr (name, ELF_VER_CHR);
5147 alc = (char *) bfd_malloc (p - name + 1);
5153 memcpy (alc, name, p - name);
5154 alc[p - name] = '\0';
5158 /* Compute the hash value. */
5159 ha = bfd_elf_hash (name);
5161 /* Store the found hash value in the array given as the argument. */
5162 *(inf->hashcodes)++ = ha;
5164 /* And store it in the struct so that we can put it in the hash table
5166 h->u.elf_hash_value = ha;
5174 struct collect_gnu_hash_codes
5177 const struct elf_backend_data *bed;
5178 unsigned long int nsyms;
5179 unsigned long int maskbits;
5180 unsigned long int *hashcodes;
5181 unsigned long int *hashval;
5182 unsigned long int *indx;
5183 unsigned long int *counts;
5186 long int min_dynindx;
5187 unsigned long int bucketcount;
5188 unsigned long int symindx;
5189 long int local_indx;
5190 long int shift1, shift2;
5191 unsigned long int mask;
5195 /* This function will be called though elf_link_hash_traverse to store
5196 all hash value of the exported symbols in an array. */
5199 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5201 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5207 /* Ignore indirect symbols. These are added by the versioning code. */
5208 if (h->dynindx == -1)
5211 /* Ignore also local symbols and undefined symbols. */
5212 if (! (*s->bed->elf_hash_symbol) (h))
5215 name = h->root.root.string;
5216 p = strchr (name, ELF_VER_CHR);
5219 alc = (char *) bfd_malloc (p - name + 1);
5225 memcpy (alc, name, p - name);
5226 alc[p - name] = '\0';
5230 /* Compute the hash value. */
5231 ha = bfd_elf_gnu_hash (name);
5233 /* Store the found hash value in the array for compute_bucket_count,
5234 and also for .dynsym reordering purposes. */
5235 s->hashcodes[s->nsyms] = ha;
5236 s->hashval[h->dynindx] = ha;
5238 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5239 s->min_dynindx = h->dynindx;
5247 /* This function will be called though elf_link_hash_traverse to do
5248 final dynaminc symbol renumbering. */
5251 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5253 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5254 unsigned long int bucket;
5255 unsigned long int val;
5257 /* Ignore indirect symbols. */
5258 if (h->dynindx == -1)
5261 /* Ignore also local symbols and undefined symbols. */
5262 if (! (*s->bed->elf_hash_symbol) (h))
5264 if (h->dynindx >= s->min_dynindx)
5265 h->dynindx = s->local_indx++;
5269 bucket = s->hashval[h->dynindx] % s->bucketcount;
5270 val = (s->hashval[h->dynindx] >> s->shift1)
5271 & ((s->maskbits >> s->shift1) - 1);
5272 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5274 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5275 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5276 if (s->counts[bucket] == 1)
5277 /* Last element terminates the chain. */
5279 bfd_put_32 (s->output_bfd, val,
5280 s->contents + (s->indx[bucket] - s->symindx) * 4);
5281 --s->counts[bucket];
5282 h->dynindx = s->indx[bucket]++;
5286 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5289 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5291 return !(h->forced_local
5292 || h->root.type == bfd_link_hash_undefined
5293 || h->root.type == bfd_link_hash_undefweak
5294 || ((h->root.type == bfd_link_hash_defined
5295 || h->root.type == bfd_link_hash_defweak)
5296 && h->root.u.def.section->output_section == NULL));
5299 /* Array used to determine the number of hash table buckets to use
5300 based on the number of symbols there are. If there are fewer than
5301 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5302 fewer than 37 we use 17 buckets, and so forth. We never use more
5303 than 32771 buckets. */
5305 static const size_t elf_buckets[] =
5307 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5311 /* Compute bucket count for hashing table. We do not use a static set
5312 of possible tables sizes anymore. Instead we determine for all
5313 possible reasonable sizes of the table the outcome (i.e., the
5314 number of collisions etc) and choose the best solution. The
5315 weighting functions are not too simple to allow the table to grow
5316 without bounds. Instead one of the weighting factors is the size.
5317 Therefore the result is always a good payoff between few collisions
5318 (= short chain lengths) and table size. */
5320 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5321 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5322 unsigned long int nsyms,
5325 size_t best_size = 0;
5326 unsigned long int i;
5328 /* We have a problem here. The following code to optimize the table
5329 size requires an integer type with more the 32 bits. If
5330 BFD_HOST_U_64_BIT is set we know about such a type. */
5331 #ifdef BFD_HOST_U_64_BIT
5336 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5337 bfd *dynobj = elf_hash_table (info)->dynobj;
5338 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5339 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5340 unsigned long int *counts;
5342 unsigned int no_improvement_count = 0;
5344 /* Possible optimization parameters: if we have NSYMS symbols we say
5345 that the hashing table must at least have NSYMS/4 and at most
5347 minsize = nsyms / 4;
5350 best_size = maxsize = nsyms * 2;
5355 if ((best_size & 31) == 0)
5359 /* Create array where we count the collisions in. We must use bfd_malloc
5360 since the size could be large. */
5362 amt *= sizeof (unsigned long int);
5363 counts = (unsigned long int *) bfd_malloc (amt);
5367 /* Compute the "optimal" size for the hash table. The criteria is a
5368 minimal chain length. The minor criteria is (of course) the size
5370 for (i = minsize; i < maxsize; ++i)
5372 /* Walk through the array of hashcodes and count the collisions. */
5373 BFD_HOST_U_64_BIT max;
5374 unsigned long int j;
5375 unsigned long int fact;
5377 if (gnu_hash && (i & 31) == 0)
5380 memset (counts, '\0', i * sizeof (unsigned long int));
5382 /* Determine how often each hash bucket is used. */
5383 for (j = 0; j < nsyms; ++j)
5384 ++counts[hashcodes[j] % i];
5386 /* For the weight function we need some information about the
5387 pagesize on the target. This is information need not be 100%
5388 accurate. Since this information is not available (so far) we
5389 define it here to a reasonable default value. If it is crucial
5390 to have a better value some day simply define this value. */
5391 # ifndef BFD_TARGET_PAGESIZE
5392 # define BFD_TARGET_PAGESIZE (4096)
5395 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5397 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5400 /* Variant 1: optimize for short chains. We add the squares
5401 of all the chain lengths (which favors many small chain
5402 over a few long chains). */
5403 for (j = 0; j < i; ++j)
5404 max += counts[j] * counts[j];
5406 /* This adds penalties for the overall size of the table. */
5407 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5410 /* Variant 2: Optimize a lot more for small table. Here we
5411 also add squares of the size but we also add penalties for
5412 empty slots (the +1 term). */
5413 for (j = 0; j < i; ++j)
5414 max += (1 + counts[j]) * (1 + counts[j]);
5416 /* The overall size of the table is considered, but not as
5417 strong as in variant 1, where it is squared. */
5418 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5422 /* Compare with current best results. */
5423 if (max < best_chlen)
5427 no_improvement_count = 0;
5429 /* PR 11843: Avoid futile long searches for the best bucket size
5430 when there are a large number of symbols. */
5431 else if (++no_improvement_count == 100)
5438 #endif /* defined (BFD_HOST_U_64_BIT) */
5440 /* This is the fallback solution if no 64bit type is available or if we
5441 are not supposed to spend much time on optimizations. We select the
5442 bucket count using a fixed set of numbers. */
5443 for (i = 0; elf_buckets[i] != 0; i++)
5445 best_size = elf_buckets[i];
5446 if (nsyms < elf_buckets[i + 1])
5449 if (gnu_hash && best_size < 2)
5456 /* Size any SHT_GROUP section for ld -r. */
5459 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5463 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5464 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5465 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5470 /* Set a default stack segment size. The value in INFO wins. If it
5471 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5472 undefined it is initialized. */
5475 bfd_elf_stack_segment_size (bfd *output_bfd,
5476 struct bfd_link_info *info,
5477 const char *legacy_symbol,
5478 bfd_vma default_size)
5480 struct elf_link_hash_entry *h = NULL;
5482 /* Look for legacy symbol. */
5484 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5485 FALSE, FALSE, FALSE);
5486 if (h && (h->root.type == bfd_link_hash_defined
5487 || h->root.type == bfd_link_hash_defweak)
5489 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5491 /* The symbol has no type if specified on the command line. */
5492 h->type = STT_OBJECT;
5493 if (info->stacksize)
5494 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5495 output_bfd, legacy_symbol);
5496 else if (h->root.u.def.section != bfd_abs_section_ptr)
5497 (*_bfd_error_handler) (_("%B: %s not absolute"),
5498 output_bfd, legacy_symbol);
5500 info->stacksize = h->root.u.def.value;
5503 if (!info->stacksize)
5504 /* If the user didn't set a size, or explicitly inhibit the
5505 size, set it now. */
5506 info->stacksize = default_size;
5508 /* Provide the legacy symbol, if it is referenced. */
5509 if (h && (h->root.type == bfd_link_hash_undefined
5510 || h->root.type == bfd_link_hash_undefweak))
5512 struct bfd_link_hash_entry *bh = NULL;
5514 if (!(_bfd_generic_link_add_one_symbol
5515 (info, output_bfd, legacy_symbol,
5516 BSF_GLOBAL, bfd_abs_section_ptr,
5517 info->stacksize >= 0 ? info->stacksize : 0,
5518 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5521 h = (struct elf_link_hash_entry *) bh;
5523 h->type = STT_OBJECT;
5529 /* Set up the sizes and contents of the ELF dynamic sections. This is
5530 called by the ELF linker emulation before_allocation routine. We
5531 must set the sizes of the sections before the linker sets the
5532 addresses of the various sections. */
5535 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5538 const char *filter_shlib,
5540 const char *depaudit,
5541 const char * const *auxiliary_filters,
5542 struct bfd_link_info *info,
5543 asection **sinterpptr)
5545 bfd_size_type soname_indx;
5547 const struct elf_backend_data *bed;
5548 struct elf_info_failed asvinfo;
5552 soname_indx = (bfd_size_type) -1;
5554 if (!is_elf_hash_table (info->hash))
5557 bed = get_elf_backend_data (output_bfd);
5559 /* Any syms created from now on start with -1 in
5560 got.refcount/offset and plt.refcount/offset. */
5561 elf_hash_table (info)->init_got_refcount
5562 = elf_hash_table (info)->init_got_offset;
5563 elf_hash_table (info)->init_plt_refcount
5564 = elf_hash_table (info)->init_plt_offset;
5566 if (info->relocatable
5567 && !_bfd_elf_size_group_sections (info))
5570 /* The backend may have to create some sections regardless of whether
5571 we're dynamic or not. */
5572 if (bed->elf_backend_always_size_sections
5573 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5576 /* Determine any GNU_STACK segment requirements, after the backend
5577 has had a chance to set a default segment size. */
5578 if (info->execstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5580 else if (info->noexecstack)
5581 elf_stack_flags (output_bfd) = PF_R | PF_W;
5585 asection *notesec = NULL;
5588 for (inputobj = info->input_bfds;
5590 inputobj = inputobj->link.next)
5595 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5597 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5600 if (s->flags & SEC_CODE)
5604 else if (bed->default_execstack)
5607 if (notesec || info->stacksize > 0)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5609 if (notesec && exec && info->relocatable
5610 && notesec->output_section != bfd_abs_section_ptr)
5611 notesec->output_section->flags |= SEC_CODE;
5614 dynobj = elf_hash_table (info)->dynobj;
5616 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5618 struct elf_info_failed eif;
5619 struct elf_link_hash_entry *h;
5621 struct bfd_elf_version_tree *t;
5622 struct bfd_elf_version_expr *d;
5624 bfd_boolean all_defined;
5626 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5627 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5631 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5633 if (soname_indx == (bfd_size_type) -1
5634 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5640 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5642 info->flags |= DF_SYMBOLIC;
5650 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5652 if (indx == (bfd_size_type) -1)
5655 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5656 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5660 if (filter_shlib != NULL)
5664 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5665 filter_shlib, TRUE);
5666 if (indx == (bfd_size_type) -1
5667 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5671 if (auxiliary_filters != NULL)
5673 const char * const *p;
5675 for (p = auxiliary_filters; *p != NULL; p++)
5679 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5681 if (indx == (bfd_size_type) -1
5682 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5693 if (indx == (bfd_size_type) -1
5694 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5698 if (depaudit != NULL)
5702 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5704 if (indx == (bfd_size_type) -1
5705 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5712 /* If we are supposed to export all symbols into the dynamic symbol
5713 table (this is not the normal case), then do so. */
5714 if (info->export_dynamic
5715 || (info->executable && info->dynamic))
5717 elf_link_hash_traverse (elf_hash_table (info),
5718 _bfd_elf_export_symbol,
5724 /* Make all global versions with definition. */
5725 for (t = info->version_info; t != NULL; t = t->next)
5726 for (d = t->globals.list; d != NULL; d = d->next)
5727 if (!d->symver && d->literal)
5729 const char *verstr, *name;
5730 size_t namelen, verlen, newlen;
5731 char *newname, *p, leading_char;
5732 struct elf_link_hash_entry *newh;
5734 leading_char = bfd_get_symbol_leading_char (output_bfd);
5736 namelen = strlen (name) + (leading_char != '\0');
5738 verlen = strlen (verstr);
5739 newlen = namelen + verlen + 3;
5741 newname = (char *) bfd_malloc (newlen);
5742 if (newname == NULL)
5744 newname[0] = leading_char;
5745 memcpy (newname + (leading_char != '\0'), name, namelen);
5747 /* Check the hidden versioned definition. */
5748 p = newname + namelen;
5750 memcpy (p, verstr, verlen + 1);
5751 newh = elf_link_hash_lookup (elf_hash_table (info),
5752 newname, FALSE, FALSE,
5755 || (newh->root.type != bfd_link_hash_defined
5756 && newh->root.type != bfd_link_hash_defweak))
5758 /* Check the default versioned definition. */
5760 memcpy (p, verstr, verlen + 1);
5761 newh = elf_link_hash_lookup (elf_hash_table (info),
5762 newname, FALSE, FALSE,
5767 /* Mark this version if there is a definition and it is
5768 not defined in a shared object. */
5770 && !newh->def_dynamic
5771 && (newh->root.type == bfd_link_hash_defined
5772 || newh->root.type == bfd_link_hash_defweak))
5776 /* Attach all the symbols to their version information. */
5777 asvinfo.info = info;
5778 asvinfo.failed = FALSE;
5780 elf_link_hash_traverse (elf_hash_table (info),
5781 _bfd_elf_link_assign_sym_version,
5786 if (!info->allow_undefined_version)
5788 /* Check if all global versions have a definition. */
5790 for (t = info->version_info; t != NULL; t = t->next)
5791 for (d = t->globals.list; d != NULL; d = d->next)
5792 if (d->literal && !d->symver && !d->script)
5794 (*_bfd_error_handler)
5795 (_("%s: undefined version: %s"),
5796 d->pattern, t->name);
5797 all_defined = FALSE;
5802 bfd_set_error (bfd_error_bad_value);
5807 /* Find all symbols which were defined in a dynamic object and make
5808 the backend pick a reasonable value for them. */
5809 elf_link_hash_traverse (elf_hash_table (info),
5810 _bfd_elf_adjust_dynamic_symbol,
5815 /* Add some entries to the .dynamic section. We fill in some of the
5816 values later, in bfd_elf_final_link, but we must add the entries
5817 now so that we know the final size of the .dynamic section. */
5819 /* If there are initialization and/or finalization functions to
5820 call then add the corresponding DT_INIT/DT_FINI entries. */
5821 h = (info->init_function
5822 ? elf_link_hash_lookup (elf_hash_table (info),
5823 info->init_function, FALSE,
5830 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5833 h = (info->fini_function
5834 ? elf_link_hash_lookup (elf_hash_table (info),
5835 info->fini_function, FALSE,
5842 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5846 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5847 if (s != NULL && s->linker_has_input)
5849 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5850 if (! info->executable)
5855 for (sub = info->input_bfds; sub != NULL;
5856 sub = sub->link.next)
5857 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5858 for (o = sub->sections; o != NULL; o = o->next)
5859 if (elf_section_data (o)->this_hdr.sh_type
5860 == SHT_PREINIT_ARRAY)
5862 (*_bfd_error_handler)
5863 (_("%B: .preinit_array section is not allowed in DSO"),
5868 bfd_set_error (bfd_error_nonrepresentable_section);
5872 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5873 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5876 s = bfd_get_section_by_name (output_bfd, ".init_array");
5877 if (s != NULL && s->linker_has_input)
5879 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5880 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5883 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5884 if (s != NULL && s->linker_has_input)
5886 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5887 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5891 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5892 /* If .dynstr is excluded from the link, we don't want any of
5893 these tags. Strictly, we should be checking each section
5894 individually; This quick check covers for the case where
5895 someone does a /DISCARD/ : { *(*) }. */
5896 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5898 bfd_size_type strsize;
5900 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5901 if ((info->emit_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5903 || (info->emit_gnu_hash
5904 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5908 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5909 bed->s->sizeof_sym))
5914 /* The backend must work out the sizes of all the other dynamic
5917 && bed->elf_backend_size_dynamic_sections != NULL
5918 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5921 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5924 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5926 unsigned long section_sym_count;
5927 struct bfd_elf_version_tree *verdefs;
5930 /* Set up the version definition section. */
5931 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5932 BFD_ASSERT (s != NULL);
5934 /* We may have created additional version definitions if we are
5935 just linking a regular application. */
5936 verdefs = info->version_info;
5938 /* Skip anonymous version tag. */
5939 if (verdefs != NULL && verdefs->vernum == 0)
5940 verdefs = verdefs->next;
5942 if (verdefs == NULL && !info->create_default_symver)
5943 s->flags |= SEC_EXCLUDE;
5948 struct bfd_elf_version_tree *t;
5950 Elf_Internal_Verdef def;
5951 Elf_Internal_Verdaux defaux;
5952 struct bfd_link_hash_entry *bh;
5953 struct elf_link_hash_entry *h;
5959 /* Make space for the base version. */
5960 size += sizeof (Elf_External_Verdef);
5961 size += sizeof (Elf_External_Verdaux);
5964 /* Make space for the default version. */
5965 if (info->create_default_symver)
5967 size += sizeof (Elf_External_Verdef);
5971 for (t = verdefs; t != NULL; t = t->next)
5973 struct bfd_elf_version_deps *n;
5975 /* Don't emit base version twice. */
5979 size += sizeof (Elf_External_Verdef);
5980 size += sizeof (Elf_External_Verdaux);
5983 for (n = t->deps; n != NULL; n = n->next)
5984 size += sizeof (Elf_External_Verdaux);
5988 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5989 if (s->contents == NULL && s->size != 0)
5992 /* Fill in the version definition section. */
5996 def.vd_version = VER_DEF_CURRENT;
5997 def.vd_flags = VER_FLG_BASE;
6000 if (info->create_default_symver)
6002 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6003 def.vd_next = sizeof (Elf_External_Verdef);
6007 def.vd_aux = sizeof (Elf_External_Verdef);
6008 def.vd_next = (sizeof (Elf_External_Verdef)
6009 + sizeof (Elf_External_Verdaux));
6012 if (soname_indx != (bfd_size_type) -1)
6014 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6016 def.vd_hash = bfd_elf_hash (soname);
6017 defaux.vda_name = soname_indx;
6024 name = lbasename (output_bfd->filename);
6025 def.vd_hash = bfd_elf_hash (name);
6026 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6028 if (indx == (bfd_size_type) -1)
6030 defaux.vda_name = indx;
6032 defaux.vda_next = 0;
6034 _bfd_elf_swap_verdef_out (output_bfd, &def,
6035 (Elf_External_Verdef *) p);
6036 p += sizeof (Elf_External_Verdef);
6037 if (info->create_default_symver)
6039 /* Add a symbol representing this version. */
6041 if (! (_bfd_generic_link_add_one_symbol
6042 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6044 get_elf_backend_data (dynobj)->collect, &bh)))
6046 h = (struct elf_link_hash_entry *) bh;
6049 h->type = STT_OBJECT;
6050 h->verinfo.vertree = NULL;
6052 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6055 /* Create a duplicate of the base version with the same
6056 aux block, but different flags. */
6059 def.vd_aux = sizeof (Elf_External_Verdef);
6061 def.vd_next = (sizeof (Elf_External_Verdef)
6062 + sizeof (Elf_External_Verdaux));
6065 _bfd_elf_swap_verdef_out (output_bfd, &def,
6066 (Elf_External_Verdef *) p);
6067 p += sizeof (Elf_External_Verdef);
6069 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6070 (Elf_External_Verdaux *) p);
6071 p += sizeof (Elf_External_Verdaux);
6073 for (t = verdefs; t != NULL; t = t->next)
6076 struct bfd_elf_version_deps *n;
6078 /* Don't emit the base version twice. */
6083 for (n = t->deps; n != NULL; n = n->next)
6086 /* Add a symbol representing this version. */
6088 if (! (_bfd_generic_link_add_one_symbol
6089 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6091 get_elf_backend_data (dynobj)->collect, &bh)))
6093 h = (struct elf_link_hash_entry *) bh;
6096 h->type = STT_OBJECT;
6097 h->verinfo.vertree = t;
6099 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6102 def.vd_version = VER_DEF_CURRENT;
6104 if (t->globals.list == NULL
6105 && t->locals.list == NULL
6107 def.vd_flags |= VER_FLG_WEAK;
6108 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6109 def.vd_cnt = cdeps + 1;
6110 def.vd_hash = bfd_elf_hash (t->name);
6111 def.vd_aux = sizeof (Elf_External_Verdef);
6114 /* If a basever node is next, it *must* be the last node in
6115 the chain, otherwise Verdef construction breaks. */
6116 if (t->next != NULL && t->next->vernum == 0)
6117 BFD_ASSERT (t->next->next == NULL);
6119 if (t->next != NULL && t->next->vernum != 0)
6120 def.vd_next = (sizeof (Elf_External_Verdef)
6121 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6123 _bfd_elf_swap_verdef_out (output_bfd, &def,
6124 (Elf_External_Verdef *) p);
6125 p += sizeof (Elf_External_Verdef);
6127 defaux.vda_name = h->dynstr_index;
6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6130 defaux.vda_next = 0;
6131 if (t->deps != NULL)
6132 defaux.vda_next = sizeof (Elf_External_Verdaux);
6133 t->name_indx = defaux.vda_name;
6135 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6136 (Elf_External_Verdaux *) p);
6137 p += sizeof (Elf_External_Verdaux);
6139 for (n = t->deps; n != NULL; n = n->next)
6141 if (n->version_needed == NULL)
6143 /* This can happen if there was an error in the
6145 defaux.vda_name = 0;
6149 defaux.vda_name = n->version_needed->name_indx;
6150 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6153 if (n->next == NULL)
6154 defaux.vda_next = 0;
6156 defaux.vda_next = sizeof (Elf_External_Verdaux);
6158 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6159 (Elf_External_Verdaux *) p);
6160 p += sizeof (Elf_External_Verdaux);
6164 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6165 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6168 elf_tdata (output_bfd)->cverdefs = cdefs;
6171 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6173 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6176 else if (info->flags & DF_BIND_NOW)
6178 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6184 if (info->executable)
6185 info->flags_1 &= ~ (DF_1_INITFIRST
6188 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6192 /* Work out the size of the version reference section. */
6194 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6195 BFD_ASSERT (s != NULL);
6197 struct elf_find_verdep_info sinfo;
6200 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6201 if (sinfo.vers == 0)
6203 sinfo.failed = FALSE;
6205 elf_link_hash_traverse (elf_hash_table (info),
6206 _bfd_elf_link_find_version_dependencies,
6211 if (elf_tdata (output_bfd)->verref == NULL)
6212 s->flags |= SEC_EXCLUDE;
6215 Elf_Internal_Verneed *t;
6220 /* Build the version dependency section. */
6223 for (t = elf_tdata (output_bfd)->verref;
6227 Elf_Internal_Vernaux *a;
6229 size += sizeof (Elf_External_Verneed);
6231 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6232 size += sizeof (Elf_External_Vernaux);
6236 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6237 if (s->contents == NULL)
6241 for (t = elf_tdata (output_bfd)->verref;
6246 Elf_Internal_Vernaux *a;
6250 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6253 t->vn_version = VER_NEED_CURRENT;
6255 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6256 elf_dt_name (t->vn_bfd) != NULL
6257 ? elf_dt_name (t->vn_bfd)
6258 : lbasename (t->vn_bfd->filename),
6260 if (indx == (bfd_size_type) -1)
6263 t->vn_aux = sizeof (Elf_External_Verneed);
6264 if (t->vn_nextref == NULL)
6267 t->vn_next = (sizeof (Elf_External_Verneed)
6268 + caux * sizeof (Elf_External_Vernaux));
6270 _bfd_elf_swap_verneed_out (output_bfd, t,
6271 (Elf_External_Verneed *) p);
6272 p += sizeof (Elf_External_Verneed);
6274 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6276 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6277 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6278 a->vna_nodename, FALSE);
6279 if (indx == (bfd_size_type) -1)
6282 if (a->vna_nextptr == NULL)
6285 a->vna_next = sizeof (Elf_External_Vernaux);
6287 _bfd_elf_swap_vernaux_out (output_bfd, a,
6288 (Elf_External_Vernaux *) p);
6289 p += sizeof (Elf_External_Vernaux);
6293 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6294 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6297 elf_tdata (output_bfd)->cverrefs = crefs;
6301 if ((elf_tdata (output_bfd)->cverrefs == 0
6302 && elf_tdata (output_bfd)->cverdefs == 0)
6303 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6304 §ion_sym_count) == 0)
6306 s = bfd_get_linker_section (dynobj, ".gnu.version");
6307 s->flags |= SEC_EXCLUDE;
6313 /* Find the first non-excluded output section. We'll use its
6314 section symbol for some emitted relocs. */
6316 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6320 for (s = output_bfd->sections; s != NULL; s = s->next)
6321 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6324 elf_hash_table (info)->text_index_section = s;
6329 /* Find two non-excluded output sections, one for code, one for data.
6330 We'll use their section symbols for some emitted relocs. */
6332 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6336 /* Data first, since setting text_index_section changes
6337 _bfd_elf_link_omit_section_dynsym. */
6338 for (s = output_bfd->sections; s != NULL; s = s->next)
6339 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6340 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6342 elf_hash_table (info)->data_index_section = s;
6346 for (s = output_bfd->sections; s != NULL; s = s->next)
6347 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6348 == (SEC_ALLOC | SEC_READONLY))
6349 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6351 elf_hash_table (info)->text_index_section = s;
6355 if (elf_hash_table (info)->text_index_section == NULL)
6356 elf_hash_table (info)->text_index_section
6357 = elf_hash_table (info)->data_index_section;
6361 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6363 const struct elf_backend_data *bed;
6365 if (!is_elf_hash_table (info->hash))
6368 bed = get_elf_backend_data (output_bfd);
6369 (*bed->elf_backend_init_index_section) (output_bfd, info);
6371 if (elf_hash_table (info)->dynamic_sections_created)
6375 bfd_size_type dynsymcount;
6376 unsigned long section_sym_count;
6377 unsigned int dtagcount;
6379 dynobj = elf_hash_table (info)->dynobj;
6381 /* Assign dynsym indicies. In a shared library we generate a
6382 section symbol for each output section, which come first.
6383 Next come all of the back-end allocated local dynamic syms,
6384 followed by the rest of the global symbols. */
6386 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6387 §ion_sym_count);
6389 /* Work out the size of the symbol version section. */
6390 s = bfd_get_linker_section (dynobj, ".gnu.version");
6391 BFD_ASSERT (s != NULL);
6392 if (dynsymcount != 0
6393 && (s->flags & SEC_EXCLUDE) == 0)
6395 s->size = dynsymcount * sizeof (Elf_External_Versym);
6396 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6400 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6404 /* Set the size of the .dynsym and .hash sections. We counted
6405 the number of dynamic symbols in elf_link_add_object_symbols.
6406 We will build the contents of .dynsym and .hash when we build
6407 the final symbol table, because until then we do not know the
6408 correct value to give the symbols. We built the .dynstr
6409 section as we went along in elf_link_add_object_symbols. */
6410 s = bfd_get_linker_section (dynobj, ".dynsym");
6411 BFD_ASSERT (s != NULL);
6412 s->size = dynsymcount * bed->s->sizeof_sym;
6414 if (dynsymcount != 0)
6416 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6417 if (s->contents == NULL)
6420 /* The first entry in .dynsym is a dummy symbol.
6421 Clear all the section syms, in case we don't output them all. */
6422 ++section_sym_count;
6423 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6426 elf_hash_table (info)->bucketcount = 0;
6428 /* Compute the size of the hashing table. As a side effect this
6429 computes the hash values for all the names we export. */
6430 if (info->emit_hash)
6432 unsigned long int *hashcodes;
6433 struct hash_codes_info hashinf;
6435 unsigned long int nsyms;
6437 size_t hash_entry_size;
6439 /* Compute the hash values for all exported symbols. At the same
6440 time store the values in an array so that we could use them for
6442 amt = dynsymcount * sizeof (unsigned long int);
6443 hashcodes = (unsigned long int *) bfd_malloc (amt);
6444 if (hashcodes == NULL)
6446 hashinf.hashcodes = hashcodes;
6447 hashinf.error = FALSE;
6449 /* Put all hash values in HASHCODES. */
6450 elf_link_hash_traverse (elf_hash_table (info),
6451 elf_collect_hash_codes, &hashinf);
6458 nsyms = hashinf.hashcodes - hashcodes;
6460 = compute_bucket_count (info, hashcodes, nsyms, 0);
6463 if (bucketcount == 0)
6466 elf_hash_table (info)->bucketcount = bucketcount;
6468 s = bfd_get_linker_section (dynobj, ".hash");
6469 BFD_ASSERT (s != NULL);
6470 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6471 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6472 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6473 if (s->contents == NULL)
6476 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6477 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6478 s->contents + hash_entry_size);
6481 if (info->emit_gnu_hash)
6484 unsigned char *contents;
6485 struct collect_gnu_hash_codes cinfo;
6489 memset (&cinfo, 0, sizeof (cinfo));
6491 /* Compute the hash values for all exported symbols. At the same
6492 time store the values in an array so that we could use them for
6494 amt = dynsymcount * 2 * sizeof (unsigned long int);
6495 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6496 if (cinfo.hashcodes == NULL)
6499 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6500 cinfo.min_dynindx = -1;
6501 cinfo.output_bfd = output_bfd;
6504 /* Put all hash values in HASHCODES. */
6505 elf_link_hash_traverse (elf_hash_table (info),
6506 elf_collect_gnu_hash_codes, &cinfo);
6509 free (cinfo.hashcodes);
6514 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6516 if (bucketcount == 0)
6518 free (cinfo.hashcodes);
6522 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6523 BFD_ASSERT (s != NULL);
6525 if (cinfo.nsyms == 0)
6527 /* Empty .gnu.hash section is special. */
6528 BFD_ASSERT (cinfo.min_dynindx == -1);
6529 free (cinfo.hashcodes);
6530 s->size = 5 * 4 + bed->s->arch_size / 8;
6531 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6532 if (contents == NULL)
6534 s->contents = contents;
6535 /* 1 empty bucket. */
6536 bfd_put_32 (output_bfd, 1, contents);
6537 /* SYMIDX above the special symbol 0. */
6538 bfd_put_32 (output_bfd, 1, contents + 4);
6539 /* Just one word for bitmask. */
6540 bfd_put_32 (output_bfd, 1, contents + 8);
6541 /* Only hash fn bloom filter. */
6542 bfd_put_32 (output_bfd, 0, contents + 12);
6543 /* No hashes are valid - empty bitmask. */
6544 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6545 /* No hashes in the only bucket. */
6546 bfd_put_32 (output_bfd, 0,
6547 contents + 16 + bed->s->arch_size / 8);
6551 unsigned long int maskwords, maskbitslog2, x;
6552 BFD_ASSERT (cinfo.min_dynindx != -1);
6556 while ((x >>= 1) != 0)
6558 if (maskbitslog2 < 3)
6560 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6561 maskbitslog2 = maskbitslog2 + 3;
6563 maskbitslog2 = maskbitslog2 + 2;
6564 if (bed->s->arch_size == 64)
6566 if (maskbitslog2 == 5)
6572 cinfo.mask = (1 << cinfo.shift1) - 1;
6573 cinfo.shift2 = maskbitslog2;
6574 cinfo.maskbits = 1 << maskbitslog2;
6575 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6576 amt = bucketcount * sizeof (unsigned long int) * 2;
6577 amt += maskwords * sizeof (bfd_vma);
6578 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6579 if (cinfo.bitmask == NULL)
6581 free (cinfo.hashcodes);
6585 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6586 cinfo.indx = cinfo.counts + bucketcount;
6587 cinfo.symindx = dynsymcount - cinfo.nsyms;
6588 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6590 /* Determine how often each hash bucket is used. */
6591 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6592 for (i = 0; i < cinfo.nsyms; ++i)
6593 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6595 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6596 if (cinfo.counts[i] != 0)
6598 cinfo.indx[i] = cnt;
6599 cnt += cinfo.counts[i];
6601 BFD_ASSERT (cnt == dynsymcount);
6602 cinfo.bucketcount = bucketcount;
6603 cinfo.local_indx = cinfo.min_dynindx;
6605 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6606 s->size += cinfo.maskbits / 8;
6607 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6608 if (contents == NULL)
6610 free (cinfo.bitmask);
6611 free (cinfo.hashcodes);
6615 s->contents = contents;
6616 bfd_put_32 (output_bfd, bucketcount, contents);
6617 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6618 bfd_put_32 (output_bfd, maskwords, contents + 8);
6619 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6620 contents += 16 + cinfo.maskbits / 8;
6622 for (i = 0; i < bucketcount; ++i)
6624 if (cinfo.counts[i] == 0)
6625 bfd_put_32 (output_bfd, 0, contents);
6627 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6631 cinfo.contents = contents;
6633 /* Renumber dynamic symbols, populate .gnu.hash section. */
6634 elf_link_hash_traverse (elf_hash_table (info),
6635 elf_renumber_gnu_hash_syms, &cinfo);
6637 contents = s->contents + 16;
6638 for (i = 0; i < maskwords; ++i)
6640 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6642 contents += bed->s->arch_size / 8;
6645 free (cinfo.bitmask);
6646 free (cinfo.hashcodes);
6650 s = bfd_get_linker_section (dynobj, ".dynstr");
6651 BFD_ASSERT (s != NULL);
6653 elf_finalize_dynstr (output_bfd, info);
6655 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6657 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6658 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6665 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6668 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6671 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6672 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6675 /* Finish SHF_MERGE section merging. */
6678 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6683 if (!is_elf_hash_table (info->hash))
6686 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6687 if ((ibfd->flags & DYNAMIC) == 0)
6688 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6689 if ((sec->flags & SEC_MERGE) != 0
6690 && !bfd_is_abs_section (sec->output_section))
6692 struct bfd_elf_section_data *secdata;
6694 secdata = elf_section_data (sec);
6695 if (! _bfd_add_merge_section (abfd,
6696 &elf_hash_table (info)->merge_info,
6697 sec, &secdata->sec_info))
6699 else if (secdata->sec_info)
6700 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6703 if (elf_hash_table (info)->merge_info != NULL)
6704 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6705 merge_sections_remove_hook);
6709 /* Create an entry in an ELF linker hash table. */
6711 struct bfd_hash_entry *
6712 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6713 struct bfd_hash_table *table,
6716 /* Allocate the structure if it has not already been allocated by a
6720 entry = (struct bfd_hash_entry *)
6721 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6726 /* Call the allocation method of the superclass. */
6727 entry = _bfd_link_hash_newfunc (entry, table, string);
6730 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6731 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6733 /* Set local fields. */
6736 ret->got = htab->init_got_refcount;
6737 ret->plt = htab->init_plt_refcount;
6738 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6739 - offsetof (struct elf_link_hash_entry, size)));
6740 /* Assume that we have been called by a non-ELF symbol reader.
6741 This flag is then reset by the code which reads an ELF input
6742 file. This ensures that a symbol created by a non-ELF symbol
6743 reader will have the flag set correctly. */
6750 /* Copy data from an indirect symbol to its direct symbol, hiding the
6751 old indirect symbol. Also used for copying flags to a weakdef. */
6754 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6755 struct elf_link_hash_entry *dir,
6756 struct elf_link_hash_entry *ind)
6758 struct elf_link_hash_table *htab;
6760 /* Copy down any references that we may have already seen to the
6761 symbol which just became indirect. */
6763 dir->ref_dynamic |= ind->ref_dynamic;
6764 dir->ref_regular |= ind->ref_regular;
6765 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6766 dir->non_got_ref |= ind->non_got_ref;
6767 dir->needs_plt |= ind->needs_plt;
6768 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6770 if (ind->root.type != bfd_link_hash_indirect)
6773 /* Copy over the global and procedure linkage table refcount entries.
6774 These may have been already set up by a check_relocs routine. */
6775 htab = elf_hash_table (info);
6776 if (ind->got.refcount > htab->init_got_refcount.refcount)
6778 if (dir->got.refcount < 0)
6779 dir->got.refcount = 0;
6780 dir->got.refcount += ind->got.refcount;
6781 ind->got.refcount = htab->init_got_refcount.refcount;
6784 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6786 if (dir->plt.refcount < 0)
6787 dir->plt.refcount = 0;
6788 dir->plt.refcount += ind->plt.refcount;
6789 ind->plt.refcount = htab->init_plt_refcount.refcount;
6792 if (ind->dynindx != -1)
6794 if (dir->dynindx != -1)
6795 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6796 dir->dynindx = ind->dynindx;
6797 dir->dynstr_index = ind->dynstr_index;
6799 ind->dynstr_index = 0;
6804 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6805 struct elf_link_hash_entry *h,
6806 bfd_boolean force_local)
6808 /* STT_GNU_IFUNC symbol must go through PLT. */
6809 if (h->type != STT_GNU_IFUNC)
6811 h->plt = elf_hash_table (info)->init_plt_offset;
6816 h->forced_local = 1;
6817 if (h->dynindx != -1)
6820 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6826 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6830 _bfd_elf_link_hash_table_init
6831 (struct elf_link_hash_table *table,
6833 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6834 struct bfd_hash_table *,
6836 unsigned int entsize,
6837 enum elf_target_id target_id)
6840 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6842 table->init_got_refcount.refcount = can_refcount - 1;
6843 table->init_plt_refcount.refcount = can_refcount - 1;
6844 table->init_got_offset.offset = -(bfd_vma) 1;
6845 table->init_plt_offset.offset = -(bfd_vma) 1;
6846 /* The first dynamic symbol is a dummy. */
6847 table->dynsymcount = 1;
6849 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6851 table->root.type = bfd_link_elf_hash_table;
6852 table->hash_table_id = target_id;
6857 /* Create an ELF linker hash table. */
6859 struct bfd_link_hash_table *
6860 _bfd_elf_link_hash_table_create (bfd *abfd)
6862 struct elf_link_hash_table *ret;
6863 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6865 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6869 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6870 sizeof (struct elf_link_hash_entry),
6876 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6881 /* Destroy an ELF linker hash table. */
6884 _bfd_elf_link_hash_table_free (bfd *obfd)
6886 struct elf_link_hash_table *htab;
6888 htab = (struct elf_link_hash_table *) obfd->link.hash;
6889 if (htab->dynstr != NULL)
6890 _bfd_elf_strtab_free (htab->dynstr);
6891 _bfd_merge_sections_free (htab->merge_info);
6892 _bfd_generic_link_hash_table_free (obfd);
6895 /* This is a hook for the ELF emulation code in the generic linker to
6896 tell the backend linker what file name to use for the DT_NEEDED
6897 entry for a dynamic object. */
6900 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6902 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6903 && bfd_get_format (abfd) == bfd_object)
6904 elf_dt_name (abfd) = name;
6908 bfd_elf_get_dyn_lib_class (bfd *abfd)
6911 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6912 && bfd_get_format (abfd) == bfd_object)
6913 lib_class = elf_dyn_lib_class (abfd);
6920 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6922 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6923 && bfd_get_format (abfd) == bfd_object)
6924 elf_dyn_lib_class (abfd) = lib_class;
6927 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6928 the linker ELF emulation code. */
6930 struct bfd_link_needed_list *
6931 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6932 struct bfd_link_info *info)
6934 if (! is_elf_hash_table (info->hash))
6936 return elf_hash_table (info)->needed;
6939 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6940 hook for the linker ELF emulation code. */
6942 struct bfd_link_needed_list *
6943 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6944 struct bfd_link_info *info)
6946 if (! is_elf_hash_table (info->hash))
6948 return elf_hash_table (info)->runpath;
6951 /* Get the name actually used for a dynamic object for a link. This
6952 is the SONAME entry if there is one. Otherwise, it is the string
6953 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6956 bfd_elf_get_dt_soname (bfd *abfd)
6958 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6959 && bfd_get_format (abfd) == bfd_object)
6960 return elf_dt_name (abfd);
6964 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6965 the ELF linker emulation code. */
6968 bfd_elf_get_bfd_needed_list (bfd *abfd,
6969 struct bfd_link_needed_list **pneeded)
6972 bfd_byte *dynbuf = NULL;
6973 unsigned int elfsec;
6974 unsigned long shlink;
6975 bfd_byte *extdyn, *extdynend;
6977 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6981 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6982 || bfd_get_format (abfd) != bfd_object)
6985 s = bfd_get_section_by_name (abfd, ".dynamic");
6986 if (s == NULL || s->size == 0)
6989 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6992 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6993 if (elfsec == SHN_BAD)
6996 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6998 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6999 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7002 extdynend = extdyn + s->size;
7003 for (; extdyn < extdynend; extdyn += extdynsize)
7005 Elf_Internal_Dyn dyn;
7007 (*swap_dyn_in) (abfd, extdyn, &dyn);
7009 if (dyn.d_tag == DT_NULL)
7012 if (dyn.d_tag == DT_NEEDED)
7015 struct bfd_link_needed_list *l;
7016 unsigned int tagv = dyn.d_un.d_val;
7019 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7024 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7045 struct elf_symbuf_symbol
7047 unsigned long st_name; /* Symbol name, index in string tbl */
7048 unsigned char st_info; /* Type and binding attributes */
7049 unsigned char st_other; /* Visibilty, and target specific */
7052 struct elf_symbuf_head
7054 struct elf_symbuf_symbol *ssym;
7055 bfd_size_type count;
7056 unsigned int st_shndx;
7063 Elf_Internal_Sym *isym;
7064 struct elf_symbuf_symbol *ssym;
7069 /* Sort references to symbols by ascending section number. */
7072 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7074 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7075 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7077 return s1->st_shndx - s2->st_shndx;
7081 elf_sym_name_compare (const void *arg1, const void *arg2)
7083 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7084 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7085 return strcmp (s1->name, s2->name);
7088 static struct elf_symbuf_head *
7089 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7091 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7092 struct elf_symbuf_symbol *ssym;
7093 struct elf_symbuf_head *ssymbuf, *ssymhead;
7094 bfd_size_type i, shndx_count, total_size;
7096 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7100 for (ind = indbuf, i = 0; i < symcount; i++)
7101 if (isymbuf[i].st_shndx != SHN_UNDEF)
7102 *ind++ = &isymbuf[i];
7105 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7106 elf_sort_elf_symbol);
7109 if (indbufend > indbuf)
7110 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7111 if (ind[0]->st_shndx != ind[1]->st_shndx)
7114 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7115 + (indbufend - indbuf) * sizeof (*ssym));
7116 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7117 if (ssymbuf == NULL)
7123 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7124 ssymbuf->ssym = NULL;
7125 ssymbuf->count = shndx_count;
7126 ssymbuf->st_shndx = 0;
7127 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7129 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7132 ssymhead->ssym = ssym;
7133 ssymhead->count = 0;
7134 ssymhead->st_shndx = (*ind)->st_shndx;
7136 ssym->st_name = (*ind)->st_name;
7137 ssym->st_info = (*ind)->st_info;
7138 ssym->st_other = (*ind)->st_other;
7141 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7142 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7149 /* Check if 2 sections define the same set of local and global
7153 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7154 struct bfd_link_info *info)
7157 const struct elf_backend_data *bed1, *bed2;
7158 Elf_Internal_Shdr *hdr1, *hdr2;
7159 bfd_size_type symcount1, symcount2;
7160 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7161 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7162 Elf_Internal_Sym *isym, *isymend;
7163 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7164 bfd_size_type count1, count2, i;
7165 unsigned int shndx1, shndx2;
7171 /* Both sections have to be in ELF. */
7172 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7173 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7176 if (elf_section_type (sec1) != elf_section_type (sec2))
7179 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7180 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7181 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7184 bed1 = get_elf_backend_data (bfd1);
7185 bed2 = get_elf_backend_data (bfd2);
7186 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7187 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7188 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7189 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7191 if (symcount1 == 0 || symcount2 == 0)
7197 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7198 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7200 if (ssymbuf1 == NULL)
7202 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7204 if (isymbuf1 == NULL)
7207 if (!info->reduce_memory_overheads)
7208 elf_tdata (bfd1)->symbuf = ssymbuf1
7209 = elf_create_symbuf (symcount1, isymbuf1);
7212 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7214 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7216 if (isymbuf2 == NULL)
7219 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7220 elf_tdata (bfd2)->symbuf = ssymbuf2
7221 = elf_create_symbuf (symcount2, isymbuf2);
7224 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7226 /* Optimized faster version. */
7227 bfd_size_type lo, hi, mid;
7228 struct elf_symbol *symp;
7229 struct elf_symbuf_symbol *ssym, *ssymend;
7232 hi = ssymbuf1->count;
7237 mid = (lo + hi) / 2;
7238 if (shndx1 < ssymbuf1[mid].st_shndx)
7240 else if (shndx1 > ssymbuf1[mid].st_shndx)
7244 count1 = ssymbuf1[mid].count;
7251 hi = ssymbuf2->count;
7256 mid = (lo + hi) / 2;
7257 if (shndx2 < ssymbuf2[mid].st_shndx)
7259 else if (shndx2 > ssymbuf2[mid].st_shndx)
7263 count2 = ssymbuf2[mid].count;
7269 if (count1 == 0 || count2 == 0 || count1 != count2)
7273 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7275 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7276 if (symtable1 == NULL || symtable2 == NULL)
7280 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7281 ssym < ssymend; ssym++, symp++)
7283 symp->u.ssym = ssym;
7284 symp->name = bfd_elf_string_from_elf_section (bfd1,
7290 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7291 ssym < ssymend; ssym++, symp++)
7293 symp->u.ssym = ssym;
7294 symp->name = bfd_elf_string_from_elf_section (bfd2,
7299 /* Sort symbol by name. */
7300 qsort (symtable1, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7302 qsort (symtable2, count1, sizeof (struct elf_symbol),
7303 elf_sym_name_compare);
7305 for (i = 0; i < count1; i++)
7306 /* Two symbols must have the same binding, type and name. */
7307 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7308 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7309 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7316 symtable1 = (struct elf_symbol *)
7317 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7318 symtable2 = (struct elf_symbol *)
7319 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7320 if (symtable1 == NULL || symtable2 == NULL)
7323 /* Count definitions in the section. */
7325 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7326 if (isym->st_shndx == shndx1)
7327 symtable1[count1++].u.isym = isym;
7330 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7331 if (isym->st_shndx == shndx2)
7332 symtable2[count2++].u.isym = isym;
7334 if (count1 == 0 || count2 == 0 || count1 != count2)
7337 for (i = 0; i < count1; i++)
7339 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7340 symtable1[i].u.isym->st_name);
7342 for (i = 0; i < count2; i++)
7344 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7345 symtable2[i].u.isym->st_name);
7347 /* Sort symbol by name. */
7348 qsort (symtable1, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7350 qsort (symtable2, count1, sizeof (struct elf_symbol),
7351 elf_sym_name_compare);
7353 for (i = 0; i < count1; i++)
7354 /* Two symbols must have the same binding, type and name. */
7355 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7356 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7357 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7375 /* Return TRUE if 2 section types are compatible. */
7378 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7379 bfd *bbfd, const asection *bsec)
7383 || abfd->xvec->flavour != bfd_target_elf_flavour
7384 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7387 return elf_section_type (asec) == elf_section_type (bsec);
7390 /* Final phase of ELF linker. */
7392 /* A structure we use to avoid passing large numbers of arguments. */
7394 struct elf_final_link_info
7396 /* General link information. */
7397 struct bfd_link_info *info;
7400 /* Symbol string table. */
7401 struct bfd_strtab_hash *symstrtab;
7402 /* .dynsym section. */
7403 asection *dynsym_sec;
7404 /* .hash section. */
7406 /* symbol version section (.gnu.version). */
7407 asection *symver_sec;
7408 /* Buffer large enough to hold contents of any section. */
7410 /* Buffer large enough to hold external relocs of any section. */
7411 void *external_relocs;
7412 /* Buffer large enough to hold internal relocs of any section. */
7413 Elf_Internal_Rela *internal_relocs;
7414 /* Buffer large enough to hold external local symbols of any input
7416 bfd_byte *external_syms;
7417 /* And a buffer for symbol section indices. */
7418 Elf_External_Sym_Shndx *locsym_shndx;
7419 /* Buffer large enough to hold internal local symbols of any input
7421 Elf_Internal_Sym *internal_syms;
7422 /* Array large enough to hold a symbol index for each local symbol
7423 of any input BFD. */
7425 /* Array large enough to hold a section pointer for each local
7426 symbol of any input BFD. */
7427 asection **sections;
7428 /* Buffer to hold swapped out symbols. */
7430 /* And one for symbol section indices. */
7431 Elf_External_Sym_Shndx *symshndxbuf;
7432 /* Number of swapped out symbols in buffer. */
7433 size_t symbuf_count;
7434 /* Number of symbols which fit in symbuf. */
7436 /* And same for symshndxbuf. */
7437 size_t shndxbuf_size;
7438 /* Number of STT_FILE syms seen. */
7439 size_t filesym_count;
7442 /* This struct is used to pass information to elf_link_output_extsym. */
7444 struct elf_outext_info
7447 bfd_boolean localsyms;
7448 bfd_boolean file_sym_done;
7449 struct elf_final_link_info *flinfo;
7453 /* Support for evaluating a complex relocation.
7455 Complex relocations are generalized, self-describing relocations. The
7456 implementation of them consists of two parts: complex symbols, and the
7457 relocations themselves.
7459 The relocations are use a reserved elf-wide relocation type code (R_RELC
7460 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7461 information (start bit, end bit, word width, etc) into the addend. This
7462 information is extracted from CGEN-generated operand tables within gas.
7464 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7465 internal) representing prefix-notation expressions, including but not
7466 limited to those sorts of expressions normally encoded as addends in the
7467 addend field. The symbol mangling format is:
7470 | <unary-operator> ':' <node>
7471 | <binary-operator> ':' <node> ':' <node>
7474 <literal> := 's' <digits=N> ':' <N character symbol name>
7475 | 'S' <digits=N> ':' <N character section name>
7479 <binary-operator> := as in C
7480 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7483 set_symbol_value (bfd *bfd_with_globals,
7484 Elf_Internal_Sym *isymbuf,
7489 struct elf_link_hash_entry **sym_hashes;
7490 struct elf_link_hash_entry *h;
7491 size_t extsymoff = locsymcount;
7493 if (symidx < locsymcount)
7495 Elf_Internal_Sym *sym;
7497 sym = isymbuf + symidx;
7498 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7500 /* It is a local symbol: move it to the
7501 "absolute" section and give it a value. */
7502 sym->st_shndx = SHN_ABS;
7503 sym->st_value = val;
7506 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7510 /* It is a global symbol: set its link type
7511 to "defined" and give it a value. */
7513 sym_hashes = elf_sym_hashes (bfd_with_globals);
7514 h = sym_hashes [symidx - extsymoff];
7515 while (h->root.type == bfd_link_hash_indirect
7516 || h->root.type == bfd_link_hash_warning)
7517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7518 h->root.type = bfd_link_hash_defined;
7519 h->root.u.def.value = val;
7520 h->root.u.def.section = bfd_abs_section_ptr;
7524 resolve_symbol (const char *name,
7526 struct elf_final_link_info *flinfo,
7528 Elf_Internal_Sym *isymbuf,
7531 Elf_Internal_Sym *sym;
7532 struct bfd_link_hash_entry *global_entry;
7533 const char *candidate = NULL;
7534 Elf_Internal_Shdr *symtab_hdr;
7537 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7539 for (i = 0; i < locsymcount; ++ i)
7543 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7546 candidate = bfd_elf_string_from_elf_section (input_bfd,
7547 symtab_hdr->sh_link,
7550 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7551 name, candidate, (unsigned long) sym->st_value);
7553 if (candidate && strcmp (candidate, name) == 0)
7555 asection *sec = flinfo->sections [i];
7557 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7558 *result += sec->output_offset + sec->output_section->vma;
7560 printf ("Found symbol with value %8.8lx\n",
7561 (unsigned long) *result);
7567 /* Hmm, haven't found it yet. perhaps it is a global. */
7568 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7569 FALSE, FALSE, TRUE);
7573 if (global_entry->type == bfd_link_hash_defined
7574 || global_entry->type == bfd_link_hash_defweak)
7576 *result = (global_entry->u.def.value
7577 + global_entry->u.def.section->output_section->vma
7578 + global_entry->u.def.section->output_offset);
7580 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7581 global_entry->root.string, (unsigned long) *result);
7590 resolve_section (const char *name,
7597 for (curr = sections; curr; curr = curr->next)
7598 if (strcmp (curr->name, name) == 0)
7600 *result = curr->vma;
7604 /* Hmm. still haven't found it. try pseudo-section names. */
7605 for (curr = sections; curr; curr = curr->next)
7607 len = strlen (curr->name);
7608 if (len > strlen (name))
7611 if (strncmp (curr->name, name, len) == 0)
7613 if (strncmp (".end", name + len, 4) == 0)
7615 *result = curr->vma + curr->size;
7619 /* Insert more pseudo-section names here, if you like. */
7627 undefined_reference (const char *reftype, const char *name)
7629 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7634 eval_symbol (bfd_vma *result,
7637 struct elf_final_link_info *flinfo,
7639 Elf_Internal_Sym *isymbuf,
7648 const char *sym = *symp;
7650 bfd_boolean symbol_is_section = FALSE;
7655 if (len < 1 || len > sizeof (symbuf))
7657 bfd_set_error (bfd_error_invalid_operation);
7670 *result = strtoul (sym, (char **) symp, 16);
7674 symbol_is_section = TRUE;
7677 symlen = strtol (sym, (char **) symp, 10);
7678 sym = *symp + 1; /* Skip the trailing ':'. */
7680 if (symend < sym || symlen + 1 > sizeof (symbuf))
7682 bfd_set_error (bfd_error_invalid_operation);
7686 memcpy (symbuf, sym, symlen);
7687 symbuf[symlen] = '\0';
7688 *symp = sym + symlen;
7690 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7691 the symbol as a section, or vice-versa. so we're pretty liberal in our
7692 interpretation here; section means "try section first", not "must be a
7693 section", and likewise with symbol. */
7695 if (symbol_is_section)
7697 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7698 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7699 isymbuf, locsymcount))
7701 undefined_reference ("section", symbuf);
7707 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7708 isymbuf, locsymcount)
7709 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7712 undefined_reference ("symbol", symbuf);
7719 /* All that remains are operators. */
7721 #define UNARY_OP(op) \
7722 if (strncmp (sym, #op, strlen (#op)) == 0) \
7724 sym += strlen (#op); \
7728 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7729 isymbuf, locsymcount, signed_p)) \
7732 *result = op ((bfd_signed_vma) a); \
7738 #define BINARY_OP(op) \
7739 if (strncmp (sym, #op, strlen (#op)) == 0) \
7741 sym += strlen (#op); \
7745 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7749 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7750 isymbuf, locsymcount, signed_p)) \
7753 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7783 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7784 bfd_set_error (bfd_error_invalid_operation);
7790 put_value (bfd_vma size,
7791 unsigned long chunksz,
7796 location += (size - chunksz);
7798 for (; size; size -= chunksz, location -= chunksz)
7803 bfd_put_8 (input_bfd, x, location);
7807 bfd_put_16 (input_bfd, x, location);
7811 bfd_put_32 (input_bfd, x, location);
7812 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
7818 bfd_put_64 (input_bfd, x, location);
7819 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
7832 get_value (bfd_vma size,
7833 unsigned long chunksz,
7840 /* Sanity checks. */
7841 BFD_ASSERT (chunksz <= sizeof (x)
7844 && (size % chunksz) == 0
7845 && input_bfd != NULL
7846 && location != NULL);
7848 if (chunksz == sizeof (x))
7850 BFD_ASSERT (size == chunksz);
7852 /* Make sure that we do not perform an undefined shift operation.
7853 We know that size == chunksz so there will only be one iteration
7854 of the loop below. */
7858 shift = 8 * chunksz;
7860 for (; size; size -= chunksz, location += chunksz)
7865 x = (x << shift) | bfd_get_8 (input_bfd, location);
7868 x = (x << shift) | bfd_get_16 (input_bfd, location);
7871 x = (x << shift) | bfd_get_32 (input_bfd, location);
7875 x = (x << shift) | bfd_get_64 (input_bfd, location);
7886 decode_complex_addend (unsigned long *start, /* in bits */
7887 unsigned long *oplen, /* in bits */
7888 unsigned long *len, /* in bits */
7889 unsigned long *wordsz, /* in bytes */
7890 unsigned long *chunksz, /* in bytes */
7891 unsigned long *lsb0_p,
7892 unsigned long *signed_p,
7893 unsigned long *trunc_p,
7894 unsigned long encoded)
7896 * start = encoded & 0x3F;
7897 * len = (encoded >> 6) & 0x3F;
7898 * oplen = (encoded >> 12) & 0x3F;
7899 * wordsz = (encoded >> 18) & 0xF;
7900 * chunksz = (encoded >> 22) & 0xF;
7901 * lsb0_p = (encoded >> 27) & 1;
7902 * signed_p = (encoded >> 28) & 1;
7903 * trunc_p = (encoded >> 29) & 1;
7906 bfd_reloc_status_type
7907 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7908 asection *input_section ATTRIBUTE_UNUSED,
7910 Elf_Internal_Rela *rel,
7913 bfd_vma shift, x, mask;
7914 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7915 bfd_reloc_status_type r;
7917 /* Perform this reloc, since it is complex.
7918 (this is not to say that it necessarily refers to a complex
7919 symbol; merely that it is a self-describing CGEN based reloc.
7920 i.e. the addend has the complete reloc information (bit start, end,
7921 word size, etc) encoded within it.). */
7923 decode_complex_addend (&start, &oplen, &len, &wordsz,
7924 &chunksz, &lsb0_p, &signed_p,
7925 &trunc_p, rel->r_addend);
7927 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7930 shift = (start + 1) - len;
7932 shift = (8 * wordsz) - (start + len);
7934 /* FIXME: octets_per_byte. */
7935 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7938 printf ("Doing complex reloc: "
7939 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7940 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7941 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7942 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7943 oplen, (unsigned long) x, (unsigned long) mask,
7944 (unsigned long) relocation);
7949 /* Now do an overflow check. */
7950 r = bfd_check_overflow ((signed_p
7951 ? complain_overflow_signed
7952 : complain_overflow_unsigned),
7953 len, 0, (8 * wordsz),
7957 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7960 printf (" relocation: %8.8lx\n"
7961 " shifted mask: %8.8lx\n"
7962 " shifted/masked reloc: %8.8lx\n"
7963 " result: %8.8lx\n",
7964 (unsigned long) relocation, (unsigned long) (mask << shift),
7965 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7967 /* FIXME: octets_per_byte. */
7968 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7972 /* qsort comparison functions sorting external relocs by r_offset. */
7975 cmp_ext32l_r_offset (const void *p, const void *q)
7982 const union aligned32 *a
7983 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7984 const union aligned32 *b
7985 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7987 uint32_t aval = ( (uint32_t) a->c[0]
7988 | (uint32_t) a->c[1] << 8
7989 | (uint32_t) a->c[2] << 16
7990 | (uint32_t) a->c[3] << 24);
7991 uint32_t bval = ( (uint32_t) b->c[0]
7992 | (uint32_t) b->c[1] << 8
7993 | (uint32_t) b->c[2] << 16
7994 | (uint32_t) b->c[3] << 24);
7997 else if (aval > bval)
8003 cmp_ext32b_r_offset (const void *p, const void *q)
8010 const union aligned32 *a
8011 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8012 const union aligned32 *b
8013 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8015 uint32_t aval = ( (uint32_t) a->c[0] << 24
8016 | (uint32_t) a->c[1] << 16
8017 | (uint32_t) a->c[2] << 8
8018 | (uint32_t) a->c[3]);
8019 uint32_t bval = ( (uint32_t) b->c[0] << 24
8020 | (uint32_t) b->c[1] << 16
8021 | (uint32_t) b->c[2] << 8
8022 | (uint32_t) b->c[3]);
8025 else if (aval > bval)
8030 #ifdef BFD_HOST_64_BIT
8032 cmp_ext64l_r_offset (const void *p, const void *q)
8039 const union aligned64 *a
8040 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8041 const union aligned64 *b
8042 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8044 uint64_t aval = ( (uint64_t) a->c[0]
8045 | (uint64_t) a->c[1] << 8
8046 | (uint64_t) a->c[2] << 16
8047 | (uint64_t) a->c[3] << 24
8048 | (uint64_t) a->c[4] << 32
8049 | (uint64_t) a->c[5] << 40
8050 | (uint64_t) a->c[6] << 48
8051 | (uint64_t) a->c[7] << 56);
8052 uint64_t bval = ( (uint64_t) b->c[0]
8053 | (uint64_t) b->c[1] << 8
8054 | (uint64_t) b->c[2] << 16
8055 | (uint64_t) b->c[3] << 24
8056 | (uint64_t) b->c[4] << 32
8057 | (uint64_t) b->c[5] << 40
8058 | (uint64_t) b->c[6] << 48
8059 | (uint64_t) b->c[7] << 56);
8062 else if (aval > bval)
8068 cmp_ext64b_r_offset (const void *p, const void *q)
8075 const union aligned64 *a
8076 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8077 const union aligned64 *b
8078 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8080 uint64_t aval = ( (uint64_t) a->c[0] << 56
8081 | (uint64_t) a->c[1] << 48
8082 | (uint64_t) a->c[2] << 40
8083 | (uint64_t) a->c[3] << 32
8084 | (uint64_t) a->c[4] << 24
8085 | (uint64_t) a->c[5] << 16
8086 | (uint64_t) a->c[6] << 8
8087 | (uint64_t) a->c[7]);
8088 uint64_t bval = ( (uint64_t) b->c[0] << 56
8089 | (uint64_t) b->c[1] << 48
8090 | (uint64_t) b->c[2] << 40
8091 | (uint64_t) b->c[3] << 32
8092 | (uint64_t) b->c[4] << 24
8093 | (uint64_t) b->c[5] << 16
8094 | (uint64_t) b->c[6] << 8
8095 | (uint64_t) b->c[7]);
8098 else if (aval > bval)
8104 /* When performing a relocatable link, the input relocations are
8105 preserved. But, if they reference global symbols, the indices
8106 referenced must be updated. Update all the relocations found in
8110 elf_link_adjust_relocs (bfd *abfd,
8111 struct bfd_elf_section_reloc_data *reldata,
8115 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8118 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8119 bfd_vma r_type_mask;
8121 unsigned int count = reldata->count;
8122 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8124 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8126 swap_in = bed->s->swap_reloc_in;
8127 swap_out = bed->s->swap_reloc_out;
8129 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8131 swap_in = bed->s->swap_reloca_in;
8132 swap_out = bed->s->swap_reloca_out;
8137 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8140 if (bed->s->arch_size == 32)
8147 r_type_mask = 0xffffffff;
8151 erela = reldata->hdr->contents;
8152 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8154 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8157 if (*rel_hash == NULL)
8160 BFD_ASSERT ((*rel_hash)->indx >= 0);
8162 (*swap_in) (abfd, erela, irela);
8163 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8164 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8165 | (irela[j].r_info & r_type_mask));
8166 (*swap_out) (abfd, irela, erela);
8171 int (*compare) (const void *, const void *);
8173 if (bed->s->arch_size == 32)
8175 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8176 compare = cmp_ext32l_r_offset;
8177 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8178 compare = cmp_ext32b_r_offset;
8184 #ifdef BFD_HOST_64_BIT
8185 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8186 compare = cmp_ext64l_r_offset;
8187 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8188 compare = cmp_ext64b_r_offset;
8193 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8194 free (reldata->hashes);
8195 reldata->hashes = NULL;
8199 struct elf_link_sort_rela
8205 enum elf_reloc_type_class type;
8206 /* We use this as an array of size int_rels_per_ext_rel. */
8207 Elf_Internal_Rela rela[1];
8211 elf_link_sort_cmp1 (const void *A, const void *B)
8213 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8214 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8215 int relativea, relativeb;
8217 relativea = a->type == reloc_class_relative;
8218 relativeb = b->type == reloc_class_relative;
8220 if (relativea < relativeb)
8222 if (relativea > relativeb)
8224 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8226 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8228 if (a->rela->r_offset < b->rela->r_offset)
8230 if (a->rela->r_offset > b->rela->r_offset)
8236 elf_link_sort_cmp2 (const void *A, const void *B)
8238 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8239 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8241 if (a->type < b->type)
8243 if (a->type > b->type)
8245 if (a->u.offset < b->u.offset)
8247 if (a->u.offset > b->u.offset)
8249 if (a->rela->r_offset < b->rela->r_offset)
8251 if (a->rela->r_offset > b->rela->r_offset)
8257 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8259 asection *dynamic_relocs;
8262 bfd_size_type count, size;
8263 size_t i, ret, sort_elt, ext_size;
8264 bfd_byte *sort, *s_non_relative, *p;
8265 struct elf_link_sort_rela *sq;
8266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8267 int i2e = bed->s->int_rels_per_ext_rel;
8268 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8269 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8270 struct bfd_link_order *lo;
8272 bfd_boolean use_rela;
8274 /* Find a dynamic reloc section. */
8275 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8276 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8277 if (rela_dyn != NULL && rela_dyn->size > 0
8278 && rel_dyn != NULL && rel_dyn->size > 0)
8280 bfd_boolean use_rela_initialised = FALSE;
8282 /* This is just here to stop gcc from complaining.
8283 It's initialization checking code is not perfect. */
8286 /* Both sections are present. Examine the sizes
8287 of the indirect sections to help us choose. */
8288 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8289 if (lo->type == bfd_indirect_link_order)
8291 asection *o = lo->u.indirect.section;
8293 if ((o->size % bed->s->sizeof_rela) == 0)
8295 if ((o->size % bed->s->sizeof_rel) == 0)
8296 /* Section size is divisible by both rel and rela sizes.
8297 It is of no help to us. */
8301 /* Section size is only divisible by rela. */
8302 if (use_rela_initialised && (use_rela == FALSE))
8305 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8306 bfd_set_error (bfd_error_invalid_operation);
8312 use_rela_initialised = TRUE;
8316 else if ((o->size % bed->s->sizeof_rel) == 0)
8318 /* Section size is only divisible by rel. */
8319 if (use_rela_initialised && (use_rela == TRUE))
8322 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8323 bfd_set_error (bfd_error_invalid_operation);
8329 use_rela_initialised = TRUE;
8334 /* The section size is not divisible by either - something is wrong. */
8336 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8337 bfd_set_error (bfd_error_invalid_operation);
8342 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8343 if (lo->type == bfd_indirect_link_order)
8345 asection *o = lo->u.indirect.section;
8347 if ((o->size % bed->s->sizeof_rela) == 0)
8349 if ((o->size % bed->s->sizeof_rel) == 0)
8350 /* Section size is divisible by both rel and rela sizes.
8351 It is of no help to us. */
8355 /* Section size is only divisible by rela. */
8356 if (use_rela_initialised && (use_rela == FALSE))
8359 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8360 bfd_set_error (bfd_error_invalid_operation);
8366 use_rela_initialised = TRUE;
8370 else if ((o->size % bed->s->sizeof_rel) == 0)
8372 /* Section size is only divisible by rel. */
8373 if (use_rela_initialised && (use_rela == TRUE))
8376 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8377 bfd_set_error (bfd_error_invalid_operation);
8383 use_rela_initialised = TRUE;
8388 /* The section size is not divisible by either - something is wrong. */
8390 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8391 bfd_set_error (bfd_error_invalid_operation);
8396 if (! use_rela_initialised)
8400 else if (rela_dyn != NULL && rela_dyn->size > 0)
8402 else if (rel_dyn != NULL && rel_dyn->size > 0)
8409 dynamic_relocs = rela_dyn;
8410 ext_size = bed->s->sizeof_rela;
8411 swap_in = bed->s->swap_reloca_in;
8412 swap_out = bed->s->swap_reloca_out;
8416 dynamic_relocs = rel_dyn;
8417 ext_size = bed->s->sizeof_rel;
8418 swap_in = bed->s->swap_reloc_in;
8419 swap_out = bed->s->swap_reloc_out;
8423 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8424 if (lo->type == bfd_indirect_link_order)
8425 size += lo->u.indirect.section->size;
8427 if (size != dynamic_relocs->size)
8430 sort_elt = (sizeof (struct elf_link_sort_rela)
8431 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8433 count = dynamic_relocs->size / ext_size;
8436 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8440 (*info->callbacks->warning)
8441 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8445 if (bed->s->arch_size == 32)
8446 r_sym_mask = ~(bfd_vma) 0xff;
8448 r_sym_mask = ~(bfd_vma) 0xffffffff;
8450 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8451 if (lo->type == bfd_indirect_link_order)
8453 bfd_byte *erel, *erelend;
8454 asection *o = lo->u.indirect.section;
8456 if (o->contents == NULL && o->size != 0)
8458 /* This is a reloc section that is being handled as a normal
8459 section. See bfd_section_from_shdr. We can't combine
8460 relocs in this case. */
8465 erelend = o->contents + o->size;
8466 /* FIXME: octets_per_byte. */
8467 p = sort + o->output_offset / ext_size * sort_elt;
8469 while (erel < erelend)
8471 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8473 (*swap_in) (abfd, erel, s->rela);
8474 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8475 s->u.sym_mask = r_sym_mask;
8481 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8483 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8485 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8486 if (s->type != reloc_class_relative)
8492 sq = (struct elf_link_sort_rela *) s_non_relative;
8493 for (; i < count; i++, p += sort_elt)
8495 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8496 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8498 sp->u.offset = sq->rela->r_offset;
8501 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8503 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8504 if (lo->type == bfd_indirect_link_order)
8506 bfd_byte *erel, *erelend;
8507 asection *o = lo->u.indirect.section;
8510 erelend = o->contents + o->size;
8511 /* FIXME: octets_per_byte. */
8512 p = sort + o->output_offset / ext_size * sort_elt;
8513 while (erel < erelend)
8515 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8516 (*swap_out) (abfd, s->rela, erel);
8523 *psec = dynamic_relocs;
8527 /* Flush the output symbols to the file. */
8530 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8531 const struct elf_backend_data *bed)
8533 if (flinfo->symbuf_count > 0)
8535 Elf_Internal_Shdr *hdr;
8539 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8540 pos = hdr->sh_offset + hdr->sh_size;
8541 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8542 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8543 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8546 hdr->sh_size += amt;
8547 flinfo->symbuf_count = 0;
8553 /* Add a symbol to the output symbol table. */
8556 elf_link_output_sym (struct elf_final_link_info *flinfo,
8558 Elf_Internal_Sym *elfsym,
8559 asection *input_sec,
8560 struct elf_link_hash_entry *h)
8563 Elf_External_Sym_Shndx *destshndx;
8564 int (*output_symbol_hook)
8565 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8566 struct elf_link_hash_entry *);
8567 const struct elf_backend_data *bed;
8569 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8571 bed = get_elf_backend_data (flinfo->output_bfd);
8572 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8573 if (output_symbol_hook != NULL)
8575 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8580 if (name == NULL || *name == '\0')
8581 elfsym->st_name = 0;
8582 else if (input_sec->flags & SEC_EXCLUDE)
8583 elfsym->st_name = 0;
8586 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8588 if (elfsym->st_name == (unsigned long) -1)
8592 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8594 if (! elf_link_flush_output_syms (flinfo, bed))
8598 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8599 destshndx = flinfo->symshndxbuf;
8600 if (destshndx != NULL)
8602 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8606 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8607 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8609 if (destshndx == NULL)
8611 flinfo->symshndxbuf = destshndx;
8612 memset ((char *) destshndx + amt, 0, amt);
8613 flinfo->shndxbuf_size *= 2;
8615 destshndx += bfd_get_symcount (flinfo->output_bfd);
8618 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8619 flinfo->symbuf_count += 1;
8620 bfd_get_symcount (flinfo->output_bfd) += 1;
8625 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8628 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8630 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8631 && sym->st_shndx < SHN_LORESERVE)
8633 /* The gABI doesn't support dynamic symbols in output sections
8635 (*_bfd_error_handler)
8636 (_("%B: Too many sections: %d (>= %d)"),
8637 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8638 bfd_set_error (bfd_error_nonrepresentable_section);
8644 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8645 allowing an unsatisfied unversioned symbol in the DSO to match a
8646 versioned symbol that would normally require an explicit version.
8647 We also handle the case that a DSO references a hidden symbol
8648 which may be satisfied by a versioned symbol in another DSO. */
8651 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8652 const struct elf_backend_data *bed,
8653 struct elf_link_hash_entry *h)
8656 struct elf_link_loaded_list *loaded;
8658 if (!is_elf_hash_table (info->hash))
8661 /* Check indirect symbol. */
8662 while (h->root.type == bfd_link_hash_indirect)
8663 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8665 switch (h->root.type)
8671 case bfd_link_hash_undefined:
8672 case bfd_link_hash_undefweak:
8673 abfd = h->root.u.undef.abfd;
8674 if ((abfd->flags & DYNAMIC) == 0
8675 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8679 case bfd_link_hash_defined:
8680 case bfd_link_hash_defweak:
8681 abfd = h->root.u.def.section->owner;
8684 case bfd_link_hash_common:
8685 abfd = h->root.u.c.p->section->owner;
8688 BFD_ASSERT (abfd != NULL);
8690 for (loaded = elf_hash_table (info)->loaded;
8692 loaded = loaded->next)
8695 Elf_Internal_Shdr *hdr;
8696 bfd_size_type symcount;
8697 bfd_size_type extsymcount;
8698 bfd_size_type extsymoff;
8699 Elf_Internal_Shdr *versymhdr;
8700 Elf_Internal_Sym *isym;
8701 Elf_Internal_Sym *isymend;
8702 Elf_Internal_Sym *isymbuf;
8703 Elf_External_Versym *ever;
8704 Elf_External_Versym *extversym;
8706 input = loaded->abfd;
8708 /* We check each DSO for a possible hidden versioned definition. */
8710 || (input->flags & DYNAMIC) == 0
8711 || elf_dynversym (input) == 0)
8714 hdr = &elf_tdata (input)->dynsymtab_hdr;
8716 symcount = hdr->sh_size / bed->s->sizeof_sym;
8717 if (elf_bad_symtab (input))
8719 extsymcount = symcount;
8724 extsymcount = symcount - hdr->sh_info;
8725 extsymoff = hdr->sh_info;
8728 if (extsymcount == 0)
8731 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8733 if (isymbuf == NULL)
8736 /* Read in any version definitions. */
8737 versymhdr = &elf_tdata (input)->dynversym_hdr;
8738 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8739 if (extversym == NULL)
8742 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8743 || (bfd_bread (extversym, versymhdr->sh_size, input)
8744 != versymhdr->sh_size))
8752 ever = extversym + extsymoff;
8753 isymend = isymbuf + extsymcount;
8754 for (isym = isymbuf; isym < isymend; isym++, ever++)
8757 Elf_Internal_Versym iver;
8758 unsigned short version_index;
8760 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8761 || isym->st_shndx == SHN_UNDEF)
8764 name = bfd_elf_string_from_elf_section (input,
8767 if (strcmp (name, h->root.root.string) != 0)
8770 _bfd_elf_swap_versym_in (input, ever, &iver);
8772 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8774 && h->forced_local))
8776 /* If we have a non-hidden versioned sym, then it should
8777 have provided a definition for the undefined sym unless
8778 it is defined in a non-shared object and forced local.
8783 version_index = iver.vs_vers & VERSYM_VERSION;
8784 if (version_index == 1 || version_index == 2)
8786 /* This is the base or first version. We can use it. */
8800 /* Add an external symbol to the symbol table. This is called from
8801 the hash table traversal routine. When generating a shared object,
8802 we go through the symbol table twice. The first time we output
8803 anything that might have been forced to local scope in a version
8804 script. The second time we output the symbols that are still
8808 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8810 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8811 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8812 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8814 Elf_Internal_Sym sym;
8815 asection *input_sec;
8816 const struct elf_backend_data *bed;
8820 if (h->root.type == bfd_link_hash_warning)
8822 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8823 if (h->root.type == bfd_link_hash_new)
8827 /* Decide whether to output this symbol in this pass. */
8828 if (eoinfo->localsyms)
8830 if (!h->forced_local)
8835 if (h->forced_local)
8839 bed = get_elf_backend_data (flinfo->output_bfd);
8841 if (h->root.type == bfd_link_hash_undefined)
8843 /* If we have an undefined symbol reference here then it must have
8844 come from a shared library that is being linked in. (Undefined
8845 references in regular files have already been handled unless
8846 they are in unreferenced sections which are removed by garbage
8848 bfd_boolean ignore_undef = FALSE;
8850 /* Some symbols may be special in that the fact that they're
8851 undefined can be safely ignored - let backend determine that. */
8852 if (bed->elf_backend_ignore_undef_symbol)
8853 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8855 /* If we are reporting errors for this situation then do so now. */
8858 && (!h->ref_regular || flinfo->info->gc_sections)
8859 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8860 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8862 if (!(flinfo->info->callbacks->undefined_symbol
8863 (flinfo->info, h->root.root.string,
8864 h->ref_regular ? NULL : h->root.u.undef.abfd,
8866 (flinfo->info->unresolved_syms_in_shared_libs
8867 == RM_GENERATE_ERROR))))
8869 bfd_set_error (bfd_error_bad_value);
8870 eoinfo->failed = TRUE;
8876 /* We should also warn if a forced local symbol is referenced from
8877 shared libraries. */
8878 if (!flinfo->info->relocatable
8879 && flinfo->info->executable
8884 && h->ref_dynamic_nonweak
8885 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8889 struct elf_link_hash_entry *hi = h;
8891 /* Check indirect symbol. */
8892 while (hi->root.type == bfd_link_hash_indirect)
8893 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8895 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8896 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8897 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8898 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8900 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8901 def_bfd = flinfo->output_bfd;
8902 if (hi->root.u.def.section != bfd_abs_section_ptr)
8903 def_bfd = hi->root.u.def.section->owner;
8904 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8905 h->root.root.string);
8906 bfd_set_error (bfd_error_bad_value);
8907 eoinfo->failed = TRUE;
8911 /* We don't want to output symbols that have never been mentioned by
8912 a regular file, or that we have been told to strip. However, if
8913 h->indx is set to -2, the symbol is used by a reloc and we must
8918 else if ((h->def_dynamic
8920 || h->root.type == bfd_link_hash_new)
8924 else if (flinfo->info->strip == strip_all)
8926 else if (flinfo->info->strip == strip_some
8927 && bfd_hash_lookup (flinfo->info->keep_hash,
8928 h->root.root.string, FALSE, FALSE) == NULL)
8930 else if ((h->root.type == bfd_link_hash_defined
8931 || h->root.type == bfd_link_hash_defweak)
8932 && ((flinfo->info->strip_discarded
8933 && discarded_section (h->root.u.def.section))
8934 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
8935 && h->root.u.def.section->owner != NULL
8936 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8938 else if ((h->root.type == bfd_link_hash_undefined
8939 || h->root.type == bfd_link_hash_undefweak)
8940 && h->root.u.undef.abfd != NULL
8941 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8944 /* If we're stripping it, and it's not a dynamic symbol, there's
8945 nothing else to do. However, if it is a forced local symbol or
8946 an ifunc symbol we need to give the backend finish_dynamic_symbol
8947 function a chance to make it dynamic. */
8950 && h->type != STT_GNU_IFUNC
8951 && !h->forced_local)
8955 sym.st_size = h->size;
8956 sym.st_other = h->other;
8957 if (h->forced_local)
8959 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8960 /* Turn off visibility on local symbol. */
8961 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8963 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8964 else if (h->unique_global && h->def_regular)
8965 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8966 else if (h->root.type == bfd_link_hash_undefweak
8967 || h->root.type == bfd_link_hash_defweak)
8968 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8970 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8971 sym.st_target_internal = h->target_internal;
8973 switch (h->root.type)
8976 case bfd_link_hash_new:
8977 case bfd_link_hash_warning:
8981 case bfd_link_hash_undefined:
8982 case bfd_link_hash_undefweak:
8983 input_sec = bfd_und_section_ptr;
8984 sym.st_shndx = SHN_UNDEF;
8987 case bfd_link_hash_defined:
8988 case bfd_link_hash_defweak:
8990 input_sec = h->root.u.def.section;
8991 if (input_sec->output_section != NULL)
8994 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8995 input_sec->output_section);
8996 if (sym.st_shndx == SHN_BAD)
8998 (*_bfd_error_handler)
8999 (_("%B: could not find output section %A for input section %A"),
9000 flinfo->output_bfd, input_sec->output_section, input_sec);
9001 bfd_set_error (bfd_error_nonrepresentable_section);
9002 eoinfo->failed = TRUE;
9006 /* ELF symbols in relocatable files are section relative,
9007 but in nonrelocatable files they are virtual
9009 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9010 if (!flinfo->info->relocatable)
9012 sym.st_value += input_sec->output_section->vma;
9013 if (h->type == STT_TLS)
9015 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9016 if (tls_sec != NULL)
9017 sym.st_value -= tls_sec->vma;
9023 BFD_ASSERT (input_sec->owner == NULL
9024 || (input_sec->owner->flags & DYNAMIC) != 0);
9025 sym.st_shndx = SHN_UNDEF;
9026 input_sec = bfd_und_section_ptr;
9031 case bfd_link_hash_common:
9032 input_sec = h->root.u.c.p->section;
9033 sym.st_shndx = bed->common_section_index (input_sec);
9034 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9037 case bfd_link_hash_indirect:
9038 /* These symbols are created by symbol versioning. They point
9039 to the decorated version of the name. For example, if the
9040 symbol foo@@GNU_1.2 is the default, which should be used when
9041 foo is used with no version, then we add an indirect symbol
9042 foo which points to foo@@GNU_1.2. We ignore these symbols,
9043 since the indirected symbol is already in the hash table. */
9047 /* Give the processor backend a chance to tweak the symbol value,
9048 and also to finish up anything that needs to be done for this
9049 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9050 forced local syms when non-shared is due to a historical quirk.
9051 STT_GNU_IFUNC symbol must go through PLT. */
9052 if ((h->type == STT_GNU_IFUNC
9054 && !flinfo->info->relocatable)
9055 || ((h->dynindx != -1
9057 && ((flinfo->info->shared
9058 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9059 || h->root.type != bfd_link_hash_undefweak))
9060 || !h->forced_local)
9061 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9063 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9064 (flinfo->output_bfd, flinfo->info, h, &sym)))
9066 eoinfo->failed = TRUE;
9071 /* If we are marking the symbol as undefined, and there are no
9072 non-weak references to this symbol from a regular object, then
9073 mark the symbol as weak undefined; if there are non-weak
9074 references, mark the symbol as strong. We can't do this earlier,
9075 because it might not be marked as undefined until the
9076 finish_dynamic_symbol routine gets through with it. */
9077 if (sym.st_shndx == SHN_UNDEF
9079 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9080 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9083 unsigned int type = ELF_ST_TYPE (sym.st_info);
9085 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9086 if (type == STT_GNU_IFUNC)
9089 if (h->ref_regular_nonweak)
9090 bindtype = STB_GLOBAL;
9092 bindtype = STB_WEAK;
9093 sym.st_info = ELF_ST_INFO (bindtype, type);
9096 /* If this is a symbol defined in a dynamic library, don't use the
9097 symbol size from the dynamic library. Relinking an executable
9098 against a new library may introduce gratuitous changes in the
9099 executable's symbols if we keep the size. */
9100 if (sym.st_shndx == SHN_UNDEF
9105 /* If a non-weak symbol with non-default visibility is not defined
9106 locally, it is a fatal error. */
9107 if (!flinfo->info->relocatable
9108 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9109 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9110 && h->root.type == bfd_link_hash_undefined
9115 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9116 msg = _("%B: protected symbol `%s' isn't defined");
9117 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9118 msg = _("%B: internal symbol `%s' isn't defined");
9120 msg = _("%B: hidden symbol `%s' isn't defined");
9121 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9122 bfd_set_error (bfd_error_bad_value);
9123 eoinfo->failed = TRUE;
9127 /* If this symbol should be put in the .dynsym section, then put it
9128 there now. We already know the symbol index. We also fill in
9129 the entry in the .hash section. */
9130 if (flinfo->dynsym_sec != NULL
9132 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9136 /* Since there is no version information in the dynamic string,
9137 if there is no version info in symbol version section, we will
9138 have a run-time problem. */
9139 if (h->verinfo.verdef == NULL)
9141 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9143 if (p && p [1] != '\0')
9145 (*_bfd_error_handler)
9146 (_("%B: No symbol version section for versioned symbol `%s'"),
9147 flinfo->output_bfd, h->root.root.string);
9148 eoinfo->failed = TRUE;
9153 sym.st_name = h->dynstr_index;
9154 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9155 if (!check_dynsym (flinfo->output_bfd, &sym))
9157 eoinfo->failed = TRUE;
9160 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9162 if (flinfo->hash_sec != NULL)
9164 size_t hash_entry_size;
9165 bfd_byte *bucketpos;
9170 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9171 bucket = h->u.elf_hash_value % bucketcount;
9174 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9175 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9176 + (bucket + 2) * hash_entry_size);
9177 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9178 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9180 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9181 ((bfd_byte *) flinfo->hash_sec->contents
9182 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9185 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9187 Elf_Internal_Versym iversym;
9188 Elf_External_Versym *eversym;
9190 if (!h->def_regular)
9192 if (h->verinfo.verdef == NULL
9193 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9194 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9195 iversym.vs_vers = 0;
9197 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9201 if (h->verinfo.vertree == NULL)
9202 iversym.vs_vers = 1;
9204 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9205 if (flinfo->info->create_default_symver)
9210 iversym.vs_vers |= VERSYM_HIDDEN;
9212 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9213 eversym += h->dynindx;
9214 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9218 /* If the symbol is undefined, and we didn't output it to .dynsym,
9219 strip it from .symtab too. Obviously we can't do this for
9220 relocatable output or when needed for --emit-relocs. */
9221 else if (input_sec == bfd_und_section_ptr
9223 && !flinfo->info->relocatable)
9225 /* Also strip others that we couldn't earlier due to dynamic symbol
9229 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9232 /* Output a FILE symbol so that following locals are not associated
9233 with the wrong input file. We need one for forced local symbols
9234 if we've seen more than one FILE symbol or when we have exactly
9235 one FILE symbol but global symbols are present in a file other
9236 than the one with the FILE symbol. We also need one if linker
9237 defined symbols are present. In practice these conditions are
9238 always met, so just emit the FILE symbol unconditionally. */
9239 if (eoinfo->localsyms
9240 && !eoinfo->file_sym_done
9241 && eoinfo->flinfo->filesym_count != 0)
9243 Elf_Internal_Sym fsym;
9245 memset (&fsym, 0, sizeof (fsym));
9246 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9247 fsym.st_shndx = SHN_ABS;
9248 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &fsym,
9249 bfd_und_section_ptr, NULL))
9252 eoinfo->file_sym_done = TRUE;
9255 indx = bfd_get_symcount (flinfo->output_bfd);
9256 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9259 eoinfo->failed = TRUE;
9264 else if (h->indx == -2)
9270 /* Return TRUE if special handling is done for relocs in SEC against
9271 symbols defined in discarded sections. */
9274 elf_section_ignore_discarded_relocs (asection *sec)
9276 const struct elf_backend_data *bed;
9278 switch (sec->sec_info_type)
9280 case SEC_INFO_TYPE_STABS:
9281 case SEC_INFO_TYPE_EH_FRAME:
9287 bed = get_elf_backend_data (sec->owner);
9288 if (bed->elf_backend_ignore_discarded_relocs != NULL
9289 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9295 /* Return a mask saying how ld should treat relocations in SEC against
9296 symbols defined in discarded sections. If this function returns
9297 COMPLAIN set, ld will issue a warning message. If this function
9298 returns PRETEND set, and the discarded section was link-once and the
9299 same size as the kept link-once section, ld will pretend that the
9300 symbol was actually defined in the kept section. Otherwise ld will
9301 zero the reloc (at least that is the intent, but some cooperation by
9302 the target dependent code is needed, particularly for REL targets). */
9305 _bfd_elf_default_action_discarded (asection *sec)
9307 if (sec->flags & SEC_DEBUGGING)
9310 if (strcmp (".eh_frame", sec->name) == 0)
9313 if (strcmp (".gcc_except_table", sec->name) == 0)
9316 return COMPLAIN | PRETEND;
9319 /* Find a match between a section and a member of a section group. */
9322 match_group_member (asection *sec, asection *group,
9323 struct bfd_link_info *info)
9325 asection *first = elf_next_in_group (group);
9326 asection *s = first;
9330 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9333 s = elf_next_in_group (s);
9341 /* Check if the kept section of a discarded section SEC can be used
9342 to replace it. Return the replacement if it is OK. Otherwise return
9346 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9350 kept = sec->kept_section;
9353 if ((kept->flags & SEC_GROUP) != 0)
9354 kept = match_group_member (sec, kept, info);
9356 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9357 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9359 sec->kept_section = kept;
9364 /* Link an input file into the linker output file. This function
9365 handles all the sections and relocations of the input file at once.
9366 This is so that we only have to read the local symbols once, and
9367 don't have to keep them in memory. */
9370 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9372 int (*relocate_section)
9373 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9374 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9376 Elf_Internal_Shdr *symtab_hdr;
9379 Elf_Internal_Sym *isymbuf;
9380 Elf_Internal_Sym *isym;
9381 Elf_Internal_Sym *isymend;
9383 asection **ppsection;
9385 const struct elf_backend_data *bed;
9386 struct elf_link_hash_entry **sym_hashes;
9387 bfd_size_type address_size;
9388 bfd_vma r_type_mask;
9390 bfd_boolean have_file_sym = FALSE;
9392 output_bfd = flinfo->output_bfd;
9393 bed = get_elf_backend_data (output_bfd);
9394 relocate_section = bed->elf_backend_relocate_section;
9396 /* If this is a dynamic object, we don't want to do anything here:
9397 we don't want the local symbols, and we don't want the section
9399 if ((input_bfd->flags & DYNAMIC) != 0)
9402 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9403 if (elf_bad_symtab (input_bfd))
9405 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9410 locsymcount = symtab_hdr->sh_info;
9411 extsymoff = symtab_hdr->sh_info;
9414 /* Read the local symbols. */
9415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9416 if (isymbuf == NULL && locsymcount != 0)
9418 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9419 flinfo->internal_syms,
9420 flinfo->external_syms,
9421 flinfo->locsym_shndx);
9422 if (isymbuf == NULL)
9426 /* Find local symbol sections and adjust values of symbols in
9427 SEC_MERGE sections. Write out those local symbols we know are
9428 going into the output file. */
9429 isymend = isymbuf + locsymcount;
9430 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9432 isym++, pindex++, ppsection++)
9436 Elf_Internal_Sym osym;
9442 if (elf_bad_symtab (input_bfd))
9444 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9451 if (isym->st_shndx == SHN_UNDEF)
9452 isec = bfd_und_section_ptr;
9453 else if (isym->st_shndx == SHN_ABS)
9454 isec = bfd_abs_section_ptr;
9455 else if (isym->st_shndx == SHN_COMMON)
9456 isec = bfd_com_section_ptr;
9459 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9462 /* Don't attempt to output symbols with st_shnx in the
9463 reserved range other than SHN_ABS and SHN_COMMON. */
9467 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9468 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9470 _bfd_merged_section_offset (output_bfd, &isec,
9471 elf_section_data (isec)->sec_info,
9477 /* Don't output the first, undefined, symbol. In fact, don't
9478 output any undefined local symbol. */
9479 if (isec == bfd_und_section_ptr)
9482 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9484 /* We never output section symbols. Instead, we use the
9485 section symbol of the corresponding section in the output
9490 /* If we are stripping all symbols, we don't want to output this
9492 if (flinfo->info->strip == strip_all)
9495 /* If we are discarding all local symbols, we don't want to
9496 output this one. If we are generating a relocatable output
9497 file, then some of the local symbols may be required by
9498 relocs; we output them below as we discover that they are
9500 if (flinfo->info->discard == discard_all)
9503 /* If this symbol is defined in a section which we are
9504 discarding, we don't need to keep it. */
9505 if (isym->st_shndx != SHN_UNDEF
9506 && isym->st_shndx < SHN_LORESERVE
9507 && bfd_section_removed_from_list (output_bfd,
9508 isec->output_section))
9511 /* Get the name of the symbol. */
9512 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9517 /* See if we are discarding symbols with this name. */
9518 if ((flinfo->info->strip == strip_some
9519 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9521 || (((flinfo->info->discard == discard_sec_merge
9522 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9523 || flinfo->info->discard == discard_l)
9524 && bfd_is_local_label_name (input_bfd, name)))
9527 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9529 if (input_bfd->lto_output)
9530 /* -flto puts a temp file name here. This means builds
9531 are not reproducible. Discard the symbol. */
9533 have_file_sym = TRUE;
9534 flinfo->filesym_count += 1;
9538 /* In the absence of debug info, bfd_find_nearest_line uses
9539 FILE symbols to determine the source file for local
9540 function symbols. Provide a FILE symbol here if input
9541 files lack such, so that their symbols won't be
9542 associated with a previous input file. It's not the
9543 source file, but the best we can do. */
9544 have_file_sym = TRUE;
9545 flinfo->filesym_count += 1;
9546 memset (&osym, 0, sizeof (osym));
9547 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9548 osym.st_shndx = SHN_ABS;
9549 if (!elf_link_output_sym (flinfo,
9550 (input_bfd->lto_output ? NULL
9551 : input_bfd->filename),
9552 &osym, bfd_abs_section_ptr, NULL))
9558 /* Adjust the section index for the output file. */
9559 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9560 isec->output_section);
9561 if (osym.st_shndx == SHN_BAD)
9564 /* ELF symbols in relocatable files are section relative, but
9565 in executable files they are virtual addresses. Note that
9566 this code assumes that all ELF sections have an associated
9567 BFD section with a reasonable value for output_offset; below
9568 we assume that they also have a reasonable value for
9569 output_section. Any special sections must be set up to meet
9570 these requirements. */
9571 osym.st_value += isec->output_offset;
9572 if (!flinfo->info->relocatable)
9574 osym.st_value += isec->output_section->vma;
9575 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9577 /* STT_TLS symbols are relative to PT_TLS segment base. */
9578 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9579 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9583 indx = bfd_get_symcount (output_bfd);
9584 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9591 if (bed->s->arch_size == 32)
9599 r_type_mask = 0xffffffff;
9604 /* Relocate the contents of each section. */
9605 sym_hashes = elf_sym_hashes (input_bfd);
9606 for (o = input_bfd->sections; o != NULL; o = o->next)
9610 if (! o->linker_mark)
9612 /* This section was omitted from the link. */
9616 if (flinfo->info->relocatable
9617 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9619 /* Deal with the group signature symbol. */
9620 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9621 unsigned long symndx = sec_data->this_hdr.sh_info;
9622 asection *osec = o->output_section;
9624 if (symndx >= locsymcount
9625 || (elf_bad_symtab (input_bfd)
9626 && flinfo->sections[symndx] == NULL))
9628 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9629 while (h->root.type == bfd_link_hash_indirect
9630 || h->root.type == bfd_link_hash_warning)
9631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9632 /* Arrange for symbol to be output. */
9634 elf_section_data (osec)->this_hdr.sh_info = -2;
9636 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9638 /* We'll use the output section target_index. */
9639 asection *sec = flinfo->sections[symndx]->output_section;
9640 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9644 if (flinfo->indices[symndx] == -1)
9646 /* Otherwise output the local symbol now. */
9647 Elf_Internal_Sym sym = isymbuf[symndx];
9648 asection *sec = flinfo->sections[symndx]->output_section;
9653 name = bfd_elf_string_from_elf_section (input_bfd,
9654 symtab_hdr->sh_link,
9659 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9661 if (sym.st_shndx == SHN_BAD)
9664 sym.st_value += o->output_offset;
9666 indx = bfd_get_symcount (output_bfd);
9667 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9671 flinfo->indices[symndx] = indx;
9675 elf_section_data (osec)->this_hdr.sh_info
9676 = flinfo->indices[symndx];
9680 if ((o->flags & SEC_HAS_CONTENTS) == 0
9681 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9684 if ((o->flags & SEC_LINKER_CREATED) != 0)
9686 /* Section was created by _bfd_elf_link_create_dynamic_sections
9691 /* Get the contents of the section. They have been cached by a
9692 relaxation routine. Note that o is a section in an input
9693 file, so the contents field will not have been set by any of
9694 the routines which work on output files. */
9695 if (elf_section_data (o)->this_hdr.contents != NULL)
9697 contents = elf_section_data (o)->this_hdr.contents;
9698 if (bed->caches_rawsize
9700 && o->rawsize < o->size)
9702 memcpy (flinfo->contents, contents, o->rawsize);
9703 contents = flinfo->contents;
9708 contents = flinfo->contents;
9709 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9713 if ((o->flags & SEC_RELOC) != 0)
9715 Elf_Internal_Rela *internal_relocs;
9716 Elf_Internal_Rela *rel, *relend;
9717 int action_discarded;
9720 /* Get the swapped relocs. */
9722 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9723 flinfo->internal_relocs, FALSE);
9724 if (internal_relocs == NULL
9725 && o->reloc_count > 0)
9728 /* We need to reverse-copy input .ctors/.dtors sections if
9729 they are placed in .init_array/.finit_array for output. */
9730 if (o->size > address_size
9731 && ((strncmp (o->name, ".ctors", 6) == 0
9732 && strcmp (o->output_section->name,
9733 ".init_array") == 0)
9734 || (strncmp (o->name, ".dtors", 6) == 0
9735 && strcmp (o->output_section->name,
9736 ".fini_array") == 0))
9737 && (o->name[6] == 0 || o->name[6] == '.'))
9739 if (o->size != o->reloc_count * address_size)
9741 (*_bfd_error_handler)
9742 (_("error: %B: size of section %A is not "
9743 "multiple of address size"),
9745 bfd_set_error (bfd_error_on_input);
9748 o->flags |= SEC_ELF_REVERSE_COPY;
9751 action_discarded = -1;
9752 if (!elf_section_ignore_discarded_relocs (o))
9753 action_discarded = (*bed->action_discarded) (o);
9755 /* Run through the relocs evaluating complex reloc symbols and
9756 looking for relocs against symbols from discarded sections
9757 or section symbols from removed link-once sections.
9758 Complain about relocs against discarded sections. Zero
9759 relocs against removed link-once sections. */
9761 rel = internal_relocs;
9762 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9763 for ( ; rel < relend; rel++)
9765 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9766 unsigned int s_type;
9767 asection **ps, *sec;
9768 struct elf_link_hash_entry *h = NULL;
9769 const char *sym_name;
9771 if (r_symndx == STN_UNDEF)
9774 if (r_symndx >= locsymcount
9775 || (elf_bad_symtab (input_bfd)
9776 && flinfo->sections[r_symndx] == NULL))
9778 h = sym_hashes[r_symndx - extsymoff];
9780 /* Badly formatted input files can contain relocs that
9781 reference non-existant symbols. Check here so that
9782 we do not seg fault. */
9787 sprintf_vma (buffer, rel->r_info);
9788 (*_bfd_error_handler)
9789 (_("error: %B contains a reloc (0x%s) for section %A "
9790 "that references a non-existent global symbol"),
9791 input_bfd, o, buffer);
9792 bfd_set_error (bfd_error_bad_value);
9796 while (h->root.type == bfd_link_hash_indirect
9797 || h->root.type == bfd_link_hash_warning)
9798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9802 /* If a plugin symbol is referenced from a non-IR file,
9803 mark the symbol as undefined. Note that the
9804 linker may attach linker created dynamic sections
9805 to the plugin bfd. Symbols defined in linker
9806 created sections are not plugin symbols. */
9807 if (h->root.non_ir_ref
9808 && (h->root.type == bfd_link_hash_defined
9809 || h->root.type == bfd_link_hash_defweak)
9810 && (h->root.u.def.section->flags
9811 & SEC_LINKER_CREATED) == 0
9812 && h->root.u.def.section->owner != NULL
9813 && (h->root.u.def.section->owner->flags
9816 h->root.type = bfd_link_hash_undefined;
9817 h->root.u.undef.abfd = h->root.u.def.section->owner;
9821 if (h->root.type == bfd_link_hash_defined
9822 || h->root.type == bfd_link_hash_defweak)
9823 ps = &h->root.u.def.section;
9825 sym_name = h->root.root.string;
9829 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9831 s_type = ELF_ST_TYPE (sym->st_info);
9832 ps = &flinfo->sections[r_symndx];
9833 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9837 if ((s_type == STT_RELC || s_type == STT_SRELC)
9838 && !flinfo->info->relocatable)
9841 bfd_vma dot = (rel->r_offset
9842 + o->output_offset + o->output_section->vma);
9844 printf ("Encountered a complex symbol!");
9845 printf (" (input_bfd %s, section %s, reloc %ld\n",
9846 input_bfd->filename, o->name,
9847 (long) (rel - internal_relocs));
9848 printf (" symbol: idx %8.8lx, name %s\n",
9849 r_symndx, sym_name);
9850 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9851 (unsigned long) rel->r_info,
9852 (unsigned long) rel->r_offset);
9854 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9855 isymbuf, locsymcount, s_type == STT_SRELC))
9858 /* Symbol evaluated OK. Update to absolute value. */
9859 set_symbol_value (input_bfd, isymbuf, locsymcount,
9864 if (action_discarded != -1 && ps != NULL)
9866 /* Complain if the definition comes from a
9867 discarded section. */
9868 if ((sec = *ps) != NULL && discarded_section (sec))
9870 BFD_ASSERT (r_symndx != STN_UNDEF);
9871 if (action_discarded & COMPLAIN)
9872 (*flinfo->info->callbacks->einfo)
9873 (_("%X`%s' referenced in section `%A' of %B: "
9874 "defined in discarded section `%A' of %B\n"),
9875 sym_name, o, input_bfd, sec, sec->owner);
9877 /* Try to do the best we can to support buggy old
9878 versions of gcc. Pretend that the symbol is
9879 really defined in the kept linkonce section.
9880 FIXME: This is quite broken. Modifying the
9881 symbol here means we will be changing all later
9882 uses of the symbol, not just in this section. */
9883 if (action_discarded & PRETEND)
9887 kept = _bfd_elf_check_kept_section (sec,
9899 /* Relocate the section by invoking a back end routine.
9901 The back end routine is responsible for adjusting the
9902 section contents as necessary, and (if using Rela relocs
9903 and generating a relocatable output file) adjusting the
9904 reloc addend as necessary.
9906 The back end routine does not have to worry about setting
9907 the reloc address or the reloc symbol index.
9909 The back end routine is given a pointer to the swapped in
9910 internal symbols, and can access the hash table entries
9911 for the external symbols via elf_sym_hashes (input_bfd).
9913 When generating relocatable output, the back end routine
9914 must handle STB_LOCAL/STT_SECTION symbols specially. The
9915 output symbol is going to be a section symbol
9916 corresponding to the output section, which will require
9917 the addend to be adjusted. */
9919 ret = (*relocate_section) (output_bfd, flinfo->info,
9920 input_bfd, o, contents,
9928 || flinfo->info->relocatable
9929 || flinfo->info->emitrelocations)
9931 Elf_Internal_Rela *irela;
9932 Elf_Internal_Rela *irelaend, *irelamid;
9933 bfd_vma last_offset;
9934 struct elf_link_hash_entry **rel_hash;
9935 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9936 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9937 unsigned int next_erel;
9938 bfd_boolean rela_normal;
9939 struct bfd_elf_section_data *esdi, *esdo;
9941 esdi = elf_section_data (o);
9942 esdo = elf_section_data (o->output_section);
9943 rela_normal = FALSE;
9945 /* Adjust the reloc addresses and symbol indices. */
9947 irela = internal_relocs;
9948 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9949 rel_hash = esdo->rel.hashes + esdo->rel.count;
9950 /* We start processing the REL relocs, if any. When we reach
9951 IRELAMID in the loop, we switch to the RELA relocs. */
9953 if (esdi->rel.hdr != NULL)
9954 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9955 * bed->s->int_rels_per_ext_rel);
9956 rel_hash_list = rel_hash;
9957 rela_hash_list = NULL;
9958 last_offset = o->output_offset;
9959 if (!flinfo->info->relocatable)
9960 last_offset += o->output_section->vma;
9961 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9963 unsigned long r_symndx;
9965 Elf_Internal_Sym sym;
9967 if (next_erel == bed->s->int_rels_per_ext_rel)
9973 if (irela == irelamid)
9975 rel_hash = esdo->rela.hashes + esdo->rela.count;
9976 rela_hash_list = rel_hash;
9977 rela_normal = bed->rela_normal;
9980 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9983 if (irela->r_offset >= (bfd_vma) -2)
9985 /* This is a reloc for a deleted entry or somesuch.
9986 Turn it into an R_*_NONE reloc, at the same
9987 offset as the last reloc. elf_eh_frame.c and
9988 bfd_elf_discard_info rely on reloc offsets
9990 irela->r_offset = last_offset;
9992 irela->r_addend = 0;
9996 irela->r_offset += o->output_offset;
9998 /* Relocs in an executable have to be virtual addresses. */
9999 if (!flinfo->info->relocatable)
10000 irela->r_offset += o->output_section->vma;
10002 last_offset = irela->r_offset;
10004 r_symndx = irela->r_info >> r_sym_shift;
10005 if (r_symndx == STN_UNDEF)
10008 if (r_symndx >= locsymcount
10009 || (elf_bad_symtab (input_bfd)
10010 && flinfo->sections[r_symndx] == NULL))
10012 struct elf_link_hash_entry *rh;
10013 unsigned long indx;
10015 /* This is a reloc against a global symbol. We
10016 have not yet output all the local symbols, so
10017 we do not know the symbol index of any global
10018 symbol. We set the rel_hash entry for this
10019 reloc to point to the global hash table entry
10020 for this symbol. The symbol index is then
10021 set at the end of bfd_elf_final_link. */
10022 indx = r_symndx - extsymoff;
10023 rh = elf_sym_hashes (input_bfd)[indx];
10024 while (rh->root.type == bfd_link_hash_indirect
10025 || rh->root.type == bfd_link_hash_warning)
10026 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10028 /* Setting the index to -2 tells
10029 elf_link_output_extsym that this symbol is
10030 used by a reloc. */
10031 BFD_ASSERT (rh->indx < 0);
10039 /* This is a reloc against a local symbol. */
10042 sym = isymbuf[r_symndx];
10043 sec = flinfo->sections[r_symndx];
10044 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10046 /* I suppose the backend ought to fill in the
10047 section of any STT_SECTION symbol against a
10048 processor specific section. */
10049 r_symndx = STN_UNDEF;
10050 if (bfd_is_abs_section (sec))
10052 else if (sec == NULL || sec->owner == NULL)
10054 bfd_set_error (bfd_error_bad_value);
10059 asection *osec = sec->output_section;
10061 /* If we have discarded a section, the output
10062 section will be the absolute section. In
10063 case of discarded SEC_MERGE sections, use
10064 the kept section. relocate_section should
10065 have already handled discarded linkonce
10067 if (bfd_is_abs_section (osec)
10068 && sec->kept_section != NULL
10069 && sec->kept_section->output_section != NULL)
10071 osec = sec->kept_section->output_section;
10072 irela->r_addend -= osec->vma;
10075 if (!bfd_is_abs_section (osec))
10077 r_symndx = osec->target_index;
10078 if (r_symndx == STN_UNDEF)
10080 irela->r_addend += osec->vma;
10081 osec = _bfd_nearby_section (output_bfd, osec,
10083 irela->r_addend -= osec->vma;
10084 r_symndx = osec->target_index;
10089 /* Adjust the addend according to where the
10090 section winds up in the output section. */
10092 irela->r_addend += sec->output_offset;
10096 if (flinfo->indices[r_symndx] == -1)
10098 unsigned long shlink;
10103 if (flinfo->info->strip == strip_all)
10105 /* You can't do ld -r -s. */
10106 bfd_set_error (bfd_error_invalid_operation);
10110 /* This symbol was skipped earlier, but
10111 since it is needed by a reloc, we
10112 must output it now. */
10113 shlink = symtab_hdr->sh_link;
10114 name = (bfd_elf_string_from_elf_section
10115 (input_bfd, shlink, sym.st_name));
10119 osec = sec->output_section;
10121 _bfd_elf_section_from_bfd_section (output_bfd,
10123 if (sym.st_shndx == SHN_BAD)
10126 sym.st_value += sec->output_offset;
10127 if (!flinfo->info->relocatable)
10129 sym.st_value += osec->vma;
10130 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10132 /* STT_TLS symbols are relative to PT_TLS
10134 BFD_ASSERT (elf_hash_table (flinfo->info)
10135 ->tls_sec != NULL);
10136 sym.st_value -= (elf_hash_table (flinfo->info)
10141 indx = bfd_get_symcount (output_bfd);
10142 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10147 flinfo->indices[r_symndx] = indx;
10152 r_symndx = flinfo->indices[r_symndx];
10155 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10156 | (irela->r_info & r_type_mask));
10159 /* Swap out the relocs. */
10160 input_rel_hdr = esdi->rel.hdr;
10161 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10163 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10168 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10169 * bed->s->int_rels_per_ext_rel);
10170 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10173 input_rela_hdr = esdi->rela.hdr;
10174 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10176 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10185 /* Write out the modified section contents. */
10186 if (bed->elf_backend_write_section
10187 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10190 /* Section written out. */
10192 else switch (o->sec_info_type)
10194 case SEC_INFO_TYPE_STABS:
10195 if (! (_bfd_write_section_stabs
10197 &elf_hash_table (flinfo->info)->stab_info,
10198 o, &elf_section_data (o)->sec_info, contents)))
10201 case SEC_INFO_TYPE_MERGE:
10202 if (! _bfd_write_merged_section (output_bfd, o,
10203 elf_section_data (o)->sec_info))
10206 case SEC_INFO_TYPE_EH_FRAME:
10208 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10215 /* FIXME: octets_per_byte. */
10216 if (! (o->flags & SEC_EXCLUDE))
10218 file_ptr offset = (file_ptr) o->output_offset;
10219 bfd_size_type todo = o->size;
10220 if ((o->flags & SEC_ELF_REVERSE_COPY))
10222 /* Reverse-copy input section to output. */
10225 todo -= address_size;
10226 if (! bfd_set_section_contents (output_bfd,
10234 offset += address_size;
10238 else if (! bfd_set_section_contents (output_bfd,
10252 /* Generate a reloc when linking an ELF file. This is a reloc
10253 requested by the linker, and does not come from any input file. This
10254 is used to build constructor and destructor tables when linking
10258 elf_reloc_link_order (bfd *output_bfd,
10259 struct bfd_link_info *info,
10260 asection *output_section,
10261 struct bfd_link_order *link_order)
10263 reloc_howto_type *howto;
10267 struct bfd_elf_section_reloc_data *reldata;
10268 struct elf_link_hash_entry **rel_hash_ptr;
10269 Elf_Internal_Shdr *rel_hdr;
10270 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10271 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10274 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10276 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10279 bfd_set_error (bfd_error_bad_value);
10283 addend = link_order->u.reloc.p->addend;
10286 reldata = &esdo->rel;
10287 else if (esdo->rela.hdr)
10288 reldata = &esdo->rela;
10295 /* Figure out the symbol index. */
10296 rel_hash_ptr = reldata->hashes + reldata->count;
10297 if (link_order->type == bfd_section_reloc_link_order)
10299 indx = link_order->u.reloc.p->u.section->target_index;
10300 BFD_ASSERT (indx != 0);
10301 *rel_hash_ptr = NULL;
10305 struct elf_link_hash_entry *h;
10307 /* Treat a reloc against a defined symbol as though it were
10308 actually against the section. */
10309 h = ((struct elf_link_hash_entry *)
10310 bfd_wrapped_link_hash_lookup (output_bfd, info,
10311 link_order->u.reloc.p->u.name,
10312 FALSE, FALSE, TRUE));
10314 && (h->root.type == bfd_link_hash_defined
10315 || h->root.type == bfd_link_hash_defweak))
10319 section = h->root.u.def.section;
10320 indx = section->output_section->target_index;
10321 *rel_hash_ptr = NULL;
10322 /* It seems that we ought to add the symbol value to the
10323 addend here, but in practice it has already been added
10324 because it was passed to constructor_callback. */
10325 addend += section->output_section->vma + section->output_offset;
10327 else if (h != NULL)
10329 /* Setting the index to -2 tells elf_link_output_extsym that
10330 this symbol is used by a reloc. */
10337 if (! ((*info->callbacks->unattached_reloc)
10338 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10344 /* If this is an inplace reloc, we must write the addend into the
10346 if (howto->partial_inplace && addend != 0)
10348 bfd_size_type size;
10349 bfd_reloc_status_type rstat;
10352 const char *sym_name;
10354 size = (bfd_size_type) bfd_get_reloc_size (howto);
10355 buf = (bfd_byte *) bfd_zmalloc (size);
10356 if (buf == NULL && size != 0)
10358 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10365 case bfd_reloc_outofrange:
10368 case bfd_reloc_overflow:
10369 if (link_order->type == bfd_section_reloc_link_order)
10370 sym_name = bfd_section_name (output_bfd,
10371 link_order->u.reloc.p->u.section);
10373 sym_name = link_order->u.reloc.p->u.name;
10374 if (! ((*info->callbacks->reloc_overflow)
10375 (info, NULL, sym_name, howto->name, addend, NULL,
10376 NULL, (bfd_vma) 0)))
10383 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10384 link_order->offset, size);
10390 /* The address of a reloc is relative to the section in a
10391 relocatable file, and is a virtual address in an executable
10393 offset = link_order->offset;
10394 if (! info->relocatable)
10395 offset += output_section->vma;
10397 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10399 irel[i].r_offset = offset;
10400 irel[i].r_info = 0;
10401 irel[i].r_addend = 0;
10403 if (bed->s->arch_size == 32)
10404 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10406 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10408 rel_hdr = reldata->hdr;
10409 erel = rel_hdr->contents;
10410 if (rel_hdr->sh_type == SHT_REL)
10412 erel += reldata->count * bed->s->sizeof_rel;
10413 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10417 irel[0].r_addend = addend;
10418 erel += reldata->count * bed->s->sizeof_rela;
10419 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10428 /* Get the output vma of the section pointed to by the sh_link field. */
10431 elf_get_linked_section_vma (struct bfd_link_order *p)
10433 Elf_Internal_Shdr **elf_shdrp;
10437 s = p->u.indirect.section;
10438 elf_shdrp = elf_elfsections (s->owner);
10439 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10440 elfsec = elf_shdrp[elfsec]->sh_link;
10442 The Intel C compiler generates SHT_IA_64_UNWIND with
10443 SHF_LINK_ORDER. But it doesn't set the sh_link or
10444 sh_info fields. Hence we could get the situation
10445 where elfsec is 0. */
10448 const struct elf_backend_data *bed
10449 = get_elf_backend_data (s->owner);
10450 if (bed->link_order_error_handler)
10451 bed->link_order_error_handler
10452 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10457 s = elf_shdrp[elfsec]->bfd_section;
10458 return s->output_section->vma + s->output_offset;
10463 /* Compare two sections based on the locations of the sections they are
10464 linked to. Used by elf_fixup_link_order. */
10467 compare_link_order (const void * a, const void * b)
10472 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10473 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10476 return apos > bpos;
10480 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10481 order as their linked sections. Returns false if this could not be done
10482 because an output section includes both ordered and unordered
10483 sections. Ideally we'd do this in the linker proper. */
10486 elf_fixup_link_order (bfd *abfd, asection *o)
10488 int seen_linkorder;
10491 struct bfd_link_order *p;
10493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10495 struct bfd_link_order **sections;
10496 asection *s, *other_sec, *linkorder_sec;
10500 linkorder_sec = NULL;
10502 seen_linkorder = 0;
10503 for (p = o->map_head.link_order; p != NULL; p = p->next)
10505 if (p->type == bfd_indirect_link_order)
10507 s = p->u.indirect.section;
10509 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10510 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10511 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10512 && elfsec < elf_numsections (sub)
10513 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10514 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10528 if (seen_other && seen_linkorder)
10530 if (other_sec && linkorder_sec)
10531 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10533 linkorder_sec->owner, other_sec,
10536 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10538 bfd_set_error (bfd_error_bad_value);
10543 if (!seen_linkorder)
10546 sections = (struct bfd_link_order **)
10547 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10548 if (sections == NULL)
10550 seen_linkorder = 0;
10552 for (p = o->map_head.link_order; p != NULL; p = p->next)
10554 sections[seen_linkorder++] = p;
10556 /* Sort the input sections in the order of their linked section. */
10557 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10558 compare_link_order);
10560 /* Change the offsets of the sections. */
10562 for (n = 0; n < seen_linkorder; n++)
10564 s = sections[n]->u.indirect.section;
10565 offset &= ~(bfd_vma) 0 << s->alignment_power;
10566 s->output_offset = offset;
10567 sections[n]->offset = offset;
10568 /* FIXME: octets_per_byte. */
10569 offset += sections[n]->size;
10577 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10581 if (flinfo->symstrtab != NULL)
10582 _bfd_stringtab_free (flinfo->symstrtab);
10583 if (flinfo->contents != NULL)
10584 free (flinfo->contents);
10585 if (flinfo->external_relocs != NULL)
10586 free (flinfo->external_relocs);
10587 if (flinfo->internal_relocs != NULL)
10588 free (flinfo->internal_relocs);
10589 if (flinfo->external_syms != NULL)
10590 free (flinfo->external_syms);
10591 if (flinfo->locsym_shndx != NULL)
10592 free (flinfo->locsym_shndx);
10593 if (flinfo->internal_syms != NULL)
10594 free (flinfo->internal_syms);
10595 if (flinfo->indices != NULL)
10596 free (flinfo->indices);
10597 if (flinfo->sections != NULL)
10598 free (flinfo->sections);
10599 if (flinfo->symbuf != NULL)
10600 free (flinfo->symbuf);
10601 if (flinfo->symshndxbuf != NULL)
10602 free (flinfo->symshndxbuf);
10603 for (o = obfd->sections; o != NULL; o = o->next)
10605 struct bfd_elf_section_data *esdo = elf_section_data (o);
10606 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10607 free (esdo->rel.hashes);
10608 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10609 free (esdo->rela.hashes);
10613 /* Do the final step of an ELF link. */
10616 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10618 bfd_boolean dynamic;
10619 bfd_boolean emit_relocs;
10621 struct elf_final_link_info flinfo;
10623 struct bfd_link_order *p;
10625 bfd_size_type max_contents_size;
10626 bfd_size_type max_external_reloc_size;
10627 bfd_size_type max_internal_reloc_count;
10628 bfd_size_type max_sym_count;
10629 bfd_size_type max_sym_shndx_count;
10630 Elf_Internal_Sym elfsym;
10632 Elf_Internal_Shdr *symtab_hdr;
10633 Elf_Internal_Shdr *symtab_shndx_hdr;
10634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10635 struct elf_outext_info eoinfo;
10636 bfd_boolean merged;
10637 size_t relativecount = 0;
10638 asection *reldyn = 0;
10640 asection *attr_section = NULL;
10641 bfd_vma attr_size = 0;
10642 const char *std_attrs_section;
10644 if (! is_elf_hash_table (info->hash))
10648 abfd->flags |= DYNAMIC;
10650 dynamic = elf_hash_table (info)->dynamic_sections_created;
10651 dynobj = elf_hash_table (info)->dynobj;
10653 emit_relocs = (info->relocatable
10654 || info->emitrelocations);
10656 flinfo.info = info;
10657 flinfo.output_bfd = abfd;
10658 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10659 if (flinfo.symstrtab == NULL)
10664 flinfo.dynsym_sec = NULL;
10665 flinfo.hash_sec = NULL;
10666 flinfo.symver_sec = NULL;
10670 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10671 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10672 /* Note that dynsym_sec can be NULL (on VMS). */
10673 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10674 /* Note that it is OK if symver_sec is NULL. */
10677 flinfo.contents = NULL;
10678 flinfo.external_relocs = NULL;
10679 flinfo.internal_relocs = NULL;
10680 flinfo.external_syms = NULL;
10681 flinfo.locsym_shndx = NULL;
10682 flinfo.internal_syms = NULL;
10683 flinfo.indices = NULL;
10684 flinfo.sections = NULL;
10685 flinfo.symbuf = NULL;
10686 flinfo.symshndxbuf = NULL;
10687 flinfo.symbuf_count = 0;
10688 flinfo.shndxbuf_size = 0;
10689 flinfo.filesym_count = 0;
10691 /* The object attributes have been merged. Remove the input
10692 sections from the link, and set the contents of the output
10694 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10695 for (o = abfd->sections; o != NULL; o = o->next)
10697 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10698 || strcmp (o->name, ".gnu.attributes") == 0)
10700 for (p = o->map_head.link_order; p != NULL; p = p->next)
10702 asection *input_section;
10704 if (p->type != bfd_indirect_link_order)
10706 input_section = p->u.indirect.section;
10707 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10708 elf_link_input_bfd ignores this section. */
10709 input_section->flags &= ~SEC_HAS_CONTENTS;
10712 attr_size = bfd_elf_obj_attr_size (abfd);
10715 bfd_set_section_size (abfd, o, attr_size);
10717 /* Skip this section later on. */
10718 o->map_head.link_order = NULL;
10721 o->flags |= SEC_EXCLUDE;
10725 /* Count up the number of relocations we will output for each output
10726 section, so that we know the sizes of the reloc sections. We
10727 also figure out some maximum sizes. */
10728 max_contents_size = 0;
10729 max_external_reloc_size = 0;
10730 max_internal_reloc_count = 0;
10732 max_sym_shndx_count = 0;
10734 for (o = abfd->sections; o != NULL; o = o->next)
10736 struct bfd_elf_section_data *esdo = elf_section_data (o);
10737 o->reloc_count = 0;
10739 for (p = o->map_head.link_order; p != NULL; p = p->next)
10741 unsigned int reloc_count = 0;
10742 struct bfd_elf_section_data *esdi = NULL;
10744 if (p->type == bfd_section_reloc_link_order
10745 || p->type == bfd_symbol_reloc_link_order)
10747 else if (p->type == bfd_indirect_link_order)
10751 sec = p->u.indirect.section;
10752 esdi = elf_section_data (sec);
10754 /* Mark all sections which are to be included in the
10755 link. This will normally be every section. We need
10756 to do this so that we can identify any sections which
10757 the linker has decided to not include. */
10758 sec->linker_mark = TRUE;
10760 if (sec->flags & SEC_MERGE)
10763 if (esdo->this_hdr.sh_type == SHT_REL
10764 || esdo->this_hdr.sh_type == SHT_RELA)
10765 /* Some backends use reloc_count in relocation sections
10766 to count particular types of relocs. Of course,
10767 reloc sections themselves can't have relocations. */
10769 else if (info->relocatable || info->emitrelocations)
10770 reloc_count = sec->reloc_count;
10771 else if (bed->elf_backend_count_relocs)
10772 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10774 if (sec->rawsize > max_contents_size)
10775 max_contents_size = sec->rawsize;
10776 if (sec->size > max_contents_size)
10777 max_contents_size = sec->size;
10779 /* We are interested in just local symbols, not all
10781 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10782 && (sec->owner->flags & DYNAMIC) == 0)
10786 if (elf_bad_symtab (sec->owner))
10787 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10788 / bed->s->sizeof_sym);
10790 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10792 if (sym_count > max_sym_count)
10793 max_sym_count = sym_count;
10795 if (sym_count > max_sym_shndx_count
10796 && elf_symtab_shndx (sec->owner) != 0)
10797 max_sym_shndx_count = sym_count;
10799 if ((sec->flags & SEC_RELOC) != 0)
10801 size_t ext_size = 0;
10803 if (esdi->rel.hdr != NULL)
10804 ext_size = esdi->rel.hdr->sh_size;
10805 if (esdi->rela.hdr != NULL)
10806 ext_size += esdi->rela.hdr->sh_size;
10808 if (ext_size > max_external_reloc_size)
10809 max_external_reloc_size = ext_size;
10810 if (sec->reloc_count > max_internal_reloc_count)
10811 max_internal_reloc_count = sec->reloc_count;
10816 if (reloc_count == 0)
10819 o->reloc_count += reloc_count;
10821 if (p->type == bfd_indirect_link_order
10822 && (info->relocatable || info->emitrelocations))
10825 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10826 if (esdi->rela.hdr)
10827 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10832 esdo->rela.count += reloc_count;
10834 esdo->rel.count += reloc_count;
10838 if (o->reloc_count > 0)
10839 o->flags |= SEC_RELOC;
10842 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10843 set it (this is probably a bug) and if it is set
10844 assign_section_numbers will create a reloc section. */
10845 o->flags &=~ SEC_RELOC;
10848 /* If the SEC_ALLOC flag is not set, force the section VMA to
10849 zero. This is done in elf_fake_sections as well, but forcing
10850 the VMA to 0 here will ensure that relocs against these
10851 sections are handled correctly. */
10852 if ((o->flags & SEC_ALLOC) == 0
10853 && ! o->user_set_vma)
10857 if (! info->relocatable && merged)
10858 elf_link_hash_traverse (elf_hash_table (info),
10859 _bfd_elf_link_sec_merge_syms, abfd);
10861 /* Figure out the file positions for everything but the symbol table
10862 and the relocs. We set symcount to force assign_section_numbers
10863 to create a symbol table. */
10864 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10865 BFD_ASSERT (! abfd->output_has_begun);
10866 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10869 /* Set sizes, and assign file positions for reloc sections. */
10870 for (o = abfd->sections; o != NULL; o = o->next)
10872 struct bfd_elf_section_data *esdo = elf_section_data (o);
10873 if ((o->flags & SEC_RELOC) != 0)
10876 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10880 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10884 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10885 to count upwards while actually outputting the relocations. */
10886 esdo->rel.count = 0;
10887 esdo->rela.count = 0;
10890 /* We have now assigned file positions for all the sections except
10891 .symtab, .strtab, and non-loaded reloc sections. We start the
10892 .symtab section at the current file position, and write directly
10893 to it. We build the .strtab section in memory. */
10894 bfd_get_symcount (abfd) = 0;
10895 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10896 /* sh_name is set in prep_headers. */
10897 symtab_hdr->sh_type = SHT_SYMTAB;
10898 /* sh_flags, sh_addr and sh_size all start off zero. */
10899 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10900 /* sh_link is set in assign_section_numbers. */
10901 /* sh_info is set below. */
10902 /* sh_offset is set just below. */
10903 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10905 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10906 continuously seeking to the right position in the file. */
10907 if (! info->keep_memory || max_sym_count < 20)
10908 flinfo.symbuf_size = 20;
10910 flinfo.symbuf_size = max_sym_count;
10911 amt = flinfo.symbuf_size;
10912 amt *= bed->s->sizeof_sym;
10913 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10914 if (flinfo.symbuf == NULL)
10916 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10918 /* Wild guess at number of output symbols. realloc'd as needed. */
10919 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10920 flinfo.shndxbuf_size = amt;
10921 amt *= sizeof (Elf_External_Sym_Shndx);
10922 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10923 if (flinfo.symshndxbuf == NULL)
10927 if (info->strip != strip_all || emit_relocs)
10929 file_ptr off = elf_next_file_pos (abfd);
10931 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10933 /* Note that at this point elf_next_file_pos (abfd) is
10934 incorrect. We do not yet know the size of the .symtab section.
10935 We correct next_file_pos below, after we do know the size. */
10937 /* Start writing out the symbol table. The first symbol is always a
10939 elfsym.st_value = 0;
10940 elfsym.st_size = 0;
10941 elfsym.st_info = 0;
10942 elfsym.st_other = 0;
10943 elfsym.st_shndx = SHN_UNDEF;
10944 elfsym.st_target_internal = 0;
10945 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10949 /* Output a symbol for each section. We output these even if we are
10950 discarding local symbols, since they are used for relocs. These
10951 symbols have no names. We store the index of each one in the
10952 index field of the section, so that we can find it again when
10953 outputting relocs. */
10955 elfsym.st_size = 0;
10956 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10957 elfsym.st_other = 0;
10958 elfsym.st_value = 0;
10959 elfsym.st_target_internal = 0;
10960 for (i = 1; i < elf_numsections (abfd); i++)
10962 o = bfd_section_from_elf_index (abfd, i);
10965 o->target_index = bfd_get_symcount (abfd);
10966 elfsym.st_shndx = i;
10967 if (!info->relocatable)
10968 elfsym.st_value = o->vma;
10969 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10975 /* Allocate some memory to hold information read in from the input
10977 if (max_contents_size != 0)
10979 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10980 if (flinfo.contents == NULL)
10984 if (max_external_reloc_size != 0)
10986 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10987 if (flinfo.external_relocs == NULL)
10991 if (max_internal_reloc_count != 0)
10993 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10994 amt *= sizeof (Elf_Internal_Rela);
10995 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10996 if (flinfo.internal_relocs == NULL)
11000 if (max_sym_count != 0)
11002 amt = max_sym_count * bed->s->sizeof_sym;
11003 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11004 if (flinfo.external_syms == NULL)
11007 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11008 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11009 if (flinfo.internal_syms == NULL)
11012 amt = max_sym_count * sizeof (long);
11013 flinfo.indices = (long int *) bfd_malloc (amt);
11014 if (flinfo.indices == NULL)
11017 amt = max_sym_count * sizeof (asection *);
11018 flinfo.sections = (asection **) bfd_malloc (amt);
11019 if (flinfo.sections == NULL)
11023 if (max_sym_shndx_count != 0)
11025 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11026 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11027 if (flinfo.locsym_shndx == NULL)
11031 if (elf_hash_table (info)->tls_sec)
11033 bfd_vma base, end = 0;
11036 for (sec = elf_hash_table (info)->tls_sec;
11037 sec && (sec->flags & SEC_THREAD_LOCAL);
11040 bfd_size_type size = sec->size;
11043 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11045 struct bfd_link_order *ord = sec->map_tail.link_order;
11048 size = ord->offset + ord->size;
11050 end = sec->vma + size;
11052 base = elf_hash_table (info)->tls_sec->vma;
11053 /* Only align end of TLS section if static TLS doesn't have special
11054 alignment requirements. */
11055 if (bed->static_tls_alignment == 1)
11056 end = align_power (end,
11057 elf_hash_table (info)->tls_sec->alignment_power);
11058 elf_hash_table (info)->tls_size = end - base;
11061 /* Reorder SHF_LINK_ORDER sections. */
11062 for (o = abfd->sections; o != NULL; o = o->next)
11064 if (!elf_fixup_link_order (abfd, o))
11068 /* Since ELF permits relocations to be against local symbols, we
11069 must have the local symbols available when we do the relocations.
11070 Since we would rather only read the local symbols once, and we
11071 would rather not keep them in memory, we handle all the
11072 relocations for a single input file at the same time.
11074 Unfortunately, there is no way to know the total number of local
11075 symbols until we have seen all of them, and the local symbol
11076 indices precede the global symbol indices. This means that when
11077 we are generating relocatable output, and we see a reloc against
11078 a global symbol, we can not know the symbol index until we have
11079 finished examining all the local symbols to see which ones we are
11080 going to output. To deal with this, we keep the relocations in
11081 memory, and don't output them until the end of the link. This is
11082 an unfortunate waste of memory, but I don't see a good way around
11083 it. Fortunately, it only happens when performing a relocatable
11084 link, which is not the common case. FIXME: If keep_memory is set
11085 we could write the relocs out and then read them again; I don't
11086 know how bad the memory loss will be. */
11088 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11089 sub->output_has_begun = FALSE;
11090 for (o = abfd->sections; o != NULL; o = o->next)
11092 for (p = o->map_head.link_order; p != NULL; p = p->next)
11094 if (p->type == bfd_indirect_link_order
11095 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11096 == bfd_target_elf_flavour)
11097 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11099 if (! sub->output_has_begun)
11101 if (! elf_link_input_bfd (&flinfo, sub))
11103 sub->output_has_begun = TRUE;
11106 else if (p->type == bfd_section_reloc_link_order
11107 || p->type == bfd_symbol_reloc_link_order)
11109 if (! elf_reloc_link_order (abfd, info, o, p))
11114 if (! _bfd_default_link_order (abfd, info, o, p))
11116 if (p->type == bfd_indirect_link_order
11117 && (bfd_get_flavour (sub)
11118 == bfd_target_elf_flavour)
11119 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11120 != bed->s->elfclass))
11122 const char *iclass, *oclass;
11124 if (bed->s->elfclass == ELFCLASS64)
11126 iclass = "ELFCLASS32";
11127 oclass = "ELFCLASS64";
11131 iclass = "ELFCLASS64";
11132 oclass = "ELFCLASS32";
11135 bfd_set_error (bfd_error_wrong_format);
11136 (*_bfd_error_handler)
11137 (_("%B: file class %s incompatible with %s"),
11138 sub, iclass, oclass);
11147 /* Free symbol buffer if needed. */
11148 if (!info->reduce_memory_overheads)
11150 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11151 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11152 && elf_tdata (sub)->symbuf)
11154 free (elf_tdata (sub)->symbuf);
11155 elf_tdata (sub)->symbuf = NULL;
11159 /* Output any global symbols that got converted to local in a
11160 version script or due to symbol visibility. We do this in a
11161 separate step since ELF requires all local symbols to appear
11162 prior to any global symbols. FIXME: We should only do this if
11163 some global symbols were, in fact, converted to become local.
11164 FIXME: Will this work correctly with the Irix 5 linker? */
11165 eoinfo.failed = FALSE;
11166 eoinfo.flinfo = &flinfo;
11167 eoinfo.localsyms = TRUE;
11168 eoinfo.file_sym_done = FALSE;
11169 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11173 /* If backend needs to output some local symbols not present in the hash
11174 table, do it now. */
11175 if (bed->elf_backend_output_arch_local_syms
11176 && (info->strip != strip_all || emit_relocs))
11178 typedef int (*out_sym_func)
11179 (void *, const char *, Elf_Internal_Sym *, asection *,
11180 struct elf_link_hash_entry *);
11182 if (! ((*bed->elf_backend_output_arch_local_syms)
11183 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11187 /* That wrote out all the local symbols. Finish up the symbol table
11188 with the global symbols. Even if we want to strip everything we
11189 can, we still need to deal with those global symbols that got
11190 converted to local in a version script. */
11192 /* The sh_info field records the index of the first non local symbol. */
11193 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11196 && flinfo.dynsym_sec != NULL
11197 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11199 Elf_Internal_Sym sym;
11200 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11201 long last_local = 0;
11203 /* Write out the section symbols for the output sections. */
11204 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11210 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11212 sym.st_target_internal = 0;
11214 for (s = abfd->sections; s != NULL; s = s->next)
11220 dynindx = elf_section_data (s)->dynindx;
11223 indx = elf_section_data (s)->this_idx;
11224 BFD_ASSERT (indx > 0);
11225 sym.st_shndx = indx;
11226 if (! check_dynsym (abfd, &sym))
11228 sym.st_value = s->vma;
11229 dest = dynsym + dynindx * bed->s->sizeof_sym;
11230 if (last_local < dynindx)
11231 last_local = dynindx;
11232 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11236 /* Write out the local dynsyms. */
11237 if (elf_hash_table (info)->dynlocal)
11239 struct elf_link_local_dynamic_entry *e;
11240 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11245 /* Copy the internal symbol and turn off visibility.
11246 Note that we saved a word of storage and overwrote
11247 the original st_name with the dynstr_index. */
11249 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11251 s = bfd_section_from_elf_index (e->input_bfd,
11256 elf_section_data (s->output_section)->this_idx;
11257 if (! check_dynsym (abfd, &sym))
11259 sym.st_value = (s->output_section->vma
11261 + e->isym.st_value);
11264 if (last_local < e->dynindx)
11265 last_local = e->dynindx;
11267 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11268 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11272 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11276 /* We get the global symbols from the hash table. */
11277 eoinfo.failed = FALSE;
11278 eoinfo.localsyms = FALSE;
11279 eoinfo.flinfo = &flinfo;
11280 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11284 /* If backend needs to output some symbols not present in the hash
11285 table, do it now. */
11286 if (bed->elf_backend_output_arch_syms
11287 && (info->strip != strip_all || emit_relocs))
11289 typedef int (*out_sym_func)
11290 (void *, const char *, Elf_Internal_Sym *, asection *,
11291 struct elf_link_hash_entry *);
11293 if (! ((*bed->elf_backend_output_arch_syms)
11294 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11298 /* Flush all symbols to the file. */
11299 if (! elf_link_flush_output_syms (&flinfo, bed))
11302 /* Now we know the size of the symtab section. */
11303 if (bfd_get_symcount (abfd) > 0)
11305 /* Finish up and write out the symbol string table (.strtab)
11307 Elf_Internal_Shdr *symstrtab_hdr;
11308 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11310 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11311 if (symtab_shndx_hdr->sh_name != 0)
11313 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11314 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11315 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11316 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11317 symtab_shndx_hdr->sh_size = amt;
11319 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11322 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11323 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11327 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11328 /* sh_name was set in prep_headers. */
11329 symstrtab_hdr->sh_type = SHT_STRTAB;
11330 symstrtab_hdr->sh_flags = 0;
11331 symstrtab_hdr->sh_addr = 0;
11332 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11333 symstrtab_hdr->sh_entsize = 0;
11334 symstrtab_hdr->sh_link = 0;
11335 symstrtab_hdr->sh_info = 0;
11336 /* sh_offset is set just below. */
11337 symstrtab_hdr->sh_addralign = 1;
11339 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11341 elf_next_file_pos (abfd) = off;
11343 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11344 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11348 /* Adjust the relocs to have the correct symbol indices. */
11349 for (o = abfd->sections; o != NULL; o = o->next)
11351 struct bfd_elf_section_data *esdo = elf_section_data (o);
11353 if ((o->flags & SEC_RELOC) == 0)
11356 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11357 if (esdo->rel.hdr != NULL)
11358 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11359 if (esdo->rela.hdr != NULL)
11360 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11362 /* Set the reloc_count field to 0 to prevent write_relocs from
11363 trying to swap the relocs out itself. */
11364 o->reloc_count = 0;
11367 if (dynamic && info->combreloc && dynobj != NULL)
11368 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11370 /* If we are linking against a dynamic object, or generating a
11371 shared library, finish up the dynamic linking information. */
11374 bfd_byte *dyncon, *dynconend;
11376 /* Fix up .dynamic entries. */
11377 o = bfd_get_linker_section (dynobj, ".dynamic");
11378 BFD_ASSERT (o != NULL);
11380 dyncon = o->contents;
11381 dynconend = o->contents + o->size;
11382 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11384 Elf_Internal_Dyn dyn;
11388 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11395 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11397 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11399 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11400 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11403 dyn.d_un.d_val = relativecount;
11410 name = info->init_function;
11413 name = info->fini_function;
11416 struct elf_link_hash_entry *h;
11418 h = elf_link_hash_lookup (elf_hash_table (info), name,
11419 FALSE, FALSE, TRUE);
11421 && (h->root.type == bfd_link_hash_defined
11422 || h->root.type == bfd_link_hash_defweak))
11424 dyn.d_un.d_ptr = h->root.u.def.value;
11425 o = h->root.u.def.section;
11426 if (o->output_section != NULL)
11427 dyn.d_un.d_ptr += (o->output_section->vma
11428 + o->output_offset);
11431 /* The symbol is imported from another shared
11432 library and does not apply to this one. */
11433 dyn.d_un.d_ptr = 0;
11440 case DT_PREINIT_ARRAYSZ:
11441 name = ".preinit_array";
11443 case DT_INIT_ARRAYSZ:
11444 name = ".init_array";
11446 case DT_FINI_ARRAYSZ:
11447 name = ".fini_array";
11449 o = bfd_get_section_by_name (abfd, name);
11452 (*_bfd_error_handler)
11453 (_("%B: could not find output section %s"), abfd, name);
11457 (*_bfd_error_handler)
11458 (_("warning: %s section has zero size"), name);
11459 dyn.d_un.d_val = o->size;
11462 case DT_PREINIT_ARRAY:
11463 name = ".preinit_array";
11465 case DT_INIT_ARRAY:
11466 name = ".init_array";
11468 case DT_FINI_ARRAY:
11469 name = ".fini_array";
11476 name = ".gnu.hash";
11485 name = ".gnu.version_d";
11488 name = ".gnu.version_r";
11491 name = ".gnu.version";
11493 o = bfd_get_section_by_name (abfd, name);
11496 (*_bfd_error_handler)
11497 (_("%B: could not find output section %s"), abfd, name);
11500 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11502 (*_bfd_error_handler)
11503 (_("warning: section '%s' is being made into a note"), name);
11504 bfd_set_error (bfd_error_nonrepresentable_section);
11507 dyn.d_un.d_ptr = o->vma;
11514 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11518 dyn.d_un.d_val = 0;
11519 dyn.d_un.d_ptr = 0;
11520 for (i = 1; i < elf_numsections (abfd); i++)
11522 Elf_Internal_Shdr *hdr;
11524 hdr = elf_elfsections (abfd)[i];
11525 if (hdr->sh_type == type
11526 && (hdr->sh_flags & SHF_ALLOC) != 0)
11528 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11529 dyn.d_un.d_val += hdr->sh_size;
11532 if (dyn.d_un.d_ptr == 0
11533 || hdr->sh_addr < dyn.d_un.d_ptr)
11534 dyn.d_un.d_ptr = hdr->sh_addr;
11540 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11544 /* If we have created any dynamic sections, then output them. */
11545 if (dynobj != NULL)
11547 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11550 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11551 if (((info->warn_shared_textrel && info->shared)
11552 || info->error_textrel)
11553 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11555 bfd_byte *dyncon, *dynconend;
11557 dyncon = o->contents;
11558 dynconend = o->contents + o->size;
11559 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11561 Elf_Internal_Dyn dyn;
11563 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11565 if (dyn.d_tag == DT_TEXTREL)
11567 if (info->error_textrel)
11568 info->callbacks->einfo
11569 (_("%P%X: read-only segment has dynamic relocations.\n"));
11571 info->callbacks->einfo
11572 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11578 for (o = dynobj->sections; o != NULL; o = o->next)
11580 if ((o->flags & SEC_HAS_CONTENTS) == 0
11582 || o->output_section == bfd_abs_section_ptr)
11584 if ((o->flags & SEC_LINKER_CREATED) == 0)
11586 /* At this point, we are only interested in sections
11587 created by _bfd_elf_link_create_dynamic_sections. */
11590 if (elf_hash_table (info)->stab_info.stabstr == o)
11592 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11594 if (strcmp (o->name, ".dynstr") != 0)
11596 /* FIXME: octets_per_byte. */
11597 if (! bfd_set_section_contents (abfd, o->output_section,
11599 (file_ptr) o->output_offset,
11605 /* The contents of the .dynstr section are actually in a
11609 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11610 if (bfd_seek (abfd, off, SEEK_SET) != 0
11611 || ! _bfd_elf_strtab_emit (abfd,
11612 elf_hash_table (info)->dynstr))
11618 if (info->relocatable)
11620 bfd_boolean failed = FALSE;
11622 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11627 /* If we have optimized stabs strings, output them. */
11628 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11630 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11634 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11637 elf_final_link_free (abfd, &flinfo);
11639 elf_linker (abfd) = TRUE;
11643 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11644 if (contents == NULL)
11645 return FALSE; /* Bail out and fail. */
11646 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11647 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11654 elf_final_link_free (abfd, &flinfo);
11658 /* Initialize COOKIE for input bfd ABFD. */
11661 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11662 struct bfd_link_info *info, bfd *abfd)
11664 Elf_Internal_Shdr *symtab_hdr;
11665 const struct elf_backend_data *bed;
11667 bed = get_elf_backend_data (abfd);
11668 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11670 cookie->abfd = abfd;
11671 cookie->sym_hashes = elf_sym_hashes (abfd);
11672 cookie->bad_symtab = elf_bad_symtab (abfd);
11673 if (cookie->bad_symtab)
11675 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11676 cookie->extsymoff = 0;
11680 cookie->locsymcount = symtab_hdr->sh_info;
11681 cookie->extsymoff = symtab_hdr->sh_info;
11684 if (bed->s->arch_size == 32)
11685 cookie->r_sym_shift = 8;
11687 cookie->r_sym_shift = 32;
11689 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11690 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11692 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11693 cookie->locsymcount, 0,
11695 if (cookie->locsyms == NULL)
11697 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11700 if (info->keep_memory)
11701 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11706 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11709 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11711 Elf_Internal_Shdr *symtab_hdr;
11713 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11714 if (cookie->locsyms != NULL
11715 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11716 free (cookie->locsyms);
11719 /* Initialize the relocation information in COOKIE for input section SEC
11720 of input bfd ABFD. */
11723 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11724 struct bfd_link_info *info, bfd *abfd,
11727 const struct elf_backend_data *bed;
11729 if (sec->reloc_count == 0)
11731 cookie->rels = NULL;
11732 cookie->relend = NULL;
11736 bed = get_elf_backend_data (abfd);
11738 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11739 info->keep_memory);
11740 if (cookie->rels == NULL)
11742 cookie->rel = cookie->rels;
11743 cookie->relend = (cookie->rels
11744 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11746 cookie->rel = cookie->rels;
11750 /* Free the memory allocated by init_reloc_cookie_rels,
11754 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11757 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11758 free (cookie->rels);
11761 /* Initialize the whole of COOKIE for input section SEC. */
11764 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11765 struct bfd_link_info *info,
11768 if (!init_reloc_cookie (cookie, info, sec->owner))
11770 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11775 fini_reloc_cookie (cookie, sec->owner);
11780 /* Free the memory allocated by init_reloc_cookie_for_section,
11784 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11787 fini_reloc_cookie_rels (cookie, sec);
11788 fini_reloc_cookie (cookie, sec->owner);
11791 /* Garbage collect unused sections. */
11793 /* Default gc_mark_hook. */
11796 _bfd_elf_gc_mark_hook (asection *sec,
11797 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11798 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11799 struct elf_link_hash_entry *h,
11800 Elf_Internal_Sym *sym)
11802 const char *sec_name;
11806 switch (h->root.type)
11808 case bfd_link_hash_defined:
11809 case bfd_link_hash_defweak:
11810 return h->root.u.def.section;
11812 case bfd_link_hash_common:
11813 return h->root.u.c.p->section;
11815 case bfd_link_hash_undefined:
11816 case bfd_link_hash_undefweak:
11817 /* To work around a glibc bug, keep all XXX input sections
11818 when there is an as yet undefined reference to __start_XXX
11819 or __stop_XXX symbols. The linker will later define such
11820 symbols for orphan input sections that have a name
11821 representable as a C identifier. */
11822 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11823 sec_name = h->root.root.string + 8;
11824 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11825 sec_name = h->root.root.string + 7;
11829 if (sec_name && *sec_name != '\0')
11833 for (i = info->input_bfds; i; i = i->link.next)
11835 sec = bfd_get_section_by_name (i, sec_name);
11837 sec->flags |= SEC_KEEP;
11847 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11852 /* COOKIE->rel describes a relocation against section SEC, which is
11853 a section we've decided to keep. Return the section that contains
11854 the relocation symbol, or NULL if no section contains it. */
11857 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11858 elf_gc_mark_hook_fn gc_mark_hook,
11859 struct elf_reloc_cookie *cookie)
11861 unsigned long r_symndx;
11862 struct elf_link_hash_entry *h;
11864 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11865 if (r_symndx == STN_UNDEF)
11868 if (r_symndx >= cookie->locsymcount
11869 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11871 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11874 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11878 while (h->root.type == bfd_link_hash_indirect
11879 || h->root.type == bfd_link_hash_warning)
11880 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11882 /* If this symbol is weak and there is a non-weak definition, we
11883 keep the non-weak definition because many backends put
11884 dynamic reloc info on the non-weak definition for code
11885 handling copy relocs. */
11886 if (h->u.weakdef != NULL)
11887 h->u.weakdef->mark = 1;
11888 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11891 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11892 &cookie->locsyms[r_symndx]);
11895 /* COOKIE->rel describes a relocation against section SEC, which is
11896 a section we've decided to keep. Mark the section that contains
11897 the relocation symbol. */
11900 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11902 elf_gc_mark_hook_fn gc_mark_hook,
11903 struct elf_reloc_cookie *cookie)
11907 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11908 if (rsec && !rsec->gc_mark)
11910 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11911 || (rsec->owner->flags & DYNAMIC) != 0)
11913 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11919 /* The mark phase of garbage collection. For a given section, mark
11920 it and any sections in this section's group, and all the sections
11921 which define symbols to which it refers. */
11924 _bfd_elf_gc_mark (struct bfd_link_info *info,
11926 elf_gc_mark_hook_fn gc_mark_hook)
11929 asection *group_sec, *eh_frame;
11933 /* Mark all the sections in the group. */
11934 group_sec = elf_section_data (sec)->next_in_group;
11935 if (group_sec && !group_sec->gc_mark)
11936 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11939 /* Look through the section relocs. */
11941 eh_frame = elf_eh_frame_section (sec->owner);
11942 if ((sec->flags & SEC_RELOC) != 0
11943 && sec->reloc_count > 0
11944 && sec != eh_frame)
11946 struct elf_reloc_cookie cookie;
11948 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11952 for (; cookie.rel < cookie.relend; cookie.rel++)
11953 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11958 fini_reloc_cookie_for_section (&cookie, sec);
11962 if (ret && eh_frame && elf_fde_list (sec))
11964 struct elf_reloc_cookie cookie;
11966 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11970 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11971 gc_mark_hook, &cookie))
11973 fini_reloc_cookie_for_section (&cookie, eh_frame);
11980 /* Scan and mark sections in a special or debug section group. */
11983 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11985 /* Point to first section of section group. */
11987 /* Used to iterate the section group. */
11990 bfd_boolean is_special_grp = TRUE;
11991 bfd_boolean is_debug_grp = TRUE;
11993 /* First scan to see if group contains any section other than debug
11994 and special section. */
11995 ssec = msec = elf_next_in_group (grp);
11998 if ((msec->flags & SEC_DEBUGGING) == 0)
11999 is_debug_grp = FALSE;
12001 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12002 is_special_grp = FALSE;
12004 msec = elf_next_in_group (msec);
12006 while (msec != ssec);
12008 /* If this is a pure debug section group or pure special section group,
12009 keep all sections in this group. */
12010 if (is_debug_grp || is_special_grp)
12015 msec = elf_next_in_group (msec);
12017 while (msec != ssec);
12021 /* Keep debug and special sections. */
12024 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12025 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12029 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12032 bfd_boolean some_kept;
12033 bfd_boolean debug_frag_seen;
12035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12038 /* Ensure all linker created sections are kept,
12039 see if any other section is already marked,
12040 and note if we have any fragmented debug sections. */
12041 debug_frag_seen = some_kept = FALSE;
12042 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12044 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12046 else if (isec->gc_mark)
12049 if (debug_frag_seen == FALSE
12050 && (isec->flags & SEC_DEBUGGING)
12051 && CONST_STRNEQ (isec->name, ".debug_line."))
12052 debug_frag_seen = TRUE;
12055 /* If no section in this file will be kept, then we can
12056 toss out the debug and special sections. */
12060 /* Keep debug and special sections like .comment when they are
12061 not part of a group. Also keep section groups that contain
12062 just debug sections or special sections. */
12063 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12065 if ((isec->flags & SEC_GROUP) != 0)
12066 _bfd_elf_gc_mark_debug_special_section_group (isec);
12067 else if (((isec->flags & SEC_DEBUGGING) != 0
12068 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12069 && elf_next_in_group (isec) == NULL)
12073 if (! debug_frag_seen)
12076 /* Look for CODE sections which are going to be discarded,
12077 and find and discard any fragmented debug sections which
12078 are associated with that code section. */
12079 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12080 if ((isec->flags & SEC_CODE) != 0
12081 && isec->gc_mark == 0)
12086 ilen = strlen (isec->name);
12088 /* Association is determined by the name of the debug section
12089 containing the name of the code section as a suffix. For
12090 example .debug_line.text.foo is a debug section associated
12092 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12096 if (dsec->gc_mark == 0
12097 || (dsec->flags & SEC_DEBUGGING) == 0)
12100 dlen = strlen (dsec->name);
12103 && strncmp (dsec->name + (dlen - ilen),
12104 isec->name, ilen) == 0)
12114 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12116 struct elf_gc_sweep_symbol_info
12118 struct bfd_link_info *info;
12119 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12124 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12127 && (((h->root.type == bfd_link_hash_defined
12128 || h->root.type == bfd_link_hash_defweak)
12129 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12130 && h->root.u.def.section->gc_mark))
12131 || h->root.type == bfd_link_hash_undefined
12132 || h->root.type == bfd_link_hash_undefweak))
12134 struct elf_gc_sweep_symbol_info *inf;
12136 inf = (struct elf_gc_sweep_symbol_info *) data;
12137 (*inf->hide_symbol) (inf->info, h, TRUE);
12138 h->def_regular = 0;
12139 h->ref_regular = 0;
12140 h->ref_regular_nonweak = 0;
12146 /* The sweep phase of garbage collection. Remove all garbage sections. */
12148 typedef bfd_boolean (*gc_sweep_hook_fn)
12149 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12152 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12156 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12157 unsigned long section_sym_count;
12158 struct elf_gc_sweep_symbol_info sweep_info;
12160 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12164 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12165 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12168 for (o = sub->sections; o != NULL; o = o->next)
12170 /* When any section in a section group is kept, we keep all
12171 sections in the section group. If the first member of
12172 the section group is excluded, we will also exclude the
12174 if (o->flags & SEC_GROUP)
12176 asection *first = elf_next_in_group (o);
12177 o->gc_mark = first->gc_mark;
12183 /* Skip sweeping sections already excluded. */
12184 if (o->flags & SEC_EXCLUDE)
12187 /* Since this is early in the link process, it is simple
12188 to remove a section from the output. */
12189 o->flags |= SEC_EXCLUDE;
12191 if (info->print_gc_sections && o->size != 0)
12192 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12194 /* But we also have to update some of the relocation
12195 info we collected before. */
12197 && (o->flags & SEC_RELOC) != 0
12198 && o->reloc_count != 0
12199 && !((info->strip == strip_all || info->strip == strip_debugger)
12200 && (o->flags & SEC_DEBUGGING) != 0)
12201 && !bfd_is_abs_section (o->output_section))
12203 Elf_Internal_Rela *internal_relocs;
12207 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12208 info->keep_memory);
12209 if (internal_relocs == NULL)
12212 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12214 if (elf_section_data (o)->relocs != internal_relocs)
12215 free (internal_relocs);
12223 /* Remove the symbols that were in the swept sections from the dynamic
12224 symbol table. GCFIXME: Anyone know how to get them out of the
12225 static symbol table as well? */
12226 sweep_info.info = info;
12227 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12228 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12231 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12235 /* Propagate collected vtable information. This is called through
12236 elf_link_hash_traverse. */
12239 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12241 /* Those that are not vtables. */
12242 if (h->vtable == NULL || h->vtable->parent == NULL)
12245 /* Those vtables that do not have parents, we cannot merge. */
12246 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12249 /* If we've already been done, exit. */
12250 if (h->vtable->used && h->vtable->used[-1])
12253 /* Make sure the parent's table is up to date. */
12254 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12256 if (h->vtable->used == NULL)
12258 /* None of this table's entries were referenced. Re-use the
12260 h->vtable->used = h->vtable->parent->vtable->used;
12261 h->vtable->size = h->vtable->parent->vtable->size;
12266 bfd_boolean *cu, *pu;
12268 /* Or the parent's entries into ours. */
12269 cu = h->vtable->used;
12271 pu = h->vtable->parent->vtable->used;
12274 const struct elf_backend_data *bed;
12275 unsigned int log_file_align;
12277 bed = get_elf_backend_data (h->root.u.def.section->owner);
12278 log_file_align = bed->s->log_file_align;
12279 n = h->vtable->parent->vtable->size >> log_file_align;
12294 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12297 bfd_vma hstart, hend;
12298 Elf_Internal_Rela *relstart, *relend, *rel;
12299 const struct elf_backend_data *bed;
12300 unsigned int log_file_align;
12302 /* Take care of both those symbols that do not describe vtables as
12303 well as those that are not loaded. */
12304 if (h->vtable == NULL || h->vtable->parent == NULL)
12307 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12308 || h->root.type == bfd_link_hash_defweak);
12310 sec = h->root.u.def.section;
12311 hstart = h->root.u.def.value;
12312 hend = hstart + h->size;
12314 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12316 return *(bfd_boolean *) okp = FALSE;
12317 bed = get_elf_backend_data (sec->owner);
12318 log_file_align = bed->s->log_file_align;
12320 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12322 for (rel = relstart; rel < relend; ++rel)
12323 if (rel->r_offset >= hstart && rel->r_offset < hend)
12325 /* If the entry is in use, do nothing. */
12326 if (h->vtable->used
12327 && (rel->r_offset - hstart) < h->vtable->size)
12329 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12330 if (h->vtable->used[entry])
12333 /* Otherwise, kill it. */
12334 rel->r_offset = rel->r_info = rel->r_addend = 0;
12340 /* Mark sections containing dynamically referenced symbols. When
12341 building shared libraries, we must assume that any visible symbol is
12345 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12347 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12348 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12350 if ((h->root.type == bfd_link_hash_defined
12351 || h->root.type == bfd_link_hash_defweak)
12353 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12354 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12355 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12356 && (!info->executable
12357 || info->export_dynamic
12360 && (*d->match) (&d->head, NULL, h->root.root.string)))
12361 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12362 || !bfd_hide_sym_by_version (info->version_info,
12363 h->root.root.string)))))
12364 h->root.u.def.section->flags |= SEC_KEEP;
12369 /* Keep all sections containing symbols undefined on the command-line,
12370 and the section containing the entry symbol. */
12373 _bfd_elf_gc_keep (struct bfd_link_info *info)
12375 struct bfd_sym_chain *sym;
12377 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12379 struct elf_link_hash_entry *h;
12381 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12382 FALSE, FALSE, FALSE);
12385 && (h->root.type == bfd_link_hash_defined
12386 || h->root.type == bfd_link_hash_defweak)
12387 && !bfd_is_abs_section (h->root.u.def.section))
12388 h->root.u.def.section->flags |= SEC_KEEP;
12392 /* Do mark and sweep of unused sections. */
12395 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12397 bfd_boolean ok = TRUE;
12399 elf_gc_mark_hook_fn gc_mark_hook;
12400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12401 struct elf_link_hash_table *htab;
12403 if (!bed->can_gc_sections
12404 || !is_elf_hash_table (info->hash))
12406 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12410 bed->gc_keep (info);
12411 htab = elf_hash_table (info);
12413 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12414 at the .eh_frame section if we can mark the FDEs individually. */
12415 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12418 struct elf_reloc_cookie cookie;
12420 sec = bfd_get_section_by_name (sub, ".eh_frame");
12421 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12423 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12424 if (elf_section_data (sec)->sec_info
12425 && (sec->flags & SEC_LINKER_CREATED) == 0)
12426 elf_eh_frame_section (sub) = sec;
12427 fini_reloc_cookie_for_section (&cookie, sec);
12428 sec = bfd_get_next_section_by_name (sec);
12432 /* Apply transitive closure to the vtable entry usage info. */
12433 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12437 /* Kill the vtable relocations that were not used. */
12438 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12442 /* Mark dynamically referenced symbols. */
12443 if (htab->dynamic_sections_created)
12444 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12446 /* Grovel through relocs to find out who stays ... */
12447 gc_mark_hook = bed->gc_mark_hook;
12448 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12452 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12453 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12456 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12457 Also treat note sections as a root, if the section is not part
12459 for (o = sub->sections; o != NULL; o = o->next)
12461 && (o->flags & SEC_EXCLUDE) == 0
12462 && ((o->flags & SEC_KEEP) != 0
12463 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12464 && elf_next_in_group (o) == NULL )))
12466 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12471 /* Allow the backend to mark additional target specific sections. */
12472 bed->gc_mark_extra_sections (info, gc_mark_hook);
12474 /* ... and mark SEC_EXCLUDE for those that go. */
12475 return elf_gc_sweep (abfd, info);
12478 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12481 bfd_elf_gc_record_vtinherit (bfd *abfd,
12483 struct elf_link_hash_entry *h,
12486 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12487 struct elf_link_hash_entry **search, *child;
12488 bfd_size_type extsymcount;
12489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12491 /* The sh_info field of the symtab header tells us where the
12492 external symbols start. We don't care about the local symbols at
12494 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12495 if (!elf_bad_symtab (abfd))
12496 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12498 sym_hashes = elf_sym_hashes (abfd);
12499 sym_hashes_end = sym_hashes + extsymcount;
12501 /* Hunt down the child symbol, which is in this section at the same
12502 offset as the relocation. */
12503 for (search = sym_hashes; search != sym_hashes_end; ++search)
12505 if ((child = *search) != NULL
12506 && (child->root.type == bfd_link_hash_defined
12507 || child->root.type == bfd_link_hash_defweak)
12508 && child->root.u.def.section == sec
12509 && child->root.u.def.value == offset)
12513 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12514 abfd, sec, (unsigned long) offset);
12515 bfd_set_error (bfd_error_invalid_operation);
12519 if (!child->vtable)
12521 child->vtable = ((struct elf_link_virtual_table_entry *)
12522 bfd_zalloc (abfd, sizeof (*child->vtable)));
12523 if (!child->vtable)
12528 /* This *should* only be the absolute section. It could potentially
12529 be that someone has defined a non-global vtable though, which
12530 would be bad. It isn't worth paging in the local symbols to be
12531 sure though; that case should simply be handled by the assembler. */
12533 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12536 child->vtable->parent = h;
12541 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12544 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12545 asection *sec ATTRIBUTE_UNUSED,
12546 struct elf_link_hash_entry *h,
12549 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12550 unsigned int log_file_align = bed->s->log_file_align;
12554 h->vtable = ((struct elf_link_virtual_table_entry *)
12555 bfd_zalloc (abfd, sizeof (*h->vtable)));
12560 if (addend >= h->vtable->size)
12562 size_t size, bytes, file_align;
12563 bfd_boolean *ptr = h->vtable->used;
12565 /* While the symbol is undefined, we have to be prepared to handle
12567 file_align = 1 << log_file_align;
12568 if (h->root.type == bfd_link_hash_undefined)
12569 size = addend + file_align;
12573 if (addend >= size)
12575 /* Oops! We've got a reference past the defined end of
12576 the table. This is probably a bug -- shall we warn? */
12577 size = addend + file_align;
12580 size = (size + file_align - 1) & -file_align;
12582 /* Allocate one extra entry for use as a "done" flag for the
12583 consolidation pass. */
12584 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12588 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12594 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12595 * sizeof (bfd_boolean));
12596 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12600 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12605 /* And arrange for that done flag to be at index -1. */
12606 h->vtable->used = ptr + 1;
12607 h->vtable->size = size;
12610 h->vtable->used[addend >> log_file_align] = TRUE;
12615 /* Map an ELF section header flag to its corresponding string. */
12619 flagword flag_value;
12620 } elf_flags_to_name_table;
12622 static elf_flags_to_name_table elf_flags_to_names [] =
12624 { "SHF_WRITE", SHF_WRITE },
12625 { "SHF_ALLOC", SHF_ALLOC },
12626 { "SHF_EXECINSTR", SHF_EXECINSTR },
12627 { "SHF_MERGE", SHF_MERGE },
12628 { "SHF_STRINGS", SHF_STRINGS },
12629 { "SHF_INFO_LINK", SHF_INFO_LINK},
12630 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12631 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12632 { "SHF_GROUP", SHF_GROUP },
12633 { "SHF_TLS", SHF_TLS },
12634 { "SHF_MASKOS", SHF_MASKOS },
12635 { "SHF_EXCLUDE", SHF_EXCLUDE },
12638 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12640 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12641 struct flag_info *flaginfo,
12644 const bfd_vma sh_flags = elf_section_flags (section);
12646 if (!flaginfo->flags_initialized)
12648 bfd *obfd = info->output_bfd;
12649 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12650 struct flag_info_list *tf = flaginfo->flag_list;
12652 int without_hex = 0;
12654 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12657 flagword (*lookup) (char *);
12659 lookup = bed->elf_backend_lookup_section_flags_hook;
12660 if (lookup != NULL)
12662 flagword hexval = (*lookup) ((char *) tf->name);
12666 if (tf->with == with_flags)
12667 with_hex |= hexval;
12668 else if (tf->with == without_flags)
12669 without_hex |= hexval;
12674 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12676 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12678 if (tf->with == with_flags)
12679 with_hex |= elf_flags_to_names[i].flag_value;
12680 else if (tf->with == without_flags)
12681 without_hex |= elf_flags_to_names[i].flag_value;
12688 info->callbacks->einfo
12689 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12693 flaginfo->flags_initialized = TRUE;
12694 flaginfo->only_with_flags |= with_hex;
12695 flaginfo->not_with_flags |= without_hex;
12698 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12701 if ((flaginfo->not_with_flags & sh_flags) != 0)
12707 struct alloc_got_off_arg {
12709 struct bfd_link_info *info;
12712 /* We need a special top-level link routine to convert got reference counts
12713 to real got offsets. */
12716 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12718 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12719 bfd *obfd = gofarg->info->output_bfd;
12720 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12722 if (h->got.refcount > 0)
12724 h->got.offset = gofarg->gotoff;
12725 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12728 h->got.offset = (bfd_vma) -1;
12733 /* And an accompanying bit to work out final got entry offsets once
12734 we're done. Should be called from final_link. */
12737 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12738 struct bfd_link_info *info)
12741 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12743 struct alloc_got_off_arg gofarg;
12745 BFD_ASSERT (abfd == info->output_bfd);
12747 if (! is_elf_hash_table (info->hash))
12750 /* The GOT offset is relative to the .got section, but the GOT header is
12751 put into the .got.plt section, if the backend uses it. */
12752 if (bed->want_got_plt)
12755 gotoff = bed->got_header_size;
12757 /* Do the local .got entries first. */
12758 for (i = info->input_bfds; i; i = i->link.next)
12760 bfd_signed_vma *local_got;
12761 bfd_size_type j, locsymcount;
12762 Elf_Internal_Shdr *symtab_hdr;
12764 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12767 local_got = elf_local_got_refcounts (i);
12771 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12772 if (elf_bad_symtab (i))
12773 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12775 locsymcount = symtab_hdr->sh_info;
12777 for (j = 0; j < locsymcount; ++j)
12779 if (local_got[j] > 0)
12781 local_got[j] = gotoff;
12782 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12785 local_got[j] = (bfd_vma) -1;
12789 /* Then the global .got entries. .plt refcounts are handled by
12790 adjust_dynamic_symbol */
12791 gofarg.gotoff = gotoff;
12792 gofarg.info = info;
12793 elf_link_hash_traverse (elf_hash_table (info),
12794 elf_gc_allocate_got_offsets,
12799 /* Many folk need no more in the way of final link than this, once
12800 got entry reference counting is enabled. */
12803 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12805 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12808 /* Invoke the regular ELF backend linker to do all the work. */
12809 return bfd_elf_final_link (abfd, info);
12813 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12815 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12817 if (rcookie->bad_symtab)
12818 rcookie->rel = rcookie->rels;
12820 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12822 unsigned long r_symndx;
12824 if (! rcookie->bad_symtab)
12825 if (rcookie->rel->r_offset > offset)
12827 if (rcookie->rel->r_offset != offset)
12830 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12831 if (r_symndx == STN_UNDEF)
12834 if (r_symndx >= rcookie->locsymcount
12835 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12837 struct elf_link_hash_entry *h;
12839 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12841 while (h->root.type == bfd_link_hash_indirect
12842 || h->root.type == bfd_link_hash_warning)
12843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12845 if ((h->root.type == bfd_link_hash_defined
12846 || h->root.type == bfd_link_hash_defweak)
12847 && (h->root.u.def.section->owner != rcookie->abfd
12848 || h->root.u.def.section->kept_section != NULL
12849 || discarded_section (h->root.u.def.section)))
12854 /* It's not a relocation against a global symbol,
12855 but it could be a relocation against a local
12856 symbol for a discarded section. */
12858 Elf_Internal_Sym *isym;
12860 /* Need to: get the symbol; get the section. */
12861 isym = &rcookie->locsyms[r_symndx];
12862 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12864 && (isec->kept_section != NULL
12865 || discarded_section (isec)))
12873 /* Discard unneeded references to discarded sections.
12874 Returns -1 on error, 1 if any section's size was changed, 0 if
12875 nothing changed. This function assumes that the relocations are in
12876 sorted order, which is true for all known assemblers. */
12879 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12881 struct elf_reloc_cookie cookie;
12886 if (info->traditional_format
12887 || !is_elf_hash_table (info->hash))
12890 o = bfd_get_section_by_name (output_bfd, ".stab");
12895 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12898 || i->reloc_count == 0
12899 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12903 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12906 if (!init_reloc_cookie_for_section (&cookie, info, i))
12909 if (_bfd_discard_section_stabs (abfd, i,
12910 elf_section_data (i)->sec_info,
12911 bfd_elf_reloc_symbol_deleted_p,
12915 fini_reloc_cookie_for_section (&cookie, i);
12919 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12924 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12930 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12933 if (!init_reloc_cookie_for_section (&cookie, info, i))
12936 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12937 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12938 bfd_elf_reloc_symbol_deleted_p,
12942 fini_reloc_cookie_for_section (&cookie, i);
12946 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12948 const struct elf_backend_data *bed;
12950 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12953 bed = get_elf_backend_data (abfd);
12955 if (bed->elf_backend_discard_info != NULL)
12957 if (!init_reloc_cookie (&cookie, info, abfd))
12960 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12963 fini_reloc_cookie (&cookie, abfd);
12967 if (info->eh_frame_hdr
12968 && !info->relocatable
12969 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12976 _bfd_elf_section_already_linked (bfd *abfd,
12978 struct bfd_link_info *info)
12981 const char *name, *key;
12982 struct bfd_section_already_linked *l;
12983 struct bfd_section_already_linked_hash_entry *already_linked_list;
12985 if (sec->output_section == bfd_abs_section_ptr)
12988 flags = sec->flags;
12990 /* Return if it isn't a linkonce section. A comdat group section
12991 also has SEC_LINK_ONCE set. */
12992 if ((flags & SEC_LINK_ONCE) == 0)
12995 /* Don't put group member sections on our list of already linked
12996 sections. They are handled as a group via their group section. */
12997 if (elf_sec_group (sec) != NULL)
13000 /* For a SHT_GROUP section, use the group signature as the key. */
13002 if ((flags & SEC_GROUP) != 0
13003 && elf_next_in_group (sec) != NULL
13004 && elf_group_name (elf_next_in_group (sec)) != NULL)
13005 key = elf_group_name (elf_next_in_group (sec));
13008 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13009 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13010 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13013 /* Must be a user linkonce section that doesn't follow gcc's
13014 naming convention. In this case we won't be matching
13015 single member groups. */
13019 already_linked_list = bfd_section_already_linked_table_lookup (key);
13021 for (l = already_linked_list->entry; l != NULL; l = l->next)
13023 /* We may have 2 different types of sections on the list: group
13024 sections with a signature of <key> (<key> is some string),
13025 and linkonce sections named .gnu.linkonce.<type>.<key>.
13026 Match like sections. LTO plugin sections are an exception.
13027 They are always named .gnu.linkonce.t.<key> and match either
13028 type of section. */
13029 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13030 && ((flags & SEC_GROUP) != 0
13031 || strcmp (name, l->sec->name) == 0))
13032 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13034 /* The section has already been linked. See if we should
13035 issue a warning. */
13036 if (!_bfd_handle_already_linked (sec, l, info))
13039 if (flags & SEC_GROUP)
13041 asection *first = elf_next_in_group (sec);
13042 asection *s = first;
13046 s->output_section = bfd_abs_section_ptr;
13047 /* Record which group discards it. */
13048 s->kept_section = l->sec;
13049 s = elf_next_in_group (s);
13050 /* These lists are circular. */
13060 /* A single member comdat group section may be discarded by a
13061 linkonce section and vice versa. */
13062 if ((flags & SEC_GROUP) != 0)
13064 asection *first = elf_next_in_group (sec);
13066 if (first != NULL && elf_next_in_group (first) == first)
13067 /* Check this single member group against linkonce sections. */
13068 for (l = already_linked_list->entry; l != NULL; l = l->next)
13069 if ((l->sec->flags & SEC_GROUP) == 0
13070 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13072 first->output_section = bfd_abs_section_ptr;
13073 first->kept_section = l->sec;
13074 sec->output_section = bfd_abs_section_ptr;
13079 /* Check this linkonce section against single member groups. */
13080 for (l = already_linked_list->entry; l != NULL; l = l->next)
13081 if (l->sec->flags & SEC_GROUP)
13083 asection *first = elf_next_in_group (l->sec);
13086 && elf_next_in_group (first) == first
13087 && bfd_elf_match_symbols_in_sections (first, sec, info))
13089 sec->output_section = bfd_abs_section_ptr;
13090 sec->kept_section = first;
13095 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13096 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13097 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13098 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13099 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13100 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13101 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13102 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13103 The reverse order cannot happen as there is never a bfd with only the
13104 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13105 matter as here were are looking only for cross-bfd sections. */
13107 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13108 for (l = already_linked_list->entry; l != NULL; l = l->next)
13109 if ((l->sec->flags & SEC_GROUP) == 0
13110 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13112 if (abfd != l->sec->owner)
13113 sec->output_section = bfd_abs_section_ptr;
13117 /* This is the first section with this name. Record it. */
13118 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13119 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13120 return sec->output_section == bfd_abs_section_ptr;
13124 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13126 return sym->st_shndx == SHN_COMMON;
13130 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13136 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13138 return bfd_com_section_ptr;
13142 _bfd_elf_default_got_elt_size (bfd *abfd,
13143 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13144 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13145 bfd *ibfd ATTRIBUTE_UNUSED,
13146 unsigned long symndx ATTRIBUTE_UNUSED)
13148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13149 return bed->s->arch_size / 8;
13152 /* Routines to support the creation of dynamic relocs. */
13154 /* Returns the name of the dynamic reloc section associated with SEC. */
13156 static const char *
13157 get_dynamic_reloc_section_name (bfd * abfd,
13159 bfd_boolean is_rela)
13162 const char *old_name = bfd_get_section_name (NULL, sec);
13163 const char *prefix = is_rela ? ".rela" : ".rel";
13165 if (old_name == NULL)
13168 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13169 sprintf (name, "%s%s", prefix, old_name);
13174 /* Returns the dynamic reloc section associated with SEC.
13175 If necessary compute the name of the dynamic reloc section based
13176 on SEC's name (looked up in ABFD's string table) and the setting
13180 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13182 bfd_boolean is_rela)
13184 asection * reloc_sec = elf_section_data (sec)->sreloc;
13186 if (reloc_sec == NULL)
13188 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13192 reloc_sec = bfd_get_linker_section (abfd, name);
13194 if (reloc_sec != NULL)
13195 elf_section_data (sec)->sreloc = reloc_sec;
13202 /* Returns the dynamic reloc section associated with SEC. If the
13203 section does not exist it is created and attached to the DYNOBJ
13204 bfd and stored in the SRELOC field of SEC's elf_section_data
13207 ALIGNMENT is the alignment for the newly created section and
13208 IS_RELA defines whether the name should be .rela.<SEC's name>
13209 or .rel.<SEC's name>. The section name is looked up in the
13210 string table associated with ABFD. */
13213 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13215 unsigned int alignment,
13217 bfd_boolean is_rela)
13219 asection * reloc_sec = elf_section_data (sec)->sreloc;
13221 if (reloc_sec == NULL)
13223 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13228 reloc_sec = bfd_get_linker_section (dynobj, name);
13230 if (reloc_sec == NULL)
13232 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13233 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13234 if ((sec->flags & SEC_ALLOC) != 0)
13235 flags |= SEC_ALLOC | SEC_LOAD;
13237 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13238 if (reloc_sec != NULL)
13240 /* _bfd_elf_get_sec_type_attr chooses a section type by
13241 name. Override as it may be wrong, eg. for a user
13242 section named "auto" we'll get ".relauto" which is
13243 seen to be a .rela section. */
13244 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13245 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13250 elf_section_data (sec)->sreloc = reloc_sec;
13256 /* Copy the ELF symbol type and other attributes for a linker script
13257 assignment from HSRC to HDEST. Generally this should be treated as
13258 if we found a strong non-dynamic definition for HDEST (except that
13259 ld ignores multiple definition errors). */
13261 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13262 struct bfd_link_hash_entry *hdest,
13263 struct bfd_link_hash_entry *hsrc)
13265 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13266 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13267 Elf_Internal_Sym isym;
13269 ehdest->type = ehsrc->type;
13270 ehdest->target_internal = ehsrc->target_internal;
13272 isym.st_other = ehsrc->other;
13273 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13276 /* Append a RELA relocation REL to section S in BFD. */
13279 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13282 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13283 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13284 bed->s->swap_reloca_out (abfd, rel, loc);
13287 /* Append a REL relocation REL to section S in BFD. */
13290 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13292 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13293 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13294 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13295 bed->s->swap_reloc_out (abfd, rel, loc);