1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
39 struct elf_info_failed
41 struct bfd_link_info *info;
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
48 struct elf_find_verdep_info
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
54 /* Whether we had a failure. */
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
69 struct elf_link_hash_entry *h;
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
90 Elf_Internal_Sym *isym;
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
96 && discard ? discarded_section (isec) : 1)
102 /* Define a symbol in a dynamic linkage section. */
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
158 flags = bed->dynamic_sec_flags;
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
176 if (bed->want_got_plt)
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
189 if (bed->want_got_sym)
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
205 /* Create a strtab to hold the dynamic symbol names. */
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
209 struct elf_link_hash_table *hash_table;
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
229 hash_table->dynobj = abfd;
232 if (hash_table->dynstr == NULL)
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
256 if (! is_elf_hash_table (info->hash))
259 if (elf_hash_table (info)->dynamic_sections_created)
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
268 flags = bed->dynamic_sec_flags;
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
291 || ! bfd_set_section_alignment (abfd, s, 1))
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
305 elf_hash_table (info)->dynsym = s;
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
338 if (info->emit_gnu_hash)
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
366 /* Create dynamic sections when linking against a dynamic object. */
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
400 if (bed->want_plt_sym)
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
418 if (! _bfd_elf_create_got_section (abfd, info))
421 if (bed->want_dynbss)
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (bed->want_dynrelro)
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
458 if (bfd_link_executable (info))
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
469 if (bed->want_dynrelro)
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
479 htab->sreldynrelro = s;
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
499 if (h->dynindx == -1)
501 struct elf_strtab_hash *dynstr;
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
518 if (!elf_hash_table (info)->is_relocatable_executable)
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
529 dynstr = elf_hash_table (info)->dynstr;
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 /* We don't put any version information in the dynamic string
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555 if (indx == (size_t) -1)
557 h->dynstr_index = indx;
563 /* Mark a symbol dynamic. */
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
602 if (!is_elf_hash_table (info->hash))
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
613 if (h->versioned == unknown)
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
622 h->versioned = versioned;
626 switch (h->root.type)
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
672 h->root.type = bfd_link_hash_undefined;
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
681 h->verinfo.verdef = NULL;
683 /* Make sure this symbol is not garbage collected. */
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
698 if (!bfd_link_relocatable (info)
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
745 if (! is_elf_hash_table (info->hash))
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
762 bfd_release (input_bfd, entry);
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
785 dynstr = elf_hash_table (info)->dynstr;
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
797 entry->isym.st_name = dynstr_index;
799 eht = elf_hash_table (info);
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
807 /* Whatever binding the symbol had before, it's now local. */
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
811 /* The dynindx will be set at the end of size_dynamic_sections. */
816 /* Return the dynindex of a local dynamic symbol. */
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
823 struct elf_link_local_dynamic_entry *e;
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
831 /* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
839 size_t *count = (size_t *) data;
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
858 size_t *count = (size_t *) data;
860 if (!h->forced_local)
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
869 /* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
876 struct elf_link_hash_table *htab;
879 switch (elf_section_data (p)->this_hdr.sh_type)
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
897 /* There shouldn't be section relative relocations
898 against any other section. */
904 /* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
915 unsigned long dynsymcount = 0;
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
928 elf_section_data (p)->dynindx = 0;
930 *section_sym_count = dynsymcount;
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
936 if (elf_hash_table (info)->dynlocal)
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
954 elf_hash_table (info)->dynsymcount = dynsymcount;
958 /* Merge st_other field. */
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
989 /* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1006 Elf_Internal_Sym *sym,
1009 struct elf_link_hash_entry **sym_hash,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1034 bind = ELF_ST_BIND (sym->st_info);
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1045 bed = get_elf_backend_data (abfd);
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1054 if (h->versioned == unknown)
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1059 h->versioned = versioned;
1062 if (new_version[0] == '\0')
1066 h->versioned = unversioned;
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1096 /* OLD_VERSION is the symbol version of the existing
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1121 switch (h->root.type)
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1144 if (poldbfd && *poldbfd == NULL)
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1152 *pold_weak = oldweak;
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1178 if (bfd_is_und_section (sec))
1180 if (bind != STB_WEAK)
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1188 /* Update the existing symbol only if they match. */
1191 hi->dynamic_def = 1;
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1199 if (h->root.type == bfd_link_hash_new)
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1245 if (!(newfunc && oldfunc)
1246 && ELF_ST_TYPE (sym->st_info) != h->type
1247 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1248 && h->type != STT_NOTYPE
1249 && (newdef || bfd_is_com_section (sec))
1250 && (olddef || h->root.type == bfd_link_hash_common))
1252 /* If creating a default indirect symbol ("foo" or "foo@") from
1253 a dynamic versioned definition ("foo@@") skip doing so if
1254 there is an existing regular definition with a different
1255 type. We don't want, for example, a "time" variable in the
1256 executable overriding a "time" function in a shared library. */
1264 /* When adding a symbol from a regular object file after we have
1265 created indirect symbols, undo the indirection and any
1272 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1273 h->forced_local = 0;
1277 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1279 h->root.type = bfd_link_hash_undefined;
1280 h->root.u.undef.abfd = abfd;
1284 h->root.type = bfd_link_hash_new;
1285 h->root.u.undef.abfd = NULL;
1291 /* Check TLS symbols. We don't check undefined symbols introduced
1292 by "ld -u" which have no type (and oldbfd NULL), and we don't
1293 check symbols from plugins because they also have no type. */
1295 && (oldbfd->flags & BFD_PLUGIN) == 0
1296 && (abfd->flags & BFD_PLUGIN) == 0
1297 && ELF_ST_TYPE (sym->st_info) != h->type
1298 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1301 bfd_boolean ntdef, tdef;
1302 asection *ntsec, *tsec;
1304 if (h->type == STT_TLS)
1325 /* xgettext:c-format */
1326 (_("%s: TLS definition in %B section %A "
1327 "mismatches non-TLS definition in %B section %A"),
1328 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1329 else if (!tdef && !ntdef)
1331 /* xgettext:c-format */
1332 (_("%s: TLS reference in %B "
1333 "mismatches non-TLS reference in %B"),
1334 h->root.root.string, tbfd, ntbfd);
1337 /* xgettext:c-format */
1338 (_("%s: TLS definition in %B section %A "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, tsec, ntbfd);
1343 /* xgettext:c-format */
1344 (_("%s: TLS reference in %B "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, ntbfd, ntsec);
1348 bfd_set_error (bfd_error_bad_value);
1352 /* If the old symbol has non-default visibility, we ignore the new
1353 definition from a dynamic object. */
1355 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1356 && !bfd_is_und_section (sec))
1359 /* Make sure this symbol is dynamic. */
1361 hi->ref_dynamic = 1;
1362 /* A protected symbol has external availability. Make sure it is
1363 recorded as dynamic.
1365 FIXME: Should we check type and size for protected symbol? */
1366 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1367 return bfd_elf_link_record_dynamic_symbol (info, h);
1372 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1375 /* If the new symbol with non-default visibility comes from a
1376 relocatable file and the old definition comes from a dynamic
1377 object, we remove the old definition. */
1378 if (hi->root.type == bfd_link_hash_indirect)
1380 /* Handle the case where the old dynamic definition is
1381 default versioned. We need to copy the symbol info from
1382 the symbol with default version to the normal one if it
1383 was referenced before. */
1386 hi->root.type = h->root.type;
1387 h->root.type = bfd_link_hash_indirect;
1388 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1390 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1391 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1393 /* If the new symbol is hidden or internal, completely undo
1394 any dynamic link state. */
1395 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1396 h->forced_local = 0;
1403 /* FIXME: Should we check type and size for protected symbol? */
1413 /* If the old symbol was undefined before, then it will still be
1414 on the undefs list. If the new symbol is undefined or
1415 common, we can't make it bfd_link_hash_new here, because new
1416 undefined or common symbols will be added to the undefs list
1417 by _bfd_generic_link_add_one_symbol. Symbols may not be
1418 added twice to the undefs list. Also, if the new symbol is
1419 undefweak then we don't want to lose the strong undef. */
1420 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1422 h->root.type = bfd_link_hash_undefined;
1423 h->root.u.undef.abfd = abfd;
1427 h->root.type = bfd_link_hash_new;
1428 h->root.u.undef.abfd = NULL;
1431 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 /* If the new symbol is hidden or internal, completely undo
1434 any dynamic link state. */
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 h->forced_local = 0;
1442 /* FIXME: Should we check type and size for protected symbol? */
1448 /* If a new weak symbol definition comes from a regular file and the
1449 old symbol comes from a dynamic library, we treat the new one as
1450 strong. Similarly, an old weak symbol definition from a regular
1451 file is treated as strong when the new symbol comes from a dynamic
1452 library. Further, an old weak symbol from a dynamic library is
1453 treated as strong if the new symbol is from a dynamic library.
1454 This reflects the way glibc's ld.so works.
1456 Do this before setting *type_change_ok or *size_change_ok so that
1457 we warn properly when dynamic library symbols are overridden. */
1459 if (newdef && !newdyn && olddyn)
1461 if (olddef && newdyn)
1464 /* Allow changes between different types of function symbol. */
1465 if (newfunc && oldfunc)
1466 *type_change_ok = TRUE;
1468 /* It's OK to change the type if either the existing symbol or the
1469 new symbol is weak. A type change is also OK if the old symbol
1470 is undefined and the new symbol is defined. */
1475 && h->root.type == bfd_link_hash_undefined))
1476 *type_change_ok = TRUE;
1478 /* It's OK to change the size if either the existing symbol or the
1479 new symbol is weak, or if the old symbol is undefined. */
1482 || h->root.type == bfd_link_hash_undefined)
1483 *size_change_ok = TRUE;
1485 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1486 symbol, respectively, appears to be a common symbol in a dynamic
1487 object. If a symbol appears in an uninitialized section, and is
1488 not weak, and is not a function, then it may be a common symbol
1489 which was resolved when the dynamic object was created. We want
1490 to treat such symbols specially, because they raise special
1491 considerations when setting the symbol size: if the symbol
1492 appears as a common symbol in a regular object, and the size in
1493 the regular object is larger, we must make sure that we use the
1494 larger size. This problematic case can always be avoided in C,
1495 but it must be handled correctly when using Fortran shared
1498 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1499 likewise for OLDDYNCOMMON and OLDDEF.
1501 Note that this test is just a heuristic, and that it is quite
1502 possible to have an uninitialized symbol in a shared object which
1503 is really a definition, rather than a common symbol. This could
1504 lead to some minor confusion when the symbol really is a common
1505 symbol in some regular object. However, I think it will be
1511 && (sec->flags & SEC_ALLOC) != 0
1512 && (sec->flags & SEC_LOAD) == 0
1515 newdyncommon = TRUE;
1517 newdyncommon = FALSE;
1521 && h->root.type == bfd_link_hash_defined
1523 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1524 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1527 olddyncommon = TRUE;
1529 olddyncommon = FALSE;
1531 /* We now know everything about the old and new symbols. We ask the
1532 backend to check if we can merge them. */
1533 if (bed->merge_symbol != NULL)
1535 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1540 /* If both the old and the new symbols look like common symbols in a
1541 dynamic object, set the size of the symbol to the larger of the
1546 && sym->st_size != h->size)
1548 /* Since we think we have two common symbols, issue a multiple
1549 common warning if desired. Note that we only warn if the
1550 size is different. If the size is the same, we simply let
1551 the old symbol override the new one as normally happens with
1552 symbols defined in dynamic objects. */
1554 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1555 bfd_link_hash_common, sym->st_size);
1556 if (sym->st_size > h->size)
1557 h->size = sym->st_size;
1559 *size_change_ok = TRUE;
1562 /* If we are looking at a dynamic object, and we have found a
1563 definition, we need to see if the symbol was already defined by
1564 some other object. If so, we want to use the existing
1565 definition, and we do not want to report a multiple symbol
1566 definition error; we do this by clobbering *PSEC to be
1567 bfd_und_section_ptr.
1569 We treat a common symbol as a definition if the symbol in the
1570 shared library is a function, since common symbols always
1571 represent variables; this can cause confusion in principle, but
1572 any such confusion would seem to indicate an erroneous program or
1573 shared library. We also permit a common symbol in a regular
1574 object to override a weak symbol in a shared object. */
1579 || (h->root.type == bfd_link_hash_common
1580 && (newweak || newfunc))))
1584 newdyncommon = FALSE;
1586 *psec = sec = bfd_und_section_ptr;
1587 *size_change_ok = TRUE;
1589 /* If we get here when the old symbol is a common symbol, then
1590 we are explicitly letting it override a weak symbol or
1591 function in a dynamic object, and we don't want to warn about
1592 a type change. If the old symbol is a defined symbol, a type
1593 change warning may still be appropriate. */
1595 if (h->root.type == bfd_link_hash_common)
1596 *type_change_ok = TRUE;
1599 /* Handle the special case of an old common symbol merging with a
1600 new symbol which looks like a common symbol in a shared object.
1601 We change *PSEC and *PVALUE to make the new symbol look like a
1602 common symbol, and let _bfd_generic_link_add_one_symbol do the
1606 && h->root.type == bfd_link_hash_common)
1610 newdyncommon = FALSE;
1611 *pvalue = sym->st_size;
1612 *psec = sec = bed->common_section (oldsec);
1613 *size_change_ok = TRUE;
1616 /* Skip weak definitions of symbols that are already defined. */
1617 if (newdef && olddef && newweak)
1619 /* Don't skip new non-IR weak syms. */
1620 if (!(oldbfd != NULL
1621 && (oldbfd->flags & BFD_PLUGIN) != 0
1622 && (abfd->flags & BFD_PLUGIN) == 0))
1628 /* Merge st_other. If the symbol already has a dynamic index,
1629 but visibility says it should not be visible, turn it into a
1631 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1632 if (h->dynindx != -1)
1633 switch (ELF_ST_VISIBILITY (h->other))
1637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1642 /* If the old symbol is from a dynamic object, and the new symbol is
1643 a definition which is not from a dynamic object, then the new
1644 symbol overrides the old symbol. Symbols from regular files
1645 always take precedence over symbols from dynamic objects, even if
1646 they are defined after the dynamic object in the link.
1648 As above, we again permit a common symbol in a regular object to
1649 override a definition in a shared object if the shared object
1650 symbol is a function or is weak. */
1655 || (bfd_is_com_section (sec)
1656 && (oldweak || oldfunc)))
1661 /* Change the hash table entry to undefined, and let
1662 _bfd_generic_link_add_one_symbol do the right thing with the
1665 h->root.type = bfd_link_hash_undefined;
1666 h->root.u.undef.abfd = h->root.u.def.section->owner;
1667 *size_change_ok = TRUE;
1670 olddyncommon = FALSE;
1672 /* We again permit a type change when a common symbol may be
1673 overriding a function. */
1675 if (bfd_is_com_section (sec))
1679 /* If a common symbol overrides a function, make sure
1680 that it isn't defined dynamically nor has type
1683 h->type = STT_NOTYPE;
1685 *type_change_ok = TRUE;
1688 if (hi->root.type == bfd_link_hash_indirect)
1691 /* This union may have been set to be non-NULL when this symbol
1692 was seen in a dynamic object. We must force the union to be
1693 NULL, so that it is correct for a regular symbol. */
1694 h->verinfo.vertree = NULL;
1697 /* Handle the special case of a new common symbol merging with an
1698 old symbol that looks like it might be a common symbol defined in
1699 a shared object. Note that we have already handled the case in
1700 which a new common symbol should simply override the definition
1701 in the shared library. */
1704 && bfd_is_com_section (sec)
1707 /* It would be best if we could set the hash table entry to a
1708 common symbol, but we don't know what to use for the section
1709 or the alignment. */
1710 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1711 bfd_link_hash_common, sym->st_size);
1713 /* If the presumed common symbol in the dynamic object is
1714 larger, pretend that the new symbol has its size. */
1716 if (h->size > *pvalue)
1719 /* We need to remember the alignment required by the symbol
1720 in the dynamic object. */
1721 BFD_ASSERT (pold_alignment);
1722 *pold_alignment = h->root.u.def.section->alignment_power;
1725 olddyncommon = FALSE;
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1730 *size_change_ok = TRUE;
1731 *type_change_ok = TRUE;
1733 if (hi->root.type == bfd_link_hash_indirect)
1736 h->verinfo.vertree = NULL;
1741 /* Handle the case where we had a versioned symbol in a dynamic
1742 library and now find a definition in a normal object. In this
1743 case, we make the versioned symbol point to the normal one. */
1744 flip->root.type = h->root.type;
1745 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1746 h->root.type = bfd_link_hash_indirect;
1747 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1748 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1752 flip->ref_dynamic = 1;
1759 /* This function is called to create an indirect symbol from the
1760 default for the symbol with the default version if needed. The
1761 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1762 set DYNSYM if the new indirect symbol is dynamic. */
1765 _bfd_elf_add_default_symbol (bfd *abfd,
1766 struct bfd_link_info *info,
1767 struct elf_link_hash_entry *h,
1769 Elf_Internal_Sym *sym,
1773 bfd_boolean *dynsym)
1775 bfd_boolean type_change_ok;
1776 bfd_boolean size_change_ok;
1779 struct elf_link_hash_entry *hi;
1780 struct bfd_link_hash_entry *bh;
1781 const struct elf_backend_data *bed;
1782 bfd_boolean collect;
1783 bfd_boolean dynamic;
1784 bfd_boolean override;
1786 size_t len, shortlen;
1788 bfd_boolean matched;
1790 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1793 /* If this symbol has a version, and it is the default version, we
1794 create an indirect symbol from the default name to the fully
1795 decorated name. This will cause external references which do not
1796 specify a version to be bound to this version of the symbol. */
1797 p = strchr (name, ELF_VER_CHR);
1798 if (h->versioned == unknown)
1802 h->versioned = unversioned;
1807 if (p[1] != ELF_VER_CHR)
1809 h->versioned = versioned_hidden;
1813 h->versioned = versioned;
1818 /* PR ld/19073: We may see an unversioned definition after the
1824 bed = get_elf_backend_data (abfd);
1825 collect = bed->collect;
1826 dynamic = (abfd->flags & DYNAMIC) != 0;
1828 shortlen = p - name;
1829 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1830 if (shortname == NULL)
1832 memcpy (shortname, name, shortlen);
1833 shortname[shortlen] = '\0';
1835 /* We are going to create a new symbol. Merge it with any existing
1836 symbol with this name. For the purposes of the merge, act as
1837 though we were defining the symbol we just defined, although we
1838 actually going to define an indirect symbol. */
1839 type_change_ok = FALSE;
1840 size_change_ok = FALSE;
1843 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1844 &hi, poldbfd, NULL, NULL, &skip, &override,
1845 &type_change_ok, &size_change_ok, &matched))
1851 if (hi->def_regular)
1853 /* If the undecorated symbol will have a version added by a
1854 script different to H, then don't indirect to/from the
1855 undecorated symbol. This isn't ideal because we may not yet
1856 have seen symbol versions, if given by a script on the
1857 command line rather than via --version-script. */
1858 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1863 = bfd_find_version_for_sym (info->version_info,
1864 hi->root.root.string, &hide);
1865 if (hi->verinfo.vertree != NULL && hide)
1867 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1871 if (hi->verinfo.vertree != NULL
1872 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1878 /* Add the default symbol if not performing a relocatable link. */
1879 if (! bfd_link_relocatable (info))
1882 if (! (_bfd_generic_link_add_one_symbol
1883 (info, abfd, shortname, BSF_INDIRECT,
1884 bfd_ind_section_ptr,
1885 0, name, FALSE, collect, &bh)))
1887 hi = (struct elf_link_hash_entry *) bh;
1892 /* In this case the symbol named SHORTNAME is overriding the
1893 indirect symbol we want to add. We were planning on making
1894 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1895 is the name without a version. NAME is the fully versioned
1896 name, and it is the default version.
1898 Overriding means that we already saw a definition for the
1899 symbol SHORTNAME in a regular object, and it is overriding
1900 the symbol defined in the dynamic object.
1902 When this happens, we actually want to change NAME, the
1903 symbol we just added, to refer to SHORTNAME. This will cause
1904 references to NAME in the shared object to become references
1905 to SHORTNAME in the regular object. This is what we expect
1906 when we override a function in a shared object: that the
1907 references in the shared object will be mapped to the
1908 definition in the regular object. */
1910 while (hi->root.type == bfd_link_hash_indirect
1911 || hi->root.type == bfd_link_hash_warning)
1912 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1914 h->root.type = bfd_link_hash_indirect;
1915 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1919 hi->ref_dynamic = 1;
1923 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1928 /* Now set HI to H, so that the following code will set the
1929 other fields correctly. */
1933 /* Check if HI is a warning symbol. */
1934 if (hi->root.type == bfd_link_hash_warning)
1935 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1937 /* If there is a duplicate definition somewhere, then HI may not
1938 point to an indirect symbol. We will have reported an error to
1939 the user in that case. */
1941 if (hi->root.type == bfd_link_hash_indirect)
1943 struct elf_link_hash_entry *ht;
1945 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1948 /* A reference to the SHORTNAME symbol from a dynamic library
1949 will be satisfied by the versioned symbol at runtime. In
1950 effect, we have a reference to the versioned symbol. */
1951 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1952 hi->dynamic_def |= ht->dynamic_def;
1954 /* See if the new flags lead us to realize that the symbol must
1960 if (! bfd_link_executable (info)
1967 if (hi->ref_regular)
1973 /* We also need to define an indirection from the nondefault version
1977 len = strlen (name);
1978 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (shortname == NULL)
1981 memcpy (shortname, name, shortlen);
1982 memcpy (shortname + shortlen, p + 1, len - shortlen);
1984 /* Once again, merge with any existing symbol. */
1985 type_change_ok = FALSE;
1986 size_change_ok = FALSE;
1988 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1989 &hi, poldbfd, NULL, NULL, &skip, &override,
1990 &type_change_ok, &size_change_ok, &matched))
1998 /* Here SHORTNAME is a versioned name, so we don't expect to see
1999 the type of override we do in the case above unless it is
2000 overridden by a versioned definition. */
2001 if (hi->root.type != bfd_link_hash_defined
2002 && hi->root.type != bfd_link_hash_defweak)
2004 /* xgettext:c-format */
2005 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2011 if (! (_bfd_generic_link_add_one_symbol
2012 (info, abfd, shortname, BSF_INDIRECT,
2013 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2015 hi = (struct elf_link_hash_entry *) bh;
2017 /* If there is a duplicate definition somewhere, then HI may not
2018 point to an indirect symbol. We will have reported an error
2019 to the user in that case. */
2021 if (hi->root.type == bfd_link_hash_indirect)
2023 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2024 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2025 hi->dynamic_def |= h->dynamic_def;
2027 /* See if the new flags lead us to realize that the symbol
2033 if (! bfd_link_executable (info)
2039 if (hi->ref_regular)
2049 /* This routine is used to export all defined symbols into the dynamic
2050 symbol table. It is called via elf_link_hash_traverse. */
2053 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2055 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2057 /* Ignore indirect symbols. These are added by the versioning code. */
2058 if (h->root.type == bfd_link_hash_indirect)
2061 /* Ignore this if we won't export it. */
2062 if (!eif->info->export_dynamic && !h->dynamic)
2065 if (h->dynindx == -1
2066 && (h->def_regular || h->ref_regular)
2067 && ! bfd_hide_sym_by_version (eif->info->version_info,
2068 h->root.root.string))
2070 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2080 /* Look through the symbols which are defined in other shared
2081 libraries and referenced here. Update the list of version
2082 dependencies. This will be put into the .gnu.version_r section.
2083 This function is called via elf_link_hash_traverse. */
2086 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2089 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2090 Elf_Internal_Verneed *t;
2091 Elf_Internal_Vernaux *a;
2094 /* We only care about symbols defined in shared objects with version
2099 || h->verinfo.verdef == NULL
2100 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2101 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2104 /* See if we already know about this version. */
2105 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2109 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2112 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2113 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2119 /* This is a new version. Add it to tree we are building. */
2124 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2127 rinfo->failed = TRUE;
2131 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2132 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2133 elf_tdata (rinfo->info->output_bfd)->verref = t;
2137 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2140 rinfo->failed = TRUE;
2144 /* Note that we are copying a string pointer here, and testing it
2145 above. If bfd_elf_string_from_elf_section is ever changed to
2146 discard the string data when low in memory, this will have to be
2148 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2150 a->vna_flags = h->verinfo.verdef->vd_flags;
2151 a->vna_nextptr = t->vn_auxptr;
2153 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2156 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2163 /* Figure out appropriate versions for all the symbols. We may not
2164 have the version number script until we have read all of the input
2165 files, so until that point we don't know which symbols should be
2166 local. This function is called via elf_link_hash_traverse. */
2169 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2171 struct elf_info_failed *sinfo;
2172 struct bfd_link_info *info;
2173 const struct elf_backend_data *bed;
2174 struct elf_info_failed eif;
2177 sinfo = (struct elf_info_failed *) data;
2180 /* Fix the symbol flags. */
2183 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2186 sinfo->failed = TRUE;
2190 /* We only need version numbers for symbols defined in regular
2192 if (!h->def_regular)
2195 bed = get_elf_backend_data (info->output_bfd);
2196 p = strchr (h->root.root.string, ELF_VER_CHR);
2197 if (p != NULL && h->verinfo.vertree == NULL)
2199 struct bfd_elf_version_tree *t;
2202 if (*p == ELF_VER_CHR)
2205 /* If there is no version string, we can just return out. */
2209 /* Look for the version. If we find it, it is no longer weak. */
2210 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2212 if (strcmp (t->name, p) == 0)
2216 struct bfd_elf_version_expr *d;
2218 len = p - h->root.root.string;
2219 alc = (char *) bfd_malloc (len);
2222 sinfo->failed = TRUE;
2225 memcpy (alc, h->root.root.string, len - 1);
2226 alc[len - 1] = '\0';
2227 if (alc[len - 2] == ELF_VER_CHR)
2228 alc[len - 2] = '\0';
2230 h->verinfo.vertree = t;
2234 if (t->globals.list != NULL)
2235 d = (*t->match) (&t->globals, NULL, alc);
2237 /* See if there is anything to force this symbol to
2239 if (d == NULL && t->locals.list != NULL)
2241 d = (*t->match) (&t->locals, NULL, alc);
2244 && ! info->export_dynamic)
2245 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2253 /* If we are building an application, we need to create a
2254 version node for this version. */
2255 if (t == NULL && bfd_link_executable (info))
2257 struct bfd_elf_version_tree **pp;
2260 /* If we aren't going to export this symbol, we don't need
2261 to worry about it. */
2262 if (h->dynindx == -1)
2265 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2269 sinfo->failed = TRUE;
2274 t->name_indx = (unsigned int) -1;
2278 /* Don't count anonymous version tag. */
2279 if (sinfo->info->version_info != NULL
2280 && sinfo->info->version_info->vernum == 0)
2282 for (pp = &sinfo->info->version_info;
2286 t->vernum = version_index;
2290 h->verinfo.vertree = t;
2294 /* We could not find the version for a symbol when
2295 generating a shared archive. Return an error. */
2297 /* xgettext:c-format */
2298 (_("%B: version node not found for symbol %s"),
2299 info->output_bfd, h->root.root.string);
2300 bfd_set_error (bfd_error_bad_value);
2301 sinfo->failed = TRUE;
2306 /* If we don't have a version for this symbol, see if we can find
2308 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2313 = bfd_find_version_for_sym (sinfo->info->version_info,
2314 h->root.root.string, &hide);
2315 if (h->verinfo.vertree != NULL && hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2322 /* Read and swap the relocs from the section indicated by SHDR. This
2323 may be either a REL or a RELA section. The relocations are
2324 translated into RELA relocations and stored in INTERNAL_RELOCS,
2325 which should have already been allocated to contain enough space.
2326 The EXTERNAL_RELOCS are a buffer where the external form of the
2327 relocations should be stored.
2329 Returns FALSE if something goes wrong. */
2332 elf_link_read_relocs_from_section (bfd *abfd,
2334 Elf_Internal_Shdr *shdr,
2335 void *external_relocs,
2336 Elf_Internal_Rela *internal_relocs)
2338 const struct elf_backend_data *bed;
2339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2340 const bfd_byte *erela;
2341 const bfd_byte *erelaend;
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Shdr *symtab_hdr;
2346 /* Position ourselves at the start of the section. */
2347 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2350 /* Read the relocations. */
2351 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2357 bed = get_elf_backend_data (abfd);
2359 /* Convert the external relocations to the internal format. */
2360 if (shdr->sh_entsize == bed->s->sizeof_rel)
2361 swap_in = bed->s->swap_reloc_in;
2362 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2363 swap_in = bed->s->swap_reloca_in;
2366 bfd_set_error (bfd_error_wrong_format);
2370 erela = (const bfd_byte *) external_relocs;
2371 erelaend = erela + shdr->sh_size;
2372 irela = internal_relocs;
2373 while (erela < erelaend)
2377 (*swap_in) (abfd, erela, irela);
2378 r_symndx = ELF32_R_SYM (irela->r_info);
2379 if (bed->s->arch_size == 64)
2383 if ((size_t) r_symndx >= nsyms)
2386 /* xgettext:c-format */
2387 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2388 " for offset 0x%lx in section `%A'"),
2389 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2390 irela->r_offset, sec);
2391 bfd_set_error (bfd_error_bad_value);
2395 else if (r_symndx != STN_UNDEF)
2398 /* xgettext:c-format */
2399 (_("%B: non-zero symbol index (0x%lx)"
2400 " for offset 0x%lx in section `%A'"
2401 " when the object file has no symbol table"),
2402 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2403 irela->r_offset, sec);
2404 bfd_set_error (bfd_error_bad_value);
2407 irela += bed->s->int_rels_per_ext_rel;
2408 erela += shdr->sh_entsize;
2414 /* Read and swap the relocs for a section O. They may have been
2415 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2416 not NULL, they are used as buffers to read into. They are known to
2417 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2418 the return value is allocated using either malloc or bfd_alloc,
2419 according to the KEEP_MEMORY argument. If O has two relocation
2420 sections (both REL and RELA relocations), then the REL_HDR
2421 relocations will appear first in INTERNAL_RELOCS, followed by the
2422 RELA_HDR relocations. */
2425 _bfd_elf_link_read_relocs (bfd *abfd,
2427 void *external_relocs,
2428 Elf_Internal_Rela *internal_relocs,
2429 bfd_boolean keep_memory)
2431 void *alloc1 = NULL;
2432 Elf_Internal_Rela *alloc2 = NULL;
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 struct bfd_elf_section_data *esdo = elf_section_data (o);
2435 Elf_Internal_Rela *internal_rela_relocs;
2437 if (esdo->relocs != NULL)
2438 return esdo->relocs;
2440 if (o->reloc_count == 0)
2443 if (internal_relocs == NULL)
2447 size = o->reloc_count;
2448 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2450 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2452 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2453 if (internal_relocs == NULL)
2457 if (external_relocs == NULL)
2459 bfd_size_type size = 0;
2462 size += esdo->rel.hdr->sh_size;
2464 size += esdo->rela.hdr->sh_size;
2466 alloc1 = bfd_malloc (size);
2469 external_relocs = alloc1;
2472 internal_rela_relocs = internal_relocs;
2475 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2479 external_relocs = (((bfd_byte *) external_relocs)
2480 + esdo->rel.hdr->sh_size);
2481 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2482 * bed->s->int_rels_per_ext_rel);
2486 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2488 internal_rela_relocs)))
2491 /* Cache the results for next time, if we can. */
2493 esdo->relocs = internal_relocs;
2498 /* Don't free alloc2, since if it was allocated we are passing it
2499 back (under the name of internal_relocs). */
2501 return internal_relocs;
2509 bfd_release (abfd, alloc2);
2516 /* Compute the size of, and allocate space for, REL_HDR which is the
2517 section header for a section containing relocations for O. */
2520 _bfd_elf_link_size_reloc_section (bfd *abfd,
2521 struct bfd_elf_section_reloc_data *reldata)
2523 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2525 /* That allows us to calculate the size of the section. */
2526 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2528 /* The contents field must last into write_object_contents, so we
2529 allocate it with bfd_alloc rather than malloc. Also since we
2530 cannot be sure that the contents will actually be filled in,
2531 we zero the allocated space. */
2532 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2533 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2536 if (reldata->hashes == NULL && reldata->count)
2538 struct elf_link_hash_entry **p;
2540 p = ((struct elf_link_hash_entry **)
2541 bfd_zmalloc (reldata->count * sizeof (*p)));
2545 reldata->hashes = p;
2551 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2552 originated from the section given by INPUT_REL_HDR) to the
2556 _bfd_elf_link_output_relocs (bfd *output_bfd,
2557 asection *input_section,
2558 Elf_Internal_Shdr *input_rel_hdr,
2559 Elf_Internal_Rela *internal_relocs,
2560 struct elf_link_hash_entry **rel_hash
2563 Elf_Internal_Rela *irela;
2564 Elf_Internal_Rela *irelaend;
2566 struct bfd_elf_section_reloc_data *output_reldata;
2567 asection *output_section;
2568 const struct elf_backend_data *bed;
2569 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2570 struct bfd_elf_section_data *esdo;
2572 output_section = input_section->output_section;
2574 bed = get_elf_backend_data (output_bfd);
2575 esdo = elf_section_data (output_section);
2576 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2578 output_reldata = &esdo->rel;
2579 swap_out = bed->s->swap_reloc_out;
2581 else if (esdo->rela.hdr
2582 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2584 output_reldata = &esdo->rela;
2585 swap_out = bed->s->swap_reloca_out;
2590 /* xgettext:c-format */
2591 (_("%B: relocation size mismatch in %B section %A"),
2592 output_bfd, input_section->owner, input_section);
2593 bfd_set_error (bfd_error_wrong_format);
2597 erel = output_reldata->hdr->contents;
2598 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2599 irela = internal_relocs;
2600 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2601 * bed->s->int_rels_per_ext_rel);
2602 while (irela < irelaend)
2604 (*swap_out) (output_bfd, irela, erel);
2605 irela += bed->s->int_rels_per_ext_rel;
2606 erel += input_rel_hdr->sh_entsize;
2609 /* Bump the counter, so that we know where to add the next set of
2611 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2616 /* Make weak undefined symbols in PIE dynamic. */
2619 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2620 struct elf_link_hash_entry *h)
2622 if (bfd_link_pie (info)
2624 && h->root.type == bfd_link_hash_undefweak)
2625 return bfd_elf_link_record_dynamic_symbol (info, h);
2630 /* Fix up the flags for a symbol. This handles various cases which
2631 can only be fixed after all the input files are seen. This is
2632 currently called by both adjust_dynamic_symbol and
2633 assign_sym_version, which is unnecessary but perhaps more robust in
2634 the face of future changes. */
2637 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2638 struct elf_info_failed *eif)
2640 const struct elf_backend_data *bed;
2642 /* If this symbol was mentioned in a non-ELF file, try to set
2643 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2644 permit a non-ELF file to correctly refer to a symbol defined in
2645 an ELF dynamic object. */
2648 while (h->root.type == bfd_link_hash_indirect)
2649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2651 if (h->root.type != bfd_link_hash_defined
2652 && h->root.type != bfd_link_hash_defweak)
2655 h->ref_regular_nonweak = 1;
2659 if (h->root.u.def.section->owner != NULL
2660 && (bfd_get_flavour (h->root.u.def.section->owner)
2661 == bfd_target_elf_flavour))
2664 h->ref_regular_nonweak = 1;
2670 if (h->dynindx == -1
2674 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2683 /* Unfortunately, NON_ELF is only correct if the symbol
2684 was first seen in a non-ELF file. Fortunately, if the symbol
2685 was first seen in an ELF file, we're probably OK unless the
2686 symbol was defined in a non-ELF file. Catch that case here.
2687 FIXME: We're still in trouble if the symbol was first seen in
2688 a dynamic object, and then later in a non-ELF regular object. */
2689 if ((h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2692 && (h->root.u.def.section->owner != NULL
2693 ? (bfd_get_flavour (h->root.u.def.section->owner)
2694 != bfd_target_elf_flavour)
2695 : (bfd_is_abs_section (h->root.u.def.section)
2696 && !h->def_dynamic)))
2700 /* Backend specific symbol fixup. */
2701 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2702 if (bed->elf_backend_fixup_symbol
2703 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2706 /* If this is a final link, and the symbol was defined as a common
2707 symbol in a regular object file, and there was no definition in
2708 any dynamic object, then the linker will have allocated space for
2709 the symbol in a common section but the DEF_REGULAR
2710 flag will not have been set. */
2711 if (h->root.type == bfd_link_hash_defined
2715 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2718 /* If a weak undefined symbol has non-default visibility, we also
2719 hide it from the dynamic linker. */
2720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2721 && h->root.type == bfd_link_hash_undefweak)
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2724 /* A hidden versioned symbol in executable should be forced local if
2725 it is is locally defined, not referenced by shared library and not
2727 else if (bfd_link_executable (eif->info)
2728 && h->versioned == versioned_hidden
2729 && !eif->info->export_dynamic
2733 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2735 /* If -Bsymbolic was used (which means to bind references to global
2736 symbols to the definition within the shared object), and this
2737 symbol was defined in a regular object, then it actually doesn't
2738 need a PLT entry. Likewise, if the symbol has non-default
2739 visibility. If the symbol has hidden or internal visibility, we
2740 will force it local. */
2741 else if (h->needs_plt
2742 && bfd_link_pic (eif->info)
2743 && is_elf_hash_table (eif->info->hash)
2744 && (SYMBOLIC_BIND (eif->info, h)
2745 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2748 bfd_boolean force_local;
2750 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2751 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2755 /* If this is a weak defined symbol in a dynamic object, and we know
2756 the real definition in the dynamic object, copy interesting flags
2757 over to the real definition. */
2758 if (h->u.weakdef != NULL)
2760 /* If the real definition is defined by a regular object file,
2761 don't do anything special. See the longer description in
2762 _bfd_elf_adjust_dynamic_symbol, below. */
2763 if (h->u.weakdef->def_regular)
2764 h->u.weakdef = NULL;
2767 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2769 while (h->root.type == bfd_link_hash_indirect)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2773 || h->root.type == bfd_link_hash_defweak);
2774 BFD_ASSERT (weakdef->def_dynamic);
2775 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2776 || weakdef->root.type == bfd_link_hash_defweak);
2777 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2784 /* Make the backend pick a good value for a dynamic symbol. This is
2785 called via elf_link_hash_traverse, and also calls itself
2789 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2793 const struct elf_backend_data *bed;
2795 if (! is_elf_hash_table (eif->info->hash))
2798 /* Ignore indirect symbols. These are added by the versioning code. */
2799 if (h->root.type == bfd_link_hash_indirect)
2802 /* Fix the symbol flags. */
2803 if (! _bfd_elf_fix_symbol_flags (h, eif))
2806 /* If this symbol does not require a PLT entry, and it is not
2807 defined by a dynamic object, or is not referenced by a regular
2808 object, ignore it. We do have to handle a weak defined symbol,
2809 even if no regular object refers to it, if we decided to add it
2810 to the dynamic symbol table. FIXME: Do we normally need to worry
2811 about symbols which are defined by one dynamic object and
2812 referenced by another one? */
2814 && h->type != STT_GNU_IFUNC
2818 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2820 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2824 /* If we've already adjusted this symbol, don't do it again. This
2825 can happen via a recursive call. */
2826 if (h->dynamic_adjusted)
2829 /* Don't look at this symbol again. Note that we must set this
2830 after checking the above conditions, because we may look at a
2831 symbol once, decide not to do anything, and then get called
2832 recursively later after REF_REGULAR is set below. */
2833 h->dynamic_adjusted = 1;
2835 /* If this is a weak definition, and we know a real definition, and
2836 the real symbol is not itself defined by a regular object file,
2837 then get a good value for the real definition. We handle the
2838 real symbol first, for the convenience of the backend routine.
2840 Note that there is a confusing case here. If the real definition
2841 is defined by a regular object file, we don't get the real symbol
2842 from the dynamic object, but we do get the weak symbol. If the
2843 processor backend uses a COPY reloc, then if some routine in the
2844 dynamic object changes the real symbol, we will not see that
2845 change in the corresponding weak symbol. This is the way other
2846 ELF linkers work as well, and seems to be a result of the shared
2849 I will clarify this issue. Most SVR4 shared libraries define the
2850 variable _timezone and define timezone as a weak synonym. The
2851 tzset call changes _timezone. If you write
2852 extern int timezone;
2854 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2855 you might expect that, since timezone is a synonym for _timezone,
2856 the same number will print both times. However, if the processor
2857 backend uses a COPY reloc, then actually timezone will be copied
2858 into your process image, and, since you define _timezone
2859 yourself, _timezone will not. Thus timezone and _timezone will
2860 wind up at different memory locations. The tzset call will set
2861 _timezone, leaving timezone unchanged. */
2863 if (h->u.weakdef != NULL)
2865 /* If we get to this point, there is an implicit reference to
2866 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2867 h->u.weakdef->ref_regular = 1;
2869 /* Ensure that the backend adjust_dynamic_symbol function sees
2870 H->U.WEAKDEF before H by recursively calling ourselves. */
2871 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2875 /* If a symbol has no type and no size and does not require a PLT
2876 entry, then we are probably about to do the wrong thing here: we
2877 are probably going to create a COPY reloc for an empty object.
2878 This case can arise when a shared object is built with assembly
2879 code, and the assembly code fails to set the symbol type. */
2881 && h->type == STT_NOTYPE
2884 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2885 h->root.root.string);
2887 dynobj = elf_hash_table (eif->info)->dynobj;
2888 bed = get_elf_backend_data (dynobj);
2890 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2899 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2903 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2904 struct elf_link_hash_entry *h,
2907 unsigned int power_of_two;
2909 asection *sec = h->root.u.def.section;
2911 /* The section aligment of definition is the maximum alignment
2912 requirement of symbols defined in the section. Since we don't
2913 know the symbol alignment requirement, we start with the
2914 maximum alignment and check low bits of the symbol address
2915 for the minimum alignment. */
2916 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2917 mask = ((bfd_vma) 1 << power_of_two) - 1;
2918 while ((h->root.u.def.value & mask) != 0)
2924 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2927 /* Adjust the section alignment if needed. */
2928 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2933 /* We make sure that the symbol will be aligned properly. */
2934 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2936 /* Define the symbol as being at this point in DYNBSS. */
2937 h->root.u.def.section = dynbss;
2938 h->root.u.def.value = dynbss->size;
2940 /* Increment the size of DYNBSS to make room for the symbol. */
2941 dynbss->size += h->size;
2943 /* No error if extern_protected_data is true. */
2944 if (h->protected_def
2945 && (!info->extern_protected_data
2946 || (info->extern_protected_data < 0
2947 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2948 info->callbacks->einfo
2949 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2950 h->root.root.string);
2955 /* Adjust all external symbols pointing into SEC_MERGE sections
2956 to reflect the object merging within the sections. */
2959 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2963 if ((h->root.type == bfd_link_hash_defined
2964 || h->root.type == bfd_link_hash_defweak)
2965 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2966 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2968 bfd *output_bfd = (bfd *) data;
2970 h->root.u.def.value =
2971 _bfd_merged_section_offset (output_bfd,
2972 &h->root.u.def.section,
2973 elf_section_data (sec)->sec_info,
2974 h->root.u.def.value);
2980 /* Returns false if the symbol referred to by H should be considered
2981 to resolve local to the current module, and true if it should be
2982 considered to bind dynamically. */
2985 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2986 struct bfd_link_info *info,
2987 bfd_boolean not_local_protected)
2989 bfd_boolean binding_stays_local_p;
2990 const struct elf_backend_data *bed;
2991 struct elf_link_hash_table *hash_table;
2996 while (h->root.type == bfd_link_hash_indirect
2997 || h->root.type == bfd_link_hash_warning)
2998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3000 /* If it was forced local, then clearly it's not dynamic. */
3001 if (h->dynindx == -1)
3003 if (h->forced_local)
3006 /* Identify the cases where name binding rules say that a
3007 visible symbol resolves locally. */
3008 binding_stays_local_p = (bfd_link_executable (info)
3009 || SYMBOLIC_BIND (info, h));
3011 switch (ELF_ST_VISIBILITY (h->other))
3018 hash_table = elf_hash_table (info);
3019 if (!is_elf_hash_table (hash_table))
3022 bed = get_elf_backend_data (hash_table->dynobj);
3024 /* Proper resolution for function pointer equality may require
3025 that these symbols perhaps be resolved dynamically, even though
3026 we should be resolving them to the current module. */
3027 if (!not_local_protected || !bed->is_function_type (h->type))
3028 binding_stays_local_p = TRUE;
3035 /* If it isn't defined locally, then clearly it's dynamic. */
3036 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3039 /* Otherwise, the symbol is dynamic if binding rules don't tell
3040 us that it remains local. */
3041 return !binding_stays_local_p;
3044 /* Return true if the symbol referred to by H should be considered
3045 to resolve local to the current module, and false otherwise. Differs
3046 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3047 undefined symbols. The two functions are virtually identical except
3048 for the place where forced_local and dynindx == -1 are tested. If
3049 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3050 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3051 the symbol is local only for defined symbols.
3052 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3053 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3054 treatment of undefined weak symbols. For those that do not make
3055 undefined weak symbols dynamic, both functions may return false. */
3058 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3059 struct bfd_link_info *info,
3060 bfd_boolean local_protected)
3062 const struct elf_backend_data *bed;
3063 struct elf_link_hash_table *hash_table;
3065 /* If it's a local sym, of course we resolve locally. */
3069 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3070 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3071 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3074 /* Common symbols that become definitions don't get the DEF_REGULAR
3075 flag set, so test it first, and don't bail out. */
3076 if (ELF_COMMON_DEF_P (h))
3078 /* If we don't have a definition in a regular file, then we can't
3079 resolve locally. The sym is either undefined or dynamic. */
3080 else if (!h->def_regular)
3083 /* Forced local symbols resolve locally. */
3084 if (h->forced_local)
3087 /* As do non-dynamic symbols. */
3088 if (h->dynindx == -1)
3091 /* At this point, we know the symbol is defined and dynamic. In an
3092 executable it must resolve locally, likewise when building symbolic
3093 shared libraries. */
3094 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3097 /* Now deal with defined dynamic symbols in shared libraries. Ones
3098 with default visibility might not resolve locally. */
3099 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3102 hash_table = elf_hash_table (info);
3103 if (!is_elf_hash_table (hash_table))
3106 bed = get_elf_backend_data (hash_table->dynobj);
3108 /* If extern_protected_data is false, STV_PROTECTED non-function
3109 symbols are local. */
3110 if ((!info->extern_protected_data
3111 || (info->extern_protected_data < 0
3112 && !bed->extern_protected_data))
3113 && !bed->is_function_type (h->type))
3116 /* Function pointer equality tests may require that STV_PROTECTED
3117 symbols be treated as dynamic symbols. If the address of a
3118 function not defined in an executable is set to that function's
3119 plt entry in the executable, then the address of the function in
3120 a shared library must also be the plt entry in the executable. */
3121 return local_protected;
3124 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3125 aligned. Returns the first TLS output section. */
3127 struct bfd_section *
3128 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3130 struct bfd_section *sec, *tls;
3131 unsigned int align = 0;
3133 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3134 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3138 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3139 if (sec->alignment_power > align)
3140 align = sec->alignment_power;
3142 elf_hash_table (info)->tls_sec = tls;
3144 /* Ensure the alignment of the first section is the largest alignment,
3145 so that the tls segment starts aligned. */
3147 tls->alignment_power = align;
3152 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3154 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3155 Elf_Internal_Sym *sym)
3157 const struct elf_backend_data *bed;
3159 /* Local symbols do not count, but target specific ones might. */
3160 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3161 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3164 bed = get_elf_backend_data (abfd);
3165 /* Function symbols do not count. */
3166 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3169 /* If the section is undefined, then so is the symbol. */
3170 if (sym->st_shndx == SHN_UNDEF)
3173 /* If the symbol is defined in the common section, then
3174 it is a common definition and so does not count. */
3175 if (bed->common_definition (sym))
3178 /* If the symbol is in a target specific section then we
3179 must rely upon the backend to tell us what it is. */
3180 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3181 /* FIXME - this function is not coded yet:
3183 return _bfd_is_global_symbol_definition (abfd, sym);
3185 Instead for now assume that the definition is not global,
3186 Even if this is wrong, at least the linker will behave
3187 in the same way that it used to do. */
3193 /* Search the symbol table of the archive element of the archive ABFD
3194 whose archive map contains a mention of SYMDEF, and determine if
3195 the symbol is defined in this element. */
3197 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3199 Elf_Internal_Shdr * hdr;
3203 Elf_Internal_Sym *isymbuf;
3204 Elf_Internal_Sym *isym;
3205 Elf_Internal_Sym *isymend;
3208 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3212 if (! bfd_check_format (abfd, bfd_object))
3215 /* Select the appropriate symbol table. If we don't know if the
3216 object file is an IR object, give linker LTO plugin a chance to
3217 get the correct symbol table. */
3218 if (abfd->plugin_format == bfd_plugin_yes
3219 #if BFD_SUPPORTS_PLUGINS
3220 || (abfd->plugin_format == bfd_plugin_unknown
3221 && bfd_link_plugin_object_p (abfd))
3225 /* Use the IR symbol table if the object has been claimed by
3227 abfd = abfd->plugin_dummy_bfd;
3228 hdr = &elf_tdata (abfd)->symtab_hdr;
3230 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3231 hdr = &elf_tdata (abfd)->symtab_hdr;
3233 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3235 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3237 /* The sh_info field of the symtab header tells us where the
3238 external symbols start. We don't care about the local symbols. */
3239 if (elf_bad_symtab (abfd))
3241 extsymcount = symcount;
3246 extsymcount = symcount - hdr->sh_info;
3247 extsymoff = hdr->sh_info;
3250 if (extsymcount == 0)
3253 /* Read in the symbol table. */
3254 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3256 if (isymbuf == NULL)
3259 /* Scan the symbol table looking for SYMDEF. */
3261 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3265 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3270 if (strcmp (name, symdef->name) == 0)
3272 result = is_global_data_symbol_definition (abfd, isym);
3282 /* Add an entry to the .dynamic table. */
3285 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3289 struct elf_link_hash_table *hash_table;
3290 const struct elf_backend_data *bed;
3292 bfd_size_type newsize;
3293 bfd_byte *newcontents;
3294 Elf_Internal_Dyn dyn;
3296 hash_table = elf_hash_table (info);
3297 if (! is_elf_hash_table (hash_table))
3300 bed = get_elf_backend_data (hash_table->dynobj);
3301 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3302 BFD_ASSERT (s != NULL);
3304 newsize = s->size + bed->s->sizeof_dyn;
3305 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3306 if (newcontents == NULL)
3310 dyn.d_un.d_val = val;
3311 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3314 s->contents = newcontents;
3319 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3320 otherwise just check whether one already exists. Returns -1 on error,
3321 1 if a DT_NEEDED tag already exists, and 0 on success. */
3324 elf_add_dt_needed_tag (bfd *abfd,
3325 struct bfd_link_info *info,
3329 struct elf_link_hash_table *hash_table;
3332 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3335 hash_table = elf_hash_table (info);
3336 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3337 if (strindex == (size_t) -1)
3340 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3343 const struct elf_backend_data *bed;
3346 bed = get_elf_backend_data (hash_table->dynobj);
3347 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3349 for (extdyn = sdyn->contents;
3350 extdyn < sdyn->contents + sdyn->size;
3351 extdyn += bed->s->sizeof_dyn)
3353 Elf_Internal_Dyn dyn;
3355 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3356 if (dyn.d_tag == DT_NEEDED
3357 && dyn.d_un.d_val == strindex)
3359 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3367 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3370 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3374 /* We were just checking for existence of the tag. */
3375 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3380 /* Return true if SONAME is on the needed list between NEEDED and STOP
3381 (or the end of list if STOP is NULL), and needed by a library that
3385 on_needed_list (const char *soname,
3386 struct bfd_link_needed_list *needed,
3387 struct bfd_link_needed_list *stop)
3389 struct bfd_link_needed_list *look;
3390 for (look = needed; look != stop; look = look->next)
3391 if (strcmp (soname, look->name) == 0
3392 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3393 /* If needed by a library that itself is not directly
3394 needed, recursively check whether that library is
3395 indirectly needed. Since we add DT_NEEDED entries to
3396 the end of the list, library dependencies appear after
3397 the library. Therefore search prior to the current
3398 LOOK, preventing possible infinite recursion. */
3399 || on_needed_list (elf_dt_name (look->by), needed, look)))
3405 /* Sort symbol by value, section, and size. */
3407 elf_sort_symbol (const void *arg1, const void *arg2)
3409 const struct elf_link_hash_entry *h1;
3410 const struct elf_link_hash_entry *h2;
3411 bfd_signed_vma vdiff;
3413 h1 = *(const struct elf_link_hash_entry **) arg1;
3414 h2 = *(const struct elf_link_hash_entry **) arg2;
3415 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3417 return vdiff > 0 ? 1 : -1;
3420 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3422 return sdiff > 0 ? 1 : -1;
3424 vdiff = h1->size - h2->size;
3425 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3428 /* This function is used to adjust offsets into .dynstr for
3429 dynamic symbols. This is called via elf_link_hash_traverse. */
3432 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3434 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3436 if (h->dynindx != -1)
3437 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3441 /* Assign string offsets in .dynstr, update all structures referencing
3445 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3447 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3448 struct elf_link_local_dynamic_entry *entry;
3449 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3450 bfd *dynobj = hash_table->dynobj;
3453 const struct elf_backend_data *bed;
3456 _bfd_elf_strtab_finalize (dynstr);
3457 size = _bfd_elf_strtab_size (dynstr);
3459 bed = get_elf_backend_data (dynobj);
3460 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3461 BFD_ASSERT (sdyn != NULL);
3463 /* Update all .dynamic entries referencing .dynstr strings. */
3464 for (extdyn = sdyn->contents;
3465 extdyn < sdyn->contents + sdyn->size;
3466 extdyn += bed->s->sizeof_dyn)
3468 Elf_Internal_Dyn dyn;
3470 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3474 dyn.d_un.d_val = size;
3484 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3489 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3492 /* Now update local dynamic symbols. */
3493 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3494 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3495 entry->isym.st_name);
3497 /* And the rest of dynamic symbols. */
3498 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3500 /* Adjust version definitions. */
3501 if (elf_tdata (output_bfd)->cverdefs)
3506 Elf_Internal_Verdef def;
3507 Elf_Internal_Verdaux defaux;
3509 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3513 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3515 p += sizeof (Elf_External_Verdef);
3516 if (def.vd_aux != sizeof (Elf_External_Verdef))
3518 for (i = 0; i < def.vd_cnt; ++i)
3520 _bfd_elf_swap_verdaux_in (output_bfd,
3521 (Elf_External_Verdaux *) p, &defaux);
3522 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3524 _bfd_elf_swap_verdaux_out (output_bfd,
3525 &defaux, (Elf_External_Verdaux *) p);
3526 p += sizeof (Elf_External_Verdaux);
3529 while (def.vd_next);
3532 /* Adjust version references. */
3533 if (elf_tdata (output_bfd)->verref)
3538 Elf_Internal_Verneed need;
3539 Elf_Internal_Vernaux needaux;
3541 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3545 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3547 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3548 _bfd_elf_swap_verneed_out (output_bfd, &need,
3549 (Elf_External_Verneed *) p);
3550 p += sizeof (Elf_External_Verneed);
3551 for (i = 0; i < need.vn_cnt; ++i)
3553 _bfd_elf_swap_vernaux_in (output_bfd,
3554 (Elf_External_Vernaux *) p, &needaux);
3555 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3557 _bfd_elf_swap_vernaux_out (output_bfd,
3559 (Elf_External_Vernaux *) p);
3560 p += sizeof (Elf_External_Vernaux);
3563 while (need.vn_next);
3569 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3570 The default is to only match when the INPUT and OUTPUT are exactly
3574 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3575 const bfd_target *output)
3577 return input == output;
3580 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3581 This version is used when different targets for the same architecture
3582 are virtually identical. */
3585 _bfd_elf_relocs_compatible (const bfd_target *input,
3586 const bfd_target *output)
3588 const struct elf_backend_data *obed, *ibed;
3590 if (input == output)
3593 ibed = xvec_get_elf_backend_data (input);
3594 obed = xvec_get_elf_backend_data (output);
3596 if (ibed->arch != obed->arch)
3599 /* If both backends are using this function, deem them compatible. */
3600 return ibed->relocs_compatible == obed->relocs_compatible;
3603 /* Make a special call to the linker "notice" function to tell it that
3604 we are about to handle an as-needed lib, or have finished
3605 processing the lib. */
3608 _bfd_elf_notice_as_needed (bfd *ibfd,
3609 struct bfd_link_info *info,
3610 enum notice_asneeded_action act)
3612 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3615 /* Check relocations an ELF object file. */
3618 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3620 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3621 struct elf_link_hash_table *htab = elf_hash_table (info);
3623 /* If this object is the same format as the output object, and it is
3624 not a shared library, then let the backend look through the
3627 This is required to build global offset table entries and to
3628 arrange for dynamic relocs. It is not required for the
3629 particular common case of linking non PIC code, even when linking
3630 against shared libraries, but unfortunately there is no way of
3631 knowing whether an object file has been compiled PIC or not.
3632 Looking through the relocs is not particularly time consuming.
3633 The problem is that we must either (1) keep the relocs in memory,
3634 which causes the linker to require additional runtime memory or
3635 (2) read the relocs twice from the input file, which wastes time.
3636 This would be a good case for using mmap.
3638 I have no idea how to handle linking PIC code into a file of a
3639 different format. It probably can't be done. */
3640 if ((abfd->flags & DYNAMIC) == 0
3641 && is_elf_hash_table (htab)
3642 && bed->check_relocs != NULL
3643 && elf_object_id (abfd) == elf_hash_table_id (htab)
3644 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3648 for (o = abfd->sections; o != NULL; o = o->next)
3650 Elf_Internal_Rela *internal_relocs;
3653 /* Don't check relocations in excluded sections. */
3654 if ((o->flags & SEC_RELOC) == 0
3655 || (o->flags & SEC_EXCLUDE) != 0
3656 || o->reloc_count == 0
3657 || ((info->strip == strip_all || info->strip == strip_debugger)
3658 && (o->flags & SEC_DEBUGGING) != 0)
3659 || bfd_is_abs_section (o->output_section))
3662 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3664 if (internal_relocs == NULL)
3667 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3669 if (elf_section_data (o)->relocs != internal_relocs)
3670 free (internal_relocs);
3680 /* Add symbols from an ELF object file to the linker hash table. */
3683 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3685 Elf_Internal_Ehdr *ehdr;
3686 Elf_Internal_Shdr *hdr;
3690 struct elf_link_hash_entry **sym_hash;
3691 bfd_boolean dynamic;
3692 Elf_External_Versym *extversym = NULL;
3693 Elf_External_Versym *ever;
3694 struct elf_link_hash_entry *weaks;
3695 struct elf_link_hash_entry **nondeflt_vers = NULL;
3696 size_t nondeflt_vers_cnt = 0;
3697 Elf_Internal_Sym *isymbuf = NULL;
3698 Elf_Internal_Sym *isym;
3699 Elf_Internal_Sym *isymend;
3700 const struct elf_backend_data *bed;
3701 bfd_boolean add_needed;
3702 struct elf_link_hash_table *htab;
3704 void *alloc_mark = NULL;
3705 struct bfd_hash_entry **old_table = NULL;
3706 unsigned int old_size = 0;
3707 unsigned int old_count = 0;
3708 void *old_tab = NULL;
3710 struct bfd_link_hash_entry *old_undefs = NULL;
3711 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3712 void *old_strtab = NULL;
3715 bfd_boolean just_syms;
3717 htab = elf_hash_table (info);
3718 bed = get_elf_backend_data (abfd);
3720 if ((abfd->flags & DYNAMIC) == 0)
3726 /* You can't use -r against a dynamic object. Also, there's no
3727 hope of using a dynamic object which does not exactly match
3728 the format of the output file. */
3729 if (bfd_link_relocatable (info)
3730 || !is_elf_hash_table (htab)
3731 || info->output_bfd->xvec != abfd->xvec)
3733 if (bfd_link_relocatable (info))
3734 bfd_set_error (bfd_error_invalid_operation);
3736 bfd_set_error (bfd_error_wrong_format);
3741 ehdr = elf_elfheader (abfd);
3742 if (info->warn_alternate_em
3743 && bed->elf_machine_code != ehdr->e_machine
3744 && ((bed->elf_machine_alt1 != 0
3745 && ehdr->e_machine == bed->elf_machine_alt1)
3746 || (bed->elf_machine_alt2 != 0
3747 && ehdr->e_machine == bed->elf_machine_alt2)))
3748 info->callbacks->einfo
3749 /* xgettext:c-format */
3750 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3751 ehdr->e_machine, abfd, bed->elf_machine_code);
3753 /* As a GNU extension, any input sections which are named
3754 .gnu.warning.SYMBOL are treated as warning symbols for the given
3755 symbol. This differs from .gnu.warning sections, which generate
3756 warnings when they are included in an output file. */
3757 /* PR 12761: Also generate this warning when building shared libraries. */
3758 for (s = abfd->sections; s != NULL; s = s->next)
3762 name = bfd_get_section_name (abfd, s);
3763 if (CONST_STRNEQ (name, ".gnu.warning."))
3768 name += sizeof ".gnu.warning." - 1;
3770 /* If this is a shared object, then look up the symbol
3771 in the hash table. If it is there, and it is already
3772 been defined, then we will not be using the entry
3773 from this shared object, so we don't need to warn.
3774 FIXME: If we see the definition in a regular object
3775 later on, we will warn, but we shouldn't. The only
3776 fix is to keep track of what warnings we are supposed
3777 to emit, and then handle them all at the end of the
3781 struct elf_link_hash_entry *h;
3783 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3785 /* FIXME: What about bfd_link_hash_common? */
3787 && (h->root.type == bfd_link_hash_defined
3788 || h->root.type == bfd_link_hash_defweak))
3793 msg = (char *) bfd_alloc (abfd, sz + 1);
3797 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3802 if (! (_bfd_generic_link_add_one_symbol
3803 (info, abfd, name, BSF_WARNING, s, 0, msg,
3804 FALSE, bed->collect, NULL)))
3807 if (bfd_link_executable (info))
3809 /* Clobber the section size so that the warning does
3810 not get copied into the output file. */
3813 /* Also set SEC_EXCLUDE, so that symbols defined in
3814 the warning section don't get copied to the output. */
3815 s->flags |= SEC_EXCLUDE;
3820 just_syms = ((s = abfd->sections) != NULL
3821 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3826 /* If we are creating a shared library, create all the dynamic
3827 sections immediately. We need to attach them to something,
3828 so we attach them to this BFD, provided it is the right
3829 format and is not from ld --just-symbols. Always create the
3830 dynamic sections for -E/--dynamic-list. FIXME: If there
3831 are no input BFD's of the same format as the output, we can't
3832 make a shared library. */
3834 && (bfd_link_pic (info)
3835 || (!bfd_link_relocatable (info)
3836 && (info->export_dynamic || info->dynamic)))
3837 && is_elf_hash_table (htab)
3838 && info->output_bfd->xvec == abfd->xvec
3839 && !htab->dynamic_sections_created)
3841 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3845 else if (!is_elf_hash_table (htab))
3849 const char *soname = NULL;
3851 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3852 const Elf_Internal_Phdr *phdr;
3855 /* ld --just-symbols and dynamic objects don't mix very well.
3856 ld shouldn't allow it. */
3860 /* If this dynamic lib was specified on the command line with
3861 --as-needed in effect, then we don't want to add a DT_NEEDED
3862 tag unless the lib is actually used. Similary for libs brought
3863 in by another lib's DT_NEEDED. When --no-add-needed is used
3864 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3865 any dynamic library in DT_NEEDED tags in the dynamic lib at
3867 add_needed = (elf_dyn_lib_class (abfd)
3868 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3869 | DYN_NO_NEEDED)) == 0;
3871 s = bfd_get_section_by_name (abfd, ".dynamic");
3876 unsigned int elfsec;
3877 unsigned long shlink;
3879 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3886 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3887 if (elfsec == SHN_BAD)
3888 goto error_free_dyn;
3889 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3891 for (extdyn = dynbuf;
3892 extdyn < dynbuf + s->size;
3893 extdyn += bed->s->sizeof_dyn)
3895 Elf_Internal_Dyn dyn;
3897 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3898 if (dyn.d_tag == DT_SONAME)
3900 unsigned int tagv = dyn.d_un.d_val;
3901 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3903 goto error_free_dyn;
3905 if (dyn.d_tag == DT_NEEDED)
3907 struct bfd_link_needed_list *n, **pn;
3909 unsigned int tagv = dyn.d_un.d_val;
3911 amt = sizeof (struct bfd_link_needed_list);
3912 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3913 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3914 if (n == NULL || fnm == NULL)
3915 goto error_free_dyn;
3916 amt = strlen (fnm) + 1;
3917 anm = (char *) bfd_alloc (abfd, amt);
3919 goto error_free_dyn;
3920 memcpy (anm, fnm, amt);
3924 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3928 if (dyn.d_tag == DT_RUNPATH)
3930 struct bfd_link_needed_list *n, **pn;
3932 unsigned int tagv = dyn.d_un.d_val;
3934 amt = sizeof (struct bfd_link_needed_list);
3935 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3936 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3937 if (n == NULL || fnm == NULL)
3938 goto error_free_dyn;
3939 amt = strlen (fnm) + 1;
3940 anm = (char *) bfd_alloc (abfd, amt);
3942 goto error_free_dyn;
3943 memcpy (anm, fnm, amt);
3947 for (pn = & runpath;
3953 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3954 if (!runpath && dyn.d_tag == DT_RPATH)
3956 struct bfd_link_needed_list *n, **pn;
3958 unsigned int tagv = dyn.d_un.d_val;
3960 amt = sizeof (struct bfd_link_needed_list);
3961 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3962 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3963 if (n == NULL || fnm == NULL)
3964 goto error_free_dyn;
3965 amt = strlen (fnm) + 1;
3966 anm = (char *) bfd_alloc (abfd, amt);
3968 goto error_free_dyn;
3969 memcpy (anm, fnm, amt);
3979 if (dyn.d_tag == DT_AUDIT)
3981 unsigned int tagv = dyn.d_un.d_val;
3982 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3989 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3990 frees all more recently bfd_alloc'd blocks as well. */
3996 struct bfd_link_needed_list **pn;
3997 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4002 /* If we have a PT_GNU_RELRO program header, mark as read-only
4003 all sections contained fully therein. This makes relro
4004 shared library sections appear as they will at run-time. */
4005 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4006 while (--phdr >= elf_tdata (abfd)->phdr)
4007 if (phdr->p_type == PT_GNU_RELRO)
4009 for (s = abfd->sections; s != NULL; s = s->next)
4010 if ((s->flags & SEC_ALLOC) != 0
4011 && s->vma >= phdr->p_vaddr
4012 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4013 s->flags |= SEC_READONLY;
4017 /* We do not want to include any of the sections in a dynamic
4018 object in the output file. We hack by simply clobbering the
4019 list of sections in the BFD. This could be handled more
4020 cleanly by, say, a new section flag; the existing
4021 SEC_NEVER_LOAD flag is not the one we want, because that one
4022 still implies that the section takes up space in the output
4024 bfd_section_list_clear (abfd);
4026 /* Find the name to use in a DT_NEEDED entry that refers to this
4027 object. If the object has a DT_SONAME entry, we use it.
4028 Otherwise, if the generic linker stuck something in
4029 elf_dt_name, we use that. Otherwise, we just use the file
4031 if (soname == NULL || *soname == '\0')
4033 soname = elf_dt_name (abfd);
4034 if (soname == NULL || *soname == '\0')
4035 soname = bfd_get_filename (abfd);
4038 /* Save the SONAME because sometimes the linker emulation code
4039 will need to know it. */
4040 elf_dt_name (abfd) = soname;
4042 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4046 /* If we have already included this dynamic object in the
4047 link, just ignore it. There is no reason to include a
4048 particular dynamic object more than once. */
4052 /* Save the DT_AUDIT entry for the linker emulation code. */
4053 elf_dt_audit (abfd) = audit;
4056 /* If this is a dynamic object, we always link against the .dynsym
4057 symbol table, not the .symtab symbol table. The dynamic linker
4058 will only see the .dynsym symbol table, so there is no reason to
4059 look at .symtab for a dynamic object. */
4061 if (! dynamic || elf_dynsymtab (abfd) == 0)
4062 hdr = &elf_tdata (abfd)->symtab_hdr;
4064 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4066 symcount = hdr->sh_size / bed->s->sizeof_sym;
4068 /* The sh_info field of the symtab header tells us where the
4069 external symbols start. We don't care about the local symbols at
4071 if (elf_bad_symtab (abfd))
4073 extsymcount = symcount;
4078 extsymcount = symcount - hdr->sh_info;
4079 extsymoff = hdr->sh_info;
4082 sym_hash = elf_sym_hashes (abfd);
4083 if (extsymcount != 0)
4085 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4087 if (isymbuf == NULL)
4090 if (sym_hash == NULL)
4092 /* We store a pointer to the hash table entry for each
4095 amt *= sizeof (struct elf_link_hash_entry *);
4096 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4097 if (sym_hash == NULL)
4098 goto error_free_sym;
4099 elf_sym_hashes (abfd) = sym_hash;
4105 /* Read in any version definitions. */
4106 if (!_bfd_elf_slurp_version_tables (abfd,
4107 info->default_imported_symver))
4108 goto error_free_sym;
4110 /* Read in the symbol versions, but don't bother to convert them
4111 to internal format. */
4112 if (elf_dynversym (abfd) != 0)
4114 Elf_Internal_Shdr *versymhdr;
4116 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4117 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4118 if (extversym == NULL)
4119 goto error_free_sym;
4120 amt = versymhdr->sh_size;
4121 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4122 || bfd_bread (extversym, amt, abfd) != amt)
4123 goto error_free_vers;
4127 /* If we are loading an as-needed shared lib, save the symbol table
4128 state before we start adding symbols. If the lib turns out
4129 to be unneeded, restore the state. */
4130 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4135 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4137 struct bfd_hash_entry *p;
4138 struct elf_link_hash_entry *h;
4140 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4142 h = (struct elf_link_hash_entry *) p;
4143 entsize += htab->root.table.entsize;
4144 if (h->root.type == bfd_link_hash_warning)
4145 entsize += htab->root.table.entsize;
4149 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4150 old_tab = bfd_malloc (tabsize + entsize);
4151 if (old_tab == NULL)
4152 goto error_free_vers;
4154 /* Remember the current objalloc pointer, so that all mem for
4155 symbols added can later be reclaimed. */
4156 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4157 if (alloc_mark == NULL)
4158 goto error_free_vers;
4160 /* Make a special call to the linker "notice" function to
4161 tell it that we are about to handle an as-needed lib. */
4162 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4163 goto error_free_vers;
4165 /* Clone the symbol table. Remember some pointers into the
4166 symbol table, and dynamic symbol count. */
4167 old_ent = (char *) old_tab + tabsize;
4168 memcpy (old_tab, htab->root.table.table, tabsize);
4169 old_undefs = htab->root.undefs;
4170 old_undefs_tail = htab->root.undefs_tail;
4171 old_table = htab->root.table.table;
4172 old_size = htab->root.table.size;
4173 old_count = htab->root.table.count;
4174 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4175 if (old_strtab == NULL)
4176 goto error_free_vers;
4178 for (i = 0; i < htab->root.table.size; i++)
4180 struct bfd_hash_entry *p;
4181 struct elf_link_hash_entry *h;
4183 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4185 memcpy (old_ent, p, htab->root.table.entsize);
4186 old_ent = (char *) old_ent + htab->root.table.entsize;
4187 h = (struct elf_link_hash_entry *) p;
4188 if (h->root.type == bfd_link_hash_warning)
4190 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4191 old_ent = (char *) old_ent + htab->root.table.entsize;
4198 ever = extversym != NULL ? extversym + extsymoff : NULL;
4199 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4201 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4205 asection *sec, *new_sec;
4208 struct elf_link_hash_entry *h;
4209 struct elf_link_hash_entry *hi;
4210 bfd_boolean definition;
4211 bfd_boolean size_change_ok;
4212 bfd_boolean type_change_ok;
4213 bfd_boolean new_weakdef;
4214 bfd_boolean new_weak;
4215 bfd_boolean old_weak;
4216 bfd_boolean override;
4218 bfd_boolean discarded;
4219 unsigned int old_alignment;
4221 bfd_boolean matched;
4225 flags = BSF_NO_FLAGS;
4227 value = isym->st_value;
4228 common = bed->common_definition (isym);
4231 bind = ELF_ST_BIND (isym->st_info);
4235 /* This should be impossible, since ELF requires that all
4236 global symbols follow all local symbols, and that sh_info
4237 point to the first global symbol. Unfortunately, Irix 5
4242 if (isym->st_shndx != SHN_UNDEF && !common)
4250 case STB_GNU_UNIQUE:
4251 flags = BSF_GNU_UNIQUE;
4255 /* Leave it up to the processor backend. */
4259 if (isym->st_shndx == SHN_UNDEF)
4260 sec = bfd_und_section_ptr;
4261 else if (isym->st_shndx == SHN_ABS)
4262 sec = bfd_abs_section_ptr;
4263 else if (isym->st_shndx == SHN_COMMON)
4265 sec = bfd_com_section_ptr;
4266 /* What ELF calls the size we call the value. What ELF
4267 calls the value we call the alignment. */
4268 value = isym->st_size;
4272 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4274 sec = bfd_abs_section_ptr;
4275 else if (discarded_section (sec))
4277 /* Symbols from discarded section are undefined. We keep
4279 sec = bfd_und_section_ptr;
4281 isym->st_shndx = SHN_UNDEF;
4283 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4287 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4290 goto error_free_vers;
4292 if (isym->st_shndx == SHN_COMMON
4293 && (abfd->flags & BFD_PLUGIN) != 0)
4295 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4299 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4301 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4303 goto error_free_vers;
4307 else if (isym->st_shndx == SHN_COMMON
4308 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4309 && !bfd_link_relocatable (info))
4311 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4315 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4316 | SEC_LINKER_CREATED);
4317 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4319 goto error_free_vers;
4323 else if (bed->elf_add_symbol_hook)
4325 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4327 goto error_free_vers;
4329 /* The hook function sets the name to NULL if this symbol
4330 should be skipped for some reason. */
4335 /* Sanity check that all possibilities were handled. */
4338 bfd_set_error (bfd_error_bad_value);
4339 goto error_free_vers;
4342 /* Silently discard TLS symbols from --just-syms. There's
4343 no way to combine a static TLS block with a new TLS block
4344 for this executable. */
4345 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4346 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4349 if (bfd_is_und_section (sec)
4350 || bfd_is_com_section (sec))
4355 size_change_ok = FALSE;
4356 type_change_ok = bed->type_change_ok;
4363 if (is_elf_hash_table (htab))
4365 Elf_Internal_Versym iver;
4366 unsigned int vernum = 0;
4371 if (info->default_imported_symver)
4372 /* Use the default symbol version created earlier. */
4373 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4378 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4380 vernum = iver.vs_vers & VERSYM_VERSION;
4382 /* If this is a hidden symbol, or if it is not version
4383 1, we append the version name to the symbol name.
4384 However, we do not modify a non-hidden absolute symbol
4385 if it is not a function, because it might be the version
4386 symbol itself. FIXME: What if it isn't? */
4387 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4389 && (!bfd_is_abs_section (sec)
4390 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4393 size_t namelen, verlen, newlen;
4396 if (isym->st_shndx != SHN_UNDEF)
4398 if (vernum > elf_tdata (abfd)->cverdefs)
4400 else if (vernum > 1)
4402 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4409 /* xgettext:c-format */
4410 (_("%B: %s: invalid version %u (max %d)"),
4412 elf_tdata (abfd)->cverdefs);
4413 bfd_set_error (bfd_error_bad_value);
4414 goto error_free_vers;
4419 /* We cannot simply test for the number of
4420 entries in the VERNEED section since the
4421 numbers for the needed versions do not start
4423 Elf_Internal_Verneed *t;
4426 for (t = elf_tdata (abfd)->verref;
4430 Elf_Internal_Vernaux *a;
4432 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4434 if (a->vna_other == vernum)
4436 verstr = a->vna_nodename;
4446 /* xgettext:c-format */
4447 (_("%B: %s: invalid needed version %d"),
4448 abfd, name, vernum);
4449 bfd_set_error (bfd_error_bad_value);
4450 goto error_free_vers;
4454 namelen = strlen (name);
4455 verlen = strlen (verstr);
4456 newlen = namelen + verlen + 2;
4457 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4458 && isym->st_shndx != SHN_UNDEF)
4461 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4462 if (newname == NULL)
4463 goto error_free_vers;
4464 memcpy (newname, name, namelen);
4465 p = newname + namelen;
4467 /* If this is a defined non-hidden version symbol,
4468 we add another @ to the name. This indicates the
4469 default version of the symbol. */
4470 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4471 && isym->st_shndx != SHN_UNDEF)
4473 memcpy (p, verstr, verlen + 1);
4478 /* If this symbol has default visibility and the user has
4479 requested we not re-export it, then mark it as hidden. */
4480 if (!bfd_is_und_section (sec)
4483 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4484 isym->st_other = (STV_HIDDEN
4485 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4487 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4488 sym_hash, &old_bfd, &old_weak,
4489 &old_alignment, &skip, &override,
4490 &type_change_ok, &size_change_ok,
4492 goto error_free_vers;
4497 /* Override a definition only if the new symbol matches the
4499 if (override && matched)
4503 while (h->root.type == bfd_link_hash_indirect
4504 || h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4507 if (elf_tdata (abfd)->verdef != NULL
4510 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4513 if (! (_bfd_generic_link_add_one_symbol
4514 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4515 (struct bfd_link_hash_entry **) sym_hash)))
4516 goto error_free_vers;
4518 if ((flags & BSF_GNU_UNIQUE)
4519 && (abfd->flags & DYNAMIC) == 0
4520 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4521 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4524 /* We need to make sure that indirect symbol dynamic flags are
4527 while (h->root.type == bfd_link_hash_indirect
4528 || h->root.type == bfd_link_hash_warning)
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4531 /* Setting the index to -3 tells elf_link_output_extsym that
4532 this symbol is defined in a discarded section. */
4538 new_weak = (flags & BSF_WEAK) != 0;
4539 new_weakdef = FALSE;
4543 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4544 && is_elf_hash_table (htab)
4545 && h->u.weakdef == NULL)
4547 /* Keep a list of all weak defined non function symbols from
4548 a dynamic object, using the weakdef field. Later in this
4549 function we will set the weakdef field to the correct
4550 value. We only put non-function symbols from dynamic
4551 objects on this list, because that happens to be the only
4552 time we need to know the normal symbol corresponding to a
4553 weak symbol, and the information is time consuming to
4554 figure out. If the weakdef field is not already NULL,
4555 then this symbol was already defined by some previous
4556 dynamic object, and we will be using that previous
4557 definition anyhow. */
4559 h->u.weakdef = weaks;
4564 /* Set the alignment of a common symbol. */
4565 if ((common || bfd_is_com_section (sec))
4566 && h->root.type == bfd_link_hash_common)
4571 align = bfd_log2 (isym->st_value);
4574 /* The new symbol is a common symbol in a shared object.
4575 We need to get the alignment from the section. */
4576 align = new_sec->alignment_power;
4578 if (align > old_alignment)
4579 h->root.u.c.p->alignment_power = align;
4581 h->root.u.c.p->alignment_power = old_alignment;
4584 if (is_elf_hash_table (htab))
4586 /* Set a flag in the hash table entry indicating the type of
4587 reference or definition we just found. A dynamic symbol
4588 is one which is referenced or defined by both a regular
4589 object and a shared object. */
4590 bfd_boolean dynsym = FALSE;
4592 /* Plugin symbols aren't normal. Don't set def_regular or
4593 ref_regular for them, or make them dynamic. */
4594 if ((abfd->flags & BFD_PLUGIN) != 0)
4601 if (bind != STB_WEAK)
4602 h->ref_regular_nonweak = 1;
4614 /* If the indirect symbol has been forced local, don't
4615 make the real symbol dynamic. */
4616 if ((h == hi || !hi->forced_local)
4617 && (bfd_link_dll (info)
4627 hi->ref_dynamic = 1;
4632 hi->def_dynamic = 1;
4635 /* If the indirect symbol has been forced local, don't
4636 make the real symbol dynamic. */
4637 if ((h == hi || !hi->forced_local)
4640 || (h->u.weakdef != NULL
4642 && h->u.weakdef->dynindx != -1)))
4646 /* Check to see if we need to add an indirect symbol for
4647 the default name. */
4649 || (!override && h->root.type == bfd_link_hash_common))
4650 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4651 sec, value, &old_bfd, &dynsym))
4652 goto error_free_vers;
4654 /* Check the alignment when a common symbol is involved. This
4655 can change when a common symbol is overridden by a normal
4656 definition or a common symbol is ignored due to the old
4657 normal definition. We need to make sure the maximum
4658 alignment is maintained. */
4659 if ((old_alignment || common)
4660 && h->root.type != bfd_link_hash_common)
4662 unsigned int common_align;
4663 unsigned int normal_align;
4664 unsigned int symbol_align;
4668 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4669 || h->root.type == bfd_link_hash_defweak);
4671 symbol_align = ffs (h->root.u.def.value) - 1;
4672 if (h->root.u.def.section->owner != NULL
4673 && (h->root.u.def.section->owner->flags
4674 & (DYNAMIC | BFD_PLUGIN)) == 0)
4676 normal_align = h->root.u.def.section->alignment_power;
4677 if (normal_align > symbol_align)
4678 normal_align = symbol_align;
4681 normal_align = symbol_align;
4685 common_align = old_alignment;
4686 common_bfd = old_bfd;
4691 common_align = bfd_log2 (isym->st_value);
4693 normal_bfd = old_bfd;
4696 if (normal_align < common_align)
4698 /* PR binutils/2735 */
4699 if (normal_bfd == NULL)
4701 /* xgettext:c-format */
4702 (_("Warning: alignment %u of common symbol `%s' in %B is"
4703 " greater than the alignment (%u) of its section %A"),
4704 1 << common_align, name, common_bfd,
4705 1 << normal_align, h->root.u.def.section);
4708 /* xgettext:c-format */
4709 (_("Warning: alignment %u of symbol `%s' in %B"
4710 " is smaller than %u in %B"),
4711 1 << normal_align, name, normal_bfd,
4712 1 << common_align, common_bfd);
4716 /* Remember the symbol size if it isn't undefined. */
4717 if (isym->st_size != 0
4718 && isym->st_shndx != SHN_UNDEF
4719 && (definition || h->size == 0))
4722 && h->size != isym->st_size
4723 && ! size_change_ok)
4725 /* xgettext:c-format */
4726 (_("Warning: size of symbol `%s' changed"
4727 " from %lu in %B to %lu in %B"),
4728 name, (unsigned long) h->size, old_bfd,
4729 (unsigned long) isym->st_size, abfd);
4731 h->size = isym->st_size;
4734 /* If this is a common symbol, then we always want H->SIZE
4735 to be the size of the common symbol. The code just above
4736 won't fix the size if a common symbol becomes larger. We
4737 don't warn about a size change here, because that is
4738 covered by --warn-common. Allow changes between different
4740 if (h->root.type == bfd_link_hash_common)
4741 h->size = h->root.u.c.size;
4743 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4744 && ((definition && !new_weak)
4745 || (old_weak && h->root.type == bfd_link_hash_common)
4746 || h->type == STT_NOTYPE))
4748 unsigned int type = ELF_ST_TYPE (isym->st_info);
4750 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4752 if (type == STT_GNU_IFUNC
4753 && (abfd->flags & DYNAMIC) != 0)
4756 if (h->type != type)
4758 if (h->type != STT_NOTYPE && ! type_change_ok)
4759 /* xgettext:c-format */
4761 (_("Warning: type of symbol `%s' changed"
4762 " from %d to %d in %B"),
4763 name, h->type, type, abfd);
4769 /* Merge st_other field. */
4770 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4772 /* We don't want to make debug symbol dynamic. */
4774 && (sec->flags & SEC_DEBUGGING)
4775 && !bfd_link_relocatable (info))
4778 /* Nor should we make plugin symbols dynamic. */
4779 if ((abfd->flags & BFD_PLUGIN) != 0)
4784 h->target_internal = isym->st_target_internal;
4785 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4788 if (definition && !dynamic)
4790 char *p = strchr (name, ELF_VER_CHR);
4791 if (p != NULL && p[1] != ELF_VER_CHR)
4793 /* Queue non-default versions so that .symver x, x@FOO
4794 aliases can be checked. */
4797 amt = ((isymend - isym + 1)
4798 * sizeof (struct elf_link_hash_entry *));
4800 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4802 goto error_free_vers;
4804 nondeflt_vers[nondeflt_vers_cnt++] = h;
4808 if (dynsym && h->dynindx == -1)
4810 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4811 goto error_free_vers;
4812 if (h->u.weakdef != NULL
4814 && h->u.weakdef->dynindx == -1)
4816 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4817 goto error_free_vers;
4820 else if (h->dynindx != -1)
4821 /* If the symbol already has a dynamic index, but
4822 visibility says it should not be visible, turn it into
4824 switch (ELF_ST_VISIBILITY (h->other))
4828 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4833 /* Don't add DT_NEEDED for references from the dummy bfd nor
4834 for unmatched symbol. */
4839 && h->ref_regular_nonweak
4841 || (old_bfd->flags & BFD_PLUGIN) == 0))
4842 || (h->ref_dynamic_nonweak
4843 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4844 && !on_needed_list (elf_dt_name (abfd),
4845 htab->needed, NULL))))
4848 const char *soname = elf_dt_name (abfd);
4850 info->callbacks->minfo ("%!", soname, old_bfd,
4851 h->root.root.string);
4853 /* A symbol from a library loaded via DT_NEEDED of some
4854 other library is referenced by a regular object.
4855 Add a DT_NEEDED entry for it. Issue an error if
4856 --no-add-needed is used and the reference was not
4859 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4862 /* xgettext:c-format */
4863 (_("%B: undefined reference to symbol '%s'"),
4865 bfd_set_error (bfd_error_missing_dso);
4866 goto error_free_vers;
4869 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4870 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4873 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4875 goto error_free_vers;
4877 BFD_ASSERT (ret == 0);
4882 if (extversym != NULL)
4888 if (isymbuf != NULL)
4894 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4898 /* Restore the symbol table. */
4899 old_ent = (char *) old_tab + tabsize;
4900 memset (elf_sym_hashes (abfd), 0,
4901 extsymcount * sizeof (struct elf_link_hash_entry *));
4902 htab->root.table.table = old_table;
4903 htab->root.table.size = old_size;
4904 htab->root.table.count = old_count;
4905 memcpy (htab->root.table.table, old_tab, tabsize);
4906 htab->root.undefs = old_undefs;
4907 htab->root.undefs_tail = old_undefs_tail;
4908 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4911 for (i = 0; i < htab->root.table.size; i++)
4913 struct bfd_hash_entry *p;
4914 struct elf_link_hash_entry *h;
4916 unsigned int alignment_power;
4918 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4920 h = (struct elf_link_hash_entry *) p;
4921 if (h->root.type == bfd_link_hash_warning)
4922 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4924 /* Preserve the maximum alignment and size for common
4925 symbols even if this dynamic lib isn't on DT_NEEDED
4926 since it can still be loaded at run time by another
4928 if (h->root.type == bfd_link_hash_common)
4930 size = h->root.u.c.size;
4931 alignment_power = h->root.u.c.p->alignment_power;
4936 alignment_power = 0;
4938 memcpy (p, old_ent, htab->root.table.entsize);
4939 old_ent = (char *) old_ent + htab->root.table.entsize;
4940 h = (struct elf_link_hash_entry *) p;
4941 if (h->root.type == bfd_link_hash_warning)
4943 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4944 old_ent = (char *) old_ent + htab->root.table.entsize;
4945 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4947 if (h->root.type == bfd_link_hash_common)
4949 if (size > h->root.u.c.size)
4950 h->root.u.c.size = size;
4951 if (alignment_power > h->root.u.c.p->alignment_power)
4952 h->root.u.c.p->alignment_power = alignment_power;
4957 /* Make a special call to the linker "notice" function to
4958 tell it that symbols added for crefs may need to be removed. */
4959 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4960 goto error_free_vers;
4963 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4965 if (nondeflt_vers != NULL)
4966 free (nondeflt_vers);
4970 if (old_tab != NULL)
4972 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4973 goto error_free_vers;
4978 /* Now that all the symbols from this input file are created, if
4979 not performing a relocatable link, handle .symver foo, foo@BAR
4980 such that any relocs against foo become foo@BAR. */
4981 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4985 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4987 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4988 char *shortname, *p;
4990 p = strchr (h->root.root.string, ELF_VER_CHR);
4992 || (h->root.type != bfd_link_hash_defined
4993 && h->root.type != bfd_link_hash_defweak))
4996 amt = p - h->root.root.string;
4997 shortname = (char *) bfd_malloc (amt + 1);
4999 goto error_free_vers;
5000 memcpy (shortname, h->root.root.string, amt);
5001 shortname[amt] = '\0';
5003 hi = (struct elf_link_hash_entry *)
5004 bfd_link_hash_lookup (&htab->root, shortname,
5005 FALSE, FALSE, FALSE);
5007 && hi->root.type == h->root.type
5008 && hi->root.u.def.value == h->root.u.def.value
5009 && hi->root.u.def.section == h->root.u.def.section)
5011 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5012 hi->root.type = bfd_link_hash_indirect;
5013 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5014 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5015 sym_hash = elf_sym_hashes (abfd);
5017 for (symidx = 0; symidx < extsymcount; ++symidx)
5018 if (sym_hash[symidx] == hi)
5020 sym_hash[symidx] = h;
5026 free (nondeflt_vers);
5027 nondeflt_vers = NULL;
5030 /* Now set the weakdefs field correctly for all the weak defined
5031 symbols we found. The only way to do this is to search all the
5032 symbols. Since we only need the information for non functions in
5033 dynamic objects, that's the only time we actually put anything on
5034 the list WEAKS. We need this information so that if a regular
5035 object refers to a symbol defined weakly in a dynamic object, the
5036 real symbol in the dynamic object is also put in the dynamic
5037 symbols; we also must arrange for both symbols to point to the
5038 same memory location. We could handle the general case of symbol
5039 aliasing, but a general symbol alias can only be generated in
5040 assembler code, handling it correctly would be very time
5041 consuming, and other ELF linkers don't handle general aliasing
5045 struct elf_link_hash_entry **hpp;
5046 struct elf_link_hash_entry **hppend;
5047 struct elf_link_hash_entry **sorted_sym_hash;
5048 struct elf_link_hash_entry *h;
5051 /* Since we have to search the whole symbol list for each weak
5052 defined symbol, search time for N weak defined symbols will be
5053 O(N^2). Binary search will cut it down to O(NlogN). */
5055 amt *= sizeof (struct elf_link_hash_entry *);
5056 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5057 if (sorted_sym_hash == NULL)
5059 sym_hash = sorted_sym_hash;
5060 hpp = elf_sym_hashes (abfd);
5061 hppend = hpp + extsymcount;
5063 for (; hpp < hppend; hpp++)
5067 && h->root.type == bfd_link_hash_defined
5068 && !bed->is_function_type (h->type))
5076 qsort (sorted_sym_hash, sym_count,
5077 sizeof (struct elf_link_hash_entry *),
5080 while (weaks != NULL)
5082 struct elf_link_hash_entry *hlook;
5085 size_t i, j, idx = 0;
5088 weaks = hlook->u.weakdef;
5089 hlook->u.weakdef = NULL;
5091 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5092 || hlook->root.type == bfd_link_hash_defweak
5093 || hlook->root.type == bfd_link_hash_common
5094 || hlook->root.type == bfd_link_hash_indirect);
5095 slook = hlook->root.u.def.section;
5096 vlook = hlook->root.u.def.value;
5102 bfd_signed_vma vdiff;
5104 h = sorted_sym_hash[idx];
5105 vdiff = vlook - h->root.u.def.value;
5112 int sdiff = slook->id - h->root.u.def.section->id;
5122 /* We didn't find a value/section match. */
5126 /* With multiple aliases, or when the weak symbol is already
5127 strongly defined, we have multiple matching symbols and
5128 the binary search above may land on any of them. Step
5129 one past the matching symbol(s). */
5132 h = sorted_sym_hash[idx];
5133 if (h->root.u.def.section != slook
5134 || h->root.u.def.value != vlook)
5138 /* Now look back over the aliases. Since we sorted by size
5139 as well as value and section, we'll choose the one with
5140 the largest size. */
5143 h = sorted_sym_hash[idx];
5145 /* Stop if value or section doesn't match. */
5146 if (h->root.u.def.section != slook
5147 || h->root.u.def.value != vlook)
5149 else if (h != hlook)
5151 hlook->u.weakdef = h;
5153 /* If the weak definition is in the list of dynamic
5154 symbols, make sure the real definition is put
5156 if (hlook->dynindx != -1 && h->dynindx == -1)
5158 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5161 free (sorted_sym_hash);
5166 /* If the real definition is in the list of dynamic
5167 symbols, make sure the weak definition is put
5168 there as well. If we don't do this, then the
5169 dynamic loader might not merge the entries for the
5170 real definition and the weak definition. */
5171 if (h->dynindx != -1 && hlook->dynindx == -1)
5173 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5174 goto err_free_sym_hash;
5181 free (sorted_sym_hash);
5184 if (bed->check_directives
5185 && !(*bed->check_directives) (abfd, info))
5188 if (!info->check_relocs_after_open_input
5189 && !_bfd_elf_link_check_relocs (abfd, info))
5192 /* If this is a non-traditional link, try to optimize the handling
5193 of the .stab/.stabstr sections. */
5195 && ! info->traditional_format
5196 && is_elf_hash_table (htab)
5197 && (info->strip != strip_all && info->strip != strip_debugger))
5201 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5202 if (stabstr != NULL)
5204 bfd_size_type string_offset = 0;
5207 for (stab = abfd->sections; stab; stab = stab->next)
5208 if (CONST_STRNEQ (stab->name, ".stab")
5209 && (!stab->name[5] ||
5210 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5211 && (stab->flags & SEC_MERGE) == 0
5212 && !bfd_is_abs_section (stab->output_section))
5214 struct bfd_elf_section_data *secdata;
5216 secdata = elf_section_data (stab);
5217 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5218 stabstr, &secdata->sec_info,
5221 if (secdata->sec_info)
5222 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5227 if (is_elf_hash_table (htab) && add_needed)
5229 /* Add this bfd to the loaded list. */
5230 struct elf_link_loaded_list *n;
5232 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5236 n->next = htab->loaded;
5243 if (old_tab != NULL)
5245 if (old_strtab != NULL)
5247 if (nondeflt_vers != NULL)
5248 free (nondeflt_vers);
5249 if (extversym != NULL)
5252 if (isymbuf != NULL)
5258 /* Return the linker hash table entry of a symbol that might be
5259 satisfied by an archive symbol. Return -1 on error. */
5261 struct elf_link_hash_entry *
5262 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5263 struct bfd_link_info *info,
5266 struct elf_link_hash_entry *h;
5270 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5274 /* If this is a default version (the name contains @@), look up the
5275 symbol again with only one `@' as well as without the version.
5276 The effect is that references to the symbol with and without the
5277 version will be matched by the default symbol in the archive. */
5279 p = strchr (name, ELF_VER_CHR);
5280 if (p == NULL || p[1] != ELF_VER_CHR)
5283 /* First check with only one `@'. */
5284 len = strlen (name);
5285 copy = (char *) bfd_alloc (abfd, len);
5287 return (struct elf_link_hash_entry *) 0 - 1;
5289 first = p - name + 1;
5290 memcpy (copy, name, first);
5291 memcpy (copy + first, name + first + 1, len - first);
5293 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5296 /* We also need to check references to the symbol without the
5298 copy[first - 1] = '\0';
5299 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5300 FALSE, FALSE, TRUE);
5303 bfd_release (abfd, copy);
5307 /* Add symbols from an ELF archive file to the linker hash table. We
5308 don't use _bfd_generic_link_add_archive_symbols because we need to
5309 handle versioned symbols.
5311 Fortunately, ELF archive handling is simpler than that done by
5312 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5313 oddities. In ELF, if we find a symbol in the archive map, and the
5314 symbol is currently undefined, we know that we must pull in that
5317 Unfortunately, we do have to make multiple passes over the symbol
5318 table until nothing further is resolved. */
5321 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5324 unsigned char *included = NULL;
5328 const struct elf_backend_data *bed;
5329 struct elf_link_hash_entry * (*archive_symbol_lookup)
5330 (bfd *, struct bfd_link_info *, const char *);
5332 if (! bfd_has_map (abfd))
5334 /* An empty archive is a special case. */
5335 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5337 bfd_set_error (bfd_error_no_armap);
5341 /* Keep track of all symbols we know to be already defined, and all
5342 files we know to be already included. This is to speed up the
5343 second and subsequent passes. */
5344 c = bfd_ardata (abfd)->symdef_count;
5348 amt *= sizeof (*included);
5349 included = (unsigned char *) bfd_zmalloc (amt);
5350 if (included == NULL)
5353 symdefs = bfd_ardata (abfd)->symdefs;
5354 bed = get_elf_backend_data (abfd);
5355 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5368 symdefend = symdef + c;
5369 for (i = 0; symdef < symdefend; symdef++, i++)
5371 struct elf_link_hash_entry *h;
5373 struct bfd_link_hash_entry *undefs_tail;
5378 if (symdef->file_offset == last)
5384 h = archive_symbol_lookup (abfd, info, symdef->name);
5385 if (h == (struct elf_link_hash_entry *) 0 - 1)
5391 if (h->root.type == bfd_link_hash_common)
5393 /* We currently have a common symbol. The archive map contains
5394 a reference to this symbol, so we may want to include it. We
5395 only want to include it however, if this archive element
5396 contains a definition of the symbol, not just another common
5399 Unfortunately some archivers (including GNU ar) will put
5400 declarations of common symbols into their archive maps, as
5401 well as real definitions, so we cannot just go by the archive
5402 map alone. Instead we must read in the element's symbol
5403 table and check that to see what kind of symbol definition
5405 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5408 else if (h->root.type != bfd_link_hash_undefined)
5410 if (h->root.type != bfd_link_hash_undefweak)
5411 /* Symbol must be defined. Don't check it again. */
5416 /* We need to include this archive member. */
5417 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5418 if (element == NULL)
5421 if (! bfd_check_format (element, bfd_object))
5424 undefs_tail = info->hash->undefs_tail;
5426 if (!(*info->callbacks
5427 ->add_archive_element) (info, element, symdef->name, &element))
5429 if (!bfd_link_add_symbols (element, info))
5432 /* If there are any new undefined symbols, we need to make
5433 another pass through the archive in order to see whether
5434 they can be defined. FIXME: This isn't perfect, because
5435 common symbols wind up on undefs_tail and because an
5436 undefined symbol which is defined later on in this pass
5437 does not require another pass. This isn't a bug, but it
5438 does make the code less efficient than it could be. */
5439 if (undefs_tail != info->hash->undefs_tail)
5442 /* Look backward to mark all symbols from this object file
5443 which we have already seen in this pass. */
5447 included[mark] = TRUE;
5452 while (symdefs[mark].file_offset == symdef->file_offset);
5454 /* We mark subsequent symbols from this object file as we go
5455 on through the loop. */
5456 last = symdef->file_offset;
5466 if (included != NULL)
5471 /* Given an ELF BFD, add symbols to the global hash table as
5475 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5477 switch (bfd_get_format (abfd))
5480 return elf_link_add_object_symbols (abfd, info);
5482 return elf_link_add_archive_symbols (abfd, info);
5484 bfd_set_error (bfd_error_wrong_format);
5489 struct hash_codes_info
5491 unsigned long *hashcodes;
5495 /* This function will be called though elf_link_hash_traverse to store
5496 all hash value of the exported symbols in an array. */
5499 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5501 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5506 /* Ignore indirect symbols. These are added by the versioning code. */
5507 if (h->dynindx == -1)
5510 name = h->root.root.string;
5511 if (h->versioned >= versioned)
5513 char *p = strchr (name, ELF_VER_CHR);
5516 alc = (char *) bfd_malloc (p - name + 1);
5522 memcpy (alc, name, p - name);
5523 alc[p - name] = '\0';
5528 /* Compute the hash value. */
5529 ha = bfd_elf_hash (name);
5531 /* Store the found hash value in the array given as the argument. */
5532 *(inf->hashcodes)++ = ha;
5534 /* And store it in the struct so that we can put it in the hash table
5536 h->u.elf_hash_value = ha;
5544 struct collect_gnu_hash_codes
5547 const struct elf_backend_data *bed;
5548 unsigned long int nsyms;
5549 unsigned long int maskbits;
5550 unsigned long int *hashcodes;
5551 unsigned long int *hashval;
5552 unsigned long int *indx;
5553 unsigned long int *counts;
5556 long int min_dynindx;
5557 unsigned long int bucketcount;
5558 unsigned long int symindx;
5559 long int local_indx;
5560 long int shift1, shift2;
5561 unsigned long int mask;
5565 /* This function will be called though elf_link_hash_traverse to store
5566 all hash value of the exported symbols in an array. */
5569 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5571 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5576 /* Ignore indirect symbols. These are added by the versioning code. */
5577 if (h->dynindx == -1)
5580 /* Ignore also local symbols and undefined symbols. */
5581 if (! (*s->bed->elf_hash_symbol) (h))
5584 name = h->root.root.string;
5585 if (h->versioned >= versioned)
5587 char *p = strchr (name, ELF_VER_CHR);
5590 alc = (char *) bfd_malloc (p - name + 1);
5596 memcpy (alc, name, p - name);
5597 alc[p - name] = '\0';
5602 /* Compute the hash value. */
5603 ha = bfd_elf_gnu_hash (name);
5605 /* Store the found hash value in the array for compute_bucket_count,
5606 and also for .dynsym reordering purposes. */
5607 s->hashcodes[s->nsyms] = ha;
5608 s->hashval[h->dynindx] = ha;
5610 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5611 s->min_dynindx = h->dynindx;
5619 /* This function will be called though elf_link_hash_traverse to do
5620 final dynaminc symbol renumbering. */
5623 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5625 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5626 unsigned long int bucket;
5627 unsigned long int val;
5629 /* Ignore indirect symbols. */
5630 if (h->dynindx == -1)
5633 /* Ignore also local symbols and undefined symbols. */
5634 if (! (*s->bed->elf_hash_symbol) (h))
5636 if (h->dynindx >= s->min_dynindx)
5637 h->dynindx = s->local_indx++;
5641 bucket = s->hashval[h->dynindx] % s->bucketcount;
5642 val = (s->hashval[h->dynindx] >> s->shift1)
5643 & ((s->maskbits >> s->shift1) - 1);
5644 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5646 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5647 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5648 if (s->counts[bucket] == 1)
5649 /* Last element terminates the chain. */
5651 bfd_put_32 (s->output_bfd, val,
5652 s->contents + (s->indx[bucket] - s->symindx) * 4);
5653 --s->counts[bucket];
5654 h->dynindx = s->indx[bucket]++;
5658 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5661 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5663 return !(h->forced_local
5664 || h->root.type == bfd_link_hash_undefined
5665 || h->root.type == bfd_link_hash_undefweak
5666 || ((h->root.type == bfd_link_hash_defined
5667 || h->root.type == bfd_link_hash_defweak)
5668 && h->root.u.def.section->output_section == NULL));
5671 /* Array used to determine the number of hash table buckets to use
5672 based on the number of symbols there are. If there are fewer than
5673 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5674 fewer than 37 we use 17 buckets, and so forth. We never use more
5675 than 32771 buckets. */
5677 static const size_t elf_buckets[] =
5679 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5683 /* Compute bucket count for hashing table. We do not use a static set
5684 of possible tables sizes anymore. Instead we determine for all
5685 possible reasonable sizes of the table the outcome (i.e., the
5686 number of collisions etc) and choose the best solution. The
5687 weighting functions are not too simple to allow the table to grow
5688 without bounds. Instead one of the weighting factors is the size.
5689 Therefore the result is always a good payoff between few collisions
5690 (= short chain lengths) and table size. */
5692 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5693 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5694 unsigned long int nsyms,
5697 size_t best_size = 0;
5698 unsigned long int i;
5700 /* We have a problem here. The following code to optimize the table
5701 size requires an integer type with more the 32 bits. If
5702 BFD_HOST_U_64_BIT is set we know about such a type. */
5703 #ifdef BFD_HOST_U_64_BIT
5708 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5709 bfd *dynobj = elf_hash_table (info)->dynobj;
5710 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5711 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5712 unsigned long int *counts;
5714 unsigned int no_improvement_count = 0;
5716 /* Possible optimization parameters: if we have NSYMS symbols we say
5717 that the hashing table must at least have NSYMS/4 and at most
5719 minsize = nsyms / 4;
5722 best_size = maxsize = nsyms * 2;
5727 if ((best_size & 31) == 0)
5731 /* Create array where we count the collisions in. We must use bfd_malloc
5732 since the size could be large. */
5734 amt *= sizeof (unsigned long int);
5735 counts = (unsigned long int *) bfd_malloc (amt);
5739 /* Compute the "optimal" size for the hash table. The criteria is a
5740 minimal chain length. The minor criteria is (of course) the size
5742 for (i = minsize; i < maxsize; ++i)
5744 /* Walk through the array of hashcodes and count the collisions. */
5745 BFD_HOST_U_64_BIT max;
5746 unsigned long int j;
5747 unsigned long int fact;
5749 if (gnu_hash && (i & 31) == 0)
5752 memset (counts, '\0', i * sizeof (unsigned long int));
5754 /* Determine how often each hash bucket is used. */
5755 for (j = 0; j < nsyms; ++j)
5756 ++counts[hashcodes[j] % i];
5758 /* For the weight function we need some information about the
5759 pagesize on the target. This is information need not be 100%
5760 accurate. Since this information is not available (so far) we
5761 define it here to a reasonable default value. If it is crucial
5762 to have a better value some day simply define this value. */
5763 # ifndef BFD_TARGET_PAGESIZE
5764 # define BFD_TARGET_PAGESIZE (4096)
5767 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5769 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5772 /* Variant 1: optimize for short chains. We add the squares
5773 of all the chain lengths (which favors many small chain
5774 over a few long chains). */
5775 for (j = 0; j < i; ++j)
5776 max += counts[j] * counts[j];
5778 /* This adds penalties for the overall size of the table. */
5779 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5782 /* Variant 2: Optimize a lot more for small table. Here we
5783 also add squares of the size but we also add penalties for
5784 empty slots (the +1 term). */
5785 for (j = 0; j < i; ++j)
5786 max += (1 + counts[j]) * (1 + counts[j]);
5788 /* The overall size of the table is considered, but not as
5789 strong as in variant 1, where it is squared. */
5790 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5794 /* Compare with current best results. */
5795 if (max < best_chlen)
5799 no_improvement_count = 0;
5801 /* PR 11843: Avoid futile long searches for the best bucket size
5802 when there are a large number of symbols. */
5803 else if (++no_improvement_count == 100)
5810 #endif /* defined (BFD_HOST_U_64_BIT) */
5812 /* This is the fallback solution if no 64bit type is available or if we
5813 are not supposed to spend much time on optimizations. We select the
5814 bucket count using a fixed set of numbers. */
5815 for (i = 0; elf_buckets[i] != 0; i++)
5817 best_size = elf_buckets[i];
5818 if (nsyms < elf_buckets[i + 1])
5821 if (gnu_hash && best_size < 2)
5828 /* Size any SHT_GROUP section for ld -r. */
5831 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5835 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5836 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5837 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5842 /* Set a default stack segment size. The value in INFO wins. If it
5843 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5844 undefined it is initialized. */
5847 bfd_elf_stack_segment_size (bfd *output_bfd,
5848 struct bfd_link_info *info,
5849 const char *legacy_symbol,
5850 bfd_vma default_size)
5852 struct elf_link_hash_entry *h = NULL;
5854 /* Look for legacy symbol. */
5856 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5857 FALSE, FALSE, FALSE);
5858 if (h && (h->root.type == bfd_link_hash_defined
5859 || h->root.type == bfd_link_hash_defweak)
5861 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5863 /* The symbol has no type if specified on the command line. */
5864 h->type = STT_OBJECT;
5865 if (info->stacksize)
5866 /* xgettext:c-format */
5867 _bfd_error_handler (_("%B: stack size specified and %s set"),
5868 output_bfd, legacy_symbol);
5869 else if (h->root.u.def.section != bfd_abs_section_ptr)
5870 /* xgettext:c-format */
5871 _bfd_error_handler (_("%B: %s not absolute"),
5872 output_bfd, legacy_symbol);
5874 info->stacksize = h->root.u.def.value;
5877 if (!info->stacksize)
5878 /* If the user didn't set a size, or explicitly inhibit the
5879 size, set it now. */
5880 info->stacksize = default_size;
5882 /* Provide the legacy symbol, if it is referenced. */
5883 if (h && (h->root.type == bfd_link_hash_undefined
5884 || h->root.type == bfd_link_hash_undefweak))
5886 struct bfd_link_hash_entry *bh = NULL;
5888 if (!(_bfd_generic_link_add_one_symbol
5889 (info, output_bfd, legacy_symbol,
5890 BSF_GLOBAL, bfd_abs_section_ptr,
5891 info->stacksize >= 0 ? info->stacksize : 0,
5892 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5895 h = (struct elf_link_hash_entry *) bh;
5897 h->type = STT_OBJECT;
5903 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5905 struct elf_gc_sweep_symbol_info
5907 struct bfd_link_info *info;
5908 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5913 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5916 && (((h->root.type == bfd_link_hash_defined
5917 || h->root.type == bfd_link_hash_defweak)
5918 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5919 && h->root.u.def.section->gc_mark))
5920 || h->root.type == bfd_link_hash_undefined
5921 || h->root.type == bfd_link_hash_undefweak))
5923 struct elf_gc_sweep_symbol_info *inf;
5925 inf = (struct elf_gc_sweep_symbol_info *) data;
5926 (*inf->hide_symbol) (inf->info, h, TRUE);
5929 h->ref_regular_nonweak = 0;
5935 /* Set up the sizes and contents of the ELF dynamic sections. This is
5936 called by the ELF linker emulation before_allocation routine. We
5937 must set the sizes of the sections before the linker sets the
5938 addresses of the various sections. */
5941 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5944 const char *filter_shlib,
5946 const char *depaudit,
5947 const char * const *auxiliary_filters,
5948 struct bfd_link_info *info,
5949 asection **sinterpptr)
5952 const struct elf_backend_data *bed;
5956 if (!is_elf_hash_table (info->hash))
5959 dynobj = elf_hash_table (info)->dynobj;
5961 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5963 struct bfd_elf_version_tree *verdefs;
5964 struct elf_info_failed asvinfo;
5965 struct bfd_elf_version_tree *t;
5966 struct bfd_elf_version_expr *d;
5967 struct elf_info_failed eif;
5968 bfd_boolean all_defined;
5975 /* If we are supposed to export all symbols into the dynamic symbol
5976 table (this is not the normal case), then do so. */
5977 if (info->export_dynamic
5978 || (bfd_link_executable (info) && info->dynamic))
5980 elf_link_hash_traverse (elf_hash_table (info),
5981 _bfd_elf_export_symbol,
5989 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5991 if (soname_indx == (size_t) -1
5992 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5996 soname_indx = (size_t) -1;
5998 /* Make all global versions with definition. */
5999 for (t = info->version_info; t != NULL; t = t->next)
6000 for (d = t->globals.list; d != NULL; d = d->next)
6001 if (!d->symver && d->literal)
6003 const char *verstr, *name;
6004 size_t namelen, verlen, newlen;
6005 char *newname, *p, leading_char;
6006 struct elf_link_hash_entry *newh;
6008 leading_char = bfd_get_symbol_leading_char (output_bfd);
6010 namelen = strlen (name) + (leading_char != '\0');
6012 verlen = strlen (verstr);
6013 newlen = namelen + verlen + 3;
6015 newname = (char *) bfd_malloc (newlen);
6016 if (newname == NULL)
6018 newname[0] = leading_char;
6019 memcpy (newname + (leading_char != '\0'), name, namelen);
6021 /* Check the hidden versioned definition. */
6022 p = newname + namelen;
6024 memcpy (p, verstr, verlen + 1);
6025 newh = elf_link_hash_lookup (elf_hash_table (info),
6026 newname, FALSE, FALSE,
6029 || (newh->root.type != bfd_link_hash_defined
6030 && newh->root.type != bfd_link_hash_defweak))
6032 /* Check the default versioned definition. */
6034 memcpy (p, verstr, verlen + 1);
6035 newh = elf_link_hash_lookup (elf_hash_table (info),
6036 newname, FALSE, FALSE,
6041 /* Mark this version if there is a definition and it is
6042 not defined in a shared object. */
6044 && !newh->def_dynamic
6045 && (newh->root.type == bfd_link_hash_defined
6046 || newh->root.type == bfd_link_hash_defweak))
6050 /* Attach all the symbols to their version information. */
6051 asvinfo.info = info;
6052 asvinfo.failed = FALSE;
6054 elf_link_hash_traverse (elf_hash_table (info),
6055 _bfd_elf_link_assign_sym_version,
6060 if (!info->allow_undefined_version)
6062 /* Check if all global versions have a definition. */
6064 for (t = info->version_info; t != NULL; t = t->next)
6065 for (d = t->globals.list; d != NULL; d = d->next)
6066 if (d->literal && !d->symver && !d->script)
6069 (_("%s: undefined version: %s"),
6070 d->pattern, t->name);
6071 all_defined = FALSE;
6076 bfd_set_error (bfd_error_bad_value);
6081 /* Set up the version definition section. */
6082 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6083 BFD_ASSERT (s != NULL);
6085 /* We may have created additional version definitions if we are
6086 just linking a regular application. */
6087 verdefs = info->version_info;
6089 /* Skip anonymous version tag. */
6090 if (verdefs != NULL && verdefs->vernum == 0)
6091 verdefs = verdefs->next;
6093 if (verdefs == NULL && !info->create_default_symver)
6094 s->flags |= SEC_EXCLUDE;
6100 Elf_Internal_Verdef def;
6101 Elf_Internal_Verdaux defaux;
6102 struct bfd_link_hash_entry *bh;
6103 struct elf_link_hash_entry *h;
6109 /* Make space for the base version. */
6110 size += sizeof (Elf_External_Verdef);
6111 size += sizeof (Elf_External_Verdaux);
6114 /* Make space for the default version. */
6115 if (info->create_default_symver)
6117 size += sizeof (Elf_External_Verdef);
6121 for (t = verdefs; t != NULL; t = t->next)
6123 struct bfd_elf_version_deps *n;
6125 /* Don't emit base version twice. */
6129 size += sizeof (Elf_External_Verdef);
6130 size += sizeof (Elf_External_Verdaux);
6133 for (n = t->deps; n != NULL; n = n->next)
6134 size += sizeof (Elf_External_Verdaux);
6138 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6139 if (s->contents == NULL && s->size != 0)
6142 /* Fill in the version definition section. */
6146 def.vd_version = VER_DEF_CURRENT;
6147 def.vd_flags = VER_FLG_BASE;
6150 if (info->create_default_symver)
6152 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6153 def.vd_next = sizeof (Elf_External_Verdef);
6157 def.vd_aux = sizeof (Elf_External_Verdef);
6158 def.vd_next = (sizeof (Elf_External_Verdef)
6159 + sizeof (Elf_External_Verdaux));
6162 if (soname_indx != (size_t) -1)
6164 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6166 def.vd_hash = bfd_elf_hash (soname);
6167 defaux.vda_name = soname_indx;
6174 name = lbasename (output_bfd->filename);
6175 def.vd_hash = bfd_elf_hash (name);
6176 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6178 if (indx == (size_t) -1)
6180 defaux.vda_name = indx;
6182 defaux.vda_next = 0;
6184 _bfd_elf_swap_verdef_out (output_bfd, &def,
6185 (Elf_External_Verdef *) p);
6186 p += sizeof (Elf_External_Verdef);
6187 if (info->create_default_symver)
6189 /* Add a symbol representing this version. */
6191 if (! (_bfd_generic_link_add_one_symbol
6192 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6194 get_elf_backend_data (dynobj)->collect, &bh)))
6196 h = (struct elf_link_hash_entry *) bh;
6199 h->type = STT_OBJECT;
6200 h->verinfo.vertree = NULL;
6202 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6205 /* Create a duplicate of the base version with the same
6206 aux block, but different flags. */
6209 def.vd_aux = sizeof (Elf_External_Verdef);
6211 def.vd_next = (sizeof (Elf_External_Verdef)
6212 + sizeof (Elf_External_Verdaux));
6215 _bfd_elf_swap_verdef_out (output_bfd, &def,
6216 (Elf_External_Verdef *) p);
6217 p += sizeof (Elf_External_Verdef);
6219 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6220 (Elf_External_Verdaux *) p);
6221 p += sizeof (Elf_External_Verdaux);
6223 for (t = verdefs; t != NULL; t = t->next)
6226 struct bfd_elf_version_deps *n;
6228 /* Don't emit the base version twice. */
6233 for (n = t->deps; n != NULL; n = n->next)
6236 /* Add a symbol representing this version. */
6238 if (! (_bfd_generic_link_add_one_symbol
6239 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6241 get_elf_backend_data (dynobj)->collect, &bh)))
6243 h = (struct elf_link_hash_entry *) bh;
6246 h->type = STT_OBJECT;
6247 h->verinfo.vertree = t;
6249 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6252 def.vd_version = VER_DEF_CURRENT;
6254 if (t->globals.list == NULL
6255 && t->locals.list == NULL
6257 def.vd_flags |= VER_FLG_WEAK;
6258 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6259 def.vd_cnt = cdeps + 1;
6260 def.vd_hash = bfd_elf_hash (t->name);
6261 def.vd_aux = sizeof (Elf_External_Verdef);
6264 /* If a basever node is next, it *must* be the last node in
6265 the chain, otherwise Verdef construction breaks. */
6266 if (t->next != NULL && t->next->vernum == 0)
6267 BFD_ASSERT (t->next->next == NULL);
6269 if (t->next != NULL && t->next->vernum != 0)
6270 def.vd_next = (sizeof (Elf_External_Verdef)
6271 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6273 _bfd_elf_swap_verdef_out (output_bfd, &def,
6274 (Elf_External_Verdef *) p);
6275 p += sizeof (Elf_External_Verdef);
6277 defaux.vda_name = h->dynstr_index;
6278 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6280 defaux.vda_next = 0;
6281 if (t->deps != NULL)
6282 defaux.vda_next = sizeof (Elf_External_Verdaux);
6283 t->name_indx = defaux.vda_name;
6285 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6286 (Elf_External_Verdaux *) p);
6287 p += sizeof (Elf_External_Verdaux);
6289 for (n = t->deps; n != NULL; n = n->next)
6291 if (n->version_needed == NULL)
6293 /* This can happen if there was an error in the
6295 defaux.vda_name = 0;
6299 defaux.vda_name = n->version_needed->name_indx;
6300 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6303 if (n->next == NULL)
6304 defaux.vda_next = 0;
6306 defaux.vda_next = sizeof (Elf_External_Verdaux);
6308 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6309 (Elf_External_Verdaux *) p);
6310 p += sizeof (Elf_External_Verdaux);
6314 elf_tdata (output_bfd)->cverdefs = cdefs;
6317 /* Work out the size of the version reference section. */
6319 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6320 BFD_ASSERT (s != NULL);
6322 struct elf_find_verdep_info sinfo;
6325 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6326 if (sinfo.vers == 0)
6328 sinfo.failed = FALSE;
6330 elf_link_hash_traverse (elf_hash_table (info),
6331 _bfd_elf_link_find_version_dependencies,
6336 if (elf_tdata (output_bfd)->verref == NULL)
6337 s->flags |= SEC_EXCLUDE;
6340 Elf_Internal_Verneed *vn;
6345 /* Build the version dependency section. */
6348 for (vn = elf_tdata (output_bfd)->verref;
6350 vn = vn->vn_nextref)
6352 Elf_Internal_Vernaux *a;
6354 size += sizeof (Elf_External_Verneed);
6356 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6357 size += sizeof (Elf_External_Vernaux);
6361 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6362 if (s->contents == NULL)
6366 for (vn = elf_tdata (output_bfd)->verref;
6368 vn = vn->vn_nextref)
6371 Elf_Internal_Vernaux *a;
6375 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6378 vn->vn_version = VER_NEED_CURRENT;
6380 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6381 elf_dt_name (vn->vn_bfd) != NULL
6382 ? elf_dt_name (vn->vn_bfd)
6383 : lbasename (vn->vn_bfd->filename),
6385 if (indx == (size_t) -1)
6388 vn->vn_aux = sizeof (Elf_External_Verneed);
6389 if (vn->vn_nextref == NULL)
6392 vn->vn_next = (sizeof (Elf_External_Verneed)
6393 + caux * sizeof (Elf_External_Vernaux));
6395 _bfd_elf_swap_verneed_out (output_bfd, vn,
6396 (Elf_External_Verneed *) p);
6397 p += sizeof (Elf_External_Verneed);
6399 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6401 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6402 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6403 a->vna_nodename, FALSE);
6404 if (indx == (size_t) -1)
6407 if (a->vna_nextptr == NULL)
6410 a->vna_next = sizeof (Elf_External_Vernaux);
6412 _bfd_elf_swap_vernaux_out (output_bfd, a,
6413 (Elf_External_Vernaux *) p);
6414 p += sizeof (Elf_External_Vernaux);
6418 elf_tdata (output_bfd)->cverrefs = crefs;
6423 bed = get_elf_backend_data (output_bfd);
6425 if (info->gc_sections && bed->can_gc_sections)
6427 struct elf_gc_sweep_symbol_info sweep_info;
6428 unsigned long section_sym_count;
6430 /* Remove the symbols that were in the swept sections from the
6431 dynamic symbol table. GCFIXME: Anyone know how to get them
6432 out of the static symbol table as well? */
6433 sweep_info.info = info;
6434 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6435 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6438 _bfd_elf_link_renumber_dynsyms (output_bfd, info, §ion_sym_count);
6441 /* Any syms created from now on start with -1 in
6442 got.refcount/offset and plt.refcount/offset. */
6443 elf_hash_table (info)->init_got_refcount
6444 = elf_hash_table (info)->init_got_offset;
6445 elf_hash_table (info)->init_plt_refcount
6446 = elf_hash_table (info)->init_plt_offset;
6448 if (bfd_link_relocatable (info)
6449 && !_bfd_elf_size_group_sections (info))
6452 /* The backend may have to create some sections regardless of whether
6453 we're dynamic or not. */
6454 if (bed->elf_backend_always_size_sections
6455 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6458 /* Determine any GNU_STACK segment requirements, after the backend
6459 has had a chance to set a default segment size. */
6460 if (info->execstack)
6461 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6462 else if (info->noexecstack)
6463 elf_stack_flags (output_bfd) = PF_R | PF_W;
6467 asection *notesec = NULL;
6470 for (inputobj = info->input_bfds;
6472 inputobj = inputobj->link.next)
6477 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6479 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6482 if (s->flags & SEC_CODE)
6486 else if (bed->default_execstack)
6489 if (notesec || info->stacksize > 0)
6490 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6491 if (notesec && exec && bfd_link_relocatable (info)
6492 && notesec->output_section != bfd_abs_section_ptr)
6493 notesec->output_section->flags |= SEC_CODE;
6496 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6498 struct elf_info_failed eif;
6499 struct elf_link_hash_entry *h;
6503 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6504 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6508 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6510 info->flags |= DF_SYMBOLIC;
6518 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6520 if (indx == (size_t) -1)
6523 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6524 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6528 if (filter_shlib != NULL)
6532 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6533 filter_shlib, TRUE);
6534 if (indx == (size_t) -1
6535 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6539 if (auxiliary_filters != NULL)
6541 const char * const *p;
6543 for (p = auxiliary_filters; *p != NULL; p++)
6547 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6549 if (indx == (size_t) -1
6550 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6559 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6561 if (indx == (size_t) -1
6562 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6566 if (depaudit != NULL)
6570 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6572 if (indx == (size_t) -1
6573 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6580 /* Find all symbols which were defined in a dynamic object and make
6581 the backend pick a reasonable value for them. */
6582 elf_link_hash_traverse (elf_hash_table (info),
6583 _bfd_elf_adjust_dynamic_symbol,
6588 /* Add some entries to the .dynamic section. We fill in some of the
6589 values later, in bfd_elf_final_link, but we must add the entries
6590 now so that we know the final size of the .dynamic section. */
6592 /* If there are initialization and/or finalization functions to
6593 call then add the corresponding DT_INIT/DT_FINI entries. */
6594 h = (info->init_function
6595 ? elf_link_hash_lookup (elf_hash_table (info),
6596 info->init_function, FALSE,
6603 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6606 h = (info->fini_function
6607 ? elf_link_hash_lookup (elf_hash_table (info),
6608 info->fini_function, FALSE,
6615 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6619 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6620 if (s != NULL && s->linker_has_input)
6622 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6623 if (! bfd_link_executable (info))
6628 for (sub = info->input_bfds; sub != NULL;
6629 sub = sub->link.next)
6630 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6631 for (o = sub->sections; o != NULL; o = o->next)
6632 if (elf_section_data (o)->this_hdr.sh_type
6633 == SHT_PREINIT_ARRAY)
6636 (_("%B: .preinit_array section is not allowed in DSO"),
6641 bfd_set_error (bfd_error_nonrepresentable_section);
6645 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6646 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6649 s = bfd_get_section_by_name (output_bfd, ".init_array");
6650 if (s != NULL && s->linker_has_input)
6652 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6653 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6656 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6657 if (s != NULL && s->linker_has_input)
6659 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6660 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6664 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6665 /* If .dynstr is excluded from the link, we don't want any of
6666 these tags. Strictly, we should be checking each section
6667 individually; This quick check covers for the case where
6668 someone does a /DISCARD/ : { *(*) }. */
6669 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6671 bfd_size_type strsize;
6673 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6674 if ((info->emit_hash
6675 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6676 || (info->emit_gnu_hash
6677 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6678 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6679 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6680 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6681 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6682 bed->s->sizeof_sym))
6687 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6690 /* The backend must work out the sizes of all the other dynamic
6693 && bed->elf_backend_size_dynamic_sections != NULL
6694 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6697 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6699 unsigned long section_sym_count;
6701 if (elf_tdata (output_bfd)->cverdefs)
6703 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6705 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6706 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6710 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6712 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6715 else if (info->flags & DF_BIND_NOW)
6717 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6723 if (bfd_link_executable (info))
6724 info->flags_1 &= ~ (DF_1_INITFIRST
6727 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6731 if (elf_tdata (output_bfd)->cverrefs)
6733 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6735 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6736 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6740 if ((elf_tdata (output_bfd)->cverrefs == 0
6741 && elf_tdata (output_bfd)->cverdefs == 0)
6742 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6743 §ion_sym_count) == 0)
6747 s = bfd_get_linker_section (dynobj, ".gnu.version");
6748 s->flags |= SEC_EXCLUDE;
6754 /* Find the first non-excluded output section. We'll use its
6755 section symbol for some emitted relocs. */
6757 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6761 for (s = output_bfd->sections; s != NULL; s = s->next)
6762 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6763 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6765 elf_hash_table (info)->text_index_section = s;
6770 /* Find two non-excluded output sections, one for code, one for data.
6771 We'll use their section symbols for some emitted relocs. */
6773 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6777 /* Data first, since setting text_index_section changes
6778 _bfd_elf_link_omit_section_dynsym. */
6779 for (s = output_bfd->sections; s != NULL; s = s->next)
6780 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6781 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6783 elf_hash_table (info)->data_index_section = s;
6787 for (s = output_bfd->sections; s != NULL; s = s->next)
6788 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6789 == (SEC_ALLOC | SEC_READONLY))
6790 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6792 elf_hash_table (info)->text_index_section = s;
6796 if (elf_hash_table (info)->text_index_section == NULL)
6797 elf_hash_table (info)->text_index_section
6798 = elf_hash_table (info)->data_index_section;
6802 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6804 const struct elf_backend_data *bed;
6806 if (!is_elf_hash_table (info->hash))
6809 bed = get_elf_backend_data (output_bfd);
6810 (*bed->elf_backend_init_index_section) (output_bfd, info);
6812 if (elf_hash_table (info)->dynamic_sections_created)
6816 bfd_size_type dynsymcount;
6817 unsigned long section_sym_count;
6818 unsigned int dtagcount;
6820 dynobj = elf_hash_table (info)->dynobj;
6822 /* Assign dynsym indicies. In a shared library we generate a
6823 section symbol for each output section, which come first.
6824 Next come all of the back-end allocated local dynamic syms,
6825 followed by the rest of the global symbols. */
6827 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6828 §ion_sym_count);
6830 /* Work out the size of the symbol version section. */
6831 s = bfd_get_linker_section (dynobj, ".gnu.version");
6832 BFD_ASSERT (s != NULL);
6833 if ((s->flags & SEC_EXCLUDE) == 0)
6835 s->size = dynsymcount * sizeof (Elf_External_Versym);
6836 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6837 if (s->contents == NULL)
6840 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6844 /* Set the size of the .dynsym and .hash sections. We counted
6845 the number of dynamic symbols in elf_link_add_object_symbols.
6846 We will build the contents of .dynsym and .hash when we build
6847 the final symbol table, because until then we do not know the
6848 correct value to give the symbols. We built the .dynstr
6849 section as we went along in elf_link_add_object_symbols. */
6850 s = elf_hash_table (info)->dynsym;
6851 BFD_ASSERT (s != NULL);
6852 s->size = dynsymcount * bed->s->sizeof_sym;
6854 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6855 if (s->contents == NULL)
6858 /* The first entry in .dynsym is a dummy symbol. Clear all the
6859 section syms, in case we don't output them all. */
6860 ++section_sym_count;
6861 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6863 elf_hash_table (info)->bucketcount = 0;
6865 /* Compute the size of the hashing table. As a side effect this
6866 computes the hash values for all the names we export. */
6867 if (info->emit_hash)
6869 unsigned long int *hashcodes;
6870 struct hash_codes_info hashinf;
6872 unsigned long int nsyms;
6874 size_t hash_entry_size;
6876 /* Compute the hash values for all exported symbols. At the same
6877 time store the values in an array so that we could use them for
6879 amt = dynsymcount * sizeof (unsigned long int);
6880 hashcodes = (unsigned long int *) bfd_malloc (amt);
6881 if (hashcodes == NULL)
6883 hashinf.hashcodes = hashcodes;
6884 hashinf.error = FALSE;
6886 /* Put all hash values in HASHCODES. */
6887 elf_link_hash_traverse (elf_hash_table (info),
6888 elf_collect_hash_codes, &hashinf);
6895 nsyms = hashinf.hashcodes - hashcodes;
6897 = compute_bucket_count (info, hashcodes, nsyms, 0);
6900 if (bucketcount == 0)
6903 elf_hash_table (info)->bucketcount = bucketcount;
6905 s = bfd_get_linker_section (dynobj, ".hash");
6906 BFD_ASSERT (s != NULL);
6907 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6908 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6909 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6910 if (s->contents == NULL)
6913 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6914 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6915 s->contents + hash_entry_size);
6918 if (info->emit_gnu_hash)
6921 unsigned char *contents;
6922 struct collect_gnu_hash_codes cinfo;
6926 memset (&cinfo, 0, sizeof (cinfo));
6928 /* Compute the hash values for all exported symbols. At the same
6929 time store the values in an array so that we could use them for
6931 amt = dynsymcount * 2 * sizeof (unsigned long int);
6932 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6933 if (cinfo.hashcodes == NULL)
6936 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6937 cinfo.min_dynindx = -1;
6938 cinfo.output_bfd = output_bfd;
6941 /* Put all hash values in HASHCODES. */
6942 elf_link_hash_traverse (elf_hash_table (info),
6943 elf_collect_gnu_hash_codes, &cinfo);
6946 free (cinfo.hashcodes);
6951 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6953 if (bucketcount == 0)
6955 free (cinfo.hashcodes);
6959 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6960 BFD_ASSERT (s != NULL);
6962 if (cinfo.nsyms == 0)
6964 /* Empty .gnu.hash section is special. */
6965 BFD_ASSERT (cinfo.min_dynindx == -1);
6966 free (cinfo.hashcodes);
6967 s->size = 5 * 4 + bed->s->arch_size / 8;
6968 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6969 if (contents == NULL)
6971 s->contents = contents;
6972 /* 1 empty bucket. */
6973 bfd_put_32 (output_bfd, 1, contents);
6974 /* SYMIDX above the special symbol 0. */
6975 bfd_put_32 (output_bfd, 1, contents + 4);
6976 /* Just one word for bitmask. */
6977 bfd_put_32 (output_bfd, 1, contents + 8);
6978 /* Only hash fn bloom filter. */
6979 bfd_put_32 (output_bfd, 0, contents + 12);
6980 /* No hashes are valid - empty bitmask. */
6981 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6982 /* No hashes in the only bucket. */
6983 bfd_put_32 (output_bfd, 0,
6984 contents + 16 + bed->s->arch_size / 8);
6988 unsigned long int maskwords, maskbitslog2, x;
6989 BFD_ASSERT (cinfo.min_dynindx != -1);
6993 while ((x >>= 1) != 0)
6995 if (maskbitslog2 < 3)
6997 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6998 maskbitslog2 = maskbitslog2 + 3;
7000 maskbitslog2 = maskbitslog2 + 2;
7001 if (bed->s->arch_size == 64)
7003 if (maskbitslog2 == 5)
7009 cinfo.mask = (1 << cinfo.shift1) - 1;
7010 cinfo.shift2 = maskbitslog2;
7011 cinfo.maskbits = 1 << maskbitslog2;
7012 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7013 amt = bucketcount * sizeof (unsigned long int) * 2;
7014 amt += maskwords * sizeof (bfd_vma);
7015 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7016 if (cinfo.bitmask == NULL)
7018 free (cinfo.hashcodes);
7022 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7023 cinfo.indx = cinfo.counts + bucketcount;
7024 cinfo.symindx = dynsymcount - cinfo.nsyms;
7025 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7027 /* Determine how often each hash bucket is used. */
7028 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7029 for (i = 0; i < cinfo.nsyms; ++i)
7030 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7032 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7033 if (cinfo.counts[i] != 0)
7035 cinfo.indx[i] = cnt;
7036 cnt += cinfo.counts[i];
7038 BFD_ASSERT (cnt == dynsymcount);
7039 cinfo.bucketcount = bucketcount;
7040 cinfo.local_indx = cinfo.min_dynindx;
7042 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7043 s->size += cinfo.maskbits / 8;
7044 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7045 if (contents == NULL)
7047 free (cinfo.bitmask);
7048 free (cinfo.hashcodes);
7052 s->contents = contents;
7053 bfd_put_32 (output_bfd, bucketcount, contents);
7054 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7055 bfd_put_32 (output_bfd, maskwords, contents + 8);
7056 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7057 contents += 16 + cinfo.maskbits / 8;
7059 for (i = 0; i < bucketcount; ++i)
7061 if (cinfo.counts[i] == 0)
7062 bfd_put_32 (output_bfd, 0, contents);
7064 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7068 cinfo.contents = contents;
7070 /* Renumber dynamic symbols, populate .gnu.hash section. */
7071 elf_link_hash_traverse (elf_hash_table (info),
7072 elf_renumber_gnu_hash_syms, &cinfo);
7074 contents = s->contents + 16;
7075 for (i = 0; i < maskwords; ++i)
7077 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7079 contents += bed->s->arch_size / 8;
7082 free (cinfo.bitmask);
7083 free (cinfo.hashcodes);
7087 s = bfd_get_linker_section (dynobj, ".dynstr");
7088 BFD_ASSERT (s != NULL);
7090 elf_finalize_dynstr (output_bfd, info);
7092 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7094 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7095 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7102 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7105 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7108 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7109 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7112 /* Finish SHF_MERGE section merging. */
7115 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7120 if (!is_elf_hash_table (info->hash))
7123 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7124 if ((ibfd->flags & DYNAMIC) == 0
7125 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7126 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7127 == get_elf_backend_data (obfd)->s->elfclass))
7128 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7129 if ((sec->flags & SEC_MERGE) != 0
7130 && !bfd_is_abs_section (sec->output_section))
7132 struct bfd_elf_section_data *secdata;
7134 secdata = elf_section_data (sec);
7135 if (! _bfd_add_merge_section (obfd,
7136 &elf_hash_table (info)->merge_info,
7137 sec, &secdata->sec_info))
7139 else if (secdata->sec_info)
7140 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7143 if (elf_hash_table (info)->merge_info != NULL)
7144 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7145 merge_sections_remove_hook);
7149 /* Create an entry in an ELF linker hash table. */
7151 struct bfd_hash_entry *
7152 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7153 struct bfd_hash_table *table,
7156 /* Allocate the structure if it has not already been allocated by a
7160 entry = (struct bfd_hash_entry *)
7161 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7166 /* Call the allocation method of the superclass. */
7167 entry = _bfd_link_hash_newfunc (entry, table, string);
7170 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7171 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7173 /* Set local fields. */
7176 ret->got = htab->init_got_refcount;
7177 ret->plt = htab->init_plt_refcount;
7178 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7179 - offsetof (struct elf_link_hash_entry, size)));
7180 /* Assume that we have been called by a non-ELF symbol reader.
7181 This flag is then reset by the code which reads an ELF input
7182 file. This ensures that a symbol created by a non-ELF symbol
7183 reader will have the flag set correctly. */
7190 /* Copy data from an indirect symbol to its direct symbol, hiding the
7191 old indirect symbol. Also used for copying flags to a weakdef. */
7194 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7195 struct elf_link_hash_entry *dir,
7196 struct elf_link_hash_entry *ind)
7198 struct elf_link_hash_table *htab;
7200 /* Copy down any references that we may have already seen to the
7201 symbol which just became indirect. */
7203 if (dir->versioned != versioned_hidden)
7204 dir->ref_dynamic |= ind->ref_dynamic;
7205 dir->ref_regular |= ind->ref_regular;
7206 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7207 dir->non_got_ref |= ind->non_got_ref;
7208 dir->needs_plt |= ind->needs_plt;
7209 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7211 if (ind->root.type != bfd_link_hash_indirect)
7214 /* Copy over the global and procedure linkage table refcount entries.
7215 These may have been already set up by a check_relocs routine. */
7216 htab = elf_hash_table (info);
7217 if (ind->got.refcount > htab->init_got_refcount.refcount)
7219 if (dir->got.refcount < 0)
7220 dir->got.refcount = 0;
7221 dir->got.refcount += ind->got.refcount;
7222 ind->got.refcount = htab->init_got_refcount.refcount;
7225 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7227 if (dir->plt.refcount < 0)
7228 dir->plt.refcount = 0;
7229 dir->plt.refcount += ind->plt.refcount;
7230 ind->plt.refcount = htab->init_plt_refcount.refcount;
7233 if (ind->dynindx != -1)
7235 if (dir->dynindx != -1)
7236 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7237 dir->dynindx = ind->dynindx;
7238 dir->dynstr_index = ind->dynstr_index;
7240 ind->dynstr_index = 0;
7245 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7246 struct elf_link_hash_entry *h,
7247 bfd_boolean force_local)
7249 /* STT_GNU_IFUNC symbol must go through PLT. */
7250 if (h->type != STT_GNU_IFUNC)
7252 h->plt = elf_hash_table (info)->init_plt_offset;
7257 h->forced_local = 1;
7258 if (h->dynindx != -1)
7261 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7267 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7271 _bfd_elf_link_hash_table_init
7272 (struct elf_link_hash_table *table,
7274 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7275 struct bfd_hash_table *,
7277 unsigned int entsize,
7278 enum elf_target_id target_id)
7281 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7283 table->init_got_refcount.refcount = can_refcount - 1;
7284 table->init_plt_refcount.refcount = can_refcount - 1;
7285 table->init_got_offset.offset = -(bfd_vma) 1;
7286 table->init_plt_offset.offset = -(bfd_vma) 1;
7287 /* The first dynamic symbol is a dummy. */
7288 table->dynsymcount = 1;
7290 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7292 table->root.type = bfd_link_elf_hash_table;
7293 table->hash_table_id = target_id;
7298 /* Create an ELF linker hash table. */
7300 struct bfd_link_hash_table *
7301 _bfd_elf_link_hash_table_create (bfd *abfd)
7303 struct elf_link_hash_table *ret;
7304 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7306 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7310 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7311 sizeof (struct elf_link_hash_entry),
7317 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7322 /* Destroy an ELF linker hash table. */
7325 _bfd_elf_link_hash_table_free (bfd *obfd)
7327 struct elf_link_hash_table *htab;
7329 htab = (struct elf_link_hash_table *) obfd->link.hash;
7330 if (htab->dynstr != NULL)
7331 _bfd_elf_strtab_free (htab->dynstr);
7332 _bfd_merge_sections_free (htab->merge_info);
7333 _bfd_generic_link_hash_table_free (obfd);
7336 /* This is a hook for the ELF emulation code in the generic linker to
7337 tell the backend linker what file name to use for the DT_NEEDED
7338 entry for a dynamic object. */
7341 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7343 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7344 && bfd_get_format (abfd) == bfd_object)
7345 elf_dt_name (abfd) = name;
7349 bfd_elf_get_dyn_lib_class (bfd *abfd)
7352 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7353 && bfd_get_format (abfd) == bfd_object)
7354 lib_class = elf_dyn_lib_class (abfd);
7361 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7363 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7364 && bfd_get_format (abfd) == bfd_object)
7365 elf_dyn_lib_class (abfd) = lib_class;
7368 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7369 the linker ELF emulation code. */
7371 struct bfd_link_needed_list *
7372 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7373 struct bfd_link_info *info)
7375 if (! is_elf_hash_table (info->hash))
7377 return elf_hash_table (info)->needed;
7380 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7381 hook for the linker ELF emulation code. */
7383 struct bfd_link_needed_list *
7384 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7385 struct bfd_link_info *info)
7387 if (! is_elf_hash_table (info->hash))
7389 return elf_hash_table (info)->runpath;
7392 /* Get the name actually used for a dynamic object for a link. This
7393 is the SONAME entry if there is one. Otherwise, it is the string
7394 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7397 bfd_elf_get_dt_soname (bfd *abfd)
7399 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7400 && bfd_get_format (abfd) == bfd_object)
7401 return elf_dt_name (abfd);
7405 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7406 the ELF linker emulation code. */
7409 bfd_elf_get_bfd_needed_list (bfd *abfd,
7410 struct bfd_link_needed_list **pneeded)
7413 bfd_byte *dynbuf = NULL;
7414 unsigned int elfsec;
7415 unsigned long shlink;
7416 bfd_byte *extdyn, *extdynend;
7418 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7422 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7423 || bfd_get_format (abfd) != bfd_object)
7426 s = bfd_get_section_by_name (abfd, ".dynamic");
7427 if (s == NULL || s->size == 0)
7430 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7433 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7434 if (elfsec == SHN_BAD)
7437 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7439 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7440 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7443 extdynend = extdyn + s->size;
7444 for (; extdyn < extdynend; extdyn += extdynsize)
7446 Elf_Internal_Dyn dyn;
7448 (*swap_dyn_in) (abfd, extdyn, &dyn);
7450 if (dyn.d_tag == DT_NULL)
7453 if (dyn.d_tag == DT_NEEDED)
7456 struct bfd_link_needed_list *l;
7457 unsigned int tagv = dyn.d_un.d_val;
7460 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7465 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7486 struct elf_symbuf_symbol
7488 unsigned long st_name; /* Symbol name, index in string tbl */
7489 unsigned char st_info; /* Type and binding attributes */
7490 unsigned char st_other; /* Visibilty, and target specific */
7493 struct elf_symbuf_head
7495 struct elf_symbuf_symbol *ssym;
7497 unsigned int st_shndx;
7504 Elf_Internal_Sym *isym;
7505 struct elf_symbuf_symbol *ssym;
7510 /* Sort references to symbols by ascending section number. */
7513 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7515 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7516 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7518 return s1->st_shndx - s2->st_shndx;
7522 elf_sym_name_compare (const void *arg1, const void *arg2)
7524 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7525 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7526 return strcmp (s1->name, s2->name);
7529 static struct elf_symbuf_head *
7530 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7532 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7533 struct elf_symbuf_symbol *ssym;
7534 struct elf_symbuf_head *ssymbuf, *ssymhead;
7535 size_t i, shndx_count, total_size;
7537 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7541 for (ind = indbuf, i = 0; i < symcount; i++)
7542 if (isymbuf[i].st_shndx != SHN_UNDEF)
7543 *ind++ = &isymbuf[i];
7546 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7547 elf_sort_elf_symbol);
7550 if (indbufend > indbuf)
7551 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7552 if (ind[0]->st_shndx != ind[1]->st_shndx)
7555 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7556 + (indbufend - indbuf) * sizeof (*ssym));
7557 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7558 if (ssymbuf == NULL)
7564 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7565 ssymbuf->ssym = NULL;
7566 ssymbuf->count = shndx_count;
7567 ssymbuf->st_shndx = 0;
7568 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7570 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7573 ssymhead->ssym = ssym;
7574 ssymhead->count = 0;
7575 ssymhead->st_shndx = (*ind)->st_shndx;
7577 ssym->st_name = (*ind)->st_name;
7578 ssym->st_info = (*ind)->st_info;
7579 ssym->st_other = (*ind)->st_other;
7582 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7583 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7590 /* Check if 2 sections define the same set of local and global
7594 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7595 struct bfd_link_info *info)
7598 const struct elf_backend_data *bed1, *bed2;
7599 Elf_Internal_Shdr *hdr1, *hdr2;
7600 size_t symcount1, symcount2;
7601 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7602 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7603 Elf_Internal_Sym *isym, *isymend;
7604 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7605 size_t count1, count2, i;
7606 unsigned int shndx1, shndx2;
7612 /* Both sections have to be in ELF. */
7613 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7614 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7617 if (elf_section_type (sec1) != elf_section_type (sec2))
7620 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7621 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7622 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7625 bed1 = get_elf_backend_data (bfd1);
7626 bed2 = get_elf_backend_data (bfd2);
7627 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7628 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7629 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7630 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7632 if (symcount1 == 0 || symcount2 == 0)
7638 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7639 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7641 if (ssymbuf1 == NULL)
7643 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7645 if (isymbuf1 == NULL)
7648 if (!info->reduce_memory_overheads)
7649 elf_tdata (bfd1)->symbuf = ssymbuf1
7650 = elf_create_symbuf (symcount1, isymbuf1);
7653 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7655 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7657 if (isymbuf2 == NULL)
7660 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7661 elf_tdata (bfd2)->symbuf = ssymbuf2
7662 = elf_create_symbuf (symcount2, isymbuf2);
7665 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7667 /* Optimized faster version. */
7669 struct elf_symbol *symp;
7670 struct elf_symbuf_symbol *ssym, *ssymend;
7673 hi = ssymbuf1->count;
7678 mid = (lo + hi) / 2;
7679 if (shndx1 < ssymbuf1[mid].st_shndx)
7681 else if (shndx1 > ssymbuf1[mid].st_shndx)
7685 count1 = ssymbuf1[mid].count;
7692 hi = ssymbuf2->count;
7697 mid = (lo + hi) / 2;
7698 if (shndx2 < ssymbuf2[mid].st_shndx)
7700 else if (shndx2 > ssymbuf2[mid].st_shndx)
7704 count2 = ssymbuf2[mid].count;
7710 if (count1 == 0 || count2 == 0 || count1 != count2)
7714 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7716 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7717 if (symtable1 == NULL || symtable2 == NULL)
7721 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7722 ssym < ssymend; ssym++, symp++)
7724 symp->u.ssym = ssym;
7725 symp->name = bfd_elf_string_from_elf_section (bfd1,
7731 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7732 ssym < ssymend; ssym++, symp++)
7734 symp->u.ssym = ssym;
7735 symp->name = bfd_elf_string_from_elf_section (bfd2,
7740 /* Sort symbol by name. */
7741 qsort (symtable1, count1, sizeof (struct elf_symbol),
7742 elf_sym_name_compare);
7743 qsort (symtable2, count1, sizeof (struct elf_symbol),
7744 elf_sym_name_compare);
7746 for (i = 0; i < count1; i++)
7747 /* Two symbols must have the same binding, type and name. */
7748 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7749 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7750 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7757 symtable1 = (struct elf_symbol *)
7758 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7759 symtable2 = (struct elf_symbol *)
7760 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7761 if (symtable1 == NULL || symtable2 == NULL)
7764 /* Count definitions in the section. */
7766 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7767 if (isym->st_shndx == shndx1)
7768 symtable1[count1++].u.isym = isym;
7771 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7772 if (isym->st_shndx == shndx2)
7773 symtable2[count2++].u.isym = isym;
7775 if (count1 == 0 || count2 == 0 || count1 != count2)
7778 for (i = 0; i < count1; i++)
7780 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7781 symtable1[i].u.isym->st_name);
7783 for (i = 0; i < count2; i++)
7785 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7786 symtable2[i].u.isym->st_name);
7788 /* Sort symbol by name. */
7789 qsort (symtable1, count1, sizeof (struct elf_symbol),
7790 elf_sym_name_compare);
7791 qsort (symtable2, count1, sizeof (struct elf_symbol),
7792 elf_sym_name_compare);
7794 for (i = 0; i < count1; i++)
7795 /* Two symbols must have the same binding, type and name. */
7796 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7797 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7798 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7816 /* Return TRUE if 2 section types are compatible. */
7819 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7820 bfd *bbfd, const asection *bsec)
7824 || abfd->xvec->flavour != bfd_target_elf_flavour
7825 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7828 return elf_section_type (asec) == elf_section_type (bsec);
7831 /* Final phase of ELF linker. */
7833 /* A structure we use to avoid passing large numbers of arguments. */
7835 struct elf_final_link_info
7837 /* General link information. */
7838 struct bfd_link_info *info;
7841 /* Symbol string table. */
7842 struct elf_strtab_hash *symstrtab;
7843 /* .hash section. */
7845 /* symbol version section (.gnu.version). */
7846 asection *symver_sec;
7847 /* Buffer large enough to hold contents of any section. */
7849 /* Buffer large enough to hold external relocs of any section. */
7850 void *external_relocs;
7851 /* Buffer large enough to hold internal relocs of any section. */
7852 Elf_Internal_Rela *internal_relocs;
7853 /* Buffer large enough to hold external local symbols of any input
7855 bfd_byte *external_syms;
7856 /* And a buffer for symbol section indices. */
7857 Elf_External_Sym_Shndx *locsym_shndx;
7858 /* Buffer large enough to hold internal local symbols of any input
7860 Elf_Internal_Sym *internal_syms;
7861 /* Array large enough to hold a symbol index for each local symbol
7862 of any input BFD. */
7864 /* Array large enough to hold a section pointer for each local
7865 symbol of any input BFD. */
7866 asection **sections;
7867 /* Buffer for SHT_SYMTAB_SHNDX section. */
7868 Elf_External_Sym_Shndx *symshndxbuf;
7869 /* Number of STT_FILE syms seen. */
7870 size_t filesym_count;
7873 /* This struct is used to pass information to elf_link_output_extsym. */
7875 struct elf_outext_info
7878 bfd_boolean localsyms;
7879 bfd_boolean file_sym_done;
7880 struct elf_final_link_info *flinfo;
7884 /* Support for evaluating a complex relocation.
7886 Complex relocations are generalized, self-describing relocations. The
7887 implementation of them consists of two parts: complex symbols, and the
7888 relocations themselves.
7890 The relocations are use a reserved elf-wide relocation type code (R_RELC
7891 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7892 information (start bit, end bit, word width, etc) into the addend. This
7893 information is extracted from CGEN-generated operand tables within gas.
7895 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7896 internal) representing prefix-notation expressions, including but not
7897 limited to those sorts of expressions normally encoded as addends in the
7898 addend field. The symbol mangling format is:
7901 | <unary-operator> ':' <node>
7902 | <binary-operator> ':' <node> ':' <node>
7905 <literal> := 's' <digits=N> ':' <N character symbol name>
7906 | 'S' <digits=N> ':' <N character section name>
7910 <binary-operator> := as in C
7911 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7914 set_symbol_value (bfd *bfd_with_globals,
7915 Elf_Internal_Sym *isymbuf,
7920 struct elf_link_hash_entry **sym_hashes;
7921 struct elf_link_hash_entry *h;
7922 size_t extsymoff = locsymcount;
7924 if (symidx < locsymcount)
7926 Elf_Internal_Sym *sym;
7928 sym = isymbuf + symidx;
7929 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7931 /* It is a local symbol: move it to the
7932 "absolute" section and give it a value. */
7933 sym->st_shndx = SHN_ABS;
7934 sym->st_value = val;
7937 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7941 /* It is a global symbol: set its link type
7942 to "defined" and give it a value. */
7944 sym_hashes = elf_sym_hashes (bfd_with_globals);
7945 h = sym_hashes [symidx - extsymoff];
7946 while (h->root.type == bfd_link_hash_indirect
7947 || h->root.type == bfd_link_hash_warning)
7948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7949 h->root.type = bfd_link_hash_defined;
7950 h->root.u.def.value = val;
7951 h->root.u.def.section = bfd_abs_section_ptr;
7955 resolve_symbol (const char *name,
7957 struct elf_final_link_info *flinfo,
7959 Elf_Internal_Sym *isymbuf,
7962 Elf_Internal_Sym *sym;
7963 struct bfd_link_hash_entry *global_entry;
7964 const char *candidate = NULL;
7965 Elf_Internal_Shdr *symtab_hdr;
7968 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7970 for (i = 0; i < locsymcount; ++ i)
7974 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7977 candidate = bfd_elf_string_from_elf_section (input_bfd,
7978 symtab_hdr->sh_link,
7981 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7982 name, candidate, (unsigned long) sym->st_value);
7984 if (candidate && strcmp (candidate, name) == 0)
7986 asection *sec = flinfo->sections [i];
7988 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7989 *result += sec->output_offset + sec->output_section->vma;
7991 printf ("Found symbol with value %8.8lx\n",
7992 (unsigned long) *result);
7998 /* Hmm, haven't found it yet. perhaps it is a global. */
7999 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8000 FALSE, FALSE, TRUE);
8004 if (global_entry->type == bfd_link_hash_defined
8005 || global_entry->type == bfd_link_hash_defweak)
8007 *result = (global_entry->u.def.value
8008 + global_entry->u.def.section->output_section->vma
8009 + global_entry->u.def.section->output_offset);
8011 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8012 global_entry->root.string, (unsigned long) *result);
8020 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8021 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8022 names like "foo.end" which is the end address of section "foo". */
8025 resolve_section (const char *name,
8033 for (curr = sections; curr; curr = curr->next)
8034 if (strcmp (curr->name, name) == 0)
8036 *result = curr->vma;
8040 /* Hmm. still haven't found it. try pseudo-section names. */
8041 /* FIXME: This could be coded more efficiently... */
8042 for (curr = sections; curr; curr = curr->next)
8044 len = strlen (curr->name);
8045 if (len > strlen (name))
8048 if (strncmp (curr->name, name, len) == 0)
8050 if (strncmp (".end", name + len, 4) == 0)
8052 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8056 /* Insert more pseudo-section names here, if you like. */
8064 undefined_reference (const char *reftype, const char *name)
8066 /* xgettext:c-format */
8067 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8072 eval_symbol (bfd_vma *result,
8075 struct elf_final_link_info *flinfo,
8077 Elf_Internal_Sym *isymbuf,
8086 const char *sym = *symp;
8088 bfd_boolean symbol_is_section = FALSE;
8093 if (len < 1 || len > sizeof (symbuf))
8095 bfd_set_error (bfd_error_invalid_operation);
8108 *result = strtoul (sym, (char **) symp, 16);
8112 symbol_is_section = TRUE;
8116 symlen = strtol (sym, (char **) symp, 10);
8117 sym = *symp + 1; /* Skip the trailing ':'. */
8119 if (symend < sym || symlen + 1 > sizeof (symbuf))
8121 bfd_set_error (bfd_error_invalid_operation);
8125 memcpy (symbuf, sym, symlen);
8126 symbuf[symlen] = '\0';
8127 *symp = sym + symlen;
8129 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8130 the symbol as a section, or vice-versa. so we're pretty liberal in our
8131 interpretation here; section means "try section first", not "must be a
8132 section", and likewise with symbol. */
8134 if (symbol_is_section)
8136 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8137 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8138 isymbuf, locsymcount))
8140 undefined_reference ("section", symbuf);
8146 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8147 isymbuf, locsymcount)
8148 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8151 undefined_reference ("symbol", symbuf);
8158 /* All that remains are operators. */
8160 #define UNARY_OP(op) \
8161 if (strncmp (sym, #op, strlen (#op)) == 0) \
8163 sym += strlen (#op); \
8167 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8168 isymbuf, locsymcount, signed_p)) \
8171 *result = op ((bfd_signed_vma) a); \
8177 #define BINARY_OP(op) \
8178 if (strncmp (sym, #op, strlen (#op)) == 0) \
8180 sym += strlen (#op); \
8184 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8185 isymbuf, locsymcount, signed_p)) \
8188 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8189 isymbuf, locsymcount, signed_p)) \
8192 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8222 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8223 bfd_set_error (bfd_error_invalid_operation);
8229 put_value (bfd_vma size,
8230 unsigned long chunksz,
8235 location += (size - chunksz);
8237 for (; size; size -= chunksz, location -= chunksz)
8242 bfd_put_8 (input_bfd, x, location);
8246 bfd_put_16 (input_bfd, x, location);
8250 bfd_put_32 (input_bfd, x, location);
8251 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8257 bfd_put_64 (input_bfd, x, location);
8258 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8271 get_value (bfd_vma size,
8272 unsigned long chunksz,
8279 /* Sanity checks. */
8280 BFD_ASSERT (chunksz <= sizeof (x)
8283 && (size % chunksz) == 0
8284 && input_bfd != NULL
8285 && location != NULL);
8287 if (chunksz == sizeof (x))
8289 BFD_ASSERT (size == chunksz);
8291 /* Make sure that we do not perform an undefined shift operation.
8292 We know that size == chunksz so there will only be one iteration
8293 of the loop below. */
8297 shift = 8 * chunksz;
8299 for (; size; size -= chunksz, location += chunksz)
8304 x = (x << shift) | bfd_get_8 (input_bfd, location);
8307 x = (x << shift) | bfd_get_16 (input_bfd, location);
8310 x = (x << shift) | bfd_get_32 (input_bfd, location);
8314 x = (x << shift) | bfd_get_64 (input_bfd, location);
8325 decode_complex_addend (unsigned long *start, /* in bits */
8326 unsigned long *oplen, /* in bits */
8327 unsigned long *len, /* in bits */
8328 unsigned long *wordsz, /* in bytes */
8329 unsigned long *chunksz, /* in bytes */
8330 unsigned long *lsb0_p,
8331 unsigned long *signed_p,
8332 unsigned long *trunc_p,
8333 unsigned long encoded)
8335 * start = encoded & 0x3F;
8336 * len = (encoded >> 6) & 0x3F;
8337 * oplen = (encoded >> 12) & 0x3F;
8338 * wordsz = (encoded >> 18) & 0xF;
8339 * chunksz = (encoded >> 22) & 0xF;
8340 * lsb0_p = (encoded >> 27) & 1;
8341 * signed_p = (encoded >> 28) & 1;
8342 * trunc_p = (encoded >> 29) & 1;
8345 bfd_reloc_status_type
8346 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8347 asection *input_section ATTRIBUTE_UNUSED,
8349 Elf_Internal_Rela *rel,
8352 bfd_vma shift, x, mask;
8353 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8354 bfd_reloc_status_type r;
8356 /* Perform this reloc, since it is complex.
8357 (this is not to say that it necessarily refers to a complex
8358 symbol; merely that it is a self-describing CGEN based reloc.
8359 i.e. the addend has the complete reloc information (bit start, end,
8360 word size, etc) encoded within it.). */
8362 decode_complex_addend (&start, &oplen, &len, &wordsz,
8363 &chunksz, &lsb0_p, &signed_p,
8364 &trunc_p, rel->r_addend);
8366 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8369 shift = (start + 1) - len;
8371 shift = (8 * wordsz) - (start + len);
8373 x = get_value (wordsz, chunksz, input_bfd,
8374 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8377 printf ("Doing complex reloc: "
8378 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8379 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8380 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8381 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8382 oplen, (unsigned long) x, (unsigned long) mask,
8383 (unsigned long) relocation);
8388 /* Now do an overflow check. */
8389 r = bfd_check_overflow ((signed_p
8390 ? complain_overflow_signed
8391 : complain_overflow_unsigned),
8392 len, 0, (8 * wordsz),
8396 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8399 printf (" relocation: %8.8lx\n"
8400 " shifted mask: %8.8lx\n"
8401 " shifted/masked reloc: %8.8lx\n"
8402 " result: %8.8lx\n",
8403 (unsigned long) relocation, (unsigned long) (mask << shift),
8404 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8406 put_value (wordsz, chunksz, input_bfd, x,
8407 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8411 /* Functions to read r_offset from external (target order) reloc
8412 entry. Faster than bfd_getl32 et al, because we let the compiler
8413 know the value is aligned. */
8416 ext32l_r_offset (const void *p)
8423 const union aligned32 *a
8424 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8426 uint32_t aval = ( (uint32_t) a->c[0]
8427 | (uint32_t) a->c[1] << 8
8428 | (uint32_t) a->c[2] << 16
8429 | (uint32_t) a->c[3] << 24);
8434 ext32b_r_offset (const void *p)
8441 const union aligned32 *a
8442 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8444 uint32_t aval = ( (uint32_t) a->c[0] << 24
8445 | (uint32_t) a->c[1] << 16
8446 | (uint32_t) a->c[2] << 8
8447 | (uint32_t) a->c[3]);
8451 #ifdef BFD_HOST_64_BIT
8453 ext64l_r_offset (const void *p)
8460 const union aligned64 *a
8461 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8463 uint64_t aval = ( (uint64_t) a->c[0]
8464 | (uint64_t) a->c[1] << 8
8465 | (uint64_t) a->c[2] << 16
8466 | (uint64_t) a->c[3] << 24
8467 | (uint64_t) a->c[4] << 32
8468 | (uint64_t) a->c[5] << 40
8469 | (uint64_t) a->c[6] << 48
8470 | (uint64_t) a->c[7] << 56);
8475 ext64b_r_offset (const void *p)
8482 const union aligned64 *a
8483 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8485 uint64_t aval = ( (uint64_t) a->c[0] << 56
8486 | (uint64_t) a->c[1] << 48
8487 | (uint64_t) a->c[2] << 40
8488 | (uint64_t) a->c[3] << 32
8489 | (uint64_t) a->c[4] << 24
8490 | (uint64_t) a->c[5] << 16
8491 | (uint64_t) a->c[6] << 8
8492 | (uint64_t) a->c[7]);
8497 /* When performing a relocatable link, the input relocations are
8498 preserved. But, if they reference global symbols, the indices
8499 referenced must be updated. Update all the relocations found in
8503 elf_link_adjust_relocs (bfd *abfd,
8505 struct bfd_elf_section_reloc_data *reldata,
8509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8511 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8512 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8513 bfd_vma r_type_mask;
8515 unsigned int count = reldata->count;
8516 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8518 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8520 swap_in = bed->s->swap_reloc_in;
8521 swap_out = bed->s->swap_reloc_out;
8523 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8525 swap_in = bed->s->swap_reloca_in;
8526 swap_out = bed->s->swap_reloca_out;
8531 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8534 if (bed->s->arch_size == 32)
8541 r_type_mask = 0xffffffff;
8545 erela = reldata->hdr->contents;
8546 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8548 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8551 if (*rel_hash == NULL)
8554 BFD_ASSERT ((*rel_hash)->indx >= 0);
8556 (*swap_in) (abfd, erela, irela);
8557 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8558 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8559 | (irela[j].r_info & r_type_mask));
8560 (*swap_out) (abfd, irela, erela);
8563 if (bed->elf_backend_update_relocs)
8564 (*bed->elf_backend_update_relocs) (sec, reldata);
8566 if (sort && count != 0)
8568 bfd_vma (*ext_r_off) (const void *);
8571 bfd_byte *base, *end, *p, *loc;
8572 bfd_byte *buf = NULL;
8574 if (bed->s->arch_size == 32)
8576 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8577 ext_r_off = ext32l_r_offset;
8578 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8579 ext_r_off = ext32b_r_offset;
8585 #ifdef BFD_HOST_64_BIT
8586 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8587 ext_r_off = ext64l_r_offset;
8588 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8589 ext_r_off = ext64b_r_offset;
8595 /* Must use a stable sort here. A modified insertion sort,
8596 since the relocs are mostly sorted already. */
8597 elt_size = reldata->hdr->sh_entsize;
8598 base = reldata->hdr->contents;
8599 end = base + count * elt_size;
8600 if (elt_size > sizeof (Elf64_External_Rela))
8603 /* Ensure the first element is lowest. This acts as a sentinel,
8604 speeding the main loop below. */
8605 r_off = (*ext_r_off) (base);
8606 for (p = loc = base; (p += elt_size) < end; )
8608 bfd_vma r_off2 = (*ext_r_off) (p);
8617 /* Don't just swap *base and *loc as that changes the order
8618 of the original base[0] and base[1] if they happen to
8619 have the same r_offset. */
8620 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8621 memcpy (onebuf, loc, elt_size);
8622 memmove (base + elt_size, base, loc - base);
8623 memcpy (base, onebuf, elt_size);
8626 for (p = base + elt_size; (p += elt_size) < end; )
8628 /* base to p is sorted, *p is next to insert. */
8629 r_off = (*ext_r_off) (p);
8630 /* Search the sorted region for location to insert. */
8632 while (r_off < (*ext_r_off) (loc))
8637 /* Chances are there is a run of relocs to insert here,
8638 from one of more input files. Files are not always
8639 linked in order due to the way elf_link_input_bfd is
8640 called. See pr17666. */
8641 size_t sortlen = p - loc;
8642 bfd_vma r_off2 = (*ext_r_off) (loc);
8643 size_t runlen = elt_size;
8644 size_t buf_size = 96 * 1024;
8645 while (p + runlen < end
8646 && (sortlen <= buf_size
8647 || runlen + elt_size <= buf_size)
8648 && r_off2 > (*ext_r_off) (p + runlen))
8652 buf = bfd_malloc (buf_size);
8656 if (runlen < sortlen)
8658 memcpy (buf, p, runlen);
8659 memmove (loc + runlen, loc, sortlen);
8660 memcpy (loc, buf, runlen);
8664 memcpy (buf, loc, sortlen);
8665 memmove (loc, p, runlen);
8666 memcpy (loc + runlen, buf, sortlen);
8668 p += runlen - elt_size;
8671 /* Hashes are no longer valid. */
8672 free (reldata->hashes);
8673 reldata->hashes = NULL;
8679 struct elf_link_sort_rela
8685 enum elf_reloc_type_class type;
8686 /* We use this as an array of size int_rels_per_ext_rel. */
8687 Elf_Internal_Rela rela[1];
8691 elf_link_sort_cmp1 (const void *A, const void *B)
8693 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8694 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8695 int relativea, relativeb;
8697 relativea = a->type == reloc_class_relative;
8698 relativeb = b->type == reloc_class_relative;
8700 if (relativea < relativeb)
8702 if (relativea > relativeb)
8704 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8706 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8708 if (a->rela->r_offset < b->rela->r_offset)
8710 if (a->rela->r_offset > b->rela->r_offset)
8716 elf_link_sort_cmp2 (const void *A, const void *B)
8718 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8719 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8721 if (a->type < b->type)
8723 if (a->type > b->type)
8725 if (a->u.offset < b->u.offset)
8727 if (a->u.offset > b->u.offset)
8729 if (a->rela->r_offset < b->rela->r_offset)
8731 if (a->rela->r_offset > b->rela->r_offset)
8737 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8739 asection *dynamic_relocs;
8742 bfd_size_type count, size;
8743 size_t i, ret, sort_elt, ext_size;
8744 bfd_byte *sort, *s_non_relative, *p;
8745 struct elf_link_sort_rela *sq;
8746 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8747 int i2e = bed->s->int_rels_per_ext_rel;
8748 unsigned int opb = bfd_octets_per_byte (abfd);
8749 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8750 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8751 struct bfd_link_order *lo;
8753 bfd_boolean use_rela;
8755 /* Find a dynamic reloc section. */
8756 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8757 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8758 if (rela_dyn != NULL && rela_dyn->size > 0
8759 && rel_dyn != NULL && rel_dyn->size > 0)
8761 bfd_boolean use_rela_initialised = FALSE;
8763 /* This is just here to stop gcc from complaining.
8764 Its initialization checking code is not perfect. */
8767 /* Both sections are present. Examine the sizes
8768 of the indirect sections to help us choose. */
8769 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8770 if (lo->type == bfd_indirect_link_order)
8772 asection *o = lo->u.indirect.section;
8774 if ((o->size % bed->s->sizeof_rela) == 0)
8776 if ((o->size % bed->s->sizeof_rel) == 0)
8777 /* Section size is divisible by both rel and rela sizes.
8778 It is of no help to us. */
8782 /* Section size is only divisible by rela. */
8783 if (use_rela_initialised && (use_rela == FALSE))
8785 _bfd_error_handler (_("%B: Unable to sort relocs - "
8786 "they are in more than one size"),
8788 bfd_set_error (bfd_error_invalid_operation);
8794 use_rela_initialised = TRUE;
8798 else if ((o->size % bed->s->sizeof_rel) == 0)
8800 /* Section size is only divisible by rel. */
8801 if (use_rela_initialised && (use_rela == TRUE))
8803 _bfd_error_handler (_("%B: Unable to sort relocs - "
8804 "they are in more than one size"),
8806 bfd_set_error (bfd_error_invalid_operation);
8812 use_rela_initialised = TRUE;
8817 /* The section size is not divisible by either -
8818 something is wrong. */
8819 _bfd_error_handler (_("%B: Unable to sort relocs - "
8820 "they are of an unknown size"), abfd);
8821 bfd_set_error (bfd_error_invalid_operation);
8826 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8827 if (lo->type == bfd_indirect_link_order)
8829 asection *o = lo->u.indirect.section;
8831 if ((o->size % bed->s->sizeof_rela) == 0)
8833 if ((o->size % bed->s->sizeof_rel) == 0)
8834 /* Section size is divisible by both rel and rela sizes.
8835 It is of no help to us. */
8839 /* Section size is only divisible by rela. */
8840 if (use_rela_initialised && (use_rela == FALSE))
8842 _bfd_error_handler (_("%B: Unable to sort relocs - "
8843 "they are in more than one size"),
8845 bfd_set_error (bfd_error_invalid_operation);
8851 use_rela_initialised = TRUE;
8855 else if ((o->size % bed->s->sizeof_rel) == 0)
8857 /* Section size is only divisible by rel. */
8858 if (use_rela_initialised && (use_rela == TRUE))
8860 _bfd_error_handler (_("%B: Unable to sort relocs - "
8861 "they are in more than one size"),
8863 bfd_set_error (bfd_error_invalid_operation);
8869 use_rela_initialised = TRUE;
8874 /* The section size is not divisible by either -
8875 something is wrong. */
8876 _bfd_error_handler (_("%B: Unable to sort relocs - "
8877 "they are of an unknown size"), abfd);
8878 bfd_set_error (bfd_error_invalid_operation);
8883 if (! use_rela_initialised)
8887 else if (rela_dyn != NULL && rela_dyn->size > 0)
8889 else if (rel_dyn != NULL && rel_dyn->size > 0)
8896 dynamic_relocs = rela_dyn;
8897 ext_size = bed->s->sizeof_rela;
8898 swap_in = bed->s->swap_reloca_in;
8899 swap_out = bed->s->swap_reloca_out;
8903 dynamic_relocs = rel_dyn;
8904 ext_size = bed->s->sizeof_rel;
8905 swap_in = bed->s->swap_reloc_in;
8906 swap_out = bed->s->swap_reloc_out;
8910 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8911 if (lo->type == bfd_indirect_link_order)
8912 size += lo->u.indirect.section->size;
8914 if (size != dynamic_relocs->size)
8917 sort_elt = (sizeof (struct elf_link_sort_rela)
8918 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8920 count = dynamic_relocs->size / ext_size;
8923 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8927 (*info->callbacks->warning)
8928 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8932 if (bed->s->arch_size == 32)
8933 r_sym_mask = ~(bfd_vma) 0xff;
8935 r_sym_mask = ~(bfd_vma) 0xffffffff;
8937 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8938 if (lo->type == bfd_indirect_link_order)
8940 bfd_byte *erel, *erelend;
8941 asection *o = lo->u.indirect.section;
8943 if (o->contents == NULL && o->size != 0)
8945 /* This is a reloc section that is being handled as a normal
8946 section. See bfd_section_from_shdr. We can't combine
8947 relocs in this case. */
8952 erelend = o->contents + o->size;
8953 p = sort + o->output_offset * opb / ext_size * sort_elt;
8955 while (erel < erelend)
8957 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8959 (*swap_in) (abfd, erel, s->rela);
8960 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8961 s->u.sym_mask = r_sym_mask;
8967 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8969 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8971 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8972 if (s->type != reloc_class_relative)
8978 sq = (struct elf_link_sort_rela *) s_non_relative;
8979 for (; i < count; i++, p += sort_elt)
8981 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8982 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8984 sp->u.offset = sq->rela->r_offset;
8987 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8989 struct elf_link_hash_table *htab = elf_hash_table (info);
8990 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8992 /* We have plt relocs in .rela.dyn. */
8993 sq = (struct elf_link_sort_rela *) sort;
8994 for (i = 0; i < count; i++)
8995 if (sq[count - i - 1].type != reloc_class_plt)
8997 if (i != 0 && htab->srelplt->size == i * ext_size)
8999 struct bfd_link_order **plo;
9000 /* Put srelplt link_order last. This is so the output_offset
9001 set in the next loop is correct for DT_JMPREL. */
9002 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9003 if ((*plo)->type == bfd_indirect_link_order
9004 && (*plo)->u.indirect.section == htab->srelplt)
9010 plo = &(*plo)->next;
9013 dynamic_relocs->map_tail.link_order = lo;
9018 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9019 if (lo->type == bfd_indirect_link_order)
9021 bfd_byte *erel, *erelend;
9022 asection *o = lo->u.indirect.section;
9025 erelend = o->contents + o->size;
9026 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9027 while (erel < erelend)
9029 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9030 (*swap_out) (abfd, s->rela, erel);
9037 *psec = dynamic_relocs;
9041 /* Add a symbol to the output symbol string table. */
9044 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9046 Elf_Internal_Sym *elfsym,
9047 asection *input_sec,
9048 struct elf_link_hash_entry *h)
9050 int (*output_symbol_hook)
9051 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9052 struct elf_link_hash_entry *);
9053 struct elf_link_hash_table *hash_table;
9054 const struct elf_backend_data *bed;
9055 bfd_size_type strtabsize;
9057 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9059 bed = get_elf_backend_data (flinfo->output_bfd);
9060 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9061 if (output_symbol_hook != NULL)
9063 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9070 || (input_sec->flags & SEC_EXCLUDE))
9071 elfsym->st_name = (unsigned long) -1;
9074 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9075 to get the final offset for st_name. */
9077 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9079 if (elfsym->st_name == (unsigned long) -1)
9083 hash_table = elf_hash_table (flinfo->info);
9084 strtabsize = hash_table->strtabsize;
9085 if (strtabsize <= hash_table->strtabcount)
9087 strtabsize += strtabsize;
9088 hash_table->strtabsize = strtabsize;
9089 strtabsize *= sizeof (*hash_table->strtab);
9091 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9093 if (hash_table->strtab == NULL)
9096 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9097 hash_table->strtab[hash_table->strtabcount].dest_index
9098 = hash_table->strtabcount;
9099 hash_table->strtab[hash_table->strtabcount].destshndx_index
9100 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9102 bfd_get_symcount (flinfo->output_bfd) += 1;
9103 hash_table->strtabcount += 1;
9108 /* Swap symbols out to the symbol table and flush the output symbols to
9112 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9114 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9117 const struct elf_backend_data *bed;
9119 Elf_Internal_Shdr *hdr;
9123 if (!hash_table->strtabcount)
9126 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9128 bed = get_elf_backend_data (flinfo->output_bfd);
9130 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9131 symbuf = (bfd_byte *) bfd_malloc (amt);
9135 if (flinfo->symshndxbuf)
9137 amt = sizeof (Elf_External_Sym_Shndx);
9138 amt *= bfd_get_symcount (flinfo->output_bfd);
9139 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9140 if (flinfo->symshndxbuf == NULL)
9147 for (i = 0; i < hash_table->strtabcount; i++)
9149 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9150 if (elfsym->sym.st_name == (unsigned long) -1)
9151 elfsym->sym.st_name = 0;
9154 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9155 elfsym->sym.st_name);
9156 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9157 ((bfd_byte *) symbuf
9158 + (elfsym->dest_index
9159 * bed->s->sizeof_sym)),
9160 (flinfo->symshndxbuf
9161 + elfsym->destshndx_index));
9164 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9165 pos = hdr->sh_offset + hdr->sh_size;
9166 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9167 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9168 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9170 hdr->sh_size += amt;
9178 free (hash_table->strtab);
9179 hash_table->strtab = NULL;
9184 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9187 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9189 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9190 && sym->st_shndx < SHN_LORESERVE)
9192 /* The gABI doesn't support dynamic symbols in output sections
9195 /* xgettext:c-format */
9196 (_("%B: Too many sections: %d (>= %d)"),
9197 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9198 bfd_set_error (bfd_error_nonrepresentable_section);
9204 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9205 allowing an unsatisfied unversioned symbol in the DSO to match a
9206 versioned symbol that would normally require an explicit version.
9207 We also handle the case that a DSO references a hidden symbol
9208 which may be satisfied by a versioned symbol in another DSO. */
9211 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9212 const struct elf_backend_data *bed,
9213 struct elf_link_hash_entry *h)
9216 struct elf_link_loaded_list *loaded;
9218 if (!is_elf_hash_table (info->hash))
9221 /* Check indirect symbol. */
9222 while (h->root.type == bfd_link_hash_indirect)
9223 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9225 switch (h->root.type)
9231 case bfd_link_hash_undefined:
9232 case bfd_link_hash_undefweak:
9233 abfd = h->root.u.undef.abfd;
9235 || (abfd->flags & DYNAMIC) == 0
9236 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9240 case bfd_link_hash_defined:
9241 case bfd_link_hash_defweak:
9242 abfd = h->root.u.def.section->owner;
9245 case bfd_link_hash_common:
9246 abfd = h->root.u.c.p->section->owner;
9249 BFD_ASSERT (abfd != NULL);
9251 for (loaded = elf_hash_table (info)->loaded;
9253 loaded = loaded->next)
9256 Elf_Internal_Shdr *hdr;
9260 Elf_Internal_Shdr *versymhdr;
9261 Elf_Internal_Sym *isym;
9262 Elf_Internal_Sym *isymend;
9263 Elf_Internal_Sym *isymbuf;
9264 Elf_External_Versym *ever;
9265 Elf_External_Versym *extversym;
9267 input = loaded->abfd;
9269 /* We check each DSO for a possible hidden versioned definition. */
9271 || (input->flags & DYNAMIC) == 0
9272 || elf_dynversym (input) == 0)
9275 hdr = &elf_tdata (input)->dynsymtab_hdr;
9277 symcount = hdr->sh_size / bed->s->sizeof_sym;
9278 if (elf_bad_symtab (input))
9280 extsymcount = symcount;
9285 extsymcount = symcount - hdr->sh_info;
9286 extsymoff = hdr->sh_info;
9289 if (extsymcount == 0)
9292 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9294 if (isymbuf == NULL)
9297 /* Read in any version definitions. */
9298 versymhdr = &elf_tdata (input)->dynversym_hdr;
9299 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9300 if (extversym == NULL)
9303 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9304 || (bfd_bread (extversym, versymhdr->sh_size, input)
9305 != versymhdr->sh_size))
9313 ever = extversym + extsymoff;
9314 isymend = isymbuf + extsymcount;
9315 for (isym = isymbuf; isym < isymend; isym++, ever++)
9318 Elf_Internal_Versym iver;
9319 unsigned short version_index;
9321 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9322 || isym->st_shndx == SHN_UNDEF)
9325 name = bfd_elf_string_from_elf_section (input,
9328 if (strcmp (name, h->root.root.string) != 0)
9331 _bfd_elf_swap_versym_in (input, ever, &iver);
9333 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9335 && h->forced_local))
9337 /* If we have a non-hidden versioned sym, then it should
9338 have provided a definition for the undefined sym unless
9339 it is defined in a non-shared object and forced local.
9344 version_index = iver.vs_vers & VERSYM_VERSION;
9345 if (version_index == 1 || version_index == 2)
9347 /* This is the base or first version. We can use it. */
9361 /* Convert ELF common symbol TYPE. */
9364 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9366 /* Commom symbol can only appear in relocatable link. */
9367 if (!bfd_link_relocatable (info))
9369 switch (info->elf_stt_common)
9373 case elf_stt_common:
9376 case no_elf_stt_common:
9383 /* Add an external symbol to the symbol table. This is called from
9384 the hash table traversal routine. When generating a shared object,
9385 we go through the symbol table twice. The first time we output
9386 anything that might have been forced to local scope in a version
9387 script. The second time we output the symbols that are still
9391 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9393 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9394 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9395 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9397 Elf_Internal_Sym sym;
9398 asection *input_sec;
9399 const struct elf_backend_data *bed;
9404 if (h->root.type == bfd_link_hash_warning)
9406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9407 if (h->root.type == bfd_link_hash_new)
9411 /* Decide whether to output this symbol in this pass. */
9412 if (eoinfo->localsyms)
9414 if (!h->forced_local)
9419 if (h->forced_local)
9423 bed = get_elf_backend_data (flinfo->output_bfd);
9425 if (h->root.type == bfd_link_hash_undefined)
9427 /* If we have an undefined symbol reference here then it must have
9428 come from a shared library that is being linked in. (Undefined
9429 references in regular files have already been handled unless
9430 they are in unreferenced sections which are removed by garbage
9432 bfd_boolean ignore_undef = FALSE;
9434 /* Some symbols may be special in that the fact that they're
9435 undefined can be safely ignored - let backend determine that. */
9436 if (bed->elf_backend_ignore_undef_symbol)
9437 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9439 /* If we are reporting errors for this situation then do so now. */
9442 && (!h->ref_regular || flinfo->info->gc_sections)
9443 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9444 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9445 (*flinfo->info->callbacks->undefined_symbol)
9446 (flinfo->info, h->root.root.string,
9447 h->ref_regular ? NULL : h->root.u.undef.abfd,
9449 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9451 /* Strip a global symbol defined in a discarded section. */
9456 /* We should also warn if a forced local symbol is referenced from
9457 shared libraries. */
9458 if (bfd_link_executable (flinfo->info)
9463 && h->ref_dynamic_nonweak
9464 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9468 struct elf_link_hash_entry *hi = h;
9470 /* Check indirect symbol. */
9471 while (hi->root.type == bfd_link_hash_indirect)
9472 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9474 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9475 /* xgettext:c-format */
9476 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9477 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9478 /* xgettext:c-format */
9479 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9481 /* xgettext:c-format */
9482 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9483 def_bfd = flinfo->output_bfd;
9484 if (hi->root.u.def.section != bfd_abs_section_ptr)
9485 def_bfd = hi->root.u.def.section->owner;
9486 _bfd_error_handler (msg, flinfo->output_bfd,
9487 h->root.root.string, def_bfd);
9488 bfd_set_error (bfd_error_bad_value);
9489 eoinfo->failed = TRUE;
9493 /* We don't want to output symbols that have never been mentioned by
9494 a regular file, or that we have been told to strip. However, if
9495 h->indx is set to -2, the symbol is used by a reloc and we must
9500 else if ((h->def_dynamic
9502 || h->root.type == bfd_link_hash_new)
9506 else if (flinfo->info->strip == strip_all)
9508 else if (flinfo->info->strip == strip_some
9509 && bfd_hash_lookup (flinfo->info->keep_hash,
9510 h->root.root.string, FALSE, FALSE) == NULL)
9512 else if ((h->root.type == bfd_link_hash_defined
9513 || h->root.type == bfd_link_hash_defweak)
9514 && ((flinfo->info->strip_discarded
9515 && discarded_section (h->root.u.def.section))
9516 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9517 && h->root.u.def.section->owner != NULL
9518 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9520 else if ((h->root.type == bfd_link_hash_undefined
9521 || h->root.type == bfd_link_hash_undefweak)
9522 && h->root.u.undef.abfd != NULL
9523 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9528 /* If we're stripping it, and it's not a dynamic symbol, there's
9529 nothing else to do. However, if it is a forced local symbol or
9530 an ifunc symbol we need to give the backend finish_dynamic_symbol
9531 function a chance to make it dynamic. */
9534 && type != STT_GNU_IFUNC
9535 && !h->forced_local)
9539 sym.st_size = h->size;
9540 sym.st_other = h->other;
9541 switch (h->root.type)
9544 case bfd_link_hash_new:
9545 case bfd_link_hash_warning:
9549 case bfd_link_hash_undefined:
9550 case bfd_link_hash_undefweak:
9551 input_sec = bfd_und_section_ptr;
9552 sym.st_shndx = SHN_UNDEF;
9555 case bfd_link_hash_defined:
9556 case bfd_link_hash_defweak:
9558 input_sec = h->root.u.def.section;
9559 if (input_sec->output_section != NULL)
9562 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9563 input_sec->output_section);
9564 if (sym.st_shndx == SHN_BAD)
9567 /* xgettext:c-format */
9568 (_("%B: could not find output section %A for input section %A"),
9569 flinfo->output_bfd, input_sec->output_section, input_sec);
9570 bfd_set_error (bfd_error_nonrepresentable_section);
9571 eoinfo->failed = TRUE;
9575 /* ELF symbols in relocatable files are section relative,
9576 but in nonrelocatable files they are virtual
9578 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9579 if (!bfd_link_relocatable (flinfo->info))
9581 sym.st_value += input_sec->output_section->vma;
9582 if (h->type == STT_TLS)
9584 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9585 if (tls_sec != NULL)
9586 sym.st_value -= tls_sec->vma;
9592 BFD_ASSERT (input_sec->owner == NULL
9593 || (input_sec->owner->flags & DYNAMIC) != 0);
9594 sym.st_shndx = SHN_UNDEF;
9595 input_sec = bfd_und_section_ptr;
9600 case bfd_link_hash_common:
9601 input_sec = h->root.u.c.p->section;
9602 sym.st_shndx = bed->common_section_index (input_sec);
9603 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9606 case bfd_link_hash_indirect:
9607 /* These symbols are created by symbol versioning. They point
9608 to the decorated version of the name. For example, if the
9609 symbol foo@@GNU_1.2 is the default, which should be used when
9610 foo is used with no version, then we add an indirect symbol
9611 foo which points to foo@@GNU_1.2. We ignore these symbols,
9612 since the indirected symbol is already in the hash table. */
9616 if (type == STT_COMMON || type == STT_OBJECT)
9617 switch (h->root.type)
9619 case bfd_link_hash_common:
9620 type = elf_link_convert_common_type (flinfo->info, type);
9622 case bfd_link_hash_defined:
9623 case bfd_link_hash_defweak:
9624 if (bed->common_definition (&sym))
9625 type = elf_link_convert_common_type (flinfo->info, type);
9629 case bfd_link_hash_undefined:
9630 case bfd_link_hash_undefweak:
9636 if (h->forced_local)
9638 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9639 /* Turn off visibility on local symbol. */
9640 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9642 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9643 else if (h->unique_global && h->def_regular)
9644 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9645 else if (h->root.type == bfd_link_hash_undefweak
9646 || h->root.type == bfd_link_hash_defweak)
9647 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9649 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9650 sym.st_target_internal = h->target_internal;
9652 /* Give the processor backend a chance to tweak the symbol value,
9653 and also to finish up anything that needs to be done for this
9654 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9655 forced local syms when non-shared is due to a historical quirk.
9656 STT_GNU_IFUNC symbol must go through PLT. */
9657 if ((h->type == STT_GNU_IFUNC
9659 && !bfd_link_relocatable (flinfo->info))
9660 || ((h->dynindx != -1
9662 && ((bfd_link_pic (flinfo->info)
9663 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9664 || h->root.type != bfd_link_hash_undefweak))
9665 || !h->forced_local)
9666 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9668 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9669 (flinfo->output_bfd, flinfo->info, h, &sym)))
9671 eoinfo->failed = TRUE;
9676 /* If we are marking the symbol as undefined, and there are no
9677 non-weak references to this symbol from a regular object, then
9678 mark the symbol as weak undefined; if there are non-weak
9679 references, mark the symbol as strong. We can't do this earlier,
9680 because it might not be marked as undefined until the
9681 finish_dynamic_symbol routine gets through with it. */
9682 if (sym.st_shndx == SHN_UNDEF
9684 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9685 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9688 type = ELF_ST_TYPE (sym.st_info);
9690 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9691 if (type == STT_GNU_IFUNC)
9694 if (h->ref_regular_nonweak)
9695 bindtype = STB_GLOBAL;
9697 bindtype = STB_WEAK;
9698 sym.st_info = ELF_ST_INFO (bindtype, type);
9701 /* If this is a symbol defined in a dynamic library, don't use the
9702 symbol size from the dynamic library. Relinking an executable
9703 against a new library may introduce gratuitous changes in the
9704 executable's symbols if we keep the size. */
9705 if (sym.st_shndx == SHN_UNDEF
9710 /* If a non-weak symbol with non-default visibility is not defined
9711 locally, it is a fatal error. */
9712 if (!bfd_link_relocatable (flinfo->info)
9713 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9714 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9715 && h->root.type == bfd_link_hash_undefined
9720 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9721 /* xgettext:c-format */
9722 msg = _("%B: protected symbol `%s' isn't defined");
9723 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9724 /* xgettext:c-format */
9725 msg = _("%B: internal symbol `%s' isn't defined");
9727 /* xgettext:c-format */
9728 msg = _("%B: hidden symbol `%s' isn't defined");
9729 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9730 bfd_set_error (bfd_error_bad_value);
9731 eoinfo->failed = TRUE;
9735 /* If this symbol should be put in the .dynsym section, then put it
9736 there now. We already know the symbol index. We also fill in
9737 the entry in the .hash section. */
9738 if (elf_hash_table (flinfo->info)->dynsym != NULL
9740 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9744 /* Since there is no version information in the dynamic string,
9745 if there is no version info in symbol version section, we will
9746 have a run-time problem if not linking executable, referenced
9747 by shared library, or not bound locally. */
9748 if (h->verinfo.verdef == NULL
9749 && (!bfd_link_executable (flinfo->info)
9751 || !h->def_regular))
9753 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9755 if (p && p [1] != '\0')
9758 /* xgettext:c-format */
9759 (_("%B: No symbol version section for versioned symbol `%s'"),
9760 flinfo->output_bfd, h->root.root.string);
9761 eoinfo->failed = TRUE;
9766 sym.st_name = h->dynstr_index;
9767 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9768 + h->dynindx * bed->s->sizeof_sym);
9769 if (!check_dynsym (flinfo->output_bfd, &sym))
9771 eoinfo->failed = TRUE;
9774 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9776 if (flinfo->hash_sec != NULL)
9778 size_t hash_entry_size;
9779 bfd_byte *bucketpos;
9784 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9785 bucket = h->u.elf_hash_value % bucketcount;
9788 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9789 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9790 + (bucket + 2) * hash_entry_size);
9791 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9792 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9794 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9795 ((bfd_byte *) flinfo->hash_sec->contents
9796 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9799 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9801 Elf_Internal_Versym iversym;
9802 Elf_External_Versym *eversym;
9804 if (!h->def_regular)
9806 if (h->verinfo.verdef == NULL
9807 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9808 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9809 iversym.vs_vers = 0;
9811 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9815 if (h->verinfo.vertree == NULL)
9816 iversym.vs_vers = 1;
9818 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9819 if (flinfo->info->create_default_symver)
9823 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9825 if (h->versioned == versioned_hidden && h->def_regular)
9826 iversym.vs_vers |= VERSYM_HIDDEN;
9828 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9829 eversym += h->dynindx;
9830 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9834 /* If the symbol is undefined, and we didn't output it to .dynsym,
9835 strip it from .symtab too. Obviously we can't do this for
9836 relocatable output or when needed for --emit-relocs. */
9837 else if (input_sec == bfd_und_section_ptr
9839 && !bfd_link_relocatable (flinfo->info))
9841 /* Also strip others that we couldn't earlier due to dynamic symbol
9845 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9848 /* Output a FILE symbol so that following locals are not associated
9849 with the wrong input file. We need one for forced local symbols
9850 if we've seen more than one FILE symbol or when we have exactly
9851 one FILE symbol but global symbols are present in a file other
9852 than the one with the FILE symbol. We also need one if linker
9853 defined symbols are present. In practice these conditions are
9854 always met, so just emit the FILE symbol unconditionally. */
9855 if (eoinfo->localsyms
9856 && !eoinfo->file_sym_done
9857 && eoinfo->flinfo->filesym_count != 0)
9859 Elf_Internal_Sym fsym;
9861 memset (&fsym, 0, sizeof (fsym));
9862 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9863 fsym.st_shndx = SHN_ABS;
9864 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9865 bfd_und_section_ptr, NULL))
9868 eoinfo->file_sym_done = TRUE;
9871 indx = bfd_get_symcount (flinfo->output_bfd);
9872 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9876 eoinfo->failed = TRUE;
9881 else if (h->indx == -2)
9887 /* Return TRUE if special handling is done for relocs in SEC against
9888 symbols defined in discarded sections. */
9891 elf_section_ignore_discarded_relocs (asection *sec)
9893 const struct elf_backend_data *bed;
9895 switch (sec->sec_info_type)
9897 case SEC_INFO_TYPE_STABS:
9898 case SEC_INFO_TYPE_EH_FRAME:
9899 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9905 bed = get_elf_backend_data (sec->owner);
9906 if (bed->elf_backend_ignore_discarded_relocs != NULL
9907 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9913 /* Return a mask saying how ld should treat relocations in SEC against
9914 symbols defined in discarded sections. If this function returns
9915 COMPLAIN set, ld will issue a warning message. If this function
9916 returns PRETEND set, and the discarded section was link-once and the
9917 same size as the kept link-once section, ld will pretend that the
9918 symbol was actually defined in the kept section. Otherwise ld will
9919 zero the reloc (at least that is the intent, but some cooperation by
9920 the target dependent code is needed, particularly for REL targets). */
9923 _bfd_elf_default_action_discarded (asection *sec)
9925 if (sec->flags & SEC_DEBUGGING)
9928 if (strcmp (".eh_frame", sec->name) == 0)
9931 if (strcmp (".gcc_except_table", sec->name) == 0)
9934 return COMPLAIN | PRETEND;
9937 /* Find a match between a section and a member of a section group. */
9940 match_group_member (asection *sec, asection *group,
9941 struct bfd_link_info *info)
9943 asection *first = elf_next_in_group (group);
9944 asection *s = first;
9948 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9951 s = elf_next_in_group (s);
9959 /* Check if the kept section of a discarded section SEC can be used
9960 to replace it. Return the replacement if it is OK. Otherwise return
9964 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9968 kept = sec->kept_section;
9971 if ((kept->flags & SEC_GROUP) != 0)
9972 kept = match_group_member (sec, kept, info);
9974 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9975 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9977 sec->kept_section = kept;
9982 /* Link an input file into the linker output file. This function
9983 handles all the sections and relocations of the input file at once.
9984 This is so that we only have to read the local symbols once, and
9985 don't have to keep them in memory. */
9988 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9990 int (*relocate_section)
9991 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9992 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9994 Elf_Internal_Shdr *symtab_hdr;
9997 Elf_Internal_Sym *isymbuf;
9998 Elf_Internal_Sym *isym;
9999 Elf_Internal_Sym *isymend;
10001 asection **ppsection;
10003 const struct elf_backend_data *bed;
10004 struct elf_link_hash_entry **sym_hashes;
10005 bfd_size_type address_size;
10006 bfd_vma r_type_mask;
10008 bfd_boolean have_file_sym = FALSE;
10010 output_bfd = flinfo->output_bfd;
10011 bed = get_elf_backend_data (output_bfd);
10012 relocate_section = bed->elf_backend_relocate_section;
10014 /* If this is a dynamic object, we don't want to do anything here:
10015 we don't want the local symbols, and we don't want the section
10017 if ((input_bfd->flags & DYNAMIC) != 0)
10020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10021 if (elf_bad_symtab (input_bfd))
10023 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10028 locsymcount = symtab_hdr->sh_info;
10029 extsymoff = symtab_hdr->sh_info;
10032 /* Read the local symbols. */
10033 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10034 if (isymbuf == NULL && locsymcount != 0)
10036 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10037 flinfo->internal_syms,
10038 flinfo->external_syms,
10039 flinfo->locsym_shndx);
10040 if (isymbuf == NULL)
10044 /* Find local symbol sections and adjust values of symbols in
10045 SEC_MERGE sections. Write out those local symbols we know are
10046 going into the output file. */
10047 isymend = isymbuf + locsymcount;
10048 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10050 isym++, pindex++, ppsection++)
10054 Elf_Internal_Sym osym;
10060 if (elf_bad_symtab (input_bfd))
10062 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10069 if (isym->st_shndx == SHN_UNDEF)
10070 isec = bfd_und_section_ptr;
10071 else if (isym->st_shndx == SHN_ABS)
10072 isec = bfd_abs_section_ptr;
10073 else if (isym->st_shndx == SHN_COMMON)
10074 isec = bfd_com_section_ptr;
10077 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10080 /* Don't attempt to output symbols with st_shnx in the
10081 reserved range other than SHN_ABS and SHN_COMMON. */
10085 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10086 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10088 _bfd_merged_section_offset (output_bfd, &isec,
10089 elf_section_data (isec)->sec_info,
10095 /* Don't output the first, undefined, symbol. In fact, don't
10096 output any undefined local symbol. */
10097 if (isec == bfd_und_section_ptr)
10100 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10102 /* We never output section symbols. Instead, we use the
10103 section symbol of the corresponding section in the output
10108 /* If we are stripping all symbols, we don't want to output this
10110 if (flinfo->info->strip == strip_all)
10113 /* If we are discarding all local symbols, we don't want to
10114 output this one. If we are generating a relocatable output
10115 file, then some of the local symbols may be required by
10116 relocs; we output them below as we discover that they are
10118 if (flinfo->info->discard == discard_all)
10121 /* If this symbol is defined in a section which we are
10122 discarding, we don't need to keep it. */
10123 if (isym->st_shndx != SHN_UNDEF
10124 && isym->st_shndx < SHN_LORESERVE
10125 && bfd_section_removed_from_list (output_bfd,
10126 isec->output_section))
10129 /* Get the name of the symbol. */
10130 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10135 /* See if we are discarding symbols with this name. */
10136 if ((flinfo->info->strip == strip_some
10137 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10139 || (((flinfo->info->discard == discard_sec_merge
10140 && (isec->flags & SEC_MERGE)
10141 && !bfd_link_relocatable (flinfo->info))
10142 || flinfo->info->discard == discard_l)
10143 && bfd_is_local_label_name (input_bfd, name)))
10146 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10148 if (input_bfd->lto_output)
10149 /* -flto puts a temp file name here. This means builds
10150 are not reproducible. Discard the symbol. */
10152 have_file_sym = TRUE;
10153 flinfo->filesym_count += 1;
10155 if (!have_file_sym)
10157 /* In the absence of debug info, bfd_find_nearest_line uses
10158 FILE symbols to determine the source file for local
10159 function symbols. Provide a FILE symbol here if input
10160 files lack such, so that their symbols won't be
10161 associated with a previous input file. It's not the
10162 source file, but the best we can do. */
10163 have_file_sym = TRUE;
10164 flinfo->filesym_count += 1;
10165 memset (&osym, 0, sizeof (osym));
10166 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10167 osym.st_shndx = SHN_ABS;
10168 if (!elf_link_output_symstrtab (flinfo,
10169 (input_bfd->lto_output ? NULL
10170 : input_bfd->filename),
10171 &osym, bfd_abs_section_ptr,
10178 /* Adjust the section index for the output file. */
10179 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10180 isec->output_section);
10181 if (osym.st_shndx == SHN_BAD)
10184 /* ELF symbols in relocatable files are section relative, but
10185 in executable files they are virtual addresses. Note that
10186 this code assumes that all ELF sections have an associated
10187 BFD section with a reasonable value for output_offset; below
10188 we assume that they also have a reasonable value for
10189 output_section. Any special sections must be set up to meet
10190 these requirements. */
10191 osym.st_value += isec->output_offset;
10192 if (!bfd_link_relocatable (flinfo->info))
10194 osym.st_value += isec->output_section->vma;
10195 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10197 /* STT_TLS symbols are relative to PT_TLS segment base. */
10198 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10199 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10203 indx = bfd_get_symcount (output_bfd);
10204 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10211 if (bed->s->arch_size == 32)
10213 r_type_mask = 0xff;
10219 r_type_mask = 0xffffffff;
10224 /* Relocate the contents of each section. */
10225 sym_hashes = elf_sym_hashes (input_bfd);
10226 for (o = input_bfd->sections; o != NULL; o = o->next)
10228 bfd_byte *contents;
10230 if (! o->linker_mark)
10232 /* This section was omitted from the link. */
10236 if (bfd_link_relocatable (flinfo->info)
10237 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10239 /* Deal with the group signature symbol. */
10240 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10241 unsigned long symndx = sec_data->this_hdr.sh_info;
10242 asection *osec = o->output_section;
10244 if (symndx >= locsymcount
10245 || (elf_bad_symtab (input_bfd)
10246 && flinfo->sections[symndx] == NULL))
10248 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10249 while (h->root.type == bfd_link_hash_indirect
10250 || h->root.type == bfd_link_hash_warning)
10251 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10252 /* Arrange for symbol to be output. */
10254 elf_section_data (osec)->this_hdr.sh_info = -2;
10256 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10258 /* We'll use the output section target_index. */
10259 asection *sec = flinfo->sections[symndx]->output_section;
10260 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10264 if (flinfo->indices[symndx] == -1)
10266 /* Otherwise output the local symbol now. */
10267 Elf_Internal_Sym sym = isymbuf[symndx];
10268 asection *sec = flinfo->sections[symndx]->output_section;
10273 name = bfd_elf_string_from_elf_section (input_bfd,
10274 symtab_hdr->sh_link,
10279 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10281 if (sym.st_shndx == SHN_BAD)
10284 sym.st_value += o->output_offset;
10286 indx = bfd_get_symcount (output_bfd);
10287 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10292 flinfo->indices[symndx] = indx;
10296 elf_section_data (osec)->this_hdr.sh_info
10297 = flinfo->indices[symndx];
10301 if ((o->flags & SEC_HAS_CONTENTS) == 0
10302 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10305 if ((o->flags & SEC_LINKER_CREATED) != 0)
10307 /* Section was created by _bfd_elf_link_create_dynamic_sections
10312 /* Get the contents of the section. They have been cached by a
10313 relaxation routine. Note that o is a section in an input
10314 file, so the contents field will not have been set by any of
10315 the routines which work on output files. */
10316 if (elf_section_data (o)->this_hdr.contents != NULL)
10318 contents = elf_section_data (o)->this_hdr.contents;
10319 if (bed->caches_rawsize
10321 && o->rawsize < o->size)
10323 memcpy (flinfo->contents, contents, o->rawsize);
10324 contents = flinfo->contents;
10329 contents = flinfo->contents;
10330 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10334 if ((o->flags & SEC_RELOC) != 0)
10336 Elf_Internal_Rela *internal_relocs;
10337 Elf_Internal_Rela *rel, *relend;
10338 int action_discarded;
10341 /* Get the swapped relocs. */
10343 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10344 flinfo->internal_relocs, FALSE);
10345 if (internal_relocs == NULL
10346 && o->reloc_count > 0)
10349 /* We need to reverse-copy input .ctors/.dtors sections if
10350 they are placed in .init_array/.finit_array for output. */
10351 if (o->size > address_size
10352 && ((strncmp (o->name, ".ctors", 6) == 0
10353 && strcmp (o->output_section->name,
10354 ".init_array") == 0)
10355 || (strncmp (o->name, ".dtors", 6) == 0
10356 && strcmp (o->output_section->name,
10357 ".fini_array") == 0))
10358 && (o->name[6] == 0 || o->name[6] == '.'))
10360 if (o->size != o->reloc_count * address_size)
10363 /* xgettext:c-format */
10364 (_("error: %B: size of section %A is not "
10365 "multiple of address size"),
10367 bfd_set_error (bfd_error_on_input);
10370 o->flags |= SEC_ELF_REVERSE_COPY;
10373 action_discarded = -1;
10374 if (!elf_section_ignore_discarded_relocs (o))
10375 action_discarded = (*bed->action_discarded) (o);
10377 /* Run through the relocs evaluating complex reloc symbols and
10378 looking for relocs against symbols from discarded sections
10379 or section symbols from removed link-once sections.
10380 Complain about relocs against discarded sections. Zero
10381 relocs against removed link-once sections. */
10383 rel = internal_relocs;
10384 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10385 for ( ; rel < relend; rel++)
10387 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10388 unsigned int s_type;
10389 asection **ps, *sec;
10390 struct elf_link_hash_entry *h = NULL;
10391 const char *sym_name;
10393 if (r_symndx == STN_UNDEF)
10396 if (r_symndx >= locsymcount
10397 || (elf_bad_symtab (input_bfd)
10398 && flinfo->sections[r_symndx] == NULL))
10400 h = sym_hashes[r_symndx - extsymoff];
10402 /* Badly formatted input files can contain relocs that
10403 reference non-existant symbols. Check here so that
10404 we do not seg fault. */
10409 sprintf_vma (buffer, rel->r_info);
10411 /* xgettext:c-format */
10412 (_("error: %B contains a reloc (0x%s) for section %A "
10413 "that references a non-existent global symbol"),
10414 input_bfd, buffer, o);
10415 bfd_set_error (bfd_error_bad_value);
10419 while (h->root.type == bfd_link_hash_indirect
10420 || h->root.type == bfd_link_hash_warning)
10421 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10425 /* If a plugin symbol is referenced from a non-IR file,
10426 mark the symbol as undefined. Note that the
10427 linker may attach linker created dynamic sections
10428 to the plugin bfd. Symbols defined in linker
10429 created sections are not plugin symbols. */
10430 if (h->root.non_ir_ref
10431 && (h->root.type == bfd_link_hash_defined
10432 || h->root.type == bfd_link_hash_defweak)
10433 && (h->root.u.def.section->flags
10434 & SEC_LINKER_CREATED) == 0
10435 && h->root.u.def.section->owner != NULL
10436 && (h->root.u.def.section->owner->flags
10437 & BFD_PLUGIN) != 0)
10439 h->root.type = bfd_link_hash_undefined;
10440 h->root.u.undef.abfd = h->root.u.def.section->owner;
10444 if (h->root.type == bfd_link_hash_defined
10445 || h->root.type == bfd_link_hash_defweak)
10446 ps = &h->root.u.def.section;
10448 sym_name = h->root.root.string;
10452 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10454 s_type = ELF_ST_TYPE (sym->st_info);
10455 ps = &flinfo->sections[r_symndx];
10456 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10460 if ((s_type == STT_RELC || s_type == STT_SRELC)
10461 && !bfd_link_relocatable (flinfo->info))
10464 bfd_vma dot = (rel->r_offset
10465 + o->output_offset + o->output_section->vma);
10467 printf ("Encountered a complex symbol!");
10468 printf (" (input_bfd %s, section %s, reloc %ld\n",
10469 input_bfd->filename, o->name,
10470 (long) (rel - internal_relocs));
10471 printf (" symbol: idx %8.8lx, name %s\n",
10472 r_symndx, sym_name);
10473 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10474 (unsigned long) rel->r_info,
10475 (unsigned long) rel->r_offset);
10477 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10478 isymbuf, locsymcount, s_type == STT_SRELC))
10481 /* Symbol evaluated OK. Update to absolute value. */
10482 set_symbol_value (input_bfd, isymbuf, locsymcount,
10487 if (action_discarded != -1 && ps != NULL)
10489 /* Complain if the definition comes from a
10490 discarded section. */
10491 if ((sec = *ps) != NULL && discarded_section (sec))
10493 BFD_ASSERT (r_symndx != STN_UNDEF);
10494 if (action_discarded & COMPLAIN)
10495 (*flinfo->info->callbacks->einfo)
10496 /* xgettext:c-format */
10497 (_("%X`%s' referenced in section `%A' of %B: "
10498 "defined in discarded section `%A' of %B\n"),
10499 sym_name, o, input_bfd, sec, sec->owner);
10501 /* Try to do the best we can to support buggy old
10502 versions of gcc. Pretend that the symbol is
10503 really defined in the kept linkonce section.
10504 FIXME: This is quite broken. Modifying the
10505 symbol here means we will be changing all later
10506 uses of the symbol, not just in this section. */
10507 if (action_discarded & PRETEND)
10511 kept = _bfd_elf_check_kept_section (sec,
10523 /* Relocate the section by invoking a back end routine.
10525 The back end routine is responsible for adjusting the
10526 section contents as necessary, and (if using Rela relocs
10527 and generating a relocatable output file) adjusting the
10528 reloc addend as necessary.
10530 The back end routine does not have to worry about setting
10531 the reloc address or the reloc symbol index.
10533 The back end routine is given a pointer to the swapped in
10534 internal symbols, and can access the hash table entries
10535 for the external symbols via elf_sym_hashes (input_bfd).
10537 When generating relocatable output, the back end routine
10538 must handle STB_LOCAL/STT_SECTION symbols specially. The
10539 output symbol is going to be a section symbol
10540 corresponding to the output section, which will require
10541 the addend to be adjusted. */
10543 ret = (*relocate_section) (output_bfd, flinfo->info,
10544 input_bfd, o, contents,
10552 || bfd_link_relocatable (flinfo->info)
10553 || flinfo->info->emitrelocations)
10555 Elf_Internal_Rela *irela;
10556 Elf_Internal_Rela *irelaend, *irelamid;
10557 bfd_vma last_offset;
10558 struct elf_link_hash_entry **rel_hash;
10559 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10560 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10561 unsigned int next_erel;
10562 bfd_boolean rela_normal;
10563 struct bfd_elf_section_data *esdi, *esdo;
10565 esdi = elf_section_data (o);
10566 esdo = elf_section_data (o->output_section);
10567 rela_normal = FALSE;
10569 /* Adjust the reloc addresses and symbol indices. */
10571 irela = internal_relocs;
10572 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10573 rel_hash = esdo->rel.hashes + esdo->rel.count;
10574 /* We start processing the REL relocs, if any. When we reach
10575 IRELAMID in the loop, we switch to the RELA relocs. */
10577 if (esdi->rel.hdr != NULL)
10578 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10579 * bed->s->int_rels_per_ext_rel);
10580 rel_hash_list = rel_hash;
10581 rela_hash_list = NULL;
10582 last_offset = o->output_offset;
10583 if (!bfd_link_relocatable (flinfo->info))
10584 last_offset += o->output_section->vma;
10585 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10587 unsigned long r_symndx;
10589 Elf_Internal_Sym sym;
10591 if (next_erel == bed->s->int_rels_per_ext_rel)
10597 if (irela == irelamid)
10599 rel_hash = esdo->rela.hashes + esdo->rela.count;
10600 rela_hash_list = rel_hash;
10601 rela_normal = bed->rela_normal;
10604 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10607 if (irela->r_offset >= (bfd_vma) -2)
10609 /* This is a reloc for a deleted entry or somesuch.
10610 Turn it into an R_*_NONE reloc, at the same
10611 offset as the last reloc. elf_eh_frame.c and
10612 bfd_elf_discard_info rely on reloc offsets
10614 irela->r_offset = last_offset;
10616 irela->r_addend = 0;
10620 irela->r_offset += o->output_offset;
10622 /* Relocs in an executable have to be virtual addresses. */
10623 if (!bfd_link_relocatable (flinfo->info))
10624 irela->r_offset += o->output_section->vma;
10626 last_offset = irela->r_offset;
10628 r_symndx = irela->r_info >> r_sym_shift;
10629 if (r_symndx == STN_UNDEF)
10632 if (r_symndx >= locsymcount
10633 || (elf_bad_symtab (input_bfd)
10634 && flinfo->sections[r_symndx] == NULL))
10636 struct elf_link_hash_entry *rh;
10637 unsigned long indx;
10639 /* This is a reloc against a global symbol. We
10640 have not yet output all the local symbols, so
10641 we do not know the symbol index of any global
10642 symbol. We set the rel_hash entry for this
10643 reloc to point to the global hash table entry
10644 for this symbol. The symbol index is then
10645 set at the end of bfd_elf_final_link. */
10646 indx = r_symndx - extsymoff;
10647 rh = elf_sym_hashes (input_bfd)[indx];
10648 while (rh->root.type == bfd_link_hash_indirect
10649 || rh->root.type == bfd_link_hash_warning)
10650 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10652 /* Setting the index to -2 tells
10653 elf_link_output_extsym that this symbol is
10654 used by a reloc. */
10655 BFD_ASSERT (rh->indx < 0);
10663 /* This is a reloc against a local symbol. */
10666 sym = isymbuf[r_symndx];
10667 sec = flinfo->sections[r_symndx];
10668 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10670 /* I suppose the backend ought to fill in the
10671 section of any STT_SECTION symbol against a
10672 processor specific section. */
10673 r_symndx = STN_UNDEF;
10674 if (bfd_is_abs_section (sec))
10676 else if (sec == NULL || sec->owner == NULL)
10678 bfd_set_error (bfd_error_bad_value);
10683 asection *osec = sec->output_section;
10685 /* If we have discarded a section, the output
10686 section will be the absolute section. In
10687 case of discarded SEC_MERGE sections, use
10688 the kept section. relocate_section should
10689 have already handled discarded linkonce
10691 if (bfd_is_abs_section (osec)
10692 && sec->kept_section != NULL
10693 && sec->kept_section->output_section != NULL)
10695 osec = sec->kept_section->output_section;
10696 irela->r_addend -= osec->vma;
10699 if (!bfd_is_abs_section (osec))
10701 r_symndx = osec->target_index;
10702 if (r_symndx == STN_UNDEF)
10704 irela->r_addend += osec->vma;
10705 osec = _bfd_nearby_section (output_bfd, osec,
10707 irela->r_addend -= osec->vma;
10708 r_symndx = osec->target_index;
10713 /* Adjust the addend according to where the
10714 section winds up in the output section. */
10716 irela->r_addend += sec->output_offset;
10720 if (flinfo->indices[r_symndx] == -1)
10722 unsigned long shlink;
10727 if (flinfo->info->strip == strip_all)
10729 /* You can't do ld -r -s. */
10730 bfd_set_error (bfd_error_invalid_operation);
10734 /* This symbol was skipped earlier, but
10735 since it is needed by a reloc, we
10736 must output it now. */
10737 shlink = symtab_hdr->sh_link;
10738 name = (bfd_elf_string_from_elf_section
10739 (input_bfd, shlink, sym.st_name));
10743 osec = sec->output_section;
10745 _bfd_elf_section_from_bfd_section (output_bfd,
10747 if (sym.st_shndx == SHN_BAD)
10750 sym.st_value += sec->output_offset;
10751 if (!bfd_link_relocatable (flinfo->info))
10753 sym.st_value += osec->vma;
10754 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10756 /* STT_TLS symbols are relative to PT_TLS
10758 BFD_ASSERT (elf_hash_table (flinfo->info)
10759 ->tls_sec != NULL);
10760 sym.st_value -= (elf_hash_table (flinfo->info)
10765 indx = bfd_get_symcount (output_bfd);
10766 ret = elf_link_output_symstrtab (flinfo, name,
10772 flinfo->indices[r_symndx] = indx;
10777 r_symndx = flinfo->indices[r_symndx];
10780 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10781 | (irela->r_info & r_type_mask));
10784 /* Swap out the relocs. */
10785 input_rel_hdr = esdi->rel.hdr;
10786 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10788 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10793 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10794 * bed->s->int_rels_per_ext_rel);
10795 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10798 input_rela_hdr = esdi->rela.hdr;
10799 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10801 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10810 /* Write out the modified section contents. */
10811 if (bed->elf_backend_write_section
10812 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10815 /* Section written out. */
10817 else switch (o->sec_info_type)
10819 case SEC_INFO_TYPE_STABS:
10820 if (! (_bfd_write_section_stabs
10822 &elf_hash_table (flinfo->info)->stab_info,
10823 o, &elf_section_data (o)->sec_info, contents)))
10826 case SEC_INFO_TYPE_MERGE:
10827 if (! _bfd_write_merged_section (output_bfd, o,
10828 elf_section_data (o)->sec_info))
10831 case SEC_INFO_TYPE_EH_FRAME:
10833 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10838 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10840 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10848 if (! (o->flags & SEC_EXCLUDE))
10850 file_ptr offset = (file_ptr) o->output_offset;
10851 bfd_size_type todo = o->size;
10853 offset *= bfd_octets_per_byte (output_bfd);
10855 if ((o->flags & SEC_ELF_REVERSE_COPY))
10857 /* Reverse-copy input section to output. */
10860 todo -= address_size;
10861 if (! bfd_set_section_contents (output_bfd,
10869 offset += address_size;
10873 else if (! bfd_set_section_contents (output_bfd,
10887 /* Generate a reloc when linking an ELF file. This is a reloc
10888 requested by the linker, and does not come from any input file. This
10889 is used to build constructor and destructor tables when linking
10893 elf_reloc_link_order (bfd *output_bfd,
10894 struct bfd_link_info *info,
10895 asection *output_section,
10896 struct bfd_link_order *link_order)
10898 reloc_howto_type *howto;
10902 struct bfd_elf_section_reloc_data *reldata;
10903 struct elf_link_hash_entry **rel_hash_ptr;
10904 Elf_Internal_Shdr *rel_hdr;
10905 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10906 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10909 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10911 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10914 bfd_set_error (bfd_error_bad_value);
10918 addend = link_order->u.reloc.p->addend;
10921 reldata = &esdo->rel;
10922 else if (esdo->rela.hdr)
10923 reldata = &esdo->rela;
10930 /* Figure out the symbol index. */
10931 rel_hash_ptr = reldata->hashes + reldata->count;
10932 if (link_order->type == bfd_section_reloc_link_order)
10934 indx = link_order->u.reloc.p->u.section->target_index;
10935 BFD_ASSERT (indx != 0);
10936 *rel_hash_ptr = NULL;
10940 struct elf_link_hash_entry *h;
10942 /* Treat a reloc against a defined symbol as though it were
10943 actually against the section. */
10944 h = ((struct elf_link_hash_entry *)
10945 bfd_wrapped_link_hash_lookup (output_bfd, info,
10946 link_order->u.reloc.p->u.name,
10947 FALSE, FALSE, TRUE));
10949 && (h->root.type == bfd_link_hash_defined
10950 || h->root.type == bfd_link_hash_defweak))
10954 section = h->root.u.def.section;
10955 indx = section->output_section->target_index;
10956 *rel_hash_ptr = NULL;
10957 /* It seems that we ought to add the symbol value to the
10958 addend here, but in practice it has already been added
10959 because it was passed to constructor_callback. */
10960 addend += section->output_section->vma + section->output_offset;
10962 else if (h != NULL)
10964 /* Setting the index to -2 tells elf_link_output_extsym that
10965 this symbol is used by a reloc. */
10972 (*info->callbacks->unattached_reloc)
10973 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10978 /* If this is an inplace reloc, we must write the addend into the
10980 if (howto->partial_inplace && addend != 0)
10982 bfd_size_type size;
10983 bfd_reloc_status_type rstat;
10986 const char *sym_name;
10988 size = (bfd_size_type) bfd_get_reloc_size (howto);
10989 buf = (bfd_byte *) bfd_zmalloc (size);
10990 if (buf == NULL && size != 0)
10992 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10999 case bfd_reloc_outofrange:
11002 case bfd_reloc_overflow:
11003 if (link_order->type == bfd_section_reloc_link_order)
11004 sym_name = bfd_section_name (output_bfd,
11005 link_order->u.reloc.p->u.section);
11007 sym_name = link_order->u.reloc.p->u.name;
11008 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11009 howto->name, addend, NULL, NULL,
11014 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11016 * bfd_octets_per_byte (output_bfd),
11023 /* The address of a reloc is relative to the section in a
11024 relocatable file, and is a virtual address in an executable
11026 offset = link_order->offset;
11027 if (! bfd_link_relocatable (info))
11028 offset += output_section->vma;
11030 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11032 irel[i].r_offset = offset;
11033 irel[i].r_info = 0;
11034 irel[i].r_addend = 0;
11036 if (bed->s->arch_size == 32)
11037 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11039 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11041 rel_hdr = reldata->hdr;
11042 erel = rel_hdr->contents;
11043 if (rel_hdr->sh_type == SHT_REL)
11045 erel += reldata->count * bed->s->sizeof_rel;
11046 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11050 irel[0].r_addend = addend;
11051 erel += reldata->count * bed->s->sizeof_rela;
11052 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11061 /* Get the output vma of the section pointed to by the sh_link field. */
11064 elf_get_linked_section_vma (struct bfd_link_order *p)
11066 Elf_Internal_Shdr **elf_shdrp;
11070 s = p->u.indirect.section;
11071 elf_shdrp = elf_elfsections (s->owner);
11072 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11073 elfsec = elf_shdrp[elfsec]->sh_link;
11075 The Intel C compiler generates SHT_IA_64_UNWIND with
11076 SHF_LINK_ORDER. But it doesn't set the sh_link or
11077 sh_info fields. Hence we could get the situation
11078 where elfsec is 0. */
11081 const struct elf_backend_data *bed
11082 = get_elf_backend_data (s->owner);
11083 if (bed->link_order_error_handler)
11084 bed->link_order_error_handler
11085 /* xgettext:c-format */
11086 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11091 s = elf_shdrp[elfsec]->bfd_section;
11092 return s->output_section->vma + s->output_offset;
11097 /* Compare two sections based on the locations of the sections they are
11098 linked to. Used by elf_fixup_link_order. */
11101 compare_link_order (const void * a, const void * b)
11106 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11107 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11110 return apos > bpos;
11114 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11115 order as their linked sections. Returns false if this could not be done
11116 because an output section includes both ordered and unordered
11117 sections. Ideally we'd do this in the linker proper. */
11120 elf_fixup_link_order (bfd *abfd, asection *o)
11122 int seen_linkorder;
11125 struct bfd_link_order *p;
11127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11129 struct bfd_link_order **sections;
11130 asection *s, *other_sec, *linkorder_sec;
11134 linkorder_sec = NULL;
11136 seen_linkorder = 0;
11137 for (p = o->map_head.link_order; p != NULL; p = p->next)
11139 if (p->type == bfd_indirect_link_order)
11141 s = p->u.indirect.section;
11143 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11144 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11145 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11146 && elfsec < elf_numsections (sub)
11147 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11148 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11162 if (seen_other && seen_linkorder)
11164 if (other_sec && linkorder_sec)
11166 /* xgettext:c-format */
11167 (_("%A has both ordered [`%A' in %B] "
11168 "and unordered [`%A' in %B] sections"),
11169 o, linkorder_sec, linkorder_sec->owner,
11170 other_sec, other_sec->owner);
11173 (_("%A has both ordered and unordered sections"), o);
11174 bfd_set_error (bfd_error_bad_value);
11179 if (!seen_linkorder)
11182 sections = (struct bfd_link_order **)
11183 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11184 if (sections == NULL)
11186 seen_linkorder = 0;
11188 for (p = o->map_head.link_order; p != NULL; p = p->next)
11190 sections[seen_linkorder++] = p;
11192 /* Sort the input sections in the order of their linked section. */
11193 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11194 compare_link_order);
11196 /* Change the offsets of the sections. */
11198 for (n = 0; n < seen_linkorder; n++)
11200 s = sections[n]->u.indirect.section;
11201 offset &= ~(bfd_vma) 0 << s->alignment_power;
11202 s->output_offset = offset / bfd_octets_per_byte (abfd);
11203 sections[n]->offset = offset;
11204 offset += sections[n]->size;
11211 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11212 Returns TRUE upon success, FALSE otherwise. */
11215 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11217 bfd_boolean ret = FALSE;
11219 const struct elf_backend_data *bed;
11221 enum bfd_architecture arch;
11223 asymbol **sympp = NULL;
11227 elf_symbol_type *osymbuf;
11229 implib_bfd = info->out_implib_bfd;
11230 bed = get_elf_backend_data (abfd);
11232 if (!bfd_set_format (implib_bfd, bfd_object))
11235 flags = bfd_get_file_flags (abfd);
11236 flags &= ~HAS_RELOC;
11237 if (!bfd_set_start_address (implib_bfd, 0)
11238 || !bfd_set_file_flags (implib_bfd, flags))
11241 /* Copy architecture of output file to import library file. */
11242 arch = bfd_get_arch (abfd);
11243 mach = bfd_get_mach (abfd);
11244 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11245 && (abfd->target_defaulted
11246 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11249 /* Get symbol table size. */
11250 symsize = bfd_get_symtab_upper_bound (abfd);
11254 /* Read in the symbol table. */
11255 sympp = (asymbol **) xmalloc (symsize);
11256 symcount = bfd_canonicalize_symtab (abfd, sympp);
11260 /* Allow the BFD backend to copy any private header data it
11261 understands from the output BFD to the import library BFD. */
11262 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11265 /* Filter symbols to appear in the import library. */
11266 if (bed->elf_backend_filter_implib_symbols)
11267 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11270 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11273 bfd_set_error (bfd_error_no_symbols);
11274 _bfd_error_handler (_("%B: no symbol found for import library"),
11280 /* Make symbols absolute. */
11281 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11282 sizeof (*osymbuf));
11283 for (src_count = 0; src_count < symcount; src_count++)
11285 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11286 sizeof (*osymbuf));
11287 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11288 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11289 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11290 osymbuf[src_count].internal_elf_sym.st_value =
11291 osymbuf[src_count].symbol.value;
11292 sympp[src_count] = &osymbuf[src_count].symbol;
11295 bfd_set_symtab (implib_bfd, sympp, symcount);
11297 /* Allow the BFD backend to copy any private data it understands
11298 from the output BFD to the import library BFD. This is done last
11299 to permit the routine to look at the filtered symbol table. */
11300 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11303 if (!bfd_close (implib_bfd))
11314 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11318 if (flinfo->symstrtab != NULL)
11319 _bfd_elf_strtab_free (flinfo->symstrtab);
11320 if (flinfo->contents != NULL)
11321 free (flinfo->contents);
11322 if (flinfo->external_relocs != NULL)
11323 free (flinfo->external_relocs);
11324 if (flinfo->internal_relocs != NULL)
11325 free (flinfo->internal_relocs);
11326 if (flinfo->external_syms != NULL)
11327 free (flinfo->external_syms);
11328 if (flinfo->locsym_shndx != NULL)
11329 free (flinfo->locsym_shndx);
11330 if (flinfo->internal_syms != NULL)
11331 free (flinfo->internal_syms);
11332 if (flinfo->indices != NULL)
11333 free (flinfo->indices);
11334 if (flinfo->sections != NULL)
11335 free (flinfo->sections);
11336 if (flinfo->symshndxbuf != NULL)
11337 free (flinfo->symshndxbuf);
11338 for (o = obfd->sections; o != NULL; o = o->next)
11340 struct bfd_elf_section_data *esdo = elf_section_data (o);
11341 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11342 free (esdo->rel.hashes);
11343 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11344 free (esdo->rela.hashes);
11348 /* Do the final step of an ELF link. */
11351 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11353 bfd_boolean dynamic;
11354 bfd_boolean emit_relocs;
11356 struct elf_final_link_info flinfo;
11358 struct bfd_link_order *p;
11360 bfd_size_type max_contents_size;
11361 bfd_size_type max_external_reloc_size;
11362 bfd_size_type max_internal_reloc_count;
11363 bfd_size_type max_sym_count;
11364 bfd_size_type max_sym_shndx_count;
11365 Elf_Internal_Sym elfsym;
11367 Elf_Internal_Shdr *symtab_hdr;
11368 Elf_Internal_Shdr *symtab_shndx_hdr;
11369 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11370 struct elf_outext_info eoinfo;
11371 bfd_boolean merged;
11372 size_t relativecount = 0;
11373 asection *reldyn = 0;
11375 asection *attr_section = NULL;
11376 bfd_vma attr_size = 0;
11377 const char *std_attrs_section;
11378 struct elf_link_hash_table *htab = elf_hash_table (info);
11380 if (!is_elf_hash_table (htab))
11383 if (bfd_link_pic (info))
11384 abfd->flags |= DYNAMIC;
11386 dynamic = htab->dynamic_sections_created;
11387 dynobj = htab->dynobj;
11389 emit_relocs = (bfd_link_relocatable (info)
11390 || info->emitrelocations);
11392 flinfo.info = info;
11393 flinfo.output_bfd = abfd;
11394 flinfo.symstrtab = _bfd_elf_strtab_init ();
11395 if (flinfo.symstrtab == NULL)
11400 flinfo.hash_sec = NULL;
11401 flinfo.symver_sec = NULL;
11405 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11406 /* Note that dynsym_sec can be NULL (on VMS). */
11407 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11408 /* Note that it is OK if symver_sec is NULL. */
11411 flinfo.contents = NULL;
11412 flinfo.external_relocs = NULL;
11413 flinfo.internal_relocs = NULL;
11414 flinfo.external_syms = NULL;
11415 flinfo.locsym_shndx = NULL;
11416 flinfo.internal_syms = NULL;
11417 flinfo.indices = NULL;
11418 flinfo.sections = NULL;
11419 flinfo.symshndxbuf = NULL;
11420 flinfo.filesym_count = 0;
11422 /* The object attributes have been merged. Remove the input
11423 sections from the link, and set the contents of the output
11425 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11426 for (o = abfd->sections; o != NULL; o = o->next)
11428 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11429 || strcmp (o->name, ".gnu.attributes") == 0)
11431 for (p = o->map_head.link_order; p != NULL; p = p->next)
11433 asection *input_section;
11435 if (p->type != bfd_indirect_link_order)
11437 input_section = p->u.indirect.section;
11438 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11439 elf_link_input_bfd ignores this section. */
11440 input_section->flags &= ~SEC_HAS_CONTENTS;
11443 attr_size = bfd_elf_obj_attr_size (abfd);
11446 bfd_set_section_size (abfd, o, attr_size);
11448 /* Skip this section later on. */
11449 o->map_head.link_order = NULL;
11452 o->flags |= SEC_EXCLUDE;
11456 /* Count up the number of relocations we will output for each output
11457 section, so that we know the sizes of the reloc sections. We
11458 also figure out some maximum sizes. */
11459 max_contents_size = 0;
11460 max_external_reloc_size = 0;
11461 max_internal_reloc_count = 0;
11463 max_sym_shndx_count = 0;
11465 for (o = abfd->sections; o != NULL; o = o->next)
11467 struct bfd_elf_section_data *esdo = elf_section_data (o);
11468 o->reloc_count = 0;
11470 for (p = o->map_head.link_order; p != NULL; p = p->next)
11472 unsigned int reloc_count = 0;
11473 unsigned int additional_reloc_count = 0;
11474 struct bfd_elf_section_data *esdi = NULL;
11476 if (p->type == bfd_section_reloc_link_order
11477 || p->type == bfd_symbol_reloc_link_order)
11479 else if (p->type == bfd_indirect_link_order)
11483 sec = p->u.indirect.section;
11485 /* Mark all sections which are to be included in the
11486 link. This will normally be every section. We need
11487 to do this so that we can identify any sections which
11488 the linker has decided to not include. */
11489 sec->linker_mark = TRUE;
11491 if (sec->flags & SEC_MERGE)
11494 if (sec->rawsize > max_contents_size)
11495 max_contents_size = sec->rawsize;
11496 if (sec->size > max_contents_size)
11497 max_contents_size = sec->size;
11499 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11500 && (sec->owner->flags & DYNAMIC) == 0)
11504 /* We are interested in just local symbols, not all
11506 if (elf_bad_symtab (sec->owner))
11507 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11508 / bed->s->sizeof_sym);
11510 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11512 if (sym_count > max_sym_count)
11513 max_sym_count = sym_count;
11515 if (sym_count > max_sym_shndx_count
11516 && elf_symtab_shndx_list (sec->owner) != NULL)
11517 max_sym_shndx_count = sym_count;
11519 if (esdo->this_hdr.sh_type == SHT_REL
11520 || esdo->this_hdr.sh_type == SHT_RELA)
11521 /* Some backends use reloc_count in relocation sections
11522 to count particular types of relocs. Of course,
11523 reloc sections themselves can't have relocations. */
11525 else if (emit_relocs)
11527 reloc_count = sec->reloc_count;
11528 if (bed->elf_backend_count_additional_relocs)
11531 c = (*bed->elf_backend_count_additional_relocs) (sec);
11532 additional_reloc_count += c;
11535 else if (bed->elf_backend_count_relocs)
11536 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11538 esdi = elf_section_data (sec);
11540 if ((sec->flags & SEC_RELOC) != 0)
11542 size_t ext_size = 0;
11544 if (esdi->rel.hdr != NULL)
11545 ext_size = esdi->rel.hdr->sh_size;
11546 if (esdi->rela.hdr != NULL)
11547 ext_size += esdi->rela.hdr->sh_size;
11549 if (ext_size > max_external_reloc_size)
11550 max_external_reloc_size = ext_size;
11551 if (sec->reloc_count > max_internal_reloc_count)
11552 max_internal_reloc_count = sec->reloc_count;
11557 if (reloc_count == 0)
11560 reloc_count += additional_reloc_count;
11561 o->reloc_count += reloc_count;
11563 if (p->type == bfd_indirect_link_order && emit_relocs)
11567 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11568 esdo->rel.count += additional_reloc_count;
11570 if (esdi->rela.hdr)
11572 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11573 esdo->rela.count += additional_reloc_count;
11579 esdo->rela.count += reloc_count;
11581 esdo->rel.count += reloc_count;
11585 if (o->reloc_count > 0)
11586 o->flags |= SEC_RELOC;
11589 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11590 set it (this is probably a bug) and if it is set
11591 assign_section_numbers will create a reloc section. */
11592 o->flags &=~ SEC_RELOC;
11595 /* If the SEC_ALLOC flag is not set, force the section VMA to
11596 zero. This is done in elf_fake_sections as well, but forcing
11597 the VMA to 0 here will ensure that relocs against these
11598 sections are handled correctly. */
11599 if ((o->flags & SEC_ALLOC) == 0
11600 && ! o->user_set_vma)
11604 if (! bfd_link_relocatable (info) && merged)
11605 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11607 /* Figure out the file positions for everything but the symbol table
11608 and the relocs. We set symcount to force assign_section_numbers
11609 to create a symbol table. */
11610 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11611 BFD_ASSERT (! abfd->output_has_begun);
11612 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11615 /* Set sizes, and assign file positions for reloc sections. */
11616 for (o = abfd->sections; o != NULL; o = o->next)
11618 struct bfd_elf_section_data *esdo = elf_section_data (o);
11619 if ((o->flags & SEC_RELOC) != 0)
11622 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11626 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11630 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11631 to count upwards while actually outputting the relocations. */
11632 esdo->rel.count = 0;
11633 esdo->rela.count = 0;
11635 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11637 /* Cache the section contents so that they can be compressed
11638 later. Use bfd_malloc since it will be freed by
11639 bfd_compress_section_contents. */
11640 unsigned char *contents = esdo->this_hdr.contents;
11641 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11644 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11645 if (contents == NULL)
11647 esdo->this_hdr.contents = contents;
11651 /* We have now assigned file positions for all the sections except
11652 .symtab, .strtab, and non-loaded reloc sections. We start the
11653 .symtab section at the current file position, and write directly
11654 to it. We build the .strtab section in memory. */
11655 bfd_get_symcount (abfd) = 0;
11656 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11657 /* sh_name is set in prep_headers. */
11658 symtab_hdr->sh_type = SHT_SYMTAB;
11659 /* sh_flags, sh_addr and sh_size all start off zero. */
11660 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11661 /* sh_link is set in assign_section_numbers. */
11662 /* sh_info is set below. */
11663 /* sh_offset is set just below. */
11664 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11666 if (max_sym_count < 20)
11667 max_sym_count = 20;
11668 htab->strtabsize = max_sym_count;
11669 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11670 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11671 if (htab->strtab == NULL)
11673 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11675 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11676 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11678 if (info->strip != strip_all || emit_relocs)
11680 file_ptr off = elf_next_file_pos (abfd);
11682 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11684 /* Note that at this point elf_next_file_pos (abfd) is
11685 incorrect. We do not yet know the size of the .symtab section.
11686 We correct next_file_pos below, after we do know the size. */
11688 /* Start writing out the symbol table. The first symbol is always a
11690 elfsym.st_value = 0;
11691 elfsym.st_size = 0;
11692 elfsym.st_info = 0;
11693 elfsym.st_other = 0;
11694 elfsym.st_shndx = SHN_UNDEF;
11695 elfsym.st_target_internal = 0;
11696 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11697 bfd_und_section_ptr, NULL) != 1)
11700 /* Output a symbol for each section. We output these even if we are
11701 discarding local symbols, since they are used for relocs. These
11702 symbols have no names. We store the index of each one in the
11703 index field of the section, so that we can find it again when
11704 outputting relocs. */
11706 elfsym.st_size = 0;
11707 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11708 elfsym.st_other = 0;
11709 elfsym.st_value = 0;
11710 elfsym.st_target_internal = 0;
11711 for (i = 1; i < elf_numsections (abfd); i++)
11713 o = bfd_section_from_elf_index (abfd, i);
11716 o->target_index = bfd_get_symcount (abfd);
11717 elfsym.st_shndx = i;
11718 if (!bfd_link_relocatable (info))
11719 elfsym.st_value = o->vma;
11720 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11727 /* Allocate some memory to hold information read in from the input
11729 if (max_contents_size != 0)
11731 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11732 if (flinfo.contents == NULL)
11736 if (max_external_reloc_size != 0)
11738 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11739 if (flinfo.external_relocs == NULL)
11743 if (max_internal_reloc_count != 0)
11745 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11746 amt *= sizeof (Elf_Internal_Rela);
11747 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11748 if (flinfo.internal_relocs == NULL)
11752 if (max_sym_count != 0)
11754 amt = max_sym_count * bed->s->sizeof_sym;
11755 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11756 if (flinfo.external_syms == NULL)
11759 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11760 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11761 if (flinfo.internal_syms == NULL)
11764 amt = max_sym_count * sizeof (long);
11765 flinfo.indices = (long int *) bfd_malloc (amt);
11766 if (flinfo.indices == NULL)
11769 amt = max_sym_count * sizeof (asection *);
11770 flinfo.sections = (asection **) bfd_malloc (amt);
11771 if (flinfo.sections == NULL)
11775 if (max_sym_shndx_count != 0)
11777 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11778 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11779 if (flinfo.locsym_shndx == NULL)
11785 bfd_vma base, end = 0;
11788 for (sec = htab->tls_sec;
11789 sec && (sec->flags & SEC_THREAD_LOCAL);
11792 bfd_size_type size = sec->size;
11795 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11797 struct bfd_link_order *ord = sec->map_tail.link_order;
11800 size = ord->offset + ord->size;
11802 end = sec->vma + size;
11804 base = htab->tls_sec->vma;
11805 /* Only align end of TLS section if static TLS doesn't have special
11806 alignment requirements. */
11807 if (bed->static_tls_alignment == 1)
11808 end = align_power (end, htab->tls_sec->alignment_power);
11809 htab->tls_size = end - base;
11812 /* Reorder SHF_LINK_ORDER sections. */
11813 for (o = abfd->sections; o != NULL; o = o->next)
11815 if (!elf_fixup_link_order (abfd, o))
11819 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11822 /* Since ELF permits relocations to be against local symbols, we
11823 must have the local symbols available when we do the relocations.
11824 Since we would rather only read the local symbols once, and we
11825 would rather not keep them in memory, we handle all the
11826 relocations for a single input file at the same time.
11828 Unfortunately, there is no way to know the total number of local
11829 symbols until we have seen all of them, and the local symbol
11830 indices precede the global symbol indices. This means that when
11831 we are generating relocatable output, and we see a reloc against
11832 a global symbol, we can not know the symbol index until we have
11833 finished examining all the local symbols to see which ones we are
11834 going to output. To deal with this, we keep the relocations in
11835 memory, and don't output them until the end of the link. This is
11836 an unfortunate waste of memory, but I don't see a good way around
11837 it. Fortunately, it only happens when performing a relocatable
11838 link, which is not the common case. FIXME: If keep_memory is set
11839 we could write the relocs out and then read them again; I don't
11840 know how bad the memory loss will be. */
11842 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11843 sub->output_has_begun = FALSE;
11844 for (o = abfd->sections; o != NULL; o = o->next)
11846 for (p = o->map_head.link_order; p != NULL; p = p->next)
11848 if (p->type == bfd_indirect_link_order
11849 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11850 == bfd_target_elf_flavour)
11851 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11853 if (! sub->output_has_begun)
11855 if (! elf_link_input_bfd (&flinfo, sub))
11857 sub->output_has_begun = TRUE;
11860 else if (p->type == bfd_section_reloc_link_order
11861 || p->type == bfd_symbol_reloc_link_order)
11863 if (! elf_reloc_link_order (abfd, info, o, p))
11868 if (! _bfd_default_link_order (abfd, info, o, p))
11870 if (p->type == bfd_indirect_link_order
11871 && (bfd_get_flavour (sub)
11872 == bfd_target_elf_flavour)
11873 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11874 != bed->s->elfclass))
11876 const char *iclass, *oclass;
11878 switch (bed->s->elfclass)
11880 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11881 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11882 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11886 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11888 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11889 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11890 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11894 bfd_set_error (bfd_error_wrong_format);
11896 /* xgettext:c-format */
11897 (_("%B: file class %s incompatible with %s"),
11898 sub, iclass, oclass);
11907 /* Free symbol buffer if needed. */
11908 if (!info->reduce_memory_overheads)
11910 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11911 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11912 && elf_tdata (sub)->symbuf)
11914 free (elf_tdata (sub)->symbuf);
11915 elf_tdata (sub)->symbuf = NULL;
11919 /* Output any global symbols that got converted to local in a
11920 version script or due to symbol visibility. We do this in a
11921 separate step since ELF requires all local symbols to appear
11922 prior to any global symbols. FIXME: We should only do this if
11923 some global symbols were, in fact, converted to become local.
11924 FIXME: Will this work correctly with the Irix 5 linker? */
11925 eoinfo.failed = FALSE;
11926 eoinfo.flinfo = &flinfo;
11927 eoinfo.localsyms = TRUE;
11928 eoinfo.file_sym_done = FALSE;
11929 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11933 /* If backend needs to output some local symbols not present in the hash
11934 table, do it now. */
11935 if (bed->elf_backend_output_arch_local_syms
11936 && (info->strip != strip_all || emit_relocs))
11938 typedef int (*out_sym_func)
11939 (void *, const char *, Elf_Internal_Sym *, asection *,
11940 struct elf_link_hash_entry *);
11942 if (! ((*bed->elf_backend_output_arch_local_syms)
11943 (abfd, info, &flinfo,
11944 (out_sym_func) elf_link_output_symstrtab)))
11948 /* That wrote out all the local symbols. Finish up the symbol table
11949 with the global symbols. Even if we want to strip everything we
11950 can, we still need to deal with those global symbols that got
11951 converted to local in a version script. */
11953 /* The sh_info field records the index of the first non local symbol. */
11954 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11957 && htab->dynsym != NULL
11958 && htab->dynsym->output_section != bfd_abs_section_ptr)
11960 Elf_Internal_Sym sym;
11961 bfd_byte *dynsym = htab->dynsym->contents;
11963 o = htab->dynsym->output_section;
11964 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11966 /* Write out the section symbols for the output sections. */
11967 if (bfd_link_pic (info)
11968 || htab->is_relocatable_executable)
11974 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11976 sym.st_target_internal = 0;
11978 for (s = abfd->sections; s != NULL; s = s->next)
11984 dynindx = elf_section_data (s)->dynindx;
11987 indx = elf_section_data (s)->this_idx;
11988 BFD_ASSERT (indx > 0);
11989 sym.st_shndx = indx;
11990 if (! check_dynsym (abfd, &sym))
11992 sym.st_value = s->vma;
11993 dest = dynsym + dynindx * bed->s->sizeof_sym;
11994 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11998 /* Write out the local dynsyms. */
11999 if (htab->dynlocal)
12001 struct elf_link_local_dynamic_entry *e;
12002 for (e = htab->dynlocal; e ; e = e->next)
12007 /* Copy the internal symbol and turn off visibility.
12008 Note that we saved a word of storage and overwrote
12009 the original st_name with the dynstr_index. */
12011 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12013 s = bfd_section_from_elf_index (e->input_bfd,
12018 elf_section_data (s->output_section)->this_idx;
12019 if (! check_dynsym (abfd, &sym))
12021 sym.st_value = (s->output_section->vma
12023 + e->isym.st_value);
12026 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12027 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12032 /* We get the global symbols from the hash table. */
12033 eoinfo.failed = FALSE;
12034 eoinfo.localsyms = FALSE;
12035 eoinfo.flinfo = &flinfo;
12036 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12040 /* If backend needs to output some symbols not present in the hash
12041 table, do it now. */
12042 if (bed->elf_backend_output_arch_syms
12043 && (info->strip != strip_all || emit_relocs))
12045 typedef int (*out_sym_func)
12046 (void *, const char *, Elf_Internal_Sym *, asection *,
12047 struct elf_link_hash_entry *);
12049 if (! ((*bed->elf_backend_output_arch_syms)
12050 (abfd, info, &flinfo,
12051 (out_sym_func) elf_link_output_symstrtab)))
12055 /* Finalize the .strtab section. */
12056 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12058 /* Swap out the .strtab section. */
12059 if (!elf_link_swap_symbols_out (&flinfo))
12062 /* Now we know the size of the symtab section. */
12063 if (bfd_get_symcount (abfd) > 0)
12065 /* Finish up and write out the symbol string table (.strtab)
12067 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12068 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12070 if (elf_symtab_shndx_list (abfd))
12072 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12074 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12076 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12077 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12078 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12079 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12080 symtab_shndx_hdr->sh_size = amt;
12082 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12085 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12086 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12091 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12092 /* sh_name was set in prep_headers. */
12093 symstrtab_hdr->sh_type = SHT_STRTAB;
12094 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12095 symstrtab_hdr->sh_addr = 0;
12096 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12097 symstrtab_hdr->sh_entsize = 0;
12098 symstrtab_hdr->sh_link = 0;
12099 symstrtab_hdr->sh_info = 0;
12100 /* sh_offset is set just below. */
12101 symstrtab_hdr->sh_addralign = 1;
12103 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12105 elf_next_file_pos (abfd) = off;
12107 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12108 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12112 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12114 _bfd_error_handler (_("%B: failed to generate import library"),
12115 info->out_implib_bfd);
12119 /* Adjust the relocs to have the correct symbol indices. */
12120 for (o = abfd->sections; o != NULL; o = o->next)
12122 struct bfd_elf_section_data *esdo = elf_section_data (o);
12124 if ((o->flags & SEC_RELOC) == 0)
12127 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12128 if (esdo->rel.hdr != NULL
12129 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12131 if (esdo->rela.hdr != NULL
12132 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12135 /* Set the reloc_count field to 0 to prevent write_relocs from
12136 trying to swap the relocs out itself. */
12137 o->reloc_count = 0;
12140 if (dynamic && info->combreloc && dynobj != NULL)
12141 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12143 /* If we are linking against a dynamic object, or generating a
12144 shared library, finish up the dynamic linking information. */
12147 bfd_byte *dyncon, *dynconend;
12149 /* Fix up .dynamic entries. */
12150 o = bfd_get_linker_section (dynobj, ".dynamic");
12151 BFD_ASSERT (o != NULL);
12153 dyncon = o->contents;
12154 dynconend = o->contents + o->size;
12155 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12157 Elf_Internal_Dyn dyn;
12160 bfd_size_type sh_size;
12163 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12170 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12172 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12174 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12175 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12178 dyn.d_un.d_val = relativecount;
12185 name = info->init_function;
12188 name = info->fini_function;
12191 struct elf_link_hash_entry *h;
12193 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12195 && (h->root.type == bfd_link_hash_defined
12196 || h->root.type == bfd_link_hash_defweak))
12198 dyn.d_un.d_ptr = h->root.u.def.value;
12199 o = h->root.u.def.section;
12200 if (o->output_section != NULL)
12201 dyn.d_un.d_ptr += (o->output_section->vma
12202 + o->output_offset);
12205 /* The symbol is imported from another shared
12206 library and does not apply to this one. */
12207 dyn.d_un.d_ptr = 0;
12214 case DT_PREINIT_ARRAYSZ:
12215 name = ".preinit_array";
12217 case DT_INIT_ARRAYSZ:
12218 name = ".init_array";
12220 case DT_FINI_ARRAYSZ:
12221 name = ".fini_array";
12223 o = bfd_get_section_by_name (abfd, name);
12227 (_("could not find section %s"), name);
12232 (_("warning: %s section has zero size"), name);
12233 dyn.d_un.d_val = o->size;
12236 case DT_PREINIT_ARRAY:
12237 name = ".preinit_array";
12239 case DT_INIT_ARRAY:
12240 name = ".init_array";
12242 case DT_FINI_ARRAY:
12243 name = ".fini_array";
12245 o = bfd_get_section_by_name (abfd, name);
12252 name = ".gnu.hash";
12261 name = ".gnu.version_d";
12264 name = ".gnu.version_r";
12267 name = ".gnu.version";
12269 o = bfd_get_linker_section (dynobj, name);
12274 (_("could not find section %s"), name);
12277 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12280 (_("warning: section '%s' is being made into a note"), name);
12281 bfd_set_error (bfd_error_nonrepresentable_section);
12284 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12291 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12297 for (i = 1; i < elf_numsections (abfd); i++)
12299 Elf_Internal_Shdr *hdr;
12301 hdr = elf_elfsections (abfd)[i];
12302 if (hdr->sh_type == type
12303 && (hdr->sh_flags & SHF_ALLOC) != 0)
12305 sh_size += hdr->sh_size;
12307 || sh_addr > hdr->sh_addr)
12308 sh_addr = hdr->sh_addr;
12312 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12314 /* Don't count procedure linkage table relocs in the
12315 overall reloc count. */
12316 sh_size -= htab->srelplt->size;
12318 /* If the size is zero, make the address zero too.
12319 This is to avoid a glibc bug. If the backend
12320 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12321 zero, then we'll put DT_RELA at the end of
12322 DT_JMPREL. glibc will interpret the end of
12323 DT_RELA matching the end of DT_JMPREL as the
12324 case where DT_RELA includes DT_JMPREL, and for
12325 LD_BIND_NOW will decide that processing DT_RELA
12326 will process the PLT relocs too. Net result:
12327 No PLT relocs applied. */
12330 /* If .rela.plt is the first .rela section, exclude
12331 it from DT_RELA. */
12332 else if (sh_addr == (htab->srelplt->output_section->vma
12333 + htab->srelplt->output_offset))
12334 sh_addr += htab->srelplt->size;
12337 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12338 dyn.d_un.d_val = sh_size;
12340 dyn.d_un.d_ptr = sh_addr;
12343 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12347 /* If we have created any dynamic sections, then output them. */
12348 if (dynobj != NULL)
12350 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12353 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12354 if (((info->warn_shared_textrel && bfd_link_pic (info))
12355 || info->error_textrel)
12356 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12358 bfd_byte *dyncon, *dynconend;
12360 dyncon = o->contents;
12361 dynconend = o->contents + o->size;
12362 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12364 Elf_Internal_Dyn dyn;
12366 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12368 if (dyn.d_tag == DT_TEXTREL)
12370 if (info->error_textrel)
12371 info->callbacks->einfo
12372 (_("%P%X: read-only segment has dynamic relocations.\n"));
12374 info->callbacks->einfo
12375 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12381 for (o = dynobj->sections; o != NULL; o = o->next)
12383 if ((o->flags & SEC_HAS_CONTENTS) == 0
12385 || o->output_section == bfd_abs_section_ptr)
12387 if ((o->flags & SEC_LINKER_CREATED) == 0)
12389 /* At this point, we are only interested in sections
12390 created by _bfd_elf_link_create_dynamic_sections. */
12393 if (htab->stab_info.stabstr == o)
12395 if (htab->eh_info.hdr_sec == o)
12397 if (strcmp (o->name, ".dynstr") != 0)
12399 if (! bfd_set_section_contents (abfd, o->output_section,
12401 (file_ptr) o->output_offset
12402 * bfd_octets_per_byte (abfd),
12408 /* The contents of the .dynstr section are actually in a
12412 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12413 if (bfd_seek (abfd, off, SEEK_SET) != 0
12414 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12420 if (bfd_link_relocatable (info))
12422 bfd_boolean failed = FALSE;
12424 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12429 /* If we have optimized stabs strings, output them. */
12430 if (htab->stab_info.stabstr != NULL)
12432 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12436 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12439 elf_final_link_free (abfd, &flinfo);
12441 elf_linker (abfd) = TRUE;
12445 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12446 if (contents == NULL)
12447 return FALSE; /* Bail out and fail. */
12448 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12449 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12456 elf_final_link_free (abfd, &flinfo);
12460 /* Initialize COOKIE for input bfd ABFD. */
12463 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12464 struct bfd_link_info *info, bfd *abfd)
12466 Elf_Internal_Shdr *symtab_hdr;
12467 const struct elf_backend_data *bed;
12469 bed = get_elf_backend_data (abfd);
12470 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12472 cookie->abfd = abfd;
12473 cookie->sym_hashes = elf_sym_hashes (abfd);
12474 cookie->bad_symtab = elf_bad_symtab (abfd);
12475 if (cookie->bad_symtab)
12477 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12478 cookie->extsymoff = 0;
12482 cookie->locsymcount = symtab_hdr->sh_info;
12483 cookie->extsymoff = symtab_hdr->sh_info;
12486 if (bed->s->arch_size == 32)
12487 cookie->r_sym_shift = 8;
12489 cookie->r_sym_shift = 32;
12491 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12492 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12494 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12495 cookie->locsymcount, 0,
12497 if (cookie->locsyms == NULL)
12499 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12502 if (info->keep_memory)
12503 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12508 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12511 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12513 Elf_Internal_Shdr *symtab_hdr;
12515 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12516 if (cookie->locsyms != NULL
12517 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12518 free (cookie->locsyms);
12521 /* Initialize the relocation information in COOKIE for input section SEC
12522 of input bfd ABFD. */
12525 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12526 struct bfd_link_info *info, bfd *abfd,
12529 const struct elf_backend_data *bed;
12531 if (sec->reloc_count == 0)
12533 cookie->rels = NULL;
12534 cookie->relend = NULL;
12538 bed = get_elf_backend_data (abfd);
12540 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12541 info->keep_memory);
12542 if (cookie->rels == NULL)
12544 cookie->rel = cookie->rels;
12545 cookie->relend = (cookie->rels
12546 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12548 cookie->rel = cookie->rels;
12552 /* Free the memory allocated by init_reloc_cookie_rels,
12556 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12559 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12560 free (cookie->rels);
12563 /* Initialize the whole of COOKIE for input section SEC. */
12566 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12567 struct bfd_link_info *info,
12570 if (!init_reloc_cookie (cookie, info, sec->owner))
12572 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12577 fini_reloc_cookie (cookie, sec->owner);
12582 /* Free the memory allocated by init_reloc_cookie_for_section,
12586 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12589 fini_reloc_cookie_rels (cookie, sec);
12590 fini_reloc_cookie (cookie, sec->owner);
12593 /* Garbage collect unused sections. */
12595 /* Default gc_mark_hook. */
12598 _bfd_elf_gc_mark_hook (asection *sec,
12599 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12600 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12601 struct elf_link_hash_entry *h,
12602 Elf_Internal_Sym *sym)
12606 switch (h->root.type)
12608 case bfd_link_hash_defined:
12609 case bfd_link_hash_defweak:
12610 return h->root.u.def.section;
12612 case bfd_link_hash_common:
12613 return h->root.u.c.p->section;
12620 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12625 /* For undefined __start_<name> and __stop_<name> symbols, return the
12626 first input section matching <name>. Return NULL otherwise. */
12629 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12630 struct elf_link_hash_entry *h)
12633 const char *sec_name;
12635 if (h->root.type != bfd_link_hash_undefined
12636 && h->root.type != bfd_link_hash_undefweak)
12639 s = h->root.u.undef.section;
12642 if (s == (asection *) 0 - 1)
12648 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12649 sec_name = h->root.root.string + 8;
12650 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12651 sec_name = h->root.root.string + 7;
12653 if (sec_name != NULL && *sec_name != '\0')
12657 for (i = info->input_bfds; i != NULL; i = i->link.next)
12659 s = bfd_get_section_by_name (i, sec_name);
12662 h->root.u.undef.section = s;
12669 h->root.u.undef.section = (asection *) 0 - 1;
12674 /* COOKIE->rel describes a relocation against section SEC, which is
12675 a section we've decided to keep. Return the section that contains
12676 the relocation symbol, or NULL if no section contains it. */
12679 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12680 elf_gc_mark_hook_fn gc_mark_hook,
12681 struct elf_reloc_cookie *cookie,
12682 bfd_boolean *start_stop)
12684 unsigned long r_symndx;
12685 struct elf_link_hash_entry *h;
12687 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12688 if (r_symndx == STN_UNDEF)
12691 if (r_symndx >= cookie->locsymcount
12692 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12694 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12697 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12701 while (h->root.type == bfd_link_hash_indirect
12702 || h->root.type == bfd_link_hash_warning)
12703 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12705 /* If this symbol is weak and there is a non-weak definition, we
12706 keep the non-weak definition because many backends put
12707 dynamic reloc info on the non-weak definition for code
12708 handling copy relocs. */
12709 if (h->u.weakdef != NULL)
12710 h->u.weakdef->mark = 1;
12712 if (start_stop != NULL)
12714 /* To work around a glibc bug, mark all XXX input sections
12715 when there is an as yet undefined reference to __start_XXX
12716 or __stop_XXX symbols. The linker will later define such
12717 symbols for orphan input sections that have a name
12718 representable as a C identifier. */
12719 asection *s = _bfd_elf_is_start_stop (info, h);
12723 *start_stop = !s->gc_mark;
12728 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12731 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12732 &cookie->locsyms[r_symndx]);
12735 /* COOKIE->rel describes a relocation against section SEC, which is
12736 a section we've decided to keep. Mark the section that contains
12737 the relocation symbol. */
12740 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12742 elf_gc_mark_hook_fn gc_mark_hook,
12743 struct elf_reloc_cookie *cookie)
12746 bfd_boolean start_stop = FALSE;
12748 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12749 while (rsec != NULL)
12751 if (!rsec->gc_mark)
12753 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12754 || (rsec->owner->flags & DYNAMIC) != 0)
12756 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12761 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12766 /* The mark phase of garbage collection. For a given section, mark
12767 it and any sections in this section's group, and all the sections
12768 which define symbols to which it refers. */
12771 _bfd_elf_gc_mark (struct bfd_link_info *info,
12773 elf_gc_mark_hook_fn gc_mark_hook)
12776 asection *group_sec, *eh_frame;
12780 /* Mark all the sections in the group. */
12781 group_sec = elf_section_data (sec)->next_in_group;
12782 if (group_sec && !group_sec->gc_mark)
12783 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12786 /* Look through the section relocs. */
12788 eh_frame = elf_eh_frame_section (sec->owner);
12789 if ((sec->flags & SEC_RELOC) != 0
12790 && sec->reloc_count > 0
12791 && sec != eh_frame)
12793 struct elf_reloc_cookie cookie;
12795 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12799 for (; cookie.rel < cookie.relend; cookie.rel++)
12800 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12805 fini_reloc_cookie_for_section (&cookie, sec);
12809 if (ret && eh_frame && elf_fde_list (sec))
12811 struct elf_reloc_cookie cookie;
12813 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12817 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12818 gc_mark_hook, &cookie))
12820 fini_reloc_cookie_for_section (&cookie, eh_frame);
12824 eh_frame = elf_section_eh_frame_entry (sec);
12825 if (ret && eh_frame && !eh_frame->gc_mark)
12826 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12832 /* Scan and mark sections in a special or debug section group. */
12835 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12837 /* Point to first section of section group. */
12839 /* Used to iterate the section group. */
12842 bfd_boolean is_special_grp = TRUE;
12843 bfd_boolean is_debug_grp = TRUE;
12845 /* First scan to see if group contains any section other than debug
12846 and special section. */
12847 ssec = msec = elf_next_in_group (grp);
12850 if ((msec->flags & SEC_DEBUGGING) == 0)
12851 is_debug_grp = FALSE;
12853 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12854 is_special_grp = FALSE;
12856 msec = elf_next_in_group (msec);
12858 while (msec != ssec);
12860 /* If this is a pure debug section group or pure special section group,
12861 keep all sections in this group. */
12862 if (is_debug_grp || is_special_grp)
12867 msec = elf_next_in_group (msec);
12869 while (msec != ssec);
12873 /* Keep debug and special sections. */
12876 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12877 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12881 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12884 bfd_boolean some_kept;
12885 bfd_boolean debug_frag_seen;
12887 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12890 /* Ensure all linker created sections are kept,
12891 see if any other section is already marked,
12892 and note if we have any fragmented debug sections. */
12893 debug_frag_seen = some_kept = FALSE;
12894 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12896 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12898 else if (isec->gc_mark)
12901 if (debug_frag_seen == FALSE
12902 && (isec->flags & SEC_DEBUGGING)
12903 && CONST_STRNEQ (isec->name, ".debug_line."))
12904 debug_frag_seen = TRUE;
12907 /* If no section in this file will be kept, then we can
12908 toss out the debug and special sections. */
12912 /* Keep debug and special sections like .comment when they are
12913 not part of a group. Also keep section groups that contain
12914 just debug sections or special sections. */
12915 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12917 if ((isec->flags & SEC_GROUP) != 0)
12918 _bfd_elf_gc_mark_debug_special_section_group (isec);
12919 else if (((isec->flags & SEC_DEBUGGING) != 0
12920 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12921 && elf_next_in_group (isec) == NULL)
12925 if (! debug_frag_seen)
12928 /* Look for CODE sections which are going to be discarded,
12929 and find and discard any fragmented debug sections which
12930 are associated with that code section. */
12931 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12932 if ((isec->flags & SEC_CODE) != 0
12933 && isec->gc_mark == 0)
12938 ilen = strlen (isec->name);
12940 /* Association is determined by the name of the debug section
12941 containing the name of the code section as a suffix. For
12942 example .debug_line.text.foo is a debug section associated
12944 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12948 if (dsec->gc_mark == 0
12949 || (dsec->flags & SEC_DEBUGGING) == 0)
12952 dlen = strlen (dsec->name);
12955 && strncmp (dsec->name + (dlen - ilen),
12956 isec->name, ilen) == 0)
12966 /* The sweep phase of garbage collection. Remove all garbage sections. */
12968 typedef bfd_boolean (*gc_sweep_hook_fn)
12969 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12972 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12976 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12978 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12982 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12983 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12986 for (o = sub->sections; o != NULL; o = o->next)
12988 /* When any section in a section group is kept, we keep all
12989 sections in the section group. If the first member of
12990 the section group is excluded, we will also exclude the
12992 if (o->flags & SEC_GROUP)
12994 asection *first = elf_next_in_group (o);
12995 o->gc_mark = first->gc_mark;
13001 /* Skip sweeping sections already excluded. */
13002 if (o->flags & SEC_EXCLUDE)
13005 /* Since this is early in the link process, it is simple
13006 to remove a section from the output. */
13007 o->flags |= SEC_EXCLUDE;
13009 if (info->print_gc_sections && o->size != 0)
13010 /* xgettext:c-format */
13011 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13014 /* But we also have to update some of the relocation
13015 info we collected before. */
13017 && (o->flags & SEC_RELOC) != 0
13018 && o->reloc_count != 0
13019 && !((info->strip == strip_all || info->strip == strip_debugger)
13020 && (o->flags & SEC_DEBUGGING) != 0)
13021 && !bfd_is_abs_section (o->output_section))
13023 Elf_Internal_Rela *internal_relocs;
13027 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13028 info->keep_memory);
13029 if (internal_relocs == NULL)
13032 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13034 if (elf_section_data (o)->relocs != internal_relocs)
13035 free (internal_relocs);
13046 /* Propagate collected vtable information. This is called through
13047 elf_link_hash_traverse. */
13050 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13052 /* Those that are not vtables. */
13053 if (h->vtable == NULL || h->vtable->parent == NULL)
13056 /* Those vtables that do not have parents, we cannot merge. */
13057 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13060 /* If we've already been done, exit. */
13061 if (h->vtable->used && h->vtable->used[-1])
13064 /* Make sure the parent's table is up to date. */
13065 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13067 if (h->vtable->used == NULL)
13069 /* None of this table's entries were referenced. Re-use the
13071 h->vtable->used = h->vtable->parent->vtable->used;
13072 h->vtable->size = h->vtable->parent->vtable->size;
13077 bfd_boolean *cu, *pu;
13079 /* Or the parent's entries into ours. */
13080 cu = h->vtable->used;
13082 pu = h->vtable->parent->vtable->used;
13085 const struct elf_backend_data *bed;
13086 unsigned int log_file_align;
13088 bed = get_elf_backend_data (h->root.u.def.section->owner);
13089 log_file_align = bed->s->log_file_align;
13090 n = h->vtable->parent->vtable->size >> log_file_align;
13105 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13108 bfd_vma hstart, hend;
13109 Elf_Internal_Rela *relstart, *relend, *rel;
13110 const struct elf_backend_data *bed;
13111 unsigned int log_file_align;
13113 /* Take care of both those symbols that do not describe vtables as
13114 well as those that are not loaded. */
13115 if (h->vtable == NULL || h->vtable->parent == NULL)
13118 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13119 || h->root.type == bfd_link_hash_defweak);
13121 sec = h->root.u.def.section;
13122 hstart = h->root.u.def.value;
13123 hend = hstart + h->size;
13125 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13127 return *(bfd_boolean *) okp = FALSE;
13128 bed = get_elf_backend_data (sec->owner);
13129 log_file_align = bed->s->log_file_align;
13131 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13133 for (rel = relstart; rel < relend; ++rel)
13134 if (rel->r_offset >= hstart && rel->r_offset < hend)
13136 /* If the entry is in use, do nothing. */
13137 if (h->vtable->used
13138 && (rel->r_offset - hstart) < h->vtable->size)
13140 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13141 if (h->vtable->used[entry])
13144 /* Otherwise, kill it. */
13145 rel->r_offset = rel->r_info = rel->r_addend = 0;
13151 /* Mark sections containing dynamically referenced symbols. When
13152 building shared libraries, we must assume that any visible symbol is
13156 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13158 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13159 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13161 if ((h->root.type == bfd_link_hash_defined
13162 || h->root.type == bfd_link_hash_defweak)
13164 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13165 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13166 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13167 && (!bfd_link_executable (info)
13168 || info->gc_keep_exported
13169 || info->export_dynamic
13172 && (*d->match) (&d->head, NULL, h->root.root.string)))
13173 && (h->versioned >= versioned
13174 || !bfd_hide_sym_by_version (info->version_info,
13175 h->root.root.string)))))
13176 h->root.u.def.section->flags |= SEC_KEEP;
13181 /* Keep all sections containing symbols undefined on the command-line,
13182 and the section containing the entry symbol. */
13185 _bfd_elf_gc_keep (struct bfd_link_info *info)
13187 struct bfd_sym_chain *sym;
13189 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13191 struct elf_link_hash_entry *h;
13193 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13194 FALSE, FALSE, FALSE);
13197 && (h->root.type == bfd_link_hash_defined
13198 || h->root.type == bfd_link_hash_defweak)
13199 && !bfd_is_abs_section (h->root.u.def.section)
13200 && !bfd_is_und_section (h->root.u.def.section))
13201 h->root.u.def.section->flags |= SEC_KEEP;
13206 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13207 struct bfd_link_info *info)
13209 bfd *ibfd = info->input_bfds;
13211 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13214 struct elf_reloc_cookie cookie;
13216 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13219 if (!init_reloc_cookie (&cookie, info, ibfd))
13222 for (sec = ibfd->sections; sec; sec = sec->next)
13224 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13225 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13227 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13228 fini_reloc_cookie_rels (&cookie, sec);
13235 /* Do mark and sweep of unused sections. */
13238 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13240 bfd_boolean ok = TRUE;
13242 elf_gc_mark_hook_fn gc_mark_hook;
13243 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13244 struct elf_link_hash_table *htab;
13246 if (!bed->can_gc_sections
13247 || !is_elf_hash_table (info->hash))
13249 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13253 bed->gc_keep (info);
13254 htab = elf_hash_table (info);
13256 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13257 at the .eh_frame section if we can mark the FDEs individually. */
13258 for (sub = info->input_bfds;
13259 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13260 sub = sub->link.next)
13263 struct elf_reloc_cookie cookie;
13265 sec = bfd_get_section_by_name (sub, ".eh_frame");
13266 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13268 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13269 if (elf_section_data (sec)->sec_info
13270 && (sec->flags & SEC_LINKER_CREATED) == 0)
13271 elf_eh_frame_section (sub) = sec;
13272 fini_reloc_cookie_for_section (&cookie, sec);
13273 sec = bfd_get_next_section_by_name (NULL, sec);
13277 /* Apply transitive closure to the vtable entry usage info. */
13278 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13282 /* Kill the vtable relocations that were not used. */
13283 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13287 /* Mark dynamically referenced symbols. */
13288 if (htab->dynamic_sections_created || info->gc_keep_exported)
13289 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13291 /* Grovel through relocs to find out who stays ... */
13292 gc_mark_hook = bed->gc_mark_hook;
13293 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13297 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13298 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13301 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13302 Also treat note sections as a root, if the section is not part
13304 for (o = sub->sections; o != NULL; o = o->next)
13306 && (o->flags & SEC_EXCLUDE) == 0
13307 && ((o->flags & SEC_KEEP) != 0
13308 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13309 && elf_next_in_group (o) == NULL )))
13311 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13316 /* Allow the backend to mark additional target specific sections. */
13317 bed->gc_mark_extra_sections (info, gc_mark_hook);
13319 /* ... and mark SEC_EXCLUDE for those that go. */
13320 return elf_gc_sweep (abfd, info);
13323 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13326 bfd_elf_gc_record_vtinherit (bfd *abfd,
13328 struct elf_link_hash_entry *h,
13331 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13332 struct elf_link_hash_entry **search, *child;
13333 size_t extsymcount;
13334 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13336 /* The sh_info field of the symtab header tells us where the
13337 external symbols start. We don't care about the local symbols at
13339 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13340 if (!elf_bad_symtab (abfd))
13341 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13343 sym_hashes = elf_sym_hashes (abfd);
13344 sym_hashes_end = sym_hashes + extsymcount;
13346 /* Hunt down the child symbol, which is in this section at the same
13347 offset as the relocation. */
13348 for (search = sym_hashes; search != sym_hashes_end; ++search)
13350 if ((child = *search) != NULL
13351 && (child->root.type == bfd_link_hash_defined
13352 || child->root.type == bfd_link_hash_defweak)
13353 && child->root.u.def.section == sec
13354 && child->root.u.def.value == offset)
13358 /* xgettext:c-format */
13359 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13360 abfd, sec, (unsigned long) offset);
13361 bfd_set_error (bfd_error_invalid_operation);
13365 if (!child->vtable)
13367 child->vtable = ((struct elf_link_virtual_table_entry *)
13368 bfd_zalloc (abfd, sizeof (*child->vtable)));
13369 if (!child->vtable)
13374 /* This *should* only be the absolute section. It could potentially
13375 be that someone has defined a non-global vtable though, which
13376 would be bad. It isn't worth paging in the local symbols to be
13377 sure though; that case should simply be handled by the assembler. */
13379 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13382 child->vtable->parent = h;
13387 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13390 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13391 asection *sec ATTRIBUTE_UNUSED,
13392 struct elf_link_hash_entry *h,
13395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13396 unsigned int log_file_align = bed->s->log_file_align;
13400 h->vtable = ((struct elf_link_virtual_table_entry *)
13401 bfd_zalloc (abfd, sizeof (*h->vtable)));
13406 if (addend >= h->vtable->size)
13408 size_t size, bytes, file_align;
13409 bfd_boolean *ptr = h->vtable->used;
13411 /* While the symbol is undefined, we have to be prepared to handle
13413 file_align = 1 << log_file_align;
13414 if (h->root.type == bfd_link_hash_undefined)
13415 size = addend + file_align;
13419 if (addend >= size)
13421 /* Oops! We've got a reference past the defined end of
13422 the table. This is probably a bug -- shall we warn? */
13423 size = addend + file_align;
13426 size = (size + file_align - 1) & -file_align;
13428 /* Allocate one extra entry for use as a "done" flag for the
13429 consolidation pass. */
13430 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13434 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13440 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13441 * sizeof (bfd_boolean));
13442 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13446 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13451 /* And arrange for that done flag to be at index -1. */
13452 h->vtable->used = ptr + 1;
13453 h->vtable->size = size;
13456 h->vtable->used[addend >> log_file_align] = TRUE;
13461 /* Map an ELF section header flag to its corresponding string. */
13465 flagword flag_value;
13466 } elf_flags_to_name_table;
13468 static elf_flags_to_name_table elf_flags_to_names [] =
13470 { "SHF_WRITE", SHF_WRITE },
13471 { "SHF_ALLOC", SHF_ALLOC },
13472 { "SHF_EXECINSTR", SHF_EXECINSTR },
13473 { "SHF_MERGE", SHF_MERGE },
13474 { "SHF_STRINGS", SHF_STRINGS },
13475 { "SHF_INFO_LINK", SHF_INFO_LINK},
13476 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13477 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13478 { "SHF_GROUP", SHF_GROUP },
13479 { "SHF_TLS", SHF_TLS },
13480 { "SHF_MASKOS", SHF_MASKOS },
13481 { "SHF_EXCLUDE", SHF_EXCLUDE },
13484 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13486 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13487 struct flag_info *flaginfo,
13490 const bfd_vma sh_flags = elf_section_flags (section);
13492 if (!flaginfo->flags_initialized)
13494 bfd *obfd = info->output_bfd;
13495 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13496 struct flag_info_list *tf = flaginfo->flag_list;
13498 int without_hex = 0;
13500 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13503 flagword (*lookup) (char *);
13505 lookup = bed->elf_backend_lookup_section_flags_hook;
13506 if (lookup != NULL)
13508 flagword hexval = (*lookup) ((char *) tf->name);
13512 if (tf->with == with_flags)
13513 with_hex |= hexval;
13514 else if (tf->with == without_flags)
13515 without_hex |= hexval;
13520 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13522 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13524 if (tf->with == with_flags)
13525 with_hex |= elf_flags_to_names[i].flag_value;
13526 else if (tf->with == without_flags)
13527 without_hex |= elf_flags_to_names[i].flag_value;
13534 info->callbacks->einfo
13535 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13539 flaginfo->flags_initialized = TRUE;
13540 flaginfo->only_with_flags |= with_hex;
13541 flaginfo->not_with_flags |= without_hex;
13544 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13547 if ((flaginfo->not_with_flags & sh_flags) != 0)
13553 struct alloc_got_off_arg {
13555 struct bfd_link_info *info;
13558 /* We need a special top-level link routine to convert got reference counts
13559 to real got offsets. */
13562 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13564 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13565 bfd *obfd = gofarg->info->output_bfd;
13566 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13568 if (h->got.refcount > 0)
13570 h->got.offset = gofarg->gotoff;
13571 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13574 h->got.offset = (bfd_vma) -1;
13579 /* And an accompanying bit to work out final got entry offsets once
13580 we're done. Should be called from final_link. */
13583 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13584 struct bfd_link_info *info)
13587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13589 struct alloc_got_off_arg gofarg;
13591 BFD_ASSERT (abfd == info->output_bfd);
13593 if (! is_elf_hash_table (info->hash))
13596 /* The GOT offset is relative to the .got section, but the GOT header is
13597 put into the .got.plt section, if the backend uses it. */
13598 if (bed->want_got_plt)
13601 gotoff = bed->got_header_size;
13603 /* Do the local .got entries first. */
13604 for (i = info->input_bfds; i; i = i->link.next)
13606 bfd_signed_vma *local_got;
13607 size_t j, locsymcount;
13608 Elf_Internal_Shdr *symtab_hdr;
13610 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13613 local_got = elf_local_got_refcounts (i);
13617 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13618 if (elf_bad_symtab (i))
13619 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13621 locsymcount = symtab_hdr->sh_info;
13623 for (j = 0; j < locsymcount; ++j)
13625 if (local_got[j] > 0)
13627 local_got[j] = gotoff;
13628 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13631 local_got[j] = (bfd_vma) -1;
13635 /* Then the global .got entries. .plt refcounts are handled by
13636 adjust_dynamic_symbol */
13637 gofarg.gotoff = gotoff;
13638 gofarg.info = info;
13639 elf_link_hash_traverse (elf_hash_table (info),
13640 elf_gc_allocate_got_offsets,
13645 /* Many folk need no more in the way of final link than this, once
13646 got entry reference counting is enabled. */
13649 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13651 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13654 /* Invoke the regular ELF backend linker to do all the work. */
13655 return bfd_elf_final_link (abfd, info);
13659 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13661 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13663 if (rcookie->bad_symtab)
13664 rcookie->rel = rcookie->rels;
13666 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13668 unsigned long r_symndx;
13670 if (! rcookie->bad_symtab)
13671 if (rcookie->rel->r_offset > offset)
13673 if (rcookie->rel->r_offset != offset)
13676 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13677 if (r_symndx == STN_UNDEF)
13680 if (r_symndx >= rcookie->locsymcount
13681 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13683 struct elf_link_hash_entry *h;
13685 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13687 while (h->root.type == bfd_link_hash_indirect
13688 || h->root.type == bfd_link_hash_warning)
13689 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13691 if ((h->root.type == bfd_link_hash_defined
13692 || h->root.type == bfd_link_hash_defweak)
13693 && (h->root.u.def.section->owner != rcookie->abfd
13694 || h->root.u.def.section->kept_section != NULL
13695 || discarded_section (h->root.u.def.section)))
13700 /* It's not a relocation against a global symbol,
13701 but it could be a relocation against a local
13702 symbol for a discarded section. */
13704 Elf_Internal_Sym *isym;
13706 /* Need to: get the symbol; get the section. */
13707 isym = &rcookie->locsyms[r_symndx];
13708 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13710 && (isec->kept_section != NULL
13711 || discarded_section (isec)))
13719 /* Discard unneeded references to discarded sections.
13720 Returns -1 on error, 1 if any section's size was changed, 0 if
13721 nothing changed. This function assumes that the relocations are in
13722 sorted order, which is true for all known assemblers. */
13725 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13727 struct elf_reloc_cookie cookie;
13732 if (info->traditional_format
13733 || !is_elf_hash_table (info->hash))
13736 o = bfd_get_section_by_name (output_bfd, ".stab");
13741 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13744 || i->reloc_count == 0
13745 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13749 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13752 if (!init_reloc_cookie_for_section (&cookie, info, i))
13755 if (_bfd_discard_section_stabs (abfd, i,
13756 elf_section_data (i)->sec_info,
13757 bfd_elf_reloc_symbol_deleted_p,
13761 fini_reloc_cookie_for_section (&cookie, i);
13766 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13767 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13772 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13778 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13781 if (!init_reloc_cookie_for_section (&cookie, info, i))
13784 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13785 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13786 bfd_elf_reloc_symbol_deleted_p,
13790 fini_reloc_cookie_for_section (&cookie, i);
13794 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13796 const struct elf_backend_data *bed;
13798 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13801 bed = get_elf_backend_data (abfd);
13803 if (bed->elf_backend_discard_info != NULL)
13805 if (!init_reloc_cookie (&cookie, info, abfd))
13808 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13811 fini_reloc_cookie (&cookie, abfd);
13815 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13816 _bfd_elf_end_eh_frame_parsing (info);
13818 if (info->eh_frame_hdr_type
13819 && !bfd_link_relocatable (info)
13820 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13827 _bfd_elf_section_already_linked (bfd *abfd,
13829 struct bfd_link_info *info)
13832 const char *name, *key;
13833 struct bfd_section_already_linked *l;
13834 struct bfd_section_already_linked_hash_entry *already_linked_list;
13836 if (sec->output_section == bfd_abs_section_ptr)
13839 flags = sec->flags;
13841 /* Return if it isn't a linkonce section. A comdat group section
13842 also has SEC_LINK_ONCE set. */
13843 if ((flags & SEC_LINK_ONCE) == 0)
13846 /* Don't put group member sections on our list of already linked
13847 sections. They are handled as a group via their group section. */
13848 if (elf_sec_group (sec) != NULL)
13851 /* For a SHT_GROUP section, use the group signature as the key. */
13853 if ((flags & SEC_GROUP) != 0
13854 && elf_next_in_group (sec) != NULL
13855 && elf_group_name (elf_next_in_group (sec)) != NULL)
13856 key = elf_group_name (elf_next_in_group (sec));
13859 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13860 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13861 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13864 /* Must be a user linkonce section that doesn't follow gcc's
13865 naming convention. In this case we won't be matching
13866 single member groups. */
13870 already_linked_list = bfd_section_already_linked_table_lookup (key);
13872 for (l = already_linked_list->entry; l != NULL; l = l->next)
13874 /* We may have 2 different types of sections on the list: group
13875 sections with a signature of <key> (<key> is some string),
13876 and linkonce sections named .gnu.linkonce.<type>.<key>.
13877 Match like sections. LTO plugin sections are an exception.
13878 They are always named .gnu.linkonce.t.<key> and match either
13879 type of section. */
13880 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13881 && ((flags & SEC_GROUP) != 0
13882 || strcmp (name, l->sec->name) == 0))
13883 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13885 /* The section has already been linked. See if we should
13886 issue a warning. */
13887 if (!_bfd_handle_already_linked (sec, l, info))
13890 if (flags & SEC_GROUP)
13892 asection *first = elf_next_in_group (sec);
13893 asection *s = first;
13897 s->output_section = bfd_abs_section_ptr;
13898 /* Record which group discards it. */
13899 s->kept_section = l->sec;
13900 s = elf_next_in_group (s);
13901 /* These lists are circular. */
13911 /* A single member comdat group section may be discarded by a
13912 linkonce section and vice versa. */
13913 if ((flags & SEC_GROUP) != 0)
13915 asection *first = elf_next_in_group (sec);
13917 if (first != NULL && elf_next_in_group (first) == first)
13918 /* Check this single member group against linkonce sections. */
13919 for (l = already_linked_list->entry; l != NULL; l = l->next)
13920 if ((l->sec->flags & SEC_GROUP) == 0
13921 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13923 first->output_section = bfd_abs_section_ptr;
13924 first->kept_section = l->sec;
13925 sec->output_section = bfd_abs_section_ptr;
13930 /* Check this linkonce section against single member groups. */
13931 for (l = already_linked_list->entry; l != NULL; l = l->next)
13932 if (l->sec->flags & SEC_GROUP)
13934 asection *first = elf_next_in_group (l->sec);
13937 && elf_next_in_group (first) == first
13938 && bfd_elf_match_symbols_in_sections (first, sec, info))
13940 sec->output_section = bfd_abs_section_ptr;
13941 sec->kept_section = first;
13946 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13947 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13948 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13949 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13950 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13951 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13952 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13953 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13954 The reverse order cannot happen as there is never a bfd with only the
13955 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13956 matter as here were are looking only for cross-bfd sections. */
13958 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13959 for (l = already_linked_list->entry; l != NULL; l = l->next)
13960 if ((l->sec->flags & SEC_GROUP) == 0
13961 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13963 if (abfd != l->sec->owner)
13964 sec->output_section = bfd_abs_section_ptr;
13968 /* This is the first section with this name. Record it. */
13969 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13970 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13971 return sec->output_section == bfd_abs_section_ptr;
13975 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13977 return sym->st_shndx == SHN_COMMON;
13981 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13987 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13989 return bfd_com_section_ptr;
13993 _bfd_elf_default_got_elt_size (bfd *abfd,
13994 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13995 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13996 bfd *ibfd ATTRIBUTE_UNUSED,
13997 unsigned long symndx ATTRIBUTE_UNUSED)
13999 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14000 return bed->s->arch_size / 8;
14003 /* Routines to support the creation of dynamic relocs. */
14005 /* Returns the name of the dynamic reloc section associated with SEC. */
14007 static const char *
14008 get_dynamic_reloc_section_name (bfd * abfd,
14010 bfd_boolean is_rela)
14013 const char *old_name = bfd_get_section_name (NULL, sec);
14014 const char *prefix = is_rela ? ".rela" : ".rel";
14016 if (old_name == NULL)
14019 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14020 sprintf (name, "%s%s", prefix, old_name);
14025 /* Returns the dynamic reloc section associated with SEC.
14026 If necessary compute the name of the dynamic reloc section based
14027 on SEC's name (looked up in ABFD's string table) and the setting
14031 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14033 bfd_boolean is_rela)
14035 asection * reloc_sec = elf_section_data (sec)->sreloc;
14037 if (reloc_sec == NULL)
14039 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14043 reloc_sec = bfd_get_linker_section (abfd, name);
14045 if (reloc_sec != NULL)
14046 elf_section_data (sec)->sreloc = reloc_sec;
14053 /* Returns the dynamic reloc section associated with SEC. If the
14054 section does not exist it is created and attached to the DYNOBJ
14055 bfd and stored in the SRELOC field of SEC's elf_section_data
14058 ALIGNMENT is the alignment for the newly created section and
14059 IS_RELA defines whether the name should be .rela.<SEC's name>
14060 or .rel.<SEC's name>. The section name is looked up in the
14061 string table associated with ABFD. */
14064 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14066 unsigned int alignment,
14068 bfd_boolean is_rela)
14070 asection * reloc_sec = elf_section_data (sec)->sreloc;
14072 if (reloc_sec == NULL)
14074 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14079 reloc_sec = bfd_get_linker_section (dynobj, name);
14081 if (reloc_sec == NULL)
14083 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14084 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14085 if ((sec->flags & SEC_ALLOC) != 0)
14086 flags |= SEC_ALLOC | SEC_LOAD;
14088 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14089 if (reloc_sec != NULL)
14091 /* _bfd_elf_get_sec_type_attr chooses a section type by
14092 name. Override as it may be wrong, eg. for a user
14093 section named "auto" we'll get ".relauto" which is
14094 seen to be a .rela section. */
14095 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14096 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14101 elf_section_data (sec)->sreloc = reloc_sec;
14107 /* Copy the ELF symbol type and other attributes for a linker script
14108 assignment from HSRC to HDEST. Generally this should be treated as
14109 if we found a strong non-dynamic definition for HDEST (except that
14110 ld ignores multiple definition errors). */
14112 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14113 struct bfd_link_hash_entry *hdest,
14114 struct bfd_link_hash_entry *hsrc)
14116 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14117 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14118 Elf_Internal_Sym isym;
14120 ehdest->type = ehsrc->type;
14121 ehdest->target_internal = ehsrc->target_internal;
14123 isym.st_other = ehsrc->other;
14124 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14127 /* Append a RELA relocation REL to section S in BFD. */
14130 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14132 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14133 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14134 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14135 bed->s->swap_reloca_out (abfd, rel, loc);
14138 /* Append a REL relocation REL to section S in BFD. */
14141 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14144 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14145 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14146 bed->s->swap_reloc_out (abfd, rel, loc);