1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
84 get_elf_backend_data (abfd)->collect,
87 h = (struct elf_link_hash_entry *) bh;
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
107 /* This function may be called more than once. */
108 s = bfd_get_section_by_name (abfd, ".got");
109 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
112 flags = bed->dynamic_sec_flags;
114 s = bfd_make_section_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
124 s = bfd_make_section_with_flags (abfd, ".got", flags);
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
130 if (bed->want_got_plt)
132 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
143 if (bed->want_got_sym)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
190 const struct elf_backend_data *bed;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
263 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
292 elf_hash_table (info)->dynamic_sections_created = TRUE;
297 /* Create dynamic sections when linking against a dynamic object. */
300 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
302 flagword flags, pltflags;
303 struct elf_link_hash_entry *h;
305 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
306 struct elf_link_hash_table *htab = elf_hash_table (info);
308 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
309 .rel[a].bss sections. */
310 flags = bed->dynamic_sec_flags;
313 if (bed->plt_not_loaded)
314 /* We do not clear SEC_ALLOC here because we still want the OS to
315 allocate space for the section; it's just that there's nothing
316 to read in from the object file. */
317 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
319 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
320 if (bed->plt_readonly)
321 pltflags |= SEC_READONLY;
323 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
325 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
331 if (bed->want_plt_sym)
333 h = _bfd_elf_define_linkage_sym (abfd, info, s,
334 "_PROCEDURE_LINKAGE_TABLE_");
335 elf_hash_table (info)->hplt = h;
340 s = bfd_make_section_with_flags (abfd,
341 (bed->rela_plts_and_copies_p
342 ? ".rela.plt" : ".rel.plt"),
343 flags | SEC_READONLY);
345 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 if (! _bfd_elf_create_got_section (abfd, info))
352 if (bed->want_dynbss)
354 /* The .dynbss section is a place to put symbols which are defined
355 by dynamic objects, are referenced by regular objects, and are
356 not functions. We must allocate space for them in the process
357 image and use a R_*_COPY reloc to tell the dynamic linker to
358 initialize them at run time. The linker script puts the .dynbss
359 section into the .bss section of the final image. */
360 s = bfd_make_section_with_flags (abfd, ".dynbss",
362 | SEC_LINKER_CREATED));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s = bfd_make_section_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
423 if (!elf_hash_table (info)->is_relocatable_executable)
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460 if (indx == (bfd_size_type) -1)
462 h->dynstr_index = indx;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 case bfd_link_hash_warning:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h->verinfo.verdef = NULL;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info->relocatable
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 size_t *count = (size_t *) data;
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749 if (!h->forced_local)
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
765 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
813 unsigned long dynsymcount = 0;
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
825 elf_section_data (p)->dynindx = 0;
827 *section_sym_count = dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
833 if (elf_hash_table (info)->dynlocal)
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
850 elf_hash_table (info)->dynsymcount = dynsymcount;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 unsigned char hvis, symvis, other, nvis;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
896 nvis = hvis < symvis ? hvis : symvis;
898 h->other = other | nvis;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
918 Elf_Internal_Sym *sym,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
941 bind = ELF_ST_BIND (sym->st_info);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
961 bed = get_elf_backend_data (abfd);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
968 /* For merging, we only care about real symbols. */
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h->root.type == bfd_link_hash_new)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h->root.type)
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1017 /* Differentiate strong and weak symbols. */
1018 newweak = bind == STB_WEAK;
1019 oldweak = (h->root.type == bfd_link_hash_defweak
1020 || h->root.type == bfd_link_hash_undefweak);
1022 /* In cases involving weak versioned symbols, we may wind up trying
1023 to merge a symbol with itself. Catch that here, to avoid the
1024 confusion that results if we try to override a symbol with
1025 itself. The additional tests catch cases like
1026 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1027 dynamic object, which we do want to handle here. */
1029 && (newweak || oldweak)
1030 && ((abfd->flags & DYNAMIC) == 0
1031 || !h->def_regular))
1034 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1035 respectively, is from a dynamic object. */
1037 newdyn = (abfd->flags & DYNAMIC) != 0;
1041 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1042 else if (oldsec != NULL)
1044 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1045 indices used by MIPS ELF. */
1046 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1049 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1050 respectively, appear to be a definition rather than reference. */
1052 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1054 olddef = (h->root.type != bfd_link_hash_undefined
1055 && h->root.type != bfd_link_hash_undefweak
1056 && h->root.type != bfd_link_hash_common);
1058 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1059 respectively, appear to be a function. */
1061 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1062 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1064 oldfunc = (h->type != STT_NOTYPE
1065 && bed->is_function_type (h->type));
1067 /* When we try to create a default indirect symbol from the dynamic
1068 definition with the default version, we skip it if its type and
1069 the type of existing regular definition mismatch. We only do it
1070 if the existing regular definition won't be dynamic. */
1071 if (pold_alignment == NULL
1073 && !info->export_dynamic
1078 && (olddef || h->root.type == bfd_link_hash_common)
1079 && ELF_ST_TYPE (sym->st_info) != h->type
1080 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1081 && h->type != STT_NOTYPE
1082 && !(newfunc && oldfunc))
1088 /* Check TLS symbol. We don't check undefined symbol introduced by
1090 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1091 && ELF_ST_TYPE (sym->st_info) != h->type
1095 bfd_boolean ntdef, tdef;
1096 asection *ntsec, *tsec;
1098 if (h->type == STT_TLS)
1118 (*_bfd_error_handler)
1119 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1120 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1121 else if (!tdef && !ntdef)
1122 (*_bfd_error_handler)
1123 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1128 tbfd, tsec, ntbfd, h->root.root.string);
1130 (*_bfd_error_handler)
1131 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1132 tbfd, ntbfd, ntsec, h->root.root.string);
1134 bfd_set_error (bfd_error_bad_value);
1138 /* We need to remember if a symbol has a definition in a dynamic
1139 object or is weak in all dynamic objects. Internal and hidden
1140 visibility will make it unavailable to dynamic objects. */
1141 if (newdyn && !h->dynamic_def)
1143 if (!bfd_is_und_section (sec))
1147 /* Check if this symbol is weak in all dynamic objects. If it
1148 is the first time we see it in a dynamic object, we mark
1149 if it is weak. Otherwise, we clear it. */
1150 if (!h->ref_dynamic)
1152 if (bind == STB_WEAK)
1153 h->dynamic_weak = 1;
1155 else if (bind != STB_WEAK)
1156 h->dynamic_weak = 0;
1160 /* If the old symbol has non-default visibility, we ignore the new
1161 definition from a dynamic object. */
1163 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1164 && !bfd_is_und_section (sec))
1167 /* Make sure this symbol is dynamic. */
1169 /* A protected symbol has external availability. Make sure it is
1170 recorded as dynamic.
1172 FIXME: Should we check type and size for protected symbol? */
1173 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1174 return bfd_elf_link_record_dynamic_symbol (info, h);
1179 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1182 /* If the new symbol with non-default visibility comes from a
1183 relocatable file and the old definition comes from a dynamic
1184 object, we remove the old definition. */
1185 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1187 /* Handle the case where the old dynamic definition is
1188 default versioned. We need to copy the symbol info from
1189 the symbol with default version to the normal one if it
1190 was referenced before. */
1193 struct elf_link_hash_entry *vh = *sym_hash;
1195 vh->root.type = h->root.type;
1196 h->root.type = bfd_link_hash_indirect;
1197 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1198 /* Protected symbols will override the dynamic definition
1199 with default version. */
1200 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 vh->dynamic_def = 1;
1204 vh->ref_dynamic = 1;
1208 h->root.type = vh->root.type;
1209 vh->ref_dynamic = 0;
1210 /* We have to hide it here since it was made dynamic
1211 global with extra bits when the symbol info was
1212 copied from the old dynamic definition. */
1213 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1221 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1222 && bfd_is_und_section (sec))
1224 /* If the new symbol is undefined and the old symbol was
1225 also undefined before, we need to make sure
1226 _bfd_generic_link_add_one_symbol doesn't mess
1227 up the linker hash table undefs list. Since the old
1228 definition came from a dynamic object, it is still on the
1230 h->root.type = bfd_link_hash_undefined;
1231 h->root.u.undef.abfd = abfd;
1235 h->root.type = bfd_link_hash_new;
1236 h->root.u.undef.abfd = NULL;
1245 /* FIXME: Should we check type and size for protected symbol? */
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1265 if (newdef && !newdyn && olddyn)
1267 if (olddef && newdyn)
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1321 newdyncommon = TRUE;
1323 newdyncommon = FALSE;
1327 && h->root.type == bfd_link_hash_defined
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1333 olddyncommon = TRUE;
1335 olddyncommon = FALSE;
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1355 && sym->st_size != h->size)
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1367 if (sym->st_size > h->size)
1368 h->size = sym->st_size;
1370 *size_change_ok = TRUE;
1373 /* If we are looking at a dynamic object, and we have found a
1374 definition, we need to see if the symbol was already defined by
1375 some other object. If so, we want to use the existing
1376 definition, and we do not want to report a multiple symbol
1377 definition error; we do this by clobbering *PSEC to be
1378 bfd_und_section_ptr.
1380 We treat a common symbol as a definition if the symbol in the
1381 shared library is a function, since common symbols always
1382 represent variables; this can cause confusion in principle, but
1383 any such confusion would seem to indicate an erroneous program or
1384 shared library. We also permit a common symbol in a regular
1385 object to override a weak symbol in a shared object. */
1390 || (h->root.type == bfd_link_hash_common
1391 && (newweak || newfunc))))
1395 newdyncommon = FALSE;
1397 *psec = sec = bfd_und_section_ptr;
1398 *size_change_ok = TRUE;
1400 /* If we get here when the old symbol is a common symbol, then
1401 we are explicitly letting it override a weak symbol or
1402 function in a dynamic object, and we don't want to warn about
1403 a type change. If the old symbol is a defined symbol, a type
1404 change warning may still be appropriate. */
1406 if (h->root.type == bfd_link_hash_common)
1407 *type_change_ok = TRUE;
1410 /* Handle the special case of an old common symbol merging with a
1411 new symbol which looks like a common symbol in a shared object.
1412 We change *PSEC and *PVALUE to make the new symbol look like a
1413 common symbol, and let _bfd_generic_link_add_one_symbol do the
1417 && h->root.type == bfd_link_hash_common)
1421 newdyncommon = FALSE;
1422 *pvalue = sym->st_size;
1423 *psec = sec = bed->common_section (oldsec);
1424 *size_change_ok = TRUE;
1427 /* Skip weak definitions of symbols that are already defined. */
1428 if (newdef && olddef && newweak)
1430 /* Don't skip new non-IR weak syms. */
1431 if (!((oldbfd->flags & BFD_PLUGIN) != 0
1432 && (abfd->flags & BFD_PLUGIN) == 0))
1435 /* Merge st_other. If the symbol already has a dynamic index,
1436 but visibility says it should not be visible, turn it into a
1438 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1439 if (h->dynindx != -1)
1440 switch (ELF_ST_VISIBILITY (h->other))
1444 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1449 /* If the old symbol is from a dynamic object, and the new symbol is
1450 a definition which is not from a dynamic object, then the new
1451 symbol overrides the old symbol. Symbols from regular files
1452 always take precedence over symbols from dynamic objects, even if
1453 they are defined after the dynamic object in the link.
1455 As above, we again permit a common symbol in a regular object to
1456 override a definition in a shared object if the shared object
1457 symbol is a function or is weak. */
1462 || (bfd_is_com_section (sec)
1463 && (oldweak || oldfunc)))
1468 /* Change the hash table entry to undefined, and let
1469 _bfd_generic_link_add_one_symbol do the right thing with the
1472 h->root.type = bfd_link_hash_undefined;
1473 h->root.u.undef.abfd = h->root.u.def.section->owner;
1474 *size_change_ok = TRUE;
1477 olddyncommon = FALSE;
1479 /* We again permit a type change when a common symbol may be
1480 overriding a function. */
1482 if (bfd_is_com_section (sec))
1486 /* If a common symbol overrides a function, make sure
1487 that it isn't defined dynamically nor has type
1490 h->type = STT_NOTYPE;
1492 *type_change_ok = TRUE;
1495 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1498 /* This union may have been set to be non-NULL when this symbol
1499 was seen in a dynamic object. We must force the union to be
1500 NULL, so that it is correct for a regular symbol. */
1501 h->verinfo.vertree = NULL;
1504 /* Handle the special case of a new common symbol merging with an
1505 old symbol that looks like it might be a common symbol defined in
1506 a shared object. Note that we have already handled the case in
1507 which a new common symbol should simply override the definition
1508 in the shared library. */
1511 && bfd_is_com_section (sec)
1514 /* It would be best if we could set the hash table entry to a
1515 common symbol, but we don't know what to use for the section
1516 or the alignment. */
1517 if (! ((*info->callbacks->multiple_common)
1518 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1521 /* If the presumed common symbol in the dynamic object is
1522 larger, pretend that the new symbol has its size. */
1524 if (h->size > *pvalue)
1527 /* We need to remember the alignment required by the symbol
1528 in the dynamic object. */
1529 BFD_ASSERT (pold_alignment);
1530 *pold_alignment = h->root.u.def.section->alignment_power;
1533 olddyncommon = FALSE;
1535 h->root.type = bfd_link_hash_undefined;
1536 h->root.u.undef.abfd = h->root.u.def.section->owner;
1538 *size_change_ok = TRUE;
1539 *type_change_ok = TRUE;
1541 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1544 h->verinfo.vertree = NULL;
1549 /* Handle the case where we had a versioned symbol in a dynamic
1550 library and now find a definition in a normal object. In this
1551 case, we make the versioned symbol point to the normal one. */
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1560 flip->ref_dynamic = 1;
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1577 Elf_Internal_Sym *sym,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1593 size_t len, shortlen;
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1610 BFD_ASSERT (hi != NULL);
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1626 shortlen = p - name;
1627 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1655 hi = (struct elf_link_hash_entry *) bh;
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1686 hi->ref_dynamic = 1;
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1708 if (hi->root.type == bfd_link_hash_indirect)
1710 struct elf_link_hash_entry *ht;
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1715 /* See if the new flags lead us to realize that the symbol must
1721 if (! info->executable
1727 if (hi->ref_regular)
1733 /* We also need to define an indirection from the nondefault version
1737 len = strlen (name);
1738 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1774 hi = (struct elf_link_hash_entry *) bh;
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1780 if (hi->root.type == bfd_link_hash_indirect)
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1784 /* See if the new flags lead us to realize that the symbol
1790 if (! info->executable
1796 if (hi->ref_regular)
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1825 if (h->dynindx == -1
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1855 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1863 /* We only care about symbols defined in shared objects with version
1868 || h->verinfo.verdef == NULL)
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1886 /* This is a new version. Add it to tree we are building. */
1891 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1894 rinfo->failed = TRUE;
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1904 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1907 rinfo->failed = TRUE;
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1945 sinfo = (struct elf_info_failed *) data;
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1951 /* Fix the symbol flags. */
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1957 sinfo->failed = TRUE;
1961 /* We only need version numbers for symbols defined in regular
1963 if (!h->def_regular)
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1970 struct bfd_elf_version_tree *t;
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1978 if (*p == ELF_VER_CHR)
1984 /* If there is no version string, we can just return out. */
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1995 if (strcmp (t->name, p) == 0)
1999 struct bfd_elf_version_expr *d;
2001 len = p - h->root.root.string;
2002 alc = (char *) bfd_malloc (len);
2005 sinfo->failed = TRUE;
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2013 h->verinfo.vertree = t;
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2020 /* See if there is anything to force this symbol to
2022 if (d == NULL && t->locals.list != NULL)
2024 d = (*t->match) (&t->locals, NULL, alc);
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2040 struct bfd_elf_version_tree **pp;
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2049 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2052 sinfo->failed = TRUE;
2057 t->name_indx = (unsigned int) -1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2066 t->vernum = version_index;
2070 h->verinfo.vertree = t;
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2088 /* If we don't have a version for this symbol, see if we can find
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2110 Returns FALSE if something goes wrong. */
2113 elf_link_read_relocs_from_section (bfd *abfd,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2138 bed = get_elf_backend_data (abfd);
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2147 bfd_set_error (bfd_error_wrong_format);
2151 erela = (const bfd_byte *) external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2164 if ((size_t) r_symndx >= nsyms)
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2175 else if (r_symndx != STN_UNDEF)
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 RELA_HDR relocations. */
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2209 void *alloc1 = NULL;
2210 Elf_Internal_Rela *alloc2 = NULL;
2211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2212 struct bfd_elf_section_data *esdo = elf_section_data (o);
2213 Elf_Internal_Rela *internal_rela_relocs;
2215 if (esdo->relocs != NULL)
2216 return esdo->relocs;
2218 if (o->reloc_count == 0)
2221 if (internal_relocs == NULL)
2225 size = o->reloc_count;
2226 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2231 if (internal_relocs == NULL)
2235 if (external_relocs == NULL)
2237 bfd_size_type size = 0;
2240 size += esdo->rel.hdr->sh_size;
2242 size += esdo->rela.hdr->sh_size;
2244 alloc1 = bfd_malloc (size);
2247 external_relocs = alloc1;
2250 internal_rela_relocs = internal_relocs;
2253 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2257 external_relocs = (((bfd_byte *) external_relocs)
2258 + esdo->rel.hdr->sh_size);
2259 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2260 * bed->s->int_rels_per_ext_rel);
2264 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2266 internal_rela_relocs)))
2269 /* Cache the results for next time, if we can. */
2271 esdo->relocs = internal_relocs;
2276 /* Don't free alloc2, since if it was allocated we are passing it
2277 back (under the name of internal_relocs). */
2279 return internal_relocs;
2287 bfd_release (abfd, alloc2);
2294 /* Compute the size of, and allocate space for, REL_HDR which is the
2295 section header for a section containing relocations for O. */
2298 _bfd_elf_link_size_reloc_section (bfd *abfd,
2299 struct bfd_elf_section_reloc_data *reldata)
2301 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2303 /* That allows us to calculate the size of the section. */
2304 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2306 /* The contents field must last into write_object_contents, so we
2307 allocate it with bfd_alloc rather than malloc. Also since we
2308 cannot be sure that the contents will actually be filled in,
2309 we zero the allocated space. */
2310 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2311 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2314 if (reldata->hashes == NULL && reldata->count)
2316 struct elf_link_hash_entry **p;
2318 p = (struct elf_link_hash_entry **)
2319 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2323 reldata->hashes = p;
2329 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2330 originated from the section given by INPUT_REL_HDR) to the
2334 _bfd_elf_link_output_relocs (bfd *output_bfd,
2335 asection *input_section,
2336 Elf_Internal_Shdr *input_rel_hdr,
2337 Elf_Internal_Rela *internal_relocs,
2338 struct elf_link_hash_entry **rel_hash
2341 Elf_Internal_Rela *irela;
2342 Elf_Internal_Rela *irelaend;
2344 struct bfd_elf_section_reloc_data *output_reldata;
2345 asection *output_section;
2346 const struct elf_backend_data *bed;
2347 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2348 struct bfd_elf_section_data *esdo;
2350 output_section = input_section->output_section;
2352 bed = get_elf_backend_data (output_bfd);
2353 esdo = elf_section_data (output_section);
2354 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2356 output_reldata = &esdo->rel;
2357 swap_out = bed->s->swap_reloc_out;
2359 else if (esdo->rela.hdr
2360 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2362 output_reldata = &esdo->rela;
2363 swap_out = bed->s->swap_reloca_out;
2367 (*_bfd_error_handler)
2368 (_("%B: relocation size mismatch in %B section %A"),
2369 output_bfd, input_section->owner, input_section);
2370 bfd_set_error (bfd_error_wrong_format);
2374 erel = output_reldata->hdr->contents;
2375 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2376 irela = internal_relocs;
2377 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2378 * bed->s->int_rels_per_ext_rel);
2379 while (irela < irelaend)
2381 (*swap_out) (output_bfd, irela, erel);
2382 irela += bed->s->int_rels_per_ext_rel;
2383 erel += input_rel_hdr->sh_entsize;
2386 /* Bump the counter, so that we know where to add the next set of
2388 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2393 /* Make weak undefined symbols in PIE dynamic. */
2396 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2397 struct elf_link_hash_entry *h)
2401 && h->root.type == bfd_link_hash_undefweak)
2402 return bfd_elf_link_record_dynamic_symbol (info, h);
2407 /* Fix up the flags for a symbol. This handles various cases which
2408 can only be fixed after all the input files are seen. This is
2409 currently called by both adjust_dynamic_symbol and
2410 assign_sym_version, which is unnecessary but perhaps more robust in
2411 the face of future changes. */
2414 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2415 struct elf_info_failed *eif)
2417 const struct elf_backend_data *bed;
2419 /* If this symbol was mentioned in a non-ELF file, try to set
2420 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2421 permit a non-ELF file to correctly refer to a symbol defined in
2422 an ELF dynamic object. */
2425 while (h->root.type == bfd_link_hash_indirect)
2426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2428 if (h->root.type != bfd_link_hash_defined
2429 && h->root.type != bfd_link_hash_defweak)
2432 h->ref_regular_nonweak = 1;
2436 if (h->root.u.def.section->owner != NULL
2437 && (bfd_get_flavour (h->root.u.def.section->owner)
2438 == bfd_target_elf_flavour))
2441 h->ref_regular_nonweak = 1;
2447 if (h->dynindx == -1
2451 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2460 /* Unfortunately, NON_ELF is only correct if the symbol
2461 was first seen in a non-ELF file. Fortunately, if the symbol
2462 was first seen in an ELF file, we're probably OK unless the
2463 symbol was defined in a non-ELF file. Catch that case here.
2464 FIXME: We're still in trouble if the symbol was first seen in
2465 a dynamic object, and then later in a non-ELF regular object. */
2466 if ((h->root.type == bfd_link_hash_defined
2467 || h->root.type == bfd_link_hash_defweak)
2469 && (h->root.u.def.section->owner != NULL
2470 ? (bfd_get_flavour (h->root.u.def.section->owner)
2471 != bfd_target_elf_flavour)
2472 : (bfd_is_abs_section (h->root.u.def.section)
2473 && !h->def_dynamic)))
2477 /* Backend specific symbol fixup. */
2478 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2479 if (bed->elf_backend_fixup_symbol
2480 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2483 /* If this is a final link, and the symbol was defined as a common
2484 symbol in a regular object file, and there was no definition in
2485 any dynamic object, then the linker will have allocated space for
2486 the symbol in a common section but the DEF_REGULAR
2487 flag will not have been set. */
2488 if (h->root.type == bfd_link_hash_defined
2492 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2495 /* If -Bsymbolic was used (which means to bind references to global
2496 symbols to the definition within the shared object), and this
2497 symbol was defined in a regular object, then it actually doesn't
2498 need a PLT entry. Likewise, if the symbol has non-default
2499 visibility. If the symbol has hidden or internal visibility, we
2500 will force it local. */
2502 && eif->info->shared
2503 && is_elf_hash_table (eif->info->hash)
2504 && (SYMBOLIC_BIND (eif->info, h)
2505 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2508 bfd_boolean force_local;
2510 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2511 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2512 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2515 /* If a weak undefined symbol has non-default visibility, we also
2516 hide it from the dynamic linker. */
2517 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2518 && h->root.type == bfd_link_hash_undefweak)
2519 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2521 /* If this is a weak defined symbol in a dynamic object, and we know
2522 the real definition in the dynamic object, copy interesting flags
2523 over to the real definition. */
2524 if (h->u.weakdef != NULL)
2526 struct elf_link_hash_entry *weakdef;
2528 weakdef = h->u.weakdef;
2529 if (h->root.type == bfd_link_hash_indirect)
2530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2532 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2533 || h->root.type == bfd_link_hash_defweak);
2534 BFD_ASSERT (weakdef->def_dynamic);
2536 /* If the real definition is defined by a regular object file,
2537 don't do anything special. See the longer description in
2538 _bfd_elf_adjust_dynamic_symbol, below. */
2539 if (weakdef->def_regular)
2540 h->u.weakdef = NULL;
2543 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2544 || weakdef->root.type == bfd_link_hash_defweak);
2545 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2552 /* Make the backend pick a good value for a dynamic symbol. This is
2553 called via elf_link_hash_traverse, and also calls itself
2557 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2559 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2561 const struct elf_backend_data *bed;
2563 if (! is_elf_hash_table (eif->info->hash))
2566 if (h->root.type == bfd_link_hash_warning)
2568 h->got = elf_hash_table (eif->info)->init_got_offset;
2569 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2571 /* When warning symbols are created, they **replace** the "real"
2572 entry in the hash table, thus we never get to see the real
2573 symbol in a hash traversal. So look at it now. */
2574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2577 /* Ignore indirect symbols. These are added by the versioning code. */
2578 if (h->root.type == bfd_link_hash_indirect)
2581 /* Fix the symbol flags. */
2582 if (! _bfd_elf_fix_symbol_flags (h, eif))
2585 /* If this symbol does not require a PLT entry, and it is not
2586 defined by a dynamic object, or is not referenced by a regular
2587 object, ignore it. We do have to handle a weak defined symbol,
2588 even if no regular object refers to it, if we decided to add it
2589 to the dynamic symbol table. FIXME: Do we normally need to worry
2590 about symbols which are defined by one dynamic object and
2591 referenced by another one? */
2593 && h->type != STT_GNU_IFUNC
2597 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2599 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2603 /* If we've already adjusted this symbol, don't do it again. This
2604 can happen via a recursive call. */
2605 if (h->dynamic_adjusted)
2608 /* Don't look at this symbol again. Note that we must set this
2609 after checking the above conditions, because we may look at a
2610 symbol once, decide not to do anything, and then get called
2611 recursively later after REF_REGULAR is set below. */
2612 h->dynamic_adjusted = 1;
2614 /* If this is a weak definition, and we know a real definition, and
2615 the real symbol is not itself defined by a regular object file,
2616 then get a good value for the real definition. We handle the
2617 real symbol first, for the convenience of the backend routine.
2619 Note that there is a confusing case here. If the real definition
2620 is defined by a regular object file, we don't get the real symbol
2621 from the dynamic object, but we do get the weak symbol. If the
2622 processor backend uses a COPY reloc, then if some routine in the
2623 dynamic object changes the real symbol, we will not see that
2624 change in the corresponding weak symbol. This is the way other
2625 ELF linkers work as well, and seems to be a result of the shared
2628 I will clarify this issue. Most SVR4 shared libraries define the
2629 variable _timezone and define timezone as a weak synonym. The
2630 tzset call changes _timezone. If you write
2631 extern int timezone;
2633 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2634 you might expect that, since timezone is a synonym for _timezone,
2635 the same number will print both times. However, if the processor
2636 backend uses a COPY reloc, then actually timezone will be copied
2637 into your process image, and, since you define _timezone
2638 yourself, _timezone will not. Thus timezone and _timezone will
2639 wind up at different memory locations. The tzset call will set
2640 _timezone, leaving timezone unchanged. */
2642 if (h->u.weakdef != NULL)
2644 /* If we get to this point, we know there is an implicit
2645 reference by a regular object file via the weak symbol H.
2646 FIXME: Is this really true? What if the traversal finds
2647 H->U.WEAKDEF before it finds H? */
2648 h->u.weakdef->ref_regular = 1;
2650 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2654 /* If a symbol has no type and no size and does not require a PLT
2655 entry, then we are probably about to do the wrong thing here: we
2656 are probably going to create a COPY reloc for an empty object.
2657 This case can arise when a shared object is built with assembly
2658 code, and the assembly code fails to set the symbol type. */
2660 && h->type == STT_NOTYPE
2662 (*_bfd_error_handler)
2663 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2664 h->root.root.string);
2666 dynobj = elf_hash_table (eif->info)->dynobj;
2667 bed = get_elf_backend_data (dynobj);
2669 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2678 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2682 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2685 unsigned int power_of_two;
2687 asection *sec = h->root.u.def.section;
2689 /* The section aligment of definition is the maximum alignment
2690 requirement of symbols defined in the section. Since we don't
2691 know the symbol alignment requirement, we start with the
2692 maximum alignment and check low bits of the symbol address
2693 for the minimum alignment. */
2694 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2695 mask = ((bfd_vma) 1 << power_of_two) - 1;
2696 while ((h->root.u.def.value & mask) != 0)
2702 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2705 /* Adjust the section alignment if needed. */
2706 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2711 /* We make sure that the symbol will be aligned properly. */
2712 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2714 /* Define the symbol as being at this point in DYNBSS. */
2715 h->root.u.def.section = dynbss;
2716 h->root.u.def.value = dynbss->size;
2718 /* Increment the size of DYNBSS to make room for the symbol. */
2719 dynbss->size += h->size;
2724 /* Adjust all external symbols pointing into SEC_MERGE sections
2725 to reflect the object merging within the sections. */
2728 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2732 if (h->root.type == bfd_link_hash_warning)
2733 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2735 if ((h->root.type == bfd_link_hash_defined
2736 || h->root.type == bfd_link_hash_defweak)
2737 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2738 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2740 bfd *output_bfd = (bfd *) data;
2742 h->root.u.def.value =
2743 _bfd_merged_section_offset (output_bfd,
2744 &h->root.u.def.section,
2745 elf_section_data (sec)->sec_info,
2746 h->root.u.def.value);
2752 /* Returns false if the symbol referred to by H should be considered
2753 to resolve local to the current module, and true if it should be
2754 considered to bind dynamically. */
2757 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2758 struct bfd_link_info *info,
2759 bfd_boolean not_local_protected)
2761 bfd_boolean binding_stays_local_p;
2762 const struct elf_backend_data *bed;
2763 struct elf_link_hash_table *hash_table;
2768 while (h->root.type == bfd_link_hash_indirect
2769 || h->root.type == bfd_link_hash_warning)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772 /* If it was forced local, then clearly it's not dynamic. */
2773 if (h->dynindx == -1)
2775 if (h->forced_local)
2778 /* Identify the cases where name binding rules say that a
2779 visible symbol resolves locally. */
2780 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2782 switch (ELF_ST_VISIBILITY (h->other))
2789 hash_table = elf_hash_table (info);
2790 if (!is_elf_hash_table (hash_table))
2793 bed = get_elf_backend_data (hash_table->dynobj);
2795 /* Proper resolution for function pointer equality may require
2796 that these symbols perhaps be resolved dynamically, even though
2797 we should be resolving them to the current module. */
2798 if (!not_local_protected || !bed->is_function_type (h->type))
2799 binding_stays_local_p = TRUE;
2806 /* If it isn't defined locally, then clearly it's dynamic. */
2807 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2810 /* Otherwise, the symbol is dynamic if binding rules don't tell
2811 us that it remains local. */
2812 return !binding_stays_local_p;
2815 /* Return true if the symbol referred to by H should be considered
2816 to resolve local to the current module, and false otherwise. Differs
2817 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2818 undefined symbols. The two functions are virtually identical except
2819 for the place where forced_local and dynindx == -1 are tested. If
2820 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2821 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2822 the symbol is local only for defined symbols.
2823 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2824 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2825 treatment of undefined weak symbols. For those that do not make
2826 undefined weak symbols dynamic, both functions may return false. */
2829 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2830 struct bfd_link_info *info,
2831 bfd_boolean local_protected)
2833 const struct elf_backend_data *bed;
2834 struct elf_link_hash_table *hash_table;
2836 /* If it's a local sym, of course we resolve locally. */
2840 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2842 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2845 /* Common symbols that become definitions don't get the DEF_REGULAR
2846 flag set, so test it first, and don't bail out. */
2847 if (ELF_COMMON_DEF_P (h))
2849 /* If we don't have a definition in a regular file, then we can't
2850 resolve locally. The sym is either undefined or dynamic. */
2851 else if (!h->def_regular)
2854 /* Forced local symbols resolve locally. */
2855 if (h->forced_local)
2858 /* As do non-dynamic symbols. */
2859 if (h->dynindx == -1)
2862 /* At this point, we know the symbol is defined and dynamic. In an
2863 executable it must resolve locally, likewise when building symbolic
2864 shared libraries. */
2865 if (info->executable || SYMBOLIC_BIND (info, h))
2868 /* Now deal with defined dynamic symbols in shared libraries. Ones
2869 with default visibility might not resolve locally. */
2870 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2873 hash_table = elf_hash_table (info);
2874 if (!is_elf_hash_table (hash_table))
2877 bed = get_elf_backend_data (hash_table->dynobj);
2879 /* STV_PROTECTED non-function symbols are local. */
2880 if (!bed->is_function_type (h->type))
2883 /* Function pointer equality tests may require that STV_PROTECTED
2884 symbols be treated as dynamic symbols, even when we know that the
2885 dynamic linker will resolve them locally. */
2886 return local_protected;
2889 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2890 aligned. Returns the first TLS output section. */
2892 struct bfd_section *
2893 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2895 struct bfd_section *sec, *tls;
2896 unsigned int align = 0;
2898 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2899 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2903 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2904 if (sec->alignment_power > align)
2905 align = sec->alignment_power;
2907 elf_hash_table (info)->tls_sec = tls;
2909 /* Ensure the alignment of the first section is the largest alignment,
2910 so that the tls segment starts aligned. */
2912 tls->alignment_power = align;
2917 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2919 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2920 Elf_Internal_Sym *sym)
2922 const struct elf_backend_data *bed;
2924 /* Local symbols do not count, but target specific ones might. */
2925 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2926 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2929 bed = get_elf_backend_data (abfd);
2930 /* Function symbols do not count. */
2931 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2934 /* If the section is undefined, then so is the symbol. */
2935 if (sym->st_shndx == SHN_UNDEF)
2938 /* If the symbol is defined in the common section, then
2939 it is a common definition and so does not count. */
2940 if (bed->common_definition (sym))
2943 /* If the symbol is in a target specific section then we
2944 must rely upon the backend to tell us what it is. */
2945 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2946 /* FIXME - this function is not coded yet:
2948 return _bfd_is_global_symbol_definition (abfd, sym);
2950 Instead for now assume that the definition is not global,
2951 Even if this is wrong, at least the linker will behave
2952 in the same way that it used to do. */
2958 /* Search the symbol table of the archive element of the archive ABFD
2959 whose archive map contains a mention of SYMDEF, and determine if
2960 the symbol is defined in this element. */
2962 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2964 Elf_Internal_Shdr * hdr;
2965 bfd_size_type symcount;
2966 bfd_size_type extsymcount;
2967 bfd_size_type extsymoff;
2968 Elf_Internal_Sym *isymbuf;
2969 Elf_Internal_Sym *isym;
2970 Elf_Internal_Sym *isymend;
2973 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2977 if (! bfd_check_format (abfd, bfd_object))
2980 /* If we have already included the element containing this symbol in the
2981 link then we do not need to include it again. Just claim that any symbol
2982 it contains is not a definition, so that our caller will not decide to
2983 (re)include this element. */
2984 if (abfd->archive_pass)
2987 /* Select the appropriate symbol table. */
2988 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2989 hdr = &elf_tdata (abfd)->symtab_hdr;
2991 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2993 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2995 /* The sh_info field of the symtab header tells us where the
2996 external symbols start. We don't care about the local symbols. */
2997 if (elf_bad_symtab (abfd))
2999 extsymcount = symcount;
3004 extsymcount = symcount - hdr->sh_info;
3005 extsymoff = hdr->sh_info;
3008 if (extsymcount == 0)
3011 /* Read in the symbol table. */
3012 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3014 if (isymbuf == NULL)
3017 /* Scan the symbol table looking for SYMDEF. */
3019 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3023 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3028 if (strcmp (name, symdef->name) == 0)
3030 result = is_global_data_symbol_definition (abfd, isym);
3040 /* Add an entry to the .dynamic table. */
3043 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3047 struct elf_link_hash_table *hash_table;
3048 const struct elf_backend_data *bed;
3050 bfd_size_type newsize;
3051 bfd_byte *newcontents;
3052 Elf_Internal_Dyn dyn;
3054 hash_table = elf_hash_table (info);
3055 if (! is_elf_hash_table (hash_table))
3058 bed = get_elf_backend_data (hash_table->dynobj);
3059 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3060 BFD_ASSERT (s != NULL);
3062 newsize = s->size + bed->s->sizeof_dyn;
3063 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3064 if (newcontents == NULL)
3068 dyn.d_un.d_val = val;
3069 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3072 s->contents = newcontents;
3077 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3078 otherwise just check whether one already exists. Returns -1 on error,
3079 1 if a DT_NEEDED tag already exists, and 0 on success. */
3082 elf_add_dt_needed_tag (bfd *abfd,
3083 struct bfd_link_info *info,
3087 struct elf_link_hash_table *hash_table;
3088 bfd_size_type oldsize;
3089 bfd_size_type strindex;
3091 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3094 hash_table = elf_hash_table (info);
3095 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3096 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3097 if (strindex == (bfd_size_type) -1)
3100 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3103 const struct elf_backend_data *bed;
3106 bed = get_elf_backend_data (hash_table->dynobj);
3107 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3109 for (extdyn = sdyn->contents;
3110 extdyn < sdyn->contents + sdyn->size;
3111 extdyn += bed->s->sizeof_dyn)
3113 Elf_Internal_Dyn dyn;
3115 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3116 if (dyn.d_tag == DT_NEEDED
3117 && dyn.d_un.d_val == strindex)
3119 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3127 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3130 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3134 /* We were just checking for existence of the tag. */
3135 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3141 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3143 for (; needed != NULL; needed = needed->next)
3144 if (strcmp (soname, needed->name) == 0)
3150 /* Sort symbol by value and section. */
3152 elf_sort_symbol (const void *arg1, const void *arg2)
3154 const struct elf_link_hash_entry *h1;
3155 const struct elf_link_hash_entry *h2;
3156 bfd_signed_vma vdiff;
3158 h1 = *(const struct elf_link_hash_entry **) arg1;
3159 h2 = *(const struct elf_link_hash_entry **) arg2;
3160 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3162 return vdiff > 0 ? 1 : -1;
3165 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3167 return sdiff > 0 ? 1 : -1;
3172 /* This function is used to adjust offsets into .dynstr for
3173 dynamic symbols. This is called via elf_link_hash_traverse. */
3176 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3178 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3180 if (h->root.type == bfd_link_hash_warning)
3181 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3183 if (h->dynindx != -1)
3184 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3188 /* Assign string offsets in .dynstr, update all structures referencing
3192 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3194 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3195 struct elf_link_local_dynamic_entry *entry;
3196 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3197 bfd *dynobj = hash_table->dynobj;
3200 const struct elf_backend_data *bed;
3203 _bfd_elf_strtab_finalize (dynstr);
3204 size = _bfd_elf_strtab_size (dynstr);
3206 bed = get_elf_backend_data (dynobj);
3207 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3208 BFD_ASSERT (sdyn != NULL);
3210 /* Update all .dynamic entries referencing .dynstr strings. */
3211 for (extdyn = sdyn->contents;
3212 extdyn < sdyn->contents + sdyn->size;
3213 extdyn += bed->s->sizeof_dyn)
3215 Elf_Internal_Dyn dyn;
3217 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3221 dyn.d_un.d_val = size;
3231 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3236 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3239 /* Now update local dynamic symbols. */
3240 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3241 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3242 entry->isym.st_name);
3244 /* And the rest of dynamic symbols. */
3245 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3247 /* Adjust version definitions. */
3248 if (elf_tdata (output_bfd)->cverdefs)
3253 Elf_Internal_Verdef def;
3254 Elf_Internal_Verdaux defaux;
3256 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3260 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3262 p += sizeof (Elf_External_Verdef);
3263 if (def.vd_aux != sizeof (Elf_External_Verdef))
3265 for (i = 0; i < def.vd_cnt; ++i)
3267 _bfd_elf_swap_verdaux_in (output_bfd,
3268 (Elf_External_Verdaux *) p, &defaux);
3269 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3271 _bfd_elf_swap_verdaux_out (output_bfd,
3272 &defaux, (Elf_External_Verdaux *) p);
3273 p += sizeof (Elf_External_Verdaux);
3276 while (def.vd_next);
3279 /* Adjust version references. */
3280 if (elf_tdata (output_bfd)->verref)
3285 Elf_Internal_Verneed need;
3286 Elf_Internal_Vernaux needaux;
3288 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3292 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3294 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3295 _bfd_elf_swap_verneed_out (output_bfd, &need,
3296 (Elf_External_Verneed *) p);
3297 p += sizeof (Elf_External_Verneed);
3298 for (i = 0; i < need.vn_cnt; ++i)
3300 _bfd_elf_swap_vernaux_in (output_bfd,
3301 (Elf_External_Vernaux *) p, &needaux);
3302 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3304 _bfd_elf_swap_vernaux_out (output_bfd,
3306 (Elf_External_Vernaux *) p);
3307 p += sizeof (Elf_External_Vernaux);
3310 while (need.vn_next);
3316 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3317 The default is to only match when the INPUT and OUTPUT are exactly
3321 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3322 const bfd_target *output)
3324 return input == output;
3327 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3328 This version is used when different targets for the same architecture
3329 are virtually identical. */
3332 _bfd_elf_relocs_compatible (const bfd_target *input,
3333 const bfd_target *output)
3335 const struct elf_backend_data *obed, *ibed;
3337 if (input == output)
3340 ibed = xvec_get_elf_backend_data (input);
3341 obed = xvec_get_elf_backend_data (output);
3343 if (ibed->arch != obed->arch)
3346 /* If both backends are using this function, deem them compatible. */
3347 return ibed->relocs_compatible == obed->relocs_compatible;
3350 /* Add symbols from an ELF object file to the linker hash table. */
3353 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3355 Elf_Internal_Ehdr *ehdr;
3356 Elf_Internal_Shdr *hdr;
3357 bfd_size_type symcount;
3358 bfd_size_type extsymcount;
3359 bfd_size_type extsymoff;
3360 struct elf_link_hash_entry **sym_hash;
3361 bfd_boolean dynamic;
3362 Elf_External_Versym *extversym = NULL;
3363 Elf_External_Versym *ever;
3364 struct elf_link_hash_entry *weaks;
3365 struct elf_link_hash_entry **nondeflt_vers = NULL;
3366 bfd_size_type nondeflt_vers_cnt = 0;
3367 Elf_Internal_Sym *isymbuf = NULL;
3368 Elf_Internal_Sym *isym;
3369 Elf_Internal_Sym *isymend;
3370 const struct elf_backend_data *bed;
3371 bfd_boolean add_needed;
3372 struct elf_link_hash_table *htab;
3374 void *alloc_mark = NULL;
3375 struct bfd_hash_entry **old_table = NULL;
3376 unsigned int old_size = 0;
3377 unsigned int old_count = 0;
3378 void *old_tab = NULL;
3381 struct bfd_link_hash_entry *old_undefs = NULL;
3382 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3383 long old_dynsymcount = 0;
3385 size_t hashsize = 0;
3387 htab = elf_hash_table (info);
3388 bed = get_elf_backend_data (abfd);
3390 if ((abfd->flags & DYNAMIC) == 0)
3396 /* You can't use -r against a dynamic object. Also, there's no
3397 hope of using a dynamic object which does not exactly match
3398 the format of the output file. */
3399 if (info->relocatable
3400 || !is_elf_hash_table (htab)
3401 || info->output_bfd->xvec != abfd->xvec)
3403 if (info->relocatable)
3404 bfd_set_error (bfd_error_invalid_operation);
3406 bfd_set_error (bfd_error_wrong_format);
3411 ehdr = elf_elfheader (abfd);
3412 if (info->warn_alternate_em
3413 && bed->elf_machine_code != ehdr->e_machine
3414 && ((bed->elf_machine_alt1 != 0
3415 && ehdr->e_machine == bed->elf_machine_alt1)
3416 || (bed->elf_machine_alt2 != 0
3417 && ehdr->e_machine == bed->elf_machine_alt2)))
3418 info->callbacks->einfo
3419 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3420 ehdr->e_machine, abfd, bed->elf_machine_code);
3422 /* As a GNU extension, any input sections which are named
3423 .gnu.warning.SYMBOL are treated as warning symbols for the given
3424 symbol. This differs from .gnu.warning sections, which generate
3425 warnings when they are included in an output file. */
3426 /* PR 12761: Also generate this warning when building shared libraries. */
3427 if (info->executable || info->shared)
3431 for (s = abfd->sections; s != NULL; s = s->next)
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 name += sizeof ".gnu.warning." - 1;
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3454 struct elf_link_hash_entry *h;
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3458 /* FIXME: What about bfd_link_hash_common? */
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3472 msg = (char *) bfd_alloc (abfd, sz + 1);
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3486 if (! info->relocatable)
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3517 else if (!is_elf_hash_table (htab))
3522 const char *soname = NULL;
3524 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3527 /* ld --just-symbols and dynamic objects don't mix very well.
3528 ld shouldn't allow it. */
3529 if ((s = abfd->sections) != NULL
3530 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3533 /* If this dynamic lib was specified on the command line with
3534 --as-needed in effect, then we don't want to add a DT_NEEDED
3535 tag unless the lib is actually used. Similary for libs brought
3536 in by another lib's DT_NEEDED. When --no-add-needed is used
3537 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3538 any dynamic library in DT_NEEDED tags in the dynamic lib at
3540 add_needed = (elf_dyn_lib_class (abfd)
3541 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3542 | DYN_NO_NEEDED)) == 0;
3544 s = bfd_get_section_by_name (abfd, ".dynamic");
3549 unsigned int elfsec;
3550 unsigned long shlink;
3552 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3559 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3560 if (elfsec == SHN_BAD)
3561 goto error_free_dyn;
3562 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3564 for (extdyn = dynbuf;
3565 extdyn < dynbuf + s->size;
3566 extdyn += bed->s->sizeof_dyn)
3568 Elf_Internal_Dyn dyn;
3570 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3571 if (dyn.d_tag == DT_SONAME)
3573 unsigned int tagv = dyn.d_un.d_val;
3574 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3576 goto error_free_dyn;
3578 if (dyn.d_tag == DT_NEEDED)
3580 struct bfd_link_needed_list *n, **pn;
3582 unsigned int tagv = dyn.d_un.d_val;
3584 amt = sizeof (struct bfd_link_needed_list);
3585 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3586 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3587 if (n == NULL || fnm == NULL)
3588 goto error_free_dyn;
3589 amt = strlen (fnm) + 1;
3590 anm = (char *) bfd_alloc (abfd, amt);
3592 goto error_free_dyn;
3593 memcpy (anm, fnm, amt);
3597 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3601 if (dyn.d_tag == DT_RUNPATH)
3603 struct bfd_link_needed_list *n, **pn;
3605 unsigned int tagv = dyn.d_un.d_val;
3607 amt = sizeof (struct bfd_link_needed_list);
3608 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3609 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3610 if (n == NULL || fnm == NULL)
3611 goto error_free_dyn;
3612 amt = strlen (fnm) + 1;
3613 anm = (char *) bfd_alloc (abfd, amt);
3615 goto error_free_dyn;
3616 memcpy (anm, fnm, amt);
3620 for (pn = & runpath;
3626 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3627 if (!runpath && dyn.d_tag == DT_RPATH)
3629 struct bfd_link_needed_list *n, **pn;
3631 unsigned int tagv = dyn.d_un.d_val;
3633 amt = sizeof (struct bfd_link_needed_list);
3634 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3635 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3636 if (n == NULL || fnm == NULL)
3637 goto error_free_dyn;
3638 amt = strlen (fnm) + 1;
3639 anm = (char *) bfd_alloc (abfd, amt);
3641 goto error_free_dyn;
3642 memcpy (anm, fnm, amt);
3652 if (dyn.d_tag == DT_AUDIT)
3654 unsigned int tagv = dyn.d_un.d_val;
3655 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3662 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3663 frees all more recently bfd_alloc'd blocks as well. */
3669 struct bfd_link_needed_list **pn;
3670 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3675 /* We do not want to include any of the sections in a dynamic
3676 object in the output file. We hack by simply clobbering the
3677 list of sections in the BFD. This could be handled more
3678 cleanly by, say, a new section flag; the existing
3679 SEC_NEVER_LOAD flag is not the one we want, because that one
3680 still implies that the section takes up space in the output
3682 bfd_section_list_clear (abfd);
3684 /* Find the name to use in a DT_NEEDED entry that refers to this
3685 object. If the object has a DT_SONAME entry, we use it.
3686 Otherwise, if the generic linker stuck something in
3687 elf_dt_name, we use that. Otherwise, we just use the file
3689 if (soname == NULL || *soname == '\0')
3691 soname = elf_dt_name (abfd);
3692 if (soname == NULL || *soname == '\0')
3693 soname = bfd_get_filename (abfd);
3696 /* Save the SONAME because sometimes the linker emulation code
3697 will need to know it. */
3698 elf_dt_name (abfd) = soname;
3700 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3704 /* If we have already included this dynamic object in the
3705 link, just ignore it. There is no reason to include a
3706 particular dynamic object more than once. */
3710 /* Save the DT_AUDIT entry for the linker emulation code. */
3711 elf_dt_audit (abfd) = audit;
3714 /* If this is a dynamic object, we always link against the .dynsym
3715 symbol table, not the .symtab symbol table. The dynamic linker
3716 will only see the .dynsym symbol table, so there is no reason to
3717 look at .symtab for a dynamic object. */
3719 if (! dynamic || elf_dynsymtab (abfd) == 0)
3720 hdr = &elf_tdata (abfd)->symtab_hdr;
3722 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3724 symcount = hdr->sh_size / bed->s->sizeof_sym;
3726 /* The sh_info field of the symtab header tells us where the
3727 external symbols start. We don't care about the local symbols at
3729 if (elf_bad_symtab (abfd))
3731 extsymcount = symcount;
3736 extsymcount = symcount - hdr->sh_info;
3737 extsymoff = hdr->sh_info;
3741 if (extsymcount != 0)
3743 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3745 if (isymbuf == NULL)
3748 /* We store a pointer to the hash table entry for each external
3750 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3751 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3752 if (sym_hash == NULL)
3753 goto error_free_sym;
3754 elf_sym_hashes (abfd) = sym_hash;
3759 /* Read in any version definitions. */
3760 if (!_bfd_elf_slurp_version_tables (abfd,
3761 info->default_imported_symver))
3762 goto error_free_sym;
3764 /* Read in the symbol versions, but don't bother to convert them
3765 to internal format. */
3766 if (elf_dynversym (abfd) != 0)
3768 Elf_Internal_Shdr *versymhdr;
3770 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3771 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3772 if (extversym == NULL)
3773 goto error_free_sym;
3774 amt = versymhdr->sh_size;
3775 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3776 || bfd_bread (extversym, amt, abfd) != amt)
3777 goto error_free_vers;
3781 /* If we are loading an as-needed shared lib, save the symbol table
3782 state before we start adding symbols. If the lib turns out
3783 to be unneeded, restore the state. */
3784 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3789 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3791 struct bfd_hash_entry *p;
3792 struct elf_link_hash_entry *h;
3794 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3796 h = (struct elf_link_hash_entry *) p;
3797 entsize += htab->root.table.entsize;
3798 if (h->root.type == bfd_link_hash_warning)
3799 entsize += htab->root.table.entsize;
3803 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3804 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3805 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3806 if (old_tab == NULL)
3807 goto error_free_vers;
3809 /* Remember the current objalloc pointer, so that all mem for
3810 symbols added can later be reclaimed. */
3811 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3812 if (alloc_mark == NULL)
3813 goto error_free_vers;
3815 /* Make a special call to the linker "notice" function to
3816 tell it that we are about to handle an as-needed lib. */
3817 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3818 notice_as_needed, 0, NULL))
3819 goto error_free_vers;
3821 /* Clone the symbol table and sym hashes. Remember some
3822 pointers into the symbol table, and dynamic symbol count. */
3823 old_hash = (char *) old_tab + tabsize;
3824 old_ent = (char *) old_hash + hashsize;
3825 memcpy (old_tab, htab->root.table.table, tabsize);
3826 memcpy (old_hash, sym_hash, hashsize);
3827 old_undefs = htab->root.undefs;
3828 old_undefs_tail = htab->root.undefs_tail;
3829 old_table = htab->root.table.table;
3830 old_size = htab->root.table.size;
3831 old_count = htab->root.table.count;
3832 old_dynsymcount = htab->dynsymcount;
3834 for (i = 0; i < htab->root.table.size; i++)
3836 struct bfd_hash_entry *p;
3837 struct elf_link_hash_entry *h;
3839 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3841 memcpy (old_ent, p, htab->root.table.entsize);
3842 old_ent = (char *) old_ent + htab->root.table.entsize;
3843 h = (struct elf_link_hash_entry *) p;
3844 if (h->root.type == bfd_link_hash_warning)
3846 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3847 old_ent = (char *) old_ent + htab->root.table.entsize;
3854 ever = extversym != NULL ? extversym + extsymoff : NULL;
3855 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3857 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3861 asection *sec, *new_sec;
3864 struct elf_link_hash_entry *h;
3865 bfd_boolean definition;
3866 bfd_boolean size_change_ok;
3867 bfd_boolean type_change_ok;
3868 bfd_boolean new_weakdef;
3869 bfd_boolean override;
3871 unsigned int old_alignment;
3873 bfd * undef_bfd = NULL;
3877 flags = BSF_NO_FLAGS;
3879 value = isym->st_value;
3881 common = bed->common_definition (isym);
3883 bind = ELF_ST_BIND (isym->st_info);
3887 /* This should be impossible, since ELF requires that all
3888 global symbols follow all local symbols, and that sh_info
3889 point to the first global symbol. Unfortunately, Irix 5
3894 if (isym->st_shndx != SHN_UNDEF && !common)
3902 case STB_GNU_UNIQUE:
3903 flags = BSF_GNU_UNIQUE;
3907 /* Leave it up to the processor backend. */
3911 if (isym->st_shndx == SHN_UNDEF)
3912 sec = bfd_und_section_ptr;
3913 else if (isym->st_shndx == SHN_ABS)
3914 sec = bfd_abs_section_ptr;
3915 else if (isym->st_shndx == SHN_COMMON)
3917 sec = bfd_com_section_ptr;
3918 /* What ELF calls the size we call the value. What ELF
3919 calls the value we call the alignment. */
3920 value = isym->st_size;
3924 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3926 sec = bfd_abs_section_ptr;
3927 else if (sec->kept_section)
3929 /* Symbols from discarded section are undefined. We keep
3931 sec = bfd_und_section_ptr;
3932 isym->st_shndx = SHN_UNDEF;
3934 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3938 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3941 goto error_free_vers;
3943 if (isym->st_shndx == SHN_COMMON
3944 && (abfd->flags & BFD_PLUGIN) != 0)
3946 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3950 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3952 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3954 goto error_free_vers;
3958 else if (isym->st_shndx == SHN_COMMON
3959 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3960 && !info->relocatable)
3962 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3966 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3967 | SEC_LINKER_CREATED);
3968 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3970 goto error_free_vers;
3974 else if (bed->elf_add_symbol_hook)
3976 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3978 goto error_free_vers;
3980 /* The hook function sets the name to NULL if this symbol
3981 should be skipped for some reason. */
3986 /* Sanity check that all possibilities were handled. */
3989 bfd_set_error (bfd_error_bad_value);
3990 goto error_free_vers;
3993 if (bfd_is_und_section (sec)
3994 || bfd_is_com_section (sec))
3999 size_change_ok = FALSE;
4000 type_change_ok = bed->type_change_ok;
4005 if (is_elf_hash_table (htab))
4007 Elf_Internal_Versym iver;
4008 unsigned int vernum = 0;
4011 /* If this is a definition of a symbol which was previously
4012 referenced in a non-weak manner then make a note of the bfd
4013 that contained the reference. This is used if we need to
4014 refer to the source of the reference later on. */
4015 if (! bfd_is_und_section (sec))
4017 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4020 && h->root.type == bfd_link_hash_undefined
4021 && h->root.u.undef.abfd)
4022 undef_bfd = h->root.u.undef.abfd;
4027 if (info->default_imported_symver)
4028 /* Use the default symbol version created earlier. */
4029 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4034 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4036 vernum = iver.vs_vers & VERSYM_VERSION;
4038 /* If this is a hidden symbol, or if it is not version
4039 1, we append the version name to the symbol name.
4040 However, we do not modify a non-hidden absolute symbol
4041 if it is not a function, because it might be the version
4042 symbol itself. FIXME: What if it isn't? */
4043 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4045 && (!bfd_is_abs_section (sec)
4046 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4049 size_t namelen, verlen, newlen;
4052 if (isym->st_shndx != SHN_UNDEF)
4054 if (vernum > elf_tdata (abfd)->cverdefs)
4056 else if (vernum > 1)
4058 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4064 (*_bfd_error_handler)
4065 (_("%B: %s: invalid version %u (max %d)"),
4067 elf_tdata (abfd)->cverdefs);
4068 bfd_set_error (bfd_error_bad_value);
4069 goto error_free_vers;
4074 /* We cannot simply test for the number of
4075 entries in the VERNEED section since the
4076 numbers for the needed versions do not start
4078 Elf_Internal_Verneed *t;
4081 for (t = elf_tdata (abfd)->verref;
4085 Elf_Internal_Vernaux *a;
4087 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4089 if (a->vna_other == vernum)
4091 verstr = a->vna_nodename;
4100 (*_bfd_error_handler)
4101 (_("%B: %s: invalid needed version %d"),
4102 abfd, name, vernum);
4103 bfd_set_error (bfd_error_bad_value);
4104 goto error_free_vers;
4108 namelen = strlen (name);
4109 verlen = strlen (verstr);
4110 newlen = namelen + verlen + 2;
4111 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4112 && isym->st_shndx != SHN_UNDEF)
4115 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4116 if (newname == NULL)
4117 goto error_free_vers;
4118 memcpy (newname, name, namelen);
4119 p = newname + namelen;
4121 /* If this is a defined non-hidden version symbol,
4122 we add another @ to the name. This indicates the
4123 default version of the symbol. */
4124 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4125 && isym->st_shndx != SHN_UNDEF)
4127 memcpy (p, verstr, verlen + 1);
4132 /* If necessary, make a second attempt to locate the bfd
4133 containing an unresolved, non-weak reference to the
4135 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4137 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4140 && h->root.type == bfd_link_hash_undefined
4141 && h->root.u.undef.abfd)
4142 undef_bfd = h->root.u.undef.abfd;
4145 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4146 &value, &old_alignment,
4147 sym_hash, &skip, &override,
4148 &type_change_ok, &size_change_ok))
4149 goto error_free_vers;
4158 while (h->root.type == bfd_link_hash_indirect
4159 || h->root.type == bfd_link_hash_warning)
4160 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4162 /* Remember the old alignment if this is a common symbol, so
4163 that we don't reduce the alignment later on. We can't
4164 check later, because _bfd_generic_link_add_one_symbol
4165 will set a default for the alignment which we want to
4166 override. We also remember the old bfd where the existing
4167 definition comes from. */
4168 switch (h->root.type)
4173 case bfd_link_hash_defined:
4174 case bfd_link_hash_defweak:
4175 old_bfd = h->root.u.def.section->owner;
4178 case bfd_link_hash_common:
4179 old_bfd = h->root.u.c.p->section->owner;
4180 old_alignment = h->root.u.c.p->alignment_power;
4184 if (elf_tdata (abfd)->verdef != NULL
4188 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4191 if (! (_bfd_generic_link_add_one_symbol
4192 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4193 (struct bfd_link_hash_entry **) sym_hash)))
4194 goto error_free_vers;
4197 while (h->root.type == bfd_link_hash_indirect
4198 || h->root.type == bfd_link_hash_warning)
4199 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4202 if (is_elf_hash_table (htab))
4203 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4205 new_weakdef = FALSE;
4208 && (flags & BSF_WEAK) != 0
4209 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4210 && is_elf_hash_table (htab)
4211 && h->u.weakdef == NULL)
4213 /* Keep a list of all weak defined non function symbols from
4214 a dynamic object, using the weakdef field. Later in this
4215 function we will set the weakdef field to the correct
4216 value. We only put non-function symbols from dynamic
4217 objects on this list, because that happens to be the only
4218 time we need to know the normal symbol corresponding to a
4219 weak symbol, and the information is time consuming to
4220 figure out. If the weakdef field is not already NULL,
4221 then this symbol was already defined by some previous
4222 dynamic object, and we will be using that previous
4223 definition anyhow. */
4225 h->u.weakdef = weaks;
4230 /* Set the alignment of a common symbol. */
4231 if ((common || bfd_is_com_section (sec))
4232 && h->root.type == bfd_link_hash_common)
4237 align = bfd_log2 (isym->st_value);
4240 /* The new symbol is a common symbol in a shared object.
4241 We need to get the alignment from the section. */
4242 align = new_sec->alignment_power;
4244 if (align > old_alignment)
4245 h->root.u.c.p->alignment_power = align;
4247 h->root.u.c.p->alignment_power = old_alignment;
4250 if (is_elf_hash_table (htab))
4254 /* Check the alignment when a common symbol is involved. This
4255 can change when a common symbol is overridden by a normal
4256 definition or a common symbol is ignored due to the old
4257 normal definition. We need to make sure the maximum
4258 alignment is maintained. */
4259 if ((old_alignment || common)
4260 && h->root.type != bfd_link_hash_common)
4262 unsigned int common_align;
4263 unsigned int normal_align;
4264 unsigned int symbol_align;
4268 symbol_align = ffs (h->root.u.def.value) - 1;
4269 if (h->root.u.def.section->owner != NULL
4270 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4272 normal_align = h->root.u.def.section->alignment_power;
4273 if (normal_align > symbol_align)
4274 normal_align = symbol_align;
4277 normal_align = symbol_align;
4281 common_align = old_alignment;
4282 common_bfd = old_bfd;
4287 common_align = bfd_log2 (isym->st_value);
4289 normal_bfd = old_bfd;
4292 if (normal_align < common_align)
4294 /* PR binutils/2735 */
4295 if (normal_bfd == NULL)
4296 (*_bfd_error_handler)
4297 (_("Warning: alignment %u of common symbol `%s' in %B"
4298 " is greater than the alignment (%u) of its section %A"),
4299 common_bfd, h->root.u.def.section,
4300 1 << common_align, name, 1 << normal_align);
4302 (*_bfd_error_handler)
4303 (_("Warning: alignment %u of symbol `%s' in %B"
4304 " is smaller than %u in %B"),
4305 normal_bfd, common_bfd,
4306 1 << normal_align, name, 1 << common_align);
4310 /* Remember the symbol size if it isn't undefined. */
4311 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4312 && (definition || h->size == 0))
4315 && h->size != isym->st_size
4316 && ! size_change_ok)
4317 (*_bfd_error_handler)
4318 (_("Warning: size of symbol `%s' changed"
4319 " from %lu in %B to %lu in %B"),
4321 name, (unsigned long) h->size,
4322 (unsigned long) isym->st_size);
4324 h->size = isym->st_size;
4327 /* If this is a common symbol, then we always want H->SIZE
4328 to be the size of the common symbol. The code just above
4329 won't fix the size if a common symbol becomes larger. We
4330 don't warn about a size change here, because that is
4331 covered by --warn-common. Allow changed between different
4333 if (h->root.type == bfd_link_hash_common)
4334 h->size = h->root.u.c.size;
4336 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4337 && (definition || h->type == STT_NOTYPE))
4339 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 if (type == STT_GNU_IFUNC
4344 && (abfd->flags & DYNAMIC) != 0)
4347 if (h->type != type)
4349 if (h->type != STT_NOTYPE && ! type_change_ok)
4350 (*_bfd_error_handler)
4351 (_("Warning: type of symbol `%s' changed"
4352 " from %d to %d in %B"),
4353 abfd, name, h->type, type);
4359 /* Merge st_other field. */
4360 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362 /* Set a flag in the hash table entry indicating the type of
4363 reference or definition we just found. Keep a count of
4364 the number of dynamic symbols we find. A dynamic symbol
4365 is one which is referenced or defined by both a regular
4366 object and a shared object. */
4373 if (bind != STB_WEAK)
4374 h->ref_regular_nonweak = 1;
4386 if (! info->executable
4399 || (h->u.weakdef != NULL
4401 && h->u.weakdef->dynindx != -1))
4405 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4407 /* We don't want to make debug symbol dynamic. */
4412 h->target_internal = isym->st_target_internal;
4414 /* Check to see if we need to add an indirect symbol for
4415 the default name. */
4416 if (definition || h->root.type == bfd_link_hash_common)
4417 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4418 &sec, &value, &dynsym,
4420 goto error_free_vers;
4422 if (definition && !dynamic)
4424 char *p = strchr (name, ELF_VER_CHR);
4425 if (p != NULL && p[1] != ELF_VER_CHR)
4427 /* Queue non-default versions so that .symver x, x@FOO
4428 aliases can be checked. */
4431 amt = ((isymend - isym + 1)
4432 * sizeof (struct elf_link_hash_entry *));
4434 (struct elf_link_hash_entry **) bfd_malloc (amt);
4436 goto error_free_vers;
4438 nondeflt_vers[nondeflt_vers_cnt++] = h;
4442 if (dynsym && h->dynindx == -1)
4444 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4445 goto error_free_vers;
4446 if (h->u.weakdef != NULL
4448 && h->u.weakdef->dynindx == -1)
4450 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4451 goto error_free_vers;
4454 else if (dynsym && h->dynindx != -1)
4455 /* If the symbol already has a dynamic index, but
4456 visibility says it should not be visible, turn it into
4458 switch (ELF_ST_VISIBILITY (h->other))
4462 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4472 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4473 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4476 const char *soname = elf_dt_name (abfd);
4478 /* A symbol from a library loaded via DT_NEEDED of some
4479 other library is referenced by a regular object.
4480 Add a DT_NEEDED entry for it. Issue an error if
4481 --no-add-needed is used and the reference was not
4483 if (undef_bfd != NULL
4484 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4486 (*_bfd_error_handler)
4487 (_("%B: undefined reference to symbol '%s'"),
4489 (*_bfd_error_handler)
4490 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4492 bfd_set_error (bfd_error_invalid_operation);
4493 goto error_free_vers;
4496 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4497 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4500 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4502 goto error_free_vers;
4504 BFD_ASSERT (ret == 0);
4509 if (extversym != NULL)
4515 if (isymbuf != NULL)
4521 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4525 /* Restore the symbol table. */
4526 if (bed->as_needed_cleanup)
4527 (*bed->as_needed_cleanup) (abfd, info);
4528 old_hash = (char *) old_tab + tabsize;
4529 old_ent = (char *) old_hash + hashsize;
4530 sym_hash = elf_sym_hashes (abfd);
4531 htab->root.table.table = old_table;
4532 htab->root.table.size = old_size;
4533 htab->root.table.count = old_count;
4534 memcpy (htab->root.table.table, old_tab, tabsize);
4535 memcpy (sym_hash, old_hash, hashsize);
4536 htab->root.undefs = old_undefs;
4537 htab->root.undefs_tail = old_undefs_tail;
4538 for (i = 0; i < htab->root.table.size; i++)
4540 struct bfd_hash_entry *p;
4541 struct elf_link_hash_entry *h;
4543 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4545 h = (struct elf_link_hash_entry *) p;
4546 if (h->root.type == bfd_link_hash_warning)
4547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4548 if (h->dynindx >= old_dynsymcount)
4549 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4551 memcpy (p, old_ent, htab->root.table.entsize);
4552 old_ent = (char *) old_ent + htab->root.table.entsize;
4553 h = (struct elf_link_hash_entry *) p;
4554 if (h->root.type == bfd_link_hash_warning)
4556 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4557 old_ent = (char *) old_ent + htab->root.table.entsize;
4562 /* Make a special call to the linker "notice" function to
4563 tell it that symbols added for crefs may need to be removed. */
4564 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4565 notice_not_needed, 0, NULL))
4566 goto error_free_vers;
4569 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4571 if (nondeflt_vers != NULL)
4572 free (nondeflt_vers);
4576 if (old_tab != NULL)
4578 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4579 notice_needed, 0, NULL))
4580 goto error_free_vers;
4585 /* Now that all the symbols from this input file are created, handle
4586 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4587 if (nondeflt_vers != NULL)
4589 bfd_size_type cnt, symidx;
4591 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4593 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4594 char *shortname, *p;
4596 p = strchr (h->root.root.string, ELF_VER_CHR);
4598 || (h->root.type != bfd_link_hash_defined
4599 && h->root.type != bfd_link_hash_defweak))
4602 amt = p - h->root.root.string;
4603 shortname = (char *) bfd_malloc (amt + 1);
4605 goto error_free_vers;
4606 memcpy (shortname, h->root.root.string, amt);
4607 shortname[amt] = '\0';
4609 hi = (struct elf_link_hash_entry *)
4610 bfd_link_hash_lookup (&htab->root, shortname,
4611 FALSE, FALSE, FALSE);
4613 && hi->root.type == h->root.type
4614 && hi->root.u.def.value == h->root.u.def.value
4615 && hi->root.u.def.section == h->root.u.def.section)
4617 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4618 hi->root.type = bfd_link_hash_indirect;
4619 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4620 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4621 sym_hash = elf_sym_hashes (abfd);
4623 for (symidx = 0; symidx < extsymcount; ++symidx)
4624 if (sym_hash[symidx] == hi)
4626 sym_hash[symidx] = h;
4632 free (nondeflt_vers);
4633 nondeflt_vers = NULL;
4636 /* Now set the weakdefs field correctly for all the weak defined
4637 symbols we found. The only way to do this is to search all the
4638 symbols. Since we only need the information for non functions in
4639 dynamic objects, that's the only time we actually put anything on
4640 the list WEAKS. We need this information so that if a regular
4641 object refers to a symbol defined weakly in a dynamic object, the
4642 real symbol in the dynamic object is also put in the dynamic
4643 symbols; we also must arrange for both symbols to point to the
4644 same memory location. We could handle the general case of symbol
4645 aliasing, but a general symbol alias can only be generated in
4646 assembler code, handling it correctly would be very time
4647 consuming, and other ELF linkers don't handle general aliasing
4651 struct elf_link_hash_entry **hpp;
4652 struct elf_link_hash_entry **hppend;
4653 struct elf_link_hash_entry **sorted_sym_hash;
4654 struct elf_link_hash_entry *h;
4657 /* Since we have to search the whole symbol list for each weak
4658 defined symbol, search time for N weak defined symbols will be
4659 O(N^2). Binary search will cut it down to O(NlogN). */
4660 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4661 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4662 if (sorted_sym_hash == NULL)
4664 sym_hash = sorted_sym_hash;
4665 hpp = elf_sym_hashes (abfd);
4666 hppend = hpp + extsymcount;
4668 for (; hpp < hppend; hpp++)
4672 && h->root.type == bfd_link_hash_defined
4673 && !bed->is_function_type (h->type))
4681 qsort (sorted_sym_hash, sym_count,
4682 sizeof (struct elf_link_hash_entry *),
4685 while (weaks != NULL)
4687 struct elf_link_hash_entry *hlook;
4694 weaks = hlook->u.weakdef;
4695 hlook->u.weakdef = NULL;
4697 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4698 || hlook->root.type == bfd_link_hash_defweak
4699 || hlook->root.type == bfd_link_hash_common
4700 || hlook->root.type == bfd_link_hash_indirect);
4701 slook = hlook->root.u.def.section;
4702 vlook = hlook->root.u.def.value;
4709 bfd_signed_vma vdiff;
4711 h = sorted_sym_hash [idx];
4712 vdiff = vlook - h->root.u.def.value;
4719 long sdiff = slook->id - h->root.u.def.section->id;
4732 /* We didn't find a value/section match. */
4736 for (i = ilook; i < sym_count; i++)
4738 h = sorted_sym_hash [i];
4740 /* Stop if value or section doesn't match. */
4741 if (h->root.u.def.value != vlook
4742 || h->root.u.def.section != slook)
4744 else if (h != hlook)
4746 hlook->u.weakdef = h;
4748 /* If the weak definition is in the list of dynamic
4749 symbols, make sure the real definition is put
4751 if (hlook->dynindx != -1 && h->dynindx == -1)
4753 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4756 free (sorted_sym_hash);
4761 /* If the real definition is in the list of dynamic
4762 symbols, make sure the weak definition is put
4763 there as well. If we don't do this, then the
4764 dynamic loader might not merge the entries for the
4765 real definition and the weak definition. */
4766 if (h->dynindx != -1 && hlook->dynindx == -1)
4768 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4769 goto err_free_sym_hash;
4776 free (sorted_sym_hash);
4779 if (bed->check_directives
4780 && !(*bed->check_directives) (abfd, info))
4783 /* If this object is the same format as the output object, and it is
4784 not a shared library, then let the backend look through the
4787 This is required to build global offset table entries and to
4788 arrange for dynamic relocs. It is not required for the
4789 particular common case of linking non PIC code, even when linking
4790 against shared libraries, but unfortunately there is no way of
4791 knowing whether an object file has been compiled PIC or not.
4792 Looking through the relocs is not particularly time consuming.
4793 The problem is that we must either (1) keep the relocs in memory,
4794 which causes the linker to require additional runtime memory or
4795 (2) read the relocs twice from the input file, which wastes time.
4796 This would be a good case for using mmap.
4798 I have no idea how to handle linking PIC code into a file of a
4799 different format. It probably can't be done. */
4801 && is_elf_hash_table (htab)
4802 && bed->check_relocs != NULL
4803 && elf_object_id (abfd) == elf_hash_table_id (htab)
4804 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4808 for (o = abfd->sections; o != NULL; o = o->next)
4810 Elf_Internal_Rela *internal_relocs;
4813 if ((o->flags & SEC_RELOC) == 0
4814 || o->reloc_count == 0
4815 || ((info->strip == strip_all || info->strip == strip_debugger)
4816 && (o->flags & SEC_DEBUGGING) != 0)
4817 || bfd_is_abs_section (o->output_section))
4820 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4822 if (internal_relocs == NULL)
4825 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4827 if (elf_section_data (o)->relocs != internal_relocs)
4828 free (internal_relocs);
4835 /* If this is a non-traditional link, try to optimize the handling
4836 of the .stab/.stabstr sections. */
4838 && ! info->traditional_format
4839 && is_elf_hash_table (htab)
4840 && (info->strip != strip_all && info->strip != strip_debugger))
4844 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4845 if (stabstr != NULL)
4847 bfd_size_type string_offset = 0;
4850 for (stab = abfd->sections; stab; stab = stab->next)
4851 if (CONST_STRNEQ (stab->name, ".stab")
4852 && (!stab->name[5] ||
4853 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4854 && (stab->flags & SEC_MERGE) == 0
4855 && !bfd_is_abs_section (stab->output_section))
4857 struct bfd_elf_section_data *secdata;
4859 secdata = elf_section_data (stab);
4860 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4861 stabstr, &secdata->sec_info,
4864 if (secdata->sec_info)
4865 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4870 if (is_elf_hash_table (htab) && add_needed)
4872 /* Add this bfd to the loaded list. */
4873 struct elf_link_loaded_list *n;
4875 n = (struct elf_link_loaded_list *)
4876 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4880 n->next = htab->loaded;
4887 if (old_tab != NULL)
4889 if (nondeflt_vers != NULL)
4890 free (nondeflt_vers);
4891 if (extversym != NULL)
4894 if (isymbuf != NULL)
4900 /* Return the linker hash table entry of a symbol that might be
4901 satisfied by an archive symbol. Return -1 on error. */
4903 struct elf_link_hash_entry *
4904 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4905 struct bfd_link_info *info,
4908 struct elf_link_hash_entry *h;
4912 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4916 /* If this is a default version (the name contains @@), look up the
4917 symbol again with only one `@' as well as without the version.
4918 The effect is that references to the symbol with and without the
4919 version will be matched by the default symbol in the archive. */
4921 p = strchr (name, ELF_VER_CHR);
4922 if (p == NULL || p[1] != ELF_VER_CHR)
4925 /* First check with only one `@'. */
4926 len = strlen (name);
4927 copy = (char *) bfd_alloc (abfd, len);
4929 return (struct elf_link_hash_entry *) 0 - 1;
4931 first = p - name + 1;
4932 memcpy (copy, name, first);
4933 memcpy (copy + first, name + first + 1, len - first);
4935 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4938 /* We also need to check references to the symbol without the
4940 copy[first - 1] = '\0';
4941 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4942 FALSE, FALSE, FALSE);
4945 bfd_release (abfd, copy);
4949 /* Add symbols from an ELF archive file to the linker hash table. We
4950 don't use _bfd_generic_link_add_archive_symbols because of a
4951 problem which arises on UnixWare. The UnixWare libc.so is an
4952 archive which includes an entry libc.so.1 which defines a bunch of
4953 symbols. The libc.so archive also includes a number of other
4954 object files, which also define symbols, some of which are the same
4955 as those defined in libc.so.1. Correct linking requires that we
4956 consider each object file in turn, and include it if it defines any
4957 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4958 this; it looks through the list of undefined symbols, and includes
4959 any object file which defines them. When this algorithm is used on
4960 UnixWare, it winds up pulling in libc.so.1 early and defining a
4961 bunch of symbols. This means that some of the other objects in the
4962 archive are not included in the link, which is incorrect since they
4963 precede libc.so.1 in the archive.
4965 Fortunately, ELF archive handling is simpler than that done by
4966 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4967 oddities. In ELF, if we find a symbol in the archive map, and the
4968 symbol is currently undefined, we know that we must pull in that
4971 Unfortunately, we do have to make multiple passes over the symbol
4972 table until nothing further is resolved. */
4975 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4978 bfd_boolean *defined = NULL;
4979 bfd_boolean *included = NULL;
4983 const struct elf_backend_data *bed;
4984 struct elf_link_hash_entry * (*archive_symbol_lookup)
4985 (bfd *, struct bfd_link_info *, const char *);
4987 if (! bfd_has_map (abfd))
4989 /* An empty archive is a special case. */
4990 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4992 bfd_set_error (bfd_error_no_armap);
4996 /* Keep track of all symbols we know to be already defined, and all
4997 files we know to be already included. This is to speed up the
4998 second and subsequent passes. */
4999 c = bfd_ardata (abfd)->symdef_count;
5003 amt *= sizeof (bfd_boolean);
5004 defined = (bfd_boolean *) bfd_zmalloc (amt);
5005 included = (bfd_boolean *) bfd_zmalloc (amt);
5006 if (defined == NULL || included == NULL)
5009 symdefs = bfd_ardata (abfd)->symdefs;
5010 bed = get_elf_backend_data (abfd);
5011 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5024 symdefend = symdef + c;
5025 for (i = 0; symdef < symdefend; symdef++, i++)
5027 struct elf_link_hash_entry *h;
5029 struct bfd_link_hash_entry *undefs_tail;
5032 if (defined[i] || included[i])
5034 if (symdef->file_offset == last)
5040 h = archive_symbol_lookup (abfd, info, symdef->name);
5041 if (h == (struct elf_link_hash_entry *) 0 - 1)
5047 if (h->root.type == bfd_link_hash_common)
5049 /* We currently have a common symbol. The archive map contains
5050 a reference to this symbol, so we may want to include it. We
5051 only want to include it however, if this archive element
5052 contains a definition of the symbol, not just another common
5055 Unfortunately some archivers (including GNU ar) will put
5056 declarations of common symbols into their archive maps, as
5057 well as real definitions, so we cannot just go by the archive
5058 map alone. Instead we must read in the element's symbol
5059 table and check that to see what kind of symbol definition
5061 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5064 else if (h->root.type != bfd_link_hash_undefined)
5066 if (h->root.type != bfd_link_hash_undefweak)
5071 /* We need to include this archive member. */
5072 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5073 if (element == NULL)
5076 if (! bfd_check_format (element, bfd_object))
5079 /* Doublecheck that we have not included this object
5080 already--it should be impossible, but there may be
5081 something wrong with the archive. */
5082 if (element->archive_pass != 0)
5084 bfd_set_error (bfd_error_bad_value);
5087 element->archive_pass = 1;
5089 undefs_tail = info->hash->undefs_tail;
5091 if (!(*info->callbacks
5092 ->add_archive_element) (info, element, symdef->name, &element))
5094 if (!bfd_link_add_symbols (element, info))
5097 /* If there are any new undefined symbols, we need to make
5098 another pass through the archive in order to see whether
5099 they can be defined. FIXME: This isn't perfect, because
5100 common symbols wind up on undefs_tail and because an
5101 undefined symbol which is defined later on in this pass
5102 does not require another pass. This isn't a bug, but it
5103 does make the code less efficient than it could be. */
5104 if (undefs_tail != info->hash->undefs_tail)
5107 /* Look backward to mark all symbols from this object file
5108 which we have already seen in this pass. */
5112 included[mark] = TRUE;
5117 while (symdefs[mark].file_offset == symdef->file_offset);
5119 /* We mark subsequent symbols from this object file as we go
5120 on through the loop. */
5121 last = symdef->file_offset;
5132 if (defined != NULL)
5134 if (included != NULL)
5139 /* Given an ELF BFD, add symbols to the global hash table as
5143 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5145 switch (bfd_get_format (abfd))
5148 return elf_link_add_object_symbols (abfd, info);
5150 return elf_link_add_archive_symbols (abfd, info);
5152 bfd_set_error (bfd_error_wrong_format);
5157 struct hash_codes_info
5159 unsigned long *hashcodes;
5163 /* This function will be called though elf_link_hash_traverse to store
5164 all hash value of the exported symbols in an array. */
5167 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5169 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5175 if (h->root.type == bfd_link_hash_warning)
5176 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5178 /* Ignore indirect symbols. These are added by the versioning code. */
5179 if (h->dynindx == -1)
5182 name = h->root.root.string;
5183 p = strchr (name, ELF_VER_CHR);
5186 alc = (char *) bfd_malloc (p - name + 1);
5192 memcpy (alc, name, p - name);
5193 alc[p - name] = '\0';
5197 /* Compute the hash value. */
5198 ha = bfd_elf_hash (name);
5200 /* Store the found hash value in the array given as the argument. */
5201 *(inf->hashcodes)++ = ha;
5203 /* And store it in the struct so that we can put it in the hash table
5205 h->u.elf_hash_value = ha;
5213 struct collect_gnu_hash_codes
5216 const struct elf_backend_data *bed;
5217 unsigned long int nsyms;
5218 unsigned long int maskbits;
5219 unsigned long int *hashcodes;
5220 unsigned long int *hashval;
5221 unsigned long int *indx;
5222 unsigned long int *counts;
5225 long int min_dynindx;
5226 unsigned long int bucketcount;
5227 unsigned long int symindx;
5228 long int local_indx;
5229 long int shift1, shift2;
5230 unsigned long int mask;
5234 /* This function will be called though elf_link_hash_traverse to store
5235 all hash value of the exported symbols in an array. */
5238 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5240 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5246 if (h->root.type == bfd_link_hash_warning)
5247 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5249 /* Ignore indirect symbols. These are added by the versioning code. */
5250 if (h->dynindx == -1)
5253 /* Ignore also local symbols and undefined symbols. */
5254 if (! (*s->bed->elf_hash_symbol) (h))
5257 name = h->root.root.string;
5258 p = strchr (name, ELF_VER_CHR);
5261 alc = (char *) bfd_malloc (p - name + 1);
5267 memcpy (alc, name, p - name);
5268 alc[p - name] = '\0';
5272 /* Compute the hash value. */
5273 ha = bfd_elf_gnu_hash (name);
5275 /* Store the found hash value in the array for compute_bucket_count,
5276 and also for .dynsym reordering purposes. */
5277 s->hashcodes[s->nsyms] = ha;
5278 s->hashval[h->dynindx] = ha;
5280 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5281 s->min_dynindx = h->dynindx;
5289 /* This function will be called though elf_link_hash_traverse to do
5290 final dynaminc symbol renumbering. */
5293 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5295 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5296 unsigned long int bucket;
5297 unsigned long int val;
5299 if (h->root.type == bfd_link_hash_warning)
5300 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5302 /* Ignore indirect symbols. */
5303 if (h->dynindx == -1)
5306 /* Ignore also local symbols and undefined symbols. */
5307 if (! (*s->bed->elf_hash_symbol) (h))
5309 if (h->dynindx >= s->min_dynindx)
5310 h->dynindx = s->local_indx++;
5314 bucket = s->hashval[h->dynindx] % s->bucketcount;
5315 val = (s->hashval[h->dynindx] >> s->shift1)
5316 & ((s->maskbits >> s->shift1) - 1);
5317 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5319 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5320 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5321 if (s->counts[bucket] == 1)
5322 /* Last element terminates the chain. */
5324 bfd_put_32 (s->output_bfd, val,
5325 s->contents + (s->indx[bucket] - s->symindx) * 4);
5326 --s->counts[bucket];
5327 h->dynindx = s->indx[bucket]++;
5331 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5334 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5336 return !(h->forced_local
5337 || h->root.type == bfd_link_hash_undefined
5338 || h->root.type == bfd_link_hash_undefweak
5339 || ((h->root.type == bfd_link_hash_defined
5340 || h->root.type == bfd_link_hash_defweak)
5341 && h->root.u.def.section->output_section == NULL));
5344 /* Array used to determine the number of hash table buckets to use
5345 based on the number of symbols there are. If there are fewer than
5346 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5347 fewer than 37 we use 17 buckets, and so forth. We never use more
5348 than 32771 buckets. */
5350 static const size_t elf_buckets[] =
5352 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5356 /* Compute bucket count for hashing table. We do not use a static set
5357 of possible tables sizes anymore. Instead we determine for all
5358 possible reasonable sizes of the table the outcome (i.e., the
5359 number of collisions etc) and choose the best solution. The
5360 weighting functions are not too simple to allow the table to grow
5361 without bounds. Instead one of the weighting factors is the size.
5362 Therefore the result is always a good payoff between few collisions
5363 (= short chain lengths) and table size. */
5365 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5366 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5367 unsigned long int nsyms,
5370 size_t best_size = 0;
5371 unsigned long int i;
5373 /* We have a problem here. The following code to optimize the table
5374 size requires an integer type with more the 32 bits. If
5375 BFD_HOST_U_64_BIT is set we know about such a type. */
5376 #ifdef BFD_HOST_U_64_BIT
5381 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5382 bfd *dynobj = elf_hash_table (info)->dynobj;
5383 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5384 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5385 unsigned long int *counts;
5387 unsigned int no_improvement_count = 0;
5389 /* Possible optimization parameters: if we have NSYMS symbols we say
5390 that the hashing table must at least have NSYMS/4 and at most
5392 minsize = nsyms / 4;
5395 best_size = maxsize = nsyms * 2;
5400 if ((best_size & 31) == 0)
5404 /* Create array where we count the collisions in. We must use bfd_malloc
5405 since the size could be large. */
5407 amt *= sizeof (unsigned long int);
5408 counts = (unsigned long int *) bfd_malloc (amt);
5412 /* Compute the "optimal" size for the hash table. The criteria is a
5413 minimal chain length. The minor criteria is (of course) the size
5415 for (i = minsize; i < maxsize; ++i)
5417 /* Walk through the array of hashcodes and count the collisions. */
5418 BFD_HOST_U_64_BIT max;
5419 unsigned long int j;
5420 unsigned long int fact;
5422 if (gnu_hash && (i & 31) == 0)
5425 memset (counts, '\0', i * sizeof (unsigned long int));
5427 /* Determine how often each hash bucket is used. */
5428 for (j = 0; j < nsyms; ++j)
5429 ++counts[hashcodes[j] % i];
5431 /* For the weight function we need some information about the
5432 pagesize on the target. This is information need not be 100%
5433 accurate. Since this information is not available (so far) we
5434 define it here to a reasonable default value. If it is crucial
5435 to have a better value some day simply define this value. */
5436 # ifndef BFD_TARGET_PAGESIZE
5437 # define BFD_TARGET_PAGESIZE (4096)
5440 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5442 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5445 /* Variant 1: optimize for short chains. We add the squares
5446 of all the chain lengths (which favors many small chain
5447 over a few long chains). */
5448 for (j = 0; j < i; ++j)
5449 max += counts[j] * counts[j];
5451 /* This adds penalties for the overall size of the table. */
5452 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5455 /* Variant 2: Optimize a lot more for small table. Here we
5456 also add squares of the size but we also add penalties for
5457 empty slots (the +1 term). */
5458 for (j = 0; j < i; ++j)
5459 max += (1 + counts[j]) * (1 + counts[j]);
5461 /* The overall size of the table is considered, but not as
5462 strong as in variant 1, where it is squared. */
5463 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5467 /* Compare with current best results. */
5468 if (max < best_chlen)
5472 no_improvement_count = 0;
5474 /* PR 11843: Avoid futile long searches for the best bucket size
5475 when there are a large number of symbols. */
5476 else if (++no_improvement_count == 100)
5483 #endif /* defined (BFD_HOST_U_64_BIT) */
5485 /* This is the fallback solution if no 64bit type is available or if we
5486 are not supposed to spend much time on optimizations. We select the
5487 bucket count using a fixed set of numbers. */
5488 for (i = 0; elf_buckets[i] != 0; i++)
5490 best_size = elf_buckets[i];
5491 if (nsyms < elf_buckets[i + 1])
5494 if (gnu_hash && best_size < 2)
5501 /* Size any SHT_GROUP section for ld -r. */
5504 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5508 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5509 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5510 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5515 /* Set up the sizes and contents of the ELF dynamic sections. This is
5516 called by the ELF linker emulation before_allocation routine. We
5517 must set the sizes of the sections before the linker sets the
5518 addresses of the various sections. */
5521 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5524 const char *filter_shlib,
5526 const char *depaudit,
5527 const char * const *auxiliary_filters,
5528 struct bfd_link_info *info,
5529 asection **sinterpptr,
5530 struct bfd_elf_version_tree *verdefs)
5532 bfd_size_type soname_indx;
5534 const struct elf_backend_data *bed;
5535 struct elf_info_failed asvinfo;
5539 soname_indx = (bfd_size_type) -1;
5541 if (!is_elf_hash_table (info->hash))
5544 bed = get_elf_backend_data (output_bfd);
5545 if (info->execstack)
5546 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5547 else if (info->noexecstack)
5548 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5552 asection *notesec = NULL;
5555 for (inputobj = info->input_bfds;
5557 inputobj = inputobj->link_next)
5561 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5563 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5566 if (s->flags & SEC_CODE)
5570 else if (bed->default_execstack)
5575 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5576 if (exec && info->relocatable
5577 && notesec->output_section != bfd_abs_section_ptr)
5578 notesec->output_section->flags |= SEC_CODE;
5582 /* Any syms created from now on start with -1 in
5583 got.refcount/offset and plt.refcount/offset. */
5584 elf_hash_table (info)->init_got_refcount
5585 = elf_hash_table (info)->init_got_offset;
5586 elf_hash_table (info)->init_plt_refcount
5587 = elf_hash_table (info)->init_plt_offset;
5589 if (info->relocatable
5590 && !_bfd_elf_size_group_sections (info))
5593 /* The backend may have to create some sections regardless of whether
5594 we're dynamic or not. */
5595 if (bed->elf_backend_always_size_sections
5596 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5599 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5602 dynobj = elf_hash_table (info)->dynobj;
5604 /* If there were no dynamic objects in the link, there is nothing to
5609 if (elf_hash_table (info)->dynamic_sections_created)
5611 struct elf_info_failed eif;
5612 struct elf_link_hash_entry *h;
5614 struct bfd_elf_version_tree *t;
5615 struct bfd_elf_version_expr *d;
5617 bfd_boolean all_defined;
5619 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5620 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5624 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5626 if (soname_indx == (bfd_size_type) -1
5627 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5633 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5635 info->flags |= DF_SYMBOLIC;
5642 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5644 if (indx == (bfd_size_type) -1
5645 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5648 if (info->new_dtags)
5650 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5651 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5656 if (filter_shlib != NULL)
5660 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5661 filter_shlib, TRUE);
5662 if (indx == (bfd_size_type) -1
5663 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5667 if (auxiliary_filters != NULL)
5669 const char * const *p;
5671 for (p = auxiliary_filters; *p != NULL; p++)
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5687 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5689 if (indx == (bfd_size_type) -1
5690 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5694 if (depaudit != NULL)
5698 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5700 if (indx == (bfd_size_type) -1
5701 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5706 eif.verdefs = verdefs;
5709 /* If we are supposed to export all symbols into the dynamic symbol
5710 table (this is not the normal case), then do so. */
5711 if (info->export_dynamic
5712 || (info->executable && info->dynamic))
5714 elf_link_hash_traverse (elf_hash_table (info),
5715 _bfd_elf_export_symbol,
5721 /* Make all global versions with definition. */
5722 for (t = verdefs; t != NULL; t = t->next)
5723 for (d = t->globals.list; d != NULL; d = d->next)
5724 if (!d->symver && d->literal)
5726 const char *verstr, *name;
5727 size_t namelen, verlen, newlen;
5728 char *newname, *p, leading_char;
5729 struct elf_link_hash_entry *newh;
5731 leading_char = bfd_get_symbol_leading_char (output_bfd);
5733 namelen = strlen (name) + (leading_char != '\0');
5735 verlen = strlen (verstr);
5736 newlen = namelen + verlen + 3;
5738 newname = (char *) bfd_malloc (newlen);
5739 if (newname == NULL)
5741 newname[0] = leading_char;
5742 memcpy (newname + (leading_char != '\0'), name, namelen);
5744 /* Check the hidden versioned definition. */
5745 p = newname + namelen;
5747 memcpy (p, verstr, verlen + 1);
5748 newh = elf_link_hash_lookup (elf_hash_table (info),
5749 newname, FALSE, FALSE,
5752 || (newh->root.type != bfd_link_hash_defined
5753 && newh->root.type != bfd_link_hash_defweak))
5755 /* Check the default versioned definition. */
5757 memcpy (p, verstr, verlen + 1);
5758 newh = elf_link_hash_lookup (elf_hash_table (info),
5759 newname, FALSE, FALSE,
5764 /* Mark this version if there is a definition and it is
5765 not defined in a shared object. */
5767 && !newh->def_dynamic
5768 && (newh->root.type == bfd_link_hash_defined
5769 || newh->root.type == bfd_link_hash_defweak))
5773 /* Attach all the symbols to their version information. */
5774 asvinfo.info = info;
5775 asvinfo.verdefs = verdefs;
5776 asvinfo.failed = FALSE;
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5784 if (!info->allow_undefined_version)
5786 /* Check if all global versions have a definition. */
5788 for (t = verdefs; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5800 bfd_set_error (bfd_error_bad_value);
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link_next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5889 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5896 bfd_size_type strsize;
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5912 /* The backend must work out the sizes of all the other dynamic
5914 if (bed->elf_backend_size_dynamic_sections
5915 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5918 if (elf_hash_table (info)->dynamic_sections_created)
5920 unsigned long section_sym_count;
5923 /* Set up the version definition section. */
5924 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5925 BFD_ASSERT (s != NULL);
5927 /* We may have created additional version definitions if we are
5928 just linking a regular application. */
5929 verdefs = asvinfo.verdefs;
5931 /* Skip anonymous version tag. */
5932 if (verdefs != NULL && verdefs->vernum == 0)
5933 verdefs = verdefs->next;
5935 if (verdefs == NULL && !info->create_default_symver)
5936 s->flags |= SEC_EXCLUDE;
5941 struct bfd_elf_version_tree *t;
5943 Elf_Internal_Verdef def;
5944 Elf_Internal_Verdaux defaux;
5945 struct bfd_link_hash_entry *bh;
5946 struct elf_link_hash_entry *h;
5952 /* Make space for the base version. */
5953 size += sizeof (Elf_External_Verdef);
5954 size += sizeof (Elf_External_Verdaux);
5957 /* Make space for the default version. */
5958 if (info->create_default_symver)
5960 size += sizeof (Elf_External_Verdef);
5964 for (t = verdefs; t != NULL; t = t->next)
5966 struct bfd_elf_version_deps *n;
5968 /* Don't emit base version twice. */
5972 size += sizeof (Elf_External_Verdef);
5973 size += sizeof (Elf_External_Verdaux);
5976 for (n = t->deps; n != NULL; n = n->next)
5977 size += sizeof (Elf_External_Verdaux);
5981 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5982 if (s->contents == NULL && s->size != 0)
5985 /* Fill in the version definition section. */
5989 def.vd_version = VER_DEF_CURRENT;
5990 def.vd_flags = VER_FLG_BASE;
5993 if (info->create_default_symver)
5995 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5996 def.vd_next = sizeof (Elf_External_Verdef);
6000 def.vd_aux = sizeof (Elf_External_Verdef);
6001 def.vd_next = (sizeof (Elf_External_Verdef)
6002 + sizeof (Elf_External_Verdaux));
6005 if (soname_indx != (bfd_size_type) -1)
6007 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6009 def.vd_hash = bfd_elf_hash (soname);
6010 defaux.vda_name = soname_indx;
6017 name = lbasename (output_bfd->filename);
6018 def.vd_hash = bfd_elf_hash (name);
6019 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6021 if (indx == (bfd_size_type) -1)
6023 defaux.vda_name = indx;
6025 defaux.vda_next = 0;
6027 _bfd_elf_swap_verdef_out (output_bfd, &def,
6028 (Elf_External_Verdef *) p);
6029 p += sizeof (Elf_External_Verdef);
6030 if (info->create_default_symver)
6032 /* Add a symbol representing this version. */
6034 if (! (_bfd_generic_link_add_one_symbol
6035 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6037 get_elf_backend_data (dynobj)->collect, &bh)))
6039 h = (struct elf_link_hash_entry *) bh;
6042 h->type = STT_OBJECT;
6043 h->verinfo.vertree = NULL;
6045 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6048 /* Create a duplicate of the base version with the same
6049 aux block, but different flags. */
6052 def.vd_aux = sizeof (Elf_External_Verdef);
6054 def.vd_next = (sizeof (Elf_External_Verdef)
6055 + sizeof (Elf_External_Verdaux));
6058 _bfd_elf_swap_verdef_out (output_bfd, &def,
6059 (Elf_External_Verdef *) p);
6060 p += sizeof (Elf_External_Verdef);
6062 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6063 (Elf_External_Verdaux *) p);
6064 p += sizeof (Elf_External_Verdaux);
6066 for (t = verdefs; t != NULL; t = t->next)
6069 struct bfd_elf_version_deps *n;
6071 /* Don't emit the base version twice. */
6076 for (n = t->deps; n != NULL; n = n->next)
6079 /* Add a symbol representing this version. */
6081 if (! (_bfd_generic_link_add_one_symbol
6082 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6084 get_elf_backend_data (dynobj)->collect, &bh)))
6086 h = (struct elf_link_hash_entry *) bh;
6089 h->type = STT_OBJECT;
6090 h->verinfo.vertree = t;
6092 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6095 def.vd_version = VER_DEF_CURRENT;
6097 if (t->globals.list == NULL
6098 && t->locals.list == NULL
6100 def.vd_flags |= VER_FLG_WEAK;
6101 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6102 def.vd_cnt = cdeps + 1;
6103 def.vd_hash = bfd_elf_hash (t->name);
6104 def.vd_aux = sizeof (Elf_External_Verdef);
6107 /* If a basever node is next, it *must* be the last node in
6108 the chain, otherwise Verdef construction breaks. */
6109 if (t->next != NULL && t->next->vernum == 0)
6110 BFD_ASSERT (t->next->next == NULL);
6112 if (t->next != NULL && t->next->vernum != 0)
6113 def.vd_next = (sizeof (Elf_External_Verdef)
6114 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6116 _bfd_elf_swap_verdef_out (output_bfd, &def,
6117 (Elf_External_Verdef *) p);
6118 p += sizeof (Elf_External_Verdef);
6120 defaux.vda_name = h->dynstr_index;
6121 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6123 defaux.vda_next = 0;
6124 if (t->deps != NULL)
6125 defaux.vda_next = sizeof (Elf_External_Verdaux);
6126 t->name_indx = defaux.vda_name;
6128 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6129 (Elf_External_Verdaux *) p);
6130 p += sizeof (Elf_External_Verdaux);
6132 for (n = t->deps; n != NULL; n = n->next)
6134 if (n->version_needed == NULL)
6136 /* This can happen if there was an error in the
6138 defaux.vda_name = 0;
6142 defaux.vda_name = n->version_needed->name_indx;
6143 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6146 if (n->next == NULL)
6147 defaux.vda_next = 0;
6149 defaux.vda_next = sizeof (Elf_External_Verdaux);
6151 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6152 (Elf_External_Verdaux *) p);
6153 p += sizeof (Elf_External_Verdaux);
6157 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6158 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6161 elf_tdata (output_bfd)->cverdefs = cdefs;
6164 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6166 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6169 else if (info->flags & DF_BIND_NOW)
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6177 if (info->executable)
6178 info->flags_1 &= ~ (DF_1_INITFIRST
6181 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6185 /* Work out the size of the version reference section. */
6187 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6188 BFD_ASSERT (s != NULL);
6190 struct elf_find_verdep_info sinfo;
6193 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6194 if (sinfo.vers == 0)
6196 sinfo.failed = FALSE;
6198 elf_link_hash_traverse (elf_hash_table (info),
6199 _bfd_elf_link_find_version_dependencies,
6204 if (elf_tdata (output_bfd)->verref == NULL)
6205 s->flags |= SEC_EXCLUDE;
6208 Elf_Internal_Verneed *t;
6213 /* Build the version dependency section. */
6216 for (t = elf_tdata (output_bfd)->verref;
6220 Elf_Internal_Vernaux *a;
6222 size += sizeof (Elf_External_Verneed);
6224 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6225 size += sizeof (Elf_External_Vernaux);
6229 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6230 if (s->contents == NULL)
6234 for (t = elf_tdata (output_bfd)->verref;
6239 Elf_Internal_Vernaux *a;
6243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6246 t->vn_version = VER_NEED_CURRENT;
6248 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6249 elf_dt_name (t->vn_bfd) != NULL
6250 ? elf_dt_name (t->vn_bfd)
6251 : lbasename (t->vn_bfd->filename),
6253 if (indx == (bfd_size_type) -1)
6256 t->vn_aux = sizeof (Elf_External_Verneed);
6257 if (t->vn_nextref == NULL)
6260 t->vn_next = (sizeof (Elf_External_Verneed)
6261 + caux * sizeof (Elf_External_Vernaux));
6263 _bfd_elf_swap_verneed_out (output_bfd, t,
6264 (Elf_External_Verneed *) p);
6265 p += sizeof (Elf_External_Verneed);
6267 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6269 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6270 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6271 a->vna_nodename, FALSE);
6272 if (indx == (bfd_size_type) -1)
6275 if (a->vna_nextptr == NULL)
6278 a->vna_next = sizeof (Elf_External_Vernaux);
6280 _bfd_elf_swap_vernaux_out (output_bfd, a,
6281 (Elf_External_Vernaux *) p);
6282 p += sizeof (Elf_External_Vernaux);
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6287 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6290 elf_tdata (output_bfd)->cverrefs = crefs;
6294 if ((elf_tdata (output_bfd)->cverrefs == 0
6295 && elf_tdata (output_bfd)->cverdefs == 0)
6296 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6297 §ion_sym_count) == 0)
6299 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6300 s->flags |= SEC_EXCLUDE;
6306 /* Find the first non-excluded output section. We'll use its
6307 section symbol for some emitted relocs. */
6309 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6313 for (s = output_bfd->sections; s != NULL; s = s->next)
6314 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6315 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6317 elf_hash_table (info)->text_index_section = s;
6322 /* Find two non-excluded output sections, one for code, one for data.
6323 We'll use their section symbols for some emitted relocs. */
6325 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6329 /* Data first, since setting text_index_section changes
6330 _bfd_elf_link_omit_section_dynsym. */
6331 for (s = output_bfd->sections; s != NULL; s = s->next)
6332 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6333 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6335 elf_hash_table (info)->data_index_section = s;
6339 for (s = output_bfd->sections; s != NULL; s = s->next)
6340 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6341 == (SEC_ALLOC | SEC_READONLY))
6342 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6344 elf_hash_table (info)->text_index_section = s;
6348 if (elf_hash_table (info)->text_index_section == NULL)
6349 elf_hash_table (info)->text_index_section
6350 = elf_hash_table (info)->data_index_section;
6354 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6356 const struct elf_backend_data *bed;
6358 if (!is_elf_hash_table (info->hash))
6361 bed = get_elf_backend_data (output_bfd);
6362 (*bed->elf_backend_init_index_section) (output_bfd, info);
6364 if (elf_hash_table (info)->dynamic_sections_created)
6368 bfd_size_type dynsymcount;
6369 unsigned long section_sym_count;
6370 unsigned int dtagcount;
6372 dynobj = elf_hash_table (info)->dynobj;
6374 /* Assign dynsym indicies. In a shared library we generate a
6375 section symbol for each output section, which come first.
6376 Next come all of the back-end allocated local dynamic syms,
6377 followed by the rest of the global symbols. */
6379 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6380 §ion_sym_count);
6382 /* Work out the size of the symbol version section. */
6383 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6384 BFD_ASSERT (s != NULL);
6385 if (dynsymcount != 0
6386 && (s->flags & SEC_EXCLUDE) == 0)
6388 s->size = dynsymcount * sizeof (Elf_External_Versym);
6389 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6390 if (s->contents == NULL)
6393 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6397 /* Set the size of the .dynsym and .hash sections. We counted
6398 the number of dynamic symbols in elf_link_add_object_symbols.
6399 We will build the contents of .dynsym and .hash when we build
6400 the final symbol table, because until then we do not know the
6401 correct value to give the symbols. We built the .dynstr
6402 section as we went along in elf_link_add_object_symbols. */
6403 s = bfd_get_section_by_name (dynobj, ".dynsym");
6404 BFD_ASSERT (s != NULL);
6405 s->size = dynsymcount * bed->s->sizeof_sym;
6407 if (dynsymcount != 0)
6409 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6410 if (s->contents == NULL)
6413 /* The first entry in .dynsym is a dummy symbol.
6414 Clear all the section syms, in case we don't output them all. */
6415 ++section_sym_count;
6416 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6419 elf_hash_table (info)->bucketcount = 0;
6421 /* Compute the size of the hashing table. As a side effect this
6422 computes the hash values for all the names we export. */
6423 if (info->emit_hash)
6425 unsigned long int *hashcodes;
6426 struct hash_codes_info hashinf;
6428 unsigned long int nsyms;
6430 size_t hash_entry_size;
6432 /* Compute the hash values for all exported symbols. At the same
6433 time store the values in an array so that we could use them for
6435 amt = dynsymcount * sizeof (unsigned long int);
6436 hashcodes = (unsigned long int *) bfd_malloc (amt);
6437 if (hashcodes == NULL)
6439 hashinf.hashcodes = hashcodes;
6440 hashinf.error = FALSE;
6442 /* Put all hash values in HASHCODES. */
6443 elf_link_hash_traverse (elf_hash_table (info),
6444 elf_collect_hash_codes, &hashinf);
6451 nsyms = hashinf.hashcodes - hashcodes;
6453 = compute_bucket_count (info, hashcodes, nsyms, 0);
6456 if (bucketcount == 0)
6459 elf_hash_table (info)->bucketcount = bucketcount;
6461 s = bfd_get_section_by_name (dynobj, ".hash");
6462 BFD_ASSERT (s != NULL);
6463 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6464 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6465 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6466 if (s->contents == NULL)
6469 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6470 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6471 s->contents + hash_entry_size);
6474 if (info->emit_gnu_hash)
6477 unsigned char *contents;
6478 struct collect_gnu_hash_codes cinfo;
6482 memset (&cinfo, 0, sizeof (cinfo));
6484 /* Compute the hash values for all exported symbols. At the same
6485 time store the values in an array so that we could use them for
6487 amt = dynsymcount * 2 * sizeof (unsigned long int);
6488 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6489 if (cinfo.hashcodes == NULL)
6492 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6493 cinfo.min_dynindx = -1;
6494 cinfo.output_bfd = output_bfd;
6497 /* Put all hash values in HASHCODES. */
6498 elf_link_hash_traverse (elf_hash_table (info),
6499 elf_collect_gnu_hash_codes, &cinfo);
6502 free (cinfo.hashcodes);
6507 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6509 if (bucketcount == 0)
6511 free (cinfo.hashcodes);
6515 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6516 BFD_ASSERT (s != NULL);
6518 if (cinfo.nsyms == 0)
6520 /* Empty .gnu.hash section is special. */
6521 BFD_ASSERT (cinfo.min_dynindx == -1);
6522 free (cinfo.hashcodes);
6523 s->size = 5 * 4 + bed->s->arch_size / 8;
6524 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6525 if (contents == NULL)
6527 s->contents = contents;
6528 /* 1 empty bucket. */
6529 bfd_put_32 (output_bfd, 1, contents);
6530 /* SYMIDX above the special symbol 0. */
6531 bfd_put_32 (output_bfd, 1, contents + 4);
6532 /* Just one word for bitmask. */
6533 bfd_put_32 (output_bfd, 1, contents + 8);
6534 /* Only hash fn bloom filter. */
6535 bfd_put_32 (output_bfd, 0, contents + 12);
6536 /* No hashes are valid - empty bitmask. */
6537 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6538 /* No hashes in the only bucket. */
6539 bfd_put_32 (output_bfd, 0,
6540 contents + 16 + bed->s->arch_size / 8);
6544 unsigned long int maskwords, maskbitslog2, x;
6545 BFD_ASSERT (cinfo.min_dynindx != -1);
6549 while ((x >>= 1) != 0)
6551 if (maskbitslog2 < 3)
6553 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6554 maskbitslog2 = maskbitslog2 + 3;
6556 maskbitslog2 = maskbitslog2 + 2;
6557 if (bed->s->arch_size == 64)
6559 if (maskbitslog2 == 5)
6565 cinfo.mask = (1 << cinfo.shift1) - 1;
6566 cinfo.shift2 = maskbitslog2;
6567 cinfo.maskbits = 1 << maskbitslog2;
6568 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6569 amt = bucketcount * sizeof (unsigned long int) * 2;
6570 amt += maskwords * sizeof (bfd_vma);
6571 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6572 if (cinfo.bitmask == NULL)
6574 free (cinfo.hashcodes);
6578 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6579 cinfo.indx = cinfo.counts + bucketcount;
6580 cinfo.symindx = dynsymcount - cinfo.nsyms;
6581 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6583 /* Determine how often each hash bucket is used. */
6584 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6585 for (i = 0; i < cinfo.nsyms; ++i)
6586 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6588 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6589 if (cinfo.counts[i] != 0)
6591 cinfo.indx[i] = cnt;
6592 cnt += cinfo.counts[i];
6594 BFD_ASSERT (cnt == dynsymcount);
6595 cinfo.bucketcount = bucketcount;
6596 cinfo.local_indx = cinfo.min_dynindx;
6598 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6599 s->size += cinfo.maskbits / 8;
6600 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6601 if (contents == NULL)
6603 free (cinfo.bitmask);
6604 free (cinfo.hashcodes);
6608 s->contents = contents;
6609 bfd_put_32 (output_bfd, bucketcount, contents);
6610 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6611 bfd_put_32 (output_bfd, maskwords, contents + 8);
6612 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6613 contents += 16 + cinfo.maskbits / 8;
6615 for (i = 0; i < bucketcount; ++i)
6617 if (cinfo.counts[i] == 0)
6618 bfd_put_32 (output_bfd, 0, contents);
6620 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6624 cinfo.contents = contents;
6626 /* Renumber dynamic symbols, populate .gnu.hash section. */
6627 elf_link_hash_traverse (elf_hash_table (info),
6628 elf_renumber_gnu_hash_syms, &cinfo);
6630 contents = s->contents + 16;
6631 for (i = 0; i < maskwords; ++i)
6633 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6635 contents += bed->s->arch_size / 8;
6638 free (cinfo.bitmask);
6639 free (cinfo.hashcodes);
6643 s = bfd_get_section_by_name (dynobj, ".dynstr");
6644 BFD_ASSERT (s != NULL);
6646 elf_finalize_dynstr (output_bfd, info);
6648 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6650 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6651 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6658 /* Indicate that we are only retrieving symbol values from this
6662 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6664 if (is_elf_hash_table (info->hash))
6665 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6666 _bfd_generic_link_just_syms (sec, info);
6669 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6672 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6675 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6676 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6679 /* Finish SHF_MERGE section merging. */
6682 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6687 if (!is_elf_hash_table (info->hash))
6690 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6691 if ((ibfd->flags & DYNAMIC) == 0)
6692 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6693 if ((sec->flags & SEC_MERGE) != 0
6694 && !bfd_is_abs_section (sec->output_section))
6696 struct bfd_elf_section_data *secdata;
6698 secdata = elf_section_data (sec);
6699 if (! _bfd_add_merge_section (abfd,
6700 &elf_hash_table (info)->merge_info,
6701 sec, &secdata->sec_info))
6703 else if (secdata->sec_info)
6704 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6707 if (elf_hash_table (info)->merge_info != NULL)
6708 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6709 merge_sections_remove_hook);
6713 /* Create an entry in an ELF linker hash table. */
6715 struct bfd_hash_entry *
6716 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6717 struct bfd_hash_table *table,
6720 /* Allocate the structure if it has not already been allocated by a
6724 entry = (struct bfd_hash_entry *)
6725 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6730 /* Call the allocation method of the superclass. */
6731 entry = _bfd_link_hash_newfunc (entry, table, string);
6734 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6735 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6737 /* Set local fields. */
6740 ret->got = htab->init_got_refcount;
6741 ret->plt = htab->init_plt_refcount;
6742 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6743 - offsetof (struct elf_link_hash_entry, size)));
6744 /* Assume that we have been called by a non-ELF symbol reader.
6745 This flag is then reset by the code which reads an ELF input
6746 file. This ensures that a symbol created by a non-ELF symbol
6747 reader will have the flag set correctly. */
6754 /* Copy data from an indirect symbol to its direct symbol, hiding the
6755 old indirect symbol. Also used for copying flags to a weakdef. */
6758 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6759 struct elf_link_hash_entry *dir,
6760 struct elf_link_hash_entry *ind)
6762 struct elf_link_hash_table *htab;
6764 /* Copy down any references that we may have already seen to the
6765 symbol which just became indirect. */
6767 dir->ref_dynamic |= ind->ref_dynamic;
6768 dir->ref_regular |= ind->ref_regular;
6769 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6770 dir->non_got_ref |= ind->non_got_ref;
6771 dir->needs_plt |= ind->needs_plt;
6772 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6774 if (ind->root.type != bfd_link_hash_indirect)
6777 /* Copy over the global and procedure linkage table refcount entries.
6778 These may have been already set up by a check_relocs routine. */
6779 htab = elf_hash_table (info);
6780 if (ind->got.refcount > htab->init_got_refcount.refcount)
6782 if (dir->got.refcount < 0)
6783 dir->got.refcount = 0;
6784 dir->got.refcount += ind->got.refcount;
6785 ind->got.refcount = htab->init_got_refcount.refcount;
6788 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6790 if (dir->plt.refcount < 0)
6791 dir->plt.refcount = 0;
6792 dir->plt.refcount += ind->plt.refcount;
6793 ind->plt.refcount = htab->init_plt_refcount.refcount;
6796 if (ind->dynindx != -1)
6798 if (dir->dynindx != -1)
6799 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6800 dir->dynindx = ind->dynindx;
6801 dir->dynstr_index = ind->dynstr_index;
6803 ind->dynstr_index = 0;
6808 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6809 struct elf_link_hash_entry *h,
6810 bfd_boolean force_local)
6812 /* STT_GNU_IFUNC symbol must go through PLT. */
6813 if (h->type != STT_GNU_IFUNC)
6815 h->plt = elf_hash_table (info)->init_plt_offset;
6820 h->forced_local = 1;
6821 if (h->dynindx != -1)
6824 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6830 /* Initialize an ELF linker hash table. */
6833 _bfd_elf_link_hash_table_init
6834 (struct elf_link_hash_table *table,
6836 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6837 struct bfd_hash_table *,
6839 unsigned int entsize,
6840 enum elf_target_id target_id)
6843 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6845 memset (table, 0, sizeof * table);
6846 table->init_got_refcount.refcount = can_refcount - 1;
6847 table->init_plt_refcount.refcount = can_refcount - 1;
6848 table->init_got_offset.offset = -(bfd_vma) 1;
6849 table->init_plt_offset.offset = -(bfd_vma) 1;
6850 /* The first dynamic symbol is a dummy. */
6851 table->dynsymcount = 1;
6853 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6855 table->root.type = bfd_link_elf_hash_table;
6856 table->hash_table_id = target_id;
6861 /* Create an ELF linker hash table. */
6863 struct bfd_link_hash_table *
6864 _bfd_elf_link_hash_table_create (bfd *abfd)
6866 struct elf_link_hash_table *ret;
6867 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6869 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6873 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6874 sizeof (struct elf_link_hash_entry),
6884 /* This is a hook for the ELF emulation code in the generic linker to
6885 tell the backend linker what file name to use for the DT_NEEDED
6886 entry for a dynamic object. */
6889 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6891 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6892 && bfd_get_format (abfd) == bfd_object)
6893 elf_dt_name (abfd) = name;
6897 bfd_elf_get_dyn_lib_class (bfd *abfd)
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 lib_class = elf_dyn_lib_class (abfd);
6909 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6911 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6912 && bfd_get_format (abfd) == bfd_object)
6913 elf_dyn_lib_class (abfd) = lib_class;
6916 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6917 the linker ELF emulation code. */
6919 struct bfd_link_needed_list *
6920 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6921 struct bfd_link_info *info)
6923 if (! is_elf_hash_table (info->hash))
6925 return elf_hash_table (info)->needed;
6928 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6929 hook for the linker ELF emulation code. */
6931 struct bfd_link_needed_list *
6932 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6933 struct bfd_link_info *info)
6935 if (! is_elf_hash_table (info->hash))
6937 return elf_hash_table (info)->runpath;
6940 /* Get the name actually used for a dynamic object for a link. This
6941 is the SONAME entry if there is one. Otherwise, it is the string
6942 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6945 bfd_elf_get_dt_soname (bfd *abfd)
6947 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6948 && bfd_get_format (abfd) == bfd_object)
6949 return elf_dt_name (abfd);
6953 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6954 the ELF linker emulation code. */
6957 bfd_elf_get_bfd_needed_list (bfd *abfd,
6958 struct bfd_link_needed_list **pneeded)
6961 bfd_byte *dynbuf = NULL;
6962 unsigned int elfsec;
6963 unsigned long shlink;
6964 bfd_byte *extdyn, *extdynend;
6966 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6970 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6971 || bfd_get_format (abfd) != bfd_object)
6974 s = bfd_get_section_by_name (abfd, ".dynamic");
6975 if (s == NULL || s->size == 0)
6978 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6981 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6982 if (elfsec == SHN_BAD)
6985 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6987 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6988 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6991 extdynend = extdyn + s->size;
6992 for (; extdyn < extdynend; extdyn += extdynsize)
6994 Elf_Internal_Dyn dyn;
6996 (*swap_dyn_in) (abfd, extdyn, &dyn);
6998 if (dyn.d_tag == DT_NULL)
7001 if (dyn.d_tag == DT_NEEDED)
7004 struct bfd_link_needed_list *l;
7005 unsigned int tagv = dyn.d_un.d_val;
7008 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7013 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7034 struct elf_symbuf_symbol
7036 unsigned long st_name; /* Symbol name, index in string tbl */
7037 unsigned char st_info; /* Type and binding attributes */
7038 unsigned char st_other; /* Visibilty, and target specific */
7041 struct elf_symbuf_head
7043 struct elf_symbuf_symbol *ssym;
7044 bfd_size_type count;
7045 unsigned int st_shndx;
7052 Elf_Internal_Sym *isym;
7053 struct elf_symbuf_symbol *ssym;
7058 /* Sort references to symbols by ascending section number. */
7061 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7063 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7064 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7066 return s1->st_shndx - s2->st_shndx;
7070 elf_sym_name_compare (const void *arg1, const void *arg2)
7072 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7073 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7074 return strcmp (s1->name, s2->name);
7077 static struct elf_symbuf_head *
7078 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7080 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7081 struct elf_symbuf_symbol *ssym;
7082 struct elf_symbuf_head *ssymbuf, *ssymhead;
7083 bfd_size_type i, shndx_count, total_size;
7085 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7089 for (ind = indbuf, i = 0; i < symcount; i++)
7090 if (isymbuf[i].st_shndx != SHN_UNDEF)
7091 *ind++ = &isymbuf[i];
7094 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7095 elf_sort_elf_symbol);
7098 if (indbufend > indbuf)
7099 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7100 if (ind[0]->st_shndx != ind[1]->st_shndx)
7103 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7104 + (indbufend - indbuf) * sizeof (*ssym));
7105 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7106 if (ssymbuf == NULL)
7112 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7113 ssymbuf->ssym = NULL;
7114 ssymbuf->count = shndx_count;
7115 ssymbuf->st_shndx = 0;
7116 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7118 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7121 ssymhead->ssym = ssym;
7122 ssymhead->count = 0;
7123 ssymhead->st_shndx = (*ind)->st_shndx;
7125 ssym->st_name = (*ind)->st_name;
7126 ssym->st_info = (*ind)->st_info;
7127 ssym->st_other = (*ind)->st_other;
7130 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7131 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7138 /* Check if 2 sections define the same set of local and global
7142 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7143 struct bfd_link_info *info)
7146 const struct elf_backend_data *bed1, *bed2;
7147 Elf_Internal_Shdr *hdr1, *hdr2;
7148 bfd_size_type symcount1, symcount2;
7149 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7150 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7151 Elf_Internal_Sym *isym, *isymend;
7152 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7153 bfd_size_type count1, count2, i;
7154 unsigned int shndx1, shndx2;
7160 /* Both sections have to be in ELF. */
7161 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7162 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7165 if (elf_section_type (sec1) != elf_section_type (sec2))
7168 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7169 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7170 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7173 bed1 = get_elf_backend_data (bfd1);
7174 bed2 = get_elf_backend_data (bfd2);
7175 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7176 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7177 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7178 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7180 if (symcount1 == 0 || symcount2 == 0)
7186 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7187 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7189 if (ssymbuf1 == NULL)
7191 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7193 if (isymbuf1 == NULL)
7196 if (!info->reduce_memory_overheads)
7197 elf_tdata (bfd1)->symbuf = ssymbuf1
7198 = elf_create_symbuf (symcount1, isymbuf1);
7201 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7203 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7205 if (isymbuf2 == NULL)
7208 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7209 elf_tdata (bfd2)->symbuf = ssymbuf2
7210 = elf_create_symbuf (symcount2, isymbuf2);
7213 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7215 /* Optimized faster version. */
7216 bfd_size_type lo, hi, mid;
7217 struct elf_symbol *symp;
7218 struct elf_symbuf_symbol *ssym, *ssymend;
7221 hi = ssymbuf1->count;
7226 mid = (lo + hi) / 2;
7227 if (shndx1 < ssymbuf1[mid].st_shndx)
7229 else if (shndx1 > ssymbuf1[mid].st_shndx)
7233 count1 = ssymbuf1[mid].count;
7240 hi = ssymbuf2->count;
7245 mid = (lo + hi) / 2;
7246 if (shndx2 < ssymbuf2[mid].st_shndx)
7248 else if (shndx2 > ssymbuf2[mid].st_shndx)
7252 count2 = ssymbuf2[mid].count;
7258 if (count1 == 0 || count2 == 0 || count1 != count2)
7261 symtable1 = (struct elf_symbol *)
7262 bfd_malloc (count1 * sizeof (struct elf_symbol));
7263 symtable2 = (struct elf_symbol *)
7264 bfd_malloc (count2 * sizeof (struct elf_symbol));
7265 if (symtable1 == NULL || symtable2 == NULL)
7269 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7270 ssym < ssymend; ssym++, symp++)
7272 symp->u.ssym = ssym;
7273 symp->name = bfd_elf_string_from_elf_section (bfd1,
7279 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7280 ssym < ssymend; ssym++, symp++)
7282 symp->u.ssym = ssym;
7283 symp->name = bfd_elf_string_from_elf_section (bfd2,
7288 /* Sort symbol by name. */
7289 qsort (symtable1, count1, sizeof (struct elf_symbol),
7290 elf_sym_name_compare);
7291 qsort (symtable2, count1, sizeof (struct elf_symbol),
7292 elf_sym_name_compare);
7294 for (i = 0; i < count1; i++)
7295 /* Two symbols must have the same binding, type and name. */
7296 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7297 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7298 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7305 symtable1 = (struct elf_symbol *)
7306 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7307 symtable2 = (struct elf_symbol *)
7308 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7309 if (symtable1 == NULL || symtable2 == NULL)
7312 /* Count definitions in the section. */
7314 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7315 if (isym->st_shndx == shndx1)
7316 symtable1[count1++].u.isym = isym;
7319 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7320 if (isym->st_shndx == shndx2)
7321 symtable2[count2++].u.isym = isym;
7323 if (count1 == 0 || count2 == 0 || count1 != count2)
7326 for (i = 0; i < count1; i++)
7328 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7329 symtable1[i].u.isym->st_name);
7331 for (i = 0; i < count2; i++)
7333 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7334 symtable2[i].u.isym->st_name);
7336 /* Sort symbol by name. */
7337 qsort (symtable1, count1, sizeof (struct elf_symbol),
7338 elf_sym_name_compare);
7339 qsort (symtable2, count1, sizeof (struct elf_symbol),
7340 elf_sym_name_compare);
7342 for (i = 0; i < count1; i++)
7343 /* Two symbols must have the same binding, type and name. */
7344 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7345 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7346 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7364 /* Return TRUE if 2 section types are compatible. */
7367 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7368 bfd *bbfd, const asection *bsec)
7372 || abfd->xvec->flavour != bfd_target_elf_flavour
7373 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7376 return elf_section_type (asec) == elf_section_type (bsec);
7379 /* Final phase of ELF linker. */
7381 /* A structure we use to avoid passing large numbers of arguments. */
7383 struct elf_final_link_info
7385 /* General link information. */
7386 struct bfd_link_info *info;
7389 /* Symbol string table. */
7390 struct bfd_strtab_hash *symstrtab;
7391 /* .dynsym section. */
7392 asection *dynsym_sec;
7393 /* .hash section. */
7395 /* symbol version section (.gnu.version). */
7396 asection *symver_sec;
7397 /* Buffer large enough to hold contents of any section. */
7399 /* Buffer large enough to hold external relocs of any section. */
7400 void *external_relocs;
7401 /* Buffer large enough to hold internal relocs of any section. */
7402 Elf_Internal_Rela *internal_relocs;
7403 /* Buffer large enough to hold external local symbols of any input
7405 bfd_byte *external_syms;
7406 /* And a buffer for symbol section indices. */
7407 Elf_External_Sym_Shndx *locsym_shndx;
7408 /* Buffer large enough to hold internal local symbols of any input
7410 Elf_Internal_Sym *internal_syms;
7411 /* Array large enough to hold a symbol index for each local symbol
7412 of any input BFD. */
7414 /* Array large enough to hold a section pointer for each local
7415 symbol of any input BFD. */
7416 asection **sections;
7417 /* Buffer to hold swapped out symbols. */
7419 /* And one for symbol section indices. */
7420 Elf_External_Sym_Shndx *symshndxbuf;
7421 /* Number of swapped out symbols in buffer. */
7422 size_t symbuf_count;
7423 /* Number of symbols which fit in symbuf. */
7425 /* And same for symshndxbuf. */
7426 size_t shndxbuf_size;
7429 /* This struct is used to pass information to elf_link_output_extsym. */
7431 struct elf_outext_info
7434 bfd_boolean localsyms;
7435 struct elf_final_link_info *finfo;
7439 /* Support for evaluating a complex relocation.
7441 Complex relocations are generalized, self-describing relocations. The
7442 implementation of them consists of two parts: complex symbols, and the
7443 relocations themselves.
7445 The relocations are use a reserved elf-wide relocation type code (R_RELC
7446 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7447 information (start bit, end bit, word width, etc) into the addend. This
7448 information is extracted from CGEN-generated operand tables within gas.
7450 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7451 internal) representing prefix-notation expressions, including but not
7452 limited to those sorts of expressions normally encoded as addends in the
7453 addend field. The symbol mangling format is:
7456 | <unary-operator> ':' <node>
7457 | <binary-operator> ':' <node> ':' <node>
7460 <literal> := 's' <digits=N> ':' <N character symbol name>
7461 | 'S' <digits=N> ':' <N character section name>
7465 <binary-operator> := as in C
7466 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7469 set_symbol_value (bfd *bfd_with_globals,
7470 Elf_Internal_Sym *isymbuf,
7475 struct elf_link_hash_entry **sym_hashes;
7476 struct elf_link_hash_entry *h;
7477 size_t extsymoff = locsymcount;
7479 if (symidx < locsymcount)
7481 Elf_Internal_Sym *sym;
7483 sym = isymbuf + symidx;
7484 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7486 /* It is a local symbol: move it to the
7487 "absolute" section and give it a value. */
7488 sym->st_shndx = SHN_ABS;
7489 sym->st_value = val;
7492 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7496 /* It is a global symbol: set its link type
7497 to "defined" and give it a value. */
7499 sym_hashes = elf_sym_hashes (bfd_with_globals);
7500 h = sym_hashes [symidx - extsymoff];
7501 while (h->root.type == bfd_link_hash_indirect
7502 || h->root.type == bfd_link_hash_warning)
7503 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7504 h->root.type = bfd_link_hash_defined;
7505 h->root.u.def.value = val;
7506 h->root.u.def.section = bfd_abs_section_ptr;
7510 resolve_symbol (const char *name,
7512 struct elf_final_link_info *finfo,
7514 Elf_Internal_Sym *isymbuf,
7517 Elf_Internal_Sym *sym;
7518 struct bfd_link_hash_entry *global_entry;
7519 const char *candidate = NULL;
7520 Elf_Internal_Shdr *symtab_hdr;
7523 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7525 for (i = 0; i < locsymcount; ++ i)
7529 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7532 candidate = bfd_elf_string_from_elf_section (input_bfd,
7533 symtab_hdr->sh_link,
7536 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7537 name, candidate, (unsigned long) sym->st_value);
7539 if (candidate && strcmp (candidate, name) == 0)
7541 asection *sec = finfo->sections [i];
7543 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7544 *result += sec->output_offset + sec->output_section->vma;
7546 printf ("Found symbol with value %8.8lx\n",
7547 (unsigned long) *result);
7553 /* Hmm, haven't found it yet. perhaps it is a global. */
7554 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7555 FALSE, FALSE, TRUE);
7559 if (global_entry->type == bfd_link_hash_defined
7560 || global_entry->type == bfd_link_hash_defweak)
7562 *result = (global_entry->u.def.value
7563 + global_entry->u.def.section->output_section->vma
7564 + global_entry->u.def.section->output_offset);
7566 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7567 global_entry->root.string, (unsigned long) *result);
7576 resolve_section (const char *name,
7583 for (curr = sections; curr; curr = curr->next)
7584 if (strcmp (curr->name, name) == 0)
7586 *result = curr->vma;
7590 /* Hmm. still haven't found it. try pseudo-section names. */
7591 for (curr = sections; curr; curr = curr->next)
7593 len = strlen (curr->name);
7594 if (len > strlen (name))
7597 if (strncmp (curr->name, name, len) == 0)
7599 if (strncmp (".end", name + len, 4) == 0)
7601 *result = curr->vma + curr->size;
7605 /* Insert more pseudo-section names here, if you like. */
7613 undefined_reference (const char *reftype, const char *name)
7615 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7620 eval_symbol (bfd_vma *result,
7623 struct elf_final_link_info *finfo,
7625 Elf_Internal_Sym *isymbuf,
7634 const char *sym = *symp;
7636 bfd_boolean symbol_is_section = FALSE;
7641 if (len < 1 || len > sizeof (symbuf))
7643 bfd_set_error (bfd_error_invalid_operation);
7656 *result = strtoul (sym, (char **) symp, 16);
7660 symbol_is_section = TRUE;
7663 symlen = strtol (sym, (char **) symp, 10);
7664 sym = *symp + 1; /* Skip the trailing ':'. */
7666 if (symend < sym || symlen + 1 > sizeof (symbuf))
7668 bfd_set_error (bfd_error_invalid_operation);
7672 memcpy (symbuf, sym, symlen);
7673 symbuf[symlen] = '\0';
7674 *symp = sym + symlen;
7676 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7677 the symbol as a section, or vice-versa. so we're pretty liberal in our
7678 interpretation here; section means "try section first", not "must be a
7679 section", and likewise with symbol. */
7681 if (symbol_is_section)
7683 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7684 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7685 isymbuf, locsymcount))
7687 undefined_reference ("section", symbuf);
7693 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7694 isymbuf, locsymcount)
7695 && !resolve_section (symbuf, finfo->output_bfd->sections,
7698 undefined_reference ("symbol", symbuf);
7705 /* All that remains are operators. */
7707 #define UNARY_OP(op) \
7708 if (strncmp (sym, #op, strlen (#op)) == 0) \
7710 sym += strlen (#op); \
7714 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7715 isymbuf, locsymcount, signed_p)) \
7718 *result = op ((bfd_signed_vma) a); \
7724 #define BINARY_OP(op) \
7725 if (strncmp (sym, #op, strlen (#op)) == 0) \
7727 sym += strlen (#op); \
7731 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7732 isymbuf, locsymcount, signed_p)) \
7735 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7736 isymbuf, locsymcount, signed_p)) \
7739 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7769 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7770 bfd_set_error (bfd_error_invalid_operation);
7776 put_value (bfd_vma size,
7777 unsigned long chunksz,
7782 location += (size - chunksz);
7784 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7792 bfd_put_8 (input_bfd, x, location);
7795 bfd_put_16 (input_bfd, x, location);
7798 bfd_put_32 (input_bfd, x, location);
7802 bfd_put_64 (input_bfd, x, location);
7812 get_value (bfd_vma size,
7813 unsigned long chunksz,
7819 for (; size; size -= chunksz, location += chunksz)
7827 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7830 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7833 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7837 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7848 decode_complex_addend (unsigned long *start, /* in bits */
7849 unsigned long *oplen, /* in bits */
7850 unsigned long *len, /* in bits */
7851 unsigned long *wordsz, /* in bytes */
7852 unsigned long *chunksz, /* in bytes */
7853 unsigned long *lsb0_p,
7854 unsigned long *signed_p,
7855 unsigned long *trunc_p,
7856 unsigned long encoded)
7858 * start = encoded & 0x3F;
7859 * len = (encoded >> 6) & 0x3F;
7860 * oplen = (encoded >> 12) & 0x3F;
7861 * wordsz = (encoded >> 18) & 0xF;
7862 * chunksz = (encoded >> 22) & 0xF;
7863 * lsb0_p = (encoded >> 27) & 1;
7864 * signed_p = (encoded >> 28) & 1;
7865 * trunc_p = (encoded >> 29) & 1;
7868 bfd_reloc_status_type
7869 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7870 asection *input_section ATTRIBUTE_UNUSED,
7872 Elf_Internal_Rela *rel,
7875 bfd_vma shift, x, mask;
7876 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7877 bfd_reloc_status_type r;
7879 /* Perform this reloc, since it is complex.
7880 (this is not to say that it necessarily refers to a complex
7881 symbol; merely that it is a self-describing CGEN based reloc.
7882 i.e. the addend has the complete reloc information (bit start, end,
7883 word size, etc) encoded within it.). */
7885 decode_complex_addend (&start, &oplen, &len, &wordsz,
7886 &chunksz, &lsb0_p, &signed_p,
7887 &trunc_p, rel->r_addend);
7889 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7892 shift = (start + 1) - len;
7894 shift = (8 * wordsz) - (start + len);
7896 /* FIXME: octets_per_byte. */
7897 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7900 printf ("Doing complex reloc: "
7901 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7902 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7903 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7904 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7905 oplen, (unsigned long) x, (unsigned long) mask,
7906 (unsigned long) relocation);
7911 /* Now do an overflow check. */
7912 r = bfd_check_overflow ((signed_p
7913 ? complain_overflow_signed
7914 : complain_overflow_unsigned),
7915 len, 0, (8 * wordsz),
7919 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7922 printf (" relocation: %8.8lx\n"
7923 " shifted mask: %8.8lx\n"
7924 " shifted/masked reloc: %8.8lx\n"
7925 " result: %8.8lx\n",
7926 (unsigned long) relocation, (unsigned long) (mask << shift),
7927 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7929 /* FIXME: octets_per_byte. */
7930 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7934 /* When performing a relocatable link, the input relocations are
7935 preserved. But, if they reference global symbols, the indices
7936 referenced must be updated. Update all the relocations found in
7940 elf_link_adjust_relocs (bfd *abfd,
7941 struct bfd_elf_section_reloc_data *reldata)
7944 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7946 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7947 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7948 bfd_vma r_type_mask;
7950 unsigned int count = reldata->count;
7951 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7953 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7955 swap_in = bed->s->swap_reloc_in;
7956 swap_out = bed->s->swap_reloc_out;
7958 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7960 swap_in = bed->s->swap_reloca_in;
7961 swap_out = bed->s->swap_reloca_out;
7966 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7969 if (bed->s->arch_size == 32)
7976 r_type_mask = 0xffffffff;
7980 erela = reldata->hdr->contents;
7981 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7983 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7986 if (*rel_hash == NULL)
7989 BFD_ASSERT ((*rel_hash)->indx >= 0);
7991 (*swap_in) (abfd, erela, irela);
7992 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7993 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7994 | (irela[j].r_info & r_type_mask));
7995 (*swap_out) (abfd, irela, erela);
7999 struct elf_link_sort_rela
8005 enum elf_reloc_type_class type;
8006 /* We use this as an array of size int_rels_per_ext_rel. */
8007 Elf_Internal_Rela rela[1];
8011 elf_link_sort_cmp1 (const void *A, const void *B)
8013 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8014 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8015 int relativea, relativeb;
8017 relativea = a->type == reloc_class_relative;
8018 relativeb = b->type == reloc_class_relative;
8020 if (relativea < relativeb)
8022 if (relativea > relativeb)
8024 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8026 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8028 if (a->rela->r_offset < b->rela->r_offset)
8030 if (a->rela->r_offset > b->rela->r_offset)
8036 elf_link_sort_cmp2 (const void *A, const void *B)
8038 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8039 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8042 if (a->u.offset < b->u.offset)
8044 if (a->u.offset > b->u.offset)
8046 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8047 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8052 if (a->rela->r_offset < b->rela->r_offset)
8054 if (a->rela->r_offset > b->rela->r_offset)
8060 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8062 asection *dynamic_relocs;
8065 bfd_size_type count, size;
8066 size_t i, ret, sort_elt, ext_size;
8067 bfd_byte *sort, *s_non_relative, *p;
8068 struct elf_link_sort_rela *sq;
8069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8070 int i2e = bed->s->int_rels_per_ext_rel;
8071 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8072 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8073 struct bfd_link_order *lo;
8075 bfd_boolean use_rela;
8077 /* Find a dynamic reloc section. */
8078 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8079 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8080 if (rela_dyn != NULL && rela_dyn->size > 0
8081 && rel_dyn != NULL && rel_dyn->size > 0)
8083 bfd_boolean use_rela_initialised = FALSE;
8085 /* This is just here to stop gcc from complaining.
8086 It's initialization checking code is not perfect. */
8089 /* Both sections are present. Examine the sizes
8090 of the indirect sections to help us choose. */
8091 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8092 if (lo->type == bfd_indirect_link_order)
8094 asection *o = lo->u.indirect.section;
8096 if ((o->size % bed->s->sizeof_rela) == 0)
8098 if ((o->size % bed->s->sizeof_rel) == 0)
8099 /* Section size is divisible by both rel and rela sizes.
8100 It is of no help to us. */
8104 /* Section size is only divisible by rela. */
8105 if (use_rela_initialised && (use_rela == FALSE))
8108 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8109 bfd_set_error (bfd_error_invalid_operation);
8115 use_rela_initialised = TRUE;
8119 else if ((o->size % bed->s->sizeof_rel) == 0)
8121 /* Section size is only divisible by rel. */
8122 if (use_rela_initialised && (use_rela == TRUE))
8125 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8126 bfd_set_error (bfd_error_invalid_operation);
8132 use_rela_initialised = TRUE;
8137 /* The section size is not divisible by either - something is wrong. */
8139 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8140 bfd_set_error (bfd_error_invalid_operation);
8145 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8146 if (lo->type == bfd_indirect_link_order)
8148 asection *o = lo->u.indirect.section;
8150 if ((o->size % bed->s->sizeof_rela) == 0)
8152 if ((o->size % bed->s->sizeof_rel) == 0)
8153 /* Section size is divisible by both rel and rela sizes.
8154 It is of no help to us. */
8158 /* Section size is only divisible by rela. */
8159 if (use_rela_initialised && (use_rela == FALSE))
8162 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8163 bfd_set_error (bfd_error_invalid_operation);
8169 use_rela_initialised = TRUE;
8173 else if ((o->size % bed->s->sizeof_rel) == 0)
8175 /* Section size is only divisible by rel. */
8176 if (use_rela_initialised && (use_rela == TRUE))
8179 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8180 bfd_set_error (bfd_error_invalid_operation);
8186 use_rela_initialised = TRUE;
8191 /* The section size is not divisible by either - something is wrong. */
8193 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8194 bfd_set_error (bfd_error_invalid_operation);
8199 if (! use_rela_initialised)
8203 else if (rela_dyn != NULL && rela_dyn->size > 0)
8205 else if (rel_dyn != NULL && rel_dyn->size > 0)
8212 dynamic_relocs = rela_dyn;
8213 ext_size = bed->s->sizeof_rela;
8214 swap_in = bed->s->swap_reloca_in;
8215 swap_out = bed->s->swap_reloca_out;
8219 dynamic_relocs = rel_dyn;
8220 ext_size = bed->s->sizeof_rel;
8221 swap_in = bed->s->swap_reloc_in;
8222 swap_out = bed->s->swap_reloc_out;
8226 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8227 if (lo->type == bfd_indirect_link_order)
8228 size += lo->u.indirect.section->size;
8230 if (size != dynamic_relocs->size)
8233 sort_elt = (sizeof (struct elf_link_sort_rela)
8234 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8236 count = dynamic_relocs->size / ext_size;
8239 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8243 (*info->callbacks->warning)
8244 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8248 if (bed->s->arch_size == 32)
8249 r_sym_mask = ~(bfd_vma) 0xff;
8251 r_sym_mask = ~(bfd_vma) 0xffffffff;
8253 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8254 if (lo->type == bfd_indirect_link_order)
8256 bfd_byte *erel, *erelend;
8257 asection *o = lo->u.indirect.section;
8259 if (o->contents == NULL && o->size != 0)
8261 /* This is a reloc section that is being handled as a normal
8262 section. See bfd_section_from_shdr. We can't combine
8263 relocs in this case. */
8268 erelend = o->contents + o->size;
8269 /* FIXME: octets_per_byte. */
8270 p = sort + o->output_offset / ext_size * sort_elt;
8272 while (erel < erelend)
8274 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8276 (*swap_in) (abfd, erel, s->rela);
8277 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8278 s->u.sym_mask = r_sym_mask;
8284 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8286 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8288 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8289 if (s->type != reloc_class_relative)
8295 sq = (struct elf_link_sort_rela *) s_non_relative;
8296 for (; i < count; i++, p += sort_elt)
8298 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8299 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8301 sp->u.offset = sq->rela->r_offset;
8304 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8306 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8307 if (lo->type == bfd_indirect_link_order)
8309 bfd_byte *erel, *erelend;
8310 asection *o = lo->u.indirect.section;
8313 erelend = o->contents + o->size;
8314 /* FIXME: octets_per_byte. */
8315 p = sort + o->output_offset / ext_size * sort_elt;
8316 while (erel < erelend)
8318 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8319 (*swap_out) (abfd, s->rela, erel);
8326 *psec = dynamic_relocs;
8330 /* Flush the output symbols to the file. */
8333 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8334 const struct elf_backend_data *bed)
8336 if (finfo->symbuf_count > 0)
8338 Elf_Internal_Shdr *hdr;
8342 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8343 pos = hdr->sh_offset + hdr->sh_size;
8344 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8345 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8346 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8349 hdr->sh_size += amt;
8350 finfo->symbuf_count = 0;
8356 /* Add a symbol to the output symbol table. */
8359 elf_link_output_sym (struct elf_final_link_info *finfo,
8361 Elf_Internal_Sym *elfsym,
8362 asection *input_sec,
8363 struct elf_link_hash_entry *h)
8366 Elf_External_Sym_Shndx *destshndx;
8367 int (*output_symbol_hook)
8368 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8369 struct elf_link_hash_entry *);
8370 const struct elf_backend_data *bed;
8372 bed = get_elf_backend_data (finfo->output_bfd);
8373 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8374 if (output_symbol_hook != NULL)
8376 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8381 if (name == NULL || *name == '\0')
8382 elfsym->st_name = 0;
8383 else if (input_sec->flags & SEC_EXCLUDE)
8384 elfsym->st_name = 0;
8387 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8389 if (elfsym->st_name == (unsigned long) -1)
8393 if (finfo->symbuf_count >= finfo->symbuf_size)
8395 if (! elf_link_flush_output_syms (finfo, bed))
8399 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8400 destshndx = finfo->symshndxbuf;
8401 if (destshndx != NULL)
8403 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8407 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8408 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8410 if (destshndx == NULL)
8412 finfo->symshndxbuf = destshndx;
8413 memset ((char *) destshndx + amt, 0, amt);
8414 finfo->shndxbuf_size *= 2;
8416 destshndx += bfd_get_symcount (finfo->output_bfd);
8419 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8420 finfo->symbuf_count += 1;
8421 bfd_get_symcount (finfo->output_bfd) += 1;
8426 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8429 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8431 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8432 && sym->st_shndx < SHN_LORESERVE)
8434 /* The gABI doesn't support dynamic symbols in output sections
8436 (*_bfd_error_handler)
8437 (_("%B: Too many sections: %d (>= %d)"),
8438 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8439 bfd_set_error (bfd_error_nonrepresentable_section);
8445 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8446 allowing an unsatisfied unversioned symbol in the DSO to match a
8447 versioned symbol that would normally require an explicit version.
8448 We also handle the case that a DSO references a hidden symbol
8449 which may be satisfied by a versioned symbol in another DSO. */
8452 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8453 const struct elf_backend_data *bed,
8454 struct elf_link_hash_entry *h)
8457 struct elf_link_loaded_list *loaded;
8459 if (!is_elf_hash_table (info->hash))
8462 switch (h->root.type)
8468 case bfd_link_hash_undefined:
8469 case bfd_link_hash_undefweak:
8470 abfd = h->root.u.undef.abfd;
8471 if ((abfd->flags & DYNAMIC) == 0
8472 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8476 case bfd_link_hash_defined:
8477 case bfd_link_hash_defweak:
8478 abfd = h->root.u.def.section->owner;
8481 case bfd_link_hash_common:
8482 abfd = h->root.u.c.p->section->owner;
8485 BFD_ASSERT (abfd != NULL);
8487 for (loaded = elf_hash_table (info)->loaded;
8489 loaded = loaded->next)
8492 Elf_Internal_Shdr *hdr;
8493 bfd_size_type symcount;
8494 bfd_size_type extsymcount;
8495 bfd_size_type extsymoff;
8496 Elf_Internal_Shdr *versymhdr;
8497 Elf_Internal_Sym *isym;
8498 Elf_Internal_Sym *isymend;
8499 Elf_Internal_Sym *isymbuf;
8500 Elf_External_Versym *ever;
8501 Elf_External_Versym *extversym;
8503 input = loaded->abfd;
8505 /* We check each DSO for a possible hidden versioned definition. */
8507 || (input->flags & DYNAMIC) == 0
8508 || elf_dynversym (input) == 0)
8511 hdr = &elf_tdata (input)->dynsymtab_hdr;
8513 symcount = hdr->sh_size / bed->s->sizeof_sym;
8514 if (elf_bad_symtab (input))
8516 extsymcount = symcount;
8521 extsymcount = symcount - hdr->sh_info;
8522 extsymoff = hdr->sh_info;
8525 if (extsymcount == 0)
8528 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8530 if (isymbuf == NULL)
8533 /* Read in any version definitions. */
8534 versymhdr = &elf_tdata (input)->dynversym_hdr;
8535 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8536 if (extversym == NULL)
8539 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8540 || (bfd_bread (extversym, versymhdr->sh_size, input)
8541 != versymhdr->sh_size))
8549 ever = extversym + extsymoff;
8550 isymend = isymbuf + extsymcount;
8551 for (isym = isymbuf; isym < isymend; isym++, ever++)
8554 Elf_Internal_Versym iver;
8555 unsigned short version_index;
8557 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8558 || isym->st_shndx == SHN_UNDEF)
8561 name = bfd_elf_string_from_elf_section (input,
8564 if (strcmp (name, h->root.root.string) != 0)
8567 _bfd_elf_swap_versym_in (input, ever, &iver);
8569 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8571 && h->forced_local))
8573 /* If we have a non-hidden versioned sym, then it should
8574 have provided a definition for the undefined sym unless
8575 it is defined in a non-shared object and forced local.
8580 version_index = iver.vs_vers & VERSYM_VERSION;
8581 if (version_index == 1 || version_index == 2)
8583 /* This is the base or first version. We can use it. */
8597 /* Add an external symbol to the symbol table. This is called from
8598 the hash table traversal routine. When generating a shared object,
8599 we go through the symbol table twice. The first time we output
8600 anything that might have been forced to local scope in a version
8601 script. The second time we output the symbols that are still
8605 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8607 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8608 struct elf_final_link_info *finfo = eoinfo->finfo;
8610 Elf_Internal_Sym sym;
8611 asection *input_sec;
8612 const struct elf_backend_data *bed;
8616 if (h->root.type == bfd_link_hash_warning)
8618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8619 if (h->root.type == bfd_link_hash_new)
8623 /* Decide whether to output this symbol in this pass. */
8624 if (eoinfo->localsyms)
8626 if (!h->forced_local)
8631 if (h->forced_local)
8635 bed = get_elf_backend_data (finfo->output_bfd);
8637 if (h->root.type == bfd_link_hash_undefined)
8639 /* If we have an undefined symbol reference here then it must have
8640 come from a shared library that is being linked in. (Undefined
8641 references in regular files have already been handled unless
8642 they are in unreferenced sections which are removed by garbage
8644 bfd_boolean ignore_undef = FALSE;
8646 /* Some symbols may be special in that the fact that they're
8647 undefined can be safely ignored - let backend determine that. */
8648 if (bed->elf_backend_ignore_undef_symbol)
8649 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8651 /* If we are reporting errors for this situation then do so now. */
8654 && (!h->ref_regular || finfo->info->gc_sections)
8655 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8656 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8658 if (! (finfo->info->callbacks->undefined_symbol
8659 (finfo->info, h->root.root.string,
8660 h->ref_regular ? NULL : h->root.u.undef.abfd,
8661 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8663 bfd_set_error (bfd_error_bad_value);
8664 eoinfo->failed = TRUE;
8670 /* We should also warn if a forced local symbol is referenced from
8671 shared libraries. */
8672 if (! finfo->info->relocatable
8673 && (! finfo->info->shared)
8678 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8683 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8684 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8685 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8686 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8688 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8689 def_bfd = finfo->output_bfd;
8690 if (h->root.u.def.section != bfd_abs_section_ptr)
8691 def_bfd = h->root.u.def.section->owner;
8692 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8693 h->root.root.string);
8694 bfd_set_error (bfd_error_bad_value);
8695 eoinfo->failed = TRUE;
8699 /* We don't want to output symbols that have never been mentioned by
8700 a regular file, or that we have been told to strip. However, if
8701 h->indx is set to -2, the symbol is used by a reloc and we must
8705 else if ((h->def_dynamic
8707 || h->root.type == bfd_link_hash_new)
8711 else if (finfo->info->strip == strip_all)
8713 else if (finfo->info->strip == strip_some
8714 && bfd_hash_lookup (finfo->info->keep_hash,
8715 h->root.root.string, FALSE, FALSE) == NULL)
8717 else if (finfo->info->strip_discarded
8718 && (h->root.type == bfd_link_hash_defined
8719 || h->root.type == bfd_link_hash_defweak)
8720 && elf_discarded_section (h->root.u.def.section))
8722 else if ((h->root.type == bfd_link_hash_undefined
8723 || h->root.type == bfd_link_hash_undefweak)
8724 && h->root.u.undef.abfd != NULL
8725 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8730 /* If we're stripping it, and it's not a dynamic symbol, there's
8731 nothing else to do unless it is a forced local symbol or a
8732 STT_GNU_IFUNC symbol. */
8735 && h->type != STT_GNU_IFUNC
8736 && !h->forced_local)
8740 sym.st_size = h->size;
8741 sym.st_other = h->other;
8742 if (h->forced_local)
8744 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8745 /* Turn off visibility on local symbol. */
8746 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8748 else if (h->unique_global)
8749 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8750 else if (h->root.type == bfd_link_hash_undefweak
8751 || h->root.type == bfd_link_hash_defweak)
8752 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8754 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8755 sym.st_target_internal = h->target_internal;
8757 switch (h->root.type)
8760 case bfd_link_hash_new:
8761 case bfd_link_hash_warning:
8765 case bfd_link_hash_undefined:
8766 case bfd_link_hash_undefweak:
8767 input_sec = bfd_und_section_ptr;
8768 sym.st_shndx = SHN_UNDEF;
8771 case bfd_link_hash_defined:
8772 case bfd_link_hash_defweak:
8774 input_sec = h->root.u.def.section;
8775 if (input_sec->output_section != NULL)
8778 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8779 input_sec->output_section);
8780 if (sym.st_shndx == SHN_BAD)
8782 (*_bfd_error_handler)
8783 (_("%B: could not find output section %A for input section %A"),
8784 finfo->output_bfd, input_sec->output_section, input_sec);
8785 bfd_set_error (bfd_error_nonrepresentable_section);
8786 eoinfo->failed = TRUE;
8790 /* ELF symbols in relocatable files are section relative,
8791 but in nonrelocatable files they are virtual
8793 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8794 if (! finfo->info->relocatable)
8796 sym.st_value += input_sec->output_section->vma;
8797 if (h->type == STT_TLS)
8799 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8800 if (tls_sec != NULL)
8801 sym.st_value -= tls_sec->vma;
8804 /* The TLS section may have been garbage collected. */
8805 BFD_ASSERT (finfo->info->gc_sections
8806 && !input_sec->gc_mark);
8813 BFD_ASSERT (input_sec->owner == NULL
8814 || (input_sec->owner->flags & DYNAMIC) != 0);
8815 sym.st_shndx = SHN_UNDEF;
8816 input_sec = bfd_und_section_ptr;
8821 case bfd_link_hash_common:
8822 input_sec = h->root.u.c.p->section;
8823 sym.st_shndx = bed->common_section_index (input_sec);
8824 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8827 case bfd_link_hash_indirect:
8828 /* These symbols are created by symbol versioning. They point
8829 to the decorated version of the name. For example, if the
8830 symbol foo@@GNU_1.2 is the default, which should be used when
8831 foo is used with no version, then we add an indirect symbol
8832 foo which points to foo@@GNU_1.2. We ignore these symbols,
8833 since the indirected symbol is already in the hash table. */
8837 /* Give the processor backend a chance to tweak the symbol value,
8838 and also to finish up anything that needs to be done for this
8839 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8840 forced local syms when non-shared is due to a historical quirk.
8841 STT_GNU_IFUNC symbol must go through PLT. */
8842 if ((h->type == STT_GNU_IFUNC
8844 && !finfo->info->relocatable)
8845 || ((h->dynindx != -1
8847 && ((finfo->info->shared
8848 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8849 || h->root.type != bfd_link_hash_undefweak))
8850 || !h->forced_local)
8851 && elf_hash_table (finfo->info)->dynamic_sections_created))
8853 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8854 (finfo->output_bfd, finfo->info, h, &sym)))
8856 eoinfo->failed = TRUE;
8861 /* If we are marking the symbol as undefined, and there are no
8862 non-weak references to this symbol from a regular object, then
8863 mark the symbol as weak undefined; if there are non-weak
8864 references, mark the symbol as strong. We can't do this earlier,
8865 because it might not be marked as undefined until the
8866 finish_dynamic_symbol routine gets through with it. */
8867 if (sym.st_shndx == SHN_UNDEF
8869 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8870 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8873 unsigned int type = ELF_ST_TYPE (sym.st_info);
8875 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8876 if (type == STT_GNU_IFUNC)
8879 if (h->ref_regular_nonweak)
8880 bindtype = STB_GLOBAL;
8882 bindtype = STB_WEAK;
8883 sym.st_info = ELF_ST_INFO (bindtype, type);
8886 /* If this is a symbol defined in a dynamic library, don't use the
8887 symbol size from the dynamic library. Relinking an executable
8888 against a new library may introduce gratuitous changes in the
8889 executable's symbols if we keep the size. */
8890 if (sym.st_shndx == SHN_UNDEF
8895 /* If a non-weak symbol with non-default visibility is not defined
8896 locally, it is a fatal error. */
8897 if (! finfo->info->relocatable
8898 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8899 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8900 && h->root.type == bfd_link_hash_undefined
8905 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8906 msg = _("%B: protected symbol `%s' isn't defined");
8907 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8908 msg = _("%B: internal symbol `%s' isn't defined");
8910 msg = _("%B: hidden symbol `%s' isn't defined");
8911 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8912 bfd_set_error (bfd_error_bad_value);
8913 eoinfo->failed = TRUE;
8917 /* If this symbol should be put in the .dynsym section, then put it
8918 there now. We already know the symbol index. We also fill in
8919 the entry in the .hash section. */
8920 if (h->dynindx != -1
8921 && elf_hash_table (finfo->info)->dynamic_sections_created)
8925 sym.st_name = h->dynstr_index;
8926 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8927 if (! check_dynsym (finfo->output_bfd, &sym))
8929 eoinfo->failed = TRUE;
8932 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8934 if (finfo->hash_sec != NULL)
8936 size_t hash_entry_size;
8937 bfd_byte *bucketpos;
8942 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8943 bucket = h->u.elf_hash_value % bucketcount;
8946 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8947 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8948 + (bucket + 2) * hash_entry_size);
8949 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8950 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8951 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8952 ((bfd_byte *) finfo->hash_sec->contents
8953 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8956 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8958 Elf_Internal_Versym iversym;
8959 Elf_External_Versym *eversym;
8961 if (!h->def_regular)
8963 if (h->verinfo.verdef == NULL)
8964 iversym.vs_vers = 0;
8966 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8970 if (h->verinfo.vertree == NULL)
8971 iversym.vs_vers = 1;
8973 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8974 if (finfo->info->create_default_symver)
8979 iversym.vs_vers |= VERSYM_HIDDEN;
8981 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8982 eversym += h->dynindx;
8983 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8987 /* If we're stripping it, then it was just a dynamic symbol, and
8988 there's nothing else to do. */
8989 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8992 indx = bfd_get_symcount (finfo->output_bfd);
8993 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8996 eoinfo->failed = TRUE;
9001 else if (h->indx == -2)
9007 /* Return TRUE if special handling is done for relocs in SEC against
9008 symbols defined in discarded sections. */
9011 elf_section_ignore_discarded_relocs (asection *sec)
9013 const struct elf_backend_data *bed;
9015 switch (sec->sec_info_type)
9017 case ELF_INFO_TYPE_STABS:
9018 case ELF_INFO_TYPE_EH_FRAME:
9024 bed = get_elf_backend_data (sec->owner);
9025 if (bed->elf_backend_ignore_discarded_relocs != NULL
9026 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9032 /* Return a mask saying how ld should treat relocations in SEC against
9033 symbols defined in discarded sections. If this function returns
9034 COMPLAIN set, ld will issue a warning message. If this function
9035 returns PRETEND set, and the discarded section was link-once and the
9036 same size as the kept link-once section, ld will pretend that the
9037 symbol was actually defined in the kept section. Otherwise ld will
9038 zero the reloc (at least that is the intent, but some cooperation by
9039 the target dependent code is needed, particularly for REL targets). */
9042 _bfd_elf_default_action_discarded (asection *sec)
9044 if (sec->flags & SEC_DEBUGGING)
9047 if (strcmp (".eh_frame", sec->name) == 0)
9050 if (strcmp (".gcc_except_table", sec->name) == 0)
9053 return COMPLAIN | PRETEND;
9056 /* Find a match between a section and a member of a section group. */
9059 match_group_member (asection *sec, asection *group,
9060 struct bfd_link_info *info)
9062 asection *first = elf_next_in_group (group);
9063 asection *s = first;
9067 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9070 s = elf_next_in_group (s);
9078 /* Check if the kept section of a discarded section SEC can be used
9079 to replace it. Return the replacement if it is OK. Otherwise return
9083 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9087 kept = sec->kept_section;
9090 if ((kept->flags & SEC_GROUP) != 0)
9091 kept = match_group_member (sec, kept, info);
9093 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9094 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9096 sec->kept_section = kept;
9101 /* Link an input file into the linker output file. This function
9102 handles all the sections and relocations of the input file at once.
9103 This is so that we only have to read the local symbols once, and
9104 don't have to keep them in memory. */
9107 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9109 int (*relocate_section)
9110 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9111 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9113 Elf_Internal_Shdr *symtab_hdr;
9116 Elf_Internal_Sym *isymbuf;
9117 Elf_Internal_Sym *isym;
9118 Elf_Internal_Sym *isymend;
9120 asection **ppsection;
9122 const struct elf_backend_data *bed;
9123 struct elf_link_hash_entry **sym_hashes;
9124 bfd_size_type address_size;
9125 bfd_vma r_type_mask;
9128 output_bfd = finfo->output_bfd;
9129 bed = get_elf_backend_data (output_bfd);
9130 relocate_section = bed->elf_backend_relocate_section;
9132 /* If this is a dynamic object, we don't want to do anything here:
9133 we don't want the local symbols, and we don't want the section
9135 if ((input_bfd->flags & DYNAMIC) != 0)
9138 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9139 if (elf_bad_symtab (input_bfd))
9141 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9146 locsymcount = symtab_hdr->sh_info;
9147 extsymoff = symtab_hdr->sh_info;
9150 /* Read the local symbols. */
9151 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9152 if (isymbuf == NULL && locsymcount != 0)
9154 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9155 finfo->internal_syms,
9156 finfo->external_syms,
9157 finfo->locsym_shndx);
9158 if (isymbuf == NULL)
9162 /* Find local symbol sections and adjust values of symbols in
9163 SEC_MERGE sections. Write out those local symbols we know are
9164 going into the output file. */
9165 isymend = isymbuf + locsymcount;
9166 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9168 isym++, pindex++, ppsection++)
9172 Elf_Internal_Sym osym;
9178 if (elf_bad_symtab (input_bfd))
9180 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9187 if (isym->st_shndx == SHN_UNDEF)
9188 isec = bfd_und_section_ptr;
9189 else if (isym->st_shndx == SHN_ABS)
9190 isec = bfd_abs_section_ptr;
9191 else if (isym->st_shndx == SHN_COMMON)
9192 isec = bfd_com_section_ptr;
9195 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9198 /* Don't attempt to output symbols with st_shnx in the
9199 reserved range other than SHN_ABS and SHN_COMMON. */
9203 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9204 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9206 _bfd_merged_section_offset (output_bfd, &isec,
9207 elf_section_data (isec)->sec_info,
9213 /* Don't output the first, undefined, symbol. */
9214 if (ppsection == finfo->sections)
9217 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9219 /* We never output section symbols. Instead, we use the
9220 section symbol of the corresponding section in the output
9225 /* If we are stripping all symbols, we don't want to output this
9227 if (finfo->info->strip == strip_all)
9230 /* If we are discarding all local symbols, we don't want to
9231 output this one. If we are generating a relocatable output
9232 file, then some of the local symbols may be required by
9233 relocs; we output them below as we discover that they are
9235 if (finfo->info->discard == discard_all)
9238 /* If this symbol is defined in a section which we are
9239 discarding, we don't need to keep it. */
9240 if (isym->st_shndx != SHN_UNDEF
9241 && isym->st_shndx < SHN_LORESERVE
9242 && bfd_section_removed_from_list (output_bfd,
9243 isec->output_section))
9246 /* Get the name of the symbol. */
9247 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9252 /* See if we are discarding symbols with this name. */
9253 if ((finfo->info->strip == strip_some
9254 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9256 || (((finfo->info->discard == discard_sec_merge
9257 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9258 || finfo->info->discard == discard_l)
9259 && bfd_is_local_label_name (input_bfd, name)))
9264 /* Adjust the section index for the output file. */
9265 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9266 isec->output_section);
9267 if (osym.st_shndx == SHN_BAD)
9270 /* ELF symbols in relocatable files are section relative, but
9271 in executable files they are virtual addresses. Note that
9272 this code assumes that all ELF sections have an associated
9273 BFD section with a reasonable value for output_offset; below
9274 we assume that they also have a reasonable value for
9275 output_section. Any special sections must be set up to meet
9276 these requirements. */
9277 osym.st_value += isec->output_offset;
9278 if (! finfo->info->relocatable)
9280 osym.st_value += isec->output_section->vma;
9281 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9283 /* STT_TLS symbols are relative to PT_TLS segment base. */
9284 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9285 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9289 indx = bfd_get_symcount (output_bfd);
9290 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9297 if (bed->s->arch_size == 32)
9305 r_type_mask = 0xffffffff;
9310 /* Relocate the contents of each section. */
9311 sym_hashes = elf_sym_hashes (input_bfd);
9312 for (o = input_bfd->sections; o != NULL; o = o->next)
9316 if (! o->linker_mark)
9318 /* This section was omitted from the link. */
9322 if (finfo->info->relocatable
9323 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9325 /* Deal with the group signature symbol. */
9326 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9327 unsigned long symndx = sec_data->this_hdr.sh_info;
9328 asection *osec = o->output_section;
9330 if (symndx >= locsymcount
9331 || (elf_bad_symtab (input_bfd)
9332 && finfo->sections[symndx] == NULL))
9334 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9335 while (h->root.type == bfd_link_hash_indirect
9336 || h->root.type == bfd_link_hash_warning)
9337 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9338 /* Arrange for symbol to be output. */
9340 elf_section_data (osec)->this_hdr.sh_info = -2;
9342 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9344 /* We'll use the output section target_index. */
9345 asection *sec = finfo->sections[symndx]->output_section;
9346 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9350 if (finfo->indices[symndx] == -1)
9352 /* Otherwise output the local symbol now. */
9353 Elf_Internal_Sym sym = isymbuf[symndx];
9354 asection *sec = finfo->sections[symndx]->output_section;
9359 name = bfd_elf_string_from_elf_section (input_bfd,
9360 symtab_hdr->sh_link,
9365 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9367 if (sym.st_shndx == SHN_BAD)
9370 sym.st_value += o->output_offset;
9372 indx = bfd_get_symcount (output_bfd);
9373 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9377 finfo->indices[symndx] = indx;
9381 elf_section_data (osec)->this_hdr.sh_info
9382 = finfo->indices[symndx];
9386 if ((o->flags & SEC_HAS_CONTENTS) == 0
9387 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9390 if ((o->flags & SEC_LINKER_CREATED) != 0)
9392 /* Section was created by _bfd_elf_link_create_dynamic_sections
9397 /* Get the contents of the section. They have been cached by a
9398 relaxation routine. Note that o is a section in an input
9399 file, so the contents field will not have been set by any of
9400 the routines which work on output files. */
9401 if (elf_section_data (o)->this_hdr.contents != NULL)
9402 contents = elf_section_data (o)->this_hdr.contents;
9405 contents = finfo->contents;
9406 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9410 if ((o->flags & SEC_RELOC) != 0)
9412 Elf_Internal_Rela *internal_relocs;
9413 Elf_Internal_Rela *rel, *relend;
9414 int action_discarded;
9417 /* Get the swapped relocs. */
9419 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9420 finfo->internal_relocs, FALSE);
9421 if (internal_relocs == NULL
9422 && o->reloc_count > 0)
9425 /* We need to reverse-copy input .ctors/.dtors sections if
9426 they are placed in .init_array/.finit_array for output. */
9427 if (o->size > address_size
9428 && ((strncmp (o->name, ".ctors", 6) == 0
9429 && strcmp (o->output_section->name,
9430 ".init_array") == 0)
9431 || (strncmp (o->name, ".dtors", 6) == 0
9432 && strcmp (o->output_section->name,
9433 ".fini_array") == 0))
9434 && (o->name[6] == 0 || o->name[6] == '.'))
9436 if (o->size != o->reloc_count * address_size)
9438 (*_bfd_error_handler)
9439 (_("error: %B: size of section %A is not "
9440 "multiple of address size"),
9442 bfd_set_error (bfd_error_on_input);
9445 o->flags |= SEC_ELF_REVERSE_COPY;
9448 action_discarded = -1;
9449 if (!elf_section_ignore_discarded_relocs (o))
9450 action_discarded = (*bed->action_discarded) (o);
9452 /* Run through the relocs evaluating complex reloc symbols and
9453 looking for relocs against symbols from discarded sections
9454 or section symbols from removed link-once sections.
9455 Complain about relocs against discarded sections. Zero
9456 relocs against removed link-once sections. */
9458 rel = internal_relocs;
9459 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9460 for ( ; rel < relend; rel++)
9462 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9463 unsigned int s_type;
9464 asection **ps, *sec;
9465 struct elf_link_hash_entry *h = NULL;
9466 const char *sym_name;
9468 if (r_symndx == STN_UNDEF)
9471 if (r_symndx >= locsymcount
9472 || (elf_bad_symtab (input_bfd)
9473 && finfo->sections[r_symndx] == NULL))
9475 h = sym_hashes[r_symndx - extsymoff];
9477 /* Badly formatted input files can contain relocs that
9478 reference non-existant symbols. Check here so that
9479 we do not seg fault. */
9484 sprintf_vma (buffer, rel->r_info);
9485 (*_bfd_error_handler)
9486 (_("error: %B contains a reloc (0x%s) for section %A "
9487 "that references a non-existent global symbol"),
9488 input_bfd, o, buffer);
9489 bfd_set_error (bfd_error_bad_value);
9493 while (h->root.type == bfd_link_hash_indirect
9494 || h->root.type == bfd_link_hash_warning)
9495 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9500 if (h->root.type == bfd_link_hash_defined
9501 || h->root.type == bfd_link_hash_defweak)
9502 ps = &h->root.u.def.section;
9504 sym_name = h->root.root.string;
9508 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9510 s_type = ELF_ST_TYPE (sym->st_info);
9511 ps = &finfo->sections[r_symndx];
9512 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9516 if ((s_type == STT_RELC || s_type == STT_SRELC)
9517 && !finfo->info->relocatable)
9520 bfd_vma dot = (rel->r_offset
9521 + o->output_offset + o->output_section->vma);
9523 printf ("Encountered a complex symbol!");
9524 printf (" (input_bfd %s, section %s, reloc %ld\n",
9525 input_bfd->filename, o->name,
9526 (long) (rel - internal_relocs));
9527 printf (" symbol: idx %8.8lx, name %s\n",
9528 r_symndx, sym_name);
9529 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9530 (unsigned long) rel->r_info,
9531 (unsigned long) rel->r_offset);
9533 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9534 isymbuf, locsymcount, s_type == STT_SRELC))
9537 /* Symbol evaluated OK. Update to absolute value. */
9538 set_symbol_value (input_bfd, isymbuf, locsymcount,
9543 if (action_discarded != -1 && ps != NULL)
9545 /* Complain if the definition comes from a
9546 discarded section. */
9547 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9549 BFD_ASSERT (r_symndx != STN_UNDEF);
9550 if (action_discarded & COMPLAIN)
9551 (*finfo->info->callbacks->einfo)
9552 (_("%X`%s' referenced in section `%A' of %B: "
9553 "defined in discarded section `%A' of %B\n"),
9554 sym_name, o, input_bfd, sec, sec->owner);
9556 /* Try to do the best we can to support buggy old
9557 versions of gcc. Pretend that the symbol is
9558 really defined in the kept linkonce section.
9559 FIXME: This is quite broken. Modifying the
9560 symbol here means we will be changing all later
9561 uses of the symbol, not just in this section. */
9562 if (action_discarded & PRETEND)
9566 kept = _bfd_elf_check_kept_section (sec,
9578 /* Relocate the section by invoking a back end routine.
9580 The back end routine is responsible for adjusting the
9581 section contents as necessary, and (if using Rela relocs
9582 and generating a relocatable output file) adjusting the
9583 reloc addend as necessary.
9585 The back end routine does not have to worry about setting
9586 the reloc address or the reloc symbol index.
9588 The back end routine is given a pointer to the swapped in
9589 internal symbols, and can access the hash table entries
9590 for the external symbols via elf_sym_hashes (input_bfd).
9592 When generating relocatable output, the back end routine
9593 must handle STB_LOCAL/STT_SECTION symbols specially. The
9594 output symbol is going to be a section symbol
9595 corresponding to the output section, which will require
9596 the addend to be adjusted. */
9598 ret = (*relocate_section) (output_bfd, finfo->info,
9599 input_bfd, o, contents,
9607 || finfo->info->relocatable
9608 || finfo->info->emitrelocations)
9610 Elf_Internal_Rela *irela;
9611 Elf_Internal_Rela *irelaend, *irelamid;
9612 bfd_vma last_offset;
9613 struct elf_link_hash_entry **rel_hash;
9614 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9615 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9616 unsigned int next_erel;
9617 bfd_boolean rela_normal;
9618 struct bfd_elf_section_data *esdi, *esdo;
9620 esdi = elf_section_data (o);
9621 esdo = elf_section_data (o->output_section);
9622 rela_normal = FALSE;
9624 /* Adjust the reloc addresses and symbol indices. */
9626 irela = internal_relocs;
9627 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9628 rel_hash = esdo->rel.hashes + esdo->rel.count;
9629 /* We start processing the REL relocs, if any. When we reach
9630 IRELAMID in the loop, we switch to the RELA relocs. */
9632 if (esdi->rel.hdr != NULL)
9633 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9634 * bed->s->int_rels_per_ext_rel);
9635 rel_hash_list = rel_hash;
9636 rela_hash_list = NULL;
9637 last_offset = o->output_offset;
9638 if (!finfo->info->relocatable)
9639 last_offset += o->output_section->vma;
9640 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9642 unsigned long r_symndx;
9644 Elf_Internal_Sym sym;
9646 if (next_erel == bed->s->int_rels_per_ext_rel)
9652 if (irela == irelamid)
9654 rel_hash = esdo->rela.hashes + esdo->rela.count;
9655 rela_hash_list = rel_hash;
9656 rela_normal = bed->rela_normal;
9659 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9662 if (irela->r_offset >= (bfd_vma) -2)
9664 /* This is a reloc for a deleted entry or somesuch.
9665 Turn it into an R_*_NONE reloc, at the same
9666 offset as the last reloc. elf_eh_frame.c and
9667 bfd_elf_discard_info rely on reloc offsets
9669 irela->r_offset = last_offset;
9671 irela->r_addend = 0;
9675 irela->r_offset += o->output_offset;
9677 /* Relocs in an executable have to be virtual addresses. */
9678 if (!finfo->info->relocatable)
9679 irela->r_offset += o->output_section->vma;
9681 last_offset = irela->r_offset;
9683 r_symndx = irela->r_info >> r_sym_shift;
9684 if (r_symndx == STN_UNDEF)
9687 if (r_symndx >= locsymcount
9688 || (elf_bad_symtab (input_bfd)
9689 && finfo->sections[r_symndx] == NULL))
9691 struct elf_link_hash_entry *rh;
9694 /* This is a reloc against a global symbol. We
9695 have not yet output all the local symbols, so
9696 we do not know the symbol index of any global
9697 symbol. We set the rel_hash entry for this
9698 reloc to point to the global hash table entry
9699 for this symbol. The symbol index is then
9700 set at the end of bfd_elf_final_link. */
9701 indx = r_symndx - extsymoff;
9702 rh = elf_sym_hashes (input_bfd)[indx];
9703 while (rh->root.type == bfd_link_hash_indirect
9704 || rh->root.type == bfd_link_hash_warning)
9705 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9707 /* Setting the index to -2 tells
9708 elf_link_output_extsym that this symbol is
9710 BFD_ASSERT (rh->indx < 0);
9718 /* This is a reloc against a local symbol. */
9721 sym = isymbuf[r_symndx];
9722 sec = finfo->sections[r_symndx];
9723 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9725 /* I suppose the backend ought to fill in the
9726 section of any STT_SECTION symbol against a
9727 processor specific section. */
9728 r_symndx = STN_UNDEF;
9729 if (bfd_is_abs_section (sec))
9731 else if (sec == NULL || sec->owner == NULL)
9733 bfd_set_error (bfd_error_bad_value);
9738 asection *osec = sec->output_section;
9740 /* If we have discarded a section, the output
9741 section will be the absolute section. In
9742 case of discarded SEC_MERGE sections, use
9743 the kept section. relocate_section should
9744 have already handled discarded linkonce
9746 if (bfd_is_abs_section (osec)
9747 && sec->kept_section != NULL
9748 && sec->kept_section->output_section != NULL)
9750 osec = sec->kept_section->output_section;
9751 irela->r_addend -= osec->vma;
9754 if (!bfd_is_abs_section (osec))
9756 r_symndx = osec->target_index;
9757 if (r_symndx == STN_UNDEF)
9759 struct elf_link_hash_table *htab;
9762 htab = elf_hash_table (finfo->info);
9763 oi = htab->text_index_section;
9764 if ((osec->flags & SEC_READONLY) == 0
9765 && htab->data_index_section != NULL)
9766 oi = htab->data_index_section;
9770 irela->r_addend += osec->vma - oi->vma;
9771 r_symndx = oi->target_index;
9775 BFD_ASSERT (r_symndx != STN_UNDEF);
9779 /* Adjust the addend according to where the
9780 section winds up in the output section. */
9782 irela->r_addend += sec->output_offset;
9786 if (finfo->indices[r_symndx] == -1)
9788 unsigned long shlink;
9793 if (finfo->info->strip == strip_all)
9795 /* You can't do ld -r -s. */
9796 bfd_set_error (bfd_error_invalid_operation);
9800 /* This symbol was skipped earlier, but
9801 since it is needed by a reloc, we
9802 must output it now. */
9803 shlink = symtab_hdr->sh_link;
9804 name = (bfd_elf_string_from_elf_section
9805 (input_bfd, shlink, sym.st_name));
9809 osec = sec->output_section;
9811 _bfd_elf_section_from_bfd_section (output_bfd,
9813 if (sym.st_shndx == SHN_BAD)
9816 sym.st_value += sec->output_offset;
9817 if (! finfo->info->relocatable)
9819 sym.st_value += osec->vma;
9820 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9822 /* STT_TLS symbols are relative to PT_TLS
9824 BFD_ASSERT (elf_hash_table (finfo->info)
9826 sym.st_value -= (elf_hash_table (finfo->info)
9831 indx = bfd_get_symcount (output_bfd);
9832 ret = elf_link_output_sym (finfo, name, &sym, sec,
9837 finfo->indices[r_symndx] = indx;
9842 r_symndx = finfo->indices[r_symndx];
9845 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9846 | (irela->r_info & r_type_mask));
9849 /* Swap out the relocs. */
9850 input_rel_hdr = esdi->rel.hdr;
9851 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9853 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9858 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9859 * bed->s->int_rels_per_ext_rel);
9860 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9863 input_rela_hdr = esdi->rela.hdr;
9864 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9866 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9875 /* Write out the modified section contents. */
9876 if (bed->elf_backend_write_section
9877 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9880 /* Section written out. */
9882 else switch (o->sec_info_type)
9884 case ELF_INFO_TYPE_STABS:
9885 if (! (_bfd_write_section_stabs
9887 &elf_hash_table (finfo->info)->stab_info,
9888 o, &elf_section_data (o)->sec_info, contents)))
9891 case ELF_INFO_TYPE_MERGE:
9892 if (! _bfd_write_merged_section (output_bfd, o,
9893 elf_section_data (o)->sec_info))
9896 case ELF_INFO_TYPE_EH_FRAME:
9898 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9905 /* FIXME: octets_per_byte. */
9906 if (! (o->flags & SEC_EXCLUDE))
9908 file_ptr offset = (file_ptr) o->output_offset;
9909 bfd_size_type todo = o->size;
9910 if ((o->flags & SEC_ELF_REVERSE_COPY))
9912 /* Reverse-copy input section to output. */
9915 todo -= address_size;
9916 if (! bfd_set_section_contents (output_bfd,
9924 offset += address_size;
9928 else if (! bfd_set_section_contents (output_bfd,
9942 /* Generate a reloc when linking an ELF file. This is a reloc
9943 requested by the linker, and does not come from any input file. This
9944 is used to build constructor and destructor tables when linking
9948 elf_reloc_link_order (bfd *output_bfd,
9949 struct bfd_link_info *info,
9950 asection *output_section,
9951 struct bfd_link_order *link_order)
9953 reloc_howto_type *howto;
9957 struct bfd_elf_section_reloc_data *reldata;
9958 struct elf_link_hash_entry **rel_hash_ptr;
9959 Elf_Internal_Shdr *rel_hdr;
9960 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9961 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9964 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9966 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9969 bfd_set_error (bfd_error_bad_value);
9973 addend = link_order->u.reloc.p->addend;
9976 reldata = &esdo->rel;
9977 else if (esdo->rela.hdr)
9978 reldata = &esdo->rela;
9985 /* Figure out the symbol index. */
9986 rel_hash_ptr = reldata->hashes + reldata->count;
9987 if (link_order->type == bfd_section_reloc_link_order)
9989 indx = link_order->u.reloc.p->u.section->target_index;
9990 BFD_ASSERT (indx != 0);
9991 *rel_hash_ptr = NULL;
9995 struct elf_link_hash_entry *h;
9997 /* Treat a reloc against a defined symbol as though it were
9998 actually against the section. */
9999 h = ((struct elf_link_hash_entry *)
10000 bfd_wrapped_link_hash_lookup (output_bfd, info,
10001 link_order->u.reloc.p->u.name,
10002 FALSE, FALSE, TRUE));
10004 && (h->root.type == bfd_link_hash_defined
10005 || h->root.type == bfd_link_hash_defweak))
10009 section = h->root.u.def.section;
10010 indx = section->output_section->target_index;
10011 *rel_hash_ptr = NULL;
10012 /* It seems that we ought to add the symbol value to the
10013 addend here, but in practice it has already been added
10014 because it was passed to constructor_callback. */
10015 addend += section->output_section->vma + section->output_offset;
10017 else if (h != NULL)
10019 /* Setting the index to -2 tells elf_link_output_extsym that
10020 this symbol is used by a reloc. */
10027 if (! ((*info->callbacks->unattached_reloc)
10028 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10034 /* If this is an inplace reloc, we must write the addend into the
10036 if (howto->partial_inplace && addend != 0)
10038 bfd_size_type size;
10039 bfd_reloc_status_type rstat;
10042 const char *sym_name;
10044 size = (bfd_size_type) bfd_get_reloc_size (howto);
10045 buf = (bfd_byte *) bfd_zmalloc (size);
10048 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10055 case bfd_reloc_outofrange:
10058 case bfd_reloc_overflow:
10059 if (link_order->type == bfd_section_reloc_link_order)
10060 sym_name = bfd_section_name (output_bfd,
10061 link_order->u.reloc.p->u.section);
10063 sym_name = link_order->u.reloc.p->u.name;
10064 if (! ((*info->callbacks->reloc_overflow)
10065 (info, NULL, sym_name, howto->name, addend, NULL,
10066 NULL, (bfd_vma) 0)))
10073 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10074 link_order->offset, size);
10080 /* The address of a reloc is relative to the section in a
10081 relocatable file, and is a virtual address in an executable
10083 offset = link_order->offset;
10084 if (! info->relocatable)
10085 offset += output_section->vma;
10087 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10089 irel[i].r_offset = offset;
10090 irel[i].r_info = 0;
10091 irel[i].r_addend = 0;
10093 if (bed->s->arch_size == 32)
10094 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10096 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10098 rel_hdr = reldata->hdr;
10099 erel = rel_hdr->contents;
10100 if (rel_hdr->sh_type == SHT_REL)
10102 erel += reldata->count * bed->s->sizeof_rel;
10103 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10107 irel[0].r_addend = addend;
10108 erel += reldata->count * bed->s->sizeof_rela;
10109 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10118 /* Get the output vma of the section pointed to by the sh_link field. */
10121 elf_get_linked_section_vma (struct bfd_link_order *p)
10123 Elf_Internal_Shdr **elf_shdrp;
10127 s = p->u.indirect.section;
10128 elf_shdrp = elf_elfsections (s->owner);
10129 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10130 elfsec = elf_shdrp[elfsec]->sh_link;
10132 The Intel C compiler generates SHT_IA_64_UNWIND with
10133 SHF_LINK_ORDER. But it doesn't set the sh_link or
10134 sh_info fields. Hence we could get the situation
10135 where elfsec is 0. */
10138 const struct elf_backend_data *bed
10139 = get_elf_backend_data (s->owner);
10140 if (bed->link_order_error_handler)
10141 bed->link_order_error_handler
10142 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10147 s = elf_shdrp[elfsec]->bfd_section;
10148 return s->output_section->vma + s->output_offset;
10153 /* Compare two sections based on the locations of the sections they are
10154 linked to. Used by elf_fixup_link_order. */
10157 compare_link_order (const void * a, const void * b)
10162 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10163 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10166 return apos > bpos;
10170 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10171 order as their linked sections. Returns false if this could not be done
10172 because an output section includes both ordered and unordered
10173 sections. Ideally we'd do this in the linker proper. */
10176 elf_fixup_link_order (bfd *abfd, asection *o)
10178 int seen_linkorder;
10181 struct bfd_link_order *p;
10183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10185 struct bfd_link_order **sections;
10186 asection *s, *other_sec, *linkorder_sec;
10190 linkorder_sec = NULL;
10192 seen_linkorder = 0;
10193 for (p = o->map_head.link_order; p != NULL; p = p->next)
10195 if (p->type == bfd_indirect_link_order)
10197 s = p->u.indirect.section;
10199 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10200 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10201 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10202 && elfsec < elf_numsections (sub)
10203 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10204 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10218 if (seen_other && seen_linkorder)
10220 if (other_sec && linkorder_sec)
10221 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10223 linkorder_sec->owner, other_sec,
10226 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10228 bfd_set_error (bfd_error_bad_value);
10233 if (!seen_linkorder)
10236 sections = (struct bfd_link_order **)
10237 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10238 if (sections == NULL)
10240 seen_linkorder = 0;
10242 for (p = o->map_head.link_order; p != NULL; p = p->next)
10244 sections[seen_linkorder++] = p;
10246 /* Sort the input sections in the order of their linked section. */
10247 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10248 compare_link_order);
10250 /* Change the offsets of the sections. */
10252 for (n = 0; n < seen_linkorder; n++)
10254 s = sections[n]->u.indirect.section;
10255 offset &= ~(bfd_vma) 0 << s->alignment_power;
10256 s->output_offset = offset;
10257 sections[n]->offset = offset;
10258 /* FIXME: octets_per_byte. */
10259 offset += sections[n]->size;
10267 /* Do the final step of an ELF link. */
10270 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10272 bfd_boolean dynamic;
10273 bfd_boolean emit_relocs;
10275 struct elf_final_link_info finfo;
10277 struct bfd_link_order *p;
10279 bfd_size_type max_contents_size;
10280 bfd_size_type max_external_reloc_size;
10281 bfd_size_type max_internal_reloc_count;
10282 bfd_size_type max_sym_count;
10283 bfd_size_type max_sym_shndx_count;
10285 Elf_Internal_Sym elfsym;
10287 Elf_Internal_Shdr *symtab_hdr;
10288 Elf_Internal_Shdr *symtab_shndx_hdr;
10289 Elf_Internal_Shdr *symstrtab_hdr;
10290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10291 struct elf_outext_info eoinfo;
10292 bfd_boolean merged;
10293 size_t relativecount = 0;
10294 asection *reldyn = 0;
10296 asection *attr_section = NULL;
10297 bfd_vma attr_size = 0;
10298 const char *std_attrs_section;
10300 if (! is_elf_hash_table (info->hash))
10304 abfd->flags |= DYNAMIC;
10306 dynamic = elf_hash_table (info)->dynamic_sections_created;
10307 dynobj = elf_hash_table (info)->dynobj;
10309 emit_relocs = (info->relocatable
10310 || info->emitrelocations);
10313 finfo.output_bfd = abfd;
10314 finfo.symstrtab = _bfd_elf_stringtab_init ();
10315 if (finfo.symstrtab == NULL)
10320 finfo.dynsym_sec = NULL;
10321 finfo.hash_sec = NULL;
10322 finfo.symver_sec = NULL;
10326 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10327 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10328 BFD_ASSERT (finfo.dynsym_sec != NULL);
10329 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10330 /* Note that it is OK if symver_sec is NULL. */
10333 finfo.contents = NULL;
10334 finfo.external_relocs = NULL;
10335 finfo.internal_relocs = NULL;
10336 finfo.external_syms = NULL;
10337 finfo.locsym_shndx = NULL;
10338 finfo.internal_syms = NULL;
10339 finfo.indices = NULL;
10340 finfo.sections = NULL;
10341 finfo.symbuf = NULL;
10342 finfo.symshndxbuf = NULL;
10343 finfo.symbuf_count = 0;
10344 finfo.shndxbuf_size = 0;
10346 /* The object attributes have been merged. Remove the input
10347 sections from the link, and set the contents of the output
10349 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10350 for (o = abfd->sections; o != NULL; o = o->next)
10352 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10353 || strcmp (o->name, ".gnu.attributes") == 0)
10355 for (p = o->map_head.link_order; p != NULL; p = p->next)
10357 asection *input_section;
10359 if (p->type != bfd_indirect_link_order)
10361 input_section = p->u.indirect.section;
10362 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10363 elf_link_input_bfd ignores this section. */
10364 input_section->flags &= ~SEC_HAS_CONTENTS;
10367 attr_size = bfd_elf_obj_attr_size (abfd);
10370 bfd_set_section_size (abfd, o, attr_size);
10372 /* Skip this section later on. */
10373 o->map_head.link_order = NULL;
10376 o->flags |= SEC_EXCLUDE;
10380 /* Count up the number of relocations we will output for each output
10381 section, so that we know the sizes of the reloc sections. We
10382 also figure out some maximum sizes. */
10383 max_contents_size = 0;
10384 max_external_reloc_size = 0;
10385 max_internal_reloc_count = 0;
10387 max_sym_shndx_count = 0;
10389 for (o = abfd->sections; o != NULL; o = o->next)
10391 struct bfd_elf_section_data *esdo = elf_section_data (o);
10392 o->reloc_count = 0;
10394 for (p = o->map_head.link_order; p != NULL; p = p->next)
10396 unsigned int reloc_count = 0;
10397 struct bfd_elf_section_data *esdi = NULL;
10399 if (p->type == bfd_section_reloc_link_order
10400 || p->type == bfd_symbol_reloc_link_order)
10402 else if (p->type == bfd_indirect_link_order)
10406 sec = p->u.indirect.section;
10407 esdi = elf_section_data (sec);
10409 /* Mark all sections which are to be included in the
10410 link. This will normally be every section. We need
10411 to do this so that we can identify any sections which
10412 the linker has decided to not include. */
10413 sec->linker_mark = TRUE;
10415 if (sec->flags & SEC_MERGE)
10418 if (info->relocatable || info->emitrelocations)
10419 reloc_count = sec->reloc_count;
10420 else if (bed->elf_backend_count_relocs)
10421 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10423 if (sec->rawsize > max_contents_size)
10424 max_contents_size = sec->rawsize;
10425 if (sec->size > max_contents_size)
10426 max_contents_size = sec->size;
10428 /* We are interested in just local symbols, not all
10430 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10431 && (sec->owner->flags & DYNAMIC) == 0)
10435 if (elf_bad_symtab (sec->owner))
10436 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10437 / bed->s->sizeof_sym);
10439 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10441 if (sym_count > max_sym_count)
10442 max_sym_count = sym_count;
10444 if (sym_count > max_sym_shndx_count
10445 && elf_symtab_shndx (sec->owner) != 0)
10446 max_sym_shndx_count = sym_count;
10448 if ((sec->flags & SEC_RELOC) != 0)
10450 size_t ext_size = 0;
10452 if (esdi->rel.hdr != NULL)
10453 ext_size = esdi->rel.hdr->sh_size;
10454 if (esdi->rela.hdr != NULL)
10455 ext_size += esdi->rela.hdr->sh_size;
10457 if (ext_size > max_external_reloc_size)
10458 max_external_reloc_size = ext_size;
10459 if (sec->reloc_count > max_internal_reloc_count)
10460 max_internal_reloc_count = sec->reloc_count;
10465 if (reloc_count == 0)
10468 o->reloc_count += reloc_count;
10470 if (p->type == bfd_indirect_link_order
10471 && (info->relocatable || info->emitrelocations))
10474 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10475 if (esdi->rela.hdr)
10476 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10481 esdo->rela.count += reloc_count;
10483 esdo->rel.count += reloc_count;
10487 if (o->reloc_count > 0)
10488 o->flags |= SEC_RELOC;
10491 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10492 set it (this is probably a bug) and if it is set
10493 assign_section_numbers will create a reloc section. */
10494 o->flags &=~ SEC_RELOC;
10497 /* If the SEC_ALLOC flag is not set, force the section VMA to
10498 zero. This is done in elf_fake_sections as well, but forcing
10499 the VMA to 0 here will ensure that relocs against these
10500 sections are handled correctly. */
10501 if ((o->flags & SEC_ALLOC) == 0
10502 && ! o->user_set_vma)
10506 if (! info->relocatable && merged)
10507 elf_link_hash_traverse (elf_hash_table (info),
10508 _bfd_elf_link_sec_merge_syms, abfd);
10510 /* Figure out the file positions for everything but the symbol table
10511 and the relocs. We set symcount to force assign_section_numbers
10512 to create a symbol table. */
10513 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10514 BFD_ASSERT (! abfd->output_has_begun);
10515 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10518 /* Set sizes, and assign file positions for reloc sections. */
10519 for (o = abfd->sections; o != NULL; o = o->next)
10521 struct bfd_elf_section_data *esdo = elf_section_data (o);
10522 if ((o->flags & SEC_RELOC) != 0)
10525 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10529 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10533 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10534 to count upwards while actually outputting the relocations. */
10535 esdo->rel.count = 0;
10536 esdo->rela.count = 0;
10539 _bfd_elf_assign_file_positions_for_relocs (abfd);
10541 /* We have now assigned file positions for all the sections except
10542 .symtab and .strtab. We start the .symtab section at the current
10543 file position, and write directly to it. We build the .strtab
10544 section in memory. */
10545 bfd_get_symcount (abfd) = 0;
10546 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10547 /* sh_name is set in prep_headers. */
10548 symtab_hdr->sh_type = SHT_SYMTAB;
10549 /* sh_flags, sh_addr and sh_size all start off zero. */
10550 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10551 /* sh_link is set in assign_section_numbers. */
10552 /* sh_info is set below. */
10553 /* sh_offset is set just below. */
10554 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10556 off = elf_tdata (abfd)->next_file_pos;
10557 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10559 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10560 incorrect. We do not yet know the size of the .symtab section.
10561 We correct next_file_pos below, after we do know the size. */
10563 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10564 continuously seeking to the right position in the file. */
10565 if (! info->keep_memory || max_sym_count < 20)
10566 finfo.symbuf_size = 20;
10568 finfo.symbuf_size = max_sym_count;
10569 amt = finfo.symbuf_size;
10570 amt *= bed->s->sizeof_sym;
10571 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10572 if (finfo.symbuf == NULL)
10574 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10576 /* Wild guess at number of output symbols. realloc'd as needed. */
10577 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10578 finfo.shndxbuf_size = amt;
10579 amt *= sizeof (Elf_External_Sym_Shndx);
10580 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10581 if (finfo.symshndxbuf == NULL)
10585 /* Start writing out the symbol table. The first symbol is always a
10587 if (info->strip != strip_all
10590 elfsym.st_value = 0;
10591 elfsym.st_size = 0;
10592 elfsym.st_info = 0;
10593 elfsym.st_other = 0;
10594 elfsym.st_shndx = SHN_UNDEF;
10595 elfsym.st_target_internal = 0;
10596 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10601 /* Output a symbol for each section. We output these even if we are
10602 discarding local symbols, since they are used for relocs. These
10603 symbols have no names. We store the index of each one in the
10604 index field of the section, so that we can find it again when
10605 outputting relocs. */
10606 if (info->strip != strip_all
10609 elfsym.st_size = 0;
10610 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10611 elfsym.st_other = 0;
10612 elfsym.st_value = 0;
10613 elfsym.st_target_internal = 0;
10614 for (i = 1; i < elf_numsections (abfd); i++)
10616 o = bfd_section_from_elf_index (abfd, i);
10619 o->target_index = bfd_get_symcount (abfd);
10620 elfsym.st_shndx = i;
10621 if (!info->relocatable)
10622 elfsym.st_value = o->vma;
10623 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10629 /* Allocate some memory to hold information read in from the input
10631 if (max_contents_size != 0)
10633 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10634 if (finfo.contents == NULL)
10638 if (max_external_reloc_size != 0)
10640 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10641 if (finfo.external_relocs == NULL)
10645 if (max_internal_reloc_count != 0)
10647 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10648 amt *= sizeof (Elf_Internal_Rela);
10649 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10650 if (finfo.internal_relocs == NULL)
10654 if (max_sym_count != 0)
10656 amt = max_sym_count * bed->s->sizeof_sym;
10657 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10658 if (finfo.external_syms == NULL)
10661 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10662 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10663 if (finfo.internal_syms == NULL)
10666 amt = max_sym_count * sizeof (long);
10667 finfo.indices = (long int *) bfd_malloc (amt);
10668 if (finfo.indices == NULL)
10671 amt = max_sym_count * sizeof (asection *);
10672 finfo.sections = (asection **) bfd_malloc (amt);
10673 if (finfo.sections == NULL)
10677 if (max_sym_shndx_count != 0)
10679 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10680 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10681 if (finfo.locsym_shndx == NULL)
10685 if (elf_hash_table (info)->tls_sec)
10687 bfd_vma base, end = 0;
10690 for (sec = elf_hash_table (info)->tls_sec;
10691 sec && (sec->flags & SEC_THREAD_LOCAL);
10694 bfd_size_type size = sec->size;
10697 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10699 struct bfd_link_order *ord = sec->map_tail.link_order;
10702 size = ord->offset + ord->size;
10704 end = sec->vma + size;
10706 base = elf_hash_table (info)->tls_sec->vma;
10707 /* Only align end of TLS section if static TLS doesn't have special
10708 alignment requirements. */
10709 if (bed->static_tls_alignment == 1)
10710 end = align_power (end,
10711 elf_hash_table (info)->tls_sec->alignment_power);
10712 elf_hash_table (info)->tls_size = end - base;
10715 /* Reorder SHF_LINK_ORDER sections. */
10716 for (o = abfd->sections; o != NULL; o = o->next)
10718 if (!elf_fixup_link_order (abfd, o))
10722 /* Since ELF permits relocations to be against local symbols, we
10723 must have the local symbols available when we do the relocations.
10724 Since we would rather only read the local symbols once, and we
10725 would rather not keep them in memory, we handle all the
10726 relocations for a single input file at the same time.
10728 Unfortunately, there is no way to know the total number of local
10729 symbols until we have seen all of them, and the local symbol
10730 indices precede the global symbol indices. This means that when
10731 we are generating relocatable output, and we see a reloc against
10732 a global symbol, we can not know the symbol index until we have
10733 finished examining all the local symbols to see which ones we are
10734 going to output. To deal with this, we keep the relocations in
10735 memory, and don't output them until the end of the link. This is
10736 an unfortunate waste of memory, but I don't see a good way around
10737 it. Fortunately, it only happens when performing a relocatable
10738 link, which is not the common case. FIXME: If keep_memory is set
10739 we could write the relocs out and then read them again; I don't
10740 know how bad the memory loss will be. */
10742 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10743 sub->output_has_begun = FALSE;
10744 for (o = abfd->sections; o != NULL; o = o->next)
10746 for (p = o->map_head.link_order; p != NULL; p = p->next)
10748 if (p->type == bfd_indirect_link_order
10749 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10750 == bfd_target_elf_flavour)
10751 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10753 if (! sub->output_has_begun)
10755 if (! elf_link_input_bfd (&finfo, sub))
10757 sub->output_has_begun = TRUE;
10760 else if (p->type == bfd_section_reloc_link_order
10761 || p->type == bfd_symbol_reloc_link_order)
10763 if (! elf_reloc_link_order (abfd, info, o, p))
10768 if (! _bfd_default_link_order (abfd, info, o, p))
10770 if (p->type == bfd_indirect_link_order
10771 && (bfd_get_flavour (sub)
10772 == bfd_target_elf_flavour)
10773 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10774 != bed->s->elfclass))
10776 const char *iclass, *oclass;
10778 if (bed->s->elfclass == ELFCLASS64)
10780 iclass = "ELFCLASS32";
10781 oclass = "ELFCLASS64";
10785 iclass = "ELFCLASS64";
10786 oclass = "ELFCLASS32";
10789 bfd_set_error (bfd_error_wrong_format);
10790 (*_bfd_error_handler)
10791 (_("%B: file class %s incompatible with %s"),
10792 sub, iclass, oclass);
10801 /* Free symbol buffer if needed. */
10802 if (!info->reduce_memory_overheads)
10804 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10805 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10806 && elf_tdata (sub)->symbuf)
10808 free (elf_tdata (sub)->symbuf);
10809 elf_tdata (sub)->symbuf = NULL;
10813 /* Output any global symbols that got converted to local in a
10814 version script or due to symbol visibility. We do this in a
10815 separate step since ELF requires all local symbols to appear
10816 prior to any global symbols. FIXME: We should only do this if
10817 some global symbols were, in fact, converted to become local.
10818 FIXME: Will this work correctly with the Irix 5 linker? */
10819 eoinfo.failed = FALSE;
10820 eoinfo.finfo = &finfo;
10821 eoinfo.localsyms = TRUE;
10822 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10827 /* If backend needs to output some local symbols not present in the hash
10828 table, do it now. */
10829 if (bed->elf_backend_output_arch_local_syms)
10831 typedef int (*out_sym_func)
10832 (void *, const char *, Elf_Internal_Sym *, asection *,
10833 struct elf_link_hash_entry *);
10835 if (! ((*bed->elf_backend_output_arch_local_syms)
10836 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10840 /* That wrote out all the local symbols. Finish up the symbol table
10841 with the global symbols. Even if we want to strip everything we
10842 can, we still need to deal with those global symbols that got
10843 converted to local in a version script. */
10845 /* The sh_info field records the index of the first non local symbol. */
10846 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10849 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10851 Elf_Internal_Sym sym;
10852 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10853 long last_local = 0;
10855 /* Write out the section symbols for the output sections. */
10856 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10862 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10864 sym.st_target_internal = 0;
10866 for (s = abfd->sections; s != NULL; s = s->next)
10872 dynindx = elf_section_data (s)->dynindx;
10875 indx = elf_section_data (s)->this_idx;
10876 BFD_ASSERT (indx > 0);
10877 sym.st_shndx = indx;
10878 if (! check_dynsym (abfd, &sym))
10880 sym.st_value = s->vma;
10881 dest = dynsym + dynindx * bed->s->sizeof_sym;
10882 if (last_local < dynindx)
10883 last_local = dynindx;
10884 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10888 /* Write out the local dynsyms. */
10889 if (elf_hash_table (info)->dynlocal)
10891 struct elf_link_local_dynamic_entry *e;
10892 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10897 /* Copy the internal symbol and turn off visibility.
10898 Note that we saved a word of storage and overwrote
10899 the original st_name with the dynstr_index. */
10901 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10903 s = bfd_section_from_elf_index (e->input_bfd,
10908 elf_section_data (s->output_section)->this_idx;
10909 if (! check_dynsym (abfd, &sym))
10911 sym.st_value = (s->output_section->vma
10913 + e->isym.st_value);
10916 if (last_local < e->dynindx)
10917 last_local = e->dynindx;
10919 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10920 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10924 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10928 /* We get the global symbols from the hash table. */
10929 eoinfo.failed = FALSE;
10930 eoinfo.localsyms = FALSE;
10931 eoinfo.finfo = &finfo;
10932 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10937 /* If backend needs to output some symbols not present in the hash
10938 table, do it now. */
10939 if (bed->elf_backend_output_arch_syms)
10941 typedef int (*out_sym_func)
10942 (void *, const char *, Elf_Internal_Sym *, asection *,
10943 struct elf_link_hash_entry *);
10945 if (! ((*bed->elf_backend_output_arch_syms)
10946 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10950 /* Flush all symbols to the file. */
10951 if (! elf_link_flush_output_syms (&finfo, bed))
10954 /* Now we know the size of the symtab section. */
10955 off += symtab_hdr->sh_size;
10957 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10958 if (symtab_shndx_hdr->sh_name != 0)
10960 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10961 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10962 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10963 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10964 symtab_shndx_hdr->sh_size = amt;
10966 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10969 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10970 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10975 /* Finish up and write out the symbol string table (.strtab)
10977 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10978 /* sh_name was set in prep_headers. */
10979 symstrtab_hdr->sh_type = SHT_STRTAB;
10980 symstrtab_hdr->sh_flags = 0;
10981 symstrtab_hdr->sh_addr = 0;
10982 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10983 symstrtab_hdr->sh_entsize = 0;
10984 symstrtab_hdr->sh_link = 0;
10985 symstrtab_hdr->sh_info = 0;
10986 /* sh_offset is set just below. */
10987 symstrtab_hdr->sh_addralign = 1;
10989 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10990 elf_tdata (abfd)->next_file_pos = off;
10992 if (bfd_get_symcount (abfd) > 0)
10994 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10995 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10999 /* Adjust the relocs to have the correct symbol indices. */
11000 for (o = abfd->sections; o != NULL; o = o->next)
11002 struct bfd_elf_section_data *esdo = elf_section_data (o);
11003 if ((o->flags & SEC_RELOC) == 0)
11006 if (esdo->rel.hdr != NULL)
11007 elf_link_adjust_relocs (abfd, &esdo->rel);
11008 if (esdo->rela.hdr != NULL)
11009 elf_link_adjust_relocs (abfd, &esdo->rela);
11011 /* Set the reloc_count field to 0 to prevent write_relocs from
11012 trying to swap the relocs out itself. */
11013 o->reloc_count = 0;
11016 if (dynamic && info->combreloc && dynobj != NULL)
11017 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11019 /* If we are linking against a dynamic object, or generating a
11020 shared library, finish up the dynamic linking information. */
11023 bfd_byte *dyncon, *dynconend;
11025 /* Fix up .dynamic entries. */
11026 o = bfd_get_section_by_name (dynobj, ".dynamic");
11027 BFD_ASSERT (o != NULL);
11029 dyncon = o->contents;
11030 dynconend = o->contents + o->size;
11031 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11033 Elf_Internal_Dyn dyn;
11037 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11044 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11046 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11048 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11049 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11052 dyn.d_un.d_val = relativecount;
11059 name = info->init_function;
11062 name = info->fini_function;
11065 struct elf_link_hash_entry *h;
11067 h = elf_link_hash_lookup (elf_hash_table (info), name,
11068 FALSE, FALSE, TRUE);
11070 && (h->root.type == bfd_link_hash_defined
11071 || h->root.type == bfd_link_hash_defweak))
11073 dyn.d_un.d_ptr = h->root.u.def.value;
11074 o = h->root.u.def.section;
11075 if (o->output_section != NULL)
11076 dyn.d_un.d_ptr += (o->output_section->vma
11077 + o->output_offset);
11080 /* The symbol is imported from another shared
11081 library and does not apply to this one. */
11082 dyn.d_un.d_ptr = 0;
11089 case DT_PREINIT_ARRAYSZ:
11090 name = ".preinit_array";
11092 case DT_INIT_ARRAYSZ:
11093 name = ".init_array";
11095 case DT_FINI_ARRAYSZ:
11096 name = ".fini_array";
11098 o = bfd_get_section_by_name (abfd, name);
11101 (*_bfd_error_handler)
11102 (_("%B: could not find output section %s"), abfd, name);
11106 (*_bfd_error_handler)
11107 (_("warning: %s section has zero size"), name);
11108 dyn.d_un.d_val = o->size;
11111 case DT_PREINIT_ARRAY:
11112 name = ".preinit_array";
11114 case DT_INIT_ARRAY:
11115 name = ".init_array";
11117 case DT_FINI_ARRAY:
11118 name = ".fini_array";
11125 name = ".gnu.hash";
11134 name = ".gnu.version_d";
11137 name = ".gnu.version_r";
11140 name = ".gnu.version";
11142 o = bfd_get_section_by_name (abfd, name);
11145 (*_bfd_error_handler)
11146 (_("%B: could not find output section %s"), abfd, name);
11149 dyn.d_un.d_ptr = o->vma;
11156 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11160 dyn.d_un.d_val = 0;
11161 dyn.d_un.d_ptr = 0;
11162 for (i = 1; i < elf_numsections (abfd); i++)
11164 Elf_Internal_Shdr *hdr;
11166 hdr = elf_elfsections (abfd)[i];
11167 if (hdr->sh_type == type
11168 && (hdr->sh_flags & SHF_ALLOC) != 0)
11170 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11171 dyn.d_un.d_val += hdr->sh_size;
11174 if (dyn.d_un.d_ptr == 0
11175 || hdr->sh_addr < dyn.d_un.d_ptr)
11176 dyn.d_un.d_ptr = hdr->sh_addr;
11182 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11186 /* If we have created any dynamic sections, then output them. */
11187 if (dynobj != NULL)
11189 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11192 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11193 if (info->warn_shared_textrel && info->shared)
11195 bfd_byte *dyncon, *dynconend;
11197 /* Fix up .dynamic entries. */
11198 o = bfd_get_section_by_name (dynobj, ".dynamic");
11199 BFD_ASSERT (o != NULL);
11201 dyncon = o->contents;
11202 dynconend = o->contents + o->size;
11203 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11205 Elf_Internal_Dyn dyn;
11207 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11209 if (dyn.d_tag == DT_TEXTREL)
11211 info->callbacks->einfo
11212 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11218 for (o = dynobj->sections; o != NULL; o = o->next)
11220 if ((o->flags & SEC_HAS_CONTENTS) == 0
11222 || o->output_section == bfd_abs_section_ptr)
11224 if ((o->flags & SEC_LINKER_CREATED) == 0)
11226 /* At this point, we are only interested in sections
11227 created by _bfd_elf_link_create_dynamic_sections. */
11230 if (elf_hash_table (info)->stab_info.stabstr == o)
11232 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11234 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11236 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11238 /* FIXME: octets_per_byte. */
11239 if (! bfd_set_section_contents (abfd, o->output_section,
11241 (file_ptr) o->output_offset,
11247 /* The contents of the .dynstr section are actually in a
11249 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11250 if (bfd_seek (abfd, off, SEEK_SET) != 0
11251 || ! _bfd_elf_strtab_emit (abfd,
11252 elf_hash_table (info)->dynstr))
11258 if (info->relocatable)
11260 bfd_boolean failed = FALSE;
11262 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11267 /* If we have optimized stabs strings, output them. */
11268 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11270 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11274 if (info->eh_frame_hdr)
11276 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11280 if (finfo.symstrtab != NULL)
11281 _bfd_stringtab_free (finfo.symstrtab);
11282 if (finfo.contents != NULL)
11283 free (finfo.contents);
11284 if (finfo.external_relocs != NULL)
11285 free (finfo.external_relocs);
11286 if (finfo.internal_relocs != NULL)
11287 free (finfo.internal_relocs);
11288 if (finfo.external_syms != NULL)
11289 free (finfo.external_syms);
11290 if (finfo.locsym_shndx != NULL)
11291 free (finfo.locsym_shndx);
11292 if (finfo.internal_syms != NULL)
11293 free (finfo.internal_syms);
11294 if (finfo.indices != NULL)
11295 free (finfo.indices);
11296 if (finfo.sections != NULL)
11297 free (finfo.sections);
11298 if (finfo.symbuf != NULL)
11299 free (finfo.symbuf);
11300 if (finfo.symshndxbuf != NULL)
11301 free (finfo.symshndxbuf);
11302 for (o = abfd->sections; o != NULL; o = o->next)
11304 struct bfd_elf_section_data *esdo = elf_section_data (o);
11305 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11306 free (esdo->rel.hashes);
11307 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11308 free (esdo->rela.hashes);
11311 elf_tdata (abfd)->linker = TRUE;
11315 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11316 if (contents == NULL)
11317 return FALSE; /* Bail out and fail. */
11318 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11319 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11326 if (finfo.symstrtab != NULL)
11327 _bfd_stringtab_free (finfo.symstrtab);
11328 if (finfo.contents != NULL)
11329 free (finfo.contents);
11330 if (finfo.external_relocs != NULL)
11331 free (finfo.external_relocs);
11332 if (finfo.internal_relocs != NULL)
11333 free (finfo.internal_relocs);
11334 if (finfo.external_syms != NULL)
11335 free (finfo.external_syms);
11336 if (finfo.locsym_shndx != NULL)
11337 free (finfo.locsym_shndx);
11338 if (finfo.internal_syms != NULL)
11339 free (finfo.internal_syms);
11340 if (finfo.indices != NULL)
11341 free (finfo.indices);
11342 if (finfo.sections != NULL)
11343 free (finfo.sections);
11344 if (finfo.symbuf != NULL)
11345 free (finfo.symbuf);
11346 if (finfo.symshndxbuf != NULL)
11347 free (finfo.symshndxbuf);
11348 for (o = abfd->sections; o != NULL; o = o->next)
11350 struct bfd_elf_section_data *esdo = elf_section_data (o);
11351 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11352 free (esdo->rel.hashes);
11353 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11354 free (esdo->rela.hashes);
11360 /* Initialize COOKIE for input bfd ABFD. */
11363 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11364 struct bfd_link_info *info, bfd *abfd)
11366 Elf_Internal_Shdr *symtab_hdr;
11367 const struct elf_backend_data *bed;
11369 bed = get_elf_backend_data (abfd);
11370 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11372 cookie->abfd = abfd;
11373 cookie->sym_hashes = elf_sym_hashes (abfd);
11374 cookie->bad_symtab = elf_bad_symtab (abfd);
11375 if (cookie->bad_symtab)
11377 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11378 cookie->extsymoff = 0;
11382 cookie->locsymcount = symtab_hdr->sh_info;
11383 cookie->extsymoff = symtab_hdr->sh_info;
11386 if (bed->s->arch_size == 32)
11387 cookie->r_sym_shift = 8;
11389 cookie->r_sym_shift = 32;
11391 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11392 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11394 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11395 cookie->locsymcount, 0,
11397 if (cookie->locsyms == NULL)
11399 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11402 if (info->keep_memory)
11403 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11408 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11411 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11413 Elf_Internal_Shdr *symtab_hdr;
11415 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11416 if (cookie->locsyms != NULL
11417 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11418 free (cookie->locsyms);
11421 /* Initialize the relocation information in COOKIE for input section SEC
11422 of input bfd ABFD. */
11425 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11426 struct bfd_link_info *info, bfd *abfd,
11429 const struct elf_backend_data *bed;
11431 if (sec->reloc_count == 0)
11433 cookie->rels = NULL;
11434 cookie->relend = NULL;
11438 bed = get_elf_backend_data (abfd);
11440 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11441 info->keep_memory);
11442 if (cookie->rels == NULL)
11444 cookie->rel = cookie->rels;
11445 cookie->relend = (cookie->rels
11446 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11448 cookie->rel = cookie->rels;
11452 /* Free the memory allocated by init_reloc_cookie_rels,
11456 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11459 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11460 free (cookie->rels);
11463 /* Initialize the whole of COOKIE for input section SEC. */
11466 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11467 struct bfd_link_info *info,
11470 if (!init_reloc_cookie (cookie, info, sec->owner))
11472 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11477 fini_reloc_cookie (cookie, sec->owner);
11482 /* Free the memory allocated by init_reloc_cookie_for_section,
11486 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11489 fini_reloc_cookie_rels (cookie, sec);
11490 fini_reloc_cookie (cookie, sec->owner);
11493 /* Garbage collect unused sections. */
11495 /* Default gc_mark_hook. */
11498 _bfd_elf_gc_mark_hook (asection *sec,
11499 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11500 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11501 struct elf_link_hash_entry *h,
11502 Elf_Internal_Sym *sym)
11504 const char *sec_name;
11508 switch (h->root.type)
11510 case bfd_link_hash_defined:
11511 case bfd_link_hash_defweak:
11512 return h->root.u.def.section;
11514 case bfd_link_hash_common:
11515 return h->root.u.c.p->section;
11517 case bfd_link_hash_undefined:
11518 case bfd_link_hash_undefweak:
11519 /* To work around a glibc bug, keep all XXX input sections
11520 when there is an as yet undefined reference to __start_XXX
11521 or __stop_XXX symbols. The linker will later define such
11522 symbols for orphan input sections that have a name
11523 representable as a C identifier. */
11524 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11525 sec_name = h->root.root.string + 8;
11526 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11527 sec_name = h->root.root.string + 7;
11531 if (sec_name && *sec_name != '\0')
11535 for (i = info->input_bfds; i; i = i->link_next)
11537 sec = bfd_get_section_by_name (i, sec_name);
11539 sec->flags |= SEC_KEEP;
11549 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11554 /* COOKIE->rel describes a relocation against section SEC, which is
11555 a section we've decided to keep. Return the section that contains
11556 the relocation symbol, or NULL if no section contains it. */
11559 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11560 elf_gc_mark_hook_fn gc_mark_hook,
11561 struct elf_reloc_cookie *cookie)
11563 unsigned long r_symndx;
11564 struct elf_link_hash_entry *h;
11566 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11567 if (r_symndx == STN_UNDEF)
11570 if (r_symndx >= cookie->locsymcount
11571 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11573 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11574 while (h->root.type == bfd_link_hash_indirect
11575 || h->root.type == bfd_link_hash_warning)
11576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11577 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11580 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11581 &cookie->locsyms[r_symndx]);
11584 /* COOKIE->rel describes a relocation against section SEC, which is
11585 a section we've decided to keep. Mark the section that contains
11586 the relocation symbol. */
11589 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11591 elf_gc_mark_hook_fn gc_mark_hook,
11592 struct elf_reloc_cookie *cookie)
11596 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11597 if (rsec && !rsec->gc_mark)
11599 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11601 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11607 /* The mark phase of garbage collection. For a given section, mark
11608 it and any sections in this section's group, and all the sections
11609 which define symbols to which it refers. */
11612 _bfd_elf_gc_mark (struct bfd_link_info *info,
11614 elf_gc_mark_hook_fn gc_mark_hook)
11617 asection *group_sec, *eh_frame;
11621 /* Mark all the sections in the group. */
11622 group_sec = elf_section_data (sec)->next_in_group;
11623 if (group_sec && !group_sec->gc_mark)
11624 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11627 /* Look through the section relocs. */
11629 eh_frame = elf_eh_frame_section (sec->owner);
11630 if ((sec->flags & SEC_RELOC) != 0
11631 && sec->reloc_count > 0
11632 && sec != eh_frame)
11634 struct elf_reloc_cookie cookie;
11636 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11640 for (; cookie.rel < cookie.relend; cookie.rel++)
11641 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11646 fini_reloc_cookie_for_section (&cookie, sec);
11650 if (ret && eh_frame && elf_fde_list (sec))
11652 struct elf_reloc_cookie cookie;
11654 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11658 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11659 gc_mark_hook, &cookie))
11661 fini_reloc_cookie_for_section (&cookie, eh_frame);
11668 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11670 struct elf_gc_sweep_symbol_info
11672 struct bfd_link_info *info;
11673 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11678 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11680 if (h->root.type == bfd_link_hash_warning)
11681 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11683 if ((h->root.type == bfd_link_hash_defined
11684 || h->root.type == bfd_link_hash_defweak)
11685 && !h->root.u.def.section->gc_mark
11686 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11688 struct elf_gc_sweep_symbol_info *inf =
11689 (struct elf_gc_sweep_symbol_info *) data;
11690 (*inf->hide_symbol) (inf->info, h, TRUE);
11696 /* The sweep phase of garbage collection. Remove all garbage sections. */
11698 typedef bfd_boolean (*gc_sweep_hook_fn)
11699 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11702 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11705 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11706 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11707 unsigned long section_sym_count;
11708 struct elf_gc_sweep_symbol_info sweep_info;
11710 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11714 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11717 for (o = sub->sections; o != NULL; o = o->next)
11719 /* When any section in a section group is kept, we keep all
11720 sections in the section group. If the first member of
11721 the section group is excluded, we will also exclude the
11723 if (o->flags & SEC_GROUP)
11725 asection *first = elf_next_in_group (o);
11726 o->gc_mark = first->gc_mark;
11728 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11729 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0
11730 || elf_section_data (o)->this_hdr.sh_type == SHT_NOTE)
11732 /* Keep debug, special and SHT_NOTE sections. */
11739 /* Skip sweeping sections already excluded. */
11740 if (o->flags & SEC_EXCLUDE)
11743 /* Since this is early in the link process, it is simple
11744 to remove a section from the output. */
11745 o->flags |= SEC_EXCLUDE;
11747 if (info->print_gc_sections && o->size != 0)
11748 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11750 /* But we also have to update some of the relocation
11751 info we collected before. */
11753 && (o->flags & SEC_RELOC) != 0
11754 && o->reloc_count > 0
11755 && !bfd_is_abs_section (o->output_section))
11757 Elf_Internal_Rela *internal_relocs;
11761 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11762 info->keep_memory);
11763 if (internal_relocs == NULL)
11766 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11768 if (elf_section_data (o)->relocs != internal_relocs)
11769 free (internal_relocs);
11777 /* Remove the symbols that were in the swept sections from the dynamic
11778 symbol table. GCFIXME: Anyone know how to get them out of the
11779 static symbol table as well? */
11780 sweep_info.info = info;
11781 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11782 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11785 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
11789 /* Propagate collected vtable information. This is called through
11790 elf_link_hash_traverse. */
11793 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11795 if (h->root.type == bfd_link_hash_warning)
11796 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11798 /* Those that are not vtables. */
11799 if (h->vtable == NULL || h->vtable->parent == NULL)
11802 /* Those vtables that do not have parents, we cannot merge. */
11803 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11806 /* If we've already been done, exit. */
11807 if (h->vtable->used && h->vtable->used[-1])
11810 /* Make sure the parent's table is up to date. */
11811 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11813 if (h->vtable->used == NULL)
11815 /* None of this table's entries were referenced. Re-use the
11817 h->vtable->used = h->vtable->parent->vtable->used;
11818 h->vtable->size = h->vtable->parent->vtable->size;
11823 bfd_boolean *cu, *pu;
11825 /* Or the parent's entries into ours. */
11826 cu = h->vtable->used;
11828 pu = h->vtable->parent->vtable->used;
11831 const struct elf_backend_data *bed;
11832 unsigned int log_file_align;
11834 bed = get_elf_backend_data (h->root.u.def.section->owner);
11835 log_file_align = bed->s->log_file_align;
11836 n = h->vtable->parent->vtable->size >> log_file_align;
11851 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11854 bfd_vma hstart, hend;
11855 Elf_Internal_Rela *relstart, *relend, *rel;
11856 const struct elf_backend_data *bed;
11857 unsigned int log_file_align;
11859 if (h->root.type == bfd_link_hash_warning)
11860 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11862 /* Take care of both those symbols that do not describe vtables as
11863 well as those that are not loaded. */
11864 if (h->vtable == NULL || h->vtable->parent == NULL)
11867 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11868 || h->root.type == bfd_link_hash_defweak);
11870 sec = h->root.u.def.section;
11871 hstart = h->root.u.def.value;
11872 hend = hstart + h->size;
11874 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11876 return *(bfd_boolean *) okp = FALSE;
11877 bed = get_elf_backend_data (sec->owner);
11878 log_file_align = bed->s->log_file_align;
11880 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11882 for (rel = relstart; rel < relend; ++rel)
11883 if (rel->r_offset >= hstart && rel->r_offset < hend)
11885 /* If the entry is in use, do nothing. */
11886 if (h->vtable->used
11887 && (rel->r_offset - hstart) < h->vtable->size)
11889 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11890 if (h->vtable->used[entry])
11893 /* Otherwise, kill it. */
11894 rel->r_offset = rel->r_info = rel->r_addend = 0;
11900 /* Mark sections containing dynamically referenced symbols. When
11901 building shared libraries, we must assume that any visible symbol is
11905 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11907 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11909 if (h->root.type == bfd_link_hash_warning)
11910 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11912 if ((h->root.type == bfd_link_hash_defined
11913 || h->root.type == bfd_link_hash_defweak)
11915 || (!info->executable
11917 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11918 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11919 h->root.u.def.section->flags |= SEC_KEEP;
11924 /* Keep all sections containing symbols undefined on the command-line,
11925 and the section containing the entry symbol. */
11928 _bfd_elf_gc_keep (struct bfd_link_info *info)
11930 struct bfd_sym_chain *sym;
11932 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11934 struct elf_link_hash_entry *h;
11936 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11937 FALSE, FALSE, FALSE);
11940 && (h->root.type == bfd_link_hash_defined
11941 || h->root.type == bfd_link_hash_defweak)
11942 && !bfd_is_abs_section (h->root.u.def.section))
11943 h->root.u.def.section->flags |= SEC_KEEP;
11947 /* Do mark and sweep of unused sections. */
11950 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11952 bfd_boolean ok = TRUE;
11954 elf_gc_mark_hook_fn gc_mark_hook;
11955 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11957 if (!bed->can_gc_sections
11958 || !is_elf_hash_table (info->hash))
11960 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11964 bed->gc_keep (info);
11966 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11967 at the .eh_frame section if we can mark the FDEs individually. */
11968 _bfd_elf_begin_eh_frame_parsing (info);
11969 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11972 struct elf_reloc_cookie cookie;
11974 sec = bfd_get_section_by_name (sub, ".eh_frame");
11975 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11977 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11978 if (elf_section_data (sec)->sec_info)
11979 elf_eh_frame_section (sub) = sec;
11980 fini_reloc_cookie_for_section (&cookie, sec);
11983 _bfd_elf_end_eh_frame_parsing (info);
11985 /* Apply transitive closure to the vtable entry usage info. */
11986 elf_link_hash_traverse (elf_hash_table (info),
11987 elf_gc_propagate_vtable_entries_used,
11992 /* Kill the vtable relocations that were not used. */
11993 elf_link_hash_traverse (elf_hash_table (info),
11994 elf_gc_smash_unused_vtentry_relocs,
11999 /* Mark dynamically referenced symbols. */
12000 if (elf_hash_table (info)->dynamic_sections_created)
12001 elf_link_hash_traverse (elf_hash_table (info),
12002 bed->gc_mark_dynamic_ref,
12005 /* Grovel through relocs to find out who stays ... */
12006 gc_mark_hook = bed->gc_mark_hook;
12007 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12011 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12014 for (o = sub->sections; o != NULL; o = o->next)
12015 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
12016 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12020 /* Allow the backend to mark additional target specific sections. */
12021 if (bed->gc_mark_extra_sections)
12022 bed->gc_mark_extra_sections (info, gc_mark_hook);
12024 /* ... and mark SEC_EXCLUDE for those that go. */
12025 return elf_gc_sweep (abfd, info);
12028 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12031 bfd_elf_gc_record_vtinherit (bfd *abfd,
12033 struct elf_link_hash_entry *h,
12036 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12037 struct elf_link_hash_entry **search, *child;
12038 bfd_size_type extsymcount;
12039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12041 /* The sh_info field of the symtab header tells us where the
12042 external symbols start. We don't care about the local symbols at
12044 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12045 if (!elf_bad_symtab (abfd))
12046 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12048 sym_hashes = elf_sym_hashes (abfd);
12049 sym_hashes_end = sym_hashes + extsymcount;
12051 /* Hunt down the child symbol, which is in this section at the same
12052 offset as the relocation. */
12053 for (search = sym_hashes; search != sym_hashes_end; ++search)
12055 if ((child = *search) != NULL
12056 && (child->root.type == bfd_link_hash_defined
12057 || child->root.type == bfd_link_hash_defweak)
12058 && child->root.u.def.section == sec
12059 && child->root.u.def.value == offset)
12063 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12064 abfd, sec, (unsigned long) offset);
12065 bfd_set_error (bfd_error_invalid_operation);
12069 if (!child->vtable)
12071 child->vtable = (struct elf_link_virtual_table_entry *)
12072 bfd_zalloc (abfd, sizeof (*child->vtable));
12073 if (!child->vtable)
12078 /* This *should* only be the absolute section. It could potentially
12079 be that someone has defined a non-global vtable though, which
12080 would be bad. It isn't worth paging in the local symbols to be
12081 sure though; that case should simply be handled by the assembler. */
12083 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12086 child->vtable->parent = h;
12091 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12094 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12095 asection *sec ATTRIBUTE_UNUSED,
12096 struct elf_link_hash_entry *h,
12099 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12100 unsigned int log_file_align = bed->s->log_file_align;
12104 h->vtable = (struct elf_link_virtual_table_entry *)
12105 bfd_zalloc (abfd, sizeof (*h->vtable));
12110 if (addend >= h->vtable->size)
12112 size_t size, bytes, file_align;
12113 bfd_boolean *ptr = h->vtable->used;
12115 /* While the symbol is undefined, we have to be prepared to handle
12117 file_align = 1 << log_file_align;
12118 if (h->root.type == bfd_link_hash_undefined)
12119 size = addend + file_align;
12123 if (addend >= size)
12125 /* Oops! We've got a reference past the defined end of
12126 the table. This is probably a bug -- shall we warn? */
12127 size = addend + file_align;
12130 size = (size + file_align - 1) & -file_align;
12132 /* Allocate one extra entry for use as a "done" flag for the
12133 consolidation pass. */
12134 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12138 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12144 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12145 * sizeof (bfd_boolean));
12146 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12150 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12155 /* And arrange for that done flag to be at index -1. */
12156 h->vtable->used = ptr + 1;
12157 h->vtable->size = size;
12160 h->vtable->used[addend >> log_file_align] = TRUE;
12165 struct alloc_got_off_arg {
12167 struct bfd_link_info *info;
12170 /* We need a special top-level link routine to convert got reference counts
12171 to real got offsets. */
12174 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12176 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12177 bfd *obfd = gofarg->info->output_bfd;
12178 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12180 if (h->root.type == bfd_link_hash_warning)
12181 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12183 if (h->got.refcount > 0)
12185 h->got.offset = gofarg->gotoff;
12186 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12189 h->got.offset = (bfd_vma) -1;
12194 /* And an accompanying bit to work out final got entry offsets once
12195 we're done. Should be called from final_link. */
12198 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12199 struct bfd_link_info *info)
12202 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12204 struct alloc_got_off_arg gofarg;
12206 BFD_ASSERT (abfd == info->output_bfd);
12208 if (! is_elf_hash_table (info->hash))
12211 /* The GOT offset is relative to the .got section, but the GOT header is
12212 put into the .got.plt section, if the backend uses it. */
12213 if (bed->want_got_plt)
12216 gotoff = bed->got_header_size;
12218 /* Do the local .got entries first. */
12219 for (i = info->input_bfds; i; i = i->link_next)
12221 bfd_signed_vma *local_got;
12222 bfd_size_type j, locsymcount;
12223 Elf_Internal_Shdr *symtab_hdr;
12225 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12228 local_got = elf_local_got_refcounts (i);
12232 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12233 if (elf_bad_symtab (i))
12234 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12236 locsymcount = symtab_hdr->sh_info;
12238 for (j = 0; j < locsymcount; ++j)
12240 if (local_got[j] > 0)
12242 local_got[j] = gotoff;
12243 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12246 local_got[j] = (bfd_vma) -1;
12250 /* Then the global .got entries. .plt refcounts are handled by
12251 adjust_dynamic_symbol */
12252 gofarg.gotoff = gotoff;
12253 gofarg.info = info;
12254 elf_link_hash_traverse (elf_hash_table (info),
12255 elf_gc_allocate_got_offsets,
12260 /* Many folk need no more in the way of final link than this, once
12261 got entry reference counting is enabled. */
12264 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12266 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12269 /* Invoke the regular ELF backend linker to do all the work. */
12270 return bfd_elf_final_link (abfd, info);
12274 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12276 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12278 if (rcookie->bad_symtab)
12279 rcookie->rel = rcookie->rels;
12281 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12283 unsigned long r_symndx;
12285 if (! rcookie->bad_symtab)
12286 if (rcookie->rel->r_offset > offset)
12288 if (rcookie->rel->r_offset != offset)
12291 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12292 if (r_symndx == STN_UNDEF)
12295 if (r_symndx >= rcookie->locsymcount
12296 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12298 struct elf_link_hash_entry *h;
12300 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12302 while (h->root.type == bfd_link_hash_indirect
12303 || h->root.type == bfd_link_hash_warning)
12304 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12306 if ((h->root.type == bfd_link_hash_defined
12307 || h->root.type == bfd_link_hash_defweak)
12308 && elf_discarded_section (h->root.u.def.section))
12315 /* It's not a relocation against a global symbol,
12316 but it could be a relocation against a local
12317 symbol for a discarded section. */
12319 Elf_Internal_Sym *isym;
12321 /* Need to: get the symbol; get the section. */
12322 isym = &rcookie->locsyms[r_symndx];
12323 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12324 if (isec != NULL && elf_discarded_section (isec))
12332 /* Discard unneeded references to discarded sections.
12333 Returns TRUE if any section's size was changed. */
12334 /* This function assumes that the relocations are in sorted order,
12335 which is true for all known assemblers. */
12338 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12340 struct elf_reloc_cookie cookie;
12341 asection *stab, *eh;
12342 const struct elf_backend_data *bed;
12344 bfd_boolean ret = FALSE;
12346 if (info->traditional_format
12347 || !is_elf_hash_table (info->hash))
12350 _bfd_elf_begin_eh_frame_parsing (info);
12351 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12353 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12356 bed = get_elf_backend_data (abfd);
12358 if ((abfd->flags & DYNAMIC) != 0)
12362 if (!info->relocatable)
12364 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12367 || bfd_is_abs_section (eh->output_section)))
12371 stab = bfd_get_section_by_name (abfd, ".stab");
12373 && (stab->size == 0
12374 || bfd_is_abs_section (stab->output_section)
12375 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12380 && bed->elf_backend_discard_info == NULL)
12383 if (!init_reloc_cookie (&cookie, info, abfd))
12387 && stab->reloc_count > 0
12388 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12390 if (_bfd_discard_section_stabs (abfd, stab,
12391 elf_section_data (stab)->sec_info,
12392 bfd_elf_reloc_symbol_deleted_p,
12395 fini_reloc_cookie_rels (&cookie, stab);
12399 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12401 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12402 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12403 bfd_elf_reloc_symbol_deleted_p,
12406 fini_reloc_cookie_rels (&cookie, eh);
12409 if (bed->elf_backend_discard_info != NULL
12410 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12413 fini_reloc_cookie (&cookie, abfd);
12415 _bfd_elf_end_eh_frame_parsing (info);
12417 if (info->eh_frame_hdr
12418 && !info->relocatable
12419 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12425 /* For a SHT_GROUP section, return the group signature. For other
12426 sections, return the normal section name. */
12428 static const char *
12429 section_signature (asection *sec)
12431 if ((sec->flags & SEC_GROUP) != 0
12432 && elf_next_in_group (sec) != NULL
12433 && elf_group_name (elf_next_in_group (sec)) != NULL)
12434 return elf_group_name (elf_next_in_group (sec));
12439 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12440 struct bfd_link_info *info)
12443 const char *name, *p;
12444 struct bfd_section_already_linked *l;
12445 struct bfd_section_already_linked_hash_entry *already_linked_list;
12447 if (sec->output_section == bfd_abs_section_ptr)
12450 flags = sec->flags;
12452 /* Return if it isn't a linkonce section. A comdat group section
12453 also has SEC_LINK_ONCE set. */
12454 if ((flags & SEC_LINK_ONCE) == 0)
12457 /* Don't put group member sections on our list of already linked
12458 sections. They are handled as a group via their group section. */
12459 if (elf_sec_group (sec) != NULL)
12462 /* FIXME: When doing a relocatable link, we may have trouble
12463 copying relocations in other sections that refer to local symbols
12464 in the section being discarded. Those relocations will have to
12465 be converted somehow; as of this writing I'm not sure that any of
12466 the backends handle that correctly.
12468 It is tempting to instead not discard link once sections when
12469 doing a relocatable link (technically, they should be discarded
12470 whenever we are building constructors). However, that fails,
12471 because the linker winds up combining all the link once sections
12472 into a single large link once section, which defeats the purpose
12473 of having link once sections in the first place.
12475 Also, not merging link once sections in a relocatable link
12476 causes trouble for MIPS ELF, which relies on link once semantics
12477 to handle the .reginfo section correctly. */
12479 name = section_signature (sec);
12481 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12482 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12487 already_linked_list = bfd_section_already_linked_table_lookup (p);
12489 for (l = already_linked_list->entry; l != NULL; l = l->next)
12491 /* We may have 2 different types of sections on the list: group
12492 sections and linkonce sections. Match like sections. */
12493 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12494 && strcmp (name, section_signature (l->sec)) == 0
12495 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12497 /* The section has already been linked. See if we should
12498 issue a warning. */
12499 switch (flags & SEC_LINK_DUPLICATES)
12504 case SEC_LINK_DUPLICATES_DISCARD:
12507 case SEC_LINK_DUPLICATES_ONE_ONLY:
12508 (*_bfd_error_handler)
12509 (_("%B: ignoring duplicate section `%A'"),
12513 case SEC_LINK_DUPLICATES_SAME_SIZE:
12514 if (sec->size != l->sec->size)
12515 (*_bfd_error_handler)
12516 (_("%B: duplicate section `%A' has different size"),
12520 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12521 if (sec->size != l->sec->size)
12522 (*_bfd_error_handler)
12523 (_("%B: duplicate section `%A' has different size"),
12525 else if (sec->size != 0)
12527 bfd_byte *sec_contents, *l_sec_contents;
12529 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12530 (*_bfd_error_handler)
12531 (_("%B: warning: could not read contents of section `%A'"),
12533 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12535 (*_bfd_error_handler)
12536 (_("%B: warning: could not read contents of section `%A'"),
12537 l->sec->owner, l->sec);
12538 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12539 (*_bfd_error_handler)
12540 (_("%B: warning: duplicate section `%A' has different contents"),
12544 free (sec_contents);
12545 if (l_sec_contents)
12546 free (l_sec_contents);
12551 /* Set the output_section field so that lang_add_section
12552 does not create a lang_input_section structure for this
12553 section. Since there might be a symbol in the section
12554 being discarded, we must retain a pointer to the section
12555 which we are really going to use. */
12556 sec->output_section = bfd_abs_section_ptr;
12557 sec->kept_section = l->sec;
12559 if (flags & SEC_GROUP)
12561 asection *first = elf_next_in_group (sec);
12562 asection *s = first;
12566 s->output_section = bfd_abs_section_ptr;
12567 /* Record which group discards it. */
12568 s->kept_section = l->sec;
12569 s = elf_next_in_group (s);
12570 /* These lists are circular. */
12580 /* A single member comdat group section may be discarded by a
12581 linkonce section and vice versa. */
12583 if ((flags & SEC_GROUP) != 0)
12585 asection *first = elf_next_in_group (sec);
12587 if (first != NULL && elf_next_in_group (first) == first)
12588 /* Check this single member group against linkonce sections. */
12589 for (l = already_linked_list->entry; l != NULL; l = l->next)
12590 if ((l->sec->flags & SEC_GROUP) == 0
12591 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12592 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12594 first->output_section = bfd_abs_section_ptr;
12595 first->kept_section = l->sec;
12596 sec->output_section = bfd_abs_section_ptr;
12601 /* Check this linkonce section against single member groups. */
12602 for (l = already_linked_list->entry; l != NULL; l = l->next)
12603 if (l->sec->flags & SEC_GROUP)
12605 asection *first = elf_next_in_group (l->sec);
12608 && elf_next_in_group (first) == first
12609 && bfd_elf_match_symbols_in_sections (first, sec, info))
12611 sec->output_section = bfd_abs_section_ptr;
12612 sec->kept_section = first;
12617 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12618 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12619 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12620 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12621 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12622 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12623 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12624 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12625 The reverse order cannot happen as there is never a bfd with only the
12626 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12627 matter as here were are looking only for cross-bfd sections. */
12629 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12630 for (l = already_linked_list->entry; l != NULL; l = l->next)
12631 if ((l->sec->flags & SEC_GROUP) == 0
12632 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12634 if (abfd != l->sec->owner)
12635 sec->output_section = bfd_abs_section_ptr;
12639 /* This is the first section with this name. Record it. */
12640 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12641 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12645 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12647 return sym->st_shndx == SHN_COMMON;
12651 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12657 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12659 return bfd_com_section_ptr;
12663 _bfd_elf_default_got_elt_size (bfd *abfd,
12664 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12665 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12666 bfd *ibfd ATTRIBUTE_UNUSED,
12667 unsigned long symndx ATTRIBUTE_UNUSED)
12669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12670 return bed->s->arch_size / 8;
12673 /* Routines to support the creation of dynamic relocs. */
12675 /* Returns the name of the dynamic reloc section associated with SEC. */
12677 static const char *
12678 get_dynamic_reloc_section_name (bfd * abfd,
12680 bfd_boolean is_rela)
12683 const char *old_name = bfd_get_section_name (NULL, sec);
12684 const char *prefix = is_rela ? ".rela" : ".rel";
12686 if (old_name == NULL)
12689 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12690 sprintf (name, "%s%s", prefix, old_name);
12695 /* Returns the dynamic reloc section associated with SEC.
12696 If necessary compute the name of the dynamic reloc section based
12697 on SEC's name (looked up in ABFD's string table) and the setting
12701 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12703 bfd_boolean is_rela)
12705 asection * reloc_sec = elf_section_data (sec)->sreloc;
12707 if (reloc_sec == NULL)
12709 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12713 reloc_sec = bfd_get_section_by_name (abfd, name);
12715 if (reloc_sec != NULL)
12716 elf_section_data (sec)->sreloc = reloc_sec;
12723 /* Returns the dynamic reloc section associated with SEC. If the
12724 section does not exist it is created and attached to the DYNOBJ
12725 bfd and stored in the SRELOC field of SEC's elf_section_data
12728 ALIGNMENT is the alignment for the newly created section and
12729 IS_RELA defines whether the name should be .rela.<SEC's name>
12730 or .rel.<SEC's name>. The section name is looked up in the
12731 string table associated with ABFD. */
12734 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12736 unsigned int alignment,
12738 bfd_boolean is_rela)
12740 asection * reloc_sec = elf_section_data (sec)->sreloc;
12742 if (reloc_sec == NULL)
12744 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12749 reloc_sec = bfd_get_section_by_name (dynobj, name);
12751 if (reloc_sec == NULL)
12755 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12756 if ((sec->flags & SEC_ALLOC) != 0)
12757 flags |= SEC_ALLOC | SEC_LOAD;
12759 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12760 if (reloc_sec != NULL)
12762 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12767 elf_section_data (sec)->sreloc = reloc_sec;
12773 /* Copy the ELF symbol type associated with a linker hash entry. */
12775 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12776 struct bfd_link_hash_entry * hdest,
12777 struct bfd_link_hash_entry * hsrc)
12779 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12780 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12782 ehdest->type = ehsrc->type;
12783 ehdest->target_internal = ehsrc->target_internal;
12786 /* Append a RELA relocation REL to section S in BFD. */
12789 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12791 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12792 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12793 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12794 bed->s->swap_reloca_out (abfd, rel, loc);
12797 /* Append a REL relocation REL to section S in BFD. */
12800 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12803 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12804 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12805 bed->s->swap_reloca_out (abfd, rel, loc);