1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
38 struct elf_info_failed
40 struct bfd_link_info *info;
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
47 struct elf_find_verdep_info
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
53 /* Whether we had a failure. */
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 struct elf_link_hash_entry *h;
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
89 Elf_Internal_Sym *isym;
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 && discard ? discarded_section (isec) : 1)
101 /* Define a symbol in a dynamic linkage section. */
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
157 flags = bed->dynamic_sec_flags;
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
175 if (bed->want_got_plt)
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
188 if (bed->want_got_sym)
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
204 /* Create a strtab to hold the dynamic symbol names. */
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 struct elf_link_hash_table *hash_table;
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
233 hash_table->dynobj = abfd;
236 if (hash_table->dynstr == NULL)
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
260 if (! is_elf_hash_table (info->hash))
263 if (elf_hash_table (info)->dynamic_sections_created)
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
272 flags = bed->dynamic_sec_flags;
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
295 || ! bfd_set_section_alignment (abfd, s, 1))
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 elf_hash_table (info)->dynsym = s;
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
342 if (info->emit_gnu_hash)
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
370 /* Create dynamic sections when linking against a dynamic object. */
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
404 if (bed->want_plt_sym)
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
422 if (! _bfd_elf_create_got_section (abfd, info))
425 if (bed->want_dynbss)
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (bed->want_dynrelro)
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
462 if (bfd_link_executable (info))
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
473 if (bed->want_dynrelro)
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
483 htab->sreldynrelro = s;
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
503 if (h->dynindx == -1)
505 struct elf_strtab_hash *dynstr;
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
522 if (!elf_hash_table (info)->is_relocatable_executable)
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
533 dynstr = elf_hash_table (info)->dynstr;
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
542 /* We don't put any version information in the dynamic string
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
559 if (indx == (size_t) -1)
561 h->dynstr_index = indx;
567 /* Mark a symbol dynamic. */
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
593 h->root.non_ir_ref_dynamic = 1;
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
611 if (!is_elf_hash_table (info->hash))
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
622 if (h->versioned == unknown)
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
631 h->versioned = versioned;
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 switch (h->root.type)
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
658 case bfd_link_hash_new:
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
687 h->root.type = bfd_link_hash_undefined;
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
696 /* Make sure this symbol is not garbage collected. */
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
711 if (!bfd_link_relocatable (info)
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
732 struct elf_link_hash_entry *def = weakdef (h);
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
761 if (! is_elf_hash_table (info->hash))
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
778 bfd_release (input_bfd, entry);
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
801 dynstr = elf_hash_table (info)->dynstr;
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
813 entry->isym.st_name = dynstr_index;
815 eht = elf_hash_table (info);
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
823 /* Whatever binding the symbol had before, it's now local. */
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
827 /* The dynindx will be set at the end of size_dynamic_sections. */
832 /* Return the dynindex of a local dynamic symbol. */
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
839 struct elf_link_local_dynamic_entry *e;
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
855 size_t *count = (size_t *) data;
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
874 size_t *count = (size_t *) data;
876 if (!h->forced_local)
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
892 struct elf_link_hash_table *htab;
895 switch (elf_section_data (p)->this_hdr.sh_type)
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
910 /* There shouldn't be section relative relocations
911 against any other section. */
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 elf_section_data (p)->dynindx = dynsymcount;
959 elf_section_data (p)->dynindx = 0;
962 *section_sym_count = dynsymcount;
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
968 if (elf_hash_table (info)->dynlocal)
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 elf_hash_table (info)->dynsymcount = dynsymcount;
990 /* Merge st_other field. */
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1038 Elf_Internal_Sym *sym,
1041 struct elf_link_hash_entry **sym_hash,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1061 bfd_boolean default_sym = *matched;
1067 bind = ELF_ST_BIND (sym->st_info);
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1078 bed = get_elf_backend_data (abfd);
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1087 if (h->versioned == unknown)
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1092 h->versioned = versioned;
1095 if (new_version[0] == '\0')
1099 h->versioned = unversioned;
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1129 /* OLD_VERSION is the symbol version of the existing
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1154 switch (h->root.type)
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1177 if (poldbfd && *poldbfd == NULL)
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1185 *pold_weak = oldweak;
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1206 if (bfd_is_und_section (sec))
1208 if (bind != STB_WEAK)
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1216 /* Update the existing symbol only if they match. */
1219 hi->dynamic_def = 1;
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1227 if (h->root.type == bfd_link_hash_new)
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1342 if (h->type == STT_TLS)
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1386 bfd_set_error (bfd_error_bad_value);
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1397 /* Make sure this symbol is dynamic. */
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1504 if (olddef && newdyn)
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1558 newdyncommon = TRUE;
1560 newdyncommon = FALSE;
1564 && h->root.type == bfd_link_hash_defined
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1570 olddyncommon = TRUE;
1572 olddyncommon = FALSE;
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1604 && sym->st_size != h->size)
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1617 *size_change_ok = TRUE;
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1642 newdyncommon = FALSE;
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 && h->root.type == bfd_link_hash_common)
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1728 olddyncommon = FALSE;
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1733 if (bfd_is_com_section (sec))
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1741 h->type = STT_NOTYPE;
1743 *type_change_ok = TRUE;
1746 if (hi->root.type == bfd_link_hash_indirect)
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1762 && bfd_is_com_section (sec)
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1774 if (h->size > *pvalue)
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1783 olddyncommon = FALSE;
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1791 if (hi->root.type == bfd_link_hash_indirect)
1794 h->verinfo.vertree = NULL;
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 flip->ref_dynamic = 1;
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1827 Elf_Internal_Sym *sym,
1831 bfd_boolean *dynsym)
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1844 size_t len, shortlen;
1846 bfd_boolean matched;
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1860 h->versioned = unversioned;
1865 if (p[1] != ELF_VER_CHR)
1867 h->versioned = versioned_hidden;
1871 h->versioned = versioned;
1876 /* PR ld/19073: We may see an unversioned definition after the
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1909 if (hi->def_regular)
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1955 hi = (struct elf_link_hash_entry *) bh;
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1987 hi->ref_dynamic = 1;
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2009 if (hi->root.type == bfd_link_hash_indirect)
2011 struct elf_link_hash_entry *ht;
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2022 /* See if the new flags lead us to realize that the symbol must
2028 if (! bfd_link_executable (info)
2035 if (hi->ref_regular)
2041 /* We also need to define an indirection from the nondefault version
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2083 hi = (struct elf_link_hash_entry *) bh;
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2089 if (hi->root.type == bfd_link_hash_indirect)
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2095 /* See if the new flags lead us to realize that the symbol
2101 if (! bfd_link_executable (info)
2107 if (hi->ref_regular)
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2162 /* We only care about symbols defined in shared objects with version
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2187 /* This is a new version. Add it to tree we are building. */
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2195 rinfo->failed = TRUE;
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2208 rinfo->failed = TRUE;
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2241 struct bfd_elf_version_tree *t;
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2246 if (strcmp (t->name, version_p) == 0)
2250 struct bfd_elf_version_expr *d;
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2261 h->verinfo.vertree = t;
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2268 /* See if there is anything to force this symbol to
2270 if (d == NULL && t->locals.list != NULL)
2272 d = (*t->match) (&t->locals, NULL, alc);
2275 && ! info->export_dynamic)
2289 /* Return TRUE if the symbol H is hidden by version script. */
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2307 struct bfd_elf_version_tree *t;
2310 if (*p == ELF_VER_CHR)
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2323 /* If we don't have a version for this symbol, see if we can find
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2355 sinfo = (struct elf_info_failed *) data;
2358 /* Fix the symbol flags. */
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2364 sinfo->failed = TRUE;
2368 bed = get_elf_backend_data (info->output_bfd);
2370 /* We only need version numbers for symbols defined in regular
2372 if (!h->def_regular)
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2386 struct bfd_elf_version_tree *t;
2389 if (*p == ELF_VER_CHR)
2392 /* If there is no version string, we can just return out. */
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2398 sinfo->failed = TRUE;
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2409 struct bfd_elf_version_tree **pp;
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2421 sinfo->failed = TRUE;
2426 t->name_indx = (unsigned int) -1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2434 for (pp = &sinfo->info->version_info;
2438 t->vernum = version_index;
2442 h->verinfo.vertree = t;
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2458 /* If we don't have a version for this symbol, see if we can find
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2481 Returns FALSE if something goes wrong. */
2484 elf_link_read_relocs_from_section (bfd *abfd,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2509 bed = get_elf_backend_data (abfd);
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2518 bfd_set_error (bfd_error_wrong_format);
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2537 if ((size_t) r_symndx >= nsyms)
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2549 else if (r_symndx != STN_UNDEF)
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2594 if (o->reloc_count == 0)
2597 if (internal_relocs == NULL)
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2610 if (external_relocs == NULL)
2612 bfd_size_type size = 0;
2615 size += esdo->rel.hdr->sh_size;
2617 size += esdo->rela.hdr->sh_size;
2619 alloc1 = bfd_malloc (size);
2622 external_relocs = alloc1;
2625 internal_rela_relocs = internal_relocs;
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2641 internal_rela_relocs)))
2644 /* Cache the results for next time, if we can. */
2646 esdo->relocs = internal_relocs;
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2654 return internal_relocs;
2662 bfd_release (abfd, alloc2);
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2689 if (reldata->hashes == NULL && reldata->count)
2691 struct elf_link_hash_entry **p;
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2698 reldata->hashes = p;
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2725 output_section = input_section->output_section;
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2762 /* Bump the counter, so that we know where to add the next set of
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2769 /* Make weak undefined symbols in PIE dynamic. */
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2775 if (bfd_link_pie (info)
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2793 const struct elf_backend_data *bed;
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2808 h->ref_regular_nonweak = 1;
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2817 h->ref_regular_nonweak = 1;
2823 if (h->dynindx == -1
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2905 bfd_boolean force_local;
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2917 struct elf_link_hash_entry *def = weakdef (h);
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2922 bfd_link_hash_defined as it was when put on the alias list
2923 then it must have originally been a versioned symbol (for
2924 which a non-versioned indirect symbol is created) and later
2925 a definition for the non-versioned symbol is found. In that
2926 case the indirection is flipped with the versioned symbol
2927 becoming an indirect pointing at the non-versioned symbol.
2928 Thus, not an alias any more. */
2929 if (def->def_regular
2930 || def->root.type != bfd_link_hash_defined)
2933 while ((h = h->u.alias) != def)
2934 h->is_weakalias = 0;
2938 while (h->root.type == bfd_link_hash_indirect)
2939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2941 || h->root.type == bfd_link_hash_defweak);
2942 BFD_ASSERT (def->def_dynamic);
2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2950 /* Make the backend pick a good value for a dynamic symbol. This is
2951 called via elf_link_hash_traverse, and also calls itself
2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2957 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2958 struct elf_link_hash_table *htab;
2959 const struct elf_backend_data *bed;
2961 if (! is_elf_hash_table (eif->info->hash))
2964 /* Ignore indirect symbols. These are added by the versioning code. */
2965 if (h->root.type == bfd_link_hash_indirect)
2968 /* Fix the symbol flags. */
2969 if (! _bfd_elf_fix_symbol_flags (h, eif))
2972 htab = elf_hash_table (eif->info);
2973 bed = get_elf_backend_data (htab->dynobj);
2975 if (h->root.type == bfd_link_hash_undefweak)
2977 if (eif->info->dynamic_undefined_weak == 0)
2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2979 else if (eif->info->dynamic_undefined_weak > 0
2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2982 && !bfd_hide_sym_by_version (eif->info->version_info,
2983 h->root.root.string))
2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2993 /* If this symbol does not require a PLT entry, and it is not
2994 defined by a dynamic object, or is not referenced by a regular
2995 object, ignore it. We do have to handle a weak defined symbol,
2996 even if no regular object refers to it, if we decided to add it
2997 to the dynamic symbol table. FIXME: Do we normally need to worry
2998 about symbols which are defined by one dynamic object and
2999 referenced by another one? */
3001 && h->type != STT_GNU_IFUNC
3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3007 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3011 /* If we've already adjusted this symbol, don't do it again. This
3012 can happen via a recursive call. */
3013 if (h->dynamic_adjusted)
3016 /* Don't look at this symbol again. Note that we must set this
3017 after checking the above conditions, because we may look at a
3018 symbol once, decide not to do anything, and then get called
3019 recursively later after REF_REGULAR is set below. */
3020 h->dynamic_adjusted = 1;
3022 /* If this is a weak definition, and we know a real definition, and
3023 the real symbol is not itself defined by a regular object file,
3024 then get a good value for the real definition. We handle the
3025 real symbol first, for the convenience of the backend routine.
3027 Note that there is a confusing case here. If the real definition
3028 is defined by a regular object file, we don't get the real symbol
3029 from the dynamic object, but we do get the weak symbol. If the
3030 processor backend uses a COPY reloc, then if some routine in the
3031 dynamic object changes the real symbol, we will not see that
3032 change in the corresponding weak symbol. This is the way other
3033 ELF linkers work as well, and seems to be a result of the shared
3036 I will clarify this issue. Most SVR4 shared libraries define the
3037 variable _timezone and define timezone as a weak synonym. The
3038 tzset call changes _timezone. If you write
3039 extern int timezone;
3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3042 you might expect that, since timezone is a synonym for _timezone,
3043 the same number will print both times. However, if the processor
3044 backend uses a COPY reloc, then actually timezone will be copied
3045 into your process image, and, since you define _timezone
3046 yourself, _timezone will not. Thus timezone and _timezone will
3047 wind up at different memory locations. The tzset call will set
3048 _timezone, leaving timezone unchanged. */
3050 if (h->is_weakalias)
3052 struct elf_link_hash_entry *def = weakdef (h);
3054 /* If we get to this point, there is an implicit reference to
3055 the alias by a regular object file via the weak symbol H. */
3056 def->ref_regular = 1;
3058 /* Ensure that the backend adjust_dynamic_symbol function sees
3059 the strong alias before H by recursively calling ourselves. */
3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3064 /* If a symbol has no type and no size and does not require a PLT
3065 entry, then we are probably about to do the wrong thing here: we
3066 are probably going to create a COPY reloc for an empty object.
3067 This case can arise when a shared object is built with assembly
3068 code, and the assembly code fails to set the symbol type. */
3070 && h->type == STT_NOTYPE
3073 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3074 h->root.root.string);
3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3090 struct elf_link_hash_entry *h,
3093 unsigned int power_of_two;
3095 asection *sec = h->root.u.def.section;
3097 /* The section alignment of the definition is the maximum alignment
3098 requirement of symbols defined in the section. Since we don't
3099 know the symbol alignment requirement, we start with the
3100 maximum alignment and check low bits of the symbol address
3101 for the minimum alignment. */
3102 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3103 mask = ((bfd_vma) 1 << power_of_two) - 1;
3104 while ((h->root.u.def.value & mask) != 0)
3110 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3113 /* Adjust the section alignment if needed. */
3114 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3119 /* We make sure that the symbol will be aligned properly. */
3120 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3122 /* Define the symbol as being at this point in DYNBSS. */
3123 h->root.u.def.section = dynbss;
3124 h->root.u.def.value = dynbss->size;
3126 /* Increment the size of DYNBSS to make room for the symbol. */
3127 dynbss->size += h->size;
3129 /* No error if extern_protected_data is true. */
3130 if (h->protected_def
3131 && (!info->extern_protected_data
3132 || (info->extern_protected_data < 0
3133 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3134 info->callbacks->einfo
3135 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3136 h->root.root.string);
3141 /* Adjust all external symbols pointing into SEC_MERGE sections
3142 to reflect the object merging within the sections. */
3145 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3149 if ((h->root.type == bfd_link_hash_defined
3150 || h->root.type == bfd_link_hash_defweak)
3151 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3152 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3154 bfd *output_bfd = (bfd *) data;
3156 h->root.u.def.value =
3157 _bfd_merged_section_offset (output_bfd,
3158 &h->root.u.def.section,
3159 elf_section_data (sec)->sec_info,
3160 h->root.u.def.value);
3166 /* Returns false if the symbol referred to by H should be considered
3167 to resolve local to the current module, and true if it should be
3168 considered to bind dynamically. */
3171 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3172 struct bfd_link_info *info,
3173 bfd_boolean not_local_protected)
3175 bfd_boolean binding_stays_local_p;
3176 const struct elf_backend_data *bed;
3177 struct elf_link_hash_table *hash_table;
3182 while (h->root.type == bfd_link_hash_indirect
3183 || h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3186 /* If it was forced local, then clearly it's not dynamic. */
3187 if (h->dynindx == -1)
3189 if (h->forced_local)
3192 /* Identify the cases where name binding rules say that a
3193 visible symbol resolves locally. */
3194 binding_stays_local_p = (bfd_link_executable (info)
3195 || SYMBOLIC_BIND (info, h));
3197 switch (ELF_ST_VISIBILITY (h->other))
3204 hash_table = elf_hash_table (info);
3205 if (!is_elf_hash_table (hash_table))
3208 bed = get_elf_backend_data (hash_table->dynobj);
3210 /* Proper resolution for function pointer equality may require
3211 that these symbols perhaps be resolved dynamically, even though
3212 we should be resolving them to the current module. */
3213 if (!not_local_protected || !bed->is_function_type (h->type))
3214 binding_stays_local_p = TRUE;
3221 /* If it isn't defined locally, then clearly it's dynamic. */
3222 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3225 /* Otherwise, the symbol is dynamic if binding rules don't tell
3226 us that it remains local. */
3227 return !binding_stays_local_p;
3230 /* Return true if the symbol referred to by H should be considered
3231 to resolve local to the current module, and false otherwise. Differs
3232 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3233 undefined symbols. The two functions are virtually identical except
3234 for the place where dynindx == -1 is tested. If that test is true,
3235 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3236 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3238 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3239 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3240 treatment of undefined weak symbols. For those that do not make
3241 undefined weak symbols dynamic, both functions may return false. */
3244 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3245 struct bfd_link_info *info,
3246 bfd_boolean local_protected)
3248 const struct elf_backend_data *bed;
3249 struct elf_link_hash_table *hash_table;
3251 /* If it's a local sym, of course we resolve locally. */
3255 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3256 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3257 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3260 /* Forced local symbols resolve locally. */
3261 if (h->forced_local)
3264 /* Common symbols that become definitions don't get the DEF_REGULAR
3265 flag set, so test it first, and don't bail out. */
3266 if (ELF_COMMON_DEF_P (h))
3268 /* If we don't have a definition in a regular file, then we can't
3269 resolve locally. The sym is either undefined or dynamic. */
3270 else if (!h->def_regular)
3273 /* Non-dynamic symbols resolve locally. */
3274 if (h->dynindx == -1)
3277 /* At this point, we know the symbol is defined and dynamic. In an
3278 executable it must resolve locally, likewise when building symbolic
3279 shared libraries. */
3280 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3283 /* Now deal with defined dynamic symbols in shared libraries. Ones
3284 with default visibility might not resolve locally. */
3285 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3288 hash_table = elf_hash_table (info);
3289 if (!is_elf_hash_table (hash_table))
3292 bed = get_elf_backend_data (hash_table->dynobj);
3294 /* If extern_protected_data is false, STV_PROTECTED non-function
3295 symbols are local. */
3296 if ((!info->extern_protected_data
3297 || (info->extern_protected_data < 0
3298 && !bed->extern_protected_data))
3299 && !bed->is_function_type (h->type))
3302 /* Function pointer equality tests may require that STV_PROTECTED
3303 symbols be treated as dynamic symbols. If the address of a
3304 function not defined in an executable is set to that function's
3305 plt entry in the executable, then the address of the function in
3306 a shared library must also be the plt entry in the executable. */
3307 return local_protected;
3310 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3311 aligned. Returns the first TLS output section. */
3313 struct bfd_section *
3314 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3316 struct bfd_section *sec, *tls;
3317 unsigned int align = 0;
3319 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3320 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3324 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3325 if (sec->alignment_power > align)
3326 align = sec->alignment_power;
3328 elf_hash_table (info)->tls_sec = tls;
3330 /* Ensure the alignment of the first section is the largest alignment,
3331 so that the tls segment starts aligned. */
3333 tls->alignment_power = align;
3338 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3340 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3341 Elf_Internal_Sym *sym)
3343 const struct elf_backend_data *bed;
3345 /* Local symbols do not count, but target specific ones might. */
3346 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3347 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3350 bed = get_elf_backend_data (abfd);
3351 /* Function symbols do not count. */
3352 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3355 /* If the section is undefined, then so is the symbol. */
3356 if (sym->st_shndx == SHN_UNDEF)
3359 /* If the symbol is defined in the common section, then
3360 it is a common definition and so does not count. */
3361 if (bed->common_definition (sym))
3364 /* If the symbol is in a target specific section then we
3365 must rely upon the backend to tell us what it is. */
3366 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3367 /* FIXME - this function is not coded yet:
3369 return _bfd_is_global_symbol_definition (abfd, sym);
3371 Instead for now assume that the definition is not global,
3372 Even if this is wrong, at least the linker will behave
3373 in the same way that it used to do. */
3379 /* Search the symbol table of the archive element of the archive ABFD
3380 whose archive map contains a mention of SYMDEF, and determine if
3381 the symbol is defined in this element. */
3383 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3385 Elf_Internal_Shdr * hdr;
3389 Elf_Internal_Sym *isymbuf;
3390 Elf_Internal_Sym *isym;
3391 Elf_Internal_Sym *isymend;
3394 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3398 if (! bfd_check_format (abfd, bfd_object))
3401 /* Select the appropriate symbol table. If we don't know if the
3402 object file is an IR object, give linker LTO plugin a chance to
3403 get the correct symbol table. */
3404 if (abfd->plugin_format == bfd_plugin_yes
3405 #if BFD_SUPPORTS_PLUGINS
3406 || (abfd->plugin_format == bfd_plugin_unknown
3407 && bfd_link_plugin_object_p (abfd))
3411 /* Use the IR symbol table if the object has been claimed by
3413 abfd = abfd->plugin_dummy_bfd;
3414 hdr = &elf_tdata (abfd)->symtab_hdr;
3416 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3417 hdr = &elf_tdata (abfd)->symtab_hdr;
3419 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3423 /* The sh_info field of the symtab header tells us where the
3424 external symbols start. We don't care about the local symbols. */
3425 if (elf_bad_symtab (abfd))
3427 extsymcount = symcount;
3432 extsymcount = symcount - hdr->sh_info;
3433 extsymoff = hdr->sh_info;
3436 if (extsymcount == 0)
3439 /* Read in the symbol table. */
3440 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3442 if (isymbuf == NULL)
3445 /* Scan the symbol table looking for SYMDEF. */
3447 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3451 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3456 if (strcmp (name, symdef->name) == 0)
3458 result = is_global_data_symbol_definition (abfd, isym);
3468 /* Add an entry to the .dynamic table. */
3471 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3475 struct elf_link_hash_table *hash_table;
3476 const struct elf_backend_data *bed;
3478 bfd_size_type newsize;
3479 bfd_byte *newcontents;
3480 Elf_Internal_Dyn dyn;
3482 hash_table = elf_hash_table (info);
3483 if (! is_elf_hash_table (hash_table))
3486 if (tag == DT_RELA || tag == DT_REL)
3487 hash_table->dynamic_relocs = TRUE;
3489 bed = get_elf_backend_data (hash_table->dynobj);
3490 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3491 BFD_ASSERT (s != NULL);
3493 newsize = s->size + bed->s->sizeof_dyn;
3494 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3495 if (newcontents == NULL)
3499 dyn.d_un.d_val = val;
3500 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3503 s->contents = newcontents;
3508 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3509 otherwise just check whether one already exists. Returns -1 on error,
3510 1 if a DT_NEEDED tag already exists, and 0 on success. */
3513 elf_add_dt_needed_tag (bfd *abfd,
3514 struct bfd_link_info *info,
3518 struct elf_link_hash_table *hash_table;
3521 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3524 hash_table = elf_hash_table (info);
3525 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3526 if (strindex == (size_t) -1)
3529 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3532 const struct elf_backend_data *bed;
3535 bed = get_elf_backend_data (hash_table->dynobj);
3536 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3538 for (extdyn = sdyn->contents;
3539 extdyn < sdyn->contents + sdyn->size;
3540 extdyn += bed->s->sizeof_dyn)
3542 Elf_Internal_Dyn dyn;
3544 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3545 if (dyn.d_tag == DT_NEEDED
3546 && dyn.d_un.d_val == strindex)
3548 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3556 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3559 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3563 /* We were just checking for existence of the tag. */
3564 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3569 /* Return true if SONAME is on the needed list between NEEDED and STOP
3570 (or the end of list if STOP is NULL), and needed by a library that
3574 on_needed_list (const char *soname,
3575 struct bfd_link_needed_list *needed,
3576 struct bfd_link_needed_list *stop)
3578 struct bfd_link_needed_list *look;
3579 for (look = needed; look != stop; look = look->next)
3580 if (strcmp (soname, look->name) == 0
3581 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3582 /* If needed by a library that itself is not directly
3583 needed, recursively check whether that library is
3584 indirectly needed. Since we add DT_NEEDED entries to
3585 the end of the list, library dependencies appear after
3586 the library. Therefore search prior to the current
3587 LOOK, preventing possible infinite recursion. */
3588 || on_needed_list (elf_dt_name (look->by), needed, look)))
3594 /* Sort symbol by value, section, and size. */
3596 elf_sort_symbol (const void *arg1, const void *arg2)
3598 const struct elf_link_hash_entry *h1;
3599 const struct elf_link_hash_entry *h2;
3600 bfd_signed_vma vdiff;
3602 h1 = *(const struct elf_link_hash_entry **) arg1;
3603 h2 = *(const struct elf_link_hash_entry **) arg2;
3604 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3606 return vdiff > 0 ? 1 : -1;
3609 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3611 return sdiff > 0 ? 1 : -1;
3613 vdiff = h1->size - h2->size;
3614 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3617 /* This function is used to adjust offsets into .dynstr for
3618 dynamic symbols. This is called via elf_link_hash_traverse. */
3621 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3623 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3625 if (h->dynindx != -1)
3626 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3630 /* Assign string offsets in .dynstr, update all structures referencing
3634 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3636 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3637 struct elf_link_local_dynamic_entry *entry;
3638 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3639 bfd *dynobj = hash_table->dynobj;
3642 const struct elf_backend_data *bed;
3645 _bfd_elf_strtab_finalize (dynstr);
3646 size = _bfd_elf_strtab_size (dynstr);
3648 bed = get_elf_backend_data (dynobj);
3649 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3650 BFD_ASSERT (sdyn != NULL);
3652 /* Update all .dynamic entries referencing .dynstr strings. */
3653 for (extdyn = sdyn->contents;
3654 extdyn < sdyn->contents + sdyn->size;
3655 extdyn += bed->s->sizeof_dyn)
3657 Elf_Internal_Dyn dyn;
3659 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3663 dyn.d_un.d_val = size;
3673 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3678 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3681 /* Now update local dynamic symbols. */
3682 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3683 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3684 entry->isym.st_name);
3686 /* And the rest of dynamic symbols. */
3687 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3689 /* Adjust version definitions. */
3690 if (elf_tdata (output_bfd)->cverdefs)
3695 Elf_Internal_Verdef def;
3696 Elf_Internal_Verdaux defaux;
3698 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3702 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3704 p += sizeof (Elf_External_Verdef);
3705 if (def.vd_aux != sizeof (Elf_External_Verdef))
3707 for (i = 0; i < def.vd_cnt; ++i)
3709 _bfd_elf_swap_verdaux_in (output_bfd,
3710 (Elf_External_Verdaux *) p, &defaux);
3711 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3713 _bfd_elf_swap_verdaux_out (output_bfd,
3714 &defaux, (Elf_External_Verdaux *) p);
3715 p += sizeof (Elf_External_Verdaux);
3718 while (def.vd_next);
3721 /* Adjust version references. */
3722 if (elf_tdata (output_bfd)->verref)
3727 Elf_Internal_Verneed need;
3728 Elf_Internal_Vernaux needaux;
3730 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3734 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3736 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3737 _bfd_elf_swap_verneed_out (output_bfd, &need,
3738 (Elf_External_Verneed *) p);
3739 p += sizeof (Elf_External_Verneed);
3740 for (i = 0; i < need.vn_cnt; ++i)
3742 _bfd_elf_swap_vernaux_in (output_bfd,
3743 (Elf_External_Vernaux *) p, &needaux);
3744 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3746 _bfd_elf_swap_vernaux_out (output_bfd,
3748 (Elf_External_Vernaux *) p);
3749 p += sizeof (Elf_External_Vernaux);
3752 while (need.vn_next);
3758 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3759 The default is to only match when the INPUT and OUTPUT are exactly
3763 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3764 const bfd_target *output)
3766 return input == output;
3769 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3770 This version is used when different targets for the same architecture
3771 are virtually identical. */
3774 _bfd_elf_relocs_compatible (const bfd_target *input,
3775 const bfd_target *output)
3777 const struct elf_backend_data *obed, *ibed;
3779 if (input == output)
3782 ibed = xvec_get_elf_backend_data (input);
3783 obed = xvec_get_elf_backend_data (output);
3785 if (ibed->arch != obed->arch)
3788 /* If both backends are using this function, deem them compatible. */
3789 return ibed->relocs_compatible == obed->relocs_compatible;
3792 /* Make a special call to the linker "notice" function to tell it that
3793 we are about to handle an as-needed lib, or have finished
3794 processing the lib. */
3797 _bfd_elf_notice_as_needed (bfd *ibfd,
3798 struct bfd_link_info *info,
3799 enum notice_asneeded_action act)
3801 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3804 /* Check relocations an ELF object file. */
3807 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3810 struct elf_link_hash_table *htab = elf_hash_table (info);
3812 /* If this object is the same format as the output object, and it is
3813 not a shared library, then let the backend look through the
3816 This is required to build global offset table entries and to
3817 arrange for dynamic relocs. It is not required for the
3818 particular common case of linking non PIC code, even when linking
3819 against shared libraries, but unfortunately there is no way of
3820 knowing whether an object file has been compiled PIC or not.
3821 Looking through the relocs is not particularly time consuming.
3822 The problem is that we must either (1) keep the relocs in memory,
3823 which causes the linker to require additional runtime memory or
3824 (2) read the relocs twice from the input file, which wastes time.
3825 This would be a good case for using mmap.
3827 I have no idea how to handle linking PIC code into a file of a
3828 different format. It probably can't be done. */
3829 if ((abfd->flags & DYNAMIC) == 0
3830 && is_elf_hash_table (htab)
3831 && bed->check_relocs != NULL
3832 && elf_object_id (abfd) == elf_hash_table_id (htab)
3833 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3837 for (o = abfd->sections; o != NULL; o = o->next)
3839 Elf_Internal_Rela *internal_relocs;
3842 /* Don't check relocations in excluded sections. */
3843 if ((o->flags & SEC_RELOC) == 0
3844 || (o->flags & SEC_EXCLUDE) != 0
3845 || o->reloc_count == 0
3846 || ((info->strip == strip_all || info->strip == strip_debugger)
3847 && (o->flags & SEC_DEBUGGING) != 0)
3848 || bfd_is_abs_section (o->output_section))
3851 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3853 if (internal_relocs == NULL)
3856 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3858 if (elf_section_data (o)->relocs != internal_relocs)
3859 free (internal_relocs);
3869 /* Add symbols from an ELF object file to the linker hash table. */
3872 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3874 Elf_Internal_Ehdr *ehdr;
3875 Elf_Internal_Shdr *hdr;
3879 struct elf_link_hash_entry **sym_hash;
3880 bfd_boolean dynamic;
3881 Elf_External_Versym *extversym = NULL;
3882 Elf_External_Versym *extversym_end = NULL;
3883 Elf_External_Versym *ever;
3884 struct elf_link_hash_entry *weaks;
3885 struct elf_link_hash_entry **nondeflt_vers = NULL;
3886 size_t nondeflt_vers_cnt = 0;
3887 Elf_Internal_Sym *isymbuf = NULL;
3888 Elf_Internal_Sym *isym;
3889 Elf_Internal_Sym *isymend;
3890 const struct elf_backend_data *bed;
3891 bfd_boolean add_needed;
3892 struct elf_link_hash_table *htab;
3894 void *alloc_mark = NULL;
3895 struct bfd_hash_entry **old_table = NULL;
3896 unsigned int old_size = 0;
3897 unsigned int old_count = 0;
3898 void *old_tab = NULL;
3900 struct bfd_link_hash_entry *old_undefs = NULL;
3901 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3902 void *old_strtab = NULL;
3905 bfd_boolean just_syms;
3907 htab = elf_hash_table (info);
3908 bed = get_elf_backend_data (abfd);
3910 if ((abfd->flags & DYNAMIC) == 0)
3916 /* You can't use -r against a dynamic object. Also, there's no
3917 hope of using a dynamic object which does not exactly match
3918 the format of the output file. */
3919 if (bfd_link_relocatable (info)
3920 || !is_elf_hash_table (htab)
3921 || info->output_bfd->xvec != abfd->xvec)
3923 if (bfd_link_relocatable (info))
3924 bfd_set_error (bfd_error_invalid_operation);
3926 bfd_set_error (bfd_error_wrong_format);
3931 ehdr = elf_elfheader (abfd);
3932 if (info->warn_alternate_em
3933 && bed->elf_machine_code != ehdr->e_machine
3934 && ((bed->elf_machine_alt1 != 0
3935 && ehdr->e_machine == bed->elf_machine_alt1)
3936 || (bed->elf_machine_alt2 != 0
3937 && ehdr->e_machine == bed->elf_machine_alt2)))
3939 /* xgettext:c-format */
3940 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3941 ehdr->e_machine, abfd, bed->elf_machine_code);
3943 /* As a GNU extension, any input sections which are named
3944 .gnu.warning.SYMBOL are treated as warning symbols for the given
3945 symbol. This differs from .gnu.warning sections, which generate
3946 warnings when they are included in an output file. */
3947 /* PR 12761: Also generate this warning when building shared libraries. */
3948 for (s = abfd->sections; s != NULL; s = s->next)
3952 name = bfd_get_section_name (abfd, s);
3953 if (CONST_STRNEQ (name, ".gnu.warning."))
3958 name += sizeof ".gnu.warning." - 1;
3960 /* If this is a shared object, then look up the symbol
3961 in the hash table. If it is there, and it is already
3962 been defined, then we will not be using the entry
3963 from this shared object, so we don't need to warn.
3964 FIXME: If we see the definition in a regular object
3965 later on, we will warn, but we shouldn't. The only
3966 fix is to keep track of what warnings we are supposed
3967 to emit, and then handle them all at the end of the
3971 struct elf_link_hash_entry *h;
3973 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3975 /* FIXME: What about bfd_link_hash_common? */
3977 && (h->root.type == bfd_link_hash_defined
3978 || h->root.type == bfd_link_hash_defweak))
3983 msg = (char *) bfd_alloc (abfd, sz + 1);
3987 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3992 if (! (_bfd_generic_link_add_one_symbol
3993 (info, abfd, name, BSF_WARNING, s, 0, msg,
3994 FALSE, bed->collect, NULL)))
3997 if (bfd_link_executable (info))
3999 /* Clobber the section size so that the warning does
4000 not get copied into the output file. */
4003 /* Also set SEC_EXCLUDE, so that symbols defined in
4004 the warning section don't get copied to the output. */
4005 s->flags |= SEC_EXCLUDE;
4010 just_syms = ((s = abfd->sections) != NULL
4011 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4016 /* If we are creating a shared library, create all the dynamic
4017 sections immediately. We need to attach them to something,
4018 so we attach them to this BFD, provided it is the right
4019 format and is not from ld --just-symbols. Always create the
4020 dynamic sections for -E/--dynamic-list. FIXME: If there
4021 are no input BFD's of the same format as the output, we can't
4022 make a shared library. */
4024 && (bfd_link_pic (info)
4025 || (!bfd_link_relocatable (info)
4027 && (info->export_dynamic || info->dynamic)))
4028 && is_elf_hash_table (htab)
4029 && info->output_bfd->xvec == abfd->xvec
4030 && !htab->dynamic_sections_created)
4032 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4036 else if (!is_elf_hash_table (htab))
4040 const char *soname = NULL;
4042 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4043 const Elf_Internal_Phdr *phdr;
4046 /* ld --just-symbols and dynamic objects don't mix very well.
4047 ld shouldn't allow it. */
4051 /* If this dynamic lib was specified on the command line with
4052 --as-needed in effect, then we don't want to add a DT_NEEDED
4053 tag unless the lib is actually used. Similary for libs brought
4054 in by another lib's DT_NEEDED. When --no-add-needed is used
4055 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4056 any dynamic library in DT_NEEDED tags in the dynamic lib at
4058 add_needed = (elf_dyn_lib_class (abfd)
4059 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4060 | DYN_NO_NEEDED)) == 0;
4062 s = bfd_get_section_by_name (abfd, ".dynamic");
4067 unsigned int elfsec;
4068 unsigned long shlink;
4070 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4078 if (elfsec == SHN_BAD)
4079 goto error_free_dyn;
4080 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4082 for (extdyn = dynbuf;
4083 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4084 extdyn += bed->s->sizeof_dyn)
4086 Elf_Internal_Dyn dyn;
4088 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4089 if (dyn.d_tag == DT_SONAME)
4091 unsigned int tagv = dyn.d_un.d_val;
4092 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4094 goto error_free_dyn;
4096 if (dyn.d_tag == DT_NEEDED)
4098 struct bfd_link_needed_list *n, **pn;
4100 unsigned int tagv = dyn.d_un.d_val;
4102 amt = sizeof (struct bfd_link_needed_list);
4103 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4104 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4105 if (n == NULL || fnm == NULL)
4106 goto error_free_dyn;
4107 amt = strlen (fnm) + 1;
4108 anm = (char *) bfd_alloc (abfd, amt);
4110 goto error_free_dyn;
4111 memcpy (anm, fnm, amt);
4115 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4119 if (dyn.d_tag == DT_RUNPATH)
4121 struct bfd_link_needed_list *n, **pn;
4123 unsigned int tagv = dyn.d_un.d_val;
4125 amt = sizeof (struct bfd_link_needed_list);
4126 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4127 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4128 if (n == NULL || fnm == NULL)
4129 goto error_free_dyn;
4130 amt = strlen (fnm) + 1;
4131 anm = (char *) bfd_alloc (abfd, amt);
4133 goto error_free_dyn;
4134 memcpy (anm, fnm, amt);
4138 for (pn = & runpath;
4144 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4145 if (!runpath && dyn.d_tag == DT_RPATH)
4147 struct bfd_link_needed_list *n, **pn;
4149 unsigned int tagv = dyn.d_un.d_val;
4151 amt = sizeof (struct bfd_link_needed_list);
4152 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4153 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4154 if (n == NULL || fnm == NULL)
4155 goto error_free_dyn;
4156 amt = strlen (fnm) + 1;
4157 anm = (char *) bfd_alloc (abfd, amt);
4159 goto error_free_dyn;
4160 memcpy (anm, fnm, amt);
4170 if (dyn.d_tag == DT_AUDIT)
4172 unsigned int tagv = dyn.d_un.d_val;
4173 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4180 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4181 frees all more recently bfd_alloc'd blocks as well. */
4187 struct bfd_link_needed_list **pn;
4188 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4193 /* If we have a PT_GNU_RELRO program header, mark as read-only
4194 all sections contained fully therein. This makes relro
4195 shared library sections appear as they will at run-time. */
4196 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4197 while (phdr-- > elf_tdata (abfd)->phdr)
4198 if (phdr->p_type == PT_GNU_RELRO)
4200 for (s = abfd->sections; s != NULL; s = s->next)
4201 if ((s->flags & SEC_ALLOC) != 0
4202 && s->vma >= phdr->p_vaddr
4203 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4204 s->flags |= SEC_READONLY;
4208 /* We do not want to include any of the sections in a dynamic
4209 object in the output file. We hack by simply clobbering the
4210 list of sections in the BFD. This could be handled more
4211 cleanly by, say, a new section flag; the existing
4212 SEC_NEVER_LOAD flag is not the one we want, because that one
4213 still implies that the section takes up space in the output
4215 bfd_section_list_clear (abfd);
4217 /* Find the name to use in a DT_NEEDED entry that refers to this
4218 object. If the object has a DT_SONAME entry, we use it.
4219 Otherwise, if the generic linker stuck something in
4220 elf_dt_name, we use that. Otherwise, we just use the file
4222 if (soname == NULL || *soname == '\0')
4224 soname = elf_dt_name (abfd);
4225 if (soname == NULL || *soname == '\0')
4226 soname = bfd_get_filename (abfd);
4229 /* Save the SONAME because sometimes the linker emulation code
4230 will need to know it. */
4231 elf_dt_name (abfd) = soname;
4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4237 /* If we have already included this dynamic object in the
4238 link, just ignore it. There is no reason to include a
4239 particular dynamic object more than once. */
4243 /* Save the DT_AUDIT entry for the linker emulation code. */
4244 elf_dt_audit (abfd) = audit;
4247 /* If this is a dynamic object, we always link against the .dynsym
4248 symbol table, not the .symtab symbol table. The dynamic linker
4249 will only see the .dynsym symbol table, so there is no reason to
4250 look at .symtab for a dynamic object. */
4252 if (! dynamic || elf_dynsymtab (abfd) == 0)
4253 hdr = &elf_tdata (abfd)->symtab_hdr;
4255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4257 symcount = hdr->sh_size / bed->s->sizeof_sym;
4259 /* The sh_info field of the symtab header tells us where the
4260 external symbols start. We don't care about the local symbols at
4262 if (elf_bad_symtab (abfd))
4264 extsymcount = symcount;
4269 extsymcount = symcount - hdr->sh_info;
4270 extsymoff = hdr->sh_info;
4273 sym_hash = elf_sym_hashes (abfd);
4274 if (extsymcount != 0)
4276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4278 if (isymbuf == NULL)
4281 if (sym_hash == NULL)
4283 /* We store a pointer to the hash table entry for each
4286 amt *= sizeof (struct elf_link_hash_entry *);
4287 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4288 if (sym_hash == NULL)
4289 goto error_free_sym;
4290 elf_sym_hashes (abfd) = sym_hash;
4296 /* Read in any version definitions. */
4297 if (!_bfd_elf_slurp_version_tables (abfd,
4298 info->default_imported_symver))
4299 goto error_free_sym;
4301 /* Read in the symbol versions, but don't bother to convert them
4302 to internal format. */
4303 if (elf_dynversym (abfd) != 0)
4305 Elf_Internal_Shdr *versymhdr;
4307 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4308 amt = versymhdr->sh_size;
4309 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4310 if (extversym == NULL)
4311 goto error_free_sym;
4312 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4313 || bfd_bread (extversym, amt, abfd) != amt)
4314 goto error_free_vers;
4315 extversym_end = extversym + (amt / sizeof (* extversym));
4319 /* If we are loading an as-needed shared lib, save the symbol table
4320 state before we start adding symbols. If the lib turns out
4321 to be unneeded, restore the state. */
4322 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4327 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4329 struct bfd_hash_entry *p;
4330 struct elf_link_hash_entry *h;
4332 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4334 h = (struct elf_link_hash_entry *) p;
4335 entsize += htab->root.table.entsize;
4336 if (h->root.type == bfd_link_hash_warning)
4337 entsize += htab->root.table.entsize;
4341 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4342 old_tab = bfd_malloc (tabsize + entsize);
4343 if (old_tab == NULL)
4344 goto error_free_vers;
4346 /* Remember the current objalloc pointer, so that all mem for
4347 symbols added can later be reclaimed. */
4348 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4349 if (alloc_mark == NULL)
4350 goto error_free_vers;
4352 /* Make a special call to the linker "notice" function to
4353 tell it that we are about to handle an as-needed lib. */
4354 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4355 goto error_free_vers;
4357 /* Clone the symbol table. Remember some pointers into the
4358 symbol table, and dynamic symbol count. */
4359 old_ent = (char *) old_tab + tabsize;
4360 memcpy (old_tab, htab->root.table.table, tabsize);
4361 old_undefs = htab->root.undefs;
4362 old_undefs_tail = htab->root.undefs_tail;
4363 old_table = htab->root.table.table;
4364 old_size = htab->root.table.size;
4365 old_count = htab->root.table.count;
4366 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4367 if (old_strtab == NULL)
4368 goto error_free_vers;
4370 for (i = 0; i < htab->root.table.size; i++)
4372 struct bfd_hash_entry *p;
4373 struct elf_link_hash_entry *h;
4375 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4377 memcpy (old_ent, p, htab->root.table.entsize);
4378 old_ent = (char *) old_ent + htab->root.table.entsize;
4379 h = (struct elf_link_hash_entry *) p;
4380 if (h->root.type == bfd_link_hash_warning)
4382 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4383 old_ent = (char *) old_ent + htab->root.table.entsize;
4390 if (extversym == NULL)
4392 else if (extversym + extsymoff < extversym_end)
4393 ever = extversym + extsymoff;
4396 /* xgettext:c-format */
4397 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4398 abfd, (long) extsymoff,
4399 (long) (extversym_end - extversym) / sizeof (* extversym));
4400 bfd_set_error (bfd_error_bad_value);
4401 goto error_free_vers;
4404 if (abfd->lto_slim_object)
4407 (_("%pB: plugin needed to handle lto object"), abfd);
4410 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4412 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4416 asection *sec, *new_sec;
4419 struct elf_link_hash_entry *h;
4420 struct elf_link_hash_entry *hi;
4421 bfd_boolean definition;
4422 bfd_boolean size_change_ok;
4423 bfd_boolean type_change_ok;
4424 bfd_boolean new_weak;
4425 bfd_boolean old_weak;
4426 bfd_boolean override;
4428 bfd_boolean discarded;
4429 unsigned int old_alignment;
4430 unsigned int shindex;
4432 bfd_boolean matched;
4436 flags = BSF_NO_FLAGS;
4438 value = isym->st_value;
4439 common = bed->common_definition (isym);
4440 if (common && info->inhibit_common_definition)
4442 /* Treat common symbol as undefined for --no-define-common. */
4443 isym->st_shndx = SHN_UNDEF;
4448 bind = ELF_ST_BIND (isym->st_info);
4452 /* This should be impossible, since ELF requires that all
4453 global symbols follow all local symbols, and that sh_info
4454 point to the first global symbol. Unfortunately, Irix 5
4456 if (elf_bad_symtab (abfd))
4459 /* If we aren't prepared to handle locals within the globals
4460 then we'll likely segfault on a NULL symbol hash if the
4461 symbol is ever referenced in relocations. */
4462 shindex = elf_elfheader (abfd)->e_shstrndx;
4463 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4464 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4465 " (>= sh_info of %lu)"),
4466 abfd, name, (long) (isym - isymbuf + extsymoff),
4469 /* Dynamic object relocations are not processed by ld, so
4470 ld won't run into the problem mentioned above. */
4473 bfd_set_error (bfd_error_bad_value);
4474 goto error_free_vers;
4477 if (isym->st_shndx != SHN_UNDEF && !common)
4485 case STB_GNU_UNIQUE:
4486 flags = BSF_GNU_UNIQUE;
4490 /* Leave it up to the processor backend. */
4494 if (isym->st_shndx == SHN_UNDEF)
4495 sec = bfd_und_section_ptr;
4496 else if (isym->st_shndx == SHN_ABS)
4497 sec = bfd_abs_section_ptr;
4498 else if (isym->st_shndx == SHN_COMMON)
4500 sec = bfd_com_section_ptr;
4501 /* What ELF calls the size we call the value. What ELF
4502 calls the value we call the alignment. */
4503 value = isym->st_size;
4507 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4509 sec = bfd_abs_section_ptr;
4510 else if (discarded_section (sec))
4512 /* Symbols from discarded section are undefined. We keep
4514 sec = bfd_und_section_ptr;
4516 isym->st_shndx = SHN_UNDEF;
4518 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4522 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4525 goto error_free_vers;
4527 if (isym->st_shndx == SHN_COMMON
4528 && (abfd->flags & BFD_PLUGIN) != 0)
4530 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4534 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4536 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4538 goto error_free_vers;
4542 else if (isym->st_shndx == SHN_COMMON
4543 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4544 && !bfd_link_relocatable (info))
4546 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4550 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4551 | SEC_LINKER_CREATED);
4552 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4554 goto error_free_vers;
4558 else if (bed->elf_add_symbol_hook)
4560 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4562 goto error_free_vers;
4564 /* The hook function sets the name to NULL if this symbol
4565 should be skipped for some reason. */
4570 /* Sanity check that all possibilities were handled. */
4574 /* Silently discard TLS symbols from --just-syms. There's
4575 no way to combine a static TLS block with a new TLS block
4576 for this executable. */
4577 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4578 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4581 if (bfd_is_und_section (sec)
4582 || bfd_is_com_section (sec))
4587 size_change_ok = FALSE;
4588 type_change_ok = bed->type_change_ok;
4595 if (is_elf_hash_table (htab))
4597 Elf_Internal_Versym iver;
4598 unsigned int vernum = 0;
4603 if (info->default_imported_symver)
4604 /* Use the default symbol version created earlier. */
4605 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4609 else if (ever >= extversym_end)
4611 /* xgettext:c-format */
4612 _bfd_error_handler (_("%pB: not enough version information"),
4614 bfd_set_error (bfd_error_bad_value);
4615 goto error_free_vers;
4618 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4620 vernum = iver.vs_vers & VERSYM_VERSION;
4622 /* If this is a hidden symbol, or if it is not version
4623 1, we append the version name to the symbol name.
4624 However, we do not modify a non-hidden absolute symbol
4625 if it is not a function, because it might be the version
4626 symbol itself. FIXME: What if it isn't? */
4627 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4629 && (!bfd_is_abs_section (sec)
4630 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4633 size_t namelen, verlen, newlen;
4636 if (isym->st_shndx != SHN_UNDEF)
4638 if (vernum > elf_tdata (abfd)->cverdefs)
4640 else if (vernum > 1)
4642 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4649 /* xgettext:c-format */
4650 (_("%pB: %s: invalid version %u (max %d)"),
4652 elf_tdata (abfd)->cverdefs);
4653 bfd_set_error (bfd_error_bad_value);
4654 goto error_free_vers;
4659 /* We cannot simply test for the number of
4660 entries in the VERNEED section since the
4661 numbers for the needed versions do not start
4663 Elf_Internal_Verneed *t;
4666 for (t = elf_tdata (abfd)->verref;
4670 Elf_Internal_Vernaux *a;
4672 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4674 if (a->vna_other == vernum)
4676 verstr = a->vna_nodename;
4686 /* xgettext:c-format */
4687 (_("%pB: %s: invalid needed version %d"),
4688 abfd, name, vernum);
4689 bfd_set_error (bfd_error_bad_value);
4690 goto error_free_vers;
4694 namelen = strlen (name);
4695 verlen = strlen (verstr);
4696 newlen = namelen + verlen + 2;
4697 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4698 && isym->st_shndx != SHN_UNDEF)
4701 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4702 if (newname == NULL)
4703 goto error_free_vers;
4704 memcpy (newname, name, namelen);
4705 p = newname + namelen;
4707 /* If this is a defined non-hidden version symbol,
4708 we add another @ to the name. This indicates the
4709 default version of the symbol. */
4710 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4711 && isym->st_shndx != SHN_UNDEF)
4713 memcpy (p, verstr, verlen + 1);
4718 /* If this symbol has default visibility and the user has
4719 requested we not re-export it, then mark it as hidden. */
4720 if (!bfd_is_und_section (sec)
4723 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4724 isym->st_other = (STV_HIDDEN
4725 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4727 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4728 sym_hash, &old_bfd, &old_weak,
4729 &old_alignment, &skip, &override,
4730 &type_change_ok, &size_change_ok,
4732 goto error_free_vers;
4737 /* Override a definition only if the new symbol matches the
4739 if (override && matched)
4743 while (h->root.type == bfd_link_hash_indirect
4744 || h->root.type == bfd_link_hash_warning)
4745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4747 if (elf_tdata (abfd)->verdef != NULL
4750 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4753 if (! (_bfd_generic_link_add_one_symbol
4754 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4755 (struct bfd_link_hash_entry **) sym_hash)))
4756 goto error_free_vers;
4759 /* We need to make sure that indirect symbol dynamic flags are
4762 while (h->root.type == bfd_link_hash_indirect
4763 || h->root.type == bfd_link_hash_warning)
4764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4766 /* Setting the index to -3 tells elf_link_output_extsym that
4767 this symbol is defined in a discarded section. */
4773 new_weak = (flags & BSF_WEAK) != 0;
4777 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4778 && is_elf_hash_table (htab)
4779 && h->u.alias == NULL)
4781 /* Keep a list of all weak defined non function symbols from
4782 a dynamic object, using the alias field. Later in this
4783 function we will set the alias field to the correct
4784 value. We only put non-function symbols from dynamic
4785 objects on this list, because that happens to be the only
4786 time we need to know the normal symbol corresponding to a
4787 weak symbol, and the information is time consuming to
4788 figure out. If the alias field is not already NULL,
4789 then this symbol was already defined by some previous
4790 dynamic object, and we will be using that previous
4791 definition anyhow. */
4797 /* Set the alignment of a common symbol. */
4798 if ((common || bfd_is_com_section (sec))
4799 && h->root.type == bfd_link_hash_common)
4804 align = bfd_log2 (isym->st_value);
4807 /* The new symbol is a common symbol in a shared object.
4808 We need to get the alignment from the section. */
4809 align = new_sec->alignment_power;
4811 if (align > old_alignment)
4812 h->root.u.c.p->alignment_power = align;
4814 h->root.u.c.p->alignment_power = old_alignment;
4817 if (is_elf_hash_table (htab))
4819 /* Set a flag in the hash table entry indicating the type of
4820 reference or definition we just found. A dynamic symbol
4821 is one which is referenced or defined by both a regular
4822 object and a shared object. */
4823 bfd_boolean dynsym = FALSE;
4825 /* Plugin symbols aren't normal. Don't set def_regular or
4826 ref_regular for them, or make them dynamic. */
4827 if ((abfd->flags & BFD_PLUGIN) != 0)
4834 if (bind != STB_WEAK)
4835 h->ref_regular_nonweak = 1;
4847 /* If the indirect symbol has been forced local, don't
4848 make the real symbol dynamic. */
4849 if ((h == hi || !hi->forced_local)
4850 && (bfd_link_dll (info)
4860 hi->ref_dynamic = 1;
4865 hi->def_dynamic = 1;
4868 /* If the indirect symbol has been forced local, don't
4869 make the real symbol dynamic. */
4870 if ((h == hi || !hi->forced_local)
4874 && weakdef (h)->dynindx != -1)))
4878 /* Check to see if we need to add an indirect symbol for
4879 the default name. */
4881 || (!override && h->root.type == bfd_link_hash_common))
4882 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4883 sec, value, &old_bfd, &dynsym))
4884 goto error_free_vers;
4886 /* Check the alignment when a common symbol is involved. This
4887 can change when a common symbol is overridden by a normal
4888 definition or a common symbol is ignored due to the old
4889 normal definition. We need to make sure the maximum
4890 alignment is maintained. */
4891 if ((old_alignment || common)
4892 && h->root.type != bfd_link_hash_common)
4894 unsigned int common_align;
4895 unsigned int normal_align;
4896 unsigned int symbol_align;
4900 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4901 || h->root.type == bfd_link_hash_defweak);
4903 symbol_align = ffs (h->root.u.def.value) - 1;
4904 if (h->root.u.def.section->owner != NULL
4905 && (h->root.u.def.section->owner->flags
4906 & (DYNAMIC | BFD_PLUGIN)) == 0)
4908 normal_align = h->root.u.def.section->alignment_power;
4909 if (normal_align > symbol_align)
4910 normal_align = symbol_align;
4913 normal_align = symbol_align;
4917 common_align = old_alignment;
4918 common_bfd = old_bfd;
4923 common_align = bfd_log2 (isym->st_value);
4925 normal_bfd = old_bfd;
4928 if (normal_align < common_align)
4930 /* PR binutils/2735 */
4931 if (normal_bfd == NULL)
4933 /* xgettext:c-format */
4934 (_("warning: alignment %u of common symbol `%s' in %pB is"
4935 " greater than the alignment (%u) of its section %pA"),
4936 1 << common_align, name, common_bfd,
4937 1 << normal_align, h->root.u.def.section);
4940 /* xgettext:c-format */
4941 (_("warning: alignment %u of symbol `%s' in %pB"
4942 " is smaller than %u in %pB"),
4943 1 << normal_align, name, normal_bfd,
4944 1 << common_align, common_bfd);
4948 /* Remember the symbol size if it isn't undefined. */
4949 if (isym->st_size != 0
4950 && isym->st_shndx != SHN_UNDEF
4951 && (definition || h->size == 0))
4954 && h->size != isym->st_size
4955 && ! size_change_ok)
4957 /* xgettext:c-format */
4958 (_("warning: size of symbol `%s' changed"
4959 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4960 name, (uint64_t) h->size, old_bfd,
4961 (uint64_t) isym->st_size, abfd);
4963 h->size = isym->st_size;
4966 /* If this is a common symbol, then we always want H->SIZE
4967 to be the size of the common symbol. The code just above
4968 won't fix the size if a common symbol becomes larger. We
4969 don't warn about a size change here, because that is
4970 covered by --warn-common. Allow changes between different
4972 if (h->root.type == bfd_link_hash_common)
4973 h->size = h->root.u.c.size;
4975 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4976 && ((definition && !new_weak)
4977 || (old_weak && h->root.type == bfd_link_hash_common)
4978 || h->type == STT_NOTYPE))
4980 unsigned int type = ELF_ST_TYPE (isym->st_info);
4982 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4984 if (type == STT_GNU_IFUNC
4985 && (abfd->flags & DYNAMIC) != 0)
4988 if (h->type != type)
4990 if (h->type != STT_NOTYPE && ! type_change_ok)
4991 /* xgettext:c-format */
4993 (_("warning: type of symbol `%s' changed"
4994 " from %d to %d in %pB"),
4995 name, h->type, type, abfd);
5001 /* Merge st_other field. */
5002 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5004 /* We don't want to make debug symbol dynamic. */
5006 && (sec->flags & SEC_DEBUGGING)
5007 && !bfd_link_relocatable (info))
5010 /* Nor should we make plugin symbols dynamic. */
5011 if ((abfd->flags & BFD_PLUGIN) != 0)
5016 h->target_internal = isym->st_target_internal;
5017 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5020 if (definition && !dynamic)
5022 char *p = strchr (name, ELF_VER_CHR);
5023 if (p != NULL && p[1] != ELF_VER_CHR)
5025 /* Queue non-default versions so that .symver x, x@FOO
5026 aliases can be checked. */
5029 amt = ((isymend - isym + 1)
5030 * sizeof (struct elf_link_hash_entry *));
5032 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5034 goto error_free_vers;
5036 nondeflt_vers[nondeflt_vers_cnt++] = h;
5040 if (dynsym && h->dynindx == -1)
5042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5043 goto error_free_vers;
5045 && weakdef (h)->dynindx == -1)
5047 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5048 goto error_free_vers;
5051 else if (h->dynindx != -1)
5052 /* If the symbol already has a dynamic index, but
5053 visibility says it should not be visible, turn it into
5055 switch (ELF_ST_VISIBILITY (h->other))
5059 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5064 /* Don't add DT_NEEDED for references from the dummy bfd nor
5065 for unmatched symbol. */
5070 && h->ref_regular_nonweak
5072 || (old_bfd->flags & BFD_PLUGIN) == 0))
5073 || (h->ref_dynamic_nonweak
5074 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5075 && !on_needed_list (elf_dt_name (abfd),
5076 htab->needed, NULL))))
5079 const char *soname = elf_dt_name (abfd);
5081 info->callbacks->minfo ("%!", soname, old_bfd,
5082 h->root.root.string);
5084 /* A symbol from a library loaded via DT_NEEDED of some
5085 other library is referenced by a regular object.
5086 Add a DT_NEEDED entry for it. Issue an error if
5087 --no-add-needed is used and the reference was not
5090 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5093 /* xgettext:c-format */
5094 (_("%pB: undefined reference to symbol '%s'"),
5096 bfd_set_error (bfd_error_missing_dso);
5097 goto error_free_vers;
5100 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5101 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5104 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5106 goto error_free_vers;
5108 BFD_ASSERT (ret == 0);
5113 if (info->lto_plugin_active
5114 && !bfd_link_relocatable (info)
5115 && (abfd->flags & BFD_PLUGIN) == 0
5121 if (bed->s->arch_size == 32)
5126 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5127 referenced in regular objects so that linker plugin will get
5128 the correct symbol resolution. */
5130 sym_hash = elf_sym_hashes (abfd);
5131 for (s = abfd->sections; s != NULL; s = s->next)
5133 Elf_Internal_Rela *internal_relocs;
5134 Elf_Internal_Rela *rel, *relend;
5136 /* Don't check relocations in excluded sections. */
5137 if ((s->flags & SEC_RELOC) == 0
5138 || s->reloc_count == 0
5139 || (s->flags & SEC_EXCLUDE) != 0
5140 || ((info->strip == strip_all
5141 || info->strip == strip_debugger)
5142 && (s->flags & SEC_DEBUGGING) != 0))
5145 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5148 if (internal_relocs == NULL)
5149 goto error_free_vers;
5151 rel = internal_relocs;
5152 relend = rel + s->reloc_count;
5153 for ( ; rel < relend; rel++)
5155 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5156 struct elf_link_hash_entry *h;
5158 /* Skip local symbols. */
5159 if (r_symndx < extsymoff)
5162 h = sym_hash[r_symndx - extsymoff];
5164 h->root.non_ir_ref_regular = 1;
5167 if (elf_section_data (s)->relocs != internal_relocs)
5168 free (internal_relocs);
5172 if (extversym != NULL)
5178 if (isymbuf != NULL)
5184 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5188 /* Restore the symbol table. */
5189 old_ent = (char *) old_tab + tabsize;
5190 memset (elf_sym_hashes (abfd), 0,
5191 extsymcount * sizeof (struct elf_link_hash_entry *));
5192 htab->root.table.table = old_table;
5193 htab->root.table.size = old_size;
5194 htab->root.table.count = old_count;
5195 memcpy (htab->root.table.table, old_tab, tabsize);
5196 htab->root.undefs = old_undefs;
5197 htab->root.undefs_tail = old_undefs_tail;
5198 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5201 for (i = 0; i < htab->root.table.size; i++)
5203 struct bfd_hash_entry *p;
5204 struct elf_link_hash_entry *h;
5206 unsigned int alignment_power;
5207 unsigned int non_ir_ref_dynamic;
5209 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5211 h = (struct elf_link_hash_entry *) p;
5212 if (h->root.type == bfd_link_hash_warning)
5213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5215 /* Preserve the maximum alignment and size for common
5216 symbols even if this dynamic lib isn't on DT_NEEDED
5217 since it can still be loaded at run time by another
5219 if (h->root.type == bfd_link_hash_common)
5221 size = h->root.u.c.size;
5222 alignment_power = h->root.u.c.p->alignment_power;
5227 alignment_power = 0;
5229 /* Preserve non_ir_ref_dynamic so that this symbol
5230 will be exported when the dynamic lib becomes needed
5231 in the second pass. */
5232 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5233 memcpy (p, old_ent, htab->root.table.entsize);
5234 old_ent = (char *) old_ent + htab->root.table.entsize;
5235 h = (struct elf_link_hash_entry *) p;
5236 if (h->root.type == bfd_link_hash_warning)
5238 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5239 old_ent = (char *) old_ent + htab->root.table.entsize;
5240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5242 if (h->root.type == bfd_link_hash_common)
5244 if (size > h->root.u.c.size)
5245 h->root.u.c.size = size;
5246 if (alignment_power > h->root.u.c.p->alignment_power)
5247 h->root.u.c.p->alignment_power = alignment_power;
5249 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5253 /* Make a special call to the linker "notice" function to
5254 tell it that symbols added for crefs may need to be removed. */
5255 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5256 goto error_free_vers;
5259 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5261 if (nondeflt_vers != NULL)
5262 free (nondeflt_vers);
5266 if (old_tab != NULL)
5268 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5269 goto error_free_vers;
5274 /* Now that all the symbols from this input file are created, if
5275 not performing a relocatable link, handle .symver foo, foo@BAR
5276 such that any relocs against foo become foo@BAR. */
5277 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5281 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5283 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5284 char *shortname, *p;
5286 p = strchr (h->root.root.string, ELF_VER_CHR);
5288 || (h->root.type != bfd_link_hash_defined
5289 && h->root.type != bfd_link_hash_defweak))
5292 amt = p - h->root.root.string;
5293 shortname = (char *) bfd_malloc (amt + 1);
5295 goto error_free_vers;
5296 memcpy (shortname, h->root.root.string, amt);
5297 shortname[amt] = '\0';
5299 hi = (struct elf_link_hash_entry *)
5300 bfd_link_hash_lookup (&htab->root, shortname,
5301 FALSE, FALSE, FALSE);
5303 && hi->root.type == h->root.type
5304 && hi->root.u.def.value == h->root.u.def.value
5305 && hi->root.u.def.section == h->root.u.def.section)
5307 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5308 hi->root.type = bfd_link_hash_indirect;
5309 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5310 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5311 sym_hash = elf_sym_hashes (abfd);
5313 for (symidx = 0; symidx < extsymcount; ++symidx)
5314 if (sym_hash[symidx] == hi)
5316 sym_hash[symidx] = h;
5322 free (nondeflt_vers);
5323 nondeflt_vers = NULL;
5326 /* Now set the alias field correctly for all the weak defined
5327 symbols we found. The only way to do this is to search all the
5328 symbols. Since we only need the information for non functions in
5329 dynamic objects, that's the only time we actually put anything on
5330 the list WEAKS. We need this information so that if a regular
5331 object refers to a symbol defined weakly in a dynamic object, the
5332 real symbol in the dynamic object is also put in the dynamic
5333 symbols; we also must arrange for both symbols to point to the
5334 same memory location. We could handle the general case of symbol
5335 aliasing, but a general symbol alias can only be generated in
5336 assembler code, handling it correctly would be very time
5337 consuming, and other ELF linkers don't handle general aliasing
5341 struct elf_link_hash_entry **hpp;
5342 struct elf_link_hash_entry **hppend;
5343 struct elf_link_hash_entry **sorted_sym_hash;
5344 struct elf_link_hash_entry *h;
5347 /* Since we have to search the whole symbol list for each weak
5348 defined symbol, search time for N weak defined symbols will be
5349 O(N^2). Binary search will cut it down to O(NlogN). */
5351 amt *= sizeof (struct elf_link_hash_entry *);
5352 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5353 if (sorted_sym_hash == NULL)
5355 sym_hash = sorted_sym_hash;
5356 hpp = elf_sym_hashes (abfd);
5357 hppend = hpp + extsymcount;
5359 for (; hpp < hppend; hpp++)
5363 && h->root.type == bfd_link_hash_defined
5364 && !bed->is_function_type (h->type))
5372 qsort (sorted_sym_hash, sym_count,
5373 sizeof (struct elf_link_hash_entry *),
5376 while (weaks != NULL)
5378 struct elf_link_hash_entry *hlook;
5381 size_t i, j, idx = 0;
5384 weaks = hlook->u.alias;
5385 hlook->u.alias = NULL;
5387 if (hlook->root.type != bfd_link_hash_defined
5388 && hlook->root.type != bfd_link_hash_defweak)
5391 slook = hlook->root.u.def.section;
5392 vlook = hlook->root.u.def.value;
5398 bfd_signed_vma vdiff;
5400 h = sorted_sym_hash[idx];
5401 vdiff = vlook - h->root.u.def.value;
5408 int sdiff = slook->id - h->root.u.def.section->id;
5418 /* We didn't find a value/section match. */
5422 /* With multiple aliases, or when the weak symbol is already
5423 strongly defined, we have multiple matching symbols and
5424 the binary search above may land on any of them. Step
5425 one past the matching symbol(s). */
5428 h = sorted_sym_hash[idx];
5429 if (h->root.u.def.section != slook
5430 || h->root.u.def.value != vlook)
5434 /* Now look back over the aliases. Since we sorted by size
5435 as well as value and section, we'll choose the one with
5436 the largest size. */
5439 h = sorted_sym_hash[idx];
5441 /* Stop if value or section doesn't match. */
5442 if (h->root.u.def.section != slook
5443 || h->root.u.def.value != vlook)
5445 else if (h != hlook)
5447 struct elf_link_hash_entry *t;
5450 hlook->is_weakalias = 1;
5452 if (t->u.alias != NULL)
5453 while (t->u.alias != h)
5457 /* If the weak definition is in the list of dynamic
5458 symbols, make sure the real definition is put
5460 if (hlook->dynindx != -1 && h->dynindx == -1)
5462 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5465 free (sorted_sym_hash);
5470 /* If the real definition is in the list of dynamic
5471 symbols, make sure the weak definition is put
5472 there as well. If we don't do this, then the
5473 dynamic loader might not merge the entries for the
5474 real definition and the weak definition. */
5475 if (h->dynindx != -1 && hlook->dynindx == -1)
5477 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5478 goto err_free_sym_hash;
5485 free (sorted_sym_hash);
5488 if (bed->check_directives
5489 && !(*bed->check_directives) (abfd, info))
5492 /* If this is a non-traditional link, try to optimize the handling
5493 of the .stab/.stabstr sections. */
5495 && ! info->traditional_format
5496 && is_elf_hash_table (htab)
5497 && (info->strip != strip_all && info->strip != strip_debugger))
5501 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5502 if (stabstr != NULL)
5504 bfd_size_type string_offset = 0;
5507 for (stab = abfd->sections; stab; stab = stab->next)
5508 if (CONST_STRNEQ (stab->name, ".stab")
5509 && (!stab->name[5] ||
5510 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5511 && (stab->flags & SEC_MERGE) == 0
5512 && !bfd_is_abs_section (stab->output_section))
5514 struct bfd_elf_section_data *secdata;
5516 secdata = elf_section_data (stab);
5517 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5518 stabstr, &secdata->sec_info,
5521 if (secdata->sec_info)
5522 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5527 if (is_elf_hash_table (htab) && add_needed)
5529 /* Add this bfd to the loaded list. */
5530 struct elf_link_loaded_list *n;
5532 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5536 n->next = htab->loaded;
5543 if (old_tab != NULL)
5545 if (old_strtab != NULL)
5547 if (nondeflt_vers != NULL)
5548 free (nondeflt_vers);
5549 if (extversym != NULL)
5552 if (isymbuf != NULL)
5558 /* Return the linker hash table entry of a symbol that might be
5559 satisfied by an archive symbol. Return -1 on error. */
5561 struct elf_link_hash_entry *
5562 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5563 struct bfd_link_info *info,
5566 struct elf_link_hash_entry *h;
5570 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5574 /* If this is a default version (the name contains @@), look up the
5575 symbol again with only one `@' as well as without the version.
5576 The effect is that references to the symbol with and without the
5577 version will be matched by the default symbol in the archive. */
5579 p = strchr (name, ELF_VER_CHR);
5580 if (p == NULL || p[1] != ELF_VER_CHR)
5583 /* First check with only one `@'. */
5584 len = strlen (name);
5585 copy = (char *) bfd_alloc (abfd, len);
5587 return (struct elf_link_hash_entry *) -1;
5589 first = p - name + 1;
5590 memcpy (copy, name, first);
5591 memcpy (copy + first, name + first + 1, len - first);
5593 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5596 /* We also need to check references to the symbol without the
5598 copy[first - 1] = '\0';
5599 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5600 FALSE, FALSE, TRUE);
5603 bfd_release (abfd, copy);
5607 /* Add symbols from an ELF archive file to the linker hash table. We
5608 don't use _bfd_generic_link_add_archive_symbols because we need to
5609 handle versioned symbols.
5611 Fortunately, ELF archive handling is simpler than that done by
5612 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5613 oddities. In ELF, if we find a symbol in the archive map, and the
5614 symbol is currently undefined, we know that we must pull in that
5617 Unfortunately, we do have to make multiple passes over the symbol
5618 table until nothing further is resolved. */
5621 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5624 unsigned char *included = NULL;
5628 const struct elf_backend_data *bed;
5629 struct elf_link_hash_entry * (*archive_symbol_lookup)
5630 (bfd *, struct bfd_link_info *, const char *);
5632 if (! bfd_has_map (abfd))
5634 /* An empty archive is a special case. */
5635 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5637 bfd_set_error (bfd_error_no_armap);
5641 /* Keep track of all symbols we know to be already defined, and all
5642 files we know to be already included. This is to speed up the
5643 second and subsequent passes. */
5644 c = bfd_ardata (abfd)->symdef_count;
5648 amt *= sizeof (*included);
5649 included = (unsigned char *) bfd_zmalloc (amt);
5650 if (included == NULL)
5653 symdefs = bfd_ardata (abfd)->symdefs;
5654 bed = get_elf_backend_data (abfd);
5655 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5668 symdefend = symdef + c;
5669 for (i = 0; symdef < symdefend; symdef++, i++)
5671 struct elf_link_hash_entry *h;
5673 struct bfd_link_hash_entry *undefs_tail;
5678 if (symdef->file_offset == last)
5684 h = archive_symbol_lookup (abfd, info, symdef->name);
5685 if (h == (struct elf_link_hash_entry *) -1)
5691 if (h->root.type == bfd_link_hash_common)
5693 /* We currently have a common symbol. The archive map contains
5694 a reference to this symbol, so we may want to include it. We
5695 only want to include it however, if this archive element
5696 contains a definition of the symbol, not just another common
5699 Unfortunately some archivers (including GNU ar) will put
5700 declarations of common symbols into their archive maps, as
5701 well as real definitions, so we cannot just go by the archive
5702 map alone. Instead we must read in the element's symbol
5703 table and check that to see what kind of symbol definition
5705 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5708 else if (h->root.type != bfd_link_hash_undefined)
5710 if (h->root.type != bfd_link_hash_undefweak)
5711 /* Symbol must be defined. Don't check it again. */
5716 /* We need to include this archive member. */
5717 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5718 if (element == NULL)
5721 if (! bfd_check_format (element, bfd_object))
5724 undefs_tail = info->hash->undefs_tail;
5726 if (!(*info->callbacks
5727 ->add_archive_element) (info, element, symdef->name, &element))
5729 if (!bfd_link_add_symbols (element, info))
5732 /* If there are any new undefined symbols, we need to make
5733 another pass through the archive in order to see whether
5734 they can be defined. FIXME: This isn't perfect, because
5735 common symbols wind up on undefs_tail and because an
5736 undefined symbol which is defined later on in this pass
5737 does not require another pass. This isn't a bug, but it
5738 does make the code less efficient than it could be. */
5739 if (undefs_tail != info->hash->undefs_tail)
5742 /* Look backward to mark all symbols from this object file
5743 which we have already seen in this pass. */
5747 included[mark] = TRUE;
5752 while (symdefs[mark].file_offset == symdef->file_offset);
5754 /* We mark subsequent symbols from this object file as we go
5755 on through the loop. */
5756 last = symdef->file_offset;
5766 if (included != NULL)
5771 /* Given an ELF BFD, add symbols to the global hash table as
5775 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5777 switch (bfd_get_format (abfd))
5780 return elf_link_add_object_symbols (abfd, info);
5782 return elf_link_add_archive_symbols (abfd, info);
5784 bfd_set_error (bfd_error_wrong_format);
5789 struct hash_codes_info
5791 unsigned long *hashcodes;
5795 /* This function will be called though elf_link_hash_traverse to store
5796 all hash value of the exported symbols in an array. */
5799 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5801 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5806 /* Ignore indirect symbols. These are added by the versioning code. */
5807 if (h->dynindx == -1)
5810 name = h->root.root.string;
5811 if (h->versioned >= versioned)
5813 char *p = strchr (name, ELF_VER_CHR);
5816 alc = (char *) bfd_malloc (p - name + 1);
5822 memcpy (alc, name, p - name);
5823 alc[p - name] = '\0';
5828 /* Compute the hash value. */
5829 ha = bfd_elf_hash (name);
5831 /* Store the found hash value in the array given as the argument. */
5832 *(inf->hashcodes)++ = ha;
5834 /* And store it in the struct so that we can put it in the hash table
5836 h->u.elf_hash_value = ha;
5844 struct collect_gnu_hash_codes
5847 const struct elf_backend_data *bed;
5848 unsigned long int nsyms;
5849 unsigned long int maskbits;
5850 unsigned long int *hashcodes;
5851 unsigned long int *hashval;
5852 unsigned long int *indx;
5853 unsigned long int *counts;
5856 long int min_dynindx;
5857 unsigned long int bucketcount;
5858 unsigned long int symindx;
5859 long int local_indx;
5860 long int shift1, shift2;
5861 unsigned long int mask;
5865 /* This function will be called though elf_link_hash_traverse to store
5866 all hash value of the exported symbols in an array. */
5869 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5871 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5876 /* Ignore indirect symbols. These are added by the versioning code. */
5877 if (h->dynindx == -1)
5880 /* Ignore also local symbols and undefined symbols. */
5881 if (! (*s->bed->elf_hash_symbol) (h))
5884 name = h->root.root.string;
5885 if (h->versioned >= versioned)
5887 char *p = strchr (name, ELF_VER_CHR);
5890 alc = (char *) bfd_malloc (p - name + 1);
5896 memcpy (alc, name, p - name);
5897 alc[p - name] = '\0';
5902 /* Compute the hash value. */
5903 ha = bfd_elf_gnu_hash (name);
5905 /* Store the found hash value in the array for compute_bucket_count,
5906 and also for .dynsym reordering purposes. */
5907 s->hashcodes[s->nsyms] = ha;
5908 s->hashval[h->dynindx] = ha;
5910 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5911 s->min_dynindx = h->dynindx;
5919 /* This function will be called though elf_link_hash_traverse to do
5920 final dynaminc symbol renumbering. */
5923 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5925 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5926 unsigned long int bucket;
5927 unsigned long int val;
5929 /* Ignore indirect symbols. */
5930 if (h->dynindx == -1)
5933 /* Ignore also local symbols and undefined symbols. */
5934 if (! (*s->bed->elf_hash_symbol) (h))
5936 if (h->dynindx >= s->min_dynindx)
5937 h->dynindx = s->local_indx++;
5941 bucket = s->hashval[h->dynindx] % s->bucketcount;
5942 val = (s->hashval[h->dynindx] >> s->shift1)
5943 & ((s->maskbits >> s->shift1) - 1);
5944 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5946 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5947 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5948 if (s->counts[bucket] == 1)
5949 /* Last element terminates the chain. */
5951 bfd_put_32 (s->output_bfd, val,
5952 s->contents + (s->indx[bucket] - s->symindx) * 4);
5953 --s->counts[bucket];
5954 h->dynindx = s->indx[bucket]++;
5958 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5961 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5963 return !(h->forced_local
5964 || h->root.type == bfd_link_hash_undefined
5965 || h->root.type == bfd_link_hash_undefweak
5966 || ((h->root.type == bfd_link_hash_defined
5967 || h->root.type == bfd_link_hash_defweak)
5968 && h->root.u.def.section->output_section == NULL));
5971 /* Array used to determine the number of hash table buckets to use
5972 based on the number of symbols there are. If there are fewer than
5973 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5974 fewer than 37 we use 17 buckets, and so forth. We never use more
5975 than 32771 buckets. */
5977 static const size_t elf_buckets[] =
5979 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5983 /* Compute bucket count for hashing table. We do not use a static set
5984 of possible tables sizes anymore. Instead we determine for all
5985 possible reasonable sizes of the table the outcome (i.e., the
5986 number of collisions etc) and choose the best solution. The
5987 weighting functions are not too simple to allow the table to grow
5988 without bounds. Instead one of the weighting factors is the size.
5989 Therefore the result is always a good payoff between few collisions
5990 (= short chain lengths) and table size. */
5992 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5993 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5994 unsigned long int nsyms,
5997 size_t best_size = 0;
5998 unsigned long int i;
6000 /* We have a problem here. The following code to optimize the table
6001 size requires an integer type with more the 32 bits. If
6002 BFD_HOST_U_64_BIT is set we know about such a type. */
6003 #ifdef BFD_HOST_U_64_BIT
6008 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6009 bfd *dynobj = elf_hash_table (info)->dynobj;
6010 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6011 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6012 unsigned long int *counts;
6014 unsigned int no_improvement_count = 0;
6016 /* Possible optimization parameters: if we have NSYMS symbols we say
6017 that the hashing table must at least have NSYMS/4 and at most
6019 minsize = nsyms / 4;
6022 best_size = maxsize = nsyms * 2;
6027 if ((best_size & 31) == 0)
6031 /* Create array where we count the collisions in. We must use bfd_malloc
6032 since the size could be large. */
6034 amt *= sizeof (unsigned long int);
6035 counts = (unsigned long int *) bfd_malloc (amt);
6039 /* Compute the "optimal" size for the hash table. The criteria is a
6040 minimal chain length. The minor criteria is (of course) the size
6042 for (i = minsize; i < maxsize; ++i)
6044 /* Walk through the array of hashcodes and count the collisions. */
6045 BFD_HOST_U_64_BIT max;
6046 unsigned long int j;
6047 unsigned long int fact;
6049 if (gnu_hash && (i & 31) == 0)
6052 memset (counts, '\0', i * sizeof (unsigned long int));
6054 /* Determine how often each hash bucket is used. */
6055 for (j = 0; j < nsyms; ++j)
6056 ++counts[hashcodes[j] % i];
6058 /* For the weight function we need some information about the
6059 pagesize on the target. This is information need not be 100%
6060 accurate. Since this information is not available (so far) we
6061 define it here to a reasonable default value. If it is crucial
6062 to have a better value some day simply define this value. */
6063 # ifndef BFD_TARGET_PAGESIZE
6064 # define BFD_TARGET_PAGESIZE (4096)
6067 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6069 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6072 /* Variant 1: optimize for short chains. We add the squares
6073 of all the chain lengths (which favors many small chain
6074 over a few long chains). */
6075 for (j = 0; j < i; ++j)
6076 max += counts[j] * counts[j];
6078 /* This adds penalties for the overall size of the table. */
6079 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6082 /* Variant 2: Optimize a lot more for small table. Here we
6083 also add squares of the size but we also add penalties for
6084 empty slots (the +1 term). */
6085 for (j = 0; j < i; ++j)
6086 max += (1 + counts[j]) * (1 + counts[j]);
6088 /* The overall size of the table is considered, but not as
6089 strong as in variant 1, where it is squared. */
6090 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6094 /* Compare with current best results. */
6095 if (max < best_chlen)
6099 no_improvement_count = 0;
6101 /* PR 11843: Avoid futile long searches for the best bucket size
6102 when there are a large number of symbols. */
6103 else if (++no_improvement_count == 100)
6110 #endif /* defined (BFD_HOST_U_64_BIT) */
6112 /* This is the fallback solution if no 64bit type is available or if we
6113 are not supposed to spend much time on optimizations. We select the
6114 bucket count using a fixed set of numbers. */
6115 for (i = 0; elf_buckets[i] != 0; i++)
6117 best_size = elf_buckets[i];
6118 if (nsyms < elf_buckets[i + 1])
6121 if (gnu_hash && best_size < 2)
6128 /* Size any SHT_GROUP section for ld -r. */
6131 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6136 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6137 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6138 && (s = ibfd->sections) != NULL
6139 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6140 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6145 /* Set a default stack segment size. The value in INFO wins. If it
6146 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6147 undefined it is initialized. */
6150 bfd_elf_stack_segment_size (bfd *output_bfd,
6151 struct bfd_link_info *info,
6152 const char *legacy_symbol,
6153 bfd_vma default_size)
6155 struct elf_link_hash_entry *h = NULL;
6157 /* Look for legacy symbol. */
6159 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6160 FALSE, FALSE, FALSE);
6161 if (h && (h->root.type == bfd_link_hash_defined
6162 || h->root.type == bfd_link_hash_defweak)
6164 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6166 /* The symbol has no type if specified on the command line. */
6167 h->type = STT_OBJECT;
6168 if (info->stacksize)
6169 /* xgettext:c-format */
6170 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6171 output_bfd, legacy_symbol);
6172 else if (h->root.u.def.section != bfd_abs_section_ptr)
6173 /* xgettext:c-format */
6174 _bfd_error_handler (_("%pB: %s not absolute"),
6175 output_bfd, legacy_symbol);
6177 info->stacksize = h->root.u.def.value;
6180 if (!info->stacksize)
6181 /* If the user didn't set a size, or explicitly inhibit the
6182 size, set it now. */
6183 info->stacksize = default_size;
6185 /* Provide the legacy symbol, if it is referenced. */
6186 if (h && (h->root.type == bfd_link_hash_undefined
6187 || h->root.type == bfd_link_hash_undefweak))
6189 struct bfd_link_hash_entry *bh = NULL;
6191 if (!(_bfd_generic_link_add_one_symbol
6192 (info, output_bfd, legacy_symbol,
6193 BSF_GLOBAL, bfd_abs_section_ptr,
6194 info->stacksize >= 0 ? info->stacksize : 0,
6195 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6198 h = (struct elf_link_hash_entry *) bh;
6200 h->type = STT_OBJECT;
6206 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6208 struct elf_gc_sweep_symbol_info
6210 struct bfd_link_info *info;
6211 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6216 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6219 && (((h->root.type == bfd_link_hash_defined
6220 || h->root.type == bfd_link_hash_defweak)
6221 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6222 && h->root.u.def.section->gc_mark))
6223 || h->root.type == bfd_link_hash_undefined
6224 || h->root.type == bfd_link_hash_undefweak))
6226 struct elf_gc_sweep_symbol_info *inf;
6228 inf = (struct elf_gc_sweep_symbol_info *) data;
6229 (*inf->hide_symbol) (inf->info, h, TRUE);
6232 h->ref_regular_nonweak = 0;
6238 /* Set up the sizes and contents of the ELF dynamic sections. This is
6239 called by the ELF linker emulation before_allocation routine. We
6240 must set the sizes of the sections before the linker sets the
6241 addresses of the various sections. */
6244 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6247 const char *filter_shlib,
6249 const char *depaudit,
6250 const char * const *auxiliary_filters,
6251 struct bfd_link_info *info,
6252 asection **sinterpptr)
6255 const struct elf_backend_data *bed;
6259 if (!is_elf_hash_table (info->hash))
6262 dynobj = elf_hash_table (info)->dynobj;
6264 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6266 struct bfd_elf_version_tree *verdefs;
6267 struct elf_info_failed asvinfo;
6268 struct bfd_elf_version_tree *t;
6269 struct bfd_elf_version_expr *d;
6273 /* If we are supposed to export all symbols into the dynamic symbol
6274 table (this is not the normal case), then do so. */
6275 if (info->export_dynamic
6276 || (bfd_link_executable (info) && info->dynamic))
6278 struct elf_info_failed eif;
6282 elf_link_hash_traverse (elf_hash_table (info),
6283 _bfd_elf_export_symbol,
6291 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6293 if (soname_indx == (size_t) -1
6294 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6298 soname_indx = (size_t) -1;
6300 /* Make all global versions with definition. */
6301 for (t = info->version_info; t != NULL; t = t->next)
6302 for (d = t->globals.list; d != NULL; d = d->next)
6303 if (!d->symver && d->literal)
6305 const char *verstr, *name;
6306 size_t namelen, verlen, newlen;
6307 char *newname, *p, leading_char;
6308 struct elf_link_hash_entry *newh;
6310 leading_char = bfd_get_symbol_leading_char (output_bfd);
6312 namelen = strlen (name) + (leading_char != '\0');
6314 verlen = strlen (verstr);
6315 newlen = namelen + verlen + 3;
6317 newname = (char *) bfd_malloc (newlen);
6318 if (newname == NULL)
6320 newname[0] = leading_char;
6321 memcpy (newname + (leading_char != '\0'), name, namelen);
6323 /* Check the hidden versioned definition. */
6324 p = newname + namelen;
6326 memcpy (p, verstr, verlen + 1);
6327 newh = elf_link_hash_lookup (elf_hash_table (info),
6328 newname, FALSE, FALSE,
6331 || (newh->root.type != bfd_link_hash_defined
6332 && newh->root.type != bfd_link_hash_defweak))
6334 /* Check the default versioned definition. */
6336 memcpy (p, verstr, verlen + 1);
6337 newh = elf_link_hash_lookup (elf_hash_table (info),
6338 newname, FALSE, FALSE,
6343 /* Mark this version if there is a definition and it is
6344 not defined in a shared object. */
6346 && !newh->def_dynamic
6347 && (newh->root.type == bfd_link_hash_defined
6348 || newh->root.type == bfd_link_hash_defweak))
6352 /* Attach all the symbols to their version information. */
6353 asvinfo.info = info;
6354 asvinfo.failed = FALSE;
6356 elf_link_hash_traverse (elf_hash_table (info),
6357 _bfd_elf_link_assign_sym_version,
6362 if (!info->allow_undefined_version)
6364 /* Check if all global versions have a definition. */
6365 bfd_boolean all_defined = TRUE;
6366 for (t = info->version_info; t != NULL; t = t->next)
6367 for (d = t->globals.list; d != NULL; d = d->next)
6368 if (d->literal && !d->symver && !d->script)
6371 (_("%s: undefined version: %s"),
6372 d->pattern, t->name);
6373 all_defined = FALSE;
6378 bfd_set_error (bfd_error_bad_value);
6383 /* Set up the version definition section. */
6384 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6385 BFD_ASSERT (s != NULL);
6387 /* We may have created additional version definitions if we are
6388 just linking a regular application. */
6389 verdefs = info->version_info;
6391 /* Skip anonymous version tag. */
6392 if (verdefs != NULL && verdefs->vernum == 0)
6393 verdefs = verdefs->next;
6395 if (verdefs == NULL && !info->create_default_symver)
6396 s->flags |= SEC_EXCLUDE;
6402 Elf_Internal_Verdef def;
6403 Elf_Internal_Verdaux defaux;
6404 struct bfd_link_hash_entry *bh;
6405 struct elf_link_hash_entry *h;
6411 /* Make space for the base version. */
6412 size += sizeof (Elf_External_Verdef);
6413 size += sizeof (Elf_External_Verdaux);
6416 /* Make space for the default version. */
6417 if (info->create_default_symver)
6419 size += sizeof (Elf_External_Verdef);
6423 for (t = verdefs; t != NULL; t = t->next)
6425 struct bfd_elf_version_deps *n;
6427 /* Don't emit base version twice. */
6431 size += sizeof (Elf_External_Verdef);
6432 size += sizeof (Elf_External_Verdaux);
6435 for (n = t->deps; n != NULL; n = n->next)
6436 size += sizeof (Elf_External_Verdaux);
6440 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6441 if (s->contents == NULL && s->size != 0)
6444 /* Fill in the version definition section. */
6448 def.vd_version = VER_DEF_CURRENT;
6449 def.vd_flags = VER_FLG_BASE;
6452 if (info->create_default_symver)
6454 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6455 def.vd_next = sizeof (Elf_External_Verdef);
6459 def.vd_aux = sizeof (Elf_External_Verdef);
6460 def.vd_next = (sizeof (Elf_External_Verdef)
6461 + sizeof (Elf_External_Verdaux));
6464 if (soname_indx != (size_t) -1)
6466 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6468 def.vd_hash = bfd_elf_hash (soname);
6469 defaux.vda_name = soname_indx;
6476 name = lbasename (output_bfd->filename);
6477 def.vd_hash = bfd_elf_hash (name);
6478 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6480 if (indx == (size_t) -1)
6482 defaux.vda_name = indx;
6484 defaux.vda_next = 0;
6486 _bfd_elf_swap_verdef_out (output_bfd, &def,
6487 (Elf_External_Verdef *) p);
6488 p += sizeof (Elf_External_Verdef);
6489 if (info->create_default_symver)
6491 /* Add a symbol representing this version. */
6493 if (! (_bfd_generic_link_add_one_symbol
6494 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6496 get_elf_backend_data (dynobj)->collect, &bh)))
6498 h = (struct elf_link_hash_entry *) bh;
6501 h->type = STT_OBJECT;
6502 h->verinfo.vertree = NULL;
6504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6507 /* Create a duplicate of the base version with the same
6508 aux block, but different flags. */
6511 def.vd_aux = sizeof (Elf_External_Verdef);
6513 def.vd_next = (sizeof (Elf_External_Verdef)
6514 + sizeof (Elf_External_Verdaux));
6517 _bfd_elf_swap_verdef_out (output_bfd, &def,
6518 (Elf_External_Verdef *) p);
6519 p += sizeof (Elf_External_Verdef);
6521 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6522 (Elf_External_Verdaux *) p);
6523 p += sizeof (Elf_External_Verdaux);
6525 for (t = verdefs; t != NULL; t = t->next)
6528 struct bfd_elf_version_deps *n;
6530 /* Don't emit the base version twice. */
6535 for (n = t->deps; n != NULL; n = n->next)
6538 /* Add a symbol representing this version. */
6540 if (! (_bfd_generic_link_add_one_symbol
6541 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6543 get_elf_backend_data (dynobj)->collect, &bh)))
6545 h = (struct elf_link_hash_entry *) bh;
6548 h->type = STT_OBJECT;
6549 h->verinfo.vertree = t;
6551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6554 def.vd_version = VER_DEF_CURRENT;
6556 if (t->globals.list == NULL
6557 && t->locals.list == NULL
6559 def.vd_flags |= VER_FLG_WEAK;
6560 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6561 def.vd_cnt = cdeps + 1;
6562 def.vd_hash = bfd_elf_hash (t->name);
6563 def.vd_aux = sizeof (Elf_External_Verdef);
6566 /* If a basever node is next, it *must* be the last node in
6567 the chain, otherwise Verdef construction breaks. */
6568 if (t->next != NULL && t->next->vernum == 0)
6569 BFD_ASSERT (t->next->next == NULL);
6571 if (t->next != NULL && t->next->vernum != 0)
6572 def.vd_next = (sizeof (Elf_External_Verdef)
6573 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6575 _bfd_elf_swap_verdef_out (output_bfd, &def,
6576 (Elf_External_Verdef *) p);
6577 p += sizeof (Elf_External_Verdef);
6579 defaux.vda_name = h->dynstr_index;
6580 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6582 defaux.vda_next = 0;
6583 if (t->deps != NULL)
6584 defaux.vda_next = sizeof (Elf_External_Verdaux);
6585 t->name_indx = defaux.vda_name;
6587 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6588 (Elf_External_Verdaux *) p);
6589 p += sizeof (Elf_External_Verdaux);
6591 for (n = t->deps; n != NULL; n = n->next)
6593 if (n->version_needed == NULL)
6595 /* This can happen if there was an error in the
6597 defaux.vda_name = 0;
6601 defaux.vda_name = n->version_needed->name_indx;
6602 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6605 if (n->next == NULL)
6606 defaux.vda_next = 0;
6608 defaux.vda_next = sizeof (Elf_External_Verdaux);
6610 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6611 (Elf_External_Verdaux *) p);
6612 p += sizeof (Elf_External_Verdaux);
6616 elf_tdata (output_bfd)->cverdefs = cdefs;
6620 bed = get_elf_backend_data (output_bfd);
6622 if (info->gc_sections && bed->can_gc_sections)
6624 struct elf_gc_sweep_symbol_info sweep_info;
6626 /* Remove the symbols that were in the swept sections from the
6627 dynamic symbol table. */
6628 sweep_info.info = info;
6629 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6630 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6634 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6637 struct elf_find_verdep_info sinfo;
6639 /* Work out the size of the version reference section. */
6641 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6642 BFD_ASSERT (s != NULL);
6645 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6646 if (sinfo.vers == 0)
6648 sinfo.failed = FALSE;
6650 elf_link_hash_traverse (elf_hash_table (info),
6651 _bfd_elf_link_find_version_dependencies,
6656 if (elf_tdata (output_bfd)->verref == NULL)
6657 s->flags |= SEC_EXCLUDE;
6660 Elf_Internal_Verneed *vn;
6665 /* Build the version dependency section. */
6668 for (vn = elf_tdata (output_bfd)->verref;
6670 vn = vn->vn_nextref)
6672 Elf_Internal_Vernaux *a;
6674 size += sizeof (Elf_External_Verneed);
6676 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6677 size += sizeof (Elf_External_Vernaux);
6681 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6682 if (s->contents == NULL)
6686 for (vn = elf_tdata (output_bfd)->verref;
6688 vn = vn->vn_nextref)
6691 Elf_Internal_Vernaux *a;
6695 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6698 vn->vn_version = VER_NEED_CURRENT;
6700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6701 elf_dt_name (vn->vn_bfd) != NULL
6702 ? elf_dt_name (vn->vn_bfd)
6703 : lbasename (vn->vn_bfd->filename),
6705 if (indx == (size_t) -1)
6708 vn->vn_aux = sizeof (Elf_External_Verneed);
6709 if (vn->vn_nextref == NULL)
6712 vn->vn_next = (sizeof (Elf_External_Verneed)
6713 + caux * sizeof (Elf_External_Vernaux));
6715 _bfd_elf_swap_verneed_out (output_bfd, vn,
6716 (Elf_External_Verneed *) p);
6717 p += sizeof (Elf_External_Verneed);
6719 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6721 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6722 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6723 a->vna_nodename, FALSE);
6724 if (indx == (size_t) -1)
6727 if (a->vna_nextptr == NULL)
6730 a->vna_next = sizeof (Elf_External_Vernaux);
6732 _bfd_elf_swap_vernaux_out (output_bfd, a,
6733 (Elf_External_Vernaux *) p);
6734 p += sizeof (Elf_External_Vernaux);
6738 elf_tdata (output_bfd)->cverrefs = crefs;
6742 /* Any syms created from now on start with -1 in
6743 got.refcount/offset and plt.refcount/offset. */
6744 elf_hash_table (info)->init_got_refcount
6745 = elf_hash_table (info)->init_got_offset;
6746 elf_hash_table (info)->init_plt_refcount
6747 = elf_hash_table (info)->init_plt_offset;
6749 if (bfd_link_relocatable (info)
6750 && !_bfd_elf_size_group_sections (info))
6753 /* The backend may have to create some sections regardless of whether
6754 we're dynamic or not. */
6755 if (bed->elf_backend_always_size_sections
6756 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6759 /* Determine any GNU_STACK segment requirements, after the backend
6760 has had a chance to set a default segment size. */
6761 if (info->execstack)
6762 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6763 else if (info->noexecstack)
6764 elf_stack_flags (output_bfd) = PF_R | PF_W;
6768 asection *notesec = NULL;
6771 for (inputobj = info->input_bfds;
6773 inputobj = inputobj->link.next)
6778 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6780 s = inputobj->sections;
6781 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6784 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6787 if (s->flags & SEC_CODE)
6791 else if (bed->default_execstack)
6794 if (notesec || info->stacksize > 0)
6795 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6796 if (notesec && exec && bfd_link_relocatable (info)
6797 && notesec->output_section != bfd_abs_section_ptr)
6798 notesec->output_section->flags |= SEC_CODE;
6801 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6803 struct elf_info_failed eif;
6804 struct elf_link_hash_entry *h;
6808 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6809 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6813 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6815 info->flags |= DF_SYMBOLIC;
6823 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6825 if (indx == (size_t) -1)
6828 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6829 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6833 if (filter_shlib != NULL)
6837 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6838 filter_shlib, TRUE);
6839 if (indx == (size_t) -1
6840 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6844 if (auxiliary_filters != NULL)
6846 const char * const *p;
6848 for (p = auxiliary_filters; *p != NULL; p++)
6852 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6854 if (indx == (size_t) -1
6855 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6864 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6866 if (indx == (size_t) -1
6867 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6871 if (depaudit != NULL)
6875 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6877 if (indx == (size_t) -1
6878 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6885 /* Find all symbols which were defined in a dynamic object and make
6886 the backend pick a reasonable value for them. */
6887 elf_link_hash_traverse (elf_hash_table (info),
6888 _bfd_elf_adjust_dynamic_symbol,
6893 /* Add some entries to the .dynamic section. We fill in some of the
6894 values later, in bfd_elf_final_link, but we must add the entries
6895 now so that we know the final size of the .dynamic section. */
6897 /* If there are initialization and/or finalization functions to
6898 call then add the corresponding DT_INIT/DT_FINI entries. */
6899 h = (info->init_function
6900 ? elf_link_hash_lookup (elf_hash_table (info),
6901 info->init_function, FALSE,
6908 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6911 h = (info->fini_function
6912 ? elf_link_hash_lookup (elf_hash_table (info),
6913 info->fini_function, FALSE,
6920 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6924 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6925 if (s != NULL && s->linker_has_input)
6927 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6928 if (! bfd_link_executable (info))
6933 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6934 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6935 && (o = sub->sections) != NULL
6936 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6937 for (o = sub->sections; o != NULL; o = o->next)
6938 if (elf_section_data (o)->this_hdr.sh_type
6939 == SHT_PREINIT_ARRAY)
6942 (_("%pB: .preinit_array section is not allowed in DSO"),
6947 bfd_set_error (bfd_error_nonrepresentable_section);
6951 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6952 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6955 s = bfd_get_section_by_name (output_bfd, ".init_array");
6956 if (s != NULL && s->linker_has_input)
6958 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6959 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6962 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6963 if (s != NULL && s->linker_has_input)
6965 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6966 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6970 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6971 /* If .dynstr is excluded from the link, we don't want any of
6972 these tags. Strictly, we should be checking each section
6973 individually; This quick check covers for the case where
6974 someone does a /DISCARD/ : { *(*) }. */
6975 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6977 bfd_size_type strsize;
6979 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6980 if ((info->emit_hash
6981 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6982 || (info->emit_gnu_hash
6983 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6984 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6985 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6986 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6987 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6988 bed->s->sizeof_sym))
6993 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6996 /* The backend must work out the sizes of all the other dynamic
6999 && bed->elf_backend_size_dynamic_sections != NULL
7000 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7003 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7005 if (elf_tdata (output_bfd)->cverdefs)
7007 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7009 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7010 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7014 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7016 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7019 else if (info->flags & DF_BIND_NOW)
7021 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7027 if (bfd_link_executable (info))
7028 info->flags_1 &= ~ (DF_1_INITFIRST
7031 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7035 if (elf_tdata (output_bfd)->cverrefs)
7037 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7039 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7040 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7044 if ((elf_tdata (output_bfd)->cverrefs == 0
7045 && elf_tdata (output_bfd)->cverdefs == 0)
7046 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7050 s = bfd_get_linker_section (dynobj, ".gnu.version");
7051 s->flags |= SEC_EXCLUDE;
7057 /* Find the first non-excluded output section. We'll use its
7058 section symbol for some emitted relocs. */
7060 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7063 asection *found = NULL;
7065 for (s = output_bfd->sections; s != NULL; s = s->next)
7066 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7067 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7070 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7073 elf_hash_table (info)->text_index_section = found;
7076 /* Find two non-excluded output sections, one for code, one for data.
7077 We'll use their section symbols for some emitted relocs. */
7079 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7082 asection *found = NULL;
7084 /* Data first, since setting text_index_section changes
7085 _bfd_elf_omit_section_dynsym_default. */
7086 for (s = output_bfd->sections; s != NULL; s = s->next)
7087 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7088 && !(s->flags & SEC_READONLY)
7089 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7092 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7095 elf_hash_table (info)->data_index_section = found;
7097 for (s = output_bfd->sections; s != NULL; s = s->next)
7098 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7099 && (s->flags & SEC_READONLY)
7100 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7105 elf_hash_table (info)->text_index_section = found;
7109 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7111 const struct elf_backend_data *bed;
7112 unsigned long section_sym_count;
7113 bfd_size_type dynsymcount = 0;
7115 if (!is_elf_hash_table (info->hash))
7118 bed = get_elf_backend_data (output_bfd);
7119 (*bed->elf_backend_init_index_section) (output_bfd, info);
7121 /* Assign dynsym indices. In a shared library we generate a section
7122 symbol for each output section, which come first. Next come all
7123 of the back-end allocated local dynamic syms, followed by the rest
7124 of the global symbols.
7126 This is usually not needed for static binaries, however backends
7127 can request to always do it, e.g. the MIPS backend uses dynamic
7128 symbol counts to lay out GOT, which will be produced in the
7129 presence of GOT relocations even in static binaries (holding fixed
7130 data in that case, to satisfy those relocations). */
7132 if (elf_hash_table (info)->dynamic_sections_created
7133 || bed->always_renumber_dynsyms)
7134 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7135 §ion_sym_count);
7137 if (elf_hash_table (info)->dynamic_sections_created)
7141 unsigned int dtagcount;
7143 dynobj = elf_hash_table (info)->dynobj;
7145 /* Work out the size of the symbol version section. */
7146 s = bfd_get_linker_section (dynobj, ".gnu.version");
7147 BFD_ASSERT (s != NULL);
7148 if ((s->flags & SEC_EXCLUDE) == 0)
7150 s->size = dynsymcount * sizeof (Elf_External_Versym);
7151 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7152 if (s->contents == NULL)
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7159 /* Set the size of the .dynsym and .hash sections. We counted
7160 the number of dynamic symbols in elf_link_add_object_symbols.
7161 We will build the contents of .dynsym and .hash when we build
7162 the final symbol table, because until then we do not know the
7163 correct value to give the symbols. We built the .dynstr
7164 section as we went along in elf_link_add_object_symbols. */
7165 s = elf_hash_table (info)->dynsym;
7166 BFD_ASSERT (s != NULL);
7167 s->size = dynsymcount * bed->s->sizeof_sym;
7169 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7170 if (s->contents == NULL)
7173 /* The first entry in .dynsym is a dummy symbol. Clear all the
7174 section syms, in case we don't output them all. */
7175 ++section_sym_count;
7176 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7178 elf_hash_table (info)->bucketcount = 0;
7180 /* Compute the size of the hashing table. As a side effect this
7181 computes the hash values for all the names we export. */
7182 if (info->emit_hash)
7184 unsigned long int *hashcodes;
7185 struct hash_codes_info hashinf;
7187 unsigned long int nsyms;
7189 size_t hash_entry_size;
7191 /* Compute the hash values for all exported symbols. At the same
7192 time store the values in an array so that we could use them for
7194 amt = dynsymcount * sizeof (unsigned long int);
7195 hashcodes = (unsigned long int *) bfd_malloc (amt);
7196 if (hashcodes == NULL)
7198 hashinf.hashcodes = hashcodes;
7199 hashinf.error = FALSE;
7201 /* Put all hash values in HASHCODES. */
7202 elf_link_hash_traverse (elf_hash_table (info),
7203 elf_collect_hash_codes, &hashinf);
7210 nsyms = hashinf.hashcodes - hashcodes;
7212 = compute_bucket_count (info, hashcodes, nsyms, 0);
7215 if (bucketcount == 0 && nsyms > 0)
7218 elf_hash_table (info)->bucketcount = bucketcount;
7220 s = bfd_get_linker_section (dynobj, ".hash");
7221 BFD_ASSERT (s != NULL);
7222 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7223 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7224 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7225 if (s->contents == NULL)
7228 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7229 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7230 s->contents + hash_entry_size);
7233 if (info->emit_gnu_hash)
7236 unsigned char *contents;
7237 struct collect_gnu_hash_codes cinfo;
7241 memset (&cinfo, 0, sizeof (cinfo));
7243 /* Compute the hash values for all exported symbols. At the same
7244 time store the values in an array so that we could use them for
7246 amt = dynsymcount * 2 * sizeof (unsigned long int);
7247 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7248 if (cinfo.hashcodes == NULL)
7251 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7252 cinfo.min_dynindx = -1;
7253 cinfo.output_bfd = output_bfd;
7256 /* Put all hash values in HASHCODES. */
7257 elf_link_hash_traverse (elf_hash_table (info),
7258 elf_collect_gnu_hash_codes, &cinfo);
7261 free (cinfo.hashcodes);
7266 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7268 if (bucketcount == 0)
7270 free (cinfo.hashcodes);
7274 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7275 BFD_ASSERT (s != NULL);
7277 if (cinfo.nsyms == 0)
7279 /* Empty .gnu.hash section is special. */
7280 BFD_ASSERT (cinfo.min_dynindx == -1);
7281 free (cinfo.hashcodes);
7282 s->size = 5 * 4 + bed->s->arch_size / 8;
7283 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7284 if (contents == NULL)
7286 s->contents = contents;
7287 /* 1 empty bucket. */
7288 bfd_put_32 (output_bfd, 1, contents);
7289 /* SYMIDX above the special symbol 0. */
7290 bfd_put_32 (output_bfd, 1, contents + 4);
7291 /* Just one word for bitmask. */
7292 bfd_put_32 (output_bfd, 1, contents + 8);
7293 /* Only hash fn bloom filter. */
7294 bfd_put_32 (output_bfd, 0, contents + 12);
7295 /* No hashes are valid - empty bitmask. */
7296 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7297 /* No hashes in the only bucket. */
7298 bfd_put_32 (output_bfd, 0,
7299 contents + 16 + bed->s->arch_size / 8);
7303 unsigned long int maskwords, maskbitslog2, x;
7304 BFD_ASSERT (cinfo.min_dynindx != -1);
7308 while ((x >>= 1) != 0)
7310 if (maskbitslog2 < 3)
7312 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7313 maskbitslog2 = maskbitslog2 + 3;
7315 maskbitslog2 = maskbitslog2 + 2;
7316 if (bed->s->arch_size == 64)
7318 if (maskbitslog2 == 5)
7324 cinfo.mask = (1 << cinfo.shift1) - 1;
7325 cinfo.shift2 = maskbitslog2;
7326 cinfo.maskbits = 1 << maskbitslog2;
7327 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7328 amt = bucketcount * sizeof (unsigned long int) * 2;
7329 amt += maskwords * sizeof (bfd_vma);
7330 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7331 if (cinfo.bitmask == NULL)
7333 free (cinfo.hashcodes);
7337 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7338 cinfo.indx = cinfo.counts + bucketcount;
7339 cinfo.symindx = dynsymcount - cinfo.nsyms;
7340 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7342 /* Determine how often each hash bucket is used. */
7343 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7344 for (i = 0; i < cinfo.nsyms; ++i)
7345 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7347 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7348 if (cinfo.counts[i] != 0)
7350 cinfo.indx[i] = cnt;
7351 cnt += cinfo.counts[i];
7353 BFD_ASSERT (cnt == dynsymcount);
7354 cinfo.bucketcount = bucketcount;
7355 cinfo.local_indx = cinfo.min_dynindx;
7357 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7358 s->size += cinfo.maskbits / 8;
7359 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7360 if (contents == NULL)
7362 free (cinfo.bitmask);
7363 free (cinfo.hashcodes);
7367 s->contents = contents;
7368 bfd_put_32 (output_bfd, bucketcount, contents);
7369 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7370 bfd_put_32 (output_bfd, maskwords, contents + 8);
7371 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7372 contents += 16 + cinfo.maskbits / 8;
7374 for (i = 0; i < bucketcount; ++i)
7376 if (cinfo.counts[i] == 0)
7377 bfd_put_32 (output_bfd, 0, contents);
7379 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7383 cinfo.contents = contents;
7385 /* Renumber dynamic symbols, populate .gnu.hash section. */
7386 elf_link_hash_traverse (elf_hash_table (info),
7387 elf_renumber_gnu_hash_syms, &cinfo);
7389 contents = s->contents + 16;
7390 for (i = 0; i < maskwords; ++i)
7392 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7394 contents += bed->s->arch_size / 8;
7397 free (cinfo.bitmask);
7398 free (cinfo.hashcodes);
7402 s = bfd_get_linker_section (dynobj, ".dynstr");
7403 BFD_ASSERT (s != NULL);
7405 elf_finalize_dynstr (output_bfd, info);
7407 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7409 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7410 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7417 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7420 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7423 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7424 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7427 /* Finish SHF_MERGE section merging. */
7430 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7435 if (!is_elf_hash_table (info->hash))
7438 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7439 if ((ibfd->flags & DYNAMIC) == 0
7440 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7441 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7442 == get_elf_backend_data (obfd)->s->elfclass))
7443 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7444 if ((sec->flags & SEC_MERGE) != 0
7445 && !bfd_is_abs_section (sec->output_section))
7447 struct bfd_elf_section_data *secdata;
7449 secdata = elf_section_data (sec);
7450 if (! _bfd_add_merge_section (obfd,
7451 &elf_hash_table (info)->merge_info,
7452 sec, &secdata->sec_info))
7454 else if (secdata->sec_info)
7455 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7458 if (elf_hash_table (info)->merge_info != NULL)
7459 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7460 merge_sections_remove_hook);
7464 /* Create an entry in an ELF linker hash table. */
7466 struct bfd_hash_entry *
7467 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7468 struct bfd_hash_table *table,
7471 /* Allocate the structure if it has not already been allocated by a
7475 entry = (struct bfd_hash_entry *)
7476 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7481 /* Call the allocation method of the superclass. */
7482 entry = _bfd_link_hash_newfunc (entry, table, string);
7485 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7486 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7488 /* Set local fields. */
7491 ret->got = htab->init_got_refcount;
7492 ret->plt = htab->init_plt_refcount;
7493 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7494 - offsetof (struct elf_link_hash_entry, size)));
7495 /* Assume that we have been called by a non-ELF symbol reader.
7496 This flag is then reset by the code which reads an ELF input
7497 file. This ensures that a symbol created by a non-ELF symbol
7498 reader will have the flag set correctly. */
7505 /* Copy data from an indirect symbol to its direct symbol, hiding the
7506 old indirect symbol. Also used for copying flags to a weakdef. */
7509 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7510 struct elf_link_hash_entry *dir,
7511 struct elf_link_hash_entry *ind)
7513 struct elf_link_hash_table *htab;
7515 /* Copy down any references that we may have already seen to the
7516 symbol which just became indirect. */
7518 if (dir->versioned != versioned_hidden)
7519 dir->ref_dynamic |= ind->ref_dynamic;
7520 dir->ref_regular |= ind->ref_regular;
7521 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7522 dir->non_got_ref |= ind->non_got_ref;
7523 dir->needs_plt |= ind->needs_plt;
7524 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7526 if (ind->root.type != bfd_link_hash_indirect)
7529 /* Copy over the global and procedure linkage table refcount entries.
7530 These may have been already set up by a check_relocs routine. */
7531 htab = elf_hash_table (info);
7532 if (ind->got.refcount > htab->init_got_refcount.refcount)
7534 if (dir->got.refcount < 0)
7535 dir->got.refcount = 0;
7536 dir->got.refcount += ind->got.refcount;
7537 ind->got.refcount = htab->init_got_refcount.refcount;
7540 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7542 if (dir->plt.refcount < 0)
7543 dir->plt.refcount = 0;
7544 dir->plt.refcount += ind->plt.refcount;
7545 ind->plt.refcount = htab->init_plt_refcount.refcount;
7548 if (ind->dynindx != -1)
7550 if (dir->dynindx != -1)
7551 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7552 dir->dynindx = ind->dynindx;
7553 dir->dynstr_index = ind->dynstr_index;
7555 ind->dynstr_index = 0;
7560 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7561 struct elf_link_hash_entry *h,
7562 bfd_boolean force_local)
7564 /* STT_GNU_IFUNC symbol must go through PLT. */
7565 if (h->type != STT_GNU_IFUNC)
7567 h->plt = elf_hash_table (info)->init_plt_offset;
7572 h->forced_local = 1;
7573 if (h->dynindx != -1)
7575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7578 h->dynstr_index = 0;
7583 /* Hide a symbol. */
7586 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7587 struct bfd_link_info *info,
7588 struct bfd_link_hash_entry *h)
7590 if (is_elf_hash_table (info->hash))
7592 const struct elf_backend_data *bed
7593 = get_elf_backend_data (output_bfd);
7594 struct elf_link_hash_entry *eh
7595 = (struct elf_link_hash_entry *) h;
7596 bed->elf_backend_hide_symbol (info, eh, TRUE);
7597 eh->def_dynamic = 0;
7598 eh->ref_dynamic = 0;
7599 eh->dynamic_def = 0;
7603 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7607 _bfd_elf_link_hash_table_init
7608 (struct elf_link_hash_table *table,
7610 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7611 struct bfd_hash_table *,
7613 unsigned int entsize,
7614 enum elf_target_id target_id)
7617 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7619 table->init_got_refcount.refcount = can_refcount - 1;
7620 table->init_plt_refcount.refcount = can_refcount - 1;
7621 table->init_got_offset.offset = -(bfd_vma) 1;
7622 table->init_plt_offset.offset = -(bfd_vma) 1;
7623 /* The first dynamic symbol is a dummy. */
7624 table->dynsymcount = 1;
7626 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7628 table->root.type = bfd_link_elf_hash_table;
7629 table->hash_table_id = target_id;
7634 /* Create an ELF linker hash table. */
7636 struct bfd_link_hash_table *
7637 _bfd_elf_link_hash_table_create (bfd *abfd)
7639 struct elf_link_hash_table *ret;
7640 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7642 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7646 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7647 sizeof (struct elf_link_hash_entry),
7653 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7658 /* Destroy an ELF linker hash table. */
7661 _bfd_elf_link_hash_table_free (bfd *obfd)
7663 struct elf_link_hash_table *htab;
7665 htab = (struct elf_link_hash_table *) obfd->link.hash;
7666 if (htab->dynstr != NULL)
7667 _bfd_elf_strtab_free (htab->dynstr);
7668 _bfd_merge_sections_free (htab->merge_info);
7669 _bfd_generic_link_hash_table_free (obfd);
7672 /* This is a hook for the ELF emulation code in the generic linker to
7673 tell the backend linker what file name to use for the DT_NEEDED
7674 entry for a dynamic object. */
7677 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7679 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7680 && bfd_get_format (abfd) == bfd_object)
7681 elf_dt_name (abfd) = name;
7685 bfd_elf_get_dyn_lib_class (bfd *abfd)
7688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7689 && bfd_get_format (abfd) == bfd_object)
7690 lib_class = elf_dyn_lib_class (abfd);
7697 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7699 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7700 && bfd_get_format (abfd) == bfd_object)
7701 elf_dyn_lib_class (abfd) = lib_class;
7704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7705 the linker ELF emulation code. */
7707 struct bfd_link_needed_list *
7708 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7709 struct bfd_link_info *info)
7711 if (! is_elf_hash_table (info->hash))
7713 return elf_hash_table (info)->needed;
7716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7717 hook for the linker ELF emulation code. */
7719 struct bfd_link_needed_list *
7720 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7721 struct bfd_link_info *info)
7723 if (! is_elf_hash_table (info->hash))
7725 return elf_hash_table (info)->runpath;
7728 /* Get the name actually used for a dynamic object for a link. This
7729 is the SONAME entry if there is one. Otherwise, it is the string
7730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7733 bfd_elf_get_dt_soname (bfd *abfd)
7735 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7736 && bfd_get_format (abfd) == bfd_object)
7737 return elf_dt_name (abfd);
7741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7742 the ELF linker emulation code. */
7745 bfd_elf_get_bfd_needed_list (bfd *abfd,
7746 struct bfd_link_needed_list **pneeded)
7749 bfd_byte *dynbuf = NULL;
7750 unsigned int elfsec;
7751 unsigned long shlink;
7752 bfd_byte *extdyn, *extdynend;
7754 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7758 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7759 || bfd_get_format (abfd) != bfd_object)
7762 s = bfd_get_section_by_name (abfd, ".dynamic");
7763 if (s == NULL || s->size == 0)
7766 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7769 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7770 if (elfsec == SHN_BAD)
7773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7775 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7776 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7779 extdynend = extdyn + s->size;
7780 for (; extdyn < extdynend; extdyn += extdynsize)
7782 Elf_Internal_Dyn dyn;
7784 (*swap_dyn_in) (abfd, extdyn, &dyn);
7786 if (dyn.d_tag == DT_NULL)
7789 if (dyn.d_tag == DT_NEEDED)
7792 struct bfd_link_needed_list *l;
7793 unsigned int tagv = dyn.d_un.d_val;
7796 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7801 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7822 struct elf_symbuf_symbol
7824 unsigned long st_name; /* Symbol name, index in string tbl */
7825 unsigned char st_info; /* Type and binding attributes */
7826 unsigned char st_other; /* Visibilty, and target specific */
7829 struct elf_symbuf_head
7831 struct elf_symbuf_symbol *ssym;
7833 unsigned int st_shndx;
7840 Elf_Internal_Sym *isym;
7841 struct elf_symbuf_symbol *ssym;
7846 /* Sort references to symbols by ascending section number. */
7849 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7851 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7852 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7854 return s1->st_shndx - s2->st_shndx;
7858 elf_sym_name_compare (const void *arg1, const void *arg2)
7860 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7861 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7862 return strcmp (s1->name, s2->name);
7865 static struct elf_symbuf_head *
7866 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7868 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7869 struct elf_symbuf_symbol *ssym;
7870 struct elf_symbuf_head *ssymbuf, *ssymhead;
7871 size_t i, shndx_count, total_size;
7873 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7877 for (ind = indbuf, i = 0; i < symcount; i++)
7878 if (isymbuf[i].st_shndx != SHN_UNDEF)
7879 *ind++ = &isymbuf[i];
7882 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7883 elf_sort_elf_symbol);
7886 if (indbufend > indbuf)
7887 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7888 if (ind[0]->st_shndx != ind[1]->st_shndx)
7891 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7892 + (indbufend - indbuf) * sizeof (*ssym));
7893 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7894 if (ssymbuf == NULL)
7900 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7901 ssymbuf->ssym = NULL;
7902 ssymbuf->count = shndx_count;
7903 ssymbuf->st_shndx = 0;
7904 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7906 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7909 ssymhead->ssym = ssym;
7910 ssymhead->count = 0;
7911 ssymhead->st_shndx = (*ind)->st_shndx;
7913 ssym->st_name = (*ind)->st_name;
7914 ssym->st_info = (*ind)->st_info;
7915 ssym->st_other = (*ind)->st_other;
7918 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7919 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7926 /* Check if 2 sections define the same set of local and global
7930 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7931 struct bfd_link_info *info)
7934 const struct elf_backend_data *bed1, *bed2;
7935 Elf_Internal_Shdr *hdr1, *hdr2;
7936 size_t symcount1, symcount2;
7937 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7938 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7939 Elf_Internal_Sym *isym, *isymend;
7940 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7941 size_t count1, count2, i;
7942 unsigned int shndx1, shndx2;
7948 /* Both sections have to be in ELF. */
7949 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7950 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7953 if (elf_section_type (sec1) != elf_section_type (sec2))
7956 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7957 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7958 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7961 bed1 = get_elf_backend_data (bfd1);
7962 bed2 = get_elf_backend_data (bfd2);
7963 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7964 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7965 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7966 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7968 if (symcount1 == 0 || symcount2 == 0)
7974 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7975 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7977 if (ssymbuf1 == NULL)
7979 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7981 if (isymbuf1 == NULL)
7984 if (!info->reduce_memory_overheads)
7985 elf_tdata (bfd1)->symbuf = ssymbuf1
7986 = elf_create_symbuf (symcount1, isymbuf1);
7989 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7991 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7993 if (isymbuf2 == NULL)
7996 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7997 elf_tdata (bfd2)->symbuf = ssymbuf2
7998 = elf_create_symbuf (symcount2, isymbuf2);
8001 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8003 /* Optimized faster version. */
8005 struct elf_symbol *symp;
8006 struct elf_symbuf_symbol *ssym, *ssymend;
8009 hi = ssymbuf1->count;
8014 mid = (lo + hi) / 2;
8015 if (shndx1 < ssymbuf1[mid].st_shndx)
8017 else if (shndx1 > ssymbuf1[mid].st_shndx)
8021 count1 = ssymbuf1[mid].count;
8028 hi = ssymbuf2->count;
8033 mid = (lo + hi) / 2;
8034 if (shndx2 < ssymbuf2[mid].st_shndx)
8036 else if (shndx2 > ssymbuf2[mid].st_shndx)
8040 count2 = ssymbuf2[mid].count;
8046 if (count1 == 0 || count2 == 0 || count1 != count2)
8050 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8052 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8053 if (symtable1 == NULL || symtable2 == NULL)
8057 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8058 ssym < ssymend; ssym++, symp++)
8060 symp->u.ssym = ssym;
8061 symp->name = bfd_elf_string_from_elf_section (bfd1,
8067 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8068 ssym < ssymend; ssym++, symp++)
8070 symp->u.ssym = ssym;
8071 symp->name = bfd_elf_string_from_elf_section (bfd2,
8076 /* Sort symbol by name. */
8077 qsort (symtable1, count1, sizeof (struct elf_symbol),
8078 elf_sym_name_compare);
8079 qsort (symtable2, count1, sizeof (struct elf_symbol),
8080 elf_sym_name_compare);
8082 for (i = 0; i < count1; i++)
8083 /* Two symbols must have the same binding, type and name. */
8084 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8085 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8086 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8093 symtable1 = (struct elf_symbol *)
8094 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8095 symtable2 = (struct elf_symbol *)
8096 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8097 if (symtable1 == NULL || symtable2 == NULL)
8100 /* Count definitions in the section. */
8102 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8103 if (isym->st_shndx == shndx1)
8104 symtable1[count1++].u.isym = isym;
8107 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8108 if (isym->st_shndx == shndx2)
8109 symtable2[count2++].u.isym = isym;
8111 if (count1 == 0 || count2 == 0 || count1 != count2)
8114 for (i = 0; i < count1; i++)
8116 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8117 symtable1[i].u.isym->st_name);
8119 for (i = 0; i < count2; i++)
8121 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8122 symtable2[i].u.isym->st_name);
8124 /* Sort symbol by name. */
8125 qsort (symtable1, count1, sizeof (struct elf_symbol),
8126 elf_sym_name_compare);
8127 qsort (symtable2, count1, sizeof (struct elf_symbol),
8128 elf_sym_name_compare);
8130 for (i = 0; i < count1; i++)
8131 /* Two symbols must have the same binding, type and name. */
8132 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8133 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8134 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8152 /* Return TRUE if 2 section types are compatible. */
8155 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8156 bfd *bbfd, const asection *bsec)
8160 || abfd->xvec->flavour != bfd_target_elf_flavour
8161 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8164 return elf_section_type (asec) == elf_section_type (bsec);
8167 /* Final phase of ELF linker. */
8169 /* A structure we use to avoid passing large numbers of arguments. */
8171 struct elf_final_link_info
8173 /* General link information. */
8174 struct bfd_link_info *info;
8177 /* Symbol string table. */
8178 struct elf_strtab_hash *symstrtab;
8179 /* .hash section. */
8181 /* symbol version section (.gnu.version). */
8182 asection *symver_sec;
8183 /* Buffer large enough to hold contents of any section. */
8185 /* Buffer large enough to hold external relocs of any section. */
8186 void *external_relocs;
8187 /* Buffer large enough to hold internal relocs of any section. */
8188 Elf_Internal_Rela *internal_relocs;
8189 /* Buffer large enough to hold external local symbols of any input
8191 bfd_byte *external_syms;
8192 /* And a buffer for symbol section indices. */
8193 Elf_External_Sym_Shndx *locsym_shndx;
8194 /* Buffer large enough to hold internal local symbols of any input
8196 Elf_Internal_Sym *internal_syms;
8197 /* Array large enough to hold a symbol index for each local symbol
8198 of any input BFD. */
8200 /* Array large enough to hold a section pointer for each local
8201 symbol of any input BFD. */
8202 asection **sections;
8203 /* Buffer for SHT_SYMTAB_SHNDX section. */
8204 Elf_External_Sym_Shndx *symshndxbuf;
8205 /* Number of STT_FILE syms seen. */
8206 size_t filesym_count;
8209 /* This struct is used to pass information to elf_link_output_extsym. */
8211 struct elf_outext_info
8214 bfd_boolean localsyms;
8215 bfd_boolean file_sym_done;
8216 struct elf_final_link_info *flinfo;
8220 /* Support for evaluating a complex relocation.
8222 Complex relocations are generalized, self-describing relocations. The
8223 implementation of them consists of two parts: complex symbols, and the
8224 relocations themselves.
8226 The relocations are use a reserved elf-wide relocation type code (R_RELC
8227 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8228 information (start bit, end bit, word width, etc) into the addend. This
8229 information is extracted from CGEN-generated operand tables within gas.
8231 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8232 internal) representing prefix-notation expressions, including but not
8233 limited to those sorts of expressions normally encoded as addends in the
8234 addend field. The symbol mangling format is:
8237 | <unary-operator> ':' <node>
8238 | <binary-operator> ':' <node> ':' <node>
8241 <literal> := 's' <digits=N> ':' <N character symbol name>
8242 | 'S' <digits=N> ':' <N character section name>
8246 <binary-operator> := as in C
8247 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8250 set_symbol_value (bfd *bfd_with_globals,
8251 Elf_Internal_Sym *isymbuf,
8256 struct elf_link_hash_entry **sym_hashes;
8257 struct elf_link_hash_entry *h;
8258 size_t extsymoff = locsymcount;
8260 if (symidx < locsymcount)
8262 Elf_Internal_Sym *sym;
8264 sym = isymbuf + symidx;
8265 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8267 /* It is a local symbol: move it to the
8268 "absolute" section and give it a value. */
8269 sym->st_shndx = SHN_ABS;
8270 sym->st_value = val;
8273 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8277 /* It is a global symbol: set its link type
8278 to "defined" and give it a value. */
8280 sym_hashes = elf_sym_hashes (bfd_with_globals);
8281 h = sym_hashes [symidx - extsymoff];
8282 while (h->root.type == bfd_link_hash_indirect
8283 || h->root.type == bfd_link_hash_warning)
8284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8285 h->root.type = bfd_link_hash_defined;
8286 h->root.u.def.value = val;
8287 h->root.u.def.section = bfd_abs_section_ptr;
8291 resolve_symbol (const char *name,
8293 struct elf_final_link_info *flinfo,
8295 Elf_Internal_Sym *isymbuf,
8298 Elf_Internal_Sym *sym;
8299 struct bfd_link_hash_entry *global_entry;
8300 const char *candidate = NULL;
8301 Elf_Internal_Shdr *symtab_hdr;
8304 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8306 for (i = 0; i < locsymcount; ++ i)
8310 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8313 candidate = bfd_elf_string_from_elf_section (input_bfd,
8314 symtab_hdr->sh_link,
8317 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8318 name, candidate, (unsigned long) sym->st_value);
8320 if (candidate && strcmp (candidate, name) == 0)
8322 asection *sec = flinfo->sections [i];
8324 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8325 *result += sec->output_offset + sec->output_section->vma;
8327 printf ("Found symbol with value %8.8lx\n",
8328 (unsigned long) *result);
8334 /* Hmm, haven't found it yet. perhaps it is a global. */
8335 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8336 FALSE, FALSE, TRUE);
8340 if (global_entry->type == bfd_link_hash_defined
8341 || global_entry->type == bfd_link_hash_defweak)
8343 *result = (global_entry->u.def.value
8344 + global_entry->u.def.section->output_section->vma
8345 + global_entry->u.def.section->output_offset);
8347 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8348 global_entry->root.string, (unsigned long) *result);
8356 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8357 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8358 names like "foo.end" which is the end address of section "foo". */
8361 resolve_section (const char *name,
8369 for (curr = sections; curr; curr = curr->next)
8370 if (strcmp (curr->name, name) == 0)
8372 *result = curr->vma;
8376 /* Hmm. still haven't found it. try pseudo-section names. */
8377 /* FIXME: This could be coded more efficiently... */
8378 for (curr = sections; curr; curr = curr->next)
8380 len = strlen (curr->name);
8381 if (len > strlen (name))
8384 if (strncmp (curr->name, name, len) == 0)
8386 if (strncmp (".end", name + len, 4) == 0)
8388 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8392 /* Insert more pseudo-section names here, if you like. */
8400 undefined_reference (const char *reftype, const char *name)
8402 /* xgettext:c-format */
8403 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8408 eval_symbol (bfd_vma *result,
8411 struct elf_final_link_info *flinfo,
8413 Elf_Internal_Sym *isymbuf,
8422 const char *sym = *symp;
8424 bfd_boolean symbol_is_section = FALSE;
8429 if (len < 1 || len > sizeof (symbuf))
8431 bfd_set_error (bfd_error_invalid_operation);
8444 *result = strtoul (sym, (char **) symp, 16);
8448 symbol_is_section = TRUE;
8452 symlen = strtol (sym, (char **) symp, 10);
8453 sym = *symp + 1; /* Skip the trailing ':'. */
8455 if (symend < sym || symlen + 1 > sizeof (symbuf))
8457 bfd_set_error (bfd_error_invalid_operation);
8461 memcpy (symbuf, sym, symlen);
8462 symbuf[symlen] = '\0';
8463 *symp = sym + symlen;
8465 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8466 the symbol as a section, or vice-versa. so we're pretty liberal in our
8467 interpretation here; section means "try section first", not "must be a
8468 section", and likewise with symbol. */
8470 if (symbol_is_section)
8472 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8473 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8474 isymbuf, locsymcount))
8476 undefined_reference ("section", symbuf);
8482 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8483 isymbuf, locsymcount)
8484 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8487 undefined_reference ("symbol", symbuf);
8494 /* All that remains are operators. */
8496 #define UNARY_OP(op) \
8497 if (strncmp (sym, #op, strlen (#op)) == 0) \
8499 sym += strlen (#op); \
8503 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8504 isymbuf, locsymcount, signed_p)) \
8507 *result = op ((bfd_signed_vma) a); \
8513 #define BINARY_OP(op) \
8514 if (strncmp (sym, #op, strlen (#op)) == 0) \
8516 sym += strlen (#op); \
8520 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8521 isymbuf, locsymcount, signed_p)) \
8524 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8525 isymbuf, locsymcount, signed_p)) \
8528 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8558 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8559 bfd_set_error (bfd_error_invalid_operation);
8565 put_value (bfd_vma size,
8566 unsigned long chunksz,
8571 location += (size - chunksz);
8573 for (; size; size -= chunksz, location -= chunksz)
8578 bfd_put_8 (input_bfd, x, location);
8582 bfd_put_16 (input_bfd, x, location);
8586 bfd_put_32 (input_bfd, x, location);
8587 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8593 bfd_put_64 (input_bfd, x, location);
8594 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8607 get_value (bfd_vma size,
8608 unsigned long chunksz,
8615 /* Sanity checks. */
8616 BFD_ASSERT (chunksz <= sizeof (x)
8619 && (size % chunksz) == 0
8620 && input_bfd != NULL
8621 && location != NULL);
8623 if (chunksz == sizeof (x))
8625 BFD_ASSERT (size == chunksz);
8627 /* Make sure that we do not perform an undefined shift operation.
8628 We know that size == chunksz so there will only be one iteration
8629 of the loop below. */
8633 shift = 8 * chunksz;
8635 for (; size; size -= chunksz, location += chunksz)
8640 x = (x << shift) | bfd_get_8 (input_bfd, location);
8643 x = (x << shift) | bfd_get_16 (input_bfd, location);
8646 x = (x << shift) | bfd_get_32 (input_bfd, location);
8650 x = (x << shift) | bfd_get_64 (input_bfd, location);
8661 decode_complex_addend (unsigned long *start, /* in bits */
8662 unsigned long *oplen, /* in bits */
8663 unsigned long *len, /* in bits */
8664 unsigned long *wordsz, /* in bytes */
8665 unsigned long *chunksz, /* in bytes */
8666 unsigned long *lsb0_p,
8667 unsigned long *signed_p,
8668 unsigned long *trunc_p,
8669 unsigned long encoded)
8671 * start = encoded & 0x3F;
8672 * len = (encoded >> 6) & 0x3F;
8673 * oplen = (encoded >> 12) & 0x3F;
8674 * wordsz = (encoded >> 18) & 0xF;
8675 * chunksz = (encoded >> 22) & 0xF;
8676 * lsb0_p = (encoded >> 27) & 1;
8677 * signed_p = (encoded >> 28) & 1;
8678 * trunc_p = (encoded >> 29) & 1;
8681 bfd_reloc_status_type
8682 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8683 asection *input_section ATTRIBUTE_UNUSED,
8685 Elf_Internal_Rela *rel,
8688 bfd_vma shift, x, mask;
8689 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8690 bfd_reloc_status_type r;
8692 /* Perform this reloc, since it is complex.
8693 (this is not to say that it necessarily refers to a complex
8694 symbol; merely that it is a self-describing CGEN based reloc.
8695 i.e. the addend has the complete reloc information (bit start, end,
8696 word size, etc) encoded within it.). */
8698 decode_complex_addend (&start, &oplen, &len, &wordsz,
8699 &chunksz, &lsb0_p, &signed_p,
8700 &trunc_p, rel->r_addend);
8702 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8705 shift = (start + 1) - len;
8707 shift = (8 * wordsz) - (start + len);
8709 x = get_value (wordsz, chunksz, input_bfd,
8710 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8713 printf ("Doing complex reloc: "
8714 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8715 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8716 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8717 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8718 oplen, (unsigned long) x, (unsigned long) mask,
8719 (unsigned long) relocation);
8724 /* Now do an overflow check. */
8725 r = bfd_check_overflow ((signed_p
8726 ? complain_overflow_signed
8727 : complain_overflow_unsigned),
8728 len, 0, (8 * wordsz),
8732 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8735 printf (" relocation: %8.8lx\n"
8736 " shifted mask: %8.8lx\n"
8737 " shifted/masked reloc: %8.8lx\n"
8738 " result: %8.8lx\n",
8739 (unsigned long) relocation, (unsigned long) (mask << shift),
8740 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8742 put_value (wordsz, chunksz, input_bfd, x,
8743 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8747 /* Functions to read r_offset from external (target order) reloc
8748 entry. Faster than bfd_getl32 et al, because we let the compiler
8749 know the value is aligned. */
8752 ext32l_r_offset (const void *p)
8759 const union aligned32 *a
8760 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8762 uint32_t aval = ( (uint32_t) a->c[0]
8763 | (uint32_t) a->c[1] << 8
8764 | (uint32_t) a->c[2] << 16
8765 | (uint32_t) a->c[3] << 24);
8770 ext32b_r_offset (const void *p)
8777 const union aligned32 *a
8778 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8780 uint32_t aval = ( (uint32_t) a->c[0] << 24
8781 | (uint32_t) a->c[1] << 16
8782 | (uint32_t) a->c[2] << 8
8783 | (uint32_t) a->c[3]);
8787 #ifdef BFD_HOST_64_BIT
8789 ext64l_r_offset (const void *p)
8796 const union aligned64 *a
8797 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8799 uint64_t aval = ( (uint64_t) a->c[0]
8800 | (uint64_t) a->c[1] << 8
8801 | (uint64_t) a->c[2] << 16
8802 | (uint64_t) a->c[3] << 24
8803 | (uint64_t) a->c[4] << 32
8804 | (uint64_t) a->c[5] << 40
8805 | (uint64_t) a->c[6] << 48
8806 | (uint64_t) a->c[7] << 56);
8811 ext64b_r_offset (const void *p)
8818 const union aligned64 *a
8819 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8821 uint64_t aval = ( (uint64_t) a->c[0] << 56
8822 | (uint64_t) a->c[1] << 48
8823 | (uint64_t) a->c[2] << 40
8824 | (uint64_t) a->c[3] << 32
8825 | (uint64_t) a->c[4] << 24
8826 | (uint64_t) a->c[5] << 16
8827 | (uint64_t) a->c[6] << 8
8828 | (uint64_t) a->c[7]);
8833 /* When performing a relocatable link, the input relocations are
8834 preserved. But, if they reference global symbols, the indices
8835 referenced must be updated. Update all the relocations found in
8839 elf_link_adjust_relocs (bfd *abfd,
8841 struct bfd_elf_section_reloc_data *reldata,
8843 struct bfd_link_info *info)
8846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8848 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8849 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8850 bfd_vma r_type_mask;
8852 unsigned int count = reldata->count;
8853 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8855 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8857 swap_in = bed->s->swap_reloc_in;
8858 swap_out = bed->s->swap_reloc_out;
8860 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8862 swap_in = bed->s->swap_reloca_in;
8863 swap_out = bed->s->swap_reloca_out;
8868 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8871 if (bed->s->arch_size == 32)
8878 r_type_mask = 0xffffffff;
8882 erela = reldata->hdr->contents;
8883 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8885 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8888 if (*rel_hash == NULL)
8891 if ((*rel_hash)->indx == -2
8892 && info->gc_sections
8893 && ! info->gc_keep_exported)
8895 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8896 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8898 (*rel_hash)->root.root.string);
8899 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8901 bfd_set_error (bfd_error_invalid_operation);
8904 BFD_ASSERT ((*rel_hash)->indx >= 0);
8906 (*swap_in) (abfd, erela, irela);
8907 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8908 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8909 | (irela[j].r_info & r_type_mask));
8910 (*swap_out) (abfd, irela, erela);
8913 if (bed->elf_backend_update_relocs)
8914 (*bed->elf_backend_update_relocs) (sec, reldata);
8916 if (sort && count != 0)
8918 bfd_vma (*ext_r_off) (const void *);
8921 bfd_byte *base, *end, *p, *loc;
8922 bfd_byte *buf = NULL;
8924 if (bed->s->arch_size == 32)
8926 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8927 ext_r_off = ext32l_r_offset;
8928 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8929 ext_r_off = ext32b_r_offset;
8935 #ifdef BFD_HOST_64_BIT
8936 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8937 ext_r_off = ext64l_r_offset;
8938 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8939 ext_r_off = ext64b_r_offset;
8945 /* Must use a stable sort here. A modified insertion sort,
8946 since the relocs are mostly sorted already. */
8947 elt_size = reldata->hdr->sh_entsize;
8948 base = reldata->hdr->contents;
8949 end = base + count * elt_size;
8950 if (elt_size > sizeof (Elf64_External_Rela))
8953 /* Ensure the first element is lowest. This acts as a sentinel,
8954 speeding the main loop below. */
8955 r_off = (*ext_r_off) (base);
8956 for (p = loc = base; (p += elt_size) < end; )
8958 bfd_vma r_off2 = (*ext_r_off) (p);
8967 /* Don't just swap *base and *loc as that changes the order
8968 of the original base[0] and base[1] if they happen to
8969 have the same r_offset. */
8970 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8971 memcpy (onebuf, loc, elt_size);
8972 memmove (base + elt_size, base, loc - base);
8973 memcpy (base, onebuf, elt_size);
8976 for (p = base + elt_size; (p += elt_size) < end; )
8978 /* base to p is sorted, *p is next to insert. */
8979 r_off = (*ext_r_off) (p);
8980 /* Search the sorted region for location to insert. */
8982 while (r_off < (*ext_r_off) (loc))
8987 /* Chances are there is a run of relocs to insert here,
8988 from one of more input files. Files are not always
8989 linked in order due to the way elf_link_input_bfd is
8990 called. See pr17666. */
8991 size_t sortlen = p - loc;
8992 bfd_vma r_off2 = (*ext_r_off) (loc);
8993 size_t runlen = elt_size;
8994 size_t buf_size = 96 * 1024;
8995 while (p + runlen < end
8996 && (sortlen <= buf_size
8997 || runlen + elt_size <= buf_size)
8998 && r_off2 > (*ext_r_off) (p + runlen))
9002 buf = bfd_malloc (buf_size);
9006 if (runlen < sortlen)
9008 memcpy (buf, p, runlen);
9009 memmove (loc + runlen, loc, sortlen);
9010 memcpy (loc, buf, runlen);
9014 memcpy (buf, loc, sortlen);
9015 memmove (loc, p, runlen);
9016 memcpy (loc + runlen, buf, sortlen);
9018 p += runlen - elt_size;
9021 /* Hashes are no longer valid. */
9022 free (reldata->hashes);
9023 reldata->hashes = NULL;
9029 struct elf_link_sort_rela
9035 enum elf_reloc_type_class type;
9036 /* We use this as an array of size int_rels_per_ext_rel. */
9037 Elf_Internal_Rela rela[1];
9041 elf_link_sort_cmp1 (const void *A, const void *B)
9043 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9044 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9045 int relativea, relativeb;
9047 relativea = a->type == reloc_class_relative;
9048 relativeb = b->type == reloc_class_relative;
9050 if (relativea < relativeb)
9052 if (relativea > relativeb)
9054 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9056 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9058 if (a->rela->r_offset < b->rela->r_offset)
9060 if (a->rela->r_offset > b->rela->r_offset)
9066 elf_link_sort_cmp2 (const void *A, const void *B)
9068 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9069 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9071 if (a->type < b->type)
9073 if (a->type > b->type)
9075 if (a->u.offset < b->u.offset)
9077 if (a->u.offset > b->u.offset)
9079 if (a->rela->r_offset < b->rela->r_offset)
9081 if (a->rela->r_offset > b->rela->r_offset)
9087 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9089 asection *dynamic_relocs;
9092 bfd_size_type count, size;
9093 size_t i, ret, sort_elt, ext_size;
9094 bfd_byte *sort, *s_non_relative, *p;
9095 struct elf_link_sort_rela *sq;
9096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9097 int i2e = bed->s->int_rels_per_ext_rel;
9098 unsigned int opb = bfd_octets_per_byte (abfd);
9099 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9100 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9101 struct bfd_link_order *lo;
9103 bfd_boolean use_rela;
9105 /* Find a dynamic reloc section. */
9106 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9107 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9108 if (rela_dyn != NULL && rela_dyn->size > 0
9109 && rel_dyn != NULL && rel_dyn->size > 0)
9111 bfd_boolean use_rela_initialised = FALSE;
9113 /* This is just here to stop gcc from complaining.
9114 Its initialization checking code is not perfect. */
9117 /* Both sections are present. Examine the sizes
9118 of the indirect sections to help us choose. */
9119 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9120 if (lo->type == bfd_indirect_link_order)
9122 asection *o = lo->u.indirect.section;
9124 if ((o->size % bed->s->sizeof_rela) == 0)
9126 if ((o->size % bed->s->sizeof_rel) == 0)
9127 /* Section size is divisible by both rel and rela sizes.
9128 It is of no help to us. */
9132 /* Section size is only divisible by rela. */
9133 if (use_rela_initialised && !use_rela)
9135 _bfd_error_handler (_("%pB: unable to sort relocs - "
9136 "they are in more than one size"),
9138 bfd_set_error (bfd_error_invalid_operation);
9144 use_rela_initialised = TRUE;
9148 else if ((o->size % bed->s->sizeof_rel) == 0)
9150 /* Section size is only divisible by rel. */
9151 if (use_rela_initialised && use_rela)
9153 _bfd_error_handler (_("%pB: unable to sort relocs - "
9154 "they are in more than one size"),
9156 bfd_set_error (bfd_error_invalid_operation);
9162 use_rela_initialised = TRUE;
9167 /* The section size is not divisible by either -
9168 something is wrong. */
9169 _bfd_error_handler (_("%pB: unable to sort relocs - "
9170 "they are of an unknown size"), abfd);
9171 bfd_set_error (bfd_error_invalid_operation);
9176 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9177 if (lo->type == bfd_indirect_link_order)
9179 asection *o = lo->u.indirect.section;
9181 if ((o->size % bed->s->sizeof_rela) == 0)
9183 if ((o->size % bed->s->sizeof_rel) == 0)
9184 /* Section size is divisible by both rel and rela sizes.
9185 It is of no help to us. */
9189 /* Section size is only divisible by rela. */
9190 if (use_rela_initialised && !use_rela)
9192 _bfd_error_handler (_("%pB: unable to sort relocs - "
9193 "they are in more than one size"),
9195 bfd_set_error (bfd_error_invalid_operation);
9201 use_rela_initialised = TRUE;
9205 else if ((o->size % bed->s->sizeof_rel) == 0)
9207 /* Section size is only divisible by rel. */
9208 if (use_rela_initialised && use_rela)
9210 _bfd_error_handler (_("%pB: unable to sort relocs - "
9211 "they are in more than one size"),
9213 bfd_set_error (bfd_error_invalid_operation);
9219 use_rela_initialised = TRUE;
9224 /* The section size is not divisible by either -
9225 something is wrong. */
9226 _bfd_error_handler (_("%pB: unable to sort relocs - "
9227 "they are of an unknown size"), abfd);
9228 bfd_set_error (bfd_error_invalid_operation);
9233 if (! use_rela_initialised)
9237 else if (rela_dyn != NULL && rela_dyn->size > 0)
9239 else if (rel_dyn != NULL && rel_dyn->size > 0)
9246 dynamic_relocs = rela_dyn;
9247 ext_size = bed->s->sizeof_rela;
9248 swap_in = bed->s->swap_reloca_in;
9249 swap_out = bed->s->swap_reloca_out;
9253 dynamic_relocs = rel_dyn;
9254 ext_size = bed->s->sizeof_rel;
9255 swap_in = bed->s->swap_reloc_in;
9256 swap_out = bed->s->swap_reloc_out;
9260 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9261 if (lo->type == bfd_indirect_link_order)
9262 size += lo->u.indirect.section->size;
9264 if (size != dynamic_relocs->size)
9267 sort_elt = (sizeof (struct elf_link_sort_rela)
9268 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9270 count = dynamic_relocs->size / ext_size;
9273 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9277 (*info->callbacks->warning)
9278 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9282 if (bed->s->arch_size == 32)
9283 r_sym_mask = ~(bfd_vma) 0xff;
9285 r_sym_mask = ~(bfd_vma) 0xffffffff;
9287 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9288 if (lo->type == bfd_indirect_link_order)
9290 bfd_byte *erel, *erelend;
9291 asection *o = lo->u.indirect.section;
9293 if (o->contents == NULL && o->size != 0)
9295 /* This is a reloc section that is being handled as a normal
9296 section. See bfd_section_from_shdr. We can't combine
9297 relocs in this case. */
9302 erelend = o->contents + o->size;
9303 p = sort + o->output_offset * opb / ext_size * sort_elt;
9305 while (erel < erelend)
9307 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9309 (*swap_in) (abfd, erel, s->rela);
9310 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9311 s->u.sym_mask = r_sym_mask;
9317 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9319 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9321 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9322 if (s->type != reloc_class_relative)
9328 sq = (struct elf_link_sort_rela *) s_non_relative;
9329 for (; i < count; i++, p += sort_elt)
9331 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9332 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9334 sp->u.offset = sq->rela->r_offset;
9337 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9339 struct elf_link_hash_table *htab = elf_hash_table (info);
9340 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9342 /* We have plt relocs in .rela.dyn. */
9343 sq = (struct elf_link_sort_rela *) sort;
9344 for (i = 0; i < count; i++)
9345 if (sq[count - i - 1].type != reloc_class_plt)
9347 if (i != 0 && htab->srelplt->size == i * ext_size)
9349 struct bfd_link_order **plo;
9350 /* Put srelplt link_order last. This is so the output_offset
9351 set in the next loop is correct for DT_JMPREL. */
9352 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9353 if ((*plo)->type == bfd_indirect_link_order
9354 && (*plo)->u.indirect.section == htab->srelplt)
9360 plo = &(*plo)->next;
9363 dynamic_relocs->map_tail.link_order = lo;
9368 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9369 if (lo->type == bfd_indirect_link_order)
9371 bfd_byte *erel, *erelend;
9372 asection *o = lo->u.indirect.section;
9375 erelend = o->contents + o->size;
9376 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9377 while (erel < erelend)
9379 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9380 (*swap_out) (abfd, s->rela, erel);
9387 *psec = dynamic_relocs;
9391 /* Add a symbol to the output symbol string table. */
9394 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9396 Elf_Internal_Sym *elfsym,
9397 asection *input_sec,
9398 struct elf_link_hash_entry *h)
9400 int (*output_symbol_hook)
9401 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9402 struct elf_link_hash_entry *);
9403 struct elf_link_hash_table *hash_table;
9404 const struct elf_backend_data *bed;
9405 bfd_size_type strtabsize;
9407 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9409 bed = get_elf_backend_data (flinfo->output_bfd);
9410 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9411 if (output_symbol_hook != NULL)
9413 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9418 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9419 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9420 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9421 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9425 || (input_sec->flags & SEC_EXCLUDE))
9426 elfsym->st_name = (unsigned long) -1;
9429 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9430 to get the final offset for st_name. */
9432 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9434 if (elfsym->st_name == (unsigned long) -1)
9438 hash_table = elf_hash_table (flinfo->info);
9439 strtabsize = hash_table->strtabsize;
9440 if (strtabsize <= hash_table->strtabcount)
9442 strtabsize += strtabsize;
9443 hash_table->strtabsize = strtabsize;
9444 strtabsize *= sizeof (*hash_table->strtab);
9446 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9448 if (hash_table->strtab == NULL)
9451 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9452 hash_table->strtab[hash_table->strtabcount].dest_index
9453 = hash_table->strtabcount;
9454 hash_table->strtab[hash_table->strtabcount].destshndx_index
9455 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9457 bfd_get_symcount (flinfo->output_bfd) += 1;
9458 hash_table->strtabcount += 1;
9463 /* Swap symbols out to the symbol table and flush the output symbols to
9467 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9469 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9472 const struct elf_backend_data *bed;
9474 Elf_Internal_Shdr *hdr;
9478 if (!hash_table->strtabcount)
9481 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9483 bed = get_elf_backend_data (flinfo->output_bfd);
9485 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9486 symbuf = (bfd_byte *) bfd_malloc (amt);
9490 if (flinfo->symshndxbuf)
9492 amt = sizeof (Elf_External_Sym_Shndx);
9493 amt *= bfd_get_symcount (flinfo->output_bfd);
9494 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9495 if (flinfo->symshndxbuf == NULL)
9502 for (i = 0; i < hash_table->strtabcount; i++)
9504 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9505 if (elfsym->sym.st_name == (unsigned long) -1)
9506 elfsym->sym.st_name = 0;
9509 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9510 elfsym->sym.st_name);
9511 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9512 ((bfd_byte *) symbuf
9513 + (elfsym->dest_index
9514 * bed->s->sizeof_sym)),
9515 (flinfo->symshndxbuf
9516 + elfsym->destshndx_index));
9519 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9520 pos = hdr->sh_offset + hdr->sh_size;
9521 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9522 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9523 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9525 hdr->sh_size += amt;
9533 free (hash_table->strtab);
9534 hash_table->strtab = NULL;
9539 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9542 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9544 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9545 && sym->st_shndx < SHN_LORESERVE)
9547 /* The gABI doesn't support dynamic symbols in output sections
9550 /* xgettext:c-format */
9551 (_("%pB: too many sections: %d (>= %d)"),
9552 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9553 bfd_set_error (bfd_error_nonrepresentable_section);
9559 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9560 allowing an unsatisfied unversioned symbol in the DSO to match a
9561 versioned symbol that would normally require an explicit version.
9562 We also handle the case that a DSO references a hidden symbol
9563 which may be satisfied by a versioned symbol in another DSO. */
9566 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9567 const struct elf_backend_data *bed,
9568 struct elf_link_hash_entry *h)
9571 struct elf_link_loaded_list *loaded;
9573 if (!is_elf_hash_table (info->hash))
9576 /* Check indirect symbol. */
9577 while (h->root.type == bfd_link_hash_indirect)
9578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9580 switch (h->root.type)
9586 case bfd_link_hash_undefined:
9587 case bfd_link_hash_undefweak:
9588 abfd = h->root.u.undef.abfd;
9590 || (abfd->flags & DYNAMIC) == 0
9591 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9595 case bfd_link_hash_defined:
9596 case bfd_link_hash_defweak:
9597 abfd = h->root.u.def.section->owner;
9600 case bfd_link_hash_common:
9601 abfd = h->root.u.c.p->section->owner;
9604 BFD_ASSERT (abfd != NULL);
9606 for (loaded = elf_hash_table (info)->loaded;
9608 loaded = loaded->next)
9611 Elf_Internal_Shdr *hdr;
9615 Elf_Internal_Shdr *versymhdr;
9616 Elf_Internal_Sym *isym;
9617 Elf_Internal_Sym *isymend;
9618 Elf_Internal_Sym *isymbuf;
9619 Elf_External_Versym *ever;
9620 Elf_External_Versym *extversym;
9622 input = loaded->abfd;
9624 /* We check each DSO for a possible hidden versioned definition. */
9626 || (input->flags & DYNAMIC) == 0
9627 || elf_dynversym (input) == 0)
9630 hdr = &elf_tdata (input)->dynsymtab_hdr;
9632 symcount = hdr->sh_size / bed->s->sizeof_sym;
9633 if (elf_bad_symtab (input))
9635 extsymcount = symcount;
9640 extsymcount = symcount - hdr->sh_info;
9641 extsymoff = hdr->sh_info;
9644 if (extsymcount == 0)
9647 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9649 if (isymbuf == NULL)
9652 /* Read in any version definitions. */
9653 versymhdr = &elf_tdata (input)->dynversym_hdr;
9654 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9655 if (extversym == NULL)
9658 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9659 || (bfd_bread (extversym, versymhdr->sh_size, input)
9660 != versymhdr->sh_size))
9668 ever = extversym + extsymoff;
9669 isymend = isymbuf + extsymcount;
9670 for (isym = isymbuf; isym < isymend; isym++, ever++)
9673 Elf_Internal_Versym iver;
9674 unsigned short version_index;
9676 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9677 || isym->st_shndx == SHN_UNDEF)
9680 name = bfd_elf_string_from_elf_section (input,
9683 if (strcmp (name, h->root.root.string) != 0)
9686 _bfd_elf_swap_versym_in (input, ever, &iver);
9688 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9690 && h->forced_local))
9692 /* If we have a non-hidden versioned sym, then it should
9693 have provided a definition for the undefined sym unless
9694 it is defined in a non-shared object and forced local.
9699 version_index = iver.vs_vers & VERSYM_VERSION;
9700 if (version_index == 1 || version_index == 2)
9702 /* This is the base or first version. We can use it. */
9716 /* Convert ELF common symbol TYPE. */
9719 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9721 /* Commom symbol can only appear in relocatable link. */
9722 if (!bfd_link_relocatable (info))
9724 switch (info->elf_stt_common)
9728 case elf_stt_common:
9731 case no_elf_stt_common:
9738 /* Add an external symbol to the symbol table. This is called from
9739 the hash table traversal routine. When generating a shared object,
9740 we go through the symbol table twice. The first time we output
9741 anything that might have been forced to local scope in a version
9742 script. The second time we output the symbols that are still
9746 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9748 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9749 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9750 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9752 Elf_Internal_Sym sym;
9753 asection *input_sec;
9754 const struct elf_backend_data *bed;
9759 if (h->root.type == bfd_link_hash_warning)
9761 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9762 if (h->root.type == bfd_link_hash_new)
9766 /* Decide whether to output this symbol in this pass. */
9767 if (eoinfo->localsyms)
9769 if (!h->forced_local)
9774 if (h->forced_local)
9778 bed = get_elf_backend_data (flinfo->output_bfd);
9780 if (h->root.type == bfd_link_hash_undefined)
9782 /* If we have an undefined symbol reference here then it must have
9783 come from a shared library that is being linked in. (Undefined
9784 references in regular files have already been handled unless
9785 they are in unreferenced sections which are removed by garbage
9787 bfd_boolean ignore_undef = FALSE;
9789 /* Some symbols may be special in that the fact that they're
9790 undefined can be safely ignored - let backend determine that. */
9791 if (bed->elf_backend_ignore_undef_symbol)
9792 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9794 /* If we are reporting errors for this situation then do so now. */
9796 && h->ref_dynamic_nonweak
9797 && (!h->ref_regular || flinfo->info->gc_sections)
9798 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9799 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9800 (*flinfo->info->callbacks->undefined_symbol)
9801 (flinfo->info, h->root.root.string,
9802 h->ref_regular ? NULL : h->root.u.undef.abfd,
9804 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9806 /* Strip a global symbol defined in a discarded section. */
9811 /* We should also warn if a forced local symbol is referenced from
9812 shared libraries. */
9813 if (bfd_link_executable (flinfo->info)
9818 && h->ref_dynamic_nonweak
9819 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9823 struct elf_link_hash_entry *hi = h;
9825 /* Check indirect symbol. */
9826 while (hi->root.type == bfd_link_hash_indirect)
9827 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9829 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9830 /* xgettext:c-format */
9831 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9832 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9833 /* xgettext:c-format */
9834 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9836 /* xgettext:c-format */
9837 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9838 def_bfd = flinfo->output_bfd;
9839 if (hi->root.u.def.section != bfd_abs_section_ptr)
9840 def_bfd = hi->root.u.def.section->owner;
9841 _bfd_error_handler (msg, flinfo->output_bfd,
9842 h->root.root.string, def_bfd);
9843 bfd_set_error (bfd_error_bad_value);
9844 eoinfo->failed = TRUE;
9848 /* We don't want to output symbols that have never been mentioned by
9849 a regular file, or that we have been told to strip. However, if
9850 h->indx is set to -2, the symbol is used by a reloc and we must
9855 else if ((h->def_dynamic
9857 || h->root.type == bfd_link_hash_new)
9861 else if (flinfo->info->strip == strip_all)
9863 else if (flinfo->info->strip == strip_some
9864 && bfd_hash_lookup (flinfo->info->keep_hash,
9865 h->root.root.string, FALSE, FALSE) == NULL)
9867 else if ((h->root.type == bfd_link_hash_defined
9868 || h->root.type == bfd_link_hash_defweak)
9869 && ((flinfo->info->strip_discarded
9870 && discarded_section (h->root.u.def.section))
9871 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9872 && h->root.u.def.section->owner != NULL
9873 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9875 else if ((h->root.type == bfd_link_hash_undefined
9876 || h->root.type == bfd_link_hash_undefweak)
9877 && h->root.u.undef.abfd != NULL
9878 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9883 /* If we're stripping it, and it's not a dynamic symbol, there's
9884 nothing else to do. However, if it is a forced local symbol or
9885 an ifunc symbol we need to give the backend finish_dynamic_symbol
9886 function a chance to make it dynamic. */
9889 && type != STT_GNU_IFUNC
9890 && !h->forced_local)
9894 sym.st_size = h->size;
9895 sym.st_other = h->other;
9896 switch (h->root.type)
9899 case bfd_link_hash_new:
9900 case bfd_link_hash_warning:
9904 case bfd_link_hash_undefined:
9905 case bfd_link_hash_undefweak:
9906 input_sec = bfd_und_section_ptr;
9907 sym.st_shndx = SHN_UNDEF;
9910 case bfd_link_hash_defined:
9911 case bfd_link_hash_defweak:
9913 input_sec = h->root.u.def.section;
9914 if (input_sec->output_section != NULL)
9917 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9918 input_sec->output_section);
9919 if (sym.st_shndx == SHN_BAD)
9922 /* xgettext:c-format */
9923 (_("%pB: could not find output section %pA for input section %pA"),
9924 flinfo->output_bfd, input_sec->output_section, input_sec);
9925 bfd_set_error (bfd_error_nonrepresentable_section);
9926 eoinfo->failed = TRUE;
9930 /* ELF symbols in relocatable files are section relative,
9931 but in nonrelocatable files they are virtual
9933 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9934 if (!bfd_link_relocatable (flinfo->info))
9936 sym.st_value += input_sec->output_section->vma;
9937 if (h->type == STT_TLS)
9939 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9940 if (tls_sec != NULL)
9941 sym.st_value -= tls_sec->vma;
9947 BFD_ASSERT (input_sec->owner == NULL
9948 || (input_sec->owner->flags & DYNAMIC) != 0);
9949 sym.st_shndx = SHN_UNDEF;
9950 input_sec = bfd_und_section_ptr;
9955 case bfd_link_hash_common:
9956 input_sec = h->root.u.c.p->section;
9957 sym.st_shndx = bed->common_section_index (input_sec);
9958 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9961 case bfd_link_hash_indirect:
9962 /* These symbols are created by symbol versioning. They point
9963 to the decorated version of the name. For example, if the
9964 symbol foo@@GNU_1.2 is the default, which should be used when
9965 foo is used with no version, then we add an indirect symbol
9966 foo which points to foo@@GNU_1.2. We ignore these symbols,
9967 since the indirected symbol is already in the hash table. */
9971 if (type == STT_COMMON || type == STT_OBJECT)
9972 switch (h->root.type)
9974 case bfd_link_hash_common:
9975 type = elf_link_convert_common_type (flinfo->info, type);
9977 case bfd_link_hash_defined:
9978 case bfd_link_hash_defweak:
9979 if (bed->common_definition (&sym))
9980 type = elf_link_convert_common_type (flinfo->info, type);
9984 case bfd_link_hash_undefined:
9985 case bfd_link_hash_undefweak:
9991 if (h->forced_local)
9993 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9994 /* Turn off visibility on local symbol. */
9995 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9997 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9998 else if (h->unique_global && h->def_regular)
9999 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10000 else if (h->root.type == bfd_link_hash_undefweak
10001 || h->root.type == bfd_link_hash_defweak)
10002 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10004 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10005 sym.st_target_internal = h->target_internal;
10007 /* Give the processor backend a chance to tweak the symbol value,
10008 and also to finish up anything that needs to be done for this
10009 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10010 forced local syms when non-shared is due to a historical quirk.
10011 STT_GNU_IFUNC symbol must go through PLT. */
10012 if ((h->type == STT_GNU_IFUNC
10014 && !bfd_link_relocatable (flinfo->info))
10015 || ((h->dynindx != -1
10016 || h->forced_local)
10017 && ((bfd_link_pic (flinfo->info)
10018 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10019 || h->root.type != bfd_link_hash_undefweak))
10020 || !h->forced_local)
10021 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10023 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10024 (flinfo->output_bfd, flinfo->info, h, &sym)))
10026 eoinfo->failed = TRUE;
10031 /* If we are marking the symbol as undefined, and there are no
10032 non-weak references to this symbol from a regular object, then
10033 mark the symbol as weak undefined; if there are non-weak
10034 references, mark the symbol as strong. We can't do this earlier,
10035 because it might not be marked as undefined until the
10036 finish_dynamic_symbol routine gets through with it. */
10037 if (sym.st_shndx == SHN_UNDEF
10039 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10040 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10043 type = ELF_ST_TYPE (sym.st_info);
10045 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10046 if (type == STT_GNU_IFUNC)
10049 if (h->ref_regular_nonweak)
10050 bindtype = STB_GLOBAL;
10052 bindtype = STB_WEAK;
10053 sym.st_info = ELF_ST_INFO (bindtype, type);
10056 /* If this is a symbol defined in a dynamic library, don't use the
10057 symbol size from the dynamic library. Relinking an executable
10058 against a new library may introduce gratuitous changes in the
10059 executable's symbols if we keep the size. */
10060 if (sym.st_shndx == SHN_UNDEF
10065 /* If a non-weak symbol with non-default visibility is not defined
10066 locally, it is a fatal error. */
10067 if (!bfd_link_relocatable (flinfo->info)
10068 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10069 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10070 && h->root.type == bfd_link_hash_undefined
10071 && !h->def_regular)
10075 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10076 /* xgettext:c-format */
10077 msg = _("%pB: protected symbol `%s' isn't defined");
10078 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10079 /* xgettext:c-format */
10080 msg = _("%pB: internal symbol `%s' isn't defined");
10082 /* xgettext:c-format */
10083 msg = _("%pB: hidden symbol `%s' isn't defined");
10084 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10085 bfd_set_error (bfd_error_bad_value);
10086 eoinfo->failed = TRUE;
10090 /* If this symbol should be put in the .dynsym section, then put it
10091 there now. We already know the symbol index. We also fill in
10092 the entry in the .hash section. */
10093 if (h->dynindx != -1
10094 && elf_hash_table (flinfo->info)->dynamic_sections_created
10095 && elf_hash_table (flinfo->info)->dynsym != NULL
10096 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10100 /* Since there is no version information in the dynamic string,
10101 if there is no version info in symbol version section, we will
10102 have a run-time problem if not linking executable, referenced
10103 by shared library, or not bound locally. */
10104 if (h->verinfo.verdef == NULL
10105 && (!bfd_link_executable (flinfo->info)
10107 || !h->def_regular))
10109 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10111 if (p && p [1] != '\0')
10114 /* xgettext:c-format */
10115 (_("%pB: no symbol version section for versioned symbol `%s'"),
10116 flinfo->output_bfd, h->root.root.string);
10117 eoinfo->failed = TRUE;
10122 sym.st_name = h->dynstr_index;
10123 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10124 + h->dynindx * bed->s->sizeof_sym);
10125 if (!check_dynsym (flinfo->output_bfd, &sym))
10127 eoinfo->failed = TRUE;
10130 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10132 if (flinfo->hash_sec != NULL)
10134 size_t hash_entry_size;
10135 bfd_byte *bucketpos;
10137 size_t bucketcount;
10140 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10141 bucket = h->u.elf_hash_value % bucketcount;
10144 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10145 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10146 + (bucket + 2) * hash_entry_size);
10147 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10148 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10150 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10151 ((bfd_byte *) flinfo->hash_sec->contents
10152 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10155 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10157 Elf_Internal_Versym iversym;
10158 Elf_External_Versym *eversym;
10160 if (!h->def_regular)
10162 if (h->verinfo.verdef == NULL
10163 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10164 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10165 iversym.vs_vers = 0;
10167 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10171 if (h->verinfo.vertree == NULL)
10172 iversym.vs_vers = 1;
10174 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10175 if (flinfo->info->create_default_symver)
10179 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10180 defined locally. */
10181 if (h->versioned == versioned_hidden && h->def_regular)
10182 iversym.vs_vers |= VERSYM_HIDDEN;
10184 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10185 eversym += h->dynindx;
10186 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10190 /* If the symbol is undefined, and we didn't output it to .dynsym,
10191 strip it from .symtab too. Obviously we can't do this for
10192 relocatable output or when needed for --emit-relocs. */
10193 else if (input_sec == bfd_und_section_ptr
10195 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10196 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10197 && !bfd_link_relocatable (flinfo->info))
10200 /* Also strip others that we couldn't earlier due to dynamic symbol
10204 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10207 /* Output a FILE symbol so that following locals are not associated
10208 with the wrong input file. We need one for forced local symbols
10209 if we've seen more than one FILE symbol or when we have exactly
10210 one FILE symbol but global symbols are present in a file other
10211 than the one with the FILE symbol. We also need one if linker
10212 defined symbols are present. In practice these conditions are
10213 always met, so just emit the FILE symbol unconditionally. */
10214 if (eoinfo->localsyms
10215 && !eoinfo->file_sym_done
10216 && eoinfo->flinfo->filesym_count != 0)
10218 Elf_Internal_Sym fsym;
10220 memset (&fsym, 0, sizeof (fsym));
10221 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10222 fsym.st_shndx = SHN_ABS;
10223 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10224 bfd_und_section_ptr, NULL))
10227 eoinfo->file_sym_done = TRUE;
10230 indx = bfd_get_symcount (flinfo->output_bfd);
10231 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10235 eoinfo->failed = TRUE;
10240 else if (h->indx == -2)
10246 /* Return TRUE if special handling is done for relocs in SEC against
10247 symbols defined in discarded sections. */
10250 elf_section_ignore_discarded_relocs (asection *sec)
10252 const struct elf_backend_data *bed;
10254 switch (sec->sec_info_type)
10256 case SEC_INFO_TYPE_STABS:
10257 case SEC_INFO_TYPE_EH_FRAME:
10258 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10264 bed = get_elf_backend_data (sec->owner);
10265 if (bed->elf_backend_ignore_discarded_relocs != NULL
10266 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10272 /* Return a mask saying how ld should treat relocations in SEC against
10273 symbols defined in discarded sections. If this function returns
10274 COMPLAIN set, ld will issue a warning message. If this function
10275 returns PRETEND set, and the discarded section was link-once and the
10276 same size as the kept link-once section, ld will pretend that the
10277 symbol was actually defined in the kept section. Otherwise ld will
10278 zero the reloc (at least that is the intent, but some cooperation by
10279 the target dependent code is needed, particularly for REL targets). */
10282 _bfd_elf_default_action_discarded (asection *sec)
10284 if (sec->flags & SEC_DEBUGGING)
10287 if (strcmp (".eh_frame", sec->name) == 0)
10290 if (strcmp (".gcc_except_table", sec->name) == 0)
10293 return COMPLAIN | PRETEND;
10296 /* Find a match between a section and a member of a section group. */
10299 match_group_member (asection *sec, asection *group,
10300 struct bfd_link_info *info)
10302 asection *first = elf_next_in_group (group);
10303 asection *s = first;
10307 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10310 s = elf_next_in_group (s);
10318 /* Check if the kept section of a discarded section SEC can be used
10319 to replace it. Return the replacement if it is OK. Otherwise return
10323 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10327 kept = sec->kept_section;
10330 if ((kept->flags & SEC_GROUP) != 0)
10331 kept = match_group_member (sec, kept, info);
10333 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10334 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10336 sec->kept_section = kept;
10341 /* Link an input file into the linker output file. This function
10342 handles all the sections and relocations of the input file at once.
10343 This is so that we only have to read the local symbols once, and
10344 don't have to keep them in memory. */
10347 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10349 int (*relocate_section)
10350 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10351 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10353 Elf_Internal_Shdr *symtab_hdr;
10354 size_t locsymcount;
10356 Elf_Internal_Sym *isymbuf;
10357 Elf_Internal_Sym *isym;
10358 Elf_Internal_Sym *isymend;
10360 asection **ppsection;
10362 const struct elf_backend_data *bed;
10363 struct elf_link_hash_entry **sym_hashes;
10364 bfd_size_type address_size;
10365 bfd_vma r_type_mask;
10367 bfd_boolean have_file_sym = FALSE;
10369 output_bfd = flinfo->output_bfd;
10370 bed = get_elf_backend_data (output_bfd);
10371 relocate_section = bed->elf_backend_relocate_section;
10373 /* If this is a dynamic object, we don't want to do anything here:
10374 we don't want the local symbols, and we don't want the section
10376 if ((input_bfd->flags & DYNAMIC) != 0)
10379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10380 if (elf_bad_symtab (input_bfd))
10382 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10387 locsymcount = symtab_hdr->sh_info;
10388 extsymoff = symtab_hdr->sh_info;
10391 /* Read the local symbols. */
10392 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10393 if (isymbuf == NULL && locsymcount != 0)
10395 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10396 flinfo->internal_syms,
10397 flinfo->external_syms,
10398 flinfo->locsym_shndx);
10399 if (isymbuf == NULL)
10403 /* Find local symbol sections and adjust values of symbols in
10404 SEC_MERGE sections. Write out those local symbols we know are
10405 going into the output file. */
10406 isymend = isymbuf + locsymcount;
10407 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10409 isym++, pindex++, ppsection++)
10413 Elf_Internal_Sym osym;
10419 if (elf_bad_symtab (input_bfd))
10421 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10428 if (isym->st_shndx == SHN_UNDEF)
10429 isec = bfd_und_section_ptr;
10430 else if (isym->st_shndx == SHN_ABS)
10431 isec = bfd_abs_section_ptr;
10432 else if (isym->st_shndx == SHN_COMMON)
10433 isec = bfd_com_section_ptr;
10436 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10439 /* Don't attempt to output symbols with st_shnx in the
10440 reserved range other than SHN_ABS and SHN_COMMON. */
10441 isec = bfd_und_section_ptr;
10443 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10444 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10446 _bfd_merged_section_offset (output_bfd, &isec,
10447 elf_section_data (isec)->sec_info,
10453 /* Don't output the first, undefined, symbol. In fact, don't
10454 output any undefined local symbol. */
10455 if (isec == bfd_und_section_ptr)
10458 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10460 /* We never output section symbols. Instead, we use the
10461 section symbol of the corresponding section in the output
10466 /* If we are stripping all symbols, we don't want to output this
10468 if (flinfo->info->strip == strip_all)
10471 /* If we are discarding all local symbols, we don't want to
10472 output this one. If we are generating a relocatable output
10473 file, then some of the local symbols may be required by
10474 relocs; we output them below as we discover that they are
10476 if (flinfo->info->discard == discard_all)
10479 /* If this symbol is defined in a section which we are
10480 discarding, we don't need to keep it. */
10481 if (isym->st_shndx != SHN_UNDEF
10482 && isym->st_shndx < SHN_LORESERVE
10483 && bfd_section_removed_from_list (output_bfd,
10484 isec->output_section))
10487 /* Get the name of the symbol. */
10488 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10493 /* See if we are discarding symbols with this name. */
10494 if ((flinfo->info->strip == strip_some
10495 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10497 || (((flinfo->info->discard == discard_sec_merge
10498 && (isec->flags & SEC_MERGE)
10499 && !bfd_link_relocatable (flinfo->info))
10500 || flinfo->info->discard == discard_l)
10501 && bfd_is_local_label_name (input_bfd, name)))
10504 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10506 if (input_bfd->lto_output)
10507 /* -flto puts a temp file name here. This means builds
10508 are not reproducible. Discard the symbol. */
10510 have_file_sym = TRUE;
10511 flinfo->filesym_count += 1;
10513 if (!have_file_sym)
10515 /* In the absence of debug info, bfd_find_nearest_line uses
10516 FILE symbols to determine the source file for local
10517 function symbols. Provide a FILE symbol here if input
10518 files lack such, so that their symbols won't be
10519 associated with a previous input file. It's not the
10520 source file, but the best we can do. */
10521 have_file_sym = TRUE;
10522 flinfo->filesym_count += 1;
10523 memset (&osym, 0, sizeof (osym));
10524 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10525 osym.st_shndx = SHN_ABS;
10526 if (!elf_link_output_symstrtab (flinfo,
10527 (input_bfd->lto_output ? NULL
10528 : input_bfd->filename),
10529 &osym, bfd_abs_section_ptr,
10536 /* Adjust the section index for the output file. */
10537 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10538 isec->output_section);
10539 if (osym.st_shndx == SHN_BAD)
10542 /* ELF symbols in relocatable files are section relative, but
10543 in executable files they are virtual addresses. Note that
10544 this code assumes that all ELF sections have an associated
10545 BFD section with a reasonable value for output_offset; below
10546 we assume that they also have a reasonable value for
10547 output_section. Any special sections must be set up to meet
10548 these requirements. */
10549 osym.st_value += isec->output_offset;
10550 if (!bfd_link_relocatable (flinfo->info))
10552 osym.st_value += isec->output_section->vma;
10553 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10555 /* STT_TLS symbols are relative to PT_TLS segment base. */
10556 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10557 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10559 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10564 indx = bfd_get_symcount (output_bfd);
10565 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10572 if (bed->s->arch_size == 32)
10574 r_type_mask = 0xff;
10580 r_type_mask = 0xffffffff;
10585 /* Relocate the contents of each section. */
10586 sym_hashes = elf_sym_hashes (input_bfd);
10587 for (o = input_bfd->sections; o != NULL; o = o->next)
10589 bfd_byte *contents;
10591 if (! o->linker_mark)
10593 /* This section was omitted from the link. */
10597 if (!flinfo->info->resolve_section_groups
10598 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10600 /* Deal with the group signature symbol. */
10601 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10602 unsigned long symndx = sec_data->this_hdr.sh_info;
10603 asection *osec = o->output_section;
10605 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10606 if (symndx >= locsymcount
10607 || (elf_bad_symtab (input_bfd)
10608 && flinfo->sections[symndx] == NULL))
10610 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10611 while (h->root.type == bfd_link_hash_indirect
10612 || h->root.type == bfd_link_hash_warning)
10613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10614 /* Arrange for symbol to be output. */
10616 elf_section_data (osec)->this_hdr.sh_info = -2;
10618 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10620 /* We'll use the output section target_index. */
10621 asection *sec = flinfo->sections[symndx]->output_section;
10622 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10626 if (flinfo->indices[symndx] == -1)
10628 /* Otherwise output the local symbol now. */
10629 Elf_Internal_Sym sym = isymbuf[symndx];
10630 asection *sec = flinfo->sections[symndx]->output_section;
10635 name = bfd_elf_string_from_elf_section (input_bfd,
10636 symtab_hdr->sh_link,
10641 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10643 if (sym.st_shndx == SHN_BAD)
10646 sym.st_value += o->output_offset;
10648 indx = bfd_get_symcount (output_bfd);
10649 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10654 flinfo->indices[symndx] = indx;
10658 elf_section_data (osec)->this_hdr.sh_info
10659 = flinfo->indices[symndx];
10663 if ((o->flags & SEC_HAS_CONTENTS) == 0
10664 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10667 if ((o->flags & SEC_LINKER_CREATED) != 0)
10669 /* Section was created by _bfd_elf_link_create_dynamic_sections
10674 /* Get the contents of the section. They have been cached by a
10675 relaxation routine. Note that o is a section in an input
10676 file, so the contents field will not have been set by any of
10677 the routines which work on output files. */
10678 if (elf_section_data (o)->this_hdr.contents != NULL)
10680 contents = elf_section_data (o)->this_hdr.contents;
10681 if (bed->caches_rawsize
10683 && o->rawsize < o->size)
10685 memcpy (flinfo->contents, contents, o->rawsize);
10686 contents = flinfo->contents;
10691 contents = flinfo->contents;
10692 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10696 if ((o->flags & SEC_RELOC) != 0)
10698 Elf_Internal_Rela *internal_relocs;
10699 Elf_Internal_Rela *rel, *relend;
10700 int action_discarded;
10703 /* Get the swapped relocs. */
10705 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10706 flinfo->internal_relocs, FALSE);
10707 if (internal_relocs == NULL
10708 && o->reloc_count > 0)
10711 /* We need to reverse-copy input .ctors/.dtors sections if
10712 they are placed in .init_array/.finit_array for output. */
10713 if (o->size > address_size
10714 && ((strncmp (o->name, ".ctors", 6) == 0
10715 && strcmp (o->output_section->name,
10716 ".init_array") == 0)
10717 || (strncmp (o->name, ".dtors", 6) == 0
10718 && strcmp (o->output_section->name,
10719 ".fini_array") == 0))
10720 && (o->name[6] == 0 || o->name[6] == '.'))
10722 if (o->size * bed->s->int_rels_per_ext_rel
10723 != o->reloc_count * address_size)
10726 /* xgettext:c-format */
10727 (_("error: %pB: size of section %pA is not "
10728 "multiple of address size"),
10730 bfd_set_error (bfd_error_bad_value);
10733 o->flags |= SEC_ELF_REVERSE_COPY;
10736 action_discarded = -1;
10737 if (!elf_section_ignore_discarded_relocs (o))
10738 action_discarded = (*bed->action_discarded) (o);
10740 /* Run through the relocs evaluating complex reloc symbols and
10741 looking for relocs against symbols from discarded sections
10742 or section symbols from removed link-once sections.
10743 Complain about relocs against discarded sections. Zero
10744 relocs against removed link-once sections. */
10746 rel = internal_relocs;
10747 relend = rel + o->reloc_count;
10748 for ( ; rel < relend; rel++)
10750 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10751 unsigned int s_type;
10752 asection **ps, *sec;
10753 struct elf_link_hash_entry *h = NULL;
10754 const char *sym_name;
10756 if (r_symndx == STN_UNDEF)
10759 if (r_symndx >= locsymcount
10760 || (elf_bad_symtab (input_bfd)
10761 && flinfo->sections[r_symndx] == NULL))
10763 h = sym_hashes[r_symndx - extsymoff];
10765 /* Badly formatted input files can contain relocs that
10766 reference non-existant symbols. Check here so that
10767 we do not seg fault. */
10771 /* xgettext:c-format */
10772 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10773 "that references a non-existent global symbol"),
10774 input_bfd, (uint64_t) rel->r_info, o);
10775 bfd_set_error (bfd_error_bad_value);
10779 while (h->root.type == bfd_link_hash_indirect
10780 || h->root.type == bfd_link_hash_warning)
10781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10785 /* If a plugin symbol is referenced from a non-IR file,
10786 mark the symbol as undefined. Note that the
10787 linker may attach linker created dynamic sections
10788 to the plugin bfd. Symbols defined in linker
10789 created sections are not plugin symbols. */
10790 if ((h->root.non_ir_ref_regular
10791 || h->root.non_ir_ref_dynamic)
10792 && (h->root.type == bfd_link_hash_defined
10793 || h->root.type == bfd_link_hash_defweak)
10794 && (h->root.u.def.section->flags
10795 & SEC_LINKER_CREATED) == 0
10796 && h->root.u.def.section->owner != NULL
10797 && (h->root.u.def.section->owner->flags
10798 & BFD_PLUGIN) != 0)
10800 h->root.type = bfd_link_hash_undefined;
10801 h->root.u.undef.abfd = h->root.u.def.section->owner;
10805 if (h->root.type == bfd_link_hash_defined
10806 || h->root.type == bfd_link_hash_defweak)
10807 ps = &h->root.u.def.section;
10809 sym_name = h->root.root.string;
10813 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10815 s_type = ELF_ST_TYPE (sym->st_info);
10816 ps = &flinfo->sections[r_symndx];
10817 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10821 if ((s_type == STT_RELC || s_type == STT_SRELC)
10822 && !bfd_link_relocatable (flinfo->info))
10825 bfd_vma dot = (rel->r_offset
10826 + o->output_offset + o->output_section->vma);
10828 printf ("Encountered a complex symbol!");
10829 printf (" (input_bfd %s, section %s, reloc %ld\n",
10830 input_bfd->filename, o->name,
10831 (long) (rel - internal_relocs));
10832 printf (" symbol: idx %8.8lx, name %s\n",
10833 r_symndx, sym_name);
10834 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10835 (unsigned long) rel->r_info,
10836 (unsigned long) rel->r_offset);
10838 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10839 isymbuf, locsymcount, s_type == STT_SRELC))
10842 /* Symbol evaluated OK. Update to absolute value. */
10843 set_symbol_value (input_bfd, isymbuf, locsymcount,
10848 if (action_discarded != -1 && ps != NULL)
10850 /* Complain if the definition comes from a
10851 discarded section. */
10852 if ((sec = *ps) != NULL && discarded_section (sec))
10854 BFD_ASSERT (r_symndx != STN_UNDEF);
10855 if (action_discarded & COMPLAIN)
10856 (*flinfo->info->callbacks->einfo)
10857 /* xgettext:c-format */
10858 (_("%X`%s' referenced in section `%pA' of %pB: "
10859 "defined in discarded section `%pA' of %pB\n"),
10860 sym_name, o, input_bfd, sec, sec->owner);
10862 /* Try to do the best we can to support buggy old
10863 versions of gcc. Pretend that the symbol is
10864 really defined in the kept linkonce section.
10865 FIXME: This is quite broken. Modifying the
10866 symbol here means we will be changing all later
10867 uses of the symbol, not just in this section. */
10868 if (action_discarded & PRETEND)
10872 kept = _bfd_elf_check_kept_section (sec,
10884 /* Relocate the section by invoking a back end routine.
10886 The back end routine is responsible for adjusting the
10887 section contents as necessary, and (if using Rela relocs
10888 and generating a relocatable output file) adjusting the
10889 reloc addend as necessary.
10891 The back end routine does not have to worry about setting
10892 the reloc address or the reloc symbol index.
10894 The back end routine is given a pointer to the swapped in
10895 internal symbols, and can access the hash table entries
10896 for the external symbols via elf_sym_hashes (input_bfd).
10898 When generating relocatable output, the back end routine
10899 must handle STB_LOCAL/STT_SECTION symbols specially. The
10900 output symbol is going to be a section symbol
10901 corresponding to the output section, which will require
10902 the addend to be adjusted. */
10904 ret = (*relocate_section) (output_bfd, flinfo->info,
10905 input_bfd, o, contents,
10913 || bfd_link_relocatable (flinfo->info)
10914 || flinfo->info->emitrelocations)
10916 Elf_Internal_Rela *irela;
10917 Elf_Internal_Rela *irelaend, *irelamid;
10918 bfd_vma last_offset;
10919 struct elf_link_hash_entry **rel_hash;
10920 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10921 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10922 unsigned int next_erel;
10923 bfd_boolean rela_normal;
10924 struct bfd_elf_section_data *esdi, *esdo;
10926 esdi = elf_section_data (o);
10927 esdo = elf_section_data (o->output_section);
10928 rela_normal = FALSE;
10930 /* Adjust the reloc addresses and symbol indices. */
10932 irela = internal_relocs;
10933 irelaend = irela + o->reloc_count;
10934 rel_hash = esdo->rel.hashes + esdo->rel.count;
10935 /* We start processing the REL relocs, if any. When we reach
10936 IRELAMID in the loop, we switch to the RELA relocs. */
10938 if (esdi->rel.hdr != NULL)
10939 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10940 * bed->s->int_rels_per_ext_rel);
10941 rel_hash_list = rel_hash;
10942 rela_hash_list = NULL;
10943 last_offset = o->output_offset;
10944 if (!bfd_link_relocatable (flinfo->info))
10945 last_offset += o->output_section->vma;
10946 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10948 unsigned long r_symndx;
10950 Elf_Internal_Sym sym;
10952 if (next_erel == bed->s->int_rels_per_ext_rel)
10958 if (irela == irelamid)
10960 rel_hash = esdo->rela.hashes + esdo->rela.count;
10961 rela_hash_list = rel_hash;
10962 rela_normal = bed->rela_normal;
10965 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10968 if (irela->r_offset >= (bfd_vma) -2)
10970 /* This is a reloc for a deleted entry or somesuch.
10971 Turn it into an R_*_NONE reloc, at the same
10972 offset as the last reloc. elf_eh_frame.c and
10973 bfd_elf_discard_info rely on reloc offsets
10975 irela->r_offset = last_offset;
10977 irela->r_addend = 0;
10981 irela->r_offset += o->output_offset;
10983 /* Relocs in an executable have to be virtual addresses. */
10984 if (!bfd_link_relocatable (flinfo->info))
10985 irela->r_offset += o->output_section->vma;
10987 last_offset = irela->r_offset;
10989 r_symndx = irela->r_info >> r_sym_shift;
10990 if (r_symndx == STN_UNDEF)
10993 if (r_symndx >= locsymcount
10994 || (elf_bad_symtab (input_bfd)
10995 && flinfo->sections[r_symndx] == NULL))
10997 struct elf_link_hash_entry *rh;
10998 unsigned long indx;
11000 /* This is a reloc against a global symbol. We
11001 have not yet output all the local symbols, so
11002 we do not know the symbol index of any global
11003 symbol. We set the rel_hash entry for this
11004 reloc to point to the global hash table entry
11005 for this symbol. The symbol index is then
11006 set at the end of bfd_elf_final_link. */
11007 indx = r_symndx - extsymoff;
11008 rh = elf_sym_hashes (input_bfd)[indx];
11009 while (rh->root.type == bfd_link_hash_indirect
11010 || rh->root.type == bfd_link_hash_warning)
11011 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11013 /* Setting the index to -2 tells
11014 elf_link_output_extsym that this symbol is
11015 used by a reloc. */
11016 BFD_ASSERT (rh->indx < 0);
11023 /* This is a reloc against a local symbol. */
11026 sym = isymbuf[r_symndx];
11027 sec = flinfo->sections[r_symndx];
11028 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11030 /* I suppose the backend ought to fill in the
11031 section of any STT_SECTION symbol against a
11032 processor specific section. */
11033 r_symndx = STN_UNDEF;
11034 if (bfd_is_abs_section (sec))
11036 else if (sec == NULL || sec->owner == NULL)
11038 bfd_set_error (bfd_error_bad_value);
11043 asection *osec = sec->output_section;
11045 /* If we have discarded a section, the output
11046 section will be the absolute section. In
11047 case of discarded SEC_MERGE sections, use
11048 the kept section. relocate_section should
11049 have already handled discarded linkonce
11051 if (bfd_is_abs_section (osec)
11052 && sec->kept_section != NULL
11053 && sec->kept_section->output_section != NULL)
11055 osec = sec->kept_section->output_section;
11056 irela->r_addend -= osec->vma;
11059 if (!bfd_is_abs_section (osec))
11061 r_symndx = osec->target_index;
11062 if (r_symndx == STN_UNDEF)
11064 irela->r_addend += osec->vma;
11065 osec = _bfd_nearby_section (output_bfd, osec,
11067 irela->r_addend -= osec->vma;
11068 r_symndx = osec->target_index;
11073 /* Adjust the addend according to where the
11074 section winds up in the output section. */
11076 irela->r_addend += sec->output_offset;
11080 if (flinfo->indices[r_symndx] == -1)
11082 unsigned long shlink;
11087 if (flinfo->info->strip == strip_all)
11089 /* You can't do ld -r -s. */
11090 bfd_set_error (bfd_error_invalid_operation);
11094 /* This symbol was skipped earlier, but
11095 since it is needed by a reloc, we
11096 must output it now. */
11097 shlink = symtab_hdr->sh_link;
11098 name = (bfd_elf_string_from_elf_section
11099 (input_bfd, shlink, sym.st_name));
11103 osec = sec->output_section;
11105 _bfd_elf_section_from_bfd_section (output_bfd,
11107 if (sym.st_shndx == SHN_BAD)
11110 sym.st_value += sec->output_offset;
11111 if (!bfd_link_relocatable (flinfo->info))
11113 sym.st_value += osec->vma;
11114 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11116 struct elf_link_hash_table *htab
11117 = elf_hash_table (flinfo->info);
11119 /* STT_TLS symbols are relative to PT_TLS
11121 if (htab->tls_sec != NULL)
11122 sym.st_value -= htab->tls_sec->vma;
11125 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11130 indx = bfd_get_symcount (output_bfd);
11131 ret = elf_link_output_symstrtab (flinfo, name,
11137 flinfo->indices[r_symndx] = indx;
11142 r_symndx = flinfo->indices[r_symndx];
11145 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11146 | (irela->r_info & r_type_mask));
11149 /* Swap out the relocs. */
11150 input_rel_hdr = esdi->rel.hdr;
11151 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11153 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11158 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11159 * bed->s->int_rels_per_ext_rel);
11160 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11163 input_rela_hdr = esdi->rela.hdr;
11164 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11166 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11175 /* Write out the modified section contents. */
11176 if (bed->elf_backend_write_section
11177 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11180 /* Section written out. */
11182 else switch (o->sec_info_type)
11184 case SEC_INFO_TYPE_STABS:
11185 if (! (_bfd_write_section_stabs
11187 &elf_hash_table (flinfo->info)->stab_info,
11188 o, &elf_section_data (o)->sec_info, contents)))
11191 case SEC_INFO_TYPE_MERGE:
11192 if (! _bfd_write_merged_section (output_bfd, o,
11193 elf_section_data (o)->sec_info))
11196 case SEC_INFO_TYPE_EH_FRAME:
11198 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11203 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11205 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11213 if (! (o->flags & SEC_EXCLUDE))
11215 file_ptr offset = (file_ptr) o->output_offset;
11216 bfd_size_type todo = o->size;
11218 offset *= bfd_octets_per_byte (output_bfd);
11220 if ((o->flags & SEC_ELF_REVERSE_COPY))
11222 /* Reverse-copy input section to output. */
11225 todo -= address_size;
11226 if (! bfd_set_section_contents (output_bfd,
11234 offset += address_size;
11238 else if (! bfd_set_section_contents (output_bfd,
11252 /* Generate a reloc when linking an ELF file. This is a reloc
11253 requested by the linker, and does not come from any input file. This
11254 is used to build constructor and destructor tables when linking
11258 elf_reloc_link_order (bfd *output_bfd,
11259 struct bfd_link_info *info,
11260 asection *output_section,
11261 struct bfd_link_order *link_order)
11263 reloc_howto_type *howto;
11267 struct bfd_elf_section_reloc_data *reldata;
11268 struct elf_link_hash_entry **rel_hash_ptr;
11269 Elf_Internal_Shdr *rel_hdr;
11270 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11271 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11274 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11276 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11279 bfd_set_error (bfd_error_bad_value);
11283 addend = link_order->u.reloc.p->addend;
11286 reldata = &esdo->rel;
11287 else if (esdo->rela.hdr)
11288 reldata = &esdo->rela;
11295 /* Figure out the symbol index. */
11296 rel_hash_ptr = reldata->hashes + reldata->count;
11297 if (link_order->type == bfd_section_reloc_link_order)
11299 indx = link_order->u.reloc.p->u.section->target_index;
11300 BFD_ASSERT (indx != 0);
11301 *rel_hash_ptr = NULL;
11305 struct elf_link_hash_entry *h;
11307 /* Treat a reloc against a defined symbol as though it were
11308 actually against the section. */
11309 h = ((struct elf_link_hash_entry *)
11310 bfd_wrapped_link_hash_lookup (output_bfd, info,
11311 link_order->u.reloc.p->u.name,
11312 FALSE, FALSE, TRUE));
11314 && (h->root.type == bfd_link_hash_defined
11315 || h->root.type == bfd_link_hash_defweak))
11319 section = h->root.u.def.section;
11320 indx = section->output_section->target_index;
11321 *rel_hash_ptr = NULL;
11322 /* It seems that we ought to add the symbol value to the
11323 addend here, but in practice it has already been added
11324 because it was passed to constructor_callback. */
11325 addend += section->output_section->vma + section->output_offset;
11327 else if (h != NULL)
11329 /* Setting the index to -2 tells elf_link_output_extsym that
11330 this symbol is used by a reloc. */
11337 (*info->callbacks->unattached_reloc)
11338 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11343 /* If this is an inplace reloc, we must write the addend into the
11345 if (howto->partial_inplace && addend != 0)
11347 bfd_size_type size;
11348 bfd_reloc_status_type rstat;
11351 const char *sym_name;
11353 size = (bfd_size_type) bfd_get_reloc_size (howto);
11354 buf = (bfd_byte *) bfd_zmalloc (size);
11355 if (buf == NULL && size != 0)
11357 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11364 case bfd_reloc_outofrange:
11367 case bfd_reloc_overflow:
11368 if (link_order->type == bfd_section_reloc_link_order)
11369 sym_name = bfd_section_name (output_bfd,
11370 link_order->u.reloc.p->u.section);
11372 sym_name = link_order->u.reloc.p->u.name;
11373 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11374 howto->name, addend, NULL, NULL,
11379 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11381 * bfd_octets_per_byte (output_bfd),
11388 /* The address of a reloc is relative to the section in a
11389 relocatable file, and is a virtual address in an executable
11391 offset = link_order->offset;
11392 if (! bfd_link_relocatable (info))
11393 offset += output_section->vma;
11395 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11397 irel[i].r_offset = offset;
11398 irel[i].r_info = 0;
11399 irel[i].r_addend = 0;
11401 if (bed->s->arch_size == 32)
11402 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11404 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11406 rel_hdr = reldata->hdr;
11407 erel = rel_hdr->contents;
11408 if (rel_hdr->sh_type == SHT_REL)
11410 erel += reldata->count * bed->s->sizeof_rel;
11411 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11415 irel[0].r_addend = addend;
11416 erel += reldata->count * bed->s->sizeof_rela;
11417 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11426 /* Get the output vma of the section pointed to by the sh_link field. */
11429 elf_get_linked_section_vma (struct bfd_link_order *p)
11431 Elf_Internal_Shdr **elf_shdrp;
11435 s = p->u.indirect.section;
11436 elf_shdrp = elf_elfsections (s->owner);
11437 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11438 elfsec = elf_shdrp[elfsec]->sh_link;
11440 The Intel C compiler generates SHT_IA_64_UNWIND with
11441 SHF_LINK_ORDER. But it doesn't set the sh_link or
11442 sh_info fields. Hence we could get the situation
11443 where elfsec is 0. */
11446 const struct elf_backend_data *bed
11447 = get_elf_backend_data (s->owner);
11448 if (bed->link_order_error_handler)
11449 bed->link_order_error_handler
11450 /* xgettext:c-format */
11451 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11456 s = elf_shdrp[elfsec]->bfd_section;
11457 return s->output_section->vma + s->output_offset;
11462 /* Compare two sections based on the locations of the sections they are
11463 linked to. Used by elf_fixup_link_order. */
11466 compare_link_order (const void * a, const void * b)
11471 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11472 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11475 return apos > bpos;
11479 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11480 order as their linked sections. Returns false if this could not be done
11481 because an output section includes both ordered and unordered
11482 sections. Ideally we'd do this in the linker proper. */
11485 elf_fixup_link_order (bfd *abfd, asection *o)
11487 int seen_linkorder;
11490 struct bfd_link_order *p;
11492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11494 struct bfd_link_order **sections;
11495 asection *s, *other_sec, *linkorder_sec;
11499 linkorder_sec = NULL;
11501 seen_linkorder = 0;
11502 for (p = o->map_head.link_order; p != NULL; p = p->next)
11504 if (p->type == bfd_indirect_link_order)
11506 s = p->u.indirect.section;
11508 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11509 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11510 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11511 && elfsec < elf_numsections (sub)
11512 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11513 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11527 if (seen_other && seen_linkorder)
11529 if (other_sec && linkorder_sec)
11531 /* xgettext:c-format */
11532 (_("%pA has both ordered [`%pA' in %pB] "
11533 "and unordered [`%pA' in %pB] sections"),
11534 o, linkorder_sec, linkorder_sec->owner,
11535 other_sec, other_sec->owner);
11538 (_("%pA has both ordered and unordered sections"), o);
11539 bfd_set_error (bfd_error_bad_value);
11544 if (!seen_linkorder)
11547 sections = (struct bfd_link_order **)
11548 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11549 if (sections == NULL)
11551 seen_linkorder = 0;
11553 for (p = o->map_head.link_order; p != NULL; p = p->next)
11555 sections[seen_linkorder++] = p;
11557 /* Sort the input sections in the order of their linked section. */
11558 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11559 compare_link_order);
11561 /* Change the offsets of the sections. */
11563 for (n = 0; n < seen_linkorder; n++)
11565 s = sections[n]->u.indirect.section;
11566 offset &= ~(bfd_vma) 0 << s->alignment_power;
11567 s->output_offset = offset / bfd_octets_per_byte (abfd);
11568 sections[n]->offset = offset;
11569 offset += sections[n]->size;
11576 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11577 Returns TRUE upon success, FALSE otherwise. */
11580 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11582 bfd_boolean ret = FALSE;
11584 const struct elf_backend_data *bed;
11586 enum bfd_architecture arch;
11588 asymbol **sympp = NULL;
11592 elf_symbol_type *osymbuf;
11594 implib_bfd = info->out_implib_bfd;
11595 bed = get_elf_backend_data (abfd);
11597 if (!bfd_set_format (implib_bfd, bfd_object))
11600 /* Use flag from executable but make it a relocatable object. */
11601 flags = bfd_get_file_flags (abfd);
11602 flags &= ~HAS_RELOC;
11603 if (!bfd_set_start_address (implib_bfd, 0)
11604 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11607 /* Copy architecture of output file to import library file. */
11608 arch = bfd_get_arch (abfd);
11609 mach = bfd_get_mach (abfd);
11610 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11611 && (abfd->target_defaulted
11612 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11615 /* Get symbol table size. */
11616 symsize = bfd_get_symtab_upper_bound (abfd);
11620 /* Read in the symbol table. */
11621 sympp = (asymbol **) xmalloc (symsize);
11622 symcount = bfd_canonicalize_symtab (abfd, sympp);
11626 /* Allow the BFD backend to copy any private header data it
11627 understands from the output BFD to the import library BFD. */
11628 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11631 /* Filter symbols to appear in the import library. */
11632 if (bed->elf_backend_filter_implib_symbols)
11633 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11636 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11639 bfd_set_error (bfd_error_no_symbols);
11640 _bfd_error_handler (_("%pB: no symbol found for import library"),
11646 /* Make symbols absolute. */
11647 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11648 sizeof (*osymbuf));
11649 for (src_count = 0; src_count < symcount; src_count++)
11651 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11652 sizeof (*osymbuf));
11653 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11654 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11655 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11656 osymbuf[src_count].internal_elf_sym.st_value =
11657 osymbuf[src_count].symbol.value;
11658 sympp[src_count] = &osymbuf[src_count].symbol;
11661 bfd_set_symtab (implib_bfd, sympp, symcount);
11663 /* Allow the BFD backend to copy any private data it understands
11664 from the output BFD to the import library BFD. This is done last
11665 to permit the routine to look at the filtered symbol table. */
11666 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11669 if (!bfd_close (implib_bfd))
11680 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11684 if (flinfo->symstrtab != NULL)
11685 _bfd_elf_strtab_free (flinfo->symstrtab);
11686 if (flinfo->contents != NULL)
11687 free (flinfo->contents);
11688 if (flinfo->external_relocs != NULL)
11689 free (flinfo->external_relocs);
11690 if (flinfo->internal_relocs != NULL)
11691 free (flinfo->internal_relocs);
11692 if (flinfo->external_syms != NULL)
11693 free (flinfo->external_syms);
11694 if (flinfo->locsym_shndx != NULL)
11695 free (flinfo->locsym_shndx);
11696 if (flinfo->internal_syms != NULL)
11697 free (flinfo->internal_syms);
11698 if (flinfo->indices != NULL)
11699 free (flinfo->indices);
11700 if (flinfo->sections != NULL)
11701 free (flinfo->sections);
11702 if (flinfo->symshndxbuf != NULL
11703 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11704 free (flinfo->symshndxbuf);
11705 for (o = obfd->sections; o != NULL; o = o->next)
11707 struct bfd_elf_section_data *esdo = elf_section_data (o);
11708 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11709 free (esdo->rel.hashes);
11710 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11711 free (esdo->rela.hashes);
11715 /* Do the final step of an ELF link. */
11718 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11720 bfd_boolean dynamic;
11721 bfd_boolean emit_relocs;
11723 struct elf_final_link_info flinfo;
11725 struct bfd_link_order *p;
11727 bfd_size_type max_contents_size;
11728 bfd_size_type max_external_reloc_size;
11729 bfd_size_type max_internal_reloc_count;
11730 bfd_size_type max_sym_count;
11731 bfd_size_type max_sym_shndx_count;
11732 Elf_Internal_Sym elfsym;
11734 Elf_Internal_Shdr *symtab_hdr;
11735 Elf_Internal_Shdr *symtab_shndx_hdr;
11736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11737 struct elf_outext_info eoinfo;
11738 bfd_boolean merged;
11739 size_t relativecount = 0;
11740 asection *reldyn = 0;
11742 asection *attr_section = NULL;
11743 bfd_vma attr_size = 0;
11744 const char *std_attrs_section;
11745 struct elf_link_hash_table *htab = elf_hash_table (info);
11747 if (!is_elf_hash_table (htab))
11750 if (bfd_link_pic (info))
11751 abfd->flags |= DYNAMIC;
11753 dynamic = htab->dynamic_sections_created;
11754 dynobj = htab->dynobj;
11756 emit_relocs = (bfd_link_relocatable (info)
11757 || info->emitrelocations);
11759 flinfo.info = info;
11760 flinfo.output_bfd = abfd;
11761 flinfo.symstrtab = _bfd_elf_strtab_init ();
11762 if (flinfo.symstrtab == NULL)
11767 flinfo.hash_sec = NULL;
11768 flinfo.symver_sec = NULL;
11772 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11773 /* Note that dynsym_sec can be NULL (on VMS). */
11774 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11775 /* Note that it is OK if symver_sec is NULL. */
11778 flinfo.contents = NULL;
11779 flinfo.external_relocs = NULL;
11780 flinfo.internal_relocs = NULL;
11781 flinfo.external_syms = NULL;
11782 flinfo.locsym_shndx = NULL;
11783 flinfo.internal_syms = NULL;
11784 flinfo.indices = NULL;
11785 flinfo.sections = NULL;
11786 flinfo.symshndxbuf = NULL;
11787 flinfo.filesym_count = 0;
11789 /* The object attributes have been merged. Remove the input
11790 sections from the link, and set the contents of the output
11792 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11793 for (o = abfd->sections; o != NULL; o = o->next)
11795 bfd_boolean remove_section = FALSE;
11797 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11798 || strcmp (o->name, ".gnu.attributes") == 0)
11800 for (p = o->map_head.link_order; p != NULL; p = p->next)
11802 asection *input_section;
11804 if (p->type != bfd_indirect_link_order)
11806 input_section = p->u.indirect.section;
11807 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11808 elf_link_input_bfd ignores this section. */
11809 input_section->flags &= ~SEC_HAS_CONTENTS;
11812 attr_size = bfd_elf_obj_attr_size (abfd);
11813 bfd_set_section_size (abfd, o, attr_size);
11814 /* Skip this section later on. */
11815 o->map_head.link_order = NULL;
11819 remove_section = TRUE;
11821 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11823 /* Remove empty group section from linker output. */
11824 remove_section = TRUE;
11826 if (remove_section)
11828 o->flags |= SEC_EXCLUDE;
11829 bfd_section_list_remove (abfd, o);
11830 abfd->section_count--;
11834 /* Count up the number of relocations we will output for each output
11835 section, so that we know the sizes of the reloc sections. We
11836 also figure out some maximum sizes. */
11837 max_contents_size = 0;
11838 max_external_reloc_size = 0;
11839 max_internal_reloc_count = 0;
11841 max_sym_shndx_count = 0;
11843 for (o = abfd->sections; o != NULL; o = o->next)
11845 struct bfd_elf_section_data *esdo = elf_section_data (o);
11846 o->reloc_count = 0;
11848 for (p = o->map_head.link_order; p != NULL; p = p->next)
11850 unsigned int reloc_count = 0;
11851 unsigned int additional_reloc_count = 0;
11852 struct bfd_elf_section_data *esdi = NULL;
11854 if (p->type == bfd_section_reloc_link_order
11855 || p->type == bfd_symbol_reloc_link_order)
11857 else if (p->type == bfd_indirect_link_order)
11861 sec = p->u.indirect.section;
11863 /* Mark all sections which are to be included in the
11864 link. This will normally be every section. We need
11865 to do this so that we can identify any sections which
11866 the linker has decided to not include. */
11867 sec->linker_mark = TRUE;
11869 if (sec->flags & SEC_MERGE)
11872 if (sec->rawsize > max_contents_size)
11873 max_contents_size = sec->rawsize;
11874 if (sec->size > max_contents_size)
11875 max_contents_size = sec->size;
11877 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11878 && (sec->owner->flags & DYNAMIC) == 0)
11882 /* We are interested in just local symbols, not all
11884 if (elf_bad_symtab (sec->owner))
11885 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11886 / bed->s->sizeof_sym);
11888 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11890 if (sym_count > max_sym_count)
11891 max_sym_count = sym_count;
11893 if (sym_count > max_sym_shndx_count
11894 && elf_symtab_shndx_list (sec->owner) != NULL)
11895 max_sym_shndx_count = sym_count;
11897 if (esdo->this_hdr.sh_type == SHT_REL
11898 || esdo->this_hdr.sh_type == SHT_RELA)
11899 /* Some backends use reloc_count in relocation sections
11900 to count particular types of relocs. Of course,
11901 reloc sections themselves can't have relocations. */
11903 else if (emit_relocs)
11905 reloc_count = sec->reloc_count;
11906 if (bed->elf_backend_count_additional_relocs)
11909 c = (*bed->elf_backend_count_additional_relocs) (sec);
11910 additional_reloc_count += c;
11913 else if (bed->elf_backend_count_relocs)
11914 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11916 esdi = elf_section_data (sec);
11918 if ((sec->flags & SEC_RELOC) != 0)
11920 size_t ext_size = 0;
11922 if (esdi->rel.hdr != NULL)
11923 ext_size = esdi->rel.hdr->sh_size;
11924 if (esdi->rela.hdr != NULL)
11925 ext_size += esdi->rela.hdr->sh_size;
11927 if (ext_size > max_external_reloc_size)
11928 max_external_reloc_size = ext_size;
11929 if (sec->reloc_count > max_internal_reloc_count)
11930 max_internal_reloc_count = sec->reloc_count;
11935 if (reloc_count == 0)
11938 reloc_count += additional_reloc_count;
11939 o->reloc_count += reloc_count;
11941 if (p->type == bfd_indirect_link_order && emit_relocs)
11945 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11946 esdo->rel.count += additional_reloc_count;
11948 if (esdi->rela.hdr)
11950 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11951 esdo->rela.count += additional_reloc_count;
11957 esdo->rela.count += reloc_count;
11959 esdo->rel.count += reloc_count;
11963 if (o->reloc_count > 0)
11964 o->flags |= SEC_RELOC;
11967 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11968 set it (this is probably a bug) and if it is set
11969 assign_section_numbers will create a reloc section. */
11970 o->flags &=~ SEC_RELOC;
11973 /* If the SEC_ALLOC flag is not set, force the section VMA to
11974 zero. This is done in elf_fake_sections as well, but forcing
11975 the VMA to 0 here will ensure that relocs against these
11976 sections are handled correctly. */
11977 if ((o->flags & SEC_ALLOC) == 0
11978 && ! o->user_set_vma)
11982 if (! bfd_link_relocatable (info) && merged)
11983 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11985 /* Figure out the file positions for everything but the symbol table
11986 and the relocs. We set symcount to force assign_section_numbers
11987 to create a symbol table. */
11988 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11989 BFD_ASSERT (! abfd->output_has_begun);
11990 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11993 /* Set sizes, and assign file positions for reloc sections. */
11994 for (o = abfd->sections; o != NULL; o = o->next)
11996 struct bfd_elf_section_data *esdo = elf_section_data (o);
11997 if ((o->flags & SEC_RELOC) != 0)
12000 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12004 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12008 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12009 to count upwards while actually outputting the relocations. */
12010 esdo->rel.count = 0;
12011 esdo->rela.count = 0;
12013 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
12015 /* Cache the section contents so that they can be compressed
12016 later. Use bfd_malloc since it will be freed by
12017 bfd_compress_section_contents. */
12018 unsigned char *contents = esdo->this_hdr.contents;
12019 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12022 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12023 if (contents == NULL)
12025 esdo->this_hdr.contents = contents;
12029 /* We have now assigned file positions for all the sections except
12030 .symtab, .strtab, and non-loaded reloc sections. We start the
12031 .symtab section at the current file position, and write directly
12032 to it. We build the .strtab section in memory. */
12033 bfd_get_symcount (abfd) = 0;
12034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12035 /* sh_name is set in prep_headers. */
12036 symtab_hdr->sh_type = SHT_SYMTAB;
12037 /* sh_flags, sh_addr and sh_size all start off zero. */
12038 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12039 /* sh_link is set in assign_section_numbers. */
12040 /* sh_info is set below. */
12041 /* sh_offset is set just below. */
12042 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12044 if (max_sym_count < 20)
12045 max_sym_count = 20;
12046 htab->strtabsize = max_sym_count;
12047 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12048 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12049 if (htab->strtab == NULL)
12051 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12053 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12054 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12056 if (info->strip != strip_all || emit_relocs)
12058 file_ptr off = elf_next_file_pos (abfd);
12060 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12062 /* Note that at this point elf_next_file_pos (abfd) is
12063 incorrect. We do not yet know the size of the .symtab section.
12064 We correct next_file_pos below, after we do know the size. */
12066 /* Start writing out the symbol table. The first symbol is always a
12068 elfsym.st_value = 0;
12069 elfsym.st_size = 0;
12070 elfsym.st_info = 0;
12071 elfsym.st_other = 0;
12072 elfsym.st_shndx = SHN_UNDEF;
12073 elfsym.st_target_internal = 0;
12074 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12075 bfd_und_section_ptr, NULL) != 1)
12078 /* Output a symbol for each section. We output these even if we are
12079 discarding local symbols, since they are used for relocs. These
12080 symbols have no names. We store the index of each one in the
12081 index field of the section, so that we can find it again when
12082 outputting relocs. */
12084 elfsym.st_size = 0;
12085 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12086 elfsym.st_other = 0;
12087 elfsym.st_value = 0;
12088 elfsym.st_target_internal = 0;
12089 for (i = 1; i < elf_numsections (abfd); i++)
12091 o = bfd_section_from_elf_index (abfd, i);
12094 o->target_index = bfd_get_symcount (abfd);
12095 elfsym.st_shndx = i;
12096 if (!bfd_link_relocatable (info))
12097 elfsym.st_value = o->vma;
12098 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12105 /* Allocate some memory to hold information read in from the input
12107 if (max_contents_size != 0)
12109 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12110 if (flinfo.contents == NULL)
12114 if (max_external_reloc_size != 0)
12116 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12117 if (flinfo.external_relocs == NULL)
12121 if (max_internal_reloc_count != 0)
12123 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12124 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12125 if (flinfo.internal_relocs == NULL)
12129 if (max_sym_count != 0)
12131 amt = max_sym_count * bed->s->sizeof_sym;
12132 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12133 if (flinfo.external_syms == NULL)
12136 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12137 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12138 if (flinfo.internal_syms == NULL)
12141 amt = max_sym_count * sizeof (long);
12142 flinfo.indices = (long int *) bfd_malloc (amt);
12143 if (flinfo.indices == NULL)
12146 amt = max_sym_count * sizeof (asection *);
12147 flinfo.sections = (asection **) bfd_malloc (amt);
12148 if (flinfo.sections == NULL)
12152 if (max_sym_shndx_count != 0)
12154 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12155 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12156 if (flinfo.locsym_shndx == NULL)
12162 bfd_vma base, end = 0;
12165 for (sec = htab->tls_sec;
12166 sec && (sec->flags & SEC_THREAD_LOCAL);
12169 bfd_size_type size = sec->size;
12172 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12174 struct bfd_link_order *ord = sec->map_tail.link_order;
12177 size = ord->offset + ord->size;
12179 end = sec->vma + size;
12181 base = htab->tls_sec->vma;
12182 /* Only align end of TLS section if static TLS doesn't have special
12183 alignment requirements. */
12184 if (bed->static_tls_alignment == 1)
12185 end = align_power (end, htab->tls_sec->alignment_power);
12186 htab->tls_size = end - base;
12189 /* Reorder SHF_LINK_ORDER sections. */
12190 for (o = abfd->sections; o != NULL; o = o->next)
12192 if (!elf_fixup_link_order (abfd, o))
12196 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12199 /* Since ELF permits relocations to be against local symbols, we
12200 must have the local symbols available when we do the relocations.
12201 Since we would rather only read the local symbols once, and we
12202 would rather not keep them in memory, we handle all the
12203 relocations for a single input file at the same time.
12205 Unfortunately, there is no way to know the total number of local
12206 symbols until we have seen all of them, and the local symbol
12207 indices precede the global symbol indices. This means that when
12208 we are generating relocatable output, and we see a reloc against
12209 a global symbol, we can not know the symbol index until we have
12210 finished examining all the local symbols to see which ones we are
12211 going to output. To deal with this, we keep the relocations in
12212 memory, and don't output them until the end of the link. This is
12213 an unfortunate waste of memory, but I don't see a good way around
12214 it. Fortunately, it only happens when performing a relocatable
12215 link, which is not the common case. FIXME: If keep_memory is set
12216 we could write the relocs out and then read them again; I don't
12217 know how bad the memory loss will be. */
12219 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12220 sub->output_has_begun = FALSE;
12221 for (o = abfd->sections; o != NULL; o = o->next)
12223 for (p = o->map_head.link_order; p != NULL; p = p->next)
12225 if (p->type == bfd_indirect_link_order
12226 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12227 == bfd_target_elf_flavour)
12228 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12230 if (! sub->output_has_begun)
12232 if (! elf_link_input_bfd (&flinfo, sub))
12234 sub->output_has_begun = TRUE;
12237 else if (p->type == bfd_section_reloc_link_order
12238 || p->type == bfd_symbol_reloc_link_order)
12240 if (! elf_reloc_link_order (abfd, info, o, p))
12245 if (! _bfd_default_link_order (abfd, info, o, p))
12247 if (p->type == bfd_indirect_link_order
12248 && (bfd_get_flavour (sub)
12249 == bfd_target_elf_flavour)
12250 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12251 != bed->s->elfclass))
12253 const char *iclass, *oclass;
12255 switch (bed->s->elfclass)
12257 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12258 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12259 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12263 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12265 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12266 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12267 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12271 bfd_set_error (bfd_error_wrong_format);
12273 /* xgettext:c-format */
12274 (_("%pB: file class %s incompatible with %s"),
12275 sub, iclass, oclass);
12284 /* Free symbol buffer if needed. */
12285 if (!info->reduce_memory_overheads)
12287 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12288 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12289 && elf_tdata (sub)->symbuf)
12291 free (elf_tdata (sub)->symbuf);
12292 elf_tdata (sub)->symbuf = NULL;
12296 /* Output any global symbols that got converted to local in a
12297 version script or due to symbol visibility. We do this in a
12298 separate step since ELF requires all local symbols to appear
12299 prior to any global symbols. FIXME: We should only do this if
12300 some global symbols were, in fact, converted to become local.
12301 FIXME: Will this work correctly with the Irix 5 linker? */
12302 eoinfo.failed = FALSE;
12303 eoinfo.flinfo = &flinfo;
12304 eoinfo.localsyms = TRUE;
12305 eoinfo.file_sym_done = FALSE;
12306 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12310 /* If backend needs to output some local symbols not present in the hash
12311 table, do it now. */
12312 if (bed->elf_backend_output_arch_local_syms
12313 && (info->strip != strip_all || emit_relocs))
12315 typedef int (*out_sym_func)
12316 (void *, const char *, Elf_Internal_Sym *, asection *,
12317 struct elf_link_hash_entry *);
12319 if (! ((*bed->elf_backend_output_arch_local_syms)
12320 (abfd, info, &flinfo,
12321 (out_sym_func) elf_link_output_symstrtab)))
12325 /* That wrote out all the local symbols. Finish up the symbol table
12326 with the global symbols. Even if we want to strip everything we
12327 can, we still need to deal with those global symbols that got
12328 converted to local in a version script. */
12330 /* The sh_info field records the index of the first non local symbol. */
12331 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12334 && htab->dynsym != NULL
12335 && htab->dynsym->output_section != bfd_abs_section_ptr)
12337 Elf_Internal_Sym sym;
12338 bfd_byte *dynsym = htab->dynsym->contents;
12340 o = htab->dynsym->output_section;
12341 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12343 /* Write out the section symbols for the output sections. */
12344 if (bfd_link_pic (info)
12345 || htab->is_relocatable_executable)
12351 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12353 sym.st_target_internal = 0;
12355 for (s = abfd->sections; s != NULL; s = s->next)
12361 dynindx = elf_section_data (s)->dynindx;
12364 indx = elf_section_data (s)->this_idx;
12365 BFD_ASSERT (indx > 0);
12366 sym.st_shndx = indx;
12367 if (! check_dynsym (abfd, &sym))
12369 sym.st_value = s->vma;
12370 dest = dynsym + dynindx * bed->s->sizeof_sym;
12371 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12375 /* Write out the local dynsyms. */
12376 if (htab->dynlocal)
12378 struct elf_link_local_dynamic_entry *e;
12379 for (e = htab->dynlocal; e ; e = e->next)
12384 /* Copy the internal symbol and turn off visibility.
12385 Note that we saved a word of storage and overwrote
12386 the original st_name with the dynstr_index. */
12388 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12390 s = bfd_section_from_elf_index (e->input_bfd,
12395 elf_section_data (s->output_section)->this_idx;
12396 if (! check_dynsym (abfd, &sym))
12398 sym.st_value = (s->output_section->vma
12400 + e->isym.st_value);
12403 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12404 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12409 /* We get the global symbols from the hash table. */
12410 eoinfo.failed = FALSE;
12411 eoinfo.localsyms = FALSE;
12412 eoinfo.flinfo = &flinfo;
12413 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12417 /* If backend needs to output some symbols not present in the hash
12418 table, do it now. */
12419 if (bed->elf_backend_output_arch_syms
12420 && (info->strip != strip_all || emit_relocs))
12422 typedef int (*out_sym_func)
12423 (void *, const char *, Elf_Internal_Sym *, asection *,
12424 struct elf_link_hash_entry *);
12426 if (! ((*bed->elf_backend_output_arch_syms)
12427 (abfd, info, &flinfo,
12428 (out_sym_func) elf_link_output_symstrtab)))
12432 /* Finalize the .strtab section. */
12433 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12435 /* Swap out the .strtab section. */
12436 if (!elf_link_swap_symbols_out (&flinfo))
12439 /* Now we know the size of the symtab section. */
12440 if (bfd_get_symcount (abfd) > 0)
12442 /* Finish up and write out the symbol string table (.strtab)
12444 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12445 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12447 if (elf_symtab_shndx_list (abfd))
12449 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12451 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12453 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12454 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12455 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12456 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12457 symtab_shndx_hdr->sh_size = amt;
12459 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12462 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12463 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12468 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12469 /* sh_name was set in prep_headers. */
12470 symstrtab_hdr->sh_type = SHT_STRTAB;
12471 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12472 symstrtab_hdr->sh_addr = 0;
12473 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12474 symstrtab_hdr->sh_entsize = 0;
12475 symstrtab_hdr->sh_link = 0;
12476 symstrtab_hdr->sh_info = 0;
12477 /* sh_offset is set just below. */
12478 symstrtab_hdr->sh_addralign = 1;
12480 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12482 elf_next_file_pos (abfd) = off;
12484 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12485 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12489 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12491 _bfd_error_handler (_("%pB: failed to generate import library"),
12492 info->out_implib_bfd);
12496 /* Adjust the relocs to have the correct symbol indices. */
12497 for (o = abfd->sections; o != NULL; o = o->next)
12499 struct bfd_elf_section_data *esdo = elf_section_data (o);
12502 if ((o->flags & SEC_RELOC) == 0)
12505 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12506 if (esdo->rel.hdr != NULL
12507 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12509 if (esdo->rela.hdr != NULL
12510 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12513 /* Set the reloc_count field to 0 to prevent write_relocs from
12514 trying to swap the relocs out itself. */
12515 o->reloc_count = 0;
12518 if (dynamic && info->combreloc && dynobj != NULL)
12519 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12521 /* If we are linking against a dynamic object, or generating a
12522 shared library, finish up the dynamic linking information. */
12525 bfd_byte *dyncon, *dynconend;
12527 /* Fix up .dynamic entries. */
12528 o = bfd_get_linker_section (dynobj, ".dynamic");
12529 BFD_ASSERT (o != NULL);
12531 dyncon = o->contents;
12532 dynconend = o->contents + o->size;
12533 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12535 Elf_Internal_Dyn dyn;
12538 bfd_size_type sh_size;
12541 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12548 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12550 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12552 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12553 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12556 dyn.d_un.d_val = relativecount;
12563 name = info->init_function;
12566 name = info->fini_function;
12569 struct elf_link_hash_entry *h;
12571 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12573 && (h->root.type == bfd_link_hash_defined
12574 || h->root.type == bfd_link_hash_defweak))
12576 dyn.d_un.d_ptr = h->root.u.def.value;
12577 o = h->root.u.def.section;
12578 if (o->output_section != NULL)
12579 dyn.d_un.d_ptr += (o->output_section->vma
12580 + o->output_offset);
12583 /* The symbol is imported from another shared
12584 library and does not apply to this one. */
12585 dyn.d_un.d_ptr = 0;
12592 case DT_PREINIT_ARRAYSZ:
12593 name = ".preinit_array";
12595 case DT_INIT_ARRAYSZ:
12596 name = ".init_array";
12598 case DT_FINI_ARRAYSZ:
12599 name = ".fini_array";
12601 o = bfd_get_section_by_name (abfd, name);
12605 (_("could not find section %s"), name);
12610 (_("warning: %s section has zero size"), name);
12611 dyn.d_un.d_val = o->size;
12614 case DT_PREINIT_ARRAY:
12615 name = ".preinit_array";
12617 case DT_INIT_ARRAY:
12618 name = ".init_array";
12620 case DT_FINI_ARRAY:
12621 name = ".fini_array";
12623 o = bfd_get_section_by_name (abfd, name);
12630 name = ".gnu.hash";
12639 name = ".gnu.version_d";
12642 name = ".gnu.version_r";
12645 name = ".gnu.version";
12647 o = bfd_get_linker_section (dynobj, name);
12649 if (o == NULL || bfd_is_abs_section (o->output_section))
12652 (_("could not find section %s"), name);
12655 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12658 (_("warning: section '%s' is being made into a note"), name);
12659 bfd_set_error (bfd_error_nonrepresentable_section);
12662 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12669 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12675 for (i = 1; i < elf_numsections (abfd); i++)
12677 Elf_Internal_Shdr *hdr;
12679 hdr = elf_elfsections (abfd)[i];
12680 if (hdr->sh_type == type
12681 && (hdr->sh_flags & SHF_ALLOC) != 0)
12683 sh_size += hdr->sh_size;
12685 || sh_addr > hdr->sh_addr)
12686 sh_addr = hdr->sh_addr;
12690 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12692 /* Don't count procedure linkage table relocs in the
12693 overall reloc count. */
12694 sh_size -= htab->srelplt->size;
12696 /* If the size is zero, make the address zero too.
12697 This is to avoid a glibc bug. If the backend
12698 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12699 zero, then we'll put DT_RELA at the end of
12700 DT_JMPREL. glibc will interpret the end of
12701 DT_RELA matching the end of DT_JMPREL as the
12702 case where DT_RELA includes DT_JMPREL, and for
12703 LD_BIND_NOW will decide that processing DT_RELA
12704 will process the PLT relocs too. Net result:
12705 No PLT relocs applied. */
12708 /* If .rela.plt is the first .rela section, exclude
12709 it from DT_RELA. */
12710 else if (sh_addr == (htab->srelplt->output_section->vma
12711 + htab->srelplt->output_offset))
12712 sh_addr += htab->srelplt->size;
12715 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12716 dyn.d_un.d_val = sh_size;
12718 dyn.d_un.d_ptr = sh_addr;
12721 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12725 /* If we have created any dynamic sections, then output them. */
12726 if (dynobj != NULL)
12728 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12731 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12732 if (((info->warn_shared_textrel && bfd_link_pic (info))
12733 || info->error_textrel)
12734 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12736 bfd_byte *dyncon, *dynconend;
12738 dyncon = o->contents;
12739 dynconend = o->contents + o->size;
12740 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12742 Elf_Internal_Dyn dyn;
12744 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12746 if (dyn.d_tag == DT_TEXTREL)
12748 if (info->error_textrel)
12749 info->callbacks->einfo
12750 (_("%P%X: read-only segment has dynamic relocations\n"));
12752 info->callbacks->einfo
12753 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12759 for (o = dynobj->sections; o != NULL; o = o->next)
12761 if ((o->flags & SEC_HAS_CONTENTS) == 0
12763 || o->output_section == bfd_abs_section_ptr)
12765 if ((o->flags & SEC_LINKER_CREATED) == 0)
12767 /* At this point, we are only interested in sections
12768 created by _bfd_elf_link_create_dynamic_sections. */
12771 if (htab->stab_info.stabstr == o)
12773 if (htab->eh_info.hdr_sec == o)
12775 if (strcmp (o->name, ".dynstr") != 0)
12777 if (! bfd_set_section_contents (abfd, o->output_section,
12779 (file_ptr) o->output_offset
12780 * bfd_octets_per_byte (abfd),
12786 /* The contents of the .dynstr section are actually in a
12790 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12791 if (bfd_seek (abfd, off, SEEK_SET) != 0
12792 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12798 if (!info->resolve_section_groups)
12800 bfd_boolean failed = FALSE;
12802 BFD_ASSERT (bfd_link_relocatable (info));
12803 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12808 /* If we have optimized stabs strings, output them. */
12809 if (htab->stab_info.stabstr != NULL)
12811 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12815 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12818 elf_final_link_free (abfd, &flinfo);
12822 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12823 if (contents == NULL)
12824 return FALSE; /* Bail out and fail. */
12825 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12826 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12833 elf_final_link_free (abfd, &flinfo);
12837 /* Initialize COOKIE for input bfd ABFD. */
12840 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12841 struct bfd_link_info *info, bfd *abfd)
12843 Elf_Internal_Shdr *symtab_hdr;
12844 const struct elf_backend_data *bed;
12846 bed = get_elf_backend_data (abfd);
12847 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12849 cookie->abfd = abfd;
12850 cookie->sym_hashes = elf_sym_hashes (abfd);
12851 cookie->bad_symtab = elf_bad_symtab (abfd);
12852 if (cookie->bad_symtab)
12854 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12855 cookie->extsymoff = 0;
12859 cookie->locsymcount = symtab_hdr->sh_info;
12860 cookie->extsymoff = symtab_hdr->sh_info;
12863 if (bed->s->arch_size == 32)
12864 cookie->r_sym_shift = 8;
12866 cookie->r_sym_shift = 32;
12868 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12869 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12871 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12872 cookie->locsymcount, 0,
12874 if (cookie->locsyms == NULL)
12876 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12879 if (info->keep_memory)
12880 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12885 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12888 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12890 Elf_Internal_Shdr *symtab_hdr;
12892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12893 if (cookie->locsyms != NULL
12894 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12895 free (cookie->locsyms);
12898 /* Initialize the relocation information in COOKIE for input section SEC
12899 of input bfd ABFD. */
12902 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12903 struct bfd_link_info *info, bfd *abfd,
12906 if (sec->reloc_count == 0)
12908 cookie->rels = NULL;
12909 cookie->relend = NULL;
12913 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12914 info->keep_memory);
12915 if (cookie->rels == NULL)
12917 cookie->rel = cookie->rels;
12918 cookie->relend = cookie->rels + sec->reloc_count;
12920 cookie->rel = cookie->rels;
12924 /* Free the memory allocated by init_reloc_cookie_rels,
12928 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12931 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12932 free (cookie->rels);
12935 /* Initialize the whole of COOKIE for input section SEC. */
12938 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12939 struct bfd_link_info *info,
12942 if (!init_reloc_cookie (cookie, info, sec->owner))
12944 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12949 fini_reloc_cookie (cookie, sec->owner);
12954 /* Free the memory allocated by init_reloc_cookie_for_section,
12958 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12961 fini_reloc_cookie_rels (cookie, sec);
12962 fini_reloc_cookie (cookie, sec->owner);
12965 /* Garbage collect unused sections. */
12967 /* Default gc_mark_hook. */
12970 _bfd_elf_gc_mark_hook (asection *sec,
12971 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12972 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12973 struct elf_link_hash_entry *h,
12974 Elf_Internal_Sym *sym)
12978 switch (h->root.type)
12980 case bfd_link_hash_defined:
12981 case bfd_link_hash_defweak:
12982 return h->root.u.def.section;
12984 case bfd_link_hash_common:
12985 return h->root.u.c.p->section;
12992 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12997 /* Return the debug definition section. */
13000 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13001 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13002 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13003 struct elf_link_hash_entry *h,
13004 Elf_Internal_Sym *sym)
13008 /* Return the global debug definition section. */
13009 if ((h->root.type == bfd_link_hash_defined
13010 || h->root.type == bfd_link_hash_defweak)
13011 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13012 return h->root.u.def.section;
13016 /* Return the local debug definition section. */
13017 asection *isec = bfd_section_from_elf_index (sec->owner,
13019 if ((isec->flags & SEC_DEBUGGING) != 0)
13026 /* COOKIE->rel describes a relocation against section SEC, which is
13027 a section we've decided to keep. Return the section that contains
13028 the relocation symbol, or NULL if no section contains it. */
13031 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13032 elf_gc_mark_hook_fn gc_mark_hook,
13033 struct elf_reloc_cookie *cookie,
13034 bfd_boolean *start_stop)
13036 unsigned long r_symndx;
13037 struct elf_link_hash_entry *h;
13039 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13040 if (r_symndx == STN_UNDEF)
13043 if (r_symndx >= cookie->locsymcount
13044 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13046 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13049 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13053 while (h->root.type == bfd_link_hash_indirect
13054 || h->root.type == bfd_link_hash_warning)
13055 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13057 /* If this symbol is weak and there is a non-weak definition, we
13058 keep the non-weak definition because many backends put
13059 dynamic reloc info on the non-weak definition for code
13060 handling copy relocs. */
13061 if (h->is_weakalias)
13062 weakdef (h)->mark = 1;
13064 if (start_stop != NULL)
13066 /* To work around a glibc bug, mark XXX input sections
13067 when there is a reference to __start_XXX or __stop_XXX
13071 asection *s = h->u2.start_stop_section;
13072 *start_stop = !s->gc_mark;
13077 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13080 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13081 &cookie->locsyms[r_symndx]);
13084 /* COOKIE->rel describes a relocation against section SEC, which is
13085 a section we've decided to keep. Mark the section that contains
13086 the relocation symbol. */
13089 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13091 elf_gc_mark_hook_fn gc_mark_hook,
13092 struct elf_reloc_cookie *cookie)
13095 bfd_boolean start_stop = FALSE;
13097 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13098 while (rsec != NULL)
13100 if (!rsec->gc_mark)
13102 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13103 || (rsec->owner->flags & DYNAMIC) != 0)
13105 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13110 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13115 /* The mark phase of garbage collection. For a given section, mark
13116 it and any sections in this section's group, and all the sections
13117 which define symbols to which it refers. */
13120 _bfd_elf_gc_mark (struct bfd_link_info *info,
13122 elf_gc_mark_hook_fn gc_mark_hook)
13125 asection *group_sec, *eh_frame;
13129 /* Mark all the sections in the group. */
13130 group_sec = elf_section_data (sec)->next_in_group;
13131 if (group_sec && !group_sec->gc_mark)
13132 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13135 /* Look through the section relocs. */
13137 eh_frame = elf_eh_frame_section (sec->owner);
13138 if ((sec->flags & SEC_RELOC) != 0
13139 && sec->reloc_count > 0
13140 && sec != eh_frame)
13142 struct elf_reloc_cookie cookie;
13144 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13148 for (; cookie.rel < cookie.relend; cookie.rel++)
13149 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13154 fini_reloc_cookie_for_section (&cookie, sec);
13158 if (ret && eh_frame && elf_fde_list (sec))
13160 struct elf_reloc_cookie cookie;
13162 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13166 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13167 gc_mark_hook, &cookie))
13169 fini_reloc_cookie_for_section (&cookie, eh_frame);
13173 eh_frame = elf_section_eh_frame_entry (sec);
13174 if (ret && eh_frame && !eh_frame->gc_mark)
13175 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13181 /* Scan and mark sections in a special or debug section group. */
13184 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13186 /* Point to first section of section group. */
13188 /* Used to iterate the section group. */
13191 bfd_boolean is_special_grp = TRUE;
13192 bfd_boolean is_debug_grp = TRUE;
13194 /* First scan to see if group contains any section other than debug
13195 and special section. */
13196 ssec = msec = elf_next_in_group (grp);
13199 if ((msec->flags & SEC_DEBUGGING) == 0)
13200 is_debug_grp = FALSE;
13202 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13203 is_special_grp = FALSE;
13205 msec = elf_next_in_group (msec);
13207 while (msec != ssec);
13209 /* If this is a pure debug section group or pure special section group,
13210 keep all sections in this group. */
13211 if (is_debug_grp || is_special_grp)
13216 msec = elf_next_in_group (msec);
13218 while (msec != ssec);
13222 /* Keep debug and special sections. */
13225 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13226 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13230 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13233 bfd_boolean some_kept;
13234 bfd_boolean debug_frag_seen;
13235 bfd_boolean has_kept_debug_info;
13237 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13239 isec = ibfd->sections;
13240 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13243 /* Ensure all linker created sections are kept,
13244 see if any other section is already marked,
13245 and note if we have any fragmented debug sections. */
13246 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13247 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13249 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13251 else if (isec->gc_mark
13252 && (isec->flags & SEC_ALLOC) != 0
13253 && elf_section_type (isec) != SHT_NOTE)
13256 if (!debug_frag_seen
13257 && (isec->flags & SEC_DEBUGGING)
13258 && CONST_STRNEQ (isec->name, ".debug_line."))
13259 debug_frag_seen = TRUE;
13262 /* If no non-note alloc section in this file will be kept, then
13263 we can toss out the debug and special sections. */
13267 /* Keep debug and special sections like .comment when they are
13268 not part of a group. Also keep section groups that contain
13269 just debug sections or special sections. */
13270 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13272 if ((isec->flags & SEC_GROUP) != 0)
13273 _bfd_elf_gc_mark_debug_special_section_group (isec);
13274 else if (((isec->flags & SEC_DEBUGGING) != 0
13275 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13276 && elf_next_in_group (isec) == NULL)
13278 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13279 has_kept_debug_info = TRUE;
13282 /* Look for CODE sections which are going to be discarded,
13283 and find and discard any fragmented debug sections which
13284 are associated with that code section. */
13285 if (debug_frag_seen)
13286 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13287 if ((isec->flags & SEC_CODE) != 0
13288 && isec->gc_mark == 0)
13293 ilen = strlen (isec->name);
13295 /* Association is determined by the name of the debug
13296 section containing the name of the code section as
13297 a suffix. For example .debug_line.text.foo is a
13298 debug section associated with .text.foo. */
13299 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13303 if (dsec->gc_mark == 0
13304 || (dsec->flags & SEC_DEBUGGING) == 0)
13307 dlen = strlen (dsec->name);
13310 && strncmp (dsec->name + (dlen - ilen),
13311 isec->name, ilen) == 0)
13316 /* Mark debug sections referenced by kept debug sections. */
13317 if (has_kept_debug_info)
13318 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13320 && (isec->flags & SEC_DEBUGGING) != 0)
13321 if (!_bfd_elf_gc_mark (info, isec,
13322 elf_gc_mark_debug_section))
13329 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13334 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13338 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13339 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13340 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13343 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13346 for (o = sub->sections; o != NULL; o = o->next)
13348 /* When any section in a section group is kept, we keep all
13349 sections in the section group. If the first member of
13350 the section group is excluded, we will also exclude the
13352 if (o->flags & SEC_GROUP)
13354 asection *first = elf_next_in_group (o);
13355 o->gc_mark = first->gc_mark;
13361 /* Skip sweeping sections already excluded. */
13362 if (o->flags & SEC_EXCLUDE)
13365 /* Since this is early in the link process, it is simple
13366 to remove a section from the output. */
13367 o->flags |= SEC_EXCLUDE;
13369 if (info->print_gc_sections && o->size != 0)
13370 /* xgettext:c-format */
13371 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13379 /* Propagate collected vtable information. This is called through
13380 elf_link_hash_traverse. */
13383 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13385 /* Those that are not vtables. */
13387 || h->u2.vtable == NULL
13388 || h->u2.vtable->parent == NULL)
13391 /* Those vtables that do not have parents, we cannot merge. */
13392 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13395 /* If we've already been done, exit. */
13396 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13399 /* Make sure the parent's table is up to date. */
13400 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13402 if (h->u2.vtable->used == NULL)
13404 /* None of this table's entries were referenced. Re-use the
13406 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13407 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13412 bfd_boolean *cu, *pu;
13414 /* Or the parent's entries into ours. */
13415 cu = h->u2.vtable->used;
13417 pu = h->u2.vtable->parent->u2.vtable->used;
13420 const struct elf_backend_data *bed;
13421 unsigned int log_file_align;
13423 bed = get_elf_backend_data (h->root.u.def.section->owner);
13424 log_file_align = bed->s->log_file_align;
13425 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13440 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13443 bfd_vma hstart, hend;
13444 Elf_Internal_Rela *relstart, *relend, *rel;
13445 const struct elf_backend_data *bed;
13446 unsigned int log_file_align;
13448 /* Take care of both those symbols that do not describe vtables as
13449 well as those that are not loaded. */
13451 || h->u2.vtable == NULL
13452 || h->u2.vtable->parent == NULL)
13455 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13456 || h->root.type == bfd_link_hash_defweak);
13458 sec = h->root.u.def.section;
13459 hstart = h->root.u.def.value;
13460 hend = hstart + h->size;
13462 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13464 return *(bfd_boolean *) okp = FALSE;
13465 bed = get_elf_backend_data (sec->owner);
13466 log_file_align = bed->s->log_file_align;
13468 relend = relstart + sec->reloc_count;
13470 for (rel = relstart; rel < relend; ++rel)
13471 if (rel->r_offset >= hstart && rel->r_offset < hend)
13473 /* If the entry is in use, do nothing. */
13474 if (h->u2.vtable->used
13475 && (rel->r_offset - hstart) < h->u2.vtable->size)
13477 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13478 if (h->u2.vtable->used[entry])
13481 /* Otherwise, kill it. */
13482 rel->r_offset = rel->r_info = rel->r_addend = 0;
13488 /* Mark sections containing dynamically referenced symbols. When
13489 building shared libraries, we must assume that any visible symbol is
13493 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13495 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13496 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13498 if ((h->root.type == bfd_link_hash_defined
13499 || h->root.type == bfd_link_hash_defweak)
13500 && ((h->ref_dynamic && !h->forced_local)
13501 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13502 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13503 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13504 && (!bfd_link_executable (info)
13505 || info->gc_keep_exported
13506 || info->export_dynamic
13509 && (*d->match) (&d->head, NULL, h->root.root.string)))
13510 && (h->versioned >= versioned
13511 || !bfd_hide_sym_by_version (info->version_info,
13512 h->root.root.string)))))
13513 h->root.u.def.section->flags |= SEC_KEEP;
13518 /* Keep all sections containing symbols undefined on the command-line,
13519 and the section containing the entry symbol. */
13522 _bfd_elf_gc_keep (struct bfd_link_info *info)
13524 struct bfd_sym_chain *sym;
13526 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13528 struct elf_link_hash_entry *h;
13530 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13531 FALSE, FALSE, FALSE);
13534 && (h->root.type == bfd_link_hash_defined
13535 || h->root.type == bfd_link_hash_defweak)
13536 && !bfd_is_abs_section (h->root.u.def.section)
13537 && !bfd_is_und_section (h->root.u.def.section))
13538 h->root.u.def.section->flags |= SEC_KEEP;
13543 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13544 struct bfd_link_info *info)
13546 bfd *ibfd = info->input_bfds;
13548 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13551 struct elf_reloc_cookie cookie;
13553 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13555 sec = ibfd->sections;
13556 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13559 if (!init_reloc_cookie (&cookie, info, ibfd))
13562 for (sec = ibfd->sections; sec; sec = sec->next)
13564 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13565 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13567 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13568 fini_reloc_cookie_rels (&cookie, sec);
13575 /* Do mark and sweep of unused sections. */
13578 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13580 bfd_boolean ok = TRUE;
13582 elf_gc_mark_hook_fn gc_mark_hook;
13583 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13584 struct elf_link_hash_table *htab;
13586 if (!bed->can_gc_sections
13587 || !is_elf_hash_table (info->hash))
13589 _bfd_error_handler(_("warning: gc-sections option ignored"));
13593 bed->gc_keep (info);
13594 htab = elf_hash_table (info);
13596 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13597 at the .eh_frame section if we can mark the FDEs individually. */
13598 for (sub = info->input_bfds;
13599 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13600 sub = sub->link.next)
13603 struct elf_reloc_cookie cookie;
13605 sec = sub->sections;
13606 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13608 sec = bfd_get_section_by_name (sub, ".eh_frame");
13609 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13611 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13612 if (elf_section_data (sec)->sec_info
13613 && (sec->flags & SEC_LINKER_CREATED) == 0)
13614 elf_eh_frame_section (sub) = sec;
13615 fini_reloc_cookie_for_section (&cookie, sec);
13616 sec = bfd_get_next_section_by_name (NULL, sec);
13620 /* Apply transitive closure to the vtable entry usage info. */
13621 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13625 /* Kill the vtable relocations that were not used. */
13626 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13630 /* Mark dynamically referenced symbols. */
13631 if (htab->dynamic_sections_created || info->gc_keep_exported)
13632 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13634 /* Grovel through relocs to find out who stays ... */
13635 gc_mark_hook = bed->gc_mark_hook;
13636 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13640 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13641 || elf_object_id (sub) != elf_hash_table_id (htab)
13642 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13646 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13649 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13650 Also treat note sections as a root, if the section is not part
13651 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13652 well as FINI_ARRAY sections for ld -r. */
13653 for (o = sub->sections; o != NULL; o = o->next)
13655 && (o->flags & SEC_EXCLUDE) == 0
13656 && ((o->flags & SEC_KEEP) != 0
13657 || (bfd_link_relocatable (info)
13658 && ((elf_section_data (o)->this_hdr.sh_type
13659 == SHT_PREINIT_ARRAY)
13660 || (elf_section_data (o)->this_hdr.sh_type
13662 || (elf_section_data (o)->this_hdr.sh_type
13663 == SHT_FINI_ARRAY)))
13664 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13665 && elf_next_in_group (o) == NULL )))
13667 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13672 /* Allow the backend to mark additional target specific sections. */
13673 bed->gc_mark_extra_sections (info, gc_mark_hook);
13675 /* ... and mark SEC_EXCLUDE for those that go. */
13676 return elf_gc_sweep (abfd, info);
13679 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13682 bfd_elf_gc_record_vtinherit (bfd *abfd,
13684 struct elf_link_hash_entry *h,
13687 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13688 struct elf_link_hash_entry **search, *child;
13689 size_t extsymcount;
13690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13692 /* The sh_info field of the symtab header tells us where the
13693 external symbols start. We don't care about the local symbols at
13695 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13696 if (!elf_bad_symtab (abfd))
13697 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13699 sym_hashes = elf_sym_hashes (abfd);
13700 sym_hashes_end = sym_hashes + extsymcount;
13702 /* Hunt down the child symbol, which is in this section at the same
13703 offset as the relocation. */
13704 for (search = sym_hashes; search != sym_hashes_end; ++search)
13706 if ((child = *search) != NULL
13707 && (child->root.type == bfd_link_hash_defined
13708 || child->root.type == bfd_link_hash_defweak)
13709 && child->root.u.def.section == sec
13710 && child->root.u.def.value == offset)
13714 /* xgettext:c-format */
13715 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13716 abfd, sec, (uint64_t) offset);
13717 bfd_set_error (bfd_error_invalid_operation);
13721 if (!child->u2.vtable)
13723 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13724 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13725 if (!child->u2.vtable)
13730 /* This *should* only be the absolute section. It could potentially
13731 be that someone has defined a non-global vtable though, which
13732 would be bad. It isn't worth paging in the local symbols to be
13733 sure though; that case should simply be handled by the assembler. */
13735 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13738 child->u2.vtable->parent = h;
13743 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13746 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13747 struct elf_link_hash_entry *h,
13750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13751 unsigned int log_file_align = bed->s->log_file_align;
13755 /* xgettext:c-format */
13756 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13758 bfd_set_error (bfd_error_bad_value);
13764 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13765 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13770 if (addend >= h->u2.vtable->size)
13772 size_t size, bytes, file_align;
13773 bfd_boolean *ptr = h->u2.vtable->used;
13775 /* While the symbol is undefined, we have to be prepared to handle
13777 file_align = 1 << log_file_align;
13778 if (h->root.type == bfd_link_hash_undefined)
13779 size = addend + file_align;
13783 if (addend >= size)
13785 /* Oops! We've got a reference past the defined end of
13786 the table. This is probably a bug -- shall we warn? */
13787 size = addend + file_align;
13790 size = (size + file_align - 1) & -file_align;
13792 /* Allocate one extra entry for use as a "done" flag for the
13793 consolidation pass. */
13794 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13798 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13804 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13805 * sizeof (bfd_boolean));
13806 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13810 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13815 /* And arrange for that done flag to be at index -1. */
13816 h->u2.vtable->used = ptr + 1;
13817 h->u2.vtable->size = size;
13820 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13825 /* Map an ELF section header flag to its corresponding string. */
13829 flagword flag_value;
13830 } elf_flags_to_name_table;
13832 static elf_flags_to_name_table elf_flags_to_names [] =
13834 { "SHF_WRITE", SHF_WRITE },
13835 { "SHF_ALLOC", SHF_ALLOC },
13836 { "SHF_EXECINSTR", SHF_EXECINSTR },
13837 { "SHF_MERGE", SHF_MERGE },
13838 { "SHF_STRINGS", SHF_STRINGS },
13839 { "SHF_INFO_LINK", SHF_INFO_LINK},
13840 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13841 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13842 { "SHF_GROUP", SHF_GROUP },
13843 { "SHF_TLS", SHF_TLS },
13844 { "SHF_MASKOS", SHF_MASKOS },
13845 { "SHF_EXCLUDE", SHF_EXCLUDE },
13848 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13850 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13851 struct flag_info *flaginfo,
13854 const bfd_vma sh_flags = elf_section_flags (section);
13856 if (!flaginfo->flags_initialized)
13858 bfd *obfd = info->output_bfd;
13859 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13860 struct flag_info_list *tf = flaginfo->flag_list;
13862 int without_hex = 0;
13864 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13867 flagword (*lookup) (char *);
13869 lookup = bed->elf_backend_lookup_section_flags_hook;
13870 if (lookup != NULL)
13872 flagword hexval = (*lookup) ((char *) tf->name);
13876 if (tf->with == with_flags)
13877 with_hex |= hexval;
13878 else if (tf->with == without_flags)
13879 without_hex |= hexval;
13884 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13886 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13888 if (tf->with == with_flags)
13889 with_hex |= elf_flags_to_names[i].flag_value;
13890 else if (tf->with == without_flags)
13891 without_hex |= elf_flags_to_names[i].flag_value;
13898 info->callbacks->einfo
13899 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13903 flaginfo->flags_initialized = TRUE;
13904 flaginfo->only_with_flags |= with_hex;
13905 flaginfo->not_with_flags |= without_hex;
13908 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13911 if ((flaginfo->not_with_flags & sh_flags) != 0)
13917 struct alloc_got_off_arg {
13919 struct bfd_link_info *info;
13922 /* We need a special top-level link routine to convert got reference counts
13923 to real got offsets. */
13926 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13928 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13929 bfd *obfd = gofarg->info->output_bfd;
13930 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13932 if (h->got.refcount > 0)
13934 h->got.offset = gofarg->gotoff;
13935 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13938 h->got.offset = (bfd_vma) -1;
13943 /* And an accompanying bit to work out final got entry offsets once
13944 we're done. Should be called from final_link. */
13947 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13948 struct bfd_link_info *info)
13951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13953 struct alloc_got_off_arg gofarg;
13955 BFD_ASSERT (abfd == info->output_bfd);
13957 if (! is_elf_hash_table (info->hash))
13960 /* The GOT offset is relative to the .got section, but the GOT header is
13961 put into the .got.plt section, if the backend uses it. */
13962 if (bed->want_got_plt)
13965 gotoff = bed->got_header_size;
13967 /* Do the local .got entries first. */
13968 for (i = info->input_bfds; i; i = i->link.next)
13970 bfd_signed_vma *local_got;
13971 size_t j, locsymcount;
13972 Elf_Internal_Shdr *symtab_hdr;
13974 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13977 local_got = elf_local_got_refcounts (i);
13981 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13982 if (elf_bad_symtab (i))
13983 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13985 locsymcount = symtab_hdr->sh_info;
13987 for (j = 0; j < locsymcount; ++j)
13989 if (local_got[j] > 0)
13991 local_got[j] = gotoff;
13992 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13995 local_got[j] = (bfd_vma) -1;
13999 /* Then the global .got entries. .plt refcounts are handled by
14000 adjust_dynamic_symbol */
14001 gofarg.gotoff = gotoff;
14002 gofarg.info = info;
14003 elf_link_hash_traverse (elf_hash_table (info),
14004 elf_gc_allocate_got_offsets,
14009 /* Many folk need no more in the way of final link than this, once
14010 got entry reference counting is enabled. */
14013 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14015 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14018 /* Invoke the regular ELF backend linker to do all the work. */
14019 return bfd_elf_final_link (abfd, info);
14023 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14025 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14027 if (rcookie->bad_symtab)
14028 rcookie->rel = rcookie->rels;
14030 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14032 unsigned long r_symndx;
14034 if (! rcookie->bad_symtab)
14035 if (rcookie->rel->r_offset > offset)
14037 if (rcookie->rel->r_offset != offset)
14040 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14041 if (r_symndx == STN_UNDEF)
14044 if (r_symndx >= rcookie->locsymcount
14045 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14047 struct elf_link_hash_entry *h;
14049 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14051 while (h->root.type == bfd_link_hash_indirect
14052 || h->root.type == bfd_link_hash_warning)
14053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14055 if ((h->root.type == bfd_link_hash_defined
14056 || h->root.type == bfd_link_hash_defweak)
14057 && (h->root.u.def.section->owner != rcookie->abfd
14058 || h->root.u.def.section->kept_section != NULL
14059 || discarded_section (h->root.u.def.section)))
14064 /* It's not a relocation against a global symbol,
14065 but it could be a relocation against a local
14066 symbol for a discarded section. */
14068 Elf_Internal_Sym *isym;
14070 /* Need to: get the symbol; get the section. */
14071 isym = &rcookie->locsyms[r_symndx];
14072 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14074 && (isec->kept_section != NULL
14075 || discarded_section (isec)))
14083 /* Discard unneeded references to discarded sections.
14084 Returns -1 on error, 1 if any section's size was changed, 0 if
14085 nothing changed. This function assumes that the relocations are in
14086 sorted order, which is true for all known assemblers. */
14089 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14091 struct elf_reloc_cookie cookie;
14096 if (info->traditional_format
14097 || !is_elf_hash_table (info->hash))
14100 o = bfd_get_section_by_name (output_bfd, ".stab");
14105 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14108 || i->reloc_count == 0
14109 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14113 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14116 if (!init_reloc_cookie_for_section (&cookie, info, i))
14119 if (_bfd_discard_section_stabs (abfd, i,
14120 elf_section_data (i)->sec_info,
14121 bfd_elf_reloc_symbol_deleted_p,
14125 fini_reloc_cookie_for_section (&cookie, i);
14130 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14131 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14135 int eh_changed = 0;
14136 unsigned int eh_alignment;
14138 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14144 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14147 if (!init_reloc_cookie_for_section (&cookie, info, i))
14150 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14151 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14152 bfd_elf_reloc_symbol_deleted_p,
14156 if (i->size != i->rawsize)
14160 fini_reloc_cookie_for_section (&cookie, i);
14163 eh_alignment = 1 << o->alignment_power;
14164 /* Skip over zero terminator, and prevent empty sections from
14165 adding alignment padding at the end. */
14166 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14168 i->flags |= SEC_EXCLUDE;
14169 else if (i->size > 4)
14171 /* The last non-empty eh_frame section doesn't need padding. */
14174 /* Any prior sections must pad the last FDE out to the output
14175 section alignment. Otherwise we might have zero padding
14176 between sections, which would be seen as a terminator. */
14177 for (; i != NULL; i = i->map_tail.s)
14179 /* All but the last zero terminator should have been removed. */
14184 = (i->size + eh_alignment - 1) & -eh_alignment;
14185 if (i->size != size)
14193 elf_link_hash_traverse (elf_hash_table (info),
14194 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14197 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14199 const struct elf_backend_data *bed;
14202 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14204 s = abfd->sections;
14205 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14208 bed = get_elf_backend_data (abfd);
14210 if (bed->elf_backend_discard_info != NULL)
14212 if (!init_reloc_cookie (&cookie, info, abfd))
14215 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14218 fini_reloc_cookie (&cookie, abfd);
14222 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14223 _bfd_elf_end_eh_frame_parsing (info);
14225 if (info->eh_frame_hdr_type
14226 && !bfd_link_relocatable (info)
14227 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14234 _bfd_elf_section_already_linked (bfd *abfd,
14236 struct bfd_link_info *info)
14239 const char *name, *key;
14240 struct bfd_section_already_linked *l;
14241 struct bfd_section_already_linked_hash_entry *already_linked_list;
14243 if (sec->output_section == bfd_abs_section_ptr)
14246 flags = sec->flags;
14248 /* Return if it isn't a linkonce section. A comdat group section
14249 also has SEC_LINK_ONCE set. */
14250 if ((flags & SEC_LINK_ONCE) == 0)
14253 /* Don't put group member sections on our list of already linked
14254 sections. They are handled as a group via their group section. */
14255 if (elf_sec_group (sec) != NULL)
14258 /* For a SHT_GROUP section, use the group signature as the key. */
14260 if ((flags & SEC_GROUP) != 0
14261 && elf_next_in_group (sec) != NULL
14262 && elf_group_name (elf_next_in_group (sec)) != NULL)
14263 key = elf_group_name (elf_next_in_group (sec));
14266 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14267 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14268 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14271 /* Must be a user linkonce section that doesn't follow gcc's
14272 naming convention. In this case we won't be matching
14273 single member groups. */
14277 already_linked_list = bfd_section_already_linked_table_lookup (key);
14279 for (l = already_linked_list->entry; l != NULL; l = l->next)
14281 /* We may have 2 different types of sections on the list: group
14282 sections with a signature of <key> (<key> is some string),
14283 and linkonce sections named .gnu.linkonce.<type>.<key>.
14284 Match like sections. LTO plugin sections are an exception.
14285 They are always named .gnu.linkonce.t.<key> and match either
14286 type of section. */
14287 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14288 && ((flags & SEC_GROUP) != 0
14289 || strcmp (name, l->sec->name) == 0))
14290 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14292 /* The section has already been linked. See if we should
14293 issue a warning. */
14294 if (!_bfd_handle_already_linked (sec, l, info))
14297 if (flags & SEC_GROUP)
14299 asection *first = elf_next_in_group (sec);
14300 asection *s = first;
14304 s->output_section = bfd_abs_section_ptr;
14305 /* Record which group discards it. */
14306 s->kept_section = l->sec;
14307 s = elf_next_in_group (s);
14308 /* These lists are circular. */
14318 /* A single member comdat group section may be discarded by a
14319 linkonce section and vice versa. */
14320 if ((flags & SEC_GROUP) != 0)
14322 asection *first = elf_next_in_group (sec);
14324 if (first != NULL && elf_next_in_group (first) == first)
14325 /* Check this single member group against linkonce sections. */
14326 for (l = already_linked_list->entry; l != NULL; l = l->next)
14327 if ((l->sec->flags & SEC_GROUP) == 0
14328 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14330 first->output_section = bfd_abs_section_ptr;
14331 first->kept_section = l->sec;
14332 sec->output_section = bfd_abs_section_ptr;
14337 /* Check this linkonce section against single member groups. */
14338 for (l = already_linked_list->entry; l != NULL; l = l->next)
14339 if (l->sec->flags & SEC_GROUP)
14341 asection *first = elf_next_in_group (l->sec);
14344 && elf_next_in_group (first) == first
14345 && bfd_elf_match_symbols_in_sections (first, sec, info))
14347 sec->output_section = bfd_abs_section_ptr;
14348 sec->kept_section = first;
14353 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14354 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14355 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14356 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14357 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14358 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14359 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14360 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14361 The reverse order cannot happen as there is never a bfd with only the
14362 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14363 matter as here were are looking only for cross-bfd sections. */
14365 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14366 for (l = already_linked_list->entry; l != NULL; l = l->next)
14367 if ((l->sec->flags & SEC_GROUP) == 0
14368 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14370 if (abfd != l->sec->owner)
14371 sec->output_section = bfd_abs_section_ptr;
14375 /* This is the first section with this name. Record it. */
14376 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14377 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14378 return sec->output_section == bfd_abs_section_ptr;
14382 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14384 return sym->st_shndx == SHN_COMMON;
14388 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14394 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14396 return bfd_com_section_ptr;
14400 _bfd_elf_default_got_elt_size (bfd *abfd,
14401 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14402 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14403 bfd *ibfd ATTRIBUTE_UNUSED,
14404 unsigned long symndx ATTRIBUTE_UNUSED)
14406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14407 return bed->s->arch_size / 8;
14410 /* Routines to support the creation of dynamic relocs. */
14412 /* Returns the name of the dynamic reloc section associated with SEC. */
14414 static const char *
14415 get_dynamic_reloc_section_name (bfd * abfd,
14417 bfd_boolean is_rela)
14420 const char *old_name = bfd_get_section_name (NULL, sec);
14421 const char *prefix = is_rela ? ".rela" : ".rel";
14423 if (old_name == NULL)
14426 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14427 sprintf (name, "%s%s", prefix, old_name);
14432 /* Returns the dynamic reloc section associated with SEC.
14433 If necessary compute the name of the dynamic reloc section based
14434 on SEC's name (looked up in ABFD's string table) and the setting
14438 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14440 bfd_boolean is_rela)
14442 asection * reloc_sec = elf_section_data (sec)->sreloc;
14444 if (reloc_sec == NULL)
14446 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14450 reloc_sec = bfd_get_linker_section (abfd, name);
14452 if (reloc_sec != NULL)
14453 elf_section_data (sec)->sreloc = reloc_sec;
14460 /* Returns the dynamic reloc section associated with SEC. If the
14461 section does not exist it is created and attached to the DYNOBJ
14462 bfd and stored in the SRELOC field of SEC's elf_section_data
14465 ALIGNMENT is the alignment for the newly created section and
14466 IS_RELA defines whether the name should be .rela.<SEC's name>
14467 or .rel.<SEC's name>. The section name is looked up in the
14468 string table associated with ABFD. */
14471 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14473 unsigned int alignment,
14475 bfd_boolean is_rela)
14477 asection * reloc_sec = elf_section_data (sec)->sreloc;
14479 if (reloc_sec == NULL)
14481 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14486 reloc_sec = bfd_get_linker_section (dynobj, name);
14488 if (reloc_sec == NULL)
14490 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14491 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14492 if ((sec->flags & SEC_ALLOC) != 0)
14493 flags |= SEC_ALLOC | SEC_LOAD;
14495 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14496 if (reloc_sec != NULL)
14498 /* _bfd_elf_get_sec_type_attr chooses a section type by
14499 name. Override as it may be wrong, eg. for a user
14500 section named "auto" we'll get ".relauto" which is
14501 seen to be a .rela section. */
14502 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14503 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14508 elf_section_data (sec)->sreloc = reloc_sec;
14514 /* Copy the ELF symbol type and other attributes for a linker script
14515 assignment from HSRC to HDEST. Generally this should be treated as
14516 if we found a strong non-dynamic definition for HDEST (except that
14517 ld ignores multiple definition errors). */
14519 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14520 struct bfd_link_hash_entry *hdest,
14521 struct bfd_link_hash_entry *hsrc)
14523 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14524 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14525 Elf_Internal_Sym isym;
14527 ehdest->type = ehsrc->type;
14528 ehdest->target_internal = ehsrc->target_internal;
14530 isym.st_other = ehsrc->other;
14531 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14534 /* Append a RELA relocation REL to section S in BFD. */
14537 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14540 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14541 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14542 bed->s->swap_reloca_out (abfd, rel, loc);
14545 /* Append a REL relocation REL to section S in BFD. */
14548 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14551 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14552 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14553 bed->s->swap_reloc_out (abfd, rel, loc);
14556 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14558 struct bfd_link_hash_entry *
14559 bfd_elf_define_start_stop (struct bfd_link_info *info,
14560 const char *symbol, asection *sec)
14562 struct elf_link_hash_entry *h;
14564 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14565 FALSE, FALSE, TRUE);
14567 && (h->root.type == bfd_link_hash_undefined
14568 || h->root.type == bfd_link_hash_undefweak
14569 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14571 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14572 h->root.type = bfd_link_hash_defined;
14573 h->root.u.def.section = sec;
14574 h->root.u.def.value = 0;
14575 h->def_regular = 1;
14576 h->def_dynamic = 0;
14578 h->u2.start_stop_section = sec;
14579 if (symbol[0] == '.')
14581 /* .startof. and .sizeof. symbols are local. */
14582 const struct elf_backend_data *bed;
14583 bed = get_elf_backend_data (info->output_bfd);
14584 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14588 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14589 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14591 bfd_elf_link_record_dynamic_symbol (info, h);