1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
32 /* This struct is used to pass information to routines called via
33 elf_link_hash_traverse which must return failure. */
35 struct elf_info_failed
37 struct bfd_link_info *info;
41 /* This structure is used to pass information to
42 _bfd_elf_link_find_version_dependencies. */
44 struct elf_find_verdep_info
46 /* General link information. */
47 struct bfd_link_info *info;
48 /* The number of dependencies. */
50 /* Whether we had a failure. */
54 static bfd_boolean _bfd_elf_fix_symbol_flags
55 (struct elf_link_hash_entry *, struct elf_info_failed *);
57 /* Define a symbol in a dynamic linkage section. */
59 struct elf_link_hash_entry *
60 _bfd_elf_define_linkage_sym (bfd *abfd,
61 struct bfd_link_info *info,
65 struct elf_link_hash_entry *h;
66 struct bfd_link_hash_entry *bh;
67 const struct elf_backend_data *bed;
69 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 /* Zap symbol defined in an as-needed lib that wasn't linked.
73 This is a symptom of a larger problem: Absolute symbols
74 defined in shared libraries can't be overridden, because we
75 lose the link to the bfd which is via the symbol section. */
76 h->root.type = bfd_link_hash_new;
80 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
82 get_elf_backend_data (abfd)->collect,
85 h = (struct elf_link_hash_entry *) bh;
88 h->root.linker_def = 1;
90 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
91 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
93 bed = get_elf_backend_data (abfd);
94 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
99 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
103 struct elf_link_hash_entry *h;
104 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
105 struct elf_link_hash_table *htab = elf_hash_table (info);
107 /* This function may be called more than once. */
108 s = bfd_get_linker_section (abfd, ".got");
112 flags = bed->dynamic_sec_flags;
114 s = bfd_make_section_anyway_with_flags (abfd,
115 (bed->rela_plts_and_copies_p
116 ? ".rela.got" : ".rel.got"),
117 (bed->dynamic_sec_flags
120 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
124 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
126 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
130 if (bed->want_got_plt)
132 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
134 || !bfd_set_section_alignment (abfd, s,
135 bed->s->log_file_align))
140 /* The first bit of the global offset table is the header. */
141 s->size += bed->got_header_size;
143 if (bed->want_got_sym)
145 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
146 (or .got.plt) section. We don't do this in the linker script
147 because we don't want to define the symbol if we are not creating
148 a global offset table. */
149 h = _bfd_elf_define_linkage_sym (abfd, info, s,
150 "_GLOBAL_OFFSET_TABLE_");
151 elf_hash_table (info)->hgot = h;
159 /* Create a strtab to hold the dynamic symbol names. */
161 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
163 struct elf_link_hash_table *hash_table;
165 hash_table = elf_hash_table (info);
166 if (hash_table->dynobj == NULL)
167 hash_table->dynobj = abfd;
169 if (hash_table->dynstr == NULL)
171 hash_table->dynstr = _bfd_elf_strtab_init ();
172 if (hash_table->dynstr == NULL)
178 /* Create some sections which will be filled in with dynamic linking
179 information. ABFD is an input file which requires dynamic sections
180 to be created. The dynamic sections take up virtual memory space
181 when the final executable is run, so we need to create them before
182 addresses are assigned to the output sections. We work out the
183 actual contents and size of these sections later. */
186 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
190 const struct elf_backend_data *bed;
191 struct elf_link_hash_entry *h;
193 if (! is_elf_hash_table (info->hash))
196 if (elf_hash_table (info)->dynamic_sections_created)
199 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
202 abfd = elf_hash_table (info)->dynobj;
203 bed = get_elf_backend_data (abfd);
205 flags = bed->dynamic_sec_flags;
207 /* A dynamically linked executable has a .interp section, but a
208 shared library does not. */
209 if (info->executable)
211 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
212 flags | SEC_READONLY);
217 /* Create sections to hold version informations. These are removed
218 if they are not needed. */
219 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
220 flags | SEC_READONLY);
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
225 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
226 flags | SEC_READONLY);
228 || ! bfd_set_section_alignment (abfd, s, 1))
231 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
232 flags | SEC_READONLY);
234 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
237 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
238 flags | SEC_READONLY);
240 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
243 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
244 flags | SEC_READONLY);
248 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
250 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
253 /* The special symbol _DYNAMIC is always set to the start of the
254 .dynamic section. We could set _DYNAMIC in a linker script, but we
255 only want to define it if we are, in fact, creating a .dynamic
256 section. We don't want to define it if there is no .dynamic
257 section, since on some ELF platforms the start up code examines it
258 to decide how to initialize the process. */
259 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
260 elf_hash_table (info)->hdynamic = h;
266 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
267 flags | SEC_READONLY);
269 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
271 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
274 if (info->emit_gnu_hash)
276 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
277 flags | SEC_READONLY);
279 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
281 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
282 4 32-bit words followed by variable count of 64-bit words, then
283 variable count of 32-bit words. */
284 if (bed->s->arch_size == 64)
285 elf_section_data (s)->this_hdr.sh_entsize = 0;
287 elf_section_data (s)->this_hdr.sh_entsize = 4;
290 /* Let the backend create the rest of the sections. This lets the
291 backend set the right flags. The backend will normally create
292 the .got and .plt sections. */
293 if (bed->elf_backend_create_dynamic_sections == NULL
294 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
297 elf_hash_table (info)->dynamic_sections_created = TRUE;
302 /* Create dynamic sections when linking against a dynamic object. */
305 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
307 flagword flags, pltflags;
308 struct elf_link_hash_entry *h;
310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
311 struct elf_link_hash_table *htab = elf_hash_table (info);
313 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
314 .rel[a].bss sections. */
315 flags = bed->dynamic_sec_flags;
318 if (bed->plt_not_loaded)
319 /* We do not clear SEC_ALLOC here because we still want the OS to
320 allocate space for the section; it's just that there's nothing
321 to read in from the object file. */
322 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
324 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
325 if (bed->plt_readonly)
326 pltflags |= SEC_READONLY;
328 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
330 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
334 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
336 if (bed->want_plt_sym)
338 h = _bfd_elf_define_linkage_sym (abfd, info, s,
339 "_PROCEDURE_LINKAGE_TABLE_");
340 elf_hash_table (info)->hplt = h;
345 s = bfd_make_section_anyway_with_flags (abfd,
346 (bed->rela_plts_and_copies_p
347 ? ".rela.plt" : ".rel.plt"),
348 flags | SEC_READONLY);
350 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
354 if (! _bfd_elf_create_got_section (abfd, info))
357 if (bed->want_dynbss)
359 /* The .dynbss section is a place to put symbols which are defined
360 by dynamic objects, are referenced by regular objects, and are
361 not functions. We must allocate space for them in the process
362 image and use a R_*_COPY reloc to tell the dynamic linker to
363 initialize them at run time. The linker script puts the .dynbss
364 section into the .bss section of the final image. */
365 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
366 (SEC_ALLOC | SEC_LINKER_CREATED));
370 /* The .rel[a].bss section holds copy relocs. This section is not
371 normally needed. We need to create it here, though, so that the
372 linker will map it to an output section. We can't just create it
373 only if we need it, because we will not know whether we need it
374 until we have seen all the input files, and the first time the
375 main linker code calls BFD after examining all the input files
376 (size_dynamic_sections) the input sections have already been
377 mapped to the output sections. If the section turns out not to
378 be needed, we can discard it later. We will never need this
379 section when generating a shared object, since they do not use
383 s = bfd_make_section_anyway_with_flags (abfd,
384 (bed->rela_plts_and_copies_p
385 ? ".rela.bss" : ".rel.bss"),
386 flags | SEC_READONLY);
388 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
396 /* Record a new dynamic symbol. We record the dynamic symbols as we
397 read the input files, since we need to have a list of all of them
398 before we can determine the final sizes of the output sections.
399 Note that we may actually call this function even though we are not
400 going to output any dynamic symbols; in some cases we know that a
401 symbol should be in the dynamic symbol table, but only if there is
405 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
406 struct elf_link_hash_entry *h)
408 if (h->dynindx == -1)
410 struct elf_strtab_hash *dynstr;
415 /* XXX: The ABI draft says the linker must turn hidden and
416 internal symbols into STB_LOCAL symbols when producing the
417 DSO. However, if ld.so honors st_other in the dynamic table,
418 this would not be necessary. */
419 switch (ELF_ST_VISIBILITY (h->other))
423 if (h->root.type != bfd_link_hash_undefined
424 && h->root.type != bfd_link_hash_undefweak)
427 if (!elf_hash_table (info)->is_relocatable_executable)
435 h->dynindx = elf_hash_table (info)->dynsymcount;
436 ++elf_hash_table (info)->dynsymcount;
438 dynstr = elf_hash_table (info)->dynstr;
441 /* Create a strtab to hold the dynamic symbol names. */
442 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
447 /* We don't put any version information in the dynamic string
449 name = h->root.root.string;
450 p = strchr (name, ELF_VER_CHR);
452 /* We know that the p points into writable memory. In fact,
453 there are only a few symbols that have read-only names, being
454 those like _GLOBAL_OFFSET_TABLE_ that are created specially
455 by the backends. Most symbols will have names pointing into
456 an ELF string table read from a file, or to objalloc memory. */
459 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
464 if (indx == (bfd_size_type) -1)
466 h->dynstr_index = indx;
472 /* Mark a symbol dynamic. */
475 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
476 struct elf_link_hash_entry *h,
477 Elf_Internal_Sym *sym)
479 struct bfd_elf_dynamic_list *d = info->dynamic_list;
481 /* It may be called more than once on the same H. */
482 if(h->dynamic || info->relocatable)
485 if ((info->dynamic_data
486 && (h->type == STT_OBJECT
488 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
490 && h->root.type == bfd_link_hash_new
491 && (*d->match) (&d->head, NULL, h->root.root.string)))
495 /* Record an assignment to a symbol made by a linker script. We need
496 this in case some dynamic object refers to this symbol. */
499 bfd_elf_record_link_assignment (bfd *output_bfd,
500 struct bfd_link_info *info,
505 struct elf_link_hash_entry *h, *hv;
506 struct elf_link_hash_table *htab;
507 const struct elf_backend_data *bed;
509 if (!is_elf_hash_table (info->hash))
512 htab = elf_hash_table (info);
513 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
517 switch (h->root.type)
519 case bfd_link_hash_defined:
520 case bfd_link_hash_defweak:
521 case bfd_link_hash_common:
523 case bfd_link_hash_undefweak:
524 case bfd_link_hash_undefined:
525 /* Since we're defining the symbol, don't let it seem to have not
526 been defined. record_dynamic_symbol and size_dynamic_sections
527 may depend on this. */
528 h->root.type = bfd_link_hash_new;
529 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
530 bfd_link_repair_undef_list (&htab->root);
532 case bfd_link_hash_new:
533 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
536 case bfd_link_hash_indirect:
537 /* We had a versioned symbol in a dynamic library. We make the
538 the versioned symbol point to this one. */
539 bed = get_elf_backend_data (output_bfd);
541 while (hv->root.type == bfd_link_hash_indirect
542 || hv->root.type == bfd_link_hash_warning)
543 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
544 /* We don't need to update h->root.u since linker will set them
546 h->root.type = bfd_link_hash_undefined;
547 hv->root.type = bfd_link_hash_indirect;
548 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
549 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
551 case bfd_link_hash_warning:
556 /* If this symbol is being provided by the linker script, and it is
557 currently defined by a dynamic object, but not by a regular
558 object, then mark it as undefined so that the generic linker will
559 force the correct value. */
563 h->root.type = bfd_link_hash_undefined;
565 /* If this symbol is not being provided by the linker script, and it is
566 currently defined by a dynamic object, but not by a regular object,
567 then clear out any version information because the symbol will not be
568 associated with the dynamic object any more. */
572 h->verinfo.verdef = NULL;
578 bed = get_elf_backend_data (output_bfd);
579 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
580 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
581 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
584 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
586 if (!info->relocatable
588 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
589 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
595 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
601 /* If this is a weak defined symbol, and we know a corresponding
602 real symbol from the same dynamic object, make sure the real
603 symbol is also made into a dynamic symbol. */
604 if (h->u.weakdef != NULL
605 && h->u.weakdef->dynindx == -1)
607 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
615 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
616 success, and 2 on a failure caused by attempting to record a symbol
617 in a discarded section, eg. a discarded link-once section symbol. */
620 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
625 struct elf_link_local_dynamic_entry *entry;
626 struct elf_link_hash_table *eht;
627 struct elf_strtab_hash *dynstr;
628 unsigned long dynstr_index;
630 Elf_External_Sym_Shndx eshndx;
631 char esym[sizeof (Elf64_External_Sym)];
633 if (! is_elf_hash_table (info->hash))
636 /* See if the entry exists already. */
637 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
638 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
641 amt = sizeof (*entry);
642 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
646 /* Go find the symbol, so that we can find it's name. */
647 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
648 1, input_indx, &entry->isym, esym, &eshndx))
650 bfd_release (input_bfd, entry);
654 if (entry->isym.st_shndx != SHN_UNDEF
655 && entry->isym.st_shndx < SHN_LORESERVE)
659 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
660 if (s == NULL || bfd_is_abs_section (s->output_section))
662 /* We can still bfd_release here as nothing has done another
663 bfd_alloc. We can't do this later in this function. */
664 bfd_release (input_bfd, entry);
669 name = (bfd_elf_string_from_elf_section
670 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
671 entry->isym.st_name));
673 dynstr = elf_hash_table (info)->dynstr;
676 /* Create a strtab to hold the dynamic symbol names. */
677 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
682 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
683 if (dynstr_index == (unsigned long) -1)
685 entry->isym.st_name = dynstr_index;
687 eht = elf_hash_table (info);
689 entry->next = eht->dynlocal;
690 eht->dynlocal = entry;
691 entry->input_bfd = input_bfd;
692 entry->input_indx = input_indx;
695 /* Whatever binding the symbol had before, it's now local. */
697 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
699 /* The dynindx will be set at the end of size_dynamic_sections. */
704 /* Return the dynindex of a local dynamic symbol. */
707 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
711 struct elf_link_local_dynamic_entry *e;
713 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
714 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
719 /* This function is used to renumber the dynamic symbols, if some of
720 them are removed because they are marked as local. This is called
721 via elf_link_hash_traverse. */
724 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
727 size_t *count = (size_t *) data;
732 if (h->dynindx != -1)
733 h->dynindx = ++(*count);
739 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
740 STB_LOCAL binding. */
743 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
746 size_t *count = (size_t *) data;
748 if (!h->forced_local)
751 if (h->dynindx != -1)
752 h->dynindx = ++(*count);
757 /* Return true if the dynamic symbol for a given section should be
758 omitted when creating a shared library. */
760 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
761 struct bfd_link_info *info,
764 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 return (htab->dynobj != NULL
782 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
783 && ip->output_section == p);
785 /* There shouldn't be section relative relocations
786 against any other section. */
792 /* Assign dynsym indices. In a shared library we generate a section
793 symbol for each output section, which come first. Next come symbols
794 which have been forced to local binding. Then all of the back-end
795 allocated local dynamic syms, followed by the rest of the global
799 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
800 struct bfd_link_info *info,
801 unsigned long *section_sym_count)
803 unsigned long dynsymcount = 0;
805 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
807 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
809 for (p = output_bfd->sections; p ; p = p->next)
810 if ((p->flags & SEC_EXCLUDE) == 0
811 && (p->flags & SEC_ALLOC) != 0
812 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
813 elf_section_data (p)->dynindx = ++dynsymcount;
815 elf_section_data (p)->dynindx = 0;
817 *section_sym_count = dynsymcount;
819 elf_link_hash_traverse (elf_hash_table (info),
820 elf_link_renumber_local_hash_table_dynsyms,
823 if (elf_hash_table (info)->dynlocal)
825 struct elf_link_local_dynamic_entry *p;
826 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
827 p->dynindx = ++dynsymcount;
830 elf_link_hash_traverse (elf_hash_table (info),
831 elf_link_renumber_hash_table_dynsyms,
834 /* There is an unused NULL entry at the head of the table which
835 we must account for in our count. Unless there weren't any
836 symbols, which means we'll have no table at all. */
837 if (dynsymcount != 0)
840 elf_hash_table (info)->dynsymcount = dynsymcount;
844 /* Merge st_other field. */
847 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
848 const Elf_Internal_Sym *isym,
849 bfd_boolean definition, bfd_boolean dynamic)
851 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
853 /* If st_other has a processor-specific meaning, specific
854 code might be needed here. */
855 if (bed->elf_backend_merge_symbol_attribute)
856 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
861 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
862 unsigned hvis = ELF_ST_VISIBILITY (h->other);
864 /* Keep the most constraining visibility. Leave the remainder
865 of the st_other field to elf_backend_merge_symbol_attribute. */
866 if (symvis - 1 < hvis - 1)
867 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
869 else if (definition && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT)
870 h->protected_def = 1;
873 /* This function is called when we want to merge a new symbol with an
874 existing symbol. It handles the various cases which arise when we
875 find a definition in a dynamic object, or when there is already a
876 definition in a dynamic object. The new symbol is described by
877 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
878 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
879 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
880 of an old common symbol. We set OVERRIDE if the old symbol is
881 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
882 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
883 to change. By OK to change, we mean that we shouldn't warn if the
884 type or size does change. */
887 _bfd_elf_merge_symbol (bfd *abfd,
888 struct bfd_link_info *info,
890 Elf_Internal_Sym *sym,
893 struct elf_link_hash_entry **sym_hash,
895 bfd_boolean *pold_weak,
896 unsigned int *pold_alignment,
898 bfd_boolean *override,
899 bfd_boolean *type_change_ok,
900 bfd_boolean *size_change_ok)
902 asection *sec, *oldsec;
903 struct elf_link_hash_entry *h;
904 struct elf_link_hash_entry *hi;
905 struct elf_link_hash_entry *flip;
908 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
909 bfd_boolean newweak, oldweak, newfunc, oldfunc;
910 const struct elf_backend_data *bed;
916 bind = ELF_ST_BIND (sym->st_info);
918 if (! bfd_is_und_section (sec))
919 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
921 h = ((struct elf_link_hash_entry *)
922 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
927 bed = get_elf_backend_data (abfd);
929 /* For merging, we only care about real symbols. But we need to make
930 sure that indirect symbol dynamic flags are updated. */
932 while (h->root.type == bfd_link_hash_indirect
933 || h->root.type == bfd_link_hash_warning)
934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
936 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
941 switch (h->root.type)
946 case bfd_link_hash_undefined:
947 case bfd_link_hash_undefweak:
948 oldbfd = h->root.u.undef.abfd;
951 case bfd_link_hash_defined:
952 case bfd_link_hash_defweak:
953 oldbfd = h->root.u.def.section->owner;
954 oldsec = h->root.u.def.section;
957 case bfd_link_hash_common:
958 oldbfd = h->root.u.c.p->section->owner;
959 oldsec = h->root.u.c.p->section;
961 *pold_alignment = h->root.u.c.p->alignment_power;
964 if (poldbfd && *poldbfd == NULL)
967 /* Differentiate strong and weak symbols. */
968 newweak = bind == STB_WEAK;
969 oldweak = (h->root.type == bfd_link_hash_defweak
970 || h->root.type == bfd_link_hash_undefweak);
972 *pold_weak = oldweak;
974 /* This code is for coping with dynamic objects, and is only useful
975 if we are doing an ELF link. */
976 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
979 /* We have to check it for every instance since the first few may be
980 references and not all compilers emit symbol type for undefined
982 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
984 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
985 respectively, is from a dynamic object. */
987 newdyn = (abfd->flags & DYNAMIC) != 0;
989 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
990 syms and defined syms in dynamic libraries respectively.
991 ref_dynamic on the other hand can be set for a symbol defined in
992 a dynamic library, and def_dynamic may not be set; When the
993 definition in a dynamic lib is overridden by a definition in the
994 executable use of the symbol in the dynamic lib becomes a
995 reference to the executable symbol. */
998 if (bfd_is_und_section (sec))
1000 if (bind != STB_WEAK)
1002 h->ref_dynamic_nonweak = 1;
1003 hi->ref_dynamic_nonweak = 1;
1009 hi->dynamic_def = 1;
1013 /* If we just created the symbol, mark it as being an ELF symbol.
1014 Other than that, there is nothing to do--there is no merge issue
1015 with a newly defined symbol--so we just return. */
1017 if (h->root.type == bfd_link_hash_new)
1023 /* In cases involving weak versioned symbols, we may wind up trying
1024 to merge a symbol with itself. Catch that here, to avoid the
1025 confusion that results if we try to override a symbol with
1026 itself. The additional tests catch cases like
1027 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1028 dynamic object, which we do want to handle here. */
1030 && (newweak || oldweak)
1031 && ((abfd->flags & DYNAMIC) == 0
1032 || !h->def_regular))
1037 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1038 else if (oldsec != NULL)
1040 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1041 indices used by MIPS ELF. */
1042 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1045 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1046 respectively, appear to be a definition rather than reference. */
1048 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1050 olddef = (h->root.type != bfd_link_hash_undefined
1051 && h->root.type != bfd_link_hash_undefweak
1052 && h->root.type != bfd_link_hash_common);
1054 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1055 respectively, appear to be a function. */
1057 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1058 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1060 oldfunc = (h->type != STT_NOTYPE
1061 && bed->is_function_type (h->type));
1063 /* When we try to create a default indirect symbol from the dynamic
1064 definition with the default version, we skip it if its type and
1065 the type of existing regular definition mismatch. */
1066 if (pold_alignment == NULL
1070 && (((olddef || h->root.type == bfd_link_hash_common)
1071 && ELF_ST_TYPE (sym->st_info) != h->type
1072 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1073 && h->type != STT_NOTYPE
1074 && !(newfunc && oldfunc))
1076 && ((h->type == STT_GNU_IFUNC)
1077 != (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))))
1083 /* Check TLS symbols. We don't check undefined symbols introduced
1084 by "ld -u" which have no type (and oldbfd NULL), and we don't
1085 check symbols from plugins because they also have no type. */
1087 && (oldbfd->flags & BFD_PLUGIN) == 0
1088 && (abfd->flags & BFD_PLUGIN) == 0
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1096 if (h->type == STT_TLS)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A "
1118 "mismatches non-TLS definition in %B section %A"),
1119 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1120 else if (!tdef && !ntdef)
1121 (*_bfd_error_handler)
1122 (_("%s: TLS reference in %B "
1123 "mismatches non-TLS reference in %B"),
1124 tbfd, ntbfd, h->root.root.string);
1126 (*_bfd_error_handler)
1127 (_("%s: TLS definition in %B section %A "
1128 "mismatches non-TLS reference in %B"),
1129 tbfd, tsec, ntbfd, h->root.root.string);
1131 (*_bfd_error_handler)
1132 (_("%s: TLS reference in %B "
1133 "mismatches non-TLS definition in %B section %A"),
1134 tbfd, ntbfd, ntsec, h->root.root.string);
1136 bfd_set_error (bfd_error_bad_value);
1140 /* If the old symbol has non-default visibility, we ignore the new
1141 definition from a dynamic object. */
1143 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1144 && !bfd_is_und_section (sec))
1147 /* Make sure this symbol is dynamic. */
1149 hi->ref_dynamic = 1;
1150 /* A protected symbol has external availability. Make sure it is
1151 recorded as dynamic.
1153 FIXME: Should we check type and size for protected symbol? */
1154 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1155 return bfd_elf_link_record_dynamic_symbol (info, h);
1160 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1163 /* If the new symbol with non-default visibility comes from a
1164 relocatable file and the old definition comes from a dynamic
1165 object, we remove the old definition. */
1166 if (hi->root.type == bfd_link_hash_indirect)
1168 /* Handle the case where the old dynamic definition is
1169 default versioned. We need to copy the symbol info from
1170 the symbol with default version to the normal one if it
1171 was referenced before. */
1174 hi->root.type = h->root.type;
1175 h->root.type = bfd_link_hash_indirect;
1176 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1178 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1179 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1181 /* If the new symbol is hidden or internal, completely undo
1182 any dynamic link state. */
1183 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1184 h->forced_local = 0;
1191 /* FIXME: Should we check type and size for protected symbol? */
1201 /* If the old symbol was undefined before, then it will still be
1202 on the undefs list. If the new symbol is undefined or
1203 common, we can't make it bfd_link_hash_new here, because new
1204 undefined or common symbols will be added to the undefs list
1205 by _bfd_generic_link_add_one_symbol. Symbols may not be
1206 added twice to the undefs list. Also, if the new symbol is
1207 undefweak then we don't want to lose the strong undef. */
1208 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1210 h->root.type = bfd_link_hash_undefined;
1211 h->root.u.undef.abfd = abfd;
1215 h->root.type = bfd_link_hash_new;
1216 h->root.u.undef.abfd = NULL;
1219 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1221 /* If the new symbol is hidden or internal, completely undo
1222 any dynamic link state. */
1223 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1224 h->forced_local = 0;
1230 /* FIXME: Should we check type and size for protected symbol? */
1236 /* If a new weak symbol definition comes from a regular file and the
1237 old symbol comes from a dynamic library, we treat the new one as
1238 strong. Similarly, an old weak symbol definition from a regular
1239 file is treated as strong when the new symbol comes from a dynamic
1240 library. Further, an old weak symbol from a dynamic library is
1241 treated as strong if the new symbol is from a dynamic library.
1242 This reflects the way glibc's ld.so works.
1244 Do this before setting *type_change_ok or *size_change_ok so that
1245 we warn properly when dynamic library symbols are overridden. */
1247 if (newdef && !newdyn && olddyn)
1249 if (olddef && newdyn)
1252 /* Allow changes between different types of function symbol. */
1253 if (newfunc && oldfunc)
1254 *type_change_ok = TRUE;
1256 /* It's OK to change the type if either the existing symbol or the
1257 new symbol is weak. A type change is also OK if the old symbol
1258 is undefined and the new symbol is defined. */
1263 && h->root.type == bfd_link_hash_undefined))
1264 *type_change_ok = TRUE;
1266 /* It's OK to change the size if either the existing symbol or the
1267 new symbol is weak, or if the old symbol is undefined. */
1270 || h->root.type == bfd_link_hash_undefined)
1271 *size_change_ok = TRUE;
1273 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1274 symbol, respectively, appears to be a common symbol in a dynamic
1275 object. If a symbol appears in an uninitialized section, and is
1276 not weak, and is not a function, then it may be a common symbol
1277 which was resolved when the dynamic object was created. We want
1278 to treat such symbols specially, because they raise special
1279 considerations when setting the symbol size: if the symbol
1280 appears as a common symbol in a regular object, and the size in
1281 the regular object is larger, we must make sure that we use the
1282 larger size. This problematic case can always be avoided in C,
1283 but it must be handled correctly when using Fortran shared
1286 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1287 likewise for OLDDYNCOMMON and OLDDEF.
1289 Note that this test is just a heuristic, and that it is quite
1290 possible to have an uninitialized symbol in a shared object which
1291 is really a definition, rather than a common symbol. This could
1292 lead to some minor confusion when the symbol really is a common
1293 symbol in some regular object. However, I think it will be
1299 && (sec->flags & SEC_ALLOC) != 0
1300 && (sec->flags & SEC_LOAD) == 0
1303 newdyncommon = TRUE;
1305 newdyncommon = FALSE;
1309 && h->root.type == bfd_link_hash_defined
1311 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1312 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1315 olddyncommon = TRUE;
1317 olddyncommon = FALSE;
1319 /* We now know everything about the old and new symbols. We ask the
1320 backend to check if we can merge them. */
1321 if (bed->merge_symbol != NULL)
1323 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1328 /* If both the old and the new symbols look like common symbols in a
1329 dynamic object, set the size of the symbol to the larger of the
1334 && sym->st_size != h->size)
1336 /* Since we think we have two common symbols, issue a multiple
1337 common warning if desired. Note that we only warn if the
1338 size is different. If the size is the same, we simply let
1339 the old symbol override the new one as normally happens with
1340 symbols defined in dynamic objects. */
1342 if (! ((*info->callbacks->multiple_common)
1343 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1346 if (sym->st_size > h->size)
1347 h->size = sym->st_size;
1349 *size_change_ok = TRUE;
1352 /* If we are looking at a dynamic object, and we have found a
1353 definition, we need to see if the symbol was already defined by
1354 some other object. If so, we want to use the existing
1355 definition, and we do not want to report a multiple symbol
1356 definition error; we do this by clobbering *PSEC to be
1357 bfd_und_section_ptr.
1359 We treat a common symbol as a definition if the symbol in the
1360 shared library is a function, since common symbols always
1361 represent variables; this can cause confusion in principle, but
1362 any such confusion would seem to indicate an erroneous program or
1363 shared library. We also permit a common symbol in a regular
1364 object to override a weak symbol in a shared object. */
1369 || (h->root.type == bfd_link_hash_common
1370 && (newweak || newfunc))))
1374 newdyncommon = FALSE;
1376 *psec = sec = bfd_und_section_ptr;
1377 *size_change_ok = TRUE;
1379 /* If we get here when the old symbol is a common symbol, then
1380 we are explicitly letting it override a weak symbol or
1381 function in a dynamic object, and we don't want to warn about
1382 a type change. If the old symbol is a defined symbol, a type
1383 change warning may still be appropriate. */
1385 if (h->root.type == bfd_link_hash_common)
1386 *type_change_ok = TRUE;
1389 /* Handle the special case of an old common symbol merging with a
1390 new symbol which looks like a common symbol in a shared object.
1391 We change *PSEC and *PVALUE to make the new symbol look like a
1392 common symbol, and let _bfd_generic_link_add_one_symbol do the
1396 && h->root.type == bfd_link_hash_common)
1400 newdyncommon = FALSE;
1401 *pvalue = sym->st_size;
1402 *psec = sec = bed->common_section (oldsec);
1403 *size_change_ok = TRUE;
1406 /* Skip weak definitions of symbols that are already defined. */
1407 if (newdef && olddef && newweak)
1409 /* Don't skip new non-IR weak syms. */
1410 if (!(oldbfd != NULL
1411 && (oldbfd->flags & BFD_PLUGIN) != 0
1412 && (abfd->flags & BFD_PLUGIN) == 0))
1418 /* Merge st_other. If the symbol already has a dynamic index,
1419 but visibility says it should not be visible, turn it into a
1421 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1422 if (h->dynindx != -1)
1423 switch (ELF_ST_VISIBILITY (h->other))
1427 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 /* If the old symbol is from a dynamic object, and the new symbol is
1433 a definition which is not from a dynamic object, then the new
1434 symbol overrides the old symbol. Symbols from regular files
1435 always take precedence over symbols from dynamic objects, even if
1436 they are defined after the dynamic object in the link.
1438 As above, we again permit a common symbol in a regular object to
1439 override a definition in a shared object if the shared object
1440 symbol is a function or is weak. */
1445 || (bfd_is_com_section (sec)
1446 && (oldweak || oldfunc)))
1451 /* Change the hash table entry to undefined, and let
1452 _bfd_generic_link_add_one_symbol do the right thing with the
1455 h->root.type = bfd_link_hash_undefined;
1456 h->root.u.undef.abfd = h->root.u.def.section->owner;
1457 *size_change_ok = TRUE;
1460 olddyncommon = FALSE;
1462 /* We again permit a type change when a common symbol may be
1463 overriding a function. */
1465 if (bfd_is_com_section (sec))
1469 /* If a common symbol overrides a function, make sure
1470 that it isn't defined dynamically nor has type
1473 h->type = STT_NOTYPE;
1475 *type_change_ok = TRUE;
1478 if (hi->root.type == bfd_link_hash_indirect)
1481 /* This union may have been set to be non-NULL when this symbol
1482 was seen in a dynamic object. We must force the union to be
1483 NULL, so that it is correct for a regular symbol. */
1484 h->verinfo.vertree = NULL;
1487 /* Handle the special case of a new common symbol merging with an
1488 old symbol that looks like it might be a common symbol defined in
1489 a shared object. Note that we have already handled the case in
1490 which a new common symbol should simply override the definition
1491 in the shared library. */
1494 && bfd_is_com_section (sec)
1497 /* It would be best if we could set the hash table entry to a
1498 common symbol, but we don't know what to use for the section
1499 or the alignment. */
1500 if (! ((*info->callbacks->multiple_common)
1501 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1504 /* If the presumed common symbol in the dynamic object is
1505 larger, pretend that the new symbol has its size. */
1507 if (h->size > *pvalue)
1510 /* We need to remember the alignment required by the symbol
1511 in the dynamic object. */
1512 BFD_ASSERT (pold_alignment);
1513 *pold_alignment = h->root.u.def.section->alignment_power;
1516 olddyncommon = FALSE;
1518 h->root.type = bfd_link_hash_undefined;
1519 h->root.u.undef.abfd = h->root.u.def.section->owner;
1521 *size_change_ok = TRUE;
1522 *type_change_ok = TRUE;
1524 if (hi->root.type == bfd_link_hash_indirect)
1527 h->verinfo.vertree = NULL;
1532 /* Handle the case where we had a versioned symbol in a dynamic
1533 library and now find a definition in a normal object. In this
1534 case, we make the versioned symbol point to the normal one. */
1535 flip->root.type = h->root.type;
1536 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1537 h->root.type = bfd_link_hash_indirect;
1538 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1539 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1543 flip->ref_dynamic = 1;
1550 /* This function is called to create an indirect symbol from the
1551 default for the symbol with the default version if needed. The
1552 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1553 set DYNSYM if the new indirect symbol is dynamic. */
1556 _bfd_elf_add_default_symbol (bfd *abfd,
1557 struct bfd_link_info *info,
1558 struct elf_link_hash_entry *h,
1560 Elf_Internal_Sym *sym,
1564 bfd_boolean *dynsym)
1566 bfd_boolean type_change_ok;
1567 bfd_boolean size_change_ok;
1570 struct elf_link_hash_entry *hi;
1571 struct bfd_link_hash_entry *bh;
1572 const struct elf_backend_data *bed;
1573 bfd_boolean collect;
1574 bfd_boolean dynamic;
1575 bfd_boolean override;
1577 size_t len, shortlen;
1580 /* If this symbol has a version, and it is the default version, we
1581 create an indirect symbol from the default name to the fully
1582 decorated name. This will cause external references which do not
1583 specify a version to be bound to this version of the symbol. */
1584 p = strchr (name, ELF_VER_CHR);
1585 if (p == NULL || p[1] != ELF_VER_CHR)
1588 bed = get_elf_backend_data (abfd);
1589 collect = bed->collect;
1590 dynamic = (abfd->flags & DYNAMIC) != 0;
1592 shortlen = p - name;
1593 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1594 if (shortname == NULL)
1596 memcpy (shortname, name, shortlen);
1597 shortname[shortlen] = '\0';
1599 /* We are going to create a new symbol. Merge it with any existing
1600 symbol with this name. For the purposes of the merge, act as
1601 though we were defining the symbol we just defined, although we
1602 actually going to define an indirect symbol. */
1603 type_change_ok = FALSE;
1604 size_change_ok = FALSE;
1606 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1607 &hi, poldbfd, NULL, NULL, &skip, &override,
1608 &type_change_ok, &size_change_ok))
1617 if (! (_bfd_generic_link_add_one_symbol
1618 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1619 0, name, FALSE, collect, &bh)))
1621 hi = (struct elf_link_hash_entry *) bh;
1625 /* In this case the symbol named SHORTNAME is overriding the
1626 indirect symbol we want to add. We were planning on making
1627 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1628 is the name without a version. NAME is the fully versioned
1629 name, and it is the default version.
1631 Overriding means that we already saw a definition for the
1632 symbol SHORTNAME in a regular object, and it is overriding
1633 the symbol defined in the dynamic object.
1635 When this happens, we actually want to change NAME, the
1636 symbol we just added, to refer to SHORTNAME. This will cause
1637 references to NAME in the shared object to become references
1638 to SHORTNAME in the regular object. This is what we expect
1639 when we override a function in a shared object: that the
1640 references in the shared object will be mapped to the
1641 definition in the regular object. */
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1645 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1647 h->root.type = bfd_link_hash_indirect;
1648 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1652 hi->ref_dynamic = 1;
1656 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1661 /* Now set HI to H, so that the following code will set the
1662 other fields correctly. */
1666 /* Check if HI is a warning symbol. */
1667 if (hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670 /* If there is a duplicate definition somewhere, then HI may not
1671 point to an indirect symbol. We will have reported an error to
1672 the user in that case. */
1674 if (hi->root.type == bfd_link_hash_indirect)
1676 struct elf_link_hash_entry *ht;
1678 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1681 /* A reference to the SHORTNAME symbol from a dynamic library
1682 will be satisfied by the versioned symbol at runtime. In
1683 effect, we have a reference to the versioned symbol. */
1684 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1685 hi->dynamic_def |= ht->dynamic_def;
1687 /* See if the new flags lead us to realize that the symbol must
1693 if (! info->executable
1700 if (hi->ref_regular)
1706 /* We also need to define an indirection from the nondefault version
1710 len = strlen (name);
1711 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1712 if (shortname == NULL)
1714 memcpy (shortname, name, shortlen);
1715 memcpy (shortname + shortlen, p + 1, len - shortlen);
1717 /* Once again, merge with any existing symbol. */
1718 type_change_ok = FALSE;
1719 size_change_ok = FALSE;
1721 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1722 &hi, poldbfd, NULL, NULL, &skip, &override,
1723 &type_change_ok, &size_change_ok))
1731 /* Here SHORTNAME is a versioned name, so we don't expect to see
1732 the type of override we do in the case above unless it is
1733 overridden by a versioned definition. */
1734 if (hi->root.type != bfd_link_hash_defined
1735 && hi->root.type != bfd_link_hash_defweak)
1736 (*_bfd_error_handler)
1737 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1743 if (! (_bfd_generic_link_add_one_symbol
1744 (info, abfd, shortname, BSF_INDIRECT,
1745 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1747 hi = (struct elf_link_hash_entry *) bh;
1749 /* If there is a duplicate definition somewhere, then HI may not
1750 point to an indirect symbol. We will have reported an error
1751 to the user in that case. */
1753 if (hi->root.type == bfd_link_hash_indirect)
1755 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1756 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1757 hi->dynamic_def |= h->dynamic_def;
1759 /* See if the new flags lead us to realize that the symbol
1765 if (! info->executable
1771 if (hi->ref_regular)
1781 /* This routine is used to export all defined symbols into the dynamic
1782 symbol table. It is called via elf_link_hash_traverse. */
1785 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1787 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1789 /* Ignore indirect symbols. These are added by the versioning code. */
1790 if (h->root.type == bfd_link_hash_indirect)
1793 /* Ignore this if we won't export it. */
1794 if (!eif->info->export_dynamic && !h->dynamic)
1797 if (h->dynindx == -1
1798 && (h->def_regular || h->ref_regular)
1799 && ! bfd_hide_sym_by_version (eif->info->version_info,
1800 h->root.root.string))
1802 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1812 /* Look through the symbols which are defined in other shared
1813 libraries and referenced here. Update the list of version
1814 dependencies. This will be put into the .gnu.version_r section.
1815 This function is called via elf_link_hash_traverse. */
1818 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1821 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1822 Elf_Internal_Verneed *t;
1823 Elf_Internal_Vernaux *a;
1826 /* We only care about symbols defined in shared objects with version
1831 || h->verinfo.verdef == NULL
1832 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
1833 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
1836 /* See if we already know about this version. */
1837 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1841 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1844 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1845 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1851 /* This is a new version. Add it to tree we are building. */
1856 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1859 rinfo->failed = TRUE;
1863 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1864 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1865 elf_tdata (rinfo->info->output_bfd)->verref = t;
1869 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1872 rinfo->failed = TRUE;
1876 /* Note that we are copying a string pointer here, and testing it
1877 above. If bfd_elf_string_from_elf_section is ever changed to
1878 discard the string data when low in memory, this will have to be
1880 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1882 a->vna_flags = h->verinfo.verdef->vd_flags;
1883 a->vna_nextptr = t->vn_auxptr;
1885 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1888 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1895 /* Figure out appropriate versions for all the symbols. We may not
1896 have the version number script until we have read all of the input
1897 files, so until that point we don't know which symbols should be
1898 local. This function is called via elf_link_hash_traverse. */
1901 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1903 struct elf_info_failed *sinfo;
1904 struct bfd_link_info *info;
1905 const struct elf_backend_data *bed;
1906 struct elf_info_failed eif;
1910 sinfo = (struct elf_info_failed *) data;
1913 /* Fix the symbol flags. */
1916 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1919 sinfo->failed = TRUE;
1923 /* We only need version numbers for symbols defined in regular
1925 if (!h->def_regular)
1928 bed = get_elf_backend_data (info->output_bfd);
1929 p = strchr (h->root.root.string, ELF_VER_CHR);
1930 if (p != NULL && h->verinfo.vertree == NULL)
1932 struct bfd_elf_version_tree *t;
1937 /* There are two consecutive ELF_VER_CHR characters if this is
1938 not a hidden symbol. */
1940 if (*p == ELF_VER_CHR)
1946 /* If there is no version string, we can just return out. */
1954 /* Look for the version. If we find it, it is no longer weak. */
1955 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1957 if (strcmp (t->name, p) == 0)
1961 struct bfd_elf_version_expr *d;
1963 len = p - h->root.root.string;
1964 alc = (char *) bfd_malloc (len);
1967 sinfo->failed = TRUE;
1970 memcpy (alc, h->root.root.string, len - 1);
1971 alc[len - 1] = '\0';
1972 if (alc[len - 2] == ELF_VER_CHR)
1973 alc[len - 2] = '\0';
1975 h->verinfo.vertree = t;
1979 if (t->globals.list != NULL)
1980 d = (*t->match) (&t->globals, NULL, alc);
1982 /* See if there is anything to force this symbol to
1984 if (d == NULL && t->locals.list != NULL)
1986 d = (*t->match) (&t->locals, NULL, alc);
1989 && ! info->export_dynamic)
1990 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1998 /* If we are building an application, we need to create a
1999 version node for this version. */
2000 if (t == NULL && info->executable)
2002 struct bfd_elf_version_tree **pp;
2005 /* If we aren't going to export this symbol, we don't need
2006 to worry about it. */
2007 if (h->dynindx == -1)
2011 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2014 sinfo->failed = TRUE;
2019 t->name_indx = (unsigned int) -1;
2023 /* Don't count anonymous version tag. */
2024 if (sinfo->info->version_info != NULL
2025 && sinfo->info->version_info->vernum == 0)
2027 for (pp = &sinfo->info->version_info;
2031 t->vernum = version_index;
2035 h->verinfo.vertree = t;
2039 /* We could not find the version for a symbol when
2040 generating a shared archive. Return an error. */
2041 (*_bfd_error_handler)
2042 (_("%B: version node not found for symbol %s"),
2043 info->output_bfd, h->root.root.string);
2044 bfd_set_error (bfd_error_bad_value);
2045 sinfo->failed = TRUE;
2053 /* If we don't have a version for this symbol, see if we can find
2055 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2060 = bfd_find_version_for_sym (sinfo->info->version_info,
2061 h->root.root.string, &hide);
2062 if (h->verinfo.vertree != NULL && hide)
2063 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2069 /* Read and swap the relocs from the section indicated by SHDR. This
2070 may be either a REL or a RELA section. The relocations are
2071 translated into RELA relocations and stored in INTERNAL_RELOCS,
2072 which should have already been allocated to contain enough space.
2073 The EXTERNAL_RELOCS are a buffer where the external form of the
2074 relocations should be stored.
2076 Returns FALSE if something goes wrong. */
2079 elf_link_read_relocs_from_section (bfd *abfd,
2081 Elf_Internal_Shdr *shdr,
2082 void *external_relocs,
2083 Elf_Internal_Rela *internal_relocs)
2085 const struct elf_backend_data *bed;
2086 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2087 const bfd_byte *erela;
2088 const bfd_byte *erelaend;
2089 Elf_Internal_Rela *irela;
2090 Elf_Internal_Shdr *symtab_hdr;
2093 /* Position ourselves at the start of the section. */
2094 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2097 /* Read the relocations. */
2098 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2101 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2102 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2104 bed = get_elf_backend_data (abfd);
2106 /* Convert the external relocations to the internal format. */
2107 if (shdr->sh_entsize == bed->s->sizeof_rel)
2108 swap_in = bed->s->swap_reloc_in;
2109 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2110 swap_in = bed->s->swap_reloca_in;
2113 bfd_set_error (bfd_error_wrong_format);
2117 erela = (const bfd_byte *) external_relocs;
2118 erelaend = erela + shdr->sh_size;
2119 irela = internal_relocs;
2120 while (erela < erelaend)
2124 (*swap_in) (abfd, erela, irela);
2125 r_symndx = ELF32_R_SYM (irela->r_info);
2126 if (bed->s->arch_size == 64)
2130 if ((size_t) r_symndx >= nsyms)
2132 (*_bfd_error_handler)
2133 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2134 " for offset 0x%lx in section `%A'"),
2136 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2137 bfd_set_error (bfd_error_bad_value);
2141 else if (r_symndx != STN_UNDEF)
2143 (*_bfd_error_handler)
2144 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2145 " when the object file has no symbol table"),
2147 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2148 bfd_set_error (bfd_error_bad_value);
2151 irela += bed->s->int_rels_per_ext_rel;
2152 erela += shdr->sh_entsize;
2158 /* Read and swap the relocs for a section O. They may have been
2159 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2160 not NULL, they are used as buffers to read into. They are known to
2161 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2162 the return value is allocated using either malloc or bfd_alloc,
2163 according to the KEEP_MEMORY argument. If O has two relocation
2164 sections (both REL and RELA relocations), then the REL_HDR
2165 relocations will appear first in INTERNAL_RELOCS, followed by the
2166 RELA_HDR relocations. */
2169 _bfd_elf_link_read_relocs (bfd *abfd,
2171 void *external_relocs,
2172 Elf_Internal_Rela *internal_relocs,
2173 bfd_boolean keep_memory)
2175 void *alloc1 = NULL;
2176 Elf_Internal_Rela *alloc2 = NULL;
2177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2178 struct bfd_elf_section_data *esdo = elf_section_data (o);
2179 Elf_Internal_Rela *internal_rela_relocs;
2181 if (esdo->relocs != NULL)
2182 return esdo->relocs;
2184 if (o->reloc_count == 0)
2187 if (internal_relocs == NULL)
2191 size = o->reloc_count;
2192 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2194 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2196 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2197 if (internal_relocs == NULL)
2201 if (external_relocs == NULL)
2203 bfd_size_type size = 0;
2206 size += esdo->rel.hdr->sh_size;
2208 size += esdo->rela.hdr->sh_size;
2210 alloc1 = bfd_malloc (size);
2213 external_relocs = alloc1;
2216 internal_rela_relocs = internal_relocs;
2219 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2223 external_relocs = (((bfd_byte *) external_relocs)
2224 + esdo->rel.hdr->sh_size);
2225 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2226 * bed->s->int_rels_per_ext_rel);
2230 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2232 internal_rela_relocs)))
2235 /* Cache the results for next time, if we can. */
2237 esdo->relocs = internal_relocs;
2242 /* Don't free alloc2, since if it was allocated we are passing it
2243 back (under the name of internal_relocs). */
2245 return internal_relocs;
2253 bfd_release (abfd, alloc2);
2260 /* Compute the size of, and allocate space for, REL_HDR which is the
2261 section header for a section containing relocations for O. */
2264 _bfd_elf_link_size_reloc_section (bfd *abfd,
2265 struct bfd_elf_section_reloc_data *reldata)
2267 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2269 /* That allows us to calculate the size of the section. */
2270 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2272 /* The contents field must last into write_object_contents, so we
2273 allocate it with bfd_alloc rather than malloc. Also since we
2274 cannot be sure that the contents will actually be filled in,
2275 we zero the allocated space. */
2276 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2277 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2280 if (reldata->hashes == NULL && reldata->count)
2282 struct elf_link_hash_entry **p;
2284 p = (struct elf_link_hash_entry **)
2285 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2289 reldata->hashes = p;
2295 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2296 originated from the section given by INPUT_REL_HDR) to the
2300 _bfd_elf_link_output_relocs (bfd *output_bfd,
2301 asection *input_section,
2302 Elf_Internal_Shdr *input_rel_hdr,
2303 Elf_Internal_Rela *internal_relocs,
2304 struct elf_link_hash_entry **rel_hash
2307 Elf_Internal_Rela *irela;
2308 Elf_Internal_Rela *irelaend;
2310 struct bfd_elf_section_reloc_data *output_reldata;
2311 asection *output_section;
2312 const struct elf_backend_data *bed;
2313 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2314 struct bfd_elf_section_data *esdo;
2316 output_section = input_section->output_section;
2318 bed = get_elf_backend_data (output_bfd);
2319 esdo = elf_section_data (output_section);
2320 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2322 output_reldata = &esdo->rel;
2323 swap_out = bed->s->swap_reloc_out;
2325 else if (esdo->rela.hdr
2326 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2328 output_reldata = &esdo->rela;
2329 swap_out = bed->s->swap_reloca_out;
2333 (*_bfd_error_handler)
2334 (_("%B: relocation size mismatch in %B section %A"),
2335 output_bfd, input_section->owner, input_section);
2336 bfd_set_error (bfd_error_wrong_format);
2340 erel = output_reldata->hdr->contents;
2341 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2342 irela = internal_relocs;
2343 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2344 * bed->s->int_rels_per_ext_rel);
2345 while (irela < irelaend)
2347 (*swap_out) (output_bfd, irela, erel);
2348 irela += bed->s->int_rels_per_ext_rel;
2349 erel += input_rel_hdr->sh_entsize;
2352 /* Bump the counter, so that we know where to add the next set of
2354 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2359 /* Make weak undefined symbols in PIE dynamic. */
2362 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2363 struct elf_link_hash_entry *h)
2367 && h->root.type == bfd_link_hash_undefweak)
2368 return bfd_elf_link_record_dynamic_symbol (info, h);
2373 /* Fix up the flags for a symbol. This handles various cases which
2374 can only be fixed after all the input files are seen. This is
2375 currently called by both adjust_dynamic_symbol and
2376 assign_sym_version, which is unnecessary but perhaps more robust in
2377 the face of future changes. */
2380 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2381 struct elf_info_failed *eif)
2383 const struct elf_backend_data *bed;
2385 /* If this symbol was mentioned in a non-ELF file, try to set
2386 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2387 permit a non-ELF file to correctly refer to a symbol defined in
2388 an ELF dynamic object. */
2391 while (h->root.type == bfd_link_hash_indirect)
2392 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2394 if (h->root.type != bfd_link_hash_defined
2395 && h->root.type != bfd_link_hash_defweak)
2398 h->ref_regular_nonweak = 1;
2402 if (h->root.u.def.section->owner != NULL
2403 && (bfd_get_flavour (h->root.u.def.section->owner)
2404 == bfd_target_elf_flavour))
2407 h->ref_regular_nonweak = 1;
2413 if (h->dynindx == -1
2417 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2426 /* Unfortunately, NON_ELF is only correct if the symbol
2427 was first seen in a non-ELF file. Fortunately, if the symbol
2428 was first seen in an ELF file, we're probably OK unless the
2429 symbol was defined in a non-ELF file. Catch that case here.
2430 FIXME: We're still in trouble if the symbol was first seen in
2431 a dynamic object, and then later in a non-ELF regular object. */
2432 if ((h->root.type == bfd_link_hash_defined
2433 || h->root.type == bfd_link_hash_defweak)
2435 && (h->root.u.def.section->owner != NULL
2436 ? (bfd_get_flavour (h->root.u.def.section->owner)
2437 != bfd_target_elf_flavour)
2438 : (bfd_is_abs_section (h->root.u.def.section)
2439 && !h->def_dynamic)))
2443 /* Backend specific symbol fixup. */
2444 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2445 if (bed->elf_backend_fixup_symbol
2446 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2449 /* If this is a final link, and the symbol was defined as a common
2450 symbol in a regular object file, and there was no definition in
2451 any dynamic object, then the linker will have allocated space for
2452 the symbol in a common section but the DEF_REGULAR
2453 flag will not have been set. */
2454 if (h->root.type == bfd_link_hash_defined
2458 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2461 /* If -Bsymbolic was used (which means to bind references to global
2462 symbols to the definition within the shared object), and this
2463 symbol was defined in a regular object, then it actually doesn't
2464 need a PLT entry. Likewise, if the symbol has non-default
2465 visibility. If the symbol has hidden or internal visibility, we
2466 will force it local. */
2468 && eif->info->shared
2469 && is_elf_hash_table (eif->info->hash)
2470 && (SYMBOLIC_BIND (eif->info, h)
2471 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2474 bfd_boolean force_local;
2476 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2477 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2478 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2481 /* If a weak undefined symbol has non-default visibility, we also
2482 hide it from the dynamic linker. */
2483 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2484 && h->root.type == bfd_link_hash_undefweak)
2485 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2487 /* If this is a weak defined symbol in a dynamic object, and we know
2488 the real definition in the dynamic object, copy interesting flags
2489 over to the real definition. */
2490 if (h->u.weakdef != NULL)
2492 /* If the real definition is defined by a regular object file,
2493 don't do anything special. See the longer description in
2494 _bfd_elf_adjust_dynamic_symbol, below. */
2495 if (h->u.weakdef->def_regular)
2496 h->u.weakdef = NULL;
2499 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2501 while (h->root.type == bfd_link_hash_indirect)
2502 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2504 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2505 || h->root.type == bfd_link_hash_defweak);
2506 BFD_ASSERT (weakdef->def_dynamic);
2507 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2508 || weakdef->root.type == bfd_link_hash_defweak);
2509 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2516 /* Make the backend pick a good value for a dynamic symbol. This is
2517 called via elf_link_hash_traverse, and also calls itself
2521 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2523 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2525 const struct elf_backend_data *bed;
2527 if (! is_elf_hash_table (eif->info->hash))
2530 /* Ignore indirect symbols. These are added by the versioning code. */
2531 if (h->root.type == bfd_link_hash_indirect)
2534 /* Fix the symbol flags. */
2535 if (! _bfd_elf_fix_symbol_flags (h, eif))
2538 /* If this symbol does not require a PLT entry, and it is not
2539 defined by a dynamic object, or is not referenced by a regular
2540 object, ignore it. We do have to handle a weak defined symbol,
2541 even if no regular object refers to it, if we decided to add it
2542 to the dynamic symbol table. FIXME: Do we normally need to worry
2543 about symbols which are defined by one dynamic object and
2544 referenced by another one? */
2546 && h->type != STT_GNU_IFUNC
2550 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2552 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2556 /* If we've already adjusted this symbol, don't do it again. This
2557 can happen via a recursive call. */
2558 if (h->dynamic_adjusted)
2561 /* Don't look at this symbol again. Note that we must set this
2562 after checking the above conditions, because we may look at a
2563 symbol once, decide not to do anything, and then get called
2564 recursively later after REF_REGULAR is set below. */
2565 h->dynamic_adjusted = 1;
2567 /* If this is a weak definition, and we know a real definition, and
2568 the real symbol is not itself defined by a regular object file,
2569 then get a good value for the real definition. We handle the
2570 real symbol first, for the convenience of the backend routine.
2572 Note that there is a confusing case here. If the real definition
2573 is defined by a regular object file, we don't get the real symbol
2574 from the dynamic object, but we do get the weak symbol. If the
2575 processor backend uses a COPY reloc, then if some routine in the
2576 dynamic object changes the real symbol, we will not see that
2577 change in the corresponding weak symbol. This is the way other
2578 ELF linkers work as well, and seems to be a result of the shared
2581 I will clarify this issue. Most SVR4 shared libraries define the
2582 variable _timezone and define timezone as a weak synonym. The
2583 tzset call changes _timezone. If you write
2584 extern int timezone;
2586 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2587 you might expect that, since timezone is a synonym for _timezone,
2588 the same number will print both times. However, if the processor
2589 backend uses a COPY reloc, then actually timezone will be copied
2590 into your process image, and, since you define _timezone
2591 yourself, _timezone will not. Thus timezone and _timezone will
2592 wind up at different memory locations. The tzset call will set
2593 _timezone, leaving timezone unchanged. */
2595 if (h->u.weakdef != NULL)
2597 /* If we get to this point, there is an implicit reference to
2598 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2599 h->u.weakdef->ref_regular = 1;
2601 /* Ensure that the backend adjust_dynamic_symbol function sees
2602 H->U.WEAKDEF before H by recursively calling ourselves. */
2603 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2607 /* If a symbol has no type and no size and does not require a PLT
2608 entry, then we are probably about to do the wrong thing here: we
2609 are probably going to create a COPY reloc for an empty object.
2610 This case can arise when a shared object is built with assembly
2611 code, and the assembly code fails to set the symbol type. */
2613 && h->type == STT_NOTYPE
2615 (*_bfd_error_handler)
2616 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2617 h->root.root.string);
2619 dynobj = elf_hash_table (eif->info)->dynobj;
2620 bed = get_elf_backend_data (dynobj);
2622 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2631 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2635 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2636 struct elf_link_hash_entry *h,
2639 unsigned int power_of_two;
2641 asection *sec = h->root.u.def.section;
2643 /* The section aligment of definition is the maximum alignment
2644 requirement of symbols defined in the section. Since we don't
2645 know the symbol alignment requirement, we start with the
2646 maximum alignment and check low bits of the symbol address
2647 for the minimum alignment. */
2648 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2649 mask = ((bfd_vma) 1 << power_of_two) - 1;
2650 while ((h->root.u.def.value & mask) != 0)
2656 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2659 /* Adjust the section alignment if needed. */
2660 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2665 /* We make sure that the symbol will be aligned properly. */
2666 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2668 /* Define the symbol as being at this point in DYNBSS. */
2669 h->root.u.def.section = dynbss;
2670 h->root.u.def.value = dynbss->size;
2672 /* Increment the size of DYNBSS to make room for the symbol. */
2673 dynbss->size += h->size;
2675 if (h->protected_def)
2677 info->callbacks->einfo
2678 (_("%P: copy reloc against protected `%T' is invalid\n"),
2679 h->root.root.string);
2680 bfd_set_error (bfd_error_bad_value);
2687 /* Adjust all external symbols pointing into SEC_MERGE sections
2688 to reflect the object merging within the sections. */
2691 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2700 bfd *output_bfd = (bfd *) data;
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean not_local_protected)
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2735 if (h->forced_local)
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742 switch (ELF_ST_VISIBILITY (h->other))
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2753 bed = get_elf_backend_data (hash_table->dynobj);
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!not_local_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols. The two functions are virtually identical except
2779 for the place where forced_local and dynindx == -1 are tested. If
2780 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2781 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2782 the symbol is local only for defined symbols.
2783 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2784 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2785 treatment of undefined weak symbols. For those that do not make
2786 undefined weak symbols dynamic, both functions may return false. */
2789 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2790 struct bfd_link_info *info,
2791 bfd_boolean local_protected)
2793 const struct elf_backend_data *bed;
2794 struct elf_link_hash_table *hash_table;
2796 /* If it's a local sym, of course we resolve locally. */
2800 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2801 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2802 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2805 /* Common symbols that become definitions don't get the DEF_REGULAR
2806 flag set, so test it first, and don't bail out. */
2807 if (ELF_COMMON_DEF_P (h))
2809 /* If we don't have a definition in a regular file, then we can't
2810 resolve locally. The sym is either undefined or dynamic. */
2811 else if (!h->def_regular)
2814 /* Forced local symbols resolve locally. */
2815 if (h->forced_local)
2818 /* As do non-dynamic symbols. */
2819 if (h->dynindx == -1)
2822 /* At this point, we know the symbol is defined and dynamic. In an
2823 executable it must resolve locally, likewise when building symbolic
2824 shared libraries. */
2825 if (info->executable || SYMBOLIC_BIND (info, h))
2828 /* Now deal with defined dynamic symbols in shared libraries. Ones
2829 with default visibility might not resolve locally. */
2830 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2833 hash_table = elf_hash_table (info);
2834 if (!is_elf_hash_table (hash_table))
2837 bed = get_elf_backend_data (hash_table->dynobj);
2839 /* STV_PROTECTED non-function symbols are local. */
2840 if (!bed->is_function_type (h->type))
2843 /* Function pointer equality tests may require that STV_PROTECTED
2844 symbols be treated as dynamic symbols. If the address of a
2845 function not defined in an executable is set to that function's
2846 plt entry in the executable, then the address of the function in
2847 a shared library must also be the plt entry in the executable. */
2848 return local_protected;
2851 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2852 aligned. Returns the first TLS output section. */
2854 struct bfd_section *
2855 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2857 struct bfd_section *sec, *tls;
2858 unsigned int align = 0;
2860 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2861 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2865 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2866 if (sec->alignment_power > align)
2867 align = sec->alignment_power;
2869 elf_hash_table (info)->tls_sec = tls;
2871 /* Ensure the alignment of the first section is the largest alignment,
2872 so that the tls segment starts aligned. */
2874 tls->alignment_power = align;
2879 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2881 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2882 Elf_Internal_Sym *sym)
2884 const struct elf_backend_data *bed;
2886 /* Local symbols do not count, but target specific ones might. */
2887 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2888 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2891 bed = get_elf_backend_data (abfd);
2892 /* Function symbols do not count. */
2893 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2896 /* If the section is undefined, then so is the symbol. */
2897 if (sym->st_shndx == SHN_UNDEF)
2900 /* If the symbol is defined in the common section, then
2901 it is a common definition and so does not count. */
2902 if (bed->common_definition (sym))
2905 /* If the symbol is in a target specific section then we
2906 must rely upon the backend to tell us what it is. */
2907 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2908 /* FIXME - this function is not coded yet:
2910 return _bfd_is_global_symbol_definition (abfd, sym);
2912 Instead for now assume that the definition is not global,
2913 Even if this is wrong, at least the linker will behave
2914 in the same way that it used to do. */
2920 /* Search the symbol table of the archive element of the archive ABFD
2921 whose archive map contains a mention of SYMDEF, and determine if
2922 the symbol is defined in this element. */
2924 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2926 Elf_Internal_Shdr * hdr;
2927 bfd_size_type symcount;
2928 bfd_size_type extsymcount;
2929 bfd_size_type extsymoff;
2930 Elf_Internal_Sym *isymbuf;
2931 Elf_Internal_Sym *isym;
2932 Elf_Internal_Sym *isymend;
2935 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2939 if (! bfd_check_format (abfd, bfd_object))
2942 /* Select the appropriate symbol table. */
2943 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2944 hdr = &elf_tdata (abfd)->symtab_hdr;
2946 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2948 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2950 /* The sh_info field of the symtab header tells us where the
2951 external symbols start. We don't care about the local symbols. */
2952 if (elf_bad_symtab (abfd))
2954 extsymcount = symcount;
2959 extsymcount = symcount - hdr->sh_info;
2960 extsymoff = hdr->sh_info;
2963 if (extsymcount == 0)
2966 /* Read in the symbol table. */
2967 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2969 if (isymbuf == NULL)
2972 /* Scan the symbol table looking for SYMDEF. */
2974 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2978 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2983 if (strcmp (name, symdef->name) == 0)
2985 result = is_global_data_symbol_definition (abfd, isym);
2995 /* Add an entry to the .dynamic table. */
2998 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3002 struct elf_link_hash_table *hash_table;
3003 const struct elf_backend_data *bed;
3005 bfd_size_type newsize;
3006 bfd_byte *newcontents;
3007 Elf_Internal_Dyn dyn;
3009 hash_table = elf_hash_table (info);
3010 if (! is_elf_hash_table (hash_table))
3013 bed = get_elf_backend_data (hash_table->dynobj);
3014 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3015 BFD_ASSERT (s != NULL);
3017 newsize = s->size + bed->s->sizeof_dyn;
3018 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3019 if (newcontents == NULL)
3023 dyn.d_un.d_val = val;
3024 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3027 s->contents = newcontents;
3032 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3033 otherwise just check whether one already exists. Returns -1 on error,
3034 1 if a DT_NEEDED tag already exists, and 0 on success. */
3037 elf_add_dt_needed_tag (bfd *abfd,
3038 struct bfd_link_info *info,
3042 struct elf_link_hash_table *hash_table;
3043 bfd_size_type strindex;
3045 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3048 hash_table = elf_hash_table (info);
3049 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3050 if (strindex == (bfd_size_type) -1)
3053 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3056 const struct elf_backend_data *bed;
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3062 for (extdyn = sdyn->contents;
3063 extdyn < sdyn->contents + sdyn->size;
3064 extdyn += bed->s->sizeof_dyn)
3066 Elf_Internal_Dyn dyn;
3068 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3069 if (dyn.d_tag == DT_NEEDED
3070 && dyn.d_un.d_val == strindex)
3072 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3080 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3083 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3087 /* We were just checking for existence of the tag. */
3088 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3094 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3096 for (; needed != NULL; needed = needed->next)
3097 if ((elf_dyn_lib_class (needed->by) & DYN_AS_NEEDED) == 0
3098 && strcmp (soname, needed->name) == 0)
3104 /* Sort symbol by value, section, and size. */
3106 elf_sort_symbol (const void *arg1, const void *arg2)
3108 const struct elf_link_hash_entry *h1;
3109 const struct elf_link_hash_entry *h2;
3110 bfd_signed_vma vdiff;
3112 h1 = *(const struct elf_link_hash_entry **) arg1;
3113 h2 = *(const struct elf_link_hash_entry **) arg2;
3114 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3116 return vdiff > 0 ? 1 : -1;
3119 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3121 return sdiff > 0 ? 1 : -1;
3123 vdiff = h1->size - h2->size;
3124 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3127 /* This function is used to adjust offsets into .dynstr for
3128 dynamic symbols. This is called via elf_link_hash_traverse. */
3131 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3133 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3135 if (h->dynindx != -1)
3136 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3140 /* Assign string offsets in .dynstr, update all structures referencing
3144 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3146 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3147 struct elf_link_local_dynamic_entry *entry;
3148 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3149 bfd *dynobj = hash_table->dynobj;
3152 const struct elf_backend_data *bed;
3155 _bfd_elf_strtab_finalize (dynstr);
3156 size = _bfd_elf_strtab_size (dynstr);
3158 bed = get_elf_backend_data (dynobj);
3159 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3160 BFD_ASSERT (sdyn != NULL);
3162 /* Update all .dynamic entries referencing .dynstr strings. */
3163 for (extdyn = sdyn->contents;
3164 extdyn < sdyn->contents + sdyn->size;
3165 extdyn += bed->s->sizeof_dyn)
3167 Elf_Internal_Dyn dyn;
3169 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3173 dyn.d_un.d_val = size;
3183 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3188 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3191 /* Now update local dynamic symbols. */
3192 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3193 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3194 entry->isym.st_name);
3196 /* And the rest of dynamic symbols. */
3197 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3199 /* Adjust version definitions. */
3200 if (elf_tdata (output_bfd)->cverdefs)
3205 Elf_Internal_Verdef def;
3206 Elf_Internal_Verdaux defaux;
3208 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3212 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3214 p += sizeof (Elf_External_Verdef);
3215 if (def.vd_aux != sizeof (Elf_External_Verdef))
3217 for (i = 0; i < def.vd_cnt; ++i)
3219 _bfd_elf_swap_verdaux_in (output_bfd,
3220 (Elf_External_Verdaux *) p, &defaux);
3221 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3223 _bfd_elf_swap_verdaux_out (output_bfd,
3224 &defaux, (Elf_External_Verdaux *) p);
3225 p += sizeof (Elf_External_Verdaux);
3228 while (def.vd_next);
3231 /* Adjust version references. */
3232 if (elf_tdata (output_bfd)->verref)
3237 Elf_Internal_Verneed need;
3238 Elf_Internal_Vernaux needaux;
3240 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3244 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3246 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3247 _bfd_elf_swap_verneed_out (output_bfd, &need,
3248 (Elf_External_Verneed *) p);
3249 p += sizeof (Elf_External_Verneed);
3250 for (i = 0; i < need.vn_cnt; ++i)
3252 _bfd_elf_swap_vernaux_in (output_bfd,
3253 (Elf_External_Vernaux *) p, &needaux);
3254 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3256 _bfd_elf_swap_vernaux_out (output_bfd,
3258 (Elf_External_Vernaux *) p);
3259 p += sizeof (Elf_External_Vernaux);
3262 while (need.vn_next);
3268 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3269 The default is to only match when the INPUT and OUTPUT are exactly
3273 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3274 const bfd_target *output)
3276 return input == output;
3279 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3280 This version is used when different targets for the same architecture
3281 are virtually identical. */
3284 _bfd_elf_relocs_compatible (const bfd_target *input,
3285 const bfd_target *output)
3287 const struct elf_backend_data *obed, *ibed;
3289 if (input == output)
3292 ibed = xvec_get_elf_backend_data (input);
3293 obed = xvec_get_elf_backend_data (output);
3295 if (ibed->arch != obed->arch)
3298 /* If both backends are using this function, deem them compatible. */
3299 return ibed->relocs_compatible == obed->relocs_compatible;
3302 /* Make a special call to the linker "notice" function to tell it that
3303 we are about to handle an as-needed lib, or have finished
3304 processing the lib. */
3307 _bfd_elf_notice_as_needed (bfd *ibfd,
3308 struct bfd_link_info *info,
3309 enum notice_asneeded_action act)
3311 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3314 /* Add symbols from an ELF object file to the linker hash table. */
3317 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3319 Elf_Internal_Ehdr *ehdr;
3320 Elf_Internal_Shdr *hdr;
3321 bfd_size_type symcount;
3322 bfd_size_type extsymcount;
3323 bfd_size_type extsymoff;
3324 struct elf_link_hash_entry **sym_hash;
3325 bfd_boolean dynamic;
3326 Elf_External_Versym *extversym = NULL;
3327 Elf_External_Versym *ever;
3328 struct elf_link_hash_entry *weaks;
3329 struct elf_link_hash_entry **nondeflt_vers = NULL;
3330 bfd_size_type nondeflt_vers_cnt = 0;
3331 Elf_Internal_Sym *isymbuf = NULL;
3332 Elf_Internal_Sym *isym;
3333 Elf_Internal_Sym *isymend;
3334 const struct elf_backend_data *bed;
3335 bfd_boolean add_needed;
3336 struct elf_link_hash_table *htab;
3338 void *alloc_mark = NULL;
3339 struct bfd_hash_entry **old_table = NULL;
3340 unsigned int old_size = 0;
3341 unsigned int old_count = 0;
3342 void *old_tab = NULL;
3344 struct bfd_link_hash_entry *old_undefs = NULL;
3345 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3346 long old_dynsymcount = 0;
3347 bfd_size_type old_dynstr_size = 0;
3350 bfd_boolean just_syms;
3352 htab = elf_hash_table (info);
3353 bed = get_elf_backend_data (abfd);
3355 if ((abfd->flags & DYNAMIC) == 0)
3361 /* You can't use -r against a dynamic object. Also, there's no
3362 hope of using a dynamic object which does not exactly match
3363 the format of the output file. */
3364 if (info->relocatable
3365 || !is_elf_hash_table (htab)
3366 || info->output_bfd->xvec != abfd->xvec)
3368 if (info->relocatable)
3369 bfd_set_error (bfd_error_invalid_operation);
3371 bfd_set_error (bfd_error_wrong_format);
3376 ehdr = elf_elfheader (abfd);
3377 if (info->warn_alternate_em
3378 && bed->elf_machine_code != ehdr->e_machine
3379 && ((bed->elf_machine_alt1 != 0
3380 && ehdr->e_machine == bed->elf_machine_alt1)
3381 || (bed->elf_machine_alt2 != 0
3382 && ehdr->e_machine == bed->elf_machine_alt2)))
3383 info->callbacks->einfo
3384 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3385 ehdr->e_machine, abfd, bed->elf_machine_code);
3387 /* As a GNU extension, any input sections which are named
3388 .gnu.warning.SYMBOL are treated as warning symbols for the given
3389 symbol. This differs from .gnu.warning sections, which generate
3390 warnings when they are included in an output file. */
3391 /* PR 12761: Also generate this warning when building shared libraries. */
3392 for (s = abfd->sections; s != NULL; s = s->next)
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3402 name += sizeof ".gnu.warning." - 1;
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3415 struct elf_link_hash_entry *h;
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3419 /* FIXME: What about bfd_link_hash_common? */
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3427 msg = (char *) bfd_alloc (abfd, sz + 1);
3431 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3436 if (! (_bfd_generic_link_add_one_symbol
3437 (info, abfd, name, BSF_WARNING, s, 0, msg,
3438 FALSE, bed->collect, NULL)))
3441 if (!info->relocatable && info->executable)
3443 /* Clobber the section size so that the warning does
3444 not get copied into the output file. */
3447 /* Also set SEC_EXCLUDE, so that symbols defined in
3448 the warning section don't get copied to the output. */
3449 s->flags |= SEC_EXCLUDE;
3454 just_syms = ((s = abfd->sections) != NULL
3455 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3460 /* If we are creating a shared library, create all the dynamic
3461 sections immediately. We need to attach them to something,
3462 so we attach them to this BFD, provided it is the right
3463 format and is not from ld --just-symbols. FIXME: If there
3464 are no input BFD's of the same format as the output, we can't
3465 make a shared library. */
3468 && is_elf_hash_table (htab)
3469 && info->output_bfd->xvec == abfd->xvec
3470 && !htab->dynamic_sections_created)
3472 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3476 else if (!is_elf_hash_table (htab))
3480 const char *soname = NULL;
3482 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3485 /* ld --just-symbols and dynamic objects don't mix very well.
3486 ld shouldn't allow it. */
3490 /* If this dynamic lib was specified on the command line with
3491 --as-needed in effect, then we don't want to add a DT_NEEDED
3492 tag unless the lib is actually used. Similary for libs brought
3493 in by another lib's DT_NEEDED. When --no-add-needed is used
3494 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3495 any dynamic library in DT_NEEDED tags in the dynamic lib at
3497 add_needed = (elf_dyn_lib_class (abfd)
3498 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3499 | DYN_NO_NEEDED)) == 0;
3501 s = bfd_get_section_by_name (abfd, ".dynamic");
3506 unsigned int elfsec;
3507 unsigned long shlink;
3509 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3516 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3517 if (elfsec == SHN_BAD)
3518 goto error_free_dyn;
3519 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3521 for (extdyn = dynbuf;
3522 extdyn < dynbuf + s->size;
3523 extdyn += bed->s->sizeof_dyn)
3525 Elf_Internal_Dyn dyn;
3527 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3528 if (dyn.d_tag == DT_SONAME)
3530 unsigned int tagv = dyn.d_un.d_val;
3531 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3533 goto error_free_dyn;
3535 if (dyn.d_tag == DT_NEEDED)
3537 struct bfd_link_needed_list *n, **pn;
3539 unsigned int tagv = dyn.d_un.d_val;
3541 amt = sizeof (struct bfd_link_needed_list);
3542 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3543 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3544 if (n == NULL || fnm == NULL)
3545 goto error_free_dyn;
3546 amt = strlen (fnm) + 1;
3547 anm = (char *) bfd_alloc (abfd, amt);
3549 goto error_free_dyn;
3550 memcpy (anm, fnm, amt);
3554 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3558 if (dyn.d_tag == DT_RUNPATH)
3560 struct bfd_link_needed_list *n, **pn;
3562 unsigned int tagv = dyn.d_un.d_val;
3564 amt = sizeof (struct bfd_link_needed_list);
3565 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3566 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3567 if (n == NULL || fnm == NULL)
3568 goto error_free_dyn;
3569 amt = strlen (fnm) + 1;
3570 anm = (char *) bfd_alloc (abfd, amt);
3572 goto error_free_dyn;
3573 memcpy (anm, fnm, amt);
3577 for (pn = & runpath;
3583 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3584 if (!runpath && dyn.d_tag == DT_RPATH)
3586 struct bfd_link_needed_list *n, **pn;
3588 unsigned int tagv = dyn.d_un.d_val;
3590 amt = sizeof (struct bfd_link_needed_list);
3591 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3592 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3593 if (n == NULL || fnm == NULL)
3594 goto error_free_dyn;
3595 amt = strlen (fnm) + 1;
3596 anm = (char *) bfd_alloc (abfd, amt);
3598 goto error_free_dyn;
3599 memcpy (anm, fnm, amt);
3609 if (dyn.d_tag == DT_AUDIT)
3611 unsigned int tagv = dyn.d_un.d_val;
3612 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3619 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3620 frees all more recently bfd_alloc'd blocks as well. */
3626 struct bfd_link_needed_list **pn;
3627 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3632 /* We do not want to include any of the sections in a dynamic
3633 object in the output file. We hack by simply clobbering the
3634 list of sections in the BFD. This could be handled more
3635 cleanly by, say, a new section flag; the existing
3636 SEC_NEVER_LOAD flag is not the one we want, because that one
3637 still implies that the section takes up space in the output
3639 bfd_section_list_clear (abfd);
3641 /* Find the name to use in a DT_NEEDED entry that refers to this
3642 object. If the object has a DT_SONAME entry, we use it.
3643 Otherwise, if the generic linker stuck something in
3644 elf_dt_name, we use that. Otherwise, we just use the file
3646 if (soname == NULL || *soname == '\0')
3648 soname = elf_dt_name (abfd);
3649 if (soname == NULL || *soname == '\0')
3650 soname = bfd_get_filename (abfd);
3653 /* Save the SONAME because sometimes the linker emulation code
3654 will need to know it. */
3655 elf_dt_name (abfd) = soname;
3657 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3661 /* If we have already included this dynamic object in the
3662 link, just ignore it. There is no reason to include a
3663 particular dynamic object more than once. */
3667 /* Save the DT_AUDIT entry for the linker emulation code. */
3668 elf_dt_audit (abfd) = audit;
3671 /* If this is a dynamic object, we always link against the .dynsym
3672 symbol table, not the .symtab symbol table. The dynamic linker
3673 will only see the .dynsym symbol table, so there is no reason to
3674 look at .symtab for a dynamic object. */
3676 if (! dynamic || elf_dynsymtab (abfd) == 0)
3677 hdr = &elf_tdata (abfd)->symtab_hdr;
3679 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3681 symcount = hdr->sh_size / bed->s->sizeof_sym;
3683 /* The sh_info field of the symtab header tells us where the
3684 external symbols start. We don't care about the local symbols at
3686 if (elf_bad_symtab (abfd))
3688 extsymcount = symcount;
3693 extsymcount = symcount - hdr->sh_info;
3694 extsymoff = hdr->sh_info;
3697 sym_hash = elf_sym_hashes (abfd);
3698 if (extsymcount != 0)
3700 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3702 if (isymbuf == NULL)
3705 if (sym_hash == NULL)
3707 /* We store a pointer to the hash table entry for each
3709 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3710 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3711 if (sym_hash == NULL)
3712 goto error_free_sym;
3713 elf_sym_hashes (abfd) = sym_hash;
3719 /* Read in any version definitions. */
3720 if (!_bfd_elf_slurp_version_tables (abfd,
3721 info->default_imported_symver))
3722 goto error_free_sym;
3724 /* Read in the symbol versions, but don't bother to convert them
3725 to internal format. */
3726 if (elf_dynversym (abfd) != 0)
3728 Elf_Internal_Shdr *versymhdr;
3730 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3731 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3732 if (extversym == NULL)
3733 goto error_free_sym;
3734 amt = versymhdr->sh_size;
3735 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3736 || bfd_bread (extversym, amt, abfd) != amt)
3737 goto error_free_vers;
3741 /* If we are loading an as-needed shared lib, save the symbol table
3742 state before we start adding symbols. If the lib turns out
3743 to be unneeded, restore the state. */
3744 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3749 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3751 struct bfd_hash_entry *p;
3752 struct elf_link_hash_entry *h;
3754 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3756 h = (struct elf_link_hash_entry *) p;
3757 entsize += htab->root.table.entsize;
3758 if (h->root.type == bfd_link_hash_warning)
3759 entsize += htab->root.table.entsize;
3763 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3764 old_tab = bfd_malloc (tabsize + entsize);
3765 if (old_tab == NULL)
3766 goto error_free_vers;
3768 /* Remember the current objalloc pointer, so that all mem for
3769 symbols added can later be reclaimed. */
3770 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3771 if (alloc_mark == NULL)
3772 goto error_free_vers;
3774 /* Make a special call to the linker "notice" function to
3775 tell it that we are about to handle an as-needed lib. */
3776 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3777 goto error_free_vers;
3779 /* Clone the symbol table. Remember some pointers into the
3780 symbol table, and dynamic symbol count. */
3781 old_ent = (char *) old_tab + tabsize;
3782 memcpy (old_tab, htab->root.table.table, tabsize);
3783 old_undefs = htab->root.undefs;
3784 old_undefs_tail = htab->root.undefs_tail;
3785 old_table = htab->root.table.table;
3786 old_size = htab->root.table.size;
3787 old_count = htab->root.table.count;
3788 old_dynsymcount = htab->dynsymcount;
3789 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3791 for (i = 0; i < htab->root.table.size; i++)
3793 struct bfd_hash_entry *p;
3794 struct elf_link_hash_entry *h;
3796 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3798 memcpy (old_ent, p, htab->root.table.entsize);
3799 old_ent = (char *) old_ent + htab->root.table.entsize;
3800 h = (struct elf_link_hash_entry *) p;
3801 if (h->root.type == bfd_link_hash_warning)
3803 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3811 ever = extversym != NULL ? extversym + extsymoff : NULL;
3812 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3814 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3818 asection *sec, *new_sec;
3821 struct elf_link_hash_entry *h;
3822 struct elf_link_hash_entry *hi;
3823 bfd_boolean definition;
3824 bfd_boolean size_change_ok;
3825 bfd_boolean type_change_ok;
3826 bfd_boolean new_weakdef;
3827 bfd_boolean new_weak;
3828 bfd_boolean old_weak;
3829 bfd_boolean override;
3831 unsigned int old_alignment;
3836 flags = BSF_NO_FLAGS;
3838 value = isym->st_value;
3839 common = bed->common_definition (isym);
3841 bind = ELF_ST_BIND (isym->st_info);
3845 /* This should be impossible, since ELF requires that all
3846 global symbols follow all local symbols, and that sh_info
3847 point to the first global symbol. Unfortunately, Irix 5
3852 if (isym->st_shndx != SHN_UNDEF && !common)
3860 case STB_GNU_UNIQUE:
3861 flags = BSF_GNU_UNIQUE;
3865 /* Leave it up to the processor backend. */
3869 if (isym->st_shndx == SHN_UNDEF)
3870 sec = bfd_und_section_ptr;
3871 else if (isym->st_shndx == SHN_ABS)
3872 sec = bfd_abs_section_ptr;
3873 else if (isym->st_shndx == SHN_COMMON)
3875 sec = bfd_com_section_ptr;
3876 /* What ELF calls the size we call the value. What ELF
3877 calls the value we call the alignment. */
3878 value = isym->st_size;
3882 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3884 sec = bfd_abs_section_ptr;
3885 else if (discarded_section (sec))
3887 /* Symbols from discarded section are undefined. We keep
3889 sec = bfd_und_section_ptr;
3890 isym->st_shndx = SHN_UNDEF;
3892 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3896 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3899 goto error_free_vers;
3901 if (isym->st_shndx == SHN_COMMON
3902 && (abfd->flags & BFD_PLUGIN) != 0)
3904 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3908 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3910 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3912 goto error_free_vers;
3916 else if (isym->st_shndx == SHN_COMMON
3917 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3918 && !info->relocatable)
3920 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3924 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3925 | SEC_LINKER_CREATED);
3926 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3928 goto error_free_vers;
3932 else if (bed->elf_add_symbol_hook)
3934 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3936 goto error_free_vers;
3938 /* The hook function sets the name to NULL if this symbol
3939 should be skipped for some reason. */
3944 /* Sanity check that all possibilities were handled. */
3947 bfd_set_error (bfd_error_bad_value);
3948 goto error_free_vers;
3951 /* Silently discard TLS symbols from --just-syms. There's
3952 no way to combine a static TLS block with a new TLS block
3953 for this executable. */
3954 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3955 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3958 if (bfd_is_und_section (sec)
3959 || bfd_is_com_section (sec))
3964 size_change_ok = FALSE;
3965 type_change_ok = bed->type_change_ok;
3971 if (is_elf_hash_table (htab))
3973 Elf_Internal_Versym iver;
3974 unsigned int vernum = 0;
3979 if (info->default_imported_symver)
3980 /* Use the default symbol version created earlier. */
3981 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3986 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3988 vernum = iver.vs_vers & VERSYM_VERSION;
3990 /* If this is a hidden symbol, or if it is not version
3991 1, we append the version name to the symbol name.
3992 However, we do not modify a non-hidden absolute symbol
3993 if it is not a function, because it might be the version
3994 symbol itself. FIXME: What if it isn't? */
3995 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3997 && (!bfd_is_abs_section (sec)
3998 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4001 size_t namelen, verlen, newlen;
4004 if (isym->st_shndx != SHN_UNDEF)
4006 if (vernum > elf_tdata (abfd)->cverdefs)
4008 else if (vernum > 1)
4010 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4016 (*_bfd_error_handler)
4017 (_("%B: %s: invalid version %u (max %d)"),
4019 elf_tdata (abfd)->cverdefs);
4020 bfd_set_error (bfd_error_bad_value);
4021 goto error_free_vers;
4026 /* We cannot simply test for the number of
4027 entries in the VERNEED section since the
4028 numbers for the needed versions do not start
4030 Elf_Internal_Verneed *t;
4033 for (t = elf_tdata (abfd)->verref;
4037 Elf_Internal_Vernaux *a;
4039 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4041 if (a->vna_other == vernum)
4043 verstr = a->vna_nodename;
4052 (*_bfd_error_handler)
4053 (_("%B: %s: invalid needed version %d"),
4054 abfd, name, vernum);
4055 bfd_set_error (bfd_error_bad_value);
4056 goto error_free_vers;
4060 namelen = strlen (name);
4061 verlen = strlen (verstr);
4062 newlen = namelen + verlen + 2;
4063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4064 && isym->st_shndx != SHN_UNDEF)
4067 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4068 if (newname == NULL)
4069 goto error_free_vers;
4070 memcpy (newname, name, namelen);
4071 p = newname + namelen;
4073 /* If this is a defined non-hidden version symbol,
4074 we add another @ to the name. This indicates the
4075 default version of the symbol. */
4076 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4077 && isym->st_shndx != SHN_UNDEF)
4079 memcpy (p, verstr, verlen + 1);
4084 /* If this symbol has default visibility and the user has
4085 requested we not re-export it, then mark it as hidden. */
4089 || (abfd->my_archive && abfd->my_archive->no_export))
4090 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4091 isym->st_other = (STV_HIDDEN
4092 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4094 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4095 sym_hash, &old_bfd, &old_weak,
4096 &old_alignment, &skip, &override,
4097 &type_change_ok, &size_change_ok))
4098 goto error_free_vers;
4107 while (h->root.type == bfd_link_hash_indirect
4108 || h->root.type == bfd_link_hash_warning)
4109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4111 if (elf_tdata (abfd)->verdef != NULL
4114 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4117 if (! (_bfd_generic_link_add_one_symbol
4118 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4119 (struct bfd_link_hash_entry **) sym_hash)))
4120 goto error_free_vers;
4123 /* We need to make sure that indirect symbol dynamic flags are
4126 while (h->root.type == bfd_link_hash_indirect
4127 || h->root.type == bfd_link_hash_warning)
4128 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132 new_weak = (flags & BSF_WEAK) != 0;
4133 new_weakdef = FALSE;
4137 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4138 && is_elf_hash_table (htab)
4139 && h->u.weakdef == NULL)
4141 /* Keep a list of all weak defined non function symbols from
4142 a dynamic object, using the weakdef field. Later in this
4143 function we will set the weakdef field to the correct
4144 value. We only put non-function symbols from dynamic
4145 objects on this list, because that happens to be the only
4146 time we need to know the normal symbol corresponding to a
4147 weak symbol, and the information is time consuming to
4148 figure out. If the weakdef field is not already NULL,
4149 then this symbol was already defined by some previous
4150 dynamic object, and we will be using that previous
4151 definition anyhow. */
4153 h->u.weakdef = weaks;
4158 /* Set the alignment of a common symbol. */
4159 if ((common || bfd_is_com_section (sec))
4160 && h->root.type == bfd_link_hash_common)
4165 align = bfd_log2 (isym->st_value);
4168 /* The new symbol is a common symbol in a shared object.
4169 We need to get the alignment from the section. */
4170 align = new_sec->alignment_power;
4172 if (align > old_alignment)
4173 h->root.u.c.p->alignment_power = align;
4175 h->root.u.c.p->alignment_power = old_alignment;
4178 if (is_elf_hash_table (htab))
4180 /* Set a flag in the hash table entry indicating the type of
4181 reference or definition we just found. A dynamic symbol
4182 is one which is referenced or defined by both a regular
4183 object and a shared object. */
4184 bfd_boolean dynsym = FALSE;
4186 /* Plugin symbols aren't normal. Don't set def_regular or
4187 ref_regular for them, or make them dynamic. */
4188 if ((abfd->flags & BFD_PLUGIN) != 0)
4195 if (bind != STB_WEAK)
4196 h->ref_regular_nonweak = 1;
4208 /* If the indirect symbol has been forced local, don't
4209 make the real symbol dynamic. */
4210 if ((h == hi || !hi->forced_local)
4211 && (! info->executable
4221 hi->ref_dynamic = 1;
4226 hi->def_dynamic = 1;
4229 /* If the indirect symbol has been forced local, don't
4230 make the real symbol dynamic. */
4231 if ((h == hi || !hi->forced_local)
4234 || (h->u.weakdef != NULL
4236 && h->u.weakdef->dynindx != -1)))
4240 /* Check to see if we need to add an indirect symbol for
4241 the default name. */
4243 || (!override && h->root.type == bfd_link_hash_common))
4244 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4245 sec, value, &old_bfd, &dynsym))
4246 goto error_free_vers;
4248 /* Check the alignment when a common symbol is involved. This
4249 can change when a common symbol is overridden by a normal
4250 definition or a common symbol is ignored due to the old
4251 normal definition. We need to make sure the maximum
4252 alignment is maintained. */
4253 if ((old_alignment || common)
4254 && h->root.type != bfd_link_hash_common)
4256 unsigned int common_align;
4257 unsigned int normal_align;
4258 unsigned int symbol_align;
4262 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4263 || h->root.type == bfd_link_hash_defweak);
4265 symbol_align = ffs (h->root.u.def.value) - 1;
4266 if (h->root.u.def.section->owner != NULL
4267 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4269 normal_align = h->root.u.def.section->alignment_power;
4270 if (normal_align > symbol_align)
4271 normal_align = symbol_align;
4274 normal_align = symbol_align;
4278 common_align = old_alignment;
4279 common_bfd = old_bfd;
4284 common_align = bfd_log2 (isym->st_value);
4286 normal_bfd = old_bfd;
4289 if (normal_align < common_align)
4291 /* PR binutils/2735 */
4292 if (normal_bfd == NULL)
4293 (*_bfd_error_handler)
4294 (_("Warning: alignment %u of common symbol `%s' in %B is"
4295 " greater than the alignment (%u) of its section %A"),
4296 common_bfd, h->root.u.def.section,
4297 1 << common_align, name, 1 << normal_align);
4299 (*_bfd_error_handler)
4300 (_("Warning: alignment %u of symbol `%s' in %B"
4301 " is smaller than %u in %B"),
4302 normal_bfd, common_bfd,
4303 1 << normal_align, name, 1 << common_align);
4307 /* Remember the symbol size if it isn't undefined. */
4308 if (isym->st_size != 0
4309 && isym->st_shndx != SHN_UNDEF
4310 && (definition || h->size == 0))
4313 && h->size != isym->st_size
4314 && ! size_change_ok)
4315 (*_bfd_error_handler)
4316 (_("Warning: size of symbol `%s' changed"
4317 " from %lu in %B to %lu in %B"),
4319 name, (unsigned long) h->size,
4320 (unsigned long) isym->st_size);
4322 h->size = isym->st_size;
4325 /* If this is a common symbol, then we always want H->SIZE
4326 to be the size of the common symbol. The code just above
4327 won't fix the size if a common symbol becomes larger. We
4328 don't warn about a size change here, because that is
4329 covered by --warn-common. Allow changes between different
4331 if (h->root.type == bfd_link_hash_common)
4332 h->size = h->root.u.c.size;
4334 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4335 && ((definition && !new_weak)
4336 || (old_weak && h->root.type == bfd_link_hash_common)
4337 || h->type == STT_NOTYPE))
4339 unsigned int type = ELF_ST_TYPE (isym->st_info);
4341 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4343 if (type == STT_GNU_IFUNC
4344 && (abfd->flags & DYNAMIC) != 0)
4347 if (h->type != type)
4349 if (h->type != STT_NOTYPE && ! type_change_ok)
4350 (*_bfd_error_handler)
4351 (_("Warning: type of symbol `%s' changed"
4352 " from %d to %d in %B"),
4353 abfd, name, h->type, type);
4359 /* Merge st_other field. */
4360 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4362 /* We don't want to make debug symbol dynamic. */
4363 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4366 /* Nor should we make plugin symbols dynamic. */
4367 if ((abfd->flags & BFD_PLUGIN) != 0)
4372 h->target_internal = isym->st_target_internal;
4373 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4376 if (definition && !dynamic)
4378 char *p = strchr (name, ELF_VER_CHR);
4379 if (p != NULL && p[1] != ELF_VER_CHR)
4381 /* Queue non-default versions so that .symver x, x@FOO
4382 aliases can be checked. */
4385 amt = ((isymend - isym + 1)
4386 * sizeof (struct elf_link_hash_entry *));
4388 (struct elf_link_hash_entry **) bfd_malloc (amt);
4390 goto error_free_vers;
4392 nondeflt_vers[nondeflt_vers_cnt++] = h;
4396 if (dynsym && h->dynindx == -1)
4398 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4399 goto error_free_vers;
4400 if (h->u.weakdef != NULL
4402 && h->u.weakdef->dynindx == -1)
4404 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4405 goto error_free_vers;
4408 else if (dynsym && h->dynindx != -1)
4409 /* If the symbol already has a dynamic index, but
4410 visibility says it should not be visible, turn it into
4412 switch (ELF_ST_VISIBILITY (h->other))
4416 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4421 /* Don't add DT_NEEDED for references from the dummy bfd. */
4425 && h->ref_regular_nonweak
4427 || (old_bfd->flags & BFD_PLUGIN) == 0))
4428 || (h->ref_dynamic_nonweak
4429 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4430 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4433 const char *soname = elf_dt_name (abfd);
4435 info->callbacks->minfo ("%!", soname, old_bfd,
4436 h->root.root.string);
4438 /* A symbol from a library loaded via DT_NEEDED of some
4439 other library is referenced by a regular object.
4440 Add a DT_NEEDED entry for it. Issue an error if
4441 --no-add-needed is used and the reference was not
4444 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4446 (*_bfd_error_handler)
4447 (_("%B: undefined reference to symbol '%s'"),
4449 bfd_set_error (bfd_error_missing_dso);
4450 goto error_free_vers;
4453 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4454 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4457 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4459 goto error_free_vers;
4461 BFD_ASSERT (ret == 0);
4466 if (extversym != NULL)
4472 if (isymbuf != NULL)
4478 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4482 /* Restore the symbol table. */
4483 old_ent = (char *) old_tab + tabsize;
4484 memset (elf_sym_hashes (abfd), 0,
4485 extsymcount * sizeof (struct elf_link_hash_entry *));
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 htab->root.undefs = old_undefs;
4491 htab->root.undefs_tail = old_undefs_tail;
4492 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4493 for (i = 0; i < htab->root.table.size; i++)
4495 struct bfd_hash_entry *p;
4496 struct elf_link_hash_entry *h;
4498 unsigned int alignment_power;
4500 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4502 h = (struct elf_link_hash_entry *) p;
4503 if (h->root.type == bfd_link_hash_warning)
4504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4505 if (h->dynindx >= old_dynsymcount
4506 && h->dynstr_index < old_dynstr_size)
4507 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4509 /* Preserve the maximum alignment and size for common
4510 symbols even if this dynamic lib isn't on DT_NEEDED
4511 since it can still be loaded at run time by another
4513 if (h->root.type == bfd_link_hash_common)
4515 size = h->root.u.c.size;
4516 alignment_power = h->root.u.c.p->alignment_power;
4521 alignment_power = 0;
4523 memcpy (p, old_ent, htab->root.table.entsize);
4524 old_ent = (char *) old_ent + htab->root.table.entsize;
4525 h = (struct elf_link_hash_entry *) p;
4526 if (h->root.type == bfd_link_hash_warning)
4528 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4529 old_ent = (char *) old_ent + htab->root.table.entsize;
4530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4532 if (h->root.type == bfd_link_hash_common)
4534 if (size > h->root.u.c.size)
4535 h->root.u.c.size = size;
4536 if (alignment_power > h->root.u.c.p->alignment_power)
4537 h->root.u.c.p->alignment_power = alignment_power;
4542 /* Make a special call to the linker "notice" function to
4543 tell it that symbols added for crefs may need to be removed. */
4544 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4545 goto error_free_vers;
4548 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4550 if (nondeflt_vers != NULL)
4551 free (nondeflt_vers);
4555 if (old_tab != NULL)
4557 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4558 goto error_free_vers;
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4567 bfd_size_type cnt, symidx;
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4604 sym_hash[symidx] = h;
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4646 for (; hpp < hppend; hpp++)
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4663 while (weaks != NULL)
4665 struct elf_link_hash_entry *hlook;
4668 size_t i, j, idx = 0;
4671 weaks = hlook->u.weakdef;
4672 hlook->u.weakdef = NULL;
4674 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4675 || hlook->root.type == bfd_link_hash_defweak
4676 || hlook->root.type == bfd_link_hash_common
4677 || hlook->root.type == bfd_link_hash_indirect);
4678 slook = hlook->root.u.def.section;
4679 vlook = hlook->root.u.def.value;
4685 bfd_signed_vma vdiff;
4687 h = sorted_sym_hash[idx];
4688 vdiff = vlook - h->root.u.def.value;
4695 long sdiff = slook->id - h->root.u.def.section->id;
4705 /* We didn't find a value/section match. */
4709 /* With multiple aliases, or when the weak symbol is already
4710 strongly defined, we have multiple matching symbols and
4711 the binary search above may land on any of them. Step
4712 one past the matching symbol(s). */
4715 h = sorted_sym_hash[idx];
4716 if (h->root.u.def.section != slook
4717 || h->root.u.def.value != vlook)
4721 /* Now look back over the aliases. Since we sorted by size
4722 as well as value and section, we'll choose the one with
4723 the largest size. */
4726 h = sorted_sym_hash[idx];
4728 /* Stop if value or section doesn't match. */
4729 if (h->root.u.def.section != slook
4730 || h->root.u.def.value != vlook)
4732 else if (h != hlook)
4734 hlook->u.weakdef = h;
4736 /* If the weak definition is in the list of dynamic
4737 symbols, make sure the real definition is put
4739 if (hlook->dynindx != -1 && h->dynindx == -1)
4741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4744 free (sorted_sym_hash);
4749 /* If the real definition is in the list of dynamic
4750 symbols, make sure the weak definition is put
4751 there as well. If we don't do this, then the
4752 dynamic loader might not merge the entries for the
4753 real definition and the weak definition. */
4754 if (h->dynindx != -1 && hlook->dynindx == -1)
4756 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4757 goto err_free_sym_hash;
4764 free (sorted_sym_hash);
4767 if (bed->check_directives
4768 && !(*bed->check_directives) (abfd, info))
4771 /* If this object is the same format as the output object, and it is
4772 not a shared library, then let the backend look through the
4775 This is required to build global offset table entries and to
4776 arrange for dynamic relocs. It is not required for the
4777 particular common case of linking non PIC code, even when linking
4778 against shared libraries, but unfortunately there is no way of
4779 knowing whether an object file has been compiled PIC or not.
4780 Looking through the relocs is not particularly time consuming.
4781 The problem is that we must either (1) keep the relocs in memory,
4782 which causes the linker to require additional runtime memory or
4783 (2) read the relocs twice from the input file, which wastes time.
4784 This would be a good case for using mmap.
4786 I have no idea how to handle linking PIC code into a file of a
4787 different format. It probably can't be done. */
4789 && is_elf_hash_table (htab)
4790 && bed->check_relocs != NULL
4791 && elf_object_id (abfd) == elf_hash_table_id (htab)
4792 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796 for (o = abfd->sections; o != NULL; o = o->next)
4798 Elf_Internal_Rela *internal_relocs;
4801 if ((o->flags & SEC_RELOC) == 0
4802 || o->reloc_count == 0
4803 || ((info->strip == strip_all || info->strip == strip_debugger)
4804 && (o->flags & SEC_DEBUGGING) != 0)
4805 || bfd_is_abs_section (o->output_section))
4808 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4810 if (internal_relocs == NULL)
4813 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4815 if (elf_section_data (o)->relocs != internal_relocs)
4816 free (internal_relocs);
4823 /* If this is a non-traditional link, try to optimize the handling
4824 of the .stab/.stabstr sections. */
4826 && ! info->traditional_format
4827 && is_elf_hash_table (htab)
4828 && (info->strip != strip_all && info->strip != strip_debugger))
4832 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4833 if (stabstr != NULL)
4835 bfd_size_type string_offset = 0;
4838 for (stab = abfd->sections; stab; stab = stab->next)
4839 if (CONST_STRNEQ (stab->name, ".stab")
4840 && (!stab->name[5] ||
4841 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4842 && (stab->flags & SEC_MERGE) == 0
4843 && !bfd_is_abs_section (stab->output_section))
4845 struct bfd_elf_section_data *secdata;
4847 secdata = elf_section_data (stab);
4848 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4849 stabstr, &secdata->sec_info,
4852 if (secdata->sec_info)
4853 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4858 if (is_elf_hash_table (htab) && add_needed)
4860 /* Add this bfd to the loaded list. */
4861 struct elf_link_loaded_list *n;
4863 n = (struct elf_link_loaded_list *)
4864 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4868 n->next = htab->loaded;
4875 if (old_tab != NULL)
4877 if (nondeflt_vers != NULL)
4878 free (nondeflt_vers);
4879 if (extversym != NULL)
4882 if (isymbuf != NULL)
4888 /* Return the linker hash table entry of a symbol that might be
4889 satisfied by an archive symbol. Return -1 on error. */
4891 struct elf_link_hash_entry *
4892 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4893 struct bfd_link_info *info,
4896 struct elf_link_hash_entry *h;
4900 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4904 /* If this is a default version (the name contains @@), look up the
4905 symbol again with only one `@' as well as without the version.
4906 The effect is that references to the symbol with and without the
4907 version will be matched by the default symbol in the archive. */
4909 p = strchr (name, ELF_VER_CHR);
4910 if (p == NULL || p[1] != ELF_VER_CHR)
4913 /* First check with only one `@'. */
4914 len = strlen (name);
4915 copy = (char *) bfd_alloc (abfd, len);
4917 return (struct elf_link_hash_entry *) 0 - 1;
4919 first = p - name + 1;
4920 memcpy (copy, name, first);
4921 memcpy (copy + first, name + first + 1, len - first);
4923 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4926 /* We also need to check references to the symbol without the
4928 copy[first - 1] = '\0';
4929 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4930 FALSE, FALSE, TRUE);
4933 bfd_release (abfd, copy);
4937 /* Add symbols from an ELF archive file to the linker hash table. We
4938 don't use _bfd_generic_link_add_archive_symbols because we need to
4939 handle versioned symbols.
4941 Fortunately, ELF archive handling is simpler than that done by
4942 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4943 oddities. In ELF, if we find a symbol in the archive map, and the
4944 symbol is currently undefined, we know that we must pull in that
4947 Unfortunately, we do have to make multiple passes over the symbol
4948 table until nothing further is resolved. */
4951 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4954 unsigned char *included = NULL;
4958 const struct elf_backend_data *bed;
4959 struct elf_link_hash_entry * (*archive_symbol_lookup)
4960 (bfd *, struct bfd_link_info *, const char *);
4962 if (! bfd_has_map (abfd))
4964 /* An empty archive is a special case. */
4965 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4967 bfd_set_error (bfd_error_no_armap);
4971 /* Keep track of all symbols we know to be already defined, and all
4972 files we know to be already included. This is to speed up the
4973 second and subsequent passes. */
4974 c = bfd_ardata (abfd)->symdef_count;
4978 amt *= sizeof (*included);
4979 included = (unsigned char *) bfd_zmalloc (amt);
4980 if (included == NULL)
4983 symdefs = bfd_ardata (abfd)->symdefs;
4984 bed = get_elf_backend_data (abfd);
4985 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4998 symdefend = symdef + c;
4999 for (i = 0; symdef < symdefend; symdef++, i++)
5001 struct elf_link_hash_entry *h;
5003 struct bfd_link_hash_entry *undefs_tail;
5008 if (symdef->file_offset == last)
5014 h = archive_symbol_lookup (abfd, info, symdef->name);
5015 if (h == (struct elf_link_hash_entry *) 0 - 1)
5021 if (h->root.type == bfd_link_hash_common)
5023 /* We currently have a common symbol. The archive map contains
5024 a reference to this symbol, so we may want to include it. We
5025 only want to include it however, if this archive element
5026 contains a definition of the symbol, not just another common
5029 Unfortunately some archivers (including GNU ar) will put
5030 declarations of common symbols into their archive maps, as
5031 well as real definitions, so we cannot just go by the archive
5032 map alone. Instead we must read in the element's symbol
5033 table and check that to see what kind of symbol definition
5035 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5038 else if (h->root.type != bfd_link_hash_undefined)
5040 if (h->root.type != bfd_link_hash_undefweak)
5041 /* Symbol must be defined. Don't check it again. */
5046 /* We need to include this archive member. */
5047 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5048 if (element == NULL)
5051 if (! bfd_check_format (element, bfd_object))
5054 undefs_tail = info->hash->undefs_tail;
5056 if (!(*info->callbacks
5057 ->add_archive_element) (info, element, symdef->name, &element))
5059 if (!bfd_link_add_symbols (element, info))
5062 /* If there are any new undefined symbols, we need to make
5063 another pass through the archive in order to see whether
5064 they can be defined. FIXME: This isn't perfect, because
5065 common symbols wind up on undefs_tail and because an
5066 undefined symbol which is defined later on in this pass
5067 does not require another pass. This isn't a bug, but it
5068 does make the code less efficient than it could be. */
5069 if (undefs_tail != info->hash->undefs_tail)
5072 /* Look backward to mark all symbols from this object file
5073 which we have already seen in this pass. */
5077 included[mark] = TRUE;
5082 while (symdefs[mark].file_offset == symdef->file_offset);
5084 /* We mark subsequent symbols from this object file as we go
5085 on through the loop. */
5086 last = symdef->file_offset;
5096 if (included != NULL)
5101 /* Given an ELF BFD, add symbols to the global hash table as
5105 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5107 switch (bfd_get_format (abfd))
5110 return elf_link_add_object_symbols (abfd, info);
5112 return elf_link_add_archive_symbols (abfd, info);
5114 bfd_set_error (bfd_error_wrong_format);
5119 struct hash_codes_info
5121 unsigned long *hashcodes;
5125 /* This function will be called though elf_link_hash_traverse to store
5126 all hash value of the exported symbols in an array. */
5129 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5131 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5137 /* Ignore indirect symbols. These are added by the versioning code. */
5138 if (h->dynindx == -1)
5141 name = h->root.root.string;
5142 p = strchr (name, ELF_VER_CHR);
5145 alc = (char *) bfd_malloc (p - name + 1);
5151 memcpy (alc, name, p - name);
5152 alc[p - name] = '\0';
5156 /* Compute the hash value. */
5157 ha = bfd_elf_hash (name);
5159 /* Store the found hash value in the array given as the argument. */
5160 *(inf->hashcodes)++ = ha;
5162 /* And store it in the struct so that we can put it in the hash table
5164 h->u.elf_hash_value = ha;
5172 struct collect_gnu_hash_codes
5175 const struct elf_backend_data *bed;
5176 unsigned long int nsyms;
5177 unsigned long int maskbits;
5178 unsigned long int *hashcodes;
5179 unsigned long int *hashval;
5180 unsigned long int *indx;
5181 unsigned long int *counts;
5184 long int min_dynindx;
5185 unsigned long int bucketcount;
5186 unsigned long int symindx;
5187 long int local_indx;
5188 long int shift1, shift2;
5189 unsigned long int mask;
5193 /* This function will be called though elf_link_hash_traverse to store
5194 all hash value of the exported symbols in an array. */
5197 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5199 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5205 /* Ignore indirect symbols. These are added by the versioning code. */
5206 if (h->dynindx == -1)
5209 /* Ignore also local symbols and undefined symbols. */
5210 if (! (*s->bed->elf_hash_symbol) (h))
5213 name = h->root.root.string;
5214 p = strchr (name, ELF_VER_CHR);
5217 alc = (char *) bfd_malloc (p - name + 1);
5223 memcpy (alc, name, p - name);
5224 alc[p - name] = '\0';
5228 /* Compute the hash value. */
5229 ha = bfd_elf_gnu_hash (name);
5231 /* Store the found hash value in the array for compute_bucket_count,
5232 and also for .dynsym reordering purposes. */
5233 s->hashcodes[s->nsyms] = ha;
5234 s->hashval[h->dynindx] = ha;
5236 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5237 s->min_dynindx = h->dynindx;
5245 /* This function will be called though elf_link_hash_traverse to do
5246 final dynaminc symbol renumbering. */
5249 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5251 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5252 unsigned long int bucket;
5253 unsigned long int val;
5255 /* Ignore indirect symbols. */
5256 if (h->dynindx == -1)
5259 /* Ignore also local symbols and undefined symbols. */
5260 if (! (*s->bed->elf_hash_symbol) (h))
5262 if (h->dynindx >= s->min_dynindx)
5263 h->dynindx = s->local_indx++;
5267 bucket = s->hashval[h->dynindx] % s->bucketcount;
5268 val = (s->hashval[h->dynindx] >> s->shift1)
5269 & ((s->maskbits >> s->shift1) - 1);
5270 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5272 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5273 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5274 if (s->counts[bucket] == 1)
5275 /* Last element terminates the chain. */
5277 bfd_put_32 (s->output_bfd, val,
5278 s->contents + (s->indx[bucket] - s->symindx) * 4);
5279 --s->counts[bucket];
5280 h->dynindx = s->indx[bucket]++;
5284 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5287 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5289 return !(h->forced_local
5290 || h->root.type == bfd_link_hash_undefined
5291 || h->root.type == bfd_link_hash_undefweak
5292 || ((h->root.type == bfd_link_hash_defined
5293 || h->root.type == bfd_link_hash_defweak)
5294 && h->root.u.def.section->output_section == NULL));
5297 /* Array used to determine the number of hash table buckets to use
5298 based on the number of symbols there are. If there are fewer than
5299 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5300 fewer than 37 we use 17 buckets, and so forth. We never use more
5301 than 32771 buckets. */
5303 static const size_t elf_buckets[] =
5305 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5309 /* Compute bucket count for hashing table. We do not use a static set
5310 of possible tables sizes anymore. Instead we determine for all
5311 possible reasonable sizes of the table the outcome (i.e., the
5312 number of collisions etc) and choose the best solution. The
5313 weighting functions are not too simple to allow the table to grow
5314 without bounds. Instead one of the weighting factors is the size.
5315 Therefore the result is always a good payoff between few collisions
5316 (= short chain lengths) and table size. */
5318 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5319 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5320 unsigned long int nsyms,
5323 size_t best_size = 0;
5324 unsigned long int i;
5326 /* We have a problem here. The following code to optimize the table
5327 size requires an integer type with more the 32 bits. If
5328 BFD_HOST_U_64_BIT is set we know about such a type. */
5329 #ifdef BFD_HOST_U_64_BIT
5334 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5335 bfd *dynobj = elf_hash_table (info)->dynobj;
5336 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5337 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5338 unsigned long int *counts;
5340 unsigned int no_improvement_count = 0;
5342 /* Possible optimization parameters: if we have NSYMS symbols we say
5343 that the hashing table must at least have NSYMS/4 and at most
5345 minsize = nsyms / 4;
5348 best_size = maxsize = nsyms * 2;
5353 if ((best_size & 31) == 0)
5357 /* Create array where we count the collisions in. We must use bfd_malloc
5358 since the size could be large. */
5360 amt *= sizeof (unsigned long int);
5361 counts = (unsigned long int *) bfd_malloc (amt);
5365 /* Compute the "optimal" size for the hash table. The criteria is a
5366 minimal chain length. The minor criteria is (of course) the size
5368 for (i = minsize; i < maxsize; ++i)
5370 /* Walk through the array of hashcodes and count the collisions. */
5371 BFD_HOST_U_64_BIT max;
5372 unsigned long int j;
5373 unsigned long int fact;
5375 if (gnu_hash && (i & 31) == 0)
5378 memset (counts, '\0', i * sizeof (unsigned long int));
5380 /* Determine how often each hash bucket is used. */
5381 for (j = 0; j < nsyms; ++j)
5382 ++counts[hashcodes[j] % i];
5384 /* For the weight function we need some information about the
5385 pagesize on the target. This is information need not be 100%
5386 accurate. Since this information is not available (so far) we
5387 define it here to a reasonable default value. If it is crucial
5388 to have a better value some day simply define this value. */
5389 # ifndef BFD_TARGET_PAGESIZE
5390 # define BFD_TARGET_PAGESIZE (4096)
5393 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5395 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5398 /* Variant 1: optimize for short chains. We add the squares
5399 of all the chain lengths (which favors many small chain
5400 over a few long chains). */
5401 for (j = 0; j < i; ++j)
5402 max += counts[j] * counts[j];
5404 /* This adds penalties for the overall size of the table. */
5405 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5408 /* Variant 2: Optimize a lot more for small table. Here we
5409 also add squares of the size but we also add penalties for
5410 empty slots (the +1 term). */
5411 for (j = 0; j < i; ++j)
5412 max += (1 + counts[j]) * (1 + counts[j]);
5414 /* The overall size of the table is considered, but not as
5415 strong as in variant 1, where it is squared. */
5416 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5420 /* Compare with current best results. */
5421 if (max < best_chlen)
5425 no_improvement_count = 0;
5427 /* PR 11843: Avoid futile long searches for the best bucket size
5428 when there are a large number of symbols. */
5429 else if (++no_improvement_count == 100)
5436 #endif /* defined (BFD_HOST_U_64_BIT) */
5438 /* This is the fallback solution if no 64bit type is available or if we
5439 are not supposed to spend much time on optimizations. We select the
5440 bucket count using a fixed set of numbers. */
5441 for (i = 0; elf_buckets[i] != 0; i++)
5443 best_size = elf_buckets[i];
5444 if (nsyms < elf_buckets[i + 1])
5447 if (gnu_hash && best_size < 2)
5454 /* Size any SHT_GROUP section for ld -r. */
5457 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5461 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5462 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5463 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5468 /* Set a default stack segment size. The value in INFO wins. If it
5469 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5470 undefined it is initialized. */
5473 bfd_elf_stack_segment_size (bfd *output_bfd,
5474 struct bfd_link_info *info,
5475 const char *legacy_symbol,
5476 bfd_vma default_size)
5478 struct elf_link_hash_entry *h = NULL;
5480 /* Look for legacy symbol. */
5482 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5483 FALSE, FALSE, FALSE);
5484 if (h && (h->root.type == bfd_link_hash_defined
5485 || h->root.type == bfd_link_hash_defweak)
5487 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5489 /* The symbol has no type if specified on the command line. */
5490 h->type = STT_OBJECT;
5491 if (info->stacksize)
5492 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5493 output_bfd, legacy_symbol);
5494 else if (h->root.u.def.section != bfd_abs_section_ptr)
5495 (*_bfd_error_handler) (_("%B: %s not absolute"),
5496 output_bfd, legacy_symbol);
5498 info->stacksize = h->root.u.def.value;
5501 if (!info->stacksize)
5502 /* If the user didn't set a size, or explicitly inhibit the
5503 size, set it now. */
5504 info->stacksize = default_size;
5506 /* Provide the legacy symbol, if it is referenced. */
5507 if (h && (h->root.type == bfd_link_hash_undefined
5508 || h->root.type == bfd_link_hash_undefweak))
5510 struct bfd_link_hash_entry *bh = NULL;
5512 if (!(_bfd_generic_link_add_one_symbol
5513 (info, output_bfd, legacy_symbol,
5514 BSF_GLOBAL, bfd_abs_section_ptr,
5515 info->stacksize >= 0 ? info->stacksize : 0,
5516 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5519 h = (struct elf_link_hash_entry *) bh;
5521 h->type = STT_OBJECT;
5527 /* Set up the sizes and contents of the ELF dynamic sections. This is
5528 called by the ELF linker emulation before_allocation routine. We
5529 must set the sizes of the sections before the linker sets the
5530 addresses of the various sections. */
5533 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5536 const char *filter_shlib,
5538 const char *depaudit,
5539 const char * const *auxiliary_filters,
5540 struct bfd_link_info *info,
5541 asection **sinterpptr)
5543 bfd_size_type soname_indx;
5545 const struct elf_backend_data *bed;
5546 struct elf_info_failed asvinfo;
5550 soname_indx = (bfd_size_type) -1;
5552 if (!is_elf_hash_table (info->hash))
5555 bed = get_elf_backend_data (output_bfd);
5557 /* Any syms created from now on start with -1 in
5558 got.refcount/offset and plt.refcount/offset. */
5559 elf_hash_table (info)->init_got_refcount
5560 = elf_hash_table (info)->init_got_offset;
5561 elf_hash_table (info)->init_plt_refcount
5562 = elf_hash_table (info)->init_plt_offset;
5564 if (info->relocatable
5565 && !_bfd_elf_size_group_sections (info))
5568 /* The backend may have to create some sections regardless of whether
5569 we're dynamic or not. */
5570 if (bed->elf_backend_always_size_sections
5571 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5574 /* Determine any GNU_STACK segment requirements, after the backend
5575 has had a chance to set a default segment size. */
5576 if (info->execstack)
5577 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5578 else if (info->noexecstack)
5579 elf_stack_flags (output_bfd) = PF_R | PF_W;
5583 asection *notesec = NULL;
5586 for (inputobj = info->input_bfds;
5588 inputobj = inputobj->link.next)
5593 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5595 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5598 if (s->flags & SEC_CODE)
5602 else if (bed->default_execstack)
5605 if (notesec || info->stacksize > 0)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5607 if (notesec && exec && info->relocatable
5608 && notesec->output_section != bfd_abs_section_ptr)
5609 notesec->output_section->flags |= SEC_CODE;
5612 dynobj = elf_hash_table (info)->dynobj;
5614 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5616 struct elf_info_failed eif;
5617 struct elf_link_hash_entry *h;
5619 struct bfd_elf_version_tree *t;
5620 struct bfd_elf_version_expr *d;
5622 bfd_boolean all_defined;
5624 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5625 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5629 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5631 if (soname_indx == (bfd_size_type) -1
5632 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5638 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5640 info->flags |= DF_SYMBOLIC;
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5650 if (indx == (bfd_size_type) -1)
5653 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5654 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5658 if (filter_shlib != NULL)
5662 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5663 filter_shlib, TRUE);
5664 if (indx == (bfd_size_type) -1
5665 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5669 if (auxiliary_filters != NULL)
5671 const char * const *p;
5673 for (p = auxiliary_filters; *p != NULL; p++)
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5679 if (indx == (bfd_size_type) -1
5680 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5689 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5691 if (indx == (bfd_size_type) -1
5692 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5696 if (depaudit != NULL)
5700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5702 if (indx == (bfd_size_type) -1
5703 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5710 /* If we are supposed to export all symbols into the dynamic symbol
5711 table (this is not the normal case), then do so. */
5712 if (info->export_dynamic
5713 || (info->executable && info->dynamic))
5715 elf_link_hash_traverse (elf_hash_table (info),
5716 _bfd_elf_export_symbol,
5722 /* Make all global versions with definition. */
5723 for (t = info->version_info; t != NULL; t = t->next)
5724 for (d = t->globals.list; d != NULL; d = d->next)
5725 if (!d->symver && d->literal)
5727 const char *verstr, *name;
5728 size_t namelen, verlen, newlen;
5729 char *newname, *p, leading_char;
5730 struct elf_link_hash_entry *newh;
5732 leading_char = bfd_get_symbol_leading_char (output_bfd);
5734 namelen = strlen (name) + (leading_char != '\0');
5736 verlen = strlen (verstr);
5737 newlen = namelen + verlen + 3;
5739 newname = (char *) bfd_malloc (newlen);
5740 if (newname == NULL)
5742 newname[0] = leading_char;
5743 memcpy (newname + (leading_char != '\0'), name, namelen);
5745 /* Check the hidden versioned definition. */
5746 p = newname + namelen;
5748 memcpy (p, verstr, verlen + 1);
5749 newh = elf_link_hash_lookup (elf_hash_table (info),
5750 newname, FALSE, FALSE,
5753 || (newh->root.type != bfd_link_hash_defined
5754 && newh->root.type != bfd_link_hash_defweak))
5756 /* Check the default versioned definition. */
5758 memcpy (p, verstr, verlen + 1);
5759 newh = elf_link_hash_lookup (elf_hash_table (info),
5760 newname, FALSE, FALSE,
5765 /* Mark this version if there is a definition and it is
5766 not defined in a shared object. */
5768 && !newh->def_dynamic
5769 && (newh->root.type == bfd_link_hash_defined
5770 || newh->root.type == bfd_link_hash_defweak))
5774 /* Attach all the symbols to their version information. */
5775 asvinfo.info = info;
5776 asvinfo.failed = FALSE;
5778 elf_link_hash_traverse (elf_hash_table (info),
5779 _bfd_elf_link_assign_sym_version,
5784 if (!info->allow_undefined_version)
5786 /* Check if all global versions have a definition. */
5788 for (t = info->version_info; t != NULL; t = t->next)
5789 for (d = t->globals.list; d != NULL; d = d->next)
5790 if (d->literal && !d->symver && !d->script)
5792 (*_bfd_error_handler)
5793 (_("%s: undefined version: %s"),
5794 d->pattern, t->name);
5795 all_defined = FALSE;
5800 bfd_set_error (bfd_error_bad_value);
5805 /* Find all symbols which were defined in a dynamic object and make
5806 the backend pick a reasonable value for them. */
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_adjust_dynamic_symbol,
5813 /* Add some entries to the .dynamic section. We fill in some of the
5814 values later, in bfd_elf_final_link, but we must add the entries
5815 now so that we know the final size of the .dynamic section. */
5817 /* If there are initialization and/or finalization functions to
5818 call then add the corresponding DT_INIT/DT_FINI entries. */
5819 h = (info->init_function
5820 ? elf_link_hash_lookup (elf_hash_table (info),
5821 info->init_function, FALSE,
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5831 h = (info->fini_function
5832 ? elf_link_hash_lookup (elf_hash_table (info),
5833 info->fini_function, FALSE,
5840 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5844 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5845 if (s != NULL && s->linker_has_input)
5847 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5848 if (! info->executable)
5853 for (sub = info->input_bfds; sub != NULL;
5854 sub = sub->link.next)
5855 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5856 for (o = sub->sections; o != NULL; o = o->next)
5857 if (elf_section_data (o)->this_hdr.sh_type
5858 == SHT_PREINIT_ARRAY)
5860 (*_bfd_error_handler)
5861 (_("%B: .preinit_array section is not allowed in DSO"),
5866 bfd_set_error (bfd_error_nonrepresentable_section);
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5874 s = bfd_get_section_by_name (output_bfd, ".init_array");
5875 if (s != NULL && s->linker_has_input)
5877 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5878 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5881 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5882 if (s != NULL && s->linker_has_input)
5884 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5885 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5889 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5890 /* If .dynstr is excluded from the link, we don't want any of
5891 these tags. Strictly, we should be checking each section
5892 individually; This quick check covers for the case where
5893 someone does a /DISCARD/ : { *(*) }. */
5894 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5896 bfd_size_type strsize;
5898 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5899 if ((info->emit_hash
5900 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5901 || (info->emit_gnu_hash
5902 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5903 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5904 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5905 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5906 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5907 bed->s->sizeof_sym))
5912 /* The backend must work out the sizes of all the other dynamic
5915 && bed->elf_backend_size_dynamic_sections != NULL
5916 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5919 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5922 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5924 unsigned long section_sym_count;
5925 struct bfd_elf_version_tree *verdefs;
5928 /* Set up the version definition section. */
5929 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5930 BFD_ASSERT (s != NULL);
5932 /* We may have created additional version definitions if we are
5933 just linking a regular application. */
5934 verdefs = info->version_info;
5936 /* Skip anonymous version tag. */
5937 if (verdefs != NULL && verdefs->vernum == 0)
5938 verdefs = verdefs->next;
5940 if (verdefs == NULL && !info->create_default_symver)
5941 s->flags |= SEC_EXCLUDE;
5946 struct bfd_elf_version_tree *t;
5948 Elf_Internal_Verdef def;
5949 Elf_Internal_Verdaux defaux;
5950 struct bfd_link_hash_entry *bh;
5951 struct elf_link_hash_entry *h;
5957 /* Make space for the base version. */
5958 size += sizeof (Elf_External_Verdef);
5959 size += sizeof (Elf_External_Verdaux);
5962 /* Make space for the default version. */
5963 if (info->create_default_symver)
5965 size += sizeof (Elf_External_Verdef);
5969 for (t = verdefs; t != NULL; t = t->next)
5971 struct bfd_elf_version_deps *n;
5973 /* Don't emit base version twice. */
5977 size += sizeof (Elf_External_Verdef);
5978 size += sizeof (Elf_External_Verdaux);
5981 for (n = t->deps; n != NULL; n = n->next)
5982 size += sizeof (Elf_External_Verdaux);
5986 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5987 if (s->contents == NULL && s->size != 0)
5990 /* Fill in the version definition section. */
5994 def.vd_version = VER_DEF_CURRENT;
5995 def.vd_flags = VER_FLG_BASE;
5998 if (info->create_default_symver)
6000 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6001 def.vd_next = sizeof (Elf_External_Verdef);
6005 def.vd_aux = sizeof (Elf_External_Verdef);
6006 def.vd_next = (sizeof (Elf_External_Verdef)
6007 + sizeof (Elf_External_Verdaux));
6010 if (soname_indx != (bfd_size_type) -1)
6012 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6014 def.vd_hash = bfd_elf_hash (soname);
6015 defaux.vda_name = soname_indx;
6022 name = lbasename (output_bfd->filename);
6023 def.vd_hash = bfd_elf_hash (name);
6024 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6026 if (indx == (bfd_size_type) -1)
6028 defaux.vda_name = indx;
6030 defaux.vda_next = 0;
6032 _bfd_elf_swap_verdef_out (output_bfd, &def,
6033 (Elf_External_Verdef *) p);
6034 p += sizeof (Elf_External_Verdef);
6035 if (info->create_default_symver)
6037 /* Add a symbol representing this version. */
6039 if (! (_bfd_generic_link_add_one_symbol
6040 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6042 get_elf_backend_data (dynobj)->collect, &bh)))
6044 h = (struct elf_link_hash_entry *) bh;
6047 h->type = STT_OBJECT;
6048 h->verinfo.vertree = NULL;
6050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6053 /* Create a duplicate of the base version with the same
6054 aux block, but different flags. */
6057 def.vd_aux = sizeof (Elf_External_Verdef);
6059 def.vd_next = (sizeof (Elf_External_Verdef)
6060 + sizeof (Elf_External_Verdaux));
6063 _bfd_elf_swap_verdef_out (output_bfd, &def,
6064 (Elf_External_Verdef *) p);
6065 p += sizeof (Elf_External_Verdef);
6067 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6068 (Elf_External_Verdaux *) p);
6069 p += sizeof (Elf_External_Verdaux);
6071 for (t = verdefs; t != NULL; t = t->next)
6074 struct bfd_elf_version_deps *n;
6076 /* Don't emit the base version twice. */
6081 for (n = t->deps; n != NULL; n = n->next)
6084 /* Add a symbol representing this version. */
6086 if (! (_bfd_generic_link_add_one_symbol
6087 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6089 get_elf_backend_data (dynobj)->collect, &bh)))
6091 h = (struct elf_link_hash_entry *) bh;
6094 h->type = STT_OBJECT;
6095 h->verinfo.vertree = t;
6097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6100 def.vd_version = VER_DEF_CURRENT;
6102 if (t->globals.list == NULL
6103 && t->locals.list == NULL
6105 def.vd_flags |= VER_FLG_WEAK;
6106 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6107 def.vd_cnt = cdeps + 1;
6108 def.vd_hash = bfd_elf_hash (t->name);
6109 def.vd_aux = sizeof (Elf_External_Verdef);
6112 /* If a basever node is next, it *must* be the last node in
6113 the chain, otherwise Verdef construction breaks. */
6114 if (t->next != NULL && t->next->vernum == 0)
6115 BFD_ASSERT (t->next->next == NULL);
6117 if (t->next != NULL && t->next->vernum != 0)
6118 def.vd_next = (sizeof (Elf_External_Verdef)
6119 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6121 _bfd_elf_swap_verdef_out (output_bfd, &def,
6122 (Elf_External_Verdef *) p);
6123 p += sizeof (Elf_External_Verdef);
6125 defaux.vda_name = h->dynstr_index;
6126 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6128 defaux.vda_next = 0;
6129 if (t->deps != NULL)
6130 defaux.vda_next = sizeof (Elf_External_Verdaux);
6131 t->name_indx = defaux.vda_name;
6133 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6134 (Elf_External_Verdaux *) p);
6135 p += sizeof (Elf_External_Verdaux);
6137 for (n = t->deps; n != NULL; n = n->next)
6139 if (n->version_needed == NULL)
6141 /* This can happen if there was an error in the
6143 defaux.vda_name = 0;
6147 defaux.vda_name = n->version_needed->name_indx;
6148 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6151 if (n->next == NULL)
6152 defaux.vda_next = 0;
6154 defaux.vda_next = sizeof (Elf_External_Verdaux);
6156 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6157 (Elf_External_Verdaux *) p);
6158 p += sizeof (Elf_External_Verdaux);
6162 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6163 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6166 elf_tdata (output_bfd)->cverdefs = cdefs;
6169 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6171 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6174 else if (info->flags & DF_BIND_NOW)
6176 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6182 if (info->executable)
6183 info->flags_1 &= ~ (DF_1_INITFIRST
6186 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6190 /* Work out the size of the version reference section. */
6192 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6193 BFD_ASSERT (s != NULL);
6195 struct elf_find_verdep_info sinfo;
6198 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6199 if (sinfo.vers == 0)
6201 sinfo.failed = FALSE;
6203 elf_link_hash_traverse (elf_hash_table (info),
6204 _bfd_elf_link_find_version_dependencies,
6209 if (elf_tdata (output_bfd)->verref == NULL)
6210 s->flags |= SEC_EXCLUDE;
6213 Elf_Internal_Verneed *t;
6218 /* Build the version dependency section. */
6221 for (t = elf_tdata (output_bfd)->verref;
6225 Elf_Internal_Vernaux *a;
6227 size += sizeof (Elf_External_Verneed);
6229 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6230 size += sizeof (Elf_External_Vernaux);
6234 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6235 if (s->contents == NULL)
6239 for (t = elf_tdata (output_bfd)->verref;
6244 Elf_Internal_Vernaux *a;
6248 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6251 t->vn_version = VER_NEED_CURRENT;
6253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6254 elf_dt_name (t->vn_bfd) != NULL
6255 ? elf_dt_name (t->vn_bfd)
6256 : lbasename (t->vn_bfd->filename),
6258 if (indx == (bfd_size_type) -1)
6261 t->vn_aux = sizeof (Elf_External_Verneed);
6262 if (t->vn_nextref == NULL)
6265 t->vn_next = (sizeof (Elf_External_Verneed)
6266 + caux * sizeof (Elf_External_Vernaux));
6268 _bfd_elf_swap_verneed_out (output_bfd, t,
6269 (Elf_External_Verneed *) p);
6270 p += sizeof (Elf_External_Verneed);
6272 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6274 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6275 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6276 a->vna_nodename, FALSE);
6277 if (indx == (bfd_size_type) -1)
6280 if (a->vna_nextptr == NULL)
6283 a->vna_next = sizeof (Elf_External_Vernaux);
6285 _bfd_elf_swap_vernaux_out (output_bfd, a,
6286 (Elf_External_Vernaux *) p);
6287 p += sizeof (Elf_External_Vernaux);
6291 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6292 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6295 elf_tdata (output_bfd)->cverrefs = crefs;
6299 if ((elf_tdata (output_bfd)->cverrefs == 0
6300 && elf_tdata (output_bfd)->cverdefs == 0)
6301 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6302 §ion_sym_count) == 0)
6304 s = bfd_get_linker_section (dynobj, ".gnu.version");
6305 s->flags |= SEC_EXCLUDE;
6311 /* Find the first non-excluded output section. We'll use its
6312 section symbol for some emitted relocs. */
6314 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6322 elf_hash_table (info)->text_index_section = s;
6327 /* Find two non-excluded output sections, one for code, one for data.
6328 We'll use their section symbols for some emitted relocs. */
6330 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6334 /* Data first, since setting text_index_section changes
6335 _bfd_elf_link_omit_section_dynsym. */
6336 for (s = output_bfd->sections; s != NULL; s = s->next)
6337 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6338 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6340 elf_hash_table (info)->data_index_section = s;
6344 for (s = output_bfd->sections; s != NULL; s = s->next)
6345 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6346 == (SEC_ALLOC | SEC_READONLY))
6347 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6349 elf_hash_table (info)->text_index_section = s;
6353 if (elf_hash_table (info)->text_index_section == NULL)
6354 elf_hash_table (info)->text_index_section
6355 = elf_hash_table (info)->data_index_section;
6359 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6361 const struct elf_backend_data *bed;
6363 if (!is_elf_hash_table (info->hash))
6366 bed = get_elf_backend_data (output_bfd);
6367 (*bed->elf_backend_init_index_section) (output_bfd, info);
6369 if (elf_hash_table (info)->dynamic_sections_created)
6373 bfd_size_type dynsymcount;
6374 unsigned long section_sym_count;
6375 unsigned int dtagcount;
6377 dynobj = elf_hash_table (info)->dynobj;
6379 /* Assign dynsym indicies. In a shared library we generate a
6380 section symbol for each output section, which come first.
6381 Next come all of the back-end allocated local dynamic syms,
6382 followed by the rest of the global symbols. */
6384 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6385 §ion_sym_count);
6387 /* Work out the size of the symbol version section. */
6388 s = bfd_get_linker_section (dynobj, ".gnu.version");
6389 BFD_ASSERT (s != NULL);
6390 if (dynsymcount != 0
6391 && (s->flags & SEC_EXCLUDE) == 0)
6393 s->size = dynsymcount * sizeof (Elf_External_Versym);
6394 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6395 if (s->contents == NULL)
6398 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6402 /* Set the size of the .dynsym and .hash sections. We counted
6403 the number of dynamic symbols in elf_link_add_object_symbols.
6404 We will build the contents of .dynsym and .hash when we build
6405 the final symbol table, because until then we do not know the
6406 correct value to give the symbols. We built the .dynstr
6407 section as we went along in elf_link_add_object_symbols. */
6408 s = bfd_get_linker_section (dynobj, ".dynsym");
6409 BFD_ASSERT (s != NULL);
6410 s->size = dynsymcount * bed->s->sizeof_sym;
6412 if (dynsymcount != 0)
6414 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6415 if (s->contents == NULL)
6418 /* The first entry in .dynsym is a dummy symbol.
6419 Clear all the section syms, in case we don't output them all. */
6420 ++section_sym_count;
6421 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6424 elf_hash_table (info)->bucketcount = 0;
6426 /* Compute the size of the hashing table. As a side effect this
6427 computes the hash values for all the names we export. */
6428 if (info->emit_hash)
6430 unsigned long int *hashcodes;
6431 struct hash_codes_info hashinf;
6433 unsigned long int nsyms;
6435 size_t hash_entry_size;
6437 /* Compute the hash values for all exported symbols. At the same
6438 time store the values in an array so that we could use them for
6440 amt = dynsymcount * sizeof (unsigned long int);
6441 hashcodes = (unsigned long int *) bfd_malloc (amt);
6442 if (hashcodes == NULL)
6444 hashinf.hashcodes = hashcodes;
6445 hashinf.error = FALSE;
6447 /* Put all hash values in HASHCODES. */
6448 elf_link_hash_traverse (elf_hash_table (info),
6449 elf_collect_hash_codes, &hashinf);
6456 nsyms = hashinf.hashcodes - hashcodes;
6458 = compute_bucket_count (info, hashcodes, nsyms, 0);
6461 if (bucketcount == 0)
6464 elf_hash_table (info)->bucketcount = bucketcount;
6466 s = bfd_get_linker_section (dynobj, ".hash");
6467 BFD_ASSERT (s != NULL);
6468 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6469 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6470 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6471 if (s->contents == NULL)
6474 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6475 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6476 s->contents + hash_entry_size);
6479 if (info->emit_gnu_hash)
6482 unsigned char *contents;
6483 struct collect_gnu_hash_codes cinfo;
6487 memset (&cinfo, 0, sizeof (cinfo));
6489 /* Compute the hash values for all exported symbols. At the same
6490 time store the values in an array so that we could use them for
6492 amt = dynsymcount * 2 * sizeof (unsigned long int);
6493 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6494 if (cinfo.hashcodes == NULL)
6497 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6498 cinfo.min_dynindx = -1;
6499 cinfo.output_bfd = output_bfd;
6502 /* Put all hash values in HASHCODES. */
6503 elf_link_hash_traverse (elf_hash_table (info),
6504 elf_collect_gnu_hash_codes, &cinfo);
6507 free (cinfo.hashcodes);
6512 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6514 if (bucketcount == 0)
6516 free (cinfo.hashcodes);
6520 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6521 BFD_ASSERT (s != NULL);
6523 if (cinfo.nsyms == 0)
6525 /* Empty .gnu.hash section is special. */
6526 BFD_ASSERT (cinfo.min_dynindx == -1);
6527 free (cinfo.hashcodes);
6528 s->size = 5 * 4 + bed->s->arch_size / 8;
6529 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6530 if (contents == NULL)
6532 s->contents = contents;
6533 /* 1 empty bucket. */
6534 bfd_put_32 (output_bfd, 1, contents);
6535 /* SYMIDX above the special symbol 0. */
6536 bfd_put_32 (output_bfd, 1, contents + 4);
6537 /* Just one word for bitmask. */
6538 bfd_put_32 (output_bfd, 1, contents + 8);
6539 /* Only hash fn bloom filter. */
6540 bfd_put_32 (output_bfd, 0, contents + 12);
6541 /* No hashes are valid - empty bitmask. */
6542 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6543 /* No hashes in the only bucket. */
6544 bfd_put_32 (output_bfd, 0,
6545 contents + 16 + bed->s->arch_size / 8);
6549 unsigned long int maskwords, maskbitslog2, x;
6550 BFD_ASSERT (cinfo.min_dynindx != -1);
6554 while ((x >>= 1) != 0)
6556 if (maskbitslog2 < 3)
6558 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6559 maskbitslog2 = maskbitslog2 + 3;
6561 maskbitslog2 = maskbitslog2 + 2;
6562 if (bed->s->arch_size == 64)
6564 if (maskbitslog2 == 5)
6570 cinfo.mask = (1 << cinfo.shift1) - 1;
6571 cinfo.shift2 = maskbitslog2;
6572 cinfo.maskbits = 1 << maskbitslog2;
6573 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6574 amt = bucketcount * sizeof (unsigned long int) * 2;
6575 amt += maskwords * sizeof (bfd_vma);
6576 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6577 if (cinfo.bitmask == NULL)
6579 free (cinfo.hashcodes);
6583 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6584 cinfo.indx = cinfo.counts + bucketcount;
6585 cinfo.symindx = dynsymcount - cinfo.nsyms;
6586 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6588 /* Determine how often each hash bucket is used. */
6589 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6590 for (i = 0; i < cinfo.nsyms; ++i)
6591 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6593 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6594 if (cinfo.counts[i] != 0)
6596 cinfo.indx[i] = cnt;
6597 cnt += cinfo.counts[i];
6599 BFD_ASSERT (cnt == dynsymcount);
6600 cinfo.bucketcount = bucketcount;
6601 cinfo.local_indx = cinfo.min_dynindx;
6603 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6604 s->size += cinfo.maskbits / 8;
6605 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6606 if (contents == NULL)
6608 free (cinfo.bitmask);
6609 free (cinfo.hashcodes);
6613 s->contents = contents;
6614 bfd_put_32 (output_bfd, bucketcount, contents);
6615 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6616 bfd_put_32 (output_bfd, maskwords, contents + 8);
6617 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6618 contents += 16 + cinfo.maskbits / 8;
6620 for (i = 0; i < bucketcount; ++i)
6622 if (cinfo.counts[i] == 0)
6623 bfd_put_32 (output_bfd, 0, contents);
6625 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6629 cinfo.contents = contents;
6631 /* Renumber dynamic symbols, populate .gnu.hash section. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 elf_renumber_gnu_hash_syms, &cinfo);
6635 contents = s->contents + 16;
6636 for (i = 0; i < maskwords; ++i)
6638 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6640 contents += bed->s->arch_size / 8;
6643 free (cinfo.bitmask);
6644 free (cinfo.hashcodes);
6648 s = bfd_get_linker_section (dynobj, ".dynstr");
6649 BFD_ASSERT (s != NULL);
6651 elf_finalize_dynstr (output_bfd, info);
6653 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6655 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6656 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6663 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6666 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6669 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6670 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6673 /* Finish SHF_MERGE section merging. */
6676 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6681 if (!is_elf_hash_table (info->hash))
6684 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6685 if ((ibfd->flags & DYNAMIC) == 0)
6686 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6687 if ((sec->flags & SEC_MERGE) != 0
6688 && !bfd_is_abs_section (sec->output_section))
6690 struct bfd_elf_section_data *secdata;
6692 secdata = elf_section_data (sec);
6693 if (! _bfd_add_merge_section (abfd,
6694 &elf_hash_table (info)->merge_info,
6695 sec, &secdata->sec_info))
6697 else if (secdata->sec_info)
6698 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6701 if (elf_hash_table (info)->merge_info != NULL)
6702 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6703 merge_sections_remove_hook);
6707 /* Create an entry in an ELF linker hash table. */
6709 struct bfd_hash_entry *
6710 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6711 struct bfd_hash_table *table,
6714 /* Allocate the structure if it has not already been allocated by a
6718 entry = (struct bfd_hash_entry *)
6719 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6724 /* Call the allocation method of the superclass. */
6725 entry = _bfd_link_hash_newfunc (entry, table, string);
6728 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6729 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6731 /* Set local fields. */
6734 ret->got = htab->init_got_refcount;
6735 ret->plt = htab->init_plt_refcount;
6736 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6737 - offsetof (struct elf_link_hash_entry, size)));
6738 /* Assume that we have been called by a non-ELF symbol reader.
6739 This flag is then reset by the code which reads an ELF input
6740 file. This ensures that a symbol created by a non-ELF symbol
6741 reader will have the flag set correctly. */
6748 /* Copy data from an indirect symbol to its direct symbol, hiding the
6749 old indirect symbol. Also used for copying flags to a weakdef. */
6752 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6753 struct elf_link_hash_entry *dir,
6754 struct elf_link_hash_entry *ind)
6756 struct elf_link_hash_table *htab;
6758 /* Copy down any references that we may have already seen to the
6759 symbol which just became indirect. */
6761 dir->ref_dynamic |= ind->ref_dynamic;
6762 dir->ref_regular |= ind->ref_regular;
6763 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6764 dir->non_got_ref |= ind->non_got_ref;
6765 dir->needs_plt |= ind->needs_plt;
6766 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6768 if (ind->root.type != bfd_link_hash_indirect)
6771 /* Copy over the global and procedure linkage table refcount entries.
6772 These may have been already set up by a check_relocs routine. */
6773 htab = elf_hash_table (info);
6774 if (ind->got.refcount > htab->init_got_refcount.refcount)
6776 if (dir->got.refcount < 0)
6777 dir->got.refcount = 0;
6778 dir->got.refcount += ind->got.refcount;
6779 ind->got.refcount = htab->init_got_refcount.refcount;
6782 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6784 if (dir->plt.refcount < 0)
6785 dir->plt.refcount = 0;
6786 dir->plt.refcount += ind->plt.refcount;
6787 ind->plt.refcount = htab->init_plt_refcount.refcount;
6790 if (ind->dynindx != -1)
6792 if (dir->dynindx != -1)
6793 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6794 dir->dynindx = ind->dynindx;
6795 dir->dynstr_index = ind->dynstr_index;
6797 ind->dynstr_index = 0;
6802 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6803 struct elf_link_hash_entry *h,
6804 bfd_boolean force_local)
6806 /* STT_GNU_IFUNC symbol must go through PLT. */
6807 if (h->type != STT_GNU_IFUNC)
6809 h->plt = elf_hash_table (info)->init_plt_offset;
6814 h->forced_local = 1;
6815 if (h->dynindx != -1)
6818 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6824 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6828 _bfd_elf_link_hash_table_init
6829 (struct elf_link_hash_table *table,
6831 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6832 struct bfd_hash_table *,
6834 unsigned int entsize,
6835 enum elf_target_id target_id)
6838 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6840 table->init_got_refcount.refcount = can_refcount - 1;
6841 table->init_plt_refcount.refcount = can_refcount - 1;
6842 table->init_got_offset.offset = -(bfd_vma) 1;
6843 table->init_plt_offset.offset = -(bfd_vma) 1;
6844 /* The first dynamic symbol is a dummy. */
6845 table->dynsymcount = 1;
6847 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6849 table->root.type = bfd_link_elf_hash_table;
6850 table->hash_table_id = target_id;
6855 /* Create an ELF linker hash table. */
6857 struct bfd_link_hash_table *
6858 _bfd_elf_link_hash_table_create (bfd *abfd)
6860 struct elf_link_hash_table *ret;
6861 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6863 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6867 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6868 sizeof (struct elf_link_hash_entry),
6874 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
6879 /* Destroy an ELF linker hash table. */
6882 _bfd_elf_link_hash_table_free (bfd *obfd)
6884 struct elf_link_hash_table *htab;
6886 htab = (struct elf_link_hash_table *) obfd->link.hash;
6887 if (htab->dynstr != NULL)
6888 _bfd_elf_strtab_free (htab->dynstr);
6889 _bfd_merge_sections_free (htab->merge_info);
6890 _bfd_generic_link_hash_table_free (obfd);
6893 /* This is a hook for the ELF emulation code in the generic linker to
6894 tell the backend linker what file name to use for the DT_NEEDED
6895 entry for a dynamic object. */
6898 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6900 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd) == bfd_object)
6902 elf_dt_name (abfd) = name;
6906 bfd_elf_get_dyn_lib_class (bfd *abfd)
6909 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6910 && bfd_get_format (abfd) == bfd_object)
6911 lib_class = elf_dyn_lib_class (abfd);
6918 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6920 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6921 && bfd_get_format (abfd) == bfd_object)
6922 elf_dyn_lib_class (abfd) = lib_class;
6925 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6926 the linker ELF emulation code. */
6928 struct bfd_link_needed_list *
6929 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6930 struct bfd_link_info *info)
6932 if (! is_elf_hash_table (info->hash))
6934 return elf_hash_table (info)->needed;
6937 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6938 hook for the linker ELF emulation code. */
6940 struct bfd_link_needed_list *
6941 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6942 struct bfd_link_info *info)
6944 if (! is_elf_hash_table (info->hash))
6946 return elf_hash_table (info)->runpath;
6949 /* Get the name actually used for a dynamic object for a link. This
6950 is the SONAME entry if there is one. Otherwise, it is the string
6951 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6954 bfd_elf_get_dt_soname (bfd *abfd)
6956 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6957 && bfd_get_format (abfd) == bfd_object)
6958 return elf_dt_name (abfd);
6962 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6963 the ELF linker emulation code. */
6966 bfd_elf_get_bfd_needed_list (bfd *abfd,
6967 struct bfd_link_needed_list **pneeded)
6970 bfd_byte *dynbuf = NULL;
6971 unsigned int elfsec;
6972 unsigned long shlink;
6973 bfd_byte *extdyn, *extdynend;
6975 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6979 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6980 || bfd_get_format (abfd) != bfd_object)
6983 s = bfd_get_section_by_name (abfd, ".dynamic");
6984 if (s == NULL || s->size == 0)
6987 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6990 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6991 if (elfsec == SHN_BAD)
6994 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6996 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6997 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7000 extdynend = extdyn + s->size;
7001 for (; extdyn < extdynend; extdyn += extdynsize)
7003 Elf_Internal_Dyn dyn;
7005 (*swap_dyn_in) (abfd, extdyn, &dyn);
7007 if (dyn.d_tag == DT_NULL)
7010 if (dyn.d_tag == DT_NEEDED)
7013 struct bfd_link_needed_list *l;
7014 unsigned int tagv = dyn.d_un.d_val;
7017 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7022 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7043 struct elf_symbuf_symbol
7045 unsigned long st_name; /* Symbol name, index in string tbl */
7046 unsigned char st_info; /* Type and binding attributes */
7047 unsigned char st_other; /* Visibilty, and target specific */
7050 struct elf_symbuf_head
7052 struct elf_symbuf_symbol *ssym;
7053 bfd_size_type count;
7054 unsigned int st_shndx;
7061 Elf_Internal_Sym *isym;
7062 struct elf_symbuf_symbol *ssym;
7067 /* Sort references to symbols by ascending section number. */
7070 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7072 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7073 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7075 return s1->st_shndx - s2->st_shndx;
7079 elf_sym_name_compare (const void *arg1, const void *arg2)
7081 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7082 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7083 return strcmp (s1->name, s2->name);
7086 static struct elf_symbuf_head *
7087 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7089 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7090 struct elf_symbuf_symbol *ssym;
7091 struct elf_symbuf_head *ssymbuf, *ssymhead;
7092 bfd_size_type i, shndx_count, total_size;
7094 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7098 for (ind = indbuf, i = 0; i < symcount; i++)
7099 if (isymbuf[i].st_shndx != SHN_UNDEF)
7100 *ind++ = &isymbuf[i];
7103 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7104 elf_sort_elf_symbol);
7107 if (indbufend > indbuf)
7108 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7109 if (ind[0]->st_shndx != ind[1]->st_shndx)
7112 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7113 + (indbufend - indbuf) * sizeof (*ssym));
7114 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7115 if (ssymbuf == NULL)
7121 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7122 ssymbuf->ssym = NULL;
7123 ssymbuf->count = shndx_count;
7124 ssymbuf->st_shndx = 0;
7125 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7127 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7130 ssymhead->ssym = ssym;
7131 ssymhead->count = 0;
7132 ssymhead->st_shndx = (*ind)->st_shndx;
7134 ssym->st_name = (*ind)->st_name;
7135 ssym->st_info = (*ind)->st_info;
7136 ssym->st_other = (*ind)->st_other;
7139 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7140 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7147 /* Check if 2 sections define the same set of local and global
7151 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7152 struct bfd_link_info *info)
7155 const struct elf_backend_data *bed1, *bed2;
7156 Elf_Internal_Shdr *hdr1, *hdr2;
7157 bfd_size_type symcount1, symcount2;
7158 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7159 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7160 Elf_Internal_Sym *isym, *isymend;
7161 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7162 bfd_size_type count1, count2, i;
7163 unsigned int shndx1, shndx2;
7169 /* Both sections have to be in ELF. */
7170 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7171 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7174 if (elf_section_type (sec1) != elf_section_type (sec2))
7177 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7178 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7179 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7182 bed1 = get_elf_backend_data (bfd1);
7183 bed2 = get_elf_backend_data (bfd2);
7184 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7185 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7186 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7187 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7189 if (symcount1 == 0 || symcount2 == 0)
7195 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7196 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7198 if (ssymbuf1 == NULL)
7200 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7202 if (isymbuf1 == NULL)
7205 if (!info->reduce_memory_overheads)
7206 elf_tdata (bfd1)->symbuf = ssymbuf1
7207 = elf_create_symbuf (symcount1, isymbuf1);
7210 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7212 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7214 if (isymbuf2 == NULL)
7217 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7218 elf_tdata (bfd2)->symbuf = ssymbuf2
7219 = elf_create_symbuf (symcount2, isymbuf2);
7222 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7224 /* Optimized faster version. */
7225 bfd_size_type lo, hi, mid;
7226 struct elf_symbol *symp;
7227 struct elf_symbuf_symbol *ssym, *ssymend;
7230 hi = ssymbuf1->count;
7235 mid = (lo + hi) / 2;
7236 if (shndx1 < ssymbuf1[mid].st_shndx)
7238 else if (shndx1 > ssymbuf1[mid].st_shndx)
7242 count1 = ssymbuf1[mid].count;
7249 hi = ssymbuf2->count;
7254 mid = (lo + hi) / 2;
7255 if (shndx2 < ssymbuf2[mid].st_shndx)
7257 else if (shndx2 > ssymbuf2[mid].st_shndx)
7261 count2 = ssymbuf2[mid].count;
7267 if (count1 == 0 || count2 == 0 || count1 != count2)
7270 symtable1 = (struct elf_symbol *)
7271 bfd_malloc (count1 * sizeof (struct elf_symbol));
7272 symtable2 = (struct elf_symbol *)
7273 bfd_malloc (count2 * sizeof (struct elf_symbol));
7274 if (symtable1 == NULL || symtable2 == NULL)
7278 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7279 ssym < ssymend; ssym++, symp++)
7281 symp->u.ssym = ssym;
7282 symp->name = bfd_elf_string_from_elf_section (bfd1,
7288 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7289 ssym < ssymend; ssym++, symp++)
7291 symp->u.ssym = ssym;
7292 symp->name = bfd_elf_string_from_elf_section (bfd2,
7297 /* Sort symbol by name. */
7298 qsort (symtable1, count1, sizeof (struct elf_symbol),
7299 elf_sym_name_compare);
7300 qsort (symtable2, count1, sizeof (struct elf_symbol),
7301 elf_sym_name_compare);
7303 for (i = 0; i < count1; i++)
7304 /* Two symbols must have the same binding, type and name. */
7305 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7306 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7307 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7314 symtable1 = (struct elf_symbol *)
7315 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7316 symtable2 = (struct elf_symbol *)
7317 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7318 if (symtable1 == NULL || symtable2 == NULL)
7321 /* Count definitions in the section. */
7323 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7324 if (isym->st_shndx == shndx1)
7325 symtable1[count1++].u.isym = isym;
7328 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7329 if (isym->st_shndx == shndx2)
7330 symtable2[count2++].u.isym = isym;
7332 if (count1 == 0 || count2 == 0 || count1 != count2)
7335 for (i = 0; i < count1; i++)
7337 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7338 symtable1[i].u.isym->st_name);
7340 for (i = 0; i < count2; i++)
7342 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7343 symtable2[i].u.isym->st_name);
7345 /* Sort symbol by name. */
7346 qsort (symtable1, count1, sizeof (struct elf_symbol),
7347 elf_sym_name_compare);
7348 qsort (symtable2, count1, sizeof (struct elf_symbol),
7349 elf_sym_name_compare);
7351 for (i = 0; i < count1; i++)
7352 /* Two symbols must have the same binding, type and name. */
7353 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7354 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7355 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7373 /* Return TRUE if 2 section types are compatible. */
7376 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7377 bfd *bbfd, const asection *bsec)
7381 || abfd->xvec->flavour != bfd_target_elf_flavour
7382 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7385 return elf_section_type (asec) == elf_section_type (bsec);
7388 /* Final phase of ELF linker. */
7390 /* A structure we use to avoid passing large numbers of arguments. */
7392 struct elf_final_link_info
7394 /* General link information. */
7395 struct bfd_link_info *info;
7398 /* Symbol string table. */
7399 struct bfd_strtab_hash *symstrtab;
7400 /* .dynsym section. */
7401 asection *dynsym_sec;
7402 /* .hash section. */
7404 /* symbol version section (.gnu.version). */
7405 asection *symver_sec;
7406 /* Buffer large enough to hold contents of any section. */
7408 /* Buffer large enough to hold external relocs of any section. */
7409 void *external_relocs;
7410 /* Buffer large enough to hold internal relocs of any section. */
7411 Elf_Internal_Rela *internal_relocs;
7412 /* Buffer large enough to hold external local symbols of any input
7414 bfd_byte *external_syms;
7415 /* And a buffer for symbol section indices. */
7416 Elf_External_Sym_Shndx *locsym_shndx;
7417 /* Buffer large enough to hold internal local symbols of any input
7419 Elf_Internal_Sym *internal_syms;
7420 /* Array large enough to hold a symbol index for each local symbol
7421 of any input BFD. */
7423 /* Array large enough to hold a section pointer for each local
7424 symbol of any input BFD. */
7425 asection **sections;
7426 /* Buffer to hold swapped out symbols. */
7428 /* And one for symbol section indices. */
7429 Elf_External_Sym_Shndx *symshndxbuf;
7430 /* Number of swapped out symbols in buffer. */
7431 size_t symbuf_count;
7432 /* Number of symbols which fit in symbuf. */
7434 /* And same for symshndxbuf. */
7435 size_t shndxbuf_size;
7436 /* Number of STT_FILE syms seen. */
7437 size_t filesym_count;
7440 /* This struct is used to pass information to elf_link_output_extsym. */
7442 struct elf_outext_info
7445 bfd_boolean localsyms;
7446 bfd_boolean need_second_pass;
7447 bfd_boolean second_pass;
7448 bfd_boolean file_sym_done;
7449 struct elf_final_link_info *flinfo;
7453 /* Support for evaluating a complex relocation.
7455 Complex relocations are generalized, self-describing relocations. The
7456 implementation of them consists of two parts: complex symbols, and the
7457 relocations themselves.
7459 The relocations are use a reserved elf-wide relocation type code (R_RELC
7460 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7461 information (start bit, end bit, word width, etc) into the addend. This
7462 information is extracted from CGEN-generated operand tables within gas.
7464 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7465 internal) representing prefix-notation expressions, including but not
7466 limited to those sorts of expressions normally encoded as addends in the
7467 addend field. The symbol mangling format is:
7470 | <unary-operator> ':' <node>
7471 | <binary-operator> ':' <node> ':' <node>
7474 <literal> := 's' <digits=N> ':' <N character symbol name>
7475 | 'S' <digits=N> ':' <N character section name>
7479 <binary-operator> := as in C
7480 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7483 set_symbol_value (bfd *bfd_with_globals,
7484 Elf_Internal_Sym *isymbuf,
7489 struct elf_link_hash_entry **sym_hashes;
7490 struct elf_link_hash_entry *h;
7491 size_t extsymoff = locsymcount;
7493 if (symidx < locsymcount)
7495 Elf_Internal_Sym *sym;
7497 sym = isymbuf + symidx;
7498 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7500 /* It is a local symbol: move it to the
7501 "absolute" section and give it a value. */
7502 sym->st_shndx = SHN_ABS;
7503 sym->st_value = val;
7506 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7510 /* It is a global symbol: set its link type
7511 to "defined" and give it a value. */
7513 sym_hashes = elf_sym_hashes (bfd_with_globals);
7514 h = sym_hashes [symidx - extsymoff];
7515 while (h->root.type == bfd_link_hash_indirect
7516 || h->root.type == bfd_link_hash_warning)
7517 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7518 h->root.type = bfd_link_hash_defined;
7519 h->root.u.def.value = val;
7520 h->root.u.def.section = bfd_abs_section_ptr;
7524 resolve_symbol (const char *name,
7526 struct elf_final_link_info *flinfo,
7528 Elf_Internal_Sym *isymbuf,
7531 Elf_Internal_Sym *sym;
7532 struct bfd_link_hash_entry *global_entry;
7533 const char *candidate = NULL;
7534 Elf_Internal_Shdr *symtab_hdr;
7537 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7539 for (i = 0; i < locsymcount; ++ i)
7543 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7546 candidate = bfd_elf_string_from_elf_section (input_bfd,
7547 symtab_hdr->sh_link,
7550 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7551 name, candidate, (unsigned long) sym->st_value);
7553 if (candidate && strcmp (candidate, name) == 0)
7555 asection *sec = flinfo->sections [i];
7557 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7558 *result += sec->output_offset + sec->output_section->vma;
7560 printf ("Found symbol with value %8.8lx\n",
7561 (unsigned long) *result);
7567 /* Hmm, haven't found it yet. perhaps it is a global. */
7568 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7569 FALSE, FALSE, TRUE);
7573 if (global_entry->type == bfd_link_hash_defined
7574 || global_entry->type == bfd_link_hash_defweak)
7576 *result = (global_entry->u.def.value
7577 + global_entry->u.def.section->output_section->vma
7578 + global_entry->u.def.section->output_offset);
7580 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7581 global_entry->root.string, (unsigned long) *result);
7590 resolve_section (const char *name,
7597 for (curr = sections; curr; curr = curr->next)
7598 if (strcmp (curr->name, name) == 0)
7600 *result = curr->vma;
7604 /* Hmm. still haven't found it. try pseudo-section names. */
7605 for (curr = sections; curr; curr = curr->next)
7607 len = strlen (curr->name);
7608 if (len > strlen (name))
7611 if (strncmp (curr->name, name, len) == 0)
7613 if (strncmp (".end", name + len, 4) == 0)
7615 *result = curr->vma + curr->size;
7619 /* Insert more pseudo-section names here, if you like. */
7627 undefined_reference (const char *reftype, const char *name)
7629 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7634 eval_symbol (bfd_vma *result,
7637 struct elf_final_link_info *flinfo,
7639 Elf_Internal_Sym *isymbuf,
7648 const char *sym = *symp;
7650 bfd_boolean symbol_is_section = FALSE;
7655 if (len < 1 || len > sizeof (symbuf))
7657 bfd_set_error (bfd_error_invalid_operation);
7670 *result = strtoul (sym, (char **) symp, 16);
7674 symbol_is_section = TRUE;
7677 symlen = strtol (sym, (char **) symp, 10);
7678 sym = *symp + 1; /* Skip the trailing ':'. */
7680 if (symend < sym || symlen + 1 > sizeof (symbuf))
7682 bfd_set_error (bfd_error_invalid_operation);
7686 memcpy (symbuf, sym, symlen);
7687 symbuf[symlen] = '\0';
7688 *symp = sym + symlen;
7690 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7691 the symbol as a section, or vice-versa. so we're pretty liberal in our
7692 interpretation here; section means "try section first", not "must be a
7693 section", and likewise with symbol. */
7695 if (symbol_is_section)
7697 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7698 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7699 isymbuf, locsymcount))
7701 undefined_reference ("section", symbuf);
7707 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7708 isymbuf, locsymcount)
7709 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7712 undefined_reference ("symbol", symbuf);
7719 /* All that remains are operators. */
7721 #define UNARY_OP(op) \
7722 if (strncmp (sym, #op, strlen (#op)) == 0) \
7724 sym += strlen (#op); \
7728 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7729 isymbuf, locsymcount, signed_p)) \
7732 *result = op ((bfd_signed_vma) a); \
7738 #define BINARY_OP(op) \
7739 if (strncmp (sym, #op, strlen (#op)) == 0) \
7741 sym += strlen (#op); \
7745 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7746 isymbuf, locsymcount, signed_p)) \
7749 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7750 isymbuf, locsymcount, signed_p)) \
7753 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7783 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7784 bfd_set_error (bfd_error_invalid_operation);
7790 put_value (bfd_vma size,
7791 unsigned long chunksz,
7796 location += (size - chunksz);
7798 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7806 bfd_put_8 (input_bfd, x, location);
7809 bfd_put_16 (input_bfd, x, location);
7812 bfd_put_32 (input_bfd, x, location);
7816 bfd_put_64 (input_bfd, x, location);
7826 get_value (bfd_vma size,
7827 unsigned long chunksz,
7834 /* Sanity checks. */
7835 BFD_ASSERT (chunksz <= sizeof (x)
7838 && (size % chunksz) == 0
7839 && input_bfd != NULL
7840 && location != NULL);
7842 if (chunksz == sizeof (x))
7844 BFD_ASSERT (size == chunksz);
7846 /* Make sure that we do not perform an undefined shift operation.
7847 We know that size == chunksz so there will only be one iteration
7848 of the loop below. */
7852 shift = 8 * chunksz;
7854 for (; size; size -= chunksz, location += chunksz)
7859 x = (x << shift) | bfd_get_8 (input_bfd, location);
7862 x = (x << shift) | bfd_get_16 (input_bfd, location);
7865 x = (x << shift) | bfd_get_32 (input_bfd, location);
7869 x = (x << shift) | bfd_get_64 (input_bfd, location);
7880 decode_complex_addend (unsigned long *start, /* in bits */
7881 unsigned long *oplen, /* in bits */
7882 unsigned long *len, /* in bits */
7883 unsigned long *wordsz, /* in bytes */
7884 unsigned long *chunksz, /* in bytes */
7885 unsigned long *lsb0_p,
7886 unsigned long *signed_p,
7887 unsigned long *trunc_p,
7888 unsigned long encoded)
7890 * start = encoded & 0x3F;
7891 * len = (encoded >> 6) & 0x3F;
7892 * oplen = (encoded >> 12) & 0x3F;
7893 * wordsz = (encoded >> 18) & 0xF;
7894 * chunksz = (encoded >> 22) & 0xF;
7895 * lsb0_p = (encoded >> 27) & 1;
7896 * signed_p = (encoded >> 28) & 1;
7897 * trunc_p = (encoded >> 29) & 1;
7900 bfd_reloc_status_type
7901 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7902 asection *input_section ATTRIBUTE_UNUSED,
7904 Elf_Internal_Rela *rel,
7907 bfd_vma shift, x, mask;
7908 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7909 bfd_reloc_status_type r;
7911 /* Perform this reloc, since it is complex.
7912 (this is not to say that it necessarily refers to a complex
7913 symbol; merely that it is a self-describing CGEN based reloc.
7914 i.e. the addend has the complete reloc information (bit start, end,
7915 word size, etc) encoded within it.). */
7917 decode_complex_addend (&start, &oplen, &len, &wordsz,
7918 &chunksz, &lsb0_p, &signed_p,
7919 &trunc_p, rel->r_addend);
7921 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7924 shift = (start + 1) - len;
7926 shift = (8 * wordsz) - (start + len);
7928 /* FIXME: octets_per_byte. */
7929 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7932 printf ("Doing complex reloc: "
7933 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7934 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7935 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7936 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7937 oplen, (unsigned long) x, (unsigned long) mask,
7938 (unsigned long) relocation);
7943 /* Now do an overflow check. */
7944 r = bfd_check_overflow ((signed_p
7945 ? complain_overflow_signed
7946 : complain_overflow_unsigned),
7947 len, 0, (8 * wordsz),
7951 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7954 printf (" relocation: %8.8lx\n"
7955 " shifted mask: %8.8lx\n"
7956 " shifted/masked reloc: %8.8lx\n"
7957 " result: %8.8lx\n",
7958 (unsigned long) relocation, (unsigned long) (mask << shift),
7959 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7961 /* FIXME: octets_per_byte. */
7962 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7966 /* qsort comparison functions sorting external relocs by r_offset. */
7969 cmp_ext32l_r_offset (const void *p, const void *q)
7976 const union aligned32 *a
7977 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
7978 const union aligned32 *b
7979 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
7981 uint32_t aval = ( (uint32_t) a->c[0]
7982 | (uint32_t) a->c[1] << 8
7983 | (uint32_t) a->c[2] << 16
7984 | (uint32_t) a->c[3] << 24);
7985 uint32_t bval = ( (uint32_t) b->c[0]
7986 | (uint32_t) b->c[1] << 8
7987 | (uint32_t) b->c[2] << 16
7988 | (uint32_t) b->c[3] << 24);
7991 else if (aval > bval)
7997 cmp_ext32b_r_offset (const void *p, const void *q)
8004 const union aligned32 *a
8005 = (const union aligned32 *) ((const Elf32_External_Rel *) p)->r_offset;
8006 const union aligned32 *b
8007 = (const union aligned32 *) ((const Elf32_External_Rel *) q)->r_offset;
8009 uint32_t aval = ( (uint32_t) a->c[0] << 24
8010 | (uint32_t) a->c[1] << 16
8011 | (uint32_t) a->c[2] << 8
8012 | (uint32_t) a->c[3]);
8013 uint32_t bval = ( (uint32_t) b->c[0] << 24
8014 | (uint32_t) b->c[1] << 16
8015 | (uint32_t) b->c[2] << 8
8016 | (uint32_t) b->c[3]);
8019 else if (aval > bval)
8024 #ifdef BFD_HOST_64_BIT
8026 cmp_ext64l_r_offset (const void *p, const void *q)
8033 const union aligned64 *a
8034 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8035 const union aligned64 *b
8036 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8038 uint64_t aval = ( (uint64_t) a->c[0]
8039 | (uint64_t) a->c[1] << 8
8040 | (uint64_t) a->c[2] << 16
8041 | (uint64_t) a->c[3] << 24
8042 | (uint64_t) a->c[4] << 32
8043 | (uint64_t) a->c[5] << 40
8044 | (uint64_t) a->c[6] << 48
8045 | (uint64_t) a->c[7] << 56);
8046 uint64_t bval = ( (uint64_t) b->c[0]
8047 | (uint64_t) b->c[1] << 8
8048 | (uint64_t) b->c[2] << 16
8049 | (uint64_t) b->c[3] << 24
8050 | (uint64_t) b->c[4] << 32
8051 | (uint64_t) b->c[5] << 40
8052 | (uint64_t) b->c[6] << 48
8053 | (uint64_t) b->c[7] << 56);
8056 else if (aval > bval)
8062 cmp_ext64b_r_offset (const void *p, const void *q)
8069 const union aligned64 *a
8070 = (const union aligned64 *) ((const Elf64_External_Rel *) p)->r_offset;
8071 const union aligned64 *b
8072 = (const union aligned64 *) ((const Elf64_External_Rel *) q)->r_offset;
8074 uint64_t aval = ( (uint64_t) a->c[0] << 56
8075 | (uint64_t) a->c[1] << 48
8076 | (uint64_t) a->c[2] << 40
8077 | (uint64_t) a->c[3] << 32
8078 | (uint64_t) a->c[4] << 24
8079 | (uint64_t) a->c[5] << 16
8080 | (uint64_t) a->c[6] << 8
8081 | (uint64_t) a->c[7]);
8082 uint64_t bval = ( (uint64_t) b->c[0] << 56
8083 | (uint64_t) b->c[1] << 48
8084 | (uint64_t) b->c[2] << 40
8085 | (uint64_t) b->c[3] << 32
8086 | (uint64_t) b->c[4] << 24
8087 | (uint64_t) b->c[5] << 16
8088 | (uint64_t) b->c[6] << 8
8089 | (uint64_t) b->c[7]);
8092 else if (aval > bval)
8098 /* When performing a relocatable link, the input relocations are
8099 preserved. But, if they reference global symbols, the indices
8100 referenced must be updated. Update all the relocations found in
8104 elf_link_adjust_relocs (bfd *abfd,
8105 struct bfd_elf_section_reloc_data *reldata,
8109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8111 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8112 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8113 bfd_vma r_type_mask;
8115 unsigned int count = reldata->count;
8116 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8118 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8120 swap_in = bed->s->swap_reloc_in;
8121 swap_out = bed->s->swap_reloc_out;
8123 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8125 swap_in = bed->s->swap_reloca_in;
8126 swap_out = bed->s->swap_reloca_out;
8131 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8134 if (bed->s->arch_size == 32)
8141 r_type_mask = 0xffffffff;
8145 erela = reldata->hdr->contents;
8146 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8148 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8151 if (*rel_hash == NULL)
8154 BFD_ASSERT ((*rel_hash)->indx >= 0);
8156 (*swap_in) (abfd, erela, irela);
8157 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8158 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8159 | (irela[j].r_info & r_type_mask));
8160 (*swap_out) (abfd, irela, erela);
8165 int (*compare) (const void *, const void *);
8167 if (bed->s->arch_size == 32)
8169 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8170 compare = cmp_ext32l_r_offset;
8171 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8172 compare = cmp_ext32b_r_offset;
8178 #ifdef BFD_HOST_64_BIT
8179 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8180 compare = cmp_ext64l_r_offset;
8181 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8182 compare = cmp_ext64b_r_offset;
8187 qsort (reldata->hdr->contents, count, reldata->hdr->sh_entsize, compare);
8188 free (reldata->hashes);
8189 reldata->hashes = NULL;
8193 struct elf_link_sort_rela
8199 enum elf_reloc_type_class type;
8200 /* We use this as an array of size int_rels_per_ext_rel. */
8201 Elf_Internal_Rela rela[1];
8205 elf_link_sort_cmp1 (const void *A, const void *B)
8207 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8208 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8209 int relativea, relativeb;
8211 relativea = a->type == reloc_class_relative;
8212 relativeb = b->type == reloc_class_relative;
8214 if (relativea < relativeb)
8216 if (relativea > relativeb)
8218 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8220 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8222 if (a->rela->r_offset < b->rela->r_offset)
8224 if (a->rela->r_offset > b->rela->r_offset)
8230 elf_link_sort_cmp2 (const void *A, const void *B)
8232 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8233 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8235 if (a->type < b->type)
8237 if (a->type > b->type)
8239 if (a->u.offset < b->u.offset)
8241 if (a->u.offset > b->u.offset)
8243 if (a->rela->r_offset < b->rela->r_offset)
8245 if (a->rela->r_offset > b->rela->r_offset)
8251 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8253 asection *dynamic_relocs;
8256 bfd_size_type count, size;
8257 size_t i, ret, sort_elt, ext_size;
8258 bfd_byte *sort, *s_non_relative, *p;
8259 struct elf_link_sort_rela *sq;
8260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8261 int i2e = bed->s->int_rels_per_ext_rel;
8262 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8263 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8264 struct bfd_link_order *lo;
8266 bfd_boolean use_rela;
8268 /* Find a dynamic reloc section. */
8269 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8270 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8271 if (rela_dyn != NULL && rela_dyn->size > 0
8272 && rel_dyn != NULL && rel_dyn->size > 0)
8274 bfd_boolean use_rela_initialised = FALSE;
8276 /* This is just here to stop gcc from complaining.
8277 It's initialization checking code is not perfect. */
8280 /* Both sections are present. Examine the sizes
8281 of the indirect sections to help us choose. */
8282 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8283 if (lo->type == bfd_indirect_link_order)
8285 asection *o = lo->u.indirect.section;
8287 if ((o->size % bed->s->sizeof_rela) == 0)
8289 if ((o->size % bed->s->sizeof_rel) == 0)
8290 /* Section size is divisible by both rel and rela sizes.
8291 It is of no help to us. */
8295 /* Section size is only divisible by rela. */
8296 if (use_rela_initialised && (use_rela == FALSE))
8299 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8300 bfd_set_error (bfd_error_invalid_operation);
8306 use_rela_initialised = TRUE;
8310 else if ((o->size % bed->s->sizeof_rel) == 0)
8312 /* Section size is only divisible by rel. */
8313 if (use_rela_initialised && (use_rela == TRUE))
8316 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8317 bfd_set_error (bfd_error_invalid_operation);
8323 use_rela_initialised = TRUE;
8328 /* The section size is not divisible by either - something is wrong. */
8330 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8331 bfd_set_error (bfd_error_invalid_operation);
8336 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8337 if (lo->type == bfd_indirect_link_order)
8339 asection *o = lo->u.indirect.section;
8341 if ((o->size % bed->s->sizeof_rela) == 0)
8343 if ((o->size % bed->s->sizeof_rel) == 0)
8344 /* Section size is divisible by both rel and rela sizes.
8345 It is of no help to us. */
8349 /* Section size is only divisible by rela. */
8350 if (use_rela_initialised && (use_rela == FALSE))
8353 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8354 bfd_set_error (bfd_error_invalid_operation);
8360 use_rela_initialised = TRUE;
8364 else if ((o->size % bed->s->sizeof_rel) == 0)
8366 /* Section size is only divisible by rel. */
8367 if (use_rela_initialised && (use_rela == TRUE))
8370 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8371 bfd_set_error (bfd_error_invalid_operation);
8377 use_rela_initialised = TRUE;
8382 /* The section size is not divisible by either - something is wrong. */
8384 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8385 bfd_set_error (bfd_error_invalid_operation);
8390 if (! use_rela_initialised)
8394 else if (rela_dyn != NULL && rela_dyn->size > 0)
8396 else if (rel_dyn != NULL && rel_dyn->size > 0)
8403 dynamic_relocs = rela_dyn;
8404 ext_size = bed->s->sizeof_rela;
8405 swap_in = bed->s->swap_reloca_in;
8406 swap_out = bed->s->swap_reloca_out;
8410 dynamic_relocs = rel_dyn;
8411 ext_size = bed->s->sizeof_rel;
8412 swap_in = bed->s->swap_reloc_in;
8413 swap_out = bed->s->swap_reloc_out;
8417 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8418 if (lo->type == bfd_indirect_link_order)
8419 size += lo->u.indirect.section->size;
8421 if (size != dynamic_relocs->size)
8424 sort_elt = (sizeof (struct elf_link_sort_rela)
8425 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8427 count = dynamic_relocs->size / ext_size;
8430 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8434 (*info->callbacks->warning)
8435 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8439 if (bed->s->arch_size == 32)
8440 r_sym_mask = ~(bfd_vma) 0xff;
8442 r_sym_mask = ~(bfd_vma) 0xffffffff;
8444 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8445 if (lo->type == bfd_indirect_link_order)
8447 bfd_byte *erel, *erelend;
8448 asection *o = lo->u.indirect.section;
8450 if (o->contents == NULL && o->size != 0)
8452 /* This is a reloc section that is being handled as a normal
8453 section. See bfd_section_from_shdr. We can't combine
8454 relocs in this case. */
8459 erelend = o->contents + o->size;
8460 /* FIXME: octets_per_byte. */
8461 p = sort + o->output_offset / ext_size * sort_elt;
8463 while (erel < erelend)
8465 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8467 (*swap_in) (abfd, erel, s->rela);
8468 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8469 s->u.sym_mask = r_sym_mask;
8475 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8477 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8479 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8480 if (s->type != reloc_class_relative)
8486 sq = (struct elf_link_sort_rela *) s_non_relative;
8487 for (; i < count; i++, p += sort_elt)
8489 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8490 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8492 sp->u.offset = sq->rela->r_offset;
8495 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8497 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8498 if (lo->type == bfd_indirect_link_order)
8500 bfd_byte *erel, *erelend;
8501 asection *o = lo->u.indirect.section;
8504 erelend = o->contents + o->size;
8505 /* FIXME: octets_per_byte. */
8506 p = sort + o->output_offset / ext_size * sort_elt;
8507 while (erel < erelend)
8509 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8510 (*swap_out) (abfd, s->rela, erel);
8517 *psec = dynamic_relocs;
8521 /* Flush the output symbols to the file. */
8524 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8525 const struct elf_backend_data *bed)
8527 if (flinfo->symbuf_count > 0)
8529 Elf_Internal_Shdr *hdr;
8533 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8534 pos = hdr->sh_offset + hdr->sh_size;
8535 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8536 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8537 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8540 hdr->sh_size += amt;
8541 flinfo->symbuf_count = 0;
8547 /* Add a symbol to the output symbol table. */
8550 elf_link_output_sym (struct elf_final_link_info *flinfo,
8552 Elf_Internal_Sym *elfsym,
8553 asection *input_sec,
8554 struct elf_link_hash_entry *h)
8557 Elf_External_Sym_Shndx *destshndx;
8558 int (*output_symbol_hook)
8559 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8560 struct elf_link_hash_entry *);
8561 const struct elf_backend_data *bed;
8563 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8565 bed = get_elf_backend_data (flinfo->output_bfd);
8566 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8567 if (output_symbol_hook != NULL)
8569 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8574 if (name == NULL || *name == '\0')
8575 elfsym->st_name = 0;
8576 else if (input_sec->flags & SEC_EXCLUDE)
8577 elfsym->st_name = 0;
8580 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8582 if (elfsym->st_name == (unsigned long) -1)
8586 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8588 if (! elf_link_flush_output_syms (flinfo, bed))
8592 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8593 destshndx = flinfo->symshndxbuf;
8594 if (destshndx != NULL)
8596 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8600 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8601 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8603 if (destshndx == NULL)
8605 flinfo->symshndxbuf = destshndx;
8606 memset ((char *) destshndx + amt, 0, amt);
8607 flinfo->shndxbuf_size *= 2;
8609 destshndx += bfd_get_symcount (flinfo->output_bfd);
8612 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8613 flinfo->symbuf_count += 1;
8614 bfd_get_symcount (flinfo->output_bfd) += 1;
8619 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8622 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8624 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8625 && sym->st_shndx < SHN_LORESERVE)
8627 /* The gABI doesn't support dynamic symbols in output sections
8629 (*_bfd_error_handler)
8630 (_("%B: Too many sections: %d (>= %d)"),
8631 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8632 bfd_set_error (bfd_error_nonrepresentable_section);
8638 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8639 allowing an unsatisfied unversioned symbol in the DSO to match a
8640 versioned symbol that would normally require an explicit version.
8641 We also handle the case that a DSO references a hidden symbol
8642 which may be satisfied by a versioned symbol in another DSO. */
8645 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8646 const struct elf_backend_data *bed,
8647 struct elf_link_hash_entry *h)
8650 struct elf_link_loaded_list *loaded;
8652 if (!is_elf_hash_table (info->hash))
8655 /* Check indirect symbol. */
8656 while (h->root.type == bfd_link_hash_indirect)
8657 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8659 switch (h->root.type)
8665 case bfd_link_hash_undefined:
8666 case bfd_link_hash_undefweak:
8667 abfd = h->root.u.undef.abfd;
8668 if ((abfd->flags & DYNAMIC) == 0
8669 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8673 case bfd_link_hash_defined:
8674 case bfd_link_hash_defweak:
8675 abfd = h->root.u.def.section->owner;
8678 case bfd_link_hash_common:
8679 abfd = h->root.u.c.p->section->owner;
8682 BFD_ASSERT (abfd != NULL);
8684 for (loaded = elf_hash_table (info)->loaded;
8686 loaded = loaded->next)
8689 Elf_Internal_Shdr *hdr;
8690 bfd_size_type symcount;
8691 bfd_size_type extsymcount;
8692 bfd_size_type extsymoff;
8693 Elf_Internal_Shdr *versymhdr;
8694 Elf_Internal_Sym *isym;
8695 Elf_Internal_Sym *isymend;
8696 Elf_Internal_Sym *isymbuf;
8697 Elf_External_Versym *ever;
8698 Elf_External_Versym *extversym;
8700 input = loaded->abfd;
8702 /* We check each DSO for a possible hidden versioned definition. */
8704 || (input->flags & DYNAMIC) == 0
8705 || elf_dynversym (input) == 0)
8708 hdr = &elf_tdata (input)->dynsymtab_hdr;
8710 symcount = hdr->sh_size / bed->s->sizeof_sym;
8711 if (elf_bad_symtab (input))
8713 extsymcount = symcount;
8718 extsymcount = symcount - hdr->sh_info;
8719 extsymoff = hdr->sh_info;
8722 if (extsymcount == 0)
8725 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8727 if (isymbuf == NULL)
8730 /* Read in any version definitions. */
8731 versymhdr = &elf_tdata (input)->dynversym_hdr;
8732 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8733 if (extversym == NULL)
8736 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8737 || (bfd_bread (extversym, versymhdr->sh_size, input)
8738 != versymhdr->sh_size))
8746 ever = extversym + extsymoff;
8747 isymend = isymbuf + extsymcount;
8748 for (isym = isymbuf; isym < isymend; isym++, ever++)
8751 Elf_Internal_Versym iver;
8752 unsigned short version_index;
8754 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8755 || isym->st_shndx == SHN_UNDEF)
8758 name = bfd_elf_string_from_elf_section (input,
8761 if (strcmp (name, h->root.root.string) != 0)
8764 _bfd_elf_swap_versym_in (input, ever, &iver);
8766 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8768 && h->forced_local))
8770 /* If we have a non-hidden versioned sym, then it should
8771 have provided a definition for the undefined sym unless
8772 it is defined in a non-shared object and forced local.
8777 version_index = iver.vs_vers & VERSYM_VERSION;
8778 if (version_index == 1 || version_index == 2)
8780 /* This is the base or first version. We can use it. */
8794 /* Add an external symbol to the symbol table. This is called from
8795 the hash table traversal routine. When generating a shared object,
8796 we go through the symbol table twice. The first time we output
8797 anything that might have been forced to local scope in a version
8798 script. The second time we output the symbols that are still
8802 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8804 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8805 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8806 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8808 Elf_Internal_Sym sym;
8809 asection *input_sec;
8810 const struct elf_backend_data *bed;
8814 if (h->root.type == bfd_link_hash_warning)
8816 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8817 if (h->root.type == bfd_link_hash_new)
8821 /* Decide whether to output this symbol in this pass. */
8822 if (eoinfo->localsyms)
8824 if (!h->forced_local)
8826 if (eoinfo->second_pass
8827 && !((h->root.type == bfd_link_hash_defined
8828 || h->root.type == bfd_link_hash_defweak)
8829 && h->root.u.def.section->output_section != NULL))
8832 if (!eoinfo->file_sym_done
8833 && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8834 : eoinfo->flinfo->filesym_count > 1))
8836 /* Output a FILE symbol so that following locals are not associated
8837 with the wrong input file. */
8838 memset (&sym, 0, sizeof (sym));
8839 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8840 sym.st_shndx = SHN_ABS;
8841 if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8842 bfd_und_section_ptr, NULL))
8845 eoinfo->file_sym_done = TRUE;
8850 if (h->forced_local)
8854 bed = get_elf_backend_data (flinfo->output_bfd);
8856 if (h->root.type == bfd_link_hash_undefined)
8858 /* If we have an undefined symbol reference here then it must have
8859 come from a shared library that is being linked in. (Undefined
8860 references in regular files have already been handled unless
8861 they are in unreferenced sections which are removed by garbage
8863 bfd_boolean ignore_undef = FALSE;
8865 /* Some symbols may be special in that the fact that they're
8866 undefined can be safely ignored - let backend determine that. */
8867 if (bed->elf_backend_ignore_undef_symbol)
8868 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8870 /* If we are reporting errors for this situation then do so now. */
8873 && (!h->ref_regular || flinfo->info->gc_sections)
8874 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8875 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8877 if (!(flinfo->info->callbacks->undefined_symbol
8878 (flinfo->info, h->root.root.string,
8879 h->ref_regular ? NULL : h->root.u.undef.abfd,
8881 (flinfo->info->unresolved_syms_in_shared_libs
8882 == RM_GENERATE_ERROR))))
8884 bfd_set_error (bfd_error_bad_value);
8885 eoinfo->failed = TRUE;
8891 /* We should also warn if a forced local symbol is referenced from
8892 shared libraries. */
8893 if (!flinfo->info->relocatable
8894 && flinfo->info->executable
8899 && h->ref_dynamic_nonweak
8900 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8904 struct elf_link_hash_entry *hi = h;
8906 /* Check indirect symbol. */
8907 while (hi->root.type == bfd_link_hash_indirect)
8908 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8910 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8911 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8912 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8913 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8915 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8916 def_bfd = flinfo->output_bfd;
8917 if (hi->root.u.def.section != bfd_abs_section_ptr)
8918 def_bfd = hi->root.u.def.section->owner;
8919 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8920 h->root.root.string);
8921 bfd_set_error (bfd_error_bad_value);
8922 eoinfo->failed = TRUE;
8926 /* We don't want to output symbols that have never been mentioned by
8927 a regular file, or that we have been told to strip. However, if
8928 h->indx is set to -2, the symbol is used by a reloc and we must
8932 else if ((h->def_dynamic
8934 || h->root.type == bfd_link_hash_new)
8938 else if (flinfo->info->strip == strip_all)
8940 else if (flinfo->info->strip == strip_some
8941 && bfd_hash_lookup (flinfo->info->keep_hash,
8942 h->root.root.string, FALSE, FALSE) == NULL)
8944 else if ((h->root.type == bfd_link_hash_defined
8945 || h->root.type == bfd_link_hash_defweak)
8946 && ((flinfo->info->strip_discarded
8947 && discarded_section (h->root.u.def.section))
8948 || (h->root.u.def.section->owner != NULL
8949 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8951 else if ((h->root.type == bfd_link_hash_undefined
8952 || h->root.type == bfd_link_hash_undefweak)
8953 && h->root.u.undef.abfd != NULL
8954 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8959 /* If we're stripping it, and it's not a dynamic symbol, there's
8960 nothing else to do unless it is a forced local symbol or a
8961 STT_GNU_IFUNC symbol. */
8964 && h->type != STT_GNU_IFUNC
8965 && !h->forced_local)
8969 sym.st_size = h->size;
8970 sym.st_other = h->other;
8971 if (h->forced_local)
8973 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8974 /* Turn off visibility on local symbol. */
8975 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8977 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8978 else if (h->unique_global && h->def_regular)
8979 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8980 else if (h->root.type == bfd_link_hash_undefweak
8981 || h->root.type == bfd_link_hash_defweak)
8982 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8984 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8985 sym.st_target_internal = h->target_internal;
8987 switch (h->root.type)
8990 case bfd_link_hash_new:
8991 case bfd_link_hash_warning:
8995 case bfd_link_hash_undefined:
8996 case bfd_link_hash_undefweak:
8997 input_sec = bfd_und_section_ptr;
8998 sym.st_shndx = SHN_UNDEF;
9001 case bfd_link_hash_defined:
9002 case bfd_link_hash_defweak:
9004 input_sec = h->root.u.def.section;
9005 if (input_sec->output_section != NULL)
9007 if (eoinfo->localsyms && flinfo->filesym_count == 1)
9009 bfd_boolean second_pass_sym
9010 = (input_sec->owner == flinfo->output_bfd
9011 || input_sec->owner == NULL
9012 || (input_sec->flags & SEC_LINKER_CREATED) != 0
9013 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
9015 eoinfo->need_second_pass |= second_pass_sym;
9016 if (eoinfo->second_pass != second_pass_sym)
9021 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9022 input_sec->output_section);
9023 if (sym.st_shndx == SHN_BAD)
9025 (*_bfd_error_handler)
9026 (_("%B: could not find output section %A for input section %A"),
9027 flinfo->output_bfd, input_sec->output_section, input_sec);
9028 bfd_set_error (bfd_error_nonrepresentable_section);
9029 eoinfo->failed = TRUE;
9033 /* ELF symbols in relocatable files are section relative,
9034 but in nonrelocatable files they are virtual
9036 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9037 if (!flinfo->info->relocatable)
9039 sym.st_value += input_sec->output_section->vma;
9040 if (h->type == STT_TLS)
9042 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9043 if (tls_sec != NULL)
9044 sym.st_value -= tls_sec->vma;
9047 /* The TLS section may have been garbage collected. */
9048 BFD_ASSERT (flinfo->info->gc_sections
9049 && !input_sec->gc_mark);
9056 BFD_ASSERT (input_sec->owner == NULL
9057 || (input_sec->owner->flags & DYNAMIC) != 0);
9058 sym.st_shndx = SHN_UNDEF;
9059 input_sec = bfd_und_section_ptr;
9064 case bfd_link_hash_common:
9065 input_sec = h->root.u.c.p->section;
9066 sym.st_shndx = bed->common_section_index (input_sec);
9067 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9070 case bfd_link_hash_indirect:
9071 /* These symbols are created by symbol versioning. They point
9072 to the decorated version of the name. For example, if the
9073 symbol foo@@GNU_1.2 is the default, which should be used when
9074 foo is used with no version, then we add an indirect symbol
9075 foo which points to foo@@GNU_1.2. We ignore these symbols,
9076 since the indirected symbol is already in the hash table. */
9080 /* Give the processor backend a chance to tweak the symbol value,
9081 and also to finish up anything that needs to be done for this
9082 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9083 forced local syms when non-shared is due to a historical quirk.
9084 STT_GNU_IFUNC symbol must go through PLT. */
9085 if ((h->type == STT_GNU_IFUNC
9087 && !flinfo->info->relocatable)
9088 || ((h->dynindx != -1
9090 && ((flinfo->info->shared
9091 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9092 || h->root.type != bfd_link_hash_undefweak))
9093 || !h->forced_local)
9094 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9096 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9097 (flinfo->output_bfd, flinfo->info, h, &sym)))
9099 eoinfo->failed = TRUE;
9104 /* If we are marking the symbol as undefined, and there are no
9105 non-weak references to this symbol from a regular object, then
9106 mark the symbol as weak undefined; if there are non-weak
9107 references, mark the symbol as strong. We can't do this earlier,
9108 because it might not be marked as undefined until the
9109 finish_dynamic_symbol routine gets through with it. */
9110 if (sym.st_shndx == SHN_UNDEF
9112 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9113 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9116 unsigned int type = ELF_ST_TYPE (sym.st_info);
9118 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9119 if (type == STT_GNU_IFUNC)
9122 if (h->ref_regular_nonweak)
9123 bindtype = STB_GLOBAL;
9125 bindtype = STB_WEAK;
9126 sym.st_info = ELF_ST_INFO (bindtype, type);
9129 /* If this is a symbol defined in a dynamic library, don't use the
9130 symbol size from the dynamic library. Relinking an executable
9131 against a new library may introduce gratuitous changes in the
9132 executable's symbols if we keep the size. */
9133 if (sym.st_shndx == SHN_UNDEF
9138 /* If a non-weak symbol with non-default visibility is not defined
9139 locally, it is a fatal error. */
9140 if (!flinfo->info->relocatable
9141 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9142 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9143 && h->root.type == bfd_link_hash_undefined
9148 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9149 msg = _("%B: protected symbol `%s' isn't defined");
9150 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9151 msg = _("%B: internal symbol `%s' isn't defined");
9153 msg = _("%B: hidden symbol `%s' isn't defined");
9154 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9155 bfd_set_error (bfd_error_bad_value);
9156 eoinfo->failed = TRUE;
9160 /* If this symbol should be put in the .dynsym section, then put it
9161 there now. We already know the symbol index. We also fill in
9162 the entry in the .hash section. */
9163 if (flinfo->dynsym_sec != NULL
9165 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9169 /* Since there is no version information in the dynamic string,
9170 if there is no version info in symbol version section, we will
9171 have a run-time problem. */
9172 if (h->verinfo.verdef == NULL)
9174 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9176 if (p && p [1] != '\0')
9178 (*_bfd_error_handler)
9179 (_("%B: No symbol version section for versioned symbol `%s'"),
9180 flinfo->output_bfd, h->root.root.string);
9181 eoinfo->failed = TRUE;
9186 sym.st_name = h->dynstr_index;
9187 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9188 if (!check_dynsym (flinfo->output_bfd, &sym))
9190 eoinfo->failed = TRUE;
9193 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9195 if (flinfo->hash_sec != NULL)
9197 size_t hash_entry_size;
9198 bfd_byte *bucketpos;
9203 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9204 bucket = h->u.elf_hash_value % bucketcount;
9207 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9208 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9209 + (bucket + 2) * hash_entry_size);
9210 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9211 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9213 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9214 ((bfd_byte *) flinfo->hash_sec->contents
9215 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9218 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9220 Elf_Internal_Versym iversym;
9221 Elf_External_Versym *eversym;
9223 if (!h->def_regular)
9225 if (h->verinfo.verdef == NULL
9226 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9227 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9228 iversym.vs_vers = 0;
9230 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9234 if (h->verinfo.vertree == NULL)
9235 iversym.vs_vers = 1;
9237 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9238 if (flinfo->info->create_default_symver)
9243 iversym.vs_vers |= VERSYM_HIDDEN;
9245 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9246 eversym += h->dynindx;
9247 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9251 /* If we're stripping it, then it was just a dynamic symbol, and
9252 there's nothing else to do. */
9253 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9256 indx = bfd_get_symcount (flinfo->output_bfd);
9257 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9260 eoinfo->failed = TRUE;
9265 else if (h->indx == -2)
9271 /* Return TRUE if special handling is done for relocs in SEC against
9272 symbols defined in discarded sections. */
9275 elf_section_ignore_discarded_relocs (asection *sec)
9277 const struct elf_backend_data *bed;
9279 switch (sec->sec_info_type)
9281 case SEC_INFO_TYPE_STABS:
9282 case SEC_INFO_TYPE_EH_FRAME:
9288 bed = get_elf_backend_data (sec->owner);
9289 if (bed->elf_backend_ignore_discarded_relocs != NULL
9290 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9296 /* Return a mask saying how ld should treat relocations in SEC against
9297 symbols defined in discarded sections. If this function returns
9298 COMPLAIN set, ld will issue a warning message. If this function
9299 returns PRETEND set, and the discarded section was link-once and the
9300 same size as the kept link-once section, ld will pretend that the
9301 symbol was actually defined in the kept section. Otherwise ld will
9302 zero the reloc (at least that is the intent, but some cooperation by
9303 the target dependent code is needed, particularly for REL targets). */
9306 _bfd_elf_default_action_discarded (asection *sec)
9308 if (sec->flags & SEC_DEBUGGING)
9311 if (strcmp (".eh_frame", sec->name) == 0)
9314 if (strcmp (".gcc_except_table", sec->name) == 0)
9317 return COMPLAIN | PRETEND;
9320 /* Find a match between a section and a member of a section group. */
9323 match_group_member (asection *sec, asection *group,
9324 struct bfd_link_info *info)
9326 asection *first = elf_next_in_group (group);
9327 asection *s = first;
9331 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9334 s = elf_next_in_group (s);
9342 /* Check if the kept section of a discarded section SEC can be used
9343 to replace it. Return the replacement if it is OK. Otherwise return
9347 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9351 kept = sec->kept_section;
9354 if ((kept->flags & SEC_GROUP) != 0)
9355 kept = match_group_member (sec, kept, info);
9357 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9358 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9360 sec->kept_section = kept;
9365 /* Link an input file into the linker output file. This function
9366 handles all the sections and relocations of the input file at once.
9367 This is so that we only have to read the local symbols once, and
9368 don't have to keep them in memory. */
9371 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9373 int (*relocate_section)
9374 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9375 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9377 Elf_Internal_Shdr *symtab_hdr;
9380 Elf_Internal_Sym *isymbuf;
9381 Elf_Internal_Sym *isym;
9382 Elf_Internal_Sym *isymend;
9384 asection **ppsection;
9386 const struct elf_backend_data *bed;
9387 struct elf_link_hash_entry **sym_hashes;
9388 bfd_size_type address_size;
9389 bfd_vma r_type_mask;
9391 bfd_boolean have_file_sym = FALSE;
9393 output_bfd = flinfo->output_bfd;
9394 bed = get_elf_backend_data (output_bfd);
9395 relocate_section = bed->elf_backend_relocate_section;
9397 /* If this is a dynamic object, we don't want to do anything here:
9398 we don't want the local symbols, and we don't want the section
9400 if ((input_bfd->flags & DYNAMIC) != 0)
9403 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9404 if (elf_bad_symtab (input_bfd))
9406 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9411 locsymcount = symtab_hdr->sh_info;
9412 extsymoff = symtab_hdr->sh_info;
9415 /* Read the local symbols. */
9416 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9417 if (isymbuf == NULL && locsymcount != 0)
9419 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9420 flinfo->internal_syms,
9421 flinfo->external_syms,
9422 flinfo->locsym_shndx);
9423 if (isymbuf == NULL)
9427 /* Find local symbol sections and adjust values of symbols in
9428 SEC_MERGE sections. Write out those local symbols we know are
9429 going into the output file. */
9430 isymend = isymbuf + locsymcount;
9431 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9433 isym++, pindex++, ppsection++)
9437 Elf_Internal_Sym osym;
9443 if (elf_bad_symtab (input_bfd))
9445 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9452 if (isym->st_shndx == SHN_UNDEF)
9453 isec = bfd_und_section_ptr;
9454 else if (isym->st_shndx == SHN_ABS)
9455 isec = bfd_abs_section_ptr;
9456 else if (isym->st_shndx == SHN_COMMON)
9457 isec = bfd_com_section_ptr;
9460 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9463 /* Don't attempt to output symbols with st_shnx in the
9464 reserved range other than SHN_ABS and SHN_COMMON. */
9468 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9469 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9471 _bfd_merged_section_offset (output_bfd, &isec,
9472 elf_section_data (isec)->sec_info,
9478 /* Don't output the first, undefined, symbol. */
9479 if (ppsection == flinfo->sections)
9482 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9484 /* We never output section symbols. Instead, we use the
9485 section symbol of the corresponding section in the output
9490 /* If we are stripping all symbols, we don't want to output this
9492 if (flinfo->info->strip == strip_all)
9495 /* If we are discarding all local symbols, we don't want to
9496 output this one. If we are generating a relocatable output
9497 file, then some of the local symbols may be required by
9498 relocs; we output them below as we discover that they are
9500 if (flinfo->info->discard == discard_all)
9503 /* If this symbol is defined in a section which we are
9504 discarding, we don't need to keep it. */
9505 if (isym->st_shndx != SHN_UNDEF
9506 && isym->st_shndx < SHN_LORESERVE
9507 && bfd_section_removed_from_list (output_bfd,
9508 isec->output_section))
9511 /* Get the name of the symbol. */
9512 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9517 /* See if we are discarding symbols with this name. */
9518 if ((flinfo->info->strip == strip_some
9519 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9521 || (((flinfo->info->discard == discard_sec_merge
9522 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9523 || flinfo->info->discard == discard_l)
9524 && bfd_is_local_label_name (input_bfd, name)))
9527 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9529 have_file_sym = TRUE;
9530 flinfo->filesym_count += 1;
9534 /* In the absence of debug info, bfd_find_nearest_line uses
9535 FILE symbols to determine the source file for local
9536 function symbols. Provide a FILE symbol here if input
9537 files lack such, so that their symbols won't be
9538 associated with a previous input file. It's not the
9539 source file, but the best we can do. */
9540 have_file_sym = TRUE;
9541 flinfo->filesym_count += 1;
9542 memset (&osym, 0, sizeof (osym));
9543 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9544 osym.st_shndx = SHN_ABS;
9545 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9546 bfd_abs_section_ptr, NULL))
9552 /* Adjust the section index for the output file. */
9553 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9554 isec->output_section);
9555 if (osym.st_shndx == SHN_BAD)
9558 /* ELF symbols in relocatable files are section relative, but
9559 in executable files they are virtual addresses. Note that
9560 this code assumes that all ELF sections have an associated
9561 BFD section with a reasonable value for output_offset; below
9562 we assume that they also have a reasonable value for
9563 output_section. Any special sections must be set up to meet
9564 these requirements. */
9565 osym.st_value += isec->output_offset;
9566 if (!flinfo->info->relocatable)
9568 osym.st_value += isec->output_section->vma;
9569 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9571 /* STT_TLS symbols are relative to PT_TLS segment base. */
9572 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9573 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9577 indx = bfd_get_symcount (output_bfd);
9578 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9585 if (bed->s->arch_size == 32)
9593 r_type_mask = 0xffffffff;
9598 /* Relocate the contents of each section. */
9599 sym_hashes = elf_sym_hashes (input_bfd);
9600 for (o = input_bfd->sections; o != NULL; o = o->next)
9604 if (! o->linker_mark)
9606 /* This section was omitted from the link. */
9610 if (flinfo->info->relocatable
9611 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9613 /* Deal with the group signature symbol. */
9614 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9615 unsigned long symndx = sec_data->this_hdr.sh_info;
9616 asection *osec = o->output_section;
9618 if (symndx >= locsymcount
9619 || (elf_bad_symtab (input_bfd)
9620 && flinfo->sections[symndx] == NULL))
9622 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9623 while (h->root.type == bfd_link_hash_indirect
9624 || h->root.type == bfd_link_hash_warning)
9625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9626 /* Arrange for symbol to be output. */
9628 elf_section_data (osec)->this_hdr.sh_info = -2;
9630 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9632 /* We'll use the output section target_index. */
9633 asection *sec = flinfo->sections[symndx]->output_section;
9634 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9638 if (flinfo->indices[symndx] == -1)
9640 /* Otherwise output the local symbol now. */
9641 Elf_Internal_Sym sym = isymbuf[symndx];
9642 asection *sec = flinfo->sections[symndx]->output_section;
9647 name = bfd_elf_string_from_elf_section (input_bfd,
9648 symtab_hdr->sh_link,
9653 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9655 if (sym.st_shndx == SHN_BAD)
9658 sym.st_value += o->output_offset;
9660 indx = bfd_get_symcount (output_bfd);
9661 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9665 flinfo->indices[symndx] = indx;
9669 elf_section_data (osec)->this_hdr.sh_info
9670 = flinfo->indices[symndx];
9674 if ((o->flags & SEC_HAS_CONTENTS) == 0
9675 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9678 if ((o->flags & SEC_LINKER_CREATED) != 0)
9680 /* Section was created by _bfd_elf_link_create_dynamic_sections
9685 /* Get the contents of the section. They have been cached by a
9686 relaxation routine. Note that o is a section in an input
9687 file, so the contents field will not have been set by any of
9688 the routines which work on output files. */
9689 if (elf_section_data (o)->this_hdr.contents != NULL)
9691 contents = elf_section_data (o)->this_hdr.contents;
9692 if (bed->caches_rawsize
9694 && o->rawsize < o->size)
9696 memcpy (flinfo->contents, contents, o->rawsize);
9697 contents = flinfo->contents;
9702 contents = flinfo->contents;
9703 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9707 if ((o->flags & SEC_RELOC) != 0)
9709 Elf_Internal_Rela *internal_relocs;
9710 Elf_Internal_Rela *rel, *relend;
9711 int action_discarded;
9714 /* Get the swapped relocs. */
9716 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9717 flinfo->internal_relocs, FALSE);
9718 if (internal_relocs == NULL
9719 && o->reloc_count > 0)
9722 /* We need to reverse-copy input .ctors/.dtors sections if
9723 they are placed in .init_array/.finit_array for output. */
9724 if (o->size > address_size
9725 && ((strncmp (o->name, ".ctors", 6) == 0
9726 && strcmp (o->output_section->name,
9727 ".init_array") == 0)
9728 || (strncmp (o->name, ".dtors", 6) == 0
9729 && strcmp (o->output_section->name,
9730 ".fini_array") == 0))
9731 && (o->name[6] == 0 || o->name[6] == '.'))
9733 if (o->size != o->reloc_count * address_size)
9735 (*_bfd_error_handler)
9736 (_("error: %B: size of section %A is not "
9737 "multiple of address size"),
9739 bfd_set_error (bfd_error_on_input);
9742 o->flags |= SEC_ELF_REVERSE_COPY;
9745 action_discarded = -1;
9746 if (!elf_section_ignore_discarded_relocs (o))
9747 action_discarded = (*bed->action_discarded) (o);
9749 /* Run through the relocs evaluating complex reloc symbols and
9750 looking for relocs against symbols from discarded sections
9751 or section symbols from removed link-once sections.
9752 Complain about relocs against discarded sections. Zero
9753 relocs against removed link-once sections. */
9755 rel = internal_relocs;
9756 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9757 for ( ; rel < relend; rel++)
9759 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9760 unsigned int s_type;
9761 asection **ps, *sec;
9762 struct elf_link_hash_entry *h = NULL;
9763 const char *sym_name;
9765 if (r_symndx == STN_UNDEF)
9768 if (r_symndx >= locsymcount
9769 || (elf_bad_symtab (input_bfd)
9770 && flinfo->sections[r_symndx] == NULL))
9772 h = sym_hashes[r_symndx - extsymoff];
9774 /* Badly formatted input files can contain relocs that
9775 reference non-existant symbols. Check here so that
9776 we do not seg fault. */
9781 sprintf_vma (buffer, rel->r_info);
9782 (*_bfd_error_handler)
9783 (_("error: %B contains a reloc (0x%s) for section %A "
9784 "that references a non-existent global symbol"),
9785 input_bfd, o, buffer);
9786 bfd_set_error (bfd_error_bad_value);
9790 while (h->root.type == bfd_link_hash_indirect
9791 || h->root.type == bfd_link_hash_warning)
9792 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9797 if (h->root.type == bfd_link_hash_defined
9798 || h->root.type == bfd_link_hash_defweak)
9799 ps = &h->root.u.def.section;
9801 sym_name = h->root.root.string;
9805 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9807 s_type = ELF_ST_TYPE (sym->st_info);
9808 ps = &flinfo->sections[r_symndx];
9809 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9813 if ((s_type == STT_RELC || s_type == STT_SRELC)
9814 && !flinfo->info->relocatable)
9817 bfd_vma dot = (rel->r_offset
9818 + o->output_offset + o->output_section->vma);
9820 printf ("Encountered a complex symbol!");
9821 printf (" (input_bfd %s, section %s, reloc %ld\n",
9822 input_bfd->filename, o->name,
9823 (long) (rel - internal_relocs));
9824 printf (" symbol: idx %8.8lx, name %s\n",
9825 r_symndx, sym_name);
9826 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9827 (unsigned long) rel->r_info,
9828 (unsigned long) rel->r_offset);
9830 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9831 isymbuf, locsymcount, s_type == STT_SRELC))
9834 /* Symbol evaluated OK. Update to absolute value. */
9835 set_symbol_value (input_bfd, isymbuf, locsymcount,
9840 if (action_discarded != -1 && ps != NULL)
9842 /* Complain if the definition comes from a
9843 discarded section. */
9844 if ((sec = *ps) != NULL && discarded_section (sec))
9846 BFD_ASSERT (r_symndx != STN_UNDEF);
9847 if (action_discarded & COMPLAIN)
9848 (*flinfo->info->callbacks->einfo)
9849 (_("%X`%s' referenced in section `%A' of %B: "
9850 "defined in discarded section `%A' of %B\n"),
9851 sym_name, o, input_bfd, sec, sec->owner);
9853 /* Try to do the best we can to support buggy old
9854 versions of gcc. Pretend that the symbol is
9855 really defined in the kept linkonce section.
9856 FIXME: This is quite broken. Modifying the
9857 symbol here means we will be changing all later
9858 uses of the symbol, not just in this section. */
9859 if (action_discarded & PRETEND)
9863 kept = _bfd_elf_check_kept_section (sec,
9875 /* Relocate the section by invoking a back end routine.
9877 The back end routine is responsible for adjusting the
9878 section contents as necessary, and (if using Rela relocs
9879 and generating a relocatable output file) adjusting the
9880 reloc addend as necessary.
9882 The back end routine does not have to worry about setting
9883 the reloc address or the reloc symbol index.
9885 The back end routine is given a pointer to the swapped in
9886 internal symbols, and can access the hash table entries
9887 for the external symbols via elf_sym_hashes (input_bfd).
9889 When generating relocatable output, the back end routine
9890 must handle STB_LOCAL/STT_SECTION symbols specially. The
9891 output symbol is going to be a section symbol
9892 corresponding to the output section, which will require
9893 the addend to be adjusted. */
9895 ret = (*relocate_section) (output_bfd, flinfo->info,
9896 input_bfd, o, contents,
9904 || flinfo->info->relocatable
9905 || flinfo->info->emitrelocations)
9907 Elf_Internal_Rela *irela;
9908 Elf_Internal_Rela *irelaend, *irelamid;
9909 bfd_vma last_offset;
9910 struct elf_link_hash_entry **rel_hash;
9911 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9912 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9913 unsigned int next_erel;
9914 bfd_boolean rela_normal;
9915 struct bfd_elf_section_data *esdi, *esdo;
9917 esdi = elf_section_data (o);
9918 esdo = elf_section_data (o->output_section);
9919 rela_normal = FALSE;
9921 /* Adjust the reloc addresses and symbol indices. */
9923 irela = internal_relocs;
9924 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9925 rel_hash = esdo->rel.hashes + esdo->rel.count;
9926 /* We start processing the REL relocs, if any. When we reach
9927 IRELAMID in the loop, we switch to the RELA relocs. */
9929 if (esdi->rel.hdr != NULL)
9930 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9931 * bed->s->int_rels_per_ext_rel);
9932 rel_hash_list = rel_hash;
9933 rela_hash_list = NULL;
9934 last_offset = o->output_offset;
9935 if (!flinfo->info->relocatable)
9936 last_offset += o->output_section->vma;
9937 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9939 unsigned long r_symndx;
9941 Elf_Internal_Sym sym;
9943 if (next_erel == bed->s->int_rels_per_ext_rel)
9949 if (irela == irelamid)
9951 rel_hash = esdo->rela.hashes + esdo->rela.count;
9952 rela_hash_list = rel_hash;
9953 rela_normal = bed->rela_normal;
9956 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9959 if (irela->r_offset >= (bfd_vma) -2)
9961 /* This is a reloc for a deleted entry or somesuch.
9962 Turn it into an R_*_NONE reloc, at the same
9963 offset as the last reloc. elf_eh_frame.c and
9964 bfd_elf_discard_info rely on reloc offsets
9966 irela->r_offset = last_offset;
9968 irela->r_addend = 0;
9972 irela->r_offset += o->output_offset;
9974 /* Relocs in an executable have to be virtual addresses. */
9975 if (!flinfo->info->relocatable)
9976 irela->r_offset += o->output_section->vma;
9978 last_offset = irela->r_offset;
9980 r_symndx = irela->r_info >> r_sym_shift;
9981 if (r_symndx == STN_UNDEF)
9984 if (r_symndx >= locsymcount
9985 || (elf_bad_symtab (input_bfd)
9986 && flinfo->sections[r_symndx] == NULL))
9988 struct elf_link_hash_entry *rh;
9991 /* This is a reloc against a global symbol. We
9992 have not yet output all the local symbols, so
9993 we do not know the symbol index of any global
9994 symbol. We set the rel_hash entry for this
9995 reloc to point to the global hash table entry
9996 for this symbol. The symbol index is then
9997 set at the end of bfd_elf_final_link. */
9998 indx = r_symndx - extsymoff;
9999 rh = elf_sym_hashes (input_bfd)[indx];
10000 while (rh->root.type == bfd_link_hash_indirect
10001 || rh->root.type == bfd_link_hash_warning)
10002 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10004 /* Setting the index to -2 tells
10005 elf_link_output_extsym that this symbol is
10006 used by a reloc. */
10007 BFD_ASSERT (rh->indx < 0);
10015 /* This is a reloc against a local symbol. */
10018 sym = isymbuf[r_symndx];
10019 sec = flinfo->sections[r_symndx];
10020 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10022 /* I suppose the backend ought to fill in the
10023 section of any STT_SECTION symbol against a
10024 processor specific section. */
10025 r_symndx = STN_UNDEF;
10026 if (bfd_is_abs_section (sec))
10028 else if (sec == NULL || sec->owner == NULL)
10030 bfd_set_error (bfd_error_bad_value);
10035 asection *osec = sec->output_section;
10037 /* If we have discarded a section, the output
10038 section will be the absolute section. In
10039 case of discarded SEC_MERGE sections, use
10040 the kept section. relocate_section should
10041 have already handled discarded linkonce
10043 if (bfd_is_abs_section (osec)
10044 && sec->kept_section != NULL
10045 && sec->kept_section->output_section != NULL)
10047 osec = sec->kept_section->output_section;
10048 irela->r_addend -= osec->vma;
10051 if (!bfd_is_abs_section (osec))
10053 r_symndx = osec->target_index;
10054 if (r_symndx == STN_UNDEF)
10056 irela->r_addend += osec->vma;
10057 osec = _bfd_nearby_section (output_bfd, osec,
10059 irela->r_addend -= osec->vma;
10060 r_symndx = osec->target_index;
10065 /* Adjust the addend according to where the
10066 section winds up in the output section. */
10068 irela->r_addend += sec->output_offset;
10072 if (flinfo->indices[r_symndx] == -1)
10074 unsigned long shlink;
10079 if (flinfo->info->strip == strip_all)
10081 /* You can't do ld -r -s. */
10082 bfd_set_error (bfd_error_invalid_operation);
10086 /* This symbol was skipped earlier, but
10087 since it is needed by a reloc, we
10088 must output it now. */
10089 shlink = symtab_hdr->sh_link;
10090 name = (bfd_elf_string_from_elf_section
10091 (input_bfd, shlink, sym.st_name));
10095 osec = sec->output_section;
10097 _bfd_elf_section_from_bfd_section (output_bfd,
10099 if (sym.st_shndx == SHN_BAD)
10102 sym.st_value += sec->output_offset;
10103 if (!flinfo->info->relocatable)
10105 sym.st_value += osec->vma;
10106 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10108 /* STT_TLS symbols are relative to PT_TLS
10110 BFD_ASSERT (elf_hash_table (flinfo->info)
10111 ->tls_sec != NULL);
10112 sym.st_value -= (elf_hash_table (flinfo->info)
10117 indx = bfd_get_symcount (output_bfd);
10118 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10123 flinfo->indices[r_symndx] = indx;
10128 r_symndx = flinfo->indices[r_symndx];
10131 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10132 | (irela->r_info & r_type_mask));
10135 /* Swap out the relocs. */
10136 input_rel_hdr = esdi->rel.hdr;
10137 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10139 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10144 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10145 * bed->s->int_rels_per_ext_rel);
10146 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10149 input_rela_hdr = esdi->rela.hdr;
10150 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10152 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10161 /* Write out the modified section contents. */
10162 if (bed->elf_backend_write_section
10163 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10166 /* Section written out. */
10168 else switch (o->sec_info_type)
10170 case SEC_INFO_TYPE_STABS:
10171 if (! (_bfd_write_section_stabs
10173 &elf_hash_table (flinfo->info)->stab_info,
10174 o, &elf_section_data (o)->sec_info, contents)))
10177 case SEC_INFO_TYPE_MERGE:
10178 if (! _bfd_write_merged_section (output_bfd, o,
10179 elf_section_data (o)->sec_info))
10182 case SEC_INFO_TYPE_EH_FRAME:
10184 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10191 /* FIXME: octets_per_byte. */
10192 if (! (o->flags & SEC_EXCLUDE))
10194 file_ptr offset = (file_ptr) o->output_offset;
10195 bfd_size_type todo = o->size;
10196 if ((o->flags & SEC_ELF_REVERSE_COPY))
10198 /* Reverse-copy input section to output. */
10201 todo -= address_size;
10202 if (! bfd_set_section_contents (output_bfd,
10210 offset += address_size;
10214 else if (! bfd_set_section_contents (output_bfd,
10228 /* Generate a reloc when linking an ELF file. This is a reloc
10229 requested by the linker, and does not come from any input file. This
10230 is used to build constructor and destructor tables when linking
10234 elf_reloc_link_order (bfd *output_bfd,
10235 struct bfd_link_info *info,
10236 asection *output_section,
10237 struct bfd_link_order *link_order)
10239 reloc_howto_type *howto;
10243 struct bfd_elf_section_reloc_data *reldata;
10244 struct elf_link_hash_entry **rel_hash_ptr;
10245 Elf_Internal_Shdr *rel_hdr;
10246 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10247 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10250 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10252 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10255 bfd_set_error (bfd_error_bad_value);
10259 addend = link_order->u.reloc.p->addend;
10262 reldata = &esdo->rel;
10263 else if (esdo->rela.hdr)
10264 reldata = &esdo->rela;
10271 /* Figure out the symbol index. */
10272 rel_hash_ptr = reldata->hashes + reldata->count;
10273 if (link_order->type == bfd_section_reloc_link_order)
10275 indx = link_order->u.reloc.p->u.section->target_index;
10276 BFD_ASSERT (indx != 0);
10277 *rel_hash_ptr = NULL;
10281 struct elf_link_hash_entry *h;
10283 /* Treat a reloc against a defined symbol as though it were
10284 actually against the section. */
10285 h = ((struct elf_link_hash_entry *)
10286 bfd_wrapped_link_hash_lookup (output_bfd, info,
10287 link_order->u.reloc.p->u.name,
10288 FALSE, FALSE, TRUE));
10290 && (h->root.type == bfd_link_hash_defined
10291 || h->root.type == bfd_link_hash_defweak))
10295 section = h->root.u.def.section;
10296 indx = section->output_section->target_index;
10297 *rel_hash_ptr = NULL;
10298 /* It seems that we ought to add the symbol value to the
10299 addend here, but in practice it has already been added
10300 because it was passed to constructor_callback. */
10301 addend += section->output_section->vma + section->output_offset;
10303 else if (h != NULL)
10305 /* Setting the index to -2 tells elf_link_output_extsym that
10306 this symbol is used by a reloc. */
10313 if (! ((*info->callbacks->unattached_reloc)
10314 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10320 /* If this is an inplace reloc, we must write the addend into the
10322 if (howto->partial_inplace && addend != 0)
10324 bfd_size_type size;
10325 bfd_reloc_status_type rstat;
10328 const char *sym_name;
10330 size = (bfd_size_type) bfd_get_reloc_size (howto);
10331 buf = (bfd_byte *) bfd_zmalloc (size);
10332 if (buf == NULL && size != 0)
10334 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10341 case bfd_reloc_outofrange:
10344 case bfd_reloc_overflow:
10345 if (link_order->type == bfd_section_reloc_link_order)
10346 sym_name = bfd_section_name (output_bfd,
10347 link_order->u.reloc.p->u.section);
10349 sym_name = link_order->u.reloc.p->u.name;
10350 if (! ((*info->callbacks->reloc_overflow)
10351 (info, NULL, sym_name, howto->name, addend, NULL,
10352 NULL, (bfd_vma) 0)))
10359 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10360 link_order->offset, size);
10366 /* The address of a reloc is relative to the section in a
10367 relocatable file, and is a virtual address in an executable
10369 offset = link_order->offset;
10370 if (! info->relocatable)
10371 offset += output_section->vma;
10373 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10375 irel[i].r_offset = offset;
10376 irel[i].r_info = 0;
10377 irel[i].r_addend = 0;
10379 if (bed->s->arch_size == 32)
10380 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10382 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10384 rel_hdr = reldata->hdr;
10385 erel = rel_hdr->contents;
10386 if (rel_hdr->sh_type == SHT_REL)
10388 erel += reldata->count * bed->s->sizeof_rel;
10389 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10393 irel[0].r_addend = addend;
10394 erel += reldata->count * bed->s->sizeof_rela;
10395 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10404 /* Get the output vma of the section pointed to by the sh_link field. */
10407 elf_get_linked_section_vma (struct bfd_link_order *p)
10409 Elf_Internal_Shdr **elf_shdrp;
10413 s = p->u.indirect.section;
10414 elf_shdrp = elf_elfsections (s->owner);
10415 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10416 elfsec = elf_shdrp[elfsec]->sh_link;
10418 The Intel C compiler generates SHT_IA_64_UNWIND with
10419 SHF_LINK_ORDER. But it doesn't set the sh_link or
10420 sh_info fields. Hence we could get the situation
10421 where elfsec is 0. */
10424 const struct elf_backend_data *bed
10425 = get_elf_backend_data (s->owner);
10426 if (bed->link_order_error_handler)
10427 bed->link_order_error_handler
10428 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10433 s = elf_shdrp[elfsec]->bfd_section;
10434 return s->output_section->vma + s->output_offset;
10439 /* Compare two sections based on the locations of the sections they are
10440 linked to. Used by elf_fixup_link_order. */
10443 compare_link_order (const void * a, const void * b)
10448 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10449 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10452 return apos > bpos;
10456 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10457 order as their linked sections. Returns false if this could not be done
10458 because an output section includes both ordered and unordered
10459 sections. Ideally we'd do this in the linker proper. */
10462 elf_fixup_link_order (bfd *abfd, asection *o)
10464 int seen_linkorder;
10467 struct bfd_link_order *p;
10469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10471 struct bfd_link_order **sections;
10472 asection *s, *other_sec, *linkorder_sec;
10476 linkorder_sec = NULL;
10478 seen_linkorder = 0;
10479 for (p = o->map_head.link_order; p != NULL; p = p->next)
10481 if (p->type == bfd_indirect_link_order)
10483 s = p->u.indirect.section;
10485 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10486 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10487 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10488 && elfsec < elf_numsections (sub)
10489 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10490 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10504 if (seen_other && seen_linkorder)
10506 if (other_sec && linkorder_sec)
10507 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10509 linkorder_sec->owner, other_sec,
10512 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10514 bfd_set_error (bfd_error_bad_value);
10519 if (!seen_linkorder)
10522 sections = (struct bfd_link_order **)
10523 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10524 if (sections == NULL)
10526 seen_linkorder = 0;
10528 for (p = o->map_head.link_order; p != NULL; p = p->next)
10530 sections[seen_linkorder++] = p;
10532 /* Sort the input sections in the order of their linked section. */
10533 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10534 compare_link_order);
10536 /* Change the offsets of the sections. */
10538 for (n = 0; n < seen_linkorder; n++)
10540 s = sections[n]->u.indirect.section;
10541 offset &= ~(bfd_vma) 0 << s->alignment_power;
10542 s->output_offset = offset;
10543 sections[n]->offset = offset;
10544 /* FIXME: octets_per_byte. */
10545 offset += sections[n]->size;
10553 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10557 if (flinfo->symstrtab != NULL)
10558 _bfd_stringtab_free (flinfo->symstrtab);
10559 if (flinfo->contents != NULL)
10560 free (flinfo->contents);
10561 if (flinfo->external_relocs != NULL)
10562 free (flinfo->external_relocs);
10563 if (flinfo->internal_relocs != NULL)
10564 free (flinfo->internal_relocs);
10565 if (flinfo->external_syms != NULL)
10566 free (flinfo->external_syms);
10567 if (flinfo->locsym_shndx != NULL)
10568 free (flinfo->locsym_shndx);
10569 if (flinfo->internal_syms != NULL)
10570 free (flinfo->internal_syms);
10571 if (flinfo->indices != NULL)
10572 free (flinfo->indices);
10573 if (flinfo->sections != NULL)
10574 free (flinfo->sections);
10575 if (flinfo->symbuf != NULL)
10576 free (flinfo->symbuf);
10577 if (flinfo->symshndxbuf != NULL)
10578 free (flinfo->symshndxbuf);
10579 for (o = obfd->sections; o != NULL; o = o->next)
10581 struct bfd_elf_section_data *esdo = elf_section_data (o);
10582 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10583 free (esdo->rel.hashes);
10584 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10585 free (esdo->rela.hashes);
10589 /* Do the final step of an ELF link. */
10592 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10594 bfd_boolean dynamic;
10595 bfd_boolean emit_relocs;
10597 struct elf_final_link_info flinfo;
10599 struct bfd_link_order *p;
10601 bfd_size_type max_contents_size;
10602 bfd_size_type max_external_reloc_size;
10603 bfd_size_type max_internal_reloc_count;
10604 bfd_size_type max_sym_count;
10605 bfd_size_type max_sym_shndx_count;
10606 Elf_Internal_Sym elfsym;
10608 Elf_Internal_Shdr *symtab_hdr;
10609 Elf_Internal_Shdr *symtab_shndx_hdr;
10610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10611 struct elf_outext_info eoinfo;
10612 bfd_boolean merged;
10613 size_t relativecount = 0;
10614 asection *reldyn = 0;
10616 asection *attr_section = NULL;
10617 bfd_vma attr_size = 0;
10618 const char *std_attrs_section;
10620 if (! is_elf_hash_table (info->hash))
10624 abfd->flags |= DYNAMIC;
10626 dynamic = elf_hash_table (info)->dynamic_sections_created;
10627 dynobj = elf_hash_table (info)->dynobj;
10629 emit_relocs = (info->relocatable
10630 || info->emitrelocations);
10632 flinfo.info = info;
10633 flinfo.output_bfd = abfd;
10634 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10635 if (flinfo.symstrtab == NULL)
10640 flinfo.dynsym_sec = NULL;
10641 flinfo.hash_sec = NULL;
10642 flinfo.symver_sec = NULL;
10646 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10647 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10648 /* Note that dynsym_sec can be NULL (on VMS). */
10649 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10650 /* Note that it is OK if symver_sec is NULL. */
10653 flinfo.contents = NULL;
10654 flinfo.external_relocs = NULL;
10655 flinfo.internal_relocs = NULL;
10656 flinfo.external_syms = NULL;
10657 flinfo.locsym_shndx = NULL;
10658 flinfo.internal_syms = NULL;
10659 flinfo.indices = NULL;
10660 flinfo.sections = NULL;
10661 flinfo.symbuf = NULL;
10662 flinfo.symshndxbuf = NULL;
10663 flinfo.symbuf_count = 0;
10664 flinfo.shndxbuf_size = 0;
10665 flinfo.filesym_count = 0;
10667 /* The object attributes have been merged. Remove the input
10668 sections from the link, and set the contents of the output
10670 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10671 for (o = abfd->sections; o != NULL; o = o->next)
10673 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10674 || strcmp (o->name, ".gnu.attributes") == 0)
10676 for (p = o->map_head.link_order; p != NULL; p = p->next)
10678 asection *input_section;
10680 if (p->type != bfd_indirect_link_order)
10682 input_section = p->u.indirect.section;
10683 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10684 elf_link_input_bfd ignores this section. */
10685 input_section->flags &= ~SEC_HAS_CONTENTS;
10688 attr_size = bfd_elf_obj_attr_size (abfd);
10691 bfd_set_section_size (abfd, o, attr_size);
10693 /* Skip this section later on. */
10694 o->map_head.link_order = NULL;
10697 o->flags |= SEC_EXCLUDE;
10701 /* Count up the number of relocations we will output for each output
10702 section, so that we know the sizes of the reloc sections. We
10703 also figure out some maximum sizes. */
10704 max_contents_size = 0;
10705 max_external_reloc_size = 0;
10706 max_internal_reloc_count = 0;
10708 max_sym_shndx_count = 0;
10710 for (o = abfd->sections; o != NULL; o = o->next)
10712 struct bfd_elf_section_data *esdo = elf_section_data (o);
10713 o->reloc_count = 0;
10715 for (p = o->map_head.link_order; p != NULL; p = p->next)
10717 unsigned int reloc_count = 0;
10718 struct bfd_elf_section_data *esdi = NULL;
10720 if (p->type == bfd_section_reloc_link_order
10721 || p->type == bfd_symbol_reloc_link_order)
10723 else if (p->type == bfd_indirect_link_order)
10727 sec = p->u.indirect.section;
10728 esdi = elf_section_data (sec);
10730 /* Mark all sections which are to be included in the
10731 link. This will normally be every section. We need
10732 to do this so that we can identify any sections which
10733 the linker has decided to not include. */
10734 sec->linker_mark = TRUE;
10736 if (sec->flags & SEC_MERGE)
10739 if (esdo->this_hdr.sh_type == SHT_REL
10740 || esdo->this_hdr.sh_type == SHT_RELA)
10741 /* Some backends use reloc_count in relocation sections
10742 to count particular types of relocs. Of course,
10743 reloc sections themselves can't have relocations. */
10745 else if (info->relocatable || info->emitrelocations)
10746 reloc_count = sec->reloc_count;
10747 else if (bed->elf_backend_count_relocs)
10748 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10750 if (sec->rawsize > max_contents_size)
10751 max_contents_size = sec->rawsize;
10752 if (sec->size > max_contents_size)
10753 max_contents_size = sec->size;
10755 /* We are interested in just local symbols, not all
10757 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10758 && (sec->owner->flags & DYNAMIC) == 0)
10762 if (elf_bad_symtab (sec->owner))
10763 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10764 / bed->s->sizeof_sym);
10766 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10768 if (sym_count > max_sym_count)
10769 max_sym_count = sym_count;
10771 if (sym_count > max_sym_shndx_count
10772 && elf_symtab_shndx (sec->owner) != 0)
10773 max_sym_shndx_count = sym_count;
10775 if ((sec->flags & SEC_RELOC) != 0)
10777 size_t ext_size = 0;
10779 if (esdi->rel.hdr != NULL)
10780 ext_size = esdi->rel.hdr->sh_size;
10781 if (esdi->rela.hdr != NULL)
10782 ext_size += esdi->rela.hdr->sh_size;
10784 if (ext_size > max_external_reloc_size)
10785 max_external_reloc_size = ext_size;
10786 if (sec->reloc_count > max_internal_reloc_count)
10787 max_internal_reloc_count = sec->reloc_count;
10792 if (reloc_count == 0)
10795 o->reloc_count += reloc_count;
10797 if (p->type == bfd_indirect_link_order
10798 && (info->relocatable || info->emitrelocations))
10801 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10802 if (esdi->rela.hdr)
10803 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10808 esdo->rela.count += reloc_count;
10810 esdo->rel.count += reloc_count;
10814 if (o->reloc_count > 0)
10815 o->flags |= SEC_RELOC;
10818 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10819 set it (this is probably a bug) and if it is set
10820 assign_section_numbers will create a reloc section. */
10821 o->flags &=~ SEC_RELOC;
10824 /* If the SEC_ALLOC flag is not set, force the section VMA to
10825 zero. This is done in elf_fake_sections as well, but forcing
10826 the VMA to 0 here will ensure that relocs against these
10827 sections are handled correctly. */
10828 if ((o->flags & SEC_ALLOC) == 0
10829 && ! o->user_set_vma)
10833 if (! info->relocatable && merged)
10834 elf_link_hash_traverse (elf_hash_table (info),
10835 _bfd_elf_link_sec_merge_syms, abfd);
10837 /* Figure out the file positions for everything but the symbol table
10838 and the relocs. We set symcount to force assign_section_numbers
10839 to create a symbol table. */
10840 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
10841 BFD_ASSERT (! abfd->output_has_begun);
10842 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10845 /* Set sizes, and assign file positions for reloc sections. */
10846 for (o = abfd->sections; o != NULL; o = o->next)
10848 struct bfd_elf_section_data *esdo = elf_section_data (o);
10849 if ((o->flags & SEC_RELOC) != 0)
10852 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10856 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10860 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10861 to count upwards while actually outputting the relocations. */
10862 esdo->rel.count = 0;
10863 esdo->rela.count = 0;
10866 /* We have now assigned file positions for all the sections except
10867 .symtab, .strtab, and non-loaded reloc sections. We start the
10868 .symtab section at the current file position, and write directly
10869 to it. We build the .strtab section in memory. */
10870 bfd_get_symcount (abfd) = 0;
10871 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10872 /* sh_name is set in prep_headers. */
10873 symtab_hdr->sh_type = SHT_SYMTAB;
10874 /* sh_flags, sh_addr and sh_size all start off zero. */
10875 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10876 /* sh_link is set in assign_section_numbers. */
10877 /* sh_info is set below. */
10878 /* sh_offset is set just below. */
10879 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10881 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10882 continuously seeking to the right position in the file. */
10883 if (! info->keep_memory || max_sym_count < 20)
10884 flinfo.symbuf_size = 20;
10886 flinfo.symbuf_size = max_sym_count;
10887 amt = flinfo.symbuf_size;
10888 amt *= bed->s->sizeof_sym;
10889 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10890 if (flinfo.symbuf == NULL)
10892 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10894 /* Wild guess at number of output symbols. realloc'd as needed. */
10895 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10896 flinfo.shndxbuf_size = amt;
10897 amt *= sizeof (Elf_External_Sym_Shndx);
10898 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10899 if (flinfo.symshndxbuf == NULL)
10903 if (info->strip != strip_all || emit_relocs)
10905 file_ptr off = elf_next_file_pos (abfd);
10907 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10909 /* Note that at this point elf_next_file_pos (abfd) is
10910 incorrect. We do not yet know the size of the .symtab section.
10911 We correct next_file_pos below, after we do know the size. */
10913 /* Start writing out the symbol table. The first symbol is always a
10915 elfsym.st_value = 0;
10916 elfsym.st_size = 0;
10917 elfsym.st_info = 0;
10918 elfsym.st_other = 0;
10919 elfsym.st_shndx = SHN_UNDEF;
10920 elfsym.st_target_internal = 0;
10921 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10925 /* Output a symbol for each section. We output these even if we are
10926 discarding local symbols, since they are used for relocs. These
10927 symbols have no names. We store the index of each one in the
10928 index field of the section, so that we can find it again when
10929 outputting relocs. */
10931 elfsym.st_size = 0;
10932 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10933 elfsym.st_other = 0;
10934 elfsym.st_value = 0;
10935 elfsym.st_target_internal = 0;
10936 for (i = 1; i < elf_numsections (abfd); i++)
10938 o = bfd_section_from_elf_index (abfd, i);
10941 o->target_index = bfd_get_symcount (abfd);
10942 elfsym.st_shndx = i;
10943 if (!info->relocatable)
10944 elfsym.st_value = o->vma;
10945 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10951 /* Allocate some memory to hold information read in from the input
10953 if (max_contents_size != 0)
10955 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10956 if (flinfo.contents == NULL)
10960 if (max_external_reloc_size != 0)
10962 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10963 if (flinfo.external_relocs == NULL)
10967 if (max_internal_reloc_count != 0)
10969 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10970 amt *= sizeof (Elf_Internal_Rela);
10971 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10972 if (flinfo.internal_relocs == NULL)
10976 if (max_sym_count != 0)
10978 amt = max_sym_count * bed->s->sizeof_sym;
10979 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10980 if (flinfo.external_syms == NULL)
10983 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10984 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10985 if (flinfo.internal_syms == NULL)
10988 amt = max_sym_count * sizeof (long);
10989 flinfo.indices = (long int *) bfd_malloc (amt);
10990 if (flinfo.indices == NULL)
10993 amt = max_sym_count * sizeof (asection *);
10994 flinfo.sections = (asection **) bfd_malloc (amt);
10995 if (flinfo.sections == NULL)
10999 if (max_sym_shndx_count != 0)
11001 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11002 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11003 if (flinfo.locsym_shndx == NULL)
11007 if (elf_hash_table (info)->tls_sec)
11009 bfd_vma base, end = 0;
11012 for (sec = elf_hash_table (info)->tls_sec;
11013 sec && (sec->flags & SEC_THREAD_LOCAL);
11016 bfd_size_type size = sec->size;
11019 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11021 struct bfd_link_order *ord = sec->map_tail.link_order;
11024 size = ord->offset + ord->size;
11026 end = sec->vma + size;
11028 base = elf_hash_table (info)->tls_sec->vma;
11029 /* Only align end of TLS section if static TLS doesn't have special
11030 alignment requirements. */
11031 if (bed->static_tls_alignment == 1)
11032 end = align_power (end,
11033 elf_hash_table (info)->tls_sec->alignment_power);
11034 elf_hash_table (info)->tls_size = end - base;
11037 /* Reorder SHF_LINK_ORDER sections. */
11038 for (o = abfd->sections; o != NULL; o = o->next)
11040 if (!elf_fixup_link_order (abfd, o))
11044 /* Since ELF permits relocations to be against local symbols, we
11045 must have the local symbols available when we do the relocations.
11046 Since we would rather only read the local symbols once, and we
11047 would rather not keep them in memory, we handle all the
11048 relocations for a single input file at the same time.
11050 Unfortunately, there is no way to know the total number of local
11051 symbols until we have seen all of them, and the local symbol
11052 indices precede the global symbol indices. This means that when
11053 we are generating relocatable output, and we see a reloc against
11054 a global symbol, we can not know the symbol index until we have
11055 finished examining all the local symbols to see which ones we are
11056 going to output. To deal with this, we keep the relocations in
11057 memory, and don't output them until the end of the link. This is
11058 an unfortunate waste of memory, but I don't see a good way around
11059 it. Fortunately, it only happens when performing a relocatable
11060 link, which is not the common case. FIXME: If keep_memory is set
11061 we could write the relocs out and then read them again; I don't
11062 know how bad the memory loss will be. */
11064 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11065 sub->output_has_begun = FALSE;
11066 for (o = abfd->sections; o != NULL; o = o->next)
11068 for (p = o->map_head.link_order; p != NULL; p = p->next)
11070 if (p->type == bfd_indirect_link_order
11071 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11072 == bfd_target_elf_flavour)
11073 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11075 if (! sub->output_has_begun)
11077 if (! elf_link_input_bfd (&flinfo, sub))
11079 sub->output_has_begun = TRUE;
11082 else if (p->type == bfd_section_reloc_link_order
11083 || p->type == bfd_symbol_reloc_link_order)
11085 if (! elf_reloc_link_order (abfd, info, o, p))
11090 if (! _bfd_default_link_order (abfd, info, o, p))
11092 if (p->type == bfd_indirect_link_order
11093 && (bfd_get_flavour (sub)
11094 == bfd_target_elf_flavour)
11095 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11096 != bed->s->elfclass))
11098 const char *iclass, *oclass;
11100 if (bed->s->elfclass == ELFCLASS64)
11102 iclass = "ELFCLASS32";
11103 oclass = "ELFCLASS64";
11107 iclass = "ELFCLASS64";
11108 oclass = "ELFCLASS32";
11111 bfd_set_error (bfd_error_wrong_format);
11112 (*_bfd_error_handler)
11113 (_("%B: file class %s incompatible with %s"),
11114 sub, iclass, oclass);
11123 /* Free symbol buffer if needed. */
11124 if (!info->reduce_memory_overheads)
11126 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11127 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11128 && elf_tdata (sub)->symbuf)
11130 free (elf_tdata (sub)->symbuf);
11131 elf_tdata (sub)->symbuf = NULL;
11135 /* Output any global symbols that got converted to local in a
11136 version script or due to symbol visibility. We do this in a
11137 separate step since ELF requires all local symbols to appear
11138 prior to any global symbols. FIXME: We should only do this if
11139 some global symbols were, in fact, converted to become local.
11140 FIXME: Will this work correctly with the Irix 5 linker? */
11141 eoinfo.failed = FALSE;
11142 eoinfo.flinfo = &flinfo;
11143 eoinfo.localsyms = TRUE;
11144 eoinfo.need_second_pass = FALSE;
11145 eoinfo.second_pass = FALSE;
11146 eoinfo.file_sym_done = FALSE;
11147 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11151 if (eoinfo.need_second_pass)
11153 eoinfo.second_pass = TRUE;
11154 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11159 /* If backend needs to output some local symbols not present in the hash
11160 table, do it now. */
11161 if (bed->elf_backend_output_arch_local_syms
11162 && (info->strip != strip_all || emit_relocs))
11164 typedef int (*out_sym_func)
11165 (void *, const char *, Elf_Internal_Sym *, asection *,
11166 struct elf_link_hash_entry *);
11168 if (! ((*bed->elf_backend_output_arch_local_syms)
11169 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11173 /* That wrote out all the local symbols. Finish up the symbol table
11174 with the global symbols. Even if we want to strip everything we
11175 can, we still need to deal with those global symbols that got
11176 converted to local in a version script. */
11178 /* The sh_info field records the index of the first non local symbol. */
11179 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11182 && flinfo.dynsym_sec != NULL
11183 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11185 Elf_Internal_Sym sym;
11186 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11187 long last_local = 0;
11189 /* Write out the section symbols for the output sections. */
11190 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11196 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11198 sym.st_target_internal = 0;
11200 for (s = abfd->sections; s != NULL; s = s->next)
11206 dynindx = elf_section_data (s)->dynindx;
11209 indx = elf_section_data (s)->this_idx;
11210 BFD_ASSERT (indx > 0);
11211 sym.st_shndx = indx;
11212 if (! check_dynsym (abfd, &sym))
11214 sym.st_value = s->vma;
11215 dest = dynsym + dynindx * bed->s->sizeof_sym;
11216 if (last_local < dynindx)
11217 last_local = dynindx;
11218 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11222 /* Write out the local dynsyms. */
11223 if (elf_hash_table (info)->dynlocal)
11225 struct elf_link_local_dynamic_entry *e;
11226 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11231 /* Copy the internal symbol and turn off visibility.
11232 Note that we saved a word of storage and overwrote
11233 the original st_name with the dynstr_index. */
11235 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11237 s = bfd_section_from_elf_index (e->input_bfd,
11242 elf_section_data (s->output_section)->this_idx;
11243 if (! check_dynsym (abfd, &sym))
11245 sym.st_value = (s->output_section->vma
11247 + e->isym.st_value);
11250 if (last_local < e->dynindx)
11251 last_local = e->dynindx;
11253 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11254 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11258 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11262 /* We get the global symbols from the hash table. */
11263 eoinfo.failed = FALSE;
11264 eoinfo.localsyms = FALSE;
11265 eoinfo.flinfo = &flinfo;
11266 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11270 /* If backend needs to output some symbols not present in the hash
11271 table, do it now. */
11272 if (bed->elf_backend_output_arch_syms
11273 && (info->strip != strip_all || emit_relocs))
11275 typedef int (*out_sym_func)
11276 (void *, const char *, Elf_Internal_Sym *, asection *,
11277 struct elf_link_hash_entry *);
11279 if (! ((*bed->elf_backend_output_arch_syms)
11280 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11284 /* Flush all symbols to the file. */
11285 if (! elf_link_flush_output_syms (&flinfo, bed))
11288 /* Now we know the size of the symtab section. */
11289 if (bfd_get_symcount (abfd) > 0)
11291 /* Finish up and write out the symbol string table (.strtab)
11293 Elf_Internal_Shdr *symstrtab_hdr;
11294 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11296 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11297 if (symtab_shndx_hdr->sh_name != 0)
11299 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11300 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11301 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11302 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11303 symtab_shndx_hdr->sh_size = amt;
11305 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11308 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11309 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11313 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11314 /* sh_name was set in prep_headers. */
11315 symstrtab_hdr->sh_type = SHT_STRTAB;
11316 symstrtab_hdr->sh_flags = 0;
11317 symstrtab_hdr->sh_addr = 0;
11318 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11319 symstrtab_hdr->sh_entsize = 0;
11320 symstrtab_hdr->sh_link = 0;
11321 symstrtab_hdr->sh_info = 0;
11322 /* sh_offset is set just below. */
11323 symstrtab_hdr->sh_addralign = 1;
11325 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11327 elf_next_file_pos (abfd) = off;
11329 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11330 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11334 /* Adjust the relocs to have the correct symbol indices. */
11335 for (o = abfd->sections; o != NULL; o = o->next)
11337 struct bfd_elf_section_data *esdo = elf_section_data (o);
11339 if ((o->flags & SEC_RELOC) == 0)
11342 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11343 if (esdo->rel.hdr != NULL)
11344 elf_link_adjust_relocs (abfd, &esdo->rel, sort);
11345 if (esdo->rela.hdr != NULL)
11346 elf_link_adjust_relocs (abfd, &esdo->rela, sort);
11348 /* Set the reloc_count field to 0 to prevent write_relocs from
11349 trying to swap the relocs out itself. */
11350 o->reloc_count = 0;
11353 if (dynamic && info->combreloc && dynobj != NULL)
11354 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11356 /* If we are linking against a dynamic object, or generating a
11357 shared library, finish up the dynamic linking information. */
11360 bfd_byte *dyncon, *dynconend;
11362 /* Fix up .dynamic entries. */
11363 o = bfd_get_linker_section (dynobj, ".dynamic");
11364 BFD_ASSERT (o != NULL);
11366 dyncon = o->contents;
11367 dynconend = o->contents + o->size;
11368 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11370 Elf_Internal_Dyn dyn;
11374 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11381 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11383 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11385 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11386 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11389 dyn.d_un.d_val = relativecount;
11396 name = info->init_function;
11399 name = info->fini_function;
11402 struct elf_link_hash_entry *h;
11404 h = elf_link_hash_lookup (elf_hash_table (info), name,
11405 FALSE, FALSE, TRUE);
11407 && (h->root.type == bfd_link_hash_defined
11408 || h->root.type == bfd_link_hash_defweak))
11410 dyn.d_un.d_ptr = h->root.u.def.value;
11411 o = h->root.u.def.section;
11412 if (o->output_section != NULL)
11413 dyn.d_un.d_ptr += (o->output_section->vma
11414 + o->output_offset);
11417 /* The symbol is imported from another shared
11418 library and does not apply to this one. */
11419 dyn.d_un.d_ptr = 0;
11426 case DT_PREINIT_ARRAYSZ:
11427 name = ".preinit_array";
11429 case DT_INIT_ARRAYSZ:
11430 name = ".init_array";
11432 case DT_FINI_ARRAYSZ:
11433 name = ".fini_array";
11435 o = bfd_get_section_by_name (abfd, name);
11438 (*_bfd_error_handler)
11439 (_("%B: could not find output section %s"), abfd, name);
11443 (*_bfd_error_handler)
11444 (_("warning: %s section has zero size"), name);
11445 dyn.d_un.d_val = o->size;
11448 case DT_PREINIT_ARRAY:
11449 name = ".preinit_array";
11451 case DT_INIT_ARRAY:
11452 name = ".init_array";
11454 case DT_FINI_ARRAY:
11455 name = ".fini_array";
11462 name = ".gnu.hash";
11471 name = ".gnu.version_d";
11474 name = ".gnu.version_r";
11477 name = ".gnu.version";
11479 o = bfd_get_section_by_name (abfd, name);
11482 (*_bfd_error_handler)
11483 (_("%B: could not find output section %s"), abfd, name);
11486 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11488 (*_bfd_error_handler)
11489 (_("warning: section '%s' is being made into a note"), name);
11490 bfd_set_error (bfd_error_nonrepresentable_section);
11493 dyn.d_un.d_ptr = o->vma;
11500 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11504 dyn.d_un.d_val = 0;
11505 dyn.d_un.d_ptr = 0;
11506 for (i = 1; i < elf_numsections (abfd); i++)
11508 Elf_Internal_Shdr *hdr;
11510 hdr = elf_elfsections (abfd)[i];
11511 if (hdr->sh_type == type
11512 && (hdr->sh_flags & SHF_ALLOC) != 0)
11514 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11515 dyn.d_un.d_val += hdr->sh_size;
11518 if (dyn.d_un.d_ptr == 0
11519 || hdr->sh_addr < dyn.d_un.d_ptr)
11520 dyn.d_un.d_ptr = hdr->sh_addr;
11526 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11530 /* If we have created any dynamic sections, then output them. */
11531 if (dynobj != NULL)
11533 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11536 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11537 if (((info->warn_shared_textrel && info->shared)
11538 || info->error_textrel)
11539 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11541 bfd_byte *dyncon, *dynconend;
11543 dyncon = o->contents;
11544 dynconend = o->contents + o->size;
11545 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11547 Elf_Internal_Dyn dyn;
11549 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11551 if (dyn.d_tag == DT_TEXTREL)
11553 if (info->error_textrel)
11554 info->callbacks->einfo
11555 (_("%P%X: read-only segment has dynamic relocations.\n"));
11557 info->callbacks->einfo
11558 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11564 for (o = dynobj->sections; o != NULL; o = o->next)
11566 if ((o->flags & SEC_HAS_CONTENTS) == 0
11568 || o->output_section == bfd_abs_section_ptr)
11570 if ((o->flags & SEC_LINKER_CREATED) == 0)
11572 /* At this point, we are only interested in sections
11573 created by _bfd_elf_link_create_dynamic_sections. */
11576 if (elf_hash_table (info)->stab_info.stabstr == o)
11578 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11580 if (strcmp (o->name, ".dynstr") != 0)
11582 /* FIXME: octets_per_byte. */
11583 if (! bfd_set_section_contents (abfd, o->output_section,
11585 (file_ptr) o->output_offset,
11591 /* The contents of the .dynstr section are actually in a
11595 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11596 if (bfd_seek (abfd, off, SEEK_SET) != 0
11597 || ! _bfd_elf_strtab_emit (abfd,
11598 elf_hash_table (info)->dynstr))
11604 if (info->relocatable)
11606 bfd_boolean failed = FALSE;
11608 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11613 /* If we have optimized stabs strings, output them. */
11614 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11616 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11620 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11623 elf_final_link_free (abfd, &flinfo);
11625 elf_linker (abfd) = TRUE;
11629 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11630 if (contents == NULL)
11631 return FALSE; /* Bail out and fail. */
11632 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11633 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11640 elf_final_link_free (abfd, &flinfo);
11644 /* Initialize COOKIE for input bfd ABFD. */
11647 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11648 struct bfd_link_info *info, bfd *abfd)
11650 Elf_Internal_Shdr *symtab_hdr;
11651 const struct elf_backend_data *bed;
11653 bed = get_elf_backend_data (abfd);
11654 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11656 cookie->abfd = abfd;
11657 cookie->sym_hashes = elf_sym_hashes (abfd);
11658 cookie->bad_symtab = elf_bad_symtab (abfd);
11659 if (cookie->bad_symtab)
11661 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11662 cookie->extsymoff = 0;
11666 cookie->locsymcount = symtab_hdr->sh_info;
11667 cookie->extsymoff = symtab_hdr->sh_info;
11670 if (bed->s->arch_size == 32)
11671 cookie->r_sym_shift = 8;
11673 cookie->r_sym_shift = 32;
11675 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11676 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11678 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11679 cookie->locsymcount, 0,
11681 if (cookie->locsyms == NULL)
11683 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11686 if (info->keep_memory)
11687 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11692 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11695 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11697 Elf_Internal_Shdr *symtab_hdr;
11699 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11700 if (cookie->locsyms != NULL
11701 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11702 free (cookie->locsyms);
11705 /* Initialize the relocation information in COOKIE for input section SEC
11706 of input bfd ABFD. */
11709 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11710 struct bfd_link_info *info, bfd *abfd,
11713 const struct elf_backend_data *bed;
11715 if (sec->reloc_count == 0)
11717 cookie->rels = NULL;
11718 cookie->relend = NULL;
11722 bed = get_elf_backend_data (abfd);
11724 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11725 info->keep_memory);
11726 if (cookie->rels == NULL)
11728 cookie->rel = cookie->rels;
11729 cookie->relend = (cookie->rels
11730 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11732 cookie->rel = cookie->rels;
11736 /* Free the memory allocated by init_reloc_cookie_rels,
11740 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11743 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11744 free (cookie->rels);
11747 /* Initialize the whole of COOKIE for input section SEC. */
11750 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11751 struct bfd_link_info *info,
11754 if (!init_reloc_cookie (cookie, info, sec->owner))
11756 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11761 fini_reloc_cookie (cookie, sec->owner);
11766 /* Free the memory allocated by init_reloc_cookie_for_section,
11770 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11773 fini_reloc_cookie_rels (cookie, sec);
11774 fini_reloc_cookie (cookie, sec->owner);
11777 /* Garbage collect unused sections. */
11779 /* Default gc_mark_hook. */
11782 _bfd_elf_gc_mark_hook (asection *sec,
11783 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11784 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11785 struct elf_link_hash_entry *h,
11786 Elf_Internal_Sym *sym)
11788 const char *sec_name;
11792 switch (h->root.type)
11794 case bfd_link_hash_defined:
11795 case bfd_link_hash_defweak:
11796 return h->root.u.def.section;
11798 case bfd_link_hash_common:
11799 return h->root.u.c.p->section;
11801 case bfd_link_hash_undefined:
11802 case bfd_link_hash_undefweak:
11803 /* To work around a glibc bug, keep all XXX input sections
11804 when there is an as yet undefined reference to __start_XXX
11805 or __stop_XXX symbols. The linker will later define such
11806 symbols for orphan input sections that have a name
11807 representable as a C identifier. */
11808 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11809 sec_name = h->root.root.string + 8;
11810 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11811 sec_name = h->root.root.string + 7;
11815 if (sec_name && *sec_name != '\0')
11819 for (i = info->input_bfds; i; i = i->link.next)
11821 sec = bfd_get_section_by_name (i, sec_name);
11823 sec->flags |= SEC_KEEP;
11833 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11838 /* COOKIE->rel describes a relocation against section SEC, which is
11839 a section we've decided to keep. Return the section that contains
11840 the relocation symbol, or NULL if no section contains it. */
11843 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11844 elf_gc_mark_hook_fn gc_mark_hook,
11845 struct elf_reloc_cookie *cookie)
11847 unsigned long r_symndx;
11848 struct elf_link_hash_entry *h;
11850 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11851 if (r_symndx == STN_UNDEF)
11854 if (r_symndx >= cookie->locsymcount
11855 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11857 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11860 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
11864 while (h->root.type == bfd_link_hash_indirect
11865 || h->root.type == bfd_link_hash_warning)
11866 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11868 /* If this symbol is weak and there is a non-weak definition, we
11869 keep the non-weak definition because many backends put
11870 dynamic reloc info on the non-weak definition for code
11871 handling copy relocs. */
11872 if (h->u.weakdef != NULL)
11873 h->u.weakdef->mark = 1;
11874 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11877 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11878 &cookie->locsyms[r_symndx]);
11881 /* COOKIE->rel describes a relocation against section SEC, which is
11882 a section we've decided to keep. Mark the section that contains
11883 the relocation symbol. */
11886 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11888 elf_gc_mark_hook_fn gc_mark_hook,
11889 struct elf_reloc_cookie *cookie)
11893 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11894 if (rsec && !rsec->gc_mark)
11896 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11897 || (rsec->owner->flags & DYNAMIC) != 0)
11899 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11905 /* The mark phase of garbage collection. For a given section, mark
11906 it and any sections in this section's group, and all the sections
11907 which define symbols to which it refers. */
11910 _bfd_elf_gc_mark (struct bfd_link_info *info,
11912 elf_gc_mark_hook_fn gc_mark_hook)
11915 asection *group_sec, *eh_frame;
11919 /* Mark all the sections in the group. */
11920 group_sec = elf_section_data (sec)->next_in_group;
11921 if (group_sec && !group_sec->gc_mark)
11922 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11925 /* Look through the section relocs. */
11927 eh_frame = elf_eh_frame_section (sec->owner);
11928 if ((sec->flags & SEC_RELOC) != 0
11929 && sec->reloc_count > 0
11930 && sec != eh_frame)
11932 struct elf_reloc_cookie cookie;
11934 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11938 for (; cookie.rel < cookie.relend; cookie.rel++)
11939 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11944 fini_reloc_cookie_for_section (&cookie, sec);
11948 if (ret && eh_frame && elf_fde_list (sec))
11950 struct elf_reloc_cookie cookie;
11952 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11956 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11957 gc_mark_hook, &cookie))
11959 fini_reloc_cookie_for_section (&cookie, eh_frame);
11966 /* Scan and mark sections in a special or debug section group. */
11969 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
11971 /* Point to first section of section group. */
11973 /* Used to iterate the section group. */
11976 bfd_boolean is_special_grp = TRUE;
11977 bfd_boolean is_debug_grp = TRUE;
11979 /* First scan to see if group contains any section other than debug
11980 and special section. */
11981 ssec = msec = elf_next_in_group (grp);
11984 if ((msec->flags & SEC_DEBUGGING) == 0)
11985 is_debug_grp = FALSE;
11987 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
11988 is_special_grp = FALSE;
11990 msec = elf_next_in_group (msec);
11992 while (msec != ssec);
11994 /* If this is a pure debug section group or pure special section group,
11995 keep all sections in this group. */
11996 if (is_debug_grp || is_special_grp)
12001 msec = elf_next_in_group (msec);
12003 while (msec != ssec);
12007 /* Keep debug and special sections. */
12010 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12011 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12015 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12018 bfd_boolean some_kept;
12019 bfd_boolean debug_frag_seen;
12021 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12024 /* Ensure all linker created sections are kept,
12025 see if any other section is already marked,
12026 and note if we have any fragmented debug sections. */
12027 debug_frag_seen = some_kept = FALSE;
12028 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12030 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12032 else if (isec->gc_mark)
12035 if (debug_frag_seen == FALSE
12036 && (isec->flags & SEC_DEBUGGING)
12037 && CONST_STRNEQ (isec->name, ".debug_line."))
12038 debug_frag_seen = TRUE;
12041 /* If no section in this file will be kept, then we can
12042 toss out the debug and special sections. */
12046 /* Keep debug and special sections like .comment when they are
12047 not part of a group. Also keep section groups that contain
12048 just debug sections or special sections. */
12049 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12051 if ((isec->flags & SEC_GROUP) != 0)
12052 _bfd_elf_gc_mark_debug_special_section_group (isec);
12053 else if (((isec->flags & SEC_DEBUGGING) != 0
12054 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12055 && elf_next_in_group (isec) == NULL)
12059 if (! debug_frag_seen)
12062 /* Look for CODE sections which are going to be discarded,
12063 and find and discard any fragmented debug sections which
12064 are associated with that code section. */
12065 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12066 if ((isec->flags & SEC_CODE) != 0
12067 && isec->gc_mark == 0)
12072 ilen = strlen (isec->name);
12074 /* Association is determined by the name of the debug section
12075 containing the name of the code section as a suffix. For
12076 example .debug_line.text.foo is a debug section associated
12078 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12082 if (dsec->gc_mark == 0
12083 || (dsec->flags & SEC_DEBUGGING) == 0)
12086 dlen = strlen (dsec->name);
12089 && strncmp (dsec->name + (dlen - ilen),
12090 isec->name, ilen) == 0)
12101 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12103 struct elf_gc_sweep_symbol_info
12105 struct bfd_link_info *info;
12106 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12111 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12114 && (((h->root.type == bfd_link_hash_defined
12115 || h->root.type == bfd_link_hash_defweak)
12116 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12117 && h->root.u.def.section->gc_mark))
12118 || h->root.type == bfd_link_hash_undefined
12119 || h->root.type == bfd_link_hash_undefweak))
12121 struct elf_gc_sweep_symbol_info *inf;
12123 inf = (struct elf_gc_sweep_symbol_info *) data;
12124 (*inf->hide_symbol) (inf->info, h, TRUE);
12125 h->def_regular = 0;
12126 h->ref_regular = 0;
12127 h->ref_regular_nonweak = 0;
12133 /* The sweep phase of garbage collection. Remove all garbage sections. */
12135 typedef bfd_boolean (*gc_sweep_hook_fn)
12136 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12139 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12142 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12143 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12144 unsigned long section_sym_count;
12145 struct elf_gc_sweep_symbol_info sweep_info;
12147 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12151 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12154 for (o = sub->sections; o != NULL; o = o->next)
12156 /* When any section in a section group is kept, we keep all
12157 sections in the section group. If the first member of
12158 the section group is excluded, we will also exclude the
12160 if (o->flags & SEC_GROUP)
12162 asection *first = elf_next_in_group (o);
12163 o->gc_mark = first->gc_mark;
12169 /* Skip sweeping sections already excluded. */
12170 if (o->flags & SEC_EXCLUDE)
12173 /* Since this is early in the link process, it is simple
12174 to remove a section from the output. */
12175 o->flags |= SEC_EXCLUDE;
12177 if (info->print_gc_sections && o->size != 0)
12178 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12180 /* But we also have to update some of the relocation
12181 info we collected before. */
12183 && (o->flags & SEC_RELOC) != 0
12184 && o->reloc_count != 0
12185 && !((info->strip == strip_all || info->strip == strip_debugger)
12186 && (o->flags & SEC_DEBUGGING) != 0)
12187 && !bfd_is_abs_section (o->output_section))
12189 Elf_Internal_Rela *internal_relocs;
12193 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12194 info->keep_memory);
12195 if (internal_relocs == NULL)
12198 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12200 if (elf_section_data (o)->relocs != internal_relocs)
12201 free (internal_relocs);
12209 /* Remove the symbols that were in the swept sections from the dynamic
12210 symbol table. GCFIXME: Anyone know how to get them out of the
12211 static symbol table as well? */
12212 sweep_info.info = info;
12213 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12214 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12217 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12221 /* Propagate collected vtable information. This is called through
12222 elf_link_hash_traverse. */
12225 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12227 /* Those that are not vtables. */
12228 if (h->vtable == NULL || h->vtable->parent == NULL)
12231 /* Those vtables that do not have parents, we cannot merge. */
12232 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12235 /* If we've already been done, exit. */
12236 if (h->vtable->used && h->vtable->used[-1])
12239 /* Make sure the parent's table is up to date. */
12240 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12242 if (h->vtable->used == NULL)
12244 /* None of this table's entries were referenced. Re-use the
12246 h->vtable->used = h->vtable->parent->vtable->used;
12247 h->vtable->size = h->vtable->parent->vtable->size;
12252 bfd_boolean *cu, *pu;
12254 /* Or the parent's entries into ours. */
12255 cu = h->vtable->used;
12257 pu = h->vtable->parent->vtable->used;
12260 const struct elf_backend_data *bed;
12261 unsigned int log_file_align;
12263 bed = get_elf_backend_data (h->root.u.def.section->owner);
12264 log_file_align = bed->s->log_file_align;
12265 n = h->vtable->parent->vtable->size >> log_file_align;
12280 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12283 bfd_vma hstart, hend;
12284 Elf_Internal_Rela *relstart, *relend, *rel;
12285 const struct elf_backend_data *bed;
12286 unsigned int log_file_align;
12288 /* Take care of both those symbols that do not describe vtables as
12289 well as those that are not loaded. */
12290 if (h->vtable == NULL || h->vtable->parent == NULL)
12293 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12294 || h->root.type == bfd_link_hash_defweak);
12296 sec = h->root.u.def.section;
12297 hstart = h->root.u.def.value;
12298 hend = hstart + h->size;
12300 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12302 return *(bfd_boolean *) okp = FALSE;
12303 bed = get_elf_backend_data (sec->owner);
12304 log_file_align = bed->s->log_file_align;
12306 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12308 for (rel = relstart; rel < relend; ++rel)
12309 if (rel->r_offset >= hstart && rel->r_offset < hend)
12311 /* If the entry is in use, do nothing. */
12312 if (h->vtable->used
12313 && (rel->r_offset - hstart) < h->vtable->size)
12315 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12316 if (h->vtable->used[entry])
12319 /* Otherwise, kill it. */
12320 rel->r_offset = rel->r_info = rel->r_addend = 0;
12326 /* Mark sections containing dynamically referenced symbols. When
12327 building shared libraries, we must assume that any visible symbol is
12331 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12333 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12334 struct bfd_elf_dynamic_list *d = info->dynamic_list;
12336 if ((h->root.type == bfd_link_hash_defined
12337 || h->root.type == bfd_link_hash_defweak)
12339 || ((h->def_regular || ELF_COMMON_DEF_P (h))
12340 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12341 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12342 && (!info->executable
12343 || info->export_dynamic
12346 && (*d->match) (&d->head, NULL, h->root.root.string)))
12347 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12348 || !bfd_hide_sym_by_version (info->version_info,
12349 h->root.root.string)))))
12350 h->root.u.def.section->flags |= SEC_KEEP;
12355 /* Keep all sections containing symbols undefined on the command-line,
12356 and the section containing the entry symbol. */
12359 _bfd_elf_gc_keep (struct bfd_link_info *info)
12361 struct bfd_sym_chain *sym;
12363 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12365 struct elf_link_hash_entry *h;
12367 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12368 FALSE, FALSE, FALSE);
12371 && (h->root.type == bfd_link_hash_defined
12372 || h->root.type == bfd_link_hash_defweak)
12373 && !bfd_is_abs_section (h->root.u.def.section))
12374 h->root.u.def.section->flags |= SEC_KEEP;
12378 /* Do mark and sweep of unused sections. */
12381 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12383 bfd_boolean ok = TRUE;
12385 elf_gc_mark_hook_fn gc_mark_hook;
12386 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12387 struct elf_link_hash_table *htab;
12389 if (!bed->can_gc_sections
12390 || !is_elf_hash_table (info->hash))
12392 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12396 bed->gc_keep (info);
12397 htab = elf_hash_table (info);
12399 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12400 at the .eh_frame section if we can mark the FDEs individually. */
12401 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12404 struct elf_reloc_cookie cookie;
12406 sec = bfd_get_section_by_name (sub, ".eh_frame");
12407 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12409 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12410 if (elf_section_data (sec)->sec_info
12411 && (sec->flags & SEC_LINKER_CREATED) == 0)
12412 elf_eh_frame_section (sub) = sec;
12413 fini_reloc_cookie_for_section (&cookie, sec);
12414 sec = bfd_get_next_section_by_name (sec);
12418 /* Apply transitive closure to the vtable entry usage info. */
12419 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
12423 /* Kill the vtable relocations that were not used. */
12424 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
12428 /* Mark dynamically referenced symbols. */
12429 if (htab->dynamic_sections_created)
12430 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
12432 /* Grovel through relocs to find out who stays ... */
12433 gc_mark_hook = bed->gc_mark_hook;
12434 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12438 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12441 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12442 Also treat note sections as a root, if the section is not part
12444 for (o = sub->sections; o != NULL; o = o->next)
12446 && (o->flags & SEC_EXCLUDE) == 0
12447 && ((o->flags & SEC_KEEP) != 0
12448 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12449 && elf_next_in_group (o) == NULL )))
12451 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12456 /* Allow the backend to mark additional target specific sections. */
12457 bed->gc_mark_extra_sections (info, gc_mark_hook);
12459 /* ... and mark SEC_EXCLUDE for those that go. */
12460 return elf_gc_sweep (abfd, info);
12463 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12466 bfd_elf_gc_record_vtinherit (bfd *abfd,
12468 struct elf_link_hash_entry *h,
12471 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12472 struct elf_link_hash_entry **search, *child;
12473 bfd_size_type extsymcount;
12474 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12476 /* The sh_info field of the symtab header tells us where the
12477 external symbols start. We don't care about the local symbols at
12479 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12480 if (!elf_bad_symtab (abfd))
12481 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12483 sym_hashes = elf_sym_hashes (abfd);
12484 sym_hashes_end = sym_hashes + extsymcount;
12486 /* Hunt down the child symbol, which is in this section at the same
12487 offset as the relocation. */
12488 for (search = sym_hashes; search != sym_hashes_end; ++search)
12490 if ((child = *search) != NULL
12491 && (child->root.type == bfd_link_hash_defined
12492 || child->root.type == bfd_link_hash_defweak)
12493 && child->root.u.def.section == sec
12494 && child->root.u.def.value == offset)
12498 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12499 abfd, sec, (unsigned long) offset);
12500 bfd_set_error (bfd_error_invalid_operation);
12504 if (!child->vtable)
12506 child->vtable = (struct elf_link_virtual_table_entry *)
12507 bfd_zalloc (abfd, sizeof (*child->vtable));
12508 if (!child->vtable)
12513 /* This *should* only be the absolute section. It could potentially
12514 be that someone has defined a non-global vtable though, which
12515 would be bad. It isn't worth paging in the local symbols to be
12516 sure though; that case should simply be handled by the assembler. */
12518 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12521 child->vtable->parent = h;
12526 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12529 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12530 asection *sec ATTRIBUTE_UNUSED,
12531 struct elf_link_hash_entry *h,
12534 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12535 unsigned int log_file_align = bed->s->log_file_align;
12539 h->vtable = (struct elf_link_virtual_table_entry *)
12540 bfd_zalloc (abfd, sizeof (*h->vtable));
12545 if (addend >= h->vtable->size)
12547 size_t size, bytes, file_align;
12548 bfd_boolean *ptr = h->vtable->used;
12550 /* While the symbol is undefined, we have to be prepared to handle
12552 file_align = 1 << log_file_align;
12553 if (h->root.type == bfd_link_hash_undefined)
12554 size = addend + file_align;
12558 if (addend >= size)
12560 /* Oops! We've got a reference past the defined end of
12561 the table. This is probably a bug -- shall we warn? */
12562 size = addend + file_align;
12565 size = (size + file_align - 1) & -file_align;
12567 /* Allocate one extra entry for use as a "done" flag for the
12568 consolidation pass. */
12569 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12573 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12579 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12580 * sizeof (bfd_boolean));
12581 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12585 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12590 /* And arrange for that done flag to be at index -1. */
12591 h->vtable->used = ptr + 1;
12592 h->vtable->size = size;
12595 h->vtable->used[addend >> log_file_align] = TRUE;
12600 /* Map an ELF section header flag to its corresponding string. */
12604 flagword flag_value;
12605 } elf_flags_to_name_table;
12607 static elf_flags_to_name_table elf_flags_to_names [] =
12609 { "SHF_WRITE", SHF_WRITE },
12610 { "SHF_ALLOC", SHF_ALLOC },
12611 { "SHF_EXECINSTR", SHF_EXECINSTR },
12612 { "SHF_MERGE", SHF_MERGE },
12613 { "SHF_STRINGS", SHF_STRINGS },
12614 { "SHF_INFO_LINK", SHF_INFO_LINK},
12615 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12616 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12617 { "SHF_GROUP", SHF_GROUP },
12618 { "SHF_TLS", SHF_TLS },
12619 { "SHF_MASKOS", SHF_MASKOS },
12620 { "SHF_EXCLUDE", SHF_EXCLUDE },
12623 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12625 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12626 struct flag_info *flaginfo,
12629 const bfd_vma sh_flags = elf_section_flags (section);
12631 if (!flaginfo->flags_initialized)
12633 bfd *obfd = info->output_bfd;
12634 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12635 struct flag_info_list *tf = flaginfo->flag_list;
12637 int without_hex = 0;
12639 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12642 flagword (*lookup) (char *);
12644 lookup = bed->elf_backend_lookup_section_flags_hook;
12645 if (lookup != NULL)
12647 flagword hexval = (*lookup) ((char *) tf->name);
12651 if (tf->with == with_flags)
12652 with_hex |= hexval;
12653 else if (tf->with == without_flags)
12654 without_hex |= hexval;
12659 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12661 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12663 if (tf->with == with_flags)
12664 with_hex |= elf_flags_to_names[i].flag_value;
12665 else if (tf->with == without_flags)
12666 without_hex |= elf_flags_to_names[i].flag_value;
12673 info->callbacks->einfo
12674 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12678 flaginfo->flags_initialized = TRUE;
12679 flaginfo->only_with_flags |= with_hex;
12680 flaginfo->not_with_flags |= without_hex;
12683 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12686 if ((flaginfo->not_with_flags & sh_flags) != 0)
12692 struct alloc_got_off_arg {
12694 struct bfd_link_info *info;
12697 /* We need a special top-level link routine to convert got reference counts
12698 to real got offsets. */
12701 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12703 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12704 bfd *obfd = gofarg->info->output_bfd;
12705 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12707 if (h->got.refcount > 0)
12709 h->got.offset = gofarg->gotoff;
12710 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12713 h->got.offset = (bfd_vma) -1;
12718 /* And an accompanying bit to work out final got entry offsets once
12719 we're done. Should be called from final_link. */
12722 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12723 struct bfd_link_info *info)
12726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12728 struct alloc_got_off_arg gofarg;
12730 BFD_ASSERT (abfd == info->output_bfd);
12732 if (! is_elf_hash_table (info->hash))
12735 /* The GOT offset is relative to the .got section, but the GOT header is
12736 put into the .got.plt section, if the backend uses it. */
12737 if (bed->want_got_plt)
12740 gotoff = bed->got_header_size;
12742 /* Do the local .got entries first. */
12743 for (i = info->input_bfds; i; i = i->link.next)
12745 bfd_signed_vma *local_got;
12746 bfd_size_type j, locsymcount;
12747 Elf_Internal_Shdr *symtab_hdr;
12749 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12752 local_got = elf_local_got_refcounts (i);
12756 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12757 if (elf_bad_symtab (i))
12758 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12760 locsymcount = symtab_hdr->sh_info;
12762 for (j = 0; j < locsymcount; ++j)
12764 if (local_got[j] > 0)
12766 local_got[j] = gotoff;
12767 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12770 local_got[j] = (bfd_vma) -1;
12774 /* Then the global .got entries. .plt refcounts are handled by
12775 adjust_dynamic_symbol */
12776 gofarg.gotoff = gotoff;
12777 gofarg.info = info;
12778 elf_link_hash_traverse (elf_hash_table (info),
12779 elf_gc_allocate_got_offsets,
12784 /* Many folk need no more in the way of final link than this, once
12785 got entry reference counting is enabled. */
12788 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12790 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12793 /* Invoke the regular ELF backend linker to do all the work. */
12794 return bfd_elf_final_link (abfd, info);
12798 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12800 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12802 if (rcookie->bad_symtab)
12803 rcookie->rel = rcookie->rels;
12805 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12807 unsigned long r_symndx;
12809 if (! rcookie->bad_symtab)
12810 if (rcookie->rel->r_offset > offset)
12812 if (rcookie->rel->r_offset != offset)
12815 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12816 if (r_symndx == STN_UNDEF)
12819 if (r_symndx >= rcookie->locsymcount
12820 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12822 struct elf_link_hash_entry *h;
12824 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12826 while (h->root.type == bfd_link_hash_indirect
12827 || h->root.type == bfd_link_hash_warning)
12828 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12830 if ((h->root.type == bfd_link_hash_defined
12831 || h->root.type == bfd_link_hash_defweak)
12832 && (h->root.u.def.section->owner != rcookie->abfd
12833 || h->root.u.def.section->kept_section != NULL
12834 || discarded_section (h->root.u.def.section)))
12839 /* It's not a relocation against a global symbol,
12840 but it could be a relocation against a local
12841 symbol for a discarded section. */
12843 Elf_Internal_Sym *isym;
12845 /* Need to: get the symbol; get the section. */
12846 isym = &rcookie->locsyms[r_symndx];
12847 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12849 && (isec->kept_section != NULL
12850 || discarded_section (isec)))
12858 /* Discard unneeded references to discarded sections.
12859 Returns -1 on error, 1 if any section's size was changed, 0 if
12860 nothing changed. This function assumes that the relocations are in
12861 sorted order, which is true for all known assemblers. */
12864 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12866 struct elf_reloc_cookie cookie;
12871 if (info->traditional_format
12872 || !is_elf_hash_table (info->hash))
12875 o = bfd_get_section_by_name (output_bfd, ".stab");
12880 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12883 || i->reloc_count == 0
12884 || i->sec_info_type != SEC_INFO_TYPE_STABS)
12888 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12891 if (!init_reloc_cookie_for_section (&cookie, info, i))
12894 if (_bfd_discard_section_stabs (abfd, i,
12895 elf_section_data (i)->sec_info,
12896 bfd_elf_reloc_symbol_deleted_p,
12900 fini_reloc_cookie_for_section (&cookie, i);
12904 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
12909 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12915 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12918 if (!init_reloc_cookie_for_section (&cookie, info, i))
12921 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
12922 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
12923 bfd_elf_reloc_symbol_deleted_p,
12927 fini_reloc_cookie_for_section (&cookie, i);
12931 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
12933 const struct elf_backend_data *bed;
12935 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12938 bed = get_elf_backend_data (abfd);
12940 if (bed->elf_backend_discard_info != NULL)
12942 if (!init_reloc_cookie (&cookie, info, abfd))
12945 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
12948 fini_reloc_cookie (&cookie, abfd);
12952 if (info->eh_frame_hdr
12953 && !info->relocatable
12954 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12961 _bfd_elf_section_already_linked (bfd *abfd,
12963 struct bfd_link_info *info)
12966 const char *name, *key;
12967 struct bfd_section_already_linked *l;
12968 struct bfd_section_already_linked_hash_entry *already_linked_list;
12970 if (sec->output_section == bfd_abs_section_ptr)
12973 flags = sec->flags;
12975 /* Return if it isn't a linkonce section. A comdat group section
12976 also has SEC_LINK_ONCE set. */
12977 if ((flags & SEC_LINK_ONCE) == 0)
12980 /* Don't put group member sections on our list of already linked
12981 sections. They are handled as a group via their group section. */
12982 if (elf_sec_group (sec) != NULL)
12985 /* For a SHT_GROUP section, use the group signature as the key. */
12987 if ((flags & SEC_GROUP) != 0
12988 && elf_next_in_group (sec) != NULL
12989 && elf_group_name (elf_next_in_group (sec)) != NULL)
12990 key = elf_group_name (elf_next_in_group (sec));
12993 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12994 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12995 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12998 /* Must be a user linkonce section that doesn't follow gcc's
12999 naming convention. In this case we won't be matching
13000 single member groups. */
13004 already_linked_list = bfd_section_already_linked_table_lookup (key);
13006 for (l = already_linked_list->entry; l != NULL; l = l->next)
13008 /* We may have 2 different types of sections on the list: group
13009 sections with a signature of <key> (<key> is some string),
13010 and linkonce sections named .gnu.linkonce.<type>.<key>.
13011 Match like sections. LTO plugin sections are an exception.
13012 They are always named .gnu.linkonce.t.<key> and match either
13013 type of section. */
13014 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13015 && ((flags & SEC_GROUP) != 0
13016 || strcmp (name, l->sec->name) == 0))
13017 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13019 /* The section has already been linked. See if we should
13020 issue a warning. */
13021 if (!_bfd_handle_already_linked (sec, l, info))
13024 if (flags & SEC_GROUP)
13026 asection *first = elf_next_in_group (sec);
13027 asection *s = first;
13031 s->output_section = bfd_abs_section_ptr;
13032 /* Record which group discards it. */
13033 s->kept_section = l->sec;
13034 s = elf_next_in_group (s);
13035 /* These lists are circular. */
13045 /* A single member comdat group section may be discarded by a
13046 linkonce section and vice versa. */
13047 if ((flags & SEC_GROUP) != 0)
13049 asection *first = elf_next_in_group (sec);
13051 if (first != NULL && elf_next_in_group (first) == first)
13052 /* Check this single member group against linkonce sections. */
13053 for (l = already_linked_list->entry; l != NULL; l = l->next)
13054 if ((l->sec->flags & SEC_GROUP) == 0
13055 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13057 first->output_section = bfd_abs_section_ptr;
13058 first->kept_section = l->sec;
13059 sec->output_section = bfd_abs_section_ptr;
13064 /* Check this linkonce section against single member groups. */
13065 for (l = already_linked_list->entry; l != NULL; l = l->next)
13066 if (l->sec->flags & SEC_GROUP)
13068 asection *first = elf_next_in_group (l->sec);
13071 && elf_next_in_group (first) == first
13072 && bfd_elf_match_symbols_in_sections (first, sec, info))
13074 sec->output_section = bfd_abs_section_ptr;
13075 sec->kept_section = first;
13080 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13081 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13082 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13083 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13084 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13085 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13086 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13087 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13088 The reverse order cannot happen as there is never a bfd with only the
13089 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13090 matter as here were are looking only for cross-bfd sections. */
13092 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13093 for (l = already_linked_list->entry; l != NULL; l = l->next)
13094 if ((l->sec->flags & SEC_GROUP) == 0
13095 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13097 if (abfd != l->sec->owner)
13098 sec->output_section = bfd_abs_section_ptr;
13102 /* This is the first section with this name. Record it. */
13103 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13104 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13105 return sec->output_section == bfd_abs_section_ptr;
13109 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13111 return sym->st_shndx == SHN_COMMON;
13115 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13121 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13123 return bfd_com_section_ptr;
13127 _bfd_elf_default_got_elt_size (bfd *abfd,
13128 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13129 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13130 bfd *ibfd ATTRIBUTE_UNUSED,
13131 unsigned long symndx ATTRIBUTE_UNUSED)
13133 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13134 return bed->s->arch_size / 8;
13137 /* Routines to support the creation of dynamic relocs. */
13139 /* Returns the name of the dynamic reloc section associated with SEC. */
13141 static const char *
13142 get_dynamic_reloc_section_name (bfd * abfd,
13144 bfd_boolean is_rela)
13147 const char *old_name = bfd_get_section_name (NULL, sec);
13148 const char *prefix = is_rela ? ".rela" : ".rel";
13150 if (old_name == NULL)
13153 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13154 sprintf (name, "%s%s", prefix, old_name);
13159 /* Returns the dynamic reloc section associated with SEC.
13160 If necessary compute the name of the dynamic reloc section based
13161 on SEC's name (looked up in ABFD's string table) and the setting
13165 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13167 bfd_boolean is_rela)
13169 asection * reloc_sec = elf_section_data (sec)->sreloc;
13171 if (reloc_sec == NULL)
13173 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13177 reloc_sec = bfd_get_linker_section (abfd, name);
13179 if (reloc_sec != NULL)
13180 elf_section_data (sec)->sreloc = reloc_sec;
13187 /* Returns the dynamic reloc section associated with SEC. If the
13188 section does not exist it is created and attached to the DYNOBJ
13189 bfd and stored in the SRELOC field of SEC's elf_section_data
13192 ALIGNMENT is the alignment for the newly created section and
13193 IS_RELA defines whether the name should be .rela.<SEC's name>
13194 or .rel.<SEC's name>. The section name is looked up in the
13195 string table associated with ABFD. */
13198 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13200 unsigned int alignment,
13202 bfd_boolean is_rela)
13204 asection * reloc_sec = elf_section_data (sec)->sreloc;
13206 if (reloc_sec == NULL)
13208 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13213 reloc_sec = bfd_get_linker_section (dynobj, name);
13215 if (reloc_sec == NULL)
13217 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13218 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13219 if ((sec->flags & SEC_ALLOC) != 0)
13220 flags |= SEC_ALLOC | SEC_LOAD;
13222 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13223 if (reloc_sec != NULL)
13225 /* _bfd_elf_get_sec_type_attr chooses a section type by
13226 name. Override as it may be wrong, eg. for a user
13227 section named "auto" we'll get ".relauto" which is
13228 seen to be a .rela section. */
13229 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13230 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13235 elf_section_data (sec)->sreloc = reloc_sec;
13241 /* Copy the ELF symbol type and other attributes for a linker script
13242 assignment from HSRC to HDEST. Generally this should be treated as
13243 if we found a strong non-dynamic definition for HDEST (except that
13244 ld ignores multiple definition errors). */
13246 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13247 struct bfd_link_hash_entry *hdest,
13248 struct bfd_link_hash_entry *hsrc)
13250 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13251 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13252 Elf_Internal_Sym isym;
13254 ehdest->type = ehsrc->type;
13255 ehdest->target_internal = ehsrc->target_internal;
13257 isym.st_other = ehsrc->other;
13258 elf_merge_st_other (abfd, ehdest, &isym, TRUE, FALSE);
13261 /* Append a RELA relocation REL to section S in BFD. */
13264 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13267 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13268 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13269 bed->s->swap_reloca_out (abfd, rel, loc);
13272 /* Append a REL relocation REL to section S in BFD. */
13275 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13277 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13278 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13279 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13280 bed->s->swap_reloc_out (abfd, rel, loc);