1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
46 struct elf_find_verdep_info
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
52 /* Whether we had a failure. */
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
59 /* Define a symbol in a dynamic linkage section. */
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
84 get_elf_backend_data (abfd)->collect,
87 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
188 register asection *s;
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
194 if (elf_hash_table (info)->dynamic_sections_created)
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
226 || ! bfd_set_section_alignment (abfd, s, 1))
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
269 if (info->emit_gnu_hash)
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
296 /* Create dynamic sections when linking against a dynamic object. */
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
330 if (bed->want_plt_sym)
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 if (! _bfd_elf_create_got_section (abfd, info))
351 if (bed->want_dynbss)
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
361 | SEC_LINKER_CREATED));
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
403 if (h->dynindx == -1)
405 struct elf_strtab_hash *dynstr;
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
422 if (!elf_hash_table (info)->is_relocatable_executable)
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
433 dynstr = elf_hash_table (info)->dynstr;
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
442 /* We don't put any version information in the dynamic string
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
459 if (indx == (bfd_size_type) -1)
461 h->dynstr_index = indx;
467 /* Mark a symbol dynamic. */
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
504 if (!is_elf_hash_table (info->hash))
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512 switch (h->root.type)
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
546 case bfd_link_hash_warning:
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
558 h->root.type = bfd_link_hash_undefined;
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
567 h->verinfo.verdef = NULL;
571 if (provide && hidden)
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info->relocatable
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 amt = sizeof (*entry);
637 entry = bfd_alloc (input_bfd, amt);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 size_t *count = data;
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = data;
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
749 if (!h->forced_local)
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
765 struct elf_link_hash_table *htab;
767 switch (elf_section_data (p)->this_hdr.sh_type)
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
795 /* There shouldn't be section relative relocations
796 against any other section. */
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
813 unsigned long dynsymcount = 0;
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
825 elf_section_data (p)->dynindx = 0;
827 *section_sym_count = dynsymcount;
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
833 if (elf_hash_table (info)->dynlocal)
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
850 elf_hash_table (info)->dynsymcount = dynsymcount;
854 /* Merge st_other field. */
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
882 unsigned char hvis, symvis, other, nvis;
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
896 nvis = hvis < symvis ? hvis : symvis;
898 h->other = other | nvis;
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
918 Elf_Internal_Sym *sym,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
941 bind = ELF_ST_BIND (sym->st_info);
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
961 bed = get_elf_backend_data (abfd);
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
968 /* For merging, we only care about real symbols. */
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
983 if (h->root.type == bfd_link_hash_new)
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
992 switch (h->root.type)
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1067 && !info->export_dynamic
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1092 if (h->type == STT_TLS)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1128 bfd_set_error (bfd_error_bad_value);
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1137 if (!bfd_is_und_section (sec))
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1161 /* Make sure this symbol is dynamic. */
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1240 /* FIXME: Should we check type and size for protected symbol? */
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1262 if (newdef && !newdyn && olddyn)
1264 if (olddef && newdyn)
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1318 newdyncommon = TRUE;
1320 newdyncommon = FALSE;
1324 && h->root.type == bfd_link_hash_defined
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 olddyncommon = TRUE;
1332 olddyncommon = FALSE;
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1352 && sym->st_size != h->size)
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1362 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1365 if (sym->st_size > h->size)
1366 h->size = sym->st_size;
1368 *size_change_ok = TRUE;
1371 /* If we are looking at a dynamic object, and we have found a
1372 definition, we need to see if the symbol was already defined by
1373 some other object. If so, we want to use the existing
1374 definition, and we do not want to report a multiple symbol
1375 definition error; we do this by clobbering *PSEC to be
1376 bfd_und_section_ptr.
1378 We treat a common symbol as a definition if the symbol in the
1379 shared library is a function, since common symbols always
1380 represent variables; this can cause confusion in principle, but
1381 any such confusion would seem to indicate an erroneous program or
1382 shared library. We also permit a common symbol in a regular
1383 object to override a weak symbol in a shared object. */
1388 || (h->root.type == bfd_link_hash_common
1389 && (newweak || newfunc))))
1393 newdyncommon = FALSE;
1395 *psec = sec = bfd_und_section_ptr;
1396 *size_change_ok = TRUE;
1398 /* If we get here when the old symbol is a common symbol, then
1399 we are explicitly letting it override a weak symbol or
1400 function in a dynamic object, and we don't want to warn about
1401 a type change. If the old symbol is a defined symbol, a type
1402 change warning may still be appropriate. */
1404 if (h->root.type == bfd_link_hash_common)
1405 *type_change_ok = TRUE;
1408 /* Handle the special case of an old common symbol merging with a
1409 new symbol which looks like a common symbol in a shared object.
1410 We change *PSEC and *PVALUE to make the new symbol look like a
1411 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 && h->root.type == bfd_link_hash_common)
1419 newdyncommon = FALSE;
1420 *pvalue = sym->st_size;
1421 *psec = sec = bed->common_section (oldsec);
1422 *size_change_ok = TRUE;
1425 /* Skip weak definitions of symbols that are already defined. */
1426 if (newdef && olddef && newweak)
1430 /* Merge st_other. If the symbol already has a dynamic index,
1431 but visibility says it should not be visible, turn it into a
1433 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1434 if (h->dynindx != -1)
1435 switch (ELF_ST_VISIBILITY (h->other))
1439 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1444 /* If the old symbol is from a dynamic object, and the new symbol is
1445 a definition which is not from a dynamic object, then the new
1446 symbol overrides the old symbol. Symbols from regular files
1447 always take precedence over symbols from dynamic objects, even if
1448 they are defined after the dynamic object in the link.
1450 As above, we again permit a common symbol in a regular object to
1451 override a definition in a shared object if the shared object
1452 symbol is a function or is weak. */
1457 || (bfd_is_com_section (sec)
1458 && (oldweak || oldfunc)))
1463 /* Change the hash table entry to undefined, and let
1464 _bfd_generic_link_add_one_symbol do the right thing with the
1467 h->root.type = bfd_link_hash_undefined;
1468 h->root.u.undef.abfd = h->root.u.def.section->owner;
1469 *size_change_ok = TRUE;
1472 olddyncommon = FALSE;
1474 /* We again permit a type change when a common symbol may be
1475 overriding a function. */
1477 if (bfd_is_com_section (sec))
1481 /* If a common symbol overrides a function, make sure
1482 that it isn't defined dynamically nor has type
1485 h->type = STT_NOTYPE;
1487 *type_change_ok = TRUE;
1490 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1493 /* This union may have been set to be non-NULL when this symbol
1494 was seen in a dynamic object. We must force the union to be
1495 NULL, so that it is correct for a regular symbol. */
1496 h->verinfo.vertree = NULL;
1499 /* Handle the special case of a new common symbol merging with an
1500 old symbol that looks like it might be a common symbol defined in
1501 a shared object. Note that we have already handled the case in
1502 which a new common symbol should simply override the definition
1503 in the shared library. */
1506 && bfd_is_com_section (sec)
1509 /* It would be best if we could set the hash table entry to a
1510 common symbol, but we don't know what to use for the section
1511 or the alignment. */
1512 if (! ((*info->callbacks->multiple_common)
1513 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1514 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1517 /* If the presumed common symbol in the dynamic object is
1518 larger, pretend that the new symbol has its size. */
1520 if (h->size > *pvalue)
1523 /* We need to remember the alignment required by the symbol
1524 in the dynamic object. */
1525 BFD_ASSERT (pold_alignment);
1526 *pold_alignment = h->root.u.def.section->alignment_power;
1529 olddyncommon = FALSE;
1531 h->root.type = bfd_link_hash_undefined;
1532 h->root.u.undef.abfd = h->root.u.def.section->owner;
1534 *size_change_ok = TRUE;
1535 *type_change_ok = TRUE;
1537 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1540 h->verinfo.vertree = NULL;
1545 /* Handle the case where we had a versioned symbol in a dynamic
1546 library and now find a definition in a normal object. In this
1547 case, we make the versioned symbol point to the normal one. */
1548 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1549 flip->root.type = h->root.type;
1550 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1551 h->root.type = bfd_link_hash_indirect;
1552 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1553 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 flip->ref_dynamic = 1;
1564 /* This function is called to create an indirect symbol from the
1565 default for the symbol with the default version if needed. The
1566 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1567 set DYNSYM if the new indirect symbol is dynamic. */
1570 _bfd_elf_add_default_symbol (bfd *abfd,
1571 struct bfd_link_info *info,
1572 struct elf_link_hash_entry *h,
1574 Elf_Internal_Sym *sym,
1577 bfd_boolean *dynsym,
1578 bfd_boolean override)
1580 bfd_boolean type_change_ok;
1581 bfd_boolean size_change_ok;
1584 struct elf_link_hash_entry *hi;
1585 struct bfd_link_hash_entry *bh;
1586 const struct elf_backend_data *bed;
1587 bfd_boolean collect;
1588 bfd_boolean dynamic;
1590 size_t len, shortlen;
1593 /* If this symbol has a version, and it is the default version, we
1594 create an indirect symbol from the default name to the fully
1595 decorated name. This will cause external references which do not
1596 specify a version to be bound to this version of the symbol. */
1597 p = strchr (name, ELF_VER_CHR);
1598 if (p == NULL || p[1] != ELF_VER_CHR)
1603 /* We are overridden by an old definition. We need to check if we
1604 need to create the indirect symbol from the default name. */
1605 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1607 BFD_ASSERT (hi != NULL);
1610 while (hi->root.type == bfd_link_hash_indirect
1611 || hi->root.type == bfd_link_hash_warning)
1613 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1619 bed = get_elf_backend_data (abfd);
1620 collect = bed->collect;
1621 dynamic = (abfd->flags & DYNAMIC) != 0;
1623 shortlen = p - name;
1624 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1625 if (shortname == NULL)
1627 memcpy (shortname, name, shortlen);
1628 shortname[shortlen] = '\0';
1630 /* We are going to create a new symbol. Merge it with any existing
1631 symbol with this name. For the purposes of the merge, act as
1632 though we were defining the symbol we just defined, although we
1633 actually going to define an indirect symbol. */
1634 type_change_ok = FALSE;
1635 size_change_ok = FALSE;
1637 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1638 NULL, &hi, &skip, &override,
1639 &type_change_ok, &size_change_ok))
1648 if (! (_bfd_generic_link_add_one_symbol
1649 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1650 0, name, FALSE, collect, &bh)))
1652 hi = (struct elf_link_hash_entry *) bh;
1656 /* In this case the symbol named SHORTNAME is overriding the
1657 indirect symbol we want to add. We were planning on making
1658 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1659 is the name without a version. NAME is the fully versioned
1660 name, and it is the default version.
1662 Overriding means that we already saw a definition for the
1663 symbol SHORTNAME in a regular object, and it is overriding
1664 the symbol defined in the dynamic object.
1666 When this happens, we actually want to change NAME, the
1667 symbol we just added, to refer to SHORTNAME. This will cause
1668 references to NAME in the shared object to become references
1669 to SHORTNAME in the regular object. This is what we expect
1670 when we override a function in a shared object: that the
1671 references in the shared object will be mapped to the
1672 definition in the regular object. */
1674 while (hi->root.type == bfd_link_hash_indirect
1675 || hi->root.type == bfd_link_hash_warning)
1676 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1678 h->root.type = bfd_link_hash_indirect;
1679 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 hi->ref_dynamic = 1;
1687 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1692 /* Now set HI to H, so that the following code will set the
1693 other fields correctly. */
1697 /* Check if HI is a warning symbol. */
1698 if (hi->root.type == bfd_link_hash_warning)
1699 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1701 /* If there is a duplicate definition somewhere, then HI may not
1702 point to an indirect symbol. We will have reported an error to
1703 the user in that case. */
1705 if (hi->root.type == bfd_link_hash_indirect)
1707 struct elf_link_hash_entry *ht;
1709 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1710 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1712 /* See if the new flags lead us to realize that the symbol must
1724 if (hi->ref_regular)
1730 /* We also need to define an indirection from the nondefault version
1734 len = strlen (name);
1735 shortname = bfd_hash_allocate (&info->hash->table, len);
1736 if (shortname == NULL)
1738 memcpy (shortname, name, shortlen);
1739 memcpy (shortname + shortlen, p + 1, len - shortlen);
1741 /* Once again, merge with any existing symbol. */
1742 type_change_ok = FALSE;
1743 size_change_ok = FALSE;
1745 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1746 NULL, &hi, &skip, &override,
1747 &type_change_ok, &size_change_ok))
1755 /* Here SHORTNAME is a versioned name, so we don't expect to see
1756 the type of override we do in the case above unless it is
1757 overridden by a versioned definition. */
1758 if (hi->root.type != bfd_link_hash_defined
1759 && hi->root.type != bfd_link_hash_defweak)
1760 (*_bfd_error_handler)
1761 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1767 if (! (_bfd_generic_link_add_one_symbol
1768 (info, abfd, shortname, BSF_INDIRECT,
1769 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1771 hi = (struct elf_link_hash_entry *) bh;
1773 /* If there is a duplicate definition somewhere, then HI may not
1774 point to an indirect symbol. We will have reported an error
1775 to the user in that case. */
1777 if (hi->root.type == bfd_link_hash_indirect)
1779 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1781 /* See if the new flags lead us to realize that the symbol
1793 if (hi->ref_regular)
1803 /* This routine is used to export all defined symbols into the dynamic
1804 symbol table. It is called via elf_link_hash_traverse. */
1807 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1809 struct elf_info_failed *eif = data;
1811 /* Ignore this if we won't export it. */
1812 if (!eif->info->export_dynamic && !h->dynamic)
1815 /* Ignore indirect symbols. These are added by the versioning code. */
1816 if (h->root.type == bfd_link_hash_indirect)
1819 if (h->root.type == bfd_link_hash_warning)
1820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1822 if (h->dynindx == -1
1828 if (eif->verdefs == NULL
1829 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1843 /* Look through the symbols which are defined in other shared
1844 libraries and referenced here. Update the list of version
1845 dependencies. This will be put into the .gnu.version_r section.
1846 This function is called via elf_link_hash_traverse. */
1849 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1852 struct elf_find_verdep_info *rinfo = data;
1853 Elf_Internal_Verneed *t;
1854 Elf_Internal_Vernaux *a;
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860 /* We only care about symbols defined in shared objects with version
1865 || h->verinfo.verdef == NULL)
1868 /* See if we already know about this version. */
1869 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1876 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1877 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1883 /* This is a new version. Add it to tree we are building. */
1888 t = bfd_zalloc (rinfo->info->output_bfd, amt);
1891 rinfo->failed = TRUE;
1895 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1896 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1897 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 a = bfd_zalloc (rinfo->info->output_bfd, amt);
1904 rinfo->failed = TRUE;
1908 /* Note that we are copying a string pointer here, and testing it
1909 above. If bfd_elf_string_from_elf_section is ever changed to
1910 discard the string data when low in memory, this will have to be
1912 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1914 a->vna_flags = h->verinfo.verdef->vd_flags;
1915 a->vna_nextptr = t->vn_auxptr;
1917 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1920 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1927 /* Figure out appropriate versions for all the symbols. We may not
1928 have the version number script until we have read all of the input
1929 files, so until that point we don't know which symbols should be
1930 local. This function is called via elf_link_hash_traverse. */
1933 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1935 struct elf_info_failed *sinfo;
1936 struct bfd_link_info *info;
1937 const struct elf_backend_data *bed;
1938 struct elf_info_failed eif;
1945 if (h->root.type == bfd_link_hash_warning)
1946 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1948 /* Fix the symbol flags. */
1951 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1954 sinfo->failed = TRUE;
1958 /* We only need version numbers for symbols defined in regular
1960 if (!h->def_regular)
1963 bed = get_elf_backend_data (info->output_bfd);
1964 p = strchr (h->root.root.string, ELF_VER_CHR);
1965 if (p != NULL && h->verinfo.vertree == NULL)
1967 struct bfd_elf_version_tree *t;
1972 /* There are two consecutive ELF_VER_CHR characters if this is
1973 not a hidden symbol. */
1975 if (*p == ELF_VER_CHR)
1981 /* If there is no version string, we can just return out. */
1989 /* Look for the version. If we find it, it is no longer weak. */
1990 for (t = sinfo->verdefs; t != NULL; t = t->next)
1992 if (strcmp (t->name, p) == 0)
1996 struct bfd_elf_version_expr *d;
1998 len = p - h->root.root.string;
1999 alc = bfd_malloc (len);
2002 sinfo->failed = TRUE;
2005 memcpy (alc, h->root.root.string, len - 1);
2006 alc[len - 1] = '\0';
2007 if (alc[len - 2] == ELF_VER_CHR)
2008 alc[len - 2] = '\0';
2010 h->verinfo.vertree = t;
2014 if (t->globals.list != NULL)
2015 d = (*t->match) (&t->globals, NULL, alc);
2017 /* See if there is anything to force this symbol to
2019 if (d == NULL && t->locals.list != NULL)
2021 d = (*t->match) (&t->locals, NULL, alc);
2024 && ! info->export_dynamic)
2025 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2033 /* If we are building an application, we need to create a
2034 version node for this version. */
2035 if (t == NULL && info->executable)
2037 struct bfd_elf_version_tree **pp;
2040 /* If we aren't going to export this symbol, we don't need
2041 to worry about it. */
2042 if (h->dynindx == -1)
2046 t = bfd_zalloc (info->output_bfd, amt);
2049 sinfo->failed = TRUE;
2054 t->name_indx = (unsigned int) -1;
2058 /* Don't count anonymous version tag. */
2059 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2061 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2063 t->vernum = version_index;
2067 h->verinfo.vertree = t;
2071 /* We could not find the version for a symbol when
2072 generating a shared archive. Return an error. */
2073 (*_bfd_error_handler)
2074 (_("%B: version node not found for symbol %s"),
2075 info->output_bfd, h->root.root.string);
2076 bfd_set_error (bfd_error_bad_value);
2077 sinfo->failed = TRUE;
2085 /* If we don't have a version for this symbol, see if we can find
2087 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2092 h->root.root.string, &hide);
2093 if (h->verinfo.vertree != NULL && hide)
2094 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2100 /* Read and swap the relocs from the section indicated by SHDR. This
2101 may be either a REL or a RELA section. The relocations are
2102 translated into RELA relocations and stored in INTERNAL_RELOCS,
2103 which should have already been allocated to contain enough space.
2104 The EXTERNAL_RELOCS are a buffer where the external form of the
2105 relocations should be stored.
2107 Returns FALSE if something goes wrong. */
2110 elf_link_read_relocs_from_section (bfd *abfd,
2112 Elf_Internal_Shdr *shdr,
2113 void *external_relocs,
2114 Elf_Internal_Rela *internal_relocs)
2116 const struct elf_backend_data *bed;
2117 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2118 const bfd_byte *erela;
2119 const bfd_byte *erelaend;
2120 Elf_Internal_Rela *irela;
2121 Elf_Internal_Shdr *symtab_hdr;
2124 /* Position ourselves at the start of the section. */
2125 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2128 /* Read the relocations. */
2129 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2133 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2135 bed = get_elf_backend_data (abfd);
2137 /* Convert the external relocations to the internal format. */
2138 if (shdr->sh_entsize == bed->s->sizeof_rel)
2139 swap_in = bed->s->swap_reloc_in;
2140 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2141 swap_in = bed->s->swap_reloca_in;
2144 bfd_set_error (bfd_error_wrong_format);
2148 erela = external_relocs;
2149 erelaend = erela + shdr->sh_size;
2150 irela = internal_relocs;
2151 while (erela < erelaend)
2155 (*swap_in) (abfd, erela, irela);
2156 r_symndx = ELF32_R_SYM (irela->r_info);
2157 if (bed->s->arch_size == 64)
2161 if ((size_t) r_symndx >= nsyms)
2163 (*_bfd_error_handler)
2164 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2165 " for offset 0x%lx in section `%A'"),
2167 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2168 bfd_set_error (bfd_error_bad_value);
2172 else if (r_symndx != 0)
2174 (*_bfd_error_handler)
2175 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2176 " when the object file has no symbol table"),
2178 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2179 bfd_set_error (bfd_error_bad_value);
2182 irela += bed->s->int_rels_per_ext_rel;
2183 erela += shdr->sh_entsize;
2189 /* Read and swap the relocs for a section O. They may have been
2190 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2191 not NULL, they are used as buffers to read into. They are known to
2192 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2193 the return value is allocated using either malloc or bfd_alloc,
2194 according to the KEEP_MEMORY argument. If O has two relocation
2195 sections (both REL and RELA relocations), then the REL_HDR
2196 relocations will appear first in INTERNAL_RELOCS, followed by the
2197 REL_HDR2 relocations. */
2200 _bfd_elf_link_read_relocs (bfd *abfd,
2202 void *external_relocs,
2203 Elf_Internal_Rela *internal_relocs,
2204 bfd_boolean keep_memory)
2206 Elf_Internal_Shdr *rel_hdr;
2207 void *alloc1 = NULL;
2208 Elf_Internal_Rela *alloc2 = NULL;
2209 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2211 if (elf_section_data (o)->relocs != NULL)
2212 return elf_section_data (o)->relocs;
2214 if (o->reloc_count == 0)
2217 rel_hdr = &elf_section_data (o)->rel_hdr;
2219 if (internal_relocs == NULL)
2223 size = o->reloc_count;
2224 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2226 internal_relocs = alloc2 = bfd_alloc (abfd, size);
2228 internal_relocs = alloc2 = bfd_malloc (size);
2229 if (internal_relocs == NULL)
2233 if (external_relocs == NULL)
2235 bfd_size_type size = rel_hdr->sh_size;
2237 if (elf_section_data (o)->rel_hdr2)
2238 size += elf_section_data (o)->rel_hdr2->sh_size;
2239 alloc1 = bfd_malloc (size);
2242 external_relocs = alloc1;
2245 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 if (elf_section_data (o)->rel_hdr2
2250 && (!elf_link_read_relocs_from_section
2252 elf_section_data (o)->rel_hdr2,
2253 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2254 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2255 * bed->s->int_rels_per_ext_rel))))
2258 /* Cache the results for next time, if we can. */
2260 elf_section_data (o)->relocs = internal_relocs;
2265 /* Don't free alloc2, since if it was allocated we are passing it
2266 back (under the name of internal_relocs). */
2268 return internal_relocs;
2276 bfd_release (abfd, alloc2);
2283 /* Compute the size of, and allocate space for, REL_HDR which is the
2284 section header for a section containing relocations for O. */
2287 _bfd_elf_link_size_reloc_section (bfd *abfd,
2288 Elf_Internal_Shdr *rel_hdr,
2291 bfd_size_type reloc_count;
2292 bfd_size_type num_rel_hashes;
2294 /* Figure out how many relocations there will be. */
2295 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2296 reloc_count = elf_section_data (o)->rel_count;
2298 reloc_count = elf_section_data (o)->rel_count2;
2300 num_rel_hashes = o->reloc_count;
2301 if (num_rel_hashes < reloc_count)
2302 num_rel_hashes = reloc_count;
2304 /* That allows us to calculate the size of the section. */
2305 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2307 /* The contents field must last into write_object_contents, so we
2308 allocate it with bfd_alloc rather than malloc. Also since we
2309 cannot be sure that the contents will actually be filled in,
2310 we zero the allocated space. */
2311 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2312 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2315 /* We only allocate one set of hash entries, so we only do it the
2316 first time we are called. */
2317 if (elf_section_data (o)->rel_hashes == NULL
2320 struct elf_link_hash_entry **p;
2322 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2326 elf_section_data (o)->rel_hashes = p;
2332 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2333 originated from the section given by INPUT_REL_HDR) to the
2337 _bfd_elf_link_output_relocs (bfd *output_bfd,
2338 asection *input_section,
2339 Elf_Internal_Shdr *input_rel_hdr,
2340 Elf_Internal_Rela *internal_relocs,
2341 struct elf_link_hash_entry **rel_hash
2344 Elf_Internal_Rela *irela;
2345 Elf_Internal_Rela *irelaend;
2347 Elf_Internal_Shdr *output_rel_hdr;
2348 asection *output_section;
2349 unsigned int *rel_countp = NULL;
2350 const struct elf_backend_data *bed;
2351 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2353 output_section = input_section->output_section;
2354 output_rel_hdr = NULL;
2356 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2357 == input_rel_hdr->sh_entsize)
2359 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2360 rel_countp = &elf_section_data (output_section)->rel_count;
2362 else if (elf_section_data (output_section)->rel_hdr2
2363 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2364 == input_rel_hdr->sh_entsize))
2366 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2367 rel_countp = &elf_section_data (output_section)->rel_count2;
2371 (*_bfd_error_handler)
2372 (_("%B: relocation size mismatch in %B section %A"),
2373 output_bfd, input_section->owner, input_section);
2374 bfd_set_error (bfd_error_wrong_format);
2378 bed = get_elf_backend_data (output_bfd);
2379 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2380 swap_out = bed->s->swap_reloc_out;
2381 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2382 swap_out = bed->s->swap_reloca_out;
2386 erel = output_rel_hdr->contents;
2387 erel += *rel_countp * input_rel_hdr->sh_entsize;
2388 irela = internal_relocs;
2389 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2390 * bed->s->int_rels_per_ext_rel);
2391 while (irela < irelaend)
2393 (*swap_out) (output_bfd, irela, erel);
2394 irela += bed->s->int_rels_per_ext_rel;
2395 erel += input_rel_hdr->sh_entsize;
2398 /* Bump the counter, so that we know where to add the next set of
2400 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2405 /* Make weak undefined symbols in PIE dynamic. */
2408 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2409 struct elf_link_hash_entry *h)
2413 && h->root.type == bfd_link_hash_undefweak)
2414 return bfd_elf_link_record_dynamic_symbol (info, h);
2419 /* Fix up the flags for a symbol. This handles various cases which
2420 can only be fixed after all the input files are seen. This is
2421 currently called by both adjust_dynamic_symbol and
2422 assign_sym_version, which is unnecessary but perhaps more robust in
2423 the face of future changes. */
2426 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2427 struct elf_info_failed *eif)
2429 const struct elf_backend_data *bed;
2431 /* If this symbol was mentioned in a non-ELF file, try to set
2432 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2433 permit a non-ELF file to correctly refer to a symbol defined in
2434 an ELF dynamic object. */
2437 while (h->root.type == bfd_link_hash_indirect)
2438 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2440 if (h->root.type != bfd_link_hash_defined
2441 && h->root.type != bfd_link_hash_defweak)
2444 h->ref_regular_nonweak = 1;
2448 if (h->root.u.def.section->owner != NULL
2449 && (bfd_get_flavour (h->root.u.def.section->owner)
2450 == bfd_target_elf_flavour))
2453 h->ref_regular_nonweak = 1;
2459 if (h->dynindx == -1
2463 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2472 /* Unfortunately, NON_ELF is only correct if the symbol
2473 was first seen in a non-ELF file. Fortunately, if the symbol
2474 was first seen in an ELF file, we're probably OK unless the
2475 symbol was defined in a non-ELF file. Catch that case here.
2476 FIXME: We're still in trouble if the symbol was first seen in
2477 a dynamic object, and then later in a non-ELF regular object. */
2478 if ((h->root.type == bfd_link_hash_defined
2479 || h->root.type == bfd_link_hash_defweak)
2481 && (h->root.u.def.section->owner != NULL
2482 ? (bfd_get_flavour (h->root.u.def.section->owner)
2483 != bfd_target_elf_flavour)
2484 : (bfd_is_abs_section (h->root.u.def.section)
2485 && !h->def_dynamic)))
2489 /* Backend specific symbol fixup. */
2490 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2491 if (bed->elf_backend_fixup_symbol
2492 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2495 /* If this is a final link, and the symbol was defined as a common
2496 symbol in a regular object file, and there was no definition in
2497 any dynamic object, then the linker will have allocated space for
2498 the symbol in a common section but the DEF_REGULAR
2499 flag will not have been set. */
2500 if (h->root.type == bfd_link_hash_defined
2504 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2507 /* If -Bsymbolic was used (which means to bind references to global
2508 symbols to the definition within the shared object), and this
2509 symbol was defined in a regular object, then it actually doesn't
2510 need a PLT entry. Likewise, if the symbol has non-default
2511 visibility. If the symbol has hidden or internal visibility, we
2512 will force it local. */
2514 && eif->info->shared
2515 && is_elf_hash_table (eif->info->hash)
2516 && (SYMBOLIC_BIND (eif->info, h)
2517 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2520 bfd_boolean force_local;
2522 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2523 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2524 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2527 /* If a weak undefined symbol has non-default visibility, we also
2528 hide it from the dynamic linker. */
2529 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2530 && h->root.type == bfd_link_hash_undefweak)
2531 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2533 /* If this is a weak defined symbol in a dynamic object, and we know
2534 the real definition in the dynamic object, copy interesting flags
2535 over to the real definition. */
2536 if (h->u.weakdef != NULL)
2538 struct elf_link_hash_entry *weakdef;
2540 weakdef = h->u.weakdef;
2541 if (h->root.type == bfd_link_hash_indirect)
2542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2544 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2545 || h->root.type == bfd_link_hash_defweak);
2546 BFD_ASSERT (weakdef->def_dynamic);
2548 /* If the real definition is defined by a regular object file,
2549 don't do anything special. See the longer description in
2550 _bfd_elf_adjust_dynamic_symbol, below. */
2551 if (weakdef->def_regular)
2552 h->u.weakdef = NULL;
2555 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2556 || weakdef->root.type == bfd_link_hash_defweak);
2557 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2564 /* Make the backend pick a good value for a dynamic symbol. This is
2565 called via elf_link_hash_traverse, and also calls itself
2569 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2571 struct elf_info_failed *eif = data;
2573 const struct elf_backend_data *bed;
2575 if (! is_elf_hash_table (eif->info->hash))
2578 if (h->root.type == bfd_link_hash_warning)
2580 h->got = elf_hash_table (eif->info)->init_got_offset;
2581 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2583 /* When warning symbols are created, they **replace** the "real"
2584 entry in the hash table, thus we never get to see the real
2585 symbol in a hash traversal. So look at it now. */
2586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2589 /* Ignore indirect symbols. These are added by the versioning code. */
2590 if (h->root.type == bfd_link_hash_indirect)
2593 /* Fix the symbol flags. */
2594 if (! _bfd_elf_fix_symbol_flags (h, eif))
2597 /* If this symbol does not require a PLT entry, and it is not
2598 defined by a dynamic object, or is not referenced by a regular
2599 object, ignore it. We do have to handle a weak defined symbol,
2600 even if no regular object refers to it, if we decided to add it
2601 to the dynamic symbol table. FIXME: Do we normally need to worry
2602 about symbols which are defined by one dynamic object and
2603 referenced by another one? */
2608 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2610 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2614 /* If we've already adjusted this symbol, don't do it again. This
2615 can happen via a recursive call. */
2616 if (h->dynamic_adjusted)
2619 /* Don't look at this symbol again. Note that we must set this
2620 after checking the above conditions, because we may look at a
2621 symbol once, decide not to do anything, and then get called
2622 recursively later after REF_REGULAR is set below. */
2623 h->dynamic_adjusted = 1;
2625 /* If this is a weak definition, and we know a real definition, and
2626 the real symbol is not itself defined by a regular object file,
2627 then get a good value for the real definition. We handle the
2628 real symbol first, for the convenience of the backend routine.
2630 Note that there is a confusing case here. If the real definition
2631 is defined by a regular object file, we don't get the real symbol
2632 from the dynamic object, but we do get the weak symbol. If the
2633 processor backend uses a COPY reloc, then if some routine in the
2634 dynamic object changes the real symbol, we will not see that
2635 change in the corresponding weak symbol. This is the way other
2636 ELF linkers work as well, and seems to be a result of the shared
2639 I will clarify this issue. Most SVR4 shared libraries define the
2640 variable _timezone and define timezone as a weak synonym. The
2641 tzset call changes _timezone. If you write
2642 extern int timezone;
2644 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2645 you might expect that, since timezone is a synonym for _timezone,
2646 the same number will print both times. However, if the processor
2647 backend uses a COPY reloc, then actually timezone will be copied
2648 into your process image, and, since you define _timezone
2649 yourself, _timezone will not. Thus timezone and _timezone will
2650 wind up at different memory locations. The tzset call will set
2651 _timezone, leaving timezone unchanged. */
2653 if (h->u.weakdef != NULL)
2655 /* If we get to this point, we know there is an implicit
2656 reference by a regular object file via the weak symbol H.
2657 FIXME: Is this really true? What if the traversal finds
2658 H->U.WEAKDEF before it finds H? */
2659 h->u.weakdef->ref_regular = 1;
2661 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2665 /* If a symbol has no type and no size and does not require a PLT
2666 entry, then we are probably about to do the wrong thing here: we
2667 are probably going to create a COPY reloc for an empty object.
2668 This case can arise when a shared object is built with assembly
2669 code, and the assembly code fails to set the symbol type. */
2671 && h->type == STT_NOTYPE
2673 (*_bfd_error_handler)
2674 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2675 h->root.root.string);
2677 dynobj = elf_hash_table (eif->info)->dynobj;
2678 bed = get_elf_backend_data (dynobj);
2680 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2689 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2693 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2696 unsigned int power_of_two;
2698 asection *sec = h->root.u.def.section;
2700 /* The section aligment of definition is the maximum alignment
2701 requirement of symbols defined in the section. Since we don't
2702 know the symbol alignment requirement, we start with the
2703 maximum alignment and check low bits of the symbol address
2704 for the minimum alignment. */
2705 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2706 mask = ((bfd_vma) 1 << power_of_two) - 1;
2707 while ((h->root.u.def.value & mask) != 0)
2713 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2716 /* Adjust the section alignment if needed. */
2717 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2722 /* We make sure that the symbol will be aligned properly. */
2723 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2725 /* Define the symbol as being at this point in DYNBSS. */
2726 h->root.u.def.section = dynbss;
2727 h->root.u.def.value = dynbss->size;
2729 /* Increment the size of DYNBSS to make room for the symbol. */
2730 dynbss->size += h->size;
2735 /* Adjust all external symbols pointing into SEC_MERGE sections
2736 to reflect the object merging within the sections. */
2739 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2743 if (h->root.type == bfd_link_hash_warning)
2744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2746 if ((h->root.type == bfd_link_hash_defined
2747 || h->root.type == bfd_link_hash_defweak)
2748 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2749 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2751 bfd *output_bfd = data;
2753 h->root.u.def.value =
2754 _bfd_merged_section_offset (output_bfd,
2755 &h->root.u.def.section,
2756 elf_section_data (sec)->sec_info,
2757 h->root.u.def.value);
2763 /* Returns false if the symbol referred to by H should be considered
2764 to resolve local to the current module, and true if it should be
2765 considered to bind dynamically. */
2768 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2769 struct bfd_link_info *info,
2770 bfd_boolean ignore_protected)
2772 bfd_boolean binding_stays_local_p;
2773 const struct elf_backend_data *bed;
2774 struct elf_link_hash_table *hash_table;
2779 while (h->root.type == bfd_link_hash_indirect
2780 || h->root.type == bfd_link_hash_warning)
2781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2783 /* If it was forced local, then clearly it's not dynamic. */
2784 if (h->dynindx == -1)
2786 if (h->forced_local)
2789 /* Identify the cases where name binding rules say that a
2790 visible symbol resolves locally. */
2791 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2793 switch (ELF_ST_VISIBILITY (h->other))
2800 hash_table = elf_hash_table (info);
2801 if (!is_elf_hash_table (hash_table))
2804 bed = get_elf_backend_data (hash_table->dynobj);
2806 /* Proper resolution for function pointer equality may require
2807 that these symbols perhaps be resolved dynamically, even though
2808 we should be resolving them to the current module. */
2809 if (!ignore_protected || !bed->is_function_type (h->type))
2810 binding_stays_local_p = TRUE;
2817 /* If it isn't defined locally, then clearly it's dynamic. */
2818 if (!h->def_regular)
2821 /* Otherwise, the symbol is dynamic if binding rules don't tell
2822 us that it remains local. */
2823 return !binding_stays_local_p;
2826 /* Return true if the symbol referred to by H should be considered
2827 to resolve local to the current module, and false otherwise. Differs
2828 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2829 undefined symbols and weak symbols. */
2832 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2833 struct bfd_link_info *info,
2834 bfd_boolean local_protected)
2836 const struct elf_backend_data *bed;
2837 struct elf_link_hash_table *hash_table;
2839 /* If it's a local sym, of course we resolve locally. */
2843 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2844 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2845 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2848 /* Common symbols that become definitions don't get the DEF_REGULAR
2849 flag set, so test it first, and don't bail out. */
2850 if (ELF_COMMON_DEF_P (h))
2852 /* If we don't have a definition in a regular file, then we can't
2853 resolve locally. The sym is either undefined or dynamic. */
2854 else if (!h->def_regular)
2857 /* Forced local symbols resolve locally. */
2858 if (h->forced_local)
2861 /* As do non-dynamic symbols. */
2862 if (h->dynindx == -1)
2865 /* At this point, we know the symbol is defined and dynamic. In an
2866 executable it must resolve locally, likewise when building symbolic
2867 shared libraries. */
2868 if (info->executable || SYMBOLIC_BIND (info, h))
2871 /* Now deal with defined dynamic symbols in shared libraries. Ones
2872 with default visibility might not resolve locally. */
2873 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2876 hash_table = elf_hash_table (info);
2877 if (!is_elf_hash_table (hash_table))
2880 bed = get_elf_backend_data (hash_table->dynobj);
2882 /* STV_PROTECTED non-function symbols are local. */
2883 if (!bed->is_function_type (h->type))
2886 /* Function pointer equality tests may require that STV_PROTECTED
2887 symbols be treated as dynamic symbols, even when we know that the
2888 dynamic linker will resolve them locally. */
2889 return local_protected;
2892 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2893 aligned. Returns the first TLS output section. */
2895 struct bfd_section *
2896 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2898 struct bfd_section *sec, *tls;
2899 unsigned int align = 0;
2901 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2902 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2906 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2907 if (sec->alignment_power > align)
2908 align = sec->alignment_power;
2910 elf_hash_table (info)->tls_sec = tls;
2912 /* Ensure the alignment of the first section is the largest alignment,
2913 so that the tls segment starts aligned. */
2915 tls->alignment_power = align;
2920 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2922 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2923 Elf_Internal_Sym *sym)
2925 const struct elf_backend_data *bed;
2927 /* Local symbols do not count, but target specific ones might. */
2928 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2929 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2932 bed = get_elf_backend_data (abfd);
2933 /* Function symbols do not count. */
2934 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2937 /* If the section is undefined, then so is the symbol. */
2938 if (sym->st_shndx == SHN_UNDEF)
2941 /* If the symbol is defined in the common section, then
2942 it is a common definition and so does not count. */
2943 if (bed->common_definition (sym))
2946 /* If the symbol is in a target specific section then we
2947 must rely upon the backend to tell us what it is. */
2948 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2949 /* FIXME - this function is not coded yet:
2951 return _bfd_is_global_symbol_definition (abfd, sym);
2953 Instead for now assume that the definition is not global,
2954 Even if this is wrong, at least the linker will behave
2955 in the same way that it used to do. */
2961 /* Search the symbol table of the archive element of the archive ABFD
2962 whose archive map contains a mention of SYMDEF, and determine if
2963 the symbol is defined in this element. */
2965 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2967 Elf_Internal_Shdr * hdr;
2968 bfd_size_type symcount;
2969 bfd_size_type extsymcount;
2970 bfd_size_type extsymoff;
2971 Elf_Internal_Sym *isymbuf;
2972 Elf_Internal_Sym *isym;
2973 Elf_Internal_Sym *isymend;
2976 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2980 if (! bfd_check_format (abfd, bfd_object))
2983 /* If we have already included the element containing this symbol in the
2984 link then we do not need to include it again. Just claim that any symbol
2985 it contains is not a definition, so that our caller will not decide to
2986 (re)include this element. */
2987 if (abfd->archive_pass)
2990 /* Select the appropriate symbol table. */
2991 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2992 hdr = &elf_tdata (abfd)->symtab_hdr;
2994 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2996 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2998 /* The sh_info field of the symtab header tells us where the
2999 external symbols start. We don't care about the local symbols. */
3000 if (elf_bad_symtab (abfd))
3002 extsymcount = symcount;
3007 extsymcount = symcount - hdr->sh_info;
3008 extsymoff = hdr->sh_info;
3011 if (extsymcount == 0)
3014 /* Read in the symbol table. */
3015 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3017 if (isymbuf == NULL)
3020 /* Scan the symbol table looking for SYMDEF. */
3022 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3026 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3031 if (strcmp (name, symdef->name) == 0)
3033 result = is_global_data_symbol_definition (abfd, isym);
3043 /* Add an entry to the .dynamic table. */
3046 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3050 struct elf_link_hash_table *hash_table;
3051 const struct elf_backend_data *bed;
3053 bfd_size_type newsize;
3054 bfd_byte *newcontents;
3055 Elf_Internal_Dyn dyn;
3057 hash_table = elf_hash_table (info);
3058 if (! is_elf_hash_table (hash_table))
3061 bed = get_elf_backend_data (hash_table->dynobj);
3062 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3063 BFD_ASSERT (s != NULL);
3065 newsize = s->size + bed->s->sizeof_dyn;
3066 newcontents = bfd_realloc (s->contents, newsize);
3067 if (newcontents == NULL)
3071 dyn.d_un.d_val = val;
3072 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3075 s->contents = newcontents;
3080 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3081 otherwise just check whether one already exists. Returns -1 on error,
3082 1 if a DT_NEEDED tag already exists, and 0 on success. */
3085 elf_add_dt_needed_tag (bfd *abfd,
3086 struct bfd_link_info *info,
3090 struct elf_link_hash_table *hash_table;
3091 bfd_size_type oldsize;
3092 bfd_size_type strindex;
3094 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3097 hash_table = elf_hash_table (info);
3098 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3099 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3100 if (strindex == (bfd_size_type) -1)
3103 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3106 const struct elf_backend_data *bed;
3109 bed = get_elf_backend_data (hash_table->dynobj);
3110 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3112 for (extdyn = sdyn->contents;
3113 extdyn < sdyn->contents + sdyn->size;
3114 extdyn += bed->s->sizeof_dyn)
3116 Elf_Internal_Dyn dyn;
3118 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3119 if (dyn.d_tag == DT_NEEDED
3120 && dyn.d_un.d_val == strindex)
3122 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3130 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3133 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3137 /* We were just checking for existence of the tag. */
3138 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3144 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3146 for (; needed != NULL; needed = needed->next)
3147 if (strcmp (soname, needed->name) == 0)
3153 /* Sort symbol by value and section. */
3155 elf_sort_symbol (const void *arg1, const void *arg2)
3157 const struct elf_link_hash_entry *h1;
3158 const struct elf_link_hash_entry *h2;
3159 bfd_signed_vma vdiff;
3161 h1 = *(const struct elf_link_hash_entry **) arg1;
3162 h2 = *(const struct elf_link_hash_entry **) arg2;
3163 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3165 return vdiff > 0 ? 1 : -1;
3168 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3170 return sdiff > 0 ? 1 : -1;
3175 /* This function is used to adjust offsets into .dynstr for
3176 dynamic symbols. This is called via elf_link_hash_traverse. */
3179 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3181 struct elf_strtab_hash *dynstr = data;
3183 if (h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3186 if (h->dynindx != -1)
3187 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3191 /* Assign string offsets in .dynstr, update all structures referencing
3195 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3197 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3198 struct elf_link_local_dynamic_entry *entry;
3199 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3200 bfd *dynobj = hash_table->dynobj;
3203 const struct elf_backend_data *bed;
3206 _bfd_elf_strtab_finalize (dynstr);
3207 size = _bfd_elf_strtab_size (dynstr);
3209 bed = get_elf_backend_data (dynobj);
3210 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3211 BFD_ASSERT (sdyn != NULL);
3213 /* Update all .dynamic entries referencing .dynstr strings. */
3214 for (extdyn = sdyn->contents;
3215 extdyn < sdyn->contents + sdyn->size;
3216 extdyn += bed->s->sizeof_dyn)
3218 Elf_Internal_Dyn dyn;
3220 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3224 dyn.d_un.d_val = size;
3232 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3237 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3240 /* Now update local dynamic symbols. */
3241 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3242 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3243 entry->isym.st_name);
3245 /* And the rest of dynamic symbols. */
3246 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3248 /* Adjust version definitions. */
3249 if (elf_tdata (output_bfd)->cverdefs)
3254 Elf_Internal_Verdef def;
3255 Elf_Internal_Verdaux defaux;
3257 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3261 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3263 p += sizeof (Elf_External_Verdef);
3264 if (def.vd_aux != sizeof (Elf_External_Verdef))
3266 for (i = 0; i < def.vd_cnt; ++i)
3268 _bfd_elf_swap_verdaux_in (output_bfd,
3269 (Elf_External_Verdaux *) p, &defaux);
3270 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3272 _bfd_elf_swap_verdaux_out (output_bfd,
3273 &defaux, (Elf_External_Verdaux *) p);
3274 p += sizeof (Elf_External_Verdaux);
3277 while (def.vd_next);
3280 /* Adjust version references. */
3281 if (elf_tdata (output_bfd)->verref)
3286 Elf_Internal_Verneed need;
3287 Elf_Internal_Vernaux needaux;
3289 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3293 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3295 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3296 _bfd_elf_swap_verneed_out (output_bfd, &need,
3297 (Elf_External_Verneed *) p);
3298 p += sizeof (Elf_External_Verneed);
3299 for (i = 0; i < need.vn_cnt; ++i)
3301 _bfd_elf_swap_vernaux_in (output_bfd,
3302 (Elf_External_Vernaux *) p, &needaux);
3303 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3305 _bfd_elf_swap_vernaux_out (output_bfd,
3307 (Elf_External_Vernaux *) p);
3308 p += sizeof (Elf_External_Vernaux);
3311 while (need.vn_next);
3317 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3318 The default is to only match when the INPUT and OUTPUT are exactly
3322 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3323 const bfd_target *output)
3325 return input == output;
3328 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3329 This version is used when different targets for the same architecture
3330 are virtually identical. */
3333 _bfd_elf_relocs_compatible (const bfd_target *input,
3334 const bfd_target *output)
3336 const struct elf_backend_data *obed, *ibed;
3338 if (input == output)
3341 ibed = xvec_get_elf_backend_data (input);
3342 obed = xvec_get_elf_backend_data (output);
3344 if (ibed->arch != obed->arch)
3347 /* If both backends are using this function, deem them compatible. */
3348 return ibed->relocs_compatible == obed->relocs_compatible;
3351 /* Add symbols from an ELF object file to the linker hash table. */
3354 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3356 Elf_Internal_Ehdr *ehdr;
3357 Elf_Internal_Shdr *hdr;
3358 bfd_size_type symcount;
3359 bfd_size_type extsymcount;
3360 bfd_size_type extsymoff;
3361 struct elf_link_hash_entry **sym_hash;
3362 bfd_boolean dynamic;
3363 Elf_External_Versym *extversym = NULL;
3364 Elf_External_Versym *ever;
3365 struct elf_link_hash_entry *weaks;
3366 struct elf_link_hash_entry **nondeflt_vers = NULL;
3367 bfd_size_type nondeflt_vers_cnt = 0;
3368 Elf_Internal_Sym *isymbuf = NULL;
3369 Elf_Internal_Sym *isym;
3370 Elf_Internal_Sym *isymend;
3371 const struct elf_backend_data *bed;
3372 bfd_boolean add_needed;
3373 struct elf_link_hash_table *htab;
3375 void *alloc_mark = NULL;
3376 struct bfd_hash_entry **old_table = NULL;
3377 unsigned int old_size = 0;
3378 unsigned int old_count = 0;
3379 void *old_tab = NULL;
3382 struct bfd_link_hash_entry *old_undefs = NULL;
3383 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3384 long old_dynsymcount = 0;
3386 size_t hashsize = 0;
3388 htab = elf_hash_table (info);
3389 bed = get_elf_backend_data (abfd);
3391 if ((abfd->flags & DYNAMIC) == 0)
3397 /* You can't use -r against a dynamic object. Also, there's no
3398 hope of using a dynamic object which does not exactly match
3399 the format of the output file. */
3400 if (info->relocatable
3401 || !is_elf_hash_table (htab)
3402 || info->output_bfd->xvec != abfd->xvec)
3404 if (info->relocatable)
3405 bfd_set_error (bfd_error_invalid_operation);
3407 bfd_set_error (bfd_error_wrong_format);
3412 ehdr = elf_elfheader (abfd);
3413 if (info->warn_alternate_em
3414 && bed->elf_machine_code != ehdr->e_machine
3415 && ((bed->elf_machine_alt1 != 0
3416 && ehdr->e_machine == bed->elf_machine_alt1)
3417 || (bed->elf_machine_alt2 != 0
3418 && ehdr->e_machine == bed->elf_machine_alt2)))
3419 info->callbacks->einfo
3420 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3421 ehdr->e_machine, abfd, bed->elf_machine_code);
3423 /* As a GNU extension, any input sections which are named
3424 .gnu.warning.SYMBOL are treated as warning symbols for the given
3425 symbol. This differs from .gnu.warning sections, which generate
3426 warnings when they are included in an output file. */
3427 if (info->executable)
3431 for (s = abfd->sections; s != NULL; s = s->next)
3435 name = bfd_get_section_name (abfd, s);
3436 if (CONST_STRNEQ (name, ".gnu.warning."))
3441 name += sizeof ".gnu.warning." - 1;
3443 /* If this is a shared object, then look up the symbol
3444 in the hash table. If it is there, and it is already
3445 been defined, then we will not be using the entry
3446 from this shared object, so we don't need to warn.
3447 FIXME: If we see the definition in a regular object
3448 later on, we will warn, but we shouldn't. The only
3449 fix is to keep track of what warnings we are supposed
3450 to emit, and then handle them all at the end of the
3454 struct elf_link_hash_entry *h;
3456 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3458 /* FIXME: What about bfd_link_hash_common? */
3460 && (h->root.type == bfd_link_hash_defined
3461 || h->root.type == bfd_link_hash_defweak))
3463 /* We don't want to issue this warning. Clobber
3464 the section size so that the warning does not
3465 get copied into the output file. */
3472 msg = bfd_alloc (abfd, sz + 1);
3476 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3481 if (! (_bfd_generic_link_add_one_symbol
3482 (info, abfd, name, BSF_WARNING, s, 0, msg,
3483 FALSE, bed->collect, NULL)))
3486 if (! info->relocatable)
3488 /* Clobber the section size so that the warning does
3489 not get copied into the output file. */
3492 /* Also set SEC_EXCLUDE, so that symbols defined in
3493 the warning section don't get copied to the output. */
3494 s->flags |= SEC_EXCLUDE;
3503 /* If we are creating a shared library, create all the dynamic
3504 sections immediately. We need to attach them to something,
3505 so we attach them to this BFD, provided it is the right
3506 format. FIXME: If there are no input BFD's of the same
3507 format as the output, we can't make a shared library. */
3509 && is_elf_hash_table (htab)
3510 && info->output_bfd->xvec == abfd->xvec
3511 && !htab->dynamic_sections_created)
3513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3517 else if (!is_elf_hash_table (htab))
3522 const char *soname = NULL;
3523 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3526 /* ld --just-symbols and dynamic objects don't mix very well.
3527 ld shouldn't allow it. */
3528 if ((s = abfd->sections) != NULL
3529 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3532 /* If this dynamic lib was specified on the command line with
3533 --as-needed in effect, then we don't want to add a DT_NEEDED
3534 tag unless the lib is actually used. Similary for libs brought
3535 in by another lib's DT_NEEDED. When --no-add-needed is used
3536 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3537 any dynamic library in DT_NEEDED tags in the dynamic lib at
3539 add_needed = (elf_dyn_lib_class (abfd)
3540 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3541 | DYN_NO_NEEDED)) == 0;
3543 s = bfd_get_section_by_name (abfd, ".dynamic");
3548 unsigned int elfsec;
3549 unsigned long shlink;
3551 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3558 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3559 if (elfsec == SHN_BAD)
3560 goto error_free_dyn;
3561 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3563 for (extdyn = dynbuf;
3564 extdyn < dynbuf + s->size;
3565 extdyn += bed->s->sizeof_dyn)
3567 Elf_Internal_Dyn dyn;
3569 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3570 if (dyn.d_tag == DT_SONAME)
3572 unsigned int tagv = dyn.d_un.d_val;
3573 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3575 goto error_free_dyn;
3577 if (dyn.d_tag == DT_NEEDED)
3579 struct bfd_link_needed_list *n, **pn;
3581 unsigned int tagv = dyn.d_un.d_val;
3583 amt = sizeof (struct bfd_link_needed_list);
3584 n = bfd_alloc (abfd, amt);
3585 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3586 if (n == NULL || fnm == NULL)
3587 goto error_free_dyn;
3588 amt = strlen (fnm) + 1;
3589 anm = bfd_alloc (abfd, amt);
3591 goto error_free_dyn;
3592 memcpy (anm, fnm, amt);
3596 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3600 if (dyn.d_tag == DT_RUNPATH)
3602 struct bfd_link_needed_list *n, **pn;
3604 unsigned int tagv = dyn.d_un.d_val;
3606 amt = sizeof (struct bfd_link_needed_list);
3607 n = bfd_alloc (abfd, amt);
3608 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 if (n == NULL || fnm == NULL)
3610 goto error_free_dyn;
3611 amt = strlen (fnm) + 1;
3612 anm = bfd_alloc (abfd, amt);
3614 goto error_free_dyn;
3615 memcpy (anm, fnm, amt);
3619 for (pn = & runpath;
3625 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3626 if (!runpath && dyn.d_tag == DT_RPATH)
3628 struct bfd_link_needed_list *n, **pn;
3630 unsigned int tagv = dyn.d_un.d_val;
3632 amt = sizeof (struct bfd_link_needed_list);
3633 n = bfd_alloc (abfd, amt);
3634 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3635 if (n == NULL || fnm == NULL)
3636 goto error_free_dyn;
3637 amt = strlen (fnm) + 1;
3638 anm = bfd_alloc (abfd, amt);
3640 goto error_free_dyn;
3641 memcpy (anm, fnm, amt);
3656 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3657 frees all more recently bfd_alloc'd blocks as well. */
3663 struct bfd_link_needed_list **pn;
3664 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3669 /* We do not want to include any of the sections in a dynamic
3670 object in the output file. We hack by simply clobbering the
3671 list of sections in the BFD. This could be handled more
3672 cleanly by, say, a new section flag; the existing
3673 SEC_NEVER_LOAD flag is not the one we want, because that one
3674 still implies that the section takes up space in the output
3676 bfd_section_list_clear (abfd);
3678 /* Find the name to use in a DT_NEEDED entry that refers to this
3679 object. If the object has a DT_SONAME entry, we use it.
3680 Otherwise, if the generic linker stuck something in
3681 elf_dt_name, we use that. Otherwise, we just use the file
3683 if (soname == NULL || *soname == '\0')
3685 soname = elf_dt_name (abfd);
3686 if (soname == NULL || *soname == '\0')
3687 soname = bfd_get_filename (abfd);
3690 /* Save the SONAME because sometimes the linker emulation code
3691 will need to know it. */
3692 elf_dt_name (abfd) = soname;
3694 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3698 /* If we have already included this dynamic object in the
3699 link, just ignore it. There is no reason to include a
3700 particular dynamic object more than once. */
3705 /* If this is a dynamic object, we always link against the .dynsym
3706 symbol table, not the .symtab symbol table. The dynamic linker
3707 will only see the .dynsym symbol table, so there is no reason to
3708 look at .symtab for a dynamic object. */
3710 if (! dynamic || elf_dynsymtab (abfd) == 0)
3711 hdr = &elf_tdata (abfd)->symtab_hdr;
3713 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3715 symcount = hdr->sh_size / bed->s->sizeof_sym;
3717 /* The sh_info field of the symtab header tells us where the
3718 external symbols start. We don't care about the local symbols at
3720 if (elf_bad_symtab (abfd))
3722 extsymcount = symcount;
3727 extsymcount = symcount - hdr->sh_info;
3728 extsymoff = hdr->sh_info;
3732 if (extsymcount != 0)
3734 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3736 if (isymbuf == NULL)
3739 /* We store a pointer to the hash table entry for each external
3741 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3742 sym_hash = bfd_alloc (abfd, amt);
3743 if (sym_hash == NULL)
3744 goto error_free_sym;
3745 elf_sym_hashes (abfd) = sym_hash;
3750 /* Read in any version definitions. */
3751 if (!_bfd_elf_slurp_version_tables (abfd,
3752 info->default_imported_symver))
3753 goto error_free_sym;
3755 /* Read in the symbol versions, but don't bother to convert them
3756 to internal format. */
3757 if (elf_dynversym (abfd) != 0)
3759 Elf_Internal_Shdr *versymhdr;
3761 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3762 extversym = bfd_malloc (versymhdr->sh_size);
3763 if (extversym == NULL)
3764 goto error_free_sym;
3765 amt = versymhdr->sh_size;
3766 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3767 || bfd_bread (extversym, amt, abfd) != amt)
3768 goto error_free_vers;
3772 /* If we are loading an as-needed shared lib, save the symbol table
3773 state before we start adding symbols. If the lib turns out
3774 to be unneeded, restore the state. */
3775 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3780 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3782 struct bfd_hash_entry *p;
3783 struct elf_link_hash_entry *h;
3785 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3787 h = (struct elf_link_hash_entry *) p;
3788 entsize += htab->root.table.entsize;
3789 if (h->root.type == bfd_link_hash_warning)
3790 entsize += htab->root.table.entsize;
3794 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3795 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3796 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3797 if (old_tab == NULL)
3798 goto error_free_vers;
3800 /* Remember the current objalloc pointer, so that all mem for
3801 symbols added can later be reclaimed. */
3802 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3803 if (alloc_mark == NULL)
3804 goto error_free_vers;
3806 /* Make a special call to the linker "notice" function to
3807 tell it that we are about to handle an as-needed lib. */
3808 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3810 goto error_free_vers;
3812 /* Clone the symbol table and sym hashes. Remember some
3813 pointers into the symbol table, and dynamic symbol count. */
3814 old_hash = (char *) old_tab + tabsize;
3815 old_ent = (char *) old_hash + hashsize;
3816 memcpy (old_tab, htab->root.table.table, tabsize);
3817 memcpy (old_hash, sym_hash, hashsize);
3818 old_undefs = htab->root.undefs;
3819 old_undefs_tail = htab->root.undefs_tail;
3820 old_table = htab->root.table.table;
3821 old_size = htab->root.table.size;
3822 old_count = htab->root.table.count;
3823 old_dynsymcount = htab->dynsymcount;
3825 for (i = 0; i < htab->root.table.size; i++)
3827 struct bfd_hash_entry *p;
3828 struct elf_link_hash_entry *h;
3830 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3832 memcpy (old_ent, p, htab->root.table.entsize);
3833 old_ent = (char *) old_ent + htab->root.table.entsize;
3834 h = (struct elf_link_hash_entry *) p;
3835 if (h->root.type == bfd_link_hash_warning)
3837 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3838 old_ent = (char *) old_ent + htab->root.table.entsize;
3845 ever = extversym != NULL ? extversym + extsymoff : NULL;
3846 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3848 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3852 asection *sec, *new_sec;
3855 struct elf_link_hash_entry *h;
3856 bfd_boolean definition;
3857 bfd_boolean size_change_ok;
3858 bfd_boolean type_change_ok;
3859 bfd_boolean new_weakdef;
3860 bfd_boolean override;
3862 unsigned int old_alignment;
3867 flags = BSF_NO_FLAGS;
3869 value = isym->st_value;
3871 common = bed->common_definition (isym);
3873 bind = ELF_ST_BIND (isym->st_info);
3874 if (bind == STB_LOCAL)
3876 /* This should be impossible, since ELF requires that all
3877 global symbols follow all local symbols, and that sh_info
3878 point to the first global symbol. Unfortunately, Irix 5
3882 else if (bind == STB_GLOBAL)
3884 if (isym->st_shndx != SHN_UNDEF && !common)
3887 else if (bind == STB_WEAK)
3891 /* Leave it up to the processor backend. */
3894 if (isym->st_shndx == SHN_UNDEF)
3895 sec = bfd_und_section_ptr;
3896 else if (isym->st_shndx == SHN_ABS)
3897 sec = bfd_abs_section_ptr;
3898 else if (isym->st_shndx == SHN_COMMON)
3900 sec = bfd_com_section_ptr;
3901 /* What ELF calls the size we call the value. What ELF
3902 calls the value we call the alignment. */
3903 value = isym->st_size;
3907 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3909 sec = bfd_abs_section_ptr;
3910 else if (sec->kept_section)
3912 /* Symbols from discarded section are undefined. We keep
3914 sec = bfd_und_section_ptr;
3915 isym->st_shndx = SHN_UNDEF;
3917 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3921 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3924 goto error_free_vers;
3926 if (isym->st_shndx == SHN_COMMON
3927 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3928 && !info->relocatable)
3930 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3934 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3937 | SEC_LINKER_CREATED
3938 | SEC_THREAD_LOCAL));
3940 goto error_free_vers;
3944 else if (bed->elf_add_symbol_hook)
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3948 goto error_free_vers;
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3956 /* Sanity check that all possibilities were handled. */
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3975 if (is_elf_hash_table (htab))
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3983 if (info->default_imported_symver)
3984 /* Use the default symbol version created earlier. */
3985 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3990 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3992 vernum = iver.vs_vers & VERSYM_VERSION;
3994 /* If this is a hidden symbol, or if it is not version
3995 1, we append the version name to the symbol name.
3996 However, we do not modify a non-hidden absolute symbol
3997 if it is not a function, because it might be the version
3998 symbol itself. FIXME: What if it isn't? */
3999 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4001 && (!bfd_is_abs_section (sec)
4002 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4005 size_t namelen, verlen, newlen;
4008 if (isym->st_shndx != SHN_UNDEF)
4010 if (vernum > elf_tdata (abfd)->cverdefs)
4012 else if (vernum > 1)
4014 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4020 (*_bfd_error_handler)
4021 (_("%B: %s: invalid version %u (max %d)"),
4023 elf_tdata (abfd)->cverdefs);
4024 bfd_set_error (bfd_error_bad_value);
4025 goto error_free_vers;
4030 /* We cannot simply test for the number of
4031 entries in the VERNEED section since the
4032 numbers for the needed versions do not start
4034 Elf_Internal_Verneed *t;
4037 for (t = elf_tdata (abfd)->verref;
4041 Elf_Internal_Vernaux *a;
4043 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4045 if (a->vna_other == vernum)
4047 verstr = a->vna_nodename;
4056 (*_bfd_error_handler)
4057 (_("%B: %s: invalid needed version %d"),
4058 abfd, name, vernum);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4064 namelen = strlen (name);
4065 verlen = strlen (verstr);
4066 newlen = namelen + verlen + 2;
4067 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4068 && isym->st_shndx != SHN_UNDEF)
4071 newname = bfd_hash_allocate (&htab->root.table, newlen);
4072 if (newname == NULL)
4073 goto error_free_vers;
4074 memcpy (newname, name, namelen);
4075 p = newname + namelen;
4077 /* If this is a defined non-hidden version symbol,
4078 we add another @ to the name. This indicates the
4079 default version of the symbol. */
4080 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4081 && isym->st_shndx != SHN_UNDEF)
4083 memcpy (p, verstr, verlen + 1);
4088 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4089 &value, &old_alignment,
4090 sym_hash, &skip, &override,
4091 &type_change_ok, &size_change_ok))
4092 goto error_free_vers;
4101 while (h->root.type == bfd_link_hash_indirect
4102 || h->root.type == bfd_link_hash_warning)
4103 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4105 /* Remember the old alignment if this is a common symbol, so
4106 that we don't reduce the alignment later on. We can't
4107 check later, because _bfd_generic_link_add_one_symbol
4108 will set a default for the alignment which we want to
4109 override. We also remember the old bfd where the existing
4110 definition comes from. */
4111 switch (h->root.type)
4116 case bfd_link_hash_defined:
4117 case bfd_link_hash_defweak:
4118 old_bfd = h->root.u.def.section->owner;
4121 case bfd_link_hash_common:
4122 old_bfd = h->root.u.c.p->section->owner;
4123 old_alignment = h->root.u.c.p->alignment_power;
4127 if (elf_tdata (abfd)->verdef != NULL
4131 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4134 if (! (_bfd_generic_link_add_one_symbol
4135 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4136 (struct bfd_link_hash_entry **) sym_hash)))
4137 goto error_free_vers;
4140 while (h->root.type == bfd_link_hash_indirect
4141 || h->root.type == bfd_link_hash_warning)
4142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4145 new_weakdef = FALSE;
4148 && (flags & BSF_WEAK) != 0
4149 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4150 && is_elf_hash_table (htab)
4151 && h->u.weakdef == NULL)
4153 /* Keep a list of all weak defined non function symbols from
4154 a dynamic object, using the weakdef field. Later in this
4155 function we will set the weakdef field to the correct
4156 value. We only put non-function symbols from dynamic
4157 objects on this list, because that happens to be the only
4158 time we need to know the normal symbol corresponding to a
4159 weak symbol, and the information is time consuming to
4160 figure out. If the weakdef field is not already NULL,
4161 then this symbol was already defined by some previous
4162 dynamic object, and we will be using that previous
4163 definition anyhow. */
4165 h->u.weakdef = weaks;
4170 /* Set the alignment of a common symbol. */
4171 if ((common || bfd_is_com_section (sec))
4172 && h->root.type == bfd_link_hash_common)
4177 align = bfd_log2 (isym->st_value);
4180 /* The new symbol is a common symbol in a shared object.
4181 We need to get the alignment from the section. */
4182 align = new_sec->alignment_power;
4184 if (align > old_alignment
4185 /* Permit an alignment power of zero if an alignment of one
4186 is specified and no other alignments have been specified. */
4187 || (isym->st_value == 1 && old_alignment == 0))
4188 h->root.u.c.p->alignment_power = align;
4190 h->root.u.c.p->alignment_power = old_alignment;
4193 if (is_elf_hash_table (htab))
4197 /* Check the alignment when a common symbol is involved. This
4198 can change when a common symbol is overridden by a normal
4199 definition or a common symbol is ignored due to the old
4200 normal definition. We need to make sure the maximum
4201 alignment is maintained. */
4202 if ((old_alignment || common)
4203 && h->root.type != bfd_link_hash_common)
4205 unsigned int common_align;
4206 unsigned int normal_align;
4207 unsigned int symbol_align;
4211 symbol_align = ffs (h->root.u.def.value) - 1;
4212 if (h->root.u.def.section->owner != NULL
4213 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4215 normal_align = h->root.u.def.section->alignment_power;
4216 if (normal_align > symbol_align)
4217 normal_align = symbol_align;
4220 normal_align = symbol_align;
4224 common_align = old_alignment;
4225 common_bfd = old_bfd;
4230 common_align = bfd_log2 (isym->st_value);
4232 normal_bfd = old_bfd;
4235 if (normal_align < common_align)
4237 /* PR binutils/2735 */
4238 if (normal_bfd == NULL)
4239 (*_bfd_error_handler)
4240 (_("Warning: alignment %u of common symbol `%s' in %B"
4241 " is greater than the alignment (%u) of its section %A"),
4242 common_bfd, h->root.u.def.section,
4243 1 << common_align, name, 1 << normal_align);
4245 (*_bfd_error_handler)
4246 (_("Warning: alignment %u of symbol `%s' in %B"
4247 " is smaller than %u in %B"),
4248 normal_bfd, common_bfd,
4249 1 << normal_align, name, 1 << common_align);
4253 /* Remember the symbol size if it isn't undefined. */
4254 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4255 && (definition || h->size == 0))
4258 && h->size != isym->st_size
4259 && ! size_change_ok)
4260 (*_bfd_error_handler)
4261 (_("Warning: size of symbol `%s' changed"
4262 " from %lu in %B to %lu in %B"),
4264 name, (unsigned long) h->size,
4265 (unsigned long) isym->st_size);
4267 h->size = isym->st_size;
4270 /* If this is a common symbol, then we always want H->SIZE
4271 to be the size of the common symbol. The code just above
4272 won't fix the size if a common symbol becomes larger. We
4273 don't warn about a size change here, because that is
4274 covered by --warn-common. Allow changed between different
4276 if (h->root.type == bfd_link_hash_common)
4277 h->size = h->root.u.c.size;
4279 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4280 && (definition || h->type == STT_NOTYPE))
4282 unsigned int type = ELF_ST_TYPE (isym->st_info);
4284 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4286 if (type == STT_GNU_IFUNC
4287 && (abfd->flags & DYNAMIC) != 0)
4290 if (h->type != type)
4292 if (h->type != STT_NOTYPE && ! type_change_ok)
4293 (*_bfd_error_handler)
4294 (_("Warning: type of symbol `%s' changed"
4295 " from %d to %d in %B"),
4296 abfd, name, h->type, type);
4302 /* Merge st_other field. */
4303 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4305 /* Set a flag in the hash table entry indicating the type of
4306 reference or definition we just found. Keep a count of
4307 the number of dynamic symbols we find. A dynamic symbol
4308 is one which is referenced or defined by both a regular
4309 object and a shared object. */
4316 if (bind != STB_WEAK)
4317 h->ref_regular_nonweak = 1;
4329 if (! info->executable
4342 || (h->u.weakdef != NULL
4344 && h->u.weakdef->dynindx != -1))
4348 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4350 /* We don't want to make debug symbol dynamic. */
4351 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4355 /* Check to see if we need to add an indirect symbol for
4356 the default name. */
4357 if (definition || h->root.type == bfd_link_hash_common)
4358 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4359 &sec, &value, &dynsym,
4361 goto error_free_vers;
4363 if (definition && !dynamic)
4365 char *p = strchr (name, ELF_VER_CHR);
4366 if (p != NULL && p[1] != ELF_VER_CHR)
4368 /* Queue non-default versions so that .symver x, x@FOO
4369 aliases can be checked. */
4372 amt = ((isymend - isym + 1)
4373 * sizeof (struct elf_link_hash_entry *));
4374 nondeflt_vers = bfd_malloc (amt);
4376 goto error_free_vers;
4378 nondeflt_vers[nondeflt_vers_cnt++] = h;
4382 if (dynsym && h->dynindx == -1)
4384 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4385 goto error_free_vers;
4386 if (h->u.weakdef != NULL
4388 && h->u.weakdef->dynindx == -1)
4390 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4391 goto error_free_vers;
4394 else if (dynsym && h->dynindx != -1)
4395 /* If the symbol already has a dynamic index, but
4396 visibility says it should not be visible, turn it into
4398 switch (ELF_ST_VISIBILITY (h->other))
4402 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4412 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4413 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4416 const char *soname = elf_dt_name (abfd);
4418 /* A symbol from a library loaded via DT_NEEDED of some
4419 other library is referenced by a regular object.
4420 Add a DT_NEEDED entry for it. Issue an error if
4421 --no-add-needed is used. */
4422 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4424 (*_bfd_error_handler)
4425 (_("%s: invalid DSO for symbol `%s' definition"),
4427 bfd_set_error (bfd_error_bad_value);
4428 goto error_free_vers;
4431 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4434 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4436 goto error_free_vers;
4438 BFD_ASSERT (ret == 0);
4443 if (extversym != NULL)
4449 if (isymbuf != NULL)
4455 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4459 /* Restore the symbol table. */
4460 if (bed->as_needed_cleanup)
4461 (*bed->as_needed_cleanup) (abfd, info);
4462 old_hash = (char *) old_tab + tabsize;
4463 old_ent = (char *) old_hash + hashsize;
4464 sym_hash = elf_sym_hashes (abfd);
4465 htab->root.table.table = old_table;
4466 htab->root.table.size = old_size;
4467 htab->root.table.count = old_count;
4468 memcpy (htab->root.table.table, old_tab, tabsize);
4469 memcpy (sym_hash, old_hash, hashsize);
4470 htab->root.undefs = old_undefs;
4471 htab->root.undefs_tail = old_undefs_tail;
4472 for (i = 0; i < htab->root.table.size; i++)
4474 struct bfd_hash_entry *p;
4475 struct elf_link_hash_entry *h;
4477 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4479 h = (struct elf_link_hash_entry *) p;
4480 if (h->root.type == bfd_link_hash_warning)
4481 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4482 if (h->dynindx >= old_dynsymcount)
4483 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4485 memcpy (p, old_ent, htab->root.table.entsize);
4486 old_ent = (char *) old_ent + htab->root.table.entsize;
4487 h = (struct elf_link_hash_entry *) p;
4488 if (h->root.type == bfd_link_hash_warning)
4490 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4491 old_ent = (char *) old_ent + htab->root.table.entsize;
4496 /* Make a special call to the linker "notice" function to
4497 tell it that symbols added for crefs may need to be removed. */
4498 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4500 goto error_free_vers;
4503 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4505 if (nondeflt_vers != NULL)
4506 free (nondeflt_vers);
4510 if (old_tab != NULL)
4512 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4514 goto error_free_vers;
4519 /* Now that all the symbols from this input file are created, handle
4520 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4521 if (nondeflt_vers != NULL)
4523 bfd_size_type cnt, symidx;
4525 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4527 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4528 char *shortname, *p;
4530 p = strchr (h->root.root.string, ELF_VER_CHR);
4532 || (h->root.type != bfd_link_hash_defined
4533 && h->root.type != bfd_link_hash_defweak))
4536 amt = p - h->root.root.string;
4537 shortname = bfd_malloc (amt + 1);
4539 goto error_free_vers;
4540 memcpy (shortname, h->root.root.string, amt);
4541 shortname[amt] = '\0';
4543 hi = (struct elf_link_hash_entry *)
4544 bfd_link_hash_lookup (&htab->root, shortname,
4545 FALSE, FALSE, FALSE);
4547 && hi->root.type == h->root.type
4548 && hi->root.u.def.value == h->root.u.def.value
4549 && hi->root.u.def.section == h->root.u.def.section)
4551 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4552 hi->root.type = bfd_link_hash_indirect;
4553 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4554 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4555 sym_hash = elf_sym_hashes (abfd);
4557 for (symidx = 0; symidx < extsymcount; ++symidx)
4558 if (sym_hash[symidx] == hi)
4560 sym_hash[symidx] = h;
4566 free (nondeflt_vers);
4567 nondeflt_vers = NULL;
4570 /* Now set the weakdefs field correctly for all the weak defined
4571 symbols we found. The only way to do this is to search all the
4572 symbols. Since we only need the information for non functions in
4573 dynamic objects, that's the only time we actually put anything on
4574 the list WEAKS. We need this information so that if a regular
4575 object refers to a symbol defined weakly in a dynamic object, the
4576 real symbol in the dynamic object is also put in the dynamic
4577 symbols; we also must arrange for both symbols to point to the
4578 same memory location. We could handle the general case of symbol
4579 aliasing, but a general symbol alias can only be generated in
4580 assembler code, handling it correctly would be very time
4581 consuming, and other ELF linkers don't handle general aliasing
4585 struct elf_link_hash_entry **hpp;
4586 struct elf_link_hash_entry **hppend;
4587 struct elf_link_hash_entry **sorted_sym_hash;
4588 struct elf_link_hash_entry *h;
4591 /* Since we have to search the whole symbol list for each weak
4592 defined symbol, search time for N weak defined symbols will be
4593 O(N^2). Binary search will cut it down to O(NlogN). */
4594 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4595 sorted_sym_hash = bfd_malloc (amt);
4596 if (sorted_sym_hash == NULL)
4598 sym_hash = sorted_sym_hash;
4599 hpp = elf_sym_hashes (abfd);
4600 hppend = hpp + extsymcount;
4602 for (; hpp < hppend; hpp++)
4606 && h->root.type == bfd_link_hash_defined
4607 && !bed->is_function_type (h->type))
4615 qsort (sorted_sym_hash, sym_count,
4616 sizeof (struct elf_link_hash_entry *),
4619 while (weaks != NULL)
4621 struct elf_link_hash_entry *hlook;
4628 weaks = hlook->u.weakdef;
4629 hlook->u.weakdef = NULL;
4631 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4632 || hlook->root.type == bfd_link_hash_defweak
4633 || hlook->root.type == bfd_link_hash_common
4634 || hlook->root.type == bfd_link_hash_indirect);
4635 slook = hlook->root.u.def.section;
4636 vlook = hlook->root.u.def.value;
4643 bfd_signed_vma vdiff;
4645 h = sorted_sym_hash [idx];
4646 vdiff = vlook - h->root.u.def.value;
4653 long sdiff = slook->id - h->root.u.def.section->id;
4666 /* We didn't find a value/section match. */
4670 for (i = ilook; i < sym_count; i++)
4672 h = sorted_sym_hash [i];
4674 /* Stop if value or section doesn't match. */
4675 if (h->root.u.def.value != vlook
4676 || h->root.u.def.section != slook)
4678 else if (h != hlook)
4680 hlook->u.weakdef = h;
4682 /* If the weak definition is in the list of dynamic
4683 symbols, make sure the real definition is put
4685 if (hlook->dynindx != -1 && h->dynindx == -1)
4687 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4690 free (sorted_sym_hash);
4695 /* If the real definition is in the list of dynamic
4696 symbols, make sure the weak definition is put
4697 there as well. If we don't do this, then the
4698 dynamic loader might not merge the entries for the
4699 real definition and the weak definition. */
4700 if (h->dynindx != -1 && hlook->dynindx == -1)
4702 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4703 goto err_free_sym_hash;
4710 free (sorted_sym_hash);
4713 if (bed->check_directives
4714 && !(*bed->check_directives) (abfd, info))
4717 /* If this object is the same format as the output object, and it is
4718 not a shared library, then let the backend look through the
4721 This is required to build global offset table entries and to
4722 arrange for dynamic relocs. It is not required for the
4723 particular common case of linking non PIC code, even when linking
4724 against shared libraries, but unfortunately there is no way of
4725 knowing whether an object file has been compiled PIC or not.
4726 Looking through the relocs is not particularly time consuming.
4727 The problem is that we must either (1) keep the relocs in memory,
4728 which causes the linker to require additional runtime memory or
4729 (2) read the relocs twice from the input file, which wastes time.
4730 This would be a good case for using mmap.
4732 I have no idea how to handle linking PIC code into a file of a
4733 different format. It probably can't be done. */
4735 && is_elf_hash_table (htab)
4736 && bed->check_relocs != NULL
4737 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4741 for (o = abfd->sections; o != NULL; o = o->next)
4743 Elf_Internal_Rela *internal_relocs;
4746 if ((o->flags & SEC_RELOC) == 0
4747 || o->reloc_count == 0
4748 || ((info->strip == strip_all || info->strip == strip_debugger)
4749 && (o->flags & SEC_DEBUGGING) != 0)
4750 || bfd_is_abs_section (o->output_section))
4753 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4755 if (internal_relocs == NULL)
4758 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4760 if (elf_section_data (o)->relocs != internal_relocs)
4761 free (internal_relocs);
4768 /* If this is a non-traditional link, try to optimize the handling
4769 of the .stab/.stabstr sections. */
4771 && ! info->traditional_format
4772 && is_elf_hash_table (htab)
4773 && (info->strip != strip_all && info->strip != strip_debugger))
4777 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4778 if (stabstr != NULL)
4780 bfd_size_type string_offset = 0;
4783 for (stab = abfd->sections; stab; stab = stab->next)
4784 if (CONST_STRNEQ (stab->name, ".stab")
4785 && (!stab->name[5] ||
4786 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4787 && (stab->flags & SEC_MERGE) == 0
4788 && !bfd_is_abs_section (stab->output_section))
4790 struct bfd_elf_section_data *secdata;
4792 secdata = elf_section_data (stab);
4793 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4794 stabstr, &secdata->sec_info,
4797 if (secdata->sec_info)
4798 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4803 if (is_elf_hash_table (htab) && add_needed)
4805 /* Add this bfd to the loaded list. */
4806 struct elf_link_loaded_list *n;
4808 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4812 n->next = htab->loaded;
4819 if (old_tab != NULL)
4821 if (nondeflt_vers != NULL)
4822 free (nondeflt_vers);
4823 if (extversym != NULL)
4826 if (isymbuf != NULL)
4832 /* Return the linker hash table entry of a symbol that might be
4833 satisfied by an archive symbol. Return -1 on error. */
4835 struct elf_link_hash_entry *
4836 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4837 struct bfd_link_info *info,
4840 struct elf_link_hash_entry *h;
4844 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4848 /* If this is a default version (the name contains @@), look up the
4849 symbol again with only one `@' as well as without the version.
4850 The effect is that references to the symbol with and without the
4851 version will be matched by the default symbol in the archive. */
4853 p = strchr (name, ELF_VER_CHR);
4854 if (p == NULL || p[1] != ELF_VER_CHR)
4857 /* First check with only one `@'. */
4858 len = strlen (name);
4859 copy = bfd_alloc (abfd, len);
4861 return (struct elf_link_hash_entry *) 0 - 1;
4863 first = p - name + 1;
4864 memcpy (copy, name, first);
4865 memcpy (copy + first, name + first + 1, len - first);
4867 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4870 /* We also need to check references to the symbol without the
4872 copy[first - 1] = '\0';
4873 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4874 FALSE, FALSE, FALSE);
4877 bfd_release (abfd, copy);
4881 /* Add symbols from an ELF archive file to the linker hash table. We
4882 don't use _bfd_generic_link_add_archive_symbols because of a
4883 problem which arises on UnixWare. The UnixWare libc.so is an
4884 archive which includes an entry libc.so.1 which defines a bunch of
4885 symbols. The libc.so archive also includes a number of other
4886 object files, which also define symbols, some of which are the same
4887 as those defined in libc.so.1. Correct linking requires that we
4888 consider each object file in turn, and include it if it defines any
4889 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4890 this; it looks through the list of undefined symbols, and includes
4891 any object file which defines them. When this algorithm is used on
4892 UnixWare, it winds up pulling in libc.so.1 early and defining a
4893 bunch of symbols. This means that some of the other objects in the
4894 archive are not included in the link, which is incorrect since they
4895 precede libc.so.1 in the archive.
4897 Fortunately, ELF archive handling is simpler than that done by
4898 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4899 oddities. In ELF, if we find a symbol in the archive map, and the
4900 symbol is currently undefined, we know that we must pull in that
4903 Unfortunately, we do have to make multiple passes over the symbol
4904 table until nothing further is resolved. */
4907 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4910 bfd_boolean *defined = NULL;
4911 bfd_boolean *included = NULL;
4915 const struct elf_backend_data *bed;
4916 struct elf_link_hash_entry * (*archive_symbol_lookup)
4917 (bfd *, struct bfd_link_info *, const char *);
4919 if (! bfd_has_map (abfd))
4921 /* An empty archive is a special case. */
4922 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4924 bfd_set_error (bfd_error_no_armap);
4928 /* Keep track of all symbols we know to be already defined, and all
4929 files we know to be already included. This is to speed up the
4930 second and subsequent passes. */
4931 c = bfd_ardata (abfd)->symdef_count;
4935 amt *= sizeof (bfd_boolean);
4936 defined = bfd_zmalloc (amt);
4937 included = bfd_zmalloc (amt);
4938 if (defined == NULL || included == NULL)
4941 symdefs = bfd_ardata (abfd)->symdefs;
4942 bed = get_elf_backend_data (abfd);
4943 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4956 symdefend = symdef + c;
4957 for (i = 0; symdef < symdefend; symdef++, i++)
4959 struct elf_link_hash_entry *h;
4961 struct bfd_link_hash_entry *undefs_tail;
4964 if (defined[i] || included[i])
4966 if (symdef->file_offset == last)
4972 h = archive_symbol_lookup (abfd, info, symdef->name);
4973 if (h == (struct elf_link_hash_entry *) 0 - 1)
4979 if (h->root.type == bfd_link_hash_common)
4981 /* We currently have a common symbol. The archive map contains
4982 a reference to this symbol, so we may want to include it. We
4983 only want to include it however, if this archive element
4984 contains a definition of the symbol, not just another common
4987 Unfortunately some archivers (including GNU ar) will put
4988 declarations of common symbols into their archive maps, as
4989 well as real definitions, so we cannot just go by the archive
4990 map alone. Instead we must read in the element's symbol
4991 table and check that to see what kind of symbol definition
4993 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4996 else if (h->root.type != bfd_link_hash_undefined)
4998 if (h->root.type != bfd_link_hash_undefweak)
5003 /* We need to include this archive member. */
5004 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5005 if (element == NULL)
5008 if (! bfd_check_format (element, bfd_object))
5011 /* Doublecheck that we have not included this object
5012 already--it should be impossible, but there may be
5013 something wrong with the archive. */
5014 if (element->archive_pass != 0)
5016 bfd_set_error (bfd_error_bad_value);
5019 element->archive_pass = 1;
5021 undefs_tail = info->hash->undefs_tail;
5023 if (! (*info->callbacks->add_archive_element) (info, element,
5026 if (! bfd_link_add_symbols (element, info))
5029 /* If there are any new undefined symbols, we need to make
5030 another pass through the archive in order to see whether
5031 they can be defined. FIXME: This isn't perfect, because
5032 common symbols wind up on undefs_tail and because an
5033 undefined symbol which is defined later on in this pass
5034 does not require another pass. This isn't a bug, but it
5035 does make the code less efficient than it could be. */
5036 if (undefs_tail != info->hash->undefs_tail)
5039 /* Look backward to mark all symbols from this object file
5040 which we have already seen in this pass. */
5044 included[mark] = TRUE;
5049 while (symdefs[mark].file_offset == symdef->file_offset);
5051 /* We mark subsequent symbols from this object file as we go
5052 on through the loop. */
5053 last = symdef->file_offset;
5064 if (defined != NULL)
5066 if (included != NULL)
5071 /* Given an ELF BFD, add symbols to the global hash table as
5075 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5077 switch (bfd_get_format (abfd))
5080 return elf_link_add_object_symbols (abfd, info);
5082 return elf_link_add_archive_symbols (abfd, info);
5084 bfd_set_error (bfd_error_wrong_format);
5089 struct hash_codes_info
5091 unsigned long *hashcodes;
5095 /* This function will be called though elf_link_hash_traverse to store
5096 all hash value of the exported symbols in an array. */
5099 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5101 struct hash_codes_info *inf = data;
5107 if (h->root.type == bfd_link_hash_warning)
5108 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5110 /* Ignore indirect symbols. These are added by the versioning code. */
5111 if (h->dynindx == -1)
5114 name = h->root.root.string;
5115 p = strchr (name, ELF_VER_CHR);
5118 alc = bfd_malloc (p - name + 1);
5124 memcpy (alc, name, p - name);
5125 alc[p - name] = '\0';
5129 /* Compute the hash value. */
5130 ha = bfd_elf_hash (name);
5132 /* Store the found hash value in the array given as the argument. */
5133 *(inf->hashcodes)++ = ha;
5135 /* And store it in the struct so that we can put it in the hash table
5137 h->u.elf_hash_value = ha;
5145 struct collect_gnu_hash_codes
5148 const struct elf_backend_data *bed;
5149 unsigned long int nsyms;
5150 unsigned long int maskbits;
5151 unsigned long int *hashcodes;
5152 unsigned long int *hashval;
5153 unsigned long int *indx;
5154 unsigned long int *counts;
5157 long int min_dynindx;
5158 unsigned long int bucketcount;
5159 unsigned long int symindx;
5160 long int local_indx;
5161 long int shift1, shift2;
5162 unsigned long int mask;
5166 /* This function will be called though elf_link_hash_traverse to store
5167 all hash value of the exported symbols in an array. */
5170 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5172 struct collect_gnu_hash_codes *s = data;
5178 if (h->root.type == bfd_link_hash_warning)
5179 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5181 /* Ignore indirect symbols. These are added by the versioning code. */
5182 if (h->dynindx == -1)
5185 /* Ignore also local symbols and undefined symbols. */
5186 if (! (*s->bed->elf_hash_symbol) (h))
5189 name = h->root.root.string;
5190 p = strchr (name, ELF_VER_CHR);
5193 alc = bfd_malloc (p - name + 1);
5199 memcpy (alc, name, p - name);
5200 alc[p - name] = '\0';
5204 /* Compute the hash value. */
5205 ha = bfd_elf_gnu_hash (name);
5207 /* Store the found hash value in the array for compute_bucket_count,
5208 and also for .dynsym reordering purposes. */
5209 s->hashcodes[s->nsyms] = ha;
5210 s->hashval[h->dynindx] = ha;
5212 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5213 s->min_dynindx = h->dynindx;
5221 /* This function will be called though elf_link_hash_traverse to do
5222 final dynaminc symbol renumbering. */
5225 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5227 struct collect_gnu_hash_codes *s = data;
5228 unsigned long int bucket;
5229 unsigned long int val;
5231 if (h->root.type == bfd_link_hash_warning)
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5234 /* Ignore indirect symbols. */
5235 if (h->dynindx == -1)
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5241 if (h->dynindx >= s->min_dynindx)
5242 h->dynindx = s->local_indx++;
5246 bucket = s->hashval[h->dynindx] % s->bucketcount;
5247 val = (s->hashval[h->dynindx] >> s->shift1)
5248 & ((s->maskbits >> s->shift1) - 1);
5249 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5251 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5252 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5253 if (s->counts[bucket] == 1)
5254 /* Last element terminates the chain. */
5256 bfd_put_32 (s->output_bfd, val,
5257 s->contents + (s->indx[bucket] - s->symindx) * 4);
5258 --s->counts[bucket];
5259 h->dynindx = s->indx[bucket]++;
5263 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5266 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5268 return !(h->forced_local
5269 || h->root.type == bfd_link_hash_undefined
5270 || h->root.type == bfd_link_hash_undefweak
5271 || ((h->root.type == bfd_link_hash_defined
5272 || h->root.type == bfd_link_hash_defweak)
5273 && h->root.u.def.section->output_section == NULL));
5276 /* Array used to determine the number of hash table buckets to use
5277 based on the number of symbols there are. If there are fewer than
5278 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5279 fewer than 37 we use 17 buckets, and so forth. We never use more
5280 than 32771 buckets. */
5282 static const size_t elf_buckets[] =
5284 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5288 /* Compute bucket count for hashing table. We do not use a static set
5289 of possible tables sizes anymore. Instead we determine for all
5290 possible reasonable sizes of the table the outcome (i.e., the
5291 number of collisions etc) and choose the best solution. The
5292 weighting functions are not too simple to allow the table to grow
5293 without bounds. Instead one of the weighting factors is the size.
5294 Therefore the result is always a good payoff between few collisions
5295 (= short chain lengths) and table size. */
5297 compute_bucket_count (struct bfd_link_info *info,
5298 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5299 unsigned long int nsyms,
5302 size_t best_size = 0;
5303 unsigned long int i;
5305 /* We have a problem here. The following code to optimize the table
5306 size requires an integer type with more the 32 bits. If
5307 BFD_HOST_U_64_BIT is set we know about such a type. */
5308 #ifdef BFD_HOST_U_64_BIT
5313 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5314 bfd *dynobj = elf_hash_table (info)->dynobj;
5315 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5316 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5317 unsigned long int *counts;
5320 /* Possible optimization parameters: if we have NSYMS symbols we say
5321 that the hashing table must at least have NSYMS/4 and at most
5323 minsize = nsyms / 4;
5326 best_size = maxsize = nsyms * 2;
5331 if ((best_size & 31) == 0)
5335 /* Create array where we count the collisions in. We must use bfd_malloc
5336 since the size could be large. */
5338 amt *= sizeof (unsigned long int);
5339 counts = bfd_malloc (amt);
5343 /* Compute the "optimal" size for the hash table. The criteria is a
5344 minimal chain length. The minor criteria is (of course) the size
5346 for (i = minsize; i < maxsize; ++i)
5348 /* Walk through the array of hashcodes and count the collisions. */
5349 BFD_HOST_U_64_BIT max;
5350 unsigned long int j;
5351 unsigned long int fact;
5353 if (gnu_hash && (i & 31) == 0)
5356 memset (counts, '\0', i * sizeof (unsigned long int));
5358 /* Determine how often each hash bucket is used. */
5359 for (j = 0; j < nsyms; ++j)
5360 ++counts[hashcodes[j] % i];
5362 /* For the weight function we need some information about the
5363 pagesize on the target. This is information need not be 100%
5364 accurate. Since this information is not available (so far) we
5365 define it here to a reasonable default value. If it is crucial
5366 to have a better value some day simply define this value. */
5367 # ifndef BFD_TARGET_PAGESIZE
5368 # define BFD_TARGET_PAGESIZE (4096)
5371 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5373 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5376 /* Variant 1: optimize for short chains. We add the squares
5377 of all the chain lengths (which favors many small chain
5378 over a few long chains). */
5379 for (j = 0; j < i; ++j)
5380 max += counts[j] * counts[j];
5382 /* This adds penalties for the overall size of the table. */
5383 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5386 /* Variant 2: Optimize a lot more for small table. Here we
5387 also add squares of the size but we also add penalties for
5388 empty slots (the +1 term). */
5389 for (j = 0; j < i; ++j)
5390 max += (1 + counts[j]) * (1 + counts[j]);
5392 /* The overall size of the table is considered, but not as
5393 strong as in variant 1, where it is squared. */
5394 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5398 /* Compare with current best results. */
5399 if (max < best_chlen)
5409 #endif /* defined (BFD_HOST_U_64_BIT) */
5411 /* This is the fallback solution if no 64bit type is available or if we
5412 are not supposed to spend much time on optimizations. We select the
5413 bucket count using a fixed set of numbers. */
5414 for (i = 0; elf_buckets[i] != 0; i++)
5416 best_size = elf_buckets[i];
5417 if (nsyms < elf_buckets[i + 1])
5420 if (gnu_hash && best_size < 2)
5427 /* Set up the sizes and contents of the ELF dynamic sections. This is
5428 called by the ELF linker emulation before_allocation routine. We
5429 must set the sizes of the sections before the linker sets the
5430 addresses of the various sections. */
5433 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5436 const char *filter_shlib,
5437 const char * const *auxiliary_filters,
5438 struct bfd_link_info *info,
5439 asection **sinterpptr,
5440 struct bfd_elf_version_tree *verdefs)
5442 bfd_size_type soname_indx;
5444 const struct elf_backend_data *bed;
5445 struct elf_info_failed asvinfo;
5449 soname_indx = (bfd_size_type) -1;
5451 if (!is_elf_hash_table (info->hash))
5454 bed = get_elf_backend_data (output_bfd);
5455 if (info->execstack)
5456 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5457 else if (info->noexecstack)
5458 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5462 asection *notesec = NULL;
5465 for (inputobj = info->input_bfds;
5467 inputobj = inputobj->link_next)
5471 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5473 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5476 if (s->flags & SEC_CODE)
5480 else if (bed->default_execstack)
5485 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5486 if (exec && info->relocatable
5487 && notesec->output_section != bfd_abs_section_ptr)
5488 notesec->output_section->flags |= SEC_CODE;
5492 /* Any syms created from now on start with -1 in
5493 got.refcount/offset and plt.refcount/offset. */
5494 elf_hash_table (info)->init_got_refcount
5495 = elf_hash_table (info)->init_got_offset;
5496 elf_hash_table (info)->init_plt_refcount
5497 = elf_hash_table (info)->init_plt_offset;
5499 /* The backend may have to create some sections regardless of whether
5500 we're dynamic or not. */
5501 if (bed->elf_backend_always_size_sections
5502 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5505 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5508 dynobj = elf_hash_table (info)->dynobj;
5510 /* If there were no dynamic objects in the link, there is nothing to
5515 if (elf_hash_table (info)->dynamic_sections_created)
5517 struct elf_info_failed eif;
5518 struct elf_link_hash_entry *h;
5520 struct bfd_elf_version_tree *t;
5521 struct bfd_elf_version_expr *d;
5523 bfd_boolean all_defined;
5525 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5526 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5530 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5532 if (soname_indx == (bfd_size_type) -1
5533 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5539 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5541 info->flags |= DF_SYMBOLIC;
5548 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5550 if (indx == (bfd_size_type) -1
5551 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5554 if (info->new_dtags)
5556 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5557 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5562 if (filter_shlib != NULL)
5566 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5567 filter_shlib, TRUE);
5568 if (indx == (bfd_size_type) -1
5569 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5573 if (auxiliary_filters != NULL)
5575 const char * const *p;
5577 for (p = auxiliary_filters; *p != NULL; p++)
5581 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5583 if (indx == (bfd_size_type) -1
5584 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5590 eif.verdefs = verdefs;
5593 /* If we are supposed to export all symbols into the dynamic symbol
5594 table (this is not the normal case), then do so. */
5595 if (info->export_dynamic
5596 || (info->executable && info->dynamic))
5598 elf_link_hash_traverse (elf_hash_table (info),
5599 _bfd_elf_export_symbol,
5605 /* Make all global versions with definition. */
5606 for (t = verdefs; t != NULL; t = t->next)
5607 for (d = t->globals.list; d != NULL; d = d->next)
5608 if (!d->symver && d->literal)
5610 const char *verstr, *name;
5611 size_t namelen, verlen, newlen;
5613 struct elf_link_hash_entry *newh;
5616 namelen = strlen (name);
5618 verlen = strlen (verstr);
5619 newlen = namelen + verlen + 3;
5621 newname = bfd_malloc (newlen);
5622 if (newname == NULL)
5624 memcpy (newname, name, namelen);
5626 /* Check the hidden versioned definition. */
5627 p = newname + namelen;
5629 memcpy (p, verstr, verlen + 1);
5630 newh = elf_link_hash_lookup (elf_hash_table (info),
5631 newname, FALSE, FALSE,
5634 || (newh->root.type != bfd_link_hash_defined
5635 && newh->root.type != bfd_link_hash_defweak))
5637 /* Check the default versioned definition. */
5639 memcpy (p, verstr, verlen + 1);
5640 newh = elf_link_hash_lookup (elf_hash_table (info),
5641 newname, FALSE, FALSE,
5646 /* Mark this version if there is a definition and it is
5647 not defined in a shared object. */
5649 && !newh->def_dynamic
5650 && (newh->root.type == bfd_link_hash_defined
5651 || newh->root.type == bfd_link_hash_defweak))
5655 /* Attach all the symbols to their version information. */
5656 asvinfo.info = info;
5657 asvinfo.verdefs = verdefs;
5658 asvinfo.failed = FALSE;
5660 elf_link_hash_traverse (elf_hash_table (info),
5661 _bfd_elf_link_assign_sym_version,
5666 if (!info->allow_undefined_version)
5668 /* Check if all global versions have a definition. */
5670 for (t = verdefs; t != NULL; t = t->next)
5671 for (d = t->globals.list; d != NULL; d = d->next)
5672 if (d->literal && !d->symver && !d->script)
5674 (*_bfd_error_handler)
5675 (_("%s: undefined version: %s"),
5676 d->pattern, t->name);
5677 all_defined = FALSE;
5682 bfd_set_error (bfd_error_bad_value);
5687 /* Find all symbols which were defined in a dynamic object and make
5688 the backend pick a reasonable value for them. */
5689 elf_link_hash_traverse (elf_hash_table (info),
5690 _bfd_elf_adjust_dynamic_symbol,
5695 /* Add some entries to the .dynamic section. We fill in some of the
5696 values later, in bfd_elf_final_link, but we must add the entries
5697 now so that we know the final size of the .dynamic section. */
5699 /* If there are initialization and/or finalization functions to
5700 call then add the corresponding DT_INIT/DT_FINI entries. */
5701 h = (info->init_function
5702 ? elf_link_hash_lookup (elf_hash_table (info),
5703 info->init_function, FALSE,
5710 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5713 h = (info->fini_function
5714 ? elf_link_hash_lookup (elf_hash_table (info),
5715 info->fini_function, FALSE,
5722 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5726 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5727 if (s != NULL && s->linker_has_input)
5729 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5730 if (! info->executable)
5735 for (sub = info->input_bfds; sub != NULL;
5736 sub = sub->link_next)
5737 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5738 for (o = sub->sections; o != NULL; o = o->next)
5739 if (elf_section_data (o)->this_hdr.sh_type
5740 == SHT_PREINIT_ARRAY)
5742 (*_bfd_error_handler)
5743 (_("%B: .preinit_array section is not allowed in DSO"),
5748 bfd_set_error (bfd_error_nonrepresentable_section);
5752 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5753 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5756 s = bfd_get_section_by_name (output_bfd, ".init_array");
5757 if (s != NULL && s->linker_has_input)
5759 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5760 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5763 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5764 if (s != NULL && s->linker_has_input)
5766 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5767 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5771 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5772 /* If .dynstr is excluded from the link, we don't want any of
5773 these tags. Strictly, we should be checking each section
5774 individually; This quick check covers for the case where
5775 someone does a /DISCARD/ : { *(*) }. */
5776 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5778 bfd_size_type strsize;
5780 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5781 if ((info->emit_hash
5782 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5783 || (info->emit_gnu_hash
5784 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5785 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5786 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5787 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5788 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5789 bed->s->sizeof_sym))
5794 /* The backend must work out the sizes of all the other dynamic
5796 if (bed->elf_backend_size_dynamic_sections
5797 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5800 if (elf_hash_table (info)->dynamic_sections_created)
5802 unsigned long section_sym_count;
5805 /* Set up the version definition section. */
5806 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5807 BFD_ASSERT (s != NULL);
5809 /* We may have created additional version definitions if we are
5810 just linking a regular application. */
5811 verdefs = asvinfo.verdefs;
5813 /* Skip anonymous version tag. */
5814 if (verdefs != NULL && verdefs->vernum == 0)
5815 verdefs = verdefs->next;
5817 if (verdefs == NULL && !info->create_default_symver)
5818 s->flags |= SEC_EXCLUDE;
5823 struct bfd_elf_version_tree *t;
5825 Elf_Internal_Verdef def;
5826 Elf_Internal_Verdaux defaux;
5827 struct bfd_link_hash_entry *bh;
5828 struct elf_link_hash_entry *h;
5834 /* Make space for the base version. */
5835 size += sizeof (Elf_External_Verdef);
5836 size += sizeof (Elf_External_Verdaux);
5839 /* Make space for the default version. */
5840 if (info->create_default_symver)
5842 size += sizeof (Elf_External_Verdef);
5846 for (t = verdefs; t != NULL; t = t->next)
5848 struct bfd_elf_version_deps *n;
5850 size += sizeof (Elf_External_Verdef);
5851 size += sizeof (Elf_External_Verdaux);
5854 for (n = t->deps; n != NULL; n = n->next)
5855 size += sizeof (Elf_External_Verdaux);
5859 s->contents = bfd_alloc (output_bfd, s->size);
5860 if (s->contents == NULL && s->size != 0)
5863 /* Fill in the version definition section. */
5867 def.vd_version = VER_DEF_CURRENT;
5868 def.vd_flags = VER_FLG_BASE;
5871 if (info->create_default_symver)
5873 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5874 def.vd_next = sizeof (Elf_External_Verdef);
5878 def.vd_aux = sizeof (Elf_External_Verdef);
5879 def.vd_next = (sizeof (Elf_External_Verdef)
5880 + sizeof (Elf_External_Verdaux));
5883 if (soname_indx != (bfd_size_type) -1)
5885 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5887 def.vd_hash = bfd_elf_hash (soname);
5888 defaux.vda_name = soname_indx;
5895 name = lbasename (output_bfd->filename);
5896 def.vd_hash = bfd_elf_hash (name);
5897 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5899 if (indx == (bfd_size_type) -1)
5901 defaux.vda_name = indx;
5903 defaux.vda_next = 0;
5905 _bfd_elf_swap_verdef_out (output_bfd, &def,
5906 (Elf_External_Verdef *) p);
5907 p += sizeof (Elf_External_Verdef);
5908 if (info->create_default_symver)
5910 /* Add a symbol representing this version. */
5912 if (! (_bfd_generic_link_add_one_symbol
5913 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5915 get_elf_backend_data (dynobj)->collect, &bh)))
5917 h = (struct elf_link_hash_entry *) bh;
5920 h->type = STT_OBJECT;
5921 h->verinfo.vertree = NULL;
5923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5926 /* Create a duplicate of the base version with the same
5927 aux block, but different flags. */
5930 def.vd_aux = sizeof (Elf_External_Verdef);
5932 def.vd_next = (sizeof (Elf_External_Verdef)
5933 + sizeof (Elf_External_Verdaux));
5936 _bfd_elf_swap_verdef_out (output_bfd, &def,
5937 (Elf_External_Verdef *) p);
5938 p += sizeof (Elf_External_Verdef);
5940 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5941 (Elf_External_Verdaux *) p);
5942 p += sizeof (Elf_External_Verdaux);
5944 for (t = verdefs; t != NULL; t = t->next)
5947 struct bfd_elf_version_deps *n;
5950 for (n = t->deps; n != NULL; n = n->next)
5953 /* Add a symbol representing this version. */
5955 if (! (_bfd_generic_link_add_one_symbol
5956 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5958 get_elf_backend_data (dynobj)->collect, &bh)))
5960 h = (struct elf_link_hash_entry *) bh;
5963 h->type = STT_OBJECT;
5964 h->verinfo.vertree = t;
5966 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5969 def.vd_version = VER_DEF_CURRENT;
5971 if (t->globals.list == NULL
5972 && t->locals.list == NULL
5974 def.vd_flags |= VER_FLG_WEAK;
5975 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5976 def.vd_cnt = cdeps + 1;
5977 def.vd_hash = bfd_elf_hash (t->name);
5978 def.vd_aux = sizeof (Elf_External_Verdef);
5980 if (t->next != NULL)
5981 def.vd_next = (sizeof (Elf_External_Verdef)
5982 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5984 _bfd_elf_swap_verdef_out (output_bfd, &def,
5985 (Elf_External_Verdef *) p);
5986 p += sizeof (Elf_External_Verdef);
5988 defaux.vda_name = h->dynstr_index;
5989 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5991 defaux.vda_next = 0;
5992 if (t->deps != NULL)
5993 defaux.vda_next = sizeof (Elf_External_Verdaux);
5994 t->name_indx = defaux.vda_name;
5996 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5997 (Elf_External_Verdaux *) p);
5998 p += sizeof (Elf_External_Verdaux);
6000 for (n = t->deps; n != NULL; n = n->next)
6002 if (n->version_needed == NULL)
6004 /* This can happen if there was an error in the
6006 defaux.vda_name = 0;
6010 defaux.vda_name = n->version_needed->name_indx;
6011 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6014 if (n->next == NULL)
6015 defaux.vda_next = 0;
6017 defaux.vda_next = sizeof (Elf_External_Verdaux);
6019 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6020 (Elf_External_Verdaux *) p);
6021 p += sizeof (Elf_External_Verdaux);
6025 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6026 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6029 elf_tdata (output_bfd)->cverdefs = cdefs;
6032 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6034 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6037 else if (info->flags & DF_BIND_NOW)
6039 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6045 if (info->executable)
6046 info->flags_1 &= ~ (DF_1_INITFIRST
6049 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6053 /* Work out the size of the version reference section. */
6055 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6056 BFD_ASSERT (s != NULL);
6058 struct elf_find_verdep_info sinfo;
6061 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6062 if (sinfo.vers == 0)
6064 sinfo.failed = FALSE;
6066 elf_link_hash_traverse (elf_hash_table (info),
6067 _bfd_elf_link_find_version_dependencies,
6072 if (elf_tdata (output_bfd)->verref == NULL)
6073 s->flags |= SEC_EXCLUDE;
6076 Elf_Internal_Verneed *t;
6081 /* Build the version definition section. */
6084 for (t = elf_tdata (output_bfd)->verref;
6088 Elf_Internal_Vernaux *a;
6090 size += sizeof (Elf_External_Verneed);
6092 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6093 size += sizeof (Elf_External_Vernaux);
6097 s->contents = bfd_alloc (output_bfd, s->size);
6098 if (s->contents == NULL)
6102 for (t = elf_tdata (output_bfd)->verref;
6107 Elf_Internal_Vernaux *a;
6111 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6114 t->vn_version = VER_NEED_CURRENT;
6116 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6117 elf_dt_name (t->vn_bfd) != NULL
6118 ? elf_dt_name (t->vn_bfd)
6119 : lbasename (t->vn_bfd->filename),
6121 if (indx == (bfd_size_type) -1)
6124 t->vn_aux = sizeof (Elf_External_Verneed);
6125 if (t->vn_nextref == NULL)
6128 t->vn_next = (sizeof (Elf_External_Verneed)
6129 + caux * sizeof (Elf_External_Vernaux));
6131 _bfd_elf_swap_verneed_out (output_bfd, t,
6132 (Elf_External_Verneed *) p);
6133 p += sizeof (Elf_External_Verneed);
6135 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6137 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6138 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6139 a->vna_nodename, FALSE);
6140 if (indx == (bfd_size_type) -1)
6143 if (a->vna_nextptr == NULL)
6146 a->vna_next = sizeof (Elf_External_Vernaux);
6148 _bfd_elf_swap_vernaux_out (output_bfd, a,
6149 (Elf_External_Vernaux *) p);
6150 p += sizeof (Elf_External_Vernaux);
6154 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6155 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6158 elf_tdata (output_bfd)->cverrefs = crefs;
6162 if ((elf_tdata (output_bfd)->cverrefs == 0
6163 && elf_tdata (output_bfd)->cverdefs == 0)
6164 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6165 §ion_sym_count) == 0)
6167 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6168 s->flags |= SEC_EXCLUDE;
6174 /* Find the first non-excluded output section. We'll use its
6175 section symbol for some emitted relocs. */
6177 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6181 for (s = output_bfd->sections; s != NULL; s = s->next)
6182 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6183 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6185 elf_hash_table (info)->text_index_section = s;
6190 /* Find two non-excluded output sections, one for code, one for data.
6191 We'll use their section symbols for some emitted relocs. */
6193 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6197 /* Data first, since setting text_index_section changes
6198 _bfd_elf_link_omit_section_dynsym. */
6199 for (s = output_bfd->sections; s != NULL; s = s->next)
6200 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6201 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6203 elf_hash_table (info)->data_index_section = s;
6207 for (s = output_bfd->sections; s != NULL; s = s->next)
6208 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6209 == (SEC_ALLOC | SEC_READONLY))
6210 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6212 elf_hash_table (info)->text_index_section = s;
6216 if (elf_hash_table (info)->text_index_section == NULL)
6217 elf_hash_table (info)->text_index_section
6218 = elf_hash_table (info)->data_index_section;
6222 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6224 const struct elf_backend_data *bed;
6226 if (!is_elf_hash_table (info->hash))
6229 bed = get_elf_backend_data (output_bfd);
6230 (*bed->elf_backend_init_index_section) (output_bfd, info);
6232 if (elf_hash_table (info)->dynamic_sections_created)
6236 bfd_size_type dynsymcount;
6237 unsigned long section_sym_count;
6238 unsigned int dtagcount;
6240 dynobj = elf_hash_table (info)->dynobj;
6242 /* Assign dynsym indicies. In a shared library we generate a
6243 section symbol for each output section, which come first.
6244 Next come all of the back-end allocated local dynamic syms,
6245 followed by the rest of the global symbols. */
6247 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6248 §ion_sym_count);
6250 /* Work out the size of the symbol version section. */
6251 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6252 BFD_ASSERT (s != NULL);
6253 if (dynsymcount != 0
6254 && (s->flags & SEC_EXCLUDE) == 0)
6256 s->size = dynsymcount * sizeof (Elf_External_Versym);
6257 s->contents = bfd_zalloc (output_bfd, s->size);
6258 if (s->contents == NULL)
6261 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6265 /* Set the size of the .dynsym and .hash sections. We counted
6266 the number of dynamic symbols in elf_link_add_object_symbols.
6267 We will build the contents of .dynsym and .hash when we build
6268 the final symbol table, because until then we do not know the
6269 correct value to give the symbols. We built the .dynstr
6270 section as we went along in elf_link_add_object_symbols. */
6271 s = bfd_get_section_by_name (dynobj, ".dynsym");
6272 BFD_ASSERT (s != NULL);
6273 s->size = dynsymcount * bed->s->sizeof_sym;
6275 if (dynsymcount != 0)
6277 s->contents = bfd_alloc (output_bfd, s->size);
6278 if (s->contents == NULL)
6281 /* The first entry in .dynsym is a dummy symbol.
6282 Clear all the section syms, in case we don't output them all. */
6283 ++section_sym_count;
6284 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6287 elf_hash_table (info)->bucketcount = 0;
6289 /* Compute the size of the hashing table. As a side effect this
6290 computes the hash values for all the names we export. */
6291 if (info->emit_hash)
6293 unsigned long int *hashcodes;
6294 struct hash_codes_info hashinf;
6296 unsigned long int nsyms;
6298 size_t hash_entry_size;
6300 /* Compute the hash values for all exported symbols. At the same
6301 time store the values in an array so that we could use them for
6303 amt = dynsymcount * sizeof (unsigned long int);
6304 hashcodes = bfd_malloc (amt);
6305 if (hashcodes == NULL)
6307 hashinf.hashcodes = hashcodes;
6308 hashinf.error = FALSE;
6310 /* Put all hash values in HASHCODES. */
6311 elf_link_hash_traverse (elf_hash_table (info),
6312 elf_collect_hash_codes, &hashinf);
6319 nsyms = hashinf.hashcodes - hashcodes;
6321 = compute_bucket_count (info, hashcodes, nsyms, 0);
6324 if (bucketcount == 0)
6327 elf_hash_table (info)->bucketcount = bucketcount;
6329 s = bfd_get_section_by_name (dynobj, ".hash");
6330 BFD_ASSERT (s != NULL);
6331 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6332 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6333 s->contents = bfd_zalloc (output_bfd, s->size);
6334 if (s->contents == NULL)
6337 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6338 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6339 s->contents + hash_entry_size);
6342 if (info->emit_gnu_hash)
6345 unsigned char *contents;
6346 struct collect_gnu_hash_codes cinfo;
6350 memset (&cinfo, 0, sizeof (cinfo));
6352 /* Compute the hash values for all exported symbols. At the same
6353 time store the values in an array so that we could use them for
6355 amt = dynsymcount * 2 * sizeof (unsigned long int);
6356 cinfo.hashcodes = bfd_malloc (amt);
6357 if (cinfo.hashcodes == NULL)
6360 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6361 cinfo.min_dynindx = -1;
6362 cinfo.output_bfd = output_bfd;
6365 /* Put all hash values in HASHCODES. */
6366 elf_link_hash_traverse (elf_hash_table (info),
6367 elf_collect_gnu_hash_codes, &cinfo);
6370 free (cinfo.hashcodes);
6375 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6377 if (bucketcount == 0)
6379 free (cinfo.hashcodes);
6383 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6384 BFD_ASSERT (s != NULL);
6386 if (cinfo.nsyms == 0)
6388 /* Empty .gnu.hash section is special. */
6389 BFD_ASSERT (cinfo.min_dynindx == -1);
6390 free (cinfo.hashcodes);
6391 s->size = 5 * 4 + bed->s->arch_size / 8;
6392 contents = bfd_zalloc (output_bfd, s->size);
6393 if (contents == NULL)
6395 s->contents = contents;
6396 /* 1 empty bucket. */
6397 bfd_put_32 (output_bfd, 1, contents);
6398 /* SYMIDX above the special symbol 0. */
6399 bfd_put_32 (output_bfd, 1, contents + 4);
6400 /* Just one word for bitmask. */
6401 bfd_put_32 (output_bfd, 1, contents + 8);
6402 /* Only hash fn bloom filter. */
6403 bfd_put_32 (output_bfd, 0, contents + 12);
6404 /* No hashes are valid - empty bitmask. */
6405 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6406 /* No hashes in the only bucket. */
6407 bfd_put_32 (output_bfd, 0,
6408 contents + 16 + bed->s->arch_size / 8);
6412 unsigned long int maskwords, maskbitslog2;
6413 BFD_ASSERT (cinfo.min_dynindx != -1);
6415 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6416 if (maskbitslog2 < 3)
6418 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6419 maskbitslog2 = maskbitslog2 + 3;
6421 maskbitslog2 = maskbitslog2 + 2;
6422 if (bed->s->arch_size == 64)
6424 if (maskbitslog2 == 5)
6430 cinfo.mask = (1 << cinfo.shift1) - 1;
6431 cinfo.shift2 = maskbitslog2;
6432 cinfo.maskbits = 1 << maskbitslog2;
6433 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6434 amt = bucketcount * sizeof (unsigned long int) * 2;
6435 amt += maskwords * sizeof (bfd_vma);
6436 cinfo.bitmask = bfd_malloc (amt);
6437 if (cinfo.bitmask == NULL)
6439 free (cinfo.hashcodes);
6443 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6444 cinfo.indx = cinfo.counts + bucketcount;
6445 cinfo.symindx = dynsymcount - cinfo.nsyms;
6446 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6448 /* Determine how often each hash bucket is used. */
6449 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6450 for (i = 0; i < cinfo.nsyms; ++i)
6451 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6453 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6454 if (cinfo.counts[i] != 0)
6456 cinfo.indx[i] = cnt;
6457 cnt += cinfo.counts[i];
6459 BFD_ASSERT (cnt == dynsymcount);
6460 cinfo.bucketcount = bucketcount;
6461 cinfo.local_indx = cinfo.min_dynindx;
6463 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6464 s->size += cinfo.maskbits / 8;
6465 contents = bfd_zalloc (output_bfd, s->size);
6466 if (contents == NULL)
6468 free (cinfo.bitmask);
6469 free (cinfo.hashcodes);
6473 s->contents = contents;
6474 bfd_put_32 (output_bfd, bucketcount, contents);
6475 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6476 bfd_put_32 (output_bfd, maskwords, contents + 8);
6477 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6478 contents += 16 + cinfo.maskbits / 8;
6480 for (i = 0; i < bucketcount; ++i)
6482 if (cinfo.counts[i] == 0)
6483 bfd_put_32 (output_bfd, 0, contents);
6485 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6489 cinfo.contents = contents;
6491 /* Renumber dynamic symbols, populate .gnu.hash section. */
6492 elf_link_hash_traverse (elf_hash_table (info),
6493 elf_renumber_gnu_hash_syms, &cinfo);
6495 contents = s->contents + 16;
6496 for (i = 0; i < maskwords; ++i)
6498 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6500 contents += bed->s->arch_size / 8;
6503 free (cinfo.bitmask);
6504 free (cinfo.hashcodes);
6508 s = bfd_get_section_by_name (dynobj, ".dynstr");
6509 BFD_ASSERT (s != NULL);
6511 elf_finalize_dynstr (output_bfd, info);
6513 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6515 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6516 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6523 /* Indicate that we are only retrieving symbol values from this
6527 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6529 if (is_elf_hash_table (info->hash))
6530 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6531 _bfd_generic_link_just_syms (sec, info);
6534 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6537 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6540 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6541 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6544 /* Finish SHF_MERGE section merging. */
6547 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6552 if (!is_elf_hash_table (info->hash))
6555 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6556 if ((ibfd->flags & DYNAMIC) == 0)
6557 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6558 if ((sec->flags & SEC_MERGE) != 0
6559 && !bfd_is_abs_section (sec->output_section))
6561 struct bfd_elf_section_data *secdata;
6563 secdata = elf_section_data (sec);
6564 if (! _bfd_add_merge_section (abfd,
6565 &elf_hash_table (info)->merge_info,
6566 sec, &secdata->sec_info))
6568 else if (secdata->sec_info)
6569 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6572 if (elf_hash_table (info)->merge_info != NULL)
6573 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6574 merge_sections_remove_hook);
6578 /* Create an entry in an ELF linker hash table. */
6580 struct bfd_hash_entry *
6581 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6582 struct bfd_hash_table *table,
6585 /* Allocate the structure if it has not already been allocated by a
6589 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6594 /* Call the allocation method of the superclass. */
6595 entry = _bfd_link_hash_newfunc (entry, table, string);
6598 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6599 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6601 /* Set local fields. */
6604 ret->got = htab->init_got_refcount;
6605 ret->plt = htab->init_plt_refcount;
6606 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6607 - offsetof (struct elf_link_hash_entry, size)));
6608 /* Assume that we have been called by a non-ELF symbol reader.
6609 This flag is then reset by the code which reads an ELF input
6610 file. This ensures that a symbol created by a non-ELF symbol
6611 reader will have the flag set correctly. */
6618 /* Copy data from an indirect symbol to its direct symbol, hiding the
6619 old indirect symbol. Also used for copying flags to a weakdef. */
6622 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6623 struct elf_link_hash_entry *dir,
6624 struct elf_link_hash_entry *ind)
6626 struct elf_link_hash_table *htab;
6628 /* Copy down any references that we may have already seen to the
6629 symbol which just became indirect. */
6631 dir->ref_dynamic |= ind->ref_dynamic;
6632 dir->ref_regular |= ind->ref_regular;
6633 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6634 dir->non_got_ref |= ind->non_got_ref;
6635 dir->needs_plt |= ind->needs_plt;
6636 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6638 if (ind->root.type != bfd_link_hash_indirect)
6641 /* Copy over the global and procedure linkage table refcount entries.
6642 These may have been already set up by a check_relocs routine. */
6643 htab = elf_hash_table (info);
6644 if (ind->got.refcount > htab->init_got_refcount.refcount)
6646 if (dir->got.refcount < 0)
6647 dir->got.refcount = 0;
6648 dir->got.refcount += ind->got.refcount;
6649 ind->got.refcount = htab->init_got_refcount.refcount;
6652 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6654 if (dir->plt.refcount < 0)
6655 dir->plt.refcount = 0;
6656 dir->plt.refcount += ind->plt.refcount;
6657 ind->plt.refcount = htab->init_plt_refcount.refcount;
6660 if (ind->dynindx != -1)
6662 if (dir->dynindx != -1)
6663 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6664 dir->dynindx = ind->dynindx;
6665 dir->dynstr_index = ind->dynstr_index;
6667 ind->dynstr_index = 0;
6672 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6673 struct elf_link_hash_entry *h,
6674 bfd_boolean force_local)
6676 /* STT_GNU_IFUNC symbol must go through PLT. */
6677 if (h->type != STT_GNU_IFUNC)
6679 h->plt = elf_hash_table (info)->init_plt_offset;
6684 h->forced_local = 1;
6685 if (h->dynindx != -1)
6688 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6694 /* Initialize an ELF linker hash table. */
6697 _bfd_elf_link_hash_table_init
6698 (struct elf_link_hash_table *table,
6700 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6701 struct bfd_hash_table *,
6703 unsigned int entsize)
6706 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6708 memset (table, 0, sizeof * table);
6709 table->init_got_refcount.refcount = can_refcount - 1;
6710 table->init_plt_refcount.refcount = can_refcount - 1;
6711 table->init_got_offset.offset = -(bfd_vma) 1;
6712 table->init_plt_offset.offset = -(bfd_vma) 1;
6713 /* The first dynamic symbol is a dummy. */
6714 table->dynsymcount = 1;
6716 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6717 table->root.type = bfd_link_elf_hash_table;
6722 /* Create an ELF linker hash table. */
6724 struct bfd_link_hash_table *
6725 _bfd_elf_link_hash_table_create (bfd *abfd)
6727 struct elf_link_hash_table *ret;
6728 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6730 ret = bfd_malloc (amt);
6734 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6735 sizeof (struct elf_link_hash_entry)))
6744 /* This is a hook for the ELF emulation code in the generic linker to
6745 tell the backend linker what file name to use for the DT_NEEDED
6746 entry for a dynamic object. */
6749 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6751 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6752 && bfd_get_format (abfd) == bfd_object)
6753 elf_dt_name (abfd) = name;
6757 bfd_elf_get_dyn_lib_class (bfd *abfd)
6760 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6761 && bfd_get_format (abfd) == bfd_object)
6762 lib_class = elf_dyn_lib_class (abfd);
6769 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6771 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6772 && bfd_get_format (abfd) == bfd_object)
6773 elf_dyn_lib_class (abfd) = lib_class;
6776 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6777 the linker ELF emulation code. */
6779 struct bfd_link_needed_list *
6780 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6781 struct bfd_link_info *info)
6783 if (! is_elf_hash_table (info->hash))
6785 return elf_hash_table (info)->needed;
6788 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6789 hook for the linker ELF emulation code. */
6791 struct bfd_link_needed_list *
6792 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6793 struct bfd_link_info *info)
6795 if (! is_elf_hash_table (info->hash))
6797 return elf_hash_table (info)->runpath;
6800 /* Get the name actually used for a dynamic object for a link. This
6801 is the SONAME entry if there is one. Otherwise, it is the string
6802 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6805 bfd_elf_get_dt_soname (bfd *abfd)
6807 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6808 && bfd_get_format (abfd) == bfd_object)
6809 return elf_dt_name (abfd);
6813 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6814 the ELF linker emulation code. */
6817 bfd_elf_get_bfd_needed_list (bfd *abfd,
6818 struct bfd_link_needed_list **pneeded)
6821 bfd_byte *dynbuf = NULL;
6822 unsigned int elfsec;
6823 unsigned long shlink;
6824 bfd_byte *extdyn, *extdynend;
6826 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6830 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6831 || bfd_get_format (abfd) != bfd_object)
6834 s = bfd_get_section_by_name (abfd, ".dynamic");
6835 if (s == NULL || s->size == 0)
6838 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6841 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6842 if (elfsec == SHN_BAD)
6845 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6847 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6848 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6851 extdynend = extdyn + s->size;
6852 for (; extdyn < extdynend; extdyn += extdynsize)
6854 Elf_Internal_Dyn dyn;
6856 (*swap_dyn_in) (abfd, extdyn, &dyn);
6858 if (dyn.d_tag == DT_NULL)
6861 if (dyn.d_tag == DT_NEEDED)
6864 struct bfd_link_needed_list *l;
6865 unsigned int tagv = dyn.d_un.d_val;
6868 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6873 l = bfd_alloc (abfd, amt);
6894 struct elf_symbuf_symbol
6896 unsigned long st_name; /* Symbol name, index in string tbl */
6897 unsigned char st_info; /* Type and binding attributes */
6898 unsigned char st_other; /* Visibilty, and target specific */
6901 struct elf_symbuf_head
6903 struct elf_symbuf_symbol *ssym;
6904 bfd_size_type count;
6905 unsigned int st_shndx;
6912 Elf_Internal_Sym *isym;
6913 struct elf_symbuf_symbol *ssym;
6918 /* Sort references to symbols by ascending section number. */
6921 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6923 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6924 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6926 return s1->st_shndx - s2->st_shndx;
6930 elf_sym_name_compare (const void *arg1, const void *arg2)
6932 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6933 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6934 return strcmp (s1->name, s2->name);
6937 static struct elf_symbuf_head *
6938 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6940 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6941 struct elf_symbuf_symbol *ssym;
6942 struct elf_symbuf_head *ssymbuf, *ssymhead;
6943 bfd_size_type i, shndx_count, total_size;
6945 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6949 for (ind = indbuf, i = 0; i < symcount; i++)
6950 if (isymbuf[i].st_shndx != SHN_UNDEF)
6951 *ind++ = &isymbuf[i];
6954 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6955 elf_sort_elf_symbol);
6958 if (indbufend > indbuf)
6959 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6960 if (ind[0]->st_shndx != ind[1]->st_shndx)
6963 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
6964 + (indbufend - indbuf) * sizeof (*ssym));
6965 ssymbuf = bfd_malloc (total_size);
6966 if (ssymbuf == NULL)
6972 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
6973 ssymbuf->ssym = NULL;
6974 ssymbuf->count = shndx_count;
6975 ssymbuf->st_shndx = 0;
6976 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6978 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6981 ssymhead->ssym = ssym;
6982 ssymhead->count = 0;
6983 ssymhead->st_shndx = (*ind)->st_shndx;
6985 ssym->st_name = (*ind)->st_name;
6986 ssym->st_info = (*ind)->st_info;
6987 ssym->st_other = (*ind)->st_other;
6990 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
6991 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
6998 /* Check if 2 sections define the same set of local and global
7002 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7003 struct bfd_link_info *info)
7006 const struct elf_backend_data *bed1, *bed2;
7007 Elf_Internal_Shdr *hdr1, *hdr2;
7008 bfd_size_type symcount1, symcount2;
7009 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7010 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7011 Elf_Internal_Sym *isym, *isymend;
7012 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7013 bfd_size_type count1, count2, i;
7014 unsigned int shndx1, shndx2;
7020 /* Both sections have to be in ELF. */
7021 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7022 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7025 if (elf_section_type (sec1) != elf_section_type (sec2))
7028 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7029 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7030 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7033 bed1 = get_elf_backend_data (bfd1);
7034 bed2 = get_elf_backend_data (bfd2);
7035 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7036 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7037 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7038 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7040 if (symcount1 == 0 || symcount2 == 0)
7046 ssymbuf1 = elf_tdata (bfd1)->symbuf;
7047 ssymbuf2 = elf_tdata (bfd2)->symbuf;
7049 if (ssymbuf1 == NULL)
7051 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7053 if (isymbuf1 == NULL)
7056 if (!info->reduce_memory_overheads)
7057 elf_tdata (bfd1)->symbuf = ssymbuf1
7058 = elf_create_symbuf (symcount1, isymbuf1);
7061 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7063 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7065 if (isymbuf2 == NULL)
7068 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7069 elf_tdata (bfd2)->symbuf = ssymbuf2
7070 = elf_create_symbuf (symcount2, isymbuf2);
7073 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7075 /* Optimized faster version. */
7076 bfd_size_type lo, hi, mid;
7077 struct elf_symbol *symp;
7078 struct elf_symbuf_symbol *ssym, *ssymend;
7081 hi = ssymbuf1->count;
7086 mid = (lo + hi) / 2;
7087 if (shndx1 < ssymbuf1[mid].st_shndx)
7089 else if (shndx1 > ssymbuf1[mid].st_shndx)
7093 count1 = ssymbuf1[mid].count;
7100 hi = ssymbuf2->count;
7105 mid = (lo + hi) / 2;
7106 if (shndx2 < ssymbuf2[mid].st_shndx)
7108 else if (shndx2 > ssymbuf2[mid].st_shndx)
7112 count2 = ssymbuf2[mid].count;
7118 if (count1 == 0 || count2 == 0 || count1 != count2)
7121 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7122 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7123 if (symtable1 == NULL || symtable2 == NULL)
7127 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7128 ssym < ssymend; ssym++, symp++)
7130 symp->u.ssym = ssym;
7131 symp->name = bfd_elf_string_from_elf_section (bfd1,
7137 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7138 ssym < ssymend; ssym++, symp++)
7140 symp->u.ssym = ssym;
7141 symp->name = bfd_elf_string_from_elf_section (bfd2,
7146 /* Sort symbol by name. */
7147 qsort (symtable1, count1, sizeof (struct elf_symbol),
7148 elf_sym_name_compare);
7149 qsort (symtable2, count1, sizeof (struct elf_symbol),
7150 elf_sym_name_compare);
7152 for (i = 0; i < count1; i++)
7153 /* Two symbols must have the same binding, type and name. */
7154 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7155 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7156 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7163 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7164 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7165 if (symtable1 == NULL || symtable2 == NULL)
7168 /* Count definitions in the section. */
7170 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7171 if (isym->st_shndx == shndx1)
7172 symtable1[count1++].u.isym = isym;
7175 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7176 if (isym->st_shndx == shndx2)
7177 symtable2[count2++].u.isym = isym;
7179 if (count1 == 0 || count2 == 0 || count1 != count2)
7182 for (i = 0; i < count1; i++)
7184 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7185 symtable1[i].u.isym->st_name);
7187 for (i = 0; i < count2; i++)
7189 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7190 symtable2[i].u.isym->st_name);
7192 /* Sort symbol by name. */
7193 qsort (symtable1, count1, sizeof (struct elf_symbol),
7194 elf_sym_name_compare);
7195 qsort (symtable2, count1, sizeof (struct elf_symbol),
7196 elf_sym_name_compare);
7198 for (i = 0; i < count1; i++)
7199 /* Two symbols must have the same binding, type and name. */
7200 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7201 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7202 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7220 /* Return TRUE if 2 section types are compatible. */
7223 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7224 bfd *bbfd, const asection *bsec)
7228 || abfd->xvec->flavour != bfd_target_elf_flavour
7229 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7232 return elf_section_type (asec) == elf_section_type (bsec);
7235 /* Final phase of ELF linker. */
7237 /* A structure we use to avoid passing large numbers of arguments. */
7239 struct elf_final_link_info
7241 /* General link information. */
7242 struct bfd_link_info *info;
7245 /* Symbol string table. */
7246 struct bfd_strtab_hash *symstrtab;
7247 /* .dynsym section. */
7248 asection *dynsym_sec;
7249 /* .hash section. */
7251 /* symbol version section (.gnu.version). */
7252 asection *symver_sec;
7253 /* Buffer large enough to hold contents of any section. */
7255 /* Buffer large enough to hold external relocs of any section. */
7256 void *external_relocs;
7257 /* Buffer large enough to hold internal relocs of any section. */
7258 Elf_Internal_Rela *internal_relocs;
7259 /* Buffer large enough to hold external local symbols of any input
7261 bfd_byte *external_syms;
7262 /* And a buffer for symbol section indices. */
7263 Elf_External_Sym_Shndx *locsym_shndx;
7264 /* Buffer large enough to hold internal local symbols of any input
7266 Elf_Internal_Sym *internal_syms;
7267 /* Array large enough to hold a symbol index for each local symbol
7268 of any input BFD. */
7270 /* Array large enough to hold a section pointer for each local
7271 symbol of any input BFD. */
7272 asection **sections;
7273 /* Buffer to hold swapped out symbols. */
7275 /* And one for symbol section indices. */
7276 Elf_External_Sym_Shndx *symshndxbuf;
7277 /* Number of swapped out symbols in buffer. */
7278 size_t symbuf_count;
7279 /* Number of symbols which fit in symbuf. */
7281 /* And same for symshndxbuf. */
7282 size_t shndxbuf_size;
7285 /* This struct is used to pass information to elf_link_output_extsym. */
7287 struct elf_outext_info
7290 bfd_boolean localsyms;
7291 struct elf_final_link_info *finfo;
7295 /* Support for evaluating a complex relocation.
7297 Complex relocations are generalized, self-describing relocations. The
7298 implementation of them consists of two parts: complex symbols, and the
7299 relocations themselves.
7301 The relocations are use a reserved elf-wide relocation type code (R_RELC
7302 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7303 information (start bit, end bit, word width, etc) into the addend. This
7304 information is extracted from CGEN-generated operand tables within gas.
7306 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7307 internal) representing prefix-notation expressions, including but not
7308 limited to those sorts of expressions normally encoded as addends in the
7309 addend field. The symbol mangling format is:
7312 | <unary-operator> ':' <node>
7313 | <binary-operator> ':' <node> ':' <node>
7316 <literal> := 's' <digits=N> ':' <N character symbol name>
7317 | 'S' <digits=N> ':' <N character section name>
7321 <binary-operator> := as in C
7322 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7325 set_symbol_value (bfd *bfd_with_globals,
7326 Elf_Internal_Sym *isymbuf,
7331 struct elf_link_hash_entry **sym_hashes;
7332 struct elf_link_hash_entry *h;
7333 size_t extsymoff = locsymcount;
7335 if (symidx < locsymcount)
7337 Elf_Internal_Sym *sym;
7339 sym = isymbuf + symidx;
7340 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7342 /* It is a local symbol: move it to the
7343 "absolute" section and give it a value. */
7344 sym->st_shndx = SHN_ABS;
7345 sym->st_value = val;
7348 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7352 /* It is a global symbol: set its link type
7353 to "defined" and give it a value. */
7355 sym_hashes = elf_sym_hashes (bfd_with_globals);
7356 h = sym_hashes [symidx - extsymoff];
7357 while (h->root.type == bfd_link_hash_indirect
7358 || h->root.type == bfd_link_hash_warning)
7359 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7360 h->root.type = bfd_link_hash_defined;
7361 h->root.u.def.value = val;
7362 h->root.u.def.section = bfd_abs_section_ptr;
7366 resolve_symbol (const char *name,
7368 struct elf_final_link_info *finfo,
7370 Elf_Internal_Sym *isymbuf,
7373 Elf_Internal_Sym *sym;
7374 struct bfd_link_hash_entry *global_entry;
7375 const char *candidate = NULL;
7376 Elf_Internal_Shdr *symtab_hdr;
7379 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7381 for (i = 0; i < locsymcount; ++ i)
7385 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7388 candidate = bfd_elf_string_from_elf_section (input_bfd,
7389 symtab_hdr->sh_link,
7392 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7393 name, candidate, (unsigned long) sym->st_value);
7395 if (candidate && strcmp (candidate, name) == 0)
7397 asection *sec = finfo->sections [i];
7399 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7400 *result += sec->output_offset + sec->output_section->vma;
7402 printf ("Found symbol with value %8.8lx\n",
7403 (unsigned long) *result);
7409 /* Hmm, haven't found it yet. perhaps it is a global. */
7410 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7411 FALSE, FALSE, TRUE);
7415 if (global_entry->type == bfd_link_hash_defined
7416 || global_entry->type == bfd_link_hash_defweak)
7418 *result = (global_entry->u.def.value
7419 + global_entry->u.def.section->output_section->vma
7420 + global_entry->u.def.section->output_offset);
7422 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7423 global_entry->root.string, (unsigned long) *result);
7432 resolve_section (const char *name,
7439 for (curr = sections; curr; curr = curr->next)
7440 if (strcmp (curr->name, name) == 0)
7442 *result = curr->vma;
7446 /* Hmm. still haven't found it. try pseudo-section names. */
7447 for (curr = sections; curr; curr = curr->next)
7449 len = strlen (curr->name);
7450 if (len > strlen (name))
7453 if (strncmp (curr->name, name, len) == 0)
7455 if (strncmp (".end", name + len, 4) == 0)
7457 *result = curr->vma + curr->size;
7461 /* Insert more pseudo-section names here, if you like. */
7469 undefined_reference (const char *reftype, const char *name)
7471 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7476 eval_symbol (bfd_vma *result,
7479 struct elf_final_link_info *finfo,
7481 Elf_Internal_Sym *isymbuf,
7490 const char *sym = *symp;
7492 bfd_boolean symbol_is_section = FALSE;
7497 if (len < 1 || len > sizeof (symbuf))
7499 bfd_set_error (bfd_error_invalid_operation);
7512 *result = strtoul (sym, (char **) symp, 16);
7516 symbol_is_section = TRUE;
7519 symlen = strtol (sym, (char **) symp, 10);
7520 sym = *symp + 1; /* Skip the trailing ':'. */
7522 if (symend < sym || symlen + 1 > sizeof (symbuf))
7524 bfd_set_error (bfd_error_invalid_operation);
7528 memcpy (symbuf, sym, symlen);
7529 symbuf[symlen] = '\0';
7530 *symp = sym + symlen;
7532 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7533 the symbol as a section, or vice-versa. so we're pretty liberal in our
7534 interpretation here; section means "try section first", not "must be a
7535 section", and likewise with symbol. */
7537 if (symbol_is_section)
7539 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7540 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7541 isymbuf, locsymcount))
7543 undefined_reference ("section", symbuf);
7549 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7550 isymbuf, locsymcount)
7551 && !resolve_section (symbuf, finfo->output_bfd->sections,
7554 undefined_reference ("symbol", symbuf);
7561 /* All that remains are operators. */
7563 #define UNARY_OP(op) \
7564 if (strncmp (sym, #op, strlen (#op)) == 0) \
7566 sym += strlen (#op); \
7570 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7571 isymbuf, locsymcount, signed_p)) \
7574 *result = op ((bfd_signed_vma) a); \
7580 #define BINARY_OP(op) \
7581 if (strncmp (sym, #op, strlen (#op)) == 0) \
7583 sym += strlen (#op); \
7587 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7588 isymbuf, locsymcount, signed_p)) \
7591 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7592 isymbuf, locsymcount, signed_p)) \
7595 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7625 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7626 bfd_set_error (bfd_error_invalid_operation);
7632 put_value (bfd_vma size,
7633 unsigned long chunksz,
7638 location += (size - chunksz);
7640 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7648 bfd_put_8 (input_bfd, x, location);
7651 bfd_put_16 (input_bfd, x, location);
7654 bfd_put_32 (input_bfd, x, location);
7658 bfd_put_64 (input_bfd, x, location);
7668 get_value (bfd_vma size,
7669 unsigned long chunksz,
7675 for (; size; size -= chunksz, location += chunksz)
7683 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7686 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7689 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7693 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7704 decode_complex_addend (unsigned long *start, /* in bits */
7705 unsigned long *oplen, /* in bits */
7706 unsigned long *len, /* in bits */
7707 unsigned long *wordsz, /* in bytes */
7708 unsigned long *chunksz, /* in bytes */
7709 unsigned long *lsb0_p,
7710 unsigned long *signed_p,
7711 unsigned long *trunc_p,
7712 unsigned long encoded)
7714 * start = encoded & 0x3F;
7715 * len = (encoded >> 6) & 0x3F;
7716 * oplen = (encoded >> 12) & 0x3F;
7717 * wordsz = (encoded >> 18) & 0xF;
7718 * chunksz = (encoded >> 22) & 0xF;
7719 * lsb0_p = (encoded >> 27) & 1;
7720 * signed_p = (encoded >> 28) & 1;
7721 * trunc_p = (encoded >> 29) & 1;
7724 bfd_reloc_status_type
7725 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7726 asection *input_section ATTRIBUTE_UNUSED,
7728 Elf_Internal_Rela *rel,
7731 bfd_vma shift, x, mask;
7732 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7733 bfd_reloc_status_type r;
7735 /* Perform this reloc, since it is complex.
7736 (this is not to say that it necessarily refers to a complex
7737 symbol; merely that it is a self-describing CGEN based reloc.
7738 i.e. the addend has the complete reloc information (bit start, end,
7739 word size, etc) encoded within it.). */
7741 decode_complex_addend (&start, &oplen, &len, &wordsz,
7742 &chunksz, &lsb0_p, &signed_p,
7743 &trunc_p, rel->r_addend);
7745 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7748 shift = (start + 1) - len;
7750 shift = (8 * wordsz) - (start + len);
7752 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7755 printf ("Doing complex reloc: "
7756 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7757 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7758 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7759 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7760 oplen, x, mask, relocation);
7765 /* Now do an overflow check. */
7766 r = bfd_check_overflow ((signed_p
7767 ? complain_overflow_signed
7768 : complain_overflow_unsigned),
7769 len, 0, (8 * wordsz),
7773 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7776 printf (" relocation: %8.8lx\n"
7777 " shifted mask: %8.8lx\n"
7778 " shifted/masked reloc: %8.8lx\n"
7779 " result: %8.8lx\n",
7780 relocation, (mask << shift),
7781 ((relocation & mask) << shift), x);
7783 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7787 /* When performing a relocatable link, the input relocations are
7788 preserved. But, if they reference global symbols, the indices
7789 referenced must be updated. Update all the relocations in
7790 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7793 elf_link_adjust_relocs (bfd *abfd,
7794 Elf_Internal_Shdr *rel_hdr,
7796 struct elf_link_hash_entry **rel_hash)
7799 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7801 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7802 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7803 bfd_vma r_type_mask;
7806 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7808 swap_in = bed->s->swap_reloc_in;
7809 swap_out = bed->s->swap_reloc_out;
7811 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7813 swap_in = bed->s->swap_reloca_in;
7814 swap_out = bed->s->swap_reloca_out;
7819 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7822 if (bed->s->arch_size == 32)
7829 r_type_mask = 0xffffffff;
7833 erela = rel_hdr->contents;
7834 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7836 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7839 if (*rel_hash == NULL)
7842 BFD_ASSERT ((*rel_hash)->indx >= 0);
7844 (*swap_in) (abfd, erela, irela);
7845 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7846 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7847 | (irela[j].r_info & r_type_mask));
7848 (*swap_out) (abfd, irela, erela);
7852 struct elf_link_sort_rela
7858 enum elf_reloc_type_class type;
7859 /* We use this as an array of size int_rels_per_ext_rel. */
7860 Elf_Internal_Rela rela[1];
7864 elf_link_sort_cmp1 (const void *A, const void *B)
7866 const struct elf_link_sort_rela *a = A;
7867 const struct elf_link_sort_rela *b = B;
7868 int relativea, relativeb;
7870 relativea = a->type == reloc_class_relative;
7871 relativeb = b->type == reloc_class_relative;
7873 if (relativea < relativeb)
7875 if (relativea > relativeb)
7877 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7879 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7881 if (a->rela->r_offset < b->rela->r_offset)
7883 if (a->rela->r_offset > b->rela->r_offset)
7889 elf_link_sort_cmp2 (const void *A, const void *B)
7891 const struct elf_link_sort_rela *a = A;
7892 const struct elf_link_sort_rela *b = B;
7895 if (a->u.offset < b->u.offset)
7897 if (a->u.offset > b->u.offset)
7899 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7900 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7905 if (a->rela->r_offset < b->rela->r_offset)
7907 if (a->rela->r_offset > b->rela->r_offset)
7913 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7915 asection *dynamic_relocs;
7918 bfd_size_type count, size;
7919 size_t i, ret, sort_elt, ext_size;
7920 bfd_byte *sort, *s_non_relative, *p;
7921 struct elf_link_sort_rela *sq;
7922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7923 int i2e = bed->s->int_rels_per_ext_rel;
7924 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7925 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7926 struct bfd_link_order *lo;
7928 bfd_boolean use_rela;
7930 /* Find a dynamic reloc section. */
7931 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7932 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7933 if (rela_dyn != NULL && rela_dyn->size > 0
7934 && rel_dyn != NULL && rel_dyn->size > 0)
7936 bfd_boolean use_rela_initialised = FALSE;
7938 /* This is just here to stop gcc from complaining.
7939 It's initialization checking code is not perfect. */
7942 /* Both sections are present. Examine the sizes
7943 of the indirect sections to help us choose. */
7944 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7945 if (lo->type == bfd_indirect_link_order)
7947 asection *o = lo->u.indirect.section;
7949 if ((o->size % bed->s->sizeof_rela) == 0)
7951 if ((o->size % bed->s->sizeof_rel) == 0)
7952 /* Section size is divisible by both rel and rela sizes.
7953 It is of no help to us. */
7957 /* Section size is only divisible by rela. */
7958 if (use_rela_initialised && (use_rela == FALSE))
7961 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7962 bfd_set_error (bfd_error_invalid_operation);
7968 use_rela_initialised = TRUE;
7972 else if ((o->size % bed->s->sizeof_rel) == 0)
7974 /* Section size is only divisible by rel. */
7975 if (use_rela_initialised && (use_rela == TRUE))
7978 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7979 bfd_set_error (bfd_error_invalid_operation);
7985 use_rela_initialised = TRUE;
7990 /* The section size is not divisible by either - something is wrong. */
7992 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7993 bfd_set_error (bfd_error_invalid_operation);
7998 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7999 if (lo->type == bfd_indirect_link_order)
8001 asection *o = lo->u.indirect.section;
8003 if ((o->size % bed->s->sizeof_rela) == 0)
8005 if ((o->size % bed->s->sizeof_rel) == 0)
8006 /* Section size is divisible by both rel and rela sizes.
8007 It is of no help to us. */
8011 /* Section size is only divisible by rela. */
8012 if (use_rela_initialised && (use_rela == FALSE))
8015 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8016 bfd_set_error (bfd_error_invalid_operation);
8022 use_rela_initialised = TRUE;
8026 else if ((o->size % bed->s->sizeof_rel) == 0)
8028 /* Section size is only divisible by rel. */
8029 if (use_rela_initialised && (use_rela == TRUE))
8032 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8033 bfd_set_error (bfd_error_invalid_operation);
8039 use_rela_initialised = TRUE;
8044 /* The section size is not divisible by either - something is wrong. */
8046 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8047 bfd_set_error (bfd_error_invalid_operation);
8052 if (! use_rela_initialised)
8056 else if (rela_dyn != NULL && rela_dyn->size > 0)
8058 else if (rel_dyn != NULL && rel_dyn->size > 0)
8065 dynamic_relocs = rela_dyn;
8066 ext_size = bed->s->sizeof_rela;
8067 swap_in = bed->s->swap_reloca_in;
8068 swap_out = bed->s->swap_reloca_out;
8072 dynamic_relocs = rel_dyn;
8073 ext_size = bed->s->sizeof_rel;
8074 swap_in = bed->s->swap_reloc_in;
8075 swap_out = bed->s->swap_reloc_out;
8079 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8080 if (lo->type == bfd_indirect_link_order)
8081 size += lo->u.indirect.section->size;
8083 if (size != dynamic_relocs->size)
8086 sort_elt = (sizeof (struct elf_link_sort_rela)
8087 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8089 count = dynamic_relocs->size / ext_size;
8092 sort = bfd_zmalloc (sort_elt * count);
8096 (*info->callbacks->warning)
8097 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8101 if (bed->s->arch_size == 32)
8102 r_sym_mask = ~(bfd_vma) 0xff;
8104 r_sym_mask = ~(bfd_vma) 0xffffffff;
8106 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8107 if (lo->type == bfd_indirect_link_order)
8109 bfd_byte *erel, *erelend;
8110 asection *o = lo->u.indirect.section;
8112 if (o->contents == NULL && o->size != 0)
8114 /* This is a reloc section that is being handled as a normal
8115 section. See bfd_section_from_shdr. We can't combine
8116 relocs in this case. */
8121 erelend = o->contents + o->size;
8122 p = sort + o->output_offset / ext_size * sort_elt;
8124 while (erel < erelend)
8126 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8128 (*swap_in) (abfd, erel, s->rela);
8129 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8130 s->u.sym_mask = r_sym_mask;
8136 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8138 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8140 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8141 if (s->type != reloc_class_relative)
8147 sq = (struct elf_link_sort_rela *) s_non_relative;
8148 for (; i < count; i++, p += sort_elt)
8150 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8151 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8153 sp->u.offset = sq->rela->r_offset;
8156 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8158 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8159 if (lo->type == bfd_indirect_link_order)
8161 bfd_byte *erel, *erelend;
8162 asection *o = lo->u.indirect.section;
8165 erelend = o->contents + o->size;
8166 p = sort + o->output_offset / ext_size * sort_elt;
8167 while (erel < erelend)
8169 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8170 (*swap_out) (abfd, s->rela, erel);
8177 *psec = dynamic_relocs;
8181 /* Flush the output symbols to the file. */
8184 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8185 const struct elf_backend_data *bed)
8187 if (finfo->symbuf_count > 0)
8189 Elf_Internal_Shdr *hdr;
8193 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8194 pos = hdr->sh_offset + hdr->sh_size;
8195 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8196 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8197 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8200 hdr->sh_size += amt;
8201 finfo->symbuf_count = 0;
8207 /* Add a symbol to the output symbol table. */
8210 elf_link_output_sym (struct elf_final_link_info *finfo,
8212 Elf_Internal_Sym *elfsym,
8213 asection *input_sec,
8214 struct elf_link_hash_entry *h)
8217 Elf_External_Sym_Shndx *destshndx;
8218 int (*output_symbol_hook)
8219 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8220 struct elf_link_hash_entry *);
8221 const struct elf_backend_data *bed;
8223 bed = get_elf_backend_data (finfo->output_bfd);
8224 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8225 if (output_symbol_hook != NULL)
8227 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8232 if (name == NULL || *name == '\0')
8233 elfsym->st_name = 0;
8234 else if (input_sec->flags & SEC_EXCLUDE)
8235 elfsym->st_name = 0;
8238 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8240 if (elfsym->st_name == (unsigned long) -1)
8244 if (finfo->symbuf_count >= finfo->symbuf_size)
8246 if (! elf_link_flush_output_syms (finfo, bed))
8250 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8251 destshndx = finfo->symshndxbuf;
8252 if (destshndx != NULL)
8254 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8258 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8259 destshndx = bfd_realloc (destshndx, amt * 2);
8260 if (destshndx == NULL)
8262 finfo->symshndxbuf = destshndx;
8263 memset ((char *) destshndx + amt, 0, amt);
8264 finfo->shndxbuf_size *= 2;
8266 destshndx += bfd_get_symcount (finfo->output_bfd);
8269 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8270 finfo->symbuf_count += 1;
8271 bfd_get_symcount (finfo->output_bfd) += 1;
8276 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8279 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8281 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8282 && sym->st_shndx < SHN_LORESERVE)
8284 /* The gABI doesn't support dynamic symbols in output sections
8286 (*_bfd_error_handler)
8287 (_("%B: Too many sections: %d (>= %d)"),
8288 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8289 bfd_set_error (bfd_error_nonrepresentable_section);
8295 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8296 allowing an unsatisfied unversioned symbol in the DSO to match a
8297 versioned symbol that would normally require an explicit version.
8298 We also handle the case that a DSO references a hidden symbol
8299 which may be satisfied by a versioned symbol in another DSO. */
8302 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8303 const struct elf_backend_data *bed,
8304 struct elf_link_hash_entry *h)
8307 struct elf_link_loaded_list *loaded;
8309 if (!is_elf_hash_table (info->hash))
8312 switch (h->root.type)
8318 case bfd_link_hash_undefined:
8319 case bfd_link_hash_undefweak:
8320 abfd = h->root.u.undef.abfd;
8321 if ((abfd->flags & DYNAMIC) == 0
8322 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8326 case bfd_link_hash_defined:
8327 case bfd_link_hash_defweak:
8328 abfd = h->root.u.def.section->owner;
8331 case bfd_link_hash_common:
8332 abfd = h->root.u.c.p->section->owner;
8335 BFD_ASSERT (abfd != NULL);
8337 for (loaded = elf_hash_table (info)->loaded;
8339 loaded = loaded->next)
8342 Elf_Internal_Shdr *hdr;
8343 bfd_size_type symcount;
8344 bfd_size_type extsymcount;
8345 bfd_size_type extsymoff;
8346 Elf_Internal_Shdr *versymhdr;
8347 Elf_Internal_Sym *isym;
8348 Elf_Internal_Sym *isymend;
8349 Elf_Internal_Sym *isymbuf;
8350 Elf_External_Versym *ever;
8351 Elf_External_Versym *extversym;
8353 input = loaded->abfd;
8355 /* We check each DSO for a possible hidden versioned definition. */
8357 || (input->flags & DYNAMIC) == 0
8358 || elf_dynversym (input) == 0)
8361 hdr = &elf_tdata (input)->dynsymtab_hdr;
8363 symcount = hdr->sh_size / bed->s->sizeof_sym;
8364 if (elf_bad_symtab (input))
8366 extsymcount = symcount;
8371 extsymcount = symcount - hdr->sh_info;
8372 extsymoff = hdr->sh_info;
8375 if (extsymcount == 0)
8378 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8380 if (isymbuf == NULL)
8383 /* Read in any version definitions. */
8384 versymhdr = &elf_tdata (input)->dynversym_hdr;
8385 extversym = bfd_malloc (versymhdr->sh_size);
8386 if (extversym == NULL)
8389 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8390 || (bfd_bread (extversym, versymhdr->sh_size, input)
8391 != versymhdr->sh_size))
8399 ever = extversym + extsymoff;
8400 isymend = isymbuf + extsymcount;
8401 for (isym = isymbuf; isym < isymend; isym++, ever++)
8404 Elf_Internal_Versym iver;
8405 unsigned short version_index;
8407 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8408 || isym->st_shndx == SHN_UNDEF)
8411 name = bfd_elf_string_from_elf_section (input,
8414 if (strcmp (name, h->root.root.string) != 0)
8417 _bfd_elf_swap_versym_in (input, ever, &iver);
8419 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8421 /* If we have a non-hidden versioned sym, then it should
8422 have provided a definition for the undefined sym. */
8426 version_index = iver.vs_vers & VERSYM_VERSION;
8427 if (version_index == 1 || version_index == 2)
8429 /* This is the base or first version. We can use it. */
8443 /* Add an external symbol to the symbol table. This is called from
8444 the hash table traversal routine. When generating a shared object,
8445 we go through the symbol table twice. The first time we output
8446 anything that might have been forced to local scope in a version
8447 script. The second time we output the symbols that are still
8451 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8453 struct elf_outext_info *eoinfo = data;
8454 struct elf_final_link_info *finfo = eoinfo->finfo;
8456 Elf_Internal_Sym sym;
8457 asection *input_sec;
8458 const struct elf_backend_data *bed;
8462 if (h->root.type == bfd_link_hash_warning)
8464 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8465 if (h->root.type == bfd_link_hash_new)
8469 /* Decide whether to output this symbol in this pass. */
8470 if (eoinfo->localsyms)
8472 if (!h->forced_local)
8477 if (h->forced_local)
8481 bed = get_elf_backend_data (finfo->output_bfd);
8483 if (h->root.type == bfd_link_hash_undefined)
8485 /* If we have an undefined symbol reference here then it must have
8486 come from a shared library that is being linked in. (Undefined
8487 references in regular files have already been handled). */
8488 bfd_boolean ignore_undef = FALSE;
8490 /* Some symbols may be special in that the fact that they're
8491 undefined can be safely ignored - let backend determine that. */
8492 if (bed->elf_backend_ignore_undef_symbol)
8493 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8495 /* If we are reporting errors for this situation then do so now. */
8496 if (ignore_undef == FALSE
8499 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8500 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8502 if (! (finfo->info->callbacks->undefined_symbol
8503 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8504 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8506 eoinfo->failed = TRUE;
8512 /* We should also warn if a forced local symbol is referenced from
8513 shared libraries. */
8514 if (! finfo->info->relocatable
8515 && (! finfo->info->shared)
8520 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8522 (*_bfd_error_handler)
8523 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8525 h->root.u.def.section == bfd_abs_section_ptr
8526 ? finfo->output_bfd : h->root.u.def.section->owner,
8527 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8529 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8530 ? "hidden" : "local",
8531 h->root.root.string);
8532 eoinfo->failed = TRUE;
8536 /* We don't want to output symbols that have never been mentioned by
8537 a regular file, or that we have been told to strip. However, if
8538 h->indx is set to -2, the symbol is used by a reloc and we must
8542 else if ((h->def_dynamic
8544 || h->root.type == bfd_link_hash_new)
8548 else if (finfo->info->strip == strip_all)
8550 else if (finfo->info->strip == strip_some
8551 && bfd_hash_lookup (finfo->info->keep_hash,
8552 h->root.root.string, FALSE, FALSE) == NULL)
8554 else if (finfo->info->strip_discarded
8555 && (h->root.type == bfd_link_hash_defined
8556 || h->root.type == bfd_link_hash_defweak)
8557 && elf_discarded_section (h->root.u.def.section))
8562 /* If we're stripping it, and it's not a dynamic symbol, there's
8563 nothing else to do unless it is a forced local symbol. */
8566 && !h->forced_local)
8570 sym.st_size = h->size;
8571 sym.st_other = h->other;
8572 if (h->forced_local)
8573 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8574 else if (h->root.type == bfd_link_hash_undefweak
8575 || h->root.type == bfd_link_hash_defweak)
8576 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8578 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8580 switch (h->root.type)
8583 case bfd_link_hash_new:
8584 case bfd_link_hash_warning:
8588 case bfd_link_hash_undefined:
8589 case bfd_link_hash_undefweak:
8590 input_sec = bfd_und_section_ptr;
8591 sym.st_shndx = SHN_UNDEF;
8594 case bfd_link_hash_defined:
8595 case bfd_link_hash_defweak:
8597 input_sec = h->root.u.def.section;
8598 if (input_sec->output_section != NULL)
8601 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8602 input_sec->output_section);
8603 if (sym.st_shndx == SHN_BAD)
8605 (*_bfd_error_handler)
8606 (_("%B: could not find output section %A for input section %A"),
8607 finfo->output_bfd, input_sec->output_section, input_sec);
8608 eoinfo->failed = TRUE;
8612 /* ELF symbols in relocatable files are section relative,
8613 but in nonrelocatable files they are virtual
8615 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8616 if (! finfo->info->relocatable)
8618 sym.st_value += input_sec->output_section->vma;
8619 if (h->type == STT_TLS)
8621 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8622 if (tls_sec != NULL)
8623 sym.st_value -= tls_sec->vma;
8626 /* The TLS section may have been garbage collected. */
8627 BFD_ASSERT (finfo->info->gc_sections
8628 && !input_sec->gc_mark);
8635 BFD_ASSERT (input_sec->owner == NULL
8636 || (input_sec->owner->flags & DYNAMIC) != 0);
8637 sym.st_shndx = SHN_UNDEF;
8638 input_sec = bfd_und_section_ptr;
8643 case bfd_link_hash_common:
8644 input_sec = h->root.u.c.p->section;
8645 sym.st_shndx = bed->common_section_index (input_sec);
8646 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8649 case bfd_link_hash_indirect:
8650 /* These symbols are created by symbol versioning. They point
8651 to the decorated version of the name. For example, if the
8652 symbol foo@@GNU_1.2 is the default, which should be used when
8653 foo is used with no version, then we add an indirect symbol
8654 foo which points to foo@@GNU_1.2. We ignore these symbols,
8655 since the indirected symbol is already in the hash table. */
8659 /* Give the processor backend a chance to tweak the symbol value,
8660 and also to finish up anything that needs to be done for this
8661 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8662 forced local syms when non-shared is due to a historical quirk.
8663 STT_GNU_IFUNC symbol must go through PLT only if it is ever
8665 if ((h->type == STT_GNU_IFUNC
8667 && !finfo->info->relocatable)
8668 || ((h->dynindx != -1
8670 && ((finfo->info->shared
8671 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8672 || h->root.type != bfd_link_hash_undefweak))
8673 || !h->forced_local)
8674 && elf_hash_table (finfo->info)->dynamic_sections_created))
8676 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8677 (finfo->output_bfd, finfo->info, h, &sym)))
8679 eoinfo->failed = TRUE;
8684 /* If we are marking the symbol as undefined, and there are no
8685 non-weak references to this symbol from a regular object, then
8686 mark the symbol as weak undefined; if there are non-weak
8687 references, mark the symbol as strong. We can't do this earlier,
8688 because it might not be marked as undefined until the
8689 finish_dynamic_symbol routine gets through with it. */
8690 if (sym.st_shndx == SHN_UNDEF
8692 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8693 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8696 unsigned int type = ELF_ST_TYPE (sym.st_info);
8698 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8699 if (type == STT_GNU_IFUNC)
8702 if (h->ref_regular_nonweak)
8703 bindtype = STB_GLOBAL;
8705 bindtype = STB_WEAK;
8706 sym.st_info = ELF_ST_INFO (bindtype, type);
8709 /* If this is a symbol defined in a dynamic library, don't use the
8710 symbol size from the dynamic library. Relinking an executable
8711 against a new library may introduce gratuitous changes in the
8712 executable's symbols if we keep the size. */
8713 if (sym.st_shndx == SHN_UNDEF
8718 /* If a non-weak symbol with non-default visibility is not defined
8719 locally, it is a fatal error. */
8720 if (! finfo->info->relocatable
8721 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8722 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8723 && h->root.type == bfd_link_hash_undefined
8726 (*_bfd_error_handler)
8727 (_("%B: %s symbol `%s' isn't defined"),
8729 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8731 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8732 ? "internal" : "hidden",
8733 h->root.root.string);
8734 eoinfo->failed = TRUE;
8738 /* If this symbol should be put in the .dynsym section, then put it
8739 there now. We already know the symbol index. We also fill in
8740 the entry in the .hash section. */
8741 if (h->dynindx != -1
8742 && elf_hash_table (finfo->info)->dynamic_sections_created)
8746 sym.st_name = h->dynstr_index;
8747 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8748 if (! check_dynsym (finfo->output_bfd, &sym))
8750 eoinfo->failed = TRUE;
8753 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8755 if (finfo->hash_sec != NULL)
8757 size_t hash_entry_size;
8758 bfd_byte *bucketpos;
8763 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8764 bucket = h->u.elf_hash_value % bucketcount;
8767 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8768 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8769 + (bucket + 2) * hash_entry_size);
8770 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8771 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8772 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8773 ((bfd_byte *) finfo->hash_sec->contents
8774 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8777 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8779 Elf_Internal_Versym iversym;
8780 Elf_External_Versym *eversym;
8782 if (!h->def_regular)
8784 if (h->verinfo.verdef == NULL)
8785 iversym.vs_vers = 0;
8787 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8791 if (h->verinfo.vertree == NULL)
8792 iversym.vs_vers = 1;
8794 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8795 if (finfo->info->create_default_symver)
8800 iversym.vs_vers |= VERSYM_HIDDEN;
8802 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8803 eversym += h->dynindx;
8804 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8808 /* If we're stripping it, then it was just a dynamic symbol, and
8809 there's nothing else to do. */
8810 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8813 indx = bfd_get_symcount (finfo->output_bfd);
8814 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8817 eoinfo->failed = TRUE;
8822 else if (h->indx == -2)
8828 /* Return TRUE if special handling is done for relocs in SEC against
8829 symbols defined in discarded sections. */
8832 elf_section_ignore_discarded_relocs (asection *sec)
8834 const struct elf_backend_data *bed;
8836 switch (sec->sec_info_type)
8838 case ELF_INFO_TYPE_STABS:
8839 case ELF_INFO_TYPE_EH_FRAME:
8845 bed = get_elf_backend_data (sec->owner);
8846 if (bed->elf_backend_ignore_discarded_relocs != NULL
8847 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8853 /* Return a mask saying how ld should treat relocations in SEC against
8854 symbols defined in discarded sections. If this function returns
8855 COMPLAIN set, ld will issue a warning message. If this function
8856 returns PRETEND set, and the discarded section was link-once and the
8857 same size as the kept link-once section, ld will pretend that the
8858 symbol was actually defined in the kept section. Otherwise ld will
8859 zero the reloc (at least that is the intent, but some cooperation by
8860 the target dependent code is needed, particularly for REL targets). */
8863 _bfd_elf_default_action_discarded (asection *sec)
8865 if (sec->flags & SEC_DEBUGGING)
8868 if (strcmp (".eh_frame", sec->name) == 0)
8871 if (strcmp (".gcc_except_table", sec->name) == 0)
8874 return COMPLAIN | PRETEND;
8877 /* Find a match between a section and a member of a section group. */
8880 match_group_member (asection *sec, asection *group,
8881 struct bfd_link_info *info)
8883 asection *first = elf_next_in_group (group);
8884 asection *s = first;
8888 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8891 s = elf_next_in_group (s);
8899 /* Check if the kept section of a discarded section SEC can be used
8900 to replace it. Return the replacement if it is OK. Otherwise return
8904 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8908 kept = sec->kept_section;
8911 if ((kept->flags & SEC_GROUP) != 0)
8912 kept = match_group_member (sec, kept, info);
8914 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8915 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8917 sec->kept_section = kept;
8922 /* Link an input file into the linker output file. This function
8923 handles all the sections and relocations of the input file at once.
8924 This is so that we only have to read the local symbols once, and
8925 don't have to keep them in memory. */
8928 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8930 int (*relocate_section)
8931 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8932 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8934 Elf_Internal_Shdr *symtab_hdr;
8937 Elf_Internal_Sym *isymbuf;
8938 Elf_Internal_Sym *isym;
8939 Elf_Internal_Sym *isymend;
8941 asection **ppsection;
8943 const struct elf_backend_data *bed;
8944 struct elf_link_hash_entry **sym_hashes;
8946 output_bfd = finfo->output_bfd;
8947 bed = get_elf_backend_data (output_bfd);
8948 relocate_section = bed->elf_backend_relocate_section;
8950 /* If this is a dynamic object, we don't want to do anything here:
8951 we don't want the local symbols, and we don't want the section
8953 if ((input_bfd->flags & DYNAMIC) != 0)
8956 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8957 if (elf_bad_symtab (input_bfd))
8959 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8964 locsymcount = symtab_hdr->sh_info;
8965 extsymoff = symtab_hdr->sh_info;
8968 /* Read the local symbols. */
8969 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8970 if (isymbuf == NULL && locsymcount != 0)
8972 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8973 finfo->internal_syms,
8974 finfo->external_syms,
8975 finfo->locsym_shndx);
8976 if (isymbuf == NULL)
8980 /* Find local symbol sections and adjust values of symbols in
8981 SEC_MERGE sections. Write out those local symbols we know are
8982 going into the output file. */
8983 isymend = isymbuf + locsymcount;
8984 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8986 isym++, pindex++, ppsection++)
8990 Elf_Internal_Sym osym;
8996 if (elf_bad_symtab (input_bfd))
8998 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9005 if (isym->st_shndx == SHN_UNDEF)
9006 isec = bfd_und_section_ptr;
9007 else if (isym->st_shndx == SHN_ABS)
9008 isec = bfd_abs_section_ptr;
9009 else if (isym->st_shndx == SHN_COMMON)
9010 isec = bfd_com_section_ptr;
9013 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9016 /* Don't attempt to output symbols with st_shnx in the
9017 reserved range other than SHN_ABS and SHN_COMMON. */
9021 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9022 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9024 _bfd_merged_section_offset (output_bfd, &isec,
9025 elf_section_data (isec)->sec_info,
9031 /* Don't output the first, undefined, symbol. */
9032 if (ppsection == finfo->sections)
9035 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9037 /* We never output section symbols. Instead, we use the
9038 section symbol of the corresponding section in the output
9043 /* If we are stripping all symbols, we don't want to output this
9045 if (finfo->info->strip == strip_all)
9048 /* If we are discarding all local symbols, we don't want to
9049 output this one. If we are generating a relocatable output
9050 file, then some of the local symbols may be required by
9051 relocs; we output them below as we discover that they are
9053 if (finfo->info->discard == discard_all)
9056 /* If this symbol is defined in a section which we are
9057 discarding, we don't need to keep it. */
9058 if (isym->st_shndx != SHN_UNDEF
9059 && isym->st_shndx < SHN_LORESERVE
9060 && bfd_section_removed_from_list (output_bfd,
9061 isec->output_section))
9064 /* Get the name of the symbol. */
9065 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9070 /* See if we are discarding symbols with this name. */
9071 if ((finfo->info->strip == strip_some
9072 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9074 || (((finfo->info->discard == discard_sec_merge
9075 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9076 || finfo->info->discard == discard_l)
9077 && bfd_is_local_label_name (input_bfd, name)))
9082 /* Adjust the section index for the output file. */
9083 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9084 isec->output_section);
9085 if (osym.st_shndx == SHN_BAD)
9088 /* ELF symbols in relocatable files are section relative, but
9089 in executable files they are virtual addresses. Note that
9090 this code assumes that all ELF sections have an associated
9091 BFD section with a reasonable value for output_offset; below
9092 we assume that they also have a reasonable value for
9093 output_section. Any special sections must be set up to meet
9094 these requirements. */
9095 osym.st_value += isec->output_offset;
9096 if (! finfo->info->relocatable)
9098 osym.st_value += isec->output_section->vma;
9099 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9101 /* STT_TLS symbols are relative to PT_TLS segment base. */
9102 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9103 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9107 indx = bfd_get_symcount (output_bfd);
9108 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9115 /* Relocate the contents of each section. */
9116 sym_hashes = elf_sym_hashes (input_bfd);
9117 for (o = input_bfd->sections; o != NULL; o = o->next)
9121 if (! o->linker_mark)
9123 /* This section was omitted from the link. */
9127 if (finfo->info->relocatable
9128 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9130 /* Deal with the group signature symbol. */
9131 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9132 unsigned long symndx = sec_data->this_hdr.sh_info;
9133 asection *osec = o->output_section;
9135 if (symndx >= locsymcount
9136 || (elf_bad_symtab (input_bfd)
9137 && finfo->sections[symndx] == NULL))
9139 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9140 while (h->root.type == bfd_link_hash_indirect
9141 || h->root.type == bfd_link_hash_warning)
9142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9143 /* Arrange for symbol to be output. */
9145 elf_section_data (osec)->this_hdr.sh_info = -2;
9147 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9149 /* We'll use the output section target_index. */
9150 asection *sec = finfo->sections[symndx]->output_section;
9151 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9155 if (finfo->indices[symndx] == -1)
9157 /* Otherwise output the local symbol now. */
9158 Elf_Internal_Sym sym = isymbuf[symndx];
9159 asection *sec = finfo->sections[symndx]->output_section;
9164 name = bfd_elf_string_from_elf_section (input_bfd,
9165 symtab_hdr->sh_link,
9170 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9172 if (sym.st_shndx == SHN_BAD)
9175 sym.st_value += o->output_offset;
9177 indx = bfd_get_symcount (output_bfd);
9178 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9182 finfo->indices[symndx] = indx;
9186 elf_section_data (osec)->this_hdr.sh_info
9187 = finfo->indices[symndx];
9191 if ((o->flags & SEC_HAS_CONTENTS) == 0
9192 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9195 if ((o->flags & SEC_LINKER_CREATED) != 0)
9197 /* Section was created by _bfd_elf_link_create_dynamic_sections
9202 /* Get the contents of the section. They have been cached by a
9203 relaxation routine. Note that o is a section in an input
9204 file, so the contents field will not have been set by any of
9205 the routines which work on output files. */
9206 if (elf_section_data (o)->this_hdr.contents != NULL)
9207 contents = elf_section_data (o)->this_hdr.contents;
9210 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9212 contents = finfo->contents;
9213 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9217 if ((o->flags & SEC_RELOC) != 0)
9219 Elf_Internal_Rela *internal_relocs;
9220 Elf_Internal_Rela *rel, *relend;
9221 bfd_vma r_type_mask;
9223 int action_discarded;
9226 /* Get the swapped relocs. */
9228 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9229 finfo->internal_relocs, FALSE);
9230 if (internal_relocs == NULL
9231 && o->reloc_count > 0)
9234 if (bed->s->arch_size == 32)
9241 r_type_mask = 0xffffffff;
9245 action_discarded = -1;
9246 if (!elf_section_ignore_discarded_relocs (o))
9247 action_discarded = (*bed->action_discarded) (o);
9249 /* Run through the relocs evaluating complex reloc symbols and
9250 looking for relocs against symbols from discarded sections
9251 or section symbols from removed link-once sections.
9252 Complain about relocs against discarded sections. Zero
9253 relocs against removed link-once sections. */
9255 rel = internal_relocs;
9256 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9257 for ( ; rel < relend; rel++)
9259 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9260 unsigned int s_type;
9261 asection **ps, *sec;
9262 struct elf_link_hash_entry *h = NULL;
9263 const char *sym_name;
9265 if (r_symndx == STN_UNDEF)
9268 if (r_symndx >= locsymcount
9269 || (elf_bad_symtab (input_bfd)
9270 && finfo->sections[r_symndx] == NULL))
9272 h = sym_hashes[r_symndx - extsymoff];
9274 /* Badly formatted input files can contain relocs that
9275 reference non-existant symbols. Check here so that
9276 we do not seg fault. */
9281 sprintf_vma (buffer, rel->r_info);
9282 (*_bfd_error_handler)
9283 (_("error: %B contains a reloc (0x%s) for section %A "
9284 "that references a non-existent global symbol"),
9285 input_bfd, o, buffer);
9286 bfd_set_error (bfd_error_bad_value);
9290 while (h->root.type == bfd_link_hash_indirect
9291 || h->root.type == bfd_link_hash_warning)
9292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9297 if (h->root.type == bfd_link_hash_defined
9298 || h->root.type == bfd_link_hash_defweak)
9299 ps = &h->root.u.def.section;
9301 sym_name = h->root.root.string;
9305 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9307 s_type = ELF_ST_TYPE (sym->st_info);
9308 ps = &finfo->sections[r_symndx];
9309 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9313 if ((s_type == STT_RELC || s_type == STT_SRELC)
9314 && !finfo->info->relocatable)
9317 bfd_vma dot = (rel->r_offset
9318 + o->output_offset + o->output_section->vma);
9320 printf ("Encountered a complex symbol!");
9321 printf (" (input_bfd %s, section %s, reloc %ld\n",
9322 input_bfd->filename, o->name, rel - internal_relocs);
9323 printf (" symbol: idx %8.8lx, name %s\n",
9324 r_symndx, sym_name);
9325 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9326 (unsigned long) rel->r_info,
9327 (unsigned long) rel->r_offset);
9329 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9330 isymbuf, locsymcount, s_type == STT_SRELC))
9333 /* Symbol evaluated OK. Update to absolute value. */
9334 set_symbol_value (input_bfd, isymbuf, locsymcount,
9339 if (action_discarded != -1 && ps != NULL)
9341 /* Complain if the definition comes from a
9342 discarded section. */
9343 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9345 BFD_ASSERT (r_symndx != 0);
9346 if (action_discarded & COMPLAIN)
9347 (*finfo->info->callbacks->einfo)
9348 (_("%X`%s' referenced in section `%A' of %B: "
9349 "defined in discarded section `%A' of %B\n"),
9350 sym_name, o, input_bfd, sec, sec->owner);
9352 /* Try to do the best we can to support buggy old
9353 versions of gcc. Pretend that the symbol is
9354 really defined in the kept linkonce section.
9355 FIXME: This is quite broken. Modifying the
9356 symbol here means we will be changing all later
9357 uses of the symbol, not just in this section. */
9358 if (action_discarded & PRETEND)
9362 kept = _bfd_elf_check_kept_section (sec,
9374 /* Relocate the section by invoking a back end routine.
9376 The back end routine is responsible for adjusting the
9377 section contents as necessary, and (if using Rela relocs
9378 and generating a relocatable output file) adjusting the
9379 reloc addend as necessary.
9381 The back end routine does not have to worry about setting
9382 the reloc address or the reloc symbol index.
9384 The back end routine is given a pointer to the swapped in
9385 internal symbols, and can access the hash table entries
9386 for the external symbols via elf_sym_hashes (input_bfd).
9388 When generating relocatable output, the back end routine
9389 must handle STB_LOCAL/STT_SECTION symbols specially. The
9390 output symbol is going to be a section symbol
9391 corresponding to the output section, which will require
9392 the addend to be adjusted. */
9394 ret = (*relocate_section) (output_bfd, finfo->info,
9395 input_bfd, o, contents,
9403 || finfo->info->relocatable
9404 || finfo->info->emitrelocations)
9406 Elf_Internal_Rela *irela;
9407 Elf_Internal_Rela *irelaend;
9408 bfd_vma last_offset;
9409 struct elf_link_hash_entry **rel_hash;
9410 struct elf_link_hash_entry **rel_hash_list;
9411 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9412 unsigned int next_erel;
9413 bfd_boolean rela_normal;
9415 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9416 rela_normal = (bed->rela_normal
9417 && (input_rel_hdr->sh_entsize
9418 == bed->s->sizeof_rela));
9420 /* Adjust the reloc addresses and symbol indices. */
9422 irela = internal_relocs;
9423 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9424 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9425 + elf_section_data (o->output_section)->rel_count
9426 + elf_section_data (o->output_section)->rel_count2);
9427 rel_hash_list = rel_hash;
9428 last_offset = o->output_offset;
9429 if (!finfo->info->relocatable)
9430 last_offset += o->output_section->vma;
9431 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9433 unsigned long r_symndx;
9435 Elf_Internal_Sym sym;
9437 if (next_erel == bed->s->int_rels_per_ext_rel)
9443 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9446 if (irela->r_offset >= (bfd_vma) -2)
9448 /* This is a reloc for a deleted entry or somesuch.
9449 Turn it into an R_*_NONE reloc, at the same
9450 offset as the last reloc. elf_eh_frame.c and
9451 bfd_elf_discard_info rely on reloc offsets
9453 irela->r_offset = last_offset;
9455 irela->r_addend = 0;
9459 irela->r_offset += o->output_offset;
9461 /* Relocs in an executable have to be virtual addresses. */
9462 if (!finfo->info->relocatable)
9463 irela->r_offset += o->output_section->vma;
9465 last_offset = irela->r_offset;
9467 r_symndx = irela->r_info >> r_sym_shift;
9468 if (r_symndx == STN_UNDEF)
9471 if (r_symndx >= locsymcount
9472 || (elf_bad_symtab (input_bfd)
9473 && finfo->sections[r_symndx] == NULL))
9475 struct elf_link_hash_entry *rh;
9478 /* This is a reloc against a global symbol. We
9479 have not yet output all the local symbols, so
9480 we do not know the symbol index of any global
9481 symbol. We set the rel_hash entry for this
9482 reloc to point to the global hash table entry
9483 for this symbol. The symbol index is then
9484 set at the end of bfd_elf_final_link. */
9485 indx = r_symndx - extsymoff;
9486 rh = elf_sym_hashes (input_bfd)[indx];
9487 while (rh->root.type == bfd_link_hash_indirect
9488 || rh->root.type == bfd_link_hash_warning)
9489 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9491 /* Setting the index to -2 tells
9492 elf_link_output_extsym that this symbol is
9494 BFD_ASSERT (rh->indx < 0);
9502 /* This is a reloc against a local symbol. */
9505 sym = isymbuf[r_symndx];
9506 sec = finfo->sections[r_symndx];
9507 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9509 /* I suppose the backend ought to fill in the
9510 section of any STT_SECTION symbol against a
9511 processor specific section. */
9513 if (bfd_is_abs_section (sec))
9515 else if (sec == NULL || sec->owner == NULL)
9517 bfd_set_error (bfd_error_bad_value);
9522 asection *osec = sec->output_section;
9524 /* If we have discarded a section, the output
9525 section will be the absolute section. In
9526 case of discarded SEC_MERGE sections, use
9527 the kept section. relocate_section should
9528 have already handled discarded linkonce
9530 if (bfd_is_abs_section (osec)
9531 && sec->kept_section != NULL
9532 && sec->kept_section->output_section != NULL)
9534 osec = sec->kept_section->output_section;
9535 irela->r_addend -= osec->vma;
9538 if (!bfd_is_abs_section (osec))
9540 r_symndx = osec->target_index;
9543 struct elf_link_hash_table *htab;
9546 htab = elf_hash_table (finfo->info);
9547 oi = htab->text_index_section;
9548 if ((osec->flags & SEC_READONLY) == 0
9549 && htab->data_index_section != NULL)
9550 oi = htab->data_index_section;
9554 irela->r_addend += osec->vma - oi->vma;
9555 r_symndx = oi->target_index;
9559 BFD_ASSERT (r_symndx != 0);
9563 /* Adjust the addend according to where the
9564 section winds up in the output section. */
9566 irela->r_addend += sec->output_offset;
9570 if (finfo->indices[r_symndx] == -1)
9572 unsigned long shlink;
9577 if (finfo->info->strip == strip_all)
9579 /* You can't do ld -r -s. */
9580 bfd_set_error (bfd_error_invalid_operation);
9584 /* This symbol was skipped earlier, but
9585 since it is needed by a reloc, we
9586 must output it now. */
9587 shlink = symtab_hdr->sh_link;
9588 name = (bfd_elf_string_from_elf_section
9589 (input_bfd, shlink, sym.st_name));
9593 osec = sec->output_section;
9595 _bfd_elf_section_from_bfd_section (output_bfd,
9597 if (sym.st_shndx == SHN_BAD)
9600 sym.st_value += sec->output_offset;
9601 if (! finfo->info->relocatable)
9603 sym.st_value += osec->vma;
9604 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9606 /* STT_TLS symbols are relative to PT_TLS
9608 BFD_ASSERT (elf_hash_table (finfo->info)
9610 sym.st_value -= (elf_hash_table (finfo->info)
9615 indx = bfd_get_symcount (output_bfd);
9616 ret = elf_link_output_sym (finfo, name, &sym, sec,
9621 finfo->indices[r_symndx] = indx;
9626 r_symndx = finfo->indices[r_symndx];
9629 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9630 | (irela->r_info & r_type_mask));
9633 /* Swap out the relocs. */
9634 if (input_rel_hdr->sh_size != 0
9635 && !bed->elf_backend_emit_relocs (output_bfd, o,
9641 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9642 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9644 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9645 * bed->s->int_rels_per_ext_rel);
9646 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9647 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9656 /* Write out the modified section contents. */
9657 if (bed->elf_backend_write_section
9658 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9661 /* Section written out. */
9663 else switch (o->sec_info_type)
9665 case ELF_INFO_TYPE_STABS:
9666 if (! (_bfd_write_section_stabs
9668 &elf_hash_table (finfo->info)->stab_info,
9669 o, &elf_section_data (o)->sec_info, contents)))
9672 case ELF_INFO_TYPE_MERGE:
9673 if (! _bfd_write_merged_section (output_bfd, o,
9674 elf_section_data (o)->sec_info))
9677 case ELF_INFO_TYPE_EH_FRAME:
9679 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9686 if (! (o->flags & SEC_EXCLUDE)
9687 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9688 && ! bfd_set_section_contents (output_bfd, o->output_section,
9690 (file_ptr) o->output_offset,
9701 /* Generate a reloc when linking an ELF file. This is a reloc
9702 requested by the linker, and does not come from any input file. This
9703 is used to build constructor and destructor tables when linking
9707 elf_reloc_link_order (bfd *output_bfd,
9708 struct bfd_link_info *info,
9709 asection *output_section,
9710 struct bfd_link_order *link_order)
9712 reloc_howto_type *howto;
9716 struct elf_link_hash_entry **rel_hash_ptr;
9717 Elf_Internal_Shdr *rel_hdr;
9718 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9719 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9723 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9726 bfd_set_error (bfd_error_bad_value);
9730 addend = link_order->u.reloc.p->addend;
9732 /* Figure out the symbol index. */
9733 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9734 + elf_section_data (output_section)->rel_count
9735 + elf_section_data (output_section)->rel_count2);
9736 if (link_order->type == bfd_section_reloc_link_order)
9738 indx = link_order->u.reloc.p->u.section->target_index;
9739 BFD_ASSERT (indx != 0);
9740 *rel_hash_ptr = NULL;
9744 struct elf_link_hash_entry *h;
9746 /* Treat a reloc against a defined symbol as though it were
9747 actually against the section. */
9748 h = ((struct elf_link_hash_entry *)
9749 bfd_wrapped_link_hash_lookup (output_bfd, info,
9750 link_order->u.reloc.p->u.name,
9751 FALSE, FALSE, TRUE));
9753 && (h->root.type == bfd_link_hash_defined
9754 || h->root.type == bfd_link_hash_defweak))
9758 section = h->root.u.def.section;
9759 indx = section->output_section->target_index;
9760 *rel_hash_ptr = NULL;
9761 /* It seems that we ought to add the symbol value to the
9762 addend here, but in practice it has already been added
9763 because it was passed to constructor_callback. */
9764 addend += section->output_section->vma + section->output_offset;
9768 /* Setting the index to -2 tells elf_link_output_extsym that
9769 this symbol is used by a reloc. */
9776 if (! ((*info->callbacks->unattached_reloc)
9777 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9783 /* If this is an inplace reloc, we must write the addend into the
9785 if (howto->partial_inplace && addend != 0)
9788 bfd_reloc_status_type rstat;
9791 const char *sym_name;
9793 size = bfd_get_reloc_size (howto);
9794 buf = bfd_zmalloc (size);
9797 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9804 case bfd_reloc_outofrange:
9807 case bfd_reloc_overflow:
9808 if (link_order->type == bfd_section_reloc_link_order)
9809 sym_name = bfd_section_name (output_bfd,
9810 link_order->u.reloc.p->u.section);
9812 sym_name = link_order->u.reloc.p->u.name;
9813 if (! ((*info->callbacks->reloc_overflow)
9814 (info, NULL, sym_name, howto->name, addend, NULL,
9815 NULL, (bfd_vma) 0)))
9822 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9823 link_order->offset, size);
9829 /* The address of a reloc is relative to the section in a
9830 relocatable file, and is a virtual address in an executable
9832 offset = link_order->offset;
9833 if (! info->relocatable)
9834 offset += output_section->vma;
9836 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9838 irel[i].r_offset = offset;
9840 irel[i].r_addend = 0;
9842 if (bed->s->arch_size == 32)
9843 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9845 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9847 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9848 erel = rel_hdr->contents;
9849 if (rel_hdr->sh_type == SHT_REL)
9851 erel += (elf_section_data (output_section)->rel_count
9852 * bed->s->sizeof_rel);
9853 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9857 irel[0].r_addend = addend;
9858 erel += (elf_section_data (output_section)->rel_count
9859 * bed->s->sizeof_rela);
9860 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9863 ++elf_section_data (output_section)->rel_count;
9869 /* Get the output vma of the section pointed to by the sh_link field. */
9872 elf_get_linked_section_vma (struct bfd_link_order *p)
9874 Elf_Internal_Shdr **elf_shdrp;
9878 s = p->u.indirect.section;
9879 elf_shdrp = elf_elfsections (s->owner);
9880 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9881 elfsec = elf_shdrp[elfsec]->sh_link;
9883 The Intel C compiler generates SHT_IA_64_UNWIND with
9884 SHF_LINK_ORDER. But it doesn't set the sh_link or
9885 sh_info fields. Hence we could get the situation
9886 where elfsec is 0. */
9889 const struct elf_backend_data *bed
9890 = get_elf_backend_data (s->owner);
9891 if (bed->link_order_error_handler)
9892 bed->link_order_error_handler
9893 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9898 s = elf_shdrp[elfsec]->bfd_section;
9899 return s->output_section->vma + s->output_offset;
9904 /* Compare two sections based on the locations of the sections they are
9905 linked to. Used by elf_fixup_link_order. */
9908 compare_link_order (const void * a, const void * b)
9913 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9914 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9921 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9922 order as their linked sections. Returns false if this could not be done
9923 because an output section includes both ordered and unordered
9924 sections. Ideally we'd do this in the linker proper. */
9927 elf_fixup_link_order (bfd *abfd, asection *o)
9932 struct bfd_link_order *p;
9934 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9936 struct bfd_link_order **sections;
9937 asection *s, *other_sec, *linkorder_sec;
9941 linkorder_sec = NULL;
9944 for (p = o->map_head.link_order; p != NULL; p = p->next)
9946 if (p->type == bfd_indirect_link_order)
9948 s = p->u.indirect.section;
9950 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9951 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9952 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9953 && elfsec < elf_numsections (sub)
9954 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
9955 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
9969 if (seen_other && seen_linkorder)
9971 if (other_sec && linkorder_sec)
9972 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9974 linkorder_sec->owner, other_sec,
9977 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9979 bfd_set_error (bfd_error_bad_value);
9984 if (!seen_linkorder)
9987 sections = (struct bfd_link_order **)
9988 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9989 if (sections == NULL)
9993 for (p = o->map_head.link_order; p != NULL; p = p->next)
9995 sections[seen_linkorder++] = p;
9997 /* Sort the input sections in the order of their linked section. */
9998 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9999 compare_link_order);
10001 /* Change the offsets of the sections. */
10003 for (n = 0; n < seen_linkorder; n++)
10005 s = sections[n]->u.indirect.section;
10006 offset &= ~(bfd_vma) 0 << s->alignment_power;
10007 s->output_offset = offset;
10008 sections[n]->offset = offset;
10009 offset += sections[n]->size;
10017 /* Do the final step of an ELF link. */
10020 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10022 bfd_boolean dynamic;
10023 bfd_boolean emit_relocs;
10025 struct elf_final_link_info finfo;
10026 register asection *o;
10027 register struct bfd_link_order *p;
10029 bfd_size_type max_contents_size;
10030 bfd_size_type max_external_reloc_size;
10031 bfd_size_type max_internal_reloc_count;
10032 bfd_size_type max_sym_count;
10033 bfd_size_type max_sym_shndx_count;
10035 Elf_Internal_Sym elfsym;
10037 Elf_Internal_Shdr *symtab_hdr;
10038 Elf_Internal_Shdr *symtab_shndx_hdr;
10039 Elf_Internal_Shdr *symstrtab_hdr;
10040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10041 struct elf_outext_info eoinfo;
10042 bfd_boolean merged;
10043 size_t relativecount = 0;
10044 asection *reldyn = 0;
10046 asection *attr_section = NULL;
10047 bfd_vma attr_size = 0;
10048 const char *std_attrs_section;
10050 if (! is_elf_hash_table (info->hash))
10054 abfd->flags |= DYNAMIC;
10056 dynamic = elf_hash_table (info)->dynamic_sections_created;
10057 dynobj = elf_hash_table (info)->dynobj;
10059 emit_relocs = (info->relocatable
10060 || info->emitrelocations);
10063 finfo.output_bfd = abfd;
10064 finfo.symstrtab = _bfd_elf_stringtab_init ();
10065 if (finfo.symstrtab == NULL)
10070 finfo.dynsym_sec = NULL;
10071 finfo.hash_sec = NULL;
10072 finfo.symver_sec = NULL;
10076 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10077 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10078 BFD_ASSERT (finfo.dynsym_sec != NULL);
10079 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10080 /* Note that it is OK if symver_sec is NULL. */
10083 finfo.contents = NULL;
10084 finfo.external_relocs = NULL;
10085 finfo.internal_relocs = NULL;
10086 finfo.external_syms = NULL;
10087 finfo.locsym_shndx = NULL;
10088 finfo.internal_syms = NULL;
10089 finfo.indices = NULL;
10090 finfo.sections = NULL;
10091 finfo.symbuf = NULL;
10092 finfo.symshndxbuf = NULL;
10093 finfo.symbuf_count = 0;
10094 finfo.shndxbuf_size = 0;
10096 /* The object attributes have been merged. Remove the input
10097 sections from the link, and set the contents of the output
10099 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10100 for (o = abfd->sections; o != NULL; o = o->next)
10102 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10103 || strcmp (o->name, ".gnu.attributes") == 0)
10105 for (p = o->map_head.link_order; p != NULL; p = p->next)
10107 asection *input_section;
10109 if (p->type != bfd_indirect_link_order)
10111 input_section = p->u.indirect.section;
10112 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10113 elf_link_input_bfd ignores this section. */
10114 input_section->flags &= ~SEC_HAS_CONTENTS;
10117 attr_size = bfd_elf_obj_attr_size (abfd);
10120 bfd_set_section_size (abfd, o, attr_size);
10122 /* Skip this section later on. */
10123 o->map_head.link_order = NULL;
10126 o->flags |= SEC_EXCLUDE;
10130 /* Count up the number of relocations we will output for each output
10131 section, so that we know the sizes of the reloc sections. We
10132 also figure out some maximum sizes. */
10133 max_contents_size = 0;
10134 max_external_reloc_size = 0;
10135 max_internal_reloc_count = 0;
10137 max_sym_shndx_count = 0;
10139 for (o = abfd->sections; o != NULL; o = o->next)
10141 struct bfd_elf_section_data *esdo = elf_section_data (o);
10142 o->reloc_count = 0;
10144 for (p = o->map_head.link_order; p != NULL; p = p->next)
10146 unsigned int reloc_count = 0;
10147 struct bfd_elf_section_data *esdi = NULL;
10148 unsigned int *rel_count1;
10150 if (p->type == bfd_section_reloc_link_order
10151 || p->type == bfd_symbol_reloc_link_order)
10153 else if (p->type == bfd_indirect_link_order)
10157 sec = p->u.indirect.section;
10158 esdi = elf_section_data (sec);
10160 /* Mark all sections which are to be included in the
10161 link. This will normally be every section. We need
10162 to do this so that we can identify any sections which
10163 the linker has decided to not include. */
10164 sec->linker_mark = TRUE;
10166 if (sec->flags & SEC_MERGE)
10169 if (info->relocatable || info->emitrelocations)
10170 reloc_count = sec->reloc_count;
10171 else if (bed->elf_backend_count_relocs)
10172 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10174 if (sec->rawsize > max_contents_size)
10175 max_contents_size = sec->rawsize;
10176 if (sec->size > max_contents_size)
10177 max_contents_size = sec->size;
10179 /* We are interested in just local symbols, not all
10181 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10182 && (sec->owner->flags & DYNAMIC) == 0)
10186 if (elf_bad_symtab (sec->owner))
10187 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10188 / bed->s->sizeof_sym);
10190 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10192 if (sym_count > max_sym_count)
10193 max_sym_count = sym_count;
10195 if (sym_count > max_sym_shndx_count
10196 && elf_symtab_shndx (sec->owner) != 0)
10197 max_sym_shndx_count = sym_count;
10199 if ((sec->flags & SEC_RELOC) != 0)
10203 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10204 if (ext_size > max_external_reloc_size)
10205 max_external_reloc_size = ext_size;
10206 if (sec->reloc_count > max_internal_reloc_count)
10207 max_internal_reloc_count = sec->reloc_count;
10212 if (reloc_count == 0)
10215 o->reloc_count += reloc_count;
10217 /* MIPS may have a mix of REL and RELA relocs on sections.
10218 To support this curious ABI we keep reloc counts in
10219 elf_section_data too. We must be careful to add the
10220 relocations from the input section to the right output
10221 count. FIXME: Get rid of one count. We have
10222 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10223 rel_count1 = &esdo->rel_count;
10226 bfd_boolean same_size;
10227 bfd_size_type entsize1;
10229 entsize1 = esdi->rel_hdr.sh_entsize;
10230 /* PR 9827: If the header size has not been set yet then
10231 assume that it will match the output section's reloc type. */
10233 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10235 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10236 || entsize1 == bed->s->sizeof_rela);
10237 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10240 rel_count1 = &esdo->rel_count2;
10242 if (esdi->rel_hdr2 != NULL)
10244 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10245 unsigned int alt_count;
10246 unsigned int *rel_count2;
10248 BFD_ASSERT (entsize2 != entsize1
10249 && (entsize2 == bed->s->sizeof_rel
10250 || entsize2 == bed->s->sizeof_rela));
10252 rel_count2 = &esdo->rel_count2;
10254 rel_count2 = &esdo->rel_count;
10256 /* The following is probably too simplistic if the
10257 backend counts output relocs unusually. */
10258 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10259 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10260 *rel_count2 += alt_count;
10261 reloc_count -= alt_count;
10264 *rel_count1 += reloc_count;
10267 if (o->reloc_count > 0)
10268 o->flags |= SEC_RELOC;
10271 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10272 set it (this is probably a bug) and if it is set
10273 assign_section_numbers will create a reloc section. */
10274 o->flags &=~ SEC_RELOC;
10277 /* If the SEC_ALLOC flag is not set, force the section VMA to
10278 zero. This is done in elf_fake_sections as well, but forcing
10279 the VMA to 0 here will ensure that relocs against these
10280 sections are handled correctly. */
10281 if ((o->flags & SEC_ALLOC) == 0
10282 && ! o->user_set_vma)
10286 if (! info->relocatable && merged)
10287 elf_link_hash_traverse (elf_hash_table (info),
10288 _bfd_elf_link_sec_merge_syms, abfd);
10290 /* Figure out the file positions for everything but the symbol table
10291 and the relocs. We set symcount to force assign_section_numbers
10292 to create a symbol table. */
10293 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10294 BFD_ASSERT (! abfd->output_has_begun);
10295 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10298 /* Set sizes, and assign file positions for reloc sections. */
10299 for (o = abfd->sections; o != NULL; o = o->next)
10301 if ((o->flags & SEC_RELOC) != 0)
10303 if (!(_bfd_elf_link_size_reloc_section
10304 (abfd, &elf_section_data (o)->rel_hdr, o)))
10307 if (elf_section_data (o)->rel_hdr2
10308 && !(_bfd_elf_link_size_reloc_section
10309 (abfd, elf_section_data (o)->rel_hdr2, o)))
10313 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10314 to count upwards while actually outputting the relocations. */
10315 elf_section_data (o)->rel_count = 0;
10316 elf_section_data (o)->rel_count2 = 0;
10319 _bfd_elf_assign_file_positions_for_relocs (abfd);
10321 /* We have now assigned file positions for all the sections except
10322 .symtab and .strtab. We start the .symtab section at the current
10323 file position, and write directly to it. We build the .strtab
10324 section in memory. */
10325 bfd_get_symcount (abfd) = 0;
10326 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10327 /* sh_name is set in prep_headers. */
10328 symtab_hdr->sh_type = SHT_SYMTAB;
10329 /* sh_flags, sh_addr and sh_size all start off zero. */
10330 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10331 /* sh_link is set in assign_section_numbers. */
10332 /* sh_info is set below. */
10333 /* sh_offset is set just below. */
10334 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10336 off = elf_tdata (abfd)->next_file_pos;
10337 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10339 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10340 incorrect. We do not yet know the size of the .symtab section.
10341 We correct next_file_pos below, after we do know the size. */
10343 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10344 continuously seeking to the right position in the file. */
10345 if (! info->keep_memory || max_sym_count < 20)
10346 finfo.symbuf_size = 20;
10348 finfo.symbuf_size = max_sym_count;
10349 amt = finfo.symbuf_size;
10350 amt *= bed->s->sizeof_sym;
10351 finfo.symbuf = bfd_malloc (amt);
10352 if (finfo.symbuf == NULL)
10354 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10356 /* Wild guess at number of output symbols. realloc'd as needed. */
10357 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10358 finfo.shndxbuf_size = amt;
10359 amt *= sizeof (Elf_External_Sym_Shndx);
10360 finfo.symshndxbuf = bfd_zmalloc (amt);
10361 if (finfo.symshndxbuf == NULL)
10365 /* Start writing out the symbol table. The first symbol is always a
10367 if (info->strip != strip_all
10370 elfsym.st_value = 0;
10371 elfsym.st_size = 0;
10372 elfsym.st_info = 0;
10373 elfsym.st_other = 0;
10374 elfsym.st_shndx = SHN_UNDEF;
10375 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10380 /* Output a symbol for each section. We output these even if we are
10381 discarding local symbols, since they are used for relocs. These
10382 symbols have no names. We store the index of each one in the
10383 index field of the section, so that we can find it again when
10384 outputting relocs. */
10385 if (info->strip != strip_all
10388 elfsym.st_size = 0;
10389 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10390 elfsym.st_other = 0;
10391 elfsym.st_value = 0;
10392 for (i = 1; i < elf_numsections (abfd); i++)
10394 o = bfd_section_from_elf_index (abfd, i);
10397 o->target_index = bfd_get_symcount (abfd);
10398 elfsym.st_shndx = i;
10399 if (!info->relocatable)
10400 elfsym.st_value = o->vma;
10401 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10407 /* Allocate some memory to hold information read in from the input
10409 if (max_contents_size != 0)
10411 finfo.contents = bfd_malloc (max_contents_size);
10412 if (finfo.contents == NULL)
10416 if (max_external_reloc_size != 0)
10418 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10419 if (finfo.external_relocs == NULL)
10423 if (max_internal_reloc_count != 0)
10425 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10426 amt *= sizeof (Elf_Internal_Rela);
10427 finfo.internal_relocs = bfd_malloc (amt);
10428 if (finfo.internal_relocs == NULL)
10432 if (max_sym_count != 0)
10434 amt = max_sym_count * bed->s->sizeof_sym;
10435 finfo.external_syms = bfd_malloc (amt);
10436 if (finfo.external_syms == NULL)
10439 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10440 finfo.internal_syms = bfd_malloc (amt);
10441 if (finfo.internal_syms == NULL)
10444 amt = max_sym_count * sizeof (long);
10445 finfo.indices = bfd_malloc (amt);
10446 if (finfo.indices == NULL)
10449 amt = max_sym_count * sizeof (asection *);
10450 finfo.sections = bfd_malloc (amt);
10451 if (finfo.sections == NULL)
10455 if (max_sym_shndx_count != 0)
10457 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10458 finfo.locsym_shndx = bfd_malloc (amt);
10459 if (finfo.locsym_shndx == NULL)
10463 if (elf_hash_table (info)->tls_sec)
10465 bfd_vma base, end = 0;
10468 for (sec = elf_hash_table (info)->tls_sec;
10469 sec && (sec->flags & SEC_THREAD_LOCAL);
10472 bfd_size_type size = sec->size;
10475 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10477 struct bfd_link_order *o = sec->map_tail.link_order;
10479 size = o->offset + o->size;
10481 end = sec->vma + size;
10483 base = elf_hash_table (info)->tls_sec->vma;
10484 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10485 elf_hash_table (info)->tls_size = end - base;
10488 /* Reorder SHF_LINK_ORDER sections. */
10489 for (o = abfd->sections; o != NULL; o = o->next)
10491 if (!elf_fixup_link_order (abfd, o))
10495 /* Since ELF permits relocations to be against local symbols, we
10496 must have the local symbols available when we do the relocations.
10497 Since we would rather only read the local symbols once, and we
10498 would rather not keep them in memory, we handle all the
10499 relocations for a single input file at the same time.
10501 Unfortunately, there is no way to know the total number of local
10502 symbols until we have seen all of them, and the local symbol
10503 indices precede the global symbol indices. This means that when
10504 we are generating relocatable output, and we see a reloc against
10505 a global symbol, we can not know the symbol index until we have
10506 finished examining all the local symbols to see which ones we are
10507 going to output. To deal with this, we keep the relocations in
10508 memory, and don't output them until the end of the link. This is
10509 an unfortunate waste of memory, but I don't see a good way around
10510 it. Fortunately, it only happens when performing a relocatable
10511 link, which is not the common case. FIXME: If keep_memory is set
10512 we could write the relocs out and then read them again; I don't
10513 know how bad the memory loss will be. */
10515 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10516 sub->output_has_begun = FALSE;
10517 for (o = abfd->sections; o != NULL; o = o->next)
10519 for (p = o->map_head.link_order; p != NULL; p = p->next)
10521 if (p->type == bfd_indirect_link_order
10522 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10523 == bfd_target_elf_flavour)
10524 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10526 if (! sub->output_has_begun)
10528 if (! elf_link_input_bfd (&finfo, sub))
10530 sub->output_has_begun = TRUE;
10533 else if (p->type == bfd_section_reloc_link_order
10534 || p->type == bfd_symbol_reloc_link_order)
10536 if (! elf_reloc_link_order (abfd, info, o, p))
10541 if (! _bfd_default_link_order (abfd, info, o, p))
10547 /* Free symbol buffer if needed. */
10548 if (!info->reduce_memory_overheads)
10550 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10551 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10552 && elf_tdata (sub)->symbuf)
10554 free (elf_tdata (sub)->symbuf);
10555 elf_tdata (sub)->symbuf = NULL;
10559 /* Output any global symbols that got converted to local in a
10560 version script or due to symbol visibility. We do this in a
10561 separate step since ELF requires all local symbols to appear
10562 prior to any global symbols. FIXME: We should only do this if
10563 some global symbols were, in fact, converted to become local.
10564 FIXME: Will this work correctly with the Irix 5 linker? */
10565 eoinfo.failed = FALSE;
10566 eoinfo.finfo = &finfo;
10567 eoinfo.localsyms = TRUE;
10568 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10573 /* If backend needs to output some local symbols not present in the hash
10574 table, do it now. */
10575 if (bed->elf_backend_output_arch_local_syms)
10577 typedef int (*out_sym_func)
10578 (void *, const char *, Elf_Internal_Sym *, asection *,
10579 struct elf_link_hash_entry *);
10581 if (! ((*bed->elf_backend_output_arch_local_syms)
10582 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10586 /* That wrote out all the local symbols. Finish up the symbol table
10587 with the global symbols. Even if we want to strip everything we
10588 can, we still need to deal with those global symbols that got
10589 converted to local in a version script. */
10591 /* The sh_info field records the index of the first non local symbol. */
10592 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10595 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10597 Elf_Internal_Sym sym;
10598 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10599 long last_local = 0;
10601 /* Write out the section symbols for the output sections. */
10602 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10608 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10611 for (s = abfd->sections; s != NULL; s = s->next)
10617 dynindx = elf_section_data (s)->dynindx;
10620 indx = elf_section_data (s)->this_idx;
10621 BFD_ASSERT (indx > 0);
10622 sym.st_shndx = indx;
10623 if (! check_dynsym (abfd, &sym))
10625 sym.st_value = s->vma;
10626 dest = dynsym + dynindx * bed->s->sizeof_sym;
10627 if (last_local < dynindx)
10628 last_local = dynindx;
10629 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10633 /* Write out the local dynsyms. */
10634 if (elf_hash_table (info)->dynlocal)
10636 struct elf_link_local_dynamic_entry *e;
10637 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10642 sym.st_size = e->isym.st_size;
10643 sym.st_other = e->isym.st_other;
10645 /* Copy the internal symbol as is.
10646 Note that we saved a word of storage and overwrote
10647 the original st_name with the dynstr_index. */
10650 s = bfd_section_from_elf_index (e->input_bfd,
10655 elf_section_data (s->output_section)->this_idx;
10656 if (! check_dynsym (abfd, &sym))
10658 sym.st_value = (s->output_section->vma
10660 + e->isym.st_value);
10663 if (last_local < e->dynindx)
10664 last_local = e->dynindx;
10666 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10667 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10671 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10675 /* We get the global symbols from the hash table. */
10676 eoinfo.failed = FALSE;
10677 eoinfo.localsyms = FALSE;
10678 eoinfo.finfo = &finfo;
10679 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10684 /* If backend needs to output some symbols not present in the hash
10685 table, do it now. */
10686 if (bed->elf_backend_output_arch_syms)
10688 typedef int (*out_sym_func)
10689 (void *, const char *, Elf_Internal_Sym *, asection *,
10690 struct elf_link_hash_entry *);
10692 if (! ((*bed->elf_backend_output_arch_syms)
10693 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10697 /* Flush all symbols to the file. */
10698 if (! elf_link_flush_output_syms (&finfo, bed))
10701 /* Now we know the size of the symtab section. */
10702 off += symtab_hdr->sh_size;
10704 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10705 if (symtab_shndx_hdr->sh_name != 0)
10707 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10708 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10709 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10710 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10711 symtab_shndx_hdr->sh_size = amt;
10713 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10716 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10717 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10722 /* Finish up and write out the symbol string table (.strtab)
10724 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10725 /* sh_name was set in prep_headers. */
10726 symstrtab_hdr->sh_type = SHT_STRTAB;
10727 symstrtab_hdr->sh_flags = 0;
10728 symstrtab_hdr->sh_addr = 0;
10729 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10730 symstrtab_hdr->sh_entsize = 0;
10731 symstrtab_hdr->sh_link = 0;
10732 symstrtab_hdr->sh_info = 0;
10733 /* sh_offset is set just below. */
10734 symstrtab_hdr->sh_addralign = 1;
10736 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10737 elf_tdata (abfd)->next_file_pos = off;
10739 if (bfd_get_symcount (abfd) > 0)
10741 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10742 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10746 /* Adjust the relocs to have the correct symbol indices. */
10747 for (o = abfd->sections; o != NULL; o = o->next)
10749 if ((o->flags & SEC_RELOC) == 0)
10752 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10753 elf_section_data (o)->rel_count,
10754 elf_section_data (o)->rel_hashes);
10755 if (elf_section_data (o)->rel_hdr2 != NULL)
10756 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10757 elf_section_data (o)->rel_count2,
10758 (elf_section_data (o)->rel_hashes
10759 + elf_section_data (o)->rel_count));
10761 /* Set the reloc_count field to 0 to prevent write_relocs from
10762 trying to swap the relocs out itself. */
10763 o->reloc_count = 0;
10766 if (dynamic && info->combreloc && dynobj != NULL)
10767 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10769 /* If we are linking against a dynamic object, or generating a
10770 shared library, finish up the dynamic linking information. */
10773 bfd_byte *dyncon, *dynconend;
10775 /* Fix up .dynamic entries. */
10776 o = bfd_get_section_by_name (dynobj, ".dynamic");
10777 BFD_ASSERT (o != NULL);
10779 dyncon = o->contents;
10780 dynconend = o->contents + o->size;
10781 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10783 Elf_Internal_Dyn dyn;
10787 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10794 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10796 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10798 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10799 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10802 dyn.d_un.d_val = relativecount;
10809 name = info->init_function;
10812 name = info->fini_function;
10815 struct elf_link_hash_entry *h;
10817 h = elf_link_hash_lookup (elf_hash_table (info), name,
10818 FALSE, FALSE, TRUE);
10820 && (h->root.type == bfd_link_hash_defined
10821 || h->root.type == bfd_link_hash_defweak))
10823 dyn.d_un.d_ptr = h->root.u.def.value;
10824 o = h->root.u.def.section;
10825 if (o->output_section != NULL)
10826 dyn.d_un.d_ptr += (o->output_section->vma
10827 + o->output_offset);
10830 /* The symbol is imported from another shared
10831 library and does not apply to this one. */
10832 dyn.d_un.d_ptr = 0;
10839 case DT_PREINIT_ARRAYSZ:
10840 name = ".preinit_array";
10842 case DT_INIT_ARRAYSZ:
10843 name = ".init_array";
10845 case DT_FINI_ARRAYSZ:
10846 name = ".fini_array";
10848 o = bfd_get_section_by_name (abfd, name);
10851 (*_bfd_error_handler)
10852 (_("%B: could not find output section %s"), abfd, name);
10856 (*_bfd_error_handler)
10857 (_("warning: %s section has zero size"), name);
10858 dyn.d_un.d_val = o->size;
10861 case DT_PREINIT_ARRAY:
10862 name = ".preinit_array";
10864 case DT_INIT_ARRAY:
10865 name = ".init_array";
10867 case DT_FINI_ARRAY:
10868 name = ".fini_array";
10875 name = ".gnu.hash";
10884 name = ".gnu.version_d";
10887 name = ".gnu.version_r";
10890 name = ".gnu.version";
10892 o = bfd_get_section_by_name (abfd, name);
10895 (*_bfd_error_handler)
10896 (_("%B: could not find output section %s"), abfd, name);
10899 dyn.d_un.d_ptr = o->vma;
10906 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10910 dyn.d_un.d_val = 0;
10911 dyn.d_un.d_ptr = 0;
10912 for (i = 1; i < elf_numsections (abfd); i++)
10914 Elf_Internal_Shdr *hdr;
10916 hdr = elf_elfsections (abfd)[i];
10917 if (hdr->sh_type == type
10918 && (hdr->sh_flags & SHF_ALLOC) != 0)
10920 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10921 dyn.d_un.d_val += hdr->sh_size;
10924 if (dyn.d_un.d_ptr == 0
10925 || hdr->sh_addr < dyn.d_un.d_ptr)
10926 dyn.d_un.d_ptr = hdr->sh_addr;
10932 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10936 /* If we have created any dynamic sections, then output them. */
10937 if (dynobj != NULL)
10939 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10942 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10943 if (info->warn_shared_textrel && info->shared)
10945 bfd_byte *dyncon, *dynconend;
10947 /* Fix up .dynamic entries. */
10948 o = bfd_get_section_by_name (dynobj, ".dynamic");
10949 BFD_ASSERT (o != NULL);
10951 dyncon = o->contents;
10952 dynconend = o->contents + o->size;
10953 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10955 Elf_Internal_Dyn dyn;
10957 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10959 if (dyn.d_tag == DT_TEXTREL)
10961 info->callbacks->einfo
10962 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10968 for (o = dynobj->sections; o != NULL; o = o->next)
10970 if ((o->flags & SEC_HAS_CONTENTS) == 0
10972 || o->output_section == bfd_abs_section_ptr)
10974 if ((o->flags & SEC_LINKER_CREATED) == 0)
10976 /* At this point, we are only interested in sections
10977 created by _bfd_elf_link_create_dynamic_sections. */
10980 if (elf_hash_table (info)->stab_info.stabstr == o)
10982 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10984 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10986 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10988 if (! bfd_set_section_contents (abfd, o->output_section,
10990 (file_ptr) o->output_offset,
10996 /* The contents of the .dynstr section are actually in a
10998 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10999 if (bfd_seek (abfd, off, SEEK_SET) != 0
11000 || ! _bfd_elf_strtab_emit (abfd,
11001 elf_hash_table (info)->dynstr))
11007 if (info->relocatable)
11009 bfd_boolean failed = FALSE;
11011 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11016 /* If we have optimized stabs strings, output them. */
11017 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11019 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11023 if (info->eh_frame_hdr)
11025 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11029 if (finfo.symstrtab != NULL)
11030 _bfd_stringtab_free (finfo.symstrtab);
11031 if (finfo.contents != NULL)
11032 free (finfo.contents);
11033 if (finfo.external_relocs != NULL)
11034 free (finfo.external_relocs);
11035 if (finfo.internal_relocs != NULL)
11036 free (finfo.internal_relocs);
11037 if (finfo.external_syms != NULL)
11038 free (finfo.external_syms);
11039 if (finfo.locsym_shndx != NULL)
11040 free (finfo.locsym_shndx);
11041 if (finfo.internal_syms != NULL)
11042 free (finfo.internal_syms);
11043 if (finfo.indices != NULL)
11044 free (finfo.indices);
11045 if (finfo.sections != NULL)
11046 free (finfo.sections);
11047 if (finfo.symbuf != NULL)
11048 free (finfo.symbuf);
11049 if (finfo.symshndxbuf != NULL)
11050 free (finfo.symshndxbuf);
11051 for (o = abfd->sections; o != NULL; o = o->next)
11053 if ((o->flags & SEC_RELOC) != 0
11054 && elf_section_data (o)->rel_hashes != NULL)
11055 free (elf_section_data (o)->rel_hashes);
11058 elf_tdata (abfd)->linker = TRUE;
11062 bfd_byte *contents = bfd_malloc (attr_size);
11063 if (contents == NULL)
11064 return FALSE; /* Bail out and fail. */
11065 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11066 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11073 if (finfo.symstrtab != NULL)
11074 _bfd_stringtab_free (finfo.symstrtab);
11075 if (finfo.contents != NULL)
11076 free (finfo.contents);
11077 if (finfo.external_relocs != NULL)
11078 free (finfo.external_relocs);
11079 if (finfo.internal_relocs != NULL)
11080 free (finfo.internal_relocs);
11081 if (finfo.external_syms != NULL)
11082 free (finfo.external_syms);
11083 if (finfo.locsym_shndx != NULL)
11084 free (finfo.locsym_shndx);
11085 if (finfo.internal_syms != NULL)
11086 free (finfo.internal_syms);
11087 if (finfo.indices != NULL)
11088 free (finfo.indices);
11089 if (finfo.sections != NULL)
11090 free (finfo.sections);
11091 if (finfo.symbuf != NULL)
11092 free (finfo.symbuf);
11093 if (finfo.symshndxbuf != NULL)
11094 free (finfo.symshndxbuf);
11095 for (o = abfd->sections; o != NULL; o = o->next)
11097 if ((o->flags & SEC_RELOC) != 0
11098 && elf_section_data (o)->rel_hashes != NULL)
11099 free (elf_section_data (o)->rel_hashes);
11105 /* Initialize COOKIE for input bfd ABFD. */
11108 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11109 struct bfd_link_info *info, bfd *abfd)
11111 Elf_Internal_Shdr *symtab_hdr;
11112 const struct elf_backend_data *bed;
11114 bed = get_elf_backend_data (abfd);
11115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11117 cookie->abfd = abfd;
11118 cookie->sym_hashes = elf_sym_hashes (abfd);
11119 cookie->bad_symtab = elf_bad_symtab (abfd);
11120 if (cookie->bad_symtab)
11122 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11123 cookie->extsymoff = 0;
11127 cookie->locsymcount = symtab_hdr->sh_info;
11128 cookie->extsymoff = symtab_hdr->sh_info;
11131 if (bed->s->arch_size == 32)
11132 cookie->r_sym_shift = 8;
11134 cookie->r_sym_shift = 32;
11136 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11137 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11139 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11140 cookie->locsymcount, 0,
11142 if (cookie->locsyms == NULL)
11144 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11147 if (info->keep_memory)
11148 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11153 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11156 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11158 Elf_Internal_Shdr *symtab_hdr;
11160 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11161 if (cookie->locsyms != NULL
11162 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11163 free (cookie->locsyms);
11166 /* Initialize the relocation information in COOKIE for input section SEC
11167 of input bfd ABFD. */
11170 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11171 struct bfd_link_info *info, bfd *abfd,
11174 const struct elf_backend_data *bed;
11176 if (sec->reloc_count == 0)
11178 cookie->rels = NULL;
11179 cookie->relend = NULL;
11183 bed = get_elf_backend_data (abfd);
11185 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11186 info->keep_memory);
11187 if (cookie->rels == NULL)
11189 cookie->rel = cookie->rels;
11190 cookie->relend = (cookie->rels
11191 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11193 cookie->rel = cookie->rels;
11197 /* Free the memory allocated by init_reloc_cookie_rels,
11201 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11204 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11205 free (cookie->rels);
11208 /* Initialize the whole of COOKIE for input section SEC. */
11211 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11212 struct bfd_link_info *info,
11215 if (!init_reloc_cookie (cookie, info, sec->owner))
11217 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11222 fini_reloc_cookie (cookie, sec->owner);
11227 /* Free the memory allocated by init_reloc_cookie_for_section,
11231 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11234 fini_reloc_cookie_rels (cookie, sec);
11235 fini_reloc_cookie (cookie, sec->owner);
11238 /* Garbage collect unused sections. */
11240 /* Default gc_mark_hook. */
11243 _bfd_elf_gc_mark_hook (asection *sec,
11244 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11245 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11246 struct elf_link_hash_entry *h,
11247 Elf_Internal_Sym *sym)
11251 switch (h->root.type)
11253 case bfd_link_hash_defined:
11254 case bfd_link_hash_defweak:
11255 return h->root.u.def.section;
11257 case bfd_link_hash_common:
11258 return h->root.u.c.p->section;
11265 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11270 /* COOKIE->rel describes a relocation against section SEC, which is
11271 a section we've decided to keep. Return the section that contains
11272 the relocation symbol, or NULL if no section contains it. */
11275 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11276 elf_gc_mark_hook_fn gc_mark_hook,
11277 struct elf_reloc_cookie *cookie)
11279 unsigned long r_symndx;
11280 struct elf_link_hash_entry *h;
11282 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11286 if (r_symndx >= cookie->locsymcount
11287 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11289 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11290 while (h->root.type == bfd_link_hash_indirect
11291 || h->root.type == bfd_link_hash_warning)
11292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11293 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11296 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11297 &cookie->locsyms[r_symndx]);
11300 /* COOKIE->rel describes a relocation against section SEC, which is
11301 a section we've decided to keep. Mark the section that contains
11302 the relocation symbol. */
11305 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11307 elf_gc_mark_hook_fn gc_mark_hook,
11308 struct elf_reloc_cookie *cookie)
11312 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11313 if (rsec && !rsec->gc_mark)
11315 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11317 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11323 /* The mark phase of garbage collection. For a given section, mark
11324 it and any sections in this section's group, and all the sections
11325 which define symbols to which it refers. */
11328 _bfd_elf_gc_mark (struct bfd_link_info *info,
11330 elf_gc_mark_hook_fn gc_mark_hook)
11333 asection *group_sec, *eh_frame;
11337 /* Mark all the sections in the group. */
11338 group_sec = elf_section_data (sec)->next_in_group;
11339 if (group_sec && !group_sec->gc_mark)
11340 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11343 /* Look through the section relocs. */
11345 eh_frame = elf_eh_frame_section (sec->owner);
11346 if ((sec->flags & SEC_RELOC) != 0
11347 && sec->reloc_count > 0
11348 && sec != eh_frame)
11350 struct elf_reloc_cookie cookie;
11352 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11356 for (; cookie.rel < cookie.relend; cookie.rel++)
11357 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11362 fini_reloc_cookie_for_section (&cookie, sec);
11366 if (ret && eh_frame && elf_fde_list (sec))
11368 struct elf_reloc_cookie cookie;
11370 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11374 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11375 gc_mark_hook, &cookie))
11377 fini_reloc_cookie_for_section (&cookie, eh_frame);
11384 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11386 struct elf_gc_sweep_symbol_info
11388 struct bfd_link_info *info;
11389 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11394 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11396 if (h->root.type == bfd_link_hash_warning)
11397 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11399 if ((h->root.type == bfd_link_hash_defined
11400 || h->root.type == bfd_link_hash_defweak)
11401 && !h->root.u.def.section->gc_mark
11402 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11404 struct elf_gc_sweep_symbol_info *inf = data;
11405 (*inf->hide_symbol) (inf->info, h, TRUE);
11411 /* The sweep phase of garbage collection. Remove all garbage sections. */
11413 typedef bfd_boolean (*gc_sweep_hook_fn)
11414 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11417 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11421 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11422 unsigned long section_sym_count;
11423 struct elf_gc_sweep_symbol_info sweep_info;
11425 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11429 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11432 for (o = sub->sections; o != NULL; o = o->next)
11434 /* When any section in a section group is kept, we keep all
11435 sections in the section group. If the first member of
11436 the section group is excluded, we will also exclude the
11438 if (o->flags & SEC_GROUP)
11440 asection *first = elf_next_in_group (o);
11441 o->gc_mark = first->gc_mark;
11443 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11444 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11446 /* Keep debug and special sections. */
11453 /* Skip sweeping sections already excluded. */
11454 if (o->flags & SEC_EXCLUDE)
11457 /* Since this is early in the link process, it is simple
11458 to remove a section from the output. */
11459 o->flags |= SEC_EXCLUDE;
11461 if (info->print_gc_sections && o->size != 0)
11462 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11464 /* But we also have to update some of the relocation
11465 info we collected before. */
11467 && (o->flags & SEC_RELOC) != 0
11468 && o->reloc_count > 0
11469 && !bfd_is_abs_section (o->output_section))
11471 Elf_Internal_Rela *internal_relocs;
11475 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11476 info->keep_memory);
11477 if (internal_relocs == NULL)
11480 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11482 if (elf_section_data (o)->relocs != internal_relocs)
11483 free (internal_relocs);
11491 /* Remove the symbols that were in the swept sections from the dynamic
11492 symbol table. GCFIXME: Anyone know how to get them out of the
11493 static symbol table as well? */
11494 sweep_info.info = info;
11495 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11496 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11499 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
11503 /* Propagate collected vtable information. This is called through
11504 elf_link_hash_traverse. */
11507 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11509 if (h->root.type == bfd_link_hash_warning)
11510 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11512 /* Those that are not vtables. */
11513 if (h->vtable == NULL || h->vtable->parent == NULL)
11516 /* Those vtables that do not have parents, we cannot merge. */
11517 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11520 /* If we've already been done, exit. */
11521 if (h->vtable->used && h->vtable->used[-1])
11524 /* Make sure the parent's table is up to date. */
11525 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11527 if (h->vtable->used == NULL)
11529 /* None of this table's entries were referenced. Re-use the
11531 h->vtable->used = h->vtable->parent->vtable->used;
11532 h->vtable->size = h->vtable->parent->vtable->size;
11537 bfd_boolean *cu, *pu;
11539 /* Or the parent's entries into ours. */
11540 cu = h->vtable->used;
11542 pu = h->vtable->parent->vtable->used;
11545 const struct elf_backend_data *bed;
11546 unsigned int log_file_align;
11548 bed = get_elf_backend_data (h->root.u.def.section->owner);
11549 log_file_align = bed->s->log_file_align;
11550 n = h->vtable->parent->vtable->size >> log_file_align;
11565 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11568 bfd_vma hstart, hend;
11569 Elf_Internal_Rela *relstart, *relend, *rel;
11570 const struct elf_backend_data *bed;
11571 unsigned int log_file_align;
11573 if (h->root.type == bfd_link_hash_warning)
11574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11576 /* Take care of both those symbols that do not describe vtables as
11577 well as those that are not loaded. */
11578 if (h->vtable == NULL || h->vtable->parent == NULL)
11581 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11582 || h->root.type == bfd_link_hash_defweak);
11584 sec = h->root.u.def.section;
11585 hstart = h->root.u.def.value;
11586 hend = hstart + h->size;
11588 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11590 return *(bfd_boolean *) okp = FALSE;
11591 bed = get_elf_backend_data (sec->owner);
11592 log_file_align = bed->s->log_file_align;
11594 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11596 for (rel = relstart; rel < relend; ++rel)
11597 if (rel->r_offset >= hstart && rel->r_offset < hend)
11599 /* If the entry is in use, do nothing. */
11600 if (h->vtable->used
11601 && (rel->r_offset - hstart) < h->vtable->size)
11603 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11604 if (h->vtable->used[entry])
11607 /* Otherwise, kill it. */
11608 rel->r_offset = rel->r_info = rel->r_addend = 0;
11614 /* Mark sections containing dynamically referenced symbols. When
11615 building shared libraries, we must assume that any visible symbol is
11619 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11621 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11623 if (h->root.type == bfd_link_hash_warning)
11624 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11626 if ((h->root.type == bfd_link_hash_defined
11627 || h->root.type == bfd_link_hash_defweak)
11629 || (!info->executable
11631 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11632 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11633 h->root.u.def.section->flags |= SEC_KEEP;
11638 /* Keep all sections containing symbols undefined on the command-line,
11639 and the section containing the entry symbol. */
11642 _bfd_elf_gc_keep (struct bfd_link_info *info)
11644 struct bfd_sym_chain *sym;
11646 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11648 struct elf_link_hash_entry *h;
11650 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11651 FALSE, FALSE, FALSE);
11654 && (h->root.type == bfd_link_hash_defined
11655 || h->root.type == bfd_link_hash_defweak)
11656 && !bfd_is_abs_section (h->root.u.def.section))
11657 h->root.u.def.section->flags |= SEC_KEEP;
11661 /* Do mark and sweep of unused sections. */
11664 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11666 bfd_boolean ok = TRUE;
11668 elf_gc_mark_hook_fn gc_mark_hook;
11669 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11671 if (!bed->can_gc_sections
11672 || !is_elf_hash_table (info->hash))
11674 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11678 bed->gc_keep (info);
11680 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11681 at the .eh_frame section if we can mark the FDEs individually. */
11682 _bfd_elf_begin_eh_frame_parsing (info);
11683 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11686 struct elf_reloc_cookie cookie;
11688 sec = bfd_get_section_by_name (sub, ".eh_frame");
11689 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11691 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11692 if (elf_section_data (sec)->sec_info)
11693 elf_eh_frame_section (sub) = sec;
11694 fini_reloc_cookie_for_section (&cookie, sec);
11697 _bfd_elf_end_eh_frame_parsing (info);
11699 /* Apply transitive closure to the vtable entry usage info. */
11700 elf_link_hash_traverse (elf_hash_table (info),
11701 elf_gc_propagate_vtable_entries_used,
11706 /* Kill the vtable relocations that were not used. */
11707 elf_link_hash_traverse (elf_hash_table (info),
11708 elf_gc_smash_unused_vtentry_relocs,
11713 /* Mark dynamically referenced symbols. */
11714 if (elf_hash_table (info)->dynamic_sections_created)
11715 elf_link_hash_traverse (elf_hash_table (info),
11716 bed->gc_mark_dynamic_ref,
11719 /* Grovel through relocs to find out who stays ... */
11720 gc_mark_hook = bed->gc_mark_hook;
11721 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11725 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11728 for (o = sub->sections; o != NULL; o = o->next)
11729 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11730 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11734 /* Allow the backend to mark additional target specific sections. */
11735 if (bed->gc_mark_extra_sections)
11736 bed->gc_mark_extra_sections (info, gc_mark_hook);
11738 /* ... and mark SEC_EXCLUDE for those that go. */
11739 return elf_gc_sweep (abfd, info);
11742 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11745 bfd_elf_gc_record_vtinherit (bfd *abfd,
11747 struct elf_link_hash_entry *h,
11750 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11751 struct elf_link_hash_entry **search, *child;
11752 bfd_size_type extsymcount;
11753 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11755 /* The sh_info field of the symtab header tells us where the
11756 external symbols start. We don't care about the local symbols at
11758 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11759 if (!elf_bad_symtab (abfd))
11760 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11762 sym_hashes = elf_sym_hashes (abfd);
11763 sym_hashes_end = sym_hashes + extsymcount;
11765 /* Hunt down the child symbol, which is in this section at the same
11766 offset as the relocation. */
11767 for (search = sym_hashes; search != sym_hashes_end; ++search)
11769 if ((child = *search) != NULL
11770 && (child->root.type == bfd_link_hash_defined
11771 || child->root.type == bfd_link_hash_defweak)
11772 && child->root.u.def.section == sec
11773 && child->root.u.def.value == offset)
11777 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11778 abfd, sec, (unsigned long) offset);
11779 bfd_set_error (bfd_error_invalid_operation);
11783 if (!child->vtable)
11785 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11786 if (!child->vtable)
11791 /* This *should* only be the absolute section. It could potentially
11792 be that someone has defined a non-global vtable though, which
11793 would be bad. It isn't worth paging in the local symbols to be
11794 sure though; that case should simply be handled by the assembler. */
11796 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11799 child->vtable->parent = h;
11804 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11807 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11808 asection *sec ATTRIBUTE_UNUSED,
11809 struct elf_link_hash_entry *h,
11812 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11813 unsigned int log_file_align = bed->s->log_file_align;
11817 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11822 if (addend >= h->vtable->size)
11824 size_t size, bytes, file_align;
11825 bfd_boolean *ptr = h->vtable->used;
11827 /* While the symbol is undefined, we have to be prepared to handle
11829 file_align = 1 << log_file_align;
11830 if (h->root.type == bfd_link_hash_undefined)
11831 size = addend + file_align;
11835 if (addend >= size)
11837 /* Oops! We've got a reference past the defined end of
11838 the table. This is probably a bug -- shall we warn? */
11839 size = addend + file_align;
11842 size = (size + file_align - 1) & -file_align;
11844 /* Allocate one extra entry for use as a "done" flag for the
11845 consolidation pass. */
11846 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11850 ptr = bfd_realloc (ptr - 1, bytes);
11856 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11857 * sizeof (bfd_boolean));
11858 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11862 ptr = bfd_zmalloc (bytes);
11867 /* And arrange for that done flag to be at index -1. */
11868 h->vtable->used = ptr + 1;
11869 h->vtable->size = size;
11872 h->vtable->used[addend >> log_file_align] = TRUE;
11877 struct alloc_got_off_arg {
11879 struct bfd_link_info *info;
11882 /* We need a special top-level link routine to convert got reference counts
11883 to real got offsets. */
11886 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11888 struct alloc_got_off_arg *gofarg = arg;
11889 bfd *obfd = gofarg->info->output_bfd;
11890 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11892 if (h->root.type == bfd_link_hash_warning)
11893 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11895 if (h->got.refcount > 0)
11897 h->got.offset = gofarg->gotoff;
11898 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11901 h->got.offset = (bfd_vma) -1;
11906 /* And an accompanying bit to work out final got entry offsets once
11907 we're done. Should be called from final_link. */
11910 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11911 struct bfd_link_info *info)
11914 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11916 struct alloc_got_off_arg gofarg;
11918 BFD_ASSERT (abfd == info->output_bfd);
11920 if (! is_elf_hash_table (info->hash))
11923 /* The GOT offset is relative to the .got section, but the GOT header is
11924 put into the .got.plt section, if the backend uses it. */
11925 if (bed->want_got_plt)
11928 gotoff = bed->got_header_size;
11930 /* Do the local .got entries first. */
11931 for (i = info->input_bfds; i; i = i->link_next)
11933 bfd_signed_vma *local_got;
11934 bfd_size_type j, locsymcount;
11935 Elf_Internal_Shdr *symtab_hdr;
11937 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11940 local_got = elf_local_got_refcounts (i);
11944 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11945 if (elf_bad_symtab (i))
11946 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11948 locsymcount = symtab_hdr->sh_info;
11950 for (j = 0; j < locsymcount; ++j)
11952 if (local_got[j] > 0)
11954 local_got[j] = gotoff;
11955 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
11958 local_got[j] = (bfd_vma) -1;
11962 /* Then the global .got entries. .plt refcounts are handled by
11963 adjust_dynamic_symbol */
11964 gofarg.gotoff = gotoff;
11965 gofarg.info = info;
11966 elf_link_hash_traverse (elf_hash_table (info),
11967 elf_gc_allocate_got_offsets,
11972 /* Many folk need no more in the way of final link than this, once
11973 got entry reference counting is enabled. */
11976 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11978 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11981 /* Invoke the regular ELF backend linker to do all the work. */
11982 return bfd_elf_final_link (abfd, info);
11986 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11988 struct elf_reloc_cookie *rcookie = cookie;
11990 if (rcookie->bad_symtab)
11991 rcookie->rel = rcookie->rels;
11993 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11995 unsigned long r_symndx;
11997 if (! rcookie->bad_symtab)
11998 if (rcookie->rel->r_offset > offset)
12000 if (rcookie->rel->r_offset != offset)
12003 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12004 if (r_symndx == SHN_UNDEF)
12007 if (r_symndx >= rcookie->locsymcount
12008 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12010 struct elf_link_hash_entry *h;
12012 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12014 while (h->root.type == bfd_link_hash_indirect
12015 || h->root.type == bfd_link_hash_warning)
12016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12018 if ((h->root.type == bfd_link_hash_defined
12019 || h->root.type == bfd_link_hash_defweak)
12020 && elf_discarded_section (h->root.u.def.section))
12027 /* It's not a relocation against a global symbol,
12028 but it could be a relocation against a local
12029 symbol for a discarded section. */
12031 Elf_Internal_Sym *isym;
12033 /* Need to: get the symbol; get the section. */
12034 isym = &rcookie->locsyms[r_symndx];
12035 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12036 if (isec != NULL && elf_discarded_section (isec))
12044 /* Discard unneeded references to discarded sections.
12045 Returns TRUE if any section's size was changed. */
12046 /* This function assumes that the relocations are in sorted order,
12047 which is true for all known assemblers. */
12050 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12052 struct elf_reloc_cookie cookie;
12053 asection *stab, *eh;
12054 const struct elf_backend_data *bed;
12056 bfd_boolean ret = FALSE;
12058 if (info->traditional_format
12059 || !is_elf_hash_table (info->hash))
12062 _bfd_elf_begin_eh_frame_parsing (info);
12063 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12065 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12068 bed = get_elf_backend_data (abfd);
12070 if ((abfd->flags & DYNAMIC) != 0)
12074 if (!info->relocatable)
12076 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12079 || bfd_is_abs_section (eh->output_section)))
12083 stab = bfd_get_section_by_name (abfd, ".stab");
12085 && (stab->size == 0
12086 || bfd_is_abs_section (stab->output_section)
12087 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12092 && bed->elf_backend_discard_info == NULL)
12095 if (!init_reloc_cookie (&cookie, info, abfd))
12099 && stab->reloc_count > 0
12100 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12102 if (_bfd_discard_section_stabs (abfd, stab,
12103 elf_section_data (stab)->sec_info,
12104 bfd_elf_reloc_symbol_deleted_p,
12107 fini_reloc_cookie_rels (&cookie, stab);
12111 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12113 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12114 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12115 bfd_elf_reloc_symbol_deleted_p,
12118 fini_reloc_cookie_rels (&cookie, eh);
12121 if (bed->elf_backend_discard_info != NULL
12122 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12125 fini_reloc_cookie (&cookie, abfd);
12127 _bfd_elf_end_eh_frame_parsing (info);
12129 if (info->eh_frame_hdr
12130 && !info->relocatable
12131 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12137 /* For a SHT_GROUP section, return the group signature. For other
12138 sections, return the normal section name. */
12140 static const char *
12141 section_signature (asection *sec)
12143 if ((sec->flags & SEC_GROUP) != 0
12144 && elf_next_in_group (sec) != NULL
12145 && elf_group_name (elf_next_in_group (sec)) != NULL)
12146 return elf_group_name (elf_next_in_group (sec));
12151 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12152 struct bfd_link_info *info)
12155 const char *name, *p;
12156 struct bfd_section_already_linked *l;
12157 struct bfd_section_already_linked_hash_entry *already_linked_list;
12159 if (sec->output_section == bfd_abs_section_ptr)
12162 flags = sec->flags;
12164 /* Return if it isn't a linkonce section. A comdat group section
12165 also has SEC_LINK_ONCE set. */
12166 if ((flags & SEC_LINK_ONCE) == 0)
12169 /* Don't put group member sections on our list of already linked
12170 sections. They are handled as a group via their group section. */
12171 if (elf_sec_group (sec) != NULL)
12174 /* FIXME: When doing a relocatable link, we may have trouble
12175 copying relocations in other sections that refer to local symbols
12176 in the section being discarded. Those relocations will have to
12177 be converted somehow; as of this writing I'm not sure that any of
12178 the backends handle that correctly.
12180 It is tempting to instead not discard link once sections when
12181 doing a relocatable link (technically, they should be discarded
12182 whenever we are building constructors). However, that fails,
12183 because the linker winds up combining all the link once sections
12184 into a single large link once section, which defeats the purpose
12185 of having link once sections in the first place.
12187 Also, not merging link once sections in a relocatable link
12188 causes trouble for MIPS ELF, which relies on link once semantics
12189 to handle the .reginfo section correctly. */
12191 name = section_signature (sec);
12193 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12194 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12199 already_linked_list = bfd_section_already_linked_table_lookup (p);
12201 for (l = already_linked_list->entry; l != NULL; l = l->next)
12203 /* We may have 2 different types of sections on the list: group
12204 sections and linkonce sections. Match like sections. */
12205 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12206 && strcmp (name, section_signature (l->sec)) == 0
12207 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12209 /* The section has already been linked. See if we should
12210 issue a warning. */
12211 switch (flags & SEC_LINK_DUPLICATES)
12216 case SEC_LINK_DUPLICATES_DISCARD:
12219 case SEC_LINK_DUPLICATES_ONE_ONLY:
12220 (*_bfd_error_handler)
12221 (_("%B: ignoring duplicate section `%A'"),
12225 case SEC_LINK_DUPLICATES_SAME_SIZE:
12226 if (sec->size != l->sec->size)
12227 (*_bfd_error_handler)
12228 (_("%B: duplicate section `%A' has different size"),
12232 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12233 if (sec->size != l->sec->size)
12234 (*_bfd_error_handler)
12235 (_("%B: duplicate section `%A' has different size"),
12237 else if (sec->size != 0)
12239 bfd_byte *sec_contents, *l_sec_contents;
12241 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12242 (*_bfd_error_handler)
12243 (_("%B: warning: could not read contents of section `%A'"),
12245 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12247 (*_bfd_error_handler)
12248 (_("%B: warning: could not read contents of section `%A'"),
12249 l->sec->owner, l->sec);
12250 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12251 (*_bfd_error_handler)
12252 (_("%B: warning: duplicate section `%A' has different contents"),
12256 free (sec_contents);
12257 if (l_sec_contents)
12258 free (l_sec_contents);
12263 /* Set the output_section field so that lang_add_section
12264 does not create a lang_input_section structure for this
12265 section. Since there might be a symbol in the section
12266 being discarded, we must retain a pointer to the section
12267 which we are really going to use. */
12268 sec->output_section = bfd_abs_section_ptr;
12269 sec->kept_section = l->sec;
12271 if (flags & SEC_GROUP)
12273 asection *first = elf_next_in_group (sec);
12274 asection *s = first;
12278 s->output_section = bfd_abs_section_ptr;
12279 /* Record which group discards it. */
12280 s->kept_section = l->sec;
12281 s = elf_next_in_group (s);
12282 /* These lists are circular. */
12292 /* A single member comdat group section may be discarded by a
12293 linkonce section and vice versa. */
12295 if ((flags & SEC_GROUP) != 0)
12297 asection *first = elf_next_in_group (sec);
12299 if (first != NULL && elf_next_in_group (first) == first)
12300 /* Check this single member group against linkonce sections. */
12301 for (l = already_linked_list->entry; l != NULL; l = l->next)
12302 if ((l->sec->flags & SEC_GROUP) == 0
12303 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12304 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12306 first->output_section = bfd_abs_section_ptr;
12307 first->kept_section = l->sec;
12308 sec->output_section = bfd_abs_section_ptr;
12313 /* Check this linkonce section against single member groups. */
12314 for (l = already_linked_list->entry; l != NULL; l = l->next)
12315 if (l->sec->flags & SEC_GROUP)
12317 asection *first = elf_next_in_group (l->sec);
12320 && elf_next_in_group (first) == first
12321 && bfd_elf_match_symbols_in_sections (first, sec, info))
12323 sec->output_section = bfd_abs_section_ptr;
12324 sec->kept_section = first;
12329 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12330 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12331 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12332 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12333 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12334 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12335 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12336 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12337 The reverse order cannot happen as there is never a bfd with only the
12338 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12339 matter as here were are looking only for cross-bfd sections. */
12341 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12342 for (l = already_linked_list->entry; l != NULL; l = l->next)
12343 if ((l->sec->flags & SEC_GROUP) == 0
12344 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12346 if (abfd != l->sec->owner)
12347 sec->output_section = bfd_abs_section_ptr;
12351 /* This is the first section with this name. Record it. */
12352 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12353 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12357 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12359 return sym->st_shndx == SHN_COMMON;
12363 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12369 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12371 return bfd_com_section_ptr;
12375 _bfd_elf_default_got_elt_size (bfd *abfd,
12376 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12377 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12378 bfd *ibfd ATTRIBUTE_UNUSED,
12379 unsigned long symndx ATTRIBUTE_UNUSED)
12381 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12382 return bed->s->arch_size / 8;
12385 /* Routines to support the creation of dynamic relocs. */
12387 /* Return true if NAME is a name of a relocation
12388 section associated with section S. */
12391 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12394 return CONST_STRNEQ (name, ".rela")
12395 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12397 return CONST_STRNEQ (name, ".rel")
12398 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12401 /* Returns the name of the dynamic reloc section associated with SEC. */
12403 static const char *
12404 get_dynamic_reloc_section_name (bfd * abfd,
12406 bfd_boolean is_rela)
12409 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12410 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12412 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12416 if (! is_reloc_section (is_rela, name, sec))
12418 static bfd_boolean complained = FALSE;
12422 (*_bfd_error_handler)
12423 (_("%B: bad relocation section name `%s\'"), abfd, name);
12432 /* Returns the dynamic reloc section associated with SEC.
12433 If necessary compute the name of the dynamic reloc section based
12434 on SEC's name (looked up in ABFD's string table) and the setting
12438 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12440 bfd_boolean is_rela)
12442 asection * reloc_sec = elf_section_data (sec)->sreloc;
12444 if (reloc_sec == NULL)
12446 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12450 reloc_sec = bfd_get_section_by_name (abfd, name);
12452 if (reloc_sec != NULL)
12453 elf_section_data (sec)->sreloc = reloc_sec;
12460 /* Returns the dynamic reloc section associated with SEC. If the
12461 section does not exist it is created and attached to the DYNOBJ
12462 bfd and stored in the SRELOC field of SEC's elf_section_data
12465 ALIGNMENT is the alignment for the newly created section and
12466 IS_RELA defines whether the name should be .rela.<SEC's name>
12467 or .rel.<SEC's name>. The section name is looked up in the
12468 string table associated with ABFD. */
12471 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12473 unsigned int alignment,
12475 bfd_boolean is_rela)
12477 asection * reloc_sec = elf_section_data (sec)->sreloc;
12479 if (reloc_sec == NULL)
12481 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12486 reloc_sec = bfd_get_section_by_name (dynobj, name);
12488 if (reloc_sec == NULL)
12492 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12493 if ((sec->flags & SEC_ALLOC) != 0)
12494 flags |= SEC_ALLOC | SEC_LOAD;
12496 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12497 if (reloc_sec != NULL)
12499 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12504 elf_section_data (sec)->sreloc = reloc_sec;