1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
39 struct elf_info_failed
41 struct bfd_link_info *info;
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
48 struct elf_find_verdep_info
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
54 /* Whether we had a failure. */
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
69 struct elf_link_hash_entry *h;
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
90 Elf_Internal_Sym *isym;
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
96 && discard ? discarded_section (isec) : 1)
102 /* Define a symbol in a dynamic linkage section. */
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
158 flags = bed->dynamic_sec_flags;
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
176 if (bed->want_got_plt)
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
189 if (bed->want_got_sym)
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
205 /* Create a strtab to hold the dynamic symbol names. */
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
209 struct elf_link_hash_table *hash_table;
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
233 hash_table->dynobj = abfd;
236 if (hash_table->dynstr == NULL)
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
260 if (! is_elf_hash_table (info->hash))
263 if (elf_hash_table (info)->dynamic_sections_created)
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
272 flags = bed->dynamic_sec_flags;
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
295 || ! bfd_set_section_alignment (abfd, s, 1))
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
309 elf_hash_table (info)->dynsym = s;
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
342 if (info->emit_gnu_hash)
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
370 /* Create dynamic sections when linking against a dynamic object. */
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
404 if (bed->want_plt_sym)
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
422 if (! _bfd_elf_create_got_section (abfd, info))
425 if (bed->want_dynbss)
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
439 if (bed->want_dynrelro)
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
462 if (bfd_link_executable (info))
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
473 if (bed->want_dynrelro)
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
483 htab->sreldynrelro = s;
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
503 if (h->dynindx == -1)
505 struct elf_strtab_hash *dynstr;
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
522 if (!elf_hash_table (info)->is_relocatable_executable)
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
533 dynstr = elf_hash_table (info)->dynstr;
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
542 /* We don't put any version information in the dynamic string
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
559 if (indx == (size_t) -1)
561 h->dynstr_index = indx;
567 /* Mark a symbol dynamic. */
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
606 if (!is_elf_hash_table (info->hash))
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
617 if (h->versioned == unknown)
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
626 h->versioned = versioned;
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 switch (h->root.type)
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
653 case bfd_link_hash_new:
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
682 h->root.type = bfd_link_hash_undefined;
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
691 h->verinfo.verdef = NULL;
693 /* Make sure this symbol is not garbage collected. */
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 if (!bfd_link_relocatable (info)
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
755 if (! is_elf_hash_table (info->hash))
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
772 bfd_release (input_bfd, entry);
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
795 dynstr = elf_hash_table (info)->dynstr;
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
807 entry->isym.st_name = dynstr_index;
809 eht = elf_hash_table (info);
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
817 /* Whatever binding the symbol had before, it's now local. */
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
821 /* The dynindx will be set at the end of size_dynamic_sections. */
826 /* Return the dynindex of a local dynamic symbol. */
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
833 struct elf_link_local_dynamic_entry *e;
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
849 size_t *count = (size_t *) data;
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
868 size_t *count = (size_t *) data;
870 if (!h->forced_local)
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
886 struct elf_link_hash_table *htab;
889 switch (elf_section_data (p)->this_hdr.sh_type)
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
907 /* There shouldn't be section relative relocations
908 against any other section. */
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
925 unsigned long dynsymcount = 0;
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
938 elf_section_data (p)->dynindx = 0;
940 *section_sym_count = dynsymcount;
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
946 if (elf_hash_table (info)->dynlocal)
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
964 elf_hash_table (info)->dynsymcount = dynsymcount;
968 /* Merge st_other field. */
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1016 Elf_Internal_Sym *sym,
1019 struct elf_link_hash_entry **sym_hash,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1044 bind = ELF_ST_BIND (sym->st_info);
1046 if (! bfd_is_und_section (sec))
1047 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1049 h = ((struct elf_link_hash_entry *)
1050 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1055 bed = get_elf_backend_data (abfd);
1057 /* NEW_VERSION is the symbol version of the new symbol. */
1058 if (h->versioned != unversioned)
1060 /* Symbol version is unknown or versioned. */
1061 new_version = strrchr (name, ELF_VER_CHR);
1064 if (h->versioned == unknown)
1066 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1067 h->versioned = versioned_hidden;
1069 h->versioned = versioned;
1072 if (new_version[0] == '\0')
1076 h->versioned = unversioned;
1081 /* For merging, we only care about real symbols. But we need to make
1082 sure that indirect symbol dynamic flags are updated. */
1084 while (h->root.type == bfd_link_hash_indirect
1085 || h->root.type == bfd_link_hash_warning)
1086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1090 if (hi == h || h->root.type == bfd_link_hash_new)
1094 /* OLD_HIDDEN is true if the existing symbol is only visible
1095 to the symbol with the same symbol version. NEW_HIDDEN is
1096 true if the new symbol is only visible to the symbol with
1097 the same symbol version. */
1098 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1099 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1100 if (!old_hidden && !new_hidden)
1101 /* The new symbol matches the existing symbol if both
1106 /* OLD_VERSION is the symbol version of the existing
1110 if (h->versioned >= versioned)
1111 old_version = strrchr (h->root.root.string,
1116 /* The new symbol matches the existing symbol if they
1117 have the same symbol version. */
1118 *matched = (old_version == new_version
1119 || (old_version != NULL
1120 && new_version != NULL
1121 && strcmp (old_version, new_version) == 0));
1126 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1131 switch (h->root.type)
1136 case bfd_link_hash_undefined:
1137 case bfd_link_hash_undefweak:
1138 oldbfd = h->root.u.undef.abfd;
1141 case bfd_link_hash_defined:
1142 case bfd_link_hash_defweak:
1143 oldbfd = h->root.u.def.section->owner;
1144 oldsec = h->root.u.def.section;
1147 case bfd_link_hash_common:
1148 oldbfd = h->root.u.c.p->section->owner;
1149 oldsec = h->root.u.c.p->section;
1151 *pold_alignment = h->root.u.c.p->alignment_power;
1154 if (poldbfd && *poldbfd == NULL)
1157 /* Differentiate strong and weak symbols. */
1158 newweak = bind == STB_WEAK;
1159 oldweak = (h->root.type == bfd_link_hash_defweak
1160 || h->root.type == bfd_link_hash_undefweak);
1162 *pold_weak = oldweak;
1164 /* This code is for coping with dynamic objects, and is only useful
1165 if we are doing an ELF link. */
1166 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1169 /* We have to check it for every instance since the first few may be
1170 references and not all compilers emit symbol type for undefined
1172 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1174 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1175 respectively, is from a dynamic object. */
1177 newdyn = (abfd->flags & DYNAMIC) != 0;
1179 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1180 syms and defined syms in dynamic libraries respectively.
1181 ref_dynamic on the other hand can be set for a symbol defined in
1182 a dynamic library, and def_dynamic may not be set; When the
1183 definition in a dynamic lib is overridden by a definition in the
1184 executable use of the symbol in the dynamic lib becomes a
1185 reference to the executable symbol. */
1188 if (bfd_is_und_section (sec))
1190 if (bind != STB_WEAK)
1192 h->ref_dynamic_nonweak = 1;
1193 hi->ref_dynamic_nonweak = 1;
1198 /* Update the existing symbol only if they match. */
1201 hi->dynamic_def = 1;
1205 /* If we just created the symbol, mark it as being an ELF symbol.
1206 Other than that, there is nothing to do--there is no merge issue
1207 with a newly defined symbol--so we just return. */
1209 if (h->root.type == bfd_link_hash_new)
1215 /* In cases involving weak versioned symbols, we may wind up trying
1216 to merge a symbol with itself. Catch that here, to avoid the
1217 confusion that results if we try to override a symbol with
1218 itself. The additional tests catch cases like
1219 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1220 dynamic object, which we do want to handle here. */
1222 && (newweak || oldweak)
1223 && ((abfd->flags & DYNAMIC) == 0
1224 || !h->def_regular))
1229 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1230 else if (oldsec != NULL)
1232 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1233 indices used by MIPS ELF. */
1234 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1237 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1238 respectively, appear to be a definition rather than reference. */
1240 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1242 olddef = (h->root.type != bfd_link_hash_undefined
1243 && h->root.type != bfd_link_hash_undefweak
1244 && h->root.type != bfd_link_hash_common);
1246 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1247 respectively, appear to be a function. */
1249 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1250 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1252 oldfunc = (h->type != STT_NOTYPE
1253 && bed->is_function_type (h->type));
1255 if (!(newfunc && oldfunc)
1256 && ELF_ST_TYPE (sym->st_info) != h->type
1257 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1258 && h->type != STT_NOTYPE
1259 && (newdef || bfd_is_com_section (sec))
1260 && (olddef || h->root.type == bfd_link_hash_common))
1262 /* If creating a default indirect symbol ("foo" or "foo@") from
1263 a dynamic versioned definition ("foo@@") skip doing so if
1264 there is an existing regular definition with a different
1265 type. We don't want, for example, a "time" variable in the
1266 executable overriding a "time" function in a shared library. */
1274 /* When adding a symbol from a regular object file after we have
1275 created indirect symbols, undo the indirection and any
1282 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1283 h->forced_local = 0;
1287 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1289 h->root.type = bfd_link_hash_undefined;
1290 h->root.u.undef.abfd = abfd;
1294 h->root.type = bfd_link_hash_new;
1295 h->root.u.undef.abfd = NULL;
1301 /* Check TLS symbols. We don't check undefined symbols introduced
1302 by "ld -u" which have no type (and oldbfd NULL), and we don't
1303 check symbols from plugins because they also have no type. */
1305 && (oldbfd->flags & BFD_PLUGIN) == 0
1306 && (abfd->flags & BFD_PLUGIN) == 0
1307 && ELF_ST_TYPE (sym->st_info) != h->type
1308 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1311 bfd_boolean ntdef, tdef;
1312 asection *ntsec, *tsec;
1314 if (h->type == STT_TLS)
1335 /* xgettext:c-format */
1336 (_("%s: TLS definition in %B section %A "
1337 "mismatches non-TLS definition in %B section %A"),
1338 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1339 else if (!tdef && !ntdef)
1341 /* xgettext:c-format */
1342 (_("%s: TLS reference in %B "
1343 "mismatches non-TLS reference in %B"),
1344 h->root.root.string, tbfd, ntbfd);
1347 /* xgettext:c-format */
1348 (_("%s: TLS definition in %B section %A "
1349 "mismatches non-TLS reference in %B"),
1350 h->root.root.string, tbfd, tsec, ntbfd);
1353 /* xgettext:c-format */
1354 (_("%s: TLS reference in %B "
1355 "mismatches non-TLS definition in %B section %A"),
1356 h->root.root.string, tbfd, ntbfd, ntsec);
1358 bfd_set_error (bfd_error_bad_value);
1362 /* If the old symbol has non-default visibility, we ignore the new
1363 definition from a dynamic object. */
1365 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1366 && !bfd_is_und_section (sec))
1369 /* Make sure this symbol is dynamic. */
1371 hi->ref_dynamic = 1;
1372 /* A protected symbol has external availability. Make sure it is
1373 recorded as dynamic.
1375 FIXME: Should we check type and size for protected symbol? */
1376 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1377 return bfd_elf_link_record_dynamic_symbol (info, h);
1382 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1385 /* If the new symbol with non-default visibility comes from a
1386 relocatable file and the old definition comes from a dynamic
1387 object, we remove the old definition. */
1388 if (hi->root.type == bfd_link_hash_indirect)
1390 /* Handle the case where the old dynamic definition is
1391 default versioned. We need to copy the symbol info from
1392 the symbol with default version to the normal one if it
1393 was referenced before. */
1396 hi->root.type = h->root.type;
1397 h->root.type = bfd_link_hash_indirect;
1398 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1400 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1401 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1403 /* If the new symbol is hidden or internal, completely undo
1404 any dynamic link state. */
1405 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1406 h->forced_local = 0;
1413 /* FIXME: Should we check type and size for protected symbol? */
1423 /* If the old symbol was undefined before, then it will still be
1424 on the undefs list. If the new symbol is undefined or
1425 common, we can't make it bfd_link_hash_new here, because new
1426 undefined or common symbols will be added to the undefs list
1427 by _bfd_generic_link_add_one_symbol. Symbols may not be
1428 added twice to the undefs list. Also, if the new symbol is
1429 undefweak then we don't want to lose the strong undef. */
1430 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1432 h->root.type = bfd_link_hash_undefined;
1433 h->root.u.undef.abfd = abfd;
1437 h->root.type = bfd_link_hash_new;
1438 h->root.u.undef.abfd = NULL;
1441 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1443 /* If the new symbol is hidden or internal, completely undo
1444 any dynamic link state. */
1445 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1446 h->forced_local = 0;
1452 /* FIXME: Should we check type and size for protected symbol? */
1458 /* If a new weak symbol definition comes from a regular file and the
1459 old symbol comes from a dynamic library, we treat the new one as
1460 strong. Similarly, an old weak symbol definition from a regular
1461 file is treated as strong when the new symbol comes from a dynamic
1462 library. Further, an old weak symbol from a dynamic library is
1463 treated as strong if the new symbol is from a dynamic library.
1464 This reflects the way glibc's ld.so works.
1466 Do this before setting *type_change_ok or *size_change_ok so that
1467 we warn properly when dynamic library symbols are overridden. */
1469 if (newdef && !newdyn && olddyn)
1471 if (olddef && newdyn)
1474 /* Allow changes between different types of function symbol. */
1475 if (newfunc && oldfunc)
1476 *type_change_ok = TRUE;
1478 /* It's OK to change the type if either the existing symbol or the
1479 new symbol is weak. A type change is also OK if the old symbol
1480 is undefined and the new symbol is defined. */
1485 && h->root.type == bfd_link_hash_undefined))
1486 *type_change_ok = TRUE;
1488 /* It's OK to change the size if either the existing symbol or the
1489 new symbol is weak, or if the old symbol is undefined. */
1492 || h->root.type == bfd_link_hash_undefined)
1493 *size_change_ok = TRUE;
1495 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1496 symbol, respectively, appears to be a common symbol in a dynamic
1497 object. If a symbol appears in an uninitialized section, and is
1498 not weak, and is not a function, then it may be a common symbol
1499 which was resolved when the dynamic object was created. We want
1500 to treat such symbols specially, because they raise special
1501 considerations when setting the symbol size: if the symbol
1502 appears as a common symbol in a regular object, and the size in
1503 the regular object is larger, we must make sure that we use the
1504 larger size. This problematic case can always be avoided in C,
1505 but it must be handled correctly when using Fortran shared
1508 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1509 likewise for OLDDYNCOMMON and OLDDEF.
1511 Note that this test is just a heuristic, and that it is quite
1512 possible to have an uninitialized symbol in a shared object which
1513 is really a definition, rather than a common symbol. This could
1514 lead to some minor confusion when the symbol really is a common
1515 symbol in some regular object. However, I think it will be
1521 && (sec->flags & SEC_ALLOC) != 0
1522 && (sec->flags & SEC_LOAD) == 0
1525 newdyncommon = TRUE;
1527 newdyncommon = FALSE;
1531 && h->root.type == bfd_link_hash_defined
1533 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1534 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1537 olddyncommon = TRUE;
1539 olddyncommon = FALSE;
1541 /* We now know everything about the old and new symbols. We ask the
1542 backend to check if we can merge them. */
1543 if (bed->merge_symbol != NULL)
1545 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1550 /* If both the old and the new symbols look like common symbols in a
1551 dynamic object, set the size of the symbol to the larger of the
1556 && sym->st_size != h->size)
1558 /* Since we think we have two common symbols, issue a multiple
1559 common warning if desired. Note that we only warn if the
1560 size is different. If the size is the same, we simply let
1561 the old symbol override the new one as normally happens with
1562 symbols defined in dynamic objects. */
1564 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1565 bfd_link_hash_common, sym->st_size);
1566 if (sym->st_size > h->size)
1567 h->size = sym->st_size;
1569 *size_change_ok = TRUE;
1572 /* If we are looking at a dynamic object, and we have found a
1573 definition, we need to see if the symbol was already defined by
1574 some other object. If so, we want to use the existing
1575 definition, and we do not want to report a multiple symbol
1576 definition error; we do this by clobbering *PSEC to be
1577 bfd_und_section_ptr.
1579 We treat a common symbol as a definition if the symbol in the
1580 shared library is a function, since common symbols always
1581 represent variables; this can cause confusion in principle, but
1582 any such confusion would seem to indicate an erroneous program or
1583 shared library. We also permit a common symbol in a regular
1584 object to override a weak symbol in a shared object. */
1589 || (h->root.type == bfd_link_hash_common
1590 && (newweak || newfunc))))
1594 newdyncommon = FALSE;
1596 *psec = sec = bfd_und_section_ptr;
1597 *size_change_ok = TRUE;
1599 /* If we get here when the old symbol is a common symbol, then
1600 we are explicitly letting it override a weak symbol or
1601 function in a dynamic object, and we don't want to warn about
1602 a type change. If the old symbol is a defined symbol, a type
1603 change warning may still be appropriate. */
1605 if (h->root.type == bfd_link_hash_common)
1606 *type_change_ok = TRUE;
1609 /* Handle the special case of an old common symbol merging with a
1610 new symbol which looks like a common symbol in a shared object.
1611 We change *PSEC and *PVALUE to make the new symbol look like a
1612 common symbol, and let _bfd_generic_link_add_one_symbol do the
1616 && h->root.type == bfd_link_hash_common)
1620 newdyncommon = FALSE;
1621 *pvalue = sym->st_size;
1622 *psec = sec = bed->common_section (oldsec);
1623 *size_change_ok = TRUE;
1626 /* Skip weak definitions of symbols that are already defined. */
1627 if (newdef && olddef && newweak)
1629 /* Don't skip new non-IR weak syms. */
1630 if (!(oldbfd != NULL
1631 && (oldbfd->flags & BFD_PLUGIN) != 0
1632 && (abfd->flags & BFD_PLUGIN) == 0))
1638 /* Merge st_other. If the symbol already has a dynamic index,
1639 but visibility says it should not be visible, turn it into a
1641 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1642 if (h->dynindx != -1)
1643 switch (ELF_ST_VISIBILITY (h->other))
1647 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1652 /* If the old symbol is from a dynamic object, and the new symbol is
1653 a definition which is not from a dynamic object, then the new
1654 symbol overrides the old symbol. Symbols from regular files
1655 always take precedence over symbols from dynamic objects, even if
1656 they are defined after the dynamic object in the link.
1658 As above, we again permit a common symbol in a regular object to
1659 override a definition in a shared object if the shared object
1660 symbol is a function or is weak. */
1665 || (bfd_is_com_section (sec)
1666 && (oldweak || oldfunc)))
1671 /* Change the hash table entry to undefined, and let
1672 _bfd_generic_link_add_one_symbol do the right thing with the
1675 h->root.type = bfd_link_hash_undefined;
1676 h->root.u.undef.abfd = h->root.u.def.section->owner;
1677 *size_change_ok = TRUE;
1680 olddyncommon = FALSE;
1682 /* We again permit a type change when a common symbol may be
1683 overriding a function. */
1685 if (bfd_is_com_section (sec))
1689 /* If a common symbol overrides a function, make sure
1690 that it isn't defined dynamically nor has type
1693 h->type = STT_NOTYPE;
1695 *type_change_ok = TRUE;
1698 if (hi->root.type == bfd_link_hash_indirect)
1701 /* This union may have been set to be non-NULL when this symbol
1702 was seen in a dynamic object. We must force the union to be
1703 NULL, so that it is correct for a regular symbol. */
1704 h->verinfo.vertree = NULL;
1707 /* Handle the special case of a new common symbol merging with an
1708 old symbol that looks like it might be a common symbol defined in
1709 a shared object. Note that we have already handled the case in
1710 which a new common symbol should simply override the definition
1711 in the shared library. */
1714 && bfd_is_com_section (sec)
1717 /* It would be best if we could set the hash table entry to a
1718 common symbol, but we don't know what to use for the section
1719 or the alignment. */
1720 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1721 bfd_link_hash_common, sym->st_size);
1723 /* If the presumed common symbol in the dynamic object is
1724 larger, pretend that the new symbol has its size. */
1726 if (h->size > *pvalue)
1729 /* We need to remember the alignment required by the symbol
1730 in the dynamic object. */
1731 BFD_ASSERT (pold_alignment);
1732 *pold_alignment = h->root.u.def.section->alignment_power;
1735 olddyncommon = FALSE;
1737 h->root.type = bfd_link_hash_undefined;
1738 h->root.u.undef.abfd = h->root.u.def.section->owner;
1740 *size_change_ok = TRUE;
1741 *type_change_ok = TRUE;
1743 if (hi->root.type == bfd_link_hash_indirect)
1746 h->verinfo.vertree = NULL;
1751 /* Handle the case where we had a versioned symbol in a dynamic
1752 library and now find a definition in a normal object. In this
1753 case, we make the versioned symbol point to the normal one. */
1754 flip->root.type = h->root.type;
1755 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1756 h->root.type = bfd_link_hash_indirect;
1757 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1758 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1762 flip->ref_dynamic = 1;
1769 /* This function is called to create an indirect symbol from the
1770 default for the symbol with the default version if needed. The
1771 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1772 set DYNSYM if the new indirect symbol is dynamic. */
1775 _bfd_elf_add_default_symbol (bfd *abfd,
1776 struct bfd_link_info *info,
1777 struct elf_link_hash_entry *h,
1779 Elf_Internal_Sym *sym,
1783 bfd_boolean *dynsym)
1785 bfd_boolean type_change_ok;
1786 bfd_boolean size_change_ok;
1789 struct elf_link_hash_entry *hi;
1790 struct bfd_link_hash_entry *bh;
1791 const struct elf_backend_data *bed;
1792 bfd_boolean collect;
1793 bfd_boolean dynamic;
1794 bfd_boolean override;
1796 size_t len, shortlen;
1798 bfd_boolean matched;
1800 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1803 /* If this symbol has a version, and it is the default version, we
1804 create an indirect symbol from the default name to the fully
1805 decorated name. This will cause external references which do not
1806 specify a version to be bound to this version of the symbol. */
1807 p = strchr (name, ELF_VER_CHR);
1808 if (h->versioned == unknown)
1812 h->versioned = unversioned;
1817 if (p[1] != ELF_VER_CHR)
1819 h->versioned = versioned_hidden;
1823 h->versioned = versioned;
1828 /* PR ld/19073: We may see an unversioned definition after the
1834 bed = get_elf_backend_data (abfd);
1835 collect = bed->collect;
1836 dynamic = (abfd->flags & DYNAMIC) != 0;
1838 shortlen = p - name;
1839 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1840 if (shortname == NULL)
1842 memcpy (shortname, name, shortlen);
1843 shortname[shortlen] = '\0';
1845 /* We are going to create a new symbol. Merge it with any existing
1846 symbol with this name. For the purposes of the merge, act as
1847 though we were defining the symbol we just defined, although we
1848 actually going to define an indirect symbol. */
1849 type_change_ok = FALSE;
1850 size_change_ok = FALSE;
1853 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1854 &hi, poldbfd, NULL, NULL, &skip, &override,
1855 &type_change_ok, &size_change_ok, &matched))
1861 if (hi->def_regular)
1863 /* If the undecorated symbol will have a version added by a
1864 script different to H, then don't indirect to/from the
1865 undecorated symbol. This isn't ideal because we may not yet
1866 have seen symbol versions, if given by a script on the
1867 command line rather than via --version-script. */
1868 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1873 = bfd_find_version_for_sym (info->version_info,
1874 hi->root.root.string, &hide);
1875 if (hi->verinfo.vertree != NULL && hide)
1877 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1881 if (hi->verinfo.vertree != NULL
1882 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1888 /* Add the default symbol if not performing a relocatable link. */
1889 if (! bfd_link_relocatable (info))
1892 if (! (_bfd_generic_link_add_one_symbol
1893 (info, abfd, shortname, BSF_INDIRECT,
1894 bfd_ind_section_ptr,
1895 0, name, FALSE, collect, &bh)))
1897 hi = (struct elf_link_hash_entry *) bh;
1902 /* In this case the symbol named SHORTNAME is overriding the
1903 indirect symbol we want to add. We were planning on making
1904 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1905 is the name without a version. NAME is the fully versioned
1906 name, and it is the default version.
1908 Overriding means that we already saw a definition for the
1909 symbol SHORTNAME in a regular object, and it is overriding
1910 the symbol defined in the dynamic object.
1912 When this happens, we actually want to change NAME, the
1913 symbol we just added, to refer to SHORTNAME. This will cause
1914 references to NAME in the shared object to become references
1915 to SHORTNAME in the regular object. This is what we expect
1916 when we override a function in a shared object: that the
1917 references in the shared object will be mapped to the
1918 definition in the regular object. */
1920 while (hi->root.type == bfd_link_hash_indirect
1921 || hi->root.type == bfd_link_hash_warning)
1922 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1924 h->root.type = bfd_link_hash_indirect;
1925 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1929 hi->ref_dynamic = 1;
1933 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1938 /* Now set HI to H, so that the following code will set the
1939 other fields correctly. */
1943 /* Check if HI is a warning symbol. */
1944 if (hi->root.type == bfd_link_hash_warning)
1945 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1947 /* If there is a duplicate definition somewhere, then HI may not
1948 point to an indirect symbol. We will have reported an error to
1949 the user in that case. */
1951 if (hi->root.type == bfd_link_hash_indirect)
1953 struct elf_link_hash_entry *ht;
1955 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1956 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1958 /* A reference to the SHORTNAME symbol from a dynamic library
1959 will be satisfied by the versioned symbol at runtime. In
1960 effect, we have a reference to the versioned symbol. */
1961 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1962 hi->dynamic_def |= ht->dynamic_def;
1964 /* See if the new flags lead us to realize that the symbol must
1970 if (! bfd_link_executable (info)
1977 if (hi->ref_regular)
1983 /* We also need to define an indirection from the nondefault version
1987 len = strlen (name);
1988 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1989 if (shortname == NULL)
1991 memcpy (shortname, name, shortlen);
1992 memcpy (shortname + shortlen, p + 1, len - shortlen);
1994 /* Once again, merge with any existing symbol. */
1995 type_change_ok = FALSE;
1996 size_change_ok = FALSE;
1998 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1999 &hi, poldbfd, NULL, NULL, &skip, &override,
2000 &type_change_ok, &size_change_ok, &matched))
2008 /* Here SHORTNAME is a versioned name, so we don't expect to see
2009 the type of override we do in the case above unless it is
2010 overridden by a versioned definition. */
2011 if (hi->root.type != bfd_link_hash_defined
2012 && hi->root.type != bfd_link_hash_defweak)
2014 /* xgettext:c-format */
2015 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2021 if (! (_bfd_generic_link_add_one_symbol
2022 (info, abfd, shortname, BSF_INDIRECT,
2023 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2025 hi = (struct elf_link_hash_entry *) bh;
2027 /* If there is a duplicate definition somewhere, then HI may not
2028 point to an indirect symbol. We will have reported an error
2029 to the user in that case. */
2031 if (hi->root.type == bfd_link_hash_indirect)
2033 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2034 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2035 hi->dynamic_def |= h->dynamic_def;
2037 /* See if the new flags lead us to realize that the symbol
2043 if (! bfd_link_executable (info)
2049 if (hi->ref_regular)
2059 /* This routine is used to export all defined symbols into the dynamic
2060 symbol table. It is called via elf_link_hash_traverse. */
2063 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2065 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2067 /* Ignore indirect symbols. These are added by the versioning code. */
2068 if (h->root.type == bfd_link_hash_indirect)
2071 /* Ignore this if we won't export it. */
2072 if (!eif->info->export_dynamic && !h->dynamic)
2075 if (h->dynindx == -1
2076 && (h->def_regular || h->ref_regular)
2077 && ! bfd_hide_sym_by_version (eif->info->version_info,
2078 h->root.root.string))
2080 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2090 /* Look through the symbols which are defined in other shared
2091 libraries and referenced here. Update the list of version
2092 dependencies. This will be put into the .gnu.version_r section.
2093 This function is called via elf_link_hash_traverse. */
2096 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2099 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2100 Elf_Internal_Verneed *t;
2101 Elf_Internal_Vernaux *a;
2104 /* We only care about symbols defined in shared objects with version
2109 || h->verinfo.verdef == NULL
2110 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2111 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2114 /* See if we already know about this version. */
2115 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2119 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2122 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2123 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2129 /* This is a new version. Add it to tree we are building. */
2134 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2137 rinfo->failed = TRUE;
2141 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2142 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2143 elf_tdata (rinfo->info->output_bfd)->verref = t;
2147 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2150 rinfo->failed = TRUE;
2154 /* Note that we are copying a string pointer here, and testing it
2155 above. If bfd_elf_string_from_elf_section is ever changed to
2156 discard the string data when low in memory, this will have to be
2158 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2160 a->vna_flags = h->verinfo.verdef->vd_flags;
2161 a->vna_nextptr = t->vn_auxptr;
2163 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2166 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2173 /* Figure out appropriate versions for all the symbols. We may not
2174 have the version number script until we have read all of the input
2175 files, so until that point we don't know which symbols should be
2176 local. This function is called via elf_link_hash_traverse. */
2179 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2181 struct elf_info_failed *sinfo;
2182 struct bfd_link_info *info;
2183 const struct elf_backend_data *bed;
2184 struct elf_info_failed eif;
2187 sinfo = (struct elf_info_failed *) data;
2190 /* Fix the symbol flags. */
2193 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2196 sinfo->failed = TRUE;
2200 /* We only need version numbers for symbols defined in regular
2202 if (!h->def_regular)
2205 bed = get_elf_backend_data (info->output_bfd);
2206 p = strchr (h->root.root.string, ELF_VER_CHR);
2207 if (p != NULL && h->verinfo.vertree == NULL)
2209 struct bfd_elf_version_tree *t;
2212 if (*p == ELF_VER_CHR)
2215 /* If there is no version string, we can just return out. */
2219 /* Look for the version. If we find it, it is no longer weak. */
2220 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2222 if (strcmp (t->name, p) == 0)
2226 struct bfd_elf_version_expr *d;
2228 len = p - h->root.root.string;
2229 alc = (char *) bfd_malloc (len);
2232 sinfo->failed = TRUE;
2235 memcpy (alc, h->root.root.string, len - 1);
2236 alc[len - 1] = '\0';
2237 if (alc[len - 2] == ELF_VER_CHR)
2238 alc[len - 2] = '\0';
2240 h->verinfo.vertree = t;
2244 if (t->globals.list != NULL)
2245 d = (*t->match) (&t->globals, NULL, alc);
2247 /* See if there is anything to force this symbol to
2249 if (d == NULL && t->locals.list != NULL)
2251 d = (*t->match) (&t->locals, NULL, alc);
2254 && ! info->export_dynamic)
2255 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2263 /* If we are building an application, we need to create a
2264 version node for this version. */
2265 if (t == NULL && bfd_link_executable (info))
2267 struct bfd_elf_version_tree **pp;
2270 /* If we aren't going to export this symbol, we don't need
2271 to worry about it. */
2272 if (h->dynindx == -1)
2275 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2279 sinfo->failed = TRUE;
2284 t->name_indx = (unsigned int) -1;
2288 /* Don't count anonymous version tag. */
2289 if (sinfo->info->version_info != NULL
2290 && sinfo->info->version_info->vernum == 0)
2292 for (pp = &sinfo->info->version_info;
2296 t->vernum = version_index;
2300 h->verinfo.vertree = t;
2304 /* We could not find the version for a symbol when
2305 generating a shared archive. Return an error. */
2307 /* xgettext:c-format */
2308 (_("%B: version node not found for symbol %s"),
2309 info->output_bfd, h->root.root.string);
2310 bfd_set_error (bfd_error_bad_value);
2311 sinfo->failed = TRUE;
2316 /* If we don't have a version for this symbol, see if we can find
2318 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2323 = bfd_find_version_for_sym (sinfo->info->version_info,
2324 h->root.root.string, &hide);
2325 if (h->verinfo.vertree != NULL && hide)
2326 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2332 /* Read and swap the relocs from the section indicated by SHDR. This
2333 may be either a REL or a RELA section. The relocations are
2334 translated into RELA relocations and stored in INTERNAL_RELOCS,
2335 which should have already been allocated to contain enough space.
2336 The EXTERNAL_RELOCS are a buffer where the external form of the
2337 relocations should be stored.
2339 Returns FALSE if something goes wrong. */
2342 elf_link_read_relocs_from_section (bfd *abfd,
2344 Elf_Internal_Shdr *shdr,
2345 void *external_relocs,
2346 Elf_Internal_Rela *internal_relocs)
2348 const struct elf_backend_data *bed;
2349 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2350 const bfd_byte *erela;
2351 const bfd_byte *erelaend;
2352 Elf_Internal_Rela *irela;
2353 Elf_Internal_Shdr *symtab_hdr;
2356 /* Position ourselves at the start of the section. */
2357 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2360 /* Read the relocations. */
2361 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2364 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2365 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2367 bed = get_elf_backend_data (abfd);
2369 /* Convert the external relocations to the internal format. */
2370 if (shdr->sh_entsize == bed->s->sizeof_rel)
2371 swap_in = bed->s->swap_reloc_in;
2372 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2373 swap_in = bed->s->swap_reloca_in;
2376 bfd_set_error (bfd_error_wrong_format);
2380 erela = (const bfd_byte *) external_relocs;
2381 erelaend = erela + shdr->sh_size;
2382 irela = internal_relocs;
2383 while (erela < erelaend)
2387 (*swap_in) (abfd, erela, irela);
2388 r_symndx = ELF32_R_SYM (irela->r_info);
2389 if (bed->s->arch_size == 64)
2393 if ((size_t) r_symndx >= nsyms)
2396 /* xgettext:c-format */
2397 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2398 " for offset %#Lx in section `%A'"),
2399 abfd, r_symndx, (unsigned long) nsyms,
2400 irela->r_offset, sec);
2401 bfd_set_error (bfd_error_bad_value);
2405 else if (r_symndx != STN_UNDEF)
2408 /* xgettext:c-format */
2409 (_("%B: non-zero symbol index (%#Lx)"
2410 " for offset %#Lx in section `%A'"
2411 " when the object file has no symbol table"),
2413 irela->r_offset, sec);
2414 bfd_set_error (bfd_error_bad_value);
2417 irela += bed->s->int_rels_per_ext_rel;
2418 erela += shdr->sh_entsize;
2424 /* Read and swap the relocs for a section O. They may have been
2425 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2426 not NULL, they are used as buffers to read into. They are known to
2427 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2428 the return value is allocated using either malloc or bfd_alloc,
2429 according to the KEEP_MEMORY argument. If O has two relocation
2430 sections (both REL and RELA relocations), then the REL_HDR
2431 relocations will appear first in INTERNAL_RELOCS, followed by the
2432 RELA_HDR relocations. */
2435 _bfd_elf_link_read_relocs (bfd *abfd,
2437 void *external_relocs,
2438 Elf_Internal_Rela *internal_relocs,
2439 bfd_boolean keep_memory)
2441 void *alloc1 = NULL;
2442 Elf_Internal_Rela *alloc2 = NULL;
2443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2444 struct bfd_elf_section_data *esdo = elf_section_data (o);
2445 Elf_Internal_Rela *internal_rela_relocs;
2447 if (esdo->relocs != NULL)
2448 return esdo->relocs;
2450 if (o->reloc_count == 0)
2453 if (internal_relocs == NULL)
2457 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2459 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2461 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2462 if (internal_relocs == NULL)
2466 if (external_relocs == NULL)
2468 bfd_size_type size = 0;
2471 size += esdo->rel.hdr->sh_size;
2473 size += esdo->rela.hdr->sh_size;
2475 alloc1 = bfd_malloc (size);
2478 external_relocs = alloc1;
2481 internal_rela_relocs = internal_relocs;
2484 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2488 external_relocs = (((bfd_byte *) external_relocs)
2489 + esdo->rel.hdr->sh_size);
2490 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2491 * bed->s->int_rels_per_ext_rel);
2495 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2497 internal_rela_relocs)))
2500 /* Cache the results for next time, if we can. */
2502 esdo->relocs = internal_relocs;
2507 /* Don't free alloc2, since if it was allocated we are passing it
2508 back (under the name of internal_relocs). */
2510 return internal_relocs;
2518 bfd_release (abfd, alloc2);
2525 /* Compute the size of, and allocate space for, REL_HDR which is the
2526 section header for a section containing relocations for O. */
2529 _bfd_elf_link_size_reloc_section (bfd *abfd,
2530 struct bfd_elf_section_reloc_data *reldata)
2532 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2534 /* That allows us to calculate the size of the section. */
2535 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2537 /* The contents field must last into write_object_contents, so we
2538 allocate it with bfd_alloc rather than malloc. Also since we
2539 cannot be sure that the contents will actually be filled in,
2540 we zero the allocated space. */
2541 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2542 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2545 if (reldata->hashes == NULL && reldata->count)
2547 struct elf_link_hash_entry **p;
2549 p = ((struct elf_link_hash_entry **)
2550 bfd_zmalloc (reldata->count * sizeof (*p)));
2554 reldata->hashes = p;
2560 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2561 originated from the section given by INPUT_REL_HDR) to the
2565 _bfd_elf_link_output_relocs (bfd *output_bfd,
2566 asection *input_section,
2567 Elf_Internal_Shdr *input_rel_hdr,
2568 Elf_Internal_Rela *internal_relocs,
2569 struct elf_link_hash_entry **rel_hash
2572 Elf_Internal_Rela *irela;
2573 Elf_Internal_Rela *irelaend;
2575 struct bfd_elf_section_reloc_data *output_reldata;
2576 asection *output_section;
2577 const struct elf_backend_data *bed;
2578 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2579 struct bfd_elf_section_data *esdo;
2581 output_section = input_section->output_section;
2583 bed = get_elf_backend_data (output_bfd);
2584 esdo = elf_section_data (output_section);
2585 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2587 output_reldata = &esdo->rel;
2588 swap_out = bed->s->swap_reloc_out;
2590 else if (esdo->rela.hdr
2591 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2593 output_reldata = &esdo->rela;
2594 swap_out = bed->s->swap_reloca_out;
2599 /* xgettext:c-format */
2600 (_("%B: relocation size mismatch in %B section %A"),
2601 output_bfd, input_section->owner, input_section);
2602 bfd_set_error (bfd_error_wrong_format);
2606 erel = output_reldata->hdr->contents;
2607 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2608 irela = internal_relocs;
2609 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2610 * bed->s->int_rels_per_ext_rel);
2611 while (irela < irelaend)
2613 (*swap_out) (output_bfd, irela, erel);
2614 irela += bed->s->int_rels_per_ext_rel;
2615 erel += input_rel_hdr->sh_entsize;
2618 /* Bump the counter, so that we know where to add the next set of
2620 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2625 /* Make weak undefined symbols in PIE dynamic. */
2628 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2629 struct elf_link_hash_entry *h)
2631 if (bfd_link_pie (info)
2633 && h->root.type == bfd_link_hash_undefweak)
2634 return bfd_elf_link_record_dynamic_symbol (info, h);
2639 /* Fix up the flags for a symbol. This handles various cases which
2640 can only be fixed after all the input files are seen. This is
2641 currently called by both adjust_dynamic_symbol and
2642 assign_sym_version, which is unnecessary but perhaps more robust in
2643 the face of future changes. */
2646 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2647 struct elf_info_failed *eif)
2649 const struct elf_backend_data *bed;
2651 /* If this symbol was mentioned in a non-ELF file, try to set
2652 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2653 permit a non-ELF file to correctly refer to a symbol defined in
2654 an ELF dynamic object. */
2657 while (h->root.type == bfd_link_hash_indirect)
2658 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2660 if (h->root.type != bfd_link_hash_defined
2661 && h->root.type != bfd_link_hash_defweak)
2664 h->ref_regular_nonweak = 1;
2668 if (h->root.u.def.section->owner != NULL
2669 && (bfd_get_flavour (h->root.u.def.section->owner)
2670 == bfd_target_elf_flavour))
2673 h->ref_regular_nonweak = 1;
2679 if (h->dynindx == -1
2683 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2692 /* Unfortunately, NON_ELF is only correct if the symbol
2693 was first seen in a non-ELF file. Fortunately, if the symbol
2694 was first seen in an ELF file, we're probably OK unless the
2695 symbol was defined in a non-ELF file. Catch that case here.
2696 FIXME: We're still in trouble if the symbol was first seen in
2697 a dynamic object, and then later in a non-ELF regular object. */
2698 if ((h->root.type == bfd_link_hash_defined
2699 || h->root.type == bfd_link_hash_defweak)
2701 && (h->root.u.def.section->owner != NULL
2702 ? (bfd_get_flavour (h->root.u.def.section->owner)
2703 != bfd_target_elf_flavour)
2704 : (bfd_is_abs_section (h->root.u.def.section)
2705 && !h->def_dynamic)))
2709 /* Backend specific symbol fixup. */
2710 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2711 if (bed->elf_backend_fixup_symbol
2712 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2715 /* If this is a final link, and the symbol was defined as a common
2716 symbol in a regular object file, and there was no definition in
2717 any dynamic object, then the linker will have allocated space for
2718 the symbol in a common section but the DEF_REGULAR
2719 flag will not have been set. */
2720 if (h->root.type == bfd_link_hash_defined
2724 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2727 /* If a weak undefined symbol has non-default visibility, we also
2728 hide it from the dynamic linker. */
2729 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2730 && h->root.type == bfd_link_hash_undefweak)
2731 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2733 /* A hidden versioned symbol in executable should be forced local if
2734 it is is locally defined, not referenced by shared library and not
2736 else if (bfd_link_executable (eif->info)
2737 && h->versioned == versioned_hidden
2738 && !eif->info->export_dynamic
2742 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2744 /* If -Bsymbolic was used (which means to bind references to global
2745 symbols to the definition within the shared object), and this
2746 symbol was defined in a regular object, then it actually doesn't
2747 need a PLT entry. Likewise, if the symbol has non-default
2748 visibility. If the symbol has hidden or internal visibility, we
2749 will force it local. */
2750 else if (h->needs_plt
2751 && bfd_link_pic (eif->info)
2752 && is_elf_hash_table (eif->info->hash)
2753 && (SYMBOLIC_BIND (eif->info, h)
2754 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2757 bfd_boolean force_local;
2759 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2760 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2761 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2764 /* If this is a weak defined symbol in a dynamic object, and we know
2765 the real definition in the dynamic object, copy interesting flags
2766 over to the real definition. */
2767 if (h->u.weakdef != NULL)
2769 /* If the real definition is defined by a regular object file,
2770 don't do anything special. See the longer description in
2771 _bfd_elf_adjust_dynamic_symbol, below. */
2772 if (h->u.weakdef->def_regular)
2773 h->u.weakdef = NULL;
2776 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2778 while (h->root.type == bfd_link_hash_indirect)
2779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2781 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2782 || h->root.type == bfd_link_hash_defweak);
2783 BFD_ASSERT (weakdef->def_dynamic);
2784 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2785 || weakdef->root.type == bfd_link_hash_defweak);
2786 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2793 /* Make the backend pick a good value for a dynamic symbol. This is
2794 called via elf_link_hash_traverse, and also calls itself
2798 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2800 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2802 const struct elf_backend_data *bed;
2804 if (! is_elf_hash_table (eif->info->hash))
2807 /* Ignore indirect symbols. These are added by the versioning code. */
2808 if (h->root.type == bfd_link_hash_indirect)
2811 /* Fix the symbol flags. */
2812 if (! _bfd_elf_fix_symbol_flags (h, eif))
2815 if (h->root.type == bfd_link_hash_undefweak)
2817 if (eif->info->dynamic_undefined_weak == 0)
2818 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2819 else if (eif->info->dynamic_undefined_weak > 0
2821 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2822 && !bfd_hide_sym_by_version (eif->info->version_info,
2823 h->root.root.string))
2825 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2833 /* If this symbol does not require a PLT entry, and it is not
2834 defined by a dynamic object, or is not referenced by a regular
2835 object, ignore it. We do have to handle a weak defined symbol,
2836 even if no regular object refers to it, if we decided to add it
2837 to the dynamic symbol table. FIXME: Do we normally need to worry
2838 about symbols which are defined by one dynamic object and
2839 referenced by another one? */
2841 && h->type != STT_GNU_IFUNC
2845 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2847 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2851 /* If we've already adjusted this symbol, don't do it again. This
2852 can happen via a recursive call. */
2853 if (h->dynamic_adjusted)
2856 /* Don't look at this symbol again. Note that we must set this
2857 after checking the above conditions, because we may look at a
2858 symbol once, decide not to do anything, and then get called
2859 recursively later after REF_REGULAR is set below. */
2860 h->dynamic_adjusted = 1;
2862 /* If this is a weak definition, and we know a real definition, and
2863 the real symbol is not itself defined by a regular object file,
2864 then get a good value for the real definition. We handle the
2865 real symbol first, for the convenience of the backend routine.
2867 Note that there is a confusing case here. If the real definition
2868 is defined by a regular object file, we don't get the real symbol
2869 from the dynamic object, but we do get the weak symbol. If the
2870 processor backend uses a COPY reloc, then if some routine in the
2871 dynamic object changes the real symbol, we will not see that
2872 change in the corresponding weak symbol. This is the way other
2873 ELF linkers work as well, and seems to be a result of the shared
2876 I will clarify this issue. Most SVR4 shared libraries define the
2877 variable _timezone and define timezone as a weak synonym. The
2878 tzset call changes _timezone. If you write
2879 extern int timezone;
2881 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2882 you might expect that, since timezone is a synonym for _timezone,
2883 the same number will print both times. However, if the processor
2884 backend uses a COPY reloc, then actually timezone will be copied
2885 into your process image, and, since you define _timezone
2886 yourself, _timezone will not. Thus timezone and _timezone will
2887 wind up at different memory locations. The tzset call will set
2888 _timezone, leaving timezone unchanged. */
2890 if (h->u.weakdef != NULL)
2892 /* If we get to this point, there is an implicit reference to
2893 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2894 h->u.weakdef->ref_regular = 1;
2896 /* Ensure that the backend adjust_dynamic_symbol function sees
2897 H->U.WEAKDEF before H by recursively calling ourselves. */
2898 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2902 /* If a symbol has no type and no size and does not require a PLT
2903 entry, then we are probably about to do the wrong thing here: we
2904 are probably going to create a COPY reloc for an empty object.
2905 This case can arise when a shared object is built with assembly
2906 code, and the assembly code fails to set the symbol type. */
2908 && h->type == STT_NOTYPE
2911 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2912 h->root.root.string);
2914 dynobj = elf_hash_table (eif->info)->dynobj;
2915 bed = get_elf_backend_data (dynobj);
2917 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2926 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2930 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2931 struct elf_link_hash_entry *h,
2934 unsigned int power_of_two;
2936 asection *sec = h->root.u.def.section;
2938 /* The section alignment of the definition is the maximum alignment
2939 requirement of symbols defined in the section. Since we don't
2940 know the symbol alignment requirement, we start with the
2941 maximum alignment and check low bits of the symbol address
2942 for the minimum alignment. */
2943 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2944 mask = ((bfd_vma) 1 << power_of_two) - 1;
2945 while ((h->root.u.def.value & mask) != 0)
2951 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2954 /* Adjust the section alignment if needed. */
2955 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2960 /* We make sure that the symbol will be aligned properly. */
2961 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2963 /* Define the symbol as being at this point in DYNBSS. */
2964 h->root.u.def.section = dynbss;
2965 h->root.u.def.value = dynbss->size;
2967 /* Increment the size of DYNBSS to make room for the symbol. */
2968 dynbss->size += h->size;
2970 /* No error if extern_protected_data is true. */
2971 if (h->protected_def
2972 && (!info->extern_protected_data
2973 || (info->extern_protected_data < 0
2974 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2975 info->callbacks->einfo
2976 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2977 h->root.root.string);
2982 /* Adjust all external symbols pointing into SEC_MERGE sections
2983 to reflect the object merging within the sections. */
2986 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2990 if ((h->root.type == bfd_link_hash_defined
2991 || h->root.type == bfd_link_hash_defweak)
2992 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2993 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2995 bfd *output_bfd = (bfd *) data;
2997 h->root.u.def.value =
2998 _bfd_merged_section_offset (output_bfd,
2999 &h->root.u.def.section,
3000 elf_section_data (sec)->sec_info,
3001 h->root.u.def.value);
3007 /* Returns false if the symbol referred to by H should be considered
3008 to resolve local to the current module, and true if it should be
3009 considered to bind dynamically. */
3012 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3013 struct bfd_link_info *info,
3014 bfd_boolean not_local_protected)
3016 bfd_boolean binding_stays_local_p;
3017 const struct elf_backend_data *bed;
3018 struct elf_link_hash_table *hash_table;
3023 while (h->root.type == bfd_link_hash_indirect
3024 || h->root.type == bfd_link_hash_warning)
3025 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3027 /* If it was forced local, then clearly it's not dynamic. */
3028 if (h->dynindx == -1)
3030 if (h->forced_local)
3033 /* Identify the cases where name binding rules say that a
3034 visible symbol resolves locally. */
3035 binding_stays_local_p = (bfd_link_executable (info)
3036 || SYMBOLIC_BIND (info, h));
3038 switch (ELF_ST_VISIBILITY (h->other))
3045 hash_table = elf_hash_table (info);
3046 if (!is_elf_hash_table (hash_table))
3049 bed = get_elf_backend_data (hash_table->dynobj);
3051 /* Proper resolution for function pointer equality may require
3052 that these symbols perhaps be resolved dynamically, even though
3053 we should be resolving them to the current module. */
3054 if (!not_local_protected || !bed->is_function_type (h->type))
3055 binding_stays_local_p = TRUE;
3062 /* If it isn't defined locally, then clearly it's dynamic. */
3063 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3066 /* Otherwise, the symbol is dynamic if binding rules don't tell
3067 us that it remains local. */
3068 return !binding_stays_local_p;
3071 /* Return true if the symbol referred to by H should be considered
3072 to resolve local to the current module, and false otherwise. Differs
3073 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3074 undefined symbols. The two functions are virtually identical except
3075 for the place where dynindx == -1 is tested. If that test is true,
3076 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3077 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3079 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3080 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3081 treatment of undefined weak symbols. For those that do not make
3082 undefined weak symbols dynamic, both functions may return false. */
3085 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3086 struct bfd_link_info *info,
3087 bfd_boolean local_protected)
3089 const struct elf_backend_data *bed;
3090 struct elf_link_hash_table *hash_table;
3092 /* If it's a local sym, of course we resolve locally. */
3096 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3097 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3098 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3101 /* Forced local symbols resolve locally. */
3102 if (h->forced_local)
3105 /* Common symbols that become definitions don't get the DEF_REGULAR
3106 flag set, so test it first, and don't bail out. */
3107 if (ELF_COMMON_DEF_P (h))
3109 /* If we don't have a definition in a regular file, then we can't
3110 resolve locally. The sym is either undefined or dynamic. */
3111 else if (!h->def_regular)
3114 /* Non-dynamic symbols resolve locally. */
3115 if (h->dynindx == -1)
3118 /* At this point, we know the symbol is defined and dynamic. In an
3119 executable it must resolve locally, likewise when building symbolic
3120 shared libraries. */
3121 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3124 /* Now deal with defined dynamic symbols in shared libraries. Ones
3125 with default visibility might not resolve locally. */
3126 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3129 hash_table = elf_hash_table (info);
3130 if (!is_elf_hash_table (hash_table))
3133 bed = get_elf_backend_data (hash_table->dynobj);
3135 /* If extern_protected_data is false, STV_PROTECTED non-function
3136 symbols are local. */
3137 if ((!info->extern_protected_data
3138 || (info->extern_protected_data < 0
3139 && !bed->extern_protected_data))
3140 && !bed->is_function_type (h->type))
3143 /* Function pointer equality tests may require that STV_PROTECTED
3144 symbols be treated as dynamic symbols. If the address of a
3145 function not defined in an executable is set to that function's
3146 plt entry in the executable, then the address of the function in
3147 a shared library must also be the plt entry in the executable. */
3148 return local_protected;
3151 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3152 aligned. Returns the first TLS output section. */
3154 struct bfd_section *
3155 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3157 struct bfd_section *sec, *tls;
3158 unsigned int align = 0;
3160 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3161 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3165 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3166 if (sec->alignment_power > align)
3167 align = sec->alignment_power;
3169 elf_hash_table (info)->tls_sec = tls;
3171 /* Ensure the alignment of the first section is the largest alignment,
3172 so that the tls segment starts aligned. */
3174 tls->alignment_power = align;
3179 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3181 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3182 Elf_Internal_Sym *sym)
3184 const struct elf_backend_data *bed;
3186 /* Local symbols do not count, but target specific ones might. */
3187 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3188 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3191 bed = get_elf_backend_data (abfd);
3192 /* Function symbols do not count. */
3193 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3196 /* If the section is undefined, then so is the symbol. */
3197 if (sym->st_shndx == SHN_UNDEF)
3200 /* If the symbol is defined in the common section, then
3201 it is a common definition and so does not count. */
3202 if (bed->common_definition (sym))
3205 /* If the symbol is in a target specific section then we
3206 must rely upon the backend to tell us what it is. */
3207 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3208 /* FIXME - this function is not coded yet:
3210 return _bfd_is_global_symbol_definition (abfd, sym);
3212 Instead for now assume that the definition is not global,
3213 Even if this is wrong, at least the linker will behave
3214 in the same way that it used to do. */
3220 /* Search the symbol table of the archive element of the archive ABFD
3221 whose archive map contains a mention of SYMDEF, and determine if
3222 the symbol is defined in this element. */
3224 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3226 Elf_Internal_Shdr * hdr;
3230 Elf_Internal_Sym *isymbuf;
3231 Elf_Internal_Sym *isym;
3232 Elf_Internal_Sym *isymend;
3235 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3239 if (! bfd_check_format (abfd, bfd_object))
3242 /* Select the appropriate symbol table. If we don't know if the
3243 object file is an IR object, give linker LTO plugin a chance to
3244 get the correct symbol table. */
3245 if (abfd->plugin_format == bfd_plugin_yes
3246 #if BFD_SUPPORTS_PLUGINS
3247 || (abfd->plugin_format == bfd_plugin_unknown
3248 && bfd_link_plugin_object_p (abfd))
3252 /* Use the IR symbol table if the object has been claimed by
3254 abfd = abfd->plugin_dummy_bfd;
3255 hdr = &elf_tdata (abfd)->symtab_hdr;
3257 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3258 hdr = &elf_tdata (abfd)->symtab_hdr;
3260 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3262 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3264 /* The sh_info field of the symtab header tells us where the
3265 external symbols start. We don't care about the local symbols. */
3266 if (elf_bad_symtab (abfd))
3268 extsymcount = symcount;
3273 extsymcount = symcount - hdr->sh_info;
3274 extsymoff = hdr->sh_info;
3277 if (extsymcount == 0)
3280 /* Read in the symbol table. */
3281 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3283 if (isymbuf == NULL)
3286 /* Scan the symbol table looking for SYMDEF. */
3288 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3292 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3297 if (strcmp (name, symdef->name) == 0)
3299 result = is_global_data_symbol_definition (abfd, isym);
3309 /* Add an entry to the .dynamic table. */
3312 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3316 struct elf_link_hash_table *hash_table;
3317 const struct elf_backend_data *bed;
3319 bfd_size_type newsize;
3320 bfd_byte *newcontents;
3321 Elf_Internal_Dyn dyn;
3323 hash_table = elf_hash_table (info);
3324 if (! is_elf_hash_table (hash_table))
3327 bed = get_elf_backend_data (hash_table->dynobj);
3328 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3329 BFD_ASSERT (s != NULL);
3331 newsize = s->size + bed->s->sizeof_dyn;
3332 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3333 if (newcontents == NULL)
3337 dyn.d_un.d_val = val;
3338 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3341 s->contents = newcontents;
3346 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3347 otherwise just check whether one already exists. Returns -1 on error,
3348 1 if a DT_NEEDED tag already exists, and 0 on success. */
3351 elf_add_dt_needed_tag (bfd *abfd,
3352 struct bfd_link_info *info,
3356 struct elf_link_hash_table *hash_table;
3359 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3362 hash_table = elf_hash_table (info);
3363 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3364 if (strindex == (size_t) -1)
3367 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3370 const struct elf_backend_data *bed;
3373 bed = get_elf_backend_data (hash_table->dynobj);
3374 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3376 for (extdyn = sdyn->contents;
3377 extdyn < sdyn->contents + sdyn->size;
3378 extdyn += bed->s->sizeof_dyn)
3380 Elf_Internal_Dyn dyn;
3382 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3383 if (dyn.d_tag == DT_NEEDED
3384 && dyn.d_un.d_val == strindex)
3386 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3394 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3397 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3401 /* We were just checking for existence of the tag. */
3402 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3407 /* Return true if SONAME is on the needed list between NEEDED and STOP
3408 (or the end of list if STOP is NULL), and needed by a library that
3412 on_needed_list (const char *soname,
3413 struct bfd_link_needed_list *needed,
3414 struct bfd_link_needed_list *stop)
3416 struct bfd_link_needed_list *look;
3417 for (look = needed; look != stop; look = look->next)
3418 if (strcmp (soname, look->name) == 0
3419 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3420 /* If needed by a library that itself is not directly
3421 needed, recursively check whether that library is
3422 indirectly needed. Since we add DT_NEEDED entries to
3423 the end of the list, library dependencies appear after
3424 the library. Therefore search prior to the current
3425 LOOK, preventing possible infinite recursion. */
3426 || on_needed_list (elf_dt_name (look->by), needed, look)))
3432 /* Sort symbol by value, section, and size. */
3434 elf_sort_symbol (const void *arg1, const void *arg2)
3436 const struct elf_link_hash_entry *h1;
3437 const struct elf_link_hash_entry *h2;
3438 bfd_signed_vma vdiff;
3440 h1 = *(const struct elf_link_hash_entry **) arg1;
3441 h2 = *(const struct elf_link_hash_entry **) arg2;
3442 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3444 return vdiff > 0 ? 1 : -1;
3447 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3449 return sdiff > 0 ? 1 : -1;
3451 vdiff = h1->size - h2->size;
3452 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3455 /* This function is used to adjust offsets into .dynstr for
3456 dynamic symbols. This is called via elf_link_hash_traverse. */
3459 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3461 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3463 if (h->dynindx != -1)
3464 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3468 /* Assign string offsets in .dynstr, update all structures referencing
3472 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3474 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3475 struct elf_link_local_dynamic_entry *entry;
3476 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3477 bfd *dynobj = hash_table->dynobj;
3480 const struct elf_backend_data *bed;
3483 _bfd_elf_strtab_finalize (dynstr);
3484 size = _bfd_elf_strtab_size (dynstr);
3486 bed = get_elf_backend_data (dynobj);
3487 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3488 BFD_ASSERT (sdyn != NULL);
3490 /* Update all .dynamic entries referencing .dynstr strings. */
3491 for (extdyn = sdyn->contents;
3492 extdyn < sdyn->contents + sdyn->size;
3493 extdyn += bed->s->sizeof_dyn)
3495 Elf_Internal_Dyn dyn;
3497 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3501 dyn.d_un.d_val = size;
3511 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3516 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3519 /* Now update local dynamic symbols. */
3520 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3521 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3522 entry->isym.st_name);
3524 /* And the rest of dynamic symbols. */
3525 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3527 /* Adjust version definitions. */
3528 if (elf_tdata (output_bfd)->cverdefs)
3533 Elf_Internal_Verdef def;
3534 Elf_Internal_Verdaux defaux;
3536 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3540 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3542 p += sizeof (Elf_External_Verdef);
3543 if (def.vd_aux != sizeof (Elf_External_Verdef))
3545 for (i = 0; i < def.vd_cnt; ++i)
3547 _bfd_elf_swap_verdaux_in (output_bfd,
3548 (Elf_External_Verdaux *) p, &defaux);
3549 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3551 _bfd_elf_swap_verdaux_out (output_bfd,
3552 &defaux, (Elf_External_Verdaux *) p);
3553 p += sizeof (Elf_External_Verdaux);
3556 while (def.vd_next);
3559 /* Adjust version references. */
3560 if (elf_tdata (output_bfd)->verref)
3565 Elf_Internal_Verneed need;
3566 Elf_Internal_Vernaux needaux;
3568 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3572 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3574 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3575 _bfd_elf_swap_verneed_out (output_bfd, &need,
3576 (Elf_External_Verneed *) p);
3577 p += sizeof (Elf_External_Verneed);
3578 for (i = 0; i < need.vn_cnt; ++i)
3580 _bfd_elf_swap_vernaux_in (output_bfd,
3581 (Elf_External_Vernaux *) p, &needaux);
3582 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3584 _bfd_elf_swap_vernaux_out (output_bfd,
3586 (Elf_External_Vernaux *) p);
3587 p += sizeof (Elf_External_Vernaux);
3590 while (need.vn_next);
3596 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3597 The default is to only match when the INPUT and OUTPUT are exactly
3601 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3602 const bfd_target *output)
3604 return input == output;
3607 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3608 This version is used when different targets for the same architecture
3609 are virtually identical. */
3612 _bfd_elf_relocs_compatible (const bfd_target *input,
3613 const bfd_target *output)
3615 const struct elf_backend_data *obed, *ibed;
3617 if (input == output)
3620 ibed = xvec_get_elf_backend_data (input);
3621 obed = xvec_get_elf_backend_data (output);
3623 if (ibed->arch != obed->arch)
3626 /* If both backends are using this function, deem them compatible. */
3627 return ibed->relocs_compatible == obed->relocs_compatible;
3630 /* Make a special call to the linker "notice" function to tell it that
3631 we are about to handle an as-needed lib, or have finished
3632 processing the lib. */
3635 _bfd_elf_notice_as_needed (bfd *ibfd,
3636 struct bfd_link_info *info,
3637 enum notice_asneeded_action act)
3639 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3642 /* Check relocations an ELF object file. */
3645 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3647 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3648 struct elf_link_hash_table *htab = elf_hash_table (info);
3650 /* If this object is the same format as the output object, and it is
3651 not a shared library, then let the backend look through the
3654 This is required to build global offset table entries and to
3655 arrange for dynamic relocs. It is not required for the
3656 particular common case of linking non PIC code, even when linking
3657 against shared libraries, but unfortunately there is no way of
3658 knowing whether an object file has been compiled PIC or not.
3659 Looking through the relocs is not particularly time consuming.
3660 The problem is that we must either (1) keep the relocs in memory,
3661 which causes the linker to require additional runtime memory or
3662 (2) read the relocs twice from the input file, which wastes time.
3663 This would be a good case for using mmap.
3665 I have no idea how to handle linking PIC code into a file of a
3666 different format. It probably can't be done. */
3667 if ((abfd->flags & DYNAMIC) == 0
3668 && is_elf_hash_table (htab)
3669 && bed->check_relocs != NULL
3670 && elf_object_id (abfd) == elf_hash_table_id (htab)
3671 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3675 for (o = abfd->sections; o != NULL; o = o->next)
3677 Elf_Internal_Rela *internal_relocs;
3680 /* Don't check relocations in excluded sections. */
3681 if ((o->flags & SEC_RELOC) == 0
3682 || (o->flags & SEC_EXCLUDE) != 0
3683 || o->reloc_count == 0
3684 || ((info->strip == strip_all || info->strip == strip_debugger)
3685 && (o->flags & SEC_DEBUGGING) != 0)
3686 || bfd_is_abs_section (o->output_section))
3689 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3691 if (internal_relocs == NULL)
3694 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3696 if (elf_section_data (o)->relocs != internal_relocs)
3697 free (internal_relocs);
3707 /* Add symbols from an ELF object file to the linker hash table. */
3710 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3712 Elf_Internal_Ehdr *ehdr;
3713 Elf_Internal_Shdr *hdr;
3717 struct elf_link_hash_entry **sym_hash;
3718 bfd_boolean dynamic;
3719 Elf_External_Versym *extversym = NULL;
3720 Elf_External_Versym *ever;
3721 struct elf_link_hash_entry *weaks;
3722 struct elf_link_hash_entry **nondeflt_vers = NULL;
3723 size_t nondeflt_vers_cnt = 0;
3724 Elf_Internal_Sym *isymbuf = NULL;
3725 Elf_Internal_Sym *isym;
3726 Elf_Internal_Sym *isymend;
3727 const struct elf_backend_data *bed;
3728 bfd_boolean add_needed;
3729 struct elf_link_hash_table *htab;
3731 void *alloc_mark = NULL;
3732 struct bfd_hash_entry **old_table = NULL;
3733 unsigned int old_size = 0;
3734 unsigned int old_count = 0;
3735 void *old_tab = NULL;
3737 struct bfd_link_hash_entry *old_undefs = NULL;
3738 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3739 void *old_strtab = NULL;
3742 bfd_boolean just_syms;
3744 htab = elf_hash_table (info);
3745 bed = get_elf_backend_data (abfd);
3747 if ((abfd->flags & DYNAMIC) == 0)
3753 /* You can't use -r against a dynamic object. Also, there's no
3754 hope of using a dynamic object which does not exactly match
3755 the format of the output file. */
3756 if (bfd_link_relocatable (info)
3757 || !is_elf_hash_table (htab)
3758 || info->output_bfd->xvec != abfd->xvec)
3760 if (bfd_link_relocatable (info))
3761 bfd_set_error (bfd_error_invalid_operation);
3763 bfd_set_error (bfd_error_wrong_format);
3768 ehdr = elf_elfheader (abfd);
3769 if (info->warn_alternate_em
3770 && bed->elf_machine_code != ehdr->e_machine
3771 && ((bed->elf_machine_alt1 != 0
3772 && ehdr->e_machine == bed->elf_machine_alt1)
3773 || (bed->elf_machine_alt2 != 0
3774 && ehdr->e_machine == bed->elf_machine_alt2)))
3775 info->callbacks->einfo
3776 /* xgettext:c-format */
3777 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3778 ehdr->e_machine, abfd, bed->elf_machine_code);
3780 /* As a GNU extension, any input sections which are named
3781 .gnu.warning.SYMBOL are treated as warning symbols for the given
3782 symbol. This differs from .gnu.warning sections, which generate
3783 warnings when they are included in an output file. */
3784 /* PR 12761: Also generate this warning when building shared libraries. */
3785 for (s = abfd->sections; s != NULL; s = s->next)
3789 name = bfd_get_section_name (abfd, s);
3790 if (CONST_STRNEQ (name, ".gnu.warning."))
3795 name += sizeof ".gnu.warning." - 1;
3797 /* If this is a shared object, then look up the symbol
3798 in the hash table. If it is there, and it is already
3799 been defined, then we will not be using the entry
3800 from this shared object, so we don't need to warn.
3801 FIXME: If we see the definition in a regular object
3802 later on, we will warn, but we shouldn't. The only
3803 fix is to keep track of what warnings we are supposed
3804 to emit, and then handle them all at the end of the
3808 struct elf_link_hash_entry *h;
3810 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3812 /* FIXME: What about bfd_link_hash_common? */
3814 && (h->root.type == bfd_link_hash_defined
3815 || h->root.type == bfd_link_hash_defweak))
3820 msg = (char *) bfd_alloc (abfd, sz + 1);
3824 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3829 if (! (_bfd_generic_link_add_one_symbol
3830 (info, abfd, name, BSF_WARNING, s, 0, msg,
3831 FALSE, bed->collect, NULL)))
3834 if (bfd_link_executable (info))
3836 /* Clobber the section size so that the warning does
3837 not get copied into the output file. */
3840 /* Also set SEC_EXCLUDE, so that symbols defined in
3841 the warning section don't get copied to the output. */
3842 s->flags |= SEC_EXCLUDE;
3847 just_syms = ((s = abfd->sections) != NULL
3848 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3853 /* If we are creating a shared library, create all the dynamic
3854 sections immediately. We need to attach them to something,
3855 so we attach them to this BFD, provided it is the right
3856 format and is not from ld --just-symbols. Always create the
3857 dynamic sections for -E/--dynamic-list. FIXME: If there
3858 are no input BFD's of the same format as the output, we can't
3859 make a shared library. */
3861 && (bfd_link_pic (info)
3862 || (!bfd_link_relocatable (info)
3864 && (info->export_dynamic || info->dynamic)))
3865 && is_elf_hash_table (htab)
3866 && info->output_bfd->xvec == abfd->xvec
3867 && !htab->dynamic_sections_created)
3869 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3873 else if (!is_elf_hash_table (htab))
3877 const char *soname = NULL;
3879 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3880 const Elf_Internal_Phdr *phdr;
3883 /* ld --just-symbols and dynamic objects don't mix very well.
3884 ld shouldn't allow it. */
3888 /* If this dynamic lib was specified on the command line with
3889 --as-needed in effect, then we don't want to add a DT_NEEDED
3890 tag unless the lib is actually used. Similary for libs brought
3891 in by another lib's DT_NEEDED. When --no-add-needed is used
3892 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3893 any dynamic library in DT_NEEDED tags in the dynamic lib at
3895 add_needed = (elf_dyn_lib_class (abfd)
3896 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3897 | DYN_NO_NEEDED)) == 0;
3899 s = bfd_get_section_by_name (abfd, ".dynamic");
3904 unsigned int elfsec;
3905 unsigned long shlink;
3907 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3914 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3915 if (elfsec == SHN_BAD)
3916 goto error_free_dyn;
3917 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3919 for (extdyn = dynbuf;
3920 extdyn < dynbuf + s->size;
3921 extdyn += bed->s->sizeof_dyn)
3923 Elf_Internal_Dyn dyn;
3925 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3926 if (dyn.d_tag == DT_SONAME)
3928 unsigned int tagv = dyn.d_un.d_val;
3929 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3931 goto error_free_dyn;
3933 if (dyn.d_tag == DT_NEEDED)
3935 struct bfd_link_needed_list *n, **pn;
3937 unsigned int tagv = dyn.d_un.d_val;
3939 amt = sizeof (struct bfd_link_needed_list);
3940 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3941 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3942 if (n == NULL || fnm == NULL)
3943 goto error_free_dyn;
3944 amt = strlen (fnm) + 1;
3945 anm = (char *) bfd_alloc (abfd, amt);
3947 goto error_free_dyn;
3948 memcpy (anm, fnm, amt);
3952 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3956 if (dyn.d_tag == DT_RUNPATH)
3958 struct bfd_link_needed_list *n, **pn;
3960 unsigned int tagv = dyn.d_un.d_val;
3962 amt = sizeof (struct bfd_link_needed_list);
3963 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3964 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3965 if (n == NULL || fnm == NULL)
3966 goto error_free_dyn;
3967 amt = strlen (fnm) + 1;
3968 anm = (char *) bfd_alloc (abfd, amt);
3970 goto error_free_dyn;
3971 memcpy (anm, fnm, amt);
3975 for (pn = & runpath;
3981 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3982 if (!runpath && dyn.d_tag == DT_RPATH)
3984 struct bfd_link_needed_list *n, **pn;
3986 unsigned int tagv = dyn.d_un.d_val;
3988 amt = sizeof (struct bfd_link_needed_list);
3989 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3990 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3991 if (n == NULL || fnm == NULL)
3992 goto error_free_dyn;
3993 amt = strlen (fnm) + 1;
3994 anm = (char *) bfd_alloc (abfd, amt);
3996 goto error_free_dyn;
3997 memcpy (anm, fnm, amt);
4007 if (dyn.d_tag == DT_AUDIT)
4009 unsigned int tagv = dyn.d_un.d_val;
4010 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4017 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4018 frees all more recently bfd_alloc'd blocks as well. */
4024 struct bfd_link_needed_list **pn;
4025 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4030 /* If we have a PT_GNU_RELRO program header, mark as read-only
4031 all sections contained fully therein. This makes relro
4032 shared library sections appear as they will at run-time. */
4033 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4034 while (--phdr >= elf_tdata (abfd)->phdr)
4035 if (phdr->p_type == PT_GNU_RELRO)
4037 for (s = abfd->sections; s != NULL; s = s->next)
4038 if ((s->flags & SEC_ALLOC) != 0
4039 && s->vma >= phdr->p_vaddr
4040 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4041 s->flags |= SEC_READONLY;
4045 /* We do not want to include any of the sections in a dynamic
4046 object in the output file. We hack by simply clobbering the
4047 list of sections in the BFD. This could be handled more
4048 cleanly by, say, a new section flag; the existing
4049 SEC_NEVER_LOAD flag is not the one we want, because that one
4050 still implies that the section takes up space in the output
4052 bfd_section_list_clear (abfd);
4054 /* Find the name to use in a DT_NEEDED entry that refers to this
4055 object. If the object has a DT_SONAME entry, we use it.
4056 Otherwise, if the generic linker stuck something in
4057 elf_dt_name, we use that. Otherwise, we just use the file
4059 if (soname == NULL || *soname == '\0')
4061 soname = elf_dt_name (abfd);
4062 if (soname == NULL || *soname == '\0')
4063 soname = bfd_get_filename (abfd);
4066 /* Save the SONAME because sometimes the linker emulation code
4067 will need to know it. */
4068 elf_dt_name (abfd) = soname;
4070 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4074 /* If we have already included this dynamic object in the
4075 link, just ignore it. There is no reason to include a
4076 particular dynamic object more than once. */
4080 /* Save the DT_AUDIT entry for the linker emulation code. */
4081 elf_dt_audit (abfd) = audit;
4084 /* If this is a dynamic object, we always link against the .dynsym
4085 symbol table, not the .symtab symbol table. The dynamic linker
4086 will only see the .dynsym symbol table, so there is no reason to
4087 look at .symtab for a dynamic object. */
4089 if (! dynamic || elf_dynsymtab (abfd) == 0)
4090 hdr = &elf_tdata (abfd)->symtab_hdr;
4092 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4094 symcount = hdr->sh_size / bed->s->sizeof_sym;
4096 /* The sh_info field of the symtab header tells us where the
4097 external symbols start. We don't care about the local symbols at
4099 if (elf_bad_symtab (abfd))
4101 extsymcount = symcount;
4106 extsymcount = symcount - hdr->sh_info;
4107 extsymoff = hdr->sh_info;
4110 sym_hash = elf_sym_hashes (abfd);
4111 if (extsymcount != 0)
4113 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4115 if (isymbuf == NULL)
4118 if (sym_hash == NULL)
4120 /* We store a pointer to the hash table entry for each
4123 amt *= sizeof (struct elf_link_hash_entry *);
4124 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4125 if (sym_hash == NULL)
4126 goto error_free_sym;
4127 elf_sym_hashes (abfd) = sym_hash;
4133 /* Read in any version definitions. */
4134 if (!_bfd_elf_slurp_version_tables (abfd,
4135 info->default_imported_symver))
4136 goto error_free_sym;
4138 /* Read in the symbol versions, but don't bother to convert them
4139 to internal format. */
4140 if (elf_dynversym (abfd) != 0)
4142 Elf_Internal_Shdr *versymhdr;
4144 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4145 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4146 if (extversym == NULL)
4147 goto error_free_sym;
4148 amt = versymhdr->sh_size;
4149 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4150 || bfd_bread (extversym, amt, abfd) != amt)
4151 goto error_free_vers;
4155 /* If we are loading an as-needed shared lib, save the symbol table
4156 state before we start adding symbols. If the lib turns out
4157 to be unneeded, restore the state. */
4158 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4163 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4165 struct bfd_hash_entry *p;
4166 struct elf_link_hash_entry *h;
4168 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4170 h = (struct elf_link_hash_entry *) p;
4171 entsize += htab->root.table.entsize;
4172 if (h->root.type == bfd_link_hash_warning)
4173 entsize += htab->root.table.entsize;
4177 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4178 old_tab = bfd_malloc (tabsize + entsize);
4179 if (old_tab == NULL)
4180 goto error_free_vers;
4182 /* Remember the current objalloc pointer, so that all mem for
4183 symbols added can later be reclaimed. */
4184 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4185 if (alloc_mark == NULL)
4186 goto error_free_vers;
4188 /* Make a special call to the linker "notice" function to
4189 tell it that we are about to handle an as-needed lib. */
4190 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4191 goto error_free_vers;
4193 /* Clone the symbol table. Remember some pointers into the
4194 symbol table, and dynamic symbol count. */
4195 old_ent = (char *) old_tab + tabsize;
4196 memcpy (old_tab, htab->root.table.table, tabsize);
4197 old_undefs = htab->root.undefs;
4198 old_undefs_tail = htab->root.undefs_tail;
4199 old_table = htab->root.table.table;
4200 old_size = htab->root.table.size;
4201 old_count = htab->root.table.count;
4202 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4203 if (old_strtab == NULL)
4204 goto error_free_vers;
4206 for (i = 0; i < htab->root.table.size; i++)
4208 struct bfd_hash_entry *p;
4209 struct elf_link_hash_entry *h;
4211 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4213 memcpy (old_ent, p, htab->root.table.entsize);
4214 old_ent = (char *) old_ent + htab->root.table.entsize;
4215 h = (struct elf_link_hash_entry *) p;
4216 if (h->root.type == bfd_link_hash_warning)
4218 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4219 old_ent = (char *) old_ent + htab->root.table.entsize;
4226 ever = extversym != NULL ? extversym + extsymoff : NULL;
4227 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4229 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4233 asection *sec, *new_sec;
4236 struct elf_link_hash_entry *h;
4237 struct elf_link_hash_entry *hi;
4238 bfd_boolean definition;
4239 bfd_boolean size_change_ok;
4240 bfd_boolean type_change_ok;
4241 bfd_boolean new_weakdef;
4242 bfd_boolean new_weak;
4243 bfd_boolean old_weak;
4244 bfd_boolean override;
4246 bfd_boolean discarded;
4247 unsigned int old_alignment;
4249 bfd_boolean matched;
4253 /* Treat common symbol as undefined for --no-define-common. */
4254 if (isym->st_shndx == SHN_COMMON
4255 && info->inhibit_common_definition)
4256 isym->st_shndx = SHN_UNDEF;
4258 flags = BSF_NO_FLAGS;
4260 value = isym->st_value;
4261 common = bed->common_definition (isym);
4264 bind = ELF_ST_BIND (isym->st_info);
4268 /* This should be impossible, since ELF requires that all
4269 global symbols follow all local symbols, and that sh_info
4270 point to the first global symbol. Unfortunately, Irix 5
4275 if (isym->st_shndx != SHN_UNDEF && !common)
4283 case STB_GNU_UNIQUE:
4284 flags = BSF_GNU_UNIQUE;
4288 /* Leave it up to the processor backend. */
4292 if (isym->st_shndx == SHN_UNDEF)
4293 sec = bfd_und_section_ptr;
4294 else if (isym->st_shndx == SHN_ABS)
4295 sec = bfd_abs_section_ptr;
4296 else if (isym->st_shndx == SHN_COMMON)
4298 sec = bfd_com_section_ptr;
4299 /* What ELF calls the size we call the value. What ELF
4300 calls the value we call the alignment. */
4301 value = isym->st_size;
4305 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4307 sec = bfd_abs_section_ptr;
4308 else if (discarded_section (sec))
4310 /* Symbols from discarded section are undefined. We keep
4312 sec = bfd_und_section_ptr;
4314 isym->st_shndx = SHN_UNDEF;
4316 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4320 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4323 goto error_free_vers;
4325 if (isym->st_shndx == SHN_COMMON
4326 && (abfd->flags & BFD_PLUGIN) != 0)
4328 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4332 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4334 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4336 goto error_free_vers;
4340 else if (isym->st_shndx == SHN_COMMON
4341 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4342 && !bfd_link_relocatable (info))
4344 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4348 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4349 | SEC_LINKER_CREATED);
4350 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4352 goto error_free_vers;
4356 else if (bed->elf_add_symbol_hook)
4358 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4360 goto error_free_vers;
4362 /* The hook function sets the name to NULL if this symbol
4363 should be skipped for some reason. */
4368 /* Sanity check that all possibilities were handled. */
4371 bfd_set_error (bfd_error_bad_value);
4372 goto error_free_vers;
4375 /* Silently discard TLS symbols from --just-syms. There's
4376 no way to combine a static TLS block with a new TLS block
4377 for this executable. */
4378 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4379 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4382 if (bfd_is_und_section (sec)
4383 || bfd_is_com_section (sec))
4388 size_change_ok = FALSE;
4389 type_change_ok = bed->type_change_ok;
4396 if (is_elf_hash_table (htab))
4398 Elf_Internal_Versym iver;
4399 unsigned int vernum = 0;
4404 if (info->default_imported_symver)
4405 /* Use the default symbol version created earlier. */
4406 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4411 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4413 vernum = iver.vs_vers & VERSYM_VERSION;
4415 /* If this is a hidden symbol, or if it is not version
4416 1, we append the version name to the symbol name.
4417 However, we do not modify a non-hidden absolute symbol
4418 if it is not a function, because it might be the version
4419 symbol itself. FIXME: What if it isn't? */
4420 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4422 && (!bfd_is_abs_section (sec)
4423 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4426 size_t namelen, verlen, newlen;
4429 if (isym->st_shndx != SHN_UNDEF)
4431 if (vernum > elf_tdata (abfd)->cverdefs)
4433 else if (vernum > 1)
4435 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4442 /* xgettext:c-format */
4443 (_("%B: %s: invalid version %u (max %d)"),
4445 elf_tdata (abfd)->cverdefs);
4446 bfd_set_error (bfd_error_bad_value);
4447 goto error_free_vers;
4452 /* We cannot simply test for the number of
4453 entries in the VERNEED section since the
4454 numbers for the needed versions do not start
4456 Elf_Internal_Verneed *t;
4459 for (t = elf_tdata (abfd)->verref;
4463 Elf_Internal_Vernaux *a;
4465 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4467 if (a->vna_other == vernum)
4469 verstr = a->vna_nodename;
4479 /* xgettext:c-format */
4480 (_("%B: %s: invalid needed version %d"),
4481 abfd, name, vernum);
4482 bfd_set_error (bfd_error_bad_value);
4483 goto error_free_vers;
4487 namelen = strlen (name);
4488 verlen = strlen (verstr);
4489 newlen = namelen + verlen + 2;
4490 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4491 && isym->st_shndx != SHN_UNDEF)
4494 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4495 if (newname == NULL)
4496 goto error_free_vers;
4497 memcpy (newname, name, namelen);
4498 p = newname + namelen;
4500 /* If this is a defined non-hidden version symbol,
4501 we add another @ to the name. This indicates the
4502 default version of the symbol. */
4503 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4504 && isym->st_shndx != SHN_UNDEF)
4506 memcpy (p, verstr, verlen + 1);
4511 /* If this symbol has default visibility and the user has
4512 requested we not re-export it, then mark it as hidden. */
4513 if (!bfd_is_und_section (sec)
4516 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4517 isym->st_other = (STV_HIDDEN
4518 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4520 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4521 sym_hash, &old_bfd, &old_weak,
4522 &old_alignment, &skip, &override,
4523 &type_change_ok, &size_change_ok,
4525 goto error_free_vers;
4530 /* Override a definition only if the new symbol matches the
4532 if (override && matched)
4536 while (h->root.type == bfd_link_hash_indirect
4537 || h->root.type == bfd_link_hash_warning)
4538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4540 if (elf_tdata (abfd)->verdef != NULL
4543 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4546 if (! (_bfd_generic_link_add_one_symbol
4547 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4548 (struct bfd_link_hash_entry **) sym_hash)))
4549 goto error_free_vers;
4551 if ((flags & BSF_GNU_UNIQUE)
4552 && (abfd->flags & DYNAMIC) == 0
4553 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4554 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4557 /* We need to make sure that indirect symbol dynamic flags are
4560 while (h->root.type == bfd_link_hash_indirect
4561 || h->root.type == bfd_link_hash_warning)
4562 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4564 /* Setting the index to -3 tells elf_link_output_extsym that
4565 this symbol is defined in a discarded section. */
4571 new_weak = (flags & BSF_WEAK) != 0;
4572 new_weakdef = FALSE;
4576 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4577 && is_elf_hash_table (htab)
4578 && h->u.weakdef == NULL)
4580 /* Keep a list of all weak defined non function symbols from
4581 a dynamic object, using the weakdef field. Later in this
4582 function we will set the weakdef field to the correct
4583 value. We only put non-function symbols from dynamic
4584 objects on this list, because that happens to be the only
4585 time we need to know the normal symbol corresponding to a
4586 weak symbol, and the information is time consuming to
4587 figure out. If the weakdef field is not already NULL,
4588 then this symbol was already defined by some previous
4589 dynamic object, and we will be using that previous
4590 definition anyhow. */
4592 h->u.weakdef = weaks;
4597 /* Set the alignment of a common symbol. */
4598 if ((common || bfd_is_com_section (sec))
4599 && h->root.type == bfd_link_hash_common)
4604 align = bfd_log2 (isym->st_value);
4607 /* The new symbol is a common symbol in a shared object.
4608 We need to get the alignment from the section. */
4609 align = new_sec->alignment_power;
4611 if (align > old_alignment)
4612 h->root.u.c.p->alignment_power = align;
4614 h->root.u.c.p->alignment_power = old_alignment;
4617 if (is_elf_hash_table (htab))
4619 /* Set a flag in the hash table entry indicating the type of
4620 reference or definition we just found. A dynamic symbol
4621 is one which is referenced or defined by both a regular
4622 object and a shared object. */
4623 bfd_boolean dynsym = FALSE;
4625 /* Plugin symbols aren't normal. Don't set def_regular or
4626 ref_regular for them, or make them dynamic. */
4627 if ((abfd->flags & BFD_PLUGIN) != 0)
4634 if (bind != STB_WEAK)
4635 h->ref_regular_nonweak = 1;
4647 /* If the indirect symbol has been forced local, don't
4648 make the real symbol dynamic. */
4649 if ((h == hi || !hi->forced_local)
4650 && (bfd_link_dll (info)
4660 hi->ref_dynamic = 1;
4665 hi->def_dynamic = 1;
4668 /* If the indirect symbol has been forced local, don't
4669 make the real symbol dynamic. */
4670 if ((h == hi || !hi->forced_local)
4673 || (h->u.weakdef != NULL
4675 && h->u.weakdef->dynindx != -1)))
4679 /* Check to see if we need to add an indirect symbol for
4680 the default name. */
4682 || (!override && h->root.type == bfd_link_hash_common))
4683 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4684 sec, value, &old_bfd, &dynsym))
4685 goto error_free_vers;
4687 /* Check the alignment when a common symbol is involved. This
4688 can change when a common symbol is overridden by a normal
4689 definition or a common symbol is ignored due to the old
4690 normal definition. We need to make sure the maximum
4691 alignment is maintained. */
4692 if ((old_alignment || common)
4693 && h->root.type != bfd_link_hash_common)
4695 unsigned int common_align;
4696 unsigned int normal_align;
4697 unsigned int symbol_align;
4701 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4702 || h->root.type == bfd_link_hash_defweak);
4704 symbol_align = ffs (h->root.u.def.value) - 1;
4705 if (h->root.u.def.section->owner != NULL
4706 && (h->root.u.def.section->owner->flags
4707 & (DYNAMIC | BFD_PLUGIN)) == 0)
4709 normal_align = h->root.u.def.section->alignment_power;
4710 if (normal_align > symbol_align)
4711 normal_align = symbol_align;
4714 normal_align = symbol_align;
4718 common_align = old_alignment;
4719 common_bfd = old_bfd;
4724 common_align = bfd_log2 (isym->st_value);
4726 normal_bfd = old_bfd;
4729 if (normal_align < common_align)
4731 /* PR binutils/2735 */
4732 if (normal_bfd == NULL)
4734 /* xgettext:c-format */
4735 (_("Warning: alignment %u of common symbol `%s' in %B is"
4736 " greater than the alignment (%u) of its section %A"),
4737 1 << common_align, name, common_bfd,
4738 1 << normal_align, h->root.u.def.section);
4741 /* xgettext:c-format */
4742 (_("Warning: alignment %u of symbol `%s' in %B"
4743 " is smaller than %u in %B"),
4744 1 << normal_align, name, normal_bfd,
4745 1 << common_align, common_bfd);
4749 /* Remember the symbol size if it isn't undefined. */
4750 if (isym->st_size != 0
4751 && isym->st_shndx != SHN_UNDEF
4752 && (definition || h->size == 0))
4755 && h->size != isym->st_size
4756 && ! size_change_ok)
4758 /* xgettext:c-format */
4759 (_("Warning: size of symbol `%s' changed"
4760 " from %Lu in %B to %Lu in %B"),
4761 name, h->size, old_bfd, isym->st_size, abfd);
4763 h->size = isym->st_size;
4766 /* If this is a common symbol, then we always want H->SIZE
4767 to be the size of the common symbol. The code just above
4768 won't fix the size if a common symbol becomes larger. We
4769 don't warn about a size change here, because that is
4770 covered by --warn-common. Allow changes between different
4772 if (h->root.type == bfd_link_hash_common)
4773 h->size = h->root.u.c.size;
4775 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4776 && ((definition && !new_weak)
4777 || (old_weak && h->root.type == bfd_link_hash_common)
4778 || h->type == STT_NOTYPE))
4780 unsigned int type = ELF_ST_TYPE (isym->st_info);
4782 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4784 if (type == STT_GNU_IFUNC
4785 && (abfd->flags & DYNAMIC) != 0)
4788 if (h->type != type)
4790 if (h->type != STT_NOTYPE && ! type_change_ok)
4791 /* xgettext:c-format */
4793 (_("Warning: type of symbol `%s' changed"
4794 " from %d to %d in %B"),
4795 name, h->type, type, abfd);
4801 /* Merge st_other field. */
4802 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4804 /* We don't want to make debug symbol dynamic. */
4806 && (sec->flags & SEC_DEBUGGING)
4807 && !bfd_link_relocatable (info))
4810 /* Nor should we make plugin symbols dynamic. */
4811 if ((abfd->flags & BFD_PLUGIN) != 0)
4816 h->target_internal = isym->st_target_internal;
4817 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4820 if (definition && !dynamic)
4822 char *p = strchr (name, ELF_VER_CHR);
4823 if (p != NULL && p[1] != ELF_VER_CHR)
4825 /* Queue non-default versions so that .symver x, x@FOO
4826 aliases can be checked. */
4829 amt = ((isymend - isym + 1)
4830 * sizeof (struct elf_link_hash_entry *));
4832 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4834 goto error_free_vers;
4836 nondeflt_vers[nondeflt_vers_cnt++] = h;
4840 if (dynsym && h->dynindx == -1)
4842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4843 goto error_free_vers;
4844 if (h->u.weakdef != NULL
4846 && h->u.weakdef->dynindx == -1)
4848 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4849 goto error_free_vers;
4852 else if (h->dynindx != -1)
4853 /* If the symbol already has a dynamic index, but
4854 visibility says it should not be visible, turn it into
4856 switch (ELF_ST_VISIBILITY (h->other))
4860 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4865 /* Don't add DT_NEEDED for references from the dummy bfd nor
4866 for unmatched symbol. */
4871 && h->ref_regular_nonweak
4873 || (old_bfd->flags & BFD_PLUGIN) == 0))
4874 || (h->ref_dynamic_nonweak
4875 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4876 && !on_needed_list (elf_dt_name (abfd),
4877 htab->needed, NULL))))
4880 const char *soname = elf_dt_name (abfd);
4882 info->callbacks->minfo ("%!", soname, old_bfd,
4883 h->root.root.string);
4885 /* A symbol from a library loaded via DT_NEEDED of some
4886 other library is referenced by a regular object.
4887 Add a DT_NEEDED entry for it. Issue an error if
4888 --no-add-needed is used and the reference was not
4891 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4894 /* xgettext:c-format */
4895 (_("%B: undefined reference to symbol '%s'"),
4897 bfd_set_error (bfd_error_missing_dso);
4898 goto error_free_vers;
4901 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4902 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4905 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4907 goto error_free_vers;
4909 BFD_ASSERT (ret == 0);
4914 if (extversym != NULL)
4920 if (isymbuf != NULL)
4926 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4930 /* Restore the symbol table. */
4931 old_ent = (char *) old_tab + tabsize;
4932 memset (elf_sym_hashes (abfd), 0,
4933 extsymcount * sizeof (struct elf_link_hash_entry *));
4934 htab->root.table.table = old_table;
4935 htab->root.table.size = old_size;
4936 htab->root.table.count = old_count;
4937 memcpy (htab->root.table.table, old_tab, tabsize);
4938 htab->root.undefs = old_undefs;
4939 htab->root.undefs_tail = old_undefs_tail;
4940 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4943 for (i = 0; i < htab->root.table.size; i++)
4945 struct bfd_hash_entry *p;
4946 struct elf_link_hash_entry *h;
4948 unsigned int alignment_power;
4949 unsigned int non_ir_ref_dynamic;
4951 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4953 h = (struct elf_link_hash_entry *) p;
4954 if (h->root.type == bfd_link_hash_warning)
4955 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4957 /* Preserve the maximum alignment and size for common
4958 symbols even if this dynamic lib isn't on DT_NEEDED
4959 since it can still be loaded at run time by another
4961 if (h->root.type == bfd_link_hash_common)
4963 size = h->root.u.c.size;
4964 alignment_power = h->root.u.c.p->alignment_power;
4969 alignment_power = 0;
4971 /* Preserve non_ir_ref_dynamic so that this symbol
4972 will be exported when the dynamic lib becomes needed
4973 in the second pass. */
4974 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4975 memcpy (p, old_ent, htab->root.table.entsize);
4976 old_ent = (char *) old_ent + htab->root.table.entsize;
4977 h = (struct elf_link_hash_entry *) p;
4978 if (h->root.type == bfd_link_hash_warning)
4980 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4981 old_ent = (char *) old_ent + htab->root.table.entsize;
4982 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4984 if (h->root.type == bfd_link_hash_common)
4986 if (size > h->root.u.c.size)
4987 h->root.u.c.size = size;
4988 if (alignment_power > h->root.u.c.p->alignment_power)
4989 h->root.u.c.p->alignment_power = alignment_power;
4991 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
4995 /* Make a special call to the linker "notice" function to
4996 tell it that symbols added for crefs may need to be removed. */
4997 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4998 goto error_free_vers;
5001 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5003 if (nondeflt_vers != NULL)
5004 free (nondeflt_vers);
5008 if (old_tab != NULL)
5010 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5011 goto error_free_vers;
5016 /* Now that all the symbols from this input file are created, if
5017 not performing a relocatable link, handle .symver foo, foo@BAR
5018 such that any relocs against foo become foo@BAR. */
5019 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5023 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5025 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5026 char *shortname, *p;
5028 p = strchr (h->root.root.string, ELF_VER_CHR);
5030 || (h->root.type != bfd_link_hash_defined
5031 && h->root.type != bfd_link_hash_defweak))
5034 amt = p - h->root.root.string;
5035 shortname = (char *) bfd_malloc (amt + 1);
5037 goto error_free_vers;
5038 memcpy (shortname, h->root.root.string, amt);
5039 shortname[amt] = '\0';
5041 hi = (struct elf_link_hash_entry *)
5042 bfd_link_hash_lookup (&htab->root, shortname,
5043 FALSE, FALSE, FALSE);
5045 && hi->root.type == h->root.type
5046 && hi->root.u.def.value == h->root.u.def.value
5047 && hi->root.u.def.section == h->root.u.def.section)
5049 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5050 hi->root.type = bfd_link_hash_indirect;
5051 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5052 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5053 sym_hash = elf_sym_hashes (abfd);
5055 for (symidx = 0; symidx < extsymcount; ++symidx)
5056 if (sym_hash[symidx] == hi)
5058 sym_hash[symidx] = h;
5064 free (nondeflt_vers);
5065 nondeflt_vers = NULL;
5068 /* Now set the weakdefs field correctly for all the weak defined
5069 symbols we found. The only way to do this is to search all the
5070 symbols. Since we only need the information for non functions in
5071 dynamic objects, that's the only time we actually put anything on
5072 the list WEAKS. We need this information so that if a regular
5073 object refers to a symbol defined weakly in a dynamic object, the
5074 real symbol in the dynamic object is also put in the dynamic
5075 symbols; we also must arrange for both symbols to point to the
5076 same memory location. We could handle the general case of symbol
5077 aliasing, but a general symbol alias can only be generated in
5078 assembler code, handling it correctly would be very time
5079 consuming, and other ELF linkers don't handle general aliasing
5083 struct elf_link_hash_entry **hpp;
5084 struct elf_link_hash_entry **hppend;
5085 struct elf_link_hash_entry **sorted_sym_hash;
5086 struct elf_link_hash_entry *h;
5089 /* Since we have to search the whole symbol list for each weak
5090 defined symbol, search time for N weak defined symbols will be
5091 O(N^2). Binary search will cut it down to O(NlogN). */
5093 amt *= sizeof (struct elf_link_hash_entry *);
5094 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5095 if (sorted_sym_hash == NULL)
5097 sym_hash = sorted_sym_hash;
5098 hpp = elf_sym_hashes (abfd);
5099 hppend = hpp + extsymcount;
5101 for (; hpp < hppend; hpp++)
5105 && h->root.type == bfd_link_hash_defined
5106 && !bed->is_function_type (h->type))
5114 qsort (sorted_sym_hash, sym_count,
5115 sizeof (struct elf_link_hash_entry *),
5118 while (weaks != NULL)
5120 struct elf_link_hash_entry *hlook;
5123 size_t i, j, idx = 0;
5126 weaks = hlook->u.weakdef;
5127 hlook->u.weakdef = NULL;
5129 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5130 || hlook->root.type == bfd_link_hash_defweak
5131 || hlook->root.type == bfd_link_hash_common
5132 || hlook->root.type == bfd_link_hash_indirect);
5133 slook = hlook->root.u.def.section;
5134 vlook = hlook->root.u.def.value;
5140 bfd_signed_vma vdiff;
5142 h = sorted_sym_hash[idx];
5143 vdiff = vlook - h->root.u.def.value;
5150 int sdiff = slook->id - h->root.u.def.section->id;
5160 /* We didn't find a value/section match. */
5164 /* With multiple aliases, or when the weak symbol is already
5165 strongly defined, we have multiple matching symbols and
5166 the binary search above may land on any of them. Step
5167 one past the matching symbol(s). */
5170 h = sorted_sym_hash[idx];
5171 if (h->root.u.def.section != slook
5172 || h->root.u.def.value != vlook)
5176 /* Now look back over the aliases. Since we sorted by size
5177 as well as value and section, we'll choose the one with
5178 the largest size. */
5181 h = sorted_sym_hash[idx];
5183 /* Stop if value or section doesn't match. */
5184 if (h->root.u.def.section != slook
5185 || h->root.u.def.value != vlook)
5187 else if (h != hlook)
5189 hlook->u.weakdef = h;
5191 /* If the weak definition is in the list of dynamic
5192 symbols, make sure the real definition is put
5194 if (hlook->dynindx != -1 && h->dynindx == -1)
5196 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5199 free (sorted_sym_hash);
5204 /* If the real definition is in the list of dynamic
5205 symbols, make sure the weak definition is put
5206 there as well. If we don't do this, then the
5207 dynamic loader might not merge the entries for the
5208 real definition and the weak definition. */
5209 if (h->dynindx != -1 && hlook->dynindx == -1)
5211 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5212 goto err_free_sym_hash;
5219 free (sorted_sym_hash);
5222 if (bed->check_directives
5223 && !(*bed->check_directives) (abfd, info))
5226 if (!info->check_relocs_after_open_input
5227 && !_bfd_elf_link_check_relocs (abfd, info))
5230 /* If this is a non-traditional link, try to optimize the handling
5231 of the .stab/.stabstr sections. */
5233 && ! info->traditional_format
5234 && is_elf_hash_table (htab)
5235 && (info->strip != strip_all && info->strip != strip_debugger))
5239 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5240 if (stabstr != NULL)
5242 bfd_size_type string_offset = 0;
5245 for (stab = abfd->sections; stab; stab = stab->next)
5246 if (CONST_STRNEQ (stab->name, ".stab")
5247 && (!stab->name[5] ||
5248 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5249 && (stab->flags & SEC_MERGE) == 0
5250 && !bfd_is_abs_section (stab->output_section))
5252 struct bfd_elf_section_data *secdata;
5254 secdata = elf_section_data (stab);
5255 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5256 stabstr, &secdata->sec_info,
5259 if (secdata->sec_info)
5260 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5265 if (is_elf_hash_table (htab) && add_needed)
5267 /* Add this bfd to the loaded list. */
5268 struct elf_link_loaded_list *n;
5270 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5274 n->next = htab->loaded;
5281 if (old_tab != NULL)
5283 if (old_strtab != NULL)
5285 if (nondeflt_vers != NULL)
5286 free (nondeflt_vers);
5287 if (extversym != NULL)
5290 if (isymbuf != NULL)
5296 /* Return the linker hash table entry of a symbol that might be
5297 satisfied by an archive symbol. Return -1 on error. */
5299 struct elf_link_hash_entry *
5300 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5301 struct bfd_link_info *info,
5304 struct elf_link_hash_entry *h;
5308 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5312 /* If this is a default version (the name contains @@), look up the
5313 symbol again with only one `@' as well as without the version.
5314 The effect is that references to the symbol with and without the
5315 version will be matched by the default symbol in the archive. */
5317 p = strchr (name, ELF_VER_CHR);
5318 if (p == NULL || p[1] != ELF_VER_CHR)
5321 /* First check with only one `@'. */
5322 len = strlen (name);
5323 copy = (char *) bfd_alloc (abfd, len);
5325 return (struct elf_link_hash_entry *) 0 - 1;
5327 first = p - name + 1;
5328 memcpy (copy, name, first);
5329 memcpy (copy + first, name + first + 1, len - first);
5331 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5334 /* We also need to check references to the symbol without the
5336 copy[first - 1] = '\0';
5337 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5338 FALSE, FALSE, TRUE);
5341 bfd_release (abfd, copy);
5345 /* Add symbols from an ELF archive file to the linker hash table. We
5346 don't use _bfd_generic_link_add_archive_symbols because we need to
5347 handle versioned symbols.
5349 Fortunately, ELF archive handling is simpler than that done by
5350 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5351 oddities. In ELF, if we find a symbol in the archive map, and the
5352 symbol is currently undefined, we know that we must pull in that
5355 Unfortunately, we do have to make multiple passes over the symbol
5356 table until nothing further is resolved. */
5359 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5362 unsigned char *included = NULL;
5366 const struct elf_backend_data *bed;
5367 struct elf_link_hash_entry * (*archive_symbol_lookup)
5368 (bfd *, struct bfd_link_info *, const char *);
5370 if (! bfd_has_map (abfd))
5372 /* An empty archive is a special case. */
5373 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5375 bfd_set_error (bfd_error_no_armap);
5379 /* Keep track of all symbols we know to be already defined, and all
5380 files we know to be already included. This is to speed up the
5381 second and subsequent passes. */
5382 c = bfd_ardata (abfd)->symdef_count;
5386 amt *= sizeof (*included);
5387 included = (unsigned char *) bfd_zmalloc (amt);
5388 if (included == NULL)
5391 symdefs = bfd_ardata (abfd)->symdefs;
5392 bed = get_elf_backend_data (abfd);
5393 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5406 symdefend = symdef + c;
5407 for (i = 0; symdef < symdefend; symdef++, i++)
5409 struct elf_link_hash_entry *h;
5411 struct bfd_link_hash_entry *undefs_tail;
5416 if (symdef->file_offset == last)
5422 h = archive_symbol_lookup (abfd, info, symdef->name);
5423 if (h == (struct elf_link_hash_entry *) 0 - 1)
5429 if (h->root.type == bfd_link_hash_common)
5431 /* We currently have a common symbol. The archive map contains
5432 a reference to this symbol, so we may want to include it. We
5433 only want to include it however, if this archive element
5434 contains a definition of the symbol, not just another common
5437 Unfortunately some archivers (including GNU ar) will put
5438 declarations of common symbols into their archive maps, as
5439 well as real definitions, so we cannot just go by the archive
5440 map alone. Instead we must read in the element's symbol
5441 table and check that to see what kind of symbol definition
5443 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5446 else if (h->root.type != bfd_link_hash_undefined)
5448 if (h->root.type != bfd_link_hash_undefweak)
5449 /* Symbol must be defined. Don't check it again. */
5454 /* We need to include this archive member. */
5455 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5456 if (element == NULL)
5459 if (! bfd_check_format (element, bfd_object))
5462 undefs_tail = info->hash->undefs_tail;
5464 if (!(*info->callbacks
5465 ->add_archive_element) (info, element, symdef->name, &element))
5467 if (!bfd_link_add_symbols (element, info))
5470 /* If there are any new undefined symbols, we need to make
5471 another pass through the archive in order to see whether
5472 they can be defined. FIXME: This isn't perfect, because
5473 common symbols wind up on undefs_tail and because an
5474 undefined symbol which is defined later on in this pass
5475 does not require another pass. This isn't a bug, but it
5476 does make the code less efficient than it could be. */
5477 if (undefs_tail != info->hash->undefs_tail)
5480 /* Look backward to mark all symbols from this object file
5481 which we have already seen in this pass. */
5485 included[mark] = TRUE;
5490 while (symdefs[mark].file_offset == symdef->file_offset);
5492 /* We mark subsequent symbols from this object file as we go
5493 on through the loop. */
5494 last = symdef->file_offset;
5504 if (included != NULL)
5509 /* Given an ELF BFD, add symbols to the global hash table as
5513 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5515 switch (bfd_get_format (abfd))
5518 return elf_link_add_object_symbols (abfd, info);
5520 return elf_link_add_archive_symbols (abfd, info);
5522 bfd_set_error (bfd_error_wrong_format);
5527 struct hash_codes_info
5529 unsigned long *hashcodes;
5533 /* This function will be called though elf_link_hash_traverse to store
5534 all hash value of the exported symbols in an array. */
5537 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5539 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5544 /* Ignore indirect symbols. These are added by the versioning code. */
5545 if (h->dynindx == -1)
5548 name = h->root.root.string;
5549 if (h->versioned >= versioned)
5551 char *p = strchr (name, ELF_VER_CHR);
5554 alc = (char *) bfd_malloc (p - name + 1);
5560 memcpy (alc, name, p - name);
5561 alc[p - name] = '\0';
5566 /* Compute the hash value. */
5567 ha = bfd_elf_hash (name);
5569 /* Store the found hash value in the array given as the argument. */
5570 *(inf->hashcodes)++ = ha;
5572 /* And store it in the struct so that we can put it in the hash table
5574 h->u.elf_hash_value = ha;
5582 struct collect_gnu_hash_codes
5585 const struct elf_backend_data *bed;
5586 unsigned long int nsyms;
5587 unsigned long int maskbits;
5588 unsigned long int *hashcodes;
5589 unsigned long int *hashval;
5590 unsigned long int *indx;
5591 unsigned long int *counts;
5594 long int min_dynindx;
5595 unsigned long int bucketcount;
5596 unsigned long int symindx;
5597 long int local_indx;
5598 long int shift1, shift2;
5599 unsigned long int mask;
5603 /* This function will be called though elf_link_hash_traverse to store
5604 all hash value of the exported symbols in an array. */
5607 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5609 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5614 /* Ignore indirect symbols. These are added by the versioning code. */
5615 if (h->dynindx == -1)
5618 /* Ignore also local symbols and undefined symbols. */
5619 if (! (*s->bed->elf_hash_symbol) (h))
5622 name = h->root.root.string;
5623 if (h->versioned >= versioned)
5625 char *p = strchr (name, ELF_VER_CHR);
5628 alc = (char *) bfd_malloc (p - name + 1);
5634 memcpy (alc, name, p - name);
5635 alc[p - name] = '\0';
5640 /* Compute the hash value. */
5641 ha = bfd_elf_gnu_hash (name);
5643 /* Store the found hash value in the array for compute_bucket_count,
5644 and also for .dynsym reordering purposes. */
5645 s->hashcodes[s->nsyms] = ha;
5646 s->hashval[h->dynindx] = ha;
5648 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5649 s->min_dynindx = h->dynindx;
5657 /* This function will be called though elf_link_hash_traverse to do
5658 final dynaminc symbol renumbering. */
5661 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5663 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5664 unsigned long int bucket;
5665 unsigned long int val;
5667 /* Ignore indirect symbols. */
5668 if (h->dynindx == -1)
5671 /* Ignore also local symbols and undefined symbols. */
5672 if (! (*s->bed->elf_hash_symbol) (h))
5674 if (h->dynindx >= s->min_dynindx)
5675 h->dynindx = s->local_indx++;
5679 bucket = s->hashval[h->dynindx] % s->bucketcount;
5680 val = (s->hashval[h->dynindx] >> s->shift1)
5681 & ((s->maskbits >> s->shift1) - 1);
5682 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5684 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5685 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5686 if (s->counts[bucket] == 1)
5687 /* Last element terminates the chain. */
5689 bfd_put_32 (s->output_bfd, val,
5690 s->contents + (s->indx[bucket] - s->symindx) * 4);
5691 --s->counts[bucket];
5692 h->dynindx = s->indx[bucket]++;
5696 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5699 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5701 return !(h->forced_local
5702 || h->root.type == bfd_link_hash_undefined
5703 || h->root.type == bfd_link_hash_undefweak
5704 || ((h->root.type == bfd_link_hash_defined
5705 || h->root.type == bfd_link_hash_defweak)
5706 && h->root.u.def.section->output_section == NULL));
5709 /* Array used to determine the number of hash table buckets to use
5710 based on the number of symbols there are. If there are fewer than
5711 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5712 fewer than 37 we use 17 buckets, and so forth. We never use more
5713 than 32771 buckets. */
5715 static const size_t elf_buckets[] =
5717 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5721 /* Compute bucket count for hashing table. We do not use a static set
5722 of possible tables sizes anymore. Instead we determine for all
5723 possible reasonable sizes of the table the outcome (i.e., the
5724 number of collisions etc) and choose the best solution. The
5725 weighting functions are not too simple to allow the table to grow
5726 without bounds. Instead one of the weighting factors is the size.
5727 Therefore the result is always a good payoff between few collisions
5728 (= short chain lengths) and table size. */
5730 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5731 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5732 unsigned long int nsyms,
5735 size_t best_size = 0;
5736 unsigned long int i;
5738 /* We have a problem here. The following code to optimize the table
5739 size requires an integer type with more the 32 bits. If
5740 BFD_HOST_U_64_BIT is set we know about such a type. */
5741 #ifdef BFD_HOST_U_64_BIT
5746 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5747 bfd *dynobj = elf_hash_table (info)->dynobj;
5748 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5749 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5750 unsigned long int *counts;
5752 unsigned int no_improvement_count = 0;
5754 /* Possible optimization parameters: if we have NSYMS symbols we say
5755 that the hashing table must at least have NSYMS/4 and at most
5757 minsize = nsyms / 4;
5760 best_size = maxsize = nsyms * 2;
5765 if ((best_size & 31) == 0)
5769 /* Create array where we count the collisions in. We must use bfd_malloc
5770 since the size could be large. */
5772 amt *= sizeof (unsigned long int);
5773 counts = (unsigned long int *) bfd_malloc (amt);
5777 /* Compute the "optimal" size for the hash table. The criteria is a
5778 minimal chain length. The minor criteria is (of course) the size
5780 for (i = minsize; i < maxsize; ++i)
5782 /* Walk through the array of hashcodes and count the collisions. */
5783 BFD_HOST_U_64_BIT max;
5784 unsigned long int j;
5785 unsigned long int fact;
5787 if (gnu_hash && (i & 31) == 0)
5790 memset (counts, '\0', i * sizeof (unsigned long int));
5792 /* Determine how often each hash bucket is used. */
5793 for (j = 0; j < nsyms; ++j)
5794 ++counts[hashcodes[j] % i];
5796 /* For the weight function we need some information about the
5797 pagesize on the target. This is information need not be 100%
5798 accurate. Since this information is not available (so far) we
5799 define it here to a reasonable default value. If it is crucial
5800 to have a better value some day simply define this value. */
5801 # ifndef BFD_TARGET_PAGESIZE
5802 # define BFD_TARGET_PAGESIZE (4096)
5805 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5807 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5810 /* Variant 1: optimize for short chains. We add the squares
5811 of all the chain lengths (which favors many small chain
5812 over a few long chains). */
5813 for (j = 0; j < i; ++j)
5814 max += counts[j] * counts[j];
5816 /* This adds penalties for the overall size of the table. */
5817 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5820 /* Variant 2: Optimize a lot more for small table. Here we
5821 also add squares of the size but we also add penalties for
5822 empty slots (the +1 term). */
5823 for (j = 0; j < i; ++j)
5824 max += (1 + counts[j]) * (1 + counts[j]);
5826 /* The overall size of the table is considered, but not as
5827 strong as in variant 1, where it is squared. */
5828 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5832 /* Compare with current best results. */
5833 if (max < best_chlen)
5837 no_improvement_count = 0;
5839 /* PR 11843: Avoid futile long searches for the best bucket size
5840 when there are a large number of symbols. */
5841 else if (++no_improvement_count == 100)
5848 #endif /* defined (BFD_HOST_U_64_BIT) */
5850 /* This is the fallback solution if no 64bit type is available or if we
5851 are not supposed to spend much time on optimizations. We select the
5852 bucket count using a fixed set of numbers. */
5853 for (i = 0; elf_buckets[i] != 0; i++)
5855 best_size = elf_buckets[i];
5856 if (nsyms < elf_buckets[i + 1])
5859 if (gnu_hash && best_size < 2)
5866 /* Size any SHT_GROUP section for ld -r. */
5869 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5874 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5875 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5876 && (s = ibfd->sections) != NULL
5877 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5878 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5883 /* Set a default stack segment size. The value in INFO wins. If it
5884 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5885 undefined it is initialized. */
5888 bfd_elf_stack_segment_size (bfd *output_bfd,
5889 struct bfd_link_info *info,
5890 const char *legacy_symbol,
5891 bfd_vma default_size)
5893 struct elf_link_hash_entry *h = NULL;
5895 /* Look for legacy symbol. */
5897 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5898 FALSE, FALSE, FALSE);
5899 if (h && (h->root.type == bfd_link_hash_defined
5900 || h->root.type == bfd_link_hash_defweak)
5902 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5904 /* The symbol has no type if specified on the command line. */
5905 h->type = STT_OBJECT;
5906 if (info->stacksize)
5907 /* xgettext:c-format */
5908 _bfd_error_handler (_("%B: stack size specified and %s set"),
5909 output_bfd, legacy_symbol);
5910 else if (h->root.u.def.section != bfd_abs_section_ptr)
5911 /* xgettext:c-format */
5912 _bfd_error_handler (_("%B: %s not absolute"),
5913 output_bfd, legacy_symbol);
5915 info->stacksize = h->root.u.def.value;
5918 if (!info->stacksize)
5919 /* If the user didn't set a size, or explicitly inhibit the
5920 size, set it now. */
5921 info->stacksize = default_size;
5923 /* Provide the legacy symbol, if it is referenced. */
5924 if (h && (h->root.type == bfd_link_hash_undefined
5925 || h->root.type == bfd_link_hash_undefweak))
5927 struct bfd_link_hash_entry *bh = NULL;
5929 if (!(_bfd_generic_link_add_one_symbol
5930 (info, output_bfd, legacy_symbol,
5931 BSF_GLOBAL, bfd_abs_section_ptr,
5932 info->stacksize >= 0 ? info->stacksize : 0,
5933 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5936 h = (struct elf_link_hash_entry *) bh;
5938 h->type = STT_OBJECT;
5944 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5946 struct elf_gc_sweep_symbol_info
5948 struct bfd_link_info *info;
5949 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5954 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5957 && (((h->root.type == bfd_link_hash_defined
5958 || h->root.type == bfd_link_hash_defweak)
5959 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5960 && h->root.u.def.section->gc_mark))
5961 || h->root.type == bfd_link_hash_undefined
5962 || h->root.type == bfd_link_hash_undefweak))
5964 struct elf_gc_sweep_symbol_info *inf;
5966 inf = (struct elf_gc_sweep_symbol_info *) data;
5967 (*inf->hide_symbol) (inf->info, h, TRUE);
5970 h->ref_regular_nonweak = 0;
5976 /* Set up the sizes and contents of the ELF dynamic sections. This is
5977 called by the ELF linker emulation before_allocation routine. We
5978 must set the sizes of the sections before the linker sets the
5979 addresses of the various sections. */
5982 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5985 const char *filter_shlib,
5987 const char *depaudit,
5988 const char * const *auxiliary_filters,
5989 struct bfd_link_info *info,
5990 asection **sinterpptr)
5993 const struct elf_backend_data *bed;
5997 if (!is_elf_hash_table (info->hash))
6000 dynobj = elf_hash_table (info)->dynobj;
6002 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6004 struct bfd_elf_version_tree *verdefs;
6005 struct elf_info_failed asvinfo;
6006 struct bfd_elf_version_tree *t;
6007 struct bfd_elf_version_expr *d;
6008 struct elf_info_failed eif;
6009 bfd_boolean all_defined;
6016 /* If we are supposed to export all symbols into the dynamic symbol
6017 table (this is not the normal case), then do so. */
6018 if (info->export_dynamic
6019 || (bfd_link_executable (info) && info->dynamic))
6021 elf_link_hash_traverse (elf_hash_table (info),
6022 _bfd_elf_export_symbol,
6030 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6032 if (soname_indx == (size_t) -1
6033 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6037 soname_indx = (size_t) -1;
6039 /* Make all global versions with definition. */
6040 for (t = info->version_info; t != NULL; t = t->next)
6041 for (d = t->globals.list; d != NULL; d = d->next)
6042 if (!d->symver && d->literal)
6044 const char *verstr, *name;
6045 size_t namelen, verlen, newlen;
6046 char *newname, *p, leading_char;
6047 struct elf_link_hash_entry *newh;
6049 leading_char = bfd_get_symbol_leading_char (output_bfd);
6051 namelen = strlen (name) + (leading_char != '\0');
6053 verlen = strlen (verstr);
6054 newlen = namelen + verlen + 3;
6056 newname = (char *) bfd_malloc (newlen);
6057 if (newname == NULL)
6059 newname[0] = leading_char;
6060 memcpy (newname + (leading_char != '\0'), name, namelen);
6062 /* Check the hidden versioned definition. */
6063 p = newname + namelen;
6065 memcpy (p, verstr, verlen + 1);
6066 newh = elf_link_hash_lookup (elf_hash_table (info),
6067 newname, FALSE, FALSE,
6070 || (newh->root.type != bfd_link_hash_defined
6071 && newh->root.type != bfd_link_hash_defweak))
6073 /* Check the default versioned definition. */
6075 memcpy (p, verstr, verlen + 1);
6076 newh = elf_link_hash_lookup (elf_hash_table (info),
6077 newname, FALSE, FALSE,
6082 /* Mark this version if there is a definition and it is
6083 not defined in a shared object. */
6085 && !newh->def_dynamic
6086 && (newh->root.type == bfd_link_hash_defined
6087 || newh->root.type == bfd_link_hash_defweak))
6091 /* Attach all the symbols to their version information. */
6092 asvinfo.info = info;
6093 asvinfo.failed = FALSE;
6095 elf_link_hash_traverse (elf_hash_table (info),
6096 _bfd_elf_link_assign_sym_version,
6101 if (!info->allow_undefined_version)
6103 /* Check if all global versions have a definition. */
6105 for (t = info->version_info; t != NULL; t = t->next)
6106 for (d = t->globals.list; d != NULL; d = d->next)
6107 if (d->literal && !d->symver && !d->script)
6110 (_("%s: undefined version: %s"),
6111 d->pattern, t->name);
6112 all_defined = FALSE;
6117 bfd_set_error (bfd_error_bad_value);
6122 /* Set up the version definition section. */
6123 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6124 BFD_ASSERT (s != NULL);
6126 /* We may have created additional version definitions if we are
6127 just linking a regular application. */
6128 verdefs = info->version_info;
6130 /* Skip anonymous version tag. */
6131 if (verdefs != NULL && verdefs->vernum == 0)
6132 verdefs = verdefs->next;
6134 if (verdefs == NULL && !info->create_default_symver)
6135 s->flags |= SEC_EXCLUDE;
6141 Elf_Internal_Verdef def;
6142 Elf_Internal_Verdaux defaux;
6143 struct bfd_link_hash_entry *bh;
6144 struct elf_link_hash_entry *h;
6150 /* Make space for the base version. */
6151 size += sizeof (Elf_External_Verdef);
6152 size += sizeof (Elf_External_Verdaux);
6155 /* Make space for the default version. */
6156 if (info->create_default_symver)
6158 size += sizeof (Elf_External_Verdef);
6162 for (t = verdefs; t != NULL; t = t->next)
6164 struct bfd_elf_version_deps *n;
6166 /* Don't emit base version twice. */
6170 size += sizeof (Elf_External_Verdef);
6171 size += sizeof (Elf_External_Verdaux);
6174 for (n = t->deps; n != NULL; n = n->next)
6175 size += sizeof (Elf_External_Verdaux);
6179 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6180 if (s->contents == NULL && s->size != 0)
6183 /* Fill in the version definition section. */
6187 def.vd_version = VER_DEF_CURRENT;
6188 def.vd_flags = VER_FLG_BASE;
6191 if (info->create_default_symver)
6193 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6194 def.vd_next = sizeof (Elf_External_Verdef);
6198 def.vd_aux = sizeof (Elf_External_Verdef);
6199 def.vd_next = (sizeof (Elf_External_Verdef)
6200 + sizeof (Elf_External_Verdaux));
6203 if (soname_indx != (size_t) -1)
6205 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6207 def.vd_hash = bfd_elf_hash (soname);
6208 defaux.vda_name = soname_indx;
6215 name = lbasename (output_bfd->filename);
6216 def.vd_hash = bfd_elf_hash (name);
6217 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6219 if (indx == (size_t) -1)
6221 defaux.vda_name = indx;
6223 defaux.vda_next = 0;
6225 _bfd_elf_swap_verdef_out (output_bfd, &def,
6226 (Elf_External_Verdef *) p);
6227 p += sizeof (Elf_External_Verdef);
6228 if (info->create_default_symver)
6230 /* Add a symbol representing this version. */
6232 if (! (_bfd_generic_link_add_one_symbol
6233 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6235 get_elf_backend_data (dynobj)->collect, &bh)))
6237 h = (struct elf_link_hash_entry *) bh;
6240 h->type = STT_OBJECT;
6241 h->verinfo.vertree = NULL;
6243 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6246 /* Create a duplicate of the base version with the same
6247 aux block, but different flags. */
6250 def.vd_aux = sizeof (Elf_External_Verdef);
6252 def.vd_next = (sizeof (Elf_External_Verdef)
6253 + sizeof (Elf_External_Verdaux));
6256 _bfd_elf_swap_verdef_out (output_bfd, &def,
6257 (Elf_External_Verdef *) p);
6258 p += sizeof (Elf_External_Verdef);
6260 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6261 (Elf_External_Verdaux *) p);
6262 p += sizeof (Elf_External_Verdaux);
6264 for (t = verdefs; t != NULL; t = t->next)
6267 struct bfd_elf_version_deps *n;
6269 /* Don't emit the base version twice. */
6274 for (n = t->deps; n != NULL; n = n->next)
6277 /* Add a symbol representing this version. */
6279 if (! (_bfd_generic_link_add_one_symbol
6280 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6282 get_elf_backend_data (dynobj)->collect, &bh)))
6284 h = (struct elf_link_hash_entry *) bh;
6287 h->type = STT_OBJECT;
6288 h->verinfo.vertree = t;
6290 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6293 def.vd_version = VER_DEF_CURRENT;
6295 if (t->globals.list == NULL
6296 && t->locals.list == NULL
6298 def.vd_flags |= VER_FLG_WEAK;
6299 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6300 def.vd_cnt = cdeps + 1;
6301 def.vd_hash = bfd_elf_hash (t->name);
6302 def.vd_aux = sizeof (Elf_External_Verdef);
6305 /* If a basever node is next, it *must* be the last node in
6306 the chain, otherwise Verdef construction breaks. */
6307 if (t->next != NULL && t->next->vernum == 0)
6308 BFD_ASSERT (t->next->next == NULL);
6310 if (t->next != NULL && t->next->vernum != 0)
6311 def.vd_next = (sizeof (Elf_External_Verdef)
6312 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6314 _bfd_elf_swap_verdef_out (output_bfd, &def,
6315 (Elf_External_Verdef *) p);
6316 p += sizeof (Elf_External_Verdef);
6318 defaux.vda_name = h->dynstr_index;
6319 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6321 defaux.vda_next = 0;
6322 if (t->deps != NULL)
6323 defaux.vda_next = sizeof (Elf_External_Verdaux);
6324 t->name_indx = defaux.vda_name;
6326 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6327 (Elf_External_Verdaux *) p);
6328 p += sizeof (Elf_External_Verdaux);
6330 for (n = t->deps; n != NULL; n = n->next)
6332 if (n->version_needed == NULL)
6334 /* This can happen if there was an error in the
6336 defaux.vda_name = 0;
6340 defaux.vda_name = n->version_needed->name_indx;
6341 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6344 if (n->next == NULL)
6345 defaux.vda_next = 0;
6347 defaux.vda_next = sizeof (Elf_External_Verdaux);
6349 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6350 (Elf_External_Verdaux *) p);
6351 p += sizeof (Elf_External_Verdaux);
6355 elf_tdata (output_bfd)->cverdefs = cdefs;
6358 /* Work out the size of the version reference section. */
6360 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6361 BFD_ASSERT (s != NULL);
6363 struct elf_find_verdep_info sinfo;
6366 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6367 if (sinfo.vers == 0)
6369 sinfo.failed = FALSE;
6371 elf_link_hash_traverse (elf_hash_table (info),
6372 _bfd_elf_link_find_version_dependencies,
6377 if (elf_tdata (output_bfd)->verref == NULL)
6378 s->flags |= SEC_EXCLUDE;
6381 Elf_Internal_Verneed *vn;
6386 /* Build the version dependency section. */
6389 for (vn = elf_tdata (output_bfd)->verref;
6391 vn = vn->vn_nextref)
6393 Elf_Internal_Vernaux *a;
6395 size += sizeof (Elf_External_Verneed);
6397 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6398 size += sizeof (Elf_External_Vernaux);
6402 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6403 if (s->contents == NULL)
6407 for (vn = elf_tdata (output_bfd)->verref;
6409 vn = vn->vn_nextref)
6412 Elf_Internal_Vernaux *a;
6416 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6419 vn->vn_version = VER_NEED_CURRENT;
6421 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6422 elf_dt_name (vn->vn_bfd) != NULL
6423 ? elf_dt_name (vn->vn_bfd)
6424 : lbasename (vn->vn_bfd->filename),
6426 if (indx == (size_t) -1)
6429 vn->vn_aux = sizeof (Elf_External_Verneed);
6430 if (vn->vn_nextref == NULL)
6433 vn->vn_next = (sizeof (Elf_External_Verneed)
6434 + caux * sizeof (Elf_External_Vernaux));
6436 _bfd_elf_swap_verneed_out (output_bfd, vn,
6437 (Elf_External_Verneed *) p);
6438 p += sizeof (Elf_External_Verneed);
6440 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6442 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6443 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6444 a->vna_nodename, FALSE);
6445 if (indx == (size_t) -1)
6448 if (a->vna_nextptr == NULL)
6451 a->vna_next = sizeof (Elf_External_Vernaux);
6453 _bfd_elf_swap_vernaux_out (output_bfd, a,
6454 (Elf_External_Vernaux *) p);
6455 p += sizeof (Elf_External_Vernaux);
6459 elf_tdata (output_bfd)->cverrefs = crefs;
6464 bed = get_elf_backend_data (output_bfd);
6466 if (info->gc_sections && bed->can_gc_sections)
6468 struct elf_gc_sweep_symbol_info sweep_info;
6469 unsigned long section_sym_count;
6471 /* Remove the symbols that were in the swept sections from the
6472 dynamic symbol table. GCFIXME: Anyone know how to get them
6473 out of the static symbol table as well? */
6474 sweep_info.info = info;
6475 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6476 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6479 /* We need to reassign dynsym indices now that symbols may have
6480 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6481 for the details of the conditions used here. */
6482 if (elf_hash_table (info)->dynamic_sections_created
6483 || bed->always_renumber_dynsyms)
6484 _bfd_elf_link_renumber_dynsyms (output_bfd, info, §ion_sym_count);
6487 /* Any syms created from now on start with -1 in
6488 got.refcount/offset and plt.refcount/offset. */
6489 elf_hash_table (info)->init_got_refcount
6490 = elf_hash_table (info)->init_got_offset;
6491 elf_hash_table (info)->init_plt_refcount
6492 = elf_hash_table (info)->init_plt_offset;
6494 if (bfd_link_relocatable (info)
6495 && !_bfd_elf_size_group_sections (info))
6498 /* The backend may have to create some sections regardless of whether
6499 we're dynamic or not. */
6500 if (bed->elf_backend_always_size_sections
6501 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6504 /* Determine any GNU_STACK segment requirements, after the backend
6505 has had a chance to set a default segment size. */
6506 if (info->execstack)
6507 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6508 else if (info->noexecstack)
6509 elf_stack_flags (output_bfd) = PF_R | PF_W;
6513 asection *notesec = NULL;
6516 for (inputobj = info->input_bfds;
6518 inputobj = inputobj->link.next)
6523 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6525 s = inputobj->sections;
6526 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6529 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6532 if (s->flags & SEC_CODE)
6536 else if (bed->default_execstack)
6539 if (notesec || info->stacksize > 0)
6540 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6541 if (notesec && exec && bfd_link_relocatable (info)
6542 && notesec->output_section != bfd_abs_section_ptr)
6543 notesec->output_section->flags |= SEC_CODE;
6546 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6548 struct elf_info_failed eif;
6549 struct elf_link_hash_entry *h;
6553 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6554 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6558 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6560 info->flags |= DF_SYMBOLIC;
6568 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6570 if (indx == (size_t) -1)
6573 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6574 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6578 if (filter_shlib != NULL)
6582 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6583 filter_shlib, TRUE);
6584 if (indx == (size_t) -1
6585 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6589 if (auxiliary_filters != NULL)
6591 const char * const *p;
6593 for (p = auxiliary_filters; *p != NULL; p++)
6597 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6599 if (indx == (size_t) -1
6600 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6609 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6611 if (indx == (size_t) -1
6612 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6616 if (depaudit != NULL)
6620 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6622 if (indx == (size_t) -1
6623 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6630 /* Find all symbols which were defined in a dynamic object and make
6631 the backend pick a reasonable value for them. */
6632 elf_link_hash_traverse (elf_hash_table (info),
6633 _bfd_elf_adjust_dynamic_symbol,
6638 /* Add some entries to the .dynamic section. We fill in some of the
6639 values later, in bfd_elf_final_link, but we must add the entries
6640 now so that we know the final size of the .dynamic section. */
6642 /* If there are initialization and/or finalization functions to
6643 call then add the corresponding DT_INIT/DT_FINI entries. */
6644 h = (info->init_function
6645 ? elf_link_hash_lookup (elf_hash_table (info),
6646 info->init_function, FALSE,
6653 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6656 h = (info->fini_function
6657 ? elf_link_hash_lookup (elf_hash_table (info),
6658 info->fini_function, FALSE,
6665 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6669 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6670 if (s != NULL && s->linker_has_input)
6672 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6673 if (! bfd_link_executable (info))
6678 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6679 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6680 && (o = sub->sections) != NULL
6681 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6682 for (o = sub->sections; o != NULL; o = o->next)
6683 if (elf_section_data (o)->this_hdr.sh_type
6684 == SHT_PREINIT_ARRAY)
6687 (_("%B: .preinit_array section is not allowed in DSO"),
6692 bfd_set_error (bfd_error_nonrepresentable_section);
6696 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6697 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6700 s = bfd_get_section_by_name (output_bfd, ".init_array");
6701 if (s != NULL && s->linker_has_input)
6703 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6704 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6707 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6708 if (s != NULL && s->linker_has_input)
6710 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6711 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6715 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6716 /* If .dynstr is excluded from the link, we don't want any of
6717 these tags. Strictly, we should be checking each section
6718 individually; This quick check covers for the case where
6719 someone does a /DISCARD/ : { *(*) }. */
6720 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6722 bfd_size_type strsize;
6724 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6725 if ((info->emit_hash
6726 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6727 || (info->emit_gnu_hash
6728 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6729 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6730 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6731 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6732 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6733 bed->s->sizeof_sym))
6738 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6741 /* The backend must work out the sizes of all the other dynamic
6744 && bed->elf_backend_size_dynamic_sections != NULL
6745 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6748 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6750 unsigned long section_sym_count;
6752 if (elf_tdata (output_bfd)->cverdefs)
6754 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6756 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6757 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6761 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6763 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6766 else if (info->flags & DF_BIND_NOW)
6768 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6774 if (bfd_link_executable (info))
6775 info->flags_1 &= ~ (DF_1_INITFIRST
6778 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6782 if (elf_tdata (output_bfd)->cverrefs)
6784 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6786 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6787 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6791 if ((elf_tdata (output_bfd)->cverrefs == 0
6792 && elf_tdata (output_bfd)->cverdefs == 0)
6793 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6794 §ion_sym_count) == 0)
6798 s = bfd_get_linker_section (dynobj, ".gnu.version");
6799 s->flags |= SEC_EXCLUDE;
6805 /* Find the first non-excluded output section. We'll use its
6806 section symbol for some emitted relocs. */
6808 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6812 for (s = output_bfd->sections; s != NULL; s = s->next)
6813 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6814 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6816 elf_hash_table (info)->text_index_section = s;
6821 /* Find two non-excluded output sections, one for code, one for data.
6822 We'll use their section symbols for some emitted relocs. */
6824 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6828 /* Data first, since setting text_index_section changes
6829 _bfd_elf_link_omit_section_dynsym. */
6830 for (s = output_bfd->sections; s != NULL; s = s->next)
6831 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6832 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6834 elf_hash_table (info)->data_index_section = s;
6838 for (s = output_bfd->sections; s != NULL; s = s->next)
6839 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6840 == (SEC_ALLOC | SEC_READONLY))
6841 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6843 elf_hash_table (info)->text_index_section = s;
6847 if (elf_hash_table (info)->text_index_section == NULL)
6848 elf_hash_table (info)->text_index_section
6849 = elf_hash_table (info)->data_index_section;
6853 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6855 const struct elf_backend_data *bed;
6856 unsigned long section_sym_count;
6857 bfd_size_type dynsymcount;
6859 if (!is_elf_hash_table (info->hash))
6862 bed = get_elf_backend_data (output_bfd);
6863 (*bed->elf_backend_init_index_section) (output_bfd, info);
6865 /* Assign dynsym indices. In a shared library we generate a section
6866 symbol for each output section, which come first. Next come all
6867 of the back-end allocated local dynamic syms, followed by the rest
6868 of the global symbols.
6870 This is usually not needed for static binaries, however backends
6871 can request to always do it, e.g. the MIPS backend uses dynamic
6872 symbol counts to lay out GOT, which will be produced in the
6873 presence of GOT relocations even in static binaries (holding fixed
6874 data in that case, to satisfy those relocations). */
6876 if (elf_hash_table (info)->dynamic_sections_created
6877 || bed->always_renumber_dynsyms)
6878 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6879 §ion_sym_count);
6881 if (elf_hash_table (info)->dynamic_sections_created)
6885 unsigned int dtagcount;
6887 dynobj = elf_hash_table (info)->dynobj;
6889 /* Work out the size of the symbol version section. */
6890 s = bfd_get_linker_section (dynobj, ".gnu.version");
6891 BFD_ASSERT (s != NULL);
6892 if ((s->flags & SEC_EXCLUDE) == 0)
6894 s->size = dynsymcount * sizeof (Elf_External_Versym);
6895 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6896 if (s->contents == NULL)
6899 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6903 /* Set the size of the .dynsym and .hash sections. We counted
6904 the number of dynamic symbols in elf_link_add_object_symbols.
6905 We will build the contents of .dynsym and .hash when we build
6906 the final symbol table, because until then we do not know the
6907 correct value to give the symbols. We built the .dynstr
6908 section as we went along in elf_link_add_object_symbols. */
6909 s = elf_hash_table (info)->dynsym;
6910 BFD_ASSERT (s != NULL);
6911 s->size = dynsymcount * bed->s->sizeof_sym;
6913 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6914 if (s->contents == NULL)
6917 /* The first entry in .dynsym is a dummy symbol. Clear all the
6918 section syms, in case we don't output them all. */
6919 ++section_sym_count;
6920 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6922 elf_hash_table (info)->bucketcount = 0;
6924 /* Compute the size of the hashing table. As a side effect this
6925 computes the hash values for all the names we export. */
6926 if (info->emit_hash)
6928 unsigned long int *hashcodes;
6929 struct hash_codes_info hashinf;
6931 unsigned long int nsyms;
6933 size_t hash_entry_size;
6935 /* Compute the hash values for all exported symbols. At the same
6936 time store the values in an array so that we could use them for
6938 amt = dynsymcount * sizeof (unsigned long int);
6939 hashcodes = (unsigned long int *) bfd_malloc (amt);
6940 if (hashcodes == NULL)
6942 hashinf.hashcodes = hashcodes;
6943 hashinf.error = FALSE;
6945 /* Put all hash values in HASHCODES. */
6946 elf_link_hash_traverse (elf_hash_table (info),
6947 elf_collect_hash_codes, &hashinf);
6954 nsyms = hashinf.hashcodes - hashcodes;
6956 = compute_bucket_count (info, hashcodes, nsyms, 0);
6959 if (bucketcount == 0 && nsyms > 0)
6962 elf_hash_table (info)->bucketcount = bucketcount;
6964 s = bfd_get_linker_section (dynobj, ".hash");
6965 BFD_ASSERT (s != NULL);
6966 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6967 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6968 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6969 if (s->contents == NULL)
6972 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6973 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6974 s->contents + hash_entry_size);
6977 if (info->emit_gnu_hash)
6980 unsigned char *contents;
6981 struct collect_gnu_hash_codes cinfo;
6985 memset (&cinfo, 0, sizeof (cinfo));
6987 /* Compute the hash values for all exported symbols. At the same
6988 time store the values in an array so that we could use them for
6990 amt = dynsymcount * 2 * sizeof (unsigned long int);
6991 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6992 if (cinfo.hashcodes == NULL)
6995 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6996 cinfo.min_dynindx = -1;
6997 cinfo.output_bfd = output_bfd;
7000 /* Put all hash values in HASHCODES. */
7001 elf_link_hash_traverse (elf_hash_table (info),
7002 elf_collect_gnu_hash_codes, &cinfo);
7005 free (cinfo.hashcodes);
7010 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7012 if (bucketcount == 0)
7014 free (cinfo.hashcodes);
7018 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7019 BFD_ASSERT (s != NULL);
7021 if (cinfo.nsyms == 0)
7023 /* Empty .gnu.hash section is special. */
7024 BFD_ASSERT (cinfo.min_dynindx == -1);
7025 free (cinfo.hashcodes);
7026 s->size = 5 * 4 + bed->s->arch_size / 8;
7027 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7028 if (contents == NULL)
7030 s->contents = contents;
7031 /* 1 empty bucket. */
7032 bfd_put_32 (output_bfd, 1, contents);
7033 /* SYMIDX above the special symbol 0. */
7034 bfd_put_32 (output_bfd, 1, contents + 4);
7035 /* Just one word for bitmask. */
7036 bfd_put_32 (output_bfd, 1, contents + 8);
7037 /* Only hash fn bloom filter. */
7038 bfd_put_32 (output_bfd, 0, contents + 12);
7039 /* No hashes are valid - empty bitmask. */
7040 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7041 /* No hashes in the only bucket. */
7042 bfd_put_32 (output_bfd, 0,
7043 contents + 16 + bed->s->arch_size / 8);
7047 unsigned long int maskwords, maskbitslog2, x;
7048 BFD_ASSERT (cinfo.min_dynindx != -1);
7052 while ((x >>= 1) != 0)
7054 if (maskbitslog2 < 3)
7056 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7057 maskbitslog2 = maskbitslog2 + 3;
7059 maskbitslog2 = maskbitslog2 + 2;
7060 if (bed->s->arch_size == 64)
7062 if (maskbitslog2 == 5)
7068 cinfo.mask = (1 << cinfo.shift1) - 1;
7069 cinfo.shift2 = maskbitslog2;
7070 cinfo.maskbits = 1 << maskbitslog2;
7071 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7072 amt = bucketcount * sizeof (unsigned long int) * 2;
7073 amt += maskwords * sizeof (bfd_vma);
7074 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7075 if (cinfo.bitmask == NULL)
7077 free (cinfo.hashcodes);
7081 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7082 cinfo.indx = cinfo.counts + bucketcount;
7083 cinfo.symindx = dynsymcount - cinfo.nsyms;
7084 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7086 /* Determine how often each hash bucket is used. */
7087 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7088 for (i = 0; i < cinfo.nsyms; ++i)
7089 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7091 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7092 if (cinfo.counts[i] != 0)
7094 cinfo.indx[i] = cnt;
7095 cnt += cinfo.counts[i];
7097 BFD_ASSERT (cnt == dynsymcount);
7098 cinfo.bucketcount = bucketcount;
7099 cinfo.local_indx = cinfo.min_dynindx;
7101 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7102 s->size += cinfo.maskbits / 8;
7103 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7104 if (contents == NULL)
7106 free (cinfo.bitmask);
7107 free (cinfo.hashcodes);
7111 s->contents = contents;
7112 bfd_put_32 (output_bfd, bucketcount, contents);
7113 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7114 bfd_put_32 (output_bfd, maskwords, contents + 8);
7115 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7116 contents += 16 + cinfo.maskbits / 8;
7118 for (i = 0; i < bucketcount; ++i)
7120 if (cinfo.counts[i] == 0)
7121 bfd_put_32 (output_bfd, 0, contents);
7123 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7127 cinfo.contents = contents;
7129 /* Renumber dynamic symbols, populate .gnu.hash section. */
7130 elf_link_hash_traverse (elf_hash_table (info),
7131 elf_renumber_gnu_hash_syms, &cinfo);
7133 contents = s->contents + 16;
7134 for (i = 0; i < maskwords; ++i)
7136 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7138 contents += bed->s->arch_size / 8;
7141 free (cinfo.bitmask);
7142 free (cinfo.hashcodes);
7146 s = bfd_get_linker_section (dynobj, ".dynstr");
7147 BFD_ASSERT (s != NULL);
7149 elf_finalize_dynstr (output_bfd, info);
7151 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7153 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7154 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7161 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7164 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7167 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7168 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7171 /* Finish SHF_MERGE section merging. */
7174 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7179 if (!is_elf_hash_table (info->hash))
7182 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7183 if ((ibfd->flags & DYNAMIC) == 0
7184 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7185 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7186 == get_elf_backend_data (obfd)->s->elfclass))
7187 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7188 if ((sec->flags & SEC_MERGE) != 0
7189 && !bfd_is_abs_section (sec->output_section))
7191 struct bfd_elf_section_data *secdata;
7193 secdata = elf_section_data (sec);
7194 if (! _bfd_add_merge_section (obfd,
7195 &elf_hash_table (info)->merge_info,
7196 sec, &secdata->sec_info))
7198 else if (secdata->sec_info)
7199 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7202 if (elf_hash_table (info)->merge_info != NULL)
7203 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7204 merge_sections_remove_hook);
7208 /* Create an entry in an ELF linker hash table. */
7210 struct bfd_hash_entry *
7211 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7212 struct bfd_hash_table *table,
7215 /* Allocate the structure if it has not already been allocated by a
7219 entry = (struct bfd_hash_entry *)
7220 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7225 /* Call the allocation method of the superclass. */
7226 entry = _bfd_link_hash_newfunc (entry, table, string);
7229 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7230 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7232 /* Set local fields. */
7235 ret->got = htab->init_got_refcount;
7236 ret->plt = htab->init_plt_refcount;
7237 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7238 - offsetof (struct elf_link_hash_entry, size)));
7239 /* Assume that we have been called by a non-ELF symbol reader.
7240 This flag is then reset by the code which reads an ELF input
7241 file. This ensures that a symbol created by a non-ELF symbol
7242 reader will have the flag set correctly. */
7249 /* Copy data from an indirect symbol to its direct symbol, hiding the
7250 old indirect symbol. Also used for copying flags to a weakdef. */
7253 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7254 struct elf_link_hash_entry *dir,
7255 struct elf_link_hash_entry *ind)
7257 struct elf_link_hash_table *htab;
7259 /* Copy down any references that we may have already seen to the
7260 symbol which just became indirect. */
7262 if (dir->versioned != versioned_hidden)
7263 dir->ref_dynamic |= ind->ref_dynamic;
7264 dir->ref_regular |= ind->ref_regular;
7265 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7266 dir->non_got_ref |= ind->non_got_ref;
7267 dir->needs_plt |= ind->needs_plt;
7268 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7270 if (ind->root.type != bfd_link_hash_indirect)
7273 /* Copy over the global and procedure linkage table refcount entries.
7274 These may have been already set up by a check_relocs routine. */
7275 htab = elf_hash_table (info);
7276 if (ind->got.refcount > htab->init_got_refcount.refcount)
7278 if (dir->got.refcount < 0)
7279 dir->got.refcount = 0;
7280 dir->got.refcount += ind->got.refcount;
7281 ind->got.refcount = htab->init_got_refcount.refcount;
7284 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7286 if (dir->plt.refcount < 0)
7287 dir->plt.refcount = 0;
7288 dir->plt.refcount += ind->plt.refcount;
7289 ind->plt.refcount = htab->init_plt_refcount.refcount;
7292 if (ind->dynindx != -1)
7294 if (dir->dynindx != -1)
7295 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7296 dir->dynindx = ind->dynindx;
7297 dir->dynstr_index = ind->dynstr_index;
7299 ind->dynstr_index = 0;
7304 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7305 struct elf_link_hash_entry *h,
7306 bfd_boolean force_local)
7308 /* STT_GNU_IFUNC symbol must go through PLT. */
7309 if (h->type != STT_GNU_IFUNC)
7311 h->plt = elf_hash_table (info)->init_plt_offset;
7316 h->forced_local = 1;
7317 if (h->dynindx != -1)
7319 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7322 h->dynstr_index = 0;
7327 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7331 _bfd_elf_link_hash_table_init
7332 (struct elf_link_hash_table *table,
7334 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7335 struct bfd_hash_table *,
7337 unsigned int entsize,
7338 enum elf_target_id target_id)
7341 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7343 table->init_got_refcount.refcount = can_refcount - 1;
7344 table->init_plt_refcount.refcount = can_refcount - 1;
7345 table->init_got_offset.offset = -(bfd_vma) 1;
7346 table->init_plt_offset.offset = -(bfd_vma) 1;
7347 /* The first dynamic symbol is a dummy. */
7348 table->dynsymcount = 1;
7350 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7352 table->root.type = bfd_link_elf_hash_table;
7353 table->hash_table_id = target_id;
7358 /* Create an ELF linker hash table. */
7360 struct bfd_link_hash_table *
7361 _bfd_elf_link_hash_table_create (bfd *abfd)
7363 struct elf_link_hash_table *ret;
7364 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7366 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7370 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7371 sizeof (struct elf_link_hash_entry),
7377 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7382 /* Destroy an ELF linker hash table. */
7385 _bfd_elf_link_hash_table_free (bfd *obfd)
7387 struct elf_link_hash_table *htab;
7389 htab = (struct elf_link_hash_table *) obfd->link.hash;
7390 if (htab->dynstr != NULL)
7391 _bfd_elf_strtab_free (htab->dynstr);
7392 _bfd_merge_sections_free (htab->merge_info);
7393 _bfd_generic_link_hash_table_free (obfd);
7396 /* This is a hook for the ELF emulation code in the generic linker to
7397 tell the backend linker what file name to use for the DT_NEEDED
7398 entry for a dynamic object. */
7401 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7403 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7404 && bfd_get_format (abfd) == bfd_object)
7405 elf_dt_name (abfd) = name;
7409 bfd_elf_get_dyn_lib_class (bfd *abfd)
7412 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7413 && bfd_get_format (abfd) == bfd_object)
7414 lib_class = elf_dyn_lib_class (abfd);
7421 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7423 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7424 && bfd_get_format (abfd) == bfd_object)
7425 elf_dyn_lib_class (abfd) = lib_class;
7428 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7429 the linker ELF emulation code. */
7431 struct bfd_link_needed_list *
7432 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7433 struct bfd_link_info *info)
7435 if (! is_elf_hash_table (info->hash))
7437 return elf_hash_table (info)->needed;
7440 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7441 hook for the linker ELF emulation code. */
7443 struct bfd_link_needed_list *
7444 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7445 struct bfd_link_info *info)
7447 if (! is_elf_hash_table (info->hash))
7449 return elf_hash_table (info)->runpath;
7452 /* Get the name actually used for a dynamic object for a link. This
7453 is the SONAME entry if there is one. Otherwise, it is the string
7454 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7457 bfd_elf_get_dt_soname (bfd *abfd)
7459 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7460 && bfd_get_format (abfd) == bfd_object)
7461 return elf_dt_name (abfd);
7465 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7466 the ELF linker emulation code. */
7469 bfd_elf_get_bfd_needed_list (bfd *abfd,
7470 struct bfd_link_needed_list **pneeded)
7473 bfd_byte *dynbuf = NULL;
7474 unsigned int elfsec;
7475 unsigned long shlink;
7476 bfd_byte *extdyn, *extdynend;
7478 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7482 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7483 || bfd_get_format (abfd) != bfd_object)
7486 s = bfd_get_section_by_name (abfd, ".dynamic");
7487 if (s == NULL || s->size == 0)
7490 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7493 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7494 if (elfsec == SHN_BAD)
7497 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7499 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7500 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7503 extdynend = extdyn + s->size;
7504 for (; extdyn < extdynend; extdyn += extdynsize)
7506 Elf_Internal_Dyn dyn;
7508 (*swap_dyn_in) (abfd, extdyn, &dyn);
7510 if (dyn.d_tag == DT_NULL)
7513 if (dyn.d_tag == DT_NEEDED)
7516 struct bfd_link_needed_list *l;
7517 unsigned int tagv = dyn.d_un.d_val;
7520 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7525 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7546 struct elf_symbuf_symbol
7548 unsigned long st_name; /* Symbol name, index in string tbl */
7549 unsigned char st_info; /* Type and binding attributes */
7550 unsigned char st_other; /* Visibilty, and target specific */
7553 struct elf_symbuf_head
7555 struct elf_symbuf_symbol *ssym;
7557 unsigned int st_shndx;
7564 Elf_Internal_Sym *isym;
7565 struct elf_symbuf_symbol *ssym;
7570 /* Sort references to symbols by ascending section number. */
7573 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7575 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7576 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7578 return s1->st_shndx - s2->st_shndx;
7582 elf_sym_name_compare (const void *arg1, const void *arg2)
7584 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7585 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7586 return strcmp (s1->name, s2->name);
7589 static struct elf_symbuf_head *
7590 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7592 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7593 struct elf_symbuf_symbol *ssym;
7594 struct elf_symbuf_head *ssymbuf, *ssymhead;
7595 size_t i, shndx_count, total_size;
7597 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7601 for (ind = indbuf, i = 0; i < symcount; i++)
7602 if (isymbuf[i].st_shndx != SHN_UNDEF)
7603 *ind++ = &isymbuf[i];
7606 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7607 elf_sort_elf_symbol);
7610 if (indbufend > indbuf)
7611 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7612 if (ind[0]->st_shndx != ind[1]->st_shndx)
7615 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7616 + (indbufend - indbuf) * sizeof (*ssym));
7617 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7618 if (ssymbuf == NULL)
7624 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7625 ssymbuf->ssym = NULL;
7626 ssymbuf->count = shndx_count;
7627 ssymbuf->st_shndx = 0;
7628 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7630 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7633 ssymhead->ssym = ssym;
7634 ssymhead->count = 0;
7635 ssymhead->st_shndx = (*ind)->st_shndx;
7637 ssym->st_name = (*ind)->st_name;
7638 ssym->st_info = (*ind)->st_info;
7639 ssym->st_other = (*ind)->st_other;
7642 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7643 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7650 /* Check if 2 sections define the same set of local and global
7654 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7655 struct bfd_link_info *info)
7658 const struct elf_backend_data *bed1, *bed2;
7659 Elf_Internal_Shdr *hdr1, *hdr2;
7660 size_t symcount1, symcount2;
7661 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7662 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7663 Elf_Internal_Sym *isym, *isymend;
7664 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7665 size_t count1, count2, i;
7666 unsigned int shndx1, shndx2;
7672 /* Both sections have to be in ELF. */
7673 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7674 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7677 if (elf_section_type (sec1) != elf_section_type (sec2))
7680 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7681 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7682 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7685 bed1 = get_elf_backend_data (bfd1);
7686 bed2 = get_elf_backend_data (bfd2);
7687 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7688 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7689 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7690 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7692 if (symcount1 == 0 || symcount2 == 0)
7698 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7699 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7701 if (ssymbuf1 == NULL)
7703 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7705 if (isymbuf1 == NULL)
7708 if (!info->reduce_memory_overheads)
7709 elf_tdata (bfd1)->symbuf = ssymbuf1
7710 = elf_create_symbuf (symcount1, isymbuf1);
7713 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7715 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7717 if (isymbuf2 == NULL)
7720 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7721 elf_tdata (bfd2)->symbuf = ssymbuf2
7722 = elf_create_symbuf (symcount2, isymbuf2);
7725 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7727 /* Optimized faster version. */
7729 struct elf_symbol *symp;
7730 struct elf_symbuf_symbol *ssym, *ssymend;
7733 hi = ssymbuf1->count;
7738 mid = (lo + hi) / 2;
7739 if (shndx1 < ssymbuf1[mid].st_shndx)
7741 else if (shndx1 > ssymbuf1[mid].st_shndx)
7745 count1 = ssymbuf1[mid].count;
7752 hi = ssymbuf2->count;
7757 mid = (lo + hi) / 2;
7758 if (shndx2 < ssymbuf2[mid].st_shndx)
7760 else if (shndx2 > ssymbuf2[mid].st_shndx)
7764 count2 = ssymbuf2[mid].count;
7770 if (count1 == 0 || count2 == 0 || count1 != count2)
7774 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7776 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7777 if (symtable1 == NULL || symtable2 == NULL)
7781 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7782 ssym < ssymend; ssym++, symp++)
7784 symp->u.ssym = ssym;
7785 symp->name = bfd_elf_string_from_elf_section (bfd1,
7791 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7792 ssym < ssymend; ssym++, symp++)
7794 symp->u.ssym = ssym;
7795 symp->name = bfd_elf_string_from_elf_section (bfd2,
7800 /* Sort symbol by name. */
7801 qsort (symtable1, count1, sizeof (struct elf_symbol),
7802 elf_sym_name_compare);
7803 qsort (symtable2, count1, sizeof (struct elf_symbol),
7804 elf_sym_name_compare);
7806 for (i = 0; i < count1; i++)
7807 /* Two symbols must have the same binding, type and name. */
7808 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7809 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7810 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7817 symtable1 = (struct elf_symbol *)
7818 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7819 symtable2 = (struct elf_symbol *)
7820 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7821 if (symtable1 == NULL || symtable2 == NULL)
7824 /* Count definitions in the section. */
7826 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7827 if (isym->st_shndx == shndx1)
7828 symtable1[count1++].u.isym = isym;
7831 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7832 if (isym->st_shndx == shndx2)
7833 symtable2[count2++].u.isym = isym;
7835 if (count1 == 0 || count2 == 0 || count1 != count2)
7838 for (i = 0; i < count1; i++)
7840 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7841 symtable1[i].u.isym->st_name);
7843 for (i = 0; i < count2; i++)
7845 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7846 symtable2[i].u.isym->st_name);
7848 /* Sort symbol by name. */
7849 qsort (symtable1, count1, sizeof (struct elf_symbol),
7850 elf_sym_name_compare);
7851 qsort (symtable2, count1, sizeof (struct elf_symbol),
7852 elf_sym_name_compare);
7854 for (i = 0; i < count1; i++)
7855 /* Two symbols must have the same binding, type and name. */
7856 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7857 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7858 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7876 /* Return TRUE if 2 section types are compatible. */
7879 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7880 bfd *bbfd, const asection *bsec)
7884 || abfd->xvec->flavour != bfd_target_elf_flavour
7885 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7888 return elf_section_type (asec) == elf_section_type (bsec);
7891 /* Final phase of ELF linker. */
7893 /* A structure we use to avoid passing large numbers of arguments. */
7895 struct elf_final_link_info
7897 /* General link information. */
7898 struct bfd_link_info *info;
7901 /* Symbol string table. */
7902 struct elf_strtab_hash *symstrtab;
7903 /* .hash section. */
7905 /* symbol version section (.gnu.version). */
7906 asection *symver_sec;
7907 /* Buffer large enough to hold contents of any section. */
7909 /* Buffer large enough to hold external relocs of any section. */
7910 void *external_relocs;
7911 /* Buffer large enough to hold internal relocs of any section. */
7912 Elf_Internal_Rela *internal_relocs;
7913 /* Buffer large enough to hold external local symbols of any input
7915 bfd_byte *external_syms;
7916 /* And a buffer for symbol section indices. */
7917 Elf_External_Sym_Shndx *locsym_shndx;
7918 /* Buffer large enough to hold internal local symbols of any input
7920 Elf_Internal_Sym *internal_syms;
7921 /* Array large enough to hold a symbol index for each local symbol
7922 of any input BFD. */
7924 /* Array large enough to hold a section pointer for each local
7925 symbol of any input BFD. */
7926 asection **sections;
7927 /* Buffer for SHT_SYMTAB_SHNDX section. */
7928 Elf_External_Sym_Shndx *symshndxbuf;
7929 /* Number of STT_FILE syms seen. */
7930 size_t filesym_count;
7933 /* This struct is used to pass information to elf_link_output_extsym. */
7935 struct elf_outext_info
7938 bfd_boolean localsyms;
7939 bfd_boolean file_sym_done;
7940 struct elf_final_link_info *flinfo;
7944 /* Support for evaluating a complex relocation.
7946 Complex relocations are generalized, self-describing relocations. The
7947 implementation of them consists of two parts: complex symbols, and the
7948 relocations themselves.
7950 The relocations are use a reserved elf-wide relocation type code (R_RELC
7951 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7952 information (start bit, end bit, word width, etc) into the addend. This
7953 information is extracted from CGEN-generated operand tables within gas.
7955 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7956 internal) representing prefix-notation expressions, including but not
7957 limited to those sorts of expressions normally encoded as addends in the
7958 addend field. The symbol mangling format is:
7961 | <unary-operator> ':' <node>
7962 | <binary-operator> ':' <node> ':' <node>
7965 <literal> := 's' <digits=N> ':' <N character symbol name>
7966 | 'S' <digits=N> ':' <N character section name>
7970 <binary-operator> := as in C
7971 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7974 set_symbol_value (bfd *bfd_with_globals,
7975 Elf_Internal_Sym *isymbuf,
7980 struct elf_link_hash_entry **sym_hashes;
7981 struct elf_link_hash_entry *h;
7982 size_t extsymoff = locsymcount;
7984 if (symidx < locsymcount)
7986 Elf_Internal_Sym *sym;
7988 sym = isymbuf + symidx;
7989 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7991 /* It is a local symbol: move it to the
7992 "absolute" section and give it a value. */
7993 sym->st_shndx = SHN_ABS;
7994 sym->st_value = val;
7997 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8001 /* It is a global symbol: set its link type
8002 to "defined" and give it a value. */
8004 sym_hashes = elf_sym_hashes (bfd_with_globals);
8005 h = sym_hashes [symidx - extsymoff];
8006 while (h->root.type == bfd_link_hash_indirect
8007 || h->root.type == bfd_link_hash_warning)
8008 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8009 h->root.type = bfd_link_hash_defined;
8010 h->root.u.def.value = val;
8011 h->root.u.def.section = bfd_abs_section_ptr;
8015 resolve_symbol (const char *name,
8017 struct elf_final_link_info *flinfo,
8019 Elf_Internal_Sym *isymbuf,
8022 Elf_Internal_Sym *sym;
8023 struct bfd_link_hash_entry *global_entry;
8024 const char *candidate = NULL;
8025 Elf_Internal_Shdr *symtab_hdr;
8028 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8030 for (i = 0; i < locsymcount; ++ i)
8034 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8037 candidate = bfd_elf_string_from_elf_section (input_bfd,
8038 symtab_hdr->sh_link,
8041 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8042 name, candidate, (unsigned long) sym->st_value);
8044 if (candidate && strcmp (candidate, name) == 0)
8046 asection *sec = flinfo->sections [i];
8048 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8049 *result += sec->output_offset + sec->output_section->vma;
8051 printf ("Found symbol with value %8.8lx\n",
8052 (unsigned long) *result);
8058 /* Hmm, haven't found it yet. perhaps it is a global. */
8059 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8060 FALSE, FALSE, TRUE);
8064 if (global_entry->type == bfd_link_hash_defined
8065 || global_entry->type == bfd_link_hash_defweak)
8067 *result = (global_entry->u.def.value
8068 + global_entry->u.def.section->output_section->vma
8069 + global_entry->u.def.section->output_offset);
8071 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8072 global_entry->root.string, (unsigned long) *result);
8080 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8081 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8082 names like "foo.end" which is the end address of section "foo". */
8085 resolve_section (const char *name,
8093 for (curr = sections; curr; curr = curr->next)
8094 if (strcmp (curr->name, name) == 0)
8096 *result = curr->vma;
8100 /* Hmm. still haven't found it. try pseudo-section names. */
8101 /* FIXME: This could be coded more efficiently... */
8102 for (curr = sections; curr; curr = curr->next)
8104 len = strlen (curr->name);
8105 if (len > strlen (name))
8108 if (strncmp (curr->name, name, len) == 0)
8110 if (strncmp (".end", name + len, 4) == 0)
8112 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8116 /* Insert more pseudo-section names here, if you like. */
8124 undefined_reference (const char *reftype, const char *name)
8126 /* xgettext:c-format */
8127 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8132 eval_symbol (bfd_vma *result,
8135 struct elf_final_link_info *flinfo,
8137 Elf_Internal_Sym *isymbuf,
8146 const char *sym = *symp;
8148 bfd_boolean symbol_is_section = FALSE;
8153 if (len < 1 || len > sizeof (symbuf))
8155 bfd_set_error (bfd_error_invalid_operation);
8168 *result = strtoul (sym, (char **) symp, 16);
8172 symbol_is_section = TRUE;
8176 symlen = strtol (sym, (char **) symp, 10);
8177 sym = *symp + 1; /* Skip the trailing ':'. */
8179 if (symend < sym || symlen + 1 > sizeof (symbuf))
8181 bfd_set_error (bfd_error_invalid_operation);
8185 memcpy (symbuf, sym, symlen);
8186 symbuf[symlen] = '\0';
8187 *symp = sym + symlen;
8189 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8190 the symbol as a section, or vice-versa. so we're pretty liberal in our
8191 interpretation here; section means "try section first", not "must be a
8192 section", and likewise with symbol. */
8194 if (symbol_is_section)
8196 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8197 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8198 isymbuf, locsymcount))
8200 undefined_reference ("section", symbuf);
8206 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8207 isymbuf, locsymcount)
8208 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8211 undefined_reference ("symbol", symbuf);
8218 /* All that remains are operators. */
8220 #define UNARY_OP(op) \
8221 if (strncmp (sym, #op, strlen (#op)) == 0) \
8223 sym += strlen (#op); \
8227 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8228 isymbuf, locsymcount, signed_p)) \
8231 *result = op ((bfd_signed_vma) a); \
8237 #define BINARY_OP(op) \
8238 if (strncmp (sym, #op, strlen (#op)) == 0) \
8240 sym += strlen (#op); \
8244 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8245 isymbuf, locsymcount, signed_p)) \
8248 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8249 isymbuf, locsymcount, signed_p)) \
8252 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8282 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8283 bfd_set_error (bfd_error_invalid_operation);
8289 put_value (bfd_vma size,
8290 unsigned long chunksz,
8295 location += (size - chunksz);
8297 for (; size; size -= chunksz, location -= chunksz)
8302 bfd_put_8 (input_bfd, x, location);
8306 bfd_put_16 (input_bfd, x, location);
8310 bfd_put_32 (input_bfd, x, location);
8311 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8317 bfd_put_64 (input_bfd, x, location);
8318 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8331 get_value (bfd_vma size,
8332 unsigned long chunksz,
8339 /* Sanity checks. */
8340 BFD_ASSERT (chunksz <= sizeof (x)
8343 && (size % chunksz) == 0
8344 && input_bfd != NULL
8345 && location != NULL);
8347 if (chunksz == sizeof (x))
8349 BFD_ASSERT (size == chunksz);
8351 /* Make sure that we do not perform an undefined shift operation.
8352 We know that size == chunksz so there will only be one iteration
8353 of the loop below. */
8357 shift = 8 * chunksz;
8359 for (; size; size -= chunksz, location += chunksz)
8364 x = (x << shift) | bfd_get_8 (input_bfd, location);
8367 x = (x << shift) | bfd_get_16 (input_bfd, location);
8370 x = (x << shift) | bfd_get_32 (input_bfd, location);
8374 x = (x << shift) | bfd_get_64 (input_bfd, location);
8385 decode_complex_addend (unsigned long *start, /* in bits */
8386 unsigned long *oplen, /* in bits */
8387 unsigned long *len, /* in bits */
8388 unsigned long *wordsz, /* in bytes */
8389 unsigned long *chunksz, /* in bytes */
8390 unsigned long *lsb0_p,
8391 unsigned long *signed_p,
8392 unsigned long *trunc_p,
8393 unsigned long encoded)
8395 * start = encoded & 0x3F;
8396 * len = (encoded >> 6) & 0x3F;
8397 * oplen = (encoded >> 12) & 0x3F;
8398 * wordsz = (encoded >> 18) & 0xF;
8399 * chunksz = (encoded >> 22) & 0xF;
8400 * lsb0_p = (encoded >> 27) & 1;
8401 * signed_p = (encoded >> 28) & 1;
8402 * trunc_p = (encoded >> 29) & 1;
8405 bfd_reloc_status_type
8406 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8407 asection *input_section ATTRIBUTE_UNUSED,
8409 Elf_Internal_Rela *rel,
8412 bfd_vma shift, x, mask;
8413 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8414 bfd_reloc_status_type r;
8416 /* Perform this reloc, since it is complex.
8417 (this is not to say that it necessarily refers to a complex
8418 symbol; merely that it is a self-describing CGEN based reloc.
8419 i.e. the addend has the complete reloc information (bit start, end,
8420 word size, etc) encoded within it.). */
8422 decode_complex_addend (&start, &oplen, &len, &wordsz,
8423 &chunksz, &lsb0_p, &signed_p,
8424 &trunc_p, rel->r_addend);
8426 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8429 shift = (start + 1) - len;
8431 shift = (8 * wordsz) - (start + len);
8433 x = get_value (wordsz, chunksz, input_bfd,
8434 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8437 printf ("Doing complex reloc: "
8438 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8439 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8440 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8441 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8442 oplen, (unsigned long) x, (unsigned long) mask,
8443 (unsigned long) relocation);
8448 /* Now do an overflow check. */
8449 r = bfd_check_overflow ((signed_p
8450 ? complain_overflow_signed
8451 : complain_overflow_unsigned),
8452 len, 0, (8 * wordsz),
8456 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8459 printf (" relocation: %8.8lx\n"
8460 " shifted mask: %8.8lx\n"
8461 " shifted/masked reloc: %8.8lx\n"
8462 " result: %8.8lx\n",
8463 (unsigned long) relocation, (unsigned long) (mask << shift),
8464 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8466 put_value (wordsz, chunksz, input_bfd, x,
8467 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8471 /* Functions to read r_offset from external (target order) reloc
8472 entry. Faster than bfd_getl32 et al, because we let the compiler
8473 know the value is aligned. */
8476 ext32l_r_offset (const void *p)
8483 const union aligned32 *a
8484 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8486 uint32_t aval = ( (uint32_t) a->c[0]
8487 | (uint32_t) a->c[1] << 8
8488 | (uint32_t) a->c[2] << 16
8489 | (uint32_t) a->c[3] << 24);
8494 ext32b_r_offset (const void *p)
8501 const union aligned32 *a
8502 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8504 uint32_t aval = ( (uint32_t) a->c[0] << 24
8505 | (uint32_t) a->c[1] << 16
8506 | (uint32_t) a->c[2] << 8
8507 | (uint32_t) a->c[3]);
8511 #ifdef BFD_HOST_64_BIT
8513 ext64l_r_offset (const void *p)
8520 const union aligned64 *a
8521 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8523 uint64_t aval = ( (uint64_t) a->c[0]
8524 | (uint64_t) a->c[1] << 8
8525 | (uint64_t) a->c[2] << 16
8526 | (uint64_t) a->c[3] << 24
8527 | (uint64_t) a->c[4] << 32
8528 | (uint64_t) a->c[5] << 40
8529 | (uint64_t) a->c[6] << 48
8530 | (uint64_t) a->c[7] << 56);
8535 ext64b_r_offset (const void *p)
8542 const union aligned64 *a
8543 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8545 uint64_t aval = ( (uint64_t) a->c[0] << 56
8546 | (uint64_t) a->c[1] << 48
8547 | (uint64_t) a->c[2] << 40
8548 | (uint64_t) a->c[3] << 32
8549 | (uint64_t) a->c[4] << 24
8550 | (uint64_t) a->c[5] << 16
8551 | (uint64_t) a->c[6] << 8
8552 | (uint64_t) a->c[7]);
8557 /* When performing a relocatable link, the input relocations are
8558 preserved. But, if they reference global symbols, the indices
8559 referenced must be updated. Update all the relocations found in
8563 elf_link_adjust_relocs (bfd *abfd,
8565 struct bfd_elf_section_reloc_data *reldata,
8567 struct bfd_link_info *info)
8570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8572 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8573 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8574 bfd_vma r_type_mask;
8576 unsigned int count = reldata->count;
8577 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8579 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8581 swap_in = bed->s->swap_reloc_in;
8582 swap_out = bed->s->swap_reloc_out;
8584 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8586 swap_in = bed->s->swap_reloca_in;
8587 swap_out = bed->s->swap_reloca_out;
8592 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8595 if (bed->s->arch_size == 32)
8602 r_type_mask = 0xffffffff;
8606 erela = reldata->hdr->contents;
8607 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8609 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8612 if (*rel_hash == NULL)
8615 if ((*rel_hash)->indx == -2
8616 && info->gc_sections
8617 && ! info->gc_keep_exported)
8619 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8620 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8622 (*rel_hash)->root.root.string);
8623 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8625 bfd_set_error (bfd_error_invalid_operation);
8628 BFD_ASSERT ((*rel_hash)->indx >= 0);
8630 (*swap_in) (abfd, erela, irela);
8631 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8632 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8633 | (irela[j].r_info & r_type_mask));
8634 (*swap_out) (abfd, irela, erela);
8637 if (bed->elf_backend_update_relocs)
8638 (*bed->elf_backend_update_relocs) (sec, reldata);
8640 if (sort && count != 0)
8642 bfd_vma (*ext_r_off) (const void *);
8645 bfd_byte *base, *end, *p, *loc;
8646 bfd_byte *buf = NULL;
8648 if (bed->s->arch_size == 32)
8650 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8651 ext_r_off = ext32l_r_offset;
8652 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8653 ext_r_off = ext32b_r_offset;
8659 #ifdef BFD_HOST_64_BIT
8660 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8661 ext_r_off = ext64l_r_offset;
8662 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8663 ext_r_off = ext64b_r_offset;
8669 /* Must use a stable sort here. A modified insertion sort,
8670 since the relocs are mostly sorted already. */
8671 elt_size = reldata->hdr->sh_entsize;
8672 base = reldata->hdr->contents;
8673 end = base + count * elt_size;
8674 if (elt_size > sizeof (Elf64_External_Rela))
8677 /* Ensure the first element is lowest. This acts as a sentinel,
8678 speeding the main loop below. */
8679 r_off = (*ext_r_off) (base);
8680 for (p = loc = base; (p += elt_size) < end; )
8682 bfd_vma r_off2 = (*ext_r_off) (p);
8691 /* Don't just swap *base and *loc as that changes the order
8692 of the original base[0] and base[1] if they happen to
8693 have the same r_offset. */
8694 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8695 memcpy (onebuf, loc, elt_size);
8696 memmove (base + elt_size, base, loc - base);
8697 memcpy (base, onebuf, elt_size);
8700 for (p = base + elt_size; (p += elt_size) < end; )
8702 /* base to p is sorted, *p is next to insert. */
8703 r_off = (*ext_r_off) (p);
8704 /* Search the sorted region for location to insert. */
8706 while (r_off < (*ext_r_off) (loc))
8711 /* Chances are there is a run of relocs to insert here,
8712 from one of more input files. Files are not always
8713 linked in order due to the way elf_link_input_bfd is
8714 called. See pr17666. */
8715 size_t sortlen = p - loc;
8716 bfd_vma r_off2 = (*ext_r_off) (loc);
8717 size_t runlen = elt_size;
8718 size_t buf_size = 96 * 1024;
8719 while (p + runlen < end
8720 && (sortlen <= buf_size
8721 || runlen + elt_size <= buf_size)
8722 && r_off2 > (*ext_r_off) (p + runlen))
8726 buf = bfd_malloc (buf_size);
8730 if (runlen < sortlen)
8732 memcpy (buf, p, runlen);
8733 memmove (loc + runlen, loc, sortlen);
8734 memcpy (loc, buf, runlen);
8738 memcpy (buf, loc, sortlen);
8739 memmove (loc, p, runlen);
8740 memcpy (loc + runlen, buf, sortlen);
8742 p += runlen - elt_size;
8745 /* Hashes are no longer valid. */
8746 free (reldata->hashes);
8747 reldata->hashes = NULL;
8753 struct elf_link_sort_rela
8759 enum elf_reloc_type_class type;
8760 /* We use this as an array of size int_rels_per_ext_rel. */
8761 Elf_Internal_Rela rela[1];
8765 elf_link_sort_cmp1 (const void *A, const void *B)
8767 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8768 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8769 int relativea, relativeb;
8771 relativea = a->type == reloc_class_relative;
8772 relativeb = b->type == reloc_class_relative;
8774 if (relativea < relativeb)
8776 if (relativea > relativeb)
8778 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8780 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8782 if (a->rela->r_offset < b->rela->r_offset)
8784 if (a->rela->r_offset > b->rela->r_offset)
8790 elf_link_sort_cmp2 (const void *A, const void *B)
8792 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8793 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8795 if (a->type < b->type)
8797 if (a->type > b->type)
8799 if (a->u.offset < b->u.offset)
8801 if (a->u.offset > b->u.offset)
8803 if (a->rela->r_offset < b->rela->r_offset)
8805 if (a->rela->r_offset > b->rela->r_offset)
8811 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8813 asection *dynamic_relocs;
8816 bfd_size_type count, size;
8817 size_t i, ret, sort_elt, ext_size;
8818 bfd_byte *sort, *s_non_relative, *p;
8819 struct elf_link_sort_rela *sq;
8820 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8821 int i2e = bed->s->int_rels_per_ext_rel;
8822 unsigned int opb = bfd_octets_per_byte (abfd);
8823 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8824 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8825 struct bfd_link_order *lo;
8827 bfd_boolean use_rela;
8829 /* Find a dynamic reloc section. */
8830 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8831 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8832 if (rela_dyn != NULL && rela_dyn->size > 0
8833 && rel_dyn != NULL && rel_dyn->size > 0)
8835 bfd_boolean use_rela_initialised = FALSE;
8837 /* This is just here to stop gcc from complaining.
8838 Its initialization checking code is not perfect. */
8841 /* Both sections are present. Examine the sizes
8842 of the indirect sections to help us choose. */
8843 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8844 if (lo->type == bfd_indirect_link_order)
8846 asection *o = lo->u.indirect.section;
8848 if ((o->size % bed->s->sizeof_rela) == 0)
8850 if ((o->size % bed->s->sizeof_rel) == 0)
8851 /* Section size is divisible by both rel and rela sizes.
8852 It is of no help to us. */
8856 /* Section size is only divisible by rela. */
8857 if (use_rela_initialised && !use_rela)
8859 _bfd_error_handler (_("%B: Unable to sort relocs - "
8860 "they are in more than one size"),
8862 bfd_set_error (bfd_error_invalid_operation);
8868 use_rela_initialised = TRUE;
8872 else if ((o->size % bed->s->sizeof_rel) == 0)
8874 /* Section size is only divisible by rel. */
8875 if (use_rela_initialised && use_rela)
8877 _bfd_error_handler (_("%B: Unable to sort relocs - "
8878 "they are in more than one size"),
8880 bfd_set_error (bfd_error_invalid_operation);
8886 use_rela_initialised = TRUE;
8891 /* The section size is not divisible by either -
8892 something is wrong. */
8893 _bfd_error_handler (_("%B: Unable to sort relocs - "
8894 "they are of an unknown size"), abfd);
8895 bfd_set_error (bfd_error_invalid_operation);
8900 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8901 if (lo->type == bfd_indirect_link_order)
8903 asection *o = lo->u.indirect.section;
8905 if ((o->size % bed->s->sizeof_rela) == 0)
8907 if ((o->size % bed->s->sizeof_rel) == 0)
8908 /* Section size is divisible by both rel and rela sizes.
8909 It is of no help to us. */
8913 /* Section size is only divisible by rela. */
8914 if (use_rela_initialised && !use_rela)
8916 _bfd_error_handler (_("%B: Unable to sort relocs - "
8917 "they are in more than one size"),
8919 bfd_set_error (bfd_error_invalid_operation);
8925 use_rela_initialised = TRUE;
8929 else if ((o->size % bed->s->sizeof_rel) == 0)
8931 /* Section size is only divisible by rel. */
8932 if (use_rela_initialised && use_rela)
8934 _bfd_error_handler (_("%B: Unable to sort relocs - "
8935 "they are in more than one size"),
8937 bfd_set_error (bfd_error_invalid_operation);
8943 use_rela_initialised = TRUE;
8948 /* The section size is not divisible by either -
8949 something is wrong. */
8950 _bfd_error_handler (_("%B: Unable to sort relocs - "
8951 "they are of an unknown size"), abfd);
8952 bfd_set_error (bfd_error_invalid_operation);
8957 if (! use_rela_initialised)
8961 else if (rela_dyn != NULL && rela_dyn->size > 0)
8963 else if (rel_dyn != NULL && rel_dyn->size > 0)
8970 dynamic_relocs = rela_dyn;
8971 ext_size = bed->s->sizeof_rela;
8972 swap_in = bed->s->swap_reloca_in;
8973 swap_out = bed->s->swap_reloca_out;
8977 dynamic_relocs = rel_dyn;
8978 ext_size = bed->s->sizeof_rel;
8979 swap_in = bed->s->swap_reloc_in;
8980 swap_out = bed->s->swap_reloc_out;
8984 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8985 if (lo->type == bfd_indirect_link_order)
8986 size += lo->u.indirect.section->size;
8988 if (size != dynamic_relocs->size)
8991 sort_elt = (sizeof (struct elf_link_sort_rela)
8992 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8994 count = dynamic_relocs->size / ext_size;
8997 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9001 (*info->callbacks->warning)
9002 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9006 if (bed->s->arch_size == 32)
9007 r_sym_mask = ~(bfd_vma) 0xff;
9009 r_sym_mask = ~(bfd_vma) 0xffffffff;
9011 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9012 if (lo->type == bfd_indirect_link_order)
9014 bfd_byte *erel, *erelend;
9015 asection *o = lo->u.indirect.section;
9017 if (o->contents == NULL && o->size != 0)
9019 /* This is a reloc section that is being handled as a normal
9020 section. See bfd_section_from_shdr. We can't combine
9021 relocs in this case. */
9026 erelend = o->contents + o->size;
9027 p = sort + o->output_offset * opb / ext_size * sort_elt;
9029 while (erel < erelend)
9031 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9033 (*swap_in) (abfd, erel, s->rela);
9034 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9035 s->u.sym_mask = r_sym_mask;
9041 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9043 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9045 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9046 if (s->type != reloc_class_relative)
9052 sq = (struct elf_link_sort_rela *) s_non_relative;
9053 for (; i < count; i++, p += sort_elt)
9055 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9056 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9058 sp->u.offset = sq->rela->r_offset;
9061 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9063 struct elf_link_hash_table *htab = elf_hash_table (info);
9064 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9066 /* We have plt relocs in .rela.dyn. */
9067 sq = (struct elf_link_sort_rela *) sort;
9068 for (i = 0; i < count; i++)
9069 if (sq[count - i - 1].type != reloc_class_plt)
9071 if (i != 0 && htab->srelplt->size == i * ext_size)
9073 struct bfd_link_order **plo;
9074 /* Put srelplt link_order last. This is so the output_offset
9075 set in the next loop is correct for DT_JMPREL. */
9076 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9077 if ((*plo)->type == bfd_indirect_link_order
9078 && (*plo)->u.indirect.section == htab->srelplt)
9084 plo = &(*plo)->next;
9087 dynamic_relocs->map_tail.link_order = lo;
9092 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9093 if (lo->type == bfd_indirect_link_order)
9095 bfd_byte *erel, *erelend;
9096 asection *o = lo->u.indirect.section;
9099 erelend = o->contents + o->size;
9100 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9101 while (erel < erelend)
9103 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9104 (*swap_out) (abfd, s->rela, erel);
9111 *psec = dynamic_relocs;
9115 /* Add a symbol to the output symbol string table. */
9118 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9120 Elf_Internal_Sym *elfsym,
9121 asection *input_sec,
9122 struct elf_link_hash_entry *h)
9124 int (*output_symbol_hook)
9125 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9126 struct elf_link_hash_entry *);
9127 struct elf_link_hash_table *hash_table;
9128 const struct elf_backend_data *bed;
9129 bfd_size_type strtabsize;
9131 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9133 bed = get_elf_backend_data (flinfo->output_bfd);
9134 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9135 if (output_symbol_hook != NULL)
9137 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9144 || (input_sec->flags & SEC_EXCLUDE))
9145 elfsym->st_name = (unsigned long) -1;
9148 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9149 to get the final offset for st_name. */
9151 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9153 if (elfsym->st_name == (unsigned long) -1)
9157 hash_table = elf_hash_table (flinfo->info);
9158 strtabsize = hash_table->strtabsize;
9159 if (strtabsize <= hash_table->strtabcount)
9161 strtabsize += strtabsize;
9162 hash_table->strtabsize = strtabsize;
9163 strtabsize *= sizeof (*hash_table->strtab);
9165 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9167 if (hash_table->strtab == NULL)
9170 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9171 hash_table->strtab[hash_table->strtabcount].dest_index
9172 = hash_table->strtabcount;
9173 hash_table->strtab[hash_table->strtabcount].destshndx_index
9174 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9176 bfd_get_symcount (flinfo->output_bfd) += 1;
9177 hash_table->strtabcount += 1;
9182 /* Swap symbols out to the symbol table and flush the output symbols to
9186 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9188 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9191 const struct elf_backend_data *bed;
9193 Elf_Internal_Shdr *hdr;
9197 if (!hash_table->strtabcount)
9200 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9202 bed = get_elf_backend_data (flinfo->output_bfd);
9204 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9205 symbuf = (bfd_byte *) bfd_malloc (amt);
9209 if (flinfo->symshndxbuf)
9211 amt = sizeof (Elf_External_Sym_Shndx);
9212 amt *= bfd_get_symcount (flinfo->output_bfd);
9213 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9214 if (flinfo->symshndxbuf == NULL)
9221 for (i = 0; i < hash_table->strtabcount; i++)
9223 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9224 if (elfsym->sym.st_name == (unsigned long) -1)
9225 elfsym->sym.st_name = 0;
9228 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9229 elfsym->sym.st_name);
9230 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9231 ((bfd_byte *) symbuf
9232 + (elfsym->dest_index
9233 * bed->s->sizeof_sym)),
9234 (flinfo->symshndxbuf
9235 + elfsym->destshndx_index));
9238 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9239 pos = hdr->sh_offset + hdr->sh_size;
9240 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9241 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9242 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9244 hdr->sh_size += amt;
9252 free (hash_table->strtab);
9253 hash_table->strtab = NULL;
9258 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9261 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9263 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9264 && sym->st_shndx < SHN_LORESERVE)
9266 /* The gABI doesn't support dynamic symbols in output sections
9269 /* xgettext:c-format */
9270 (_("%B: Too many sections: %d (>= %d)"),
9271 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9272 bfd_set_error (bfd_error_nonrepresentable_section);
9278 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9279 allowing an unsatisfied unversioned symbol in the DSO to match a
9280 versioned symbol that would normally require an explicit version.
9281 We also handle the case that a DSO references a hidden symbol
9282 which may be satisfied by a versioned symbol in another DSO. */
9285 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9286 const struct elf_backend_data *bed,
9287 struct elf_link_hash_entry *h)
9290 struct elf_link_loaded_list *loaded;
9292 if (!is_elf_hash_table (info->hash))
9295 /* Check indirect symbol. */
9296 while (h->root.type == bfd_link_hash_indirect)
9297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9299 switch (h->root.type)
9305 case bfd_link_hash_undefined:
9306 case bfd_link_hash_undefweak:
9307 abfd = h->root.u.undef.abfd;
9309 || (abfd->flags & DYNAMIC) == 0
9310 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9314 case bfd_link_hash_defined:
9315 case bfd_link_hash_defweak:
9316 abfd = h->root.u.def.section->owner;
9319 case bfd_link_hash_common:
9320 abfd = h->root.u.c.p->section->owner;
9323 BFD_ASSERT (abfd != NULL);
9325 for (loaded = elf_hash_table (info)->loaded;
9327 loaded = loaded->next)
9330 Elf_Internal_Shdr *hdr;
9334 Elf_Internal_Shdr *versymhdr;
9335 Elf_Internal_Sym *isym;
9336 Elf_Internal_Sym *isymend;
9337 Elf_Internal_Sym *isymbuf;
9338 Elf_External_Versym *ever;
9339 Elf_External_Versym *extversym;
9341 input = loaded->abfd;
9343 /* We check each DSO for a possible hidden versioned definition. */
9345 || (input->flags & DYNAMIC) == 0
9346 || elf_dynversym (input) == 0)
9349 hdr = &elf_tdata (input)->dynsymtab_hdr;
9351 symcount = hdr->sh_size / bed->s->sizeof_sym;
9352 if (elf_bad_symtab (input))
9354 extsymcount = symcount;
9359 extsymcount = symcount - hdr->sh_info;
9360 extsymoff = hdr->sh_info;
9363 if (extsymcount == 0)
9366 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9368 if (isymbuf == NULL)
9371 /* Read in any version definitions. */
9372 versymhdr = &elf_tdata (input)->dynversym_hdr;
9373 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9374 if (extversym == NULL)
9377 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9378 || (bfd_bread (extversym, versymhdr->sh_size, input)
9379 != versymhdr->sh_size))
9387 ever = extversym + extsymoff;
9388 isymend = isymbuf + extsymcount;
9389 for (isym = isymbuf; isym < isymend; isym++, ever++)
9392 Elf_Internal_Versym iver;
9393 unsigned short version_index;
9395 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9396 || isym->st_shndx == SHN_UNDEF)
9399 name = bfd_elf_string_from_elf_section (input,
9402 if (strcmp (name, h->root.root.string) != 0)
9405 _bfd_elf_swap_versym_in (input, ever, &iver);
9407 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9409 && h->forced_local))
9411 /* If we have a non-hidden versioned sym, then it should
9412 have provided a definition for the undefined sym unless
9413 it is defined in a non-shared object and forced local.
9418 version_index = iver.vs_vers & VERSYM_VERSION;
9419 if (version_index == 1 || version_index == 2)
9421 /* This is the base or first version. We can use it. */
9435 /* Convert ELF common symbol TYPE. */
9438 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9440 /* Commom symbol can only appear in relocatable link. */
9441 if (!bfd_link_relocatable (info))
9443 switch (info->elf_stt_common)
9447 case elf_stt_common:
9450 case no_elf_stt_common:
9457 /* Add an external symbol to the symbol table. This is called from
9458 the hash table traversal routine. When generating a shared object,
9459 we go through the symbol table twice. The first time we output
9460 anything that might have been forced to local scope in a version
9461 script. The second time we output the symbols that are still
9465 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9467 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9468 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9469 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9471 Elf_Internal_Sym sym;
9472 asection *input_sec;
9473 const struct elf_backend_data *bed;
9478 if (h->root.type == bfd_link_hash_warning)
9480 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9481 if (h->root.type == bfd_link_hash_new)
9485 /* Decide whether to output this symbol in this pass. */
9486 if (eoinfo->localsyms)
9488 if (!h->forced_local)
9493 if (h->forced_local)
9497 bed = get_elf_backend_data (flinfo->output_bfd);
9499 if (h->root.type == bfd_link_hash_undefined)
9501 /* If we have an undefined symbol reference here then it must have
9502 come from a shared library that is being linked in. (Undefined
9503 references in regular files have already been handled unless
9504 they are in unreferenced sections which are removed by garbage
9506 bfd_boolean ignore_undef = FALSE;
9508 /* Some symbols may be special in that the fact that they're
9509 undefined can be safely ignored - let backend determine that. */
9510 if (bed->elf_backend_ignore_undef_symbol)
9511 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9513 /* If we are reporting errors for this situation then do so now. */
9516 && (!h->ref_regular || flinfo->info->gc_sections)
9517 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9518 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9519 (*flinfo->info->callbacks->undefined_symbol)
9520 (flinfo->info, h->root.root.string,
9521 h->ref_regular ? NULL : h->root.u.undef.abfd,
9523 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9525 /* Strip a global symbol defined in a discarded section. */
9530 /* We should also warn if a forced local symbol is referenced from
9531 shared libraries. */
9532 if (bfd_link_executable (flinfo->info)
9537 && h->ref_dynamic_nonweak
9538 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9542 struct elf_link_hash_entry *hi = h;
9544 /* Check indirect symbol. */
9545 while (hi->root.type == bfd_link_hash_indirect)
9546 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9548 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9549 /* xgettext:c-format */
9550 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9551 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9552 /* xgettext:c-format */
9553 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9555 /* xgettext:c-format */
9556 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9557 def_bfd = flinfo->output_bfd;
9558 if (hi->root.u.def.section != bfd_abs_section_ptr)
9559 def_bfd = hi->root.u.def.section->owner;
9560 _bfd_error_handler (msg, flinfo->output_bfd,
9561 h->root.root.string, def_bfd);
9562 bfd_set_error (bfd_error_bad_value);
9563 eoinfo->failed = TRUE;
9567 /* We don't want to output symbols that have never been mentioned by
9568 a regular file, or that we have been told to strip. However, if
9569 h->indx is set to -2, the symbol is used by a reloc and we must
9574 else if ((h->def_dynamic
9576 || h->root.type == bfd_link_hash_new)
9580 else if (flinfo->info->strip == strip_all)
9582 else if (flinfo->info->strip == strip_some
9583 && bfd_hash_lookup (flinfo->info->keep_hash,
9584 h->root.root.string, FALSE, FALSE) == NULL)
9586 else if ((h->root.type == bfd_link_hash_defined
9587 || h->root.type == bfd_link_hash_defweak)
9588 && ((flinfo->info->strip_discarded
9589 && discarded_section (h->root.u.def.section))
9590 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9591 && h->root.u.def.section->owner != NULL
9592 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9594 else if ((h->root.type == bfd_link_hash_undefined
9595 || h->root.type == bfd_link_hash_undefweak)
9596 && h->root.u.undef.abfd != NULL
9597 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9602 /* If we're stripping it, and it's not a dynamic symbol, there's
9603 nothing else to do. However, if it is a forced local symbol or
9604 an ifunc symbol we need to give the backend finish_dynamic_symbol
9605 function a chance to make it dynamic. */
9608 && type != STT_GNU_IFUNC
9609 && !h->forced_local)
9613 sym.st_size = h->size;
9614 sym.st_other = h->other;
9615 switch (h->root.type)
9618 case bfd_link_hash_new:
9619 case bfd_link_hash_warning:
9623 case bfd_link_hash_undefined:
9624 case bfd_link_hash_undefweak:
9625 input_sec = bfd_und_section_ptr;
9626 sym.st_shndx = SHN_UNDEF;
9629 case bfd_link_hash_defined:
9630 case bfd_link_hash_defweak:
9632 input_sec = h->root.u.def.section;
9633 if (input_sec->output_section != NULL)
9636 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9637 input_sec->output_section);
9638 if (sym.st_shndx == SHN_BAD)
9641 /* xgettext:c-format */
9642 (_("%B: could not find output section %A for input section %A"),
9643 flinfo->output_bfd, input_sec->output_section, input_sec);
9644 bfd_set_error (bfd_error_nonrepresentable_section);
9645 eoinfo->failed = TRUE;
9649 /* ELF symbols in relocatable files are section relative,
9650 but in nonrelocatable files they are virtual
9652 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9653 if (!bfd_link_relocatable (flinfo->info))
9655 sym.st_value += input_sec->output_section->vma;
9656 if (h->type == STT_TLS)
9658 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9659 if (tls_sec != NULL)
9660 sym.st_value -= tls_sec->vma;
9666 BFD_ASSERT (input_sec->owner == NULL
9667 || (input_sec->owner->flags & DYNAMIC) != 0);
9668 sym.st_shndx = SHN_UNDEF;
9669 input_sec = bfd_und_section_ptr;
9674 case bfd_link_hash_common:
9675 input_sec = h->root.u.c.p->section;
9676 sym.st_shndx = bed->common_section_index (input_sec);
9677 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9680 case bfd_link_hash_indirect:
9681 /* These symbols are created by symbol versioning. They point
9682 to the decorated version of the name. For example, if the
9683 symbol foo@@GNU_1.2 is the default, which should be used when
9684 foo is used with no version, then we add an indirect symbol
9685 foo which points to foo@@GNU_1.2. We ignore these symbols,
9686 since the indirected symbol is already in the hash table. */
9690 if (type == STT_COMMON || type == STT_OBJECT)
9691 switch (h->root.type)
9693 case bfd_link_hash_common:
9694 type = elf_link_convert_common_type (flinfo->info, type);
9696 case bfd_link_hash_defined:
9697 case bfd_link_hash_defweak:
9698 if (bed->common_definition (&sym))
9699 type = elf_link_convert_common_type (flinfo->info, type);
9703 case bfd_link_hash_undefined:
9704 case bfd_link_hash_undefweak:
9710 if (h->forced_local)
9712 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9713 /* Turn off visibility on local symbol. */
9714 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9716 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9717 else if (h->unique_global && h->def_regular)
9718 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9719 else if (h->root.type == bfd_link_hash_undefweak
9720 || h->root.type == bfd_link_hash_defweak)
9721 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9723 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9724 sym.st_target_internal = h->target_internal;
9726 /* Give the processor backend a chance to tweak the symbol value,
9727 and also to finish up anything that needs to be done for this
9728 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9729 forced local syms when non-shared is due to a historical quirk.
9730 STT_GNU_IFUNC symbol must go through PLT. */
9731 if ((h->type == STT_GNU_IFUNC
9733 && !bfd_link_relocatable (flinfo->info))
9734 || ((h->dynindx != -1
9736 && ((bfd_link_pic (flinfo->info)
9737 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9738 || h->root.type != bfd_link_hash_undefweak))
9739 || !h->forced_local)
9740 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9742 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9743 (flinfo->output_bfd, flinfo->info, h, &sym)))
9745 eoinfo->failed = TRUE;
9750 /* If we are marking the symbol as undefined, and there are no
9751 non-weak references to this symbol from a regular object, then
9752 mark the symbol as weak undefined; if there are non-weak
9753 references, mark the symbol as strong. We can't do this earlier,
9754 because it might not be marked as undefined until the
9755 finish_dynamic_symbol routine gets through with it. */
9756 if (sym.st_shndx == SHN_UNDEF
9758 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9759 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9762 type = ELF_ST_TYPE (sym.st_info);
9764 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9765 if (type == STT_GNU_IFUNC)
9768 if (h->ref_regular_nonweak)
9769 bindtype = STB_GLOBAL;
9771 bindtype = STB_WEAK;
9772 sym.st_info = ELF_ST_INFO (bindtype, type);
9775 /* If this is a symbol defined in a dynamic library, don't use the
9776 symbol size from the dynamic library. Relinking an executable
9777 against a new library may introduce gratuitous changes in the
9778 executable's symbols if we keep the size. */
9779 if (sym.st_shndx == SHN_UNDEF
9784 /* If a non-weak symbol with non-default visibility is not defined
9785 locally, it is a fatal error. */
9786 if (!bfd_link_relocatable (flinfo->info)
9787 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9788 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9789 && h->root.type == bfd_link_hash_undefined
9794 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9795 /* xgettext:c-format */
9796 msg = _("%B: protected symbol `%s' isn't defined");
9797 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9798 /* xgettext:c-format */
9799 msg = _("%B: internal symbol `%s' isn't defined");
9801 /* xgettext:c-format */
9802 msg = _("%B: hidden symbol `%s' isn't defined");
9803 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9804 bfd_set_error (bfd_error_bad_value);
9805 eoinfo->failed = TRUE;
9809 /* If this symbol should be put in the .dynsym section, then put it
9810 there now. We already know the symbol index. We also fill in
9811 the entry in the .hash section. */
9812 if (elf_hash_table (flinfo->info)->dynsym != NULL
9814 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9818 /* Since there is no version information in the dynamic string,
9819 if there is no version info in symbol version section, we will
9820 have a run-time problem if not linking executable, referenced
9821 by shared library, or not bound locally. */
9822 if (h->verinfo.verdef == NULL
9823 && (!bfd_link_executable (flinfo->info)
9825 || !h->def_regular))
9827 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9829 if (p && p [1] != '\0')
9832 /* xgettext:c-format */
9833 (_("%B: No symbol version section for versioned symbol `%s'"),
9834 flinfo->output_bfd, h->root.root.string);
9835 eoinfo->failed = TRUE;
9840 sym.st_name = h->dynstr_index;
9841 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9842 + h->dynindx * bed->s->sizeof_sym);
9843 if (!check_dynsym (flinfo->output_bfd, &sym))
9845 eoinfo->failed = TRUE;
9848 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9850 if (flinfo->hash_sec != NULL)
9852 size_t hash_entry_size;
9853 bfd_byte *bucketpos;
9858 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9859 bucket = h->u.elf_hash_value % bucketcount;
9862 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9863 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9864 + (bucket + 2) * hash_entry_size);
9865 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9866 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9868 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9869 ((bfd_byte *) flinfo->hash_sec->contents
9870 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9873 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9875 Elf_Internal_Versym iversym;
9876 Elf_External_Versym *eversym;
9878 if (!h->def_regular)
9880 if (h->verinfo.verdef == NULL
9881 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9882 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9883 iversym.vs_vers = 0;
9885 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9889 if (h->verinfo.vertree == NULL)
9890 iversym.vs_vers = 1;
9892 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9893 if (flinfo->info->create_default_symver)
9897 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9899 if (h->versioned == versioned_hidden && h->def_regular)
9900 iversym.vs_vers |= VERSYM_HIDDEN;
9902 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9903 eversym += h->dynindx;
9904 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9908 /* If the symbol is undefined, and we didn't output it to .dynsym,
9909 strip it from .symtab too. Obviously we can't do this for
9910 relocatable output or when needed for --emit-relocs. */
9911 else if (input_sec == bfd_und_section_ptr
9913 && !bfd_link_relocatable (flinfo->info))
9915 /* Also strip others that we couldn't earlier due to dynamic symbol
9919 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9922 /* Output a FILE symbol so that following locals are not associated
9923 with the wrong input file. We need one for forced local symbols
9924 if we've seen more than one FILE symbol or when we have exactly
9925 one FILE symbol but global symbols are present in a file other
9926 than the one with the FILE symbol. We also need one if linker
9927 defined symbols are present. In practice these conditions are
9928 always met, so just emit the FILE symbol unconditionally. */
9929 if (eoinfo->localsyms
9930 && !eoinfo->file_sym_done
9931 && eoinfo->flinfo->filesym_count != 0)
9933 Elf_Internal_Sym fsym;
9935 memset (&fsym, 0, sizeof (fsym));
9936 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9937 fsym.st_shndx = SHN_ABS;
9938 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9939 bfd_und_section_ptr, NULL))
9942 eoinfo->file_sym_done = TRUE;
9945 indx = bfd_get_symcount (flinfo->output_bfd);
9946 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9950 eoinfo->failed = TRUE;
9955 else if (h->indx == -2)
9961 /* Return TRUE if special handling is done for relocs in SEC against
9962 symbols defined in discarded sections. */
9965 elf_section_ignore_discarded_relocs (asection *sec)
9967 const struct elf_backend_data *bed;
9969 switch (sec->sec_info_type)
9971 case SEC_INFO_TYPE_STABS:
9972 case SEC_INFO_TYPE_EH_FRAME:
9973 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9979 bed = get_elf_backend_data (sec->owner);
9980 if (bed->elf_backend_ignore_discarded_relocs != NULL
9981 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9987 /* Return a mask saying how ld should treat relocations in SEC against
9988 symbols defined in discarded sections. If this function returns
9989 COMPLAIN set, ld will issue a warning message. If this function
9990 returns PRETEND set, and the discarded section was link-once and the
9991 same size as the kept link-once section, ld will pretend that the
9992 symbol was actually defined in the kept section. Otherwise ld will
9993 zero the reloc (at least that is the intent, but some cooperation by
9994 the target dependent code is needed, particularly for REL targets). */
9997 _bfd_elf_default_action_discarded (asection *sec)
9999 if (sec->flags & SEC_DEBUGGING)
10002 if (strcmp (".eh_frame", sec->name) == 0)
10005 if (strcmp (".gcc_except_table", sec->name) == 0)
10008 return COMPLAIN | PRETEND;
10011 /* Find a match between a section and a member of a section group. */
10014 match_group_member (asection *sec, asection *group,
10015 struct bfd_link_info *info)
10017 asection *first = elf_next_in_group (group);
10018 asection *s = first;
10022 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10025 s = elf_next_in_group (s);
10033 /* Check if the kept section of a discarded section SEC can be used
10034 to replace it. Return the replacement if it is OK. Otherwise return
10038 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10042 kept = sec->kept_section;
10045 if ((kept->flags & SEC_GROUP) != 0)
10046 kept = match_group_member (sec, kept, info);
10048 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10049 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10051 sec->kept_section = kept;
10056 /* Link an input file into the linker output file. This function
10057 handles all the sections and relocations of the input file at once.
10058 This is so that we only have to read the local symbols once, and
10059 don't have to keep them in memory. */
10062 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10064 int (*relocate_section)
10065 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10066 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10068 Elf_Internal_Shdr *symtab_hdr;
10069 size_t locsymcount;
10071 Elf_Internal_Sym *isymbuf;
10072 Elf_Internal_Sym *isym;
10073 Elf_Internal_Sym *isymend;
10075 asection **ppsection;
10077 const struct elf_backend_data *bed;
10078 struct elf_link_hash_entry **sym_hashes;
10079 bfd_size_type address_size;
10080 bfd_vma r_type_mask;
10082 bfd_boolean have_file_sym = FALSE;
10084 output_bfd = flinfo->output_bfd;
10085 bed = get_elf_backend_data (output_bfd);
10086 relocate_section = bed->elf_backend_relocate_section;
10088 /* If this is a dynamic object, we don't want to do anything here:
10089 we don't want the local symbols, and we don't want the section
10091 if ((input_bfd->flags & DYNAMIC) != 0)
10094 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10095 if (elf_bad_symtab (input_bfd))
10097 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10102 locsymcount = symtab_hdr->sh_info;
10103 extsymoff = symtab_hdr->sh_info;
10106 /* Read the local symbols. */
10107 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10108 if (isymbuf == NULL && locsymcount != 0)
10110 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10111 flinfo->internal_syms,
10112 flinfo->external_syms,
10113 flinfo->locsym_shndx);
10114 if (isymbuf == NULL)
10118 /* Find local symbol sections and adjust values of symbols in
10119 SEC_MERGE sections. Write out those local symbols we know are
10120 going into the output file. */
10121 isymend = isymbuf + locsymcount;
10122 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10124 isym++, pindex++, ppsection++)
10128 Elf_Internal_Sym osym;
10134 if (elf_bad_symtab (input_bfd))
10136 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10143 if (isym->st_shndx == SHN_UNDEF)
10144 isec = bfd_und_section_ptr;
10145 else if (isym->st_shndx == SHN_ABS)
10146 isec = bfd_abs_section_ptr;
10147 else if (isym->st_shndx == SHN_COMMON)
10148 isec = bfd_com_section_ptr;
10151 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10154 /* Don't attempt to output symbols with st_shnx in the
10155 reserved range other than SHN_ABS and SHN_COMMON. */
10159 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10160 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10162 _bfd_merged_section_offset (output_bfd, &isec,
10163 elf_section_data (isec)->sec_info,
10169 /* Don't output the first, undefined, symbol. In fact, don't
10170 output any undefined local symbol. */
10171 if (isec == bfd_und_section_ptr)
10174 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10176 /* We never output section symbols. Instead, we use the
10177 section symbol of the corresponding section in the output
10182 /* If we are stripping all symbols, we don't want to output this
10184 if (flinfo->info->strip == strip_all)
10187 /* If we are discarding all local symbols, we don't want to
10188 output this one. If we are generating a relocatable output
10189 file, then some of the local symbols may be required by
10190 relocs; we output them below as we discover that they are
10192 if (flinfo->info->discard == discard_all)
10195 /* If this symbol is defined in a section which we are
10196 discarding, we don't need to keep it. */
10197 if (isym->st_shndx != SHN_UNDEF
10198 && isym->st_shndx < SHN_LORESERVE
10199 && bfd_section_removed_from_list (output_bfd,
10200 isec->output_section))
10203 /* Get the name of the symbol. */
10204 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10209 /* See if we are discarding symbols with this name. */
10210 if ((flinfo->info->strip == strip_some
10211 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10213 || (((flinfo->info->discard == discard_sec_merge
10214 && (isec->flags & SEC_MERGE)
10215 && !bfd_link_relocatable (flinfo->info))
10216 || flinfo->info->discard == discard_l)
10217 && bfd_is_local_label_name (input_bfd, name)))
10220 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10222 if (input_bfd->lto_output)
10223 /* -flto puts a temp file name here. This means builds
10224 are not reproducible. Discard the symbol. */
10226 have_file_sym = TRUE;
10227 flinfo->filesym_count += 1;
10229 if (!have_file_sym)
10231 /* In the absence of debug info, bfd_find_nearest_line uses
10232 FILE symbols to determine the source file for local
10233 function symbols. Provide a FILE symbol here if input
10234 files lack such, so that their symbols won't be
10235 associated with a previous input file. It's not the
10236 source file, but the best we can do. */
10237 have_file_sym = TRUE;
10238 flinfo->filesym_count += 1;
10239 memset (&osym, 0, sizeof (osym));
10240 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10241 osym.st_shndx = SHN_ABS;
10242 if (!elf_link_output_symstrtab (flinfo,
10243 (input_bfd->lto_output ? NULL
10244 : input_bfd->filename),
10245 &osym, bfd_abs_section_ptr,
10252 /* Adjust the section index for the output file. */
10253 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10254 isec->output_section);
10255 if (osym.st_shndx == SHN_BAD)
10258 /* ELF symbols in relocatable files are section relative, but
10259 in executable files they are virtual addresses. Note that
10260 this code assumes that all ELF sections have an associated
10261 BFD section with a reasonable value for output_offset; below
10262 we assume that they also have a reasonable value for
10263 output_section. Any special sections must be set up to meet
10264 these requirements. */
10265 osym.st_value += isec->output_offset;
10266 if (!bfd_link_relocatable (flinfo->info))
10268 osym.st_value += isec->output_section->vma;
10269 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10271 /* STT_TLS symbols are relative to PT_TLS segment base. */
10272 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10273 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10277 indx = bfd_get_symcount (output_bfd);
10278 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10285 if (bed->s->arch_size == 32)
10287 r_type_mask = 0xff;
10293 r_type_mask = 0xffffffff;
10298 /* Relocate the contents of each section. */
10299 sym_hashes = elf_sym_hashes (input_bfd);
10300 for (o = input_bfd->sections; o != NULL; o = o->next)
10302 bfd_byte *contents;
10304 if (! o->linker_mark)
10306 /* This section was omitted from the link. */
10310 if (!flinfo->info->resolve_section_groups
10311 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10313 /* Deal with the group signature symbol. */
10314 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10315 unsigned long symndx = sec_data->this_hdr.sh_info;
10316 asection *osec = o->output_section;
10318 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10319 if (symndx >= locsymcount
10320 || (elf_bad_symtab (input_bfd)
10321 && flinfo->sections[symndx] == NULL))
10323 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10324 while (h->root.type == bfd_link_hash_indirect
10325 || h->root.type == bfd_link_hash_warning)
10326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10327 /* Arrange for symbol to be output. */
10329 elf_section_data (osec)->this_hdr.sh_info = -2;
10331 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10333 /* We'll use the output section target_index. */
10334 asection *sec = flinfo->sections[symndx]->output_section;
10335 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10339 if (flinfo->indices[symndx] == -1)
10341 /* Otherwise output the local symbol now. */
10342 Elf_Internal_Sym sym = isymbuf[symndx];
10343 asection *sec = flinfo->sections[symndx]->output_section;
10348 name = bfd_elf_string_from_elf_section (input_bfd,
10349 symtab_hdr->sh_link,
10354 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10356 if (sym.st_shndx == SHN_BAD)
10359 sym.st_value += o->output_offset;
10361 indx = bfd_get_symcount (output_bfd);
10362 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10367 flinfo->indices[symndx] = indx;
10371 elf_section_data (osec)->this_hdr.sh_info
10372 = flinfo->indices[symndx];
10376 if ((o->flags & SEC_HAS_CONTENTS) == 0
10377 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10380 if ((o->flags & SEC_LINKER_CREATED) != 0)
10382 /* Section was created by _bfd_elf_link_create_dynamic_sections
10387 /* Get the contents of the section. They have been cached by a
10388 relaxation routine. Note that o is a section in an input
10389 file, so the contents field will not have been set by any of
10390 the routines which work on output files. */
10391 if (elf_section_data (o)->this_hdr.contents != NULL)
10393 contents = elf_section_data (o)->this_hdr.contents;
10394 if (bed->caches_rawsize
10396 && o->rawsize < o->size)
10398 memcpy (flinfo->contents, contents, o->rawsize);
10399 contents = flinfo->contents;
10404 contents = flinfo->contents;
10405 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10409 if ((o->flags & SEC_RELOC) != 0)
10411 Elf_Internal_Rela *internal_relocs;
10412 Elf_Internal_Rela *rel, *relend;
10413 int action_discarded;
10416 /* Get the swapped relocs. */
10418 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10419 flinfo->internal_relocs, FALSE);
10420 if (internal_relocs == NULL
10421 && o->reloc_count > 0)
10424 /* We need to reverse-copy input .ctors/.dtors sections if
10425 they are placed in .init_array/.finit_array for output. */
10426 if (o->size > address_size
10427 && ((strncmp (o->name, ".ctors", 6) == 0
10428 && strcmp (o->output_section->name,
10429 ".init_array") == 0)
10430 || (strncmp (o->name, ".dtors", 6) == 0
10431 && strcmp (o->output_section->name,
10432 ".fini_array") == 0))
10433 && (o->name[6] == 0 || o->name[6] == '.'))
10435 if (o->size * bed->s->int_rels_per_ext_rel
10436 != o->reloc_count * address_size)
10439 /* xgettext:c-format */
10440 (_("error: %B: size of section %A is not "
10441 "multiple of address size"),
10443 bfd_set_error (bfd_error_on_input);
10446 o->flags |= SEC_ELF_REVERSE_COPY;
10449 action_discarded = -1;
10450 if (!elf_section_ignore_discarded_relocs (o))
10451 action_discarded = (*bed->action_discarded) (o);
10453 /* Run through the relocs evaluating complex reloc symbols and
10454 looking for relocs against symbols from discarded sections
10455 or section symbols from removed link-once sections.
10456 Complain about relocs against discarded sections. Zero
10457 relocs against removed link-once sections. */
10459 rel = internal_relocs;
10460 relend = rel + o->reloc_count;
10461 for ( ; rel < relend; rel++)
10463 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10464 unsigned int s_type;
10465 asection **ps, *sec;
10466 struct elf_link_hash_entry *h = NULL;
10467 const char *sym_name;
10469 if (r_symndx == STN_UNDEF)
10472 if (r_symndx >= locsymcount
10473 || (elf_bad_symtab (input_bfd)
10474 && flinfo->sections[r_symndx] == NULL))
10476 h = sym_hashes[r_symndx - extsymoff];
10478 /* Badly formatted input files can contain relocs that
10479 reference non-existant symbols. Check here so that
10480 we do not seg fault. */
10484 /* xgettext:c-format */
10485 (_("error: %B contains a reloc (%#Lx) for section %A "
10486 "that references a non-existent global symbol"),
10487 input_bfd, rel->r_info, o);
10488 bfd_set_error (bfd_error_bad_value);
10492 while (h->root.type == bfd_link_hash_indirect
10493 || h->root.type == bfd_link_hash_warning)
10494 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10498 /* If a plugin symbol is referenced from a non-IR file,
10499 mark the symbol as undefined. Note that the
10500 linker may attach linker created dynamic sections
10501 to the plugin bfd. Symbols defined in linker
10502 created sections are not plugin symbols. */
10503 if ((h->root.non_ir_ref_regular
10504 || h->root.non_ir_ref_dynamic)
10505 && (h->root.type == bfd_link_hash_defined
10506 || h->root.type == bfd_link_hash_defweak)
10507 && (h->root.u.def.section->flags
10508 & SEC_LINKER_CREATED) == 0
10509 && h->root.u.def.section->owner != NULL
10510 && (h->root.u.def.section->owner->flags
10511 & BFD_PLUGIN) != 0)
10513 h->root.type = bfd_link_hash_undefined;
10514 h->root.u.undef.abfd = h->root.u.def.section->owner;
10518 if (h->root.type == bfd_link_hash_defined
10519 || h->root.type == bfd_link_hash_defweak)
10520 ps = &h->root.u.def.section;
10522 sym_name = h->root.root.string;
10526 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10528 s_type = ELF_ST_TYPE (sym->st_info);
10529 ps = &flinfo->sections[r_symndx];
10530 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10534 if ((s_type == STT_RELC || s_type == STT_SRELC)
10535 && !bfd_link_relocatable (flinfo->info))
10538 bfd_vma dot = (rel->r_offset
10539 + o->output_offset + o->output_section->vma);
10541 printf ("Encountered a complex symbol!");
10542 printf (" (input_bfd %s, section %s, reloc %ld\n",
10543 input_bfd->filename, o->name,
10544 (long) (rel - internal_relocs));
10545 printf (" symbol: idx %8.8lx, name %s\n",
10546 r_symndx, sym_name);
10547 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10548 (unsigned long) rel->r_info,
10549 (unsigned long) rel->r_offset);
10551 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10552 isymbuf, locsymcount, s_type == STT_SRELC))
10555 /* Symbol evaluated OK. Update to absolute value. */
10556 set_symbol_value (input_bfd, isymbuf, locsymcount,
10561 if (action_discarded != -1 && ps != NULL)
10563 /* Complain if the definition comes from a
10564 discarded section. */
10565 if ((sec = *ps) != NULL && discarded_section (sec))
10567 BFD_ASSERT (r_symndx != STN_UNDEF);
10568 if (action_discarded & COMPLAIN)
10569 (*flinfo->info->callbacks->einfo)
10570 /* xgettext:c-format */
10571 (_("%X`%s' referenced in section `%A' of %B: "
10572 "defined in discarded section `%A' of %B\n"),
10573 sym_name, o, input_bfd, sec, sec->owner);
10575 /* Try to do the best we can to support buggy old
10576 versions of gcc. Pretend that the symbol is
10577 really defined in the kept linkonce section.
10578 FIXME: This is quite broken. Modifying the
10579 symbol here means we will be changing all later
10580 uses of the symbol, not just in this section. */
10581 if (action_discarded & PRETEND)
10585 kept = _bfd_elf_check_kept_section (sec,
10597 /* Relocate the section by invoking a back end routine.
10599 The back end routine is responsible for adjusting the
10600 section contents as necessary, and (if using Rela relocs
10601 and generating a relocatable output file) adjusting the
10602 reloc addend as necessary.
10604 The back end routine does not have to worry about setting
10605 the reloc address or the reloc symbol index.
10607 The back end routine is given a pointer to the swapped in
10608 internal symbols, and can access the hash table entries
10609 for the external symbols via elf_sym_hashes (input_bfd).
10611 When generating relocatable output, the back end routine
10612 must handle STB_LOCAL/STT_SECTION symbols specially. The
10613 output symbol is going to be a section symbol
10614 corresponding to the output section, which will require
10615 the addend to be adjusted. */
10617 ret = (*relocate_section) (output_bfd, flinfo->info,
10618 input_bfd, o, contents,
10626 || bfd_link_relocatable (flinfo->info)
10627 || flinfo->info->emitrelocations)
10629 Elf_Internal_Rela *irela;
10630 Elf_Internal_Rela *irelaend, *irelamid;
10631 bfd_vma last_offset;
10632 struct elf_link_hash_entry **rel_hash;
10633 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10634 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10635 unsigned int next_erel;
10636 bfd_boolean rela_normal;
10637 struct bfd_elf_section_data *esdi, *esdo;
10639 esdi = elf_section_data (o);
10640 esdo = elf_section_data (o->output_section);
10641 rela_normal = FALSE;
10643 /* Adjust the reloc addresses and symbol indices. */
10645 irela = internal_relocs;
10646 irelaend = irela + o->reloc_count;
10647 rel_hash = esdo->rel.hashes + esdo->rel.count;
10648 /* We start processing the REL relocs, if any. When we reach
10649 IRELAMID in the loop, we switch to the RELA relocs. */
10651 if (esdi->rel.hdr != NULL)
10652 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10653 * bed->s->int_rels_per_ext_rel);
10654 rel_hash_list = rel_hash;
10655 rela_hash_list = NULL;
10656 last_offset = o->output_offset;
10657 if (!bfd_link_relocatable (flinfo->info))
10658 last_offset += o->output_section->vma;
10659 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10661 unsigned long r_symndx;
10663 Elf_Internal_Sym sym;
10665 if (next_erel == bed->s->int_rels_per_ext_rel)
10671 if (irela == irelamid)
10673 rel_hash = esdo->rela.hashes + esdo->rela.count;
10674 rela_hash_list = rel_hash;
10675 rela_normal = bed->rela_normal;
10678 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10681 if (irela->r_offset >= (bfd_vma) -2)
10683 /* This is a reloc for a deleted entry or somesuch.
10684 Turn it into an R_*_NONE reloc, at the same
10685 offset as the last reloc. elf_eh_frame.c and
10686 bfd_elf_discard_info rely on reloc offsets
10688 irela->r_offset = last_offset;
10690 irela->r_addend = 0;
10694 irela->r_offset += o->output_offset;
10696 /* Relocs in an executable have to be virtual addresses. */
10697 if (!bfd_link_relocatable (flinfo->info))
10698 irela->r_offset += o->output_section->vma;
10700 last_offset = irela->r_offset;
10702 r_symndx = irela->r_info >> r_sym_shift;
10703 if (r_symndx == STN_UNDEF)
10706 if (r_symndx >= locsymcount
10707 || (elf_bad_symtab (input_bfd)
10708 && flinfo->sections[r_symndx] == NULL))
10710 struct elf_link_hash_entry *rh;
10711 unsigned long indx;
10713 /* This is a reloc against a global symbol. We
10714 have not yet output all the local symbols, so
10715 we do not know the symbol index of any global
10716 symbol. We set the rel_hash entry for this
10717 reloc to point to the global hash table entry
10718 for this symbol. The symbol index is then
10719 set at the end of bfd_elf_final_link. */
10720 indx = r_symndx - extsymoff;
10721 rh = elf_sym_hashes (input_bfd)[indx];
10722 while (rh->root.type == bfd_link_hash_indirect
10723 || rh->root.type == bfd_link_hash_warning)
10724 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10726 /* Setting the index to -2 tells
10727 elf_link_output_extsym that this symbol is
10728 used by a reloc. */
10729 BFD_ASSERT (rh->indx < 0);
10736 /* This is a reloc against a local symbol. */
10739 sym = isymbuf[r_symndx];
10740 sec = flinfo->sections[r_symndx];
10741 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10743 /* I suppose the backend ought to fill in the
10744 section of any STT_SECTION symbol against a
10745 processor specific section. */
10746 r_symndx = STN_UNDEF;
10747 if (bfd_is_abs_section (sec))
10749 else if (sec == NULL || sec->owner == NULL)
10751 bfd_set_error (bfd_error_bad_value);
10756 asection *osec = sec->output_section;
10758 /* If we have discarded a section, the output
10759 section will be the absolute section. In
10760 case of discarded SEC_MERGE sections, use
10761 the kept section. relocate_section should
10762 have already handled discarded linkonce
10764 if (bfd_is_abs_section (osec)
10765 && sec->kept_section != NULL
10766 && sec->kept_section->output_section != NULL)
10768 osec = sec->kept_section->output_section;
10769 irela->r_addend -= osec->vma;
10772 if (!bfd_is_abs_section (osec))
10774 r_symndx = osec->target_index;
10775 if (r_symndx == STN_UNDEF)
10777 irela->r_addend += osec->vma;
10778 osec = _bfd_nearby_section (output_bfd, osec,
10780 irela->r_addend -= osec->vma;
10781 r_symndx = osec->target_index;
10786 /* Adjust the addend according to where the
10787 section winds up in the output section. */
10789 irela->r_addend += sec->output_offset;
10793 if (flinfo->indices[r_symndx] == -1)
10795 unsigned long shlink;
10800 if (flinfo->info->strip == strip_all)
10802 /* You can't do ld -r -s. */
10803 bfd_set_error (bfd_error_invalid_operation);
10807 /* This symbol was skipped earlier, but
10808 since it is needed by a reloc, we
10809 must output it now. */
10810 shlink = symtab_hdr->sh_link;
10811 name = (bfd_elf_string_from_elf_section
10812 (input_bfd, shlink, sym.st_name));
10816 osec = sec->output_section;
10818 _bfd_elf_section_from_bfd_section (output_bfd,
10820 if (sym.st_shndx == SHN_BAD)
10823 sym.st_value += sec->output_offset;
10824 if (!bfd_link_relocatable (flinfo->info))
10826 sym.st_value += osec->vma;
10827 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10829 /* STT_TLS symbols are relative to PT_TLS
10831 BFD_ASSERT (elf_hash_table (flinfo->info)
10832 ->tls_sec != NULL);
10833 sym.st_value -= (elf_hash_table (flinfo->info)
10838 indx = bfd_get_symcount (output_bfd);
10839 ret = elf_link_output_symstrtab (flinfo, name,
10845 flinfo->indices[r_symndx] = indx;
10850 r_symndx = flinfo->indices[r_symndx];
10853 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10854 | (irela->r_info & r_type_mask));
10857 /* Swap out the relocs. */
10858 input_rel_hdr = esdi->rel.hdr;
10859 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10861 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10866 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10867 * bed->s->int_rels_per_ext_rel);
10868 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10871 input_rela_hdr = esdi->rela.hdr;
10872 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10874 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10883 /* Write out the modified section contents. */
10884 if (bed->elf_backend_write_section
10885 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10888 /* Section written out. */
10890 else switch (o->sec_info_type)
10892 case SEC_INFO_TYPE_STABS:
10893 if (! (_bfd_write_section_stabs
10895 &elf_hash_table (flinfo->info)->stab_info,
10896 o, &elf_section_data (o)->sec_info, contents)))
10899 case SEC_INFO_TYPE_MERGE:
10900 if (! _bfd_write_merged_section (output_bfd, o,
10901 elf_section_data (o)->sec_info))
10904 case SEC_INFO_TYPE_EH_FRAME:
10906 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10911 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10913 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10921 if (! (o->flags & SEC_EXCLUDE))
10923 file_ptr offset = (file_ptr) o->output_offset;
10924 bfd_size_type todo = o->size;
10926 offset *= bfd_octets_per_byte (output_bfd);
10928 if ((o->flags & SEC_ELF_REVERSE_COPY))
10930 /* Reverse-copy input section to output. */
10933 todo -= address_size;
10934 if (! bfd_set_section_contents (output_bfd,
10942 offset += address_size;
10946 else if (! bfd_set_section_contents (output_bfd,
10960 /* Generate a reloc when linking an ELF file. This is a reloc
10961 requested by the linker, and does not come from any input file. This
10962 is used to build constructor and destructor tables when linking
10966 elf_reloc_link_order (bfd *output_bfd,
10967 struct bfd_link_info *info,
10968 asection *output_section,
10969 struct bfd_link_order *link_order)
10971 reloc_howto_type *howto;
10975 struct bfd_elf_section_reloc_data *reldata;
10976 struct elf_link_hash_entry **rel_hash_ptr;
10977 Elf_Internal_Shdr *rel_hdr;
10978 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10979 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10982 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10984 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10987 bfd_set_error (bfd_error_bad_value);
10991 addend = link_order->u.reloc.p->addend;
10994 reldata = &esdo->rel;
10995 else if (esdo->rela.hdr)
10996 reldata = &esdo->rela;
11003 /* Figure out the symbol index. */
11004 rel_hash_ptr = reldata->hashes + reldata->count;
11005 if (link_order->type == bfd_section_reloc_link_order)
11007 indx = link_order->u.reloc.p->u.section->target_index;
11008 BFD_ASSERT (indx != 0);
11009 *rel_hash_ptr = NULL;
11013 struct elf_link_hash_entry *h;
11015 /* Treat a reloc against a defined symbol as though it were
11016 actually against the section. */
11017 h = ((struct elf_link_hash_entry *)
11018 bfd_wrapped_link_hash_lookup (output_bfd, info,
11019 link_order->u.reloc.p->u.name,
11020 FALSE, FALSE, TRUE));
11022 && (h->root.type == bfd_link_hash_defined
11023 || h->root.type == bfd_link_hash_defweak))
11027 section = h->root.u.def.section;
11028 indx = section->output_section->target_index;
11029 *rel_hash_ptr = NULL;
11030 /* It seems that we ought to add the symbol value to the
11031 addend here, but in practice it has already been added
11032 because it was passed to constructor_callback. */
11033 addend += section->output_section->vma + section->output_offset;
11035 else if (h != NULL)
11037 /* Setting the index to -2 tells elf_link_output_extsym that
11038 this symbol is used by a reloc. */
11045 (*info->callbacks->unattached_reloc)
11046 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11051 /* If this is an inplace reloc, we must write the addend into the
11053 if (howto->partial_inplace && addend != 0)
11055 bfd_size_type size;
11056 bfd_reloc_status_type rstat;
11059 const char *sym_name;
11061 size = (bfd_size_type) bfd_get_reloc_size (howto);
11062 buf = (bfd_byte *) bfd_zmalloc (size);
11063 if (buf == NULL && size != 0)
11065 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11072 case bfd_reloc_outofrange:
11075 case bfd_reloc_overflow:
11076 if (link_order->type == bfd_section_reloc_link_order)
11077 sym_name = bfd_section_name (output_bfd,
11078 link_order->u.reloc.p->u.section);
11080 sym_name = link_order->u.reloc.p->u.name;
11081 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11082 howto->name, addend, NULL, NULL,
11087 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11089 * bfd_octets_per_byte (output_bfd),
11096 /* The address of a reloc is relative to the section in a
11097 relocatable file, and is a virtual address in an executable
11099 offset = link_order->offset;
11100 if (! bfd_link_relocatable (info))
11101 offset += output_section->vma;
11103 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11105 irel[i].r_offset = offset;
11106 irel[i].r_info = 0;
11107 irel[i].r_addend = 0;
11109 if (bed->s->arch_size == 32)
11110 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11112 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11114 rel_hdr = reldata->hdr;
11115 erel = rel_hdr->contents;
11116 if (rel_hdr->sh_type == SHT_REL)
11118 erel += reldata->count * bed->s->sizeof_rel;
11119 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11123 irel[0].r_addend = addend;
11124 erel += reldata->count * bed->s->sizeof_rela;
11125 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11134 /* Get the output vma of the section pointed to by the sh_link field. */
11137 elf_get_linked_section_vma (struct bfd_link_order *p)
11139 Elf_Internal_Shdr **elf_shdrp;
11143 s = p->u.indirect.section;
11144 elf_shdrp = elf_elfsections (s->owner);
11145 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11146 elfsec = elf_shdrp[elfsec]->sh_link;
11148 The Intel C compiler generates SHT_IA_64_UNWIND with
11149 SHF_LINK_ORDER. But it doesn't set the sh_link or
11150 sh_info fields. Hence we could get the situation
11151 where elfsec is 0. */
11154 const struct elf_backend_data *bed
11155 = get_elf_backend_data (s->owner);
11156 if (bed->link_order_error_handler)
11157 bed->link_order_error_handler
11158 /* xgettext:c-format */
11159 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11164 s = elf_shdrp[elfsec]->bfd_section;
11165 return s->output_section->vma + s->output_offset;
11170 /* Compare two sections based on the locations of the sections they are
11171 linked to. Used by elf_fixup_link_order. */
11174 compare_link_order (const void * a, const void * b)
11179 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11180 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11183 return apos > bpos;
11187 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11188 order as their linked sections. Returns false if this could not be done
11189 because an output section includes both ordered and unordered
11190 sections. Ideally we'd do this in the linker proper. */
11193 elf_fixup_link_order (bfd *abfd, asection *o)
11195 int seen_linkorder;
11198 struct bfd_link_order *p;
11200 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11202 struct bfd_link_order **sections;
11203 asection *s, *other_sec, *linkorder_sec;
11207 linkorder_sec = NULL;
11209 seen_linkorder = 0;
11210 for (p = o->map_head.link_order; p != NULL; p = p->next)
11212 if (p->type == bfd_indirect_link_order)
11214 s = p->u.indirect.section;
11216 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11217 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11218 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11219 && elfsec < elf_numsections (sub)
11220 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11221 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11235 if (seen_other && seen_linkorder)
11237 if (other_sec && linkorder_sec)
11239 /* xgettext:c-format */
11240 (_("%A has both ordered [`%A' in %B] "
11241 "and unordered [`%A' in %B] sections"),
11242 o, linkorder_sec, linkorder_sec->owner,
11243 other_sec, other_sec->owner);
11246 (_("%A has both ordered and unordered sections"), o);
11247 bfd_set_error (bfd_error_bad_value);
11252 if (!seen_linkorder)
11255 sections = (struct bfd_link_order **)
11256 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11257 if (sections == NULL)
11259 seen_linkorder = 0;
11261 for (p = o->map_head.link_order; p != NULL; p = p->next)
11263 sections[seen_linkorder++] = p;
11265 /* Sort the input sections in the order of their linked section. */
11266 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11267 compare_link_order);
11269 /* Change the offsets of the sections. */
11271 for (n = 0; n < seen_linkorder; n++)
11273 s = sections[n]->u.indirect.section;
11274 offset &= ~(bfd_vma) 0 << s->alignment_power;
11275 s->output_offset = offset / bfd_octets_per_byte (abfd);
11276 sections[n]->offset = offset;
11277 offset += sections[n]->size;
11284 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11285 Returns TRUE upon success, FALSE otherwise. */
11288 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11290 bfd_boolean ret = FALSE;
11292 const struct elf_backend_data *bed;
11294 enum bfd_architecture arch;
11296 asymbol **sympp = NULL;
11300 elf_symbol_type *osymbuf;
11302 implib_bfd = info->out_implib_bfd;
11303 bed = get_elf_backend_data (abfd);
11305 if (!bfd_set_format (implib_bfd, bfd_object))
11308 /* Use flag from executable but make it a relocatable object. */
11309 flags = bfd_get_file_flags (abfd);
11310 flags &= ~HAS_RELOC;
11311 if (!bfd_set_start_address (implib_bfd, 0)
11312 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11315 /* Copy architecture of output file to import library file. */
11316 arch = bfd_get_arch (abfd);
11317 mach = bfd_get_mach (abfd);
11318 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11319 && (abfd->target_defaulted
11320 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11323 /* Get symbol table size. */
11324 symsize = bfd_get_symtab_upper_bound (abfd);
11328 /* Read in the symbol table. */
11329 sympp = (asymbol **) xmalloc (symsize);
11330 symcount = bfd_canonicalize_symtab (abfd, sympp);
11334 /* Allow the BFD backend to copy any private header data it
11335 understands from the output BFD to the import library BFD. */
11336 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11339 /* Filter symbols to appear in the import library. */
11340 if (bed->elf_backend_filter_implib_symbols)
11341 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11344 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11347 bfd_set_error (bfd_error_no_symbols);
11348 _bfd_error_handler (_("%B: no symbol found for import library"),
11354 /* Make symbols absolute. */
11355 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11356 sizeof (*osymbuf));
11357 for (src_count = 0; src_count < symcount; src_count++)
11359 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11360 sizeof (*osymbuf));
11361 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11362 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11363 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11364 osymbuf[src_count].internal_elf_sym.st_value =
11365 osymbuf[src_count].symbol.value;
11366 sympp[src_count] = &osymbuf[src_count].symbol;
11369 bfd_set_symtab (implib_bfd, sympp, symcount);
11371 /* Allow the BFD backend to copy any private data it understands
11372 from the output BFD to the import library BFD. This is done last
11373 to permit the routine to look at the filtered symbol table. */
11374 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11377 if (!bfd_close (implib_bfd))
11388 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11392 if (flinfo->symstrtab != NULL)
11393 _bfd_elf_strtab_free (flinfo->symstrtab);
11394 if (flinfo->contents != NULL)
11395 free (flinfo->contents);
11396 if (flinfo->external_relocs != NULL)
11397 free (flinfo->external_relocs);
11398 if (flinfo->internal_relocs != NULL)
11399 free (flinfo->internal_relocs);
11400 if (flinfo->external_syms != NULL)
11401 free (flinfo->external_syms);
11402 if (flinfo->locsym_shndx != NULL)
11403 free (flinfo->locsym_shndx);
11404 if (flinfo->internal_syms != NULL)
11405 free (flinfo->internal_syms);
11406 if (flinfo->indices != NULL)
11407 free (flinfo->indices);
11408 if (flinfo->sections != NULL)
11409 free (flinfo->sections);
11410 if (flinfo->symshndxbuf != NULL)
11411 free (flinfo->symshndxbuf);
11412 for (o = obfd->sections; o != NULL; o = o->next)
11414 struct bfd_elf_section_data *esdo = elf_section_data (o);
11415 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11416 free (esdo->rel.hashes);
11417 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11418 free (esdo->rela.hashes);
11422 /* Do the final step of an ELF link. */
11425 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11427 bfd_boolean dynamic;
11428 bfd_boolean emit_relocs;
11430 struct elf_final_link_info flinfo;
11432 struct bfd_link_order *p;
11434 bfd_size_type max_contents_size;
11435 bfd_size_type max_external_reloc_size;
11436 bfd_size_type max_internal_reloc_count;
11437 bfd_size_type max_sym_count;
11438 bfd_size_type max_sym_shndx_count;
11439 Elf_Internal_Sym elfsym;
11441 Elf_Internal_Shdr *symtab_hdr;
11442 Elf_Internal_Shdr *symtab_shndx_hdr;
11443 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11444 struct elf_outext_info eoinfo;
11445 bfd_boolean merged;
11446 size_t relativecount = 0;
11447 asection *reldyn = 0;
11449 asection *attr_section = NULL;
11450 bfd_vma attr_size = 0;
11451 const char *std_attrs_section;
11452 struct elf_link_hash_table *htab = elf_hash_table (info);
11454 if (!is_elf_hash_table (htab))
11457 if (bfd_link_pic (info))
11458 abfd->flags |= DYNAMIC;
11460 dynamic = htab->dynamic_sections_created;
11461 dynobj = htab->dynobj;
11463 emit_relocs = (bfd_link_relocatable (info)
11464 || info->emitrelocations);
11466 flinfo.info = info;
11467 flinfo.output_bfd = abfd;
11468 flinfo.symstrtab = _bfd_elf_strtab_init ();
11469 if (flinfo.symstrtab == NULL)
11474 flinfo.hash_sec = NULL;
11475 flinfo.symver_sec = NULL;
11479 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11480 /* Note that dynsym_sec can be NULL (on VMS). */
11481 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11482 /* Note that it is OK if symver_sec is NULL. */
11485 flinfo.contents = NULL;
11486 flinfo.external_relocs = NULL;
11487 flinfo.internal_relocs = NULL;
11488 flinfo.external_syms = NULL;
11489 flinfo.locsym_shndx = NULL;
11490 flinfo.internal_syms = NULL;
11491 flinfo.indices = NULL;
11492 flinfo.sections = NULL;
11493 flinfo.symshndxbuf = NULL;
11494 flinfo.filesym_count = 0;
11496 /* The object attributes have been merged. Remove the input
11497 sections from the link, and set the contents of the output
11499 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11500 for (o = abfd->sections; o != NULL; o = o->next)
11502 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11503 || strcmp (o->name, ".gnu.attributes") == 0)
11505 for (p = o->map_head.link_order; p != NULL; p = p->next)
11507 asection *input_section;
11509 if (p->type != bfd_indirect_link_order)
11511 input_section = p->u.indirect.section;
11512 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11513 elf_link_input_bfd ignores this section. */
11514 input_section->flags &= ~SEC_HAS_CONTENTS;
11517 attr_size = bfd_elf_obj_attr_size (abfd);
11520 bfd_set_section_size (abfd, o, attr_size);
11522 /* Skip this section later on. */
11523 o->map_head.link_order = NULL;
11526 o->flags |= SEC_EXCLUDE;
11530 /* Count up the number of relocations we will output for each output
11531 section, so that we know the sizes of the reloc sections. We
11532 also figure out some maximum sizes. */
11533 max_contents_size = 0;
11534 max_external_reloc_size = 0;
11535 max_internal_reloc_count = 0;
11537 max_sym_shndx_count = 0;
11539 for (o = abfd->sections; o != NULL; o = o->next)
11541 struct bfd_elf_section_data *esdo = elf_section_data (o);
11542 o->reloc_count = 0;
11544 for (p = o->map_head.link_order; p != NULL; p = p->next)
11546 unsigned int reloc_count = 0;
11547 unsigned int additional_reloc_count = 0;
11548 struct bfd_elf_section_data *esdi = NULL;
11550 if (p->type == bfd_section_reloc_link_order
11551 || p->type == bfd_symbol_reloc_link_order)
11553 else if (p->type == bfd_indirect_link_order)
11557 sec = p->u.indirect.section;
11559 /* Mark all sections which are to be included in the
11560 link. This will normally be every section. We need
11561 to do this so that we can identify any sections which
11562 the linker has decided to not include. */
11563 sec->linker_mark = TRUE;
11565 if (sec->flags & SEC_MERGE)
11568 if (sec->rawsize > max_contents_size)
11569 max_contents_size = sec->rawsize;
11570 if (sec->size > max_contents_size)
11571 max_contents_size = sec->size;
11573 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11574 && (sec->owner->flags & DYNAMIC) == 0)
11578 /* We are interested in just local symbols, not all
11580 if (elf_bad_symtab (sec->owner))
11581 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11582 / bed->s->sizeof_sym);
11584 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11586 if (sym_count > max_sym_count)
11587 max_sym_count = sym_count;
11589 if (sym_count > max_sym_shndx_count
11590 && elf_symtab_shndx_list (sec->owner) != NULL)
11591 max_sym_shndx_count = sym_count;
11593 if (esdo->this_hdr.sh_type == SHT_REL
11594 || esdo->this_hdr.sh_type == SHT_RELA)
11595 /* Some backends use reloc_count in relocation sections
11596 to count particular types of relocs. Of course,
11597 reloc sections themselves can't have relocations. */
11599 else if (emit_relocs)
11601 reloc_count = sec->reloc_count;
11602 if (bed->elf_backend_count_additional_relocs)
11605 c = (*bed->elf_backend_count_additional_relocs) (sec);
11606 additional_reloc_count += c;
11609 else if (bed->elf_backend_count_relocs)
11610 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11612 esdi = elf_section_data (sec);
11614 if ((sec->flags & SEC_RELOC) != 0)
11616 size_t ext_size = 0;
11618 if (esdi->rel.hdr != NULL)
11619 ext_size = esdi->rel.hdr->sh_size;
11620 if (esdi->rela.hdr != NULL)
11621 ext_size += esdi->rela.hdr->sh_size;
11623 if (ext_size > max_external_reloc_size)
11624 max_external_reloc_size = ext_size;
11625 if (sec->reloc_count > max_internal_reloc_count)
11626 max_internal_reloc_count = sec->reloc_count;
11631 if (reloc_count == 0)
11634 reloc_count += additional_reloc_count;
11635 o->reloc_count += reloc_count;
11637 if (p->type == bfd_indirect_link_order && emit_relocs)
11641 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11642 esdo->rel.count += additional_reloc_count;
11644 if (esdi->rela.hdr)
11646 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11647 esdo->rela.count += additional_reloc_count;
11653 esdo->rela.count += reloc_count;
11655 esdo->rel.count += reloc_count;
11659 if (o->reloc_count > 0)
11660 o->flags |= SEC_RELOC;
11663 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11664 set it (this is probably a bug) and if it is set
11665 assign_section_numbers will create a reloc section. */
11666 o->flags &=~ SEC_RELOC;
11669 /* If the SEC_ALLOC flag is not set, force the section VMA to
11670 zero. This is done in elf_fake_sections as well, but forcing
11671 the VMA to 0 here will ensure that relocs against these
11672 sections are handled correctly. */
11673 if ((o->flags & SEC_ALLOC) == 0
11674 && ! o->user_set_vma)
11678 if (! bfd_link_relocatable (info) && merged)
11679 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11681 /* Figure out the file positions for everything but the symbol table
11682 and the relocs. We set symcount to force assign_section_numbers
11683 to create a symbol table. */
11684 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11685 BFD_ASSERT (! abfd->output_has_begun);
11686 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11689 /* Set sizes, and assign file positions for reloc sections. */
11690 for (o = abfd->sections; o != NULL; o = o->next)
11692 struct bfd_elf_section_data *esdo = elf_section_data (o);
11693 if ((o->flags & SEC_RELOC) != 0)
11696 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11700 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11704 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11705 to count upwards while actually outputting the relocations. */
11706 esdo->rel.count = 0;
11707 esdo->rela.count = 0;
11709 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11711 /* Cache the section contents so that they can be compressed
11712 later. Use bfd_malloc since it will be freed by
11713 bfd_compress_section_contents. */
11714 unsigned char *contents = esdo->this_hdr.contents;
11715 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11718 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11719 if (contents == NULL)
11721 esdo->this_hdr.contents = contents;
11725 /* We have now assigned file positions for all the sections except
11726 .symtab, .strtab, and non-loaded reloc sections. We start the
11727 .symtab section at the current file position, and write directly
11728 to it. We build the .strtab section in memory. */
11729 bfd_get_symcount (abfd) = 0;
11730 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11731 /* sh_name is set in prep_headers. */
11732 symtab_hdr->sh_type = SHT_SYMTAB;
11733 /* sh_flags, sh_addr and sh_size all start off zero. */
11734 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11735 /* sh_link is set in assign_section_numbers. */
11736 /* sh_info is set below. */
11737 /* sh_offset is set just below. */
11738 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11740 if (max_sym_count < 20)
11741 max_sym_count = 20;
11742 htab->strtabsize = max_sym_count;
11743 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11744 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11745 if (htab->strtab == NULL)
11747 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11749 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11750 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11752 if (info->strip != strip_all || emit_relocs)
11754 file_ptr off = elf_next_file_pos (abfd);
11756 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11758 /* Note that at this point elf_next_file_pos (abfd) is
11759 incorrect. We do not yet know the size of the .symtab section.
11760 We correct next_file_pos below, after we do know the size. */
11762 /* Start writing out the symbol table. The first symbol is always a
11764 elfsym.st_value = 0;
11765 elfsym.st_size = 0;
11766 elfsym.st_info = 0;
11767 elfsym.st_other = 0;
11768 elfsym.st_shndx = SHN_UNDEF;
11769 elfsym.st_target_internal = 0;
11770 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11771 bfd_und_section_ptr, NULL) != 1)
11774 /* Output a symbol for each section. We output these even if we are
11775 discarding local symbols, since they are used for relocs. These
11776 symbols have no names. We store the index of each one in the
11777 index field of the section, so that we can find it again when
11778 outputting relocs. */
11780 elfsym.st_size = 0;
11781 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11782 elfsym.st_other = 0;
11783 elfsym.st_value = 0;
11784 elfsym.st_target_internal = 0;
11785 for (i = 1; i < elf_numsections (abfd); i++)
11787 o = bfd_section_from_elf_index (abfd, i);
11790 o->target_index = bfd_get_symcount (abfd);
11791 elfsym.st_shndx = i;
11792 if (!bfd_link_relocatable (info))
11793 elfsym.st_value = o->vma;
11794 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11801 /* Allocate some memory to hold information read in from the input
11803 if (max_contents_size != 0)
11805 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11806 if (flinfo.contents == NULL)
11810 if (max_external_reloc_size != 0)
11812 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11813 if (flinfo.external_relocs == NULL)
11817 if (max_internal_reloc_count != 0)
11819 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11820 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11821 if (flinfo.internal_relocs == NULL)
11825 if (max_sym_count != 0)
11827 amt = max_sym_count * bed->s->sizeof_sym;
11828 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11829 if (flinfo.external_syms == NULL)
11832 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11833 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11834 if (flinfo.internal_syms == NULL)
11837 amt = max_sym_count * sizeof (long);
11838 flinfo.indices = (long int *) bfd_malloc (amt);
11839 if (flinfo.indices == NULL)
11842 amt = max_sym_count * sizeof (asection *);
11843 flinfo.sections = (asection **) bfd_malloc (amt);
11844 if (flinfo.sections == NULL)
11848 if (max_sym_shndx_count != 0)
11850 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11851 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11852 if (flinfo.locsym_shndx == NULL)
11858 bfd_vma base, end = 0;
11861 for (sec = htab->tls_sec;
11862 sec && (sec->flags & SEC_THREAD_LOCAL);
11865 bfd_size_type size = sec->size;
11868 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11870 struct bfd_link_order *ord = sec->map_tail.link_order;
11873 size = ord->offset + ord->size;
11875 end = sec->vma + size;
11877 base = htab->tls_sec->vma;
11878 /* Only align end of TLS section if static TLS doesn't have special
11879 alignment requirements. */
11880 if (bed->static_tls_alignment == 1)
11881 end = align_power (end, htab->tls_sec->alignment_power);
11882 htab->tls_size = end - base;
11885 /* Reorder SHF_LINK_ORDER sections. */
11886 for (o = abfd->sections; o != NULL; o = o->next)
11888 if (!elf_fixup_link_order (abfd, o))
11892 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11895 /* Since ELF permits relocations to be against local symbols, we
11896 must have the local symbols available when we do the relocations.
11897 Since we would rather only read the local symbols once, and we
11898 would rather not keep them in memory, we handle all the
11899 relocations for a single input file at the same time.
11901 Unfortunately, there is no way to know the total number of local
11902 symbols until we have seen all of them, and the local symbol
11903 indices precede the global symbol indices. This means that when
11904 we are generating relocatable output, and we see a reloc against
11905 a global symbol, we can not know the symbol index until we have
11906 finished examining all the local symbols to see which ones we are
11907 going to output. To deal with this, we keep the relocations in
11908 memory, and don't output them until the end of the link. This is
11909 an unfortunate waste of memory, but I don't see a good way around
11910 it. Fortunately, it only happens when performing a relocatable
11911 link, which is not the common case. FIXME: If keep_memory is set
11912 we could write the relocs out and then read them again; I don't
11913 know how bad the memory loss will be. */
11915 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11916 sub->output_has_begun = FALSE;
11917 for (o = abfd->sections; o != NULL; o = o->next)
11919 for (p = o->map_head.link_order; p != NULL; p = p->next)
11921 if (p->type == bfd_indirect_link_order
11922 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11923 == bfd_target_elf_flavour)
11924 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11926 if (! sub->output_has_begun)
11928 if (! elf_link_input_bfd (&flinfo, sub))
11930 sub->output_has_begun = TRUE;
11933 else if (p->type == bfd_section_reloc_link_order
11934 || p->type == bfd_symbol_reloc_link_order)
11936 if (! elf_reloc_link_order (abfd, info, o, p))
11941 if (! _bfd_default_link_order (abfd, info, o, p))
11943 if (p->type == bfd_indirect_link_order
11944 && (bfd_get_flavour (sub)
11945 == bfd_target_elf_flavour)
11946 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11947 != bed->s->elfclass))
11949 const char *iclass, *oclass;
11951 switch (bed->s->elfclass)
11953 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11954 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11955 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11959 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11961 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11962 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11963 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11967 bfd_set_error (bfd_error_wrong_format);
11969 /* xgettext:c-format */
11970 (_("%B: file class %s incompatible with %s"),
11971 sub, iclass, oclass);
11980 /* Free symbol buffer if needed. */
11981 if (!info->reduce_memory_overheads)
11983 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11984 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11985 && elf_tdata (sub)->symbuf)
11987 free (elf_tdata (sub)->symbuf);
11988 elf_tdata (sub)->symbuf = NULL;
11992 /* Output any global symbols that got converted to local in a
11993 version script or due to symbol visibility. We do this in a
11994 separate step since ELF requires all local symbols to appear
11995 prior to any global symbols. FIXME: We should only do this if
11996 some global symbols were, in fact, converted to become local.
11997 FIXME: Will this work correctly with the Irix 5 linker? */
11998 eoinfo.failed = FALSE;
11999 eoinfo.flinfo = &flinfo;
12000 eoinfo.localsyms = TRUE;
12001 eoinfo.file_sym_done = FALSE;
12002 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12006 /* If backend needs to output some local symbols not present in the hash
12007 table, do it now. */
12008 if (bed->elf_backend_output_arch_local_syms
12009 && (info->strip != strip_all || emit_relocs))
12011 typedef int (*out_sym_func)
12012 (void *, const char *, Elf_Internal_Sym *, asection *,
12013 struct elf_link_hash_entry *);
12015 if (! ((*bed->elf_backend_output_arch_local_syms)
12016 (abfd, info, &flinfo,
12017 (out_sym_func) elf_link_output_symstrtab)))
12021 /* That wrote out all the local symbols. Finish up the symbol table
12022 with the global symbols. Even if we want to strip everything we
12023 can, we still need to deal with those global symbols that got
12024 converted to local in a version script. */
12026 /* The sh_info field records the index of the first non local symbol. */
12027 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12030 && htab->dynsym != NULL
12031 && htab->dynsym->output_section != bfd_abs_section_ptr)
12033 Elf_Internal_Sym sym;
12034 bfd_byte *dynsym = htab->dynsym->contents;
12036 o = htab->dynsym->output_section;
12037 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12039 /* Write out the section symbols for the output sections. */
12040 if (bfd_link_pic (info)
12041 || htab->is_relocatable_executable)
12047 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12049 sym.st_target_internal = 0;
12051 for (s = abfd->sections; s != NULL; s = s->next)
12057 dynindx = elf_section_data (s)->dynindx;
12060 indx = elf_section_data (s)->this_idx;
12061 BFD_ASSERT (indx > 0);
12062 sym.st_shndx = indx;
12063 if (! check_dynsym (abfd, &sym))
12065 sym.st_value = s->vma;
12066 dest = dynsym + dynindx * bed->s->sizeof_sym;
12067 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12071 /* Write out the local dynsyms. */
12072 if (htab->dynlocal)
12074 struct elf_link_local_dynamic_entry *e;
12075 for (e = htab->dynlocal; e ; e = e->next)
12080 /* Copy the internal symbol and turn off visibility.
12081 Note that we saved a word of storage and overwrote
12082 the original st_name with the dynstr_index. */
12084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12086 s = bfd_section_from_elf_index (e->input_bfd,
12091 elf_section_data (s->output_section)->this_idx;
12092 if (! check_dynsym (abfd, &sym))
12094 sym.st_value = (s->output_section->vma
12096 + e->isym.st_value);
12099 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12100 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12105 /* We get the global symbols from the hash table. */
12106 eoinfo.failed = FALSE;
12107 eoinfo.localsyms = FALSE;
12108 eoinfo.flinfo = &flinfo;
12109 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12113 /* If backend needs to output some symbols not present in the hash
12114 table, do it now. */
12115 if (bed->elf_backend_output_arch_syms
12116 && (info->strip != strip_all || emit_relocs))
12118 typedef int (*out_sym_func)
12119 (void *, const char *, Elf_Internal_Sym *, asection *,
12120 struct elf_link_hash_entry *);
12122 if (! ((*bed->elf_backend_output_arch_syms)
12123 (abfd, info, &flinfo,
12124 (out_sym_func) elf_link_output_symstrtab)))
12128 /* Finalize the .strtab section. */
12129 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12131 /* Swap out the .strtab section. */
12132 if (!elf_link_swap_symbols_out (&flinfo))
12135 /* Now we know the size of the symtab section. */
12136 if (bfd_get_symcount (abfd) > 0)
12138 /* Finish up and write out the symbol string table (.strtab)
12140 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12141 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12143 if (elf_symtab_shndx_list (abfd))
12145 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12147 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12149 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12150 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12151 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12152 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12153 symtab_shndx_hdr->sh_size = amt;
12155 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12158 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12159 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12164 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12165 /* sh_name was set in prep_headers. */
12166 symstrtab_hdr->sh_type = SHT_STRTAB;
12167 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12168 symstrtab_hdr->sh_addr = 0;
12169 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12170 symstrtab_hdr->sh_entsize = 0;
12171 symstrtab_hdr->sh_link = 0;
12172 symstrtab_hdr->sh_info = 0;
12173 /* sh_offset is set just below. */
12174 symstrtab_hdr->sh_addralign = 1;
12176 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12178 elf_next_file_pos (abfd) = off;
12180 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12181 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12185 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12187 _bfd_error_handler (_("%B: failed to generate import library"),
12188 info->out_implib_bfd);
12192 /* Adjust the relocs to have the correct symbol indices. */
12193 for (o = abfd->sections; o != NULL; o = o->next)
12195 struct bfd_elf_section_data *esdo = elf_section_data (o);
12198 if ((o->flags & SEC_RELOC) == 0)
12201 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12202 if (esdo->rel.hdr != NULL
12203 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12205 if (esdo->rela.hdr != NULL
12206 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12209 /* Set the reloc_count field to 0 to prevent write_relocs from
12210 trying to swap the relocs out itself. */
12211 o->reloc_count = 0;
12214 if (dynamic && info->combreloc && dynobj != NULL)
12215 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12217 /* If we are linking against a dynamic object, or generating a
12218 shared library, finish up the dynamic linking information. */
12221 bfd_byte *dyncon, *dynconend;
12223 /* Fix up .dynamic entries. */
12224 o = bfd_get_linker_section (dynobj, ".dynamic");
12225 BFD_ASSERT (o != NULL);
12227 dyncon = o->contents;
12228 dynconend = o->contents + o->size;
12229 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12231 Elf_Internal_Dyn dyn;
12234 bfd_size_type sh_size;
12237 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12244 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12246 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12248 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12249 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12252 dyn.d_un.d_val = relativecount;
12259 name = info->init_function;
12262 name = info->fini_function;
12265 struct elf_link_hash_entry *h;
12267 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12269 && (h->root.type == bfd_link_hash_defined
12270 || h->root.type == bfd_link_hash_defweak))
12272 dyn.d_un.d_ptr = h->root.u.def.value;
12273 o = h->root.u.def.section;
12274 if (o->output_section != NULL)
12275 dyn.d_un.d_ptr += (o->output_section->vma
12276 + o->output_offset);
12279 /* The symbol is imported from another shared
12280 library and does not apply to this one. */
12281 dyn.d_un.d_ptr = 0;
12288 case DT_PREINIT_ARRAYSZ:
12289 name = ".preinit_array";
12291 case DT_INIT_ARRAYSZ:
12292 name = ".init_array";
12294 case DT_FINI_ARRAYSZ:
12295 name = ".fini_array";
12297 o = bfd_get_section_by_name (abfd, name);
12301 (_("could not find section %s"), name);
12306 (_("warning: %s section has zero size"), name);
12307 dyn.d_un.d_val = o->size;
12310 case DT_PREINIT_ARRAY:
12311 name = ".preinit_array";
12313 case DT_INIT_ARRAY:
12314 name = ".init_array";
12316 case DT_FINI_ARRAY:
12317 name = ".fini_array";
12319 o = bfd_get_section_by_name (abfd, name);
12326 name = ".gnu.hash";
12335 name = ".gnu.version_d";
12338 name = ".gnu.version_r";
12341 name = ".gnu.version";
12343 o = bfd_get_linker_section (dynobj, name);
12345 if (o == NULL || bfd_is_abs_section (o->output_section))
12348 (_("could not find section %s"), name);
12351 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12354 (_("warning: section '%s' is being made into a note"), name);
12355 bfd_set_error (bfd_error_nonrepresentable_section);
12358 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12365 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12371 for (i = 1; i < elf_numsections (abfd); i++)
12373 Elf_Internal_Shdr *hdr;
12375 hdr = elf_elfsections (abfd)[i];
12376 if (hdr->sh_type == type
12377 && (hdr->sh_flags & SHF_ALLOC) != 0)
12379 sh_size += hdr->sh_size;
12381 || sh_addr > hdr->sh_addr)
12382 sh_addr = hdr->sh_addr;
12386 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12388 /* Don't count procedure linkage table relocs in the
12389 overall reloc count. */
12390 sh_size -= htab->srelplt->size;
12392 /* If the size is zero, make the address zero too.
12393 This is to avoid a glibc bug. If the backend
12394 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12395 zero, then we'll put DT_RELA at the end of
12396 DT_JMPREL. glibc will interpret the end of
12397 DT_RELA matching the end of DT_JMPREL as the
12398 case where DT_RELA includes DT_JMPREL, and for
12399 LD_BIND_NOW will decide that processing DT_RELA
12400 will process the PLT relocs too. Net result:
12401 No PLT relocs applied. */
12404 /* If .rela.plt is the first .rela section, exclude
12405 it from DT_RELA. */
12406 else if (sh_addr == (htab->srelplt->output_section->vma
12407 + htab->srelplt->output_offset))
12408 sh_addr += htab->srelplt->size;
12411 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12412 dyn.d_un.d_val = sh_size;
12414 dyn.d_un.d_ptr = sh_addr;
12417 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12421 /* If we have created any dynamic sections, then output them. */
12422 if (dynobj != NULL)
12424 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12427 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12428 if (((info->warn_shared_textrel && bfd_link_pic (info))
12429 || info->error_textrel)
12430 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12432 bfd_byte *dyncon, *dynconend;
12434 dyncon = o->contents;
12435 dynconend = o->contents + o->size;
12436 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12438 Elf_Internal_Dyn dyn;
12440 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12442 if (dyn.d_tag == DT_TEXTREL)
12444 if (info->error_textrel)
12445 info->callbacks->einfo
12446 (_("%P%X: read-only segment has dynamic relocations.\n"));
12448 info->callbacks->einfo
12449 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12455 for (o = dynobj->sections; o != NULL; o = o->next)
12457 if ((o->flags & SEC_HAS_CONTENTS) == 0
12459 || o->output_section == bfd_abs_section_ptr)
12461 if ((o->flags & SEC_LINKER_CREATED) == 0)
12463 /* At this point, we are only interested in sections
12464 created by _bfd_elf_link_create_dynamic_sections. */
12467 if (htab->stab_info.stabstr == o)
12469 if (htab->eh_info.hdr_sec == o)
12471 if (strcmp (o->name, ".dynstr") != 0)
12473 if (! bfd_set_section_contents (abfd, o->output_section,
12475 (file_ptr) o->output_offset
12476 * bfd_octets_per_byte (abfd),
12482 /* The contents of the .dynstr section are actually in a
12486 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12487 if (bfd_seek (abfd, off, SEEK_SET) != 0
12488 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12494 if (!info->resolve_section_groups)
12496 bfd_boolean failed = FALSE;
12498 BFD_ASSERT (bfd_link_relocatable (info));
12499 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12504 /* If we have optimized stabs strings, output them. */
12505 if (htab->stab_info.stabstr != NULL)
12507 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12511 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12514 elf_final_link_free (abfd, &flinfo);
12516 elf_linker (abfd) = TRUE;
12520 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12521 if (contents == NULL)
12522 return FALSE; /* Bail out and fail. */
12523 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12524 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12531 elf_final_link_free (abfd, &flinfo);
12535 /* Initialize COOKIE for input bfd ABFD. */
12538 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12539 struct bfd_link_info *info, bfd *abfd)
12541 Elf_Internal_Shdr *symtab_hdr;
12542 const struct elf_backend_data *bed;
12544 bed = get_elf_backend_data (abfd);
12545 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12547 cookie->abfd = abfd;
12548 cookie->sym_hashes = elf_sym_hashes (abfd);
12549 cookie->bad_symtab = elf_bad_symtab (abfd);
12550 if (cookie->bad_symtab)
12552 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12553 cookie->extsymoff = 0;
12557 cookie->locsymcount = symtab_hdr->sh_info;
12558 cookie->extsymoff = symtab_hdr->sh_info;
12561 if (bed->s->arch_size == 32)
12562 cookie->r_sym_shift = 8;
12564 cookie->r_sym_shift = 32;
12566 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12567 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12569 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12570 cookie->locsymcount, 0,
12572 if (cookie->locsyms == NULL)
12574 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12577 if (info->keep_memory)
12578 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12583 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12586 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12588 Elf_Internal_Shdr *symtab_hdr;
12590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12591 if (cookie->locsyms != NULL
12592 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12593 free (cookie->locsyms);
12596 /* Initialize the relocation information in COOKIE for input section SEC
12597 of input bfd ABFD. */
12600 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12601 struct bfd_link_info *info, bfd *abfd,
12604 if (sec->reloc_count == 0)
12606 cookie->rels = NULL;
12607 cookie->relend = NULL;
12611 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12612 info->keep_memory);
12613 if (cookie->rels == NULL)
12615 cookie->rel = cookie->rels;
12616 cookie->relend = cookie->rels + sec->reloc_count;
12618 cookie->rel = cookie->rels;
12622 /* Free the memory allocated by init_reloc_cookie_rels,
12626 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12629 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12630 free (cookie->rels);
12633 /* Initialize the whole of COOKIE for input section SEC. */
12636 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12637 struct bfd_link_info *info,
12640 if (!init_reloc_cookie (cookie, info, sec->owner))
12642 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12647 fini_reloc_cookie (cookie, sec->owner);
12652 /* Free the memory allocated by init_reloc_cookie_for_section,
12656 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12659 fini_reloc_cookie_rels (cookie, sec);
12660 fini_reloc_cookie (cookie, sec->owner);
12663 /* Garbage collect unused sections. */
12665 /* Default gc_mark_hook. */
12668 _bfd_elf_gc_mark_hook (asection *sec,
12669 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12670 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12671 struct elf_link_hash_entry *h,
12672 Elf_Internal_Sym *sym)
12676 switch (h->root.type)
12678 case bfd_link_hash_defined:
12679 case bfd_link_hash_defweak:
12680 return h->root.u.def.section;
12682 case bfd_link_hash_common:
12683 return h->root.u.c.p->section;
12690 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12695 /* Return the global debug definition section. */
12698 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12699 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12700 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12701 struct elf_link_hash_entry *h,
12702 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12705 && (h->root.type == bfd_link_hash_defined
12706 || h->root.type == bfd_link_hash_defweak)
12707 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12708 return h->root.u.def.section;
12713 /* COOKIE->rel describes a relocation against section SEC, which is
12714 a section we've decided to keep. Return the section that contains
12715 the relocation symbol, or NULL if no section contains it. */
12718 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12719 elf_gc_mark_hook_fn gc_mark_hook,
12720 struct elf_reloc_cookie *cookie,
12721 bfd_boolean *start_stop)
12723 unsigned long r_symndx;
12724 struct elf_link_hash_entry *h;
12726 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12727 if (r_symndx == STN_UNDEF)
12730 if (r_symndx >= cookie->locsymcount
12731 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12733 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12736 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12740 while (h->root.type == bfd_link_hash_indirect
12741 || h->root.type == bfd_link_hash_warning)
12742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12744 /* If this symbol is weak and there is a non-weak definition, we
12745 keep the non-weak definition because many backends put
12746 dynamic reloc info on the non-weak definition for code
12747 handling copy relocs. */
12748 if (h->u.weakdef != NULL)
12749 h->u.weakdef->mark = 1;
12751 if (start_stop != NULL)
12753 /* To work around a glibc bug, mark XXX input sections
12754 when there is a reference to __start_XXX or __stop_XXX
12758 asection *s = h->u2.start_stop_section;
12759 *start_stop = !s->gc_mark;
12764 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12767 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12768 &cookie->locsyms[r_symndx]);
12771 /* COOKIE->rel describes a relocation against section SEC, which is
12772 a section we've decided to keep. Mark the section that contains
12773 the relocation symbol. */
12776 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12778 elf_gc_mark_hook_fn gc_mark_hook,
12779 struct elf_reloc_cookie *cookie)
12782 bfd_boolean start_stop = FALSE;
12784 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12785 while (rsec != NULL)
12787 if (!rsec->gc_mark)
12789 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12790 || (rsec->owner->flags & DYNAMIC) != 0)
12792 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12797 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12802 /* The mark phase of garbage collection. For a given section, mark
12803 it and any sections in this section's group, and all the sections
12804 which define symbols to which it refers. */
12807 _bfd_elf_gc_mark (struct bfd_link_info *info,
12809 elf_gc_mark_hook_fn gc_mark_hook)
12812 asection *group_sec, *eh_frame;
12816 /* Mark all the sections in the group. */
12817 group_sec = elf_section_data (sec)->next_in_group;
12818 if (group_sec && !group_sec->gc_mark)
12819 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12822 /* Look through the section relocs. */
12824 eh_frame = elf_eh_frame_section (sec->owner);
12825 if ((sec->flags & SEC_RELOC) != 0
12826 && sec->reloc_count > 0
12827 && sec != eh_frame)
12829 struct elf_reloc_cookie cookie;
12831 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12835 for (; cookie.rel < cookie.relend; cookie.rel++)
12836 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12841 fini_reloc_cookie_for_section (&cookie, sec);
12845 if (ret && eh_frame && elf_fde_list (sec))
12847 struct elf_reloc_cookie cookie;
12849 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12853 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12854 gc_mark_hook, &cookie))
12856 fini_reloc_cookie_for_section (&cookie, eh_frame);
12860 eh_frame = elf_section_eh_frame_entry (sec);
12861 if (ret && eh_frame && !eh_frame->gc_mark)
12862 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12868 /* Scan and mark sections in a special or debug section group. */
12871 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12873 /* Point to first section of section group. */
12875 /* Used to iterate the section group. */
12878 bfd_boolean is_special_grp = TRUE;
12879 bfd_boolean is_debug_grp = TRUE;
12881 /* First scan to see if group contains any section other than debug
12882 and special section. */
12883 ssec = msec = elf_next_in_group (grp);
12886 if ((msec->flags & SEC_DEBUGGING) == 0)
12887 is_debug_grp = FALSE;
12889 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12890 is_special_grp = FALSE;
12892 msec = elf_next_in_group (msec);
12894 while (msec != ssec);
12896 /* If this is a pure debug section group or pure special section group,
12897 keep all sections in this group. */
12898 if (is_debug_grp || is_special_grp)
12903 msec = elf_next_in_group (msec);
12905 while (msec != ssec);
12909 /* Keep debug and special sections. */
12912 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12913 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12917 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12920 bfd_boolean some_kept;
12921 bfd_boolean debug_frag_seen;
12922 bfd_boolean has_kept_debug_info;
12924 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12926 isec = ibfd->sections;
12927 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12930 /* Ensure all linker created sections are kept,
12931 see if any other section is already marked,
12932 and note if we have any fragmented debug sections. */
12933 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12934 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12936 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12938 else if (isec->gc_mark
12939 && (isec->flags & SEC_ALLOC) != 0
12940 && elf_section_type (isec) != SHT_NOTE)
12943 if (!debug_frag_seen
12944 && (isec->flags & SEC_DEBUGGING)
12945 && CONST_STRNEQ (isec->name, ".debug_line."))
12946 debug_frag_seen = TRUE;
12949 /* If no non-note alloc section in this file will be kept, then
12950 we can toss out the debug and special sections. */
12954 /* Keep debug and special sections like .comment when they are
12955 not part of a group. Also keep section groups that contain
12956 just debug sections or special sections. */
12957 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12959 if ((isec->flags & SEC_GROUP) != 0)
12960 _bfd_elf_gc_mark_debug_special_section_group (isec);
12961 else if (((isec->flags & SEC_DEBUGGING) != 0
12962 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12963 && elf_next_in_group (isec) == NULL)
12965 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12966 has_kept_debug_info = TRUE;
12969 /* Look for CODE sections which are going to be discarded,
12970 and find and discard any fragmented debug sections which
12971 are associated with that code section. */
12972 if (debug_frag_seen)
12973 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12974 if ((isec->flags & SEC_CODE) != 0
12975 && isec->gc_mark == 0)
12980 ilen = strlen (isec->name);
12982 /* Association is determined by the name of the debug
12983 section containing the name of the code section as
12984 a suffix. For example .debug_line.text.foo is a
12985 debug section associated with .text.foo. */
12986 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12990 if (dsec->gc_mark == 0
12991 || (dsec->flags & SEC_DEBUGGING) == 0)
12994 dlen = strlen (dsec->name);
12997 && strncmp (dsec->name + (dlen - ilen),
12998 isec->name, ilen) == 0)
13003 /* Mark debug sections referenced by kept debug sections. */
13004 if (has_kept_debug_info)
13005 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13007 && (isec->flags & SEC_DEBUGGING) != 0)
13008 if (!_bfd_elf_gc_mark (info, isec,
13009 elf_gc_mark_debug_section))
13015 /* The sweep phase of garbage collection. Remove all garbage sections. */
13017 typedef bfd_boolean (*gc_sweep_hook_fn)
13018 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13021 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13025 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13027 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13031 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13032 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13035 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13038 for (o = sub->sections; o != NULL; o = o->next)
13040 /* When any section in a section group is kept, we keep all
13041 sections in the section group. If the first member of
13042 the section group is excluded, we will also exclude the
13044 if (o->flags & SEC_GROUP)
13046 asection *first = elf_next_in_group (o);
13047 o->gc_mark = first->gc_mark;
13053 /* Skip sweeping sections already excluded. */
13054 if (o->flags & SEC_EXCLUDE)
13057 /* Since this is early in the link process, it is simple
13058 to remove a section from the output. */
13059 o->flags |= SEC_EXCLUDE;
13061 if (info->print_gc_sections && o->size != 0)
13062 /* xgettext:c-format */
13063 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13066 /* But we also have to update some of the relocation
13067 info we collected before. */
13069 && (o->flags & SEC_RELOC) != 0
13070 && o->reloc_count != 0
13071 && !((info->strip == strip_all || info->strip == strip_debugger)
13072 && (o->flags & SEC_DEBUGGING) != 0)
13073 && !bfd_is_abs_section (o->output_section))
13075 Elf_Internal_Rela *internal_relocs;
13079 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13080 info->keep_memory);
13081 if (internal_relocs == NULL)
13084 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13086 if (elf_section_data (o)->relocs != internal_relocs)
13087 free (internal_relocs);
13098 /* Propagate collected vtable information. This is called through
13099 elf_link_hash_traverse. */
13102 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13104 /* Those that are not vtables. */
13106 || h->u2.vtable == NULL
13107 || h->u2.vtable->parent == NULL)
13110 /* Those vtables that do not have parents, we cannot merge. */
13111 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13114 /* If we've already been done, exit. */
13115 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13118 /* Make sure the parent's table is up to date. */
13119 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13121 if (h->u2.vtable->used == NULL)
13123 /* None of this table's entries were referenced. Re-use the
13125 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13126 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13131 bfd_boolean *cu, *pu;
13133 /* Or the parent's entries into ours. */
13134 cu = h->u2.vtable->used;
13136 pu = h->u2.vtable->parent->u2.vtable->used;
13139 const struct elf_backend_data *bed;
13140 unsigned int log_file_align;
13142 bed = get_elf_backend_data (h->root.u.def.section->owner);
13143 log_file_align = bed->s->log_file_align;
13144 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13159 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13162 bfd_vma hstart, hend;
13163 Elf_Internal_Rela *relstart, *relend, *rel;
13164 const struct elf_backend_data *bed;
13165 unsigned int log_file_align;
13167 /* Take care of both those symbols that do not describe vtables as
13168 well as those that are not loaded. */
13170 || h->u2.vtable == NULL
13171 || h->u2.vtable->parent == NULL)
13174 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13175 || h->root.type == bfd_link_hash_defweak);
13177 sec = h->root.u.def.section;
13178 hstart = h->root.u.def.value;
13179 hend = hstart + h->size;
13181 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13183 return *(bfd_boolean *) okp = FALSE;
13184 bed = get_elf_backend_data (sec->owner);
13185 log_file_align = bed->s->log_file_align;
13187 relend = relstart + sec->reloc_count;
13189 for (rel = relstart; rel < relend; ++rel)
13190 if (rel->r_offset >= hstart && rel->r_offset < hend)
13192 /* If the entry is in use, do nothing. */
13193 if (h->u2.vtable->used
13194 && (rel->r_offset - hstart) < h->u2.vtable->size)
13196 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13197 if (h->u2.vtable->used[entry])
13200 /* Otherwise, kill it. */
13201 rel->r_offset = rel->r_info = rel->r_addend = 0;
13207 /* Mark sections containing dynamically referenced symbols. When
13208 building shared libraries, we must assume that any visible symbol is
13212 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13214 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13215 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13217 if ((h->root.type == bfd_link_hash_defined
13218 || h->root.type == bfd_link_hash_defweak)
13220 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13221 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13222 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13223 && (!bfd_link_executable (info)
13224 || info->gc_keep_exported
13225 || info->export_dynamic
13228 && (*d->match) (&d->head, NULL, h->root.root.string)))
13229 && (h->versioned >= versioned
13230 || !bfd_hide_sym_by_version (info->version_info,
13231 h->root.root.string)))))
13232 h->root.u.def.section->flags |= SEC_KEEP;
13237 /* Keep all sections containing symbols undefined on the command-line,
13238 and the section containing the entry symbol. */
13241 _bfd_elf_gc_keep (struct bfd_link_info *info)
13243 struct bfd_sym_chain *sym;
13245 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13247 struct elf_link_hash_entry *h;
13249 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13250 FALSE, FALSE, FALSE);
13253 && (h->root.type == bfd_link_hash_defined
13254 || h->root.type == bfd_link_hash_defweak)
13255 && !bfd_is_abs_section (h->root.u.def.section)
13256 && !bfd_is_und_section (h->root.u.def.section))
13257 h->root.u.def.section->flags |= SEC_KEEP;
13262 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13263 struct bfd_link_info *info)
13265 bfd *ibfd = info->input_bfds;
13267 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13270 struct elf_reloc_cookie cookie;
13272 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13274 sec = ibfd->sections;
13275 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13278 if (!init_reloc_cookie (&cookie, info, ibfd))
13281 for (sec = ibfd->sections; sec; sec = sec->next)
13283 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13284 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13286 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13287 fini_reloc_cookie_rels (&cookie, sec);
13294 /* Do mark and sweep of unused sections. */
13297 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13299 bfd_boolean ok = TRUE;
13301 elf_gc_mark_hook_fn gc_mark_hook;
13302 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13303 struct elf_link_hash_table *htab;
13305 if (!bed->can_gc_sections
13306 || !is_elf_hash_table (info->hash))
13308 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13312 bed->gc_keep (info);
13313 htab = elf_hash_table (info);
13315 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13316 at the .eh_frame section if we can mark the FDEs individually. */
13317 for (sub = info->input_bfds;
13318 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13319 sub = sub->link.next)
13322 struct elf_reloc_cookie cookie;
13324 sec = sub->sections;
13325 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13327 sec = bfd_get_section_by_name (sub, ".eh_frame");
13328 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13330 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13331 if (elf_section_data (sec)->sec_info
13332 && (sec->flags & SEC_LINKER_CREATED) == 0)
13333 elf_eh_frame_section (sub) = sec;
13334 fini_reloc_cookie_for_section (&cookie, sec);
13335 sec = bfd_get_next_section_by_name (NULL, sec);
13339 /* Apply transitive closure to the vtable entry usage info. */
13340 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13344 /* Kill the vtable relocations that were not used. */
13345 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13349 /* Mark dynamically referenced symbols. */
13350 if (htab->dynamic_sections_created || info->gc_keep_exported)
13351 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13353 /* Grovel through relocs to find out who stays ... */
13354 gc_mark_hook = bed->gc_mark_hook;
13355 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13359 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13360 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13364 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13367 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13368 Also treat note sections as a root, if the section is not part
13370 for (o = sub->sections; o != NULL; o = o->next)
13372 && (o->flags & SEC_EXCLUDE) == 0
13373 && ((o->flags & SEC_KEEP) != 0
13374 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13375 && elf_next_in_group (o) == NULL )))
13377 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13382 /* Allow the backend to mark additional target specific sections. */
13383 bed->gc_mark_extra_sections (info, gc_mark_hook);
13385 /* ... and mark SEC_EXCLUDE for those that go. */
13386 return elf_gc_sweep (abfd, info);
13389 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13392 bfd_elf_gc_record_vtinherit (bfd *abfd,
13394 struct elf_link_hash_entry *h,
13397 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13398 struct elf_link_hash_entry **search, *child;
13399 size_t extsymcount;
13400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13402 /* The sh_info field of the symtab header tells us where the
13403 external symbols start. We don't care about the local symbols at
13405 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13406 if (!elf_bad_symtab (abfd))
13407 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13409 sym_hashes = elf_sym_hashes (abfd);
13410 sym_hashes_end = sym_hashes + extsymcount;
13412 /* Hunt down the child symbol, which is in this section at the same
13413 offset as the relocation. */
13414 for (search = sym_hashes; search != sym_hashes_end; ++search)
13416 if ((child = *search) != NULL
13417 && (child->root.type == bfd_link_hash_defined
13418 || child->root.type == bfd_link_hash_defweak)
13419 && child->root.u.def.section == sec
13420 && child->root.u.def.value == offset)
13424 /* xgettext:c-format */
13425 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13426 abfd, sec, offset);
13427 bfd_set_error (bfd_error_invalid_operation);
13431 if (!child->u2.vtable)
13433 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13434 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13435 if (!child->u2.vtable)
13440 /* This *should* only be the absolute section. It could potentially
13441 be that someone has defined a non-global vtable though, which
13442 would be bad. It isn't worth paging in the local symbols to be
13443 sure though; that case should simply be handled by the assembler. */
13445 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13448 child->u2.vtable->parent = h;
13453 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13456 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13457 asection *sec ATTRIBUTE_UNUSED,
13458 struct elf_link_hash_entry *h,
13461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13462 unsigned int log_file_align = bed->s->log_file_align;
13466 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13467 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13472 if (addend >= h->u2.vtable->size)
13474 size_t size, bytes, file_align;
13475 bfd_boolean *ptr = h->u2.vtable->used;
13477 /* While the symbol is undefined, we have to be prepared to handle
13479 file_align = 1 << log_file_align;
13480 if (h->root.type == bfd_link_hash_undefined)
13481 size = addend + file_align;
13485 if (addend >= size)
13487 /* Oops! We've got a reference past the defined end of
13488 the table. This is probably a bug -- shall we warn? */
13489 size = addend + file_align;
13492 size = (size + file_align - 1) & -file_align;
13494 /* Allocate one extra entry for use as a "done" flag for the
13495 consolidation pass. */
13496 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13500 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13506 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13507 * sizeof (bfd_boolean));
13508 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13512 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13517 /* And arrange for that done flag to be at index -1. */
13518 h->u2.vtable->used = ptr + 1;
13519 h->u2.vtable->size = size;
13522 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13527 /* Map an ELF section header flag to its corresponding string. */
13531 flagword flag_value;
13532 } elf_flags_to_name_table;
13534 static elf_flags_to_name_table elf_flags_to_names [] =
13536 { "SHF_WRITE", SHF_WRITE },
13537 { "SHF_ALLOC", SHF_ALLOC },
13538 { "SHF_EXECINSTR", SHF_EXECINSTR },
13539 { "SHF_MERGE", SHF_MERGE },
13540 { "SHF_STRINGS", SHF_STRINGS },
13541 { "SHF_INFO_LINK", SHF_INFO_LINK},
13542 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13543 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13544 { "SHF_GROUP", SHF_GROUP },
13545 { "SHF_TLS", SHF_TLS },
13546 { "SHF_MASKOS", SHF_MASKOS },
13547 { "SHF_EXCLUDE", SHF_EXCLUDE },
13550 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13552 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13553 struct flag_info *flaginfo,
13556 const bfd_vma sh_flags = elf_section_flags (section);
13558 if (!flaginfo->flags_initialized)
13560 bfd *obfd = info->output_bfd;
13561 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13562 struct flag_info_list *tf = flaginfo->flag_list;
13564 int without_hex = 0;
13566 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13569 flagword (*lookup) (char *);
13571 lookup = bed->elf_backend_lookup_section_flags_hook;
13572 if (lookup != NULL)
13574 flagword hexval = (*lookup) ((char *) tf->name);
13578 if (tf->with == with_flags)
13579 with_hex |= hexval;
13580 else if (tf->with == without_flags)
13581 without_hex |= hexval;
13586 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13588 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13590 if (tf->with == with_flags)
13591 with_hex |= elf_flags_to_names[i].flag_value;
13592 else if (tf->with == without_flags)
13593 without_hex |= elf_flags_to_names[i].flag_value;
13600 info->callbacks->einfo
13601 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13605 flaginfo->flags_initialized = TRUE;
13606 flaginfo->only_with_flags |= with_hex;
13607 flaginfo->not_with_flags |= without_hex;
13610 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13613 if ((flaginfo->not_with_flags & sh_flags) != 0)
13619 struct alloc_got_off_arg {
13621 struct bfd_link_info *info;
13624 /* We need a special top-level link routine to convert got reference counts
13625 to real got offsets. */
13628 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13630 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13631 bfd *obfd = gofarg->info->output_bfd;
13632 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13634 if (h->got.refcount > 0)
13636 h->got.offset = gofarg->gotoff;
13637 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13640 h->got.offset = (bfd_vma) -1;
13645 /* And an accompanying bit to work out final got entry offsets once
13646 we're done. Should be called from final_link. */
13649 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13650 struct bfd_link_info *info)
13653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13655 struct alloc_got_off_arg gofarg;
13657 BFD_ASSERT (abfd == info->output_bfd);
13659 if (! is_elf_hash_table (info->hash))
13662 /* The GOT offset is relative to the .got section, but the GOT header is
13663 put into the .got.plt section, if the backend uses it. */
13664 if (bed->want_got_plt)
13667 gotoff = bed->got_header_size;
13669 /* Do the local .got entries first. */
13670 for (i = info->input_bfds; i; i = i->link.next)
13672 bfd_signed_vma *local_got;
13673 size_t j, locsymcount;
13674 Elf_Internal_Shdr *symtab_hdr;
13676 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13679 local_got = elf_local_got_refcounts (i);
13683 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13684 if (elf_bad_symtab (i))
13685 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13687 locsymcount = symtab_hdr->sh_info;
13689 for (j = 0; j < locsymcount; ++j)
13691 if (local_got[j] > 0)
13693 local_got[j] = gotoff;
13694 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13697 local_got[j] = (bfd_vma) -1;
13701 /* Then the global .got entries. .plt refcounts are handled by
13702 adjust_dynamic_symbol */
13703 gofarg.gotoff = gotoff;
13704 gofarg.info = info;
13705 elf_link_hash_traverse (elf_hash_table (info),
13706 elf_gc_allocate_got_offsets,
13711 /* Many folk need no more in the way of final link than this, once
13712 got entry reference counting is enabled. */
13715 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13717 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13720 /* Invoke the regular ELF backend linker to do all the work. */
13721 return bfd_elf_final_link (abfd, info);
13725 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13727 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13729 if (rcookie->bad_symtab)
13730 rcookie->rel = rcookie->rels;
13732 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13734 unsigned long r_symndx;
13736 if (! rcookie->bad_symtab)
13737 if (rcookie->rel->r_offset > offset)
13739 if (rcookie->rel->r_offset != offset)
13742 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13743 if (r_symndx == STN_UNDEF)
13746 if (r_symndx >= rcookie->locsymcount
13747 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13749 struct elf_link_hash_entry *h;
13751 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13753 while (h->root.type == bfd_link_hash_indirect
13754 || h->root.type == bfd_link_hash_warning)
13755 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13757 if ((h->root.type == bfd_link_hash_defined
13758 || h->root.type == bfd_link_hash_defweak)
13759 && (h->root.u.def.section->owner != rcookie->abfd
13760 || h->root.u.def.section->kept_section != NULL
13761 || discarded_section (h->root.u.def.section)))
13766 /* It's not a relocation against a global symbol,
13767 but it could be a relocation against a local
13768 symbol for a discarded section. */
13770 Elf_Internal_Sym *isym;
13772 /* Need to: get the symbol; get the section. */
13773 isym = &rcookie->locsyms[r_symndx];
13774 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13776 && (isec->kept_section != NULL
13777 || discarded_section (isec)))
13785 /* Discard unneeded references to discarded sections.
13786 Returns -1 on error, 1 if any section's size was changed, 0 if
13787 nothing changed. This function assumes that the relocations are in
13788 sorted order, which is true for all known assemblers. */
13791 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13793 struct elf_reloc_cookie cookie;
13798 if (info->traditional_format
13799 || !is_elf_hash_table (info->hash))
13802 o = bfd_get_section_by_name (output_bfd, ".stab");
13807 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13810 || i->reloc_count == 0
13811 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13815 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13818 if (!init_reloc_cookie_for_section (&cookie, info, i))
13821 if (_bfd_discard_section_stabs (abfd, i,
13822 elf_section_data (i)->sec_info,
13823 bfd_elf_reloc_symbol_deleted_p,
13827 fini_reloc_cookie_for_section (&cookie, i);
13832 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13833 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13837 int eh_changed = 0;
13839 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13845 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13848 if (!init_reloc_cookie_for_section (&cookie, info, i))
13851 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13852 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13853 bfd_elf_reloc_symbol_deleted_p,
13857 if (i->size != i->rawsize)
13861 fini_reloc_cookie_for_section (&cookie, i);
13864 elf_link_hash_traverse (elf_hash_table (info),
13865 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13868 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13870 const struct elf_backend_data *bed;
13873 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13875 s = abfd->sections;
13876 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13879 bed = get_elf_backend_data (abfd);
13881 if (bed->elf_backend_discard_info != NULL)
13883 if (!init_reloc_cookie (&cookie, info, abfd))
13886 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13889 fini_reloc_cookie (&cookie, abfd);
13893 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13894 _bfd_elf_end_eh_frame_parsing (info);
13896 if (info->eh_frame_hdr_type
13897 && !bfd_link_relocatable (info)
13898 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13905 _bfd_elf_section_already_linked (bfd *abfd,
13907 struct bfd_link_info *info)
13910 const char *name, *key;
13911 struct bfd_section_already_linked *l;
13912 struct bfd_section_already_linked_hash_entry *already_linked_list;
13914 if (sec->output_section == bfd_abs_section_ptr)
13917 flags = sec->flags;
13919 /* Return if it isn't a linkonce section. A comdat group section
13920 also has SEC_LINK_ONCE set. */
13921 if ((flags & SEC_LINK_ONCE) == 0)
13924 /* Don't put group member sections on our list of already linked
13925 sections. They are handled as a group via their group section. */
13926 if (elf_sec_group (sec) != NULL)
13929 /* For a SHT_GROUP section, use the group signature as the key. */
13931 if ((flags & SEC_GROUP) != 0
13932 && elf_next_in_group (sec) != NULL
13933 && elf_group_name (elf_next_in_group (sec)) != NULL)
13934 key = elf_group_name (elf_next_in_group (sec));
13937 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13938 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13939 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13942 /* Must be a user linkonce section that doesn't follow gcc's
13943 naming convention. In this case we won't be matching
13944 single member groups. */
13948 already_linked_list = bfd_section_already_linked_table_lookup (key);
13950 for (l = already_linked_list->entry; l != NULL; l = l->next)
13952 /* We may have 2 different types of sections on the list: group
13953 sections with a signature of <key> (<key> is some string),
13954 and linkonce sections named .gnu.linkonce.<type>.<key>.
13955 Match like sections. LTO plugin sections are an exception.
13956 They are always named .gnu.linkonce.t.<key> and match either
13957 type of section. */
13958 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13959 && ((flags & SEC_GROUP) != 0
13960 || strcmp (name, l->sec->name) == 0))
13961 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13963 /* The section has already been linked. See if we should
13964 issue a warning. */
13965 if (!_bfd_handle_already_linked (sec, l, info))
13968 if (flags & SEC_GROUP)
13970 asection *first = elf_next_in_group (sec);
13971 asection *s = first;
13975 s->output_section = bfd_abs_section_ptr;
13976 /* Record which group discards it. */
13977 s->kept_section = l->sec;
13978 s = elf_next_in_group (s);
13979 /* These lists are circular. */
13989 /* A single member comdat group section may be discarded by a
13990 linkonce section and vice versa. */
13991 if ((flags & SEC_GROUP) != 0)
13993 asection *first = elf_next_in_group (sec);
13995 if (first != NULL && elf_next_in_group (first) == first)
13996 /* Check this single member group against linkonce sections. */
13997 for (l = already_linked_list->entry; l != NULL; l = l->next)
13998 if ((l->sec->flags & SEC_GROUP) == 0
13999 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14001 first->output_section = bfd_abs_section_ptr;
14002 first->kept_section = l->sec;
14003 sec->output_section = bfd_abs_section_ptr;
14008 /* Check this linkonce section against single member groups. */
14009 for (l = already_linked_list->entry; l != NULL; l = l->next)
14010 if (l->sec->flags & SEC_GROUP)
14012 asection *first = elf_next_in_group (l->sec);
14015 && elf_next_in_group (first) == first
14016 && bfd_elf_match_symbols_in_sections (first, sec, info))
14018 sec->output_section = bfd_abs_section_ptr;
14019 sec->kept_section = first;
14024 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14025 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14026 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14027 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14028 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14029 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14030 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14031 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14032 The reverse order cannot happen as there is never a bfd with only the
14033 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14034 matter as here were are looking only for cross-bfd sections. */
14036 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14037 for (l = already_linked_list->entry; l != NULL; l = l->next)
14038 if ((l->sec->flags & SEC_GROUP) == 0
14039 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14041 if (abfd != l->sec->owner)
14042 sec->output_section = bfd_abs_section_ptr;
14046 /* This is the first section with this name. Record it. */
14047 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14048 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14049 return sec->output_section == bfd_abs_section_ptr;
14053 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14055 return sym->st_shndx == SHN_COMMON;
14059 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14065 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14067 return bfd_com_section_ptr;
14071 _bfd_elf_default_got_elt_size (bfd *abfd,
14072 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14073 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14074 bfd *ibfd ATTRIBUTE_UNUSED,
14075 unsigned long symndx ATTRIBUTE_UNUSED)
14077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14078 return bed->s->arch_size / 8;
14081 /* Routines to support the creation of dynamic relocs. */
14083 /* Returns the name of the dynamic reloc section associated with SEC. */
14085 static const char *
14086 get_dynamic_reloc_section_name (bfd * abfd,
14088 bfd_boolean is_rela)
14091 const char *old_name = bfd_get_section_name (NULL, sec);
14092 const char *prefix = is_rela ? ".rela" : ".rel";
14094 if (old_name == NULL)
14097 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14098 sprintf (name, "%s%s", prefix, old_name);
14103 /* Returns the dynamic reloc section associated with SEC.
14104 If necessary compute the name of the dynamic reloc section based
14105 on SEC's name (looked up in ABFD's string table) and the setting
14109 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14111 bfd_boolean is_rela)
14113 asection * reloc_sec = elf_section_data (sec)->sreloc;
14115 if (reloc_sec == NULL)
14117 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14121 reloc_sec = bfd_get_linker_section (abfd, name);
14123 if (reloc_sec != NULL)
14124 elf_section_data (sec)->sreloc = reloc_sec;
14131 /* Returns the dynamic reloc section associated with SEC. If the
14132 section does not exist it is created and attached to the DYNOBJ
14133 bfd and stored in the SRELOC field of SEC's elf_section_data
14136 ALIGNMENT is the alignment for the newly created section and
14137 IS_RELA defines whether the name should be .rela.<SEC's name>
14138 or .rel.<SEC's name>. The section name is looked up in the
14139 string table associated with ABFD. */
14142 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14144 unsigned int alignment,
14146 bfd_boolean is_rela)
14148 asection * reloc_sec = elf_section_data (sec)->sreloc;
14150 if (reloc_sec == NULL)
14152 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14157 reloc_sec = bfd_get_linker_section (dynobj, name);
14159 if (reloc_sec == NULL)
14161 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14162 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14163 if ((sec->flags & SEC_ALLOC) != 0)
14164 flags |= SEC_ALLOC | SEC_LOAD;
14166 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14167 if (reloc_sec != NULL)
14169 /* _bfd_elf_get_sec_type_attr chooses a section type by
14170 name. Override as it may be wrong, eg. for a user
14171 section named "auto" we'll get ".relauto" which is
14172 seen to be a .rela section. */
14173 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14174 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14179 elf_section_data (sec)->sreloc = reloc_sec;
14185 /* Copy the ELF symbol type and other attributes for a linker script
14186 assignment from HSRC to HDEST. Generally this should be treated as
14187 if we found a strong non-dynamic definition for HDEST (except that
14188 ld ignores multiple definition errors). */
14190 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14191 struct bfd_link_hash_entry *hdest,
14192 struct bfd_link_hash_entry *hsrc)
14194 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14195 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14196 Elf_Internal_Sym isym;
14198 ehdest->type = ehsrc->type;
14199 ehdest->target_internal = ehsrc->target_internal;
14201 isym.st_other = ehsrc->other;
14202 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14205 /* Append a RELA relocation REL to section S in BFD. */
14208 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14211 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14212 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14213 bed->s->swap_reloca_out (abfd, rel, loc);
14216 /* Append a REL relocation REL to section S in BFD. */
14219 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14221 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14222 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14223 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14224 bed->s->swap_reloc_out (abfd, rel, loc);
14227 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14229 struct bfd_link_hash_entry *
14230 bfd_elf_define_start_stop (struct bfd_link_info *info,
14231 const char *symbol, asection *sec)
14233 struct bfd_link_hash_entry *h;
14235 h = bfd_generic_define_start_stop (info, symbol, sec);
14238 struct elf_link_hash_entry *eh = (struct elf_link_hash_entry *) h;
14239 eh->start_stop = 1;
14240 eh->u2.start_stop_section = sec;
14241 _bfd_elf_link_hash_hide_symbol (info, eh, TRUE);
14242 if (ELF_ST_VISIBILITY (eh->other) != STV_INTERNAL)
14243 eh->other = ((eh->other & ~ELF_ST_VISIBILITY (-1))