1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* Mark if a symbol has a definition in a dynamic object or is
899 weak in all dynamic objects. */
902 _bfd_elf_mark_dynamic_def_weak (struct elf_link_hash_entry *h,
903 asection *sec, int bind)
907 if (!bfd_is_und_section (sec))
911 /* Check if this symbol is weak in all dynamic objects. If it
912 is the first time we see it in a dynamic object, we mark
913 if it is weak. Otherwise, we clear it. */
916 if (bind == STB_WEAK)
919 else if (bind != STB_WEAK)
925 /* This function is called when we want to define a new symbol. It
926 handles the various cases which arise when we find a definition in
927 a dynamic object, or when there is already a definition in a
928 dynamic object. The new symbol is described by NAME, SYM, PSEC,
929 and PVALUE. We set SYM_HASH to the hash table entry. We set
930 OVERRIDE if the old symbol is overriding a new definition. We set
931 TYPE_CHANGE_OK if it is OK for the type to change. We set
932 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
933 change, we mean that we shouldn't warn if the type or size does
934 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
935 object is overridden by a regular object. */
938 _bfd_elf_merge_symbol (bfd *abfd,
939 struct bfd_link_info *info,
941 Elf_Internal_Sym *sym,
944 bfd_boolean *pold_weak,
945 unsigned int *pold_alignment,
946 struct elf_link_hash_entry **sym_hash,
948 bfd_boolean *override,
949 bfd_boolean *type_change_ok,
950 bfd_boolean *size_change_ok)
952 asection *sec, *oldsec;
953 struct elf_link_hash_entry *h;
954 struct elf_link_hash_entry *hi;
955 struct elf_link_hash_entry *flip;
958 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
959 bfd_boolean newweak, oldweak, newfunc, oldfunc;
960 const struct elf_backend_data *bed;
966 bind = ELF_ST_BIND (sym->st_info);
968 /* Silently discard TLS symbols from --just-syms. There's no way to
969 combine a static TLS block with a new TLS block for this executable. */
970 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
971 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
977 if (! bfd_is_und_section (sec))
978 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
980 h = ((struct elf_link_hash_entry *)
981 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
986 bed = get_elf_backend_data (abfd);
988 /* This code is for coping with dynamic objects, and is only useful
989 if we are doing an ELF link. */
990 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
993 /* For merging, we only care about real symbols. But we need to make
994 sure that indirect symbol dynamic flags are updated. */
996 while (h->root.type == bfd_link_hash_indirect
997 || h->root.type == bfd_link_hash_warning)
998 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1000 /* We have to check it for every instance since the first few may be
1001 refereences and not all compilers emit symbol type for undefined
1003 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1005 /* If we just created the symbol, mark it as being an ELF symbol.
1006 Other than that, there is nothing to do--there is no merge issue
1007 with a newly defined symbol--so we just return. */
1009 if (h->root.type == bfd_link_hash_new)
1015 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1018 switch (h->root.type)
1025 case bfd_link_hash_undefined:
1026 case bfd_link_hash_undefweak:
1027 oldbfd = h->root.u.undef.abfd;
1031 case bfd_link_hash_defined:
1032 case bfd_link_hash_defweak:
1033 oldbfd = h->root.u.def.section->owner;
1034 oldsec = h->root.u.def.section;
1037 case bfd_link_hash_common:
1038 oldbfd = h->root.u.c.p->section->owner;
1039 oldsec = h->root.u.c.p->section;
1043 /* Differentiate strong and weak symbols. */
1044 newweak = bind == STB_WEAK;
1045 oldweak = (h->root.type == bfd_link_hash_defweak
1046 || h->root.type == bfd_link_hash_undefweak);
1048 *pold_weak = oldweak;
1050 /* In cases involving weak versioned symbols, we may wind up trying
1051 to merge a symbol with itself. Catch that here, to avoid the
1052 confusion that results if we try to override a symbol with
1053 itself. The additional tests catch cases like
1054 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1055 dynamic object, which we do want to handle here. */
1057 && (newweak || oldweak)
1058 && ((abfd->flags & DYNAMIC) == 0
1059 || !h->def_regular))
1062 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1063 respectively, is from a dynamic object. */
1065 newdyn = (abfd->flags & DYNAMIC) != 0;
1069 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1070 else if (oldsec != NULL)
1072 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1073 indices used by MIPS ELF. */
1074 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1077 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1078 respectively, appear to be a definition rather than reference. */
1080 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1082 olddef = (h->root.type != bfd_link_hash_undefined
1083 && h->root.type != bfd_link_hash_undefweak
1084 && h->root.type != bfd_link_hash_common);
1086 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1087 respectively, appear to be a function. */
1089 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1090 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1092 oldfunc = (h->type != STT_NOTYPE
1093 && bed->is_function_type (h->type));
1095 /* When we try to create a default indirect symbol from the dynamic
1096 definition with the default version, we skip it if its type and
1097 the type of existing regular definition mismatch. We only do it
1098 if the existing regular definition won't be dynamic. */
1099 if (pold_alignment == NULL
1101 && !info->export_dynamic
1106 && (olddef || h->root.type == bfd_link_hash_common)
1107 && ELF_ST_TYPE (sym->st_info) != h->type
1108 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1109 && h->type != STT_NOTYPE
1110 && !(newfunc && oldfunc))
1116 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1117 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1118 *type_change_ok = TRUE;
1120 /* Check TLS symbol. We don't check undefined symbol introduced by
1122 else if (oldbfd != NULL
1123 && ELF_ST_TYPE (sym->st_info) != h->type
1124 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1127 bfd_boolean ntdef, tdef;
1128 asection *ntsec, *tsec;
1130 if (h->type == STT_TLS)
1150 (*_bfd_error_handler)
1151 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1152 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1153 else if (!tdef && !ntdef)
1154 (*_bfd_error_handler)
1155 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1156 tbfd, ntbfd, h->root.root.string);
1158 (*_bfd_error_handler)
1159 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1160 tbfd, tsec, ntbfd, h->root.root.string);
1162 (*_bfd_error_handler)
1163 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1164 tbfd, ntbfd, ntsec, h->root.root.string);
1166 bfd_set_error (bfd_error_bad_value);
1170 /* We need to remember if a symbol has a definition in a dynamic
1171 object or is weak in all dynamic objects. Internal and hidden
1172 visibility will make it unavailable to dynamic objects. */
1175 _bfd_elf_mark_dynamic_def_weak (h, sec, bind);
1177 _bfd_elf_mark_dynamic_def_weak (hi, sec, bind);
1180 /* If the old symbol has non-default visibility, we ignore the new
1181 definition from a dynamic object. */
1183 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1184 && !bfd_is_und_section (sec))
1187 /* Make sure this symbol is dynamic. */
1189 hi->ref_dynamic = 1;
1190 /* A protected symbol has external availability. Make sure it is
1191 recorded as dynamic.
1193 FIXME: Should we check type and size for protected symbol? */
1194 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1195 return bfd_elf_link_record_dynamic_symbol (info, h);
1200 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1203 /* If the new symbol with non-default visibility comes from a
1204 relocatable file and the old definition comes from a dynamic
1205 object, we remove the old definition. */
1206 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1208 /* Handle the case where the old dynamic definition is
1209 default versioned. We need to copy the symbol info from
1210 the symbol with default version to the normal one if it
1211 was referenced before. */
1214 struct elf_link_hash_entry *vh = *sym_hash;
1216 vh->root.type = h->root.type;
1217 h->root.type = bfd_link_hash_indirect;
1218 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1220 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1221 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1223 /* If the new symbol is hidden or internal, completely undo
1224 any dynamic link state. */
1225 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1226 h->forced_local = 0;
1234 /* FIXME: Should we check type and size for protected symbol? */
1244 /* If the old symbol was undefined before, then it will still be
1245 on the undefs list. If the new symbol is undefined or
1246 common, we can't make it bfd_link_hash_new here, because new
1247 undefined or common symbols will be added to the undefs list
1248 by _bfd_generic_link_add_one_symbol. Symbols may not be
1249 added twice to the undefs list. Also, if the new symbol is
1250 undefweak then we don't want to lose the strong undef. */
1251 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1253 h->root.type = bfd_link_hash_undefined;
1254 h->root.u.undef.abfd = abfd;
1258 h->root.type = bfd_link_hash_new;
1259 h->root.u.undef.abfd = NULL;
1262 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1264 /* If the new symbol is hidden or internal, completely undo
1265 any dynamic link state. */
1266 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1267 h->forced_local = 0;
1274 /* FIXME: Should we check type and size for protected symbol? */
1280 if (bind == STB_GNU_UNIQUE)
1281 h->unique_global = 1;
1283 /* If a new weak symbol definition comes from a regular file and the
1284 old symbol comes from a dynamic library, we treat the new one as
1285 strong. Similarly, an old weak symbol definition from a regular
1286 file is treated as strong when the new symbol comes from a dynamic
1287 library. Further, an old weak symbol from a dynamic library is
1288 treated as strong if the new symbol is from a dynamic library.
1289 This reflects the way glibc's ld.so works.
1291 Do this before setting *type_change_ok or *size_change_ok so that
1292 we warn properly when dynamic library symbols are overridden. */
1294 if (newdef && !newdyn && olddyn)
1296 if (olddef && newdyn)
1299 /* Allow changes between different types of function symbol. */
1300 if (newfunc && oldfunc)
1301 *type_change_ok = TRUE;
1303 /* It's OK to change the type if either the existing symbol or the
1304 new symbol is weak. A type change is also OK if the old symbol
1305 is undefined and the new symbol is defined. */
1310 && h->root.type == bfd_link_hash_undefined))
1311 *type_change_ok = TRUE;
1313 /* It's OK to change the size if either the existing symbol or the
1314 new symbol is weak, or if the old symbol is undefined. */
1317 || h->root.type == bfd_link_hash_undefined)
1318 *size_change_ok = TRUE;
1320 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1321 symbol, respectively, appears to be a common symbol in a dynamic
1322 object. If a symbol appears in an uninitialized section, and is
1323 not weak, and is not a function, then it may be a common symbol
1324 which was resolved when the dynamic object was created. We want
1325 to treat such symbols specially, because they raise special
1326 considerations when setting the symbol size: if the symbol
1327 appears as a common symbol in a regular object, and the size in
1328 the regular object is larger, we must make sure that we use the
1329 larger size. This problematic case can always be avoided in C,
1330 but it must be handled correctly when using Fortran shared
1333 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1334 likewise for OLDDYNCOMMON and OLDDEF.
1336 Note that this test is just a heuristic, and that it is quite
1337 possible to have an uninitialized symbol in a shared object which
1338 is really a definition, rather than a common symbol. This could
1339 lead to some minor confusion when the symbol really is a common
1340 symbol in some regular object. However, I think it will be
1346 && (sec->flags & SEC_ALLOC) != 0
1347 && (sec->flags & SEC_LOAD) == 0
1350 newdyncommon = TRUE;
1352 newdyncommon = FALSE;
1356 && h->root.type == bfd_link_hash_defined
1358 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1359 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1362 olddyncommon = TRUE;
1364 olddyncommon = FALSE;
1366 /* We now know everything about the old and new symbols. We ask the
1367 backend to check if we can merge them. */
1368 if (bed->merge_symbol
1369 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1370 pold_alignment, skip, override,
1371 type_change_ok, size_change_ok,
1372 &newdyn, &newdef, &newdyncommon, &newweak,
1374 &olddyn, &olddef, &olddyncommon, &oldweak,
1378 /* If both the old and the new symbols look like common symbols in a
1379 dynamic object, set the size of the symbol to the larger of the
1384 && sym->st_size != h->size)
1386 /* Since we think we have two common symbols, issue a multiple
1387 common warning if desired. Note that we only warn if the
1388 size is different. If the size is the same, we simply let
1389 the old symbol override the new one as normally happens with
1390 symbols defined in dynamic objects. */
1392 if (! ((*info->callbacks->multiple_common)
1393 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1396 if (sym->st_size > h->size)
1397 h->size = sym->st_size;
1399 *size_change_ok = TRUE;
1402 /* If we are looking at a dynamic object, and we have found a
1403 definition, we need to see if the symbol was already defined by
1404 some other object. If so, we want to use the existing
1405 definition, and we do not want to report a multiple symbol
1406 definition error; we do this by clobbering *PSEC to be
1407 bfd_und_section_ptr.
1409 We treat a common symbol as a definition if the symbol in the
1410 shared library is a function, since common symbols always
1411 represent variables; this can cause confusion in principle, but
1412 any such confusion would seem to indicate an erroneous program or
1413 shared library. We also permit a common symbol in a regular
1414 object to override a weak symbol in a shared object. */
1419 || (h->root.type == bfd_link_hash_common
1420 && (newweak || newfunc))))
1424 newdyncommon = FALSE;
1426 *psec = sec = bfd_und_section_ptr;
1427 *size_change_ok = TRUE;
1429 /* If we get here when the old symbol is a common symbol, then
1430 we are explicitly letting it override a weak symbol or
1431 function in a dynamic object, and we don't want to warn about
1432 a type change. If the old symbol is a defined symbol, a type
1433 change warning may still be appropriate. */
1435 if (h->root.type == bfd_link_hash_common)
1436 *type_change_ok = TRUE;
1439 /* Handle the special case of an old common symbol merging with a
1440 new symbol which looks like a common symbol in a shared object.
1441 We change *PSEC and *PVALUE to make the new symbol look like a
1442 common symbol, and let _bfd_generic_link_add_one_symbol do the
1446 && h->root.type == bfd_link_hash_common)
1450 newdyncommon = FALSE;
1451 *pvalue = sym->st_size;
1452 *psec = sec = bed->common_section (oldsec);
1453 *size_change_ok = TRUE;
1456 /* Skip weak definitions of symbols that are already defined. */
1457 if (newdef && olddef && newweak)
1459 /* Don't skip new non-IR weak syms. */
1460 if (!(oldbfd != NULL
1461 && (oldbfd->flags & BFD_PLUGIN) != 0
1462 && (abfd->flags & BFD_PLUGIN) == 0))
1465 /* Merge st_other. If the symbol already has a dynamic index,
1466 but visibility says it should not be visible, turn it into a
1468 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1469 if (h->dynindx != -1)
1470 switch (ELF_ST_VISIBILITY (h->other))
1474 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1479 /* If the old symbol is from a dynamic object, and the new symbol is
1480 a definition which is not from a dynamic object, then the new
1481 symbol overrides the old symbol. Symbols from regular files
1482 always take precedence over symbols from dynamic objects, even if
1483 they are defined after the dynamic object in the link.
1485 As above, we again permit a common symbol in a regular object to
1486 override a definition in a shared object if the shared object
1487 symbol is a function or is weak. */
1492 || (bfd_is_com_section (sec)
1493 && (oldweak || oldfunc)))
1498 /* Change the hash table entry to undefined, and let
1499 _bfd_generic_link_add_one_symbol do the right thing with the
1502 h->root.type = bfd_link_hash_undefined;
1503 h->root.u.undef.abfd = h->root.u.def.section->owner;
1504 *size_change_ok = TRUE;
1507 olddyncommon = FALSE;
1509 /* We again permit a type change when a common symbol may be
1510 overriding a function. */
1512 if (bfd_is_com_section (sec))
1516 /* If a common symbol overrides a function, make sure
1517 that it isn't defined dynamically nor has type
1520 h->type = STT_NOTYPE;
1522 *type_change_ok = TRUE;
1525 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1528 /* This union may have been set to be non-NULL when this symbol
1529 was seen in a dynamic object. We must force the union to be
1530 NULL, so that it is correct for a regular symbol. */
1531 h->verinfo.vertree = NULL;
1534 /* Handle the special case of a new common symbol merging with an
1535 old symbol that looks like it might be a common symbol defined in
1536 a shared object. Note that we have already handled the case in
1537 which a new common symbol should simply override the definition
1538 in the shared library. */
1541 && bfd_is_com_section (sec)
1544 /* It would be best if we could set the hash table entry to a
1545 common symbol, but we don't know what to use for the section
1546 or the alignment. */
1547 if (! ((*info->callbacks->multiple_common)
1548 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1551 /* If the presumed common symbol in the dynamic object is
1552 larger, pretend that the new symbol has its size. */
1554 if (h->size > *pvalue)
1557 /* We need to remember the alignment required by the symbol
1558 in the dynamic object. */
1559 BFD_ASSERT (pold_alignment);
1560 *pold_alignment = h->root.u.def.section->alignment_power;
1563 olddyncommon = FALSE;
1565 h->root.type = bfd_link_hash_undefined;
1566 h->root.u.undef.abfd = h->root.u.def.section->owner;
1568 *size_change_ok = TRUE;
1569 *type_change_ok = TRUE;
1571 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1574 h->verinfo.vertree = NULL;
1579 /* Handle the case where we had a versioned symbol in a dynamic
1580 library and now find a definition in a normal object. In this
1581 case, we make the versioned symbol point to the normal one. */
1582 flip->root.type = h->root.type;
1583 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1584 h->root.type = bfd_link_hash_indirect;
1585 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1586 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1590 flip->ref_dynamic = 1;
1597 /* This function is called to create an indirect symbol from the
1598 default for the symbol with the default version if needed. The
1599 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1600 set DYNSYM if the new indirect symbol is dynamic. */
1603 _bfd_elf_add_default_symbol (bfd *abfd,
1604 struct bfd_link_info *info,
1605 struct elf_link_hash_entry *h,
1607 Elf_Internal_Sym *sym,
1610 bfd_boolean *dynsym,
1611 bfd_boolean override)
1613 bfd_boolean type_change_ok;
1614 bfd_boolean size_change_ok;
1617 struct elf_link_hash_entry *hi;
1618 struct bfd_link_hash_entry *bh;
1619 const struct elf_backend_data *bed;
1620 bfd_boolean collect;
1621 bfd_boolean dynamic;
1623 size_t len, shortlen;
1626 /* If this symbol has a version, and it is the default version, we
1627 create an indirect symbol from the default name to the fully
1628 decorated name. This will cause external references which do not
1629 specify a version to be bound to this version of the symbol. */
1630 p = strchr (name, ELF_VER_CHR);
1631 if (p == NULL || p[1] != ELF_VER_CHR)
1636 /* We are overridden by an old definition. We need to check if we
1637 need to create the indirect symbol from the default name. */
1638 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1640 BFD_ASSERT (hi != NULL);
1643 while (hi->root.type == bfd_link_hash_indirect
1644 || hi->root.type == bfd_link_hash_warning)
1646 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1652 bed = get_elf_backend_data (abfd);
1653 collect = bed->collect;
1654 dynamic = (abfd->flags & DYNAMIC) != 0;
1656 shortlen = p - name;
1657 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1658 if (shortname == NULL)
1660 memcpy (shortname, name, shortlen);
1661 shortname[shortlen] = '\0';
1663 /* We are going to create a new symbol. Merge it with any existing
1664 symbol with this name. For the purposes of the merge, act as
1665 though we were defining the symbol we just defined, although we
1666 actually going to define an indirect symbol. */
1667 type_change_ok = FALSE;
1668 size_change_ok = FALSE;
1670 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1671 NULL, NULL, &hi, &skip, &override,
1672 &type_change_ok, &size_change_ok))
1681 if (! (_bfd_generic_link_add_one_symbol
1682 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1683 0, name, FALSE, collect, &bh)))
1685 hi = (struct elf_link_hash_entry *) bh;
1689 /* In this case the symbol named SHORTNAME is overriding the
1690 indirect symbol we want to add. We were planning on making
1691 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1692 is the name without a version. NAME is the fully versioned
1693 name, and it is the default version.
1695 Overriding means that we already saw a definition for the
1696 symbol SHORTNAME in a regular object, and it is overriding
1697 the symbol defined in the dynamic object.
1699 When this happens, we actually want to change NAME, the
1700 symbol we just added, to refer to SHORTNAME. This will cause
1701 references to NAME in the shared object to become references
1702 to SHORTNAME in the regular object. This is what we expect
1703 when we override a function in a shared object: that the
1704 references in the shared object will be mapped to the
1705 definition in the regular object. */
1707 while (hi->root.type == bfd_link_hash_indirect
1708 || hi->root.type == bfd_link_hash_warning)
1709 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 h->root.type = bfd_link_hash_indirect;
1712 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1716 hi->ref_dynamic = 1;
1720 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1725 /* Now set HI to H, so that the following code will set the
1726 other fields correctly. */
1730 /* Check if HI is a warning symbol. */
1731 if (hi->root.type == bfd_link_hash_warning)
1732 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1734 /* If there is a duplicate definition somewhere, then HI may not
1735 point to an indirect symbol. We will have reported an error to
1736 the user in that case. */
1738 if (hi->root.type == bfd_link_hash_indirect)
1740 struct elf_link_hash_entry *ht;
1742 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1743 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1745 /* See if the new flags lead us to realize that the symbol must
1751 if (! info->executable
1758 if (hi->ref_regular)
1764 /* We also need to define an indirection from the nondefault version
1768 len = strlen (name);
1769 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1770 if (shortname == NULL)
1772 memcpy (shortname, name, shortlen);
1773 memcpy (shortname + shortlen, p + 1, len - shortlen);
1775 /* Once again, merge with any existing symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1779 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1780 NULL, NULL, &hi, &skip, &override,
1781 &type_change_ok, &size_change_ok))
1789 /* Here SHORTNAME is a versioned name, so we don't expect to see
1790 the type of override we do in the case above unless it is
1791 overridden by a versioned definition. */
1792 if (hi->root.type != bfd_link_hash_defined
1793 && hi->root.type != bfd_link_hash_defweak)
1794 (*_bfd_error_handler)
1795 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1801 if (! (_bfd_generic_link_add_one_symbol
1802 (info, abfd, shortname, BSF_INDIRECT,
1803 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1805 hi = (struct elf_link_hash_entry *) bh;
1807 /* If there is a duplicate definition somewhere, then HI may not
1808 point to an indirect symbol. We will have reported an error
1809 to the user in that case. */
1811 if (hi->root.type == bfd_link_hash_indirect)
1813 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1815 /* See if the new flags lead us to realize that the symbol
1821 if (! info->executable
1827 if (hi->ref_regular)
1837 /* This routine is used to export all defined symbols into the dynamic
1838 symbol table. It is called via elf_link_hash_traverse. */
1841 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1843 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1845 /* Ignore indirect symbols. These are added by the versioning code. */
1846 if (h->root.type == bfd_link_hash_indirect)
1849 /* Ignore this if we won't export it. */
1850 if (!eif->info->export_dynamic && !h->dynamic)
1853 if (h->dynindx == -1
1854 && (h->def_regular || h->ref_regular)
1855 && ! bfd_hide_sym_by_version (eif->info->version_info,
1856 h->root.root.string))
1858 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1868 /* Look through the symbols which are defined in other shared
1869 libraries and referenced here. Update the list of version
1870 dependencies. This will be put into the .gnu.version_r section.
1871 This function is called via elf_link_hash_traverse. */
1874 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1877 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1878 Elf_Internal_Verneed *t;
1879 Elf_Internal_Vernaux *a;
1882 /* We only care about symbols defined in shared objects with version
1887 || h->verinfo.verdef == NULL)
1890 /* See if we already know about this version. */
1891 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1895 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1898 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1899 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1905 /* This is a new version. Add it to tree we are building. */
1910 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1913 rinfo->failed = TRUE;
1917 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1918 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1919 elf_tdata (rinfo->info->output_bfd)->verref = t;
1923 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1926 rinfo->failed = TRUE;
1930 /* Note that we are copying a string pointer here, and testing it
1931 above. If bfd_elf_string_from_elf_section is ever changed to
1932 discard the string data when low in memory, this will have to be
1934 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1936 a->vna_flags = h->verinfo.verdef->vd_flags;
1937 a->vna_nextptr = t->vn_auxptr;
1939 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1942 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1949 /* Figure out appropriate versions for all the symbols. We may not
1950 have the version number script until we have read all of the input
1951 files, so until that point we don't know which symbols should be
1952 local. This function is called via elf_link_hash_traverse. */
1955 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1957 struct elf_info_failed *sinfo;
1958 struct bfd_link_info *info;
1959 const struct elf_backend_data *bed;
1960 struct elf_info_failed eif;
1964 sinfo = (struct elf_info_failed *) data;
1967 /* Fix the symbol flags. */
1970 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1973 sinfo->failed = TRUE;
1977 /* We only need version numbers for symbols defined in regular
1979 if (!h->def_regular)
1982 bed = get_elf_backend_data (info->output_bfd);
1983 p = strchr (h->root.root.string, ELF_VER_CHR);
1984 if (p != NULL && h->verinfo.vertree == NULL)
1986 struct bfd_elf_version_tree *t;
1991 /* There are two consecutive ELF_VER_CHR characters if this is
1992 not a hidden symbol. */
1994 if (*p == ELF_VER_CHR)
2000 /* If there is no version string, we can just return out. */
2008 /* Look for the version. If we find it, it is no longer weak. */
2009 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2011 if (strcmp (t->name, p) == 0)
2015 struct bfd_elf_version_expr *d;
2017 len = p - h->root.root.string;
2018 alc = (char *) bfd_malloc (len);
2021 sinfo->failed = TRUE;
2024 memcpy (alc, h->root.root.string, len - 1);
2025 alc[len - 1] = '\0';
2026 if (alc[len - 2] == ELF_VER_CHR)
2027 alc[len - 2] = '\0';
2029 h->verinfo.vertree = t;
2033 if (t->globals.list != NULL)
2034 d = (*t->match) (&t->globals, NULL, alc);
2036 /* See if there is anything to force this symbol to
2038 if (d == NULL && t->locals.list != NULL)
2040 d = (*t->match) (&t->locals, NULL, alc);
2043 && ! info->export_dynamic)
2044 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2052 /* If we are building an application, we need to create a
2053 version node for this version. */
2054 if (t == NULL && info->executable)
2056 struct bfd_elf_version_tree **pp;
2059 /* If we aren't going to export this symbol, we don't need
2060 to worry about it. */
2061 if (h->dynindx == -1)
2065 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2068 sinfo->failed = TRUE;
2073 t->name_indx = (unsigned int) -1;
2077 /* Don't count anonymous version tag. */
2078 if (sinfo->info->version_info != NULL
2079 && sinfo->info->version_info->vernum == 0)
2081 for (pp = &sinfo->info->version_info;
2085 t->vernum = version_index;
2089 h->verinfo.vertree = t;
2093 /* We could not find the version for a symbol when
2094 generating a shared archive. Return an error. */
2095 (*_bfd_error_handler)
2096 (_("%B: version node not found for symbol %s"),
2097 info->output_bfd, h->root.root.string);
2098 bfd_set_error (bfd_error_bad_value);
2099 sinfo->failed = TRUE;
2107 /* If we don't have a version for this symbol, see if we can find
2109 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2114 = bfd_find_version_for_sym (sinfo->info->version_info,
2115 h->root.root.string, &hide);
2116 if (h->verinfo.vertree != NULL && hide)
2117 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2123 /* Read and swap the relocs from the section indicated by SHDR. This
2124 may be either a REL or a RELA section. The relocations are
2125 translated into RELA relocations and stored in INTERNAL_RELOCS,
2126 which should have already been allocated to contain enough space.
2127 The EXTERNAL_RELOCS are a buffer where the external form of the
2128 relocations should be stored.
2130 Returns FALSE if something goes wrong. */
2133 elf_link_read_relocs_from_section (bfd *abfd,
2135 Elf_Internal_Shdr *shdr,
2136 void *external_relocs,
2137 Elf_Internal_Rela *internal_relocs)
2139 const struct elf_backend_data *bed;
2140 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2141 const bfd_byte *erela;
2142 const bfd_byte *erelaend;
2143 Elf_Internal_Rela *irela;
2144 Elf_Internal_Shdr *symtab_hdr;
2147 /* Position ourselves at the start of the section. */
2148 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2151 /* Read the relocations. */
2152 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2155 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2156 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2158 bed = get_elf_backend_data (abfd);
2160 /* Convert the external relocations to the internal format. */
2161 if (shdr->sh_entsize == bed->s->sizeof_rel)
2162 swap_in = bed->s->swap_reloc_in;
2163 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2164 swap_in = bed->s->swap_reloca_in;
2167 bfd_set_error (bfd_error_wrong_format);
2171 erela = (const bfd_byte *) external_relocs;
2172 erelaend = erela + shdr->sh_size;
2173 irela = internal_relocs;
2174 while (erela < erelaend)
2178 (*swap_in) (abfd, erela, irela);
2179 r_symndx = ELF32_R_SYM (irela->r_info);
2180 if (bed->s->arch_size == 64)
2184 if ((size_t) r_symndx >= nsyms)
2186 (*_bfd_error_handler)
2187 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2188 " for offset 0x%lx in section `%A'"),
2190 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2191 bfd_set_error (bfd_error_bad_value);
2195 else if (r_symndx != STN_UNDEF)
2197 (*_bfd_error_handler)
2198 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2199 " when the object file has no symbol table"),
2201 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2202 bfd_set_error (bfd_error_bad_value);
2205 irela += bed->s->int_rels_per_ext_rel;
2206 erela += shdr->sh_entsize;
2212 /* Read and swap the relocs for a section O. They may have been
2213 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2214 not NULL, they are used as buffers to read into. They are known to
2215 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2216 the return value is allocated using either malloc or bfd_alloc,
2217 according to the KEEP_MEMORY argument. If O has two relocation
2218 sections (both REL and RELA relocations), then the REL_HDR
2219 relocations will appear first in INTERNAL_RELOCS, followed by the
2220 RELA_HDR relocations. */
2223 _bfd_elf_link_read_relocs (bfd *abfd,
2225 void *external_relocs,
2226 Elf_Internal_Rela *internal_relocs,
2227 bfd_boolean keep_memory)
2229 void *alloc1 = NULL;
2230 Elf_Internal_Rela *alloc2 = NULL;
2231 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2232 struct bfd_elf_section_data *esdo = elf_section_data (o);
2233 Elf_Internal_Rela *internal_rela_relocs;
2235 if (esdo->relocs != NULL)
2236 return esdo->relocs;
2238 if (o->reloc_count == 0)
2241 if (internal_relocs == NULL)
2245 size = o->reloc_count;
2246 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2248 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2250 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2251 if (internal_relocs == NULL)
2255 if (external_relocs == NULL)
2257 bfd_size_type size = 0;
2260 size += esdo->rel.hdr->sh_size;
2262 size += esdo->rela.hdr->sh_size;
2264 alloc1 = bfd_malloc (size);
2267 external_relocs = alloc1;
2270 internal_rela_relocs = internal_relocs;
2273 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2277 external_relocs = (((bfd_byte *) external_relocs)
2278 + esdo->rel.hdr->sh_size);
2279 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2280 * bed->s->int_rels_per_ext_rel);
2284 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2286 internal_rela_relocs)))
2289 /* Cache the results for next time, if we can. */
2291 esdo->relocs = internal_relocs;
2296 /* Don't free alloc2, since if it was allocated we are passing it
2297 back (under the name of internal_relocs). */
2299 return internal_relocs;
2307 bfd_release (abfd, alloc2);
2314 /* Compute the size of, and allocate space for, REL_HDR which is the
2315 section header for a section containing relocations for O. */
2318 _bfd_elf_link_size_reloc_section (bfd *abfd,
2319 struct bfd_elf_section_reloc_data *reldata)
2321 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2323 /* That allows us to calculate the size of the section. */
2324 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2326 /* The contents field must last into write_object_contents, so we
2327 allocate it with bfd_alloc rather than malloc. Also since we
2328 cannot be sure that the contents will actually be filled in,
2329 we zero the allocated space. */
2330 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2331 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2334 if (reldata->hashes == NULL && reldata->count)
2336 struct elf_link_hash_entry **p;
2338 p = (struct elf_link_hash_entry **)
2339 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2343 reldata->hashes = p;
2349 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2350 originated from the section given by INPUT_REL_HDR) to the
2354 _bfd_elf_link_output_relocs (bfd *output_bfd,
2355 asection *input_section,
2356 Elf_Internal_Shdr *input_rel_hdr,
2357 Elf_Internal_Rela *internal_relocs,
2358 struct elf_link_hash_entry **rel_hash
2361 Elf_Internal_Rela *irela;
2362 Elf_Internal_Rela *irelaend;
2364 struct bfd_elf_section_reloc_data *output_reldata;
2365 asection *output_section;
2366 const struct elf_backend_data *bed;
2367 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2368 struct bfd_elf_section_data *esdo;
2370 output_section = input_section->output_section;
2372 bed = get_elf_backend_data (output_bfd);
2373 esdo = elf_section_data (output_section);
2374 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2376 output_reldata = &esdo->rel;
2377 swap_out = bed->s->swap_reloc_out;
2379 else if (esdo->rela.hdr
2380 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2382 output_reldata = &esdo->rela;
2383 swap_out = bed->s->swap_reloca_out;
2387 (*_bfd_error_handler)
2388 (_("%B: relocation size mismatch in %B section %A"),
2389 output_bfd, input_section->owner, input_section);
2390 bfd_set_error (bfd_error_wrong_format);
2394 erel = output_reldata->hdr->contents;
2395 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2396 irela = internal_relocs;
2397 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2398 * bed->s->int_rels_per_ext_rel);
2399 while (irela < irelaend)
2401 (*swap_out) (output_bfd, irela, erel);
2402 irela += bed->s->int_rels_per_ext_rel;
2403 erel += input_rel_hdr->sh_entsize;
2406 /* Bump the counter, so that we know where to add the next set of
2408 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2413 /* Make weak undefined symbols in PIE dynamic. */
2416 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2417 struct elf_link_hash_entry *h)
2421 && h->root.type == bfd_link_hash_undefweak)
2422 return bfd_elf_link_record_dynamic_symbol (info, h);
2427 /* Fix up the flags for a symbol. This handles various cases which
2428 can only be fixed after all the input files are seen. This is
2429 currently called by both adjust_dynamic_symbol and
2430 assign_sym_version, which is unnecessary but perhaps more robust in
2431 the face of future changes. */
2434 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2435 struct elf_info_failed *eif)
2437 const struct elf_backend_data *bed;
2439 /* If this symbol was mentioned in a non-ELF file, try to set
2440 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2441 permit a non-ELF file to correctly refer to a symbol defined in
2442 an ELF dynamic object. */
2445 while (h->root.type == bfd_link_hash_indirect)
2446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2448 if (h->root.type != bfd_link_hash_defined
2449 && h->root.type != bfd_link_hash_defweak)
2452 h->ref_regular_nonweak = 1;
2456 if (h->root.u.def.section->owner != NULL
2457 && (bfd_get_flavour (h->root.u.def.section->owner)
2458 == bfd_target_elf_flavour))
2461 h->ref_regular_nonweak = 1;
2467 if (h->dynindx == -1
2471 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2480 /* Unfortunately, NON_ELF is only correct if the symbol
2481 was first seen in a non-ELF file. Fortunately, if the symbol
2482 was first seen in an ELF file, we're probably OK unless the
2483 symbol was defined in a non-ELF file. Catch that case here.
2484 FIXME: We're still in trouble if the symbol was first seen in
2485 a dynamic object, and then later in a non-ELF regular object. */
2486 if ((h->root.type == bfd_link_hash_defined
2487 || h->root.type == bfd_link_hash_defweak)
2489 && (h->root.u.def.section->owner != NULL
2490 ? (bfd_get_flavour (h->root.u.def.section->owner)
2491 != bfd_target_elf_flavour)
2492 : (bfd_is_abs_section (h->root.u.def.section)
2493 && !h->def_dynamic)))
2497 /* Backend specific symbol fixup. */
2498 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2499 if (bed->elf_backend_fixup_symbol
2500 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2503 /* If this is a final link, and the symbol was defined as a common
2504 symbol in a regular object file, and there was no definition in
2505 any dynamic object, then the linker will have allocated space for
2506 the symbol in a common section but the DEF_REGULAR
2507 flag will not have been set. */
2508 if (h->root.type == bfd_link_hash_defined
2512 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2515 /* If -Bsymbolic was used (which means to bind references to global
2516 symbols to the definition within the shared object), and this
2517 symbol was defined in a regular object, then it actually doesn't
2518 need a PLT entry. Likewise, if the symbol has non-default
2519 visibility. If the symbol has hidden or internal visibility, we
2520 will force it local. */
2522 && eif->info->shared
2523 && is_elf_hash_table (eif->info->hash)
2524 && (SYMBOLIC_BIND (eif->info, h)
2525 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2528 bfd_boolean force_local;
2530 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2531 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2532 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2535 /* If a weak undefined symbol has non-default visibility, we also
2536 hide it from the dynamic linker. */
2537 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2538 && h->root.type == bfd_link_hash_undefweak)
2539 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2541 /* If this is a weak defined symbol in a dynamic object, and we know
2542 the real definition in the dynamic object, copy interesting flags
2543 over to the real definition. */
2544 if (h->u.weakdef != NULL)
2546 /* If the real definition is defined by a regular object file,
2547 don't do anything special. See the longer description in
2548 _bfd_elf_adjust_dynamic_symbol, below. */
2549 if (h->u.weakdef->def_regular)
2550 h->u.weakdef = NULL;
2553 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2555 while (h->root.type == bfd_link_hash_indirect)
2556 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2558 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2559 || h->root.type == bfd_link_hash_defweak);
2560 BFD_ASSERT (weakdef->def_dynamic);
2561 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2562 || weakdef->root.type == bfd_link_hash_defweak);
2563 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2570 /* Make the backend pick a good value for a dynamic symbol. This is
2571 called via elf_link_hash_traverse, and also calls itself
2575 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2577 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2579 const struct elf_backend_data *bed;
2581 if (! is_elf_hash_table (eif->info->hash))
2584 /* Ignore indirect symbols. These are added by the versioning code. */
2585 if (h->root.type == bfd_link_hash_indirect)
2588 /* Fix the symbol flags. */
2589 if (! _bfd_elf_fix_symbol_flags (h, eif))
2592 /* If this symbol does not require a PLT entry, and it is not
2593 defined by a dynamic object, or is not referenced by a regular
2594 object, ignore it. We do have to handle a weak defined symbol,
2595 even if no regular object refers to it, if we decided to add it
2596 to the dynamic symbol table. FIXME: Do we normally need to worry
2597 about symbols which are defined by one dynamic object and
2598 referenced by another one? */
2600 && h->type != STT_GNU_IFUNC
2604 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2606 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2610 /* If we've already adjusted this symbol, don't do it again. This
2611 can happen via a recursive call. */
2612 if (h->dynamic_adjusted)
2615 /* Don't look at this symbol again. Note that we must set this
2616 after checking the above conditions, because we may look at a
2617 symbol once, decide not to do anything, and then get called
2618 recursively later after REF_REGULAR is set below. */
2619 h->dynamic_adjusted = 1;
2621 /* If this is a weak definition, and we know a real definition, and
2622 the real symbol is not itself defined by a regular object file,
2623 then get a good value for the real definition. We handle the
2624 real symbol first, for the convenience of the backend routine.
2626 Note that there is a confusing case here. If the real definition
2627 is defined by a regular object file, we don't get the real symbol
2628 from the dynamic object, but we do get the weak symbol. If the
2629 processor backend uses a COPY reloc, then if some routine in the
2630 dynamic object changes the real symbol, we will not see that
2631 change in the corresponding weak symbol. This is the way other
2632 ELF linkers work as well, and seems to be a result of the shared
2635 I will clarify this issue. Most SVR4 shared libraries define the
2636 variable _timezone and define timezone as a weak synonym. The
2637 tzset call changes _timezone. If you write
2638 extern int timezone;
2640 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2641 you might expect that, since timezone is a synonym for _timezone,
2642 the same number will print both times. However, if the processor
2643 backend uses a COPY reloc, then actually timezone will be copied
2644 into your process image, and, since you define _timezone
2645 yourself, _timezone will not. Thus timezone and _timezone will
2646 wind up at different memory locations. The tzset call will set
2647 _timezone, leaving timezone unchanged. */
2649 if (h->u.weakdef != NULL)
2651 /* If we get to this point, there is an implicit reference to
2652 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2653 h->u.weakdef->ref_regular = 1;
2655 /* Ensure that the backend adjust_dynamic_symbol function sees
2656 H->U.WEAKDEF before H by recursively calling ourselves. */
2657 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2661 /* If a symbol has no type and no size and does not require a PLT
2662 entry, then we are probably about to do the wrong thing here: we
2663 are probably going to create a COPY reloc for an empty object.
2664 This case can arise when a shared object is built with assembly
2665 code, and the assembly code fails to set the symbol type. */
2667 && h->type == STT_NOTYPE
2669 (*_bfd_error_handler)
2670 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2671 h->root.root.string);
2673 dynobj = elf_hash_table (eif->info)->dynobj;
2674 bed = get_elf_backend_data (dynobj);
2676 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2685 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2689 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2692 unsigned int power_of_two;
2694 asection *sec = h->root.u.def.section;
2696 /* The section aligment of definition is the maximum alignment
2697 requirement of symbols defined in the section. Since we don't
2698 know the symbol alignment requirement, we start with the
2699 maximum alignment and check low bits of the symbol address
2700 for the minimum alignment. */
2701 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2702 mask = ((bfd_vma) 1 << power_of_two) - 1;
2703 while ((h->root.u.def.value & mask) != 0)
2709 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2712 /* Adjust the section alignment if needed. */
2713 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2718 /* We make sure that the symbol will be aligned properly. */
2719 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2721 /* Define the symbol as being at this point in DYNBSS. */
2722 h->root.u.def.section = dynbss;
2723 h->root.u.def.value = dynbss->size;
2725 /* Increment the size of DYNBSS to make room for the symbol. */
2726 dynbss->size += h->size;
2731 /* Adjust all external symbols pointing into SEC_MERGE sections
2732 to reflect the object merging within the sections. */
2735 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2739 if ((h->root.type == bfd_link_hash_defined
2740 || h->root.type == bfd_link_hash_defweak)
2741 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2742 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2744 bfd *output_bfd = (bfd *) data;
2746 h->root.u.def.value =
2747 _bfd_merged_section_offset (output_bfd,
2748 &h->root.u.def.section,
2749 elf_section_data (sec)->sec_info,
2750 h->root.u.def.value);
2756 /* Returns false if the symbol referred to by H should be considered
2757 to resolve local to the current module, and true if it should be
2758 considered to bind dynamically. */
2761 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2762 struct bfd_link_info *info,
2763 bfd_boolean not_local_protected)
2765 bfd_boolean binding_stays_local_p;
2766 const struct elf_backend_data *bed;
2767 struct elf_link_hash_table *hash_table;
2772 while (h->root.type == bfd_link_hash_indirect
2773 || h->root.type == bfd_link_hash_warning)
2774 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2776 /* If it was forced local, then clearly it's not dynamic. */
2777 if (h->dynindx == -1)
2779 if (h->forced_local)
2782 /* Identify the cases where name binding rules say that a
2783 visible symbol resolves locally. */
2784 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2786 switch (ELF_ST_VISIBILITY (h->other))
2793 hash_table = elf_hash_table (info);
2794 if (!is_elf_hash_table (hash_table))
2797 bed = get_elf_backend_data (hash_table->dynobj);
2799 /* Proper resolution for function pointer equality may require
2800 that these symbols perhaps be resolved dynamically, even though
2801 we should be resolving them to the current module. */
2802 if (!not_local_protected || !bed->is_function_type (h->type))
2803 binding_stays_local_p = TRUE;
2810 /* If it isn't defined locally, then clearly it's dynamic. */
2811 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2814 /* Otherwise, the symbol is dynamic if binding rules don't tell
2815 us that it remains local. */
2816 return !binding_stays_local_p;
2819 /* Return true if the symbol referred to by H should be considered
2820 to resolve local to the current module, and false otherwise. Differs
2821 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2822 undefined symbols. The two functions are virtually identical except
2823 for the place where forced_local and dynindx == -1 are tested. If
2824 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2825 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2826 the symbol is local only for defined symbols.
2827 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2828 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2829 treatment of undefined weak symbols. For those that do not make
2830 undefined weak symbols dynamic, both functions may return false. */
2833 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2834 struct bfd_link_info *info,
2835 bfd_boolean local_protected)
2837 const struct elf_backend_data *bed;
2838 struct elf_link_hash_table *hash_table;
2840 /* If it's a local sym, of course we resolve locally. */
2844 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2845 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2846 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2849 /* Common symbols that become definitions don't get the DEF_REGULAR
2850 flag set, so test it first, and don't bail out. */
2851 if (ELF_COMMON_DEF_P (h))
2853 /* If we don't have a definition in a regular file, then we can't
2854 resolve locally. The sym is either undefined or dynamic. */
2855 else if (!h->def_regular)
2858 /* Forced local symbols resolve locally. */
2859 if (h->forced_local)
2862 /* As do non-dynamic symbols. */
2863 if (h->dynindx == -1)
2866 /* At this point, we know the symbol is defined and dynamic. In an
2867 executable it must resolve locally, likewise when building symbolic
2868 shared libraries. */
2869 if (info->executable || SYMBOLIC_BIND (info, h))
2872 /* Now deal with defined dynamic symbols in shared libraries. Ones
2873 with default visibility might not resolve locally. */
2874 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2877 hash_table = elf_hash_table (info);
2878 if (!is_elf_hash_table (hash_table))
2881 bed = get_elf_backend_data (hash_table->dynobj);
2883 /* STV_PROTECTED non-function symbols are local. */
2884 if (!bed->is_function_type (h->type))
2887 /* Function pointer equality tests may require that STV_PROTECTED
2888 symbols be treated as dynamic symbols. If the address of a
2889 function not defined in an executable is set to that function's
2890 plt entry in the executable, then the address of the function in
2891 a shared library must also be the plt entry in the executable. */
2892 return local_protected;
2895 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2896 aligned. Returns the first TLS output section. */
2898 struct bfd_section *
2899 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2901 struct bfd_section *sec, *tls;
2902 unsigned int align = 0;
2904 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2905 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2909 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2910 if (sec->alignment_power > align)
2911 align = sec->alignment_power;
2913 elf_hash_table (info)->tls_sec = tls;
2915 /* Ensure the alignment of the first section is the largest alignment,
2916 so that the tls segment starts aligned. */
2918 tls->alignment_power = align;
2923 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2925 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2926 Elf_Internal_Sym *sym)
2928 const struct elf_backend_data *bed;
2930 /* Local symbols do not count, but target specific ones might. */
2931 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2932 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 bed = get_elf_backend_data (abfd);
2936 /* Function symbols do not count. */
2937 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 /* If the section is undefined, then so is the symbol. */
2941 if (sym->st_shndx == SHN_UNDEF)
2944 /* If the symbol is defined in the common section, then
2945 it is a common definition and so does not count. */
2946 if (bed->common_definition (sym))
2949 /* If the symbol is in a target specific section then we
2950 must rely upon the backend to tell us what it is. */
2951 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2952 /* FIXME - this function is not coded yet:
2954 return _bfd_is_global_symbol_definition (abfd, sym);
2956 Instead for now assume that the definition is not global,
2957 Even if this is wrong, at least the linker will behave
2958 in the same way that it used to do. */
2964 /* Search the symbol table of the archive element of the archive ABFD
2965 whose archive map contains a mention of SYMDEF, and determine if
2966 the symbol is defined in this element. */
2968 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2970 Elf_Internal_Shdr * hdr;
2971 bfd_size_type symcount;
2972 bfd_size_type extsymcount;
2973 bfd_size_type extsymoff;
2974 Elf_Internal_Sym *isymbuf;
2975 Elf_Internal_Sym *isym;
2976 Elf_Internal_Sym *isymend;
2979 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2983 if (! bfd_check_format (abfd, bfd_object))
2986 /* If we have already included the element containing this symbol in the
2987 link then we do not need to include it again. Just claim that any symbol
2988 it contains is not a definition, so that our caller will not decide to
2989 (re)include this element. */
2990 if (abfd->archive_pass)
2993 /* Select the appropriate symbol table. */
2994 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2995 hdr = &elf_tdata (abfd)->symtab_hdr;
2997 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2999 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3001 /* The sh_info field of the symtab header tells us where the
3002 external symbols start. We don't care about the local symbols. */
3003 if (elf_bad_symtab (abfd))
3005 extsymcount = symcount;
3010 extsymcount = symcount - hdr->sh_info;
3011 extsymoff = hdr->sh_info;
3014 if (extsymcount == 0)
3017 /* Read in the symbol table. */
3018 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3020 if (isymbuf == NULL)
3023 /* Scan the symbol table looking for SYMDEF. */
3025 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3029 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3034 if (strcmp (name, symdef->name) == 0)
3036 result = is_global_data_symbol_definition (abfd, isym);
3046 /* Add an entry to the .dynamic table. */
3049 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3053 struct elf_link_hash_table *hash_table;
3054 const struct elf_backend_data *bed;
3056 bfd_size_type newsize;
3057 bfd_byte *newcontents;
3058 Elf_Internal_Dyn dyn;
3060 hash_table = elf_hash_table (info);
3061 if (! is_elf_hash_table (hash_table))
3064 bed = get_elf_backend_data (hash_table->dynobj);
3065 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3066 BFD_ASSERT (s != NULL);
3068 newsize = s->size + bed->s->sizeof_dyn;
3069 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3070 if (newcontents == NULL)
3074 dyn.d_un.d_val = val;
3075 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078 s->contents = newcontents;
3083 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3084 otherwise just check whether one already exists. Returns -1 on error,
3085 1 if a DT_NEEDED tag already exists, and 0 on success. */
3088 elf_add_dt_needed_tag (bfd *abfd,
3089 struct bfd_link_info *info,
3093 struct elf_link_hash_table *hash_table;
3094 bfd_size_type oldsize;
3095 bfd_size_type strindex;
3097 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 hash_table = elf_hash_table (info);
3101 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3102 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3103 if (strindex == (bfd_size_type) -1)
3106 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109 const struct elf_backend_data *bed;
3112 bed = get_elf_backend_data (hash_table->dynobj);
3113 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3115 for (extdyn = sdyn->contents;
3116 extdyn < sdyn->contents + sdyn->size;
3117 extdyn += bed->s->sizeof_dyn)
3119 Elf_Internal_Dyn dyn;
3121 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3122 if (dyn.d_tag == DT_NEEDED
3123 && dyn.d_un.d_val == strindex)
3125 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3133 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3140 /* We were just checking for existence of the tag. */
3141 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3147 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3149 for (; needed != NULL; needed = needed->next)
3150 if (strcmp (soname, needed->name) == 0)
3156 /* Sort symbol by value, section, and size. */
3158 elf_sort_symbol (const void *arg1, const void *arg2)
3160 const struct elf_link_hash_entry *h1;
3161 const struct elf_link_hash_entry *h2;
3162 bfd_signed_vma vdiff;
3164 h1 = *(const struct elf_link_hash_entry **) arg1;
3165 h2 = *(const struct elf_link_hash_entry **) arg2;
3166 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3168 return vdiff > 0 ? 1 : -1;
3171 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3173 return sdiff > 0 ? 1 : -1;
3175 vdiff = h1->size - h2->size;
3176 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3179 /* This function is used to adjust offsets into .dynstr for
3180 dynamic symbols. This is called via elf_link_hash_traverse. */
3183 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3187 if (h->dynindx != -1)
3188 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3192 /* Assign string offsets in .dynstr, update all structures referencing
3196 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3198 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3199 struct elf_link_local_dynamic_entry *entry;
3200 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3201 bfd *dynobj = hash_table->dynobj;
3204 const struct elf_backend_data *bed;
3207 _bfd_elf_strtab_finalize (dynstr);
3208 size = _bfd_elf_strtab_size (dynstr);
3210 bed = get_elf_backend_data (dynobj);
3211 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3212 BFD_ASSERT (sdyn != NULL);
3214 /* Update all .dynamic entries referencing .dynstr strings. */
3215 for (extdyn = sdyn->contents;
3216 extdyn < sdyn->contents + sdyn->size;
3217 extdyn += bed->s->sizeof_dyn)
3219 Elf_Internal_Dyn dyn;
3221 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3225 dyn.d_un.d_val = size;
3235 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3240 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3243 /* Now update local dynamic symbols. */
3244 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3245 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3246 entry->isym.st_name);
3248 /* And the rest of dynamic symbols. */
3249 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3251 /* Adjust version definitions. */
3252 if (elf_tdata (output_bfd)->cverdefs)
3257 Elf_Internal_Verdef def;
3258 Elf_Internal_Verdaux defaux;
3260 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3264 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3266 p += sizeof (Elf_External_Verdef);
3267 if (def.vd_aux != sizeof (Elf_External_Verdef))
3269 for (i = 0; i < def.vd_cnt; ++i)
3271 _bfd_elf_swap_verdaux_in (output_bfd,
3272 (Elf_External_Verdaux *) p, &defaux);
3273 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3275 _bfd_elf_swap_verdaux_out (output_bfd,
3276 &defaux, (Elf_External_Verdaux *) p);
3277 p += sizeof (Elf_External_Verdaux);
3280 while (def.vd_next);
3283 /* Adjust version references. */
3284 if (elf_tdata (output_bfd)->verref)
3289 Elf_Internal_Verneed need;
3290 Elf_Internal_Vernaux needaux;
3292 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3296 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3298 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3299 _bfd_elf_swap_verneed_out (output_bfd, &need,
3300 (Elf_External_Verneed *) p);
3301 p += sizeof (Elf_External_Verneed);
3302 for (i = 0; i < need.vn_cnt; ++i)
3304 _bfd_elf_swap_vernaux_in (output_bfd,
3305 (Elf_External_Vernaux *) p, &needaux);
3306 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3308 _bfd_elf_swap_vernaux_out (output_bfd,
3310 (Elf_External_Vernaux *) p);
3311 p += sizeof (Elf_External_Vernaux);
3314 while (need.vn_next);
3320 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3321 The default is to only match when the INPUT and OUTPUT are exactly
3325 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3326 const bfd_target *output)
3328 return input == output;
3331 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3332 This version is used when different targets for the same architecture
3333 are virtually identical. */
3336 _bfd_elf_relocs_compatible (const bfd_target *input,
3337 const bfd_target *output)
3339 const struct elf_backend_data *obed, *ibed;
3341 if (input == output)
3344 ibed = xvec_get_elf_backend_data (input);
3345 obed = xvec_get_elf_backend_data (output);
3347 if (ibed->arch != obed->arch)
3350 /* If both backends are using this function, deem them compatible. */
3351 return ibed->relocs_compatible == obed->relocs_compatible;
3354 /* Add symbols from an ELF object file to the linker hash table. */
3357 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3359 Elf_Internal_Ehdr *ehdr;
3360 Elf_Internal_Shdr *hdr;
3361 bfd_size_type symcount;
3362 bfd_size_type extsymcount;
3363 bfd_size_type extsymoff;
3364 struct elf_link_hash_entry **sym_hash;
3365 bfd_boolean dynamic;
3366 Elf_External_Versym *extversym = NULL;
3367 Elf_External_Versym *ever;
3368 struct elf_link_hash_entry *weaks;
3369 struct elf_link_hash_entry **nondeflt_vers = NULL;
3370 bfd_size_type nondeflt_vers_cnt = 0;
3371 Elf_Internal_Sym *isymbuf = NULL;
3372 Elf_Internal_Sym *isym;
3373 Elf_Internal_Sym *isymend;
3374 const struct elf_backend_data *bed;
3375 bfd_boolean add_needed;
3376 struct elf_link_hash_table *htab;
3378 void *alloc_mark = NULL;
3379 struct bfd_hash_entry **old_table = NULL;
3380 unsigned int old_size = 0;
3381 unsigned int old_count = 0;
3382 void *old_tab = NULL;
3385 struct bfd_link_hash_entry *old_undefs = NULL;
3386 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3387 long old_dynsymcount = 0;
3388 bfd_size_type old_dynstr_size = 0;
3390 size_t hashsize = 0;
3392 htab = elf_hash_table (info);
3393 bed = get_elf_backend_data (abfd);
3395 if ((abfd->flags & DYNAMIC) == 0)
3401 /* You can't use -r against a dynamic object. Also, there's no
3402 hope of using a dynamic object which does not exactly match
3403 the format of the output file. */
3404 if (info->relocatable
3405 || !is_elf_hash_table (htab)
3406 || info->output_bfd->xvec != abfd->xvec)
3408 if (info->relocatable)
3409 bfd_set_error (bfd_error_invalid_operation);
3411 bfd_set_error (bfd_error_wrong_format);
3416 ehdr = elf_elfheader (abfd);
3417 if (info->warn_alternate_em
3418 && bed->elf_machine_code != ehdr->e_machine
3419 && ((bed->elf_machine_alt1 != 0
3420 && ehdr->e_machine == bed->elf_machine_alt1)
3421 || (bed->elf_machine_alt2 != 0
3422 && ehdr->e_machine == bed->elf_machine_alt2)))
3423 info->callbacks->einfo
3424 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3425 ehdr->e_machine, abfd, bed->elf_machine_code);
3427 /* As a GNU extension, any input sections which are named
3428 .gnu.warning.SYMBOL are treated as warning symbols for the given
3429 symbol. This differs from .gnu.warning sections, which generate
3430 warnings when they are included in an output file. */
3431 /* PR 12761: Also generate this warning when building shared libraries. */
3432 if (info->executable || info->shared)
3436 for (s = abfd->sections; s != NULL; s = s->next)
3440 name = bfd_get_section_name (abfd, s);
3441 if (CONST_STRNEQ (name, ".gnu.warning."))
3446 name += sizeof ".gnu.warning." - 1;
3448 /* If this is a shared object, then look up the symbol
3449 in the hash table. If it is there, and it is already
3450 been defined, then we will not be using the entry
3451 from this shared object, so we don't need to warn.
3452 FIXME: If we see the definition in a regular object
3453 later on, we will warn, but we shouldn't. The only
3454 fix is to keep track of what warnings we are supposed
3455 to emit, and then handle them all at the end of the
3459 struct elf_link_hash_entry *h;
3461 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3463 /* FIXME: What about bfd_link_hash_common? */
3465 && (h->root.type == bfd_link_hash_defined
3466 || h->root.type == bfd_link_hash_defweak))
3468 /* We don't want to issue this warning. Clobber
3469 the section size so that the warning does not
3470 get copied into the output file. */
3477 msg = (char *) bfd_alloc (abfd, sz + 1);
3481 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3486 if (! (_bfd_generic_link_add_one_symbol
3487 (info, abfd, name, BSF_WARNING, s, 0, msg,
3488 FALSE, bed->collect, NULL)))
3491 if (! info->relocatable)
3493 /* Clobber the section size so that the warning does
3494 not get copied into the output file. */
3497 /* Also set SEC_EXCLUDE, so that symbols defined in
3498 the warning section don't get copied to the output. */
3499 s->flags |= SEC_EXCLUDE;
3508 /* If we are creating a shared library, create all the dynamic
3509 sections immediately. We need to attach them to something,
3510 so we attach them to this BFD, provided it is the right
3511 format. FIXME: If there are no input BFD's of the same
3512 format as the output, we can't make a shared library. */
3514 && is_elf_hash_table (htab)
3515 && info->output_bfd->xvec == abfd->xvec
3516 && !htab->dynamic_sections_created)
3518 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3522 else if (!is_elf_hash_table (htab))
3527 const char *soname = NULL;
3529 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3532 /* ld --just-symbols and dynamic objects don't mix very well.
3533 ld shouldn't allow it. */
3534 if ((s = abfd->sections) != NULL
3535 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3538 /* If this dynamic lib was specified on the command line with
3539 --as-needed in effect, then we don't want to add a DT_NEEDED
3540 tag unless the lib is actually used. Similary for libs brought
3541 in by another lib's DT_NEEDED. When --no-add-needed is used
3542 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3543 any dynamic library in DT_NEEDED tags in the dynamic lib at
3545 add_needed = (elf_dyn_lib_class (abfd)
3546 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3547 | DYN_NO_NEEDED)) == 0;
3549 s = bfd_get_section_by_name (abfd, ".dynamic");
3554 unsigned int elfsec;
3555 unsigned long shlink;
3557 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3564 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3565 if (elfsec == SHN_BAD)
3566 goto error_free_dyn;
3567 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3569 for (extdyn = dynbuf;
3570 extdyn < dynbuf + s->size;
3571 extdyn += bed->s->sizeof_dyn)
3573 Elf_Internal_Dyn dyn;
3575 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3576 if (dyn.d_tag == DT_SONAME)
3578 unsigned int tagv = dyn.d_un.d_val;
3579 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3581 goto error_free_dyn;
3583 if (dyn.d_tag == DT_NEEDED)
3585 struct bfd_link_needed_list *n, **pn;
3587 unsigned int tagv = dyn.d_un.d_val;
3589 amt = sizeof (struct bfd_link_needed_list);
3590 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3591 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3592 if (n == NULL || fnm == NULL)
3593 goto error_free_dyn;
3594 amt = strlen (fnm) + 1;
3595 anm = (char *) bfd_alloc (abfd, amt);
3597 goto error_free_dyn;
3598 memcpy (anm, fnm, amt);
3602 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3606 if (dyn.d_tag == DT_RUNPATH)
3608 struct bfd_link_needed_list *n, **pn;
3610 unsigned int tagv = dyn.d_un.d_val;
3612 amt = sizeof (struct bfd_link_needed_list);
3613 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3614 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3615 if (n == NULL || fnm == NULL)
3616 goto error_free_dyn;
3617 amt = strlen (fnm) + 1;
3618 anm = (char *) bfd_alloc (abfd, amt);
3620 goto error_free_dyn;
3621 memcpy (anm, fnm, amt);
3625 for (pn = & runpath;
3631 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3632 if (!runpath && dyn.d_tag == DT_RPATH)
3634 struct bfd_link_needed_list *n, **pn;
3636 unsigned int tagv = dyn.d_un.d_val;
3638 amt = sizeof (struct bfd_link_needed_list);
3639 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3640 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3641 if (n == NULL || fnm == NULL)
3642 goto error_free_dyn;
3643 amt = strlen (fnm) + 1;
3644 anm = (char *) bfd_alloc (abfd, amt);
3646 goto error_free_dyn;
3647 memcpy (anm, fnm, amt);
3657 if (dyn.d_tag == DT_AUDIT)
3659 unsigned int tagv = dyn.d_un.d_val;
3660 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3667 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3668 frees all more recently bfd_alloc'd blocks as well. */
3674 struct bfd_link_needed_list **pn;
3675 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3680 /* We do not want to include any of the sections in a dynamic
3681 object in the output file. We hack by simply clobbering the
3682 list of sections in the BFD. This could be handled more
3683 cleanly by, say, a new section flag; the existing
3684 SEC_NEVER_LOAD flag is not the one we want, because that one
3685 still implies that the section takes up space in the output
3687 bfd_section_list_clear (abfd);
3689 /* Find the name to use in a DT_NEEDED entry that refers to this
3690 object. If the object has a DT_SONAME entry, we use it.
3691 Otherwise, if the generic linker stuck something in
3692 elf_dt_name, we use that. Otherwise, we just use the file
3694 if (soname == NULL || *soname == '\0')
3696 soname = elf_dt_name (abfd);
3697 if (soname == NULL || *soname == '\0')
3698 soname = bfd_get_filename (abfd);
3701 /* Save the SONAME because sometimes the linker emulation code
3702 will need to know it. */
3703 elf_dt_name (abfd) = soname;
3705 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3709 /* If we have already included this dynamic object in the
3710 link, just ignore it. There is no reason to include a
3711 particular dynamic object more than once. */
3715 /* Save the DT_AUDIT entry for the linker emulation code. */
3716 elf_dt_audit (abfd) = audit;
3719 /* If this is a dynamic object, we always link against the .dynsym
3720 symbol table, not the .symtab symbol table. The dynamic linker
3721 will only see the .dynsym symbol table, so there is no reason to
3722 look at .symtab for a dynamic object. */
3724 if (! dynamic || elf_dynsymtab (abfd) == 0)
3725 hdr = &elf_tdata (abfd)->symtab_hdr;
3727 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3729 symcount = hdr->sh_size / bed->s->sizeof_sym;
3731 /* The sh_info field of the symtab header tells us where the
3732 external symbols start. We don't care about the local symbols at
3734 if (elf_bad_symtab (abfd))
3736 extsymcount = symcount;
3741 extsymcount = symcount - hdr->sh_info;
3742 extsymoff = hdr->sh_info;
3746 if (extsymcount != 0)
3748 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3750 if (isymbuf == NULL)
3753 /* We store a pointer to the hash table entry for each external
3755 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3756 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3757 if (sym_hash == NULL)
3758 goto error_free_sym;
3759 elf_sym_hashes (abfd) = sym_hash;
3764 /* Read in any version definitions. */
3765 if (!_bfd_elf_slurp_version_tables (abfd,
3766 info->default_imported_symver))
3767 goto error_free_sym;
3769 /* Read in the symbol versions, but don't bother to convert them
3770 to internal format. */
3771 if (elf_dynversym (abfd) != 0)
3773 Elf_Internal_Shdr *versymhdr;
3775 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3776 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3777 if (extversym == NULL)
3778 goto error_free_sym;
3779 amt = versymhdr->sh_size;
3780 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3781 || bfd_bread (extversym, amt, abfd) != amt)
3782 goto error_free_vers;
3786 /* If we are loading an as-needed shared lib, save the symbol table
3787 state before we start adding symbols. If the lib turns out
3788 to be unneeded, restore the state. */
3789 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3794 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3796 struct bfd_hash_entry *p;
3797 struct elf_link_hash_entry *h;
3799 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3801 h = (struct elf_link_hash_entry *) p;
3802 entsize += htab->root.table.entsize;
3803 if (h->root.type == bfd_link_hash_warning)
3804 entsize += htab->root.table.entsize;
3808 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3809 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3810 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3811 if (old_tab == NULL)
3812 goto error_free_vers;
3814 /* Remember the current objalloc pointer, so that all mem for
3815 symbols added can later be reclaimed. */
3816 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3817 if (alloc_mark == NULL)
3818 goto error_free_vers;
3820 /* Make a special call to the linker "notice" function to
3821 tell it that we are about to handle an as-needed lib. */
3822 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3823 notice_as_needed, 0, NULL))
3824 goto error_free_vers;
3826 /* Clone the symbol table and sym hashes. Remember some
3827 pointers into the symbol table, and dynamic symbol count. */
3828 old_hash = (char *) old_tab + tabsize;
3829 old_ent = (char *) old_hash + hashsize;
3830 memcpy (old_tab, htab->root.table.table, tabsize);
3831 memcpy (old_hash, sym_hash, hashsize);
3832 old_undefs = htab->root.undefs;
3833 old_undefs_tail = htab->root.undefs_tail;
3834 old_table = htab->root.table.table;
3835 old_size = htab->root.table.size;
3836 old_count = htab->root.table.count;
3837 old_dynsymcount = htab->dynsymcount;
3838 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3840 for (i = 0; i < htab->root.table.size; i++)
3842 struct bfd_hash_entry *p;
3843 struct elf_link_hash_entry *h;
3845 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3847 memcpy (old_ent, p, htab->root.table.entsize);
3848 old_ent = (char *) old_ent + htab->root.table.entsize;
3849 h = (struct elf_link_hash_entry *) p;
3850 if (h->root.type == bfd_link_hash_warning)
3852 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3853 old_ent = (char *) old_ent + htab->root.table.entsize;
3860 ever = extversym != NULL ? extversym + extsymoff : NULL;
3861 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3867 asection *sec, *new_sec;
3870 struct elf_link_hash_entry *h;
3871 struct elf_link_hash_entry *hi;
3872 bfd_boolean definition;
3873 bfd_boolean size_change_ok;
3874 bfd_boolean type_change_ok;
3875 bfd_boolean new_weakdef;
3876 bfd_boolean new_weak;
3877 bfd_boolean old_weak;
3878 bfd_boolean override;
3880 unsigned int old_alignment;
3882 bfd * undef_bfd = NULL;
3886 flags = BSF_NO_FLAGS;
3888 value = isym->st_value;
3890 common = bed->common_definition (isym);
3892 bind = ELF_ST_BIND (isym->st_info);
3896 /* This should be impossible, since ELF requires that all
3897 global symbols follow all local symbols, and that sh_info
3898 point to the first global symbol. Unfortunately, Irix 5
3903 if (isym->st_shndx != SHN_UNDEF && !common)
3911 case STB_GNU_UNIQUE:
3912 flags = BSF_GNU_UNIQUE;
3916 /* Leave it up to the processor backend. */
3920 if (isym->st_shndx == SHN_UNDEF)
3921 sec = bfd_und_section_ptr;
3922 else if (isym->st_shndx == SHN_ABS)
3923 sec = bfd_abs_section_ptr;
3924 else if (isym->st_shndx == SHN_COMMON)
3926 sec = bfd_com_section_ptr;
3927 /* What ELF calls the size we call the value. What ELF
3928 calls the value we call the alignment. */
3929 value = isym->st_size;
3933 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3935 sec = bfd_abs_section_ptr;
3936 else if (discarded_section (sec))
3938 /* Symbols from discarded section are undefined. We keep
3940 sec = bfd_und_section_ptr;
3941 isym->st_shndx = SHN_UNDEF;
3943 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3947 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3950 goto error_free_vers;
3952 if (isym->st_shndx == SHN_COMMON
3953 && (abfd->flags & BFD_PLUGIN) != 0)
3955 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3959 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3961 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3963 goto error_free_vers;
3967 else if (isym->st_shndx == SHN_COMMON
3968 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3969 && !info->relocatable)
3971 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3975 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3976 | SEC_LINKER_CREATED);
3977 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3979 goto error_free_vers;
3983 else if (bed->elf_add_symbol_hook)
3985 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3987 goto error_free_vers;
3989 /* The hook function sets the name to NULL if this symbol
3990 should be skipped for some reason. */
3995 /* Sanity check that all possibilities were handled. */
3998 bfd_set_error (bfd_error_bad_value);
3999 goto error_free_vers;
4002 if (bfd_is_und_section (sec)
4003 || bfd_is_com_section (sec))
4008 size_change_ok = FALSE;
4009 type_change_ok = bed->type_change_ok;
4015 if (is_elf_hash_table (htab))
4017 Elf_Internal_Versym iver;
4018 unsigned int vernum = 0;
4021 /* If this is a definition of a symbol which was previously
4022 referenced in a non-weak manner then make a note of the bfd
4023 that contained the reference. This is used if we need to
4024 refer to the source of the reference later on. */
4025 if (! bfd_is_und_section (sec))
4027 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4030 && h->root.type == bfd_link_hash_undefined
4031 && h->root.u.undef.abfd)
4032 undef_bfd = h->root.u.undef.abfd;
4037 if (info->default_imported_symver)
4038 /* Use the default symbol version created earlier. */
4039 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4044 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4046 vernum = iver.vs_vers & VERSYM_VERSION;
4048 /* If this is a hidden symbol, or if it is not version
4049 1, we append the version name to the symbol name.
4050 However, we do not modify a non-hidden absolute symbol
4051 if it is not a function, because it might be the version
4052 symbol itself. FIXME: What if it isn't? */
4053 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4055 && (!bfd_is_abs_section (sec)
4056 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4059 size_t namelen, verlen, newlen;
4062 if (isym->st_shndx != SHN_UNDEF)
4064 if (vernum > elf_tdata (abfd)->cverdefs)
4066 else if (vernum > 1)
4068 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4074 (*_bfd_error_handler)
4075 (_("%B: %s: invalid version %u (max %d)"),
4077 elf_tdata (abfd)->cverdefs);
4078 bfd_set_error (bfd_error_bad_value);
4079 goto error_free_vers;
4084 /* We cannot simply test for the number of
4085 entries in the VERNEED section since the
4086 numbers for the needed versions do not start
4088 Elf_Internal_Verneed *t;
4091 for (t = elf_tdata (abfd)->verref;
4095 Elf_Internal_Vernaux *a;
4097 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4099 if (a->vna_other == vernum)
4101 verstr = a->vna_nodename;
4110 (*_bfd_error_handler)
4111 (_("%B: %s: invalid needed version %d"),
4112 abfd, name, vernum);
4113 bfd_set_error (bfd_error_bad_value);
4114 goto error_free_vers;
4118 namelen = strlen (name);
4119 verlen = strlen (verstr);
4120 newlen = namelen + verlen + 2;
4121 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4122 && isym->st_shndx != SHN_UNDEF)
4125 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4126 if (newname == NULL)
4127 goto error_free_vers;
4128 memcpy (newname, name, namelen);
4129 p = newname + namelen;
4131 /* If this is a defined non-hidden version symbol,
4132 we add another @ to the name. This indicates the
4133 default version of the symbol. */
4134 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4135 && isym->st_shndx != SHN_UNDEF)
4137 memcpy (p, verstr, verlen + 1);
4142 /* If necessary, make a second attempt to locate the bfd
4143 containing an unresolved, non-weak reference to the
4145 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4147 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4150 && h->root.type == bfd_link_hash_undefined
4151 && h->root.u.undef.abfd)
4152 undef_bfd = h->root.u.undef.abfd;
4155 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4156 &value, &old_weak, &old_alignment,
4157 sym_hash, &skip, &override,
4158 &type_change_ok, &size_change_ok))
4159 goto error_free_vers;
4168 while (h->root.type == bfd_link_hash_indirect
4169 || h->root.type == bfd_link_hash_warning)
4170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4172 /* Remember the old alignment if this is a common symbol, so
4173 that we don't reduce the alignment later on. We can't
4174 check later, because _bfd_generic_link_add_one_symbol
4175 will set a default for the alignment which we want to
4176 override. We also remember the old bfd where the existing
4177 definition comes from. */
4178 switch (h->root.type)
4183 case bfd_link_hash_defined:
4184 case bfd_link_hash_defweak:
4185 old_bfd = h->root.u.def.section->owner;
4188 case bfd_link_hash_common:
4189 old_bfd = h->root.u.c.p->section->owner;
4190 old_alignment = h->root.u.c.p->alignment_power;
4194 if (elf_tdata (abfd)->verdef != NULL
4198 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4201 if (! (_bfd_generic_link_add_one_symbol
4202 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4203 (struct bfd_link_hash_entry **) sym_hash)))
4204 goto error_free_vers;
4207 /* We need to make sure that indirect symbol dynamic flags are
4210 while (h->root.type == bfd_link_hash_indirect
4211 || h->root.type == bfd_link_hash_warning)
4212 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4215 if (is_elf_hash_table (htab))
4216 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4218 new_weak = (flags & BSF_WEAK) != 0;
4219 new_weakdef = FALSE;
4223 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4224 && is_elf_hash_table (htab)
4225 && h->u.weakdef == NULL)
4227 /* Keep a list of all weak defined non function symbols from
4228 a dynamic object, using the weakdef field. Later in this
4229 function we will set the weakdef field to the correct
4230 value. We only put non-function symbols from dynamic
4231 objects on this list, because that happens to be the only
4232 time we need to know the normal symbol corresponding to a
4233 weak symbol, and the information is time consuming to
4234 figure out. If the weakdef field is not already NULL,
4235 then this symbol was already defined by some previous
4236 dynamic object, and we will be using that previous
4237 definition anyhow. */
4239 h->u.weakdef = weaks;
4244 /* Set the alignment of a common symbol. */
4245 if ((common || bfd_is_com_section (sec))
4246 && h->root.type == bfd_link_hash_common)
4251 align = bfd_log2 (isym->st_value);
4254 /* The new symbol is a common symbol in a shared object.
4255 We need to get the alignment from the section. */
4256 align = new_sec->alignment_power;
4258 if (align > old_alignment)
4259 h->root.u.c.p->alignment_power = align;
4261 h->root.u.c.p->alignment_power = old_alignment;
4264 if (is_elf_hash_table (htab))
4268 /* Check the alignment when a common symbol is involved. This
4269 can change when a common symbol is overridden by a normal
4270 definition or a common symbol is ignored due to the old
4271 normal definition. We need to make sure the maximum
4272 alignment is maintained. */
4273 if ((old_alignment || common)
4274 && h->root.type != bfd_link_hash_common)
4276 unsigned int common_align;
4277 unsigned int normal_align;
4278 unsigned int symbol_align;
4282 symbol_align = ffs (h->root.u.def.value) - 1;
4283 if (h->root.u.def.section->owner != NULL
4284 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4286 normal_align = h->root.u.def.section->alignment_power;
4287 if (normal_align > symbol_align)
4288 normal_align = symbol_align;
4291 normal_align = symbol_align;
4295 common_align = old_alignment;
4296 common_bfd = old_bfd;
4301 common_align = bfd_log2 (isym->st_value);
4303 normal_bfd = old_bfd;
4306 if (normal_align < common_align)
4308 /* PR binutils/2735 */
4309 if (normal_bfd == NULL)
4310 (*_bfd_error_handler)
4311 (_("Warning: alignment %u of common symbol `%s' in %B"
4312 " is greater than the alignment (%u) of its section %A"),
4313 common_bfd, h->root.u.def.section,
4314 1 << common_align, name, 1 << normal_align);
4316 (*_bfd_error_handler)
4317 (_("Warning: alignment %u of symbol `%s' in %B"
4318 " is smaller than %u in %B"),
4319 normal_bfd, common_bfd,
4320 1 << normal_align, name, 1 << common_align);
4324 /* Remember the symbol size if it isn't undefined. */
4325 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4326 && (definition || h->size == 0))
4329 && h->size != isym->st_size
4330 && ! size_change_ok)
4331 (*_bfd_error_handler)
4332 (_("Warning: size of symbol `%s' changed"
4333 " from %lu in %B to %lu in %B"),
4335 name, (unsigned long) h->size,
4336 (unsigned long) isym->st_size);
4338 h->size = isym->st_size;
4341 /* If this is a common symbol, then we always want H->SIZE
4342 to be the size of the common symbol. The code just above
4343 won't fix the size if a common symbol becomes larger. We
4344 don't warn about a size change here, because that is
4345 covered by --warn-common. Allow changed between different
4347 if (h->root.type == bfd_link_hash_common)
4348 h->size = h->root.u.c.size;
4350 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4351 && ((definition && !new_weak)
4352 || (old_weak && h->root.type == bfd_link_hash_common)
4353 || h->type == STT_NOTYPE))
4355 unsigned int type = ELF_ST_TYPE (isym->st_info);
4357 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4359 if (type == STT_GNU_IFUNC
4360 && (abfd->flags & DYNAMIC) != 0)
4363 if (h->type != type)
4365 if (h->type != STT_NOTYPE && ! type_change_ok)
4366 (*_bfd_error_handler)
4367 (_("Warning: type of symbol `%s' changed"
4368 " from %d to %d in %B"),
4369 abfd, name, h->type, type);
4375 /* Merge st_other field. */
4376 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4378 /* Set a flag in the hash table entry indicating the type of
4379 reference or definition we just found. Keep a count of
4380 the number of dynamic symbols we find. A dynamic symbol
4381 is one which is referenced or defined by both a regular
4382 object and a shared object. */
4389 if (bind != STB_WEAK)
4390 h->ref_regular_nonweak = 1;
4402 /* If the indirect symbol has been forced local, don't
4403 make the real symbol dynamic. */
4404 if ((h == hi || !hi->forced_local)
4405 && (! info->executable
4415 hi->ref_dynamic = 1;
4421 hi->def_dynamic = 1;
4422 hi->dynamic_def = 1;
4425 /* If the indirect symbol has been forced local, don't
4426 make the real symbol dynamic. */
4427 if ((h == hi || !hi->forced_local)
4430 || (h->u.weakdef != NULL
4432 && h->u.weakdef->dynindx != -1)))
4436 /* We don't want to make debug symbol dynamic. */
4437 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4440 /* Nor should we make plugin symbols dynamic. */
4441 if ((abfd->flags & BFD_PLUGIN) != 0)
4445 h->target_internal = isym->st_target_internal;
4447 /* Check to see if we need to add an indirect symbol for
4448 the default name. */
4449 if (definition || h->root.type == bfd_link_hash_common)
4450 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4451 &sec, &value, &dynsym,
4453 goto error_free_vers;
4455 if (definition && !dynamic)
4457 char *p = strchr (name, ELF_VER_CHR);
4458 if (p != NULL && p[1] != ELF_VER_CHR)
4460 /* Queue non-default versions so that .symver x, x@FOO
4461 aliases can be checked. */
4464 amt = ((isymend - isym + 1)
4465 * sizeof (struct elf_link_hash_entry *));
4467 (struct elf_link_hash_entry **) bfd_malloc (amt);
4469 goto error_free_vers;
4471 nondeflt_vers[nondeflt_vers_cnt++] = h;
4475 if (dynsym && h->dynindx == -1)
4477 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4478 goto error_free_vers;
4479 if (h->u.weakdef != NULL
4481 && h->u.weakdef->dynindx == -1)
4483 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4484 goto error_free_vers;
4487 else if (dynsym && h->dynindx != -1)
4488 /* If the symbol already has a dynamic index, but
4489 visibility says it should not be visible, turn it into
4491 switch (ELF_ST_VISIBILITY (h->other))
4495 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4505 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4506 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4509 const char *soname = elf_dt_name (abfd);
4511 /* A symbol from a library loaded via DT_NEEDED of some
4512 other library is referenced by a regular object.
4513 Add a DT_NEEDED entry for it. Issue an error if
4514 --no-add-needed is used and the reference was not
4516 if (undef_bfd != NULL
4517 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4519 (*_bfd_error_handler)
4520 (_("%B: undefined reference to symbol '%s'"),
4522 (*_bfd_error_handler)
4523 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4525 bfd_set_error (bfd_error_invalid_operation);
4526 goto error_free_vers;
4529 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4530 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4533 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4535 goto error_free_vers;
4537 BFD_ASSERT (ret == 0);
4542 if (extversym != NULL)
4548 if (isymbuf != NULL)
4554 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4558 /* Restore the symbol table. */
4559 if (bed->as_needed_cleanup)
4560 (*bed->as_needed_cleanup) (abfd, info);
4561 old_hash = (char *) old_tab + tabsize;
4562 old_ent = (char *) old_hash + hashsize;
4563 sym_hash = elf_sym_hashes (abfd);
4564 htab->root.table.table = old_table;
4565 htab->root.table.size = old_size;
4566 htab->root.table.count = old_count;
4567 memcpy (htab->root.table.table, old_tab, tabsize);
4568 memcpy (sym_hash, old_hash, hashsize);
4569 htab->root.undefs = old_undefs;
4570 htab->root.undefs_tail = old_undefs_tail;
4571 _bfd_elf_strtab_clear_refs (htab->dynstr, old_dynstr_size);
4572 for (i = 0; i < htab->root.table.size; i++)
4574 struct bfd_hash_entry *p;
4575 struct elf_link_hash_entry *h;
4577 unsigned int alignment_power;
4579 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4581 h = (struct elf_link_hash_entry *) p;
4582 if (h->root.type == bfd_link_hash_warning)
4583 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4584 if (h->dynindx >= old_dynsymcount
4585 && h->dynstr_index < old_dynstr_size)
4586 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4588 /* Preserve the maximum alignment and size for common
4589 symbols even if this dynamic lib isn't on DT_NEEDED
4590 since it can still be loaded at run time by another
4592 if (h->root.type == bfd_link_hash_common)
4594 size = h->root.u.c.size;
4595 alignment_power = h->root.u.c.p->alignment_power;
4600 alignment_power = 0;
4602 memcpy (p, old_ent, htab->root.table.entsize);
4603 old_ent = (char *) old_ent + htab->root.table.entsize;
4604 h = (struct elf_link_hash_entry *) p;
4605 if (h->root.type == bfd_link_hash_warning)
4607 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4608 old_ent = (char *) old_ent + htab->root.table.entsize;
4609 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4611 if (h->root.type == bfd_link_hash_common)
4613 if (size > h->root.u.c.size)
4614 h->root.u.c.size = size;
4615 if (alignment_power > h->root.u.c.p->alignment_power)
4616 h->root.u.c.p->alignment_power = alignment_power;
4621 /* Make a special call to the linker "notice" function to
4622 tell it that symbols added for crefs may need to be removed. */
4623 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4624 notice_not_needed, 0, NULL))
4625 goto error_free_vers;
4628 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4630 if (nondeflt_vers != NULL)
4631 free (nondeflt_vers);
4635 if (old_tab != NULL)
4637 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4638 notice_needed, 0, NULL))
4639 goto error_free_vers;
4644 /* Now that all the symbols from this input file are created, handle
4645 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4646 if (nondeflt_vers != NULL)
4648 bfd_size_type cnt, symidx;
4650 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4652 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4653 char *shortname, *p;
4655 p = strchr (h->root.root.string, ELF_VER_CHR);
4657 || (h->root.type != bfd_link_hash_defined
4658 && h->root.type != bfd_link_hash_defweak))
4661 amt = p - h->root.root.string;
4662 shortname = (char *) bfd_malloc (amt + 1);
4664 goto error_free_vers;
4665 memcpy (shortname, h->root.root.string, amt);
4666 shortname[amt] = '\0';
4668 hi = (struct elf_link_hash_entry *)
4669 bfd_link_hash_lookup (&htab->root, shortname,
4670 FALSE, FALSE, FALSE);
4672 && hi->root.type == h->root.type
4673 && hi->root.u.def.value == h->root.u.def.value
4674 && hi->root.u.def.section == h->root.u.def.section)
4676 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4677 hi->root.type = bfd_link_hash_indirect;
4678 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4679 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4680 sym_hash = elf_sym_hashes (abfd);
4682 for (symidx = 0; symidx < extsymcount; ++symidx)
4683 if (sym_hash[symidx] == hi)
4685 sym_hash[symidx] = h;
4691 free (nondeflt_vers);
4692 nondeflt_vers = NULL;
4695 /* Now set the weakdefs field correctly for all the weak defined
4696 symbols we found. The only way to do this is to search all the
4697 symbols. Since we only need the information for non functions in
4698 dynamic objects, that's the only time we actually put anything on
4699 the list WEAKS. We need this information so that if a regular
4700 object refers to a symbol defined weakly in a dynamic object, the
4701 real symbol in the dynamic object is also put in the dynamic
4702 symbols; we also must arrange for both symbols to point to the
4703 same memory location. We could handle the general case of symbol
4704 aliasing, but a general symbol alias can only be generated in
4705 assembler code, handling it correctly would be very time
4706 consuming, and other ELF linkers don't handle general aliasing
4710 struct elf_link_hash_entry **hpp;
4711 struct elf_link_hash_entry **hppend;
4712 struct elf_link_hash_entry **sorted_sym_hash;
4713 struct elf_link_hash_entry *h;
4716 /* Since we have to search the whole symbol list for each weak
4717 defined symbol, search time for N weak defined symbols will be
4718 O(N^2). Binary search will cut it down to O(NlogN). */
4719 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4720 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4721 if (sorted_sym_hash == NULL)
4723 sym_hash = sorted_sym_hash;
4724 hpp = elf_sym_hashes (abfd);
4725 hppend = hpp + extsymcount;
4727 for (; hpp < hppend; hpp++)
4731 && h->root.type == bfd_link_hash_defined
4732 && !bed->is_function_type (h->type))
4740 qsort (sorted_sym_hash, sym_count,
4741 sizeof (struct elf_link_hash_entry *),
4744 while (weaks != NULL)
4746 struct elf_link_hash_entry *hlook;
4752 weaks = hlook->u.weakdef;
4753 hlook->u.weakdef = NULL;
4755 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4756 || hlook->root.type == bfd_link_hash_defweak
4757 || hlook->root.type == bfd_link_hash_common
4758 || hlook->root.type == bfd_link_hash_indirect);
4759 slook = hlook->root.u.def.section;
4760 vlook = hlook->root.u.def.value;
4766 bfd_signed_vma vdiff;
4768 h = sorted_sym_hash[idx];
4769 vdiff = vlook - h->root.u.def.value;
4776 long sdiff = slook->id - h->root.u.def.section->id;
4786 /* We didn't find a value/section match. */
4790 /* With multiple aliases, or when the weak symbol is already
4791 strongly defined, we have multiple matching symbols and
4792 the binary search above may land on any of them. Step
4793 one past the matching symbol(s). */
4796 h = sorted_sym_hash[idx];
4797 if (h->root.u.def.section != slook
4798 || h->root.u.def.value != vlook)
4802 /* Now look back over the aliases. Since we sorted by size
4803 as well as value and section, we'll choose the one with
4804 the largest size. */
4807 h = sorted_sym_hash[idx];
4809 /* Stop if value or section doesn't match. */
4810 if (h->root.u.def.section != slook
4811 || h->root.u.def.value != vlook)
4813 else if (h != hlook)
4815 hlook->u.weakdef = h;
4817 /* If the weak definition is in the list of dynamic
4818 symbols, make sure the real definition is put
4820 if (hlook->dynindx != -1 && h->dynindx == -1)
4822 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4825 free (sorted_sym_hash);
4830 /* If the real definition is in the list of dynamic
4831 symbols, make sure the weak definition is put
4832 there as well. If we don't do this, then the
4833 dynamic loader might not merge the entries for the
4834 real definition and the weak definition. */
4835 if (h->dynindx != -1 && hlook->dynindx == -1)
4837 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4838 goto err_free_sym_hash;
4845 free (sorted_sym_hash);
4848 if (bed->check_directives
4849 && !(*bed->check_directives) (abfd, info))
4852 /* If this object is the same format as the output object, and it is
4853 not a shared library, then let the backend look through the
4856 This is required to build global offset table entries and to
4857 arrange for dynamic relocs. It is not required for the
4858 particular common case of linking non PIC code, even when linking
4859 against shared libraries, but unfortunately there is no way of
4860 knowing whether an object file has been compiled PIC or not.
4861 Looking through the relocs is not particularly time consuming.
4862 The problem is that we must either (1) keep the relocs in memory,
4863 which causes the linker to require additional runtime memory or
4864 (2) read the relocs twice from the input file, which wastes time.
4865 This would be a good case for using mmap.
4867 I have no idea how to handle linking PIC code into a file of a
4868 different format. It probably can't be done. */
4870 && is_elf_hash_table (htab)
4871 && bed->check_relocs != NULL
4872 && elf_object_id (abfd) == elf_hash_table_id (htab)
4873 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4877 for (o = abfd->sections; o != NULL; o = o->next)
4879 Elf_Internal_Rela *internal_relocs;
4882 if ((o->flags & SEC_RELOC) == 0
4883 || o->reloc_count == 0
4884 || ((info->strip == strip_all || info->strip == strip_debugger)
4885 && (o->flags & SEC_DEBUGGING) != 0)
4886 || bfd_is_abs_section (o->output_section))
4889 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4891 if (internal_relocs == NULL)
4894 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4896 if (elf_section_data (o)->relocs != internal_relocs)
4897 free (internal_relocs);
4904 /* If this is a non-traditional link, try to optimize the handling
4905 of the .stab/.stabstr sections. */
4907 && ! info->traditional_format
4908 && is_elf_hash_table (htab)
4909 && (info->strip != strip_all && info->strip != strip_debugger))
4913 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4914 if (stabstr != NULL)
4916 bfd_size_type string_offset = 0;
4919 for (stab = abfd->sections; stab; stab = stab->next)
4920 if (CONST_STRNEQ (stab->name, ".stab")
4921 && (!stab->name[5] ||
4922 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4923 && (stab->flags & SEC_MERGE) == 0
4924 && !bfd_is_abs_section (stab->output_section))
4926 struct bfd_elf_section_data *secdata;
4928 secdata = elf_section_data (stab);
4929 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4930 stabstr, &secdata->sec_info,
4933 if (secdata->sec_info)
4934 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4939 if (is_elf_hash_table (htab) && add_needed)
4941 /* Add this bfd to the loaded list. */
4942 struct elf_link_loaded_list *n;
4944 n = (struct elf_link_loaded_list *)
4945 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4949 n->next = htab->loaded;
4956 if (old_tab != NULL)
4958 if (nondeflt_vers != NULL)
4959 free (nondeflt_vers);
4960 if (extversym != NULL)
4963 if (isymbuf != NULL)
4969 /* Return the linker hash table entry of a symbol that might be
4970 satisfied by an archive symbol. Return -1 on error. */
4972 struct elf_link_hash_entry *
4973 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4974 struct bfd_link_info *info,
4977 struct elf_link_hash_entry *h;
4981 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4985 /* If this is a default version (the name contains @@), look up the
4986 symbol again with only one `@' as well as without the version.
4987 The effect is that references to the symbol with and without the
4988 version will be matched by the default symbol in the archive. */
4990 p = strchr (name, ELF_VER_CHR);
4991 if (p == NULL || p[1] != ELF_VER_CHR)
4994 /* First check with only one `@'. */
4995 len = strlen (name);
4996 copy = (char *) bfd_alloc (abfd, len);
4998 return (struct elf_link_hash_entry *) 0 - 1;
5000 first = p - name + 1;
5001 memcpy (copy, name, first);
5002 memcpy (copy + first, name + first + 1, len - first);
5004 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5007 /* We also need to check references to the symbol without the
5009 copy[first - 1] = '\0';
5010 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5011 FALSE, FALSE, TRUE);
5014 bfd_release (abfd, copy);
5018 /* Add symbols from an ELF archive file to the linker hash table. We
5019 don't use _bfd_generic_link_add_archive_symbols because of a
5020 problem which arises on UnixWare. The UnixWare libc.so is an
5021 archive which includes an entry libc.so.1 which defines a bunch of
5022 symbols. The libc.so archive also includes a number of other
5023 object files, which also define symbols, some of which are the same
5024 as those defined in libc.so.1. Correct linking requires that we
5025 consider each object file in turn, and include it if it defines any
5026 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5027 this; it looks through the list of undefined symbols, and includes
5028 any object file which defines them. When this algorithm is used on
5029 UnixWare, it winds up pulling in libc.so.1 early and defining a
5030 bunch of symbols. This means that some of the other objects in the
5031 archive are not included in the link, which is incorrect since they
5032 precede libc.so.1 in the archive.
5034 Fortunately, ELF archive handling is simpler than that done by
5035 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5036 oddities. In ELF, if we find a symbol in the archive map, and the
5037 symbol is currently undefined, we know that we must pull in that
5040 Unfortunately, we do have to make multiple passes over the symbol
5041 table until nothing further is resolved. */
5044 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5047 bfd_boolean *defined = NULL;
5048 bfd_boolean *included = NULL;
5052 const struct elf_backend_data *bed;
5053 struct elf_link_hash_entry * (*archive_symbol_lookup)
5054 (bfd *, struct bfd_link_info *, const char *);
5056 if (! bfd_has_map (abfd))
5058 /* An empty archive is a special case. */
5059 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5061 bfd_set_error (bfd_error_no_armap);
5065 /* Keep track of all symbols we know to be already defined, and all
5066 files we know to be already included. This is to speed up the
5067 second and subsequent passes. */
5068 c = bfd_ardata (abfd)->symdef_count;
5072 amt *= sizeof (bfd_boolean);
5073 defined = (bfd_boolean *) bfd_zmalloc (amt);
5074 included = (bfd_boolean *) bfd_zmalloc (amt);
5075 if (defined == NULL || included == NULL)
5078 symdefs = bfd_ardata (abfd)->symdefs;
5079 bed = get_elf_backend_data (abfd);
5080 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5093 symdefend = symdef + c;
5094 for (i = 0; symdef < symdefend; symdef++, i++)
5096 struct elf_link_hash_entry *h;
5098 struct bfd_link_hash_entry *undefs_tail;
5101 if (defined[i] || included[i])
5103 if (symdef->file_offset == last)
5109 h = archive_symbol_lookup (abfd, info, symdef->name);
5110 if (h == (struct elf_link_hash_entry *) 0 - 1)
5116 if (h->root.type == bfd_link_hash_common)
5118 /* We currently have a common symbol. The archive map contains
5119 a reference to this symbol, so we may want to include it. We
5120 only want to include it however, if this archive element
5121 contains a definition of the symbol, not just another common
5124 Unfortunately some archivers (including GNU ar) will put
5125 declarations of common symbols into their archive maps, as
5126 well as real definitions, so we cannot just go by the archive
5127 map alone. Instead we must read in the element's symbol
5128 table and check that to see what kind of symbol definition
5130 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5133 else if (h->root.type != bfd_link_hash_undefined)
5135 if (h->root.type != bfd_link_hash_undefweak)
5140 /* We need to include this archive member. */
5141 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5142 if (element == NULL)
5145 if (! bfd_check_format (element, bfd_object))
5148 /* Doublecheck that we have not included this object
5149 already--it should be impossible, but there may be
5150 something wrong with the archive. */
5151 if (element->archive_pass != 0)
5153 bfd_set_error (bfd_error_bad_value);
5156 element->archive_pass = 1;
5158 undefs_tail = info->hash->undefs_tail;
5160 if (!(*info->callbacks
5161 ->add_archive_element) (info, element, symdef->name, &element))
5163 if (!bfd_link_add_symbols (element, info))
5166 /* If there are any new undefined symbols, we need to make
5167 another pass through the archive in order to see whether
5168 they can be defined. FIXME: This isn't perfect, because
5169 common symbols wind up on undefs_tail and because an
5170 undefined symbol which is defined later on in this pass
5171 does not require another pass. This isn't a bug, but it
5172 does make the code less efficient than it could be. */
5173 if (undefs_tail != info->hash->undefs_tail)
5176 /* Look backward to mark all symbols from this object file
5177 which we have already seen in this pass. */
5181 included[mark] = TRUE;
5186 while (symdefs[mark].file_offset == symdef->file_offset);
5188 /* We mark subsequent symbols from this object file as we go
5189 on through the loop. */
5190 last = symdef->file_offset;
5201 if (defined != NULL)
5203 if (included != NULL)
5208 /* Given an ELF BFD, add symbols to the global hash table as
5212 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5214 switch (bfd_get_format (abfd))
5217 return elf_link_add_object_symbols (abfd, info);
5219 return elf_link_add_archive_symbols (abfd, info);
5221 bfd_set_error (bfd_error_wrong_format);
5226 struct hash_codes_info
5228 unsigned long *hashcodes;
5232 /* This function will be called though elf_link_hash_traverse to store
5233 all hash value of the exported symbols in an array. */
5236 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5238 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5244 /* Ignore indirect symbols. These are added by the versioning code. */
5245 if (h->dynindx == -1)
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5252 alc = (char *) bfd_malloc (p - name + 1);
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5263 /* Compute the hash value. */
5264 ha = bfd_elf_hash (name);
5266 /* Store the found hash value in the array given as the argument. */
5267 *(inf->hashcodes)++ = ha;
5269 /* And store it in the struct so that we can put it in the hash table
5271 h->u.elf_hash_value = ha;
5279 struct collect_gnu_hash_codes
5282 const struct elf_backend_data *bed;
5283 unsigned long int nsyms;
5284 unsigned long int maskbits;
5285 unsigned long int *hashcodes;
5286 unsigned long int *hashval;
5287 unsigned long int *indx;
5288 unsigned long int *counts;
5291 long int min_dynindx;
5292 unsigned long int bucketcount;
5293 unsigned long int symindx;
5294 long int local_indx;
5295 long int shift1, shift2;
5296 unsigned long int mask;
5300 /* This function will be called though elf_link_hash_traverse to store
5301 all hash value of the exported symbols in an array. */
5304 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5306 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5312 /* Ignore indirect symbols. These are added by the versioning code. */
5313 if (h->dynindx == -1)
5316 /* Ignore also local symbols and undefined symbols. */
5317 if (! (*s->bed->elf_hash_symbol) (h))
5320 name = h->root.root.string;
5321 p = strchr (name, ELF_VER_CHR);
5324 alc = (char *) bfd_malloc (p - name + 1);
5330 memcpy (alc, name, p - name);
5331 alc[p - name] = '\0';
5335 /* Compute the hash value. */
5336 ha = bfd_elf_gnu_hash (name);
5338 /* Store the found hash value in the array for compute_bucket_count,
5339 and also for .dynsym reordering purposes. */
5340 s->hashcodes[s->nsyms] = ha;
5341 s->hashval[h->dynindx] = ha;
5343 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5344 s->min_dynindx = h->dynindx;
5352 /* This function will be called though elf_link_hash_traverse to do
5353 final dynaminc symbol renumbering. */
5356 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5358 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5359 unsigned long int bucket;
5360 unsigned long int val;
5362 /* Ignore indirect symbols. */
5363 if (h->dynindx == -1)
5366 /* Ignore also local symbols and undefined symbols. */
5367 if (! (*s->bed->elf_hash_symbol) (h))
5369 if (h->dynindx >= s->min_dynindx)
5370 h->dynindx = s->local_indx++;
5374 bucket = s->hashval[h->dynindx] % s->bucketcount;
5375 val = (s->hashval[h->dynindx] >> s->shift1)
5376 & ((s->maskbits >> s->shift1) - 1);
5377 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5379 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5380 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5381 if (s->counts[bucket] == 1)
5382 /* Last element terminates the chain. */
5384 bfd_put_32 (s->output_bfd, val,
5385 s->contents + (s->indx[bucket] - s->symindx) * 4);
5386 --s->counts[bucket];
5387 h->dynindx = s->indx[bucket]++;
5391 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5394 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5396 return !(h->forced_local
5397 || h->root.type == bfd_link_hash_undefined
5398 || h->root.type == bfd_link_hash_undefweak
5399 || ((h->root.type == bfd_link_hash_defined
5400 || h->root.type == bfd_link_hash_defweak)
5401 && h->root.u.def.section->output_section == NULL));
5404 /* Array used to determine the number of hash table buckets to use
5405 based on the number of symbols there are. If there are fewer than
5406 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5407 fewer than 37 we use 17 buckets, and so forth. We never use more
5408 than 32771 buckets. */
5410 static const size_t elf_buckets[] =
5412 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5416 /* Compute bucket count for hashing table. We do not use a static set
5417 of possible tables sizes anymore. Instead we determine for all
5418 possible reasonable sizes of the table the outcome (i.e., the
5419 number of collisions etc) and choose the best solution. The
5420 weighting functions are not too simple to allow the table to grow
5421 without bounds. Instead one of the weighting factors is the size.
5422 Therefore the result is always a good payoff between few collisions
5423 (= short chain lengths) and table size. */
5425 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5426 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5427 unsigned long int nsyms,
5430 size_t best_size = 0;
5431 unsigned long int i;
5433 /* We have a problem here. The following code to optimize the table
5434 size requires an integer type with more the 32 bits. If
5435 BFD_HOST_U_64_BIT is set we know about such a type. */
5436 #ifdef BFD_HOST_U_64_BIT
5441 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5442 bfd *dynobj = elf_hash_table (info)->dynobj;
5443 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5444 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5445 unsigned long int *counts;
5447 unsigned int no_improvement_count = 0;
5449 /* Possible optimization parameters: if we have NSYMS symbols we say
5450 that the hashing table must at least have NSYMS/4 and at most
5452 minsize = nsyms / 4;
5455 best_size = maxsize = nsyms * 2;
5460 if ((best_size & 31) == 0)
5464 /* Create array where we count the collisions in. We must use bfd_malloc
5465 since the size could be large. */
5467 amt *= sizeof (unsigned long int);
5468 counts = (unsigned long int *) bfd_malloc (amt);
5472 /* Compute the "optimal" size for the hash table. The criteria is a
5473 minimal chain length. The minor criteria is (of course) the size
5475 for (i = minsize; i < maxsize; ++i)
5477 /* Walk through the array of hashcodes and count the collisions. */
5478 BFD_HOST_U_64_BIT max;
5479 unsigned long int j;
5480 unsigned long int fact;
5482 if (gnu_hash && (i & 31) == 0)
5485 memset (counts, '\0', i * sizeof (unsigned long int));
5487 /* Determine how often each hash bucket is used. */
5488 for (j = 0; j < nsyms; ++j)
5489 ++counts[hashcodes[j] % i];
5491 /* For the weight function we need some information about the
5492 pagesize on the target. This is information need not be 100%
5493 accurate. Since this information is not available (so far) we
5494 define it here to a reasonable default value. If it is crucial
5495 to have a better value some day simply define this value. */
5496 # ifndef BFD_TARGET_PAGESIZE
5497 # define BFD_TARGET_PAGESIZE (4096)
5500 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5502 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5505 /* Variant 1: optimize for short chains. We add the squares
5506 of all the chain lengths (which favors many small chain
5507 over a few long chains). */
5508 for (j = 0; j < i; ++j)
5509 max += counts[j] * counts[j];
5511 /* This adds penalties for the overall size of the table. */
5512 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5515 /* Variant 2: Optimize a lot more for small table. Here we
5516 also add squares of the size but we also add penalties for
5517 empty slots (the +1 term). */
5518 for (j = 0; j < i; ++j)
5519 max += (1 + counts[j]) * (1 + counts[j]);
5521 /* The overall size of the table is considered, but not as
5522 strong as in variant 1, where it is squared. */
5523 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5527 /* Compare with current best results. */
5528 if (max < best_chlen)
5532 no_improvement_count = 0;
5534 /* PR 11843: Avoid futile long searches for the best bucket size
5535 when there are a large number of symbols. */
5536 else if (++no_improvement_count == 100)
5543 #endif /* defined (BFD_HOST_U_64_BIT) */
5545 /* This is the fallback solution if no 64bit type is available or if we
5546 are not supposed to spend much time on optimizations. We select the
5547 bucket count using a fixed set of numbers. */
5548 for (i = 0; elf_buckets[i] != 0; i++)
5550 best_size = elf_buckets[i];
5551 if (nsyms < elf_buckets[i + 1])
5554 if (gnu_hash && best_size < 2)
5561 /* Size any SHT_GROUP section for ld -r. */
5564 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5568 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5569 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5570 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5575 /* Set a default stack segment size. The value in INFO wins. If it
5576 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5577 undefined it is initialized. */
5580 bfd_elf_stack_segment_size (bfd *output_bfd,
5581 struct bfd_link_info *info,
5582 const char *legacy_symbol,
5583 bfd_vma default_size)
5585 struct elf_link_hash_entry *h = NULL;
5587 /* Look for legacy symbol. */
5589 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5590 FALSE, FALSE, FALSE);
5591 if (h && (h->root.type == bfd_link_hash_defined
5592 || h->root.type == bfd_link_hash_defweak)
5594 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5596 /* The symbol has no type if specified on the command line. */
5597 h->type = STT_OBJECT;
5598 if (info->stacksize)
5599 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5600 output_bfd, legacy_symbol);
5601 else if (h->root.u.def.section != bfd_abs_section_ptr)
5602 (*_bfd_error_handler) (_("%B: %s not absolute"),
5603 output_bfd, legacy_symbol);
5605 info->stacksize = h->root.u.def.value;
5608 if (!info->stacksize)
5609 /* If the user didn't set a size, or explicitly inhibit the
5610 size, set it now. */
5611 info->stacksize = default_size;
5613 /* Provide the legacy symbol, if it is referenced. */
5614 if (h && (h->root.type == bfd_link_hash_undefined
5615 || h->root.type == bfd_link_hash_undefweak))
5617 struct bfd_link_hash_entry *bh = NULL;
5619 if (!(_bfd_generic_link_add_one_symbol
5620 (info, output_bfd, legacy_symbol,
5621 BSF_GLOBAL, bfd_abs_section_ptr,
5622 info->stacksize >= 0 ? info->stacksize : 0,
5623 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5626 h = (struct elf_link_hash_entry *) bh;
5628 h->type = STT_OBJECT;
5634 /* Set up the sizes and contents of the ELF dynamic sections. This is
5635 called by the ELF linker emulation before_allocation routine. We
5636 must set the sizes of the sections before the linker sets the
5637 addresses of the various sections. */
5640 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5643 const char *filter_shlib,
5645 const char *depaudit,
5646 const char * const *auxiliary_filters,
5647 struct bfd_link_info *info,
5648 asection **sinterpptr)
5650 bfd_size_type soname_indx;
5652 const struct elf_backend_data *bed;
5653 struct elf_info_failed asvinfo;
5657 soname_indx = (bfd_size_type) -1;
5659 if (!is_elf_hash_table (info->hash))
5662 bed = get_elf_backend_data (output_bfd);
5664 /* Any syms created from now on start with -1 in
5665 got.refcount/offset and plt.refcount/offset. */
5666 elf_hash_table (info)->init_got_refcount
5667 = elf_hash_table (info)->init_got_offset;
5668 elf_hash_table (info)->init_plt_refcount
5669 = elf_hash_table (info)->init_plt_offset;
5671 if (info->relocatable
5672 && !_bfd_elf_size_group_sections (info))
5675 /* The backend may have to create some sections regardless of whether
5676 we're dynamic or not. */
5677 if (bed->elf_backend_always_size_sections
5678 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5681 /* Determine any GNU_STACK segment requirements, after the backend
5682 has had a chance to set a default segment size. */
5683 if (info->execstack)
5684 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5685 else if (info->noexecstack)
5686 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5690 asection *notesec = NULL;
5693 for (inputobj = info->input_bfds;
5695 inputobj = inputobj->link_next)
5700 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5702 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5705 if (s->flags & SEC_CODE)
5709 else if (bed->default_execstack)
5712 if (notesec || info->stacksize > 0)
5713 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5714 if (notesec && exec && info->relocatable
5715 && notesec->output_section != bfd_abs_section_ptr)
5716 notesec->output_section->flags |= SEC_CODE;
5719 dynobj = elf_hash_table (info)->dynobj;
5721 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5723 struct elf_info_failed eif;
5724 struct elf_link_hash_entry *h;
5726 struct bfd_elf_version_tree *t;
5727 struct bfd_elf_version_expr *d;
5729 bfd_boolean all_defined;
5731 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5732 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5736 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5738 if (soname_indx == (bfd_size_type) -1
5739 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5745 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5747 info->flags |= DF_SYMBOLIC;
5754 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5756 if (indx == (bfd_size_type) -1
5757 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5760 if (info->new_dtags)
5762 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5763 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5768 if (filter_shlib != NULL)
5772 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5773 filter_shlib, TRUE);
5774 if (indx == (bfd_size_type) -1
5775 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5779 if (auxiliary_filters != NULL)
5781 const char * const *p;
5783 for (p = auxiliary_filters; *p != NULL; p++)
5787 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5789 if (indx == (bfd_size_type) -1
5790 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5799 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5801 if (indx == (bfd_size_type) -1
5802 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5806 if (depaudit != NULL)
5810 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5812 if (indx == (bfd_size_type) -1
5813 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5820 /* If we are supposed to export all symbols into the dynamic symbol
5821 table (this is not the normal case), then do so. */
5822 if (info->export_dynamic
5823 || (info->executable && info->dynamic))
5825 elf_link_hash_traverse (elf_hash_table (info),
5826 _bfd_elf_export_symbol,
5832 /* Make all global versions with definition. */
5833 for (t = info->version_info; t != NULL; t = t->next)
5834 for (d = t->globals.list; d != NULL; d = d->next)
5835 if (!d->symver && d->literal)
5837 const char *verstr, *name;
5838 size_t namelen, verlen, newlen;
5839 char *newname, *p, leading_char;
5840 struct elf_link_hash_entry *newh;
5842 leading_char = bfd_get_symbol_leading_char (output_bfd);
5844 namelen = strlen (name) + (leading_char != '\0');
5846 verlen = strlen (verstr);
5847 newlen = namelen + verlen + 3;
5849 newname = (char *) bfd_malloc (newlen);
5850 if (newname == NULL)
5852 newname[0] = leading_char;
5853 memcpy (newname + (leading_char != '\0'), name, namelen);
5855 /* Check the hidden versioned definition. */
5856 p = newname + namelen;
5858 memcpy (p, verstr, verlen + 1);
5859 newh = elf_link_hash_lookup (elf_hash_table (info),
5860 newname, FALSE, FALSE,
5863 || (newh->root.type != bfd_link_hash_defined
5864 && newh->root.type != bfd_link_hash_defweak))
5866 /* Check the default versioned definition. */
5868 memcpy (p, verstr, verlen + 1);
5869 newh = elf_link_hash_lookup (elf_hash_table (info),
5870 newname, FALSE, FALSE,
5875 /* Mark this version if there is a definition and it is
5876 not defined in a shared object. */
5878 && !newh->def_dynamic
5879 && (newh->root.type == bfd_link_hash_defined
5880 || newh->root.type == bfd_link_hash_defweak))
5884 /* Attach all the symbols to their version information. */
5885 asvinfo.info = info;
5886 asvinfo.failed = FALSE;
5888 elf_link_hash_traverse (elf_hash_table (info),
5889 _bfd_elf_link_assign_sym_version,
5894 if (!info->allow_undefined_version)
5896 /* Check if all global versions have a definition. */
5898 for (t = info->version_info; t != NULL; t = t->next)
5899 for (d = t->globals.list; d != NULL; d = d->next)
5900 if (d->literal && !d->symver && !d->script)
5902 (*_bfd_error_handler)
5903 (_("%s: undefined version: %s"),
5904 d->pattern, t->name);
5905 all_defined = FALSE;
5910 bfd_set_error (bfd_error_bad_value);
5915 /* Find all symbols which were defined in a dynamic object and make
5916 the backend pick a reasonable value for them. */
5917 elf_link_hash_traverse (elf_hash_table (info),
5918 _bfd_elf_adjust_dynamic_symbol,
5923 /* Add some entries to the .dynamic section. We fill in some of the
5924 values later, in bfd_elf_final_link, but we must add the entries
5925 now so that we know the final size of the .dynamic section. */
5927 /* If there are initialization and/or finalization functions to
5928 call then add the corresponding DT_INIT/DT_FINI entries. */
5929 h = (info->init_function
5930 ? elf_link_hash_lookup (elf_hash_table (info),
5931 info->init_function, FALSE,
5938 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5941 h = (info->fini_function
5942 ? elf_link_hash_lookup (elf_hash_table (info),
5943 info->fini_function, FALSE,
5950 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5954 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5955 if (s != NULL && s->linker_has_input)
5957 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5958 if (! info->executable)
5963 for (sub = info->input_bfds; sub != NULL;
5964 sub = sub->link_next)
5965 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5966 for (o = sub->sections; o != NULL; o = o->next)
5967 if (elf_section_data (o)->this_hdr.sh_type
5968 == SHT_PREINIT_ARRAY)
5970 (*_bfd_error_handler)
5971 (_("%B: .preinit_array section is not allowed in DSO"),
5976 bfd_set_error (bfd_error_nonrepresentable_section);
5980 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5981 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5984 s = bfd_get_section_by_name (output_bfd, ".init_array");
5985 if (s != NULL && s->linker_has_input)
5987 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5988 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5991 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5992 if (s != NULL && s->linker_has_input)
5994 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5995 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5999 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6000 /* If .dynstr is excluded from the link, we don't want any of
6001 these tags. Strictly, we should be checking each section
6002 individually; This quick check covers for the case where
6003 someone does a /DISCARD/ : { *(*) }. */
6004 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6006 bfd_size_type strsize;
6008 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6009 if ((info->emit_hash
6010 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6011 || (info->emit_gnu_hash
6012 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6013 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6014 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6015 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6016 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6017 bed->s->sizeof_sym))
6022 /* The backend must work out the sizes of all the other dynamic
6025 && bed->elf_backend_size_dynamic_sections != NULL
6026 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6029 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6032 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6034 unsigned long section_sym_count;
6035 struct bfd_elf_version_tree *verdefs;
6038 /* Set up the version definition section. */
6039 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6040 BFD_ASSERT (s != NULL);
6042 /* We may have created additional version definitions if we are
6043 just linking a regular application. */
6044 verdefs = info->version_info;
6046 /* Skip anonymous version tag. */
6047 if (verdefs != NULL && verdefs->vernum == 0)
6048 verdefs = verdefs->next;
6050 if (verdefs == NULL && !info->create_default_symver)
6051 s->flags |= SEC_EXCLUDE;
6056 struct bfd_elf_version_tree *t;
6058 Elf_Internal_Verdef def;
6059 Elf_Internal_Verdaux defaux;
6060 struct bfd_link_hash_entry *bh;
6061 struct elf_link_hash_entry *h;
6067 /* Make space for the base version. */
6068 size += sizeof (Elf_External_Verdef);
6069 size += sizeof (Elf_External_Verdaux);
6072 /* Make space for the default version. */
6073 if (info->create_default_symver)
6075 size += sizeof (Elf_External_Verdef);
6079 for (t = verdefs; t != NULL; t = t->next)
6081 struct bfd_elf_version_deps *n;
6083 /* Don't emit base version twice. */
6087 size += sizeof (Elf_External_Verdef);
6088 size += sizeof (Elf_External_Verdaux);
6091 for (n = t->deps; n != NULL; n = n->next)
6092 size += sizeof (Elf_External_Verdaux);
6096 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6097 if (s->contents == NULL && s->size != 0)
6100 /* Fill in the version definition section. */
6104 def.vd_version = VER_DEF_CURRENT;
6105 def.vd_flags = VER_FLG_BASE;
6108 if (info->create_default_symver)
6110 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6111 def.vd_next = sizeof (Elf_External_Verdef);
6115 def.vd_aux = sizeof (Elf_External_Verdef);
6116 def.vd_next = (sizeof (Elf_External_Verdef)
6117 + sizeof (Elf_External_Verdaux));
6120 if (soname_indx != (bfd_size_type) -1)
6122 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6124 def.vd_hash = bfd_elf_hash (soname);
6125 defaux.vda_name = soname_indx;
6132 name = lbasename (output_bfd->filename);
6133 def.vd_hash = bfd_elf_hash (name);
6134 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6136 if (indx == (bfd_size_type) -1)
6138 defaux.vda_name = indx;
6140 defaux.vda_next = 0;
6142 _bfd_elf_swap_verdef_out (output_bfd, &def,
6143 (Elf_External_Verdef *) p);
6144 p += sizeof (Elf_External_Verdef);
6145 if (info->create_default_symver)
6147 /* Add a symbol representing this version. */
6149 if (! (_bfd_generic_link_add_one_symbol
6150 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6152 get_elf_backend_data (dynobj)->collect, &bh)))
6154 h = (struct elf_link_hash_entry *) bh;
6157 h->type = STT_OBJECT;
6158 h->verinfo.vertree = NULL;
6160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6163 /* Create a duplicate of the base version with the same
6164 aux block, but different flags. */
6167 def.vd_aux = sizeof (Elf_External_Verdef);
6169 def.vd_next = (sizeof (Elf_External_Verdef)
6170 + sizeof (Elf_External_Verdaux));
6173 _bfd_elf_swap_verdef_out (output_bfd, &def,
6174 (Elf_External_Verdef *) p);
6175 p += sizeof (Elf_External_Verdef);
6177 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6178 (Elf_External_Verdaux *) p);
6179 p += sizeof (Elf_External_Verdaux);
6181 for (t = verdefs; t != NULL; t = t->next)
6184 struct bfd_elf_version_deps *n;
6186 /* Don't emit the base version twice. */
6191 for (n = t->deps; n != NULL; n = n->next)
6194 /* Add a symbol representing this version. */
6196 if (! (_bfd_generic_link_add_one_symbol
6197 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6199 get_elf_backend_data (dynobj)->collect, &bh)))
6201 h = (struct elf_link_hash_entry *) bh;
6204 h->type = STT_OBJECT;
6205 h->verinfo.vertree = t;
6207 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6210 def.vd_version = VER_DEF_CURRENT;
6212 if (t->globals.list == NULL
6213 && t->locals.list == NULL
6215 def.vd_flags |= VER_FLG_WEAK;
6216 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6217 def.vd_cnt = cdeps + 1;
6218 def.vd_hash = bfd_elf_hash (t->name);
6219 def.vd_aux = sizeof (Elf_External_Verdef);
6222 /* If a basever node is next, it *must* be the last node in
6223 the chain, otherwise Verdef construction breaks. */
6224 if (t->next != NULL && t->next->vernum == 0)
6225 BFD_ASSERT (t->next->next == NULL);
6227 if (t->next != NULL && t->next->vernum != 0)
6228 def.vd_next = (sizeof (Elf_External_Verdef)
6229 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6231 _bfd_elf_swap_verdef_out (output_bfd, &def,
6232 (Elf_External_Verdef *) p);
6233 p += sizeof (Elf_External_Verdef);
6235 defaux.vda_name = h->dynstr_index;
6236 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6238 defaux.vda_next = 0;
6239 if (t->deps != NULL)
6240 defaux.vda_next = sizeof (Elf_External_Verdaux);
6241 t->name_indx = defaux.vda_name;
6243 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6244 (Elf_External_Verdaux *) p);
6245 p += sizeof (Elf_External_Verdaux);
6247 for (n = t->deps; n != NULL; n = n->next)
6249 if (n->version_needed == NULL)
6251 /* This can happen if there was an error in the
6253 defaux.vda_name = 0;
6257 defaux.vda_name = n->version_needed->name_indx;
6258 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6261 if (n->next == NULL)
6262 defaux.vda_next = 0;
6264 defaux.vda_next = sizeof (Elf_External_Verdaux);
6266 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6267 (Elf_External_Verdaux *) p);
6268 p += sizeof (Elf_External_Verdaux);
6272 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6273 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6276 elf_tdata (output_bfd)->cverdefs = cdefs;
6279 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6281 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6284 else if (info->flags & DF_BIND_NOW)
6286 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6292 if (info->executable)
6293 info->flags_1 &= ~ (DF_1_INITFIRST
6296 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6300 /* Work out the size of the version reference section. */
6302 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6303 BFD_ASSERT (s != NULL);
6305 struct elf_find_verdep_info sinfo;
6308 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6309 if (sinfo.vers == 0)
6311 sinfo.failed = FALSE;
6313 elf_link_hash_traverse (elf_hash_table (info),
6314 _bfd_elf_link_find_version_dependencies,
6319 if (elf_tdata (output_bfd)->verref == NULL)
6320 s->flags |= SEC_EXCLUDE;
6323 Elf_Internal_Verneed *t;
6328 /* Build the version dependency section. */
6331 for (t = elf_tdata (output_bfd)->verref;
6335 Elf_Internal_Vernaux *a;
6337 size += sizeof (Elf_External_Verneed);
6339 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 size += sizeof (Elf_External_Vernaux);
6344 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6345 if (s->contents == NULL)
6349 for (t = elf_tdata (output_bfd)->verref;
6354 Elf_Internal_Vernaux *a;
6358 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6361 t->vn_version = VER_NEED_CURRENT;
6363 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6364 elf_dt_name (t->vn_bfd) != NULL
6365 ? elf_dt_name (t->vn_bfd)
6366 : lbasename (t->vn_bfd->filename),
6368 if (indx == (bfd_size_type) -1)
6371 t->vn_aux = sizeof (Elf_External_Verneed);
6372 if (t->vn_nextref == NULL)
6375 t->vn_next = (sizeof (Elf_External_Verneed)
6376 + caux * sizeof (Elf_External_Vernaux));
6378 _bfd_elf_swap_verneed_out (output_bfd, t,
6379 (Elf_External_Verneed *) p);
6380 p += sizeof (Elf_External_Verneed);
6382 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6384 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6385 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6386 a->vna_nodename, FALSE);
6387 if (indx == (bfd_size_type) -1)
6390 if (a->vna_nextptr == NULL)
6393 a->vna_next = sizeof (Elf_External_Vernaux);
6395 _bfd_elf_swap_vernaux_out (output_bfd, a,
6396 (Elf_External_Vernaux *) p);
6397 p += sizeof (Elf_External_Vernaux);
6401 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6402 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6405 elf_tdata (output_bfd)->cverrefs = crefs;
6409 if ((elf_tdata (output_bfd)->cverrefs == 0
6410 && elf_tdata (output_bfd)->cverdefs == 0)
6411 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6412 §ion_sym_count) == 0)
6414 s = bfd_get_linker_section (dynobj, ".gnu.version");
6415 s->flags |= SEC_EXCLUDE;
6421 /* Find the first non-excluded output section. We'll use its
6422 section symbol for some emitted relocs. */
6424 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6428 for (s = output_bfd->sections; s != NULL; s = s->next)
6429 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6430 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6432 elf_hash_table (info)->text_index_section = s;
6437 /* Find two non-excluded output sections, one for code, one for data.
6438 We'll use their section symbols for some emitted relocs. */
6440 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6444 /* Data first, since setting text_index_section changes
6445 _bfd_elf_link_omit_section_dynsym. */
6446 for (s = output_bfd->sections; s != NULL; s = s->next)
6447 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6448 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6450 elf_hash_table (info)->data_index_section = s;
6454 for (s = output_bfd->sections; s != NULL; s = s->next)
6455 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6456 == (SEC_ALLOC | SEC_READONLY))
6457 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6459 elf_hash_table (info)->text_index_section = s;
6463 if (elf_hash_table (info)->text_index_section == NULL)
6464 elf_hash_table (info)->text_index_section
6465 = elf_hash_table (info)->data_index_section;
6469 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6471 const struct elf_backend_data *bed;
6473 if (!is_elf_hash_table (info->hash))
6476 bed = get_elf_backend_data (output_bfd);
6477 (*bed->elf_backend_init_index_section) (output_bfd, info);
6479 if (elf_hash_table (info)->dynamic_sections_created)
6483 bfd_size_type dynsymcount;
6484 unsigned long section_sym_count;
6485 unsigned int dtagcount;
6487 dynobj = elf_hash_table (info)->dynobj;
6489 /* Assign dynsym indicies. In a shared library we generate a
6490 section symbol for each output section, which come first.
6491 Next come all of the back-end allocated local dynamic syms,
6492 followed by the rest of the global symbols. */
6494 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6495 §ion_sym_count);
6497 /* Work out the size of the symbol version section. */
6498 s = bfd_get_linker_section (dynobj, ".gnu.version");
6499 BFD_ASSERT (s != NULL);
6500 if (dynsymcount != 0
6501 && (s->flags & SEC_EXCLUDE) == 0)
6503 s->size = dynsymcount * sizeof (Elf_External_Versym);
6504 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6505 if (s->contents == NULL)
6508 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6512 /* Set the size of the .dynsym and .hash sections. We counted
6513 the number of dynamic symbols in elf_link_add_object_symbols.
6514 We will build the contents of .dynsym and .hash when we build
6515 the final symbol table, because until then we do not know the
6516 correct value to give the symbols. We built the .dynstr
6517 section as we went along in elf_link_add_object_symbols. */
6518 s = bfd_get_linker_section (dynobj, ".dynsym");
6519 BFD_ASSERT (s != NULL);
6520 s->size = dynsymcount * bed->s->sizeof_sym;
6522 if (dynsymcount != 0)
6524 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6525 if (s->contents == NULL)
6528 /* The first entry in .dynsym is a dummy symbol.
6529 Clear all the section syms, in case we don't output them all. */
6530 ++section_sym_count;
6531 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6534 elf_hash_table (info)->bucketcount = 0;
6536 /* Compute the size of the hashing table. As a side effect this
6537 computes the hash values for all the names we export. */
6538 if (info->emit_hash)
6540 unsigned long int *hashcodes;
6541 struct hash_codes_info hashinf;
6543 unsigned long int nsyms;
6545 size_t hash_entry_size;
6547 /* Compute the hash values for all exported symbols. At the same
6548 time store the values in an array so that we could use them for
6550 amt = dynsymcount * sizeof (unsigned long int);
6551 hashcodes = (unsigned long int *) bfd_malloc (amt);
6552 if (hashcodes == NULL)
6554 hashinf.hashcodes = hashcodes;
6555 hashinf.error = FALSE;
6557 /* Put all hash values in HASHCODES. */
6558 elf_link_hash_traverse (elf_hash_table (info),
6559 elf_collect_hash_codes, &hashinf);
6566 nsyms = hashinf.hashcodes - hashcodes;
6568 = compute_bucket_count (info, hashcodes, nsyms, 0);
6571 if (bucketcount == 0)
6574 elf_hash_table (info)->bucketcount = bucketcount;
6576 s = bfd_get_linker_section (dynobj, ".hash");
6577 BFD_ASSERT (s != NULL);
6578 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6579 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6580 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6581 if (s->contents == NULL)
6584 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6585 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6586 s->contents + hash_entry_size);
6589 if (info->emit_gnu_hash)
6592 unsigned char *contents;
6593 struct collect_gnu_hash_codes cinfo;
6597 memset (&cinfo, 0, sizeof (cinfo));
6599 /* Compute the hash values for all exported symbols. At the same
6600 time store the values in an array so that we could use them for
6602 amt = dynsymcount * 2 * sizeof (unsigned long int);
6603 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6604 if (cinfo.hashcodes == NULL)
6607 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6608 cinfo.min_dynindx = -1;
6609 cinfo.output_bfd = output_bfd;
6612 /* Put all hash values in HASHCODES. */
6613 elf_link_hash_traverse (elf_hash_table (info),
6614 elf_collect_gnu_hash_codes, &cinfo);
6617 free (cinfo.hashcodes);
6622 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6624 if (bucketcount == 0)
6626 free (cinfo.hashcodes);
6630 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6631 BFD_ASSERT (s != NULL);
6633 if (cinfo.nsyms == 0)
6635 /* Empty .gnu.hash section is special. */
6636 BFD_ASSERT (cinfo.min_dynindx == -1);
6637 free (cinfo.hashcodes);
6638 s->size = 5 * 4 + bed->s->arch_size / 8;
6639 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6640 if (contents == NULL)
6642 s->contents = contents;
6643 /* 1 empty bucket. */
6644 bfd_put_32 (output_bfd, 1, contents);
6645 /* SYMIDX above the special symbol 0. */
6646 bfd_put_32 (output_bfd, 1, contents + 4);
6647 /* Just one word for bitmask. */
6648 bfd_put_32 (output_bfd, 1, contents + 8);
6649 /* Only hash fn bloom filter. */
6650 bfd_put_32 (output_bfd, 0, contents + 12);
6651 /* No hashes are valid - empty bitmask. */
6652 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6653 /* No hashes in the only bucket. */
6654 bfd_put_32 (output_bfd, 0,
6655 contents + 16 + bed->s->arch_size / 8);
6659 unsigned long int maskwords, maskbitslog2, x;
6660 BFD_ASSERT (cinfo.min_dynindx != -1);
6664 while ((x >>= 1) != 0)
6666 if (maskbitslog2 < 3)
6668 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6669 maskbitslog2 = maskbitslog2 + 3;
6671 maskbitslog2 = maskbitslog2 + 2;
6672 if (bed->s->arch_size == 64)
6674 if (maskbitslog2 == 5)
6680 cinfo.mask = (1 << cinfo.shift1) - 1;
6681 cinfo.shift2 = maskbitslog2;
6682 cinfo.maskbits = 1 << maskbitslog2;
6683 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6684 amt = bucketcount * sizeof (unsigned long int) * 2;
6685 amt += maskwords * sizeof (bfd_vma);
6686 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6687 if (cinfo.bitmask == NULL)
6689 free (cinfo.hashcodes);
6693 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6694 cinfo.indx = cinfo.counts + bucketcount;
6695 cinfo.symindx = dynsymcount - cinfo.nsyms;
6696 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6698 /* Determine how often each hash bucket is used. */
6699 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6700 for (i = 0; i < cinfo.nsyms; ++i)
6701 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6703 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6704 if (cinfo.counts[i] != 0)
6706 cinfo.indx[i] = cnt;
6707 cnt += cinfo.counts[i];
6709 BFD_ASSERT (cnt == dynsymcount);
6710 cinfo.bucketcount = bucketcount;
6711 cinfo.local_indx = cinfo.min_dynindx;
6713 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6714 s->size += cinfo.maskbits / 8;
6715 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6716 if (contents == NULL)
6718 free (cinfo.bitmask);
6719 free (cinfo.hashcodes);
6723 s->contents = contents;
6724 bfd_put_32 (output_bfd, bucketcount, contents);
6725 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6726 bfd_put_32 (output_bfd, maskwords, contents + 8);
6727 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6728 contents += 16 + cinfo.maskbits / 8;
6730 for (i = 0; i < bucketcount; ++i)
6732 if (cinfo.counts[i] == 0)
6733 bfd_put_32 (output_bfd, 0, contents);
6735 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6739 cinfo.contents = contents;
6741 /* Renumber dynamic symbols, populate .gnu.hash section. */
6742 elf_link_hash_traverse (elf_hash_table (info),
6743 elf_renumber_gnu_hash_syms, &cinfo);
6745 contents = s->contents + 16;
6746 for (i = 0; i < maskwords; ++i)
6748 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6750 contents += bed->s->arch_size / 8;
6753 free (cinfo.bitmask);
6754 free (cinfo.hashcodes);
6758 s = bfd_get_linker_section (dynobj, ".dynstr");
6759 BFD_ASSERT (s != NULL);
6761 elf_finalize_dynstr (output_bfd, info);
6763 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6765 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6766 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6773 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6776 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6779 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6780 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6783 /* Finish SHF_MERGE section merging. */
6786 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6791 if (!is_elf_hash_table (info->hash))
6794 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6795 if ((ibfd->flags & DYNAMIC) == 0)
6796 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6797 if ((sec->flags & SEC_MERGE) != 0
6798 && !bfd_is_abs_section (sec->output_section))
6800 struct bfd_elf_section_data *secdata;
6802 secdata = elf_section_data (sec);
6803 if (! _bfd_add_merge_section (abfd,
6804 &elf_hash_table (info)->merge_info,
6805 sec, &secdata->sec_info))
6807 else if (secdata->sec_info)
6808 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6811 if (elf_hash_table (info)->merge_info != NULL)
6812 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6813 merge_sections_remove_hook);
6817 /* Create an entry in an ELF linker hash table. */
6819 struct bfd_hash_entry *
6820 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6821 struct bfd_hash_table *table,
6824 /* Allocate the structure if it has not already been allocated by a
6828 entry = (struct bfd_hash_entry *)
6829 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6834 /* Call the allocation method of the superclass. */
6835 entry = _bfd_link_hash_newfunc (entry, table, string);
6838 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6839 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6841 /* Set local fields. */
6844 ret->got = htab->init_got_refcount;
6845 ret->plt = htab->init_plt_refcount;
6846 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6847 - offsetof (struct elf_link_hash_entry, size)));
6848 /* Assume that we have been called by a non-ELF symbol reader.
6849 This flag is then reset by the code which reads an ELF input
6850 file. This ensures that a symbol created by a non-ELF symbol
6851 reader will have the flag set correctly. */
6858 /* Copy data from an indirect symbol to its direct symbol, hiding the
6859 old indirect symbol. Also used for copying flags to a weakdef. */
6862 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6863 struct elf_link_hash_entry *dir,
6864 struct elf_link_hash_entry *ind)
6866 struct elf_link_hash_table *htab;
6868 /* Copy down any references that we may have already seen to the
6869 symbol which just became indirect. */
6871 dir->ref_dynamic |= ind->ref_dynamic;
6872 dir->ref_regular |= ind->ref_regular;
6873 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6874 dir->non_got_ref |= ind->non_got_ref;
6875 dir->needs_plt |= ind->needs_plt;
6876 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6878 if (ind->root.type != bfd_link_hash_indirect)
6881 /* Copy over the global and procedure linkage table refcount entries.
6882 These may have been already set up by a check_relocs routine. */
6883 htab = elf_hash_table (info);
6884 if (ind->got.refcount > htab->init_got_refcount.refcount)
6886 if (dir->got.refcount < 0)
6887 dir->got.refcount = 0;
6888 dir->got.refcount += ind->got.refcount;
6889 ind->got.refcount = htab->init_got_refcount.refcount;
6892 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6894 if (dir->plt.refcount < 0)
6895 dir->plt.refcount = 0;
6896 dir->plt.refcount += ind->plt.refcount;
6897 ind->plt.refcount = htab->init_plt_refcount.refcount;
6900 if (ind->dynindx != -1)
6902 if (dir->dynindx != -1)
6903 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6904 dir->dynindx = ind->dynindx;
6905 dir->dynstr_index = ind->dynstr_index;
6907 ind->dynstr_index = 0;
6912 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6913 struct elf_link_hash_entry *h,
6914 bfd_boolean force_local)
6916 /* STT_GNU_IFUNC symbol must go through PLT. */
6917 if (h->type != STT_GNU_IFUNC)
6919 h->plt = elf_hash_table (info)->init_plt_offset;
6924 h->forced_local = 1;
6925 if (h->dynindx != -1)
6928 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6934 /* Initialize an ELF linker hash table. */
6937 _bfd_elf_link_hash_table_init
6938 (struct elf_link_hash_table *table,
6940 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6941 struct bfd_hash_table *,
6943 unsigned int entsize,
6944 enum elf_target_id target_id)
6947 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6949 memset (table, 0, sizeof * table);
6950 table->init_got_refcount.refcount = can_refcount - 1;
6951 table->init_plt_refcount.refcount = can_refcount - 1;
6952 table->init_got_offset.offset = -(bfd_vma) 1;
6953 table->init_plt_offset.offset = -(bfd_vma) 1;
6954 /* The first dynamic symbol is a dummy. */
6955 table->dynsymcount = 1;
6957 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6959 table->root.type = bfd_link_elf_hash_table;
6960 table->hash_table_id = target_id;
6965 /* Create an ELF linker hash table. */
6967 struct bfd_link_hash_table *
6968 _bfd_elf_link_hash_table_create (bfd *abfd)
6970 struct elf_link_hash_table *ret;
6971 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6973 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6977 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6978 sizeof (struct elf_link_hash_entry),
6988 /* This is a hook for the ELF emulation code in the generic linker to
6989 tell the backend linker what file name to use for the DT_NEEDED
6990 entry for a dynamic object. */
6993 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6995 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6996 && bfd_get_format (abfd) == bfd_object)
6997 elf_dt_name (abfd) = name;
7001 bfd_elf_get_dyn_lib_class (bfd *abfd)
7004 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7005 && bfd_get_format (abfd) == bfd_object)
7006 lib_class = elf_dyn_lib_class (abfd);
7013 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7015 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7016 && bfd_get_format (abfd) == bfd_object)
7017 elf_dyn_lib_class (abfd) = lib_class;
7020 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7021 the linker ELF emulation code. */
7023 struct bfd_link_needed_list *
7024 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7025 struct bfd_link_info *info)
7027 if (! is_elf_hash_table (info->hash))
7029 return elf_hash_table (info)->needed;
7032 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7033 hook for the linker ELF emulation code. */
7035 struct bfd_link_needed_list *
7036 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7037 struct bfd_link_info *info)
7039 if (! is_elf_hash_table (info->hash))
7041 return elf_hash_table (info)->runpath;
7044 /* Get the name actually used for a dynamic object for a link. This
7045 is the SONAME entry if there is one. Otherwise, it is the string
7046 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7049 bfd_elf_get_dt_soname (bfd *abfd)
7051 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7052 && bfd_get_format (abfd) == bfd_object)
7053 return elf_dt_name (abfd);
7057 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7058 the ELF linker emulation code. */
7061 bfd_elf_get_bfd_needed_list (bfd *abfd,
7062 struct bfd_link_needed_list **pneeded)
7065 bfd_byte *dynbuf = NULL;
7066 unsigned int elfsec;
7067 unsigned long shlink;
7068 bfd_byte *extdyn, *extdynend;
7070 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7074 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7075 || bfd_get_format (abfd) != bfd_object)
7078 s = bfd_get_section_by_name (abfd, ".dynamic");
7079 if (s == NULL || s->size == 0)
7082 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7085 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7086 if (elfsec == SHN_BAD)
7089 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7091 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7092 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7095 extdynend = extdyn + s->size;
7096 for (; extdyn < extdynend; extdyn += extdynsize)
7098 Elf_Internal_Dyn dyn;
7100 (*swap_dyn_in) (abfd, extdyn, &dyn);
7102 if (dyn.d_tag == DT_NULL)
7105 if (dyn.d_tag == DT_NEEDED)
7108 struct bfd_link_needed_list *l;
7109 unsigned int tagv = dyn.d_un.d_val;
7112 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7117 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7138 struct elf_symbuf_symbol
7140 unsigned long st_name; /* Symbol name, index in string tbl */
7141 unsigned char st_info; /* Type and binding attributes */
7142 unsigned char st_other; /* Visibilty, and target specific */
7145 struct elf_symbuf_head
7147 struct elf_symbuf_symbol *ssym;
7148 bfd_size_type count;
7149 unsigned int st_shndx;
7156 Elf_Internal_Sym *isym;
7157 struct elf_symbuf_symbol *ssym;
7162 /* Sort references to symbols by ascending section number. */
7165 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7167 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7168 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7170 return s1->st_shndx - s2->st_shndx;
7174 elf_sym_name_compare (const void *arg1, const void *arg2)
7176 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7177 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7178 return strcmp (s1->name, s2->name);
7181 static struct elf_symbuf_head *
7182 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7184 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7185 struct elf_symbuf_symbol *ssym;
7186 struct elf_symbuf_head *ssymbuf, *ssymhead;
7187 bfd_size_type i, shndx_count, total_size;
7189 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7193 for (ind = indbuf, i = 0; i < symcount; i++)
7194 if (isymbuf[i].st_shndx != SHN_UNDEF)
7195 *ind++ = &isymbuf[i];
7198 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7199 elf_sort_elf_symbol);
7202 if (indbufend > indbuf)
7203 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7204 if (ind[0]->st_shndx != ind[1]->st_shndx)
7207 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7208 + (indbufend - indbuf) * sizeof (*ssym));
7209 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7210 if (ssymbuf == NULL)
7216 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7217 ssymbuf->ssym = NULL;
7218 ssymbuf->count = shndx_count;
7219 ssymbuf->st_shndx = 0;
7220 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7222 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7225 ssymhead->ssym = ssym;
7226 ssymhead->count = 0;
7227 ssymhead->st_shndx = (*ind)->st_shndx;
7229 ssym->st_name = (*ind)->st_name;
7230 ssym->st_info = (*ind)->st_info;
7231 ssym->st_other = (*ind)->st_other;
7234 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7235 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7242 /* Check if 2 sections define the same set of local and global
7246 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7247 struct bfd_link_info *info)
7250 const struct elf_backend_data *bed1, *bed2;
7251 Elf_Internal_Shdr *hdr1, *hdr2;
7252 bfd_size_type symcount1, symcount2;
7253 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7254 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7255 Elf_Internal_Sym *isym, *isymend;
7256 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7257 bfd_size_type count1, count2, i;
7258 unsigned int shndx1, shndx2;
7264 /* Both sections have to be in ELF. */
7265 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7266 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7269 if (elf_section_type (sec1) != elf_section_type (sec2))
7272 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7273 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7274 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7277 bed1 = get_elf_backend_data (bfd1);
7278 bed2 = get_elf_backend_data (bfd2);
7279 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7280 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7281 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7282 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7284 if (symcount1 == 0 || symcount2 == 0)
7290 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7291 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7293 if (ssymbuf1 == NULL)
7295 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7297 if (isymbuf1 == NULL)
7300 if (!info->reduce_memory_overheads)
7301 elf_tdata (bfd1)->symbuf = ssymbuf1
7302 = elf_create_symbuf (symcount1, isymbuf1);
7305 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7307 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7309 if (isymbuf2 == NULL)
7312 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7313 elf_tdata (bfd2)->symbuf = ssymbuf2
7314 = elf_create_symbuf (symcount2, isymbuf2);
7317 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7319 /* Optimized faster version. */
7320 bfd_size_type lo, hi, mid;
7321 struct elf_symbol *symp;
7322 struct elf_symbuf_symbol *ssym, *ssymend;
7325 hi = ssymbuf1->count;
7330 mid = (lo + hi) / 2;
7331 if (shndx1 < ssymbuf1[mid].st_shndx)
7333 else if (shndx1 > ssymbuf1[mid].st_shndx)
7337 count1 = ssymbuf1[mid].count;
7344 hi = ssymbuf2->count;
7349 mid = (lo + hi) / 2;
7350 if (shndx2 < ssymbuf2[mid].st_shndx)
7352 else if (shndx2 > ssymbuf2[mid].st_shndx)
7356 count2 = ssymbuf2[mid].count;
7362 if (count1 == 0 || count2 == 0 || count1 != count2)
7365 symtable1 = (struct elf_symbol *)
7366 bfd_malloc (count1 * sizeof (struct elf_symbol));
7367 symtable2 = (struct elf_symbol *)
7368 bfd_malloc (count2 * sizeof (struct elf_symbol));
7369 if (symtable1 == NULL || symtable2 == NULL)
7373 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7374 ssym < ssymend; ssym++, symp++)
7376 symp->u.ssym = ssym;
7377 symp->name = bfd_elf_string_from_elf_section (bfd1,
7383 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7384 ssym < ssymend; ssym++, symp++)
7386 symp->u.ssym = ssym;
7387 symp->name = bfd_elf_string_from_elf_section (bfd2,
7392 /* Sort symbol by name. */
7393 qsort (symtable1, count1, sizeof (struct elf_symbol),
7394 elf_sym_name_compare);
7395 qsort (symtable2, count1, sizeof (struct elf_symbol),
7396 elf_sym_name_compare);
7398 for (i = 0; i < count1; i++)
7399 /* Two symbols must have the same binding, type and name. */
7400 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7401 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7402 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7409 symtable1 = (struct elf_symbol *)
7410 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7411 symtable2 = (struct elf_symbol *)
7412 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7413 if (symtable1 == NULL || symtable2 == NULL)
7416 /* Count definitions in the section. */
7418 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7419 if (isym->st_shndx == shndx1)
7420 symtable1[count1++].u.isym = isym;
7423 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7424 if (isym->st_shndx == shndx2)
7425 symtable2[count2++].u.isym = isym;
7427 if (count1 == 0 || count2 == 0 || count1 != count2)
7430 for (i = 0; i < count1; i++)
7432 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7433 symtable1[i].u.isym->st_name);
7435 for (i = 0; i < count2; i++)
7437 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7438 symtable2[i].u.isym->st_name);
7440 /* Sort symbol by name. */
7441 qsort (symtable1, count1, sizeof (struct elf_symbol),
7442 elf_sym_name_compare);
7443 qsort (symtable2, count1, sizeof (struct elf_symbol),
7444 elf_sym_name_compare);
7446 for (i = 0; i < count1; i++)
7447 /* Two symbols must have the same binding, type and name. */
7448 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7449 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7450 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7468 /* Return TRUE if 2 section types are compatible. */
7471 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7472 bfd *bbfd, const asection *bsec)
7476 || abfd->xvec->flavour != bfd_target_elf_flavour
7477 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7480 return elf_section_type (asec) == elf_section_type (bsec);
7483 /* Final phase of ELF linker. */
7485 /* A structure we use to avoid passing large numbers of arguments. */
7487 struct elf_final_link_info
7489 /* General link information. */
7490 struct bfd_link_info *info;
7493 /* Symbol string table. */
7494 struct bfd_strtab_hash *symstrtab;
7495 /* .dynsym section. */
7496 asection *dynsym_sec;
7497 /* .hash section. */
7499 /* symbol version section (.gnu.version). */
7500 asection *symver_sec;
7501 /* Buffer large enough to hold contents of any section. */
7503 /* Buffer large enough to hold external relocs of any section. */
7504 void *external_relocs;
7505 /* Buffer large enough to hold internal relocs of any section. */
7506 Elf_Internal_Rela *internal_relocs;
7507 /* Buffer large enough to hold external local symbols of any input
7509 bfd_byte *external_syms;
7510 /* And a buffer for symbol section indices. */
7511 Elf_External_Sym_Shndx *locsym_shndx;
7512 /* Buffer large enough to hold internal local symbols of any input
7514 Elf_Internal_Sym *internal_syms;
7515 /* Array large enough to hold a symbol index for each local symbol
7516 of any input BFD. */
7518 /* Array large enough to hold a section pointer for each local
7519 symbol of any input BFD. */
7520 asection **sections;
7521 /* Buffer to hold swapped out symbols. */
7523 /* And one for symbol section indices. */
7524 Elf_External_Sym_Shndx *symshndxbuf;
7525 /* Number of swapped out symbols in buffer. */
7526 size_t symbuf_count;
7527 /* Number of symbols which fit in symbuf. */
7529 /* And same for symshndxbuf. */
7530 size_t shndxbuf_size;
7531 /* Number of STT_FILE syms seen. */
7532 size_t filesym_count;
7535 /* This struct is used to pass information to elf_link_output_extsym. */
7537 struct elf_outext_info
7540 bfd_boolean localsyms;
7541 bfd_boolean need_second_pass;
7542 bfd_boolean second_pass;
7543 struct elf_final_link_info *flinfo;
7547 /* Support for evaluating a complex relocation.
7549 Complex relocations are generalized, self-describing relocations. The
7550 implementation of them consists of two parts: complex symbols, and the
7551 relocations themselves.
7553 The relocations are use a reserved elf-wide relocation type code (R_RELC
7554 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7555 information (start bit, end bit, word width, etc) into the addend. This
7556 information is extracted from CGEN-generated operand tables within gas.
7558 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7559 internal) representing prefix-notation expressions, including but not
7560 limited to those sorts of expressions normally encoded as addends in the
7561 addend field. The symbol mangling format is:
7564 | <unary-operator> ':' <node>
7565 | <binary-operator> ':' <node> ':' <node>
7568 <literal> := 's' <digits=N> ':' <N character symbol name>
7569 | 'S' <digits=N> ':' <N character section name>
7573 <binary-operator> := as in C
7574 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7577 set_symbol_value (bfd *bfd_with_globals,
7578 Elf_Internal_Sym *isymbuf,
7583 struct elf_link_hash_entry **sym_hashes;
7584 struct elf_link_hash_entry *h;
7585 size_t extsymoff = locsymcount;
7587 if (symidx < locsymcount)
7589 Elf_Internal_Sym *sym;
7591 sym = isymbuf + symidx;
7592 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7594 /* It is a local symbol: move it to the
7595 "absolute" section and give it a value. */
7596 sym->st_shndx = SHN_ABS;
7597 sym->st_value = val;
7600 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7604 /* It is a global symbol: set its link type
7605 to "defined" and give it a value. */
7607 sym_hashes = elf_sym_hashes (bfd_with_globals);
7608 h = sym_hashes [symidx - extsymoff];
7609 while (h->root.type == bfd_link_hash_indirect
7610 || h->root.type == bfd_link_hash_warning)
7611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7612 h->root.type = bfd_link_hash_defined;
7613 h->root.u.def.value = val;
7614 h->root.u.def.section = bfd_abs_section_ptr;
7618 resolve_symbol (const char *name,
7620 struct elf_final_link_info *flinfo,
7622 Elf_Internal_Sym *isymbuf,
7625 Elf_Internal_Sym *sym;
7626 struct bfd_link_hash_entry *global_entry;
7627 const char *candidate = NULL;
7628 Elf_Internal_Shdr *symtab_hdr;
7631 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7633 for (i = 0; i < locsymcount; ++ i)
7637 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7640 candidate = bfd_elf_string_from_elf_section (input_bfd,
7641 symtab_hdr->sh_link,
7644 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7645 name, candidate, (unsigned long) sym->st_value);
7647 if (candidate && strcmp (candidate, name) == 0)
7649 asection *sec = flinfo->sections [i];
7651 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7652 *result += sec->output_offset + sec->output_section->vma;
7654 printf ("Found symbol with value %8.8lx\n",
7655 (unsigned long) *result);
7661 /* Hmm, haven't found it yet. perhaps it is a global. */
7662 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7663 FALSE, FALSE, TRUE);
7667 if (global_entry->type == bfd_link_hash_defined
7668 || global_entry->type == bfd_link_hash_defweak)
7670 *result = (global_entry->u.def.value
7671 + global_entry->u.def.section->output_section->vma
7672 + global_entry->u.def.section->output_offset);
7674 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7675 global_entry->root.string, (unsigned long) *result);
7684 resolve_section (const char *name,
7691 for (curr = sections; curr; curr = curr->next)
7692 if (strcmp (curr->name, name) == 0)
7694 *result = curr->vma;
7698 /* Hmm. still haven't found it. try pseudo-section names. */
7699 for (curr = sections; curr; curr = curr->next)
7701 len = strlen (curr->name);
7702 if (len > strlen (name))
7705 if (strncmp (curr->name, name, len) == 0)
7707 if (strncmp (".end", name + len, 4) == 0)
7709 *result = curr->vma + curr->size;
7713 /* Insert more pseudo-section names here, if you like. */
7721 undefined_reference (const char *reftype, const char *name)
7723 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7728 eval_symbol (bfd_vma *result,
7731 struct elf_final_link_info *flinfo,
7733 Elf_Internal_Sym *isymbuf,
7742 const char *sym = *symp;
7744 bfd_boolean symbol_is_section = FALSE;
7749 if (len < 1 || len > sizeof (symbuf))
7751 bfd_set_error (bfd_error_invalid_operation);
7764 *result = strtoul (sym, (char **) symp, 16);
7768 symbol_is_section = TRUE;
7771 symlen = strtol (sym, (char **) symp, 10);
7772 sym = *symp + 1; /* Skip the trailing ':'. */
7774 if (symend < sym || symlen + 1 > sizeof (symbuf))
7776 bfd_set_error (bfd_error_invalid_operation);
7780 memcpy (symbuf, sym, symlen);
7781 symbuf[symlen] = '\0';
7782 *symp = sym + symlen;
7784 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7785 the symbol as a section, or vice-versa. so we're pretty liberal in our
7786 interpretation here; section means "try section first", not "must be a
7787 section", and likewise with symbol. */
7789 if (symbol_is_section)
7791 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7792 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7793 isymbuf, locsymcount))
7795 undefined_reference ("section", symbuf);
7801 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7802 isymbuf, locsymcount)
7803 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7806 undefined_reference ("symbol", symbuf);
7813 /* All that remains are operators. */
7815 #define UNARY_OP(op) \
7816 if (strncmp (sym, #op, strlen (#op)) == 0) \
7818 sym += strlen (#op); \
7822 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7823 isymbuf, locsymcount, signed_p)) \
7826 *result = op ((bfd_signed_vma) a); \
7832 #define BINARY_OP(op) \
7833 if (strncmp (sym, #op, strlen (#op)) == 0) \
7835 sym += strlen (#op); \
7839 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7840 isymbuf, locsymcount, signed_p)) \
7843 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7844 isymbuf, locsymcount, signed_p)) \
7847 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7877 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7878 bfd_set_error (bfd_error_invalid_operation);
7884 put_value (bfd_vma size,
7885 unsigned long chunksz,
7890 location += (size - chunksz);
7892 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7900 bfd_put_8 (input_bfd, x, location);
7903 bfd_put_16 (input_bfd, x, location);
7906 bfd_put_32 (input_bfd, x, location);
7910 bfd_put_64 (input_bfd, x, location);
7920 get_value (bfd_vma size,
7921 unsigned long chunksz,
7928 /* Sanity checks. */
7929 BFD_ASSERT (chunksz <= sizeof (x)
7932 && (size % chunksz) == 0
7933 && input_bfd != NULL
7934 && location != NULL);
7936 if (chunksz == sizeof (x))
7938 BFD_ASSERT (size == chunksz);
7940 /* Make sure that we do not perform an undefined shift operation.
7941 We know that size == chunksz so there will only be one iteration
7942 of the loop below. */
7946 shift = 8 * chunksz;
7948 for (; size; size -= chunksz, location += chunksz)
7953 x = (x << shift) | bfd_get_8 (input_bfd, location);
7956 x = (x << shift) | bfd_get_16 (input_bfd, location);
7959 x = (x << shift) | bfd_get_32 (input_bfd, location);
7963 x = (x << shift) | bfd_get_64 (input_bfd, location);
7974 decode_complex_addend (unsigned long *start, /* in bits */
7975 unsigned long *oplen, /* in bits */
7976 unsigned long *len, /* in bits */
7977 unsigned long *wordsz, /* in bytes */
7978 unsigned long *chunksz, /* in bytes */
7979 unsigned long *lsb0_p,
7980 unsigned long *signed_p,
7981 unsigned long *trunc_p,
7982 unsigned long encoded)
7984 * start = encoded & 0x3F;
7985 * len = (encoded >> 6) & 0x3F;
7986 * oplen = (encoded >> 12) & 0x3F;
7987 * wordsz = (encoded >> 18) & 0xF;
7988 * chunksz = (encoded >> 22) & 0xF;
7989 * lsb0_p = (encoded >> 27) & 1;
7990 * signed_p = (encoded >> 28) & 1;
7991 * trunc_p = (encoded >> 29) & 1;
7994 bfd_reloc_status_type
7995 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7996 asection *input_section ATTRIBUTE_UNUSED,
7998 Elf_Internal_Rela *rel,
8001 bfd_vma shift, x, mask;
8002 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8003 bfd_reloc_status_type r;
8005 /* Perform this reloc, since it is complex.
8006 (this is not to say that it necessarily refers to a complex
8007 symbol; merely that it is a self-describing CGEN based reloc.
8008 i.e. the addend has the complete reloc information (bit start, end,
8009 word size, etc) encoded within it.). */
8011 decode_complex_addend (&start, &oplen, &len, &wordsz,
8012 &chunksz, &lsb0_p, &signed_p,
8013 &trunc_p, rel->r_addend);
8015 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8018 shift = (start + 1) - len;
8020 shift = (8 * wordsz) - (start + len);
8022 /* FIXME: octets_per_byte. */
8023 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8026 printf ("Doing complex reloc: "
8027 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8028 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8029 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8030 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8031 oplen, (unsigned long) x, (unsigned long) mask,
8032 (unsigned long) relocation);
8037 /* Now do an overflow check. */
8038 r = bfd_check_overflow ((signed_p
8039 ? complain_overflow_signed
8040 : complain_overflow_unsigned),
8041 len, 0, (8 * wordsz),
8045 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8048 printf (" relocation: %8.8lx\n"
8049 " shifted mask: %8.8lx\n"
8050 " shifted/masked reloc: %8.8lx\n"
8051 " result: %8.8lx\n",
8052 (unsigned long) relocation, (unsigned long) (mask << shift),
8053 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8055 /* FIXME: octets_per_byte. */
8056 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8060 /* When performing a relocatable link, the input relocations are
8061 preserved. But, if they reference global symbols, the indices
8062 referenced must be updated. Update all the relocations found in
8066 elf_link_adjust_relocs (bfd *abfd,
8067 struct bfd_elf_section_reloc_data *reldata)
8070 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8072 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8073 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8074 bfd_vma r_type_mask;
8076 unsigned int count = reldata->count;
8077 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8079 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8081 swap_in = bed->s->swap_reloc_in;
8082 swap_out = bed->s->swap_reloc_out;
8084 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8086 swap_in = bed->s->swap_reloca_in;
8087 swap_out = bed->s->swap_reloca_out;
8092 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8095 if (bed->s->arch_size == 32)
8102 r_type_mask = 0xffffffff;
8106 erela = reldata->hdr->contents;
8107 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8109 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8112 if (*rel_hash == NULL)
8115 BFD_ASSERT ((*rel_hash)->indx >= 0);
8117 (*swap_in) (abfd, erela, irela);
8118 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8119 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8120 | (irela[j].r_info & r_type_mask));
8121 (*swap_out) (abfd, irela, erela);
8125 struct elf_link_sort_rela
8131 enum elf_reloc_type_class type;
8132 /* We use this as an array of size int_rels_per_ext_rel. */
8133 Elf_Internal_Rela rela[1];
8137 elf_link_sort_cmp1 (const void *A, const void *B)
8139 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8140 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8141 int relativea, relativeb;
8143 relativea = a->type == reloc_class_relative;
8144 relativeb = b->type == reloc_class_relative;
8146 if (relativea < relativeb)
8148 if (relativea > relativeb)
8150 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8152 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8154 if (a->rela->r_offset < b->rela->r_offset)
8156 if (a->rela->r_offset > b->rela->r_offset)
8162 elf_link_sort_cmp2 (const void *A, const void *B)
8164 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8165 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8168 if (a->u.offset < b->u.offset)
8170 if (a->u.offset > b->u.offset)
8172 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8173 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8178 if (a->rela->r_offset < b->rela->r_offset)
8180 if (a->rela->r_offset > b->rela->r_offset)
8186 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8188 asection *dynamic_relocs;
8191 bfd_size_type count, size;
8192 size_t i, ret, sort_elt, ext_size;
8193 bfd_byte *sort, *s_non_relative, *p;
8194 struct elf_link_sort_rela *sq;
8195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8196 int i2e = bed->s->int_rels_per_ext_rel;
8197 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8198 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8199 struct bfd_link_order *lo;
8201 bfd_boolean use_rela;
8203 /* Find a dynamic reloc section. */
8204 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8205 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8206 if (rela_dyn != NULL && rela_dyn->size > 0
8207 && rel_dyn != NULL && rel_dyn->size > 0)
8209 bfd_boolean use_rela_initialised = FALSE;
8211 /* This is just here to stop gcc from complaining.
8212 It's initialization checking code is not perfect. */
8215 /* Both sections are present. Examine the sizes
8216 of the indirect sections to help us choose. */
8217 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8218 if (lo->type == bfd_indirect_link_order)
8220 asection *o = lo->u.indirect.section;
8222 if ((o->size % bed->s->sizeof_rela) == 0)
8224 if ((o->size % bed->s->sizeof_rel) == 0)
8225 /* Section size is divisible by both rel and rela sizes.
8226 It is of no help to us. */
8230 /* Section size is only divisible by rela. */
8231 if (use_rela_initialised && (use_rela == FALSE))
8234 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8235 bfd_set_error (bfd_error_invalid_operation);
8241 use_rela_initialised = TRUE;
8245 else if ((o->size % bed->s->sizeof_rel) == 0)
8247 /* Section size is only divisible by rel. */
8248 if (use_rela_initialised && (use_rela == TRUE))
8251 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8252 bfd_set_error (bfd_error_invalid_operation);
8258 use_rela_initialised = TRUE;
8263 /* The section size is not divisible by either - something is wrong. */
8265 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8266 bfd_set_error (bfd_error_invalid_operation);
8271 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8272 if (lo->type == bfd_indirect_link_order)
8274 asection *o = lo->u.indirect.section;
8276 if ((o->size % bed->s->sizeof_rela) == 0)
8278 if ((o->size % bed->s->sizeof_rel) == 0)
8279 /* Section size is divisible by both rel and rela sizes.
8280 It is of no help to us. */
8284 /* Section size is only divisible by rela. */
8285 if (use_rela_initialised && (use_rela == FALSE))
8288 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8289 bfd_set_error (bfd_error_invalid_operation);
8295 use_rela_initialised = TRUE;
8299 else if ((o->size % bed->s->sizeof_rel) == 0)
8301 /* Section size is only divisible by rel. */
8302 if (use_rela_initialised && (use_rela == TRUE))
8305 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8306 bfd_set_error (bfd_error_invalid_operation);
8312 use_rela_initialised = TRUE;
8317 /* The section size is not divisible by either - something is wrong. */
8319 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8320 bfd_set_error (bfd_error_invalid_operation);
8325 if (! use_rela_initialised)
8329 else if (rela_dyn != NULL && rela_dyn->size > 0)
8331 else if (rel_dyn != NULL && rel_dyn->size > 0)
8338 dynamic_relocs = rela_dyn;
8339 ext_size = bed->s->sizeof_rela;
8340 swap_in = bed->s->swap_reloca_in;
8341 swap_out = bed->s->swap_reloca_out;
8345 dynamic_relocs = rel_dyn;
8346 ext_size = bed->s->sizeof_rel;
8347 swap_in = bed->s->swap_reloc_in;
8348 swap_out = bed->s->swap_reloc_out;
8352 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8353 if (lo->type == bfd_indirect_link_order)
8354 size += lo->u.indirect.section->size;
8356 if (size != dynamic_relocs->size)
8359 sort_elt = (sizeof (struct elf_link_sort_rela)
8360 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8362 count = dynamic_relocs->size / ext_size;
8365 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8369 (*info->callbacks->warning)
8370 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8374 if (bed->s->arch_size == 32)
8375 r_sym_mask = ~(bfd_vma) 0xff;
8377 r_sym_mask = ~(bfd_vma) 0xffffffff;
8379 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8380 if (lo->type == bfd_indirect_link_order)
8382 bfd_byte *erel, *erelend;
8383 asection *o = lo->u.indirect.section;
8385 if (o->contents == NULL && o->size != 0)
8387 /* This is a reloc section that is being handled as a normal
8388 section. See bfd_section_from_shdr. We can't combine
8389 relocs in this case. */
8394 erelend = o->contents + o->size;
8395 /* FIXME: octets_per_byte. */
8396 p = sort + o->output_offset / ext_size * sort_elt;
8398 while (erel < erelend)
8400 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8402 (*swap_in) (abfd, erel, s->rela);
8403 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8404 s->u.sym_mask = r_sym_mask;
8410 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8412 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8414 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8415 if (s->type != reloc_class_relative)
8421 sq = (struct elf_link_sort_rela *) s_non_relative;
8422 for (; i < count; i++, p += sort_elt)
8424 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8425 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8427 sp->u.offset = sq->rela->r_offset;
8430 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8432 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8433 if (lo->type == bfd_indirect_link_order)
8435 bfd_byte *erel, *erelend;
8436 asection *o = lo->u.indirect.section;
8439 erelend = o->contents + o->size;
8440 /* FIXME: octets_per_byte. */
8441 p = sort + o->output_offset / ext_size * sort_elt;
8442 while (erel < erelend)
8444 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8445 (*swap_out) (abfd, s->rela, erel);
8452 *psec = dynamic_relocs;
8456 /* Flush the output symbols to the file. */
8459 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8460 const struct elf_backend_data *bed)
8462 if (flinfo->symbuf_count > 0)
8464 Elf_Internal_Shdr *hdr;
8468 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8469 pos = hdr->sh_offset + hdr->sh_size;
8470 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8471 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8472 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8475 hdr->sh_size += amt;
8476 flinfo->symbuf_count = 0;
8482 /* Add a symbol to the output symbol table. */
8485 elf_link_output_sym (struct elf_final_link_info *flinfo,
8487 Elf_Internal_Sym *elfsym,
8488 asection *input_sec,
8489 struct elf_link_hash_entry *h)
8492 Elf_External_Sym_Shndx *destshndx;
8493 int (*output_symbol_hook)
8494 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8495 struct elf_link_hash_entry *);
8496 const struct elf_backend_data *bed;
8498 bed = get_elf_backend_data (flinfo->output_bfd);
8499 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8500 if (output_symbol_hook != NULL)
8502 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8507 if (name == NULL || *name == '\0')
8508 elfsym->st_name = 0;
8509 else if (input_sec->flags & SEC_EXCLUDE)
8510 elfsym->st_name = 0;
8513 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8515 if (elfsym->st_name == (unsigned long) -1)
8519 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8521 if (! elf_link_flush_output_syms (flinfo, bed))
8525 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8526 destshndx = flinfo->symshndxbuf;
8527 if (destshndx != NULL)
8529 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8533 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8534 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8536 if (destshndx == NULL)
8538 flinfo->symshndxbuf = destshndx;
8539 memset ((char *) destshndx + amt, 0, amt);
8540 flinfo->shndxbuf_size *= 2;
8542 destshndx += bfd_get_symcount (flinfo->output_bfd);
8545 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8546 flinfo->symbuf_count += 1;
8547 bfd_get_symcount (flinfo->output_bfd) += 1;
8552 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8555 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8557 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8558 && sym->st_shndx < SHN_LORESERVE)
8560 /* The gABI doesn't support dynamic symbols in output sections
8562 (*_bfd_error_handler)
8563 (_("%B: Too many sections: %d (>= %d)"),
8564 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8565 bfd_set_error (bfd_error_nonrepresentable_section);
8571 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8572 allowing an unsatisfied unversioned symbol in the DSO to match a
8573 versioned symbol that would normally require an explicit version.
8574 We also handle the case that a DSO references a hidden symbol
8575 which may be satisfied by a versioned symbol in another DSO. */
8578 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8579 const struct elf_backend_data *bed,
8580 struct elf_link_hash_entry *h)
8583 struct elf_link_loaded_list *loaded;
8585 if (!is_elf_hash_table (info->hash))
8588 /* Check indirect symbol. */
8589 while (h->root.type == bfd_link_hash_indirect)
8590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8592 switch (h->root.type)
8598 case bfd_link_hash_undefined:
8599 case bfd_link_hash_undefweak:
8600 abfd = h->root.u.undef.abfd;
8601 if ((abfd->flags & DYNAMIC) == 0
8602 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8606 case bfd_link_hash_defined:
8607 case bfd_link_hash_defweak:
8608 abfd = h->root.u.def.section->owner;
8611 case bfd_link_hash_common:
8612 abfd = h->root.u.c.p->section->owner;
8615 BFD_ASSERT (abfd != NULL);
8617 for (loaded = elf_hash_table (info)->loaded;
8619 loaded = loaded->next)
8622 Elf_Internal_Shdr *hdr;
8623 bfd_size_type symcount;
8624 bfd_size_type extsymcount;
8625 bfd_size_type extsymoff;
8626 Elf_Internal_Shdr *versymhdr;
8627 Elf_Internal_Sym *isym;
8628 Elf_Internal_Sym *isymend;
8629 Elf_Internal_Sym *isymbuf;
8630 Elf_External_Versym *ever;
8631 Elf_External_Versym *extversym;
8633 input = loaded->abfd;
8635 /* We check each DSO for a possible hidden versioned definition. */
8637 || (input->flags & DYNAMIC) == 0
8638 || elf_dynversym (input) == 0)
8641 hdr = &elf_tdata (input)->dynsymtab_hdr;
8643 symcount = hdr->sh_size / bed->s->sizeof_sym;
8644 if (elf_bad_symtab (input))
8646 extsymcount = symcount;
8651 extsymcount = symcount - hdr->sh_info;
8652 extsymoff = hdr->sh_info;
8655 if (extsymcount == 0)
8658 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8660 if (isymbuf == NULL)
8663 /* Read in any version definitions. */
8664 versymhdr = &elf_tdata (input)->dynversym_hdr;
8665 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8666 if (extversym == NULL)
8669 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8670 || (bfd_bread (extversym, versymhdr->sh_size, input)
8671 != versymhdr->sh_size))
8679 ever = extversym + extsymoff;
8680 isymend = isymbuf + extsymcount;
8681 for (isym = isymbuf; isym < isymend; isym++, ever++)
8684 Elf_Internal_Versym iver;
8685 unsigned short version_index;
8687 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8688 || isym->st_shndx == SHN_UNDEF)
8691 name = bfd_elf_string_from_elf_section (input,
8694 if (strcmp (name, h->root.root.string) != 0)
8697 _bfd_elf_swap_versym_in (input, ever, &iver);
8699 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8701 && h->forced_local))
8703 /* If we have a non-hidden versioned sym, then it should
8704 have provided a definition for the undefined sym unless
8705 it is defined in a non-shared object and forced local.
8710 version_index = iver.vs_vers & VERSYM_VERSION;
8711 if (version_index == 1 || version_index == 2)
8713 /* This is the base or first version. We can use it. */
8727 /* Add an external symbol to the symbol table. This is called from
8728 the hash table traversal routine. When generating a shared object,
8729 we go through the symbol table twice. The first time we output
8730 anything that might have been forced to local scope in a version
8731 script. The second time we output the symbols that are still
8735 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8737 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8738 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8739 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8741 Elf_Internal_Sym sym;
8742 asection *input_sec;
8743 const struct elf_backend_data *bed;
8747 if (h->root.type == bfd_link_hash_warning)
8749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8750 if (h->root.type == bfd_link_hash_new)
8754 /* Decide whether to output this symbol in this pass. */
8755 if (eoinfo->localsyms)
8757 if (!h->forced_local)
8759 if (eoinfo->second_pass
8760 && !((h->root.type == bfd_link_hash_defined
8761 || h->root.type == bfd_link_hash_defweak)
8762 && h->root.u.def.section->output_section != NULL))
8767 if (h->forced_local)
8771 bed = get_elf_backend_data (flinfo->output_bfd);
8773 if (h->root.type == bfd_link_hash_undefined)
8775 /* If we have an undefined symbol reference here then it must have
8776 come from a shared library that is being linked in. (Undefined
8777 references in regular files have already been handled unless
8778 they are in unreferenced sections which are removed by garbage
8780 bfd_boolean ignore_undef = FALSE;
8782 /* Some symbols may be special in that the fact that they're
8783 undefined can be safely ignored - let backend determine that. */
8784 if (bed->elf_backend_ignore_undef_symbol)
8785 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8787 /* If we are reporting errors for this situation then do so now. */
8790 && (!h->ref_regular || flinfo->info->gc_sections)
8791 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8792 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8794 if (!(flinfo->info->callbacks->undefined_symbol
8795 (flinfo->info, h->root.root.string,
8796 h->ref_regular ? NULL : h->root.u.undef.abfd,
8798 (flinfo->info->unresolved_syms_in_shared_libs
8799 == RM_GENERATE_ERROR))))
8801 bfd_set_error (bfd_error_bad_value);
8802 eoinfo->failed = TRUE;
8808 /* We should also warn if a forced local symbol is referenced from
8809 shared libraries. */
8810 if (!flinfo->info->relocatable
8811 && flinfo->info->executable
8817 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8821 struct elf_link_hash_entry *hi = h;
8823 /* Check indirect symbol. */
8824 while (hi->root.type == bfd_link_hash_indirect)
8825 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8827 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8828 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8829 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8830 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8832 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8833 def_bfd = flinfo->output_bfd;
8834 if (hi->root.u.def.section != bfd_abs_section_ptr)
8835 def_bfd = hi->root.u.def.section->owner;
8836 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8837 h->root.root.string);
8838 bfd_set_error (bfd_error_bad_value);
8839 eoinfo->failed = TRUE;
8843 /* We don't want to output symbols that have never been mentioned by
8844 a regular file, or that we have been told to strip. However, if
8845 h->indx is set to -2, the symbol is used by a reloc and we must
8849 else if ((h->def_dynamic
8851 || h->root.type == bfd_link_hash_new)
8855 else if (flinfo->info->strip == strip_all)
8857 else if (flinfo->info->strip == strip_some
8858 && bfd_hash_lookup (flinfo->info->keep_hash,
8859 h->root.root.string, FALSE, FALSE) == NULL)
8861 else if ((h->root.type == bfd_link_hash_defined
8862 || h->root.type == bfd_link_hash_defweak)
8863 && ((flinfo->info->strip_discarded
8864 && discarded_section (h->root.u.def.section))
8865 || (h->root.u.def.section->owner != NULL
8866 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8868 else if ((h->root.type == bfd_link_hash_undefined
8869 || h->root.type == bfd_link_hash_undefweak)
8870 && h->root.u.undef.abfd != NULL
8871 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8876 /* If we're stripping it, and it's not a dynamic symbol, there's
8877 nothing else to do unless it is a forced local symbol or a
8878 STT_GNU_IFUNC symbol. */
8881 && h->type != STT_GNU_IFUNC
8882 && !h->forced_local)
8886 sym.st_size = h->size;
8887 sym.st_other = h->other;
8888 if (h->forced_local)
8890 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8891 /* Turn off visibility on local symbol. */
8892 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8894 else if (h->unique_global)
8895 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8896 else if (h->root.type == bfd_link_hash_undefweak
8897 || h->root.type == bfd_link_hash_defweak)
8898 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8900 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8901 sym.st_target_internal = h->target_internal;
8903 switch (h->root.type)
8906 case bfd_link_hash_new:
8907 case bfd_link_hash_warning:
8911 case bfd_link_hash_undefined:
8912 case bfd_link_hash_undefweak:
8913 input_sec = bfd_und_section_ptr;
8914 sym.st_shndx = SHN_UNDEF;
8917 case bfd_link_hash_defined:
8918 case bfd_link_hash_defweak:
8920 input_sec = h->root.u.def.section;
8921 if (input_sec->output_section != NULL)
8923 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8925 bfd_boolean second_pass_sym
8926 = (input_sec->owner == flinfo->output_bfd
8927 || input_sec->owner == NULL
8928 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8929 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8931 eoinfo->need_second_pass |= second_pass_sym;
8932 if (eoinfo->second_pass != second_pass_sym)
8937 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8938 input_sec->output_section);
8939 if (sym.st_shndx == SHN_BAD)
8941 (*_bfd_error_handler)
8942 (_("%B: could not find output section %A for input section %A"),
8943 flinfo->output_bfd, input_sec->output_section, input_sec);
8944 bfd_set_error (bfd_error_nonrepresentable_section);
8945 eoinfo->failed = TRUE;
8949 /* ELF symbols in relocatable files are section relative,
8950 but in nonrelocatable files they are virtual
8952 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8953 if (!flinfo->info->relocatable)
8955 sym.st_value += input_sec->output_section->vma;
8956 if (h->type == STT_TLS)
8958 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8959 if (tls_sec != NULL)
8960 sym.st_value -= tls_sec->vma;
8963 /* The TLS section may have been garbage collected. */
8964 BFD_ASSERT (flinfo->info->gc_sections
8965 && !input_sec->gc_mark);
8972 BFD_ASSERT (input_sec->owner == NULL
8973 || (input_sec->owner->flags & DYNAMIC) != 0);
8974 sym.st_shndx = SHN_UNDEF;
8975 input_sec = bfd_und_section_ptr;
8980 case bfd_link_hash_common:
8981 input_sec = h->root.u.c.p->section;
8982 sym.st_shndx = bed->common_section_index (input_sec);
8983 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8986 case bfd_link_hash_indirect:
8987 /* These symbols are created by symbol versioning. They point
8988 to the decorated version of the name. For example, if the
8989 symbol foo@@GNU_1.2 is the default, which should be used when
8990 foo is used with no version, then we add an indirect symbol
8991 foo which points to foo@@GNU_1.2. We ignore these symbols,
8992 since the indirected symbol is already in the hash table. */
8996 /* Give the processor backend a chance to tweak the symbol value,
8997 and also to finish up anything that needs to be done for this
8998 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8999 forced local syms when non-shared is due to a historical quirk.
9000 STT_GNU_IFUNC symbol must go through PLT. */
9001 if ((h->type == STT_GNU_IFUNC
9003 && !flinfo->info->relocatable)
9004 || ((h->dynindx != -1
9006 && ((flinfo->info->shared
9007 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9008 || h->root.type != bfd_link_hash_undefweak))
9009 || !h->forced_local)
9010 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9012 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9013 (flinfo->output_bfd, flinfo->info, h, &sym)))
9015 eoinfo->failed = TRUE;
9020 /* If we are marking the symbol as undefined, and there are no
9021 non-weak references to this symbol from a regular object, then
9022 mark the symbol as weak undefined; if there are non-weak
9023 references, mark the symbol as strong. We can't do this earlier,
9024 because it might not be marked as undefined until the
9025 finish_dynamic_symbol routine gets through with it. */
9026 if (sym.st_shndx == SHN_UNDEF
9028 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9029 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9032 unsigned int type = ELF_ST_TYPE (sym.st_info);
9034 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9035 if (type == STT_GNU_IFUNC)
9038 if (h->ref_regular_nonweak)
9039 bindtype = STB_GLOBAL;
9041 bindtype = STB_WEAK;
9042 sym.st_info = ELF_ST_INFO (bindtype, type);
9045 /* If this is a symbol defined in a dynamic library, don't use the
9046 symbol size from the dynamic library. Relinking an executable
9047 against a new library may introduce gratuitous changes in the
9048 executable's symbols if we keep the size. */
9049 if (sym.st_shndx == SHN_UNDEF
9054 /* If a non-weak symbol with non-default visibility is not defined
9055 locally, it is a fatal error. */
9056 if (!flinfo->info->relocatable
9057 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9058 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9059 && h->root.type == bfd_link_hash_undefined
9064 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9065 msg = _("%B: protected symbol `%s' isn't defined");
9066 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9067 msg = _("%B: internal symbol `%s' isn't defined");
9069 msg = _("%B: hidden symbol `%s' isn't defined");
9070 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9071 bfd_set_error (bfd_error_bad_value);
9072 eoinfo->failed = TRUE;
9076 /* If this symbol should be put in the .dynsym section, then put it
9077 there now. We already know the symbol index. We also fill in
9078 the entry in the .hash section. */
9079 if (flinfo->dynsym_sec != NULL
9081 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9085 /* Since there is no version information in the dynamic string,
9086 if there is no version info in symbol version section, we will
9087 have a run-time problem. */
9088 if (h->verinfo.verdef == NULL)
9090 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9092 if (p && p [1] != '\0')
9094 (*_bfd_error_handler)
9095 (_("%B: No symbol version section for versioned symbol `%s'"),
9096 flinfo->output_bfd, h->root.root.string);
9097 eoinfo->failed = TRUE;
9102 sym.st_name = h->dynstr_index;
9103 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9104 if (!check_dynsym (flinfo->output_bfd, &sym))
9106 eoinfo->failed = TRUE;
9109 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9111 if (flinfo->hash_sec != NULL)
9113 size_t hash_entry_size;
9114 bfd_byte *bucketpos;
9119 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9120 bucket = h->u.elf_hash_value % bucketcount;
9123 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9124 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9125 + (bucket + 2) * hash_entry_size);
9126 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9127 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9129 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9130 ((bfd_byte *) flinfo->hash_sec->contents
9131 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9134 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9136 Elf_Internal_Versym iversym;
9137 Elf_External_Versym *eversym;
9139 if (!h->def_regular)
9141 if (h->verinfo.verdef == NULL)
9142 iversym.vs_vers = 0;
9144 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9148 if (h->verinfo.vertree == NULL)
9149 iversym.vs_vers = 1;
9151 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9152 if (flinfo->info->create_default_symver)
9157 iversym.vs_vers |= VERSYM_HIDDEN;
9159 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9160 eversym += h->dynindx;
9161 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9165 /* If we're stripping it, then it was just a dynamic symbol, and
9166 there's nothing else to do. */
9167 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9170 indx = bfd_get_symcount (flinfo->output_bfd);
9171 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9174 eoinfo->failed = TRUE;
9179 else if (h->indx == -2)
9185 /* Return TRUE if special handling is done for relocs in SEC against
9186 symbols defined in discarded sections. */
9189 elf_section_ignore_discarded_relocs (asection *sec)
9191 const struct elf_backend_data *bed;
9193 switch (sec->sec_info_type)
9195 case SEC_INFO_TYPE_STABS:
9196 case SEC_INFO_TYPE_EH_FRAME:
9202 bed = get_elf_backend_data (sec->owner);
9203 if (bed->elf_backend_ignore_discarded_relocs != NULL
9204 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9210 /* Return a mask saying how ld should treat relocations in SEC against
9211 symbols defined in discarded sections. If this function returns
9212 COMPLAIN set, ld will issue a warning message. If this function
9213 returns PRETEND set, and the discarded section was link-once and the
9214 same size as the kept link-once section, ld will pretend that the
9215 symbol was actually defined in the kept section. Otherwise ld will
9216 zero the reloc (at least that is the intent, but some cooperation by
9217 the target dependent code is needed, particularly for REL targets). */
9220 _bfd_elf_default_action_discarded (asection *sec)
9222 if (sec->flags & SEC_DEBUGGING)
9225 if (strcmp (".eh_frame", sec->name) == 0)
9228 if (strcmp (".gcc_except_table", sec->name) == 0)
9231 return COMPLAIN | PRETEND;
9234 /* Find a match between a section and a member of a section group. */
9237 match_group_member (asection *sec, asection *group,
9238 struct bfd_link_info *info)
9240 asection *first = elf_next_in_group (group);
9241 asection *s = first;
9245 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9248 s = elf_next_in_group (s);
9256 /* Check if the kept section of a discarded section SEC can be used
9257 to replace it. Return the replacement if it is OK. Otherwise return
9261 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9265 kept = sec->kept_section;
9268 if ((kept->flags & SEC_GROUP) != 0)
9269 kept = match_group_member (sec, kept, info);
9271 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9272 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9274 sec->kept_section = kept;
9279 /* Link an input file into the linker output file. This function
9280 handles all the sections and relocations of the input file at once.
9281 This is so that we only have to read the local symbols once, and
9282 don't have to keep them in memory. */
9285 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9287 int (*relocate_section)
9288 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9289 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9291 Elf_Internal_Shdr *symtab_hdr;
9294 Elf_Internal_Sym *isymbuf;
9295 Elf_Internal_Sym *isym;
9296 Elf_Internal_Sym *isymend;
9298 asection **ppsection;
9300 const struct elf_backend_data *bed;
9301 struct elf_link_hash_entry **sym_hashes;
9302 bfd_size_type address_size;
9303 bfd_vma r_type_mask;
9305 bfd_boolean have_file_sym = FALSE;
9307 output_bfd = flinfo->output_bfd;
9308 bed = get_elf_backend_data (output_bfd);
9309 relocate_section = bed->elf_backend_relocate_section;
9311 /* If this is a dynamic object, we don't want to do anything here:
9312 we don't want the local symbols, and we don't want the section
9314 if ((input_bfd->flags & DYNAMIC) != 0)
9317 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9318 if (elf_bad_symtab (input_bfd))
9320 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9325 locsymcount = symtab_hdr->sh_info;
9326 extsymoff = symtab_hdr->sh_info;
9329 /* Read the local symbols. */
9330 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9331 if (isymbuf == NULL && locsymcount != 0)
9333 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9334 flinfo->internal_syms,
9335 flinfo->external_syms,
9336 flinfo->locsym_shndx);
9337 if (isymbuf == NULL)
9341 /* Find local symbol sections and adjust values of symbols in
9342 SEC_MERGE sections. Write out those local symbols we know are
9343 going into the output file. */
9344 isymend = isymbuf + locsymcount;
9345 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9347 isym++, pindex++, ppsection++)
9351 Elf_Internal_Sym osym;
9357 if (elf_bad_symtab (input_bfd))
9359 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9366 if (isym->st_shndx == SHN_UNDEF)
9367 isec = bfd_und_section_ptr;
9368 else if (isym->st_shndx == SHN_ABS)
9369 isec = bfd_abs_section_ptr;
9370 else if (isym->st_shndx == SHN_COMMON)
9371 isec = bfd_com_section_ptr;
9374 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9377 /* Don't attempt to output symbols with st_shnx in the
9378 reserved range other than SHN_ABS and SHN_COMMON. */
9382 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9383 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9385 _bfd_merged_section_offset (output_bfd, &isec,
9386 elf_section_data (isec)->sec_info,
9392 /* Don't output the first, undefined, symbol. */
9393 if (ppsection == flinfo->sections)
9396 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9398 /* We never output section symbols. Instead, we use the
9399 section symbol of the corresponding section in the output
9404 /* If we are stripping all symbols, we don't want to output this
9406 if (flinfo->info->strip == strip_all)
9409 /* If we are discarding all local symbols, we don't want to
9410 output this one. If we are generating a relocatable output
9411 file, then some of the local symbols may be required by
9412 relocs; we output them below as we discover that they are
9414 if (flinfo->info->discard == discard_all)
9417 /* If this symbol is defined in a section which we are
9418 discarding, we don't need to keep it. */
9419 if (isym->st_shndx != SHN_UNDEF
9420 && isym->st_shndx < SHN_LORESERVE
9421 && bfd_section_removed_from_list (output_bfd,
9422 isec->output_section))
9425 /* Get the name of the symbol. */
9426 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9431 /* See if we are discarding symbols with this name. */
9432 if ((flinfo->info->strip == strip_some
9433 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9435 || (((flinfo->info->discard == discard_sec_merge
9436 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9437 || flinfo->info->discard == discard_l)
9438 && bfd_is_local_label_name (input_bfd, name)))
9441 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9443 have_file_sym = TRUE;
9444 flinfo->filesym_count += 1;
9448 /* In the absence of debug info, bfd_find_nearest_line uses
9449 FILE symbols to determine the source file for local
9450 function symbols. Provide a FILE symbol here if input
9451 files lack such, so that their symbols won't be
9452 associated with a previous input file. It's not the
9453 source file, but the best we can do. */
9454 have_file_sym = TRUE;
9455 flinfo->filesym_count += 1;
9456 memset (&osym, 0, sizeof (osym));
9457 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9458 osym.st_shndx = SHN_ABS;
9459 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9460 bfd_abs_section_ptr, NULL))
9466 /* Adjust the section index for the output file. */
9467 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9468 isec->output_section);
9469 if (osym.st_shndx == SHN_BAD)
9472 /* ELF symbols in relocatable files are section relative, but
9473 in executable files they are virtual addresses. Note that
9474 this code assumes that all ELF sections have an associated
9475 BFD section with a reasonable value for output_offset; below
9476 we assume that they also have a reasonable value for
9477 output_section. Any special sections must be set up to meet
9478 these requirements. */
9479 osym.st_value += isec->output_offset;
9480 if (!flinfo->info->relocatable)
9482 osym.st_value += isec->output_section->vma;
9483 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9485 /* STT_TLS symbols are relative to PT_TLS segment base. */
9486 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9487 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9491 indx = bfd_get_symcount (output_bfd);
9492 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9499 if (bed->s->arch_size == 32)
9507 r_type_mask = 0xffffffff;
9512 /* Relocate the contents of each section. */
9513 sym_hashes = elf_sym_hashes (input_bfd);
9514 for (o = input_bfd->sections; o != NULL; o = o->next)
9518 if (! o->linker_mark)
9520 /* This section was omitted from the link. */
9524 if (flinfo->info->relocatable
9525 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9527 /* Deal with the group signature symbol. */
9528 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9529 unsigned long symndx = sec_data->this_hdr.sh_info;
9530 asection *osec = o->output_section;
9532 if (symndx >= locsymcount
9533 || (elf_bad_symtab (input_bfd)
9534 && flinfo->sections[symndx] == NULL))
9536 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9537 while (h->root.type == bfd_link_hash_indirect
9538 || h->root.type == bfd_link_hash_warning)
9539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9540 /* Arrange for symbol to be output. */
9542 elf_section_data (osec)->this_hdr.sh_info = -2;
9544 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9546 /* We'll use the output section target_index. */
9547 asection *sec = flinfo->sections[symndx]->output_section;
9548 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9552 if (flinfo->indices[symndx] == -1)
9554 /* Otherwise output the local symbol now. */
9555 Elf_Internal_Sym sym = isymbuf[symndx];
9556 asection *sec = flinfo->sections[symndx]->output_section;
9561 name = bfd_elf_string_from_elf_section (input_bfd,
9562 symtab_hdr->sh_link,
9567 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9569 if (sym.st_shndx == SHN_BAD)
9572 sym.st_value += o->output_offset;
9574 indx = bfd_get_symcount (output_bfd);
9575 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9579 flinfo->indices[symndx] = indx;
9583 elf_section_data (osec)->this_hdr.sh_info
9584 = flinfo->indices[symndx];
9588 if ((o->flags & SEC_HAS_CONTENTS) == 0
9589 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9592 if ((o->flags & SEC_LINKER_CREATED) != 0)
9594 /* Section was created by _bfd_elf_link_create_dynamic_sections
9599 /* Get the contents of the section. They have been cached by a
9600 relaxation routine. Note that o is a section in an input
9601 file, so the contents field will not have been set by any of
9602 the routines which work on output files. */
9603 if (elf_section_data (o)->this_hdr.contents != NULL)
9604 contents = elf_section_data (o)->this_hdr.contents;
9607 contents = flinfo->contents;
9608 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9612 if ((o->flags & SEC_RELOC) != 0)
9614 Elf_Internal_Rela *internal_relocs;
9615 Elf_Internal_Rela *rel, *relend;
9616 int action_discarded;
9619 /* Get the swapped relocs. */
9621 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9622 flinfo->internal_relocs, FALSE);
9623 if (internal_relocs == NULL
9624 && o->reloc_count > 0)
9627 /* We need to reverse-copy input .ctors/.dtors sections if
9628 they are placed in .init_array/.finit_array for output. */
9629 if (o->size > address_size
9630 && ((strncmp (o->name, ".ctors", 6) == 0
9631 && strcmp (o->output_section->name,
9632 ".init_array") == 0)
9633 || (strncmp (o->name, ".dtors", 6) == 0
9634 && strcmp (o->output_section->name,
9635 ".fini_array") == 0))
9636 && (o->name[6] == 0 || o->name[6] == '.'))
9638 if (o->size != o->reloc_count * address_size)
9640 (*_bfd_error_handler)
9641 (_("error: %B: size of section %A is not "
9642 "multiple of address size"),
9644 bfd_set_error (bfd_error_on_input);
9647 o->flags |= SEC_ELF_REVERSE_COPY;
9650 action_discarded = -1;
9651 if (!elf_section_ignore_discarded_relocs (o))
9652 action_discarded = (*bed->action_discarded) (o);
9654 /* Run through the relocs evaluating complex reloc symbols and
9655 looking for relocs against symbols from discarded sections
9656 or section symbols from removed link-once sections.
9657 Complain about relocs against discarded sections. Zero
9658 relocs against removed link-once sections. */
9660 rel = internal_relocs;
9661 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9662 for ( ; rel < relend; rel++)
9664 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9665 unsigned int s_type;
9666 asection **ps, *sec;
9667 struct elf_link_hash_entry *h = NULL;
9668 const char *sym_name;
9670 if (r_symndx == STN_UNDEF)
9673 if (r_symndx >= locsymcount
9674 || (elf_bad_symtab (input_bfd)
9675 && flinfo->sections[r_symndx] == NULL))
9677 h = sym_hashes[r_symndx - extsymoff];
9679 /* Badly formatted input files can contain relocs that
9680 reference non-existant symbols. Check here so that
9681 we do not seg fault. */
9686 sprintf_vma (buffer, rel->r_info);
9687 (*_bfd_error_handler)
9688 (_("error: %B contains a reloc (0x%s) for section %A "
9689 "that references a non-existent global symbol"),
9690 input_bfd, o, buffer);
9691 bfd_set_error (bfd_error_bad_value);
9695 while (h->root.type == bfd_link_hash_indirect
9696 || h->root.type == bfd_link_hash_warning)
9697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9702 if (h->root.type == bfd_link_hash_defined
9703 || h->root.type == bfd_link_hash_defweak)
9704 ps = &h->root.u.def.section;
9706 sym_name = h->root.root.string;
9710 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9712 s_type = ELF_ST_TYPE (sym->st_info);
9713 ps = &flinfo->sections[r_symndx];
9714 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9718 if ((s_type == STT_RELC || s_type == STT_SRELC)
9719 && !flinfo->info->relocatable)
9722 bfd_vma dot = (rel->r_offset
9723 + o->output_offset + o->output_section->vma);
9725 printf ("Encountered a complex symbol!");
9726 printf (" (input_bfd %s, section %s, reloc %ld\n",
9727 input_bfd->filename, o->name,
9728 (long) (rel - internal_relocs));
9729 printf (" symbol: idx %8.8lx, name %s\n",
9730 r_symndx, sym_name);
9731 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9732 (unsigned long) rel->r_info,
9733 (unsigned long) rel->r_offset);
9735 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9736 isymbuf, locsymcount, s_type == STT_SRELC))
9739 /* Symbol evaluated OK. Update to absolute value. */
9740 set_symbol_value (input_bfd, isymbuf, locsymcount,
9745 if (action_discarded != -1 && ps != NULL)
9747 /* Complain if the definition comes from a
9748 discarded section. */
9749 if ((sec = *ps) != NULL && discarded_section (sec))
9751 BFD_ASSERT (r_symndx != STN_UNDEF);
9752 if (action_discarded & COMPLAIN)
9753 (*flinfo->info->callbacks->einfo)
9754 (_("%X`%s' referenced in section `%A' of %B: "
9755 "defined in discarded section `%A' of %B\n"),
9756 sym_name, o, input_bfd, sec, sec->owner);
9758 /* Try to do the best we can to support buggy old
9759 versions of gcc. Pretend that the symbol is
9760 really defined in the kept linkonce section.
9761 FIXME: This is quite broken. Modifying the
9762 symbol here means we will be changing all later
9763 uses of the symbol, not just in this section. */
9764 if (action_discarded & PRETEND)
9768 kept = _bfd_elf_check_kept_section (sec,
9780 /* Relocate the section by invoking a back end routine.
9782 The back end routine is responsible for adjusting the
9783 section contents as necessary, and (if using Rela relocs
9784 and generating a relocatable output file) adjusting the
9785 reloc addend as necessary.
9787 The back end routine does not have to worry about setting
9788 the reloc address or the reloc symbol index.
9790 The back end routine is given a pointer to the swapped in
9791 internal symbols, and can access the hash table entries
9792 for the external symbols via elf_sym_hashes (input_bfd).
9794 When generating relocatable output, the back end routine
9795 must handle STB_LOCAL/STT_SECTION symbols specially. The
9796 output symbol is going to be a section symbol
9797 corresponding to the output section, which will require
9798 the addend to be adjusted. */
9800 ret = (*relocate_section) (output_bfd, flinfo->info,
9801 input_bfd, o, contents,
9809 || flinfo->info->relocatable
9810 || flinfo->info->emitrelocations)
9812 Elf_Internal_Rela *irela;
9813 Elf_Internal_Rela *irelaend, *irelamid;
9814 bfd_vma last_offset;
9815 struct elf_link_hash_entry **rel_hash;
9816 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9817 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9818 unsigned int next_erel;
9819 bfd_boolean rela_normal;
9820 struct bfd_elf_section_data *esdi, *esdo;
9822 esdi = elf_section_data (o);
9823 esdo = elf_section_data (o->output_section);
9824 rela_normal = FALSE;
9826 /* Adjust the reloc addresses and symbol indices. */
9828 irela = internal_relocs;
9829 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9830 rel_hash = esdo->rel.hashes + esdo->rel.count;
9831 /* We start processing the REL relocs, if any. When we reach
9832 IRELAMID in the loop, we switch to the RELA relocs. */
9834 if (esdi->rel.hdr != NULL)
9835 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9836 * bed->s->int_rels_per_ext_rel);
9837 rel_hash_list = rel_hash;
9838 rela_hash_list = NULL;
9839 last_offset = o->output_offset;
9840 if (!flinfo->info->relocatable)
9841 last_offset += o->output_section->vma;
9842 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9844 unsigned long r_symndx;
9846 Elf_Internal_Sym sym;
9848 if (next_erel == bed->s->int_rels_per_ext_rel)
9854 if (irela == irelamid)
9856 rel_hash = esdo->rela.hashes + esdo->rela.count;
9857 rela_hash_list = rel_hash;
9858 rela_normal = bed->rela_normal;
9861 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9864 if (irela->r_offset >= (bfd_vma) -2)
9866 /* This is a reloc for a deleted entry or somesuch.
9867 Turn it into an R_*_NONE reloc, at the same
9868 offset as the last reloc. elf_eh_frame.c and
9869 bfd_elf_discard_info rely on reloc offsets
9871 irela->r_offset = last_offset;
9873 irela->r_addend = 0;
9877 irela->r_offset += o->output_offset;
9879 /* Relocs in an executable have to be virtual addresses. */
9880 if (!flinfo->info->relocatable)
9881 irela->r_offset += o->output_section->vma;
9883 last_offset = irela->r_offset;
9885 r_symndx = irela->r_info >> r_sym_shift;
9886 if (r_symndx == STN_UNDEF)
9889 if (r_symndx >= locsymcount
9890 || (elf_bad_symtab (input_bfd)
9891 && flinfo->sections[r_symndx] == NULL))
9893 struct elf_link_hash_entry *rh;
9896 /* This is a reloc against a global symbol. We
9897 have not yet output all the local symbols, so
9898 we do not know the symbol index of any global
9899 symbol. We set the rel_hash entry for this
9900 reloc to point to the global hash table entry
9901 for this symbol. The symbol index is then
9902 set at the end of bfd_elf_final_link. */
9903 indx = r_symndx - extsymoff;
9904 rh = elf_sym_hashes (input_bfd)[indx];
9905 while (rh->root.type == bfd_link_hash_indirect
9906 || rh->root.type == bfd_link_hash_warning)
9907 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9909 /* Setting the index to -2 tells
9910 elf_link_output_extsym that this symbol is
9912 BFD_ASSERT (rh->indx < 0);
9920 /* This is a reloc against a local symbol. */
9923 sym = isymbuf[r_symndx];
9924 sec = flinfo->sections[r_symndx];
9925 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9927 /* I suppose the backend ought to fill in the
9928 section of any STT_SECTION symbol against a
9929 processor specific section. */
9930 r_symndx = STN_UNDEF;
9931 if (bfd_is_abs_section (sec))
9933 else if (sec == NULL || sec->owner == NULL)
9935 bfd_set_error (bfd_error_bad_value);
9940 asection *osec = sec->output_section;
9942 /* If we have discarded a section, the output
9943 section will be the absolute section. In
9944 case of discarded SEC_MERGE sections, use
9945 the kept section. relocate_section should
9946 have already handled discarded linkonce
9948 if (bfd_is_abs_section (osec)
9949 && sec->kept_section != NULL
9950 && sec->kept_section->output_section != NULL)
9952 osec = sec->kept_section->output_section;
9953 irela->r_addend -= osec->vma;
9956 if (!bfd_is_abs_section (osec))
9958 r_symndx = osec->target_index;
9959 if (r_symndx == STN_UNDEF)
9961 irela->r_addend += osec->vma;
9962 osec = _bfd_nearby_section (output_bfd, osec,
9964 irela->r_addend -= osec->vma;
9965 r_symndx = osec->target_index;
9970 /* Adjust the addend according to where the
9971 section winds up in the output section. */
9973 irela->r_addend += sec->output_offset;
9977 if (flinfo->indices[r_symndx] == -1)
9979 unsigned long shlink;
9984 if (flinfo->info->strip == strip_all)
9986 /* You can't do ld -r -s. */
9987 bfd_set_error (bfd_error_invalid_operation);
9991 /* This symbol was skipped earlier, but
9992 since it is needed by a reloc, we
9993 must output it now. */
9994 shlink = symtab_hdr->sh_link;
9995 name = (bfd_elf_string_from_elf_section
9996 (input_bfd, shlink, sym.st_name));
10000 osec = sec->output_section;
10002 _bfd_elf_section_from_bfd_section (output_bfd,
10004 if (sym.st_shndx == SHN_BAD)
10007 sym.st_value += sec->output_offset;
10008 if (!flinfo->info->relocatable)
10010 sym.st_value += osec->vma;
10011 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10013 /* STT_TLS symbols are relative to PT_TLS
10015 BFD_ASSERT (elf_hash_table (flinfo->info)
10016 ->tls_sec != NULL);
10017 sym.st_value -= (elf_hash_table (flinfo->info)
10022 indx = bfd_get_symcount (output_bfd);
10023 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10028 flinfo->indices[r_symndx] = indx;
10033 r_symndx = flinfo->indices[r_symndx];
10036 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10037 | (irela->r_info & r_type_mask));
10040 /* Swap out the relocs. */
10041 input_rel_hdr = esdi->rel.hdr;
10042 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10044 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10049 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10050 * bed->s->int_rels_per_ext_rel);
10051 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10054 input_rela_hdr = esdi->rela.hdr;
10055 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10057 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10066 /* Write out the modified section contents. */
10067 if (bed->elf_backend_write_section
10068 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10071 /* Section written out. */
10073 else switch (o->sec_info_type)
10075 case SEC_INFO_TYPE_STABS:
10076 if (! (_bfd_write_section_stabs
10078 &elf_hash_table (flinfo->info)->stab_info,
10079 o, &elf_section_data (o)->sec_info, contents)))
10082 case SEC_INFO_TYPE_MERGE:
10083 if (! _bfd_write_merged_section (output_bfd, o,
10084 elf_section_data (o)->sec_info))
10087 case SEC_INFO_TYPE_EH_FRAME:
10089 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10096 /* FIXME: octets_per_byte. */
10097 if (! (o->flags & SEC_EXCLUDE))
10099 file_ptr offset = (file_ptr) o->output_offset;
10100 bfd_size_type todo = o->size;
10101 if ((o->flags & SEC_ELF_REVERSE_COPY))
10103 /* Reverse-copy input section to output. */
10106 todo -= address_size;
10107 if (! bfd_set_section_contents (output_bfd,
10115 offset += address_size;
10119 else if (! bfd_set_section_contents (output_bfd,
10133 /* Generate a reloc when linking an ELF file. This is a reloc
10134 requested by the linker, and does not come from any input file. This
10135 is used to build constructor and destructor tables when linking
10139 elf_reloc_link_order (bfd *output_bfd,
10140 struct bfd_link_info *info,
10141 asection *output_section,
10142 struct bfd_link_order *link_order)
10144 reloc_howto_type *howto;
10148 struct bfd_elf_section_reloc_data *reldata;
10149 struct elf_link_hash_entry **rel_hash_ptr;
10150 Elf_Internal_Shdr *rel_hdr;
10151 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10152 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10155 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10157 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10160 bfd_set_error (bfd_error_bad_value);
10164 addend = link_order->u.reloc.p->addend;
10167 reldata = &esdo->rel;
10168 else if (esdo->rela.hdr)
10169 reldata = &esdo->rela;
10176 /* Figure out the symbol index. */
10177 rel_hash_ptr = reldata->hashes + reldata->count;
10178 if (link_order->type == bfd_section_reloc_link_order)
10180 indx = link_order->u.reloc.p->u.section->target_index;
10181 BFD_ASSERT (indx != 0);
10182 *rel_hash_ptr = NULL;
10186 struct elf_link_hash_entry *h;
10188 /* Treat a reloc against a defined symbol as though it were
10189 actually against the section. */
10190 h = ((struct elf_link_hash_entry *)
10191 bfd_wrapped_link_hash_lookup (output_bfd, info,
10192 link_order->u.reloc.p->u.name,
10193 FALSE, FALSE, TRUE));
10195 && (h->root.type == bfd_link_hash_defined
10196 || h->root.type == bfd_link_hash_defweak))
10200 section = h->root.u.def.section;
10201 indx = section->output_section->target_index;
10202 *rel_hash_ptr = NULL;
10203 /* It seems that we ought to add the symbol value to the
10204 addend here, but in practice it has already been added
10205 because it was passed to constructor_callback. */
10206 addend += section->output_section->vma + section->output_offset;
10208 else if (h != NULL)
10210 /* Setting the index to -2 tells elf_link_output_extsym that
10211 this symbol is used by a reloc. */
10218 if (! ((*info->callbacks->unattached_reloc)
10219 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10225 /* If this is an inplace reloc, we must write the addend into the
10227 if (howto->partial_inplace && addend != 0)
10229 bfd_size_type size;
10230 bfd_reloc_status_type rstat;
10233 const char *sym_name;
10235 size = (bfd_size_type) bfd_get_reloc_size (howto);
10236 buf = (bfd_byte *) bfd_zmalloc (size);
10239 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10246 case bfd_reloc_outofrange:
10249 case bfd_reloc_overflow:
10250 if (link_order->type == bfd_section_reloc_link_order)
10251 sym_name = bfd_section_name (output_bfd,
10252 link_order->u.reloc.p->u.section);
10254 sym_name = link_order->u.reloc.p->u.name;
10255 if (! ((*info->callbacks->reloc_overflow)
10256 (info, NULL, sym_name, howto->name, addend, NULL,
10257 NULL, (bfd_vma) 0)))
10264 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10265 link_order->offset, size);
10271 /* The address of a reloc is relative to the section in a
10272 relocatable file, and is a virtual address in an executable
10274 offset = link_order->offset;
10275 if (! info->relocatable)
10276 offset += output_section->vma;
10278 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10280 irel[i].r_offset = offset;
10281 irel[i].r_info = 0;
10282 irel[i].r_addend = 0;
10284 if (bed->s->arch_size == 32)
10285 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10287 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10289 rel_hdr = reldata->hdr;
10290 erel = rel_hdr->contents;
10291 if (rel_hdr->sh_type == SHT_REL)
10293 erel += reldata->count * bed->s->sizeof_rel;
10294 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10298 irel[0].r_addend = addend;
10299 erel += reldata->count * bed->s->sizeof_rela;
10300 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10309 /* Get the output vma of the section pointed to by the sh_link field. */
10312 elf_get_linked_section_vma (struct bfd_link_order *p)
10314 Elf_Internal_Shdr **elf_shdrp;
10318 s = p->u.indirect.section;
10319 elf_shdrp = elf_elfsections (s->owner);
10320 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10321 elfsec = elf_shdrp[elfsec]->sh_link;
10323 The Intel C compiler generates SHT_IA_64_UNWIND with
10324 SHF_LINK_ORDER. But it doesn't set the sh_link or
10325 sh_info fields. Hence we could get the situation
10326 where elfsec is 0. */
10329 const struct elf_backend_data *bed
10330 = get_elf_backend_data (s->owner);
10331 if (bed->link_order_error_handler)
10332 bed->link_order_error_handler
10333 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10338 s = elf_shdrp[elfsec]->bfd_section;
10339 return s->output_section->vma + s->output_offset;
10344 /* Compare two sections based on the locations of the sections they are
10345 linked to. Used by elf_fixup_link_order. */
10348 compare_link_order (const void * a, const void * b)
10353 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10354 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10357 return apos > bpos;
10361 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10362 order as their linked sections. Returns false if this could not be done
10363 because an output section includes both ordered and unordered
10364 sections. Ideally we'd do this in the linker proper. */
10367 elf_fixup_link_order (bfd *abfd, asection *o)
10369 int seen_linkorder;
10372 struct bfd_link_order *p;
10374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10376 struct bfd_link_order **sections;
10377 asection *s, *other_sec, *linkorder_sec;
10381 linkorder_sec = NULL;
10383 seen_linkorder = 0;
10384 for (p = o->map_head.link_order; p != NULL; p = p->next)
10386 if (p->type == bfd_indirect_link_order)
10388 s = p->u.indirect.section;
10390 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10391 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10392 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10393 && elfsec < elf_numsections (sub)
10394 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10395 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10409 if (seen_other && seen_linkorder)
10411 if (other_sec && linkorder_sec)
10412 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10414 linkorder_sec->owner, other_sec,
10417 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10419 bfd_set_error (bfd_error_bad_value);
10424 if (!seen_linkorder)
10427 sections = (struct bfd_link_order **)
10428 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10429 if (sections == NULL)
10431 seen_linkorder = 0;
10433 for (p = o->map_head.link_order; p != NULL; p = p->next)
10435 sections[seen_linkorder++] = p;
10437 /* Sort the input sections in the order of their linked section. */
10438 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10439 compare_link_order);
10441 /* Change the offsets of the sections. */
10443 for (n = 0; n < seen_linkorder; n++)
10445 s = sections[n]->u.indirect.section;
10446 offset &= ~(bfd_vma) 0 << s->alignment_power;
10447 s->output_offset = offset;
10448 sections[n]->offset = offset;
10449 /* FIXME: octets_per_byte. */
10450 offset += sections[n]->size;
10458 /* Do the final step of an ELF link. */
10461 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10463 bfd_boolean dynamic;
10464 bfd_boolean emit_relocs;
10466 struct elf_final_link_info flinfo;
10468 struct bfd_link_order *p;
10470 bfd_size_type max_contents_size;
10471 bfd_size_type max_external_reloc_size;
10472 bfd_size_type max_internal_reloc_count;
10473 bfd_size_type max_sym_count;
10474 bfd_size_type max_sym_shndx_count;
10476 Elf_Internal_Sym elfsym;
10478 Elf_Internal_Shdr *symtab_hdr;
10479 Elf_Internal_Shdr *symtab_shndx_hdr;
10480 Elf_Internal_Shdr *symstrtab_hdr;
10481 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10482 struct elf_outext_info eoinfo;
10483 bfd_boolean merged;
10484 size_t relativecount = 0;
10485 asection *reldyn = 0;
10487 asection *attr_section = NULL;
10488 bfd_vma attr_size = 0;
10489 const char *std_attrs_section;
10491 if (! is_elf_hash_table (info->hash))
10495 abfd->flags |= DYNAMIC;
10497 dynamic = elf_hash_table (info)->dynamic_sections_created;
10498 dynobj = elf_hash_table (info)->dynobj;
10500 emit_relocs = (info->relocatable
10501 || info->emitrelocations);
10503 flinfo.info = info;
10504 flinfo.output_bfd = abfd;
10505 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10506 if (flinfo.symstrtab == NULL)
10511 flinfo.dynsym_sec = NULL;
10512 flinfo.hash_sec = NULL;
10513 flinfo.symver_sec = NULL;
10517 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10518 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10519 /* Note that dynsym_sec can be NULL (on VMS). */
10520 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10521 /* Note that it is OK if symver_sec is NULL. */
10524 flinfo.contents = NULL;
10525 flinfo.external_relocs = NULL;
10526 flinfo.internal_relocs = NULL;
10527 flinfo.external_syms = NULL;
10528 flinfo.locsym_shndx = NULL;
10529 flinfo.internal_syms = NULL;
10530 flinfo.indices = NULL;
10531 flinfo.sections = NULL;
10532 flinfo.symbuf = NULL;
10533 flinfo.symshndxbuf = NULL;
10534 flinfo.symbuf_count = 0;
10535 flinfo.shndxbuf_size = 0;
10536 flinfo.filesym_count = 0;
10538 /* The object attributes have been merged. Remove the input
10539 sections from the link, and set the contents of the output
10541 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10542 for (o = abfd->sections; o != NULL; o = o->next)
10544 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10545 || strcmp (o->name, ".gnu.attributes") == 0)
10547 for (p = o->map_head.link_order; p != NULL; p = p->next)
10549 asection *input_section;
10551 if (p->type != bfd_indirect_link_order)
10553 input_section = p->u.indirect.section;
10554 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10555 elf_link_input_bfd ignores this section. */
10556 input_section->flags &= ~SEC_HAS_CONTENTS;
10559 attr_size = bfd_elf_obj_attr_size (abfd);
10562 bfd_set_section_size (abfd, o, attr_size);
10564 /* Skip this section later on. */
10565 o->map_head.link_order = NULL;
10568 o->flags |= SEC_EXCLUDE;
10572 /* Count up the number of relocations we will output for each output
10573 section, so that we know the sizes of the reloc sections. We
10574 also figure out some maximum sizes. */
10575 max_contents_size = 0;
10576 max_external_reloc_size = 0;
10577 max_internal_reloc_count = 0;
10579 max_sym_shndx_count = 0;
10581 for (o = abfd->sections; o != NULL; o = o->next)
10583 struct bfd_elf_section_data *esdo = elf_section_data (o);
10584 o->reloc_count = 0;
10586 for (p = o->map_head.link_order; p != NULL; p = p->next)
10588 unsigned int reloc_count = 0;
10589 struct bfd_elf_section_data *esdi = NULL;
10591 if (p->type == bfd_section_reloc_link_order
10592 || p->type == bfd_symbol_reloc_link_order)
10594 else if (p->type == bfd_indirect_link_order)
10598 sec = p->u.indirect.section;
10599 esdi = elf_section_data (sec);
10601 /* Mark all sections which are to be included in the
10602 link. This will normally be every section. We need
10603 to do this so that we can identify any sections which
10604 the linker has decided to not include. */
10605 sec->linker_mark = TRUE;
10607 if (sec->flags & SEC_MERGE)
10610 if (esdo->this_hdr.sh_type == SHT_REL
10611 || esdo->this_hdr.sh_type == SHT_RELA)
10612 /* Some backends use reloc_count in relocation sections
10613 to count particular types of relocs. Of course,
10614 reloc sections themselves can't have relocations. */
10616 else if (info->relocatable || info->emitrelocations)
10617 reloc_count = sec->reloc_count;
10618 else if (bed->elf_backend_count_relocs)
10619 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10621 if (sec->rawsize > max_contents_size)
10622 max_contents_size = sec->rawsize;
10623 if (sec->size > max_contents_size)
10624 max_contents_size = sec->size;
10626 /* We are interested in just local symbols, not all
10628 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10629 && (sec->owner->flags & DYNAMIC) == 0)
10633 if (elf_bad_symtab (sec->owner))
10634 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10635 / bed->s->sizeof_sym);
10637 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10639 if (sym_count > max_sym_count)
10640 max_sym_count = sym_count;
10642 if (sym_count > max_sym_shndx_count
10643 && elf_symtab_shndx (sec->owner) != 0)
10644 max_sym_shndx_count = sym_count;
10646 if ((sec->flags & SEC_RELOC) != 0)
10648 size_t ext_size = 0;
10650 if (esdi->rel.hdr != NULL)
10651 ext_size = esdi->rel.hdr->sh_size;
10652 if (esdi->rela.hdr != NULL)
10653 ext_size += esdi->rela.hdr->sh_size;
10655 if (ext_size > max_external_reloc_size)
10656 max_external_reloc_size = ext_size;
10657 if (sec->reloc_count > max_internal_reloc_count)
10658 max_internal_reloc_count = sec->reloc_count;
10663 if (reloc_count == 0)
10666 o->reloc_count += reloc_count;
10668 if (p->type == bfd_indirect_link_order
10669 && (info->relocatable || info->emitrelocations))
10672 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10673 if (esdi->rela.hdr)
10674 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10679 esdo->rela.count += reloc_count;
10681 esdo->rel.count += reloc_count;
10685 if (o->reloc_count > 0)
10686 o->flags |= SEC_RELOC;
10689 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10690 set it (this is probably a bug) and if it is set
10691 assign_section_numbers will create a reloc section. */
10692 o->flags &=~ SEC_RELOC;
10695 /* If the SEC_ALLOC flag is not set, force the section VMA to
10696 zero. This is done in elf_fake_sections as well, but forcing
10697 the VMA to 0 here will ensure that relocs against these
10698 sections are handled correctly. */
10699 if ((o->flags & SEC_ALLOC) == 0
10700 && ! o->user_set_vma)
10704 if (! info->relocatable && merged)
10705 elf_link_hash_traverse (elf_hash_table (info),
10706 _bfd_elf_link_sec_merge_syms, abfd);
10708 /* Figure out the file positions for everything but the symbol table
10709 and the relocs. We set symcount to force assign_section_numbers
10710 to create a symbol table. */
10711 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10712 BFD_ASSERT (! abfd->output_has_begun);
10713 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10716 /* Set sizes, and assign file positions for reloc sections. */
10717 for (o = abfd->sections; o != NULL; o = o->next)
10719 struct bfd_elf_section_data *esdo = elf_section_data (o);
10720 if ((o->flags & SEC_RELOC) != 0)
10723 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10727 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10731 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10732 to count upwards while actually outputting the relocations. */
10733 esdo->rel.count = 0;
10734 esdo->rela.count = 0;
10737 _bfd_elf_assign_file_positions_for_relocs (abfd);
10739 /* We have now assigned file positions for all the sections except
10740 .symtab and .strtab. We start the .symtab section at the current
10741 file position, and write directly to it. We build the .strtab
10742 section in memory. */
10743 bfd_get_symcount (abfd) = 0;
10744 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10745 /* sh_name is set in prep_headers. */
10746 symtab_hdr->sh_type = SHT_SYMTAB;
10747 /* sh_flags, sh_addr and sh_size all start off zero. */
10748 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10749 /* sh_link is set in assign_section_numbers. */
10750 /* sh_info is set below. */
10751 /* sh_offset is set just below. */
10752 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10754 off = elf_tdata (abfd)->next_file_pos;
10755 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10757 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10758 incorrect. We do not yet know the size of the .symtab section.
10759 We correct next_file_pos below, after we do know the size. */
10761 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10762 continuously seeking to the right position in the file. */
10763 if (! info->keep_memory || max_sym_count < 20)
10764 flinfo.symbuf_size = 20;
10766 flinfo.symbuf_size = max_sym_count;
10767 amt = flinfo.symbuf_size;
10768 amt *= bed->s->sizeof_sym;
10769 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10770 if (flinfo.symbuf == NULL)
10772 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10774 /* Wild guess at number of output symbols. realloc'd as needed. */
10775 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10776 flinfo.shndxbuf_size = amt;
10777 amt *= sizeof (Elf_External_Sym_Shndx);
10778 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10779 if (flinfo.symshndxbuf == NULL)
10783 /* Start writing out the symbol table. The first symbol is always a
10785 if (info->strip != strip_all
10788 elfsym.st_value = 0;
10789 elfsym.st_size = 0;
10790 elfsym.st_info = 0;
10791 elfsym.st_other = 0;
10792 elfsym.st_shndx = SHN_UNDEF;
10793 elfsym.st_target_internal = 0;
10794 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10799 /* Output a symbol for each section. We output these even if we are
10800 discarding local symbols, since they are used for relocs. These
10801 symbols have no names. We store the index of each one in the
10802 index field of the section, so that we can find it again when
10803 outputting relocs. */
10804 if (info->strip != strip_all
10807 elfsym.st_size = 0;
10808 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10809 elfsym.st_other = 0;
10810 elfsym.st_value = 0;
10811 elfsym.st_target_internal = 0;
10812 for (i = 1; i < elf_numsections (abfd); i++)
10814 o = bfd_section_from_elf_index (abfd, i);
10817 o->target_index = bfd_get_symcount (abfd);
10818 elfsym.st_shndx = i;
10819 if (!info->relocatable)
10820 elfsym.st_value = o->vma;
10821 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10827 /* Allocate some memory to hold information read in from the input
10829 if (max_contents_size != 0)
10831 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10832 if (flinfo.contents == NULL)
10836 if (max_external_reloc_size != 0)
10838 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10839 if (flinfo.external_relocs == NULL)
10843 if (max_internal_reloc_count != 0)
10845 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10846 amt *= sizeof (Elf_Internal_Rela);
10847 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10848 if (flinfo.internal_relocs == NULL)
10852 if (max_sym_count != 0)
10854 amt = max_sym_count * bed->s->sizeof_sym;
10855 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10856 if (flinfo.external_syms == NULL)
10859 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10860 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10861 if (flinfo.internal_syms == NULL)
10864 amt = max_sym_count * sizeof (long);
10865 flinfo.indices = (long int *) bfd_malloc (amt);
10866 if (flinfo.indices == NULL)
10869 amt = max_sym_count * sizeof (asection *);
10870 flinfo.sections = (asection **) bfd_malloc (amt);
10871 if (flinfo.sections == NULL)
10875 if (max_sym_shndx_count != 0)
10877 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10878 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10879 if (flinfo.locsym_shndx == NULL)
10883 if (elf_hash_table (info)->tls_sec)
10885 bfd_vma base, end = 0;
10888 for (sec = elf_hash_table (info)->tls_sec;
10889 sec && (sec->flags & SEC_THREAD_LOCAL);
10892 bfd_size_type size = sec->size;
10895 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10897 struct bfd_link_order *ord = sec->map_tail.link_order;
10900 size = ord->offset + ord->size;
10902 end = sec->vma + size;
10904 base = elf_hash_table (info)->tls_sec->vma;
10905 /* Only align end of TLS section if static TLS doesn't have special
10906 alignment requirements. */
10907 if (bed->static_tls_alignment == 1)
10908 end = align_power (end,
10909 elf_hash_table (info)->tls_sec->alignment_power);
10910 elf_hash_table (info)->tls_size = end - base;
10913 /* Reorder SHF_LINK_ORDER sections. */
10914 for (o = abfd->sections; o != NULL; o = o->next)
10916 if (!elf_fixup_link_order (abfd, o))
10920 /* Since ELF permits relocations to be against local symbols, we
10921 must have the local symbols available when we do the relocations.
10922 Since we would rather only read the local symbols once, and we
10923 would rather not keep them in memory, we handle all the
10924 relocations for a single input file at the same time.
10926 Unfortunately, there is no way to know the total number of local
10927 symbols until we have seen all of them, and the local symbol
10928 indices precede the global symbol indices. This means that when
10929 we are generating relocatable output, and we see a reloc against
10930 a global symbol, we can not know the symbol index until we have
10931 finished examining all the local symbols to see which ones we are
10932 going to output. To deal with this, we keep the relocations in
10933 memory, and don't output them until the end of the link. This is
10934 an unfortunate waste of memory, but I don't see a good way around
10935 it. Fortunately, it only happens when performing a relocatable
10936 link, which is not the common case. FIXME: If keep_memory is set
10937 we could write the relocs out and then read them again; I don't
10938 know how bad the memory loss will be. */
10940 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10941 sub->output_has_begun = FALSE;
10942 for (o = abfd->sections; o != NULL; o = o->next)
10944 for (p = o->map_head.link_order; p != NULL; p = p->next)
10946 if (p->type == bfd_indirect_link_order
10947 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10948 == bfd_target_elf_flavour)
10949 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10951 if (! sub->output_has_begun)
10953 if (! elf_link_input_bfd (&flinfo, sub))
10955 sub->output_has_begun = TRUE;
10958 else if (p->type == bfd_section_reloc_link_order
10959 || p->type == bfd_symbol_reloc_link_order)
10961 if (! elf_reloc_link_order (abfd, info, o, p))
10966 if (! _bfd_default_link_order (abfd, info, o, p))
10968 if (p->type == bfd_indirect_link_order
10969 && (bfd_get_flavour (sub)
10970 == bfd_target_elf_flavour)
10971 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10972 != bed->s->elfclass))
10974 const char *iclass, *oclass;
10976 if (bed->s->elfclass == ELFCLASS64)
10978 iclass = "ELFCLASS32";
10979 oclass = "ELFCLASS64";
10983 iclass = "ELFCLASS64";
10984 oclass = "ELFCLASS32";
10987 bfd_set_error (bfd_error_wrong_format);
10988 (*_bfd_error_handler)
10989 (_("%B: file class %s incompatible with %s"),
10990 sub, iclass, oclass);
10999 /* Free symbol buffer if needed. */
11000 if (!info->reduce_memory_overheads)
11002 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11003 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11004 && elf_tdata (sub)->symbuf)
11006 free (elf_tdata (sub)->symbuf);
11007 elf_tdata (sub)->symbuf = NULL;
11011 /* Output a FILE symbol so that following locals are not associated
11012 with the wrong input file. */
11013 memset (&elfsym, 0, sizeof (elfsym));
11014 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11015 elfsym.st_shndx = SHN_ABS;
11017 if (flinfo.filesym_count > 1
11018 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11019 bfd_und_section_ptr, NULL))
11022 /* Output any global symbols that got converted to local in a
11023 version script or due to symbol visibility. We do this in a
11024 separate step since ELF requires all local symbols to appear
11025 prior to any global symbols. FIXME: We should only do this if
11026 some global symbols were, in fact, converted to become local.
11027 FIXME: Will this work correctly with the Irix 5 linker? */
11028 eoinfo.failed = FALSE;
11029 eoinfo.flinfo = &flinfo;
11030 eoinfo.localsyms = TRUE;
11031 eoinfo.need_second_pass = FALSE;
11032 eoinfo.second_pass = FALSE;
11033 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11037 if (flinfo.filesym_count == 1
11038 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11039 bfd_und_section_ptr, NULL))
11042 if (eoinfo.need_second_pass)
11044 eoinfo.second_pass = TRUE;
11045 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11050 /* If backend needs to output some local symbols not present in the hash
11051 table, do it now. */
11052 if (bed->elf_backend_output_arch_local_syms)
11054 typedef int (*out_sym_func)
11055 (void *, const char *, Elf_Internal_Sym *, asection *,
11056 struct elf_link_hash_entry *);
11058 if (! ((*bed->elf_backend_output_arch_local_syms)
11059 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11063 /* That wrote out all the local symbols. Finish up the symbol table
11064 with the global symbols. Even if we want to strip everything we
11065 can, we still need to deal with those global symbols that got
11066 converted to local in a version script. */
11068 /* The sh_info field records the index of the first non local symbol. */
11069 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11072 && flinfo.dynsym_sec != NULL
11073 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11075 Elf_Internal_Sym sym;
11076 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11077 long last_local = 0;
11079 /* Write out the section symbols for the output sections. */
11080 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11086 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11088 sym.st_target_internal = 0;
11090 for (s = abfd->sections; s != NULL; s = s->next)
11096 dynindx = elf_section_data (s)->dynindx;
11099 indx = elf_section_data (s)->this_idx;
11100 BFD_ASSERT (indx > 0);
11101 sym.st_shndx = indx;
11102 if (! check_dynsym (abfd, &sym))
11104 sym.st_value = s->vma;
11105 dest = dynsym + dynindx * bed->s->sizeof_sym;
11106 if (last_local < dynindx)
11107 last_local = dynindx;
11108 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11112 /* Write out the local dynsyms. */
11113 if (elf_hash_table (info)->dynlocal)
11115 struct elf_link_local_dynamic_entry *e;
11116 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11121 /* Copy the internal symbol and turn off visibility.
11122 Note that we saved a word of storage and overwrote
11123 the original st_name with the dynstr_index. */
11125 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11127 s = bfd_section_from_elf_index (e->input_bfd,
11132 elf_section_data (s->output_section)->this_idx;
11133 if (! check_dynsym (abfd, &sym))
11135 sym.st_value = (s->output_section->vma
11137 + e->isym.st_value);
11140 if (last_local < e->dynindx)
11141 last_local = e->dynindx;
11143 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11144 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11148 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11152 /* We get the global symbols from the hash table. */
11153 eoinfo.failed = FALSE;
11154 eoinfo.localsyms = FALSE;
11155 eoinfo.flinfo = &flinfo;
11156 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11160 /* If backend needs to output some symbols not present in the hash
11161 table, do it now. */
11162 if (bed->elf_backend_output_arch_syms)
11164 typedef int (*out_sym_func)
11165 (void *, const char *, Elf_Internal_Sym *, asection *,
11166 struct elf_link_hash_entry *);
11168 if (! ((*bed->elf_backend_output_arch_syms)
11169 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11173 /* Flush all symbols to the file. */
11174 if (! elf_link_flush_output_syms (&flinfo, bed))
11177 /* Now we know the size of the symtab section. */
11178 off += symtab_hdr->sh_size;
11180 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11181 if (symtab_shndx_hdr->sh_name != 0)
11183 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11184 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11185 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11186 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11187 symtab_shndx_hdr->sh_size = amt;
11189 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11192 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11193 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11198 /* Finish up and write out the symbol string table (.strtab)
11200 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11201 /* sh_name was set in prep_headers. */
11202 symstrtab_hdr->sh_type = SHT_STRTAB;
11203 symstrtab_hdr->sh_flags = 0;
11204 symstrtab_hdr->sh_addr = 0;
11205 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11206 symstrtab_hdr->sh_entsize = 0;
11207 symstrtab_hdr->sh_link = 0;
11208 symstrtab_hdr->sh_info = 0;
11209 /* sh_offset is set just below. */
11210 symstrtab_hdr->sh_addralign = 1;
11212 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11213 elf_tdata (abfd)->next_file_pos = off;
11215 if (bfd_get_symcount (abfd) > 0)
11217 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11218 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11222 /* Adjust the relocs to have the correct symbol indices. */
11223 for (o = abfd->sections; o != NULL; o = o->next)
11225 struct bfd_elf_section_data *esdo = elf_section_data (o);
11226 if ((o->flags & SEC_RELOC) == 0)
11229 if (esdo->rel.hdr != NULL)
11230 elf_link_adjust_relocs (abfd, &esdo->rel);
11231 if (esdo->rela.hdr != NULL)
11232 elf_link_adjust_relocs (abfd, &esdo->rela);
11234 /* Set the reloc_count field to 0 to prevent write_relocs from
11235 trying to swap the relocs out itself. */
11236 o->reloc_count = 0;
11239 if (dynamic && info->combreloc && dynobj != NULL)
11240 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11242 /* If we are linking against a dynamic object, or generating a
11243 shared library, finish up the dynamic linking information. */
11246 bfd_byte *dyncon, *dynconend;
11248 /* Fix up .dynamic entries. */
11249 o = bfd_get_linker_section (dynobj, ".dynamic");
11250 BFD_ASSERT (o != NULL);
11252 dyncon = o->contents;
11253 dynconend = o->contents + o->size;
11254 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11256 Elf_Internal_Dyn dyn;
11260 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11267 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11269 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11271 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11272 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11275 dyn.d_un.d_val = relativecount;
11282 name = info->init_function;
11285 name = info->fini_function;
11288 struct elf_link_hash_entry *h;
11290 h = elf_link_hash_lookup (elf_hash_table (info), name,
11291 FALSE, FALSE, TRUE);
11293 && (h->root.type == bfd_link_hash_defined
11294 || h->root.type == bfd_link_hash_defweak))
11296 dyn.d_un.d_ptr = h->root.u.def.value;
11297 o = h->root.u.def.section;
11298 if (o->output_section != NULL)
11299 dyn.d_un.d_ptr += (o->output_section->vma
11300 + o->output_offset);
11303 /* The symbol is imported from another shared
11304 library and does not apply to this one. */
11305 dyn.d_un.d_ptr = 0;
11312 case DT_PREINIT_ARRAYSZ:
11313 name = ".preinit_array";
11315 case DT_INIT_ARRAYSZ:
11316 name = ".init_array";
11318 case DT_FINI_ARRAYSZ:
11319 name = ".fini_array";
11321 o = bfd_get_section_by_name (abfd, name);
11324 (*_bfd_error_handler)
11325 (_("%B: could not find output section %s"), abfd, name);
11329 (*_bfd_error_handler)
11330 (_("warning: %s section has zero size"), name);
11331 dyn.d_un.d_val = o->size;
11334 case DT_PREINIT_ARRAY:
11335 name = ".preinit_array";
11337 case DT_INIT_ARRAY:
11338 name = ".init_array";
11340 case DT_FINI_ARRAY:
11341 name = ".fini_array";
11348 name = ".gnu.hash";
11357 name = ".gnu.version_d";
11360 name = ".gnu.version_r";
11363 name = ".gnu.version";
11365 o = bfd_get_section_by_name (abfd, name);
11368 (*_bfd_error_handler)
11369 (_("%B: could not find output section %s"), abfd, name);
11372 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11374 (*_bfd_error_handler)
11375 (_("warning: section '%s' is being made into a note"), name);
11376 bfd_set_error (bfd_error_nonrepresentable_section);
11379 dyn.d_un.d_ptr = o->vma;
11386 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11390 dyn.d_un.d_val = 0;
11391 dyn.d_un.d_ptr = 0;
11392 for (i = 1; i < elf_numsections (abfd); i++)
11394 Elf_Internal_Shdr *hdr;
11396 hdr = elf_elfsections (abfd)[i];
11397 if (hdr->sh_type == type
11398 && (hdr->sh_flags & SHF_ALLOC) != 0)
11400 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11401 dyn.d_un.d_val += hdr->sh_size;
11404 if (dyn.d_un.d_ptr == 0
11405 || hdr->sh_addr < dyn.d_un.d_ptr)
11406 dyn.d_un.d_ptr = hdr->sh_addr;
11412 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11416 /* If we have created any dynamic sections, then output them. */
11417 if (dynobj != NULL)
11419 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11422 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11423 if (((info->warn_shared_textrel && info->shared)
11424 || info->error_textrel)
11425 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11427 bfd_byte *dyncon, *dynconend;
11429 dyncon = o->contents;
11430 dynconend = o->contents + o->size;
11431 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11433 Elf_Internal_Dyn dyn;
11435 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11437 if (dyn.d_tag == DT_TEXTREL)
11439 if (info->error_textrel)
11440 info->callbacks->einfo
11441 (_("%P%X: read-only segment has dynamic relocations.\n"));
11443 info->callbacks->einfo
11444 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11450 for (o = dynobj->sections; o != NULL; o = o->next)
11452 if ((o->flags & SEC_HAS_CONTENTS) == 0
11454 || o->output_section == bfd_abs_section_ptr)
11456 if ((o->flags & SEC_LINKER_CREATED) == 0)
11458 /* At this point, we are only interested in sections
11459 created by _bfd_elf_link_create_dynamic_sections. */
11462 if (elf_hash_table (info)->stab_info.stabstr == o)
11464 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11466 if (strcmp (o->name, ".dynstr") != 0)
11468 /* FIXME: octets_per_byte. */
11469 if (! bfd_set_section_contents (abfd, o->output_section,
11471 (file_ptr) o->output_offset,
11477 /* The contents of the .dynstr section are actually in a
11479 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11480 if (bfd_seek (abfd, off, SEEK_SET) != 0
11481 || ! _bfd_elf_strtab_emit (abfd,
11482 elf_hash_table (info)->dynstr))
11488 if (info->relocatable)
11490 bfd_boolean failed = FALSE;
11492 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11497 /* If we have optimized stabs strings, output them. */
11498 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11500 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11504 if (info->eh_frame_hdr)
11506 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11510 if (flinfo.symstrtab != NULL)
11511 _bfd_stringtab_free (flinfo.symstrtab);
11512 if (flinfo.contents != NULL)
11513 free (flinfo.contents);
11514 if (flinfo.external_relocs != NULL)
11515 free (flinfo.external_relocs);
11516 if (flinfo.internal_relocs != NULL)
11517 free (flinfo.internal_relocs);
11518 if (flinfo.external_syms != NULL)
11519 free (flinfo.external_syms);
11520 if (flinfo.locsym_shndx != NULL)
11521 free (flinfo.locsym_shndx);
11522 if (flinfo.internal_syms != NULL)
11523 free (flinfo.internal_syms);
11524 if (flinfo.indices != NULL)
11525 free (flinfo.indices);
11526 if (flinfo.sections != NULL)
11527 free (flinfo.sections);
11528 if (flinfo.symbuf != NULL)
11529 free (flinfo.symbuf);
11530 if (flinfo.symshndxbuf != NULL)
11531 free (flinfo.symshndxbuf);
11532 for (o = abfd->sections; o != NULL; o = o->next)
11534 struct bfd_elf_section_data *esdo = elf_section_data (o);
11535 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11536 free (esdo->rel.hashes);
11537 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11538 free (esdo->rela.hashes);
11541 elf_tdata (abfd)->linker = TRUE;
11545 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11546 if (contents == NULL)
11547 return FALSE; /* Bail out and fail. */
11548 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11549 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11556 if (flinfo.symstrtab != NULL)
11557 _bfd_stringtab_free (flinfo.symstrtab);
11558 if (flinfo.contents != NULL)
11559 free (flinfo.contents);
11560 if (flinfo.external_relocs != NULL)
11561 free (flinfo.external_relocs);
11562 if (flinfo.internal_relocs != NULL)
11563 free (flinfo.internal_relocs);
11564 if (flinfo.external_syms != NULL)
11565 free (flinfo.external_syms);
11566 if (flinfo.locsym_shndx != NULL)
11567 free (flinfo.locsym_shndx);
11568 if (flinfo.internal_syms != NULL)
11569 free (flinfo.internal_syms);
11570 if (flinfo.indices != NULL)
11571 free (flinfo.indices);
11572 if (flinfo.sections != NULL)
11573 free (flinfo.sections);
11574 if (flinfo.symbuf != NULL)
11575 free (flinfo.symbuf);
11576 if (flinfo.symshndxbuf != NULL)
11577 free (flinfo.symshndxbuf);
11578 for (o = abfd->sections; o != NULL; o = o->next)
11580 struct bfd_elf_section_data *esdo = elf_section_data (o);
11581 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11582 free (esdo->rel.hashes);
11583 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11584 free (esdo->rela.hashes);
11590 /* Initialize COOKIE for input bfd ABFD. */
11593 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11594 struct bfd_link_info *info, bfd *abfd)
11596 Elf_Internal_Shdr *symtab_hdr;
11597 const struct elf_backend_data *bed;
11599 bed = get_elf_backend_data (abfd);
11600 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11602 cookie->abfd = abfd;
11603 cookie->sym_hashes = elf_sym_hashes (abfd);
11604 cookie->bad_symtab = elf_bad_symtab (abfd);
11605 if (cookie->bad_symtab)
11607 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11608 cookie->extsymoff = 0;
11612 cookie->locsymcount = symtab_hdr->sh_info;
11613 cookie->extsymoff = symtab_hdr->sh_info;
11616 if (bed->s->arch_size == 32)
11617 cookie->r_sym_shift = 8;
11619 cookie->r_sym_shift = 32;
11621 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11622 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11624 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11625 cookie->locsymcount, 0,
11627 if (cookie->locsyms == NULL)
11629 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11632 if (info->keep_memory)
11633 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11638 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11641 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11643 Elf_Internal_Shdr *symtab_hdr;
11645 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11646 if (cookie->locsyms != NULL
11647 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11648 free (cookie->locsyms);
11651 /* Initialize the relocation information in COOKIE for input section SEC
11652 of input bfd ABFD. */
11655 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11656 struct bfd_link_info *info, bfd *abfd,
11659 const struct elf_backend_data *bed;
11661 if (sec->reloc_count == 0)
11663 cookie->rels = NULL;
11664 cookie->relend = NULL;
11668 bed = get_elf_backend_data (abfd);
11670 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11671 info->keep_memory);
11672 if (cookie->rels == NULL)
11674 cookie->rel = cookie->rels;
11675 cookie->relend = (cookie->rels
11676 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11678 cookie->rel = cookie->rels;
11682 /* Free the memory allocated by init_reloc_cookie_rels,
11686 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11689 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11690 free (cookie->rels);
11693 /* Initialize the whole of COOKIE for input section SEC. */
11696 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11697 struct bfd_link_info *info,
11700 if (!init_reloc_cookie (cookie, info, sec->owner))
11702 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11707 fini_reloc_cookie (cookie, sec->owner);
11712 /* Free the memory allocated by init_reloc_cookie_for_section,
11716 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11719 fini_reloc_cookie_rels (cookie, sec);
11720 fini_reloc_cookie (cookie, sec->owner);
11723 /* Garbage collect unused sections. */
11725 /* Default gc_mark_hook. */
11728 _bfd_elf_gc_mark_hook (asection *sec,
11729 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11730 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11731 struct elf_link_hash_entry *h,
11732 Elf_Internal_Sym *sym)
11734 const char *sec_name;
11738 switch (h->root.type)
11740 case bfd_link_hash_defined:
11741 case bfd_link_hash_defweak:
11742 return h->root.u.def.section;
11744 case bfd_link_hash_common:
11745 return h->root.u.c.p->section;
11747 case bfd_link_hash_undefined:
11748 case bfd_link_hash_undefweak:
11749 /* To work around a glibc bug, keep all XXX input sections
11750 when there is an as yet undefined reference to __start_XXX
11751 or __stop_XXX symbols. The linker will later define such
11752 symbols for orphan input sections that have a name
11753 representable as a C identifier. */
11754 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11755 sec_name = h->root.root.string + 8;
11756 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11757 sec_name = h->root.root.string + 7;
11761 if (sec_name && *sec_name != '\0')
11765 for (i = info->input_bfds; i; i = i->link_next)
11767 sec = bfd_get_section_by_name (i, sec_name);
11769 sec->flags |= SEC_KEEP;
11779 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11784 /* COOKIE->rel describes a relocation against section SEC, which is
11785 a section we've decided to keep. Return the section that contains
11786 the relocation symbol, or NULL if no section contains it. */
11789 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11790 elf_gc_mark_hook_fn gc_mark_hook,
11791 struct elf_reloc_cookie *cookie)
11793 unsigned long r_symndx;
11794 struct elf_link_hash_entry *h;
11796 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11797 if (r_symndx == STN_UNDEF)
11800 if (r_symndx >= cookie->locsymcount
11801 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11803 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11804 while (h->root.type == bfd_link_hash_indirect
11805 || h->root.type == bfd_link_hash_warning)
11806 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11808 /* If this symbol is weak and there is a non-weak definition, we
11809 keep the non-weak definition because many backends put
11810 dynamic reloc info on the non-weak definition for code
11811 handling copy relocs. */
11812 if (h->u.weakdef != NULL)
11813 h->u.weakdef->mark = 1;
11814 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11817 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11818 &cookie->locsyms[r_symndx]);
11821 /* COOKIE->rel describes a relocation against section SEC, which is
11822 a section we've decided to keep. Mark the section that contains
11823 the relocation symbol. */
11826 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11828 elf_gc_mark_hook_fn gc_mark_hook,
11829 struct elf_reloc_cookie *cookie)
11833 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11834 if (rsec && !rsec->gc_mark)
11836 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11837 || (rsec->owner->flags & DYNAMIC) != 0)
11839 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11845 /* The mark phase of garbage collection. For a given section, mark
11846 it and any sections in this section's group, and all the sections
11847 which define symbols to which it refers. */
11850 _bfd_elf_gc_mark (struct bfd_link_info *info,
11852 elf_gc_mark_hook_fn gc_mark_hook)
11855 asection *group_sec, *eh_frame;
11859 /* Mark all the sections in the group. */
11860 group_sec = elf_section_data (sec)->next_in_group;
11861 if (group_sec && !group_sec->gc_mark)
11862 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11865 /* Look through the section relocs. */
11867 eh_frame = elf_eh_frame_section (sec->owner);
11868 if ((sec->flags & SEC_RELOC) != 0
11869 && sec->reloc_count > 0
11870 && sec != eh_frame)
11872 struct elf_reloc_cookie cookie;
11874 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11878 for (; cookie.rel < cookie.relend; cookie.rel++)
11879 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11884 fini_reloc_cookie_for_section (&cookie, sec);
11888 if (ret && eh_frame && elf_fde_list (sec))
11890 struct elf_reloc_cookie cookie;
11892 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11896 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11897 gc_mark_hook, &cookie))
11899 fini_reloc_cookie_for_section (&cookie, eh_frame);
11906 /* Keep debug and special sections. */
11909 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11910 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11914 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11917 bfd_boolean some_kept;
11919 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11922 /* Ensure all linker created sections are kept, and see whether
11923 any other section is already marked. */
11925 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11927 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11929 else if (isec->gc_mark)
11933 /* If no section in this file will be kept, then we can
11934 toss out debug sections. */
11938 /* Keep debug and special sections like .comment when they are
11939 not part of a group, or when we have single-member groups. */
11940 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11941 if ((elf_next_in_group (isec) == NULL
11942 || elf_next_in_group (isec) == isec)
11943 && ((isec->flags & SEC_DEBUGGING) != 0
11944 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11950 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11952 struct elf_gc_sweep_symbol_info
11954 struct bfd_link_info *info;
11955 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11960 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11963 && (((h->root.type == bfd_link_hash_defined
11964 || h->root.type == bfd_link_hash_defweak)
11965 && !(h->def_regular
11966 && h->root.u.def.section->gc_mark))
11967 || h->root.type == bfd_link_hash_undefined
11968 || h->root.type == bfd_link_hash_undefweak))
11970 struct elf_gc_sweep_symbol_info *inf;
11972 inf = (struct elf_gc_sweep_symbol_info *) data;
11973 (*inf->hide_symbol) (inf->info, h, TRUE);
11974 h->def_regular = 0;
11975 h->ref_regular = 0;
11976 h->ref_regular_nonweak = 0;
11982 /* The sweep phase of garbage collection. Remove all garbage sections. */
11984 typedef bfd_boolean (*gc_sweep_hook_fn)
11985 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11988 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11991 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11992 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11993 unsigned long section_sym_count;
11994 struct elf_gc_sweep_symbol_info sweep_info;
11996 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12000 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12003 for (o = sub->sections; o != NULL; o = o->next)
12005 /* When any section in a section group is kept, we keep all
12006 sections in the section group. If the first member of
12007 the section group is excluded, we will also exclude the
12009 if (o->flags & SEC_GROUP)
12011 asection *first = elf_next_in_group (o);
12012 o->gc_mark = first->gc_mark;
12018 /* Skip sweeping sections already excluded. */
12019 if (o->flags & SEC_EXCLUDE)
12022 /* Since this is early in the link process, it is simple
12023 to remove a section from the output. */
12024 o->flags |= SEC_EXCLUDE;
12026 if (info->print_gc_sections && o->size != 0)
12027 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12029 /* But we also have to update some of the relocation
12030 info we collected before. */
12032 && (o->flags & SEC_RELOC) != 0
12033 && o->reloc_count > 0
12034 && !bfd_is_abs_section (o->output_section))
12036 Elf_Internal_Rela *internal_relocs;
12040 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12041 info->keep_memory);
12042 if (internal_relocs == NULL)
12045 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12047 if (elf_section_data (o)->relocs != internal_relocs)
12048 free (internal_relocs);
12056 /* Remove the symbols that were in the swept sections from the dynamic
12057 symbol table. GCFIXME: Anyone know how to get them out of the
12058 static symbol table as well? */
12059 sweep_info.info = info;
12060 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12061 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12064 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12068 /* Propagate collected vtable information. This is called through
12069 elf_link_hash_traverse. */
12072 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12074 /* Those that are not vtables. */
12075 if (h->vtable == NULL || h->vtable->parent == NULL)
12078 /* Those vtables that do not have parents, we cannot merge. */
12079 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12082 /* If we've already been done, exit. */
12083 if (h->vtable->used && h->vtable->used[-1])
12086 /* Make sure the parent's table is up to date. */
12087 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12089 if (h->vtable->used == NULL)
12091 /* None of this table's entries were referenced. Re-use the
12093 h->vtable->used = h->vtable->parent->vtable->used;
12094 h->vtable->size = h->vtable->parent->vtable->size;
12099 bfd_boolean *cu, *pu;
12101 /* Or the parent's entries into ours. */
12102 cu = h->vtable->used;
12104 pu = h->vtable->parent->vtable->used;
12107 const struct elf_backend_data *bed;
12108 unsigned int log_file_align;
12110 bed = get_elf_backend_data (h->root.u.def.section->owner);
12111 log_file_align = bed->s->log_file_align;
12112 n = h->vtable->parent->vtable->size >> log_file_align;
12127 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12130 bfd_vma hstart, hend;
12131 Elf_Internal_Rela *relstart, *relend, *rel;
12132 const struct elf_backend_data *bed;
12133 unsigned int log_file_align;
12135 /* Take care of both those symbols that do not describe vtables as
12136 well as those that are not loaded. */
12137 if (h->vtable == NULL || h->vtable->parent == NULL)
12140 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12141 || h->root.type == bfd_link_hash_defweak);
12143 sec = h->root.u.def.section;
12144 hstart = h->root.u.def.value;
12145 hend = hstart + h->size;
12147 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12149 return *(bfd_boolean *) okp = FALSE;
12150 bed = get_elf_backend_data (sec->owner);
12151 log_file_align = bed->s->log_file_align;
12153 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12155 for (rel = relstart; rel < relend; ++rel)
12156 if (rel->r_offset >= hstart && rel->r_offset < hend)
12158 /* If the entry is in use, do nothing. */
12159 if (h->vtable->used
12160 && (rel->r_offset - hstart) < h->vtable->size)
12162 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12163 if (h->vtable->used[entry])
12166 /* Otherwise, kill it. */
12167 rel->r_offset = rel->r_info = rel->r_addend = 0;
12173 /* Mark sections containing dynamically referenced symbols. When
12174 building shared libraries, we must assume that any visible symbol is
12178 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12180 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12182 if ((h->root.type == bfd_link_hash_defined
12183 || h->root.type == bfd_link_hash_defweak)
12185 || ((!info->executable || info->export_dynamic)
12187 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12188 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12189 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12190 || !bfd_hide_sym_by_version (info->version_info,
12191 h->root.root.string)))))
12192 h->root.u.def.section->flags |= SEC_KEEP;
12197 /* Keep all sections containing symbols undefined on the command-line,
12198 and the section containing the entry symbol. */
12201 _bfd_elf_gc_keep (struct bfd_link_info *info)
12203 struct bfd_sym_chain *sym;
12205 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12207 struct elf_link_hash_entry *h;
12209 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12210 FALSE, FALSE, FALSE);
12213 && (h->root.type == bfd_link_hash_defined
12214 || h->root.type == bfd_link_hash_defweak)
12215 && !bfd_is_abs_section (h->root.u.def.section))
12216 h->root.u.def.section->flags |= SEC_KEEP;
12220 /* Do mark and sweep of unused sections. */
12223 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12225 bfd_boolean ok = TRUE;
12227 elf_gc_mark_hook_fn gc_mark_hook;
12228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12230 if (!bed->can_gc_sections
12231 || !is_elf_hash_table (info->hash))
12233 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12237 bed->gc_keep (info);
12239 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12240 at the .eh_frame section if we can mark the FDEs individually. */
12241 _bfd_elf_begin_eh_frame_parsing (info);
12242 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12245 struct elf_reloc_cookie cookie;
12247 sec = bfd_get_section_by_name (sub, ".eh_frame");
12248 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12250 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12251 if (elf_section_data (sec)->sec_info
12252 && (sec->flags & SEC_LINKER_CREATED) == 0)
12253 elf_eh_frame_section (sub) = sec;
12254 fini_reloc_cookie_for_section (&cookie, sec);
12255 sec = bfd_get_next_section_by_name (sec);
12258 _bfd_elf_end_eh_frame_parsing (info);
12260 /* Apply transitive closure to the vtable entry usage info. */
12261 elf_link_hash_traverse (elf_hash_table (info),
12262 elf_gc_propagate_vtable_entries_used,
12267 /* Kill the vtable relocations that were not used. */
12268 elf_link_hash_traverse (elf_hash_table (info),
12269 elf_gc_smash_unused_vtentry_relocs,
12274 /* Mark dynamically referenced symbols. */
12275 if (elf_hash_table (info)->dynamic_sections_created)
12276 elf_link_hash_traverse (elf_hash_table (info),
12277 bed->gc_mark_dynamic_ref,
12280 /* Grovel through relocs to find out who stays ... */
12281 gc_mark_hook = bed->gc_mark_hook;
12282 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12286 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12289 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12290 Also treat note sections as a root, if the section is not part
12292 for (o = sub->sections; o != NULL; o = o->next)
12294 && (o->flags & SEC_EXCLUDE) == 0
12295 && ((o->flags & SEC_KEEP) != 0
12296 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12297 && elf_next_in_group (o) == NULL )))
12299 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12304 /* Allow the backend to mark additional target specific sections. */
12305 bed->gc_mark_extra_sections (info, gc_mark_hook);
12307 /* ... and mark SEC_EXCLUDE for those that go. */
12308 return elf_gc_sweep (abfd, info);
12311 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12314 bfd_elf_gc_record_vtinherit (bfd *abfd,
12316 struct elf_link_hash_entry *h,
12319 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12320 struct elf_link_hash_entry **search, *child;
12321 bfd_size_type extsymcount;
12322 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12324 /* The sh_info field of the symtab header tells us where the
12325 external symbols start. We don't care about the local symbols at
12327 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12328 if (!elf_bad_symtab (abfd))
12329 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12331 sym_hashes = elf_sym_hashes (abfd);
12332 sym_hashes_end = sym_hashes + extsymcount;
12334 /* Hunt down the child symbol, which is in this section at the same
12335 offset as the relocation. */
12336 for (search = sym_hashes; search != sym_hashes_end; ++search)
12338 if ((child = *search) != NULL
12339 && (child->root.type == bfd_link_hash_defined
12340 || child->root.type == bfd_link_hash_defweak)
12341 && child->root.u.def.section == sec
12342 && child->root.u.def.value == offset)
12346 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12347 abfd, sec, (unsigned long) offset);
12348 bfd_set_error (bfd_error_invalid_operation);
12352 if (!child->vtable)
12354 child->vtable = (struct elf_link_virtual_table_entry *)
12355 bfd_zalloc (abfd, sizeof (*child->vtable));
12356 if (!child->vtable)
12361 /* This *should* only be the absolute section. It could potentially
12362 be that someone has defined a non-global vtable though, which
12363 would be bad. It isn't worth paging in the local symbols to be
12364 sure though; that case should simply be handled by the assembler. */
12366 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12369 child->vtable->parent = h;
12374 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12377 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12378 asection *sec ATTRIBUTE_UNUSED,
12379 struct elf_link_hash_entry *h,
12382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12383 unsigned int log_file_align = bed->s->log_file_align;
12387 h->vtable = (struct elf_link_virtual_table_entry *)
12388 bfd_zalloc (abfd, sizeof (*h->vtable));
12393 if (addend >= h->vtable->size)
12395 size_t size, bytes, file_align;
12396 bfd_boolean *ptr = h->vtable->used;
12398 /* While the symbol is undefined, we have to be prepared to handle
12400 file_align = 1 << log_file_align;
12401 if (h->root.type == bfd_link_hash_undefined)
12402 size = addend + file_align;
12406 if (addend >= size)
12408 /* Oops! We've got a reference past the defined end of
12409 the table. This is probably a bug -- shall we warn? */
12410 size = addend + file_align;
12413 size = (size + file_align - 1) & -file_align;
12415 /* Allocate one extra entry for use as a "done" flag for the
12416 consolidation pass. */
12417 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12421 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12427 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12428 * sizeof (bfd_boolean));
12429 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12433 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12438 /* And arrange for that done flag to be at index -1. */
12439 h->vtable->used = ptr + 1;
12440 h->vtable->size = size;
12443 h->vtable->used[addend >> log_file_align] = TRUE;
12448 /* Map an ELF section header flag to its corresponding string. */
12452 flagword flag_value;
12453 } elf_flags_to_name_table;
12455 static elf_flags_to_name_table elf_flags_to_names [] =
12457 { "SHF_WRITE", SHF_WRITE },
12458 { "SHF_ALLOC", SHF_ALLOC },
12459 { "SHF_EXECINSTR", SHF_EXECINSTR },
12460 { "SHF_MERGE", SHF_MERGE },
12461 { "SHF_STRINGS", SHF_STRINGS },
12462 { "SHF_INFO_LINK", SHF_INFO_LINK},
12463 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12464 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12465 { "SHF_GROUP", SHF_GROUP },
12466 { "SHF_TLS", SHF_TLS },
12467 { "SHF_MASKOS", SHF_MASKOS },
12468 { "SHF_EXCLUDE", SHF_EXCLUDE },
12471 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12473 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12474 struct flag_info *flaginfo,
12477 const bfd_vma sh_flags = elf_section_flags (section);
12479 if (!flaginfo->flags_initialized)
12481 bfd *obfd = info->output_bfd;
12482 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12483 struct flag_info_list *tf = flaginfo->flag_list;
12485 int without_hex = 0;
12487 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12490 flagword (*lookup) (char *);
12492 lookup = bed->elf_backend_lookup_section_flags_hook;
12493 if (lookup != NULL)
12495 flagword hexval = (*lookup) ((char *) tf->name);
12499 if (tf->with == with_flags)
12500 with_hex |= hexval;
12501 else if (tf->with == without_flags)
12502 without_hex |= hexval;
12507 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12509 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12511 if (tf->with == with_flags)
12512 with_hex |= elf_flags_to_names[i].flag_value;
12513 else if (tf->with == without_flags)
12514 without_hex |= elf_flags_to_names[i].flag_value;
12521 info->callbacks->einfo
12522 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12526 flaginfo->flags_initialized = TRUE;
12527 flaginfo->only_with_flags |= with_hex;
12528 flaginfo->not_with_flags |= without_hex;
12531 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12534 if ((flaginfo->not_with_flags & sh_flags) != 0)
12540 struct alloc_got_off_arg {
12542 struct bfd_link_info *info;
12545 /* We need a special top-level link routine to convert got reference counts
12546 to real got offsets. */
12549 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12551 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12552 bfd *obfd = gofarg->info->output_bfd;
12553 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12555 if (h->got.refcount > 0)
12557 h->got.offset = gofarg->gotoff;
12558 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12561 h->got.offset = (bfd_vma) -1;
12566 /* And an accompanying bit to work out final got entry offsets once
12567 we're done. Should be called from final_link. */
12570 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12571 struct bfd_link_info *info)
12574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12576 struct alloc_got_off_arg gofarg;
12578 BFD_ASSERT (abfd == info->output_bfd);
12580 if (! is_elf_hash_table (info->hash))
12583 /* The GOT offset is relative to the .got section, but the GOT header is
12584 put into the .got.plt section, if the backend uses it. */
12585 if (bed->want_got_plt)
12588 gotoff = bed->got_header_size;
12590 /* Do the local .got entries first. */
12591 for (i = info->input_bfds; i; i = i->link_next)
12593 bfd_signed_vma *local_got;
12594 bfd_size_type j, locsymcount;
12595 Elf_Internal_Shdr *symtab_hdr;
12597 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12600 local_got = elf_local_got_refcounts (i);
12604 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12605 if (elf_bad_symtab (i))
12606 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12608 locsymcount = symtab_hdr->sh_info;
12610 for (j = 0; j < locsymcount; ++j)
12612 if (local_got[j] > 0)
12614 local_got[j] = gotoff;
12615 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12618 local_got[j] = (bfd_vma) -1;
12622 /* Then the global .got entries. .plt refcounts are handled by
12623 adjust_dynamic_symbol */
12624 gofarg.gotoff = gotoff;
12625 gofarg.info = info;
12626 elf_link_hash_traverse (elf_hash_table (info),
12627 elf_gc_allocate_got_offsets,
12632 /* Many folk need no more in the way of final link than this, once
12633 got entry reference counting is enabled. */
12636 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12638 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12641 /* Invoke the regular ELF backend linker to do all the work. */
12642 return bfd_elf_final_link (abfd, info);
12646 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12648 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12650 if (rcookie->bad_symtab)
12651 rcookie->rel = rcookie->rels;
12653 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12655 unsigned long r_symndx;
12657 if (! rcookie->bad_symtab)
12658 if (rcookie->rel->r_offset > offset)
12660 if (rcookie->rel->r_offset != offset)
12663 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12664 if (r_symndx == STN_UNDEF)
12667 if (r_symndx >= rcookie->locsymcount
12668 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12670 struct elf_link_hash_entry *h;
12672 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12674 while (h->root.type == bfd_link_hash_indirect
12675 || h->root.type == bfd_link_hash_warning)
12676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12678 if ((h->root.type == bfd_link_hash_defined
12679 || h->root.type == bfd_link_hash_defweak)
12680 && discarded_section (h->root.u.def.section))
12687 /* It's not a relocation against a global symbol,
12688 but it could be a relocation against a local
12689 symbol for a discarded section. */
12691 Elf_Internal_Sym *isym;
12693 /* Need to: get the symbol; get the section. */
12694 isym = &rcookie->locsyms[r_symndx];
12695 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12696 if (isec != NULL && discarded_section (isec))
12704 /* Discard unneeded references to discarded sections.
12705 Returns TRUE if any section's size was changed. */
12706 /* This function assumes that the relocations are in sorted order,
12707 which is true for all known assemblers. */
12710 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12712 struct elf_reloc_cookie cookie;
12713 asection *stab, *eh;
12714 const struct elf_backend_data *bed;
12716 bfd_boolean ret = FALSE;
12718 if (info->traditional_format
12719 || !is_elf_hash_table (info->hash))
12722 _bfd_elf_begin_eh_frame_parsing (info);
12723 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12725 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12728 bed = get_elf_backend_data (abfd);
12731 if (!info->relocatable)
12733 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12736 || bfd_is_abs_section (eh->output_section)))
12737 eh = bfd_get_next_section_by_name (eh);
12740 stab = bfd_get_section_by_name (abfd, ".stab");
12742 && (stab->size == 0
12743 || bfd_is_abs_section (stab->output_section)
12744 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12749 && bed->elf_backend_discard_info == NULL)
12752 if (!init_reloc_cookie (&cookie, info, abfd))
12756 && stab->reloc_count > 0
12757 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12759 if (_bfd_discard_section_stabs (abfd, stab,
12760 elf_section_data (stab)->sec_info,
12761 bfd_elf_reloc_symbol_deleted_p,
12764 fini_reloc_cookie_rels (&cookie, stab);
12768 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12770 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12771 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12772 bfd_elf_reloc_symbol_deleted_p,
12775 fini_reloc_cookie_rels (&cookie, eh);
12776 eh = bfd_get_next_section_by_name (eh);
12779 if (bed->elf_backend_discard_info != NULL
12780 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12783 fini_reloc_cookie (&cookie, abfd);
12785 _bfd_elf_end_eh_frame_parsing (info);
12787 if (info->eh_frame_hdr
12788 && !info->relocatable
12789 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12796 _bfd_elf_section_already_linked (bfd *abfd,
12798 struct bfd_link_info *info)
12801 const char *name, *key;
12802 struct bfd_section_already_linked *l;
12803 struct bfd_section_already_linked_hash_entry *already_linked_list;
12805 if (sec->output_section == bfd_abs_section_ptr)
12808 flags = sec->flags;
12810 /* Return if it isn't a linkonce section. A comdat group section
12811 also has SEC_LINK_ONCE set. */
12812 if ((flags & SEC_LINK_ONCE) == 0)
12815 /* Don't put group member sections on our list of already linked
12816 sections. They are handled as a group via their group section. */
12817 if (elf_sec_group (sec) != NULL)
12820 /* For a SHT_GROUP section, use the group signature as the key. */
12822 if ((flags & SEC_GROUP) != 0
12823 && elf_next_in_group (sec) != NULL
12824 && elf_group_name (elf_next_in_group (sec)) != NULL)
12825 key = elf_group_name (elf_next_in_group (sec));
12828 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12829 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12830 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12833 /* Must be a user linkonce section that doesn't follow gcc's
12834 naming convention. In this case we won't be matching
12835 single member groups. */
12839 already_linked_list = bfd_section_already_linked_table_lookup (key);
12841 for (l = already_linked_list->entry; l != NULL; l = l->next)
12843 /* We may have 2 different types of sections on the list: group
12844 sections with a signature of <key> (<key> is some string),
12845 and linkonce sections named .gnu.linkonce.<type>.<key>.
12846 Match like sections. LTO plugin sections are an exception.
12847 They are always named .gnu.linkonce.t.<key> and match either
12848 type of section. */
12849 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12850 && ((flags & SEC_GROUP) != 0
12851 || strcmp (name, l->sec->name) == 0))
12852 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12854 /* The section has already been linked. See if we should
12855 issue a warning. */
12856 if (!_bfd_handle_already_linked (sec, l, info))
12859 if (flags & SEC_GROUP)
12861 asection *first = elf_next_in_group (sec);
12862 asection *s = first;
12866 s->output_section = bfd_abs_section_ptr;
12867 /* Record which group discards it. */
12868 s->kept_section = l->sec;
12869 s = elf_next_in_group (s);
12870 /* These lists are circular. */
12880 /* A single member comdat group section may be discarded by a
12881 linkonce section and vice versa. */
12882 if ((flags & SEC_GROUP) != 0)
12884 asection *first = elf_next_in_group (sec);
12886 if (first != NULL && elf_next_in_group (first) == first)
12887 /* Check this single member group against linkonce sections. */
12888 for (l = already_linked_list->entry; l != NULL; l = l->next)
12889 if ((l->sec->flags & SEC_GROUP) == 0
12890 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12892 first->output_section = bfd_abs_section_ptr;
12893 first->kept_section = l->sec;
12894 sec->output_section = bfd_abs_section_ptr;
12899 /* Check this linkonce section against single member groups. */
12900 for (l = already_linked_list->entry; l != NULL; l = l->next)
12901 if (l->sec->flags & SEC_GROUP)
12903 asection *first = elf_next_in_group (l->sec);
12906 && elf_next_in_group (first) == first
12907 && bfd_elf_match_symbols_in_sections (first, sec, info))
12909 sec->output_section = bfd_abs_section_ptr;
12910 sec->kept_section = first;
12915 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12916 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12917 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12918 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12919 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12920 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12921 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12922 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12923 The reverse order cannot happen as there is never a bfd with only the
12924 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12925 matter as here were are looking only for cross-bfd sections. */
12927 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12928 for (l = already_linked_list->entry; l != NULL; l = l->next)
12929 if ((l->sec->flags & SEC_GROUP) == 0
12930 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12932 if (abfd != l->sec->owner)
12933 sec->output_section = bfd_abs_section_ptr;
12937 /* This is the first section with this name. Record it. */
12938 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12939 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12940 return sec->output_section == bfd_abs_section_ptr;
12944 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12946 return sym->st_shndx == SHN_COMMON;
12950 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12956 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12958 return bfd_com_section_ptr;
12962 _bfd_elf_default_got_elt_size (bfd *abfd,
12963 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12964 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12965 bfd *ibfd ATTRIBUTE_UNUSED,
12966 unsigned long symndx ATTRIBUTE_UNUSED)
12968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12969 return bed->s->arch_size / 8;
12972 /* Routines to support the creation of dynamic relocs. */
12974 /* Returns the name of the dynamic reloc section associated with SEC. */
12976 static const char *
12977 get_dynamic_reloc_section_name (bfd * abfd,
12979 bfd_boolean is_rela)
12982 const char *old_name = bfd_get_section_name (NULL, sec);
12983 const char *prefix = is_rela ? ".rela" : ".rel";
12985 if (old_name == NULL)
12988 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12989 sprintf (name, "%s%s", prefix, old_name);
12994 /* Returns the dynamic reloc section associated with SEC.
12995 If necessary compute the name of the dynamic reloc section based
12996 on SEC's name (looked up in ABFD's string table) and the setting
13000 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13002 bfd_boolean is_rela)
13004 asection * reloc_sec = elf_section_data (sec)->sreloc;
13006 if (reloc_sec == NULL)
13008 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13012 reloc_sec = bfd_get_linker_section (abfd, name);
13014 if (reloc_sec != NULL)
13015 elf_section_data (sec)->sreloc = reloc_sec;
13022 /* Returns the dynamic reloc section associated with SEC. If the
13023 section does not exist it is created and attached to the DYNOBJ
13024 bfd and stored in the SRELOC field of SEC's elf_section_data
13027 ALIGNMENT is the alignment for the newly created section and
13028 IS_RELA defines whether the name should be .rela.<SEC's name>
13029 or .rel.<SEC's name>. The section name is looked up in the
13030 string table associated with ABFD. */
13033 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13035 unsigned int alignment,
13037 bfd_boolean is_rela)
13039 asection * reloc_sec = elf_section_data (sec)->sreloc;
13041 if (reloc_sec == NULL)
13043 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13048 reloc_sec = bfd_get_linker_section (dynobj, name);
13050 if (reloc_sec == NULL)
13052 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13053 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13054 if ((sec->flags & SEC_ALLOC) != 0)
13055 flags |= SEC_ALLOC | SEC_LOAD;
13057 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13058 if (reloc_sec != NULL)
13060 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13065 elf_section_data (sec)->sreloc = reloc_sec;
13071 /* Copy the ELF symbol type associated with a linker hash entry. */
13073 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13074 struct bfd_link_hash_entry * hdest,
13075 struct bfd_link_hash_entry * hsrc)
13077 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13078 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13080 ehdest->type = ehsrc->type;
13081 ehdest->target_internal = ehsrc->target_internal;
13084 /* Append a RELA relocation REL to section S in BFD. */
13087 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13089 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13090 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13091 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13092 bed->s->swap_reloca_out (abfd, rel, loc);
13095 /* Append a REL relocation REL to section S in BFD. */
13098 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13100 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13101 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13102 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13103 bed->s->swap_reloc_out (abfd, rel, loc);