1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to merge a new symbol with an
899 existing symbol. It handles the various cases which arise when we
900 find a definition in a dynamic object, or when there is already a
901 definition in a dynamic object. The new symbol is described by
902 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
903 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
904 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
905 of an old common symbol. We set OVERRIDE if the old symbol is
906 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
907 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
908 to change. By OK to change, we mean that we shouldn't warn if the
909 type or size does change. */
912 _bfd_elf_merge_symbol (bfd *abfd,
913 struct bfd_link_info *info,
915 Elf_Internal_Sym *sym,
918 struct elf_link_hash_entry **sym_hash,
920 bfd_boolean *pold_weak,
921 unsigned int *pold_alignment,
923 bfd_boolean *override,
924 bfd_boolean *type_change_ok,
925 bfd_boolean *size_change_ok)
927 asection *sec, *oldsec;
928 struct elf_link_hash_entry *h;
929 struct elf_link_hash_entry *hi;
930 struct elf_link_hash_entry *flip;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
941 bind = ELF_ST_BIND (sym->st_info);
943 if (! bfd_is_und_section (sec))
944 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
946 h = ((struct elf_link_hash_entry *)
947 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
952 bed = get_elf_backend_data (abfd);
954 /* This code is for coping with dynamic objects, and is only useful
955 if we are doing an ELF link. */
956 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
959 /* For merging, we only care about real symbols. But we need to make
960 sure that indirect symbol dynamic flags are updated. */
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
966 /* We have to check it for every instance since the first few may be
967 references and not all compilers emit symbol type for undefined
969 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
971 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
972 respectively, is from a dynamic object. */
974 newdyn = (abfd->flags & DYNAMIC) != 0;
976 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
977 syms and defined syms in dynamic libraries respectively.
978 ref_dynamic on the other hand can be set for a symbol defined in
979 a dynamic library, and def_dynamic may not be set; When the
980 definition in a dynamic lib is overridden by a definition in the
981 executable use of the symbol in the dynamic lib becomes a
982 reference to the executable symbol. */
985 if (bfd_is_und_section (sec))
987 if (bind != STB_WEAK)
989 h->ref_dynamic_nonweak = 1;
990 hi->ref_dynamic_nonweak = 1;
1000 /* If we just created the symbol, mark it as being an ELF symbol.
1001 Other than that, there is nothing to do--there is no merge issue
1002 with a newly defined symbol--so we just return. */
1004 if (h->root.type == bfd_link_hash_new)
1010 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1013 switch (h->root.type)
1020 case bfd_link_hash_undefined:
1021 case bfd_link_hash_undefweak:
1022 oldbfd = h->root.u.undef.abfd;
1026 case bfd_link_hash_defined:
1027 case bfd_link_hash_defweak:
1028 oldbfd = h->root.u.def.section->owner;
1029 oldsec = h->root.u.def.section;
1032 case bfd_link_hash_common:
1033 oldbfd = h->root.u.c.p->section->owner;
1034 oldsec = h->root.u.c.p->section;
1036 *pold_alignment = h->root.u.c.p->alignment_power;
1039 if (poldbfd && *poldbfd == NULL)
1042 /* Differentiate strong and weak symbols. */
1043 newweak = bind == STB_WEAK;
1044 oldweak = (h->root.type == bfd_link_hash_defweak
1045 || h->root.type == bfd_link_hash_undefweak);
1047 *pold_weak = oldweak;
1049 /* In cases involving weak versioned symbols, we may wind up trying
1050 to merge a symbol with itself. Catch that here, to avoid the
1051 confusion that results if we try to override a symbol with
1052 itself. The additional tests catch cases like
1053 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1054 dynamic object, which we do want to handle here. */
1056 && (newweak || oldweak)
1057 && ((abfd->flags & DYNAMIC) == 0
1058 || !h->def_regular))
1063 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1064 else if (oldsec != NULL)
1066 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1067 indices used by MIPS ELF. */
1068 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1071 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1072 respectively, appear to be a definition rather than reference. */
1074 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1076 olddef = (h->root.type != bfd_link_hash_undefined
1077 && h->root.type != bfd_link_hash_undefweak
1078 && h->root.type != bfd_link_hash_common);
1080 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1081 respectively, appear to be a function. */
1083 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1084 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1086 oldfunc = (h->type != STT_NOTYPE
1087 && bed->is_function_type (h->type));
1089 /* When we try to create a default indirect symbol from the dynamic
1090 definition with the default version, we skip it if its type and
1091 the type of existing regular definition mismatch. We only do it
1092 if the existing regular definition won't be dynamic. */
1093 if (pold_alignment == NULL
1095 && !info->export_dynamic
1100 && (olddef || h->root.type == bfd_link_hash_common)
1101 && ELF_ST_TYPE (sym->st_info) != h->type
1102 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1103 && h->type != STT_NOTYPE
1104 && !(newfunc && oldfunc))
1110 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1111 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1112 *type_change_ok = TRUE;
1114 /* Check TLS symbol. We don't check undefined symbol introduced by
1116 else if (oldbfd != NULL
1117 && ELF_ST_TYPE (sym->st_info) != h->type
1118 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1121 bfd_boolean ntdef, tdef;
1122 asection *ntsec, *tsec;
1124 if (h->type == STT_TLS)
1144 (*_bfd_error_handler)
1145 (_("%s: TLS definition in %B section %A "
1146 "mismatches non-TLS definition in %B section %A"),
1147 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1148 else if (!tdef && !ntdef)
1149 (*_bfd_error_handler)
1150 (_("%s: TLS reference in %B "
1151 "mismatches non-TLS reference in %B"),
1152 tbfd, ntbfd, h->root.root.string);
1154 (*_bfd_error_handler)
1155 (_("%s: TLS definition in %B section %A "
1156 "mismatches non-TLS reference in %B"),
1157 tbfd, tsec, ntbfd, h->root.root.string);
1159 (*_bfd_error_handler)
1160 (_("%s: TLS reference in %B "
1161 "mismatches non-TLS definition in %B section %A"),
1162 tbfd, ntbfd, ntsec, h->root.root.string);
1164 bfd_set_error (bfd_error_bad_value);
1168 /* If the old symbol has non-default visibility, we ignore the new
1169 definition from a dynamic object. */
1171 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1172 && !bfd_is_und_section (sec))
1175 /* Make sure this symbol is dynamic. */
1177 hi->ref_dynamic = 1;
1178 /* A protected symbol has external availability. Make sure it is
1179 recorded as dynamic.
1181 FIXME: Should we check type and size for protected symbol? */
1182 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1183 return bfd_elf_link_record_dynamic_symbol (info, h);
1188 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1191 /* If the new symbol with non-default visibility comes from a
1192 relocatable file and the old definition comes from a dynamic
1193 object, we remove the old definition. */
1194 if (hi->root.type == bfd_link_hash_indirect)
1196 /* Handle the case where the old dynamic definition is
1197 default versioned. We need to copy the symbol info from
1198 the symbol with default version to the normal one if it
1199 was referenced before. */
1202 hi->root.type = h->root.type;
1203 h->root.type = bfd_link_hash_indirect;
1204 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1206 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1207 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1209 /* If the new symbol is hidden or internal, completely undo
1210 any dynamic link state. */
1211 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1212 h->forced_local = 0;
1219 /* FIXME: Should we check type and size for protected symbol? */
1229 /* If the old symbol was undefined before, then it will still be
1230 on the undefs list. If the new symbol is undefined or
1231 common, we can't make it bfd_link_hash_new here, because new
1232 undefined or common symbols will be added to the undefs list
1233 by _bfd_generic_link_add_one_symbol. Symbols may not be
1234 added twice to the undefs list. Also, if the new symbol is
1235 undefweak then we don't want to lose the strong undef. */
1236 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1238 h->root.type = bfd_link_hash_undefined;
1239 h->root.u.undef.abfd = abfd;
1243 h->root.type = bfd_link_hash_new;
1244 h->root.u.undef.abfd = NULL;
1247 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1249 /* If the new symbol is hidden or internal, completely undo
1250 any dynamic link state. */
1251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1252 h->forced_local = 0;
1258 /* FIXME: Should we check type and size for protected symbol? */
1264 /* If a new weak symbol definition comes from a regular file and the
1265 old symbol comes from a dynamic library, we treat the new one as
1266 strong. Similarly, an old weak symbol definition from a regular
1267 file is treated as strong when the new symbol comes from a dynamic
1268 library. Further, an old weak symbol from a dynamic library is
1269 treated as strong if the new symbol is from a dynamic library.
1270 This reflects the way glibc's ld.so works.
1272 Do this before setting *type_change_ok or *size_change_ok so that
1273 we warn properly when dynamic library symbols are overridden. */
1275 if (newdef && !newdyn && olddyn)
1277 if (olddef && newdyn)
1280 /* Allow changes between different types of function symbol. */
1281 if (newfunc && oldfunc)
1282 *type_change_ok = TRUE;
1284 /* It's OK to change the type if either the existing symbol or the
1285 new symbol is weak. A type change is also OK if the old symbol
1286 is undefined and the new symbol is defined. */
1291 && h->root.type == bfd_link_hash_undefined))
1292 *type_change_ok = TRUE;
1294 /* It's OK to change the size if either the existing symbol or the
1295 new symbol is weak, or if the old symbol is undefined. */
1298 || h->root.type == bfd_link_hash_undefined)
1299 *size_change_ok = TRUE;
1301 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1302 symbol, respectively, appears to be a common symbol in a dynamic
1303 object. If a symbol appears in an uninitialized section, and is
1304 not weak, and is not a function, then it may be a common symbol
1305 which was resolved when the dynamic object was created. We want
1306 to treat such symbols specially, because they raise special
1307 considerations when setting the symbol size: if the symbol
1308 appears as a common symbol in a regular object, and the size in
1309 the regular object is larger, we must make sure that we use the
1310 larger size. This problematic case can always be avoided in C,
1311 but it must be handled correctly when using Fortran shared
1314 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1315 likewise for OLDDYNCOMMON and OLDDEF.
1317 Note that this test is just a heuristic, and that it is quite
1318 possible to have an uninitialized symbol in a shared object which
1319 is really a definition, rather than a common symbol. This could
1320 lead to some minor confusion when the symbol really is a common
1321 symbol in some regular object. However, I think it will be
1327 && (sec->flags & SEC_ALLOC) != 0
1328 && (sec->flags & SEC_LOAD) == 0
1331 newdyncommon = TRUE;
1333 newdyncommon = FALSE;
1337 && h->root.type == bfd_link_hash_defined
1339 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1340 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1343 olddyncommon = TRUE;
1345 olddyncommon = FALSE;
1347 /* We now know everything about the old and new symbols. We ask the
1348 backend to check if we can merge them. */
1349 if (bed->merge_symbol != NULL)
1351 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1356 /* If both the old and the new symbols look like common symbols in a
1357 dynamic object, set the size of the symbol to the larger of the
1362 && sym->st_size != h->size)
1364 /* Since we think we have two common symbols, issue a multiple
1365 common warning if desired. Note that we only warn if the
1366 size is different. If the size is the same, we simply let
1367 the old symbol override the new one as normally happens with
1368 symbols defined in dynamic objects. */
1370 if (! ((*info->callbacks->multiple_common)
1371 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1374 if (sym->st_size > h->size)
1375 h->size = sym->st_size;
1377 *size_change_ok = TRUE;
1380 /* If we are looking at a dynamic object, and we have found a
1381 definition, we need to see if the symbol was already defined by
1382 some other object. If so, we want to use the existing
1383 definition, and we do not want to report a multiple symbol
1384 definition error; we do this by clobbering *PSEC to be
1385 bfd_und_section_ptr.
1387 We treat a common symbol as a definition if the symbol in the
1388 shared library is a function, since common symbols always
1389 represent variables; this can cause confusion in principle, but
1390 any such confusion would seem to indicate an erroneous program or
1391 shared library. We also permit a common symbol in a regular
1392 object to override a weak symbol in a shared object. */
1397 || (h->root.type == bfd_link_hash_common
1398 && (newweak || newfunc))))
1402 newdyncommon = FALSE;
1404 *psec = sec = bfd_und_section_ptr;
1405 *size_change_ok = TRUE;
1407 /* If we get here when the old symbol is a common symbol, then
1408 we are explicitly letting it override a weak symbol or
1409 function in a dynamic object, and we don't want to warn about
1410 a type change. If the old symbol is a defined symbol, a type
1411 change warning may still be appropriate. */
1413 if (h->root.type == bfd_link_hash_common)
1414 *type_change_ok = TRUE;
1417 /* Handle the special case of an old common symbol merging with a
1418 new symbol which looks like a common symbol in a shared object.
1419 We change *PSEC and *PVALUE to make the new symbol look like a
1420 common symbol, and let _bfd_generic_link_add_one_symbol do the
1424 && h->root.type == bfd_link_hash_common)
1428 newdyncommon = FALSE;
1429 *pvalue = sym->st_size;
1430 *psec = sec = bed->common_section (oldsec);
1431 *size_change_ok = TRUE;
1434 /* Skip weak definitions of symbols that are already defined. */
1435 if (newdef && olddef && newweak)
1437 /* Don't skip new non-IR weak syms. */
1438 if (!(oldbfd != NULL
1439 && (oldbfd->flags & BFD_PLUGIN) != 0
1440 && (abfd->flags & BFD_PLUGIN) == 0))
1443 /* Merge st_other. If the symbol already has a dynamic index,
1444 but visibility says it should not be visible, turn it into a
1446 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1447 if (h->dynindx != -1)
1448 switch (ELF_ST_VISIBILITY (h->other))
1452 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1457 /* If the old symbol is from a dynamic object, and the new symbol is
1458 a definition which is not from a dynamic object, then the new
1459 symbol overrides the old symbol. Symbols from regular files
1460 always take precedence over symbols from dynamic objects, even if
1461 they are defined after the dynamic object in the link.
1463 As above, we again permit a common symbol in a regular object to
1464 override a definition in a shared object if the shared object
1465 symbol is a function or is weak. */
1470 || (bfd_is_com_section (sec)
1471 && (oldweak || oldfunc)))
1476 /* Change the hash table entry to undefined, and let
1477 _bfd_generic_link_add_one_symbol do the right thing with the
1480 h->root.type = bfd_link_hash_undefined;
1481 h->root.u.undef.abfd = h->root.u.def.section->owner;
1482 *size_change_ok = TRUE;
1485 olddyncommon = FALSE;
1487 /* We again permit a type change when a common symbol may be
1488 overriding a function. */
1490 if (bfd_is_com_section (sec))
1494 /* If a common symbol overrides a function, make sure
1495 that it isn't defined dynamically nor has type
1498 h->type = STT_NOTYPE;
1500 *type_change_ok = TRUE;
1503 if (hi->root.type == bfd_link_hash_indirect)
1506 /* This union may have been set to be non-NULL when this symbol
1507 was seen in a dynamic object. We must force the union to be
1508 NULL, so that it is correct for a regular symbol. */
1509 h->verinfo.vertree = NULL;
1512 /* Handle the special case of a new common symbol merging with an
1513 old symbol that looks like it might be a common symbol defined in
1514 a shared object. Note that we have already handled the case in
1515 which a new common symbol should simply override the definition
1516 in the shared library. */
1519 && bfd_is_com_section (sec)
1522 /* It would be best if we could set the hash table entry to a
1523 common symbol, but we don't know what to use for the section
1524 or the alignment. */
1525 if (! ((*info->callbacks->multiple_common)
1526 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1529 /* If the presumed common symbol in the dynamic object is
1530 larger, pretend that the new symbol has its size. */
1532 if (h->size > *pvalue)
1535 /* We need to remember the alignment required by the symbol
1536 in the dynamic object. */
1537 BFD_ASSERT (pold_alignment);
1538 *pold_alignment = h->root.u.def.section->alignment_power;
1541 olddyncommon = FALSE;
1543 h->root.type = bfd_link_hash_undefined;
1544 h->root.u.undef.abfd = h->root.u.def.section->owner;
1546 *size_change_ok = TRUE;
1547 *type_change_ok = TRUE;
1549 if (hi->root.type == bfd_link_hash_indirect)
1552 h->verinfo.vertree = NULL;
1557 /* Handle the case where we had a versioned symbol in a dynamic
1558 library and now find a definition in a normal object. In this
1559 case, we make the versioned symbol point to the normal one. */
1560 flip->root.type = h->root.type;
1561 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1562 h->root.type = bfd_link_hash_indirect;
1563 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1564 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1568 flip->ref_dynamic = 1;
1575 /* This function is called to create an indirect symbol from the
1576 default for the symbol with the default version if needed. The
1577 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1578 set DYNSYM if the new indirect symbol is dynamic. */
1581 _bfd_elf_add_default_symbol (bfd *abfd,
1582 struct bfd_link_info *info,
1583 struct elf_link_hash_entry *h,
1585 Elf_Internal_Sym *sym,
1589 bfd_boolean *dynsym)
1591 bfd_boolean type_change_ok;
1592 bfd_boolean size_change_ok;
1595 struct elf_link_hash_entry *hi;
1596 struct bfd_link_hash_entry *bh;
1597 const struct elf_backend_data *bed;
1598 bfd_boolean collect;
1599 bfd_boolean dynamic;
1600 bfd_boolean override;
1602 size_t len, shortlen;
1604 /* If this symbol has a version, and it is the default version, we
1605 create an indirect symbol from the default name to the fully
1606 decorated name. This will cause external references which do not
1607 specify a version to be bound to this version of the symbol. */
1608 p = strchr (name, ELF_VER_CHR);
1609 if (p == NULL || p[1] != ELF_VER_CHR)
1612 bed = get_elf_backend_data (abfd);
1613 collect = bed->collect;
1614 dynamic = (abfd->flags & DYNAMIC) != 0;
1616 shortlen = p - name;
1617 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1618 if (shortname == NULL)
1620 memcpy (shortname, name, shortlen);
1621 shortname[shortlen] = '\0';
1623 /* We are going to create a new symbol. Merge it with any existing
1624 symbol with this name. For the purposes of the merge, act as
1625 though we were defining the symbol we just defined, although we
1626 actually going to define an indirect symbol. */
1627 type_change_ok = FALSE;
1628 size_change_ok = FALSE;
1629 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, &value,
1630 &hi, poldbfd, NULL, NULL, &skip, &override,
1631 &type_change_ok, &size_change_ok))
1640 if (! (_bfd_generic_link_add_one_symbol
1641 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1642 0, name, FALSE, collect, &bh)))
1644 hi = (struct elf_link_hash_entry *) bh;
1648 /* In this case the symbol named SHORTNAME is overriding the
1649 indirect symbol we want to add. We were planning on making
1650 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1651 is the name without a version. NAME is the fully versioned
1652 name, and it is the default version.
1654 Overriding means that we already saw a definition for the
1655 symbol SHORTNAME in a regular object, and it is overriding
1656 the symbol defined in the dynamic object.
1658 When this happens, we actually want to change NAME, the
1659 symbol we just added, to refer to SHORTNAME. This will cause
1660 references to NAME in the shared object to become references
1661 to SHORTNAME in the regular object. This is what we expect
1662 when we override a function in a shared object: that the
1663 references in the shared object will be mapped to the
1664 definition in the regular object. */
1666 while (hi->root.type == bfd_link_hash_indirect
1667 || hi->root.type == bfd_link_hash_warning)
1668 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1670 h->root.type = bfd_link_hash_indirect;
1671 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1675 hi->ref_dynamic = 1;
1679 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1684 /* Now set HI to H, so that the following code will set the
1685 other fields correctly. */
1689 /* Check if HI is a warning symbol. */
1690 if (hi->root.type == bfd_link_hash_warning)
1691 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1693 /* If there is a duplicate definition somewhere, then HI may not
1694 point to an indirect symbol. We will have reported an error to
1695 the user in that case. */
1697 if (hi->root.type == bfd_link_hash_indirect)
1699 struct elf_link_hash_entry *ht;
1701 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1704 /* See if the new flags lead us to realize that the symbol must
1710 if (! info->executable
1717 if (hi->ref_regular)
1723 /* We also need to define an indirection from the nondefault version
1727 len = strlen (name);
1728 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1729 if (shortname == NULL)
1731 memcpy (shortname, name, shortlen);
1732 memcpy (shortname + shortlen, p + 1, len - shortlen);
1734 /* Once again, merge with any existing symbol. */
1735 type_change_ok = FALSE;
1736 size_change_ok = FALSE;
1737 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, &value,
1738 &hi, NULL, NULL, NULL, &skip, &override,
1739 &type_change_ok, &size_change_ok))
1747 /* Here SHORTNAME is a versioned name, so we don't expect to see
1748 the type of override we do in the case above unless it is
1749 overridden by a versioned definition. */
1750 if (hi->root.type != bfd_link_hash_defined
1751 && hi->root.type != bfd_link_hash_defweak)
1752 (*_bfd_error_handler)
1753 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1759 if (! (_bfd_generic_link_add_one_symbol
1760 (info, abfd, shortname, BSF_INDIRECT,
1761 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1763 hi = (struct elf_link_hash_entry *) bh;
1765 /* If there is a duplicate definition somewhere, then HI may not
1766 point to an indirect symbol. We will have reported an error
1767 to the user in that case. */
1769 if (hi->root.type == bfd_link_hash_indirect)
1771 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1773 /* See if the new flags lead us to realize that the symbol
1779 if (! info->executable
1785 if (hi->ref_regular)
1795 /* This routine is used to export all defined symbols into the dynamic
1796 symbol table. It is called via elf_link_hash_traverse. */
1799 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1801 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1803 /* Ignore indirect symbols. These are added by the versioning code. */
1804 if (h->root.type == bfd_link_hash_indirect)
1807 /* Ignore this if we won't export it. */
1808 if (!eif->info->export_dynamic && !h->dynamic)
1811 if (h->dynindx == -1
1812 && (h->def_regular || h->ref_regular)
1813 && ! bfd_hide_sym_by_version (eif->info->version_info,
1814 h->root.root.string))
1816 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1826 /* Look through the symbols which are defined in other shared
1827 libraries and referenced here. Update the list of version
1828 dependencies. This will be put into the .gnu.version_r section.
1829 This function is called via elf_link_hash_traverse. */
1832 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1835 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1836 Elf_Internal_Verneed *t;
1837 Elf_Internal_Vernaux *a;
1840 /* We only care about symbols defined in shared objects with version
1845 || h->verinfo.verdef == NULL)
1848 /* See if we already know about this version. */
1849 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1853 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1856 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1857 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1863 /* This is a new version. Add it to tree we are building. */
1868 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1871 rinfo->failed = TRUE;
1875 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1876 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1877 elf_tdata (rinfo->info->output_bfd)->verref = t;
1881 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1884 rinfo->failed = TRUE;
1888 /* Note that we are copying a string pointer here, and testing it
1889 above. If bfd_elf_string_from_elf_section is ever changed to
1890 discard the string data when low in memory, this will have to be
1892 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1894 a->vna_flags = h->verinfo.verdef->vd_flags;
1895 a->vna_nextptr = t->vn_auxptr;
1897 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1900 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1907 /* Figure out appropriate versions for all the symbols. We may not
1908 have the version number script until we have read all of the input
1909 files, so until that point we don't know which symbols should be
1910 local. This function is called via elf_link_hash_traverse. */
1913 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1915 struct elf_info_failed *sinfo;
1916 struct bfd_link_info *info;
1917 const struct elf_backend_data *bed;
1918 struct elf_info_failed eif;
1922 sinfo = (struct elf_info_failed *) data;
1925 /* Fix the symbol flags. */
1928 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1931 sinfo->failed = TRUE;
1935 /* We only need version numbers for symbols defined in regular
1937 if (!h->def_regular)
1940 bed = get_elf_backend_data (info->output_bfd);
1941 p = strchr (h->root.root.string, ELF_VER_CHR);
1942 if (p != NULL && h->verinfo.vertree == NULL)
1944 struct bfd_elf_version_tree *t;
1949 /* There are two consecutive ELF_VER_CHR characters if this is
1950 not a hidden symbol. */
1952 if (*p == ELF_VER_CHR)
1958 /* If there is no version string, we can just return out. */
1966 /* Look for the version. If we find it, it is no longer weak. */
1967 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1969 if (strcmp (t->name, p) == 0)
1973 struct bfd_elf_version_expr *d;
1975 len = p - h->root.root.string;
1976 alc = (char *) bfd_malloc (len);
1979 sinfo->failed = TRUE;
1982 memcpy (alc, h->root.root.string, len - 1);
1983 alc[len - 1] = '\0';
1984 if (alc[len - 2] == ELF_VER_CHR)
1985 alc[len - 2] = '\0';
1987 h->verinfo.vertree = t;
1991 if (t->globals.list != NULL)
1992 d = (*t->match) (&t->globals, NULL, alc);
1994 /* See if there is anything to force this symbol to
1996 if (d == NULL && t->locals.list != NULL)
1998 d = (*t->match) (&t->locals, NULL, alc);
2001 && ! info->export_dynamic)
2002 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2010 /* If we are building an application, we need to create a
2011 version node for this version. */
2012 if (t == NULL && info->executable)
2014 struct bfd_elf_version_tree **pp;
2017 /* If we aren't going to export this symbol, we don't need
2018 to worry about it. */
2019 if (h->dynindx == -1)
2023 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2026 sinfo->failed = TRUE;
2031 t->name_indx = (unsigned int) -1;
2035 /* Don't count anonymous version tag. */
2036 if (sinfo->info->version_info != NULL
2037 && sinfo->info->version_info->vernum == 0)
2039 for (pp = &sinfo->info->version_info;
2043 t->vernum = version_index;
2047 h->verinfo.vertree = t;
2051 /* We could not find the version for a symbol when
2052 generating a shared archive. Return an error. */
2053 (*_bfd_error_handler)
2054 (_("%B: version node not found for symbol %s"),
2055 info->output_bfd, h->root.root.string);
2056 bfd_set_error (bfd_error_bad_value);
2057 sinfo->failed = TRUE;
2065 /* If we don't have a version for this symbol, see if we can find
2067 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2072 = bfd_find_version_for_sym (sinfo->info->version_info,
2073 h->root.root.string, &hide);
2074 if (h->verinfo.vertree != NULL && hide)
2075 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2081 /* Read and swap the relocs from the section indicated by SHDR. This
2082 may be either a REL or a RELA section. The relocations are
2083 translated into RELA relocations and stored in INTERNAL_RELOCS,
2084 which should have already been allocated to contain enough space.
2085 The EXTERNAL_RELOCS are a buffer where the external form of the
2086 relocations should be stored.
2088 Returns FALSE if something goes wrong. */
2091 elf_link_read_relocs_from_section (bfd *abfd,
2093 Elf_Internal_Shdr *shdr,
2094 void *external_relocs,
2095 Elf_Internal_Rela *internal_relocs)
2097 const struct elf_backend_data *bed;
2098 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2099 const bfd_byte *erela;
2100 const bfd_byte *erelaend;
2101 Elf_Internal_Rela *irela;
2102 Elf_Internal_Shdr *symtab_hdr;
2105 /* Position ourselves at the start of the section. */
2106 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2109 /* Read the relocations. */
2110 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2113 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2114 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2116 bed = get_elf_backend_data (abfd);
2118 /* Convert the external relocations to the internal format. */
2119 if (shdr->sh_entsize == bed->s->sizeof_rel)
2120 swap_in = bed->s->swap_reloc_in;
2121 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2122 swap_in = bed->s->swap_reloca_in;
2125 bfd_set_error (bfd_error_wrong_format);
2129 erela = (const bfd_byte *) external_relocs;
2130 erelaend = erela + shdr->sh_size;
2131 irela = internal_relocs;
2132 while (erela < erelaend)
2136 (*swap_in) (abfd, erela, irela);
2137 r_symndx = ELF32_R_SYM (irela->r_info);
2138 if (bed->s->arch_size == 64)
2142 if ((size_t) r_symndx >= nsyms)
2144 (*_bfd_error_handler)
2145 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2146 " for offset 0x%lx in section `%A'"),
2148 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2149 bfd_set_error (bfd_error_bad_value);
2153 else if (r_symndx != STN_UNDEF)
2155 (*_bfd_error_handler)
2156 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2157 " when the object file has no symbol table"),
2159 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2160 bfd_set_error (bfd_error_bad_value);
2163 irela += bed->s->int_rels_per_ext_rel;
2164 erela += shdr->sh_entsize;
2170 /* Read and swap the relocs for a section O. They may have been
2171 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2172 not NULL, they are used as buffers to read into. They are known to
2173 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2174 the return value is allocated using either malloc or bfd_alloc,
2175 according to the KEEP_MEMORY argument. If O has two relocation
2176 sections (both REL and RELA relocations), then the REL_HDR
2177 relocations will appear first in INTERNAL_RELOCS, followed by the
2178 RELA_HDR relocations. */
2181 _bfd_elf_link_read_relocs (bfd *abfd,
2183 void *external_relocs,
2184 Elf_Internal_Rela *internal_relocs,
2185 bfd_boolean keep_memory)
2187 void *alloc1 = NULL;
2188 Elf_Internal_Rela *alloc2 = NULL;
2189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2190 struct bfd_elf_section_data *esdo = elf_section_data (o);
2191 Elf_Internal_Rela *internal_rela_relocs;
2193 if (esdo->relocs != NULL)
2194 return esdo->relocs;
2196 if (o->reloc_count == 0)
2199 if (internal_relocs == NULL)
2203 size = o->reloc_count;
2204 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2206 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2208 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2209 if (internal_relocs == NULL)
2213 if (external_relocs == NULL)
2215 bfd_size_type size = 0;
2218 size += esdo->rel.hdr->sh_size;
2220 size += esdo->rela.hdr->sh_size;
2222 alloc1 = bfd_malloc (size);
2225 external_relocs = alloc1;
2228 internal_rela_relocs = internal_relocs;
2231 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2235 external_relocs = (((bfd_byte *) external_relocs)
2236 + esdo->rel.hdr->sh_size);
2237 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2238 * bed->s->int_rels_per_ext_rel);
2242 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2244 internal_rela_relocs)))
2247 /* Cache the results for next time, if we can. */
2249 esdo->relocs = internal_relocs;
2254 /* Don't free alloc2, since if it was allocated we are passing it
2255 back (under the name of internal_relocs). */
2257 return internal_relocs;
2265 bfd_release (abfd, alloc2);
2272 /* Compute the size of, and allocate space for, REL_HDR which is the
2273 section header for a section containing relocations for O. */
2276 _bfd_elf_link_size_reloc_section (bfd *abfd,
2277 struct bfd_elf_section_reloc_data *reldata)
2279 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2281 /* That allows us to calculate the size of the section. */
2282 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2284 /* The contents field must last into write_object_contents, so we
2285 allocate it with bfd_alloc rather than malloc. Also since we
2286 cannot be sure that the contents will actually be filled in,
2287 we zero the allocated space. */
2288 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2289 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2292 if (reldata->hashes == NULL && reldata->count)
2294 struct elf_link_hash_entry **p;
2296 p = (struct elf_link_hash_entry **)
2297 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2301 reldata->hashes = p;
2307 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2308 originated from the section given by INPUT_REL_HDR) to the
2312 _bfd_elf_link_output_relocs (bfd *output_bfd,
2313 asection *input_section,
2314 Elf_Internal_Shdr *input_rel_hdr,
2315 Elf_Internal_Rela *internal_relocs,
2316 struct elf_link_hash_entry **rel_hash
2319 Elf_Internal_Rela *irela;
2320 Elf_Internal_Rela *irelaend;
2322 struct bfd_elf_section_reloc_data *output_reldata;
2323 asection *output_section;
2324 const struct elf_backend_data *bed;
2325 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2326 struct bfd_elf_section_data *esdo;
2328 output_section = input_section->output_section;
2330 bed = get_elf_backend_data (output_bfd);
2331 esdo = elf_section_data (output_section);
2332 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2334 output_reldata = &esdo->rel;
2335 swap_out = bed->s->swap_reloc_out;
2337 else if (esdo->rela.hdr
2338 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2340 output_reldata = &esdo->rela;
2341 swap_out = bed->s->swap_reloca_out;
2345 (*_bfd_error_handler)
2346 (_("%B: relocation size mismatch in %B section %A"),
2347 output_bfd, input_section->owner, input_section);
2348 bfd_set_error (bfd_error_wrong_format);
2352 erel = output_reldata->hdr->contents;
2353 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2354 irela = internal_relocs;
2355 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2356 * bed->s->int_rels_per_ext_rel);
2357 while (irela < irelaend)
2359 (*swap_out) (output_bfd, irela, erel);
2360 irela += bed->s->int_rels_per_ext_rel;
2361 erel += input_rel_hdr->sh_entsize;
2364 /* Bump the counter, so that we know where to add the next set of
2366 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2371 /* Make weak undefined symbols in PIE dynamic. */
2374 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2375 struct elf_link_hash_entry *h)
2379 && h->root.type == bfd_link_hash_undefweak)
2380 return bfd_elf_link_record_dynamic_symbol (info, h);
2385 /* Fix up the flags for a symbol. This handles various cases which
2386 can only be fixed after all the input files are seen. This is
2387 currently called by both adjust_dynamic_symbol and
2388 assign_sym_version, which is unnecessary but perhaps more robust in
2389 the face of future changes. */
2392 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2393 struct elf_info_failed *eif)
2395 const struct elf_backend_data *bed;
2397 /* If this symbol was mentioned in a non-ELF file, try to set
2398 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2399 permit a non-ELF file to correctly refer to a symbol defined in
2400 an ELF dynamic object. */
2403 while (h->root.type == bfd_link_hash_indirect)
2404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2406 if (h->root.type != bfd_link_hash_defined
2407 && h->root.type != bfd_link_hash_defweak)
2410 h->ref_regular_nonweak = 1;
2414 if (h->root.u.def.section->owner != NULL
2415 && (bfd_get_flavour (h->root.u.def.section->owner)
2416 == bfd_target_elf_flavour))
2419 h->ref_regular_nonweak = 1;
2425 if (h->dynindx == -1
2429 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2438 /* Unfortunately, NON_ELF is only correct if the symbol
2439 was first seen in a non-ELF file. Fortunately, if the symbol
2440 was first seen in an ELF file, we're probably OK unless the
2441 symbol was defined in a non-ELF file. Catch that case here.
2442 FIXME: We're still in trouble if the symbol was first seen in
2443 a dynamic object, and then later in a non-ELF regular object. */
2444 if ((h->root.type == bfd_link_hash_defined
2445 || h->root.type == bfd_link_hash_defweak)
2447 && (h->root.u.def.section->owner != NULL
2448 ? (bfd_get_flavour (h->root.u.def.section->owner)
2449 != bfd_target_elf_flavour)
2450 : (bfd_is_abs_section (h->root.u.def.section)
2451 && !h->def_dynamic)))
2455 /* Backend specific symbol fixup. */
2456 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2457 if (bed->elf_backend_fixup_symbol
2458 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2461 /* If this is a final link, and the symbol was defined as a common
2462 symbol in a regular object file, and there was no definition in
2463 any dynamic object, then the linker will have allocated space for
2464 the symbol in a common section but the DEF_REGULAR
2465 flag will not have been set. */
2466 if (h->root.type == bfd_link_hash_defined
2470 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2473 /* If -Bsymbolic was used (which means to bind references to global
2474 symbols to the definition within the shared object), and this
2475 symbol was defined in a regular object, then it actually doesn't
2476 need a PLT entry. Likewise, if the symbol has non-default
2477 visibility. If the symbol has hidden or internal visibility, we
2478 will force it local. */
2480 && eif->info->shared
2481 && is_elf_hash_table (eif->info->hash)
2482 && (SYMBOLIC_BIND (eif->info, h)
2483 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2486 bfd_boolean force_local;
2488 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2489 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2490 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2493 /* If a weak undefined symbol has non-default visibility, we also
2494 hide it from the dynamic linker. */
2495 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2496 && h->root.type == bfd_link_hash_undefweak)
2497 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2499 /* If this is a weak defined symbol in a dynamic object, and we know
2500 the real definition in the dynamic object, copy interesting flags
2501 over to the real definition. */
2502 if (h->u.weakdef != NULL)
2504 /* If the real definition is defined by a regular object file,
2505 don't do anything special. See the longer description in
2506 _bfd_elf_adjust_dynamic_symbol, below. */
2507 if (h->u.weakdef->def_regular)
2508 h->u.weakdef = NULL;
2511 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2513 while (h->root.type == bfd_link_hash_indirect)
2514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2516 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2517 || h->root.type == bfd_link_hash_defweak);
2518 BFD_ASSERT (weakdef->def_dynamic);
2519 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2520 || weakdef->root.type == bfd_link_hash_defweak);
2521 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2528 /* Make the backend pick a good value for a dynamic symbol. This is
2529 called via elf_link_hash_traverse, and also calls itself
2533 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2535 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2537 const struct elf_backend_data *bed;
2539 if (! is_elf_hash_table (eif->info->hash))
2542 /* Ignore indirect symbols. These are added by the versioning code. */
2543 if (h->root.type == bfd_link_hash_indirect)
2546 /* Fix the symbol flags. */
2547 if (! _bfd_elf_fix_symbol_flags (h, eif))
2550 /* If this symbol does not require a PLT entry, and it is not
2551 defined by a dynamic object, or is not referenced by a regular
2552 object, ignore it. We do have to handle a weak defined symbol,
2553 even if no regular object refers to it, if we decided to add it
2554 to the dynamic symbol table. FIXME: Do we normally need to worry
2555 about symbols which are defined by one dynamic object and
2556 referenced by another one? */
2558 && h->type != STT_GNU_IFUNC
2562 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2564 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2568 /* If we've already adjusted this symbol, don't do it again. This
2569 can happen via a recursive call. */
2570 if (h->dynamic_adjusted)
2573 /* Don't look at this symbol again. Note that we must set this
2574 after checking the above conditions, because we may look at a
2575 symbol once, decide not to do anything, and then get called
2576 recursively later after REF_REGULAR is set below. */
2577 h->dynamic_adjusted = 1;
2579 /* If this is a weak definition, and we know a real definition, and
2580 the real symbol is not itself defined by a regular object file,
2581 then get a good value for the real definition. We handle the
2582 real symbol first, for the convenience of the backend routine.
2584 Note that there is a confusing case here. If the real definition
2585 is defined by a regular object file, we don't get the real symbol
2586 from the dynamic object, but we do get the weak symbol. If the
2587 processor backend uses a COPY reloc, then if some routine in the
2588 dynamic object changes the real symbol, we will not see that
2589 change in the corresponding weak symbol. This is the way other
2590 ELF linkers work as well, and seems to be a result of the shared
2593 I will clarify this issue. Most SVR4 shared libraries define the
2594 variable _timezone and define timezone as a weak synonym. The
2595 tzset call changes _timezone. If you write
2596 extern int timezone;
2598 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2599 you might expect that, since timezone is a synonym for _timezone,
2600 the same number will print both times. However, if the processor
2601 backend uses a COPY reloc, then actually timezone will be copied
2602 into your process image, and, since you define _timezone
2603 yourself, _timezone will not. Thus timezone and _timezone will
2604 wind up at different memory locations. The tzset call will set
2605 _timezone, leaving timezone unchanged. */
2607 if (h->u.weakdef != NULL)
2609 /* If we get to this point, there is an implicit reference to
2610 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2611 h->u.weakdef->ref_regular = 1;
2613 /* Ensure that the backend adjust_dynamic_symbol function sees
2614 H->U.WEAKDEF before H by recursively calling ourselves. */
2615 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2619 /* If a symbol has no type and no size and does not require a PLT
2620 entry, then we are probably about to do the wrong thing here: we
2621 are probably going to create a COPY reloc for an empty object.
2622 This case can arise when a shared object is built with assembly
2623 code, and the assembly code fails to set the symbol type. */
2625 && h->type == STT_NOTYPE
2627 (*_bfd_error_handler)
2628 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2629 h->root.root.string);
2631 dynobj = elf_hash_table (eif->info)->dynobj;
2632 bed = get_elf_backend_data (dynobj);
2634 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2643 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2647 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2650 unsigned int power_of_two;
2652 asection *sec = h->root.u.def.section;
2654 /* The section aligment of definition is the maximum alignment
2655 requirement of symbols defined in the section. Since we don't
2656 know the symbol alignment requirement, we start with the
2657 maximum alignment and check low bits of the symbol address
2658 for the minimum alignment. */
2659 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2660 mask = ((bfd_vma) 1 << power_of_two) - 1;
2661 while ((h->root.u.def.value & mask) != 0)
2667 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2670 /* Adjust the section alignment if needed. */
2671 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2676 /* We make sure that the symbol will be aligned properly. */
2677 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2679 /* Define the symbol as being at this point in DYNBSS. */
2680 h->root.u.def.section = dynbss;
2681 h->root.u.def.value = dynbss->size;
2683 /* Increment the size of DYNBSS to make room for the symbol. */
2684 dynbss->size += h->size;
2689 /* Adjust all external symbols pointing into SEC_MERGE sections
2690 to reflect the object merging within the sections. */
2693 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2697 if ((h->root.type == bfd_link_hash_defined
2698 || h->root.type == bfd_link_hash_defweak)
2699 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2700 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2702 bfd *output_bfd = (bfd *) data;
2704 h->root.u.def.value =
2705 _bfd_merged_section_offset (output_bfd,
2706 &h->root.u.def.section,
2707 elf_section_data (sec)->sec_info,
2708 h->root.u.def.value);
2714 /* Returns false if the symbol referred to by H should be considered
2715 to resolve local to the current module, and true if it should be
2716 considered to bind dynamically. */
2719 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2720 struct bfd_link_info *info,
2721 bfd_boolean not_local_protected)
2723 bfd_boolean binding_stays_local_p;
2724 const struct elf_backend_data *bed;
2725 struct elf_link_hash_table *hash_table;
2730 while (h->root.type == bfd_link_hash_indirect
2731 || h->root.type == bfd_link_hash_warning)
2732 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2734 /* If it was forced local, then clearly it's not dynamic. */
2735 if (h->dynindx == -1)
2737 if (h->forced_local)
2740 /* Identify the cases where name binding rules say that a
2741 visible symbol resolves locally. */
2742 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2744 switch (ELF_ST_VISIBILITY (h->other))
2751 hash_table = elf_hash_table (info);
2752 if (!is_elf_hash_table (hash_table))
2755 bed = get_elf_backend_data (hash_table->dynobj);
2757 /* Proper resolution for function pointer equality may require
2758 that these symbols perhaps be resolved dynamically, even though
2759 we should be resolving them to the current module. */
2760 if (!not_local_protected || !bed->is_function_type (h->type))
2761 binding_stays_local_p = TRUE;
2768 /* If it isn't defined locally, then clearly it's dynamic. */
2769 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2772 /* Otherwise, the symbol is dynamic if binding rules don't tell
2773 us that it remains local. */
2774 return !binding_stays_local_p;
2777 /* Return true if the symbol referred to by H should be considered
2778 to resolve local to the current module, and false otherwise. Differs
2779 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2780 undefined symbols. The two functions are virtually identical except
2781 for the place where forced_local and dynindx == -1 are tested. If
2782 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2783 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2784 the symbol is local only for defined symbols.
2785 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2786 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2787 treatment of undefined weak symbols. For those that do not make
2788 undefined weak symbols dynamic, both functions may return false. */
2791 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2792 struct bfd_link_info *info,
2793 bfd_boolean local_protected)
2795 const struct elf_backend_data *bed;
2796 struct elf_link_hash_table *hash_table;
2798 /* If it's a local sym, of course we resolve locally. */
2802 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2803 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2804 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2807 /* Common symbols that become definitions don't get the DEF_REGULAR
2808 flag set, so test it first, and don't bail out. */
2809 if (ELF_COMMON_DEF_P (h))
2811 /* If we don't have a definition in a regular file, then we can't
2812 resolve locally. The sym is either undefined or dynamic. */
2813 else if (!h->def_regular)
2816 /* Forced local symbols resolve locally. */
2817 if (h->forced_local)
2820 /* As do non-dynamic symbols. */
2821 if (h->dynindx == -1)
2824 /* At this point, we know the symbol is defined and dynamic. In an
2825 executable it must resolve locally, likewise when building symbolic
2826 shared libraries. */
2827 if (info->executable || SYMBOLIC_BIND (info, h))
2830 /* Now deal with defined dynamic symbols in shared libraries. Ones
2831 with default visibility might not resolve locally. */
2832 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2835 hash_table = elf_hash_table (info);
2836 if (!is_elf_hash_table (hash_table))
2839 bed = get_elf_backend_data (hash_table->dynobj);
2841 /* STV_PROTECTED non-function symbols are local. */
2842 if (!bed->is_function_type (h->type))
2845 /* Function pointer equality tests may require that STV_PROTECTED
2846 symbols be treated as dynamic symbols. If the address of a
2847 function not defined in an executable is set to that function's
2848 plt entry in the executable, then the address of the function in
2849 a shared library must also be the plt entry in the executable. */
2850 return local_protected;
2853 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2854 aligned. Returns the first TLS output section. */
2856 struct bfd_section *
2857 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2859 struct bfd_section *sec, *tls;
2860 unsigned int align = 0;
2862 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2863 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2867 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2868 if (sec->alignment_power > align)
2869 align = sec->alignment_power;
2871 elf_hash_table (info)->tls_sec = tls;
2873 /* Ensure the alignment of the first section is the largest alignment,
2874 so that the tls segment starts aligned. */
2876 tls->alignment_power = align;
2881 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2883 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2884 Elf_Internal_Sym *sym)
2886 const struct elf_backend_data *bed;
2888 /* Local symbols do not count, but target specific ones might. */
2889 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2890 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2893 bed = get_elf_backend_data (abfd);
2894 /* Function symbols do not count. */
2895 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2898 /* If the section is undefined, then so is the symbol. */
2899 if (sym->st_shndx == SHN_UNDEF)
2902 /* If the symbol is defined in the common section, then
2903 it is a common definition and so does not count. */
2904 if (bed->common_definition (sym))
2907 /* If the symbol is in a target specific section then we
2908 must rely upon the backend to tell us what it is. */
2909 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2910 /* FIXME - this function is not coded yet:
2912 return _bfd_is_global_symbol_definition (abfd, sym);
2914 Instead for now assume that the definition is not global,
2915 Even if this is wrong, at least the linker will behave
2916 in the same way that it used to do. */
2922 /* Search the symbol table of the archive element of the archive ABFD
2923 whose archive map contains a mention of SYMDEF, and determine if
2924 the symbol is defined in this element. */
2926 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2928 Elf_Internal_Shdr * hdr;
2929 bfd_size_type symcount;
2930 bfd_size_type extsymcount;
2931 bfd_size_type extsymoff;
2932 Elf_Internal_Sym *isymbuf;
2933 Elf_Internal_Sym *isym;
2934 Elf_Internal_Sym *isymend;
2937 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2941 if (! bfd_check_format (abfd, bfd_object))
2944 /* If we have already included the element containing this symbol in the
2945 link then we do not need to include it again. Just claim that any symbol
2946 it contains is not a definition, so that our caller will not decide to
2947 (re)include this element. */
2948 if (abfd->archive_pass)
2951 /* Select the appropriate symbol table. */
2952 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2953 hdr = &elf_tdata (abfd)->symtab_hdr;
2955 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2957 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2959 /* The sh_info field of the symtab header tells us where the
2960 external symbols start. We don't care about the local symbols. */
2961 if (elf_bad_symtab (abfd))
2963 extsymcount = symcount;
2968 extsymcount = symcount - hdr->sh_info;
2969 extsymoff = hdr->sh_info;
2972 if (extsymcount == 0)
2975 /* Read in the symbol table. */
2976 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2978 if (isymbuf == NULL)
2981 /* Scan the symbol table looking for SYMDEF. */
2983 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2987 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2992 if (strcmp (name, symdef->name) == 0)
2994 result = is_global_data_symbol_definition (abfd, isym);
3004 /* Add an entry to the .dynamic table. */
3007 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3011 struct elf_link_hash_table *hash_table;
3012 const struct elf_backend_data *bed;
3014 bfd_size_type newsize;
3015 bfd_byte *newcontents;
3016 Elf_Internal_Dyn dyn;
3018 hash_table = elf_hash_table (info);
3019 if (! is_elf_hash_table (hash_table))
3022 bed = get_elf_backend_data (hash_table->dynobj);
3023 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3024 BFD_ASSERT (s != NULL);
3026 newsize = s->size + bed->s->sizeof_dyn;
3027 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3028 if (newcontents == NULL)
3032 dyn.d_un.d_val = val;
3033 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3036 s->contents = newcontents;
3041 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3042 otherwise just check whether one already exists. Returns -1 on error,
3043 1 if a DT_NEEDED tag already exists, and 0 on success. */
3046 elf_add_dt_needed_tag (bfd *abfd,
3047 struct bfd_link_info *info,
3051 struct elf_link_hash_table *hash_table;
3052 bfd_size_type strindex;
3054 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3057 hash_table = elf_hash_table (info);
3058 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3059 if (strindex == (bfd_size_type) -1)
3062 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3065 const struct elf_backend_data *bed;
3068 bed = get_elf_backend_data (hash_table->dynobj);
3069 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3071 for (extdyn = sdyn->contents;
3072 extdyn < sdyn->contents + sdyn->size;
3073 extdyn += bed->s->sizeof_dyn)
3075 Elf_Internal_Dyn dyn;
3077 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3078 if (dyn.d_tag == DT_NEEDED
3079 && dyn.d_un.d_val == strindex)
3081 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3089 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3092 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3096 /* We were just checking for existence of the tag. */
3097 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3103 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3105 for (; needed != NULL; needed = needed->next)
3106 if (strcmp (soname, needed->name) == 0)
3112 /* Sort symbol by value, section, and size. */
3114 elf_sort_symbol (const void *arg1, const void *arg2)
3116 const struct elf_link_hash_entry *h1;
3117 const struct elf_link_hash_entry *h2;
3118 bfd_signed_vma vdiff;
3120 h1 = *(const struct elf_link_hash_entry **) arg1;
3121 h2 = *(const struct elf_link_hash_entry **) arg2;
3122 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3124 return vdiff > 0 ? 1 : -1;
3127 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3129 return sdiff > 0 ? 1 : -1;
3131 vdiff = h1->size - h2->size;
3132 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3135 /* This function is used to adjust offsets into .dynstr for
3136 dynamic symbols. This is called via elf_link_hash_traverse. */
3139 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3141 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3143 if (h->dynindx != -1)
3144 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3148 /* Assign string offsets in .dynstr, update all structures referencing
3152 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3154 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3155 struct elf_link_local_dynamic_entry *entry;
3156 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3157 bfd *dynobj = hash_table->dynobj;
3160 const struct elf_backend_data *bed;
3163 _bfd_elf_strtab_finalize (dynstr);
3164 size = _bfd_elf_strtab_size (dynstr);
3166 bed = get_elf_backend_data (dynobj);
3167 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3168 BFD_ASSERT (sdyn != NULL);
3170 /* Update all .dynamic entries referencing .dynstr strings. */
3171 for (extdyn = sdyn->contents;
3172 extdyn < sdyn->contents + sdyn->size;
3173 extdyn += bed->s->sizeof_dyn)
3175 Elf_Internal_Dyn dyn;
3177 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3181 dyn.d_un.d_val = size;
3191 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3196 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3199 /* Now update local dynamic symbols. */
3200 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3201 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3202 entry->isym.st_name);
3204 /* And the rest of dynamic symbols. */
3205 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3207 /* Adjust version definitions. */
3208 if (elf_tdata (output_bfd)->cverdefs)
3213 Elf_Internal_Verdef def;
3214 Elf_Internal_Verdaux defaux;
3216 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3220 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3222 p += sizeof (Elf_External_Verdef);
3223 if (def.vd_aux != sizeof (Elf_External_Verdef))
3225 for (i = 0; i < def.vd_cnt; ++i)
3227 _bfd_elf_swap_verdaux_in (output_bfd,
3228 (Elf_External_Verdaux *) p, &defaux);
3229 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3231 _bfd_elf_swap_verdaux_out (output_bfd,
3232 &defaux, (Elf_External_Verdaux *) p);
3233 p += sizeof (Elf_External_Verdaux);
3236 while (def.vd_next);
3239 /* Adjust version references. */
3240 if (elf_tdata (output_bfd)->verref)
3245 Elf_Internal_Verneed need;
3246 Elf_Internal_Vernaux needaux;
3248 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3252 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3254 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3255 _bfd_elf_swap_verneed_out (output_bfd, &need,
3256 (Elf_External_Verneed *) p);
3257 p += sizeof (Elf_External_Verneed);
3258 for (i = 0; i < need.vn_cnt; ++i)
3260 _bfd_elf_swap_vernaux_in (output_bfd,
3261 (Elf_External_Vernaux *) p, &needaux);
3262 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3264 _bfd_elf_swap_vernaux_out (output_bfd,
3266 (Elf_External_Vernaux *) p);
3267 p += sizeof (Elf_External_Vernaux);
3270 while (need.vn_next);
3276 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3277 The default is to only match when the INPUT and OUTPUT are exactly
3281 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3282 const bfd_target *output)
3284 return input == output;
3287 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3288 This version is used when different targets for the same architecture
3289 are virtually identical. */
3292 _bfd_elf_relocs_compatible (const bfd_target *input,
3293 const bfd_target *output)
3295 const struct elf_backend_data *obed, *ibed;
3297 if (input == output)
3300 ibed = xvec_get_elf_backend_data (input);
3301 obed = xvec_get_elf_backend_data (output);
3303 if (ibed->arch != obed->arch)
3306 /* If both backends are using this function, deem them compatible. */
3307 return ibed->relocs_compatible == obed->relocs_compatible;
3310 /* Add symbols from an ELF object file to the linker hash table. */
3313 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3315 Elf_Internal_Ehdr *ehdr;
3316 Elf_Internal_Shdr *hdr;
3317 bfd_size_type symcount;
3318 bfd_size_type extsymcount;
3319 bfd_size_type extsymoff;
3320 struct elf_link_hash_entry **sym_hash;
3321 bfd_boolean dynamic;
3322 Elf_External_Versym *extversym = NULL;
3323 Elf_External_Versym *ever;
3324 struct elf_link_hash_entry *weaks;
3325 struct elf_link_hash_entry **nondeflt_vers = NULL;
3326 bfd_size_type nondeflt_vers_cnt = 0;
3327 Elf_Internal_Sym *isymbuf = NULL;
3328 Elf_Internal_Sym *isym;
3329 Elf_Internal_Sym *isymend;
3330 const struct elf_backend_data *bed;
3331 bfd_boolean add_needed;
3332 struct elf_link_hash_table *htab;
3334 void *alloc_mark = NULL;
3335 struct bfd_hash_entry **old_table = NULL;
3336 unsigned int old_size = 0;
3337 unsigned int old_count = 0;
3338 void *old_tab = NULL;
3341 struct bfd_link_hash_entry *old_undefs = NULL;
3342 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3343 long old_dynsymcount = 0;
3344 bfd_size_type old_dynstr_size = 0;
3346 size_t hashsize = 0;
3348 htab = elf_hash_table (info);
3349 bed = get_elf_backend_data (abfd);
3351 if ((abfd->flags & DYNAMIC) == 0)
3357 /* You can't use -r against a dynamic object. Also, there's no
3358 hope of using a dynamic object which does not exactly match
3359 the format of the output file. */
3360 if (info->relocatable
3361 || !is_elf_hash_table (htab)
3362 || info->output_bfd->xvec != abfd->xvec)
3364 if (info->relocatable)
3365 bfd_set_error (bfd_error_invalid_operation);
3367 bfd_set_error (bfd_error_wrong_format);
3372 ehdr = elf_elfheader (abfd);
3373 if (info->warn_alternate_em
3374 && bed->elf_machine_code != ehdr->e_machine
3375 && ((bed->elf_machine_alt1 != 0
3376 && ehdr->e_machine == bed->elf_machine_alt1)
3377 || (bed->elf_machine_alt2 != 0
3378 && ehdr->e_machine == bed->elf_machine_alt2)))
3379 info->callbacks->einfo
3380 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3381 ehdr->e_machine, abfd, bed->elf_machine_code);
3383 /* As a GNU extension, any input sections which are named
3384 .gnu.warning.SYMBOL are treated as warning symbols for the given
3385 symbol. This differs from .gnu.warning sections, which generate
3386 warnings when they are included in an output file. */
3387 /* PR 12761: Also generate this warning when building shared libraries. */
3388 if (info->executable || info->shared)
3392 for (s = abfd->sections; s != NULL; s = s->next)
3396 name = bfd_get_section_name (abfd, s);
3397 if (CONST_STRNEQ (name, ".gnu.warning."))
3402 name += sizeof ".gnu.warning." - 1;
3404 /* If this is a shared object, then look up the symbol
3405 in the hash table. If it is there, and it is already
3406 been defined, then we will not be using the entry
3407 from this shared object, so we don't need to warn.
3408 FIXME: If we see the definition in a regular object
3409 later on, we will warn, but we shouldn't. The only
3410 fix is to keep track of what warnings we are supposed
3411 to emit, and then handle them all at the end of the
3415 struct elf_link_hash_entry *h;
3417 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3419 /* FIXME: What about bfd_link_hash_common? */
3421 && (h->root.type == bfd_link_hash_defined
3422 || h->root.type == bfd_link_hash_defweak))
3424 /* We don't want to issue this warning. Clobber
3425 the section size so that the warning does not
3426 get copied into the output file. */
3433 msg = (char *) bfd_alloc (abfd, sz + 1);
3437 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3442 if (! (_bfd_generic_link_add_one_symbol
3443 (info, abfd, name, BSF_WARNING, s, 0, msg,
3444 FALSE, bed->collect, NULL)))
3447 if (! info->relocatable)
3449 /* Clobber the section size so that the warning does
3450 not get copied into the output file. */
3453 /* Also set SEC_EXCLUDE, so that symbols defined in
3454 the warning section don't get copied to the output. */
3455 s->flags |= SEC_EXCLUDE;
3464 /* If we are creating a shared library, create all the dynamic
3465 sections immediately. We need to attach them to something,
3466 so we attach them to this BFD, provided it is the right
3467 format. FIXME: If there are no input BFD's of the same
3468 format as the output, we can't make a shared library. */
3470 && is_elf_hash_table (htab)
3471 && info->output_bfd->xvec == abfd->xvec
3472 && !htab->dynamic_sections_created)
3474 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3478 else if (!is_elf_hash_table (htab))
3483 const char *soname = NULL;
3485 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3488 /* ld --just-symbols and dynamic objects don't mix very well.
3489 ld shouldn't allow it. */
3490 if ((s = abfd->sections) != NULL
3491 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3494 /* If this dynamic lib was specified on the command line with
3495 --as-needed in effect, then we don't want to add a DT_NEEDED
3496 tag unless the lib is actually used. Similary for libs brought
3497 in by another lib's DT_NEEDED. When --no-add-needed is used
3498 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3499 any dynamic library in DT_NEEDED tags in the dynamic lib at
3501 add_needed = (elf_dyn_lib_class (abfd)
3502 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3503 | DYN_NO_NEEDED)) == 0;
3505 s = bfd_get_section_by_name (abfd, ".dynamic");
3510 unsigned int elfsec;
3511 unsigned long shlink;
3513 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3520 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3521 if (elfsec == SHN_BAD)
3522 goto error_free_dyn;
3523 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3525 for (extdyn = dynbuf;
3526 extdyn < dynbuf + s->size;
3527 extdyn += bed->s->sizeof_dyn)
3529 Elf_Internal_Dyn dyn;
3531 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3532 if (dyn.d_tag == DT_SONAME)
3534 unsigned int tagv = dyn.d_un.d_val;
3535 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3537 goto error_free_dyn;
3539 if (dyn.d_tag == DT_NEEDED)
3541 struct bfd_link_needed_list *n, **pn;
3543 unsigned int tagv = dyn.d_un.d_val;
3545 amt = sizeof (struct bfd_link_needed_list);
3546 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3547 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 if (n == NULL || fnm == NULL)
3549 goto error_free_dyn;
3550 amt = strlen (fnm) + 1;
3551 anm = (char *) bfd_alloc (abfd, amt);
3553 goto error_free_dyn;
3554 memcpy (anm, fnm, amt);
3558 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3562 if (dyn.d_tag == DT_RUNPATH)
3564 struct bfd_link_needed_list *n, **pn;
3566 unsigned int tagv = dyn.d_un.d_val;
3568 amt = sizeof (struct bfd_link_needed_list);
3569 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3570 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3571 if (n == NULL || fnm == NULL)
3572 goto error_free_dyn;
3573 amt = strlen (fnm) + 1;
3574 anm = (char *) bfd_alloc (abfd, amt);
3576 goto error_free_dyn;
3577 memcpy (anm, fnm, amt);
3581 for (pn = & runpath;
3587 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3588 if (!runpath && dyn.d_tag == DT_RPATH)
3590 struct bfd_link_needed_list *n, **pn;
3592 unsigned int tagv = dyn.d_un.d_val;
3594 amt = sizeof (struct bfd_link_needed_list);
3595 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3596 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3597 if (n == NULL || fnm == NULL)
3598 goto error_free_dyn;
3599 amt = strlen (fnm) + 1;
3600 anm = (char *) bfd_alloc (abfd, amt);
3602 goto error_free_dyn;
3603 memcpy (anm, fnm, amt);
3613 if (dyn.d_tag == DT_AUDIT)
3615 unsigned int tagv = dyn.d_un.d_val;
3616 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3623 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3624 frees all more recently bfd_alloc'd blocks as well. */
3630 struct bfd_link_needed_list **pn;
3631 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3636 /* We do not want to include any of the sections in a dynamic
3637 object in the output file. We hack by simply clobbering the
3638 list of sections in the BFD. This could be handled more
3639 cleanly by, say, a new section flag; the existing
3640 SEC_NEVER_LOAD flag is not the one we want, because that one
3641 still implies that the section takes up space in the output
3643 bfd_section_list_clear (abfd);
3645 /* Find the name to use in a DT_NEEDED entry that refers to this
3646 object. If the object has a DT_SONAME entry, we use it.
3647 Otherwise, if the generic linker stuck something in
3648 elf_dt_name, we use that. Otherwise, we just use the file
3650 if (soname == NULL || *soname == '\0')
3652 soname = elf_dt_name (abfd);
3653 if (soname == NULL || *soname == '\0')
3654 soname = bfd_get_filename (abfd);
3657 /* Save the SONAME because sometimes the linker emulation code
3658 will need to know it. */
3659 elf_dt_name (abfd) = soname;
3661 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3665 /* If we have already included this dynamic object in the
3666 link, just ignore it. There is no reason to include a
3667 particular dynamic object more than once. */
3671 /* Save the DT_AUDIT entry for the linker emulation code. */
3672 elf_dt_audit (abfd) = audit;
3675 /* If this is a dynamic object, we always link against the .dynsym
3676 symbol table, not the .symtab symbol table. The dynamic linker
3677 will only see the .dynsym symbol table, so there is no reason to
3678 look at .symtab for a dynamic object. */
3680 if (! dynamic || elf_dynsymtab (abfd) == 0)
3681 hdr = &elf_tdata (abfd)->symtab_hdr;
3683 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3685 symcount = hdr->sh_size / bed->s->sizeof_sym;
3687 /* The sh_info field of the symtab header tells us where the
3688 external symbols start. We don't care about the local symbols at
3690 if (elf_bad_symtab (abfd))
3692 extsymcount = symcount;
3697 extsymcount = symcount - hdr->sh_info;
3698 extsymoff = hdr->sh_info;
3702 if (extsymcount != 0)
3704 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3706 if (isymbuf == NULL)
3709 /* We store a pointer to the hash table entry for each external
3711 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3712 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3713 if (sym_hash == NULL)
3714 goto error_free_sym;
3715 elf_sym_hashes (abfd) = sym_hash;
3720 /* Read in any version definitions. */
3721 if (!_bfd_elf_slurp_version_tables (abfd,
3722 info->default_imported_symver))
3723 goto error_free_sym;
3725 /* Read in the symbol versions, but don't bother to convert them
3726 to internal format. */
3727 if (elf_dynversym (abfd) != 0)
3729 Elf_Internal_Shdr *versymhdr;
3731 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3732 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3733 if (extversym == NULL)
3734 goto error_free_sym;
3735 amt = versymhdr->sh_size;
3736 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3737 || bfd_bread (extversym, amt, abfd) != amt)
3738 goto error_free_vers;
3742 /* If we are loading an as-needed shared lib, save the symbol table
3743 state before we start adding symbols. If the lib turns out
3744 to be unneeded, restore the state. */
3745 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3750 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3752 struct bfd_hash_entry *p;
3753 struct elf_link_hash_entry *h;
3755 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3757 h = (struct elf_link_hash_entry *) p;
3758 entsize += htab->root.table.entsize;
3759 if (h->root.type == bfd_link_hash_warning)
3760 entsize += htab->root.table.entsize;
3764 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3765 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3766 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3767 if (old_tab == NULL)
3768 goto error_free_vers;
3770 /* Remember the current objalloc pointer, so that all mem for
3771 symbols added can later be reclaimed. */
3772 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3773 if (alloc_mark == NULL)
3774 goto error_free_vers;
3776 /* Make a special call to the linker "notice" function to
3777 tell it that we are about to handle an as-needed lib. */
3778 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3779 notice_as_needed, 0, NULL))
3780 goto error_free_vers;
3782 /* Clone the symbol table and sym hashes. Remember some
3783 pointers into the symbol table, and dynamic symbol count. */
3784 old_hash = (char *) old_tab + tabsize;
3785 old_ent = (char *) old_hash + hashsize;
3786 memcpy (old_tab, htab->root.table.table, tabsize);
3787 memcpy (old_hash, sym_hash, hashsize);
3788 old_undefs = htab->root.undefs;
3789 old_undefs_tail = htab->root.undefs_tail;
3790 old_table = htab->root.table.table;
3791 old_size = htab->root.table.size;
3792 old_count = htab->root.table.count;
3793 old_dynsymcount = htab->dynsymcount;
3794 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3796 for (i = 0; i < htab->root.table.size; i++)
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3803 memcpy (old_ent, p, htab->root.table.entsize);
3804 old_ent = (char *) old_ent + htab->root.table.entsize;
3805 h = (struct elf_link_hash_entry *) p;
3806 if (h->root.type == bfd_link_hash_warning)
3808 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3809 old_ent = (char *) old_ent + htab->root.table.entsize;
3816 ever = extversym != NULL ? extversym + extsymoff : NULL;
3817 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3819 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3823 asection *sec, *new_sec;
3826 struct elf_link_hash_entry *h;
3827 struct elf_link_hash_entry *hi;
3828 bfd_boolean definition;
3829 bfd_boolean size_change_ok;
3830 bfd_boolean type_change_ok;
3831 bfd_boolean new_weakdef;
3832 bfd_boolean new_weak;
3833 bfd_boolean old_weak;
3834 bfd_boolean override;
3836 unsigned int old_alignment;
3841 flags = BSF_NO_FLAGS;
3843 value = isym->st_value;
3845 common = bed->common_definition (isym);
3847 bind = ELF_ST_BIND (isym->st_info);
3851 /* This should be impossible, since ELF requires that all
3852 global symbols follow all local symbols, and that sh_info
3853 point to the first global symbol. Unfortunately, Irix 5
3858 if (isym->st_shndx != SHN_UNDEF && !common)
3866 case STB_GNU_UNIQUE:
3867 flags = BSF_GNU_UNIQUE;
3871 /* Leave it up to the processor backend. */
3875 if (isym->st_shndx == SHN_UNDEF)
3876 sec = bfd_und_section_ptr;
3877 else if (isym->st_shndx == SHN_ABS)
3878 sec = bfd_abs_section_ptr;
3879 else if (isym->st_shndx == SHN_COMMON)
3881 sec = bfd_com_section_ptr;
3882 /* What ELF calls the size we call the value. What ELF
3883 calls the value we call the alignment. */
3884 value = isym->st_size;
3888 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3890 sec = bfd_abs_section_ptr;
3891 else if (discarded_section (sec))
3893 /* Symbols from discarded section are undefined. We keep
3895 sec = bfd_und_section_ptr;
3896 isym->st_shndx = SHN_UNDEF;
3898 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3902 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3905 goto error_free_vers;
3907 if (isym->st_shndx == SHN_COMMON
3908 && (abfd->flags & BFD_PLUGIN) != 0)
3910 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3914 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3916 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3918 goto error_free_vers;
3922 else if (isym->st_shndx == SHN_COMMON
3923 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3924 && !info->relocatable)
3926 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3930 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3931 | SEC_LINKER_CREATED);
3932 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3934 goto error_free_vers;
3938 else if (bed->elf_add_symbol_hook)
3940 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3942 goto error_free_vers;
3944 /* The hook function sets the name to NULL if this symbol
3945 should be skipped for some reason. */
3950 /* Sanity check that all possibilities were handled. */
3953 bfd_set_error (bfd_error_bad_value);
3954 goto error_free_vers;
3957 /* Silently discard TLS symbols from --just-syms. There's
3958 no way to combine a static TLS block with a new TLS block
3959 for this executable. */
3960 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3961 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3964 if (bfd_is_und_section (sec)
3965 || bfd_is_com_section (sec))
3970 size_change_ok = FALSE;
3971 type_change_ok = bed->type_change_ok;
3977 if (is_elf_hash_table (htab))
3979 Elf_Internal_Versym iver;
3980 unsigned int vernum = 0;
3985 if (info->default_imported_symver)
3986 /* Use the default symbol version created earlier. */
3987 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3992 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3994 vernum = iver.vs_vers & VERSYM_VERSION;
3996 /* If this is a hidden symbol, or if it is not version
3997 1, we append the version name to the symbol name.
3998 However, we do not modify a non-hidden absolute symbol
3999 if it is not a function, because it might be the version
4000 symbol itself. FIXME: What if it isn't? */
4001 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4003 && (!bfd_is_abs_section (sec)
4004 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4007 size_t namelen, verlen, newlen;
4010 if (isym->st_shndx != SHN_UNDEF)
4012 if (vernum > elf_tdata (abfd)->cverdefs)
4014 else if (vernum > 1)
4016 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4022 (*_bfd_error_handler)
4023 (_("%B: %s: invalid version %u (max %d)"),
4025 elf_tdata (abfd)->cverdefs);
4026 bfd_set_error (bfd_error_bad_value);
4027 goto error_free_vers;
4032 /* We cannot simply test for the number of
4033 entries in the VERNEED section since the
4034 numbers for the needed versions do not start
4036 Elf_Internal_Verneed *t;
4039 for (t = elf_tdata (abfd)->verref;
4043 Elf_Internal_Vernaux *a;
4045 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4047 if (a->vna_other == vernum)
4049 verstr = a->vna_nodename;
4058 (*_bfd_error_handler)
4059 (_("%B: %s: invalid needed version %d"),
4060 abfd, name, vernum);
4061 bfd_set_error (bfd_error_bad_value);
4062 goto error_free_vers;
4066 namelen = strlen (name);
4067 verlen = strlen (verstr);
4068 newlen = namelen + verlen + 2;
4069 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4070 && isym->st_shndx != SHN_UNDEF)
4073 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4074 if (newname == NULL)
4075 goto error_free_vers;
4076 memcpy (newname, name, namelen);
4077 p = newname + namelen;
4079 /* If this is a defined non-hidden version symbol,
4080 we add another @ to the name. This indicates the
4081 default version of the symbol. */
4082 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4083 && isym->st_shndx != SHN_UNDEF)
4085 memcpy (p, verstr, verlen + 1);
4090 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4091 sym_hash, &old_bfd, &old_weak,
4092 &old_alignment, &skip, &override,
4093 &type_change_ok, &size_change_ok))
4094 goto error_free_vers;
4103 while (h->root.type == bfd_link_hash_indirect
4104 || h->root.type == bfd_link_hash_warning)
4105 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4107 if (elf_tdata (abfd)->verdef != NULL
4110 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4113 if (! (_bfd_generic_link_add_one_symbol
4114 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4115 (struct bfd_link_hash_entry **) sym_hash)))
4116 goto error_free_vers;
4119 /* We need to make sure that indirect symbol dynamic flags are
4122 while (h->root.type == bfd_link_hash_indirect
4123 || h->root.type == bfd_link_hash_warning)
4124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4128 new_weak = (flags & BSF_WEAK) != 0;
4129 new_weakdef = FALSE;
4133 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4134 && is_elf_hash_table (htab)
4135 && h->u.weakdef == NULL)
4137 /* Keep a list of all weak defined non function symbols from
4138 a dynamic object, using the weakdef field. Later in this
4139 function we will set the weakdef field to the correct
4140 value. We only put non-function symbols from dynamic
4141 objects on this list, because that happens to be the only
4142 time we need to know the normal symbol corresponding to a
4143 weak symbol, and the information is time consuming to
4144 figure out. If the weakdef field is not already NULL,
4145 then this symbol was already defined by some previous
4146 dynamic object, and we will be using that previous
4147 definition anyhow. */
4149 h->u.weakdef = weaks;
4154 /* Set the alignment of a common symbol. */
4155 if ((common || bfd_is_com_section (sec))
4156 && h->root.type == bfd_link_hash_common)
4161 align = bfd_log2 (isym->st_value);
4164 /* The new symbol is a common symbol in a shared object.
4165 We need to get the alignment from the section. */
4166 align = new_sec->alignment_power;
4168 if (align > old_alignment)
4169 h->root.u.c.p->alignment_power = align;
4171 h->root.u.c.p->alignment_power = old_alignment;
4174 if (is_elf_hash_table (htab))
4176 /* Set a flag in the hash table entry indicating the type of
4177 reference or definition we just found. A dynamic symbol
4178 is one which is referenced or defined by both a regular
4179 object and a shared object. */
4180 bfd_boolean dynsym = FALSE;
4182 /* Plugin symbols aren't normal. Don't set def_regular or
4183 ref_regular for them, or make them dynamic. */
4184 if ((abfd->flags & BFD_PLUGIN) != 0)
4191 if (bind != STB_WEAK)
4192 h->ref_regular_nonweak = 1;
4204 /* If the indirect symbol has been forced local, don't
4205 make the real symbol dynamic. */
4206 if ((h == hi || !hi->forced_local)
4207 && (! info->executable
4217 hi->ref_dynamic = 1;
4222 hi->def_dynamic = 1;
4225 /* If the indirect symbol has been forced local, don't
4226 make the real symbol dynamic. */
4227 if ((h == hi || !hi->forced_local)
4230 || (h->u.weakdef != NULL
4232 && h->u.weakdef->dynindx != -1)))
4236 /* Check to see if we need to add an indirect symbol for
4237 the default name. */
4239 || (!override && h->root.type == bfd_link_hash_common))
4240 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4241 sec, value, &old_bfd, &dynsym))
4242 goto error_free_vers;
4244 /* Check the alignment when a common symbol is involved. This
4245 can change when a common symbol is overridden by a normal
4246 definition or a common symbol is ignored due to the old
4247 normal definition. We need to make sure the maximum
4248 alignment is maintained. */
4249 if ((old_alignment || common)
4250 && h->root.type != bfd_link_hash_common)
4252 unsigned int common_align;
4253 unsigned int normal_align;
4254 unsigned int symbol_align;
4258 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4259 || h->root.type == bfd_link_hash_defweak);
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4270 normal_align = symbol_align;
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4280 common_align = bfd_log2 (isym->st_value);
4282 normal_bfd = old_bfd;
4285 if (normal_align < common_align)
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B is"
4291 " greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4303 /* Remember the symbol size if it isn't undefined. */
4304 if (isym->st_size != 0
4305 && isym->st_shndx != SHN_UNDEF
4306 && (definition || h->size == 0))
4309 && h->size != isym->st_size
4310 && ! size_change_ok)
4311 (*_bfd_error_handler)
4312 (_("Warning: size of symbol `%s' changed"
4313 " from %lu in %B to %lu in %B"),
4315 name, (unsigned long) h->size,
4316 (unsigned long) isym->st_size);
4318 h->size = isym->st_size;
4321 /* If this is a common symbol, then we always want H->SIZE
4322 to be the size of the common symbol. The code just above
4323 won't fix the size if a common symbol becomes larger. We
4324 don't warn about a size change here, because that is
4325 covered by --warn-common. Allow changes between different
4327 if (h->root.type == bfd_link_hash_common)
4328 h->size = h->root.u.c.size;
4330 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4331 && ((definition && !new_weak)
4332 || (old_weak && h->root.type == bfd_link_hash_common)
4333 || h->type == STT_NOTYPE))
4335 unsigned int type = ELF_ST_TYPE (isym->st_info);
4337 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4339 if (type == STT_GNU_IFUNC
4340 && (abfd->flags & DYNAMIC) != 0)
4343 if (h->type != type)
4345 if (h->type != STT_NOTYPE && ! type_change_ok)
4346 (*_bfd_error_handler)
4347 (_("Warning: type of symbol `%s' changed"
4348 " from %d to %d in %B"),
4349 abfd, name, h->type, type);
4355 /* Merge st_other field. */
4356 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4358 /* We don't want to make debug symbol dynamic. */
4359 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4362 /* Nor should we make plugin symbols dynamic. */
4363 if ((abfd->flags & BFD_PLUGIN) != 0)
4368 h->target_internal = isym->st_target_internal;
4369 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4372 if (definition && !dynamic)
4374 char *p = strchr (name, ELF_VER_CHR);
4375 if (p != NULL && p[1] != ELF_VER_CHR)
4377 /* Queue non-default versions so that .symver x, x@FOO
4378 aliases can be checked. */
4381 amt = ((isymend - isym + 1)
4382 * sizeof (struct elf_link_hash_entry *));
4384 (struct elf_link_hash_entry **) bfd_malloc (amt);
4386 goto error_free_vers;
4388 nondeflt_vers[nondeflt_vers_cnt++] = h;
4392 if (dynsym && h->dynindx == -1)
4394 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4395 goto error_free_vers;
4396 if (h->u.weakdef != NULL
4398 && h->u.weakdef->dynindx == -1)
4400 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4401 goto error_free_vers;
4404 else if (dynsym && h->dynindx != -1)
4405 /* If the symbol already has a dynamic index, but
4406 visibility says it should not be visible, turn it into
4408 switch (ELF_ST_VISIBILITY (h->other))
4412 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4417 /* Don't add DT_NEEDED for references from the dummy bfd. */
4421 && h->ref_regular_nonweak
4423 || (old_bfd->flags & BFD_PLUGIN) == 0))
4424 || (h->ref_dynamic_nonweak
4425 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4426 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4429 const char *soname = elf_dt_name (abfd);
4431 /* A symbol from a library loaded via DT_NEEDED of some
4432 other library is referenced by a regular object.
4433 Add a DT_NEEDED entry for it. Issue an error if
4434 --no-add-needed is used and the reference was not
4437 && h->ref_regular_nonweak
4438 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4440 (*_bfd_error_handler)
4441 (_("%B: undefined reference to symbol '%s'"),
4443 (*_bfd_error_handler)
4444 (_("note: '%s' is defined in DSO %B"
4445 " so try adding it to the linker command line"),
4447 bfd_set_error (bfd_error_invalid_operation);
4448 goto error_free_vers;
4451 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4452 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4455 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4457 goto error_free_vers;
4459 BFD_ASSERT (ret == 0);
4464 if (extversym != NULL)
4470 if (isymbuf != NULL)
4476 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4480 /* Restore the symbol table. */
4481 if (bed->as_needed_cleanup)
4482 (*bed->as_needed_cleanup) (abfd, info);
4483 old_hash = (char *) old_tab + tabsize;
4484 old_ent = (char *) old_hash + hashsize;
4485 sym_hash = elf_sym_hashes (abfd);
4486 htab->root.table.table = old_table;
4487 htab->root.table.size = old_size;
4488 htab->root.table.count = old_count;
4489 memcpy (htab->root.table.table, old_tab, tabsize);
4490 memcpy (sym_hash, old_hash, hashsize);
4491 htab->root.undefs = old_undefs;
4492 htab->root.undefs_tail = old_undefs_tail;
4493 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4494 for (i = 0; i < htab->root.table.size; i++)
4496 struct bfd_hash_entry *p;
4497 struct elf_link_hash_entry *h;
4499 unsigned int alignment_power;
4501 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4503 h = (struct elf_link_hash_entry *) p;
4504 if (h->root.type == bfd_link_hash_warning)
4505 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4506 if (h->dynindx >= old_dynsymcount
4507 && h->dynstr_index < old_dynstr_size)
4508 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4510 /* Preserve the maximum alignment and size for common
4511 symbols even if this dynamic lib isn't on DT_NEEDED
4512 since it can still be loaded at run time by another
4514 if (h->root.type == bfd_link_hash_common)
4516 size = h->root.u.c.size;
4517 alignment_power = h->root.u.c.p->alignment_power;
4522 alignment_power = 0;
4524 memcpy (p, old_ent, htab->root.table.entsize);
4525 old_ent = (char *) old_ent + htab->root.table.entsize;
4526 h = (struct elf_link_hash_entry *) p;
4527 if (h->root.type == bfd_link_hash_warning)
4529 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4533 if (h->root.type == bfd_link_hash_common)
4535 if (size > h->root.u.c.size)
4536 h->root.u.c.size = size;
4537 if (alignment_power > h->root.u.c.p->alignment_power)
4538 h->root.u.c.p->alignment_power = alignment_power;
4543 /* Make a special call to the linker "notice" function to
4544 tell it that symbols added for crefs may need to be removed. */
4545 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4546 notice_not_needed, 0, NULL))
4547 goto error_free_vers;
4550 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4552 if (nondeflt_vers != NULL)
4553 free (nondeflt_vers);
4557 if (old_tab != NULL)
4559 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4560 notice_needed, 0, NULL))
4561 goto error_free_vers;
4566 /* Now that all the symbols from this input file are created, handle
4567 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4568 if (nondeflt_vers != NULL)
4570 bfd_size_type cnt, symidx;
4572 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4574 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4575 char *shortname, *p;
4577 p = strchr (h->root.root.string, ELF_VER_CHR);
4579 || (h->root.type != bfd_link_hash_defined
4580 && h->root.type != bfd_link_hash_defweak))
4583 amt = p - h->root.root.string;
4584 shortname = (char *) bfd_malloc (amt + 1);
4586 goto error_free_vers;
4587 memcpy (shortname, h->root.root.string, amt);
4588 shortname[amt] = '\0';
4590 hi = (struct elf_link_hash_entry *)
4591 bfd_link_hash_lookup (&htab->root, shortname,
4592 FALSE, FALSE, FALSE);
4594 && hi->root.type == h->root.type
4595 && hi->root.u.def.value == h->root.u.def.value
4596 && hi->root.u.def.section == h->root.u.def.section)
4598 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4599 hi->root.type = bfd_link_hash_indirect;
4600 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4601 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4602 sym_hash = elf_sym_hashes (abfd);
4604 for (symidx = 0; symidx < extsymcount; ++symidx)
4605 if (sym_hash[symidx] == hi)
4607 sym_hash[symidx] = h;
4613 free (nondeflt_vers);
4614 nondeflt_vers = NULL;
4617 /* Now set the weakdefs field correctly for all the weak defined
4618 symbols we found. The only way to do this is to search all the
4619 symbols. Since we only need the information for non functions in
4620 dynamic objects, that's the only time we actually put anything on
4621 the list WEAKS. We need this information so that if a regular
4622 object refers to a symbol defined weakly in a dynamic object, the
4623 real symbol in the dynamic object is also put in the dynamic
4624 symbols; we also must arrange for both symbols to point to the
4625 same memory location. We could handle the general case of symbol
4626 aliasing, but a general symbol alias can only be generated in
4627 assembler code, handling it correctly would be very time
4628 consuming, and other ELF linkers don't handle general aliasing
4632 struct elf_link_hash_entry **hpp;
4633 struct elf_link_hash_entry **hppend;
4634 struct elf_link_hash_entry **sorted_sym_hash;
4635 struct elf_link_hash_entry *h;
4638 /* Since we have to search the whole symbol list for each weak
4639 defined symbol, search time for N weak defined symbols will be
4640 O(N^2). Binary search will cut it down to O(NlogN). */
4641 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4642 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4643 if (sorted_sym_hash == NULL)
4645 sym_hash = sorted_sym_hash;
4646 hpp = elf_sym_hashes (abfd);
4647 hppend = hpp + extsymcount;
4649 for (; hpp < hppend; hpp++)
4653 && h->root.type == bfd_link_hash_defined
4654 && !bed->is_function_type (h->type))
4662 qsort (sorted_sym_hash, sym_count,
4663 sizeof (struct elf_link_hash_entry *),
4666 while (weaks != NULL)
4668 struct elf_link_hash_entry *hlook;
4674 weaks = hlook->u.weakdef;
4675 hlook->u.weakdef = NULL;
4677 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4678 || hlook->root.type == bfd_link_hash_defweak
4679 || hlook->root.type == bfd_link_hash_common
4680 || hlook->root.type == bfd_link_hash_indirect);
4681 slook = hlook->root.u.def.section;
4682 vlook = hlook->root.u.def.value;
4688 bfd_signed_vma vdiff;
4690 h = sorted_sym_hash[idx];
4691 vdiff = vlook - h->root.u.def.value;
4698 long sdiff = slook->id - h->root.u.def.section->id;
4708 /* We didn't find a value/section match. */
4712 /* With multiple aliases, or when the weak symbol is already
4713 strongly defined, we have multiple matching symbols and
4714 the binary search above may land on any of them. Step
4715 one past the matching symbol(s). */
4718 h = sorted_sym_hash[idx];
4719 if (h->root.u.def.section != slook
4720 || h->root.u.def.value != vlook)
4724 /* Now look back over the aliases. Since we sorted by size
4725 as well as value and section, we'll choose the one with
4726 the largest size. */
4729 h = sorted_sym_hash[idx];
4731 /* Stop if value or section doesn't match. */
4732 if (h->root.u.def.section != slook
4733 || h->root.u.def.value != vlook)
4735 else if (h != hlook)
4737 hlook->u.weakdef = h;
4739 /* If the weak definition is in the list of dynamic
4740 symbols, make sure the real definition is put
4742 if (hlook->dynindx != -1 && h->dynindx == -1)
4744 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4747 free (sorted_sym_hash);
4752 /* If the real definition is in the list of dynamic
4753 symbols, make sure the weak definition is put
4754 there as well. If we don't do this, then the
4755 dynamic loader might not merge the entries for the
4756 real definition and the weak definition. */
4757 if (h->dynindx != -1 && hlook->dynindx == -1)
4759 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 goto err_free_sym_hash;
4767 free (sorted_sym_hash);
4770 if (bed->check_directives
4771 && !(*bed->check_directives) (abfd, info))
4774 /* If this object is the same format as the output object, and it is
4775 not a shared library, then let the backend look through the
4778 This is required to build global offset table entries and to
4779 arrange for dynamic relocs. It is not required for the
4780 particular common case of linking non PIC code, even when linking
4781 against shared libraries, but unfortunately there is no way of
4782 knowing whether an object file has been compiled PIC or not.
4783 Looking through the relocs is not particularly time consuming.
4784 The problem is that we must either (1) keep the relocs in memory,
4785 which causes the linker to require additional runtime memory or
4786 (2) read the relocs twice from the input file, which wastes time.
4787 This would be a good case for using mmap.
4789 I have no idea how to handle linking PIC code into a file of a
4790 different format. It probably can't be done. */
4792 && is_elf_hash_table (htab)
4793 && bed->check_relocs != NULL
4794 && elf_object_id (abfd) == elf_hash_table_id (htab)
4795 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4799 for (o = abfd->sections; o != NULL; o = o->next)
4801 Elf_Internal_Rela *internal_relocs;
4804 if ((o->flags & SEC_RELOC) == 0
4805 || o->reloc_count == 0
4806 || ((info->strip == strip_all || info->strip == strip_debugger)
4807 && (o->flags & SEC_DEBUGGING) != 0)
4808 || bfd_is_abs_section (o->output_section))
4811 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4813 if (internal_relocs == NULL)
4816 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4818 if (elf_section_data (o)->relocs != internal_relocs)
4819 free (internal_relocs);
4826 /* If this is a non-traditional link, try to optimize the handling
4827 of the .stab/.stabstr sections. */
4829 && ! info->traditional_format
4830 && is_elf_hash_table (htab)
4831 && (info->strip != strip_all && info->strip != strip_debugger))
4835 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836 if (stabstr != NULL)
4838 bfd_size_type string_offset = 0;
4841 for (stab = abfd->sections; stab; stab = stab->next)
4842 if (CONST_STRNEQ (stab->name, ".stab")
4843 && (!stab->name[5] ||
4844 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 && (stab->flags & SEC_MERGE) == 0
4846 && !bfd_is_abs_section (stab->output_section))
4848 struct bfd_elf_section_data *secdata;
4850 secdata = elf_section_data (stab);
4851 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 stabstr, &secdata->sec_info,
4855 if (secdata->sec_info)
4856 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4861 if (is_elf_hash_table (htab) && add_needed)
4863 /* Add this bfd to the loaded list. */
4864 struct elf_link_loaded_list *n;
4866 n = (struct elf_link_loaded_list *)
4867 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4871 n->next = htab->loaded;
4878 if (old_tab != NULL)
4880 if (nondeflt_vers != NULL)
4881 free (nondeflt_vers);
4882 if (extversym != NULL)
4885 if (isymbuf != NULL)
4891 /* Return the linker hash table entry of a symbol that might be
4892 satisfied by an archive symbol. Return -1 on error. */
4894 struct elf_link_hash_entry *
4895 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4896 struct bfd_link_info *info,
4899 struct elf_link_hash_entry *h;
4903 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4907 /* If this is a default version (the name contains @@), look up the
4908 symbol again with only one `@' as well as without the version.
4909 The effect is that references to the symbol with and without the
4910 version will be matched by the default symbol in the archive. */
4912 p = strchr (name, ELF_VER_CHR);
4913 if (p == NULL || p[1] != ELF_VER_CHR)
4916 /* First check with only one `@'. */
4917 len = strlen (name);
4918 copy = (char *) bfd_alloc (abfd, len);
4920 return (struct elf_link_hash_entry *) 0 - 1;
4922 first = p - name + 1;
4923 memcpy (copy, name, first);
4924 memcpy (copy + first, name + first + 1, len - first);
4926 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4929 /* We also need to check references to the symbol without the
4931 copy[first - 1] = '\0';
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4933 FALSE, FALSE, TRUE);
4936 bfd_release (abfd, copy);
4940 /* Add symbols from an ELF archive file to the linker hash table. We
4941 don't use _bfd_generic_link_add_archive_symbols because of a
4942 problem which arises on UnixWare. The UnixWare libc.so is an
4943 archive which includes an entry libc.so.1 which defines a bunch of
4944 symbols. The libc.so archive also includes a number of other
4945 object files, which also define symbols, some of which are the same
4946 as those defined in libc.so.1. Correct linking requires that we
4947 consider each object file in turn, and include it if it defines any
4948 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4949 this; it looks through the list of undefined symbols, and includes
4950 any object file which defines them. When this algorithm is used on
4951 UnixWare, it winds up pulling in libc.so.1 early and defining a
4952 bunch of symbols. This means that some of the other objects in the
4953 archive are not included in the link, which is incorrect since they
4954 precede libc.so.1 in the archive.
4956 Fortunately, ELF archive handling is simpler than that done by
4957 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4958 oddities. In ELF, if we find a symbol in the archive map, and the
4959 symbol is currently undefined, we know that we must pull in that
4962 Unfortunately, we do have to make multiple passes over the symbol
4963 table until nothing further is resolved. */
4966 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4969 bfd_boolean *defined = NULL;
4970 bfd_boolean *included = NULL;
4974 const struct elf_backend_data *bed;
4975 struct elf_link_hash_entry * (*archive_symbol_lookup)
4976 (bfd *, struct bfd_link_info *, const char *);
4978 if (! bfd_has_map (abfd))
4980 /* An empty archive is a special case. */
4981 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4983 bfd_set_error (bfd_error_no_armap);
4987 /* Keep track of all symbols we know to be already defined, and all
4988 files we know to be already included. This is to speed up the
4989 second and subsequent passes. */
4990 c = bfd_ardata (abfd)->symdef_count;
4994 amt *= sizeof (bfd_boolean);
4995 defined = (bfd_boolean *) bfd_zmalloc (amt);
4996 included = (bfd_boolean *) bfd_zmalloc (amt);
4997 if (defined == NULL || included == NULL)
5000 symdefs = bfd_ardata (abfd)->symdefs;
5001 bed = get_elf_backend_data (abfd);
5002 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5015 symdefend = symdef + c;
5016 for (i = 0; symdef < symdefend; symdef++, i++)
5018 struct elf_link_hash_entry *h;
5020 struct bfd_link_hash_entry *undefs_tail;
5023 if (defined[i] || included[i])
5025 if (symdef->file_offset == last)
5031 h = archive_symbol_lookup (abfd, info, symdef->name);
5032 if (h == (struct elf_link_hash_entry *) 0 - 1)
5038 if (h->root.type == bfd_link_hash_common)
5040 /* We currently have a common symbol. The archive map contains
5041 a reference to this symbol, so we may want to include it. We
5042 only want to include it however, if this archive element
5043 contains a definition of the symbol, not just another common
5046 Unfortunately some archivers (including GNU ar) will put
5047 declarations of common symbols into their archive maps, as
5048 well as real definitions, so we cannot just go by the archive
5049 map alone. Instead we must read in the element's symbol
5050 table and check that to see what kind of symbol definition
5052 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5055 else if (h->root.type != bfd_link_hash_undefined)
5057 if (h->root.type != bfd_link_hash_undefweak)
5062 /* We need to include this archive member. */
5063 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5064 if (element == NULL)
5067 if (! bfd_check_format (element, bfd_object))
5070 /* Doublecheck that we have not included this object
5071 already--it should be impossible, but there may be
5072 something wrong with the archive. */
5073 if (element->archive_pass != 0)
5075 bfd_set_error (bfd_error_bad_value);
5078 element->archive_pass = 1;
5080 undefs_tail = info->hash->undefs_tail;
5082 if (!(*info->callbacks
5083 ->add_archive_element) (info, element, symdef->name, &element))
5085 if (!bfd_link_add_symbols (element, info))
5088 /* If there are any new undefined symbols, we need to make
5089 another pass through the archive in order to see whether
5090 they can be defined. FIXME: This isn't perfect, because
5091 common symbols wind up on undefs_tail and because an
5092 undefined symbol which is defined later on in this pass
5093 does not require another pass. This isn't a bug, but it
5094 does make the code less efficient than it could be. */
5095 if (undefs_tail != info->hash->undefs_tail)
5098 /* Look backward to mark all symbols from this object file
5099 which we have already seen in this pass. */
5103 included[mark] = TRUE;
5108 while (symdefs[mark].file_offset == symdef->file_offset);
5110 /* We mark subsequent symbols from this object file as we go
5111 on through the loop. */
5112 last = symdef->file_offset;
5123 if (defined != NULL)
5125 if (included != NULL)
5130 /* Given an ELF BFD, add symbols to the global hash table as
5134 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5136 switch (bfd_get_format (abfd))
5139 return elf_link_add_object_symbols (abfd, info);
5141 return elf_link_add_archive_symbols (abfd, info);
5143 bfd_set_error (bfd_error_wrong_format);
5148 struct hash_codes_info
5150 unsigned long *hashcodes;
5154 /* This function will be called though elf_link_hash_traverse to store
5155 all hash value of the exported symbols in an array. */
5158 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5160 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5166 /* Ignore indirect symbols. These are added by the versioning code. */
5167 if (h->dynindx == -1)
5170 name = h->root.root.string;
5171 p = strchr (name, ELF_VER_CHR);
5174 alc = (char *) bfd_malloc (p - name + 1);
5180 memcpy (alc, name, p - name);
5181 alc[p - name] = '\0';
5185 /* Compute the hash value. */
5186 ha = bfd_elf_hash (name);
5188 /* Store the found hash value in the array given as the argument. */
5189 *(inf->hashcodes)++ = ha;
5191 /* And store it in the struct so that we can put it in the hash table
5193 h->u.elf_hash_value = ha;
5201 struct collect_gnu_hash_codes
5204 const struct elf_backend_data *bed;
5205 unsigned long int nsyms;
5206 unsigned long int maskbits;
5207 unsigned long int *hashcodes;
5208 unsigned long int *hashval;
5209 unsigned long int *indx;
5210 unsigned long int *counts;
5213 long int min_dynindx;
5214 unsigned long int bucketcount;
5215 unsigned long int symindx;
5216 long int local_indx;
5217 long int shift1, shift2;
5218 unsigned long int mask;
5222 /* This function will be called though elf_link_hash_traverse to store
5223 all hash value of the exported symbols in an array. */
5226 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5228 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5234 /* Ignore indirect symbols. These are added by the versioning code. */
5235 if (h->dynindx == -1)
5238 /* Ignore also local symbols and undefined symbols. */
5239 if (! (*s->bed->elf_hash_symbol) (h))
5242 name = h->root.root.string;
5243 p = strchr (name, ELF_VER_CHR);
5246 alc = (char *) bfd_malloc (p - name + 1);
5252 memcpy (alc, name, p - name);
5253 alc[p - name] = '\0';
5257 /* Compute the hash value. */
5258 ha = bfd_elf_gnu_hash (name);
5260 /* Store the found hash value in the array for compute_bucket_count,
5261 and also for .dynsym reordering purposes. */
5262 s->hashcodes[s->nsyms] = ha;
5263 s->hashval[h->dynindx] = ha;
5265 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5266 s->min_dynindx = h->dynindx;
5274 /* This function will be called though elf_link_hash_traverse to do
5275 final dynaminc symbol renumbering. */
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5280 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5281 unsigned long int bucket;
5282 unsigned long int val;
5284 /* Ignore indirect symbols. */
5285 if (h->dynindx == -1)
5288 /* Ignore also local symbols and undefined symbols. */
5289 if (! (*s->bed->elf_hash_symbol) (h))
5291 if (h->dynindx >= s->min_dynindx)
5292 h->dynindx = s->local_indx++;
5296 bucket = s->hashval[h->dynindx] % s->bucketcount;
5297 val = (s->hashval[h->dynindx] >> s->shift1)
5298 & ((s->maskbits >> s->shift1) - 1);
5299 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5301 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5302 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5303 if (s->counts[bucket] == 1)
5304 /* Last element terminates the chain. */
5306 bfd_put_32 (s->output_bfd, val,
5307 s->contents + (s->indx[bucket] - s->symindx) * 4);
5308 --s->counts[bucket];
5309 h->dynindx = s->indx[bucket]++;
5313 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5316 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5318 return !(h->forced_local
5319 || h->root.type == bfd_link_hash_undefined
5320 || h->root.type == bfd_link_hash_undefweak
5321 || ((h->root.type == bfd_link_hash_defined
5322 || h->root.type == bfd_link_hash_defweak)
5323 && h->root.u.def.section->output_section == NULL));
5326 /* Array used to determine the number of hash table buckets to use
5327 based on the number of symbols there are. If there are fewer than
5328 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5329 fewer than 37 we use 17 buckets, and so forth. We never use more
5330 than 32771 buckets. */
5332 static const size_t elf_buckets[] =
5334 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5338 /* Compute bucket count for hashing table. We do not use a static set
5339 of possible tables sizes anymore. Instead we determine for all
5340 possible reasonable sizes of the table the outcome (i.e., the
5341 number of collisions etc) and choose the best solution. The
5342 weighting functions are not too simple to allow the table to grow
5343 without bounds. Instead one of the weighting factors is the size.
5344 Therefore the result is always a good payoff between few collisions
5345 (= short chain lengths) and table size. */
5347 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5348 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5349 unsigned long int nsyms,
5352 size_t best_size = 0;
5353 unsigned long int i;
5355 /* We have a problem here. The following code to optimize the table
5356 size requires an integer type with more the 32 bits. If
5357 BFD_HOST_U_64_BIT is set we know about such a type. */
5358 #ifdef BFD_HOST_U_64_BIT
5363 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5364 bfd *dynobj = elf_hash_table (info)->dynobj;
5365 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5366 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5367 unsigned long int *counts;
5369 unsigned int no_improvement_count = 0;
5371 /* Possible optimization parameters: if we have NSYMS symbols we say
5372 that the hashing table must at least have NSYMS/4 and at most
5374 minsize = nsyms / 4;
5377 best_size = maxsize = nsyms * 2;
5382 if ((best_size & 31) == 0)
5386 /* Create array where we count the collisions in. We must use bfd_malloc
5387 since the size could be large. */
5389 amt *= sizeof (unsigned long int);
5390 counts = (unsigned long int *) bfd_malloc (amt);
5394 /* Compute the "optimal" size for the hash table. The criteria is a
5395 minimal chain length. The minor criteria is (of course) the size
5397 for (i = minsize; i < maxsize; ++i)
5399 /* Walk through the array of hashcodes and count the collisions. */
5400 BFD_HOST_U_64_BIT max;
5401 unsigned long int j;
5402 unsigned long int fact;
5404 if (gnu_hash && (i & 31) == 0)
5407 memset (counts, '\0', i * sizeof (unsigned long int));
5409 /* Determine how often each hash bucket is used. */
5410 for (j = 0; j < nsyms; ++j)
5411 ++counts[hashcodes[j] % i];
5413 /* For the weight function we need some information about the
5414 pagesize on the target. This is information need not be 100%
5415 accurate. Since this information is not available (so far) we
5416 define it here to a reasonable default value. If it is crucial
5417 to have a better value some day simply define this value. */
5418 # ifndef BFD_TARGET_PAGESIZE
5419 # define BFD_TARGET_PAGESIZE (4096)
5422 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5424 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5427 /* Variant 1: optimize for short chains. We add the squares
5428 of all the chain lengths (which favors many small chain
5429 over a few long chains). */
5430 for (j = 0; j < i; ++j)
5431 max += counts[j] * counts[j];
5433 /* This adds penalties for the overall size of the table. */
5434 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5437 /* Variant 2: Optimize a lot more for small table. Here we
5438 also add squares of the size but we also add penalties for
5439 empty slots (the +1 term). */
5440 for (j = 0; j < i; ++j)
5441 max += (1 + counts[j]) * (1 + counts[j]);
5443 /* The overall size of the table is considered, but not as
5444 strong as in variant 1, where it is squared. */
5445 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5449 /* Compare with current best results. */
5450 if (max < best_chlen)
5454 no_improvement_count = 0;
5456 /* PR 11843: Avoid futile long searches for the best bucket size
5457 when there are a large number of symbols. */
5458 else if (++no_improvement_count == 100)
5465 #endif /* defined (BFD_HOST_U_64_BIT) */
5467 /* This is the fallback solution if no 64bit type is available or if we
5468 are not supposed to spend much time on optimizations. We select the
5469 bucket count using a fixed set of numbers. */
5470 for (i = 0; elf_buckets[i] != 0; i++)
5472 best_size = elf_buckets[i];
5473 if (nsyms < elf_buckets[i + 1])
5476 if (gnu_hash && best_size < 2)
5483 /* Size any SHT_GROUP section for ld -r. */
5486 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5490 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5491 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5492 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5497 /* Set a default stack segment size. The value in INFO wins. If it
5498 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5499 undefined it is initialized. */
5502 bfd_elf_stack_segment_size (bfd *output_bfd,
5503 struct bfd_link_info *info,
5504 const char *legacy_symbol,
5505 bfd_vma default_size)
5507 struct elf_link_hash_entry *h = NULL;
5509 /* Look for legacy symbol. */
5511 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5512 FALSE, FALSE, FALSE);
5513 if (h && (h->root.type == bfd_link_hash_defined
5514 || h->root.type == bfd_link_hash_defweak)
5516 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5518 /* The symbol has no type if specified on the command line. */
5519 h->type = STT_OBJECT;
5520 if (info->stacksize)
5521 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5522 output_bfd, legacy_symbol);
5523 else if (h->root.u.def.section != bfd_abs_section_ptr)
5524 (*_bfd_error_handler) (_("%B: %s not absolute"),
5525 output_bfd, legacy_symbol);
5527 info->stacksize = h->root.u.def.value;
5530 if (!info->stacksize)
5531 /* If the user didn't set a size, or explicitly inhibit the
5532 size, set it now. */
5533 info->stacksize = default_size;
5535 /* Provide the legacy symbol, if it is referenced. */
5536 if (h && (h->root.type == bfd_link_hash_undefined
5537 || h->root.type == bfd_link_hash_undefweak))
5539 struct bfd_link_hash_entry *bh = NULL;
5541 if (!(_bfd_generic_link_add_one_symbol
5542 (info, output_bfd, legacy_symbol,
5543 BSF_GLOBAL, bfd_abs_section_ptr,
5544 info->stacksize >= 0 ? info->stacksize : 0,
5545 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5548 h = (struct elf_link_hash_entry *) bh;
5550 h->type = STT_OBJECT;
5556 /* Set up the sizes and contents of the ELF dynamic sections. This is
5557 called by the ELF linker emulation before_allocation routine. We
5558 must set the sizes of the sections before the linker sets the
5559 addresses of the various sections. */
5562 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5565 const char *filter_shlib,
5567 const char *depaudit,
5568 const char * const *auxiliary_filters,
5569 struct bfd_link_info *info,
5570 asection **sinterpptr)
5572 bfd_size_type soname_indx;
5574 const struct elf_backend_data *bed;
5575 struct elf_info_failed asvinfo;
5579 soname_indx = (bfd_size_type) -1;
5581 if (!is_elf_hash_table (info->hash))
5584 bed = get_elf_backend_data (output_bfd);
5586 /* Any syms created from now on start with -1 in
5587 got.refcount/offset and plt.refcount/offset. */
5588 elf_hash_table (info)->init_got_refcount
5589 = elf_hash_table (info)->init_got_offset;
5590 elf_hash_table (info)->init_plt_refcount
5591 = elf_hash_table (info)->init_plt_offset;
5593 if (info->relocatable
5594 && !_bfd_elf_size_group_sections (info))
5597 /* The backend may have to create some sections regardless of whether
5598 we're dynamic or not. */
5599 if (bed->elf_backend_always_size_sections
5600 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5603 /* Determine any GNU_STACK segment requirements, after the backend
5604 has had a chance to set a default segment size. */
5605 if (info->execstack)
5606 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5607 else if (info->noexecstack)
5608 elf_stack_flags (output_bfd) = PF_R | PF_W;
5612 asection *notesec = NULL;
5615 for (inputobj = info->input_bfds;
5617 inputobj = inputobj->link_next)
5622 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5624 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5627 if (s->flags & SEC_CODE)
5631 else if (bed->default_execstack)
5634 if (notesec || info->stacksize > 0)
5635 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5636 if (notesec && exec && info->relocatable
5637 && notesec->output_section != bfd_abs_section_ptr)
5638 notesec->output_section->flags |= SEC_CODE;
5641 dynobj = elf_hash_table (info)->dynobj;
5643 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5645 struct elf_info_failed eif;
5646 struct elf_link_hash_entry *h;
5648 struct bfd_elf_version_tree *t;
5649 struct bfd_elf_version_expr *d;
5651 bfd_boolean all_defined;
5653 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5654 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5658 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5660 if (soname_indx == (bfd_size_type) -1
5661 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5667 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5669 info->flags |= DF_SYMBOLIC;
5677 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5679 if (indx == (bfd_size_type) -1)
5682 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5683 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5687 if (filter_shlib != NULL)
5691 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5692 filter_shlib, TRUE);
5693 if (indx == (bfd_size_type) -1
5694 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5698 if (auxiliary_filters != NULL)
5700 const char * const *p;
5702 for (p = auxiliary_filters; *p != NULL; p++)
5706 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5708 if (indx == (bfd_size_type) -1
5709 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5718 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5720 if (indx == (bfd_size_type) -1
5721 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5725 if (depaudit != NULL)
5729 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5731 if (indx == (bfd_size_type) -1
5732 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5739 /* If we are supposed to export all symbols into the dynamic symbol
5740 table (this is not the normal case), then do so. */
5741 if (info->export_dynamic
5742 || (info->executable && info->dynamic))
5744 elf_link_hash_traverse (elf_hash_table (info),
5745 _bfd_elf_export_symbol,
5751 /* Make all global versions with definition. */
5752 for (t = info->version_info; t != NULL; t = t->next)
5753 for (d = t->globals.list; d != NULL; d = d->next)
5754 if (!d->symver && d->literal)
5756 const char *verstr, *name;
5757 size_t namelen, verlen, newlen;
5758 char *newname, *p, leading_char;
5759 struct elf_link_hash_entry *newh;
5761 leading_char = bfd_get_symbol_leading_char (output_bfd);
5763 namelen = strlen (name) + (leading_char != '\0');
5765 verlen = strlen (verstr);
5766 newlen = namelen + verlen + 3;
5768 newname = (char *) bfd_malloc (newlen);
5769 if (newname == NULL)
5771 newname[0] = leading_char;
5772 memcpy (newname + (leading_char != '\0'), name, namelen);
5774 /* Check the hidden versioned definition. */
5775 p = newname + namelen;
5777 memcpy (p, verstr, verlen + 1);
5778 newh = elf_link_hash_lookup (elf_hash_table (info),
5779 newname, FALSE, FALSE,
5782 || (newh->root.type != bfd_link_hash_defined
5783 && newh->root.type != bfd_link_hash_defweak))
5785 /* Check the default versioned definition. */
5787 memcpy (p, verstr, verlen + 1);
5788 newh = elf_link_hash_lookup (elf_hash_table (info),
5789 newname, FALSE, FALSE,
5794 /* Mark this version if there is a definition and it is
5795 not defined in a shared object. */
5797 && !newh->def_dynamic
5798 && (newh->root.type == bfd_link_hash_defined
5799 || newh->root.type == bfd_link_hash_defweak))
5803 /* Attach all the symbols to their version information. */
5804 asvinfo.info = info;
5805 asvinfo.failed = FALSE;
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_link_assign_sym_version,
5813 if (!info->allow_undefined_version)
5815 /* Check if all global versions have a definition. */
5817 for (t = info->version_info; t != NULL; t = t->next)
5818 for (d = t->globals.list; d != NULL; d = d->next)
5819 if (d->literal && !d->symver && !d->script)
5821 (*_bfd_error_handler)
5822 (_("%s: undefined version: %s"),
5823 d->pattern, t->name);
5824 all_defined = FALSE;
5829 bfd_set_error (bfd_error_bad_value);
5834 /* Find all symbols which were defined in a dynamic object and make
5835 the backend pick a reasonable value for them. */
5836 elf_link_hash_traverse (elf_hash_table (info),
5837 _bfd_elf_adjust_dynamic_symbol,
5842 /* Add some entries to the .dynamic section. We fill in some of the
5843 values later, in bfd_elf_final_link, but we must add the entries
5844 now so that we know the final size of the .dynamic section. */
5846 /* If there are initialization and/or finalization functions to
5847 call then add the corresponding DT_INIT/DT_FINI entries. */
5848 h = (info->init_function
5849 ? elf_link_hash_lookup (elf_hash_table (info),
5850 info->init_function, FALSE,
5857 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5860 h = (info->fini_function
5861 ? elf_link_hash_lookup (elf_hash_table (info),
5862 info->fini_function, FALSE,
5869 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5873 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5874 if (s != NULL && s->linker_has_input)
5876 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5877 if (! info->executable)
5882 for (sub = info->input_bfds; sub != NULL;
5883 sub = sub->link_next)
5884 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5885 for (o = sub->sections; o != NULL; o = o->next)
5886 if (elf_section_data (o)->this_hdr.sh_type
5887 == SHT_PREINIT_ARRAY)
5889 (*_bfd_error_handler)
5890 (_("%B: .preinit_array section is not allowed in DSO"),
5895 bfd_set_error (bfd_error_nonrepresentable_section);
5899 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5900 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5903 s = bfd_get_section_by_name (output_bfd, ".init_array");
5904 if (s != NULL && s->linker_has_input)
5906 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5907 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5910 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5911 if (s != NULL && s->linker_has_input)
5913 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5914 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5918 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5919 /* If .dynstr is excluded from the link, we don't want any of
5920 these tags. Strictly, we should be checking each section
5921 individually; This quick check covers for the case where
5922 someone does a /DISCARD/ : { *(*) }. */
5923 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5925 bfd_size_type strsize;
5927 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5928 if ((info->emit_hash
5929 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5930 || (info->emit_gnu_hash
5931 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5932 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5933 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5934 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5935 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5936 bed->s->sizeof_sym))
5941 /* The backend must work out the sizes of all the other dynamic
5944 && bed->elf_backend_size_dynamic_sections != NULL
5945 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5948 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5951 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5953 unsigned long section_sym_count;
5954 struct bfd_elf_version_tree *verdefs;
5957 /* Set up the version definition section. */
5958 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5959 BFD_ASSERT (s != NULL);
5961 /* We may have created additional version definitions if we are
5962 just linking a regular application. */
5963 verdefs = info->version_info;
5965 /* Skip anonymous version tag. */
5966 if (verdefs != NULL && verdefs->vernum == 0)
5967 verdefs = verdefs->next;
5969 if (verdefs == NULL && !info->create_default_symver)
5970 s->flags |= SEC_EXCLUDE;
5975 struct bfd_elf_version_tree *t;
5977 Elf_Internal_Verdef def;
5978 Elf_Internal_Verdaux defaux;
5979 struct bfd_link_hash_entry *bh;
5980 struct elf_link_hash_entry *h;
5986 /* Make space for the base version. */
5987 size += sizeof (Elf_External_Verdef);
5988 size += sizeof (Elf_External_Verdaux);
5991 /* Make space for the default version. */
5992 if (info->create_default_symver)
5994 size += sizeof (Elf_External_Verdef);
5998 for (t = verdefs; t != NULL; t = t->next)
6000 struct bfd_elf_version_deps *n;
6002 /* Don't emit base version twice. */
6006 size += sizeof (Elf_External_Verdef);
6007 size += sizeof (Elf_External_Verdaux);
6010 for (n = t->deps; n != NULL; n = n->next)
6011 size += sizeof (Elf_External_Verdaux);
6015 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6016 if (s->contents == NULL && s->size != 0)
6019 /* Fill in the version definition section. */
6023 def.vd_version = VER_DEF_CURRENT;
6024 def.vd_flags = VER_FLG_BASE;
6027 if (info->create_default_symver)
6029 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6030 def.vd_next = sizeof (Elf_External_Verdef);
6034 def.vd_aux = sizeof (Elf_External_Verdef);
6035 def.vd_next = (sizeof (Elf_External_Verdef)
6036 + sizeof (Elf_External_Verdaux));
6039 if (soname_indx != (bfd_size_type) -1)
6041 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6043 def.vd_hash = bfd_elf_hash (soname);
6044 defaux.vda_name = soname_indx;
6051 name = lbasename (output_bfd->filename);
6052 def.vd_hash = bfd_elf_hash (name);
6053 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6055 if (indx == (bfd_size_type) -1)
6057 defaux.vda_name = indx;
6059 defaux.vda_next = 0;
6061 _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 (Elf_External_Verdef *) p);
6063 p += sizeof (Elf_External_Verdef);
6064 if (info->create_default_symver)
6066 /* Add a symbol representing this version. */
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6073 h = (struct elf_link_hash_entry *) bh;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = NULL;
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 /* Create a duplicate of the base version with the same
6083 aux block, but different flags. */
6086 def.vd_aux = sizeof (Elf_External_Verdef);
6088 def.vd_next = (sizeof (Elf_External_Verdef)
6089 + sizeof (Elf_External_Verdaux));
6092 _bfd_elf_swap_verdef_out (output_bfd, &def,
6093 (Elf_External_Verdef *) p);
6094 p += sizeof (Elf_External_Verdef);
6096 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6097 (Elf_External_Verdaux *) p);
6098 p += sizeof (Elf_External_Verdaux);
6100 for (t = verdefs; t != NULL; t = t->next)
6103 struct bfd_elf_version_deps *n;
6105 /* Don't emit the base version twice. */
6110 for (n = t->deps; n != NULL; n = n->next)
6113 /* Add a symbol representing this version. */
6115 if (! (_bfd_generic_link_add_one_symbol
6116 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6118 get_elf_backend_data (dynobj)->collect, &bh)))
6120 h = (struct elf_link_hash_entry *) bh;
6123 h->type = STT_OBJECT;
6124 h->verinfo.vertree = t;
6126 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6129 def.vd_version = VER_DEF_CURRENT;
6131 if (t->globals.list == NULL
6132 && t->locals.list == NULL
6134 def.vd_flags |= VER_FLG_WEAK;
6135 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6136 def.vd_cnt = cdeps + 1;
6137 def.vd_hash = bfd_elf_hash (t->name);
6138 def.vd_aux = sizeof (Elf_External_Verdef);
6141 /* If a basever node is next, it *must* be the last node in
6142 the chain, otherwise Verdef construction breaks. */
6143 if (t->next != NULL && t->next->vernum == 0)
6144 BFD_ASSERT (t->next->next == NULL);
6146 if (t->next != NULL && t->next->vernum != 0)
6147 def.vd_next = (sizeof (Elf_External_Verdef)
6148 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6150 _bfd_elf_swap_verdef_out (output_bfd, &def,
6151 (Elf_External_Verdef *) p);
6152 p += sizeof (Elf_External_Verdef);
6154 defaux.vda_name = h->dynstr_index;
6155 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6157 defaux.vda_next = 0;
6158 if (t->deps != NULL)
6159 defaux.vda_next = sizeof (Elf_External_Verdaux);
6160 t->name_indx = defaux.vda_name;
6162 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6163 (Elf_External_Verdaux *) p);
6164 p += sizeof (Elf_External_Verdaux);
6166 for (n = t->deps; n != NULL; n = n->next)
6168 if (n->version_needed == NULL)
6170 /* This can happen if there was an error in the
6172 defaux.vda_name = 0;
6176 defaux.vda_name = n->version_needed->name_indx;
6177 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6180 if (n->next == NULL)
6181 defaux.vda_next = 0;
6183 defaux.vda_next = sizeof (Elf_External_Verdaux);
6185 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6186 (Elf_External_Verdaux *) p);
6187 p += sizeof (Elf_External_Verdaux);
6191 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6192 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6195 elf_tdata (output_bfd)->cverdefs = cdefs;
6198 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6200 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6203 else if (info->flags & DF_BIND_NOW)
6205 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6211 if (info->executable)
6212 info->flags_1 &= ~ (DF_1_INITFIRST
6215 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6219 /* Work out the size of the version reference section. */
6221 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6222 BFD_ASSERT (s != NULL);
6224 struct elf_find_verdep_info sinfo;
6227 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6228 if (sinfo.vers == 0)
6230 sinfo.failed = FALSE;
6232 elf_link_hash_traverse (elf_hash_table (info),
6233 _bfd_elf_link_find_version_dependencies,
6238 if (elf_tdata (output_bfd)->verref == NULL)
6239 s->flags |= SEC_EXCLUDE;
6242 Elf_Internal_Verneed *t;
6247 /* Build the version dependency section. */
6250 for (t = elf_tdata (output_bfd)->verref;
6254 Elf_Internal_Vernaux *a;
6256 size += sizeof (Elf_External_Verneed);
6258 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6259 size += sizeof (Elf_External_Vernaux);
6263 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6264 if (s->contents == NULL)
6268 for (t = elf_tdata (output_bfd)->verref;
6273 Elf_Internal_Vernaux *a;
6277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6280 t->vn_version = VER_NEED_CURRENT;
6282 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6283 elf_dt_name (t->vn_bfd) != NULL
6284 ? elf_dt_name (t->vn_bfd)
6285 : lbasename (t->vn_bfd->filename),
6287 if (indx == (bfd_size_type) -1)
6290 t->vn_aux = sizeof (Elf_External_Verneed);
6291 if (t->vn_nextref == NULL)
6294 t->vn_next = (sizeof (Elf_External_Verneed)
6295 + caux * sizeof (Elf_External_Vernaux));
6297 _bfd_elf_swap_verneed_out (output_bfd, t,
6298 (Elf_External_Verneed *) p);
6299 p += sizeof (Elf_External_Verneed);
6301 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6303 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6304 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6305 a->vna_nodename, FALSE);
6306 if (indx == (bfd_size_type) -1)
6309 if (a->vna_nextptr == NULL)
6312 a->vna_next = sizeof (Elf_External_Vernaux);
6314 _bfd_elf_swap_vernaux_out (output_bfd, a,
6315 (Elf_External_Vernaux *) p);
6316 p += sizeof (Elf_External_Vernaux);
6320 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6321 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6324 elf_tdata (output_bfd)->cverrefs = crefs;
6328 if ((elf_tdata (output_bfd)->cverrefs == 0
6329 && elf_tdata (output_bfd)->cverdefs == 0)
6330 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6331 §ion_sym_count) == 0)
6333 s = bfd_get_linker_section (dynobj, ".gnu.version");
6334 s->flags |= SEC_EXCLUDE;
6340 /* Find the first non-excluded output section. We'll use its
6341 section symbol for some emitted relocs. */
6343 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6347 for (s = output_bfd->sections; s != NULL; s = s->next)
6348 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6349 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6351 elf_hash_table (info)->text_index_section = s;
6356 /* Find two non-excluded output sections, one for code, one for data.
6357 We'll use their section symbols for some emitted relocs. */
6359 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6363 /* Data first, since setting text_index_section changes
6364 _bfd_elf_link_omit_section_dynsym. */
6365 for (s = output_bfd->sections; s != NULL; s = s->next)
6366 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6367 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6369 elf_hash_table (info)->data_index_section = s;
6373 for (s = output_bfd->sections; s != NULL; s = s->next)
6374 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6375 == (SEC_ALLOC | SEC_READONLY))
6376 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6378 elf_hash_table (info)->text_index_section = s;
6382 if (elf_hash_table (info)->text_index_section == NULL)
6383 elf_hash_table (info)->text_index_section
6384 = elf_hash_table (info)->data_index_section;
6388 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6390 const struct elf_backend_data *bed;
6392 if (!is_elf_hash_table (info->hash))
6395 bed = get_elf_backend_data (output_bfd);
6396 (*bed->elf_backend_init_index_section) (output_bfd, info);
6398 if (elf_hash_table (info)->dynamic_sections_created)
6402 bfd_size_type dynsymcount;
6403 unsigned long section_sym_count;
6404 unsigned int dtagcount;
6406 dynobj = elf_hash_table (info)->dynobj;
6408 /* Assign dynsym indicies. In a shared library we generate a
6409 section symbol for each output section, which come first.
6410 Next come all of the back-end allocated local dynamic syms,
6411 followed by the rest of the global symbols. */
6413 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6414 §ion_sym_count);
6416 /* Work out the size of the symbol version section. */
6417 s = bfd_get_linker_section (dynobj, ".gnu.version");
6418 BFD_ASSERT (s != NULL);
6419 if (dynsymcount != 0
6420 && (s->flags & SEC_EXCLUDE) == 0)
6422 s->size = dynsymcount * sizeof (Elf_External_Versym);
6423 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6424 if (s->contents == NULL)
6427 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6431 /* Set the size of the .dynsym and .hash sections. We counted
6432 the number of dynamic symbols in elf_link_add_object_symbols.
6433 We will build the contents of .dynsym and .hash when we build
6434 the final symbol table, because until then we do not know the
6435 correct value to give the symbols. We built the .dynstr
6436 section as we went along in elf_link_add_object_symbols. */
6437 s = bfd_get_linker_section (dynobj, ".dynsym");
6438 BFD_ASSERT (s != NULL);
6439 s->size = dynsymcount * bed->s->sizeof_sym;
6441 if (dynsymcount != 0)
6443 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6444 if (s->contents == NULL)
6447 /* The first entry in .dynsym is a dummy symbol.
6448 Clear all the section syms, in case we don't output them all. */
6449 ++section_sym_count;
6450 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6453 elf_hash_table (info)->bucketcount = 0;
6455 /* Compute the size of the hashing table. As a side effect this
6456 computes the hash values for all the names we export. */
6457 if (info->emit_hash)
6459 unsigned long int *hashcodes;
6460 struct hash_codes_info hashinf;
6462 unsigned long int nsyms;
6464 size_t hash_entry_size;
6466 /* Compute the hash values for all exported symbols. At the same
6467 time store the values in an array so that we could use them for
6469 amt = dynsymcount * sizeof (unsigned long int);
6470 hashcodes = (unsigned long int *) bfd_malloc (amt);
6471 if (hashcodes == NULL)
6473 hashinf.hashcodes = hashcodes;
6474 hashinf.error = FALSE;
6476 /* Put all hash values in HASHCODES. */
6477 elf_link_hash_traverse (elf_hash_table (info),
6478 elf_collect_hash_codes, &hashinf);
6485 nsyms = hashinf.hashcodes - hashcodes;
6487 = compute_bucket_count (info, hashcodes, nsyms, 0);
6490 if (bucketcount == 0)
6493 elf_hash_table (info)->bucketcount = bucketcount;
6495 s = bfd_get_linker_section (dynobj, ".hash");
6496 BFD_ASSERT (s != NULL);
6497 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6498 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6499 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6500 if (s->contents == NULL)
6503 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6504 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6505 s->contents + hash_entry_size);
6508 if (info->emit_gnu_hash)
6511 unsigned char *contents;
6512 struct collect_gnu_hash_codes cinfo;
6516 memset (&cinfo, 0, sizeof (cinfo));
6518 /* Compute the hash values for all exported symbols. At the same
6519 time store the values in an array so that we could use them for
6521 amt = dynsymcount * 2 * sizeof (unsigned long int);
6522 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6523 if (cinfo.hashcodes == NULL)
6526 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6527 cinfo.min_dynindx = -1;
6528 cinfo.output_bfd = output_bfd;
6531 /* Put all hash values in HASHCODES. */
6532 elf_link_hash_traverse (elf_hash_table (info),
6533 elf_collect_gnu_hash_codes, &cinfo);
6536 free (cinfo.hashcodes);
6541 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6543 if (bucketcount == 0)
6545 free (cinfo.hashcodes);
6549 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6550 BFD_ASSERT (s != NULL);
6552 if (cinfo.nsyms == 0)
6554 /* Empty .gnu.hash section is special. */
6555 BFD_ASSERT (cinfo.min_dynindx == -1);
6556 free (cinfo.hashcodes);
6557 s->size = 5 * 4 + bed->s->arch_size / 8;
6558 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6559 if (contents == NULL)
6561 s->contents = contents;
6562 /* 1 empty bucket. */
6563 bfd_put_32 (output_bfd, 1, contents);
6564 /* SYMIDX above the special symbol 0. */
6565 bfd_put_32 (output_bfd, 1, contents + 4);
6566 /* Just one word for bitmask. */
6567 bfd_put_32 (output_bfd, 1, contents + 8);
6568 /* Only hash fn bloom filter. */
6569 bfd_put_32 (output_bfd, 0, contents + 12);
6570 /* No hashes are valid - empty bitmask. */
6571 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6572 /* No hashes in the only bucket. */
6573 bfd_put_32 (output_bfd, 0,
6574 contents + 16 + bed->s->arch_size / 8);
6578 unsigned long int maskwords, maskbitslog2, x;
6579 BFD_ASSERT (cinfo.min_dynindx != -1);
6583 while ((x >>= 1) != 0)
6585 if (maskbitslog2 < 3)
6587 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6588 maskbitslog2 = maskbitslog2 + 3;
6590 maskbitslog2 = maskbitslog2 + 2;
6591 if (bed->s->arch_size == 64)
6593 if (maskbitslog2 == 5)
6599 cinfo.mask = (1 << cinfo.shift1) - 1;
6600 cinfo.shift2 = maskbitslog2;
6601 cinfo.maskbits = 1 << maskbitslog2;
6602 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6603 amt = bucketcount * sizeof (unsigned long int) * 2;
6604 amt += maskwords * sizeof (bfd_vma);
6605 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6606 if (cinfo.bitmask == NULL)
6608 free (cinfo.hashcodes);
6612 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6613 cinfo.indx = cinfo.counts + bucketcount;
6614 cinfo.symindx = dynsymcount - cinfo.nsyms;
6615 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6617 /* Determine how often each hash bucket is used. */
6618 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6619 for (i = 0; i < cinfo.nsyms; ++i)
6620 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6622 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6623 if (cinfo.counts[i] != 0)
6625 cinfo.indx[i] = cnt;
6626 cnt += cinfo.counts[i];
6628 BFD_ASSERT (cnt == dynsymcount);
6629 cinfo.bucketcount = bucketcount;
6630 cinfo.local_indx = cinfo.min_dynindx;
6632 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6633 s->size += cinfo.maskbits / 8;
6634 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6635 if (contents == NULL)
6637 free (cinfo.bitmask);
6638 free (cinfo.hashcodes);
6642 s->contents = contents;
6643 bfd_put_32 (output_bfd, bucketcount, contents);
6644 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6645 bfd_put_32 (output_bfd, maskwords, contents + 8);
6646 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6647 contents += 16 + cinfo.maskbits / 8;
6649 for (i = 0; i < bucketcount; ++i)
6651 if (cinfo.counts[i] == 0)
6652 bfd_put_32 (output_bfd, 0, contents);
6654 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6658 cinfo.contents = contents;
6660 /* Renumber dynamic symbols, populate .gnu.hash section. */
6661 elf_link_hash_traverse (elf_hash_table (info),
6662 elf_renumber_gnu_hash_syms, &cinfo);
6664 contents = s->contents + 16;
6665 for (i = 0; i < maskwords; ++i)
6667 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6669 contents += bed->s->arch_size / 8;
6672 free (cinfo.bitmask);
6673 free (cinfo.hashcodes);
6677 s = bfd_get_linker_section (dynobj, ".dynstr");
6678 BFD_ASSERT (s != NULL);
6680 elf_finalize_dynstr (output_bfd, info);
6682 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6684 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6685 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6692 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6695 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6698 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6699 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6702 /* Finish SHF_MERGE section merging. */
6705 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6710 if (!is_elf_hash_table (info->hash))
6713 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6714 if ((ibfd->flags & DYNAMIC) == 0)
6715 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6716 if ((sec->flags & SEC_MERGE) != 0
6717 && !bfd_is_abs_section (sec->output_section))
6719 struct bfd_elf_section_data *secdata;
6721 secdata = elf_section_data (sec);
6722 if (! _bfd_add_merge_section (abfd,
6723 &elf_hash_table (info)->merge_info,
6724 sec, &secdata->sec_info))
6726 else if (secdata->sec_info)
6727 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6730 if (elf_hash_table (info)->merge_info != NULL)
6731 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6732 merge_sections_remove_hook);
6736 /* Create an entry in an ELF linker hash table. */
6738 struct bfd_hash_entry *
6739 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6740 struct bfd_hash_table *table,
6743 /* Allocate the structure if it has not already been allocated by a
6747 entry = (struct bfd_hash_entry *)
6748 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6753 /* Call the allocation method of the superclass. */
6754 entry = _bfd_link_hash_newfunc (entry, table, string);
6757 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6758 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6760 /* Set local fields. */
6763 ret->got = htab->init_got_refcount;
6764 ret->plt = htab->init_plt_refcount;
6765 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6766 - offsetof (struct elf_link_hash_entry, size)));
6767 /* Assume that we have been called by a non-ELF symbol reader.
6768 This flag is then reset by the code which reads an ELF input
6769 file. This ensures that a symbol created by a non-ELF symbol
6770 reader will have the flag set correctly. */
6777 /* Copy data from an indirect symbol to its direct symbol, hiding the
6778 old indirect symbol. Also used for copying flags to a weakdef. */
6781 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6782 struct elf_link_hash_entry *dir,
6783 struct elf_link_hash_entry *ind)
6785 struct elf_link_hash_table *htab;
6787 /* Copy down any references that we may have already seen to the
6788 symbol which just became indirect. */
6790 dir->ref_dynamic |= ind->ref_dynamic;
6791 dir->ref_regular |= ind->ref_regular;
6792 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6793 dir->non_got_ref |= ind->non_got_ref;
6794 dir->needs_plt |= ind->needs_plt;
6795 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6797 if (ind->root.type != bfd_link_hash_indirect)
6800 /* Copy over the global and procedure linkage table refcount entries.
6801 These may have been already set up by a check_relocs routine. */
6802 htab = elf_hash_table (info);
6803 if (ind->got.refcount > htab->init_got_refcount.refcount)
6805 if (dir->got.refcount < 0)
6806 dir->got.refcount = 0;
6807 dir->got.refcount += ind->got.refcount;
6808 ind->got.refcount = htab->init_got_refcount.refcount;
6811 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6813 if (dir->plt.refcount < 0)
6814 dir->plt.refcount = 0;
6815 dir->plt.refcount += ind->plt.refcount;
6816 ind->plt.refcount = htab->init_plt_refcount.refcount;
6819 if (ind->dynindx != -1)
6821 if (dir->dynindx != -1)
6822 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6823 dir->dynindx = ind->dynindx;
6824 dir->dynstr_index = ind->dynstr_index;
6826 ind->dynstr_index = 0;
6831 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6832 struct elf_link_hash_entry *h,
6833 bfd_boolean force_local)
6835 /* STT_GNU_IFUNC symbol must go through PLT. */
6836 if (h->type != STT_GNU_IFUNC)
6838 h->plt = elf_hash_table (info)->init_plt_offset;
6843 h->forced_local = 1;
6844 if (h->dynindx != -1)
6847 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6853 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6857 _bfd_elf_link_hash_table_init
6858 (struct elf_link_hash_table *table,
6860 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6861 struct bfd_hash_table *,
6863 unsigned int entsize,
6864 enum elf_target_id target_id)
6867 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6869 table->init_got_refcount.refcount = can_refcount - 1;
6870 table->init_plt_refcount.refcount = can_refcount - 1;
6871 table->init_got_offset.offset = -(bfd_vma) 1;
6872 table->init_plt_offset.offset = -(bfd_vma) 1;
6873 /* The first dynamic symbol is a dummy. */
6874 table->dynsymcount = 1;
6876 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6878 table->root.type = bfd_link_elf_hash_table;
6879 table->hash_table_id = target_id;
6884 /* Create an ELF linker hash table. */
6886 struct bfd_link_hash_table *
6887 _bfd_elf_link_hash_table_create (bfd *abfd)
6889 struct elf_link_hash_table *ret;
6890 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6892 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6896 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6897 sizeof (struct elf_link_hash_entry),
6907 /* Destroy an ELF linker hash table. */
6910 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6912 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6913 if (htab->dynstr != NULL)
6914 _bfd_elf_strtab_free (htab->dynstr);
6915 _bfd_merge_sections_free (htab->merge_info);
6916 _bfd_generic_link_hash_table_free (hash);
6919 /* This is a hook for the ELF emulation code in the generic linker to
6920 tell the backend linker what file name to use for the DT_NEEDED
6921 entry for a dynamic object. */
6924 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6926 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6927 && bfd_get_format (abfd) == bfd_object)
6928 elf_dt_name (abfd) = name;
6932 bfd_elf_get_dyn_lib_class (bfd *abfd)
6935 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6936 && bfd_get_format (abfd) == bfd_object)
6937 lib_class = elf_dyn_lib_class (abfd);
6944 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6946 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6947 && bfd_get_format (abfd) == bfd_object)
6948 elf_dyn_lib_class (abfd) = lib_class;
6951 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6952 the linker ELF emulation code. */
6954 struct bfd_link_needed_list *
6955 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6956 struct bfd_link_info *info)
6958 if (! is_elf_hash_table (info->hash))
6960 return elf_hash_table (info)->needed;
6963 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6964 hook for the linker ELF emulation code. */
6966 struct bfd_link_needed_list *
6967 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6968 struct bfd_link_info *info)
6970 if (! is_elf_hash_table (info->hash))
6972 return elf_hash_table (info)->runpath;
6975 /* Get the name actually used for a dynamic object for a link. This
6976 is the SONAME entry if there is one. Otherwise, it is the string
6977 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6980 bfd_elf_get_dt_soname (bfd *abfd)
6982 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6983 && bfd_get_format (abfd) == bfd_object)
6984 return elf_dt_name (abfd);
6988 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6989 the ELF linker emulation code. */
6992 bfd_elf_get_bfd_needed_list (bfd *abfd,
6993 struct bfd_link_needed_list **pneeded)
6996 bfd_byte *dynbuf = NULL;
6997 unsigned int elfsec;
6998 unsigned long shlink;
6999 bfd_byte *extdyn, *extdynend;
7001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7005 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7006 || bfd_get_format (abfd) != bfd_object)
7009 s = bfd_get_section_by_name (abfd, ".dynamic");
7010 if (s == NULL || s->size == 0)
7013 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7016 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7017 if (elfsec == SHN_BAD)
7020 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7022 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7023 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7026 extdynend = extdyn + s->size;
7027 for (; extdyn < extdynend; extdyn += extdynsize)
7029 Elf_Internal_Dyn dyn;
7031 (*swap_dyn_in) (abfd, extdyn, &dyn);
7033 if (dyn.d_tag == DT_NULL)
7036 if (dyn.d_tag == DT_NEEDED)
7039 struct bfd_link_needed_list *l;
7040 unsigned int tagv = dyn.d_un.d_val;
7043 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7048 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7069 struct elf_symbuf_symbol
7071 unsigned long st_name; /* Symbol name, index in string tbl */
7072 unsigned char st_info; /* Type and binding attributes */
7073 unsigned char st_other; /* Visibilty, and target specific */
7076 struct elf_symbuf_head
7078 struct elf_symbuf_symbol *ssym;
7079 bfd_size_type count;
7080 unsigned int st_shndx;
7087 Elf_Internal_Sym *isym;
7088 struct elf_symbuf_symbol *ssym;
7093 /* Sort references to symbols by ascending section number. */
7096 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7098 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7099 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7101 return s1->st_shndx - s2->st_shndx;
7105 elf_sym_name_compare (const void *arg1, const void *arg2)
7107 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7108 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7109 return strcmp (s1->name, s2->name);
7112 static struct elf_symbuf_head *
7113 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7115 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7116 struct elf_symbuf_symbol *ssym;
7117 struct elf_symbuf_head *ssymbuf, *ssymhead;
7118 bfd_size_type i, shndx_count, total_size;
7120 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7124 for (ind = indbuf, i = 0; i < symcount; i++)
7125 if (isymbuf[i].st_shndx != SHN_UNDEF)
7126 *ind++ = &isymbuf[i];
7129 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7130 elf_sort_elf_symbol);
7133 if (indbufend > indbuf)
7134 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7135 if (ind[0]->st_shndx != ind[1]->st_shndx)
7138 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7139 + (indbufend - indbuf) * sizeof (*ssym));
7140 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7141 if (ssymbuf == NULL)
7147 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7148 ssymbuf->ssym = NULL;
7149 ssymbuf->count = shndx_count;
7150 ssymbuf->st_shndx = 0;
7151 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7153 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7156 ssymhead->ssym = ssym;
7157 ssymhead->count = 0;
7158 ssymhead->st_shndx = (*ind)->st_shndx;
7160 ssym->st_name = (*ind)->st_name;
7161 ssym->st_info = (*ind)->st_info;
7162 ssym->st_other = (*ind)->st_other;
7165 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7166 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7173 /* Check if 2 sections define the same set of local and global
7177 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7178 struct bfd_link_info *info)
7181 const struct elf_backend_data *bed1, *bed2;
7182 Elf_Internal_Shdr *hdr1, *hdr2;
7183 bfd_size_type symcount1, symcount2;
7184 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7185 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7186 Elf_Internal_Sym *isym, *isymend;
7187 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7188 bfd_size_type count1, count2, i;
7189 unsigned int shndx1, shndx2;
7195 /* Both sections have to be in ELF. */
7196 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7197 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7200 if (elf_section_type (sec1) != elf_section_type (sec2))
7203 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7204 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7205 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7208 bed1 = get_elf_backend_data (bfd1);
7209 bed2 = get_elf_backend_data (bfd2);
7210 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7211 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7212 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7213 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7215 if (symcount1 == 0 || symcount2 == 0)
7221 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7222 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7224 if (ssymbuf1 == NULL)
7226 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7228 if (isymbuf1 == NULL)
7231 if (!info->reduce_memory_overheads)
7232 elf_tdata (bfd1)->symbuf = ssymbuf1
7233 = elf_create_symbuf (symcount1, isymbuf1);
7236 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7238 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7240 if (isymbuf2 == NULL)
7243 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7244 elf_tdata (bfd2)->symbuf = ssymbuf2
7245 = elf_create_symbuf (symcount2, isymbuf2);
7248 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7250 /* Optimized faster version. */
7251 bfd_size_type lo, hi, mid;
7252 struct elf_symbol *symp;
7253 struct elf_symbuf_symbol *ssym, *ssymend;
7256 hi = ssymbuf1->count;
7261 mid = (lo + hi) / 2;
7262 if (shndx1 < ssymbuf1[mid].st_shndx)
7264 else if (shndx1 > ssymbuf1[mid].st_shndx)
7268 count1 = ssymbuf1[mid].count;
7275 hi = ssymbuf2->count;
7280 mid = (lo + hi) / 2;
7281 if (shndx2 < ssymbuf2[mid].st_shndx)
7283 else if (shndx2 > ssymbuf2[mid].st_shndx)
7287 count2 = ssymbuf2[mid].count;
7293 if (count1 == 0 || count2 == 0 || count1 != count2)
7296 symtable1 = (struct elf_symbol *)
7297 bfd_malloc (count1 * sizeof (struct elf_symbol));
7298 symtable2 = (struct elf_symbol *)
7299 bfd_malloc (count2 * sizeof (struct elf_symbol));
7300 if (symtable1 == NULL || symtable2 == NULL)
7304 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7305 ssym < ssymend; ssym++, symp++)
7307 symp->u.ssym = ssym;
7308 symp->name = bfd_elf_string_from_elf_section (bfd1,
7314 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7315 ssym < ssymend; ssym++, symp++)
7317 symp->u.ssym = ssym;
7318 symp->name = bfd_elf_string_from_elf_section (bfd2,
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7332 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7340 symtable1 = (struct elf_symbol *)
7341 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7342 symtable2 = (struct elf_symbol *)
7343 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7344 if (symtable1 == NULL || symtable2 == NULL)
7347 /* Count definitions in the section. */
7349 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7350 if (isym->st_shndx == shndx1)
7351 symtable1[count1++].u.isym = isym;
7354 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7355 if (isym->st_shndx == shndx2)
7356 symtable2[count2++].u.isym = isym;
7358 if (count1 == 0 || count2 == 0 || count1 != count2)
7361 for (i = 0; i < count1; i++)
7363 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7364 symtable1[i].u.isym->st_name);
7366 for (i = 0; i < count2; i++)
7368 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7369 symtable2[i].u.isym->st_name);
7371 /* Sort symbol by name. */
7372 qsort (symtable1, count1, sizeof (struct elf_symbol),
7373 elf_sym_name_compare);
7374 qsort (symtable2, count1, sizeof (struct elf_symbol),
7375 elf_sym_name_compare);
7377 for (i = 0; i < count1; i++)
7378 /* Two symbols must have the same binding, type and name. */
7379 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7380 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7381 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7399 /* Return TRUE if 2 section types are compatible. */
7402 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7403 bfd *bbfd, const asection *bsec)
7407 || abfd->xvec->flavour != bfd_target_elf_flavour
7408 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7411 return elf_section_type (asec) == elf_section_type (bsec);
7414 /* Final phase of ELF linker. */
7416 /* A structure we use to avoid passing large numbers of arguments. */
7418 struct elf_final_link_info
7420 /* General link information. */
7421 struct bfd_link_info *info;
7424 /* Symbol string table. */
7425 struct bfd_strtab_hash *symstrtab;
7426 /* .dynsym section. */
7427 asection *dynsym_sec;
7428 /* .hash section. */
7430 /* symbol version section (.gnu.version). */
7431 asection *symver_sec;
7432 /* Buffer large enough to hold contents of any section. */
7434 /* Buffer large enough to hold external relocs of any section. */
7435 void *external_relocs;
7436 /* Buffer large enough to hold internal relocs of any section. */
7437 Elf_Internal_Rela *internal_relocs;
7438 /* Buffer large enough to hold external local symbols of any input
7440 bfd_byte *external_syms;
7441 /* And a buffer for symbol section indices. */
7442 Elf_External_Sym_Shndx *locsym_shndx;
7443 /* Buffer large enough to hold internal local symbols of any input
7445 Elf_Internal_Sym *internal_syms;
7446 /* Array large enough to hold a symbol index for each local symbol
7447 of any input BFD. */
7449 /* Array large enough to hold a section pointer for each local
7450 symbol of any input BFD. */
7451 asection **sections;
7452 /* Buffer to hold swapped out symbols. */
7454 /* And one for symbol section indices. */
7455 Elf_External_Sym_Shndx *symshndxbuf;
7456 /* Number of swapped out symbols in buffer. */
7457 size_t symbuf_count;
7458 /* Number of symbols which fit in symbuf. */
7460 /* And same for symshndxbuf. */
7461 size_t shndxbuf_size;
7462 /* Number of STT_FILE syms seen. */
7463 size_t filesym_count;
7466 /* This struct is used to pass information to elf_link_output_extsym. */
7468 struct elf_outext_info
7471 bfd_boolean localsyms;
7472 bfd_boolean need_second_pass;
7473 bfd_boolean second_pass;
7474 struct elf_final_link_info *flinfo;
7478 /* Support for evaluating a complex relocation.
7480 Complex relocations are generalized, self-describing relocations. The
7481 implementation of them consists of two parts: complex symbols, and the
7482 relocations themselves.
7484 The relocations are use a reserved elf-wide relocation type code (R_RELC
7485 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7486 information (start bit, end bit, word width, etc) into the addend. This
7487 information is extracted from CGEN-generated operand tables within gas.
7489 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7490 internal) representing prefix-notation expressions, including but not
7491 limited to those sorts of expressions normally encoded as addends in the
7492 addend field. The symbol mangling format is:
7495 | <unary-operator> ':' <node>
7496 | <binary-operator> ':' <node> ':' <node>
7499 <literal> := 's' <digits=N> ':' <N character symbol name>
7500 | 'S' <digits=N> ':' <N character section name>
7504 <binary-operator> := as in C
7505 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7508 set_symbol_value (bfd *bfd_with_globals,
7509 Elf_Internal_Sym *isymbuf,
7514 struct elf_link_hash_entry **sym_hashes;
7515 struct elf_link_hash_entry *h;
7516 size_t extsymoff = locsymcount;
7518 if (symidx < locsymcount)
7520 Elf_Internal_Sym *sym;
7522 sym = isymbuf + symidx;
7523 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7525 /* It is a local symbol: move it to the
7526 "absolute" section and give it a value. */
7527 sym->st_shndx = SHN_ABS;
7528 sym->st_value = val;
7531 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7535 /* It is a global symbol: set its link type
7536 to "defined" and give it a value. */
7538 sym_hashes = elf_sym_hashes (bfd_with_globals);
7539 h = sym_hashes [symidx - extsymoff];
7540 while (h->root.type == bfd_link_hash_indirect
7541 || h->root.type == bfd_link_hash_warning)
7542 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7543 h->root.type = bfd_link_hash_defined;
7544 h->root.u.def.value = val;
7545 h->root.u.def.section = bfd_abs_section_ptr;
7549 resolve_symbol (const char *name,
7551 struct elf_final_link_info *flinfo,
7553 Elf_Internal_Sym *isymbuf,
7556 Elf_Internal_Sym *sym;
7557 struct bfd_link_hash_entry *global_entry;
7558 const char *candidate = NULL;
7559 Elf_Internal_Shdr *symtab_hdr;
7562 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7564 for (i = 0; i < locsymcount; ++ i)
7568 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7571 candidate = bfd_elf_string_from_elf_section (input_bfd,
7572 symtab_hdr->sh_link,
7575 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7576 name, candidate, (unsigned long) sym->st_value);
7578 if (candidate && strcmp (candidate, name) == 0)
7580 asection *sec = flinfo->sections [i];
7582 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7583 *result += sec->output_offset + sec->output_section->vma;
7585 printf ("Found symbol with value %8.8lx\n",
7586 (unsigned long) *result);
7592 /* Hmm, haven't found it yet. perhaps it is a global. */
7593 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7594 FALSE, FALSE, TRUE);
7598 if (global_entry->type == bfd_link_hash_defined
7599 || global_entry->type == bfd_link_hash_defweak)
7601 *result = (global_entry->u.def.value
7602 + global_entry->u.def.section->output_section->vma
7603 + global_entry->u.def.section->output_offset);
7605 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7606 global_entry->root.string, (unsigned long) *result);
7615 resolve_section (const char *name,
7622 for (curr = sections; curr; curr = curr->next)
7623 if (strcmp (curr->name, name) == 0)
7625 *result = curr->vma;
7629 /* Hmm. still haven't found it. try pseudo-section names. */
7630 for (curr = sections; curr; curr = curr->next)
7632 len = strlen (curr->name);
7633 if (len > strlen (name))
7636 if (strncmp (curr->name, name, len) == 0)
7638 if (strncmp (".end", name + len, 4) == 0)
7640 *result = curr->vma + curr->size;
7644 /* Insert more pseudo-section names here, if you like. */
7652 undefined_reference (const char *reftype, const char *name)
7654 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7659 eval_symbol (bfd_vma *result,
7662 struct elf_final_link_info *flinfo,
7664 Elf_Internal_Sym *isymbuf,
7673 const char *sym = *symp;
7675 bfd_boolean symbol_is_section = FALSE;
7680 if (len < 1 || len > sizeof (symbuf))
7682 bfd_set_error (bfd_error_invalid_operation);
7695 *result = strtoul (sym, (char **) symp, 16);
7699 symbol_is_section = TRUE;
7702 symlen = strtol (sym, (char **) symp, 10);
7703 sym = *symp + 1; /* Skip the trailing ':'. */
7705 if (symend < sym || symlen + 1 > sizeof (symbuf))
7707 bfd_set_error (bfd_error_invalid_operation);
7711 memcpy (symbuf, sym, symlen);
7712 symbuf[symlen] = '\0';
7713 *symp = sym + symlen;
7715 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7716 the symbol as a section, or vice-versa. so we're pretty liberal in our
7717 interpretation here; section means "try section first", not "must be a
7718 section", and likewise with symbol. */
7720 if (symbol_is_section)
7722 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7723 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7724 isymbuf, locsymcount))
7726 undefined_reference ("section", symbuf);
7732 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7733 isymbuf, locsymcount)
7734 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7737 undefined_reference ("symbol", symbuf);
7744 /* All that remains are operators. */
7746 #define UNARY_OP(op) \
7747 if (strncmp (sym, #op, strlen (#op)) == 0) \
7749 sym += strlen (#op); \
7753 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7754 isymbuf, locsymcount, signed_p)) \
7757 *result = op ((bfd_signed_vma) a); \
7763 #define BINARY_OP(op) \
7764 if (strncmp (sym, #op, strlen (#op)) == 0) \
7766 sym += strlen (#op); \
7770 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7771 isymbuf, locsymcount, signed_p)) \
7774 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7775 isymbuf, locsymcount, signed_p)) \
7778 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7808 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7809 bfd_set_error (bfd_error_invalid_operation);
7815 put_value (bfd_vma size,
7816 unsigned long chunksz,
7821 location += (size - chunksz);
7823 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7831 bfd_put_8 (input_bfd, x, location);
7834 bfd_put_16 (input_bfd, x, location);
7837 bfd_put_32 (input_bfd, x, location);
7841 bfd_put_64 (input_bfd, x, location);
7851 get_value (bfd_vma size,
7852 unsigned long chunksz,
7859 /* Sanity checks. */
7860 BFD_ASSERT (chunksz <= sizeof (x)
7863 && (size % chunksz) == 0
7864 && input_bfd != NULL
7865 && location != NULL);
7867 if (chunksz == sizeof (x))
7869 BFD_ASSERT (size == chunksz);
7871 /* Make sure that we do not perform an undefined shift operation.
7872 We know that size == chunksz so there will only be one iteration
7873 of the loop below. */
7877 shift = 8 * chunksz;
7879 for (; size; size -= chunksz, location += chunksz)
7884 x = (x << shift) | bfd_get_8 (input_bfd, location);
7887 x = (x << shift) | bfd_get_16 (input_bfd, location);
7890 x = (x << shift) | bfd_get_32 (input_bfd, location);
7894 x = (x << shift) | bfd_get_64 (input_bfd, location);
7905 decode_complex_addend (unsigned long *start, /* in bits */
7906 unsigned long *oplen, /* in bits */
7907 unsigned long *len, /* in bits */
7908 unsigned long *wordsz, /* in bytes */
7909 unsigned long *chunksz, /* in bytes */
7910 unsigned long *lsb0_p,
7911 unsigned long *signed_p,
7912 unsigned long *trunc_p,
7913 unsigned long encoded)
7915 * start = encoded & 0x3F;
7916 * len = (encoded >> 6) & 0x3F;
7917 * oplen = (encoded >> 12) & 0x3F;
7918 * wordsz = (encoded >> 18) & 0xF;
7919 * chunksz = (encoded >> 22) & 0xF;
7920 * lsb0_p = (encoded >> 27) & 1;
7921 * signed_p = (encoded >> 28) & 1;
7922 * trunc_p = (encoded >> 29) & 1;
7925 bfd_reloc_status_type
7926 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7927 asection *input_section ATTRIBUTE_UNUSED,
7929 Elf_Internal_Rela *rel,
7932 bfd_vma shift, x, mask;
7933 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7934 bfd_reloc_status_type r;
7936 /* Perform this reloc, since it is complex.
7937 (this is not to say that it necessarily refers to a complex
7938 symbol; merely that it is a self-describing CGEN based reloc.
7939 i.e. the addend has the complete reloc information (bit start, end,
7940 word size, etc) encoded within it.). */
7942 decode_complex_addend (&start, &oplen, &len, &wordsz,
7943 &chunksz, &lsb0_p, &signed_p,
7944 &trunc_p, rel->r_addend);
7946 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7949 shift = (start + 1) - len;
7951 shift = (8 * wordsz) - (start + len);
7953 /* FIXME: octets_per_byte. */
7954 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7957 printf ("Doing complex reloc: "
7958 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7959 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7960 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7961 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7962 oplen, (unsigned long) x, (unsigned long) mask,
7963 (unsigned long) relocation);
7968 /* Now do an overflow check. */
7969 r = bfd_check_overflow ((signed_p
7970 ? complain_overflow_signed
7971 : complain_overflow_unsigned),
7972 len, 0, (8 * wordsz),
7976 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7979 printf (" relocation: %8.8lx\n"
7980 " shifted mask: %8.8lx\n"
7981 " shifted/masked reloc: %8.8lx\n"
7982 " result: %8.8lx\n",
7983 (unsigned long) relocation, (unsigned long) (mask << shift),
7984 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7986 /* FIXME: octets_per_byte. */
7987 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7991 /* When performing a relocatable link, the input relocations are
7992 preserved. But, if they reference global symbols, the indices
7993 referenced must be updated. Update all the relocations found in
7997 elf_link_adjust_relocs (bfd *abfd,
7998 struct bfd_elf_section_reloc_data *reldata)
8001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8003 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8004 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8005 bfd_vma r_type_mask;
8007 unsigned int count = reldata->count;
8008 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8010 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8012 swap_in = bed->s->swap_reloc_in;
8013 swap_out = bed->s->swap_reloc_out;
8015 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8017 swap_in = bed->s->swap_reloca_in;
8018 swap_out = bed->s->swap_reloca_out;
8023 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8026 if (bed->s->arch_size == 32)
8033 r_type_mask = 0xffffffff;
8037 erela = reldata->hdr->contents;
8038 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8040 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8043 if (*rel_hash == NULL)
8046 BFD_ASSERT ((*rel_hash)->indx >= 0);
8048 (*swap_in) (abfd, erela, irela);
8049 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8050 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8051 | (irela[j].r_info & r_type_mask));
8052 (*swap_out) (abfd, irela, erela);
8056 struct elf_link_sort_rela
8062 enum elf_reloc_type_class type;
8063 /* We use this as an array of size int_rels_per_ext_rel. */
8064 Elf_Internal_Rela rela[1];
8068 elf_link_sort_cmp1 (const void *A, const void *B)
8070 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8071 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8072 int relativea, relativeb;
8074 relativea = a->type == reloc_class_relative;
8075 relativeb = b->type == reloc_class_relative;
8077 if (relativea < relativeb)
8079 if (relativea > relativeb)
8081 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8083 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8085 if (a->rela->r_offset < b->rela->r_offset)
8087 if (a->rela->r_offset > b->rela->r_offset)
8093 elf_link_sort_cmp2 (const void *A, const void *B)
8095 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8096 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8099 if (a->u.offset < b->u.offset)
8101 if (a->u.offset > b->u.offset)
8103 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8104 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8109 if (a->rela->r_offset < b->rela->r_offset)
8111 if (a->rela->r_offset > b->rela->r_offset)
8117 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8119 asection *dynamic_relocs;
8122 bfd_size_type count, size;
8123 size_t i, ret, sort_elt, ext_size;
8124 bfd_byte *sort, *s_non_relative, *p;
8125 struct elf_link_sort_rela *sq;
8126 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8127 int i2e = bed->s->int_rels_per_ext_rel;
8128 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8129 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8130 struct bfd_link_order *lo;
8132 bfd_boolean use_rela;
8134 /* Find a dynamic reloc section. */
8135 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8136 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8137 if (rela_dyn != NULL && rela_dyn->size > 0
8138 && rel_dyn != NULL && rel_dyn->size > 0)
8140 bfd_boolean use_rela_initialised = FALSE;
8142 /* This is just here to stop gcc from complaining.
8143 It's initialization checking code is not perfect. */
8146 /* Both sections are present. Examine the sizes
8147 of the indirect sections to help us choose. */
8148 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8149 if (lo->type == bfd_indirect_link_order)
8151 asection *o = lo->u.indirect.section;
8153 if ((o->size % bed->s->sizeof_rela) == 0)
8155 if ((o->size % bed->s->sizeof_rel) == 0)
8156 /* Section size is divisible by both rel and rela sizes.
8157 It is of no help to us. */
8161 /* Section size is only divisible by rela. */
8162 if (use_rela_initialised && (use_rela == FALSE))
8165 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8166 bfd_set_error (bfd_error_invalid_operation);
8172 use_rela_initialised = TRUE;
8176 else if ((o->size % bed->s->sizeof_rel) == 0)
8178 /* Section size is only divisible by rel. */
8179 if (use_rela_initialised && (use_rela == TRUE))
8182 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8183 bfd_set_error (bfd_error_invalid_operation);
8189 use_rela_initialised = TRUE;
8194 /* The section size is not divisible by either - something is wrong. */
8196 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8197 bfd_set_error (bfd_error_invalid_operation);
8202 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8203 if (lo->type == bfd_indirect_link_order)
8205 asection *o = lo->u.indirect.section;
8207 if ((o->size % bed->s->sizeof_rela) == 0)
8209 if ((o->size % bed->s->sizeof_rel) == 0)
8210 /* Section size is divisible by both rel and rela sizes.
8211 It is of no help to us. */
8215 /* Section size is only divisible by rela. */
8216 if (use_rela_initialised && (use_rela == FALSE))
8219 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8220 bfd_set_error (bfd_error_invalid_operation);
8226 use_rela_initialised = TRUE;
8230 else if ((o->size % bed->s->sizeof_rel) == 0)
8232 /* Section size is only divisible by rel. */
8233 if (use_rela_initialised && (use_rela == TRUE))
8236 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8237 bfd_set_error (bfd_error_invalid_operation);
8243 use_rela_initialised = TRUE;
8248 /* The section size is not divisible by either - something is wrong. */
8250 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8251 bfd_set_error (bfd_error_invalid_operation);
8256 if (! use_rela_initialised)
8260 else if (rela_dyn != NULL && rela_dyn->size > 0)
8262 else if (rel_dyn != NULL && rel_dyn->size > 0)
8269 dynamic_relocs = rela_dyn;
8270 ext_size = bed->s->sizeof_rela;
8271 swap_in = bed->s->swap_reloca_in;
8272 swap_out = bed->s->swap_reloca_out;
8276 dynamic_relocs = rel_dyn;
8277 ext_size = bed->s->sizeof_rel;
8278 swap_in = bed->s->swap_reloc_in;
8279 swap_out = bed->s->swap_reloc_out;
8283 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8284 if (lo->type == bfd_indirect_link_order)
8285 size += lo->u.indirect.section->size;
8287 if (size != dynamic_relocs->size)
8290 sort_elt = (sizeof (struct elf_link_sort_rela)
8291 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8293 count = dynamic_relocs->size / ext_size;
8296 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8300 (*info->callbacks->warning)
8301 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8305 if (bed->s->arch_size == 32)
8306 r_sym_mask = ~(bfd_vma) 0xff;
8308 r_sym_mask = ~(bfd_vma) 0xffffffff;
8310 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8311 if (lo->type == bfd_indirect_link_order)
8313 bfd_byte *erel, *erelend;
8314 asection *o = lo->u.indirect.section;
8316 if (o->contents == NULL && o->size != 0)
8318 /* This is a reloc section that is being handled as a normal
8319 section. See bfd_section_from_shdr. We can't combine
8320 relocs in this case. */
8325 erelend = o->contents + o->size;
8326 /* FIXME: octets_per_byte. */
8327 p = sort + o->output_offset / ext_size * sort_elt;
8329 while (erel < erelend)
8331 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8333 (*swap_in) (abfd, erel, s->rela);
8334 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8335 s->u.sym_mask = r_sym_mask;
8341 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8343 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8345 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8346 if (s->type != reloc_class_relative)
8352 sq = (struct elf_link_sort_rela *) s_non_relative;
8353 for (; i < count; i++, p += sort_elt)
8355 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8356 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8358 sp->u.offset = sq->rela->r_offset;
8361 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8363 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8364 if (lo->type == bfd_indirect_link_order)
8366 bfd_byte *erel, *erelend;
8367 asection *o = lo->u.indirect.section;
8370 erelend = o->contents + o->size;
8371 /* FIXME: octets_per_byte. */
8372 p = sort + o->output_offset / ext_size * sort_elt;
8373 while (erel < erelend)
8375 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8376 (*swap_out) (abfd, s->rela, erel);
8383 *psec = dynamic_relocs;
8387 /* Flush the output symbols to the file. */
8390 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8391 const struct elf_backend_data *bed)
8393 if (flinfo->symbuf_count > 0)
8395 Elf_Internal_Shdr *hdr;
8399 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8400 pos = hdr->sh_offset + hdr->sh_size;
8401 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8402 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8403 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8406 hdr->sh_size += amt;
8407 flinfo->symbuf_count = 0;
8413 /* Add a symbol to the output symbol table. */
8416 elf_link_output_sym (struct elf_final_link_info *flinfo,
8418 Elf_Internal_Sym *elfsym,
8419 asection *input_sec,
8420 struct elf_link_hash_entry *h)
8423 Elf_External_Sym_Shndx *destshndx;
8424 int (*output_symbol_hook)
8425 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8426 struct elf_link_hash_entry *);
8427 const struct elf_backend_data *bed;
8429 bed = get_elf_backend_data (flinfo->output_bfd);
8430 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8431 if (output_symbol_hook != NULL)
8433 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8438 if (name == NULL || *name == '\0')
8439 elfsym->st_name = 0;
8440 else if (input_sec->flags & SEC_EXCLUDE)
8441 elfsym->st_name = 0;
8444 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8446 if (elfsym->st_name == (unsigned long) -1)
8450 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8452 if (! elf_link_flush_output_syms (flinfo, bed))
8456 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8457 destshndx = flinfo->symshndxbuf;
8458 if (destshndx != NULL)
8460 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8464 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8465 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8467 if (destshndx == NULL)
8469 flinfo->symshndxbuf = destshndx;
8470 memset ((char *) destshndx + amt, 0, amt);
8471 flinfo->shndxbuf_size *= 2;
8473 destshndx += bfd_get_symcount (flinfo->output_bfd);
8476 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8477 flinfo->symbuf_count += 1;
8478 bfd_get_symcount (flinfo->output_bfd) += 1;
8483 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8486 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8488 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8489 && sym->st_shndx < SHN_LORESERVE)
8491 /* The gABI doesn't support dynamic symbols in output sections
8493 (*_bfd_error_handler)
8494 (_("%B: Too many sections: %d (>= %d)"),
8495 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8496 bfd_set_error (bfd_error_nonrepresentable_section);
8502 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8503 allowing an unsatisfied unversioned symbol in the DSO to match a
8504 versioned symbol that would normally require an explicit version.
8505 We also handle the case that a DSO references a hidden symbol
8506 which may be satisfied by a versioned symbol in another DSO. */
8509 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8510 const struct elf_backend_data *bed,
8511 struct elf_link_hash_entry *h)
8514 struct elf_link_loaded_list *loaded;
8516 if (!is_elf_hash_table (info->hash))
8519 /* Check indirect symbol. */
8520 while (h->root.type == bfd_link_hash_indirect)
8521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8523 switch (h->root.type)
8529 case bfd_link_hash_undefined:
8530 case bfd_link_hash_undefweak:
8531 abfd = h->root.u.undef.abfd;
8532 if ((abfd->flags & DYNAMIC) == 0
8533 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8537 case bfd_link_hash_defined:
8538 case bfd_link_hash_defweak:
8539 abfd = h->root.u.def.section->owner;
8542 case bfd_link_hash_common:
8543 abfd = h->root.u.c.p->section->owner;
8546 BFD_ASSERT (abfd != NULL);
8548 for (loaded = elf_hash_table (info)->loaded;
8550 loaded = loaded->next)
8553 Elf_Internal_Shdr *hdr;
8554 bfd_size_type symcount;
8555 bfd_size_type extsymcount;
8556 bfd_size_type extsymoff;
8557 Elf_Internal_Shdr *versymhdr;
8558 Elf_Internal_Sym *isym;
8559 Elf_Internal_Sym *isymend;
8560 Elf_Internal_Sym *isymbuf;
8561 Elf_External_Versym *ever;
8562 Elf_External_Versym *extversym;
8564 input = loaded->abfd;
8566 /* We check each DSO for a possible hidden versioned definition. */
8568 || (input->flags & DYNAMIC) == 0
8569 || elf_dynversym (input) == 0)
8572 hdr = &elf_tdata (input)->dynsymtab_hdr;
8574 symcount = hdr->sh_size / bed->s->sizeof_sym;
8575 if (elf_bad_symtab (input))
8577 extsymcount = symcount;
8582 extsymcount = symcount - hdr->sh_info;
8583 extsymoff = hdr->sh_info;
8586 if (extsymcount == 0)
8589 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8591 if (isymbuf == NULL)
8594 /* Read in any version definitions. */
8595 versymhdr = &elf_tdata (input)->dynversym_hdr;
8596 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8597 if (extversym == NULL)
8600 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8601 || (bfd_bread (extversym, versymhdr->sh_size, input)
8602 != versymhdr->sh_size))
8610 ever = extversym + extsymoff;
8611 isymend = isymbuf + extsymcount;
8612 for (isym = isymbuf; isym < isymend; isym++, ever++)
8615 Elf_Internal_Versym iver;
8616 unsigned short version_index;
8618 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8619 || isym->st_shndx == SHN_UNDEF)
8622 name = bfd_elf_string_from_elf_section (input,
8625 if (strcmp (name, h->root.root.string) != 0)
8628 _bfd_elf_swap_versym_in (input, ever, &iver);
8630 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8632 && h->forced_local))
8634 /* If we have a non-hidden versioned sym, then it should
8635 have provided a definition for the undefined sym unless
8636 it is defined in a non-shared object and forced local.
8641 version_index = iver.vs_vers & VERSYM_VERSION;
8642 if (version_index == 1 || version_index == 2)
8644 /* This is the base or first version. We can use it. */
8658 /* Add an external symbol to the symbol table. This is called from
8659 the hash table traversal routine. When generating a shared object,
8660 we go through the symbol table twice. The first time we output
8661 anything that might have been forced to local scope in a version
8662 script. The second time we output the symbols that are still
8666 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8668 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8669 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8670 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8672 Elf_Internal_Sym sym;
8673 asection *input_sec;
8674 const struct elf_backend_data *bed;
8678 if (h->root.type == bfd_link_hash_warning)
8680 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8681 if (h->root.type == bfd_link_hash_new)
8685 /* Decide whether to output this symbol in this pass. */
8686 if (eoinfo->localsyms)
8688 if (!h->forced_local)
8690 if (eoinfo->second_pass
8691 && !((h->root.type == bfd_link_hash_defined
8692 || h->root.type == bfd_link_hash_defweak)
8693 && h->root.u.def.section->output_section != NULL))
8698 if (h->forced_local)
8702 bed = get_elf_backend_data (flinfo->output_bfd);
8704 if (h->root.type == bfd_link_hash_undefined)
8706 /* If we have an undefined symbol reference here then it must have
8707 come from a shared library that is being linked in. (Undefined
8708 references in regular files have already been handled unless
8709 they are in unreferenced sections which are removed by garbage
8711 bfd_boolean ignore_undef = FALSE;
8713 /* Some symbols may be special in that the fact that they're
8714 undefined can be safely ignored - let backend determine that. */
8715 if (bed->elf_backend_ignore_undef_symbol)
8716 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8718 /* If we are reporting errors for this situation then do so now. */
8721 && (!h->ref_regular || flinfo->info->gc_sections)
8722 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8723 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8725 if (!(flinfo->info->callbacks->undefined_symbol
8726 (flinfo->info, h->root.root.string,
8727 h->ref_regular ? NULL : h->root.u.undef.abfd,
8729 (flinfo->info->unresolved_syms_in_shared_libs
8730 == RM_GENERATE_ERROR))))
8732 bfd_set_error (bfd_error_bad_value);
8733 eoinfo->failed = TRUE;
8739 /* We should also warn if a forced local symbol is referenced from
8740 shared libraries. */
8741 if (!flinfo->info->relocatable
8742 && flinfo->info->executable
8747 && h->ref_dynamic_nonweak
8748 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8752 struct elf_link_hash_entry *hi = h;
8754 /* Check indirect symbol. */
8755 while (hi->root.type == bfd_link_hash_indirect)
8756 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8758 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8759 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8760 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8761 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8763 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8764 def_bfd = flinfo->output_bfd;
8765 if (hi->root.u.def.section != bfd_abs_section_ptr)
8766 def_bfd = hi->root.u.def.section->owner;
8767 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8768 h->root.root.string);
8769 bfd_set_error (bfd_error_bad_value);
8770 eoinfo->failed = TRUE;
8774 /* We don't want to output symbols that have never been mentioned by
8775 a regular file, or that we have been told to strip. However, if
8776 h->indx is set to -2, the symbol is used by a reloc and we must
8780 else if ((h->def_dynamic
8782 || h->root.type == bfd_link_hash_new)
8786 else if (flinfo->info->strip == strip_all)
8788 else if (flinfo->info->strip == strip_some
8789 && bfd_hash_lookup (flinfo->info->keep_hash,
8790 h->root.root.string, FALSE, FALSE) == NULL)
8792 else if ((h->root.type == bfd_link_hash_defined
8793 || h->root.type == bfd_link_hash_defweak)
8794 && ((flinfo->info->strip_discarded
8795 && discarded_section (h->root.u.def.section))
8796 || (h->root.u.def.section->owner != NULL
8797 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8799 else if ((h->root.type == bfd_link_hash_undefined
8800 || h->root.type == bfd_link_hash_undefweak)
8801 && h->root.u.undef.abfd != NULL
8802 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8807 /* If we're stripping it, and it's not a dynamic symbol, there's
8808 nothing else to do unless it is a forced local symbol or a
8809 STT_GNU_IFUNC symbol. */
8812 && h->type != STT_GNU_IFUNC
8813 && !h->forced_local)
8817 sym.st_size = h->size;
8818 sym.st_other = h->other;
8819 if (h->forced_local)
8821 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8822 /* Turn off visibility on local symbol. */
8823 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8825 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8826 else if (h->unique_global && h->def_regular)
8827 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8828 else if (h->root.type == bfd_link_hash_undefweak
8829 || h->root.type == bfd_link_hash_defweak)
8830 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8832 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8833 sym.st_target_internal = h->target_internal;
8835 switch (h->root.type)
8838 case bfd_link_hash_new:
8839 case bfd_link_hash_warning:
8843 case bfd_link_hash_undefined:
8844 case bfd_link_hash_undefweak:
8845 input_sec = bfd_und_section_ptr;
8846 sym.st_shndx = SHN_UNDEF;
8849 case bfd_link_hash_defined:
8850 case bfd_link_hash_defweak:
8852 input_sec = h->root.u.def.section;
8853 if (input_sec->output_section != NULL)
8855 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8857 bfd_boolean second_pass_sym
8858 = (input_sec->owner == flinfo->output_bfd
8859 || input_sec->owner == NULL
8860 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8861 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8863 eoinfo->need_second_pass |= second_pass_sym;
8864 if (eoinfo->second_pass != second_pass_sym)
8869 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8870 input_sec->output_section);
8871 if (sym.st_shndx == SHN_BAD)
8873 (*_bfd_error_handler)
8874 (_("%B: could not find output section %A for input section %A"),
8875 flinfo->output_bfd, input_sec->output_section, input_sec);
8876 bfd_set_error (bfd_error_nonrepresentable_section);
8877 eoinfo->failed = TRUE;
8881 /* ELF symbols in relocatable files are section relative,
8882 but in nonrelocatable files they are virtual
8884 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8885 if (!flinfo->info->relocatable)
8887 sym.st_value += input_sec->output_section->vma;
8888 if (h->type == STT_TLS)
8890 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8891 if (tls_sec != NULL)
8892 sym.st_value -= tls_sec->vma;
8895 /* The TLS section may have been garbage collected. */
8896 BFD_ASSERT (flinfo->info->gc_sections
8897 && !input_sec->gc_mark);
8904 BFD_ASSERT (input_sec->owner == NULL
8905 || (input_sec->owner->flags & DYNAMIC) != 0);
8906 sym.st_shndx = SHN_UNDEF;
8907 input_sec = bfd_und_section_ptr;
8912 case bfd_link_hash_common:
8913 input_sec = h->root.u.c.p->section;
8914 sym.st_shndx = bed->common_section_index (input_sec);
8915 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8918 case bfd_link_hash_indirect:
8919 /* These symbols are created by symbol versioning. They point
8920 to the decorated version of the name. For example, if the
8921 symbol foo@@GNU_1.2 is the default, which should be used when
8922 foo is used with no version, then we add an indirect symbol
8923 foo which points to foo@@GNU_1.2. We ignore these symbols,
8924 since the indirected symbol is already in the hash table. */
8928 /* Give the processor backend a chance to tweak the symbol value,
8929 and also to finish up anything that needs to be done for this
8930 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8931 forced local syms when non-shared is due to a historical quirk.
8932 STT_GNU_IFUNC symbol must go through PLT. */
8933 if ((h->type == STT_GNU_IFUNC
8935 && !flinfo->info->relocatable)
8936 || ((h->dynindx != -1
8938 && ((flinfo->info->shared
8939 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8940 || h->root.type != bfd_link_hash_undefweak))
8941 || !h->forced_local)
8942 && elf_hash_table (flinfo->info)->dynamic_sections_created))
8944 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8945 (flinfo->output_bfd, flinfo->info, h, &sym)))
8947 eoinfo->failed = TRUE;
8952 /* If we are marking the symbol as undefined, and there are no
8953 non-weak references to this symbol from a regular object, then
8954 mark the symbol as weak undefined; if there are non-weak
8955 references, mark the symbol as strong. We can't do this earlier,
8956 because it might not be marked as undefined until the
8957 finish_dynamic_symbol routine gets through with it. */
8958 if (sym.st_shndx == SHN_UNDEF
8960 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8961 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8964 unsigned int type = ELF_ST_TYPE (sym.st_info);
8966 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8967 if (type == STT_GNU_IFUNC)
8970 if (h->ref_regular_nonweak)
8971 bindtype = STB_GLOBAL;
8973 bindtype = STB_WEAK;
8974 sym.st_info = ELF_ST_INFO (bindtype, type);
8977 /* If this is a symbol defined in a dynamic library, don't use the
8978 symbol size from the dynamic library. Relinking an executable
8979 against a new library may introduce gratuitous changes in the
8980 executable's symbols if we keep the size. */
8981 if (sym.st_shndx == SHN_UNDEF
8986 /* If a non-weak symbol with non-default visibility is not defined
8987 locally, it is a fatal error. */
8988 if (!flinfo->info->relocatable
8989 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8990 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8991 && h->root.type == bfd_link_hash_undefined
8996 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8997 msg = _("%B: protected symbol `%s' isn't defined");
8998 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8999 msg = _("%B: internal symbol `%s' isn't defined");
9001 msg = _("%B: hidden symbol `%s' isn't defined");
9002 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9003 bfd_set_error (bfd_error_bad_value);
9004 eoinfo->failed = TRUE;
9008 /* If this symbol should be put in the .dynsym section, then put it
9009 there now. We already know the symbol index. We also fill in
9010 the entry in the .hash section. */
9011 if (flinfo->dynsym_sec != NULL
9013 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9017 /* Since there is no version information in the dynamic string,
9018 if there is no version info in symbol version section, we will
9019 have a run-time problem. */
9020 if (h->verinfo.verdef == NULL)
9022 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9024 if (p && p [1] != '\0')
9026 (*_bfd_error_handler)
9027 (_("%B: No symbol version section for versioned symbol `%s'"),
9028 flinfo->output_bfd, h->root.root.string);
9029 eoinfo->failed = TRUE;
9034 sym.st_name = h->dynstr_index;
9035 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9036 if (!check_dynsym (flinfo->output_bfd, &sym))
9038 eoinfo->failed = TRUE;
9041 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9043 if (flinfo->hash_sec != NULL)
9045 size_t hash_entry_size;
9046 bfd_byte *bucketpos;
9051 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9052 bucket = h->u.elf_hash_value % bucketcount;
9055 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9056 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9057 + (bucket + 2) * hash_entry_size);
9058 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9059 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9061 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9062 ((bfd_byte *) flinfo->hash_sec->contents
9063 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9066 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9068 Elf_Internal_Versym iversym;
9069 Elf_External_Versym *eversym;
9071 if (!h->def_regular)
9073 if (h->verinfo.verdef == NULL)
9074 iversym.vs_vers = 0;
9076 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9080 if (h->verinfo.vertree == NULL)
9081 iversym.vs_vers = 1;
9083 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9084 if (flinfo->info->create_default_symver)
9089 iversym.vs_vers |= VERSYM_HIDDEN;
9091 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9092 eversym += h->dynindx;
9093 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9097 /* If we're stripping it, then it was just a dynamic symbol, and
9098 there's nothing else to do. */
9099 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9102 indx = bfd_get_symcount (flinfo->output_bfd);
9103 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9106 eoinfo->failed = TRUE;
9111 else if (h->indx == -2)
9117 /* Return TRUE if special handling is done for relocs in SEC against
9118 symbols defined in discarded sections. */
9121 elf_section_ignore_discarded_relocs (asection *sec)
9123 const struct elf_backend_data *bed;
9125 switch (sec->sec_info_type)
9127 case SEC_INFO_TYPE_STABS:
9128 case SEC_INFO_TYPE_EH_FRAME:
9134 bed = get_elf_backend_data (sec->owner);
9135 if (bed->elf_backend_ignore_discarded_relocs != NULL
9136 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9142 /* Return a mask saying how ld should treat relocations in SEC against
9143 symbols defined in discarded sections. If this function returns
9144 COMPLAIN set, ld will issue a warning message. If this function
9145 returns PRETEND set, and the discarded section was link-once and the
9146 same size as the kept link-once section, ld will pretend that the
9147 symbol was actually defined in the kept section. Otherwise ld will
9148 zero the reloc (at least that is the intent, but some cooperation by
9149 the target dependent code is needed, particularly for REL targets). */
9152 _bfd_elf_default_action_discarded (asection *sec)
9154 if (sec->flags & SEC_DEBUGGING)
9157 if (strcmp (".eh_frame", sec->name) == 0)
9160 if (strcmp (".gcc_except_table", sec->name) == 0)
9163 return COMPLAIN | PRETEND;
9166 /* Find a match between a section and a member of a section group. */
9169 match_group_member (asection *sec, asection *group,
9170 struct bfd_link_info *info)
9172 asection *first = elf_next_in_group (group);
9173 asection *s = first;
9177 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9180 s = elf_next_in_group (s);
9188 /* Check if the kept section of a discarded section SEC can be used
9189 to replace it. Return the replacement if it is OK. Otherwise return
9193 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9197 kept = sec->kept_section;
9200 if ((kept->flags & SEC_GROUP) != 0)
9201 kept = match_group_member (sec, kept, info);
9203 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9204 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9206 sec->kept_section = kept;
9211 /* Link an input file into the linker output file. This function
9212 handles all the sections and relocations of the input file at once.
9213 This is so that we only have to read the local symbols once, and
9214 don't have to keep them in memory. */
9217 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9219 int (*relocate_section)
9220 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9221 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9223 Elf_Internal_Shdr *symtab_hdr;
9226 Elf_Internal_Sym *isymbuf;
9227 Elf_Internal_Sym *isym;
9228 Elf_Internal_Sym *isymend;
9230 asection **ppsection;
9232 const struct elf_backend_data *bed;
9233 struct elf_link_hash_entry **sym_hashes;
9234 bfd_size_type address_size;
9235 bfd_vma r_type_mask;
9237 bfd_boolean have_file_sym = FALSE;
9239 output_bfd = flinfo->output_bfd;
9240 bed = get_elf_backend_data (output_bfd);
9241 relocate_section = bed->elf_backend_relocate_section;
9243 /* If this is a dynamic object, we don't want to do anything here:
9244 we don't want the local symbols, and we don't want the section
9246 if ((input_bfd->flags & DYNAMIC) != 0)
9249 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9250 if (elf_bad_symtab (input_bfd))
9252 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9257 locsymcount = symtab_hdr->sh_info;
9258 extsymoff = symtab_hdr->sh_info;
9261 /* Read the local symbols. */
9262 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9263 if (isymbuf == NULL && locsymcount != 0)
9265 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9266 flinfo->internal_syms,
9267 flinfo->external_syms,
9268 flinfo->locsym_shndx);
9269 if (isymbuf == NULL)
9273 /* Find local symbol sections and adjust values of symbols in
9274 SEC_MERGE sections. Write out those local symbols we know are
9275 going into the output file. */
9276 isymend = isymbuf + locsymcount;
9277 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9279 isym++, pindex++, ppsection++)
9283 Elf_Internal_Sym osym;
9289 if (elf_bad_symtab (input_bfd))
9291 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9298 if (isym->st_shndx == SHN_UNDEF)
9299 isec = bfd_und_section_ptr;
9300 else if (isym->st_shndx == SHN_ABS)
9301 isec = bfd_abs_section_ptr;
9302 else if (isym->st_shndx == SHN_COMMON)
9303 isec = bfd_com_section_ptr;
9306 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9309 /* Don't attempt to output symbols with st_shnx in the
9310 reserved range other than SHN_ABS and SHN_COMMON. */
9314 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9315 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9317 _bfd_merged_section_offset (output_bfd, &isec,
9318 elf_section_data (isec)->sec_info,
9324 /* Don't output the first, undefined, symbol. */
9325 if (ppsection == flinfo->sections)
9328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9330 /* We never output section symbols. Instead, we use the
9331 section symbol of the corresponding section in the output
9336 /* If we are stripping all symbols, we don't want to output this
9338 if (flinfo->info->strip == strip_all)
9341 /* If we are discarding all local symbols, we don't want to
9342 output this one. If we are generating a relocatable output
9343 file, then some of the local symbols may be required by
9344 relocs; we output them below as we discover that they are
9346 if (flinfo->info->discard == discard_all)
9349 /* If this symbol is defined in a section which we are
9350 discarding, we don't need to keep it. */
9351 if (isym->st_shndx != SHN_UNDEF
9352 && isym->st_shndx < SHN_LORESERVE
9353 && bfd_section_removed_from_list (output_bfd,
9354 isec->output_section))
9357 /* Get the name of the symbol. */
9358 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9363 /* See if we are discarding symbols with this name. */
9364 if ((flinfo->info->strip == strip_some
9365 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9367 || (((flinfo->info->discard == discard_sec_merge
9368 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9369 || flinfo->info->discard == discard_l)
9370 && bfd_is_local_label_name (input_bfd, name)))
9373 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9375 have_file_sym = TRUE;
9376 flinfo->filesym_count += 1;
9380 /* In the absence of debug info, bfd_find_nearest_line uses
9381 FILE symbols to determine the source file for local
9382 function symbols. Provide a FILE symbol here if input
9383 files lack such, so that their symbols won't be
9384 associated with a previous input file. It's not the
9385 source file, but the best we can do. */
9386 have_file_sym = TRUE;
9387 flinfo->filesym_count += 1;
9388 memset (&osym, 0, sizeof (osym));
9389 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9390 osym.st_shndx = SHN_ABS;
9391 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9392 bfd_abs_section_ptr, NULL))
9398 /* Adjust the section index for the output file. */
9399 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9400 isec->output_section);
9401 if (osym.st_shndx == SHN_BAD)
9404 /* ELF symbols in relocatable files are section relative, but
9405 in executable files they are virtual addresses. Note that
9406 this code assumes that all ELF sections have an associated
9407 BFD section with a reasonable value for output_offset; below
9408 we assume that they also have a reasonable value for
9409 output_section. Any special sections must be set up to meet
9410 these requirements. */
9411 osym.st_value += isec->output_offset;
9412 if (!flinfo->info->relocatable)
9414 osym.st_value += isec->output_section->vma;
9415 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9417 /* STT_TLS symbols are relative to PT_TLS segment base. */
9418 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9419 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9423 indx = bfd_get_symcount (output_bfd);
9424 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9431 if (bed->s->arch_size == 32)
9439 r_type_mask = 0xffffffff;
9444 /* Relocate the contents of each section. */
9445 sym_hashes = elf_sym_hashes (input_bfd);
9446 for (o = input_bfd->sections; o != NULL; o = o->next)
9450 if (! o->linker_mark)
9452 /* This section was omitted from the link. */
9456 if (flinfo->info->relocatable
9457 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9459 /* Deal with the group signature symbol. */
9460 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9461 unsigned long symndx = sec_data->this_hdr.sh_info;
9462 asection *osec = o->output_section;
9464 if (symndx >= locsymcount
9465 || (elf_bad_symtab (input_bfd)
9466 && flinfo->sections[symndx] == NULL))
9468 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9469 while (h->root.type == bfd_link_hash_indirect
9470 || h->root.type == bfd_link_hash_warning)
9471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9472 /* Arrange for symbol to be output. */
9474 elf_section_data (osec)->this_hdr.sh_info = -2;
9476 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9478 /* We'll use the output section target_index. */
9479 asection *sec = flinfo->sections[symndx]->output_section;
9480 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9484 if (flinfo->indices[symndx] == -1)
9486 /* Otherwise output the local symbol now. */
9487 Elf_Internal_Sym sym = isymbuf[symndx];
9488 asection *sec = flinfo->sections[symndx]->output_section;
9493 name = bfd_elf_string_from_elf_section (input_bfd,
9494 symtab_hdr->sh_link,
9499 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9501 if (sym.st_shndx == SHN_BAD)
9504 sym.st_value += o->output_offset;
9506 indx = bfd_get_symcount (output_bfd);
9507 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9511 flinfo->indices[symndx] = indx;
9515 elf_section_data (osec)->this_hdr.sh_info
9516 = flinfo->indices[symndx];
9520 if ((o->flags & SEC_HAS_CONTENTS) == 0
9521 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9524 if ((o->flags & SEC_LINKER_CREATED) != 0)
9526 /* Section was created by _bfd_elf_link_create_dynamic_sections
9531 /* Get the contents of the section. They have been cached by a
9532 relaxation routine. Note that o is a section in an input
9533 file, so the contents field will not have been set by any of
9534 the routines which work on output files. */
9535 if (elf_section_data (o)->this_hdr.contents != NULL)
9536 contents = elf_section_data (o)->this_hdr.contents;
9539 contents = flinfo->contents;
9540 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9544 if ((o->flags & SEC_RELOC) != 0)
9546 Elf_Internal_Rela *internal_relocs;
9547 Elf_Internal_Rela *rel, *relend;
9548 int action_discarded;
9551 /* Get the swapped relocs. */
9553 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9554 flinfo->internal_relocs, FALSE);
9555 if (internal_relocs == NULL
9556 && o->reloc_count > 0)
9559 /* We need to reverse-copy input .ctors/.dtors sections if
9560 they are placed in .init_array/.finit_array for output. */
9561 if (o->size > address_size
9562 && ((strncmp (o->name, ".ctors", 6) == 0
9563 && strcmp (o->output_section->name,
9564 ".init_array") == 0)
9565 || (strncmp (o->name, ".dtors", 6) == 0
9566 && strcmp (o->output_section->name,
9567 ".fini_array") == 0))
9568 && (o->name[6] == 0 || o->name[6] == '.'))
9570 if (o->size != o->reloc_count * address_size)
9572 (*_bfd_error_handler)
9573 (_("error: %B: size of section %A is not "
9574 "multiple of address size"),
9576 bfd_set_error (bfd_error_on_input);
9579 o->flags |= SEC_ELF_REVERSE_COPY;
9582 action_discarded = -1;
9583 if (!elf_section_ignore_discarded_relocs (o))
9584 action_discarded = (*bed->action_discarded) (o);
9586 /* Run through the relocs evaluating complex reloc symbols and
9587 looking for relocs against symbols from discarded sections
9588 or section symbols from removed link-once sections.
9589 Complain about relocs against discarded sections. Zero
9590 relocs against removed link-once sections. */
9592 rel = internal_relocs;
9593 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9594 for ( ; rel < relend; rel++)
9596 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9597 unsigned int s_type;
9598 asection **ps, *sec;
9599 struct elf_link_hash_entry *h = NULL;
9600 const char *sym_name;
9602 if (r_symndx == STN_UNDEF)
9605 if (r_symndx >= locsymcount
9606 || (elf_bad_symtab (input_bfd)
9607 && flinfo->sections[r_symndx] == NULL))
9609 h = sym_hashes[r_symndx - extsymoff];
9611 /* Badly formatted input files can contain relocs that
9612 reference non-existant symbols. Check here so that
9613 we do not seg fault. */
9618 sprintf_vma (buffer, rel->r_info);
9619 (*_bfd_error_handler)
9620 (_("error: %B contains a reloc (0x%s) for section %A "
9621 "that references a non-existent global symbol"),
9622 input_bfd, o, buffer);
9623 bfd_set_error (bfd_error_bad_value);
9627 while (h->root.type == bfd_link_hash_indirect
9628 || h->root.type == bfd_link_hash_warning)
9629 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9634 if (h->root.type == bfd_link_hash_defined
9635 || h->root.type == bfd_link_hash_defweak)
9636 ps = &h->root.u.def.section;
9638 sym_name = h->root.root.string;
9642 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9644 s_type = ELF_ST_TYPE (sym->st_info);
9645 ps = &flinfo->sections[r_symndx];
9646 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9650 if ((s_type == STT_RELC || s_type == STT_SRELC)
9651 && !flinfo->info->relocatable)
9654 bfd_vma dot = (rel->r_offset
9655 + o->output_offset + o->output_section->vma);
9657 printf ("Encountered a complex symbol!");
9658 printf (" (input_bfd %s, section %s, reloc %ld\n",
9659 input_bfd->filename, o->name,
9660 (long) (rel - internal_relocs));
9661 printf (" symbol: idx %8.8lx, name %s\n",
9662 r_symndx, sym_name);
9663 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9664 (unsigned long) rel->r_info,
9665 (unsigned long) rel->r_offset);
9667 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9668 isymbuf, locsymcount, s_type == STT_SRELC))
9671 /* Symbol evaluated OK. Update to absolute value. */
9672 set_symbol_value (input_bfd, isymbuf, locsymcount,
9677 if (action_discarded != -1 && ps != NULL)
9679 /* Complain if the definition comes from a
9680 discarded section. */
9681 if ((sec = *ps) != NULL && discarded_section (sec))
9683 BFD_ASSERT (r_symndx != STN_UNDEF);
9684 if (action_discarded & COMPLAIN)
9685 (*flinfo->info->callbacks->einfo)
9686 (_("%X`%s' referenced in section `%A' of %B: "
9687 "defined in discarded section `%A' of %B\n"),
9688 sym_name, o, input_bfd, sec, sec->owner);
9690 /* Try to do the best we can to support buggy old
9691 versions of gcc. Pretend that the symbol is
9692 really defined in the kept linkonce section.
9693 FIXME: This is quite broken. Modifying the
9694 symbol here means we will be changing all later
9695 uses of the symbol, not just in this section. */
9696 if (action_discarded & PRETEND)
9700 kept = _bfd_elf_check_kept_section (sec,
9712 /* Relocate the section by invoking a back end routine.
9714 The back end routine is responsible for adjusting the
9715 section contents as necessary, and (if using Rela relocs
9716 and generating a relocatable output file) adjusting the
9717 reloc addend as necessary.
9719 The back end routine does not have to worry about setting
9720 the reloc address or the reloc symbol index.
9722 The back end routine is given a pointer to the swapped in
9723 internal symbols, and can access the hash table entries
9724 for the external symbols via elf_sym_hashes (input_bfd).
9726 When generating relocatable output, the back end routine
9727 must handle STB_LOCAL/STT_SECTION symbols specially. The
9728 output symbol is going to be a section symbol
9729 corresponding to the output section, which will require
9730 the addend to be adjusted. */
9732 ret = (*relocate_section) (output_bfd, flinfo->info,
9733 input_bfd, o, contents,
9741 || flinfo->info->relocatable
9742 || flinfo->info->emitrelocations)
9744 Elf_Internal_Rela *irela;
9745 Elf_Internal_Rela *irelaend, *irelamid;
9746 bfd_vma last_offset;
9747 struct elf_link_hash_entry **rel_hash;
9748 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9749 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9750 unsigned int next_erel;
9751 bfd_boolean rela_normal;
9752 struct bfd_elf_section_data *esdi, *esdo;
9754 esdi = elf_section_data (o);
9755 esdo = elf_section_data (o->output_section);
9756 rela_normal = FALSE;
9758 /* Adjust the reloc addresses and symbol indices. */
9760 irela = internal_relocs;
9761 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9762 rel_hash = esdo->rel.hashes + esdo->rel.count;
9763 /* We start processing the REL relocs, if any. When we reach
9764 IRELAMID in the loop, we switch to the RELA relocs. */
9766 if (esdi->rel.hdr != NULL)
9767 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9768 * bed->s->int_rels_per_ext_rel);
9769 rel_hash_list = rel_hash;
9770 rela_hash_list = NULL;
9771 last_offset = o->output_offset;
9772 if (!flinfo->info->relocatable)
9773 last_offset += o->output_section->vma;
9774 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9776 unsigned long r_symndx;
9778 Elf_Internal_Sym sym;
9780 if (next_erel == bed->s->int_rels_per_ext_rel)
9786 if (irela == irelamid)
9788 rel_hash = esdo->rela.hashes + esdo->rela.count;
9789 rela_hash_list = rel_hash;
9790 rela_normal = bed->rela_normal;
9793 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9796 if (irela->r_offset >= (bfd_vma) -2)
9798 /* This is a reloc for a deleted entry or somesuch.
9799 Turn it into an R_*_NONE reloc, at the same
9800 offset as the last reloc. elf_eh_frame.c and
9801 bfd_elf_discard_info rely on reloc offsets
9803 irela->r_offset = last_offset;
9805 irela->r_addend = 0;
9809 irela->r_offset += o->output_offset;
9811 /* Relocs in an executable have to be virtual addresses. */
9812 if (!flinfo->info->relocatable)
9813 irela->r_offset += o->output_section->vma;
9815 last_offset = irela->r_offset;
9817 r_symndx = irela->r_info >> r_sym_shift;
9818 if (r_symndx == STN_UNDEF)
9821 if (r_symndx >= locsymcount
9822 || (elf_bad_symtab (input_bfd)
9823 && flinfo->sections[r_symndx] == NULL))
9825 struct elf_link_hash_entry *rh;
9828 /* This is a reloc against a global symbol. We
9829 have not yet output all the local symbols, so
9830 we do not know the symbol index of any global
9831 symbol. We set the rel_hash entry for this
9832 reloc to point to the global hash table entry
9833 for this symbol. The symbol index is then
9834 set at the end of bfd_elf_final_link. */
9835 indx = r_symndx - extsymoff;
9836 rh = elf_sym_hashes (input_bfd)[indx];
9837 while (rh->root.type == bfd_link_hash_indirect
9838 || rh->root.type == bfd_link_hash_warning)
9839 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9841 /* Setting the index to -2 tells
9842 elf_link_output_extsym that this symbol is
9844 BFD_ASSERT (rh->indx < 0);
9852 /* This is a reloc against a local symbol. */
9855 sym = isymbuf[r_symndx];
9856 sec = flinfo->sections[r_symndx];
9857 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9859 /* I suppose the backend ought to fill in the
9860 section of any STT_SECTION symbol against a
9861 processor specific section. */
9862 r_symndx = STN_UNDEF;
9863 if (bfd_is_abs_section (sec))
9865 else if (sec == NULL || sec->owner == NULL)
9867 bfd_set_error (bfd_error_bad_value);
9872 asection *osec = sec->output_section;
9874 /* If we have discarded a section, the output
9875 section will be the absolute section. In
9876 case of discarded SEC_MERGE sections, use
9877 the kept section. relocate_section should
9878 have already handled discarded linkonce
9880 if (bfd_is_abs_section (osec)
9881 && sec->kept_section != NULL
9882 && sec->kept_section->output_section != NULL)
9884 osec = sec->kept_section->output_section;
9885 irela->r_addend -= osec->vma;
9888 if (!bfd_is_abs_section (osec))
9890 r_symndx = osec->target_index;
9891 if (r_symndx == STN_UNDEF)
9893 irela->r_addend += osec->vma;
9894 osec = _bfd_nearby_section (output_bfd, osec,
9896 irela->r_addend -= osec->vma;
9897 r_symndx = osec->target_index;
9902 /* Adjust the addend according to where the
9903 section winds up in the output section. */
9905 irela->r_addend += sec->output_offset;
9909 if (flinfo->indices[r_symndx] == -1)
9911 unsigned long shlink;
9916 if (flinfo->info->strip == strip_all)
9918 /* You can't do ld -r -s. */
9919 bfd_set_error (bfd_error_invalid_operation);
9923 /* This symbol was skipped earlier, but
9924 since it is needed by a reloc, we
9925 must output it now. */
9926 shlink = symtab_hdr->sh_link;
9927 name = (bfd_elf_string_from_elf_section
9928 (input_bfd, shlink, sym.st_name));
9932 osec = sec->output_section;
9934 _bfd_elf_section_from_bfd_section (output_bfd,
9936 if (sym.st_shndx == SHN_BAD)
9939 sym.st_value += sec->output_offset;
9940 if (!flinfo->info->relocatable)
9942 sym.st_value += osec->vma;
9943 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9945 /* STT_TLS symbols are relative to PT_TLS
9947 BFD_ASSERT (elf_hash_table (flinfo->info)
9949 sym.st_value -= (elf_hash_table (flinfo->info)
9954 indx = bfd_get_symcount (output_bfd);
9955 ret = elf_link_output_sym (flinfo, name, &sym, sec,
9960 flinfo->indices[r_symndx] = indx;
9965 r_symndx = flinfo->indices[r_symndx];
9968 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9969 | (irela->r_info & r_type_mask));
9972 /* Swap out the relocs. */
9973 input_rel_hdr = esdi->rel.hdr;
9974 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9976 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9981 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9982 * bed->s->int_rels_per_ext_rel);
9983 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9986 input_rela_hdr = esdi->rela.hdr;
9987 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9989 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9998 /* Write out the modified section contents. */
9999 if (bed->elf_backend_write_section
10000 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10003 /* Section written out. */
10005 else switch (o->sec_info_type)
10007 case SEC_INFO_TYPE_STABS:
10008 if (! (_bfd_write_section_stabs
10010 &elf_hash_table (flinfo->info)->stab_info,
10011 o, &elf_section_data (o)->sec_info, contents)))
10014 case SEC_INFO_TYPE_MERGE:
10015 if (! _bfd_write_merged_section (output_bfd, o,
10016 elf_section_data (o)->sec_info))
10019 case SEC_INFO_TYPE_EH_FRAME:
10021 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10028 /* FIXME: octets_per_byte. */
10029 if (! (o->flags & SEC_EXCLUDE))
10031 file_ptr offset = (file_ptr) o->output_offset;
10032 bfd_size_type todo = o->size;
10033 if ((o->flags & SEC_ELF_REVERSE_COPY))
10035 /* Reverse-copy input section to output. */
10038 todo -= address_size;
10039 if (! bfd_set_section_contents (output_bfd,
10047 offset += address_size;
10051 else if (! bfd_set_section_contents (output_bfd,
10065 /* Generate a reloc when linking an ELF file. This is a reloc
10066 requested by the linker, and does not come from any input file. This
10067 is used to build constructor and destructor tables when linking
10071 elf_reloc_link_order (bfd *output_bfd,
10072 struct bfd_link_info *info,
10073 asection *output_section,
10074 struct bfd_link_order *link_order)
10076 reloc_howto_type *howto;
10080 struct bfd_elf_section_reloc_data *reldata;
10081 struct elf_link_hash_entry **rel_hash_ptr;
10082 Elf_Internal_Shdr *rel_hdr;
10083 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10084 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10087 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10089 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10092 bfd_set_error (bfd_error_bad_value);
10096 addend = link_order->u.reloc.p->addend;
10099 reldata = &esdo->rel;
10100 else if (esdo->rela.hdr)
10101 reldata = &esdo->rela;
10108 /* Figure out the symbol index. */
10109 rel_hash_ptr = reldata->hashes + reldata->count;
10110 if (link_order->type == bfd_section_reloc_link_order)
10112 indx = link_order->u.reloc.p->u.section->target_index;
10113 BFD_ASSERT (indx != 0);
10114 *rel_hash_ptr = NULL;
10118 struct elf_link_hash_entry *h;
10120 /* Treat a reloc against a defined symbol as though it were
10121 actually against the section. */
10122 h = ((struct elf_link_hash_entry *)
10123 bfd_wrapped_link_hash_lookup (output_bfd, info,
10124 link_order->u.reloc.p->u.name,
10125 FALSE, FALSE, TRUE));
10127 && (h->root.type == bfd_link_hash_defined
10128 || h->root.type == bfd_link_hash_defweak))
10132 section = h->root.u.def.section;
10133 indx = section->output_section->target_index;
10134 *rel_hash_ptr = NULL;
10135 /* It seems that we ought to add the symbol value to the
10136 addend here, but in practice it has already been added
10137 because it was passed to constructor_callback. */
10138 addend += section->output_section->vma + section->output_offset;
10140 else if (h != NULL)
10142 /* Setting the index to -2 tells elf_link_output_extsym that
10143 this symbol is used by a reloc. */
10150 if (! ((*info->callbacks->unattached_reloc)
10151 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10157 /* If this is an inplace reloc, we must write the addend into the
10159 if (howto->partial_inplace && addend != 0)
10161 bfd_size_type size;
10162 bfd_reloc_status_type rstat;
10165 const char *sym_name;
10167 size = (bfd_size_type) bfd_get_reloc_size (howto);
10168 buf = (bfd_byte *) bfd_zmalloc (size);
10171 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10178 case bfd_reloc_outofrange:
10181 case bfd_reloc_overflow:
10182 if (link_order->type == bfd_section_reloc_link_order)
10183 sym_name = bfd_section_name (output_bfd,
10184 link_order->u.reloc.p->u.section);
10186 sym_name = link_order->u.reloc.p->u.name;
10187 if (! ((*info->callbacks->reloc_overflow)
10188 (info, NULL, sym_name, howto->name, addend, NULL,
10189 NULL, (bfd_vma) 0)))
10196 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10197 link_order->offset, size);
10203 /* The address of a reloc is relative to the section in a
10204 relocatable file, and is a virtual address in an executable
10206 offset = link_order->offset;
10207 if (! info->relocatable)
10208 offset += output_section->vma;
10210 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10212 irel[i].r_offset = offset;
10213 irel[i].r_info = 0;
10214 irel[i].r_addend = 0;
10216 if (bed->s->arch_size == 32)
10217 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10219 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10221 rel_hdr = reldata->hdr;
10222 erel = rel_hdr->contents;
10223 if (rel_hdr->sh_type == SHT_REL)
10225 erel += reldata->count * bed->s->sizeof_rel;
10226 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10230 irel[0].r_addend = addend;
10231 erel += reldata->count * bed->s->sizeof_rela;
10232 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10241 /* Get the output vma of the section pointed to by the sh_link field. */
10244 elf_get_linked_section_vma (struct bfd_link_order *p)
10246 Elf_Internal_Shdr **elf_shdrp;
10250 s = p->u.indirect.section;
10251 elf_shdrp = elf_elfsections (s->owner);
10252 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10253 elfsec = elf_shdrp[elfsec]->sh_link;
10255 The Intel C compiler generates SHT_IA_64_UNWIND with
10256 SHF_LINK_ORDER. But it doesn't set the sh_link or
10257 sh_info fields. Hence we could get the situation
10258 where elfsec is 0. */
10261 const struct elf_backend_data *bed
10262 = get_elf_backend_data (s->owner);
10263 if (bed->link_order_error_handler)
10264 bed->link_order_error_handler
10265 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10270 s = elf_shdrp[elfsec]->bfd_section;
10271 return s->output_section->vma + s->output_offset;
10276 /* Compare two sections based on the locations of the sections they are
10277 linked to. Used by elf_fixup_link_order. */
10280 compare_link_order (const void * a, const void * b)
10285 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10286 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10289 return apos > bpos;
10293 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10294 order as their linked sections. Returns false if this could not be done
10295 because an output section includes both ordered and unordered
10296 sections. Ideally we'd do this in the linker proper. */
10299 elf_fixup_link_order (bfd *abfd, asection *o)
10301 int seen_linkorder;
10304 struct bfd_link_order *p;
10306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10308 struct bfd_link_order **sections;
10309 asection *s, *other_sec, *linkorder_sec;
10313 linkorder_sec = NULL;
10315 seen_linkorder = 0;
10316 for (p = o->map_head.link_order; p != NULL; p = p->next)
10318 if (p->type == bfd_indirect_link_order)
10320 s = p->u.indirect.section;
10322 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10323 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10324 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10325 && elfsec < elf_numsections (sub)
10326 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10327 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10341 if (seen_other && seen_linkorder)
10343 if (other_sec && linkorder_sec)
10344 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10346 linkorder_sec->owner, other_sec,
10349 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10351 bfd_set_error (bfd_error_bad_value);
10356 if (!seen_linkorder)
10359 sections = (struct bfd_link_order **)
10360 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10361 if (sections == NULL)
10363 seen_linkorder = 0;
10365 for (p = o->map_head.link_order; p != NULL; p = p->next)
10367 sections[seen_linkorder++] = p;
10369 /* Sort the input sections in the order of their linked section. */
10370 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10371 compare_link_order);
10373 /* Change the offsets of the sections. */
10375 for (n = 0; n < seen_linkorder; n++)
10377 s = sections[n]->u.indirect.section;
10378 offset &= ~(bfd_vma) 0 << s->alignment_power;
10379 s->output_offset = offset;
10380 sections[n]->offset = offset;
10381 /* FIXME: octets_per_byte. */
10382 offset += sections[n]->size;
10390 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10394 if (flinfo->symstrtab != NULL)
10395 _bfd_stringtab_free (flinfo->symstrtab);
10396 if (flinfo->contents != NULL)
10397 free (flinfo->contents);
10398 if (flinfo->external_relocs != NULL)
10399 free (flinfo->external_relocs);
10400 if (flinfo->internal_relocs != NULL)
10401 free (flinfo->internal_relocs);
10402 if (flinfo->external_syms != NULL)
10403 free (flinfo->external_syms);
10404 if (flinfo->locsym_shndx != NULL)
10405 free (flinfo->locsym_shndx);
10406 if (flinfo->internal_syms != NULL)
10407 free (flinfo->internal_syms);
10408 if (flinfo->indices != NULL)
10409 free (flinfo->indices);
10410 if (flinfo->sections != NULL)
10411 free (flinfo->sections);
10412 if (flinfo->symbuf != NULL)
10413 free (flinfo->symbuf);
10414 if (flinfo->symshndxbuf != NULL)
10415 free (flinfo->symshndxbuf);
10416 for (o = obfd->sections; o != NULL; o = o->next)
10418 struct bfd_elf_section_data *esdo = elf_section_data (o);
10419 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10420 free (esdo->rel.hashes);
10421 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10422 free (esdo->rela.hashes);
10426 /* Do the final step of an ELF link. */
10429 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10431 bfd_boolean dynamic;
10432 bfd_boolean emit_relocs;
10434 struct elf_final_link_info flinfo;
10436 struct bfd_link_order *p;
10438 bfd_size_type max_contents_size;
10439 bfd_size_type max_external_reloc_size;
10440 bfd_size_type max_internal_reloc_count;
10441 bfd_size_type max_sym_count;
10442 bfd_size_type max_sym_shndx_count;
10444 Elf_Internal_Sym elfsym;
10446 Elf_Internal_Shdr *symtab_hdr;
10447 Elf_Internal_Shdr *symtab_shndx_hdr;
10448 Elf_Internal_Shdr *symstrtab_hdr;
10449 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10450 struct elf_outext_info eoinfo;
10451 bfd_boolean merged;
10452 size_t relativecount = 0;
10453 asection *reldyn = 0;
10455 asection *attr_section = NULL;
10456 bfd_vma attr_size = 0;
10457 const char *std_attrs_section;
10459 if (! is_elf_hash_table (info->hash))
10463 abfd->flags |= DYNAMIC;
10465 dynamic = elf_hash_table (info)->dynamic_sections_created;
10466 dynobj = elf_hash_table (info)->dynobj;
10468 emit_relocs = (info->relocatable
10469 || info->emitrelocations);
10471 flinfo.info = info;
10472 flinfo.output_bfd = abfd;
10473 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10474 if (flinfo.symstrtab == NULL)
10479 flinfo.dynsym_sec = NULL;
10480 flinfo.hash_sec = NULL;
10481 flinfo.symver_sec = NULL;
10485 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10486 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10487 /* Note that dynsym_sec can be NULL (on VMS). */
10488 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10489 /* Note that it is OK if symver_sec is NULL. */
10492 flinfo.contents = NULL;
10493 flinfo.external_relocs = NULL;
10494 flinfo.internal_relocs = NULL;
10495 flinfo.external_syms = NULL;
10496 flinfo.locsym_shndx = NULL;
10497 flinfo.internal_syms = NULL;
10498 flinfo.indices = NULL;
10499 flinfo.sections = NULL;
10500 flinfo.symbuf = NULL;
10501 flinfo.symshndxbuf = NULL;
10502 flinfo.symbuf_count = 0;
10503 flinfo.shndxbuf_size = 0;
10504 flinfo.filesym_count = 0;
10506 /* The object attributes have been merged. Remove the input
10507 sections from the link, and set the contents of the output
10509 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10510 for (o = abfd->sections; o != NULL; o = o->next)
10512 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10513 || strcmp (o->name, ".gnu.attributes") == 0)
10515 for (p = o->map_head.link_order; p != NULL; p = p->next)
10517 asection *input_section;
10519 if (p->type != bfd_indirect_link_order)
10521 input_section = p->u.indirect.section;
10522 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10523 elf_link_input_bfd ignores this section. */
10524 input_section->flags &= ~SEC_HAS_CONTENTS;
10527 attr_size = bfd_elf_obj_attr_size (abfd);
10530 bfd_set_section_size (abfd, o, attr_size);
10532 /* Skip this section later on. */
10533 o->map_head.link_order = NULL;
10536 o->flags |= SEC_EXCLUDE;
10540 /* Count up the number of relocations we will output for each output
10541 section, so that we know the sizes of the reloc sections. We
10542 also figure out some maximum sizes. */
10543 max_contents_size = 0;
10544 max_external_reloc_size = 0;
10545 max_internal_reloc_count = 0;
10547 max_sym_shndx_count = 0;
10549 for (o = abfd->sections; o != NULL; o = o->next)
10551 struct bfd_elf_section_data *esdo = elf_section_data (o);
10552 o->reloc_count = 0;
10554 for (p = o->map_head.link_order; p != NULL; p = p->next)
10556 unsigned int reloc_count = 0;
10557 struct bfd_elf_section_data *esdi = NULL;
10559 if (p->type == bfd_section_reloc_link_order
10560 || p->type == bfd_symbol_reloc_link_order)
10562 else if (p->type == bfd_indirect_link_order)
10566 sec = p->u.indirect.section;
10567 esdi = elf_section_data (sec);
10569 /* Mark all sections which are to be included in the
10570 link. This will normally be every section. We need
10571 to do this so that we can identify any sections which
10572 the linker has decided to not include. */
10573 sec->linker_mark = TRUE;
10575 if (sec->flags & SEC_MERGE)
10578 if (esdo->this_hdr.sh_type == SHT_REL
10579 || esdo->this_hdr.sh_type == SHT_RELA)
10580 /* Some backends use reloc_count in relocation sections
10581 to count particular types of relocs. Of course,
10582 reloc sections themselves can't have relocations. */
10584 else if (info->relocatable || info->emitrelocations)
10585 reloc_count = sec->reloc_count;
10586 else if (bed->elf_backend_count_relocs)
10587 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10589 if (sec->rawsize > max_contents_size)
10590 max_contents_size = sec->rawsize;
10591 if (sec->size > max_contents_size)
10592 max_contents_size = sec->size;
10594 /* We are interested in just local symbols, not all
10596 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10597 && (sec->owner->flags & DYNAMIC) == 0)
10601 if (elf_bad_symtab (sec->owner))
10602 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10603 / bed->s->sizeof_sym);
10605 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10607 if (sym_count > max_sym_count)
10608 max_sym_count = sym_count;
10610 if (sym_count > max_sym_shndx_count
10611 && elf_symtab_shndx (sec->owner) != 0)
10612 max_sym_shndx_count = sym_count;
10614 if ((sec->flags & SEC_RELOC) != 0)
10616 size_t ext_size = 0;
10618 if (esdi->rel.hdr != NULL)
10619 ext_size = esdi->rel.hdr->sh_size;
10620 if (esdi->rela.hdr != NULL)
10621 ext_size += esdi->rela.hdr->sh_size;
10623 if (ext_size > max_external_reloc_size)
10624 max_external_reloc_size = ext_size;
10625 if (sec->reloc_count > max_internal_reloc_count)
10626 max_internal_reloc_count = sec->reloc_count;
10631 if (reloc_count == 0)
10634 o->reloc_count += reloc_count;
10636 if (p->type == bfd_indirect_link_order
10637 && (info->relocatable || info->emitrelocations))
10640 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10641 if (esdi->rela.hdr)
10642 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10647 esdo->rela.count += reloc_count;
10649 esdo->rel.count += reloc_count;
10653 if (o->reloc_count > 0)
10654 o->flags |= SEC_RELOC;
10657 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10658 set it (this is probably a bug) and if it is set
10659 assign_section_numbers will create a reloc section. */
10660 o->flags &=~ SEC_RELOC;
10663 /* If the SEC_ALLOC flag is not set, force the section VMA to
10664 zero. This is done in elf_fake_sections as well, but forcing
10665 the VMA to 0 here will ensure that relocs against these
10666 sections are handled correctly. */
10667 if ((o->flags & SEC_ALLOC) == 0
10668 && ! o->user_set_vma)
10672 if (! info->relocatable && merged)
10673 elf_link_hash_traverse (elf_hash_table (info),
10674 _bfd_elf_link_sec_merge_syms, abfd);
10676 /* Figure out the file positions for everything but the symbol table
10677 and the relocs. We set symcount to force assign_section_numbers
10678 to create a symbol table. */
10679 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10680 BFD_ASSERT (! abfd->output_has_begun);
10681 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10684 /* Set sizes, and assign file positions for reloc sections. */
10685 for (o = abfd->sections; o != NULL; o = o->next)
10687 struct bfd_elf_section_data *esdo = elf_section_data (o);
10688 if ((o->flags & SEC_RELOC) != 0)
10691 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10695 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10699 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10700 to count upwards while actually outputting the relocations. */
10701 esdo->rel.count = 0;
10702 esdo->rela.count = 0;
10705 _bfd_elf_assign_file_positions_for_relocs (abfd);
10707 /* We have now assigned file positions for all the sections except
10708 .symtab and .strtab. We start the .symtab section at the current
10709 file position, and write directly to it. We build the .strtab
10710 section in memory. */
10711 bfd_get_symcount (abfd) = 0;
10712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10713 /* sh_name is set in prep_headers. */
10714 symtab_hdr->sh_type = SHT_SYMTAB;
10715 /* sh_flags, sh_addr and sh_size all start off zero. */
10716 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10717 /* sh_link is set in assign_section_numbers. */
10718 /* sh_info is set below. */
10719 /* sh_offset is set just below. */
10720 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10722 off = elf_next_file_pos (abfd);
10723 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10725 /* Note that at this point elf_next_file_pos (abfd) is
10726 incorrect. We do not yet know the size of the .symtab section.
10727 We correct next_file_pos below, after we do know the size. */
10729 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10730 continuously seeking to the right position in the file. */
10731 if (! info->keep_memory || max_sym_count < 20)
10732 flinfo.symbuf_size = 20;
10734 flinfo.symbuf_size = max_sym_count;
10735 amt = flinfo.symbuf_size;
10736 amt *= bed->s->sizeof_sym;
10737 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10738 if (flinfo.symbuf == NULL)
10740 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10742 /* Wild guess at number of output symbols. realloc'd as needed. */
10743 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10744 flinfo.shndxbuf_size = amt;
10745 amt *= sizeof (Elf_External_Sym_Shndx);
10746 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10747 if (flinfo.symshndxbuf == NULL)
10751 /* Start writing out the symbol table. The first symbol is always a
10753 if (info->strip != strip_all
10756 elfsym.st_value = 0;
10757 elfsym.st_size = 0;
10758 elfsym.st_info = 0;
10759 elfsym.st_other = 0;
10760 elfsym.st_shndx = SHN_UNDEF;
10761 elfsym.st_target_internal = 0;
10762 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10767 /* Output a symbol for each section. We output these even if we are
10768 discarding local symbols, since they are used for relocs. These
10769 symbols have no names. We store the index of each one in the
10770 index field of the section, so that we can find it again when
10771 outputting relocs. */
10772 if (info->strip != strip_all
10775 elfsym.st_size = 0;
10776 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10777 elfsym.st_other = 0;
10778 elfsym.st_value = 0;
10779 elfsym.st_target_internal = 0;
10780 for (i = 1; i < elf_numsections (abfd); i++)
10782 o = bfd_section_from_elf_index (abfd, i);
10785 o->target_index = bfd_get_symcount (abfd);
10786 elfsym.st_shndx = i;
10787 if (!info->relocatable)
10788 elfsym.st_value = o->vma;
10789 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10795 /* Allocate some memory to hold information read in from the input
10797 if (max_contents_size != 0)
10799 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10800 if (flinfo.contents == NULL)
10804 if (max_external_reloc_size != 0)
10806 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10807 if (flinfo.external_relocs == NULL)
10811 if (max_internal_reloc_count != 0)
10813 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10814 amt *= sizeof (Elf_Internal_Rela);
10815 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10816 if (flinfo.internal_relocs == NULL)
10820 if (max_sym_count != 0)
10822 amt = max_sym_count * bed->s->sizeof_sym;
10823 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10824 if (flinfo.external_syms == NULL)
10827 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10828 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10829 if (flinfo.internal_syms == NULL)
10832 amt = max_sym_count * sizeof (long);
10833 flinfo.indices = (long int *) bfd_malloc (amt);
10834 if (flinfo.indices == NULL)
10837 amt = max_sym_count * sizeof (asection *);
10838 flinfo.sections = (asection **) bfd_malloc (amt);
10839 if (flinfo.sections == NULL)
10843 if (max_sym_shndx_count != 0)
10845 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10846 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10847 if (flinfo.locsym_shndx == NULL)
10851 if (elf_hash_table (info)->tls_sec)
10853 bfd_vma base, end = 0;
10856 for (sec = elf_hash_table (info)->tls_sec;
10857 sec && (sec->flags & SEC_THREAD_LOCAL);
10860 bfd_size_type size = sec->size;
10863 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10865 struct bfd_link_order *ord = sec->map_tail.link_order;
10868 size = ord->offset + ord->size;
10870 end = sec->vma + size;
10872 base = elf_hash_table (info)->tls_sec->vma;
10873 /* Only align end of TLS section if static TLS doesn't have special
10874 alignment requirements. */
10875 if (bed->static_tls_alignment == 1)
10876 end = align_power (end,
10877 elf_hash_table (info)->tls_sec->alignment_power);
10878 elf_hash_table (info)->tls_size = end - base;
10881 /* Reorder SHF_LINK_ORDER sections. */
10882 for (o = abfd->sections; o != NULL; o = o->next)
10884 if (!elf_fixup_link_order (abfd, o))
10888 /* Since ELF permits relocations to be against local symbols, we
10889 must have the local symbols available when we do the relocations.
10890 Since we would rather only read the local symbols once, and we
10891 would rather not keep them in memory, we handle all the
10892 relocations for a single input file at the same time.
10894 Unfortunately, there is no way to know the total number of local
10895 symbols until we have seen all of them, and the local symbol
10896 indices precede the global symbol indices. This means that when
10897 we are generating relocatable output, and we see a reloc against
10898 a global symbol, we can not know the symbol index until we have
10899 finished examining all the local symbols to see which ones we are
10900 going to output. To deal with this, we keep the relocations in
10901 memory, and don't output them until the end of the link. This is
10902 an unfortunate waste of memory, but I don't see a good way around
10903 it. Fortunately, it only happens when performing a relocatable
10904 link, which is not the common case. FIXME: If keep_memory is set
10905 we could write the relocs out and then read them again; I don't
10906 know how bad the memory loss will be. */
10908 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10909 sub->output_has_begun = FALSE;
10910 for (o = abfd->sections; o != NULL; o = o->next)
10912 for (p = o->map_head.link_order; p != NULL; p = p->next)
10914 if (p->type == bfd_indirect_link_order
10915 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10916 == bfd_target_elf_flavour)
10917 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10919 if (! sub->output_has_begun)
10921 if (! elf_link_input_bfd (&flinfo, sub))
10923 sub->output_has_begun = TRUE;
10926 else if (p->type == bfd_section_reloc_link_order
10927 || p->type == bfd_symbol_reloc_link_order)
10929 if (! elf_reloc_link_order (abfd, info, o, p))
10934 if (! _bfd_default_link_order (abfd, info, o, p))
10936 if (p->type == bfd_indirect_link_order
10937 && (bfd_get_flavour (sub)
10938 == bfd_target_elf_flavour)
10939 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10940 != bed->s->elfclass))
10942 const char *iclass, *oclass;
10944 if (bed->s->elfclass == ELFCLASS64)
10946 iclass = "ELFCLASS32";
10947 oclass = "ELFCLASS64";
10951 iclass = "ELFCLASS64";
10952 oclass = "ELFCLASS32";
10955 bfd_set_error (bfd_error_wrong_format);
10956 (*_bfd_error_handler)
10957 (_("%B: file class %s incompatible with %s"),
10958 sub, iclass, oclass);
10967 /* Free symbol buffer if needed. */
10968 if (!info->reduce_memory_overheads)
10970 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10971 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10972 && elf_tdata (sub)->symbuf)
10974 free (elf_tdata (sub)->symbuf);
10975 elf_tdata (sub)->symbuf = NULL;
10979 /* Output a FILE symbol so that following locals are not associated
10980 with the wrong input file. */
10981 memset (&elfsym, 0, sizeof (elfsym));
10982 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10983 elfsym.st_shndx = SHN_ABS;
10985 if (flinfo.filesym_count > 1
10986 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
10987 bfd_und_section_ptr, NULL))
10990 /* Output any global symbols that got converted to local in a
10991 version script or due to symbol visibility. We do this in a
10992 separate step since ELF requires all local symbols to appear
10993 prior to any global symbols. FIXME: We should only do this if
10994 some global symbols were, in fact, converted to become local.
10995 FIXME: Will this work correctly with the Irix 5 linker? */
10996 eoinfo.failed = FALSE;
10997 eoinfo.flinfo = &flinfo;
10998 eoinfo.localsyms = TRUE;
10999 eoinfo.need_second_pass = FALSE;
11000 eoinfo.second_pass = FALSE;
11001 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11005 if (flinfo.filesym_count == 1
11006 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11007 bfd_und_section_ptr, NULL))
11010 if (eoinfo.need_second_pass)
11012 eoinfo.second_pass = TRUE;
11013 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11018 /* If backend needs to output some local symbols not present in the hash
11019 table, do it now. */
11020 if (bed->elf_backend_output_arch_local_syms)
11022 typedef int (*out_sym_func)
11023 (void *, const char *, Elf_Internal_Sym *, asection *,
11024 struct elf_link_hash_entry *);
11026 if (! ((*bed->elf_backend_output_arch_local_syms)
11027 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11031 /* That wrote out all the local symbols. Finish up the symbol table
11032 with the global symbols. Even if we want to strip everything we
11033 can, we still need to deal with those global symbols that got
11034 converted to local in a version script. */
11036 /* The sh_info field records the index of the first non local symbol. */
11037 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11040 && flinfo.dynsym_sec != NULL
11041 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11043 Elf_Internal_Sym sym;
11044 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11045 long last_local = 0;
11047 /* Write out the section symbols for the output sections. */
11048 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11054 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11056 sym.st_target_internal = 0;
11058 for (s = abfd->sections; s != NULL; s = s->next)
11064 dynindx = elf_section_data (s)->dynindx;
11067 indx = elf_section_data (s)->this_idx;
11068 BFD_ASSERT (indx > 0);
11069 sym.st_shndx = indx;
11070 if (! check_dynsym (abfd, &sym))
11072 sym.st_value = s->vma;
11073 dest = dynsym + dynindx * bed->s->sizeof_sym;
11074 if (last_local < dynindx)
11075 last_local = dynindx;
11076 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11080 /* Write out the local dynsyms. */
11081 if (elf_hash_table (info)->dynlocal)
11083 struct elf_link_local_dynamic_entry *e;
11084 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11089 /* Copy the internal symbol and turn off visibility.
11090 Note that we saved a word of storage and overwrote
11091 the original st_name with the dynstr_index. */
11093 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11095 s = bfd_section_from_elf_index (e->input_bfd,
11100 elf_section_data (s->output_section)->this_idx;
11101 if (! check_dynsym (abfd, &sym))
11103 sym.st_value = (s->output_section->vma
11105 + e->isym.st_value);
11108 if (last_local < e->dynindx)
11109 last_local = e->dynindx;
11111 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11112 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11116 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11120 /* We get the global symbols from the hash table. */
11121 eoinfo.failed = FALSE;
11122 eoinfo.localsyms = FALSE;
11123 eoinfo.flinfo = &flinfo;
11124 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11128 /* If backend needs to output some symbols not present in the hash
11129 table, do it now. */
11130 if (bed->elf_backend_output_arch_syms)
11132 typedef int (*out_sym_func)
11133 (void *, const char *, Elf_Internal_Sym *, asection *,
11134 struct elf_link_hash_entry *);
11136 if (! ((*bed->elf_backend_output_arch_syms)
11137 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11141 /* Flush all symbols to the file. */
11142 if (! elf_link_flush_output_syms (&flinfo, bed))
11145 /* Now we know the size of the symtab section. */
11146 off += symtab_hdr->sh_size;
11148 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11149 if (symtab_shndx_hdr->sh_name != 0)
11151 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11152 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11153 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11154 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11155 symtab_shndx_hdr->sh_size = amt;
11157 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11160 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11161 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11166 /* Finish up and write out the symbol string table (.strtab)
11168 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11169 /* sh_name was set in prep_headers. */
11170 symstrtab_hdr->sh_type = SHT_STRTAB;
11171 symstrtab_hdr->sh_flags = 0;
11172 symstrtab_hdr->sh_addr = 0;
11173 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11174 symstrtab_hdr->sh_entsize = 0;
11175 symstrtab_hdr->sh_link = 0;
11176 symstrtab_hdr->sh_info = 0;
11177 /* sh_offset is set just below. */
11178 symstrtab_hdr->sh_addralign = 1;
11180 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11181 elf_next_file_pos (abfd) = off;
11183 if (bfd_get_symcount (abfd) > 0)
11185 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11186 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11190 /* Adjust the relocs to have the correct symbol indices. */
11191 for (o = abfd->sections; o != NULL; o = o->next)
11193 struct bfd_elf_section_data *esdo = elf_section_data (o);
11194 if ((o->flags & SEC_RELOC) == 0)
11197 if (esdo->rel.hdr != NULL)
11198 elf_link_adjust_relocs (abfd, &esdo->rel);
11199 if (esdo->rela.hdr != NULL)
11200 elf_link_adjust_relocs (abfd, &esdo->rela);
11202 /* Set the reloc_count field to 0 to prevent write_relocs from
11203 trying to swap the relocs out itself. */
11204 o->reloc_count = 0;
11207 if (dynamic && info->combreloc && dynobj != NULL)
11208 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11210 /* If we are linking against a dynamic object, or generating a
11211 shared library, finish up the dynamic linking information. */
11214 bfd_byte *dyncon, *dynconend;
11216 /* Fix up .dynamic entries. */
11217 o = bfd_get_linker_section (dynobj, ".dynamic");
11218 BFD_ASSERT (o != NULL);
11220 dyncon = o->contents;
11221 dynconend = o->contents + o->size;
11222 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11224 Elf_Internal_Dyn dyn;
11228 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11235 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11237 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11239 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11240 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11243 dyn.d_un.d_val = relativecount;
11250 name = info->init_function;
11253 name = info->fini_function;
11256 struct elf_link_hash_entry *h;
11258 h = elf_link_hash_lookup (elf_hash_table (info), name,
11259 FALSE, FALSE, TRUE);
11261 && (h->root.type == bfd_link_hash_defined
11262 || h->root.type == bfd_link_hash_defweak))
11264 dyn.d_un.d_ptr = h->root.u.def.value;
11265 o = h->root.u.def.section;
11266 if (o->output_section != NULL)
11267 dyn.d_un.d_ptr += (o->output_section->vma
11268 + o->output_offset);
11271 /* The symbol is imported from another shared
11272 library and does not apply to this one. */
11273 dyn.d_un.d_ptr = 0;
11280 case DT_PREINIT_ARRAYSZ:
11281 name = ".preinit_array";
11283 case DT_INIT_ARRAYSZ:
11284 name = ".init_array";
11286 case DT_FINI_ARRAYSZ:
11287 name = ".fini_array";
11289 o = bfd_get_section_by_name (abfd, name);
11292 (*_bfd_error_handler)
11293 (_("%B: could not find output section %s"), abfd, name);
11297 (*_bfd_error_handler)
11298 (_("warning: %s section has zero size"), name);
11299 dyn.d_un.d_val = o->size;
11302 case DT_PREINIT_ARRAY:
11303 name = ".preinit_array";
11305 case DT_INIT_ARRAY:
11306 name = ".init_array";
11308 case DT_FINI_ARRAY:
11309 name = ".fini_array";
11316 name = ".gnu.hash";
11325 name = ".gnu.version_d";
11328 name = ".gnu.version_r";
11331 name = ".gnu.version";
11333 o = bfd_get_section_by_name (abfd, name);
11336 (*_bfd_error_handler)
11337 (_("%B: could not find output section %s"), abfd, name);
11340 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11342 (*_bfd_error_handler)
11343 (_("warning: section '%s' is being made into a note"), name);
11344 bfd_set_error (bfd_error_nonrepresentable_section);
11347 dyn.d_un.d_ptr = o->vma;
11354 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11358 dyn.d_un.d_val = 0;
11359 dyn.d_un.d_ptr = 0;
11360 for (i = 1; i < elf_numsections (abfd); i++)
11362 Elf_Internal_Shdr *hdr;
11364 hdr = elf_elfsections (abfd)[i];
11365 if (hdr->sh_type == type
11366 && (hdr->sh_flags & SHF_ALLOC) != 0)
11368 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11369 dyn.d_un.d_val += hdr->sh_size;
11372 if (dyn.d_un.d_ptr == 0
11373 || hdr->sh_addr < dyn.d_un.d_ptr)
11374 dyn.d_un.d_ptr = hdr->sh_addr;
11380 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11384 /* If we have created any dynamic sections, then output them. */
11385 if (dynobj != NULL)
11387 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11390 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11391 if (((info->warn_shared_textrel && info->shared)
11392 || info->error_textrel)
11393 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11395 bfd_byte *dyncon, *dynconend;
11397 dyncon = o->contents;
11398 dynconend = o->contents + o->size;
11399 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11401 Elf_Internal_Dyn dyn;
11403 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11405 if (dyn.d_tag == DT_TEXTREL)
11407 if (info->error_textrel)
11408 info->callbacks->einfo
11409 (_("%P%X: read-only segment has dynamic relocations.\n"));
11411 info->callbacks->einfo
11412 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11418 for (o = dynobj->sections; o != NULL; o = o->next)
11420 if ((o->flags & SEC_HAS_CONTENTS) == 0
11422 || o->output_section == bfd_abs_section_ptr)
11424 if ((o->flags & SEC_LINKER_CREATED) == 0)
11426 /* At this point, we are only interested in sections
11427 created by _bfd_elf_link_create_dynamic_sections. */
11430 if (elf_hash_table (info)->stab_info.stabstr == o)
11432 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11434 if (strcmp (o->name, ".dynstr") != 0)
11436 /* FIXME: octets_per_byte. */
11437 if (! bfd_set_section_contents (abfd, o->output_section,
11439 (file_ptr) o->output_offset,
11445 /* The contents of the .dynstr section are actually in a
11447 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11448 if (bfd_seek (abfd, off, SEEK_SET) != 0
11449 || ! _bfd_elf_strtab_emit (abfd,
11450 elf_hash_table (info)->dynstr))
11456 if (info->relocatable)
11458 bfd_boolean failed = FALSE;
11460 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11465 /* If we have optimized stabs strings, output them. */
11466 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11468 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11472 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11475 elf_final_link_free (abfd, &flinfo);
11477 elf_linker (abfd) = TRUE;
11481 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11482 if (contents == NULL)
11483 return FALSE; /* Bail out and fail. */
11484 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11485 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11492 elf_final_link_free (abfd, &flinfo);
11496 /* Initialize COOKIE for input bfd ABFD. */
11499 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11500 struct bfd_link_info *info, bfd *abfd)
11502 Elf_Internal_Shdr *symtab_hdr;
11503 const struct elf_backend_data *bed;
11505 bed = get_elf_backend_data (abfd);
11506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11508 cookie->abfd = abfd;
11509 cookie->sym_hashes = elf_sym_hashes (abfd);
11510 cookie->bad_symtab = elf_bad_symtab (abfd);
11511 if (cookie->bad_symtab)
11513 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11514 cookie->extsymoff = 0;
11518 cookie->locsymcount = symtab_hdr->sh_info;
11519 cookie->extsymoff = symtab_hdr->sh_info;
11522 if (bed->s->arch_size == 32)
11523 cookie->r_sym_shift = 8;
11525 cookie->r_sym_shift = 32;
11527 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11528 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11530 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11531 cookie->locsymcount, 0,
11533 if (cookie->locsyms == NULL)
11535 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11538 if (info->keep_memory)
11539 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11544 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11547 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11549 Elf_Internal_Shdr *symtab_hdr;
11551 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11552 if (cookie->locsyms != NULL
11553 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11554 free (cookie->locsyms);
11557 /* Initialize the relocation information in COOKIE for input section SEC
11558 of input bfd ABFD. */
11561 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11562 struct bfd_link_info *info, bfd *abfd,
11565 const struct elf_backend_data *bed;
11567 if (sec->reloc_count == 0)
11569 cookie->rels = NULL;
11570 cookie->relend = NULL;
11574 bed = get_elf_backend_data (abfd);
11576 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11577 info->keep_memory);
11578 if (cookie->rels == NULL)
11580 cookie->rel = cookie->rels;
11581 cookie->relend = (cookie->rels
11582 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11584 cookie->rel = cookie->rels;
11588 /* Free the memory allocated by init_reloc_cookie_rels,
11592 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11595 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11596 free (cookie->rels);
11599 /* Initialize the whole of COOKIE for input section SEC. */
11602 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11603 struct bfd_link_info *info,
11606 if (!init_reloc_cookie (cookie, info, sec->owner))
11608 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11613 fini_reloc_cookie (cookie, sec->owner);
11618 /* Free the memory allocated by init_reloc_cookie_for_section,
11622 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11625 fini_reloc_cookie_rels (cookie, sec);
11626 fini_reloc_cookie (cookie, sec->owner);
11629 /* Garbage collect unused sections. */
11631 /* Default gc_mark_hook. */
11634 _bfd_elf_gc_mark_hook (asection *sec,
11635 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11636 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11637 struct elf_link_hash_entry *h,
11638 Elf_Internal_Sym *sym)
11640 const char *sec_name;
11644 switch (h->root.type)
11646 case bfd_link_hash_defined:
11647 case bfd_link_hash_defweak:
11648 return h->root.u.def.section;
11650 case bfd_link_hash_common:
11651 return h->root.u.c.p->section;
11653 case bfd_link_hash_undefined:
11654 case bfd_link_hash_undefweak:
11655 /* To work around a glibc bug, keep all XXX input sections
11656 when there is an as yet undefined reference to __start_XXX
11657 or __stop_XXX symbols. The linker will later define such
11658 symbols for orphan input sections that have a name
11659 representable as a C identifier. */
11660 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11661 sec_name = h->root.root.string + 8;
11662 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11663 sec_name = h->root.root.string + 7;
11667 if (sec_name && *sec_name != '\0')
11671 for (i = info->input_bfds; i; i = i->link_next)
11673 sec = bfd_get_section_by_name (i, sec_name);
11675 sec->flags |= SEC_KEEP;
11685 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11690 /* COOKIE->rel describes a relocation against section SEC, which is
11691 a section we've decided to keep. Return the section that contains
11692 the relocation symbol, or NULL if no section contains it. */
11695 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11696 elf_gc_mark_hook_fn gc_mark_hook,
11697 struct elf_reloc_cookie *cookie)
11699 unsigned long r_symndx;
11700 struct elf_link_hash_entry *h;
11702 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11703 if (r_symndx == STN_UNDEF)
11706 if (r_symndx >= cookie->locsymcount
11707 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11709 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11710 while (h->root.type == bfd_link_hash_indirect
11711 || h->root.type == bfd_link_hash_warning)
11712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11714 /* If this symbol is weak and there is a non-weak definition, we
11715 keep the non-weak definition because many backends put
11716 dynamic reloc info on the non-weak definition for code
11717 handling copy relocs. */
11718 if (h->u.weakdef != NULL)
11719 h->u.weakdef->mark = 1;
11720 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11723 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11724 &cookie->locsyms[r_symndx]);
11727 /* COOKIE->rel describes a relocation against section SEC, which is
11728 a section we've decided to keep. Mark the section that contains
11729 the relocation symbol. */
11732 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11734 elf_gc_mark_hook_fn gc_mark_hook,
11735 struct elf_reloc_cookie *cookie)
11739 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11740 if (rsec && !rsec->gc_mark)
11742 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11743 || (rsec->owner->flags & DYNAMIC) != 0)
11745 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11751 /* The mark phase of garbage collection. For a given section, mark
11752 it and any sections in this section's group, and all the sections
11753 which define symbols to which it refers. */
11756 _bfd_elf_gc_mark (struct bfd_link_info *info,
11758 elf_gc_mark_hook_fn gc_mark_hook)
11761 asection *group_sec, *eh_frame;
11765 /* Mark all the sections in the group. */
11766 group_sec = elf_section_data (sec)->next_in_group;
11767 if (group_sec && !group_sec->gc_mark)
11768 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11771 /* Look through the section relocs. */
11773 eh_frame = elf_eh_frame_section (sec->owner);
11774 if ((sec->flags & SEC_RELOC) != 0
11775 && sec->reloc_count > 0
11776 && sec != eh_frame)
11778 struct elf_reloc_cookie cookie;
11780 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11784 for (; cookie.rel < cookie.relend; cookie.rel++)
11785 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11790 fini_reloc_cookie_for_section (&cookie, sec);
11794 if (ret && eh_frame && elf_fde_list (sec))
11796 struct elf_reloc_cookie cookie;
11798 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11802 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11803 gc_mark_hook, &cookie))
11805 fini_reloc_cookie_for_section (&cookie, eh_frame);
11812 /* Keep debug and special sections. */
11815 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11816 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11820 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11823 bfd_boolean some_kept;
11825 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11828 /* Ensure all linker created sections are kept, and see whether
11829 any other section is already marked. */
11831 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11833 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11835 else if (isec->gc_mark)
11839 /* If no section in this file will be kept, then we can
11840 toss out debug sections. */
11844 /* Keep debug and special sections like .comment when they are
11845 not part of a group, or when we have single-member groups. */
11846 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11847 if ((elf_next_in_group (isec) == NULL
11848 || elf_next_in_group (isec) == isec)
11849 && ((isec->flags & SEC_DEBUGGING) != 0
11850 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11856 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11858 struct elf_gc_sweep_symbol_info
11860 struct bfd_link_info *info;
11861 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11866 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11869 && (((h->root.type == bfd_link_hash_defined
11870 || h->root.type == bfd_link_hash_defweak)
11871 && !(h->def_regular
11872 && h->root.u.def.section->gc_mark))
11873 || h->root.type == bfd_link_hash_undefined
11874 || h->root.type == bfd_link_hash_undefweak))
11876 struct elf_gc_sweep_symbol_info *inf;
11878 inf = (struct elf_gc_sweep_symbol_info *) data;
11879 (*inf->hide_symbol) (inf->info, h, TRUE);
11880 h->def_regular = 0;
11881 h->ref_regular = 0;
11882 h->ref_regular_nonweak = 0;
11888 /* The sweep phase of garbage collection. Remove all garbage sections. */
11890 typedef bfd_boolean (*gc_sweep_hook_fn)
11891 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11894 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11898 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11899 unsigned long section_sym_count;
11900 struct elf_gc_sweep_symbol_info sweep_info;
11902 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11906 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11909 for (o = sub->sections; o != NULL; o = o->next)
11911 /* When any section in a section group is kept, we keep all
11912 sections in the section group. If the first member of
11913 the section group is excluded, we will also exclude the
11915 if (o->flags & SEC_GROUP)
11917 asection *first = elf_next_in_group (o);
11918 o->gc_mark = first->gc_mark;
11924 /* Skip sweeping sections already excluded. */
11925 if (o->flags & SEC_EXCLUDE)
11928 /* Since this is early in the link process, it is simple
11929 to remove a section from the output. */
11930 o->flags |= SEC_EXCLUDE;
11932 if (info->print_gc_sections && o->size != 0)
11933 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11935 /* But we also have to update some of the relocation
11936 info we collected before. */
11938 && (o->flags & SEC_RELOC) != 0
11939 && o->reloc_count > 0
11940 && !bfd_is_abs_section (o->output_section))
11942 Elf_Internal_Rela *internal_relocs;
11946 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11947 info->keep_memory);
11948 if (internal_relocs == NULL)
11951 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11953 if (elf_section_data (o)->relocs != internal_relocs)
11954 free (internal_relocs);
11962 /* Remove the symbols that were in the swept sections from the dynamic
11963 symbol table. GCFIXME: Anyone know how to get them out of the
11964 static symbol table as well? */
11965 sweep_info.info = info;
11966 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11967 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11970 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
11974 /* Propagate collected vtable information. This is called through
11975 elf_link_hash_traverse. */
11978 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11980 /* Those that are not vtables. */
11981 if (h->vtable == NULL || h->vtable->parent == NULL)
11984 /* Those vtables that do not have parents, we cannot merge. */
11985 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11988 /* If we've already been done, exit. */
11989 if (h->vtable->used && h->vtable->used[-1])
11992 /* Make sure the parent's table is up to date. */
11993 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11995 if (h->vtable->used == NULL)
11997 /* None of this table's entries were referenced. Re-use the
11999 h->vtable->used = h->vtable->parent->vtable->used;
12000 h->vtable->size = h->vtable->parent->vtable->size;
12005 bfd_boolean *cu, *pu;
12007 /* Or the parent's entries into ours. */
12008 cu = h->vtable->used;
12010 pu = h->vtable->parent->vtable->used;
12013 const struct elf_backend_data *bed;
12014 unsigned int log_file_align;
12016 bed = get_elf_backend_data (h->root.u.def.section->owner);
12017 log_file_align = bed->s->log_file_align;
12018 n = h->vtable->parent->vtable->size >> log_file_align;
12033 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12036 bfd_vma hstart, hend;
12037 Elf_Internal_Rela *relstart, *relend, *rel;
12038 const struct elf_backend_data *bed;
12039 unsigned int log_file_align;
12041 /* Take care of both those symbols that do not describe vtables as
12042 well as those that are not loaded. */
12043 if (h->vtable == NULL || h->vtable->parent == NULL)
12046 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12047 || h->root.type == bfd_link_hash_defweak);
12049 sec = h->root.u.def.section;
12050 hstart = h->root.u.def.value;
12051 hend = hstart + h->size;
12053 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12055 return *(bfd_boolean *) okp = FALSE;
12056 bed = get_elf_backend_data (sec->owner);
12057 log_file_align = bed->s->log_file_align;
12059 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12061 for (rel = relstart; rel < relend; ++rel)
12062 if (rel->r_offset >= hstart && rel->r_offset < hend)
12064 /* If the entry is in use, do nothing. */
12065 if (h->vtable->used
12066 && (rel->r_offset - hstart) < h->vtable->size)
12068 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12069 if (h->vtable->used[entry])
12072 /* Otherwise, kill it. */
12073 rel->r_offset = rel->r_info = rel->r_addend = 0;
12079 /* Mark sections containing dynamically referenced symbols. When
12080 building shared libraries, we must assume that any visible symbol is
12084 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12086 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12088 if ((h->root.type == bfd_link_hash_defined
12089 || h->root.type == bfd_link_hash_defweak)
12091 || ((!info->executable || info->export_dynamic)
12093 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12094 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12095 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12096 || !bfd_hide_sym_by_version (info->version_info,
12097 h->root.root.string)))))
12098 h->root.u.def.section->flags |= SEC_KEEP;
12103 /* Keep all sections containing symbols undefined on the command-line,
12104 and the section containing the entry symbol. */
12107 _bfd_elf_gc_keep (struct bfd_link_info *info)
12109 struct bfd_sym_chain *sym;
12111 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12113 struct elf_link_hash_entry *h;
12115 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12116 FALSE, FALSE, FALSE);
12119 && (h->root.type == bfd_link_hash_defined
12120 || h->root.type == bfd_link_hash_defweak)
12121 && !bfd_is_abs_section (h->root.u.def.section))
12122 h->root.u.def.section->flags |= SEC_KEEP;
12126 /* Do mark and sweep of unused sections. */
12129 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12131 bfd_boolean ok = TRUE;
12133 elf_gc_mark_hook_fn gc_mark_hook;
12134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12136 if (!bed->can_gc_sections
12137 || !is_elf_hash_table (info->hash))
12139 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12143 bed->gc_keep (info);
12145 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12146 at the .eh_frame section if we can mark the FDEs individually. */
12147 _bfd_elf_begin_eh_frame_parsing (info);
12148 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12151 struct elf_reloc_cookie cookie;
12153 sec = bfd_get_section_by_name (sub, ".eh_frame");
12154 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12156 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12157 if (elf_section_data (sec)->sec_info
12158 && (sec->flags & SEC_LINKER_CREATED) == 0)
12159 elf_eh_frame_section (sub) = sec;
12160 fini_reloc_cookie_for_section (&cookie, sec);
12161 sec = bfd_get_next_section_by_name (sec);
12164 _bfd_elf_end_eh_frame_parsing (info);
12166 /* Apply transitive closure to the vtable entry usage info. */
12167 elf_link_hash_traverse (elf_hash_table (info),
12168 elf_gc_propagate_vtable_entries_used,
12173 /* Kill the vtable relocations that were not used. */
12174 elf_link_hash_traverse (elf_hash_table (info),
12175 elf_gc_smash_unused_vtentry_relocs,
12180 /* Mark dynamically referenced symbols. */
12181 if (elf_hash_table (info)->dynamic_sections_created)
12182 elf_link_hash_traverse (elf_hash_table (info),
12183 bed->gc_mark_dynamic_ref,
12186 /* Grovel through relocs to find out who stays ... */
12187 gc_mark_hook = bed->gc_mark_hook;
12188 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12192 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12195 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12196 Also treat note sections as a root, if the section is not part
12198 for (o = sub->sections; o != NULL; o = o->next)
12200 && (o->flags & SEC_EXCLUDE) == 0
12201 && ((o->flags & SEC_KEEP) != 0
12202 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12203 && elf_next_in_group (o) == NULL )))
12205 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12210 /* Allow the backend to mark additional target specific sections. */
12211 bed->gc_mark_extra_sections (info, gc_mark_hook);
12213 /* ... and mark SEC_EXCLUDE for those that go. */
12214 return elf_gc_sweep (abfd, info);
12217 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12220 bfd_elf_gc_record_vtinherit (bfd *abfd,
12222 struct elf_link_hash_entry *h,
12225 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12226 struct elf_link_hash_entry **search, *child;
12227 bfd_size_type extsymcount;
12228 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12230 /* The sh_info field of the symtab header tells us where the
12231 external symbols start. We don't care about the local symbols at
12233 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12234 if (!elf_bad_symtab (abfd))
12235 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12237 sym_hashes = elf_sym_hashes (abfd);
12238 sym_hashes_end = sym_hashes + extsymcount;
12240 /* Hunt down the child symbol, which is in this section at the same
12241 offset as the relocation. */
12242 for (search = sym_hashes; search != sym_hashes_end; ++search)
12244 if ((child = *search) != NULL
12245 && (child->root.type == bfd_link_hash_defined
12246 || child->root.type == bfd_link_hash_defweak)
12247 && child->root.u.def.section == sec
12248 && child->root.u.def.value == offset)
12252 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12253 abfd, sec, (unsigned long) offset);
12254 bfd_set_error (bfd_error_invalid_operation);
12258 if (!child->vtable)
12260 child->vtable = (struct elf_link_virtual_table_entry *)
12261 bfd_zalloc (abfd, sizeof (*child->vtable));
12262 if (!child->vtable)
12267 /* This *should* only be the absolute section. It could potentially
12268 be that someone has defined a non-global vtable though, which
12269 would be bad. It isn't worth paging in the local symbols to be
12270 sure though; that case should simply be handled by the assembler. */
12272 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12275 child->vtable->parent = h;
12280 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12283 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12284 asection *sec ATTRIBUTE_UNUSED,
12285 struct elf_link_hash_entry *h,
12288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12289 unsigned int log_file_align = bed->s->log_file_align;
12293 h->vtable = (struct elf_link_virtual_table_entry *)
12294 bfd_zalloc (abfd, sizeof (*h->vtable));
12299 if (addend >= h->vtable->size)
12301 size_t size, bytes, file_align;
12302 bfd_boolean *ptr = h->vtable->used;
12304 /* While the symbol is undefined, we have to be prepared to handle
12306 file_align = 1 << log_file_align;
12307 if (h->root.type == bfd_link_hash_undefined)
12308 size = addend + file_align;
12312 if (addend >= size)
12314 /* Oops! We've got a reference past the defined end of
12315 the table. This is probably a bug -- shall we warn? */
12316 size = addend + file_align;
12319 size = (size + file_align - 1) & -file_align;
12321 /* Allocate one extra entry for use as a "done" flag for the
12322 consolidation pass. */
12323 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12327 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12333 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12334 * sizeof (bfd_boolean));
12335 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12339 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12344 /* And arrange for that done flag to be at index -1. */
12345 h->vtable->used = ptr + 1;
12346 h->vtable->size = size;
12349 h->vtable->used[addend >> log_file_align] = TRUE;
12354 /* Map an ELF section header flag to its corresponding string. */
12358 flagword flag_value;
12359 } elf_flags_to_name_table;
12361 static elf_flags_to_name_table elf_flags_to_names [] =
12363 { "SHF_WRITE", SHF_WRITE },
12364 { "SHF_ALLOC", SHF_ALLOC },
12365 { "SHF_EXECINSTR", SHF_EXECINSTR },
12366 { "SHF_MERGE", SHF_MERGE },
12367 { "SHF_STRINGS", SHF_STRINGS },
12368 { "SHF_INFO_LINK", SHF_INFO_LINK},
12369 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12370 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12371 { "SHF_GROUP", SHF_GROUP },
12372 { "SHF_TLS", SHF_TLS },
12373 { "SHF_MASKOS", SHF_MASKOS },
12374 { "SHF_EXCLUDE", SHF_EXCLUDE },
12377 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12379 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12380 struct flag_info *flaginfo,
12383 const bfd_vma sh_flags = elf_section_flags (section);
12385 if (!flaginfo->flags_initialized)
12387 bfd *obfd = info->output_bfd;
12388 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12389 struct flag_info_list *tf = flaginfo->flag_list;
12391 int without_hex = 0;
12393 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12396 flagword (*lookup) (char *);
12398 lookup = bed->elf_backend_lookup_section_flags_hook;
12399 if (lookup != NULL)
12401 flagword hexval = (*lookup) ((char *) tf->name);
12405 if (tf->with == with_flags)
12406 with_hex |= hexval;
12407 else if (tf->with == without_flags)
12408 without_hex |= hexval;
12413 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12415 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12417 if (tf->with == with_flags)
12418 with_hex |= elf_flags_to_names[i].flag_value;
12419 else if (tf->with == without_flags)
12420 without_hex |= elf_flags_to_names[i].flag_value;
12427 info->callbacks->einfo
12428 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12432 flaginfo->flags_initialized = TRUE;
12433 flaginfo->only_with_flags |= with_hex;
12434 flaginfo->not_with_flags |= without_hex;
12437 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12440 if ((flaginfo->not_with_flags & sh_flags) != 0)
12446 struct alloc_got_off_arg {
12448 struct bfd_link_info *info;
12451 /* We need a special top-level link routine to convert got reference counts
12452 to real got offsets. */
12455 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12457 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12458 bfd *obfd = gofarg->info->output_bfd;
12459 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12461 if (h->got.refcount > 0)
12463 h->got.offset = gofarg->gotoff;
12464 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12467 h->got.offset = (bfd_vma) -1;
12472 /* And an accompanying bit to work out final got entry offsets once
12473 we're done. Should be called from final_link. */
12476 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12477 struct bfd_link_info *info)
12480 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12482 struct alloc_got_off_arg gofarg;
12484 BFD_ASSERT (abfd == info->output_bfd);
12486 if (! is_elf_hash_table (info->hash))
12489 /* The GOT offset is relative to the .got section, but the GOT header is
12490 put into the .got.plt section, if the backend uses it. */
12491 if (bed->want_got_plt)
12494 gotoff = bed->got_header_size;
12496 /* Do the local .got entries first. */
12497 for (i = info->input_bfds; i; i = i->link_next)
12499 bfd_signed_vma *local_got;
12500 bfd_size_type j, locsymcount;
12501 Elf_Internal_Shdr *symtab_hdr;
12503 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12506 local_got = elf_local_got_refcounts (i);
12510 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12511 if (elf_bad_symtab (i))
12512 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12514 locsymcount = symtab_hdr->sh_info;
12516 for (j = 0; j < locsymcount; ++j)
12518 if (local_got[j] > 0)
12520 local_got[j] = gotoff;
12521 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12524 local_got[j] = (bfd_vma) -1;
12528 /* Then the global .got entries. .plt refcounts are handled by
12529 adjust_dynamic_symbol */
12530 gofarg.gotoff = gotoff;
12531 gofarg.info = info;
12532 elf_link_hash_traverse (elf_hash_table (info),
12533 elf_gc_allocate_got_offsets,
12538 /* Many folk need no more in the way of final link than this, once
12539 got entry reference counting is enabled. */
12542 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12544 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12547 /* Invoke the regular ELF backend linker to do all the work. */
12548 return bfd_elf_final_link (abfd, info);
12552 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12554 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12556 if (rcookie->bad_symtab)
12557 rcookie->rel = rcookie->rels;
12559 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12561 unsigned long r_symndx;
12563 if (! rcookie->bad_symtab)
12564 if (rcookie->rel->r_offset > offset)
12566 if (rcookie->rel->r_offset != offset)
12569 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12570 if (r_symndx == STN_UNDEF)
12573 if (r_symndx >= rcookie->locsymcount
12574 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12576 struct elf_link_hash_entry *h;
12578 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12580 while (h->root.type == bfd_link_hash_indirect
12581 || h->root.type == bfd_link_hash_warning)
12582 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12584 if ((h->root.type == bfd_link_hash_defined
12585 || h->root.type == bfd_link_hash_defweak)
12586 && discarded_section (h->root.u.def.section))
12593 /* It's not a relocation against a global symbol,
12594 but it could be a relocation against a local
12595 symbol for a discarded section. */
12597 Elf_Internal_Sym *isym;
12599 /* Need to: get the symbol; get the section. */
12600 isym = &rcookie->locsyms[r_symndx];
12601 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12602 if (isec != NULL && discarded_section (isec))
12610 /* Discard unneeded references to discarded sections.
12611 Returns TRUE if any section's size was changed. */
12612 /* This function assumes that the relocations are in sorted order,
12613 which is true for all known assemblers. */
12616 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12618 struct elf_reloc_cookie cookie;
12619 asection *stab, *eh;
12620 const struct elf_backend_data *bed;
12622 bfd_boolean ret = FALSE;
12624 if (info->traditional_format
12625 || !is_elf_hash_table (info->hash))
12628 _bfd_elf_begin_eh_frame_parsing (info);
12629 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12631 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12634 bed = get_elf_backend_data (abfd);
12637 if (!info->relocatable)
12639 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12642 || bfd_is_abs_section (eh->output_section)))
12643 eh = bfd_get_next_section_by_name (eh);
12646 stab = bfd_get_section_by_name (abfd, ".stab");
12648 && (stab->size == 0
12649 || bfd_is_abs_section (stab->output_section)
12650 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12655 && bed->elf_backend_discard_info == NULL)
12658 if (!init_reloc_cookie (&cookie, info, abfd))
12662 && stab->reloc_count > 0
12663 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12665 if (_bfd_discard_section_stabs (abfd, stab,
12666 elf_section_data (stab)->sec_info,
12667 bfd_elf_reloc_symbol_deleted_p,
12670 fini_reloc_cookie_rels (&cookie, stab);
12674 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12676 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12677 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12678 bfd_elf_reloc_symbol_deleted_p,
12681 fini_reloc_cookie_rels (&cookie, eh);
12682 eh = bfd_get_next_section_by_name (eh);
12685 if (bed->elf_backend_discard_info != NULL
12686 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12689 fini_reloc_cookie (&cookie, abfd);
12691 _bfd_elf_end_eh_frame_parsing (info);
12693 if (info->eh_frame_hdr
12694 && !info->relocatable
12695 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12702 _bfd_elf_section_already_linked (bfd *abfd,
12704 struct bfd_link_info *info)
12707 const char *name, *key;
12708 struct bfd_section_already_linked *l;
12709 struct bfd_section_already_linked_hash_entry *already_linked_list;
12711 if (sec->output_section == bfd_abs_section_ptr)
12714 flags = sec->flags;
12716 /* Return if it isn't a linkonce section. A comdat group section
12717 also has SEC_LINK_ONCE set. */
12718 if ((flags & SEC_LINK_ONCE) == 0)
12721 /* Don't put group member sections on our list of already linked
12722 sections. They are handled as a group via their group section. */
12723 if (elf_sec_group (sec) != NULL)
12726 /* For a SHT_GROUP section, use the group signature as the key. */
12728 if ((flags & SEC_GROUP) != 0
12729 && elf_next_in_group (sec) != NULL
12730 && elf_group_name (elf_next_in_group (sec)) != NULL)
12731 key = elf_group_name (elf_next_in_group (sec));
12734 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12735 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12736 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12739 /* Must be a user linkonce section that doesn't follow gcc's
12740 naming convention. In this case we won't be matching
12741 single member groups. */
12745 already_linked_list = bfd_section_already_linked_table_lookup (key);
12747 for (l = already_linked_list->entry; l != NULL; l = l->next)
12749 /* We may have 2 different types of sections on the list: group
12750 sections with a signature of <key> (<key> is some string),
12751 and linkonce sections named .gnu.linkonce.<type>.<key>.
12752 Match like sections. LTO plugin sections are an exception.
12753 They are always named .gnu.linkonce.t.<key> and match either
12754 type of section. */
12755 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12756 && ((flags & SEC_GROUP) != 0
12757 || strcmp (name, l->sec->name) == 0))
12758 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12760 /* The section has already been linked. See if we should
12761 issue a warning. */
12762 if (!_bfd_handle_already_linked (sec, l, info))
12765 if (flags & SEC_GROUP)
12767 asection *first = elf_next_in_group (sec);
12768 asection *s = first;
12772 s->output_section = bfd_abs_section_ptr;
12773 /* Record which group discards it. */
12774 s->kept_section = l->sec;
12775 s = elf_next_in_group (s);
12776 /* These lists are circular. */
12786 /* A single member comdat group section may be discarded by a
12787 linkonce section and vice versa. */
12788 if ((flags & SEC_GROUP) != 0)
12790 asection *first = elf_next_in_group (sec);
12792 if (first != NULL && elf_next_in_group (first) == first)
12793 /* Check this single member group against linkonce sections. */
12794 for (l = already_linked_list->entry; l != NULL; l = l->next)
12795 if ((l->sec->flags & SEC_GROUP) == 0
12796 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12798 first->output_section = bfd_abs_section_ptr;
12799 first->kept_section = l->sec;
12800 sec->output_section = bfd_abs_section_ptr;
12805 /* Check this linkonce section against single member groups. */
12806 for (l = already_linked_list->entry; l != NULL; l = l->next)
12807 if (l->sec->flags & SEC_GROUP)
12809 asection *first = elf_next_in_group (l->sec);
12812 && elf_next_in_group (first) == first
12813 && bfd_elf_match_symbols_in_sections (first, sec, info))
12815 sec->output_section = bfd_abs_section_ptr;
12816 sec->kept_section = first;
12821 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12822 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12823 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12824 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12825 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12826 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12827 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12828 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12829 The reverse order cannot happen as there is never a bfd with only the
12830 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12831 matter as here were are looking only for cross-bfd sections. */
12833 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12834 for (l = already_linked_list->entry; l != NULL; l = l->next)
12835 if ((l->sec->flags & SEC_GROUP) == 0
12836 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12838 if (abfd != l->sec->owner)
12839 sec->output_section = bfd_abs_section_ptr;
12843 /* This is the first section with this name. Record it. */
12844 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12845 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12846 return sec->output_section == bfd_abs_section_ptr;
12850 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12852 return sym->st_shndx == SHN_COMMON;
12856 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12862 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12864 return bfd_com_section_ptr;
12868 _bfd_elf_default_got_elt_size (bfd *abfd,
12869 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12870 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12871 bfd *ibfd ATTRIBUTE_UNUSED,
12872 unsigned long symndx ATTRIBUTE_UNUSED)
12874 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12875 return bed->s->arch_size / 8;
12878 /* Routines to support the creation of dynamic relocs. */
12880 /* Returns the name of the dynamic reloc section associated with SEC. */
12882 static const char *
12883 get_dynamic_reloc_section_name (bfd * abfd,
12885 bfd_boolean is_rela)
12888 const char *old_name = bfd_get_section_name (NULL, sec);
12889 const char *prefix = is_rela ? ".rela" : ".rel";
12891 if (old_name == NULL)
12894 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12895 sprintf (name, "%s%s", prefix, old_name);
12900 /* Returns the dynamic reloc section associated with SEC.
12901 If necessary compute the name of the dynamic reloc section based
12902 on SEC's name (looked up in ABFD's string table) and the setting
12906 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12908 bfd_boolean is_rela)
12910 asection * reloc_sec = elf_section_data (sec)->sreloc;
12912 if (reloc_sec == NULL)
12914 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12918 reloc_sec = bfd_get_linker_section (abfd, name);
12920 if (reloc_sec != NULL)
12921 elf_section_data (sec)->sreloc = reloc_sec;
12928 /* Returns the dynamic reloc section associated with SEC. If the
12929 section does not exist it is created and attached to the DYNOBJ
12930 bfd and stored in the SRELOC field of SEC's elf_section_data
12933 ALIGNMENT is the alignment for the newly created section and
12934 IS_RELA defines whether the name should be .rela.<SEC's name>
12935 or .rel.<SEC's name>. The section name is looked up in the
12936 string table associated with ABFD. */
12939 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12941 unsigned int alignment,
12943 bfd_boolean is_rela)
12945 asection * reloc_sec = elf_section_data (sec)->sreloc;
12947 if (reloc_sec == NULL)
12949 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12954 reloc_sec = bfd_get_linker_section (dynobj, name);
12956 if (reloc_sec == NULL)
12958 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
12959 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12960 if ((sec->flags & SEC_ALLOC) != 0)
12961 flags |= SEC_ALLOC | SEC_LOAD;
12963 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
12964 if (reloc_sec != NULL)
12966 /* _bfd_elf_get_sec_type_attr chooses a section type by
12967 name. Override as it may be wrong, eg. for a user
12968 section named "auto" we'll get ".relauto" which is
12969 seen to be a .rela section. */
12970 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
12971 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12976 elf_section_data (sec)->sreloc = reloc_sec;
12982 /* Copy the ELF symbol type associated with a linker hash entry. */
12984 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12985 struct bfd_link_hash_entry * hdest,
12986 struct bfd_link_hash_entry * hsrc)
12988 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12989 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12991 ehdest->type = ehsrc->type;
12992 ehdest->target_internal = ehsrc->target_internal;
12995 /* Append a RELA relocation REL to section S in BFD. */
12998 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13001 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13002 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13003 bed->s->swap_reloca_out (abfd, rel, loc);
13006 /* Append a REL relocation REL to section S in BFD. */
13009 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13012 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13013 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13014 bed->s->swap_reloc_out (abfd, rel, loc);