1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
35 struct elf_link_hash_entry *h;
36 struct bfd_link_hash_entry *bh;
37 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
40 /* This function may be called more than once. */
41 s = bfd_get_section_by_name (abfd, ".got");
42 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
45 switch (bed->s->arch_size)
56 bfd_set_error (bfd_error_bad_value);
60 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
61 | SEC_LINKER_CREATED);
63 s = bfd_make_section (abfd, ".got");
65 || !bfd_set_section_flags (abfd, s, flags)
66 || !bfd_set_section_alignment (abfd, s, ptralign))
69 if (bed->want_got_plt)
71 s = bfd_make_section (abfd, ".got.plt");
73 || !bfd_set_section_flags (abfd, s, flags)
74 || !bfd_set_section_alignment (abfd, s, ptralign))
78 if (bed->want_got_sym)
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
85 if (!(_bfd_generic_link_add_one_symbol
86 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
87 bed->got_symbol_offset, NULL, FALSE, bed->collect, &bh)))
89 h = (struct elf_link_hash_entry *) bh;
90 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
93 if (! info->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info, h))
97 elf_hash_table (info)->hgot = h;
100 /* The first bit of the global offset table is the header. */
101 s->size += bed->got_header_size + bed->got_symbol_offset;
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
114 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
117 register asection *s;
118 struct elf_link_hash_entry *h;
119 struct bfd_link_hash_entry *bh;
120 const struct elf_backend_data *bed;
122 if (! is_elf_hash_table (info->hash))
125 if (elf_hash_table (info)->dynamic_sections_created)
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info)->dynobj == NULL)
130 elf_hash_table (info)->dynobj = abfd;
132 abfd = elf_hash_table (info)->dynobj;
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
136 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
141 if (info->executable)
143 s = bfd_make_section (abfd, ".interp");
145 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
149 if (! info->traditional_format)
151 s = bfd_make_section (abfd, ".eh_frame_hdr");
153 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
154 || ! bfd_set_section_alignment (abfd, s, 2))
156 elf_hash_table (info)->eh_info.hdr_sec = s;
159 bed = get_elf_backend_data (abfd);
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s = bfd_make_section (abfd, ".gnu.version_d");
165 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
169 s = bfd_make_section (abfd, ".gnu.version");
171 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
172 || ! bfd_set_section_alignment (abfd, s, 1))
175 s = bfd_make_section (abfd, ".gnu.version_r");
177 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
178 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
181 s = bfd_make_section (abfd, ".dynsym");
183 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
187 s = bfd_make_section (abfd, ".dynstr");
189 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info)->dynstr == NULL)
195 elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
196 if (elf_hash_table (info)->dynstr == NULL)
200 s = bfd_make_section (abfd, ".dynamic");
202 || ! bfd_set_section_flags (abfd, s, flags)
203 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
215 if (! (_bfd_generic_link_add_one_symbol
216 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, 0, NULL, FALSE,
217 get_elf_backend_data (abfd)->collect, &bh)))
219 h = (struct elf_link_hash_entry *) bh;
220 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
221 h->type = STT_OBJECT;
223 if (! info->executable
224 && ! bfd_elf_link_record_dynamic_symbol (info, h))
227 s = bfd_make_section (abfd, ".hash");
229 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
230 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
232 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
240 elf_hash_table (info)->dynamic_sections_created = TRUE;
245 /* Create dynamic sections when linking against a dynamic object. */
248 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 flagword flags, pltflags;
252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
257 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
258 | SEC_LINKER_CREATED);
261 pltflags |= SEC_CODE;
262 if (bed->plt_not_loaded)
263 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
264 if (bed->plt_readonly)
265 pltflags |= SEC_READONLY;
267 s = bfd_make_section (abfd, ".plt");
269 || ! bfd_set_section_flags (abfd, s, pltflags)
270 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
273 if (bed->want_plt_sym)
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
277 struct elf_link_hash_entry *h;
278 struct bfd_link_hash_entry *bh = NULL;
280 if (! (_bfd_generic_link_add_one_symbol
281 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, 0, NULL,
282 FALSE, get_elf_backend_data (abfd)->collect, &bh)))
284 h = (struct elf_link_hash_entry *) bh;
285 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
286 h->type = STT_OBJECT;
288 if (! info->executable
289 && ! bfd_elf_link_record_dynamic_symbol (info, h))
293 s = bfd_make_section (abfd,
294 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
296 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
300 if (! _bfd_elf_create_got_section (abfd, info))
303 if (bed->want_dynbss)
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s = bfd_make_section (abfd, ".dynbss");
313 || ! bfd_set_section_flags (abfd, s, SEC_ALLOC | SEC_LINKER_CREATED))
316 /* The .rel[a].bss section holds copy relocs. This section is not
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
329 s = bfd_make_section (abfd,
330 (bed->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
333 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
334 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
342 /* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
352 struct elf_link_hash_entry *h)
354 if (h->dynindx == -1)
356 struct elf_strtab_hash *dynstr;
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h->other))
369 if (h->root.type != bfd_link_hash_undefined
370 && h->root.type != bfd_link_hash_undefweak)
372 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
380 h->dynindx = elf_hash_table (info)->dynsymcount;
381 ++elf_hash_table (info)->dynsymcount;
383 dynstr = elf_hash_table (info)->dynstr;
386 /* Create a strtab to hold the dynamic symbol names. */
387 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
392 /* We don't put any version information in the dynamic string
394 name = h->root.root.string;
395 p = strchr (name, ELF_VER_CHR);
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
404 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
409 if (indx == (bfd_size_type) -1)
411 h->dynstr_index = indx;
417 /* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
421 bfd_elf_record_link_assignment (bfd *output_bfd ATTRIBUTE_UNUSED,
422 struct bfd_link_info *info,
426 struct elf_link_hash_entry *h;
428 if (!is_elf_hash_table (info->hash))
431 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h->root.type == bfd_link_hash_undefweak
439 || h->root.type == bfd_link_hash_undefined)
440 h->root.type = bfd_link_hash_new;
442 if (h->root.type == bfd_link_hash_new)
443 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
450 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
451 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
452 h->root.type = bfd_link_hash_undefined;
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
459 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
460 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
461 h->verinfo.verdef = NULL;
463 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
465 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
470 if (! bfd_elf_link_record_dynamic_symbol (info, h))
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h->weakdef != NULL
477 && h->weakdef->dynindx == -1)
479 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_local_dynamic_entry *entry;
498 struct elf_link_hash_table *eht;
499 struct elf_strtab_hash *dynstr;
500 unsigned long dynstr_index;
502 Elf_External_Sym_Shndx eshndx;
503 char esym[sizeof (Elf64_External_Sym)];
505 if (! is_elf_hash_table (info->hash))
508 /* See if the entry exists already. */
509 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
510 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
513 amt = sizeof (*entry);
514 entry = bfd_alloc (input_bfd, amt);
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
520 1, input_indx, &entry->isym, esym, &eshndx))
522 bfd_release (input_bfd, entry);
526 if (entry->isym.st_shndx != SHN_UNDEF
527 && (entry->isym.st_shndx < SHN_LORESERVE
528 || entry->isym.st_shndx > SHN_HIRESERVE))
532 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
533 if (s == NULL || bfd_is_abs_section (s->output_section))
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd, entry);
542 name = (bfd_elf_string_from_elf_section
543 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
544 entry->isym.st_name));
546 dynstr = elf_hash_table (info)->dynstr;
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
555 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
556 if (dynstr_index == (unsigned long) -1)
558 entry->isym.st_name = dynstr_index;
560 eht = elf_hash_table (info);
562 entry->next = eht->dynlocal;
563 eht->dynlocal = entry;
564 entry->input_bfd = input_bfd;
565 entry->input_indx = input_indx;
568 /* Whatever binding the symbol had before, it's now local. */
570 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
572 /* The dynindx will be set at the end of size_dynamic_sections. */
577 /* Return the dynindex of a local dynamic symbol. */
580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
584 struct elf_link_local_dynamic_entry *e;
586 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
587 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
592 /* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
600 size_t *count = data;
602 if (h->root.type == bfd_link_hash_warning)
603 h = (struct elf_link_hash_entry *) h->root.u.i.link;
605 if (h->dynindx != -1)
606 h->dynindx = ++(*count);
611 /* Return true if the dynamic symbol for a given section should be
612 omitted when creating a shared library. */
614 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
615 struct bfd_link_info *info,
618 switch (elf_section_data (p)->this_hdr.sh_type)
622 /* If sh_type is yet undecided, assume it could be
623 SHT_PROGBITS/SHT_NOBITS. */
625 if (strcmp (p->name, ".got") == 0
626 || strcmp (p->name, ".got.plt") == 0
627 || strcmp (p->name, ".plt") == 0)
630 bfd *dynobj = elf_hash_table (info)->dynobj;
633 && (ip = bfd_get_section_by_name (dynobj, p->name))
635 && (ip->flags & SEC_LINKER_CREATED)
636 && ip->output_section == p)
641 /* There shouldn't be section relative relocations
642 against any other section. */
648 /* Assign dynsym indices. In a shared library we generate a section
649 symbol for each output section, which come first. Next come all of
650 the back-end allocated local dynamic syms, followed by the rest of
651 the global symbols. */
654 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
656 unsigned long dynsymcount = 0;
660 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
662 for (p = output_bfd->sections; p ; p = p->next)
663 if ((p->flags & SEC_EXCLUDE) == 0
664 && (p->flags & SEC_ALLOC) != 0
665 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
666 elf_section_data (p)->dynindx = ++dynsymcount;
669 if (elf_hash_table (info)->dynlocal)
671 struct elf_link_local_dynamic_entry *p;
672 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
673 p->dynindx = ++dynsymcount;
676 elf_link_hash_traverse (elf_hash_table (info),
677 elf_link_renumber_hash_table_dynsyms,
680 /* There is an unused NULL entry at the head of the table which
681 we must account for in our count. Unless there weren't any
682 symbols, which means we'll have no table at all. */
683 if (dynsymcount != 0)
686 return elf_hash_table (info)->dynsymcount = dynsymcount;
689 /* This function is called when we want to define a new symbol. It
690 handles the various cases which arise when we find a definition in
691 a dynamic object, or when there is already a definition in a
692 dynamic object. The new symbol is described by NAME, SYM, PSEC,
693 and PVALUE. We set SYM_HASH to the hash table entry. We set
694 OVERRIDE if the old symbol is overriding a new definition. We set
695 TYPE_CHANGE_OK if it is OK for the type to change. We set
696 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
697 change, we mean that we shouldn't warn if the type or size does
701 _bfd_elf_merge_symbol (bfd *abfd,
702 struct bfd_link_info *info,
704 Elf_Internal_Sym *sym,
707 struct elf_link_hash_entry **sym_hash,
709 bfd_boolean *override,
710 bfd_boolean *type_change_ok,
711 bfd_boolean *size_change_ok)
714 struct elf_link_hash_entry *h;
715 struct elf_link_hash_entry *flip;
718 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
719 bfd_boolean newweak, oldweak;
725 bind = ELF_ST_BIND (sym->st_info);
727 if (! bfd_is_und_section (sec))
728 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
730 h = ((struct elf_link_hash_entry *)
731 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
736 /* This code is for coping with dynamic objects, and is only useful
737 if we are doing an ELF link. */
738 if (info->hash->creator != abfd->xvec)
741 /* For merging, we only care about real symbols. */
743 while (h->root.type == bfd_link_hash_indirect
744 || h->root.type == bfd_link_hash_warning)
745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747 /* If we just created the symbol, mark it as being an ELF symbol.
748 Other than that, there is nothing to do--there is no merge issue
749 with a newly defined symbol--so we just return. */
751 if (h->root.type == bfd_link_hash_new)
753 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
757 /* OLDBFD is a BFD associated with the existing symbol. */
759 switch (h->root.type)
765 case bfd_link_hash_undefined:
766 case bfd_link_hash_undefweak:
767 oldbfd = h->root.u.undef.abfd;
770 case bfd_link_hash_defined:
771 case bfd_link_hash_defweak:
772 oldbfd = h->root.u.def.section->owner;
775 case bfd_link_hash_common:
776 oldbfd = h->root.u.c.p->section->owner;
780 /* In cases involving weak versioned symbols, we may wind up trying
781 to merge a symbol with itself. Catch that here, to avoid the
782 confusion that results if we try to override a symbol with
783 itself. The additional tests catch cases like
784 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
785 dynamic object, which we do want to handle here. */
787 && ((abfd->flags & DYNAMIC) == 0
788 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
791 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
792 respectively, is from a dynamic object. */
794 if ((abfd->flags & DYNAMIC) != 0)
800 olddyn = (oldbfd->flags & DYNAMIC) != 0;
805 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
806 indices used by MIPS ELF. */
807 switch (h->root.type)
813 case bfd_link_hash_defined:
814 case bfd_link_hash_defweak:
815 hsec = h->root.u.def.section;
818 case bfd_link_hash_common:
819 hsec = h->root.u.c.p->section;
826 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
829 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
830 respectively, appear to be a definition rather than reference. */
832 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
837 if (h->root.type == bfd_link_hash_undefined
838 || h->root.type == bfd_link_hash_undefweak
839 || h->root.type == bfd_link_hash_common)
844 /* We need to remember if a symbol has a definition in a dynamic
845 object or is weak in all dynamic objects. Internal and hidden
846 visibility will make it unavailable to dynamic objects. */
847 if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
849 if (!bfd_is_und_section (sec))
850 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
853 /* Check if this symbol is weak in all dynamic objects. If it
854 is the first time we see it in a dynamic object, we mark
855 if it is weak. Otherwise, we clear it. */
856 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
858 if (bind == STB_WEAK)
859 h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
861 else if (bind != STB_WEAK)
862 h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
866 /* If the old symbol has non-default visibility, we ignore the new
867 definition from a dynamic object. */
869 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
870 && !bfd_is_und_section (sec))
873 /* Make sure this symbol is dynamic. */
874 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
875 /* A protected symbol has external availability. Make sure it is
878 FIXME: Should we check type and size for protected symbol? */
879 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
880 return bfd_elf_link_record_dynamic_symbol (info, h);
885 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
886 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
888 /* If the new symbol with non-default visibility comes from a
889 relocatable file and the old definition comes from a dynamic
890 object, we remove the old definition. */
891 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
894 if ((h->root.und_next || info->hash->undefs_tail == &h->root)
895 && bfd_is_und_section (sec))
897 /* If the new symbol is undefined and the old symbol was
898 also undefined before, we need to make sure
899 _bfd_generic_link_add_one_symbol doesn't mess
900 up the linker hash table undefs list. Since the old
901 definition came from a dynamic object, it is still on the
903 h->root.type = bfd_link_hash_undefined;
904 /* FIXME: What if the new symbol is weak undefined? */
905 h->root.u.undef.abfd = abfd;
909 h->root.type = bfd_link_hash_new;
910 h->root.u.undef.abfd = NULL;
913 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
915 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
916 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
917 | ELF_LINK_DYNAMIC_DEF);
919 /* FIXME: Should we check type and size for protected symbol? */
925 /* Differentiate strong and weak symbols. */
926 newweak = bind == STB_WEAK;
927 oldweak = (h->root.type == bfd_link_hash_defweak
928 || h->root.type == bfd_link_hash_undefweak);
930 /* If a new weak symbol definition comes from a regular file and the
931 old symbol comes from a dynamic library, we treat the new one as
932 strong. Similarly, an old weak symbol definition from a regular
933 file is treated as strong when the new symbol comes from a dynamic
934 library. Further, an old weak symbol from a dynamic library is
935 treated as strong if the new symbol is from a dynamic library.
936 This reflects the way glibc's ld.so works.
938 Do this before setting *type_change_ok or *size_change_ok so that
939 we warn properly when dynamic library symbols are overridden. */
941 if (newdef && !newdyn && olddyn)
943 if (olddef && newdyn)
946 /* It's OK to change the type if either the existing symbol or the
947 new symbol is weak. A type change is also OK if the old symbol
948 is undefined and the new symbol is defined. */
953 && h->root.type == bfd_link_hash_undefined))
954 *type_change_ok = TRUE;
956 /* It's OK to change the size if either the existing symbol or the
957 new symbol is weak, or if the old symbol is undefined. */
960 || h->root.type == bfd_link_hash_undefined)
961 *size_change_ok = TRUE;
963 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
964 symbol, respectively, appears to be a common symbol in a dynamic
965 object. If a symbol appears in an uninitialized section, and is
966 not weak, and is not a function, then it may be a common symbol
967 which was resolved when the dynamic object was created. We want
968 to treat such symbols specially, because they raise special
969 considerations when setting the symbol size: if the symbol
970 appears as a common symbol in a regular object, and the size in
971 the regular object is larger, we must make sure that we use the
972 larger size. This problematic case can always be avoided in C,
973 but it must be handled correctly when using Fortran shared
976 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
977 likewise for OLDDYNCOMMON and OLDDEF.
979 Note that this test is just a heuristic, and that it is quite
980 possible to have an uninitialized symbol in a shared object which
981 is really a definition, rather than a common symbol. This could
982 lead to some minor confusion when the symbol really is a common
983 symbol in some regular object. However, I think it will be
989 && (sec->flags & SEC_ALLOC) != 0
990 && (sec->flags & SEC_LOAD) == 0
992 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
995 newdyncommon = FALSE;
999 && h->root.type == bfd_link_hash_defined
1000 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1001 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1002 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1004 && h->type != STT_FUNC)
1005 olddyncommon = TRUE;
1007 olddyncommon = FALSE;
1009 /* If both the old and the new symbols look like common symbols in a
1010 dynamic object, set the size of the symbol to the larger of the
1015 && sym->st_size != h->size)
1017 /* Since we think we have two common symbols, issue a multiple
1018 common warning if desired. Note that we only warn if the
1019 size is different. If the size is the same, we simply let
1020 the old symbol override the new one as normally happens with
1021 symbols defined in dynamic objects. */
1023 if (! ((*info->callbacks->multiple_common)
1024 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1025 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1028 if (sym->st_size > h->size)
1029 h->size = sym->st_size;
1031 *size_change_ok = TRUE;
1034 /* If we are looking at a dynamic object, and we have found a
1035 definition, we need to see if the symbol was already defined by
1036 some other object. If so, we want to use the existing
1037 definition, and we do not want to report a multiple symbol
1038 definition error; we do this by clobbering *PSEC to be
1039 bfd_und_section_ptr.
1041 We treat a common symbol as a definition if the symbol in the
1042 shared library is a function, since common symbols always
1043 represent variables; this can cause confusion in principle, but
1044 any such confusion would seem to indicate an erroneous program or
1045 shared library. We also permit a common symbol in a regular
1046 object to override a weak symbol in a shared object. */
1051 || (h->root.type == bfd_link_hash_common
1053 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
1057 newdyncommon = FALSE;
1059 *psec = sec = bfd_und_section_ptr;
1060 *size_change_ok = TRUE;
1062 /* If we get here when the old symbol is a common symbol, then
1063 we are explicitly letting it override a weak symbol or
1064 function in a dynamic object, and we don't want to warn about
1065 a type change. If the old symbol is a defined symbol, a type
1066 change warning may still be appropriate. */
1068 if (h->root.type == bfd_link_hash_common)
1069 *type_change_ok = TRUE;
1072 /* Handle the special case of an old common symbol merging with a
1073 new symbol which looks like a common symbol in a shared object.
1074 We change *PSEC and *PVALUE to make the new symbol look like a
1075 common symbol, and let _bfd_generic_link_add_one_symbol will do
1079 && h->root.type == bfd_link_hash_common)
1083 newdyncommon = FALSE;
1084 *pvalue = sym->st_size;
1085 *psec = sec = bfd_com_section_ptr;
1086 *size_change_ok = TRUE;
1089 /* If the old symbol is from a dynamic object, and the new symbol is
1090 a definition which is not from a dynamic object, then the new
1091 symbol overrides the old symbol. Symbols from regular files
1092 always take precedence over symbols from dynamic objects, even if
1093 they are defined after the dynamic object in the link.
1095 As above, we again permit a common symbol in a regular object to
1096 override a definition in a shared object if the shared object
1097 symbol is a function or is weak. */
1102 || (bfd_is_com_section (sec)
1104 || h->type == STT_FUNC)))
1107 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
1109 /* Change the hash table entry to undefined, and let
1110 _bfd_generic_link_add_one_symbol do the right thing with the
1113 h->root.type = bfd_link_hash_undefined;
1114 h->root.u.undef.abfd = h->root.u.def.section->owner;
1115 *size_change_ok = TRUE;
1118 olddyncommon = FALSE;
1120 /* We again permit a type change when a common symbol may be
1121 overriding a function. */
1123 if (bfd_is_com_section (sec))
1124 *type_change_ok = TRUE;
1126 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1129 /* This union may have been set to be non-NULL when this symbol
1130 was seen in a dynamic object. We must force the union to be
1131 NULL, so that it is correct for a regular symbol. */
1132 h->verinfo.vertree = NULL;
1135 /* Handle the special case of a new common symbol merging with an
1136 old symbol that looks like it might be a common symbol defined in
1137 a shared object. Note that we have already handled the case in
1138 which a new common symbol should simply override the definition
1139 in the shared library. */
1142 && bfd_is_com_section (sec)
1145 /* It would be best if we could set the hash table entry to a
1146 common symbol, but we don't know what to use for the section
1147 or the alignment. */
1148 if (! ((*info->callbacks->multiple_common)
1149 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1150 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1153 /* If the presumed common symbol in the dynamic object is
1154 larger, pretend that the new symbol has its size. */
1156 if (h->size > *pvalue)
1159 /* FIXME: We no longer know the alignment required by the symbol
1160 in the dynamic object, so we just wind up using the one from
1161 the regular object. */
1164 olddyncommon = FALSE;
1166 h->root.type = bfd_link_hash_undefined;
1167 h->root.u.undef.abfd = h->root.u.def.section->owner;
1169 *size_change_ok = TRUE;
1170 *type_change_ok = TRUE;
1172 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1175 h->verinfo.vertree = NULL;
1180 /* Handle the case where we had a versioned symbol in a dynamic
1181 library and now find a definition in a normal object. In this
1182 case, we make the versioned symbol point to the normal one. */
1183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1184 flip->root.type = h->root.type;
1185 h->root.type = bfd_link_hash_indirect;
1186 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1187 (*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
1188 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1189 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1191 h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
1192 flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1199 /* This function is called to create an indirect symbol from the
1200 default for the symbol with the default version if needed. The
1201 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1202 set DYNSYM if the new indirect symbol is dynamic. */
1205 _bfd_elf_add_default_symbol (bfd *abfd,
1206 struct bfd_link_info *info,
1207 struct elf_link_hash_entry *h,
1209 Elf_Internal_Sym *sym,
1212 bfd_boolean *dynsym,
1213 bfd_boolean override)
1215 bfd_boolean type_change_ok;
1216 bfd_boolean size_change_ok;
1219 struct elf_link_hash_entry *hi;
1220 struct bfd_link_hash_entry *bh;
1221 const struct elf_backend_data *bed;
1222 bfd_boolean collect;
1223 bfd_boolean dynamic;
1225 size_t len, shortlen;
1228 /* If this symbol has a version, and it is the default version, we
1229 create an indirect symbol from the default name to the fully
1230 decorated name. This will cause external references which do not
1231 specify a version to be bound to this version of the symbol. */
1232 p = strchr (name, ELF_VER_CHR);
1233 if (p == NULL || p[1] != ELF_VER_CHR)
1238 /* We are overridden by an old definition. We need to check if we
1239 need to create the indirect symbol from the default name. */
1240 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1242 BFD_ASSERT (hi != NULL);
1245 while (hi->root.type == bfd_link_hash_indirect
1246 || hi->root.type == bfd_link_hash_warning)
1248 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1254 bed = get_elf_backend_data (abfd);
1255 collect = bed->collect;
1256 dynamic = (abfd->flags & DYNAMIC) != 0;
1258 shortlen = p - name;
1259 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1260 if (shortname == NULL)
1262 memcpy (shortname, name, shortlen);
1263 shortname[shortlen] = '\0';
1265 /* We are going to create a new symbol. Merge it with any existing
1266 symbol with this name. For the purposes of the merge, act as
1267 though we were defining the symbol we just defined, although we
1268 actually going to define an indirect symbol. */
1269 type_change_ok = FALSE;
1270 size_change_ok = FALSE;
1272 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1273 &hi, &skip, &override, &type_change_ok,
1283 if (! (_bfd_generic_link_add_one_symbol
1284 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1285 0, name, FALSE, collect, &bh)))
1287 hi = (struct elf_link_hash_entry *) bh;
1291 /* In this case the symbol named SHORTNAME is overriding the
1292 indirect symbol we want to add. We were planning on making
1293 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1294 is the name without a version. NAME is the fully versioned
1295 name, and it is the default version.
1297 Overriding means that we already saw a definition for the
1298 symbol SHORTNAME in a regular object, and it is overriding
1299 the symbol defined in the dynamic object.
1301 When this happens, we actually want to change NAME, the
1302 symbol we just added, to refer to SHORTNAME. This will cause
1303 references to NAME in the shared object to become references
1304 to SHORTNAME in the regular object. This is what we expect
1305 when we override a function in a shared object: that the
1306 references in the shared object will be mapped to the
1307 definition in the regular object. */
1309 while (hi->root.type == bfd_link_hash_indirect
1310 || hi->root.type == bfd_link_hash_warning)
1311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1313 h->root.type = bfd_link_hash_indirect;
1314 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1315 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1317 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1318 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1319 if (hi->elf_link_hash_flags
1320 & (ELF_LINK_HASH_REF_REGULAR
1321 | ELF_LINK_HASH_DEF_REGULAR))
1323 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1328 /* Now set HI to H, so that the following code will set the
1329 other fields correctly. */
1333 /* If there is a duplicate definition somewhere, then HI may not
1334 point to an indirect symbol. We will have reported an error to
1335 the user in that case. */
1337 if (hi->root.type == bfd_link_hash_indirect)
1339 struct elf_link_hash_entry *ht;
1341 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1342 (*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
1344 /* See if the new flags lead us to realize that the symbol must
1351 || ((hi->elf_link_hash_flags
1352 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1357 if ((hi->elf_link_hash_flags
1358 & ELF_LINK_HASH_REF_REGULAR) != 0)
1364 /* We also need to define an indirection from the nondefault version
1368 len = strlen (name);
1369 shortname = bfd_hash_allocate (&info->hash->table, len);
1370 if (shortname == NULL)
1372 memcpy (shortname, name, shortlen);
1373 memcpy (shortname + shortlen, p + 1, len - shortlen);
1375 /* Once again, merge with any existing symbol. */
1376 type_change_ok = FALSE;
1377 size_change_ok = FALSE;
1379 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1380 &hi, &skip, &override, &type_change_ok,
1389 /* Here SHORTNAME is a versioned name, so we don't expect to see
1390 the type of override we do in the case above unless it is
1391 overridden by a versioned definition. */
1392 if (hi->root.type != bfd_link_hash_defined
1393 && hi->root.type != bfd_link_hash_defweak)
1394 (*_bfd_error_handler)
1395 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1396 bfd_archive_filename (abfd), shortname);
1401 if (! (_bfd_generic_link_add_one_symbol
1402 (info, abfd, shortname, BSF_INDIRECT,
1403 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1405 hi = (struct elf_link_hash_entry *) bh;
1407 /* If there is a duplicate definition somewhere, then HI may not
1408 point to an indirect symbol. We will have reported an error
1409 to the user in that case. */
1411 if (hi->root.type == bfd_link_hash_indirect)
1413 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
1415 /* See if the new flags lead us to realize that the symbol
1422 || ((hi->elf_link_hash_flags
1423 & ELF_LINK_HASH_REF_DYNAMIC) != 0))
1428 if ((hi->elf_link_hash_flags
1429 & ELF_LINK_HASH_REF_REGULAR) != 0)
1439 /* This routine is used to export all defined symbols into the dynamic
1440 symbol table. It is called via elf_link_hash_traverse. */
1443 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1445 struct elf_info_failed *eif = data;
1447 /* Ignore indirect symbols. These are added by the versioning code. */
1448 if (h->root.type == bfd_link_hash_indirect)
1451 if (h->root.type == bfd_link_hash_warning)
1452 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1454 if (h->dynindx == -1
1455 && (h->elf_link_hash_flags
1456 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
1458 struct bfd_elf_version_tree *t;
1459 struct bfd_elf_version_expr *d;
1461 for (t = eif->verdefs; t != NULL; t = t->next)
1463 if (t->globals.list != NULL)
1465 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1470 if (t->locals.list != NULL)
1472 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1481 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1492 /* Look through the symbols which are defined in other shared
1493 libraries and referenced here. Update the list of version
1494 dependencies. This will be put into the .gnu.version_r section.
1495 This function is called via elf_link_hash_traverse. */
1498 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1501 struct elf_find_verdep_info *rinfo = data;
1502 Elf_Internal_Verneed *t;
1503 Elf_Internal_Vernaux *a;
1506 if (h->root.type == bfd_link_hash_warning)
1507 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1509 /* We only care about symbols defined in shared objects with version
1511 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1512 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1514 || h->verinfo.verdef == NULL)
1517 /* See if we already know about this version. */
1518 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1520 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1523 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1524 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1530 /* This is a new version. Add it to tree we are building. */
1535 t = bfd_zalloc (rinfo->output_bfd, amt);
1538 rinfo->failed = TRUE;
1542 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1543 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1544 elf_tdata (rinfo->output_bfd)->verref = t;
1548 a = bfd_zalloc (rinfo->output_bfd, amt);
1550 /* Note that we are copying a string pointer here, and testing it
1551 above. If bfd_elf_string_from_elf_section is ever changed to
1552 discard the string data when low in memory, this will have to be
1554 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1556 a->vna_flags = h->verinfo.verdef->vd_flags;
1557 a->vna_nextptr = t->vn_auxptr;
1559 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1562 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1569 /* Figure out appropriate versions for all the symbols. We may not
1570 have the version number script until we have read all of the input
1571 files, so until that point we don't know which symbols should be
1572 local. This function is called via elf_link_hash_traverse. */
1575 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1577 struct elf_assign_sym_version_info *sinfo;
1578 struct bfd_link_info *info;
1579 const struct elf_backend_data *bed;
1580 struct elf_info_failed eif;
1587 if (h->root.type == bfd_link_hash_warning)
1588 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1590 /* Fix the symbol flags. */
1593 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1596 sinfo->failed = TRUE;
1600 /* We only need version numbers for symbols defined in regular
1602 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1605 bed = get_elf_backend_data (sinfo->output_bfd);
1606 p = strchr (h->root.root.string, ELF_VER_CHR);
1607 if (p != NULL && h->verinfo.vertree == NULL)
1609 struct bfd_elf_version_tree *t;
1614 /* There are two consecutive ELF_VER_CHR characters if this is
1615 not a hidden symbol. */
1617 if (*p == ELF_VER_CHR)
1623 /* If there is no version string, we can just return out. */
1627 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1631 /* Look for the version. If we find it, it is no longer weak. */
1632 for (t = sinfo->verdefs; t != NULL; t = t->next)
1634 if (strcmp (t->name, p) == 0)
1638 struct bfd_elf_version_expr *d;
1640 len = p - h->root.root.string;
1641 alc = bfd_malloc (len);
1644 memcpy (alc, h->root.root.string, len - 1);
1645 alc[len - 1] = '\0';
1646 if (alc[len - 2] == ELF_VER_CHR)
1647 alc[len - 2] = '\0';
1649 h->verinfo.vertree = t;
1653 if (t->globals.list != NULL)
1654 d = (*t->match) (&t->globals, NULL, alc);
1656 /* See if there is anything to force this symbol to
1658 if (d == NULL && t->locals.list != NULL)
1660 d = (*t->match) (&t->locals, NULL, alc);
1664 && ! info->export_dynamic)
1665 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1673 /* If we are building an application, we need to create a
1674 version node for this version. */
1675 if (t == NULL && info->executable)
1677 struct bfd_elf_version_tree **pp;
1680 /* If we aren't going to export this symbol, we don't need
1681 to worry about it. */
1682 if (h->dynindx == -1)
1686 t = bfd_zalloc (sinfo->output_bfd, amt);
1689 sinfo->failed = TRUE;
1694 t->name_indx = (unsigned int) -1;
1698 /* Don't count anonymous version tag. */
1699 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1701 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1703 t->vernum = version_index;
1707 h->verinfo.vertree = t;
1711 /* We could not find the version for a symbol when
1712 generating a shared archive. Return an error. */
1713 (*_bfd_error_handler)
1714 (_("%s: undefined versioned symbol name %s"),
1715 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
1716 bfd_set_error (bfd_error_bad_value);
1717 sinfo->failed = TRUE;
1722 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
1725 /* If we don't have a version for this symbol, see if we can find
1727 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1729 struct bfd_elf_version_tree *t;
1730 struct bfd_elf_version_tree *local_ver;
1731 struct bfd_elf_version_expr *d;
1733 /* See if can find what version this symbol is in. If the
1734 symbol is supposed to be local, then don't actually register
1737 for (t = sinfo->verdefs; t != NULL; t = t->next)
1739 if (t->globals.list != NULL)
1741 bfd_boolean matched;
1745 while ((d = (*t->match) (&t->globals, d,
1746 h->root.root.string)) != NULL)
1751 /* There is a version without definition. Make
1752 the symbol the default definition for this
1754 h->verinfo.vertree = t;
1762 /* There is no undefined version for this symbol. Hide the
1764 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1767 if (t->locals.list != NULL)
1770 while ((d = (*t->match) (&t->locals, d,
1771 h->root.root.string)) != NULL)
1774 /* If the match is "*", keep looking for a more
1775 explicit, perhaps even global, match.
1776 XXX: Shouldn't this be !d->wildcard instead? */
1777 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
1786 if (local_ver != NULL)
1788 h->verinfo.vertree = local_ver;
1789 if (h->dynindx != -1
1791 && ! info->export_dynamic)
1793 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1801 /* Read and swap the relocs from the section indicated by SHDR. This
1802 may be either a REL or a RELA section. The relocations are
1803 translated into RELA relocations and stored in INTERNAL_RELOCS,
1804 which should have already been allocated to contain enough space.
1805 The EXTERNAL_RELOCS are a buffer where the external form of the
1806 relocations should be stored.
1808 Returns FALSE if something goes wrong. */
1811 elf_link_read_relocs_from_section (bfd *abfd,
1813 Elf_Internal_Shdr *shdr,
1814 void *external_relocs,
1815 Elf_Internal_Rela *internal_relocs)
1817 const struct elf_backend_data *bed;
1818 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
1819 const bfd_byte *erela;
1820 const bfd_byte *erelaend;
1821 Elf_Internal_Rela *irela;
1822 Elf_Internal_Shdr *symtab_hdr;
1825 /* Position ourselves at the start of the section. */
1826 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
1829 /* Read the relocations. */
1830 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
1833 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1834 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
1836 bed = get_elf_backend_data (abfd);
1838 /* Convert the external relocations to the internal format. */
1839 if (shdr->sh_entsize == bed->s->sizeof_rel)
1840 swap_in = bed->s->swap_reloc_in;
1841 else if (shdr->sh_entsize == bed->s->sizeof_rela)
1842 swap_in = bed->s->swap_reloca_in;
1845 bfd_set_error (bfd_error_wrong_format);
1849 erela = external_relocs;
1850 erelaend = erela + shdr->sh_size;
1851 irela = internal_relocs;
1852 while (erela < erelaend)
1856 (*swap_in) (abfd, erela, irela);
1857 r_symndx = ELF32_R_SYM (irela->r_info);
1858 if (bed->s->arch_size == 64)
1860 if ((size_t) r_symndx >= nsyms)
1862 char *sec_name = bfd_get_section_ident (sec);
1863 (*_bfd_error_handler)
1864 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1865 bfd_archive_filename (abfd), (unsigned long) r_symndx,
1866 (unsigned long) nsyms, irela->r_offset,
1867 sec_name ? sec_name : sec->name);
1870 bfd_set_error (bfd_error_bad_value);
1873 irela += bed->s->int_rels_per_ext_rel;
1874 erela += shdr->sh_entsize;
1880 /* Read and swap the relocs for a section O. They may have been
1881 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1882 not NULL, they are used as buffers to read into. They are known to
1883 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1884 the return value is allocated using either malloc or bfd_alloc,
1885 according to the KEEP_MEMORY argument. If O has two relocation
1886 sections (both REL and RELA relocations), then the REL_HDR
1887 relocations will appear first in INTERNAL_RELOCS, followed by the
1888 REL_HDR2 relocations. */
1891 _bfd_elf_link_read_relocs (bfd *abfd,
1893 void *external_relocs,
1894 Elf_Internal_Rela *internal_relocs,
1895 bfd_boolean keep_memory)
1897 Elf_Internal_Shdr *rel_hdr;
1898 void *alloc1 = NULL;
1899 Elf_Internal_Rela *alloc2 = NULL;
1900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1902 if (elf_section_data (o)->relocs != NULL)
1903 return elf_section_data (o)->relocs;
1905 if (o->reloc_count == 0)
1908 rel_hdr = &elf_section_data (o)->rel_hdr;
1910 if (internal_relocs == NULL)
1914 size = o->reloc_count;
1915 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
1917 internal_relocs = bfd_alloc (abfd, size);
1919 internal_relocs = alloc2 = bfd_malloc (size);
1920 if (internal_relocs == NULL)
1924 if (external_relocs == NULL)
1926 bfd_size_type size = rel_hdr->sh_size;
1928 if (elf_section_data (o)->rel_hdr2)
1929 size += elf_section_data (o)->rel_hdr2->sh_size;
1930 alloc1 = bfd_malloc (size);
1933 external_relocs = alloc1;
1936 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
1940 if (elf_section_data (o)->rel_hdr2
1941 && (!elf_link_read_relocs_from_section
1943 elf_section_data (o)->rel_hdr2,
1944 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
1945 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
1946 * bed->s->int_rels_per_ext_rel))))
1949 /* Cache the results for next time, if we can. */
1951 elf_section_data (o)->relocs = internal_relocs;
1956 /* Don't free alloc2, since if it was allocated we are passing it
1957 back (under the name of internal_relocs). */
1959 return internal_relocs;
1969 /* Compute the size of, and allocate space for, REL_HDR which is the
1970 section header for a section containing relocations for O. */
1973 _bfd_elf_link_size_reloc_section (bfd *abfd,
1974 Elf_Internal_Shdr *rel_hdr,
1977 bfd_size_type reloc_count;
1978 bfd_size_type num_rel_hashes;
1980 /* Figure out how many relocations there will be. */
1981 if (rel_hdr == &elf_section_data (o)->rel_hdr)
1982 reloc_count = elf_section_data (o)->rel_count;
1984 reloc_count = elf_section_data (o)->rel_count2;
1986 num_rel_hashes = o->reloc_count;
1987 if (num_rel_hashes < reloc_count)
1988 num_rel_hashes = reloc_count;
1990 /* That allows us to calculate the size of the section. */
1991 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
1993 /* The contents field must last into write_object_contents, so we
1994 allocate it with bfd_alloc rather than malloc. Also since we
1995 cannot be sure that the contents will actually be filled in,
1996 we zero the allocated space. */
1997 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
1998 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2001 /* We only allocate one set of hash entries, so we only do it the
2002 first time we are called. */
2003 if (elf_section_data (o)->rel_hashes == NULL
2006 struct elf_link_hash_entry **p;
2008 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2012 elf_section_data (o)->rel_hashes = p;
2018 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2019 originated from the section given by INPUT_REL_HDR) to the
2023 _bfd_elf_link_output_relocs (bfd *output_bfd,
2024 asection *input_section,
2025 Elf_Internal_Shdr *input_rel_hdr,
2026 Elf_Internal_Rela *internal_relocs)
2028 Elf_Internal_Rela *irela;
2029 Elf_Internal_Rela *irelaend;
2031 Elf_Internal_Shdr *output_rel_hdr;
2032 asection *output_section;
2033 unsigned int *rel_countp = NULL;
2034 const struct elf_backend_data *bed;
2035 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2037 output_section = input_section->output_section;
2038 output_rel_hdr = NULL;
2040 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2041 == input_rel_hdr->sh_entsize)
2043 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2044 rel_countp = &elf_section_data (output_section)->rel_count;
2046 else if (elf_section_data (output_section)->rel_hdr2
2047 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2048 == input_rel_hdr->sh_entsize))
2050 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2051 rel_countp = &elf_section_data (output_section)->rel_count2;
2055 char *sec_name = bfd_get_section_ident (input_section);
2056 (*_bfd_error_handler)
2057 (_("%s: relocation size mismatch in %s section %s"),
2058 bfd_get_filename (output_bfd),
2059 bfd_archive_filename (input_section->owner),
2060 sec_name ? sec_name : input_section->name);
2063 bfd_set_error (bfd_error_wrong_object_format);
2067 bed = get_elf_backend_data (output_bfd);
2068 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2069 swap_out = bed->s->swap_reloc_out;
2070 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2071 swap_out = bed->s->swap_reloca_out;
2075 erel = output_rel_hdr->contents;
2076 erel += *rel_countp * input_rel_hdr->sh_entsize;
2077 irela = internal_relocs;
2078 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2079 * bed->s->int_rels_per_ext_rel);
2080 while (irela < irelaend)
2082 (*swap_out) (output_bfd, irela, erel);
2083 irela += bed->s->int_rels_per_ext_rel;
2084 erel += input_rel_hdr->sh_entsize;
2087 /* Bump the counter, so that we know where to add the next set of
2089 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2094 /* Fix up the flags for a symbol. This handles various cases which
2095 can only be fixed after all the input files are seen. This is
2096 currently called by both adjust_dynamic_symbol and
2097 assign_sym_version, which is unnecessary but perhaps more robust in
2098 the face of future changes. */
2101 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2102 struct elf_info_failed *eif)
2104 /* If this symbol was mentioned in a non-ELF file, try to set
2105 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2106 permit a non-ELF file to correctly refer to a symbol defined in
2107 an ELF dynamic object. */
2108 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2110 while (h->root.type == bfd_link_hash_indirect)
2111 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2113 if (h->root.type != bfd_link_hash_defined
2114 && h->root.type != bfd_link_hash_defweak)
2115 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2116 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2119 if (h->root.u.def.section->owner != NULL
2120 && (bfd_get_flavour (h->root.u.def.section->owner)
2121 == bfd_target_elf_flavour))
2122 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
2123 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
2125 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2128 if (h->dynindx == -1
2129 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2130 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2132 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2141 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2142 was first seen in a non-ELF file. Fortunately, if the symbol
2143 was first seen in an ELF file, we're probably OK unless the
2144 symbol was defined in a non-ELF file. Catch that case here.
2145 FIXME: We're still in trouble if the symbol was first seen in
2146 a dynamic object, and then later in a non-ELF regular object. */
2147 if ((h->root.type == bfd_link_hash_defined
2148 || h->root.type == bfd_link_hash_defweak)
2149 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2150 && (h->root.u.def.section->owner != NULL
2151 ? (bfd_get_flavour (h->root.u.def.section->owner)
2152 != bfd_target_elf_flavour)
2153 : (bfd_is_abs_section (h->root.u.def.section)
2154 && (h->elf_link_hash_flags
2155 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
2156 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2159 /* If this is a final link, and the symbol was defined as a common
2160 symbol in a regular object file, and there was no definition in
2161 any dynamic object, then the linker will have allocated space for
2162 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2163 flag will not have been set. */
2164 if (h->root.type == bfd_link_hash_defined
2165 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2166 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2167 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2168 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2169 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2171 /* If -Bsymbolic was used (which means to bind references to global
2172 symbols to the definition within the shared object), and this
2173 symbol was defined in a regular object, then it actually doesn't
2174 need a PLT entry. Likewise, if the symbol has non-default
2175 visibility. If the symbol has hidden or internal visibility, we
2176 will force it local. */
2177 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
2178 && eif->info->shared
2179 && is_elf_hash_table (eif->info->hash)
2180 && (eif->info->symbolic
2181 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2182 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2184 const struct elf_backend_data *bed;
2185 bfd_boolean force_local;
2187 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2189 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2190 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2191 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2194 /* If a weak undefined symbol has non-default visibility, we also
2195 hide it from the dynamic linker. */
2196 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2197 && h->root.type == bfd_link_hash_undefweak)
2199 const struct elf_backend_data *bed;
2200 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2201 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2204 /* If this is a weak defined symbol in a dynamic object, and we know
2205 the real definition in the dynamic object, copy interesting flags
2206 over to the real definition. */
2207 if (h->weakdef != NULL)
2209 struct elf_link_hash_entry *weakdef;
2211 weakdef = h->weakdef;
2212 if (h->root.type == bfd_link_hash_indirect)
2213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2215 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2216 || h->root.type == bfd_link_hash_defweak);
2217 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2218 || weakdef->root.type == bfd_link_hash_defweak);
2219 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
2221 /* If the real definition is defined by a regular object file,
2222 don't do anything special. See the longer description in
2223 _bfd_elf_adjust_dynamic_symbol, below. */
2224 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
2228 const struct elf_backend_data *bed;
2230 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2231 (*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
2238 /* Make the backend pick a good value for a dynamic symbol. This is
2239 called via elf_link_hash_traverse, and also calls itself
2243 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2245 struct elf_info_failed *eif = data;
2247 const struct elf_backend_data *bed;
2249 if (! is_elf_hash_table (eif->info->hash))
2252 if (h->root.type == bfd_link_hash_warning)
2254 h->plt = elf_hash_table (eif->info)->init_offset;
2255 h->got = elf_hash_table (eif->info)->init_offset;
2257 /* When warning symbols are created, they **replace** the "real"
2258 entry in the hash table, thus we never get to see the real
2259 symbol in a hash traversal. So look at it now. */
2260 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2263 /* Ignore indirect symbols. These are added by the versioning code. */
2264 if (h->root.type == bfd_link_hash_indirect)
2267 /* Fix the symbol flags. */
2268 if (! _bfd_elf_fix_symbol_flags (h, eif))
2271 /* If this symbol does not require a PLT entry, and it is not
2272 defined by a dynamic object, or is not referenced by a regular
2273 object, ignore it. We do have to handle a weak defined symbol,
2274 even if no regular object refers to it, if we decided to add it
2275 to the dynamic symbol table. FIXME: Do we normally need to worry
2276 about symbols which are defined by one dynamic object and
2277 referenced by another one? */
2278 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
2279 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2280 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2281 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
2282 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
2284 h->plt = elf_hash_table (eif->info)->init_offset;
2288 /* If we've already adjusted this symbol, don't do it again. This
2289 can happen via a recursive call. */
2290 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
2293 /* Don't look at this symbol again. Note that we must set this
2294 after checking the above conditions, because we may look at a
2295 symbol once, decide not to do anything, and then get called
2296 recursively later after REF_REGULAR is set below. */
2297 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
2299 /* If this is a weak definition, and we know a real definition, and
2300 the real symbol is not itself defined by a regular object file,
2301 then get a good value for the real definition. We handle the
2302 real symbol first, for the convenience of the backend routine.
2304 Note that there is a confusing case here. If the real definition
2305 is defined by a regular object file, we don't get the real symbol
2306 from the dynamic object, but we do get the weak symbol. If the
2307 processor backend uses a COPY reloc, then if some routine in the
2308 dynamic object changes the real symbol, we will not see that
2309 change in the corresponding weak symbol. This is the way other
2310 ELF linkers work as well, and seems to be a result of the shared
2313 I will clarify this issue. Most SVR4 shared libraries define the
2314 variable _timezone and define timezone as a weak synonym. The
2315 tzset call changes _timezone. If you write
2316 extern int timezone;
2318 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2319 you might expect that, since timezone is a synonym for _timezone,
2320 the same number will print both times. However, if the processor
2321 backend uses a COPY reloc, then actually timezone will be copied
2322 into your process image, and, since you define _timezone
2323 yourself, _timezone will not. Thus timezone and _timezone will
2324 wind up at different memory locations. The tzset call will set
2325 _timezone, leaving timezone unchanged. */
2327 if (h->weakdef != NULL)
2329 /* If we get to this point, we know there is an implicit
2330 reference by a regular object file via the weak symbol H.
2331 FIXME: Is this really true? What if the traversal finds
2332 H->WEAKDEF before it finds H? */
2333 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2335 if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, eif))
2339 /* If a symbol has no type and no size and does not require a PLT
2340 entry, then we are probably about to do the wrong thing here: we
2341 are probably going to create a COPY reloc for an empty object.
2342 This case can arise when a shared object is built with assembly
2343 code, and the assembly code fails to set the symbol type. */
2345 && h->type == STT_NOTYPE
2346 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
2347 (*_bfd_error_handler)
2348 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2349 h->root.root.string);
2351 dynobj = elf_hash_table (eif->info)->dynobj;
2352 bed = get_elf_backend_data (dynobj);
2353 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2362 /* Adjust all external symbols pointing into SEC_MERGE sections
2363 to reflect the object merging within the sections. */
2366 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2370 if (h->root.type == bfd_link_hash_warning)
2371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2376 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2378 bfd *output_bfd = data;
2380 h->root.u.def.value =
2381 _bfd_merged_section_offset (output_bfd,
2382 &h->root.u.def.section,
2383 elf_section_data (sec)->sec_info,
2384 h->root.u.def.value);
2390 /* Returns false if the symbol referred to by H should be considered
2391 to resolve local to the current module, and true if it should be
2392 considered to bind dynamically. */
2395 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2396 struct bfd_link_info *info,
2397 bfd_boolean ignore_protected)
2399 bfd_boolean binding_stays_local_p;
2404 while (h->root.type == bfd_link_hash_indirect
2405 || h->root.type == bfd_link_hash_warning)
2406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2408 /* If it was forced local, then clearly it's not dynamic. */
2409 if (h->dynindx == -1)
2411 if (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2414 /* Identify the cases where name binding rules say that a
2415 visible symbol resolves locally. */
2416 binding_stays_local_p = info->executable || info->symbolic;
2418 switch (ELF_ST_VISIBILITY (h->other))
2425 /* Proper resolution for function pointer equality may require
2426 that these symbols perhaps be resolved dynamically, even though
2427 we should be resolving them to the current module. */
2428 if (!ignore_protected)
2429 binding_stays_local_p = TRUE;
2436 /* If it isn't defined locally, then clearly it's dynamic. */
2437 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2440 /* Otherwise, the symbol is dynamic if binding rules don't tell
2441 us that it remains local. */
2442 return !binding_stays_local_p;
2445 /* Return true if the symbol referred to by H should be considered
2446 to resolve local to the current module, and false otherwise. Differs
2447 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2448 undefined symbols and weak symbols. */
2451 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2452 struct bfd_link_info *info,
2453 bfd_boolean local_protected)
2455 /* If it's a local sym, of course we resolve locally. */
2459 /* If we don't have a definition in a regular file, then we can't
2460 resolve locally. The sym is either undefined or dynamic. */
2461 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2464 /* Forced local symbols resolve locally. */
2465 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2468 /* As do non-dynamic symbols. */
2469 if (h->dynindx == -1)
2472 /* At this point, we know the symbol is defined and dynamic. In an
2473 executable it must resolve locally, likewise when building symbolic
2474 shared libraries. */
2475 if (info->executable || info->symbolic)
2478 /* Now deal with defined dynamic symbols in shared libraries. Ones
2479 with default visibility might not resolve locally. */
2480 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2483 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2484 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2487 /* Function pointer equality tests may require that STV_PROTECTED
2488 symbols be treated as dynamic symbols, even when we know that the
2489 dynamic linker will resolve them locally. */
2490 return local_protected;
2493 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2494 aligned. Returns the first TLS output section. */
2496 struct bfd_section *
2497 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2499 struct bfd_section *sec, *tls;
2500 unsigned int align = 0;
2502 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2503 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2507 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2508 if (sec->alignment_power > align)
2509 align = sec->alignment_power;
2511 elf_hash_table (info)->tls_sec = tls;
2513 /* Ensure the alignment of the first section is the largest alignment,
2514 so that the tls segment starts aligned. */
2516 tls->alignment_power = align;
2521 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2523 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2524 Elf_Internal_Sym *sym)
2526 /* Local symbols do not count, but target specific ones might. */
2527 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2528 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2531 /* Function symbols do not count. */
2532 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
2535 /* If the section is undefined, then so is the symbol. */
2536 if (sym->st_shndx == SHN_UNDEF)
2539 /* If the symbol is defined in the common section, then
2540 it is a common definition and so does not count. */
2541 if (sym->st_shndx == SHN_COMMON)
2544 /* If the symbol is in a target specific section then we
2545 must rely upon the backend to tell us what it is. */
2546 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2547 /* FIXME - this function is not coded yet:
2549 return _bfd_is_global_symbol_definition (abfd, sym);
2551 Instead for now assume that the definition is not global,
2552 Even if this is wrong, at least the linker will behave
2553 in the same way that it used to do. */
2559 /* Search the symbol table of the archive element of the archive ABFD
2560 whose archive map contains a mention of SYMDEF, and determine if
2561 the symbol is defined in this element. */
2563 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2565 Elf_Internal_Shdr * hdr;
2566 bfd_size_type symcount;
2567 bfd_size_type extsymcount;
2568 bfd_size_type extsymoff;
2569 Elf_Internal_Sym *isymbuf;
2570 Elf_Internal_Sym *isym;
2571 Elf_Internal_Sym *isymend;
2574 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2578 if (! bfd_check_format (abfd, bfd_object))
2581 /* If we have already included the element containing this symbol in the
2582 link then we do not need to include it again. Just claim that any symbol
2583 it contains is not a definition, so that our caller will not decide to
2584 (re)include this element. */
2585 if (abfd->archive_pass)
2588 /* Select the appropriate symbol table. */
2589 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2590 hdr = &elf_tdata (abfd)->symtab_hdr;
2592 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2596 /* The sh_info field of the symtab header tells us where the
2597 external symbols start. We don't care about the local symbols. */
2598 if (elf_bad_symtab (abfd))
2600 extsymcount = symcount;
2605 extsymcount = symcount - hdr->sh_info;
2606 extsymoff = hdr->sh_info;
2609 if (extsymcount == 0)
2612 /* Read in the symbol table. */
2613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2615 if (isymbuf == NULL)
2618 /* Scan the symbol table looking for SYMDEF. */
2620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2629 if (strcmp (name, symdef->name) == 0)
2631 result = is_global_data_symbol_definition (abfd, isym);
2641 /* Add an entry to the .dynamic table. */
2644 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2648 struct elf_link_hash_table *hash_table;
2649 const struct elf_backend_data *bed;
2651 bfd_size_type newsize;
2652 bfd_byte *newcontents;
2653 Elf_Internal_Dyn dyn;
2655 hash_table = elf_hash_table (info);
2656 if (! is_elf_hash_table (hash_table))
2659 bed = get_elf_backend_data (hash_table->dynobj);
2660 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2661 BFD_ASSERT (s != NULL);
2663 newsize = s->size + bed->s->sizeof_dyn;
2664 newcontents = bfd_realloc (s->contents, newsize);
2665 if (newcontents == NULL)
2669 dyn.d_un.d_val = val;
2670 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
2673 s->contents = newcontents;
2678 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2679 otherwise just check whether one already exists. Returns -1 on error,
2680 1 if a DT_NEEDED tag already exists, and 0 on success. */
2683 elf_add_dt_needed_tag (struct bfd_link_info *info,
2687 struct elf_link_hash_table *hash_table;
2688 bfd_size_type oldsize;
2689 bfd_size_type strindex;
2691 hash_table = elf_hash_table (info);
2692 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
2693 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
2694 if (strindex == (bfd_size_type) -1)
2697 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
2700 const struct elf_backend_data *bed;
2703 bed = get_elf_backend_data (hash_table->dynobj);
2704 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
2705 BFD_ASSERT (sdyn != NULL);
2707 for (extdyn = sdyn->contents;
2708 extdyn < sdyn->contents + sdyn->size;
2709 extdyn += bed->s->sizeof_dyn)
2711 Elf_Internal_Dyn dyn;
2713 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
2714 if (dyn.d_tag == DT_NEEDED
2715 && dyn.d_un.d_val == strindex)
2717 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2725 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
2729 /* We were just checking for existence of the tag. */
2730 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
2735 /* Sort symbol by value and section. */
2737 elf_sort_symbol (const void *arg1, const void *arg2)
2739 const struct elf_link_hash_entry *h1;
2740 const struct elf_link_hash_entry *h2;
2741 bfd_signed_vma vdiff;
2743 h1 = *(const struct elf_link_hash_entry **) arg1;
2744 h2 = *(const struct elf_link_hash_entry **) arg2;
2745 vdiff = h1->root.u.def.value - h2->root.u.def.value;
2747 return vdiff > 0 ? 1 : -1;
2750 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
2752 return sdiff > 0 ? 1 : -1;
2757 /* This function is used to adjust offsets into .dynstr for
2758 dynamic symbols. This is called via elf_link_hash_traverse. */
2761 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
2763 struct elf_strtab_hash *dynstr = data;
2765 if (h->root.type == bfd_link_hash_warning)
2766 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2768 if (h->dynindx != -1)
2769 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
2773 /* Assign string offsets in .dynstr, update all structures referencing
2777 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
2779 struct elf_link_hash_table *hash_table = elf_hash_table (info);
2780 struct elf_link_local_dynamic_entry *entry;
2781 struct elf_strtab_hash *dynstr = hash_table->dynstr;
2782 bfd *dynobj = hash_table->dynobj;
2785 const struct elf_backend_data *bed;
2788 _bfd_elf_strtab_finalize (dynstr);
2789 size = _bfd_elf_strtab_size (dynstr);
2791 bed = get_elf_backend_data (dynobj);
2792 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2793 BFD_ASSERT (sdyn != NULL);
2795 /* Update all .dynamic entries referencing .dynstr strings. */
2796 for (extdyn = sdyn->contents;
2797 extdyn < sdyn->contents + sdyn->size;
2798 extdyn += bed->s->sizeof_dyn)
2800 Elf_Internal_Dyn dyn;
2802 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
2806 dyn.d_un.d_val = size;
2814 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
2819 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
2822 /* Now update local dynamic symbols. */
2823 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
2824 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
2825 entry->isym.st_name);
2827 /* And the rest of dynamic symbols. */
2828 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
2830 /* Adjust version definitions. */
2831 if (elf_tdata (output_bfd)->cverdefs)
2836 Elf_Internal_Verdef def;
2837 Elf_Internal_Verdaux defaux;
2839 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2843 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
2845 p += sizeof (Elf_External_Verdef);
2846 for (i = 0; i < def.vd_cnt; ++i)
2848 _bfd_elf_swap_verdaux_in (output_bfd,
2849 (Elf_External_Verdaux *) p, &defaux);
2850 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
2852 _bfd_elf_swap_verdaux_out (output_bfd,
2853 &defaux, (Elf_External_Verdaux *) p);
2854 p += sizeof (Elf_External_Verdaux);
2857 while (def.vd_next);
2860 /* Adjust version references. */
2861 if (elf_tdata (output_bfd)->verref)
2866 Elf_Internal_Verneed need;
2867 Elf_Internal_Vernaux needaux;
2869 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2873 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
2875 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
2876 _bfd_elf_swap_verneed_out (output_bfd, &need,
2877 (Elf_External_Verneed *) p);
2878 p += sizeof (Elf_External_Verneed);
2879 for (i = 0; i < need.vn_cnt; ++i)
2881 _bfd_elf_swap_vernaux_in (output_bfd,
2882 (Elf_External_Vernaux *) p, &needaux);
2883 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
2885 _bfd_elf_swap_vernaux_out (output_bfd,
2887 (Elf_External_Vernaux *) p);
2888 p += sizeof (Elf_External_Vernaux);
2891 while (need.vn_next);
2897 /* Add symbols from an ELF object file to the linker hash table. */
2900 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
2902 bfd_boolean (*add_symbol_hook)
2903 (bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
2904 const char **, flagword *, asection **, bfd_vma *);
2905 bfd_boolean (*check_relocs)
2906 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
2907 bfd_boolean (*check_directives)
2908 (bfd *, struct bfd_link_info *);
2909 bfd_boolean collect;
2910 Elf_Internal_Shdr *hdr;
2911 bfd_size_type symcount;
2912 bfd_size_type extsymcount;
2913 bfd_size_type extsymoff;
2914 struct elf_link_hash_entry **sym_hash;
2915 bfd_boolean dynamic;
2916 Elf_External_Versym *extversym = NULL;
2917 Elf_External_Versym *ever;
2918 struct elf_link_hash_entry *weaks;
2919 struct elf_link_hash_entry **nondeflt_vers = NULL;
2920 bfd_size_type nondeflt_vers_cnt = 0;
2921 Elf_Internal_Sym *isymbuf = NULL;
2922 Elf_Internal_Sym *isym;
2923 Elf_Internal_Sym *isymend;
2924 const struct elf_backend_data *bed;
2925 bfd_boolean add_needed;
2926 struct elf_link_hash_table * hash_table;
2929 hash_table = elf_hash_table (info);
2931 bed = get_elf_backend_data (abfd);
2932 add_symbol_hook = bed->elf_add_symbol_hook;
2933 collect = bed->collect;
2935 if ((abfd->flags & DYNAMIC) == 0)
2941 /* You can't use -r against a dynamic object. Also, there's no
2942 hope of using a dynamic object which does not exactly match
2943 the format of the output file. */
2944 if (info->relocatable
2945 || !is_elf_hash_table (hash_table)
2946 || hash_table->root.creator != abfd->xvec)
2948 bfd_set_error (bfd_error_invalid_operation);
2953 /* As a GNU extension, any input sections which are named
2954 .gnu.warning.SYMBOL are treated as warning symbols for the given
2955 symbol. This differs from .gnu.warning sections, which generate
2956 warnings when they are included in an output file. */
2957 if (info->executable)
2961 for (s = abfd->sections; s != NULL; s = s->next)
2965 name = bfd_get_section_name (abfd, s);
2966 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2970 bfd_size_type prefix_len;
2971 const char * gnu_warning_prefix = _("warning: ");
2973 name += sizeof ".gnu.warning." - 1;
2975 /* If this is a shared object, then look up the symbol
2976 in the hash table. If it is there, and it is already
2977 been defined, then we will not be using the entry
2978 from this shared object, so we don't need to warn.
2979 FIXME: If we see the definition in a regular object
2980 later on, we will warn, but we shouldn't. The only
2981 fix is to keep track of what warnings we are supposed
2982 to emit, and then handle them all at the end of the
2986 struct elf_link_hash_entry *h;
2988 h = elf_link_hash_lookup (hash_table, name,
2989 FALSE, FALSE, TRUE);
2991 /* FIXME: What about bfd_link_hash_common? */
2993 && (h->root.type == bfd_link_hash_defined
2994 || h->root.type == bfd_link_hash_defweak))
2996 /* We don't want to issue this warning. Clobber
2997 the section size so that the warning does not
2998 get copied into the output file. */
3005 prefix_len = strlen (gnu_warning_prefix);
3006 msg = bfd_alloc (abfd, prefix_len + sz + 1);
3010 strcpy (msg, gnu_warning_prefix);
3011 if (! bfd_get_section_contents (abfd, s, msg + prefix_len, 0, sz))
3014 msg[prefix_len + sz] = '\0';
3016 if (! (_bfd_generic_link_add_one_symbol
3017 (info, abfd, name, BSF_WARNING, s, 0, msg,
3018 FALSE, collect, NULL)))
3021 if (! info->relocatable)
3023 /* Clobber the section size so that the warning does
3024 not get copied into the output file. */
3034 /* If we are creating a shared library, create all the dynamic
3035 sections immediately. We need to attach them to something,
3036 so we attach them to this BFD, provided it is the right
3037 format. FIXME: If there are no input BFD's of the same
3038 format as the output, we can't make a shared library. */
3040 && is_elf_hash_table (hash_table)
3041 && hash_table->root.creator == abfd->xvec
3042 && ! hash_table->dynamic_sections_created)
3044 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3048 else if (!is_elf_hash_table (hash_table))
3053 const char *soname = NULL;
3054 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3057 /* ld --just-symbols and dynamic objects don't mix very well.
3058 Test for --just-symbols by looking at info set up by
3059 _bfd_elf_link_just_syms. */
3060 if ((s = abfd->sections) != NULL
3061 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3064 /* If this dynamic lib was specified on the command line with
3065 --as-needed in effect, then we don't want to add a DT_NEEDED
3066 tag unless the lib is actually used. Similary for libs brought
3067 in by another lib's DT_NEEDED. */
3068 add_needed = elf_dyn_lib_class (abfd) == DYN_NORMAL;
3070 s = bfd_get_section_by_name (abfd, ".dynamic");
3076 unsigned long shlink;
3078 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3079 goto error_free_dyn;
3081 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3083 goto error_free_dyn;
3084 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3086 for (extdyn = dynbuf;
3087 extdyn < dynbuf + s->size;
3088 extdyn += bed->s->sizeof_dyn)
3090 Elf_Internal_Dyn dyn;
3092 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3093 if (dyn.d_tag == DT_SONAME)
3095 unsigned int tagv = dyn.d_un.d_val;
3096 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3098 goto error_free_dyn;
3100 if (dyn.d_tag == DT_NEEDED)
3102 struct bfd_link_needed_list *n, **pn;
3104 unsigned int tagv = dyn.d_un.d_val;
3106 amt = sizeof (struct bfd_link_needed_list);
3107 n = bfd_alloc (abfd, amt);
3108 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3109 if (n == NULL || fnm == NULL)
3110 goto error_free_dyn;
3111 amt = strlen (fnm) + 1;
3112 anm = bfd_alloc (abfd, amt);
3114 goto error_free_dyn;
3115 memcpy (anm, fnm, amt);
3119 for (pn = & hash_table->needed;
3125 if (dyn.d_tag == DT_RUNPATH)
3127 struct bfd_link_needed_list *n, **pn;
3129 unsigned int tagv = dyn.d_un.d_val;
3131 amt = sizeof (struct bfd_link_needed_list);
3132 n = bfd_alloc (abfd, amt);
3133 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3134 if (n == NULL || fnm == NULL)
3135 goto error_free_dyn;
3136 amt = strlen (fnm) + 1;
3137 anm = bfd_alloc (abfd, amt);
3139 goto error_free_dyn;
3140 memcpy (anm, fnm, amt);
3144 for (pn = & runpath;
3150 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3151 if (!runpath && dyn.d_tag == DT_RPATH)
3153 struct bfd_link_needed_list *n, **pn;
3155 unsigned int tagv = dyn.d_un.d_val;
3157 amt = sizeof (struct bfd_link_needed_list);
3158 n = bfd_alloc (abfd, amt);
3159 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3160 if (n == NULL || fnm == NULL)
3161 goto error_free_dyn;
3162 amt = strlen (fnm) + 1;
3163 anm = bfd_alloc (abfd, amt);
3170 memcpy (anm, fnm, amt);
3185 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3186 frees all more recently bfd_alloc'd blocks as well. */
3192 struct bfd_link_needed_list **pn;
3193 for (pn = & hash_table->runpath;
3200 /* We do not want to include any of the sections in a dynamic
3201 object in the output file. We hack by simply clobbering the
3202 list of sections in the BFD. This could be handled more
3203 cleanly by, say, a new section flag; the existing
3204 SEC_NEVER_LOAD flag is not the one we want, because that one
3205 still implies that the section takes up space in the output
3207 bfd_section_list_clear (abfd);
3209 /* If this is the first dynamic object found in the link, create
3210 the special sections required for dynamic linking. */
3211 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3214 /* Find the name to use in a DT_NEEDED entry that refers to this
3215 object. If the object has a DT_SONAME entry, we use it.
3216 Otherwise, if the generic linker stuck something in
3217 elf_dt_name, we use that. Otherwise, we just use the file
3219 if (soname == NULL || *soname == '\0')
3221 soname = elf_dt_name (abfd);
3222 if (soname == NULL || *soname == '\0')
3223 soname = bfd_get_filename (abfd);
3226 /* Save the SONAME because sometimes the linker emulation code
3227 will need to know it. */
3228 elf_dt_name (abfd) = soname;
3230 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3234 /* If we have already included this dynamic object in the
3235 link, just ignore it. There is no reason to include a
3236 particular dynamic object more than once. */
3241 /* If this is a dynamic object, we always link against the .dynsym
3242 symbol table, not the .symtab symbol table. The dynamic linker
3243 will only see the .dynsym symbol table, so there is no reason to
3244 look at .symtab for a dynamic object. */
3246 if (! dynamic || elf_dynsymtab (abfd) == 0)
3247 hdr = &elf_tdata (abfd)->symtab_hdr;
3249 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3251 symcount = hdr->sh_size / bed->s->sizeof_sym;
3253 /* The sh_info field of the symtab header tells us where the
3254 external symbols start. We don't care about the local symbols at
3256 if (elf_bad_symtab (abfd))
3258 extsymcount = symcount;
3263 extsymcount = symcount - hdr->sh_info;
3264 extsymoff = hdr->sh_info;
3268 if (extsymcount != 0)
3270 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3272 if (isymbuf == NULL)
3275 /* We store a pointer to the hash table entry for each external
3277 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3278 sym_hash = bfd_alloc (abfd, amt);
3279 if (sym_hash == NULL)
3280 goto error_free_sym;
3281 elf_sym_hashes (abfd) = sym_hash;
3286 /* Read in any version definitions. */
3287 if (! _bfd_elf_slurp_version_tables (abfd))
3288 goto error_free_sym;
3290 /* Read in the symbol versions, but don't bother to convert them
3291 to internal format. */
3292 if (elf_dynversym (abfd) != 0)
3294 Elf_Internal_Shdr *versymhdr;
3296 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3297 extversym = bfd_malloc (versymhdr->sh_size);
3298 if (extversym == NULL)
3299 goto error_free_sym;
3300 amt = versymhdr->sh_size;
3301 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3302 || bfd_bread (extversym, amt, abfd) != amt)
3303 goto error_free_vers;
3309 ever = extversym != NULL ? extversym + extsymoff : NULL;
3310 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3312 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3319 struct elf_link_hash_entry *h;
3320 bfd_boolean definition;
3321 bfd_boolean size_change_ok;
3322 bfd_boolean type_change_ok;
3323 bfd_boolean new_weakdef;
3324 bfd_boolean override;
3325 unsigned int old_alignment;
3330 flags = BSF_NO_FLAGS;
3332 value = isym->st_value;
3335 bind = ELF_ST_BIND (isym->st_info);
3336 if (bind == STB_LOCAL)
3338 /* This should be impossible, since ELF requires that all
3339 global symbols follow all local symbols, and that sh_info
3340 point to the first global symbol. Unfortunately, Irix 5
3344 else if (bind == STB_GLOBAL)
3346 if (isym->st_shndx != SHN_UNDEF
3347 && isym->st_shndx != SHN_COMMON)
3350 else if (bind == STB_WEAK)
3354 /* Leave it up to the processor backend. */
3357 if (isym->st_shndx == SHN_UNDEF)
3358 sec = bfd_und_section_ptr;
3359 else if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
3361 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3363 sec = bfd_abs_section_ptr;
3364 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3367 else if (isym->st_shndx == SHN_ABS)
3368 sec = bfd_abs_section_ptr;
3369 else if (isym->st_shndx == SHN_COMMON)
3371 sec = bfd_com_section_ptr;
3372 /* What ELF calls the size we call the value. What ELF
3373 calls the value we call the alignment. */
3374 value = isym->st_size;
3378 /* Leave it up to the processor backend. */
3381 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3384 goto error_free_vers;
3386 if (isym->st_shndx == SHN_COMMON
3387 && ELF_ST_TYPE (isym->st_info) == STT_TLS)
3389 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3393 tcomm = bfd_make_section (abfd, ".tcommon");
3395 || !bfd_set_section_flags (abfd, tcomm, (SEC_ALLOC
3397 | SEC_LINKER_CREATED
3398 | SEC_THREAD_LOCAL)))
3399 goto error_free_vers;
3403 else if (add_symbol_hook)
3405 if (! (*add_symbol_hook) (abfd, info, isym, &name, &flags, &sec,
3407 goto error_free_vers;
3409 /* The hook function sets the name to NULL if this symbol
3410 should be skipped for some reason. */
3415 /* Sanity check that all possibilities were handled. */
3418 bfd_set_error (bfd_error_bad_value);
3419 goto error_free_vers;
3422 if (bfd_is_und_section (sec)
3423 || bfd_is_com_section (sec))
3428 size_change_ok = FALSE;
3429 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
3433 if (is_elf_hash_table (hash_table))
3435 Elf_Internal_Versym iver;
3436 unsigned int vernum = 0;
3441 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3442 vernum = iver.vs_vers & VERSYM_VERSION;
3444 /* If this is a hidden symbol, or if it is not version
3445 1, we append the version name to the symbol name.
3446 However, we do not modify a non-hidden absolute
3447 symbol, because it might be the version symbol
3448 itself. FIXME: What if it isn't? */
3449 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3450 || (vernum > 1 && ! bfd_is_abs_section (sec)))
3453 size_t namelen, verlen, newlen;
3456 if (isym->st_shndx != SHN_UNDEF)
3458 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
3460 (*_bfd_error_handler)
3461 (_("%s: %s: invalid version %u (max %d)"),
3462 bfd_archive_filename (abfd), name, vernum,
3463 elf_tdata (abfd)->dynverdef_hdr.sh_info);
3464 bfd_set_error (bfd_error_bad_value);
3465 goto error_free_vers;
3467 else if (vernum > 1)
3469 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3475 /* We cannot simply test for the number of
3476 entries in the VERNEED section since the
3477 numbers for the needed versions do not start
3479 Elf_Internal_Verneed *t;
3482 for (t = elf_tdata (abfd)->verref;
3486 Elf_Internal_Vernaux *a;
3488 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3490 if (a->vna_other == vernum)
3492 verstr = a->vna_nodename;
3501 (*_bfd_error_handler)
3502 (_("%s: %s: invalid needed version %d"),
3503 bfd_archive_filename (abfd), name, vernum);
3504 bfd_set_error (bfd_error_bad_value);
3505 goto error_free_vers;
3509 namelen = strlen (name);
3510 verlen = strlen (verstr);
3511 newlen = namelen + verlen + 2;
3512 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3513 && isym->st_shndx != SHN_UNDEF)
3516 newname = bfd_alloc (abfd, newlen);
3517 if (newname == NULL)
3518 goto error_free_vers;
3519 memcpy (newname, name, namelen);
3520 p = newname + namelen;
3522 /* If this is a defined non-hidden version symbol,
3523 we add another @ to the name. This indicates the
3524 default version of the symbol. */
3525 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3526 && isym->st_shndx != SHN_UNDEF)
3528 memcpy (p, verstr, verlen + 1);
3534 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
3535 sym_hash, &skip, &override,
3536 &type_change_ok, &size_change_ok))
3537 goto error_free_vers;
3546 while (h->root.type == bfd_link_hash_indirect
3547 || h->root.type == bfd_link_hash_warning)
3548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3550 /* Remember the old alignment if this is a common symbol, so
3551 that we don't reduce the alignment later on. We can't
3552 check later, because _bfd_generic_link_add_one_symbol
3553 will set a default for the alignment which we want to
3554 override. We also remember the old bfd where the existing
3555 definition comes from. */
3556 switch (h->root.type)
3561 case bfd_link_hash_defined:
3562 case bfd_link_hash_defweak:
3563 old_bfd = h->root.u.def.section->owner;
3566 case bfd_link_hash_common:
3567 old_bfd = h->root.u.c.p->section->owner;
3568 old_alignment = h->root.u.c.p->alignment_power;
3572 if (elf_tdata (abfd)->verdef != NULL
3576 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
3579 if (! (_bfd_generic_link_add_one_symbol
3580 (info, abfd, name, flags, sec, value, NULL, FALSE, collect,
3581 (struct bfd_link_hash_entry **) sym_hash)))
3582 goto error_free_vers;
3585 while (h->root.type == bfd_link_hash_indirect
3586 || h->root.type == bfd_link_hash_warning)
3587 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3590 new_weakdef = FALSE;
3593 && (flags & BSF_WEAK) != 0
3594 && ELF_ST_TYPE (isym->st_info) != STT_FUNC
3595 && is_elf_hash_table (hash_table)
3596 && h->weakdef == NULL)
3598 /* Keep a list of all weak defined non function symbols from
3599 a dynamic object, using the weakdef field. Later in this
3600 function we will set the weakdef field to the correct
3601 value. We only put non-function symbols from dynamic
3602 objects on this list, because that happens to be the only
3603 time we need to know the normal symbol corresponding to a
3604 weak symbol, and the information is time consuming to
3605 figure out. If the weakdef field is not already NULL,
3606 then this symbol was already defined by some previous
3607 dynamic object, and we will be using that previous
3608 definition anyhow. */
3615 /* Set the alignment of a common symbol. */
3616 if (isym->st_shndx == SHN_COMMON
3617 && h->root.type == bfd_link_hash_common)
3621 align = bfd_log2 (isym->st_value);
3622 if (align > old_alignment
3623 /* Permit an alignment power of zero if an alignment of one
3624 is specified and no other alignments have been specified. */
3625 || (isym->st_value == 1 && old_alignment == 0))
3626 h->root.u.c.p->alignment_power = align;
3628 h->root.u.c.p->alignment_power = old_alignment;
3631 if (is_elf_hash_table (hash_table))
3637 /* Check the alignment when a common symbol is involved. This
3638 can change when a common symbol is overridden by a normal
3639 definition or a common symbol is ignored due to the old
3640 normal definition. We need to make sure the maximum
3641 alignment is maintained. */
3642 if ((old_alignment || isym->st_shndx == SHN_COMMON)
3643 && h->root.type != bfd_link_hash_common)
3645 unsigned int common_align;
3646 unsigned int normal_align;
3647 unsigned int symbol_align;
3651 symbol_align = ffs (h->root.u.def.value) - 1;
3652 if (h->root.u.def.section->owner != NULL
3653 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3655 normal_align = h->root.u.def.section->alignment_power;
3656 if (normal_align > symbol_align)
3657 normal_align = symbol_align;
3660 normal_align = symbol_align;
3664 common_align = old_alignment;
3665 common_bfd = old_bfd;
3670 common_align = bfd_log2 (isym->st_value);
3672 normal_bfd = old_bfd;
3675 if (normal_align < common_align)
3676 (*_bfd_error_handler)
3677 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3680 bfd_archive_filename (normal_bfd),
3682 bfd_archive_filename (common_bfd));
3685 /* Remember the symbol size and type. */
3686 if (isym->st_size != 0
3687 && (definition || h->size == 0))
3689 if (h->size != 0 && h->size != isym->st_size && ! size_change_ok)
3690 (*_bfd_error_handler)
3691 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3692 name, (unsigned long) h->size,
3693 bfd_archive_filename (old_bfd),
3694 (unsigned long) isym->st_size,
3695 bfd_archive_filename (abfd));
3697 h->size = isym->st_size;
3700 /* If this is a common symbol, then we always want H->SIZE
3701 to be the size of the common symbol. The code just above
3702 won't fix the size if a common symbol becomes larger. We
3703 don't warn about a size change here, because that is
3704 covered by --warn-common. */
3705 if (h->root.type == bfd_link_hash_common)
3706 h->size = h->root.u.c.size;
3708 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
3709 && (definition || h->type == STT_NOTYPE))
3711 if (h->type != STT_NOTYPE
3712 && h->type != ELF_ST_TYPE (isym->st_info)
3713 && ! type_change_ok)
3714 (*_bfd_error_handler)
3715 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3716 name, h->type, ELF_ST_TYPE (isym->st_info),
3717 bfd_archive_filename (abfd));
3719 h->type = ELF_ST_TYPE (isym->st_info);
3722 /* If st_other has a processor-specific meaning, specific
3723 code might be needed here. We never merge the visibility
3724 attribute with the one from a dynamic object. */
3725 if (bed->elf_backend_merge_symbol_attribute)
3726 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
3729 if (isym->st_other != 0 && !dynamic)
3731 unsigned char hvis, symvis, other, nvis;
3733 /* Take the balance of OTHER from the definition. */
3734 other = (definition ? isym->st_other : h->other);
3735 other &= ~ ELF_ST_VISIBILITY (-1);
3737 /* Combine visibilities, using the most constraining one. */
3738 hvis = ELF_ST_VISIBILITY (h->other);
3739 symvis = ELF_ST_VISIBILITY (isym->st_other);
3745 nvis = hvis < symvis ? hvis : symvis;
3747 h->other = other | nvis;
3750 /* Set a flag in the hash table entry indicating the type of
3751 reference or definition we just found. Keep a count of
3752 the number of dynamic symbols we find. A dynamic symbol
3753 is one which is referenced or defined by both a regular
3754 object and a shared object. */
3755 old_flags = h->elf_link_hash_flags;
3761 new_flag = ELF_LINK_HASH_REF_REGULAR;
3762 if (bind != STB_WEAK)
3763 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
3766 new_flag = ELF_LINK_HASH_DEF_REGULAR;
3767 if (! info->executable
3768 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
3769 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
3775 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
3777 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
3778 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
3779 | ELF_LINK_HASH_REF_REGULAR)) != 0
3780 || (h->weakdef != NULL
3782 && h->weakdef->dynindx != -1))
3786 h->elf_link_hash_flags |= new_flag;
3788 /* Check to see if we need to add an indirect symbol for
3789 the default name. */
3790 if (definition || h->root.type == bfd_link_hash_common)
3791 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
3792 &sec, &value, &dynsym,
3794 goto error_free_vers;
3796 if (definition && !dynamic)
3798 char *p = strchr (name, ELF_VER_CHR);
3799 if (p != NULL && p[1] != ELF_VER_CHR)
3801 /* Queue non-default versions so that .symver x, x@FOO
3802 aliases can be checked. */
3803 if (! nondeflt_vers)
3805 amt = (isymend - isym + 1)
3806 * sizeof (struct elf_link_hash_entry *);
3807 nondeflt_vers = bfd_malloc (amt);
3809 nondeflt_vers [nondeflt_vers_cnt++] = h;
3813 if (dynsym && h->dynindx == -1)
3815 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3816 goto error_free_vers;
3817 if (h->weakdef != NULL
3819 && h->weakdef->dynindx == -1)
3821 if (! bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
3822 goto error_free_vers;
3825 else if (dynsym && h->dynindx != -1)
3826 /* If the symbol already has a dynamic index, but
3827 visibility says it should not be visible, turn it into
3829 switch (ELF_ST_VISIBILITY (h->other))
3833 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
3841 && (h->elf_link_hash_flags
3842 & ELF_LINK_HASH_REF_REGULAR) != 0)
3845 const char *soname = elf_dt_name (abfd);
3847 /* A symbol from a library loaded via DT_NEEDED of some
3848 other library is referenced by a regular object.
3849 Add a DT_NEEDED entry for it. */
3851 ret = elf_add_dt_needed_tag (info, soname, add_needed);
3853 goto error_free_vers;
3855 BFD_ASSERT (ret == 0);
3860 /* Now that all the symbols from this input file are created, handle
3861 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3862 if (nondeflt_vers != NULL)
3864 bfd_size_type cnt, symidx;
3866 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
3868 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
3869 char *shortname, *p;
3871 p = strchr (h->root.root.string, ELF_VER_CHR);
3873 || (h->root.type != bfd_link_hash_defined
3874 && h->root.type != bfd_link_hash_defweak))
3877 amt = p - h->root.root.string;
3878 shortname = bfd_malloc (amt + 1);
3879 memcpy (shortname, h->root.root.string, amt);
3880 shortname[amt] = '\0';
3882 hi = (struct elf_link_hash_entry *)
3883 bfd_link_hash_lookup (&hash_table->root, shortname,
3884 FALSE, FALSE, FALSE);
3886 && hi->root.type == h->root.type
3887 && hi->root.u.def.value == h->root.u.def.value
3888 && hi->root.u.def.section == h->root.u.def.section)
3890 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
3891 hi->root.type = bfd_link_hash_indirect;
3892 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
3893 (*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
3894 sym_hash = elf_sym_hashes (abfd);
3896 for (symidx = 0; symidx < extsymcount; ++symidx)
3897 if (sym_hash[symidx] == hi)
3899 sym_hash[symidx] = h;
3905 free (nondeflt_vers);
3906 nondeflt_vers = NULL;
3909 if (extversym != NULL)
3915 if (isymbuf != NULL)
3919 /* Now set the weakdefs field correctly for all the weak defined
3920 symbols we found. The only way to do this is to search all the
3921 symbols. Since we only need the information for non functions in
3922 dynamic objects, that's the only time we actually put anything on
3923 the list WEAKS. We need this information so that if a regular
3924 object refers to a symbol defined weakly in a dynamic object, the
3925 real symbol in the dynamic object is also put in the dynamic
3926 symbols; we also must arrange for both symbols to point to the
3927 same memory location. We could handle the general case of symbol
3928 aliasing, but a general symbol alias can only be generated in
3929 assembler code, handling it correctly would be very time
3930 consuming, and other ELF linkers don't handle general aliasing
3934 struct elf_link_hash_entry **hpp;
3935 struct elf_link_hash_entry **hppend;
3936 struct elf_link_hash_entry **sorted_sym_hash;
3937 struct elf_link_hash_entry *h;
3940 /* Since we have to search the whole symbol list for each weak
3941 defined symbol, search time for N weak defined symbols will be
3942 O(N^2). Binary search will cut it down to O(NlogN). */
3943 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3944 sorted_sym_hash = bfd_malloc (amt);
3945 if (sorted_sym_hash == NULL)
3947 sym_hash = sorted_sym_hash;
3948 hpp = elf_sym_hashes (abfd);
3949 hppend = hpp + extsymcount;
3951 for (; hpp < hppend; hpp++)
3955 && h->root.type == bfd_link_hash_defined
3956 && h->type != STT_FUNC)
3964 qsort (sorted_sym_hash, sym_count,
3965 sizeof (struct elf_link_hash_entry *),
3968 while (weaks != NULL)
3970 struct elf_link_hash_entry *hlook;
3977 weaks = hlook->weakdef;
3978 hlook->weakdef = NULL;
3980 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
3981 || hlook->root.type == bfd_link_hash_defweak
3982 || hlook->root.type == bfd_link_hash_common
3983 || hlook->root.type == bfd_link_hash_indirect);
3984 slook = hlook->root.u.def.section;
3985 vlook = hlook->root.u.def.value;
3992 bfd_signed_vma vdiff;
3994 h = sorted_sym_hash [idx];
3995 vdiff = vlook - h->root.u.def.value;
4002 long sdiff = slook->id - h->root.u.def.section->id;
4015 /* We didn't find a value/section match. */
4019 for (i = ilook; i < sym_count; i++)
4021 h = sorted_sym_hash [i];
4023 /* Stop if value or section doesn't match. */
4024 if (h->root.u.def.value != vlook
4025 || h->root.u.def.section != slook)
4027 else if (h != hlook)
4031 /* If the weak definition is in the list of dynamic
4032 symbols, make sure the real definition is put
4034 if (hlook->dynindx != -1 && h->dynindx == -1)
4036 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4040 /* If the real definition is in the list of dynamic
4041 symbols, make sure the weak definition is put
4042 there as well. If we don't do this, then the
4043 dynamic loader might not merge the entries for the
4044 real definition and the weak definition. */
4045 if (h->dynindx != -1 && hlook->dynindx == -1)
4047 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4055 free (sorted_sym_hash);
4058 check_directives = get_elf_backend_data (abfd)->check_directives;
4059 if (check_directives)
4060 check_directives (abfd, info);
4062 /* If this object is the same format as the output object, and it is
4063 not a shared library, then let the backend look through the
4066 This is required to build global offset table entries and to
4067 arrange for dynamic relocs. It is not required for the
4068 particular common case of linking non PIC code, even when linking
4069 against shared libraries, but unfortunately there is no way of
4070 knowing whether an object file has been compiled PIC or not.
4071 Looking through the relocs is not particularly time consuming.
4072 The problem is that we must either (1) keep the relocs in memory,
4073 which causes the linker to require additional runtime memory or
4074 (2) read the relocs twice from the input file, which wastes time.
4075 This would be a good case for using mmap.
4077 I have no idea how to handle linking PIC code into a file of a
4078 different format. It probably can't be done. */
4079 check_relocs = get_elf_backend_data (abfd)->check_relocs;
4081 && is_elf_hash_table (hash_table)
4082 && hash_table->root.creator == abfd->xvec
4083 && check_relocs != NULL)
4087 for (o = abfd->sections; o != NULL; o = o->next)
4089 Elf_Internal_Rela *internal_relocs;
4092 if ((o->flags & SEC_RELOC) == 0
4093 || o->reloc_count == 0
4094 || ((info->strip == strip_all || info->strip == strip_debugger)
4095 && (o->flags & SEC_DEBUGGING) != 0)
4096 || bfd_is_abs_section (o->output_section))
4099 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4101 if (internal_relocs == NULL)
4104 ok = (*check_relocs) (abfd, info, o, internal_relocs);
4106 if (elf_section_data (o)->relocs != internal_relocs)
4107 free (internal_relocs);
4114 /* If this is a non-traditional link, try to optimize the handling
4115 of the .stab/.stabstr sections. */
4117 && ! info->traditional_format
4118 && is_elf_hash_table (hash_table)
4119 && (info->strip != strip_all && info->strip != strip_debugger))
4123 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4124 if (stabstr != NULL)
4126 bfd_size_type string_offset = 0;
4129 for (stab = abfd->sections; stab; stab = stab->next)
4130 if (strncmp (".stab", stab->name, 5) == 0
4131 && (!stab->name[5] ||
4132 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4133 && (stab->flags & SEC_MERGE) == 0
4134 && !bfd_is_abs_section (stab->output_section))
4136 struct bfd_elf_section_data *secdata;
4138 secdata = elf_section_data (stab);
4139 if (! _bfd_link_section_stabs (abfd,
4140 &hash_table->stab_info,
4145 if (secdata->sec_info)
4146 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4151 if (is_elf_hash_table (hash_table))
4153 /* Add this bfd to the loaded list. */
4154 struct elf_link_loaded_list *n;
4156 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4160 n->next = hash_table->loaded;
4161 hash_table->loaded = n;
4167 if (nondeflt_vers != NULL)
4168 free (nondeflt_vers);
4169 if (extversym != NULL)
4172 if (isymbuf != NULL)
4178 /* Add symbols from an ELF archive file to the linker hash table. We
4179 don't use _bfd_generic_link_add_archive_symbols because of a
4180 problem which arises on UnixWare. The UnixWare libc.so is an
4181 archive which includes an entry libc.so.1 which defines a bunch of
4182 symbols. The libc.so archive also includes a number of other
4183 object files, which also define symbols, some of which are the same
4184 as those defined in libc.so.1. Correct linking requires that we
4185 consider each object file in turn, and include it if it defines any
4186 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4187 this; it looks through the list of undefined symbols, and includes
4188 any object file which defines them. When this algorithm is used on
4189 UnixWare, it winds up pulling in libc.so.1 early and defining a
4190 bunch of symbols. This means that some of the other objects in the
4191 archive are not included in the link, which is incorrect since they
4192 precede libc.so.1 in the archive.
4194 Fortunately, ELF archive handling is simpler than that done by
4195 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4196 oddities. In ELF, if we find a symbol in the archive map, and the
4197 symbol is currently undefined, we know that we must pull in that
4200 Unfortunately, we do have to make multiple passes over the symbol
4201 table until nothing further is resolved. */
4204 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4207 bfd_boolean *defined = NULL;
4208 bfd_boolean *included = NULL;
4213 if (! bfd_has_map (abfd))
4215 /* An empty archive is a special case. */
4216 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4218 bfd_set_error (bfd_error_no_armap);
4222 /* Keep track of all symbols we know to be already defined, and all
4223 files we know to be already included. This is to speed up the
4224 second and subsequent passes. */
4225 c = bfd_ardata (abfd)->symdef_count;
4229 amt *= sizeof (bfd_boolean);
4230 defined = bfd_zmalloc (amt);
4231 included = bfd_zmalloc (amt);
4232 if (defined == NULL || included == NULL)
4235 symdefs = bfd_ardata (abfd)->symdefs;
4248 symdefend = symdef + c;
4249 for (i = 0; symdef < symdefend; symdef++, i++)
4251 struct elf_link_hash_entry *h;
4253 struct bfd_link_hash_entry *undefs_tail;
4256 if (defined[i] || included[i])
4258 if (symdef->file_offset == last)
4264 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
4265 FALSE, FALSE, FALSE);
4272 /* If this is a default version (the name contains @@),
4273 look up the symbol again with only one `@' as well
4274 as without the version. The effect is that references
4275 to the symbol with and without the version will be
4276 matched by the default symbol in the archive. */
4278 p = strchr (symdef->name, ELF_VER_CHR);
4279 if (p == NULL || p[1] != ELF_VER_CHR)
4282 /* First check with only one `@'. */
4283 len = strlen (symdef->name);
4284 copy = bfd_alloc (abfd, len);
4287 first = p - symdef->name + 1;
4288 memcpy (copy, symdef->name, first);
4289 memcpy (copy + first, symdef->name + first + 1, len - first);
4291 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4292 FALSE, FALSE, FALSE);
4296 /* We also need to check references to the symbol
4297 without the version. */
4299 copy[first - 1] = '\0';
4300 h = elf_link_hash_lookup (elf_hash_table (info),
4301 copy, FALSE, FALSE, FALSE);
4304 bfd_release (abfd, copy);
4310 if (h->root.type == bfd_link_hash_common)
4312 /* We currently have a common symbol. The archive map contains
4313 a reference to this symbol, so we may want to include it. We
4314 only want to include it however, if this archive element
4315 contains a definition of the symbol, not just another common
4318 Unfortunately some archivers (including GNU ar) will put
4319 declarations of common symbols into their archive maps, as
4320 well as real definitions, so we cannot just go by the archive
4321 map alone. Instead we must read in the element's symbol
4322 table and check that to see what kind of symbol definition
4324 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4327 else if (h->root.type != bfd_link_hash_undefined)
4329 if (h->root.type != bfd_link_hash_undefweak)
4334 /* We need to include this archive member. */
4335 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4336 if (element == NULL)
4339 if (! bfd_check_format (element, bfd_object))
4342 /* Doublecheck that we have not included this object
4343 already--it should be impossible, but there may be
4344 something wrong with the archive. */
4345 if (element->archive_pass != 0)
4347 bfd_set_error (bfd_error_bad_value);
4350 element->archive_pass = 1;
4352 undefs_tail = info->hash->undefs_tail;
4354 if (! (*info->callbacks->add_archive_element) (info, element,
4357 if (! bfd_link_add_symbols (element, info))
4360 /* If there are any new undefined symbols, we need to make
4361 another pass through the archive in order to see whether
4362 they can be defined. FIXME: This isn't perfect, because
4363 common symbols wind up on undefs_tail and because an
4364 undefined symbol which is defined later on in this pass
4365 does not require another pass. This isn't a bug, but it
4366 does make the code less efficient than it could be. */
4367 if (undefs_tail != info->hash->undefs_tail)
4370 /* Look backward to mark all symbols from this object file
4371 which we have already seen in this pass. */
4375 included[mark] = TRUE;
4380 while (symdefs[mark].file_offset == symdef->file_offset);
4382 /* We mark subsequent symbols from this object file as we go
4383 on through the loop. */
4384 last = symdef->file_offset;
4395 if (defined != NULL)
4397 if (included != NULL)
4402 /* Given an ELF BFD, add symbols to the global hash table as
4406 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
4408 switch (bfd_get_format (abfd))
4411 return elf_link_add_object_symbols (abfd, info);
4413 return elf_link_add_archive_symbols (abfd, info);
4415 bfd_set_error (bfd_error_wrong_format);
4420 /* This function will be called though elf_link_hash_traverse to store
4421 all hash value of the exported symbols in an array. */
4424 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
4426 unsigned long **valuep = data;
4432 if (h->root.type == bfd_link_hash_warning)
4433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4435 /* Ignore indirect symbols. These are added by the versioning code. */
4436 if (h->dynindx == -1)
4439 name = h->root.root.string;
4440 p = strchr (name, ELF_VER_CHR);
4443 alc = bfd_malloc (p - name + 1);
4444 memcpy (alc, name, p - name);
4445 alc[p - name] = '\0';
4449 /* Compute the hash value. */
4450 ha = bfd_elf_hash (name);
4452 /* Store the found hash value in the array given as the argument. */
4455 /* And store it in the struct so that we can put it in the hash table
4457 h->elf_hash_value = ha;
4465 /* Array used to determine the number of hash table buckets to use
4466 based on the number of symbols there are. If there are fewer than
4467 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4468 fewer than 37 we use 17 buckets, and so forth. We never use more
4469 than 32771 buckets. */
4471 static const size_t elf_buckets[] =
4473 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4477 /* Compute bucket count for hashing table. We do not use a static set
4478 of possible tables sizes anymore. Instead we determine for all
4479 possible reasonable sizes of the table the outcome (i.e., the
4480 number of collisions etc) and choose the best solution. The
4481 weighting functions are not too simple to allow the table to grow
4482 without bounds. Instead one of the weighting factors is the size.
4483 Therefore the result is always a good payoff between few collisions
4484 (= short chain lengths) and table size. */
4486 compute_bucket_count (struct bfd_link_info *info)
4488 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
4489 size_t best_size = 0;
4490 unsigned long int *hashcodes;
4491 unsigned long int *hashcodesp;
4492 unsigned long int i;
4495 /* Compute the hash values for all exported symbols. At the same
4496 time store the values in an array so that we could use them for
4499 amt *= sizeof (unsigned long int);
4500 hashcodes = bfd_malloc (amt);
4501 if (hashcodes == NULL)
4503 hashcodesp = hashcodes;
4505 /* Put all hash values in HASHCODES. */
4506 elf_link_hash_traverse (elf_hash_table (info),
4507 elf_collect_hash_codes, &hashcodesp);
4509 /* We have a problem here. The following code to optimize the table
4510 size requires an integer type with more the 32 bits. If
4511 BFD_HOST_U_64_BIT is set we know about such a type. */
4512 #ifdef BFD_HOST_U_64_BIT
4515 unsigned long int nsyms = hashcodesp - hashcodes;
4518 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
4519 unsigned long int *counts ;
4520 bfd *dynobj = elf_hash_table (info)->dynobj;
4521 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
4523 /* Possible optimization parameters: if we have NSYMS symbols we say
4524 that the hashing table must at least have NSYMS/4 and at most
4526 minsize = nsyms / 4;
4529 best_size = maxsize = nsyms * 2;
4531 /* Create array where we count the collisions in. We must use bfd_malloc
4532 since the size could be large. */
4534 amt *= sizeof (unsigned long int);
4535 counts = bfd_malloc (amt);
4542 /* Compute the "optimal" size for the hash table. The criteria is a
4543 minimal chain length. The minor criteria is (of course) the size
4545 for (i = minsize; i < maxsize; ++i)
4547 /* Walk through the array of hashcodes and count the collisions. */
4548 BFD_HOST_U_64_BIT max;
4549 unsigned long int j;
4550 unsigned long int fact;
4552 memset (counts, '\0', i * sizeof (unsigned long int));
4554 /* Determine how often each hash bucket is used. */
4555 for (j = 0; j < nsyms; ++j)
4556 ++counts[hashcodes[j] % i];
4558 /* For the weight function we need some information about the
4559 pagesize on the target. This is information need not be 100%
4560 accurate. Since this information is not available (so far) we
4561 define it here to a reasonable default value. If it is crucial
4562 to have a better value some day simply define this value. */
4563 # ifndef BFD_TARGET_PAGESIZE
4564 # define BFD_TARGET_PAGESIZE (4096)
4567 /* We in any case need 2 + NSYMS entries for the size values and
4569 max = (2 + nsyms) * (bed->s->arch_size / 8);
4572 /* Variant 1: optimize for short chains. We add the squares
4573 of all the chain lengths (which favors many small chain
4574 over a few long chains). */
4575 for (j = 0; j < i; ++j)
4576 max += counts[j] * counts[j];
4578 /* This adds penalties for the overall size of the table. */
4579 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4582 /* Variant 2: Optimize a lot more for small table. Here we
4583 also add squares of the size but we also add penalties for
4584 empty slots (the +1 term). */
4585 for (j = 0; j < i; ++j)
4586 max += (1 + counts[j]) * (1 + counts[j]);
4588 /* The overall size of the table is considered, but not as
4589 strong as in variant 1, where it is squared. */
4590 fact = i / (BFD_TARGET_PAGESIZE / (bed->s->arch_size / 8)) + 1;
4594 /* Compare with current best results. */
4595 if (max < best_chlen)
4605 #endif /* defined (BFD_HOST_U_64_BIT) */
4607 /* This is the fallback solution if no 64bit type is available or if we
4608 are not supposed to spend much time on optimizations. We select the
4609 bucket count using a fixed set of numbers. */
4610 for (i = 0; elf_buckets[i] != 0; i++)
4612 best_size = elf_buckets[i];
4613 if (dynsymcount < elf_buckets[i + 1])
4618 /* Free the arrays we needed. */
4624 /* Set up the sizes and contents of the ELF dynamic sections. This is
4625 called by the ELF linker emulation before_allocation routine. We
4626 must set the sizes of the sections before the linker sets the
4627 addresses of the various sections. */
4630 bfd_elf_size_dynamic_sections (bfd *output_bfd,
4633 const char *filter_shlib,
4634 const char * const *auxiliary_filters,
4635 struct bfd_link_info *info,
4636 asection **sinterpptr,
4637 struct bfd_elf_version_tree *verdefs)
4639 bfd_size_type soname_indx;
4641 const struct elf_backend_data *bed;
4642 struct elf_assign_sym_version_info asvinfo;
4646 soname_indx = (bfd_size_type) -1;
4648 if (!is_elf_hash_table (info->hash))
4651 elf_tdata (output_bfd)->relro = info->relro;
4652 if (info->execstack)
4653 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
4654 else if (info->noexecstack)
4655 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
4659 asection *notesec = NULL;
4662 for (inputobj = info->input_bfds;
4664 inputobj = inputobj->link_next)
4668 if (inputobj->flags & DYNAMIC)
4670 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
4673 if (s->flags & SEC_CODE)
4682 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
4683 if (exec && info->relocatable
4684 && notesec->output_section != bfd_abs_section_ptr)
4685 notesec->output_section->flags |= SEC_CODE;
4689 /* Any syms created from now on start with -1 in
4690 got.refcount/offset and plt.refcount/offset. */
4691 elf_hash_table (info)->init_refcount = elf_hash_table (info)->init_offset;
4693 /* The backend may have to create some sections regardless of whether
4694 we're dynamic or not. */
4695 bed = get_elf_backend_data (output_bfd);
4696 if (bed->elf_backend_always_size_sections
4697 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
4700 dynobj = elf_hash_table (info)->dynobj;
4702 /* If there were no dynamic objects in the link, there is nothing to
4707 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
4710 if (elf_hash_table (info)->dynamic_sections_created)
4712 struct elf_info_failed eif;
4713 struct elf_link_hash_entry *h;
4715 struct bfd_elf_version_tree *t;
4716 struct bfd_elf_version_expr *d;
4717 bfd_boolean all_defined;
4719 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
4720 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
4724 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4726 if (soname_indx == (bfd_size_type) -1
4727 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
4733 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
4735 info->flags |= DF_SYMBOLIC;
4742 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
4744 if (indx == (bfd_size_type) -1
4745 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
4748 if (info->new_dtags)
4750 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
4751 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
4756 if (filter_shlib != NULL)
4760 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4761 filter_shlib, TRUE);
4762 if (indx == (bfd_size_type) -1
4763 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
4767 if (auxiliary_filters != NULL)
4769 const char * const *p;
4771 for (p = auxiliary_filters; *p != NULL; p++)
4775 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
4777 if (indx == (bfd_size_type) -1
4778 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
4784 eif.verdefs = verdefs;
4787 /* If we are supposed to export all symbols into the dynamic symbol
4788 table (this is not the normal case), then do so. */
4789 if (info->export_dynamic)
4791 elf_link_hash_traverse (elf_hash_table (info),
4792 _bfd_elf_export_symbol,
4798 /* Make all global versions with definition. */
4799 for (t = verdefs; t != NULL; t = t->next)
4800 for (d = t->globals.list; d != NULL; d = d->next)
4801 if (!d->symver && d->symbol)
4803 const char *verstr, *name;
4804 size_t namelen, verlen, newlen;
4806 struct elf_link_hash_entry *newh;
4809 namelen = strlen (name);
4811 verlen = strlen (verstr);
4812 newlen = namelen + verlen + 3;
4814 newname = bfd_malloc (newlen);
4815 if (newname == NULL)
4817 memcpy (newname, name, namelen);
4819 /* Check the hidden versioned definition. */
4820 p = newname + namelen;
4822 memcpy (p, verstr, verlen + 1);
4823 newh = elf_link_hash_lookup (elf_hash_table (info),
4824 newname, FALSE, FALSE,
4827 || (newh->root.type != bfd_link_hash_defined
4828 && newh->root.type != bfd_link_hash_defweak))
4830 /* Check the default versioned definition. */
4832 memcpy (p, verstr, verlen + 1);
4833 newh = elf_link_hash_lookup (elf_hash_table (info),
4834 newname, FALSE, FALSE,
4839 /* Mark this version if there is a definition and it is
4840 not defined in a shared object. */
4842 && ((newh->elf_link_hash_flags
4843 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)
4844 && (newh->root.type == bfd_link_hash_defined
4845 || newh->root.type == bfd_link_hash_defweak))
4849 /* Attach all the symbols to their version information. */
4850 asvinfo.output_bfd = output_bfd;
4851 asvinfo.info = info;
4852 asvinfo.verdefs = verdefs;
4853 asvinfo.failed = FALSE;
4855 elf_link_hash_traverse (elf_hash_table (info),
4856 _bfd_elf_link_assign_sym_version,
4861 if (!info->allow_undefined_version)
4863 /* Check if all global versions have a definition. */
4865 for (t = verdefs; t != NULL; t = t->next)
4866 for (d = t->globals.list; d != NULL; d = d->next)
4867 if (!d->symver && !d->script)
4869 (*_bfd_error_handler)
4870 (_("%s: undefined version: %s"),
4871 d->pattern, t->name);
4872 all_defined = FALSE;
4877 bfd_set_error (bfd_error_bad_value);
4882 /* Find all symbols which were defined in a dynamic object and make
4883 the backend pick a reasonable value for them. */
4884 elf_link_hash_traverse (elf_hash_table (info),
4885 _bfd_elf_adjust_dynamic_symbol,
4890 /* Add some entries to the .dynamic section. We fill in some of the
4891 values later, in elf_bfd_final_link, but we must add the entries
4892 now so that we know the final size of the .dynamic section. */
4894 /* If there are initialization and/or finalization functions to
4895 call then add the corresponding DT_INIT/DT_FINI entries. */
4896 h = (info->init_function
4897 ? elf_link_hash_lookup (elf_hash_table (info),
4898 info->init_function, FALSE,
4902 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4903 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4905 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
4908 h = (info->fini_function
4909 ? elf_link_hash_lookup (elf_hash_table (info),
4910 info->fini_function, FALSE,
4914 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
4915 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
4917 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
4921 if (bfd_get_section_by_name (output_bfd, ".preinit_array") != NULL)
4923 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4924 if (! info->executable)
4929 for (sub = info->input_bfds; sub != NULL;
4930 sub = sub->link_next)
4931 for (o = sub->sections; o != NULL; o = o->next)
4932 if (elf_section_data (o)->this_hdr.sh_type
4933 == SHT_PREINIT_ARRAY)
4935 (*_bfd_error_handler)
4936 (_("%s: .preinit_array section is not allowed in DSO"),
4937 bfd_archive_filename (sub));
4941 bfd_set_error (bfd_error_nonrepresentable_section);
4945 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
4946 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
4949 if (bfd_get_section_by_name (output_bfd, ".init_array") != NULL)
4951 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
4952 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
4955 if (bfd_get_section_by_name (output_bfd, ".fini_array") != NULL)
4957 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
4958 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
4962 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
4963 /* If .dynstr is excluded from the link, we don't want any of
4964 these tags. Strictly, we should be checking each section
4965 individually; This quick check covers for the case where
4966 someone does a /DISCARD/ : { *(*) }. */
4967 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
4969 bfd_size_type strsize;
4971 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
4972 if (!_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)
4973 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
4974 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
4975 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
4976 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
4977 bed->s->sizeof_sym))
4982 /* The backend must work out the sizes of all the other dynamic
4984 if (bed->elf_backend_size_dynamic_sections
4985 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
4988 if (elf_hash_table (info)->dynamic_sections_created)
4990 bfd_size_type dynsymcount;
4992 size_t bucketcount = 0;
4993 size_t hash_entry_size;
4994 unsigned int dtagcount;
4996 /* Set up the version definition section. */
4997 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
4998 BFD_ASSERT (s != NULL);
5000 /* We may have created additional version definitions if we are
5001 just linking a regular application. */
5002 verdefs = asvinfo.verdefs;
5004 /* Skip anonymous version tag. */
5005 if (verdefs != NULL && verdefs->vernum == 0)
5006 verdefs = verdefs->next;
5008 if (verdefs == NULL)
5009 _bfd_strip_section_from_output (info, s);
5014 struct bfd_elf_version_tree *t;
5016 Elf_Internal_Verdef def;
5017 Elf_Internal_Verdaux defaux;
5022 /* Make space for the base version. */
5023 size += sizeof (Elf_External_Verdef);
5024 size += sizeof (Elf_External_Verdaux);
5027 for (t = verdefs; t != NULL; t = t->next)
5029 struct bfd_elf_version_deps *n;
5031 size += sizeof (Elf_External_Verdef);
5032 size += sizeof (Elf_External_Verdaux);
5035 for (n = t->deps; n != NULL; n = n->next)
5036 size += sizeof (Elf_External_Verdaux);
5040 s->contents = bfd_alloc (output_bfd, s->size);
5041 if (s->contents == NULL && s->size != 0)
5044 /* Fill in the version definition section. */
5048 def.vd_version = VER_DEF_CURRENT;
5049 def.vd_flags = VER_FLG_BASE;
5052 def.vd_aux = sizeof (Elf_External_Verdef);
5053 def.vd_next = (sizeof (Elf_External_Verdef)
5054 + sizeof (Elf_External_Verdaux));
5056 if (soname_indx != (bfd_size_type) -1)
5058 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5060 def.vd_hash = bfd_elf_hash (soname);
5061 defaux.vda_name = soname_indx;
5068 name = basename (output_bfd->filename);
5069 def.vd_hash = bfd_elf_hash (name);
5070 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5072 if (indx == (bfd_size_type) -1)
5074 defaux.vda_name = indx;
5076 defaux.vda_next = 0;
5078 _bfd_elf_swap_verdef_out (output_bfd, &def,
5079 (Elf_External_Verdef *) p);
5080 p += sizeof (Elf_External_Verdef);
5081 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5082 (Elf_External_Verdaux *) p);
5083 p += sizeof (Elf_External_Verdaux);
5085 for (t = verdefs; t != NULL; t = t->next)
5088 struct bfd_elf_version_deps *n;
5089 struct elf_link_hash_entry *h;
5090 struct bfd_link_hash_entry *bh;
5093 for (n = t->deps; n != NULL; n = n->next)
5096 /* Add a symbol representing this version. */
5098 if (! (_bfd_generic_link_add_one_symbol
5099 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5101 get_elf_backend_data (dynobj)->collect, &bh)))
5103 h = (struct elf_link_hash_entry *) bh;
5104 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
5105 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
5106 h->type = STT_OBJECT;
5107 h->verinfo.vertree = t;
5109 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5112 def.vd_version = VER_DEF_CURRENT;
5114 if (t->globals.list == NULL
5115 && t->locals.list == NULL
5117 def.vd_flags |= VER_FLG_WEAK;
5118 def.vd_ndx = t->vernum + 1;
5119 def.vd_cnt = cdeps + 1;
5120 def.vd_hash = bfd_elf_hash (t->name);
5121 def.vd_aux = sizeof (Elf_External_Verdef);
5123 if (t->next != NULL)
5124 def.vd_next = (sizeof (Elf_External_Verdef)
5125 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5127 _bfd_elf_swap_verdef_out (output_bfd, &def,
5128 (Elf_External_Verdef *) p);
5129 p += sizeof (Elf_External_Verdef);
5131 defaux.vda_name = h->dynstr_index;
5132 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5134 defaux.vda_next = 0;
5135 if (t->deps != NULL)
5136 defaux.vda_next = sizeof (Elf_External_Verdaux);
5137 t->name_indx = defaux.vda_name;
5139 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5140 (Elf_External_Verdaux *) p);
5141 p += sizeof (Elf_External_Verdaux);
5143 for (n = t->deps; n != NULL; n = n->next)
5145 if (n->version_needed == NULL)
5147 /* This can happen if there was an error in the
5149 defaux.vda_name = 0;
5153 defaux.vda_name = n->version_needed->name_indx;
5154 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5157 if (n->next == NULL)
5158 defaux.vda_next = 0;
5160 defaux.vda_next = sizeof (Elf_External_Verdaux);
5162 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5163 (Elf_External_Verdaux *) p);
5164 p += sizeof (Elf_External_Verdaux);
5168 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5169 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5172 elf_tdata (output_bfd)->cverdefs = cdefs;
5175 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5177 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5180 else if (info->flags & DF_BIND_NOW)
5182 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5188 if (info->executable)
5189 info->flags_1 &= ~ (DF_1_INITFIRST
5192 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5196 /* Work out the size of the version reference section. */
5198 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5199 BFD_ASSERT (s != NULL);
5201 struct elf_find_verdep_info sinfo;
5203 sinfo.output_bfd = output_bfd;
5205 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
5206 if (sinfo.vers == 0)
5208 sinfo.failed = FALSE;
5210 elf_link_hash_traverse (elf_hash_table (info),
5211 _bfd_elf_link_find_version_dependencies,
5214 if (elf_tdata (output_bfd)->verref == NULL)
5215 _bfd_strip_section_from_output (info, s);
5218 Elf_Internal_Verneed *t;
5223 /* Build the version definition section. */
5226 for (t = elf_tdata (output_bfd)->verref;
5230 Elf_Internal_Vernaux *a;
5232 size += sizeof (Elf_External_Verneed);
5234 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5235 size += sizeof (Elf_External_Vernaux);
5239 s->contents = bfd_alloc (output_bfd, s->size);
5240 if (s->contents == NULL)
5244 for (t = elf_tdata (output_bfd)->verref;
5249 Elf_Internal_Vernaux *a;
5253 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5256 t->vn_version = VER_NEED_CURRENT;
5258 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5259 elf_dt_name (t->vn_bfd) != NULL
5260 ? elf_dt_name (t->vn_bfd)
5261 : basename (t->vn_bfd->filename),
5263 if (indx == (bfd_size_type) -1)
5266 t->vn_aux = sizeof (Elf_External_Verneed);
5267 if (t->vn_nextref == NULL)
5270 t->vn_next = (sizeof (Elf_External_Verneed)
5271 + caux * sizeof (Elf_External_Vernaux));
5273 _bfd_elf_swap_verneed_out (output_bfd, t,
5274 (Elf_External_Verneed *) p);
5275 p += sizeof (Elf_External_Verneed);
5277 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5279 a->vna_hash = bfd_elf_hash (a->vna_nodename);
5280 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5281 a->vna_nodename, FALSE);
5282 if (indx == (bfd_size_type) -1)
5285 if (a->vna_nextptr == NULL)
5288 a->vna_next = sizeof (Elf_External_Vernaux);
5290 _bfd_elf_swap_vernaux_out (output_bfd, a,
5291 (Elf_External_Vernaux *) p);
5292 p += sizeof (Elf_External_Vernaux);
5296 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
5297 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
5300 elf_tdata (output_bfd)->cverrefs = crefs;
5304 /* Assign dynsym indicies. In a shared library we generate a
5305 section symbol for each output section, which come first.
5306 Next come all of the back-end allocated local dynamic syms,
5307 followed by the rest of the global symbols. */
5309 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5311 /* Work out the size of the symbol version section. */
5312 s = bfd_get_section_by_name (dynobj, ".gnu.version");
5313 BFD_ASSERT (s != NULL);
5314 if (dynsymcount == 0
5315 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
5317 _bfd_strip_section_from_output (info, s);
5318 /* The DYNSYMCOUNT might have changed if we were going to
5319 output a dynamic symbol table entry for S. */
5320 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
5324 s->size = dynsymcount * sizeof (Elf_External_Versym);
5325 s->contents = bfd_zalloc (output_bfd, s->size);
5326 if (s->contents == NULL)
5329 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
5333 /* Set the size of the .dynsym and .hash sections. We counted
5334 the number of dynamic symbols in elf_link_add_object_symbols.
5335 We will build the contents of .dynsym and .hash when we build
5336 the final symbol table, because until then we do not know the
5337 correct value to give the symbols. We built the .dynstr
5338 section as we went along in elf_link_add_object_symbols. */
5339 s = bfd_get_section_by_name (dynobj, ".dynsym");
5340 BFD_ASSERT (s != NULL);
5341 s->size = dynsymcount * bed->s->sizeof_sym;
5342 s->contents = bfd_alloc (output_bfd, s->size);
5343 if (s->contents == NULL && s->size != 0)
5346 if (dynsymcount != 0)
5348 Elf_Internal_Sym isym;
5350 /* The first entry in .dynsym is a dummy symbol. */
5357 bed->s->swap_symbol_out (output_bfd, &isym, s->contents, 0);
5360 /* Compute the size of the hashing table. As a side effect this
5361 computes the hash values for all the names we export. */
5362 bucketcount = compute_bucket_count (info);
5364 s = bfd_get_section_by_name (dynobj, ".hash");
5365 BFD_ASSERT (s != NULL);
5366 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
5367 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
5368 s->contents = bfd_zalloc (output_bfd, s->size);
5369 if (s->contents == NULL)
5372 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
5373 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
5374 s->contents + hash_entry_size);
5376 elf_hash_table (info)->bucketcount = bucketcount;
5378 s = bfd_get_section_by_name (dynobj, ".dynstr");
5379 BFD_ASSERT (s != NULL);
5381 elf_finalize_dynstr (output_bfd, info);
5383 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5385 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
5386 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
5393 /* Final phase of ELF linker. */
5395 /* A structure we use to avoid passing large numbers of arguments. */
5397 struct elf_final_link_info
5399 /* General link information. */
5400 struct bfd_link_info *info;
5403 /* Symbol string table. */
5404 struct bfd_strtab_hash *symstrtab;
5405 /* .dynsym section. */
5406 asection *dynsym_sec;
5407 /* .hash section. */
5409 /* symbol version section (.gnu.version). */
5410 asection *symver_sec;
5411 /* Buffer large enough to hold contents of any section. */
5413 /* Buffer large enough to hold external relocs of any section. */
5414 void *external_relocs;
5415 /* Buffer large enough to hold internal relocs of any section. */
5416 Elf_Internal_Rela *internal_relocs;
5417 /* Buffer large enough to hold external local symbols of any input
5419 bfd_byte *external_syms;
5420 /* And a buffer for symbol section indices. */
5421 Elf_External_Sym_Shndx *locsym_shndx;
5422 /* Buffer large enough to hold internal local symbols of any input
5424 Elf_Internal_Sym *internal_syms;
5425 /* Array large enough to hold a symbol index for each local symbol
5426 of any input BFD. */
5428 /* Array large enough to hold a section pointer for each local
5429 symbol of any input BFD. */
5430 asection **sections;
5431 /* Buffer to hold swapped out symbols. */
5433 /* And one for symbol section indices. */
5434 Elf_External_Sym_Shndx *symshndxbuf;
5435 /* Number of swapped out symbols in buffer. */
5436 size_t symbuf_count;
5437 /* Number of symbols which fit in symbuf. */
5439 /* And same for symshndxbuf. */
5440 size_t shndxbuf_size;
5443 /* This struct is used to pass information to elf_link_output_extsym. */
5445 struct elf_outext_info
5448 bfd_boolean localsyms;
5449 struct elf_final_link_info *finfo;
5452 /* When performing a relocatable link, the input relocations are
5453 preserved. But, if they reference global symbols, the indices
5454 referenced must be updated. Update all the relocations in
5455 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5458 elf_link_adjust_relocs (bfd *abfd,
5459 Elf_Internal_Shdr *rel_hdr,
5461 struct elf_link_hash_entry **rel_hash)
5464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5466 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5467 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5468 bfd_vma r_type_mask;
5471 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
5473 swap_in = bed->s->swap_reloc_in;
5474 swap_out = bed->s->swap_reloc_out;
5476 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
5478 swap_in = bed->s->swap_reloca_in;
5479 swap_out = bed->s->swap_reloca_out;
5484 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
5487 if (bed->s->arch_size == 32)
5494 r_type_mask = 0xffffffff;
5498 erela = rel_hdr->contents;
5499 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
5501 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
5504 if (*rel_hash == NULL)
5507 BFD_ASSERT ((*rel_hash)->indx >= 0);
5509 (*swap_in) (abfd, erela, irela);
5510 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
5511 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
5512 | (irela[j].r_info & r_type_mask));
5513 (*swap_out) (abfd, irela, erela);
5517 struct elf_link_sort_rela
5523 enum elf_reloc_type_class type;
5524 /* We use this as an array of size int_rels_per_ext_rel. */
5525 Elf_Internal_Rela rela[1];
5529 elf_link_sort_cmp1 (const void *A, const void *B)
5531 const struct elf_link_sort_rela *a = A;
5532 const struct elf_link_sort_rela *b = B;
5533 int relativea, relativeb;
5535 relativea = a->type == reloc_class_relative;
5536 relativeb = b->type == reloc_class_relative;
5538 if (relativea < relativeb)
5540 if (relativea > relativeb)
5542 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
5544 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
5546 if (a->rela->r_offset < b->rela->r_offset)
5548 if (a->rela->r_offset > b->rela->r_offset)
5554 elf_link_sort_cmp2 (const void *A, const void *B)
5556 const struct elf_link_sort_rela *a = A;
5557 const struct elf_link_sort_rela *b = B;
5560 if (a->u.offset < b->u.offset)
5562 if (a->u.offset > b->u.offset)
5564 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
5565 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
5570 if (a->rela->r_offset < b->rela->r_offset)
5572 if (a->rela->r_offset > b->rela->r_offset)
5578 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
5581 bfd_size_type count, size;
5582 size_t i, ret, sort_elt, ext_size;
5583 bfd_byte *sort, *s_non_relative, *p;
5584 struct elf_link_sort_rela *sq;
5585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5586 int i2e = bed->s->int_rels_per_ext_rel;
5587 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
5588 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
5589 struct bfd_link_order *lo;
5592 reldyn = bfd_get_section_by_name (abfd, ".rela.dyn");
5593 if (reldyn == NULL || reldyn->size == 0)
5595 reldyn = bfd_get_section_by_name (abfd, ".rel.dyn");
5596 if (reldyn == NULL || reldyn->size == 0)
5598 ext_size = bed->s->sizeof_rel;
5599 swap_in = bed->s->swap_reloc_in;
5600 swap_out = bed->s->swap_reloc_out;
5604 ext_size = bed->s->sizeof_rela;
5605 swap_in = bed->s->swap_reloca_in;
5606 swap_out = bed->s->swap_reloca_out;
5608 count = reldyn->size / ext_size;
5611 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5612 if (lo->type == bfd_indirect_link_order)
5614 asection *o = lo->u.indirect.section;
5618 if (size != reldyn->size)
5621 sort_elt = (sizeof (struct elf_link_sort_rela)
5622 + (i2e - 1) * sizeof (Elf_Internal_Rela));
5623 sort = bfd_zmalloc (sort_elt * count);
5626 (*info->callbacks->warning)
5627 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
5631 if (bed->s->arch_size == 32)
5632 r_sym_mask = ~(bfd_vma) 0xff;
5634 r_sym_mask = ~(bfd_vma) 0xffffffff;
5636 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5637 if (lo->type == bfd_indirect_link_order)
5639 bfd_byte *erel, *erelend;
5640 asection *o = lo->u.indirect.section;
5643 erelend = o->contents + o->size;
5644 p = sort + o->output_offset / ext_size * sort_elt;
5645 while (erel < erelend)
5647 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5648 (*swap_in) (abfd, erel, s->rela);
5649 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
5650 s->u.sym_mask = r_sym_mask;
5656 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
5658 for (i = 0, p = sort; i < count; i++, p += sort_elt)
5660 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5661 if (s->type != reloc_class_relative)
5667 sq = (struct elf_link_sort_rela *) s_non_relative;
5668 for (; i < count; i++, p += sort_elt)
5670 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
5671 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
5673 sp->u.offset = sq->rela->r_offset;
5676 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
5678 for (lo = reldyn->link_order_head; lo != NULL; lo = lo->next)
5679 if (lo->type == bfd_indirect_link_order)
5681 bfd_byte *erel, *erelend;
5682 asection *o = lo->u.indirect.section;
5685 erelend = o->contents + o->size;
5686 p = sort + o->output_offset / ext_size * sort_elt;
5687 while (erel < erelend)
5689 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
5690 (*swap_out) (abfd, s->rela, erel);
5701 /* Flush the output symbols to the file. */
5704 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
5705 const struct elf_backend_data *bed)
5707 if (finfo->symbuf_count > 0)
5709 Elf_Internal_Shdr *hdr;
5713 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5714 pos = hdr->sh_offset + hdr->sh_size;
5715 amt = finfo->symbuf_count * bed->s->sizeof_sym;
5716 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
5717 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
5720 hdr->sh_size += amt;
5721 finfo->symbuf_count = 0;
5727 /* Add a symbol to the output symbol table. */
5730 elf_link_output_sym (struct elf_final_link_info *finfo,
5732 Elf_Internal_Sym *elfsym,
5733 asection *input_sec,
5734 struct elf_link_hash_entry *h)
5737 Elf_External_Sym_Shndx *destshndx;
5738 bfd_boolean (*output_symbol_hook)
5739 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
5740 struct elf_link_hash_entry *);
5741 const struct elf_backend_data *bed;
5743 bed = get_elf_backend_data (finfo->output_bfd);
5744 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
5745 if (output_symbol_hook != NULL)
5747 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
5751 if (name == NULL || *name == '\0')
5752 elfsym->st_name = 0;
5753 else if (input_sec->flags & SEC_EXCLUDE)
5754 elfsym->st_name = 0;
5757 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5759 if (elfsym->st_name == (unsigned long) -1)
5763 if (finfo->symbuf_count >= finfo->symbuf_size)
5765 if (! elf_link_flush_output_syms (finfo, bed))
5769 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
5770 destshndx = finfo->symshndxbuf;
5771 if (destshndx != NULL)
5773 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
5777 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
5778 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
5779 if (destshndx == NULL)
5781 memset ((char *) destshndx + amt, 0, amt);
5782 finfo->shndxbuf_size *= 2;
5784 destshndx += bfd_get_symcount (finfo->output_bfd);
5787 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
5788 finfo->symbuf_count += 1;
5789 bfd_get_symcount (finfo->output_bfd) += 1;
5794 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5795 allowing an unsatisfied unversioned symbol in the DSO to match a
5796 versioned symbol that would normally require an explicit version.
5797 We also handle the case that a DSO references a hidden symbol
5798 which may be satisfied by a versioned symbol in another DSO. */
5801 elf_link_check_versioned_symbol (struct bfd_link_info *info,
5802 const struct elf_backend_data *bed,
5803 struct elf_link_hash_entry *h)
5806 struct elf_link_loaded_list *loaded;
5808 if (!is_elf_hash_table (info->hash))
5811 switch (h->root.type)
5817 case bfd_link_hash_undefined:
5818 case bfd_link_hash_undefweak:
5819 abfd = h->root.u.undef.abfd;
5820 if ((abfd->flags & DYNAMIC) == 0
5821 || elf_dyn_lib_class (abfd) != DYN_DT_NEEDED)
5825 case bfd_link_hash_defined:
5826 case bfd_link_hash_defweak:
5827 abfd = h->root.u.def.section->owner;
5830 case bfd_link_hash_common:
5831 abfd = h->root.u.c.p->section->owner;
5834 BFD_ASSERT (abfd != NULL);
5836 for (loaded = elf_hash_table (info)->loaded;
5838 loaded = loaded->next)
5841 Elf_Internal_Shdr *hdr;
5842 bfd_size_type symcount;
5843 bfd_size_type extsymcount;
5844 bfd_size_type extsymoff;
5845 Elf_Internal_Shdr *versymhdr;
5846 Elf_Internal_Sym *isym;
5847 Elf_Internal_Sym *isymend;
5848 Elf_Internal_Sym *isymbuf;
5849 Elf_External_Versym *ever;
5850 Elf_External_Versym *extversym;
5852 input = loaded->abfd;
5854 /* We check each DSO for a possible hidden versioned definition. */
5856 || (input->flags & DYNAMIC) == 0
5857 || elf_dynversym (input) == 0)
5860 hdr = &elf_tdata (input)->dynsymtab_hdr;
5862 symcount = hdr->sh_size / bed->s->sizeof_sym;
5863 if (elf_bad_symtab (input))
5865 extsymcount = symcount;
5870 extsymcount = symcount - hdr->sh_info;
5871 extsymoff = hdr->sh_info;
5874 if (extsymcount == 0)
5877 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
5879 if (isymbuf == NULL)
5882 /* Read in any version definitions. */
5883 versymhdr = &elf_tdata (input)->dynversym_hdr;
5884 extversym = bfd_malloc (versymhdr->sh_size);
5885 if (extversym == NULL)
5888 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
5889 || (bfd_bread (extversym, versymhdr->sh_size, input)
5890 != versymhdr->sh_size))
5898 ever = extversym + extsymoff;
5899 isymend = isymbuf + extsymcount;
5900 for (isym = isymbuf; isym < isymend; isym++, ever++)
5903 Elf_Internal_Versym iver;
5904 unsigned short version_index;
5906 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
5907 || isym->st_shndx == SHN_UNDEF)
5910 name = bfd_elf_string_from_elf_section (input,
5913 if (strcmp (name, h->root.root.string) != 0)
5916 _bfd_elf_swap_versym_in (input, ever, &iver);
5918 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
5920 /* If we have a non-hidden versioned sym, then it should
5921 have provided a definition for the undefined sym. */
5925 version_index = iver.vs_vers & VERSYM_VERSION;
5926 if (version_index == 1 || version_index == 2)
5928 /* This is the base or first version. We can use it. */
5942 /* Add an external symbol to the symbol table. This is called from
5943 the hash table traversal routine. When generating a shared object,
5944 we go through the symbol table twice. The first time we output
5945 anything that might have been forced to local scope in a version
5946 script. The second time we output the symbols that are still
5950 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
5952 struct elf_outext_info *eoinfo = data;
5953 struct elf_final_link_info *finfo = eoinfo->finfo;
5955 Elf_Internal_Sym sym;
5956 asection *input_sec;
5957 const struct elf_backend_data *bed;
5959 if (h->root.type == bfd_link_hash_warning)
5961 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5962 if (h->root.type == bfd_link_hash_new)
5966 /* Decide whether to output this symbol in this pass. */
5967 if (eoinfo->localsyms)
5969 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5974 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5978 bed = get_elf_backend_data (finfo->output_bfd);
5980 /* If we have an undefined symbol reference here then it must have
5981 come from a shared library that is being linked in. (Undefined
5982 references in regular files have already been handled). If we
5983 are reporting errors for this situation then do so now. */
5984 if (h->root.type == bfd_link_hash_undefined
5985 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5986 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
5987 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
5988 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
5990 if (! ((*finfo->info->callbacks->undefined_symbol)
5991 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5992 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
5994 eoinfo->failed = TRUE;
5999 /* We should also warn if a forced local symbol is referenced from
6000 shared libraries. */
6001 if (! finfo->info->relocatable
6002 && (! finfo->info->shared)
6003 && (h->elf_link_hash_flags
6004 & (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC | ELF_LINK_DYNAMIC_DEF | ELF_LINK_DYNAMIC_WEAK))
6005 == (ELF_LINK_FORCED_LOCAL | ELF_LINK_HASH_REF_DYNAMIC)
6006 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
6008 (*_bfd_error_handler)
6009 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
6010 bfd_get_filename (finfo->output_bfd),
6011 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
6013 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
6014 ? "hidden" : "local",
6015 h->root.root.string,
6016 bfd_archive_filename (h->root.u.def.section->owner));
6017 eoinfo->failed = TRUE;
6021 /* We don't want to output symbols that have never been mentioned by
6022 a regular file, or that we have been told to strip. However, if
6023 h->indx is set to -2, the symbol is used by a reloc and we must
6027 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
6028 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
6029 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
6030 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
6032 else if (finfo->info->strip == strip_all)
6034 else if (finfo->info->strip == strip_some
6035 && bfd_hash_lookup (finfo->info->keep_hash,
6036 h->root.root.string, FALSE, FALSE) == NULL)
6038 else if (finfo->info->strip_discarded
6039 && (h->root.type == bfd_link_hash_defined
6040 || h->root.type == bfd_link_hash_defweak)
6041 && elf_discarded_section (h->root.u.def.section))
6046 /* If we're stripping it, and it's not a dynamic symbol, there's
6047 nothing else to do unless it is a forced local symbol. */
6050 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6054 sym.st_size = h->size;
6055 sym.st_other = h->other;
6056 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6057 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
6058 else if (h->root.type == bfd_link_hash_undefweak
6059 || h->root.type == bfd_link_hash_defweak)
6060 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
6062 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
6064 switch (h->root.type)
6067 case bfd_link_hash_new:
6068 case bfd_link_hash_warning:
6072 case bfd_link_hash_undefined:
6073 case bfd_link_hash_undefweak:
6074 input_sec = bfd_und_section_ptr;
6075 sym.st_shndx = SHN_UNDEF;
6078 case bfd_link_hash_defined:
6079 case bfd_link_hash_defweak:
6081 input_sec = h->root.u.def.section;
6082 if (input_sec->output_section != NULL)
6085 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
6086 input_sec->output_section);
6087 if (sym.st_shndx == SHN_BAD)
6089 char *sec_name = bfd_get_section_ident (input_sec);
6090 (*_bfd_error_handler)
6091 (_("%s: could not find output section %s for input section %s"),
6092 bfd_get_filename (finfo->output_bfd),
6093 input_sec->output_section->name,
6094 sec_name ? sec_name : input_sec->name);
6097 eoinfo->failed = TRUE;
6101 /* ELF symbols in relocatable files are section relative,
6102 but in nonrelocatable files they are virtual
6104 sym.st_value = h->root.u.def.value + input_sec->output_offset;
6105 if (! finfo->info->relocatable)
6107 sym.st_value += input_sec->output_section->vma;
6108 if (h->type == STT_TLS)
6110 /* STT_TLS symbols are relative to PT_TLS segment
6112 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6113 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6119 BFD_ASSERT (input_sec->owner == NULL
6120 || (input_sec->owner->flags & DYNAMIC) != 0);
6121 sym.st_shndx = SHN_UNDEF;
6122 input_sec = bfd_und_section_ptr;
6127 case bfd_link_hash_common:
6128 input_sec = h->root.u.c.p->section;
6129 sym.st_shndx = SHN_COMMON;
6130 sym.st_value = 1 << h->root.u.c.p->alignment_power;
6133 case bfd_link_hash_indirect:
6134 /* These symbols are created by symbol versioning. They point
6135 to the decorated version of the name. For example, if the
6136 symbol foo@@GNU_1.2 is the default, which should be used when
6137 foo is used with no version, then we add an indirect symbol
6138 foo which points to foo@@GNU_1.2. We ignore these symbols,
6139 since the indirected symbol is already in the hash table. */
6143 /* Give the processor backend a chance to tweak the symbol value,
6144 and also to finish up anything that needs to be done for this
6145 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6146 forced local syms when non-shared is due to a historical quirk. */
6147 if ((h->dynindx != -1
6148 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
6149 && ((finfo->info->shared
6150 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6151 || h->root.type != bfd_link_hash_undefweak))
6152 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
6153 && elf_hash_table (finfo->info)->dynamic_sections_created)
6155 if (! ((*bed->elf_backend_finish_dynamic_symbol)
6156 (finfo->output_bfd, finfo->info, h, &sym)))
6158 eoinfo->failed = TRUE;
6163 /* If we are marking the symbol as undefined, and there are no
6164 non-weak references to this symbol from a regular object, then
6165 mark the symbol as weak undefined; if there are non-weak
6166 references, mark the symbol as strong. We can't do this earlier,
6167 because it might not be marked as undefined until the
6168 finish_dynamic_symbol routine gets through with it. */
6169 if (sym.st_shndx == SHN_UNDEF
6170 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
6171 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
6172 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
6176 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
6177 bindtype = STB_GLOBAL;
6179 bindtype = STB_WEAK;
6180 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
6183 /* If a non-weak symbol with non-default visibility is not defined
6184 locally, it is a fatal error. */
6185 if (! finfo->info->relocatable
6186 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
6187 && ELF_ST_BIND (sym.st_info) != STB_WEAK
6188 && h->root.type == bfd_link_hash_undefined
6189 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6191 (*_bfd_error_handler)
6192 (_("%s: %s symbol `%s' isn't defined"),
6193 bfd_get_filename (finfo->output_bfd),
6194 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
6196 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
6197 ? "internal" : "hidden",
6198 h->root.root.string);
6199 eoinfo->failed = TRUE;
6203 /* If this symbol should be put in the .dynsym section, then put it
6204 there now. We already know the symbol index. We also fill in
6205 the entry in the .hash section. */
6206 if (h->dynindx != -1
6207 && elf_hash_table (finfo->info)->dynamic_sections_created)
6211 size_t hash_entry_size;
6212 bfd_byte *bucketpos;
6216 sym.st_name = h->dynstr_index;
6217 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
6218 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
6220 bucketcount = elf_hash_table (finfo->info)->bucketcount;
6221 bucket = h->elf_hash_value % bucketcount;
6223 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
6224 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
6225 + (bucket + 2) * hash_entry_size);
6226 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
6227 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
6228 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
6229 ((bfd_byte *) finfo->hash_sec->contents
6230 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
6232 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
6234 Elf_Internal_Versym iversym;
6235 Elf_External_Versym *eversym;
6237 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
6239 if (h->verinfo.verdef == NULL)
6240 iversym.vs_vers = 0;
6242 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
6246 if (h->verinfo.vertree == NULL)
6247 iversym.vs_vers = 1;
6249 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
6252 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
6253 iversym.vs_vers |= VERSYM_HIDDEN;
6255 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
6256 eversym += h->dynindx;
6257 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
6261 /* If we're stripping it, then it was just a dynamic symbol, and
6262 there's nothing else to do. */
6263 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
6266 h->indx = bfd_get_symcount (finfo->output_bfd);
6268 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
6270 eoinfo->failed = TRUE;
6277 /* Return TRUE if special handling is done for relocs in SEC against
6278 symbols defined in discarded sections. */
6281 elf_section_ignore_discarded_relocs (asection *sec)
6283 const struct elf_backend_data *bed;
6285 switch (sec->sec_info_type)
6287 case ELF_INFO_TYPE_STABS:
6288 case ELF_INFO_TYPE_EH_FRAME:
6294 bed = get_elf_backend_data (sec->owner);
6295 if (bed->elf_backend_ignore_discarded_relocs != NULL
6296 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
6302 /* Return TRUE if we should complain about a reloc in SEC against a
6303 symbol defined in a discarded section. */
6306 elf_section_complain_discarded (asection *sec)
6308 if (strncmp (".stab", sec->name, 5) == 0
6309 && (!sec->name[5] ||
6310 (sec->name[5] == '.' && ISDIGIT (sec->name[6]))))
6313 if (strcmp (".eh_frame", sec->name) == 0)
6316 if (strcmp (".gcc_except_table", sec->name) == 0)
6319 if (strcmp (".PARISC.unwind", sec->name) == 0)
6325 /* Link an input file into the linker output file. This function
6326 handles all the sections and relocations of the input file at once.
6327 This is so that we only have to read the local symbols once, and
6328 don't have to keep them in memory. */
6331 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
6333 bfd_boolean (*relocate_section)
6334 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
6335 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
6337 Elf_Internal_Shdr *symtab_hdr;
6340 Elf_Internal_Sym *isymbuf;
6341 Elf_Internal_Sym *isym;
6342 Elf_Internal_Sym *isymend;
6344 asection **ppsection;
6346 const struct elf_backend_data *bed;
6347 bfd_boolean emit_relocs;
6348 struct elf_link_hash_entry **sym_hashes;
6350 output_bfd = finfo->output_bfd;
6351 bed = get_elf_backend_data (output_bfd);
6352 relocate_section = bed->elf_backend_relocate_section;
6354 /* If this is a dynamic object, we don't want to do anything here:
6355 we don't want the local symbols, and we don't want the section
6357 if ((input_bfd->flags & DYNAMIC) != 0)
6360 emit_relocs = (finfo->info->relocatable
6361 || finfo->info->emitrelocations
6362 || bed->elf_backend_emit_relocs);
6364 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6365 if (elf_bad_symtab (input_bfd))
6367 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
6372 locsymcount = symtab_hdr->sh_info;
6373 extsymoff = symtab_hdr->sh_info;
6376 /* Read the local symbols. */
6377 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6378 if (isymbuf == NULL && locsymcount != 0)
6380 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6381 finfo->internal_syms,
6382 finfo->external_syms,
6383 finfo->locsym_shndx);
6384 if (isymbuf == NULL)
6388 /* Find local symbol sections and adjust values of symbols in
6389 SEC_MERGE sections. Write out those local symbols we know are
6390 going into the output file. */
6391 isymend = isymbuf + locsymcount;
6392 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
6394 isym++, pindex++, ppsection++)
6398 Elf_Internal_Sym osym;
6402 if (elf_bad_symtab (input_bfd))
6404 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
6411 if (isym->st_shndx == SHN_UNDEF)
6412 isec = bfd_und_section_ptr;
6413 else if (isym->st_shndx < SHN_LORESERVE
6414 || isym->st_shndx > SHN_HIRESERVE)
6416 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
6418 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
6419 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
6421 _bfd_merged_section_offset (output_bfd, &isec,
6422 elf_section_data (isec)->sec_info,
6425 else if (isym->st_shndx == SHN_ABS)
6426 isec = bfd_abs_section_ptr;
6427 else if (isym->st_shndx == SHN_COMMON)
6428 isec = bfd_com_section_ptr;
6437 /* Don't output the first, undefined, symbol. */
6438 if (ppsection == finfo->sections)
6441 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
6443 /* We never output section symbols. Instead, we use the
6444 section symbol of the corresponding section in the output
6449 /* If we are stripping all symbols, we don't want to output this
6451 if (finfo->info->strip == strip_all)
6454 /* If we are discarding all local symbols, we don't want to
6455 output this one. If we are generating a relocatable output
6456 file, then some of the local symbols may be required by
6457 relocs; we output them below as we discover that they are
6459 if (finfo->info->discard == discard_all)
6462 /* If this symbol is defined in a section which we are
6463 discarding, we don't need to keep it, but note that
6464 linker_mark is only reliable for sections that have contents.
6465 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6466 as well as linker_mark. */
6467 if ((isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
6469 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
6470 || (! finfo->info->relocatable
6471 && (isec->flags & SEC_EXCLUDE) != 0)))
6474 /* Get the name of the symbol. */
6475 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
6480 /* See if we are discarding symbols with this name. */
6481 if ((finfo->info->strip == strip_some
6482 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
6484 || (((finfo->info->discard == discard_sec_merge
6485 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
6486 || finfo->info->discard == discard_l)
6487 && bfd_is_local_label_name (input_bfd, name)))
6490 /* If we get here, we are going to output this symbol. */
6494 /* Adjust the section index for the output file. */
6495 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
6496 isec->output_section);
6497 if (osym.st_shndx == SHN_BAD)
6500 *pindex = bfd_get_symcount (output_bfd);
6502 /* ELF symbols in relocatable files are section relative, but
6503 in executable files they are virtual addresses. Note that
6504 this code assumes that all ELF sections have an associated
6505 BFD section with a reasonable value for output_offset; below
6506 we assume that they also have a reasonable value for
6507 output_section. Any special sections must be set up to meet
6508 these requirements. */
6509 osym.st_value += isec->output_offset;
6510 if (! finfo->info->relocatable)
6512 osym.st_value += isec->output_section->vma;
6513 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
6515 /* STT_TLS symbols are relative to PT_TLS segment base. */
6516 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
6517 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
6521 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
6525 /* Relocate the contents of each section. */
6526 sym_hashes = elf_sym_hashes (input_bfd);
6527 for (o = input_bfd->sections; o != NULL; o = o->next)
6531 if (! o->linker_mark)
6533 /* This section was omitted from the link. */
6537 if ((o->flags & SEC_HAS_CONTENTS) == 0
6538 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
6541 if ((o->flags & SEC_LINKER_CREATED) != 0)
6543 /* Section was created by _bfd_elf_link_create_dynamic_sections
6548 /* Get the contents of the section. They have been cached by a
6549 relaxation routine. Note that o is a section in an input
6550 file, so the contents field will not have been set by any of
6551 the routines which work on output files. */
6552 if (elf_section_data (o)->this_hdr.contents != NULL)
6553 contents = elf_section_data (o)->this_hdr.contents;
6556 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
6558 contents = finfo->contents;
6559 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
6563 if ((o->flags & SEC_RELOC) != 0)
6565 Elf_Internal_Rela *internal_relocs;
6566 bfd_vma r_type_mask;
6569 /* Get the swapped relocs. */
6571 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
6572 finfo->internal_relocs, FALSE);
6573 if (internal_relocs == NULL
6574 && o->reloc_count > 0)
6577 if (bed->s->arch_size == 32)
6584 r_type_mask = 0xffffffff;
6588 /* Run through the relocs looking for any against symbols
6589 from discarded sections and section symbols from
6590 removed link-once sections. Complain about relocs
6591 against discarded sections. Zero relocs against removed
6592 link-once sections. Preserve debug information as much
6594 if (!elf_section_ignore_discarded_relocs (o))
6596 Elf_Internal_Rela *rel, *relend;
6597 bfd_boolean complain = elf_section_complain_discarded (o);
6599 rel = internal_relocs;
6600 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
6601 for ( ; rel < relend; rel++)
6603 unsigned long r_symndx = rel->r_info >> r_sym_shift;
6604 asection **ps, *sec;
6605 struct elf_link_hash_entry *h = NULL;
6606 const char *sym_name;
6608 if (r_symndx >= locsymcount
6609 || (elf_bad_symtab (input_bfd)
6610 && finfo->sections[r_symndx] == NULL))
6612 h = sym_hashes[r_symndx - extsymoff];
6613 while (h->root.type == bfd_link_hash_indirect
6614 || h->root.type == bfd_link_hash_warning)
6615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6617 if (h->root.type != bfd_link_hash_defined
6618 && h->root.type != bfd_link_hash_defweak)
6621 ps = &h->root.u.def.section;
6622 sym_name = h->root.root.string;
6626 Elf_Internal_Sym *sym = isymbuf + r_symndx;
6627 ps = &finfo->sections[r_symndx];
6628 sym_name = bfd_elf_local_sym_name (input_bfd, sym);
6631 /* Complain if the definition comes from a
6632 discarded section. */
6633 if ((sec = *ps) != NULL && elf_discarded_section (sec))
6635 if ((o->flags & SEC_DEBUGGING) != 0)
6637 BFD_ASSERT (r_symndx != 0);
6639 /* Try to preserve debug information.
6640 FIXME: This is quite broken. Modifying
6641 the symbol here means we will be changing
6642 all uses of the symbol, not just those in
6643 debug sections. The only thing that makes
6644 this half reasonable is that debug sections
6645 tend to come after other sections. Of
6646 course, that doesn't help with globals.
6647 ??? All link-once sections of the same name
6648 ought to define the same set of symbols, so
6649 it would seem that globals ought to always
6650 be defined in the kept section. */
6651 if (sec->kept_section != NULL
6652 && sec->size == sec->kept_section->size)
6654 *ps = sec->kept_section;
6661 = bfd_get_section_ident (o);
6663 = bfd_get_section_ident (sec);
6664 finfo->info->callbacks->error_handler
6665 (LD_DEFINITION_IN_DISCARDED_SECTION,
6666 _("`%T' referenced in section `%s' of %B: "
6667 "defined in discarded section `%s' of %B\n"),
6669 r_sec ? r_sec : o->name, input_bfd,
6670 d_sec ? d_sec : sec->name, sec->owner);
6677 /* Remove the symbol reference from the reloc, but
6678 don't kill the reloc completely. This is so that
6679 a zero value will be written into the section,
6680 which may have non-zero contents put there by the
6681 assembler. Zero in things like an eh_frame fde
6682 pc_begin allows stack unwinders to recognize the
6684 rel->r_info &= r_type_mask;
6690 /* Relocate the section by invoking a back end routine.
6692 The back end routine is responsible for adjusting the
6693 section contents as necessary, and (if using Rela relocs
6694 and generating a relocatable output file) adjusting the
6695 reloc addend as necessary.
6697 The back end routine does not have to worry about setting
6698 the reloc address or the reloc symbol index.
6700 The back end routine is given a pointer to the swapped in
6701 internal symbols, and can access the hash table entries
6702 for the external symbols via elf_sym_hashes (input_bfd).
6704 When generating relocatable output, the back end routine
6705 must handle STB_LOCAL/STT_SECTION symbols specially. The
6706 output symbol is going to be a section symbol
6707 corresponding to the output section, which will require
6708 the addend to be adjusted. */
6710 if (! (*relocate_section) (output_bfd, finfo->info,
6711 input_bfd, o, contents,
6719 Elf_Internal_Rela *irela;
6720 Elf_Internal_Rela *irelaend;
6721 bfd_vma last_offset;
6722 struct elf_link_hash_entry **rel_hash;
6723 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
6724 unsigned int next_erel;
6725 bfd_boolean (*reloc_emitter)
6726 (bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *);
6727 bfd_boolean rela_normal;
6729 input_rel_hdr = &elf_section_data (o)->rel_hdr;
6730 rela_normal = (bed->rela_normal
6731 && (input_rel_hdr->sh_entsize
6732 == bed->s->sizeof_rela));
6734 /* Adjust the reloc addresses and symbol indices. */
6736 irela = internal_relocs;
6737 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
6738 rel_hash = (elf_section_data (o->output_section)->rel_hashes
6739 + elf_section_data (o->output_section)->rel_count
6740 + elf_section_data (o->output_section)->rel_count2);
6741 last_offset = o->output_offset;
6742 if (!finfo->info->relocatable)
6743 last_offset += o->output_section->vma;
6744 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
6746 unsigned long r_symndx;
6748 Elf_Internal_Sym sym;
6750 if (next_erel == bed->s->int_rels_per_ext_rel)
6756 irela->r_offset = _bfd_elf_section_offset (output_bfd,
6759 if (irela->r_offset >= (bfd_vma) -2)
6761 /* This is a reloc for a deleted entry or somesuch.
6762 Turn it into an R_*_NONE reloc, at the same
6763 offset as the last reloc. elf_eh_frame.c and
6764 elf_bfd_discard_info rely on reloc offsets
6766 irela->r_offset = last_offset;
6768 irela->r_addend = 0;
6772 irela->r_offset += o->output_offset;
6774 /* Relocs in an executable have to be virtual addresses. */
6775 if (!finfo->info->relocatable)
6776 irela->r_offset += o->output_section->vma;
6778 last_offset = irela->r_offset;
6780 r_symndx = irela->r_info >> r_sym_shift;
6781 if (r_symndx == STN_UNDEF)
6784 if (r_symndx >= locsymcount
6785 || (elf_bad_symtab (input_bfd)
6786 && finfo->sections[r_symndx] == NULL))
6788 struct elf_link_hash_entry *rh;
6791 /* This is a reloc against a global symbol. We
6792 have not yet output all the local symbols, so
6793 we do not know the symbol index of any global
6794 symbol. We set the rel_hash entry for this
6795 reloc to point to the global hash table entry
6796 for this symbol. The symbol index is then
6797 set at the end of elf_bfd_final_link. */
6798 indx = r_symndx - extsymoff;
6799 rh = elf_sym_hashes (input_bfd)[indx];
6800 while (rh->root.type == bfd_link_hash_indirect
6801 || rh->root.type == bfd_link_hash_warning)
6802 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
6804 /* Setting the index to -2 tells
6805 elf_link_output_extsym that this symbol is
6807 BFD_ASSERT (rh->indx < 0);
6815 /* This is a reloc against a local symbol. */
6818 sym = isymbuf[r_symndx];
6819 sec = finfo->sections[r_symndx];
6820 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
6822 /* I suppose the backend ought to fill in the
6823 section of any STT_SECTION symbol against a
6824 processor specific section. */
6826 if (bfd_is_abs_section (sec))
6828 else if (sec == NULL || sec->owner == NULL)
6830 bfd_set_error (bfd_error_bad_value);
6835 asection *osec = sec->output_section;
6837 /* If we have discarded a section, the output
6838 section will be the absolute section. In
6839 case of discarded link-once and discarded
6840 SEC_MERGE sections, use the kept section. */
6841 if (bfd_is_abs_section (osec)
6842 && sec->kept_section != NULL
6843 && sec->kept_section->output_section != NULL)
6845 osec = sec->kept_section->output_section;
6846 irela->r_addend -= osec->vma;
6849 if (!bfd_is_abs_section (osec))
6851 r_symndx = osec->target_index;
6852 BFD_ASSERT (r_symndx != 0);
6856 /* Adjust the addend according to where the
6857 section winds up in the output section. */
6859 irela->r_addend += sec->output_offset;
6863 if (finfo->indices[r_symndx] == -1)
6865 unsigned long shlink;
6869 if (finfo->info->strip == strip_all)
6871 /* You can't do ld -r -s. */
6872 bfd_set_error (bfd_error_invalid_operation);
6876 /* This symbol was skipped earlier, but
6877 since it is needed by a reloc, we
6878 must output it now. */
6879 shlink = symtab_hdr->sh_link;
6880 name = (bfd_elf_string_from_elf_section
6881 (input_bfd, shlink, sym.st_name));
6885 osec = sec->output_section;
6887 _bfd_elf_section_from_bfd_section (output_bfd,
6889 if (sym.st_shndx == SHN_BAD)
6892 sym.st_value += sec->output_offset;
6893 if (! finfo->info->relocatable)
6895 sym.st_value += osec->vma;
6896 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
6898 /* STT_TLS symbols are relative to PT_TLS
6900 BFD_ASSERT (elf_hash_table (finfo->info)
6902 sym.st_value -= (elf_hash_table (finfo->info)
6907 finfo->indices[r_symndx]
6908 = bfd_get_symcount (output_bfd);
6910 if (! elf_link_output_sym (finfo, name, &sym, sec,
6915 r_symndx = finfo->indices[r_symndx];
6918 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
6919 | (irela->r_info & r_type_mask));
6922 /* Swap out the relocs. */
6923 if (bed->elf_backend_emit_relocs
6924 && !(finfo->info->relocatable
6925 || finfo->info->emitrelocations))
6926 reloc_emitter = bed->elf_backend_emit_relocs;
6928 reloc_emitter = _bfd_elf_link_output_relocs;
6930 if (input_rel_hdr->sh_size != 0
6931 && ! (*reloc_emitter) (output_bfd, o, input_rel_hdr,
6935 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
6936 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
6938 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
6939 * bed->s->int_rels_per_ext_rel);
6940 if (! (*reloc_emitter) (output_bfd, o, input_rel_hdr2,
6947 /* Write out the modified section contents. */
6948 if (bed->elf_backend_write_section
6949 && (*bed->elf_backend_write_section) (output_bfd, o, contents))
6951 /* Section written out. */
6953 else switch (o->sec_info_type)
6955 case ELF_INFO_TYPE_STABS:
6956 if (! (_bfd_write_section_stabs
6958 &elf_hash_table (finfo->info)->stab_info,
6959 o, &elf_section_data (o)->sec_info, contents)))
6962 case ELF_INFO_TYPE_MERGE:
6963 if (! _bfd_write_merged_section (output_bfd, o,
6964 elf_section_data (o)->sec_info))
6967 case ELF_INFO_TYPE_EH_FRAME:
6969 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
6976 if (! (o->flags & SEC_EXCLUDE)
6977 && ! bfd_set_section_contents (output_bfd, o->output_section,
6979 (file_ptr) o->output_offset,
6990 /* Generate a reloc when linking an ELF file. This is a reloc
6991 requested by the linker, and does come from any input file. This
6992 is used to build constructor and destructor tables when linking
6996 elf_reloc_link_order (bfd *output_bfd,
6997 struct bfd_link_info *info,
6998 asection *output_section,
6999 struct bfd_link_order *link_order)
7001 reloc_howto_type *howto;
7005 struct elf_link_hash_entry **rel_hash_ptr;
7006 Elf_Internal_Shdr *rel_hdr;
7007 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
7008 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
7012 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
7015 bfd_set_error (bfd_error_bad_value);
7019 addend = link_order->u.reloc.p->addend;
7021 /* Figure out the symbol index. */
7022 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
7023 + elf_section_data (output_section)->rel_count
7024 + elf_section_data (output_section)->rel_count2);
7025 if (link_order->type == bfd_section_reloc_link_order)
7027 indx = link_order->u.reloc.p->u.section->target_index;
7028 BFD_ASSERT (indx != 0);
7029 *rel_hash_ptr = NULL;
7033 struct elf_link_hash_entry *h;
7035 /* Treat a reloc against a defined symbol as though it were
7036 actually against the section. */
7037 h = ((struct elf_link_hash_entry *)
7038 bfd_wrapped_link_hash_lookup (output_bfd, info,
7039 link_order->u.reloc.p->u.name,
7040 FALSE, FALSE, TRUE));
7042 && (h->root.type == bfd_link_hash_defined
7043 || h->root.type == bfd_link_hash_defweak))
7047 section = h->root.u.def.section;
7048 indx = section->output_section->target_index;
7049 *rel_hash_ptr = NULL;
7050 /* It seems that we ought to add the symbol value to the
7051 addend here, but in practice it has already been added
7052 because it was passed to constructor_callback. */
7053 addend += section->output_section->vma + section->output_offset;
7057 /* Setting the index to -2 tells elf_link_output_extsym that
7058 this symbol is used by a reloc. */
7065 if (! ((*info->callbacks->unattached_reloc)
7066 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
7072 /* If this is an inplace reloc, we must write the addend into the
7074 if (howto->partial_inplace && addend != 0)
7077 bfd_reloc_status_type rstat;
7080 const char *sym_name;
7082 size = bfd_get_reloc_size (howto);
7083 buf = bfd_zmalloc (size);
7086 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
7093 case bfd_reloc_outofrange:
7096 case bfd_reloc_overflow:
7097 if (link_order->type == bfd_section_reloc_link_order)
7098 sym_name = bfd_section_name (output_bfd,
7099 link_order->u.reloc.p->u.section);
7101 sym_name = link_order->u.reloc.p->u.name;
7102 if (! ((*info->callbacks->reloc_overflow)
7103 (info, sym_name, howto->name, addend, NULL, NULL, 0)))
7110 ok = bfd_set_section_contents (output_bfd, output_section, buf,
7111 link_order->offset, size);
7117 /* The address of a reloc is relative to the section in a
7118 relocatable file, and is a virtual address in an executable
7120 offset = link_order->offset;
7121 if (! info->relocatable)
7122 offset += output_section->vma;
7124 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
7126 irel[i].r_offset = offset;
7128 irel[i].r_addend = 0;
7130 if (bed->s->arch_size == 32)
7131 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
7133 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
7135 rel_hdr = &elf_section_data (output_section)->rel_hdr;
7136 erel = rel_hdr->contents;
7137 if (rel_hdr->sh_type == SHT_REL)
7139 erel += (elf_section_data (output_section)->rel_count
7140 * bed->s->sizeof_rel);
7141 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
7145 irel[0].r_addend = addend;
7146 erel += (elf_section_data (output_section)->rel_count
7147 * bed->s->sizeof_rela);
7148 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
7151 ++elf_section_data (output_section)->rel_count;
7156 /* Do the final step of an ELF link. */
7159 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
7161 bfd_boolean dynamic;
7162 bfd_boolean emit_relocs;
7164 struct elf_final_link_info finfo;
7165 register asection *o;
7166 register struct bfd_link_order *p;
7168 bfd_size_type max_contents_size;
7169 bfd_size_type max_external_reloc_size;
7170 bfd_size_type max_internal_reloc_count;
7171 bfd_size_type max_sym_count;
7172 bfd_size_type max_sym_shndx_count;
7174 Elf_Internal_Sym elfsym;
7176 Elf_Internal_Shdr *symtab_hdr;
7177 Elf_Internal_Shdr *symtab_shndx_hdr;
7178 Elf_Internal_Shdr *symstrtab_hdr;
7179 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7180 struct elf_outext_info eoinfo;
7182 size_t relativecount = 0;
7183 asection *reldyn = 0;
7186 if (! is_elf_hash_table (info->hash))
7190 abfd->flags |= DYNAMIC;
7192 dynamic = elf_hash_table (info)->dynamic_sections_created;
7193 dynobj = elf_hash_table (info)->dynobj;
7195 emit_relocs = (info->relocatable
7196 || info->emitrelocations
7197 || bed->elf_backend_emit_relocs);
7200 finfo.output_bfd = abfd;
7201 finfo.symstrtab = _bfd_elf_stringtab_init ();
7202 if (finfo.symstrtab == NULL)
7207 finfo.dynsym_sec = NULL;
7208 finfo.hash_sec = NULL;
7209 finfo.symver_sec = NULL;
7213 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
7214 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
7215 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
7216 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
7217 /* Note that it is OK if symver_sec is NULL. */
7220 finfo.contents = NULL;
7221 finfo.external_relocs = NULL;
7222 finfo.internal_relocs = NULL;
7223 finfo.external_syms = NULL;
7224 finfo.locsym_shndx = NULL;
7225 finfo.internal_syms = NULL;
7226 finfo.indices = NULL;
7227 finfo.sections = NULL;
7228 finfo.symbuf = NULL;
7229 finfo.symshndxbuf = NULL;
7230 finfo.symbuf_count = 0;
7231 finfo.shndxbuf_size = 0;
7233 /* Count up the number of relocations we will output for each output
7234 section, so that we know the sizes of the reloc sections. We
7235 also figure out some maximum sizes. */
7236 max_contents_size = 0;
7237 max_external_reloc_size = 0;
7238 max_internal_reloc_count = 0;
7240 max_sym_shndx_count = 0;
7242 for (o = abfd->sections; o != NULL; o = o->next)
7244 struct bfd_elf_section_data *esdo = elf_section_data (o);
7247 for (p = o->link_order_head; p != NULL; p = p->next)
7249 unsigned int reloc_count = 0;
7250 struct bfd_elf_section_data *esdi = NULL;
7251 unsigned int *rel_count1;
7253 if (p->type == bfd_section_reloc_link_order
7254 || p->type == bfd_symbol_reloc_link_order)
7256 else if (p->type == bfd_indirect_link_order)
7260 sec = p->u.indirect.section;
7261 esdi = elf_section_data (sec);
7263 /* Mark all sections which are to be included in the
7264 link. This will normally be every section. We need
7265 to do this so that we can identify any sections which
7266 the linker has decided to not include. */
7267 sec->linker_mark = TRUE;
7269 if (sec->flags & SEC_MERGE)
7272 if (info->relocatable || info->emitrelocations)
7273 reloc_count = sec->reloc_count;
7274 else if (bed->elf_backend_count_relocs)
7276 Elf_Internal_Rela * relocs;
7278 relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7281 reloc_count = (*bed->elf_backend_count_relocs) (sec, relocs);
7283 if (elf_section_data (o)->relocs != relocs)
7287 if (sec->rawsize > max_contents_size)
7288 max_contents_size = sec->rawsize;
7289 if (sec->size > max_contents_size)
7290 max_contents_size = sec->size;
7292 /* We are interested in just local symbols, not all
7294 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
7295 && (sec->owner->flags & DYNAMIC) == 0)
7299 if (elf_bad_symtab (sec->owner))
7300 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
7301 / bed->s->sizeof_sym);
7303 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
7305 if (sym_count > max_sym_count)
7306 max_sym_count = sym_count;
7308 if (sym_count > max_sym_shndx_count
7309 && elf_symtab_shndx (sec->owner) != 0)
7310 max_sym_shndx_count = sym_count;
7312 if ((sec->flags & SEC_RELOC) != 0)
7316 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
7317 if (ext_size > max_external_reloc_size)
7318 max_external_reloc_size = ext_size;
7319 if (sec->reloc_count > max_internal_reloc_count)
7320 max_internal_reloc_count = sec->reloc_count;
7325 if (reloc_count == 0)
7328 o->reloc_count += reloc_count;
7330 /* MIPS may have a mix of REL and RELA relocs on sections.
7331 To support this curious ABI we keep reloc counts in
7332 elf_section_data too. We must be careful to add the
7333 relocations from the input section to the right output
7334 count. FIXME: Get rid of one count. We have
7335 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7336 rel_count1 = &esdo->rel_count;
7339 bfd_boolean same_size;
7340 bfd_size_type entsize1;
7342 entsize1 = esdi->rel_hdr.sh_entsize;
7343 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
7344 || entsize1 == bed->s->sizeof_rela);
7345 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
7348 rel_count1 = &esdo->rel_count2;
7350 if (esdi->rel_hdr2 != NULL)
7352 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
7353 unsigned int alt_count;
7354 unsigned int *rel_count2;
7356 BFD_ASSERT (entsize2 != entsize1
7357 && (entsize2 == bed->s->sizeof_rel
7358 || entsize2 == bed->s->sizeof_rela));
7360 rel_count2 = &esdo->rel_count2;
7362 rel_count2 = &esdo->rel_count;
7364 /* The following is probably too simplistic if the
7365 backend counts output relocs unusually. */
7366 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
7367 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
7368 *rel_count2 += alt_count;
7369 reloc_count -= alt_count;
7372 *rel_count1 += reloc_count;
7375 if (o->reloc_count > 0)
7376 o->flags |= SEC_RELOC;
7379 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7380 set it (this is probably a bug) and if it is set
7381 assign_section_numbers will create a reloc section. */
7382 o->flags &=~ SEC_RELOC;
7385 /* If the SEC_ALLOC flag is not set, force the section VMA to
7386 zero. This is done in elf_fake_sections as well, but forcing
7387 the VMA to 0 here will ensure that relocs against these
7388 sections are handled correctly. */
7389 if ((o->flags & SEC_ALLOC) == 0
7390 && ! o->user_set_vma)
7394 if (! info->relocatable && merged)
7395 elf_link_hash_traverse (elf_hash_table (info),
7396 _bfd_elf_link_sec_merge_syms, abfd);
7398 /* Figure out the file positions for everything but the symbol table
7399 and the relocs. We set symcount to force assign_section_numbers
7400 to create a symbol table. */
7401 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
7402 BFD_ASSERT (! abfd->output_has_begun);
7403 if (! _bfd_elf_compute_section_file_positions (abfd, info))
7406 /* That created the reloc sections. Set their sizes, and assign
7407 them file positions, and allocate some buffers. */
7408 for (o = abfd->sections; o != NULL; o = o->next)
7410 if ((o->flags & SEC_RELOC) != 0)
7412 if (!(_bfd_elf_link_size_reloc_section
7413 (abfd, &elf_section_data (o)->rel_hdr, o)))
7416 if (elf_section_data (o)->rel_hdr2
7417 && !(_bfd_elf_link_size_reloc_section
7418 (abfd, elf_section_data (o)->rel_hdr2, o)))
7422 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7423 to count upwards while actually outputting the relocations. */
7424 elf_section_data (o)->rel_count = 0;
7425 elf_section_data (o)->rel_count2 = 0;
7428 _bfd_elf_assign_file_positions_for_relocs (abfd);
7430 /* We have now assigned file positions for all the sections except
7431 .symtab and .strtab. We start the .symtab section at the current
7432 file position, and write directly to it. We build the .strtab
7433 section in memory. */
7434 bfd_get_symcount (abfd) = 0;
7435 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7436 /* sh_name is set in prep_headers. */
7437 symtab_hdr->sh_type = SHT_SYMTAB;
7438 /* sh_flags, sh_addr and sh_size all start off zero. */
7439 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7440 /* sh_link is set in assign_section_numbers. */
7441 /* sh_info is set below. */
7442 /* sh_offset is set just below. */
7443 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
7445 off = elf_tdata (abfd)->next_file_pos;
7446 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
7448 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7449 incorrect. We do not yet know the size of the .symtab section.
7450 We correct next_file_pos below, after we do know the size. */
7452 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7453 continuously seeking to the right position in the file. */
7454 if (! info->keep_memory || max_sym_count < 20)
7455 finfo.symbuf_size = 20;
7457 finfo.symbuf_size = max_sym_count;
7458 amt = finfo.symbuf_size;
7459 amt *= bed->s->sizeof_sym;
7460 finfo.symbuf = bfd_malloc (amt);
7461 if (finfo.symbuf == NULL)
7463 if (elf_numsections (abfd) > SHN_LORESERVE)
7465 /* Wild guess at number of output symbols. realloc'd as needed. */
7466 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
7467 finfo.shndxbuf_size = amt;
7468 amt *= sizeof (Elf_External_Sym_Shndx);
7469 finfo.symshndxbuf = bfd_zmalloc (amt);
7470 if (finfo.symshndxbuf == NULL)
7474 /* Start writing out the symbol table. The first symbol is always a
7476 if (info->strip != strip_all
7479 elfsym.st_value = 0;
7482 elfsym.st_other = 0;
7483 elfsym.st_shndx = SHN_UNDEF;
7484 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
7490 /* Some standard ELF linkers do this, but we don't because it causes
7491 bootstrap comparison failures. */
7492 /* Output a file symbol for the output file as the second symbol.
7493 We output this even if we are discarding local symbols, although
7494 I'm not sure if this is correct. */
7495 elfsym.st_value = 0;
7497 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7498 elfsym.st_other = 0;
7499 elfsym.st_shndx = SHN_ABS;
7500 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
7501 &elfsym, bfd_abs_section_ptr, NULL))
7505 /* Output a symbol for each section. We output these even if we are
7506 discarding local symbols, since they are used for relocs. These
7507 symbols have no names. We store the index of each one in the
7508 index field of the section, so that we can find it again when
7509 outputting relocs. */
7510 if (info->strip != strip_all
7514 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7515 elfsym.st_other = 0;
7516 for (i = 1; i < elf_numsections (abfd); i++)
7518 o = bfd_section_from_elf_index (abfd, i);
7520 o->target_index = bfd_get_symcount (abfd);
7521 elfsym.st_shndx = i;
7522 if (info->relocatable || o == NULL)
7523 elfsym.st_value = 0;
7525 elfsym.st_value = o->vma;
7526 if (! elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
7528 if (i == SHN_LORESERVE - 1)
7529 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
7533 /* Allocate some memory to hold information read in from the input
7535 if (max_contents_size != 0)
7537 finfo.contents = bfd_malloc (max_contents_size);
7538 if (finfo.contents == NULL)
7542 if (max_external_reloc_size != 0)
7544 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
7545 if (finfo.external_relocs == NULL)
7549 if (max_internal_reloc_count != 0)
7551 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
7552 amt *= sizeof (Elf_Internal_Rela);
7553 finfo.internal_relocs = bfd_malloc (amt);
7554 if (finfo.internal_relocs == NULL)
7558 if (max_sym_count != 0)
7560 amt = max_sym_count * bed->s->sizeof_sym;
7561 finfo.external_syms = bfd_malloc (amt);
7562 if (finfo.external_syms == NULL)
7565 amt = max_sym_count * sizeof (Elf_Internal_Sym);
7566 finfo.internal_syms = bfd_malloc (amt);
7567 if (finfo.internal_syms == NULL)
7570 amt = max_sym_count * sizeof (long);
7571 finfo.indices = bfd_malloc (amt);
7572 if (finfo.indices == NULL)
7575 amt = max_sym_count * sizeof (asection *);
7576 finfo.sections = bfd_malloc (amt);
7577 if (finfo.sections == NULL)
7581 if (max_sym_shndx_count != 0)
7583 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
7584 finfo.locsym_shndx = bfd_malloc (amt);
7585 if (finfo.locsym_shndx == NULL)
7589 if (elf_hash_table (info)->tls_sec)
7591 bfd_vma base, end = 0;
7594 for (sec = elf_hash_table (info)->tls_sec;
7595 sec && (sec->flags & SEC_THREAD_LOCAL);
7598 bfd_vma size = sec->size;
7600 if (size == 0 && (sec->flags & SEC_HAS_CONTENTS) == 0)
7602 struct bfd_link_order *o;
7604 for (o = sec->link_order_head; o != NULL; o = o->next)
7605 if (size < o->offset + o->size)
7606 size = o->offset + o->size;
7608 end = sec->vma + size;
7610 base = elf_hash_table (info)->tls_sec->vma;
7611 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
7612 elf_hash_table (info)->tls_size = end - base;
7615 /* Since ELF permits relocations to be against local symbols, we
7616 must have the local symbols available when we do the relocations.
7617 Since we would rather only read the local symbols once, and we
7618 would rather not keep them in memory, we handle all the
7619 relocations for a single input file at the same time.
7621 Unfortunately, there is no way to know the total number of local
7622 symbols until we have seen all of them, and the local symbol
7623 indices precede the global symbol indices. This means that when
7624 we are generating relocatable output, and we see a reloc against
7625 a global symbol, we can not know the symbol index until we have
7626 finished examining all the local symbols to see which ones we are
7627 going to output. To deal with this, we keep the relocations in
7628 memory, and don't output them until the end of the link. This is
7629 an unfortunate waste of memory, but I don't see a good way around
7630 it. Fortunately, it only happens when performing a relocatable
7631 link, which is not the common case. FIXME: If keep_memory is set
7632 we could write the relocs out and then read them again; I don't
7633 know how bad the memory loss will be. */
7635 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7636 sub->output_has_begun = FALSE;
7637 for (o = abfd->sections; o != NULL; o = o->next)
7639 for (p = o->link_order_head; p != NULL; p = p->next)
7641 if (p->type == bfd_indirect_link_order
7642 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
7643 == bfd_target_elf_flavour)
7644 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
7646 if (! sub->output_has_begun)
7648 if (! elf_link_input_bfd (&finfo, sub))
7650 sub->output_has_begun = TRUE;
7653 else if (p->type == bfd_section_reloc_link_order
7654 || p->type == bfd_symbol_reloc_link_order)
7656 if (! elf_reloc_link_order (abfd, info, o, p))
7661 if (! _bfd_default_link_order (abfd, info, o, p))
7667 /* Output any global symbols that got converted to local in a
7668 version script or due to symbol visibility. We do this in a
7669 separate step since ELF requires all local symbols to appear
7670 prior to any global symbols. FIXME: We should only do this if
7671 some global symbols were, in fact, converted to become local.
7672 FIXME: Will this work correctly with the Irix 5 linker? */
7673 eoinfo.failed = FALSE;
7674 eoinfo.finfo = &finfo;
7675 eoinfo.localsyms = TRUE;
7676 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7681 /* That wrote out all the local symbols. Finish up the symbol table
7682 with the global symbols. Even if we want to strip everything we
7683 can, we still need to deal with those global symbols that got
7684 converted to local in a version script. */
7686 /* The sh_info field records the index of the first non local symbol. */
7687 symtab_hdr->sh_info = bfd_get_symcount (abfd);
7690 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
7692 Elf_Internal_Sym sym;
7693 bfd_byte *dynsym = finfo.dynsym_sec->contents;
7694 long last_local = 0;
7696 /* Write out the section symbols for the output sections. */
7703 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7706 for (s = abfd->sections; s != NULL; s = s->next)
7712 dynindx = elf_section_data (s)->dynindx;
7715 indx = elf_section_data (s)->this_idx;
7716 BFD_ASSERT (indx > 0);
7717 sym.st_shndx = indx;
7718 sym.st_value = s->vma;
7719 dest = dynsym + dynindx * bed->s->sizeof_sym;
7720 if (last_local < dynindx)
7721 last_local = dynindx;
7722 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7726 /* Write out the local dynsyms. */
7727 if (elf_hash_table (info)->dynlocal)
7729 struct elf_link_local_dynamic_entry *e;
7730 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
7735 sym.st_size = e->isym.st_size;
7736 sym.st_other = e->isym.st_other;
7738 /* Copy the internal symbol as is.
7739 Note that we saved a word of storage and overwrote
7740 the original st_name with the dynstr_index. */
7743 if (e->isym.st_shndx != SHN_UNDEF
7744 && (e->isym.st_shndx < SHN_LORESERVE
7745 || e->isym.st_shndx > SHN_HIRESERVE))
7747 s = bfd_section_from_elf_index (e->input_bfd,
7751 elf_section_data (s->output_section)->this_idx;
7752 sym.st_value = (s->output_section->vma
7754 + e->isym.st_value);
7757 if (last_local < e->dynindx)
7758 last_local = e->dynindx;
7760 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
7761 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
7765 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
7769 /* We get the global symbols from the hash table. */
7770 eoinfo.failed = FALSE;
7771 eoinfo.localsyms = FALSE;
7772 eoinfo.finfo = &finfo;
7773 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
7778 /* If backend needs to output some symbols not present in the hash
7779 table, do it now. */
7780 if (bed->elf_backend_output_arch_syms)
7782 typedef bfd_boolean (*out_sym_func)
7783 (void *, const char *, Elf_Internal_Sym *, asection *,
7784 struct elf_link_hash_entry *);
7786 if (! ((*bed->elf_backend_output_arch_syms)
7787 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
7791 /* Flush all symbols to the file. */
7792 if (! elf_link_flush_output_syms (&finfo, bed))
7795 /* Now we know the size of the symtab section. */
7796 off += symtab_hdr->sh_size;
7798 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
7799 if (symtab_shndx_hdr->sh_name != 0)
7801 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7802 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7803 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7804 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
7805 symtab_shndx_hdr->sh_size = amt;
7807 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
7810 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
7811 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
7816 /* Finish up and write out the symbol string table (.strtab)
7818 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7819 /* sh_name was set in prep_headers. */
7820 symstrtab_hdr->sh_type = SHT_STRTAB;
7821 symstrtab_hdr->sh_flags = 0;
7822 symstrtab_hdr->sh_addr = 0;
7823 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
7824 symstrtab_hdr->sh_entsize = 0;
7825 symstrtab_hdr->sh_link = 0;
7826 symstrtab_hdr->sh_info = 0;
7827 /* sh_offset is set just below. */
7828 symstrtab_hdr->sh_addralign = 1;
7830 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
7831 elf_tdata (abfd)->next_file_pos = off;
7833 if (bfd_get_symcount (abfd) > 0)
7835 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
7836 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
7840 /* Adjust the relocs to have the correct symbol indices. */
7841 for (o = abfd->sections; o != NULL; o = o->next)
7843 if ((o->flags & SEC_RELOC) == 0)
7846 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
7847 elf_section_data (o)->rel_count,
7848 elf_section_data (o)->rel_hashes);
7849 if (elf_section_data (o)->rel_hdr2 != NULL)
7850 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
7851 elf_section_data (o)->rel_count2,
7852 (elf_section_data (o)->rel_hashes
7853 + elf_section_data (o)->rel_count));
7855 /* Set the reloc_count field to 0 to prevent write_relocs from
7856 trying to swap the relocs out itself. */
7860 if (dynamic && info->combreloc && dynobj != NULL)
7861 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
7863 /* If we are linking against a dynamic object, or generating a
7864 shared library, finish up the dynamic linking information. */
7867 bfd_byte *dyncon, *dynconend;
7869 /* Fix up .dynamic entries. */
7870 o = bfd_get_section_by_name (dynobj, ".dynamic");
7871 BFD_ASSERT (o != NULL);
7873 dyncon = o->contents;
7874 dynconend = o->contents + o->size;
7875 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
7877 Elf_Internal_Dyn dyn;
7881 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
7888 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
7890 switch (elf_section_data (reldyn)->this_hdr.sh_type)
7892 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
7893 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
7896 dyn.d_un.d_val = relativecount;
7903 name = info->init_function;
7906 name = info->fini_function;
7909 struct elf_link_hash_entry *h;
7911 h = elf_link_hash_lookup (elf_hash_table (info), name,
7912 FALSE, FALSE, TRUE);
7914 && (h->root.type == bfd_link_hash_defined
7915 || h->root.type == bfd_link_hash_defweak))
7917 dyn.d_un.d_val = h->root.u.def.value;
7918 o = h->root.u.def.section;
7919 if (o->output_section != NULL)
7920 dyn.d_un.d_val += (o->output_section->vma
7921 + o->output_offset);
7924 /* The symbol is imported from another shared
7925 library and does not apply to this one. */
7933 case DT_PREINIT_ARRAYSZ:
7934 name = ".preinit_array";
7936 case DT_INIT_ARRAYSZ:
7937 name = ".init_array";
7939 case DT_FINI_ARRAYSZ:
7940 name = ".fini_array";
7942 o = bfd_get_section_by_name (abfd, name);
7945 (*_bfd_error_handler)
7946 (_("%s: could not find output section %s"),
7947 bfd_get_filename (abfd), name);
7951 (*_bfd_error_handler)
7952 (_("warning: %s section has zero size"), name);
7953 dyn.d_un.d_val = o->size;
7956 case DT_PREINIT_ARRAY:
7957 name = ".preinit_array";
7960 name = ".init_array";
7963 name = ".fini_array";
7976 name = ".gnu.version_d";
7979 name = ".gnu.version_r";
7982 name = ".gnu.version";
7984 o = bfd_get_section_by_name (abfd, name);
7987 (*_bfd_error_handler)
7988 (_("%s: could not find output section %s"),
7989 bfd_get_filename (abfd), name);
7992 dyn.d_un.d_ptr = o->vma;
7999 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
8004 for (i = 1; i < elf_numsections (abfd); i++)
8006 Elf_Internal_Shdr *hdr;
8008 hdr = elf_elfsections (abfd)[i];
8009 if (hdr->sh_type == type
8010 && (hdr->sh_flags & SHF_ALLOC) != 0)
8012 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
8013 dyn.d_un.d_val += hdr->sh_size;
8016 if (dyn.d_un.d_val == 0
8017 || hdr->sh_addr < dyn.d_un.d_val)
8018 dyn.d_un.d_val = hdr->sh_addr;
8024 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
8028 /* If we have created any dynamic sections, then output them. */
8031 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
8034 for (o = dynobj->sections; o != NULL; o = o->next)
8036 if ((o->flags & SEC_HAS_CONTENTS) == 0
8038 || o->output_section == bfd_abs_section_ptr)
8040 if ((o->flags & SEC_LINKER_CREATED) == 0)
8042 /* At this point, we are only interested in sections
8043 created by _bfd_elf_link_create_dynamic_sections. */
8046 if (elf_hash_table (info)->stab_info.stabstr == o)
8048 if (elf_hash_table (info)->eh_info.hdr_sec == o)
8050 if ((elf_section_data (o->output_section)->this_hdr.sh_type
8052 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
8054 if (! bfd_set_section_contents (abfd, o->output_section,
8056 (file_ptr) o->output_offset,
8062 /* The contents of the .dynstr section are actually in a
8064 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
8065 if (bfd_seek (abfd, off, SEEK_SET) != 0
8066 || ! _bfd_elf_strtab_emit (abfd,
8067 elf_hash_table (info)->dynstr))
8073 if (info->relocatable)
8075 bfd_boolean failed = FALSE;
8077 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
8082 /* If we have optimized stabs strings, output them. */
8083 if (elf_hash_table (info)->stab_info.stabstr != NULL)
8085 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
8089 if (info->eh_frame_hdr)
8091 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
8095 if (finfo.symstrtab != NULL)
8096 _bfd_stringtab_free (finfo.symstrtab);
8097 if (finfo.contents != NULL)
8098 free (finfo.contents);
8099 if (finfo.external_relocs != NULL)
8100 free (finfo.external_relocs);
8101 if (finfo.internal_relocs != NULL)
8102 free (finfo.internal_relocs);
8103 if (finfo.external_syms != NULL)
8104 free (finfo.external_syms);
8105 if (finfo.locsym_shndx != NULL)
8106 free (finfo.locsym_shndx);
8107 if (finfo.internal_syms != NULL)
8108 free (finfo.internal_syms);
8109 if (finfo.indices != NULL)
8110 free (finfo.indices);
8111 if (finfo.sections != NULL)
8112 free (finfo.sections);
8113 if (finfo.symbuf != NULL)
8114 free (finfo.symbuf);
8115 if (finfo.symshndxbuf != NULL)
8116 free (finfo.symshndxbuf);
8117 for (o = abfd->sections; o != NULL; o = o->next)
8119 if ((o->flags & SEC_RELOC) != 0
8120 && elf_section_data (o)->rel_hashes != NULL)
8121 free (elf_section_data (o)->rel_hashes);
8124 elf_tdata (abfd)->linker = TRUE;
8129 if (finfo.symstrtab != NULL)
8130 _bfd_stringtab_free (finfo.symstrtab);
8131 if (finfo.contents != NULL)
8132 free (finfo.contents);
8133 if (finfo.external_relocs != NULL)
8134 free (finfo.external_relocs);
8135 if (finfo.internal_relocs != NULL)
8136 free (finfo.internal_relocs);
8137 if (finfo.external_syms != NULL)
8138 free (finfo.external_syms);
8139 if (finfo.locsym_shndx != NULL)
8140 free (finfo.locsym_shndx);
8141 if (finfo.internal_syms != NULL)
8142 free (finfo.internal_syms);
8143 if (finfo.indices != NULL)
8144 free (finfo.indices);
8145 if (finfo.sections != NULL)
8146 free (finfo.sections);
8147 if (finfo.symbuf != NULL)
8148 free (finfo.symbuf);
8149 if (finfo.symshndxbuf != NULL)
8150 free (finfo.symshndxbuf);
8151 for (o = abfd->sections; o != NULL; o = o->next)
8153 if ((o->flags & SEC_RELOC) != 0
8154 && elf_section_data (o)->rel_hashes != NULL)
8155 free (elf_section_data (o)->rel_hashes);
8161 /* Garbage collect unused sections. */
8163 /* The mark phase of garbage collection. For a given section, mark
8164 it and any sections in this section's group, and all the sections
8165 which define symbols to which it refers. */
8167 typedef asection * (*gc_mark_hook_fn)
8168 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8169 struct elf_link_hash_entry *, Elf_Internal_Sym *);
8172 elf_gc_mark (struct bfd_link_info *info,
8174 gc_mark_hook_fn gc_mark_hook)
8177 asection *group_sec;
8181 /* Mark all the sections in the group. */
8182 group_sec = elf_section_data (sec)->next_in_group;
8183 if (group_sec && !group_sec->gc_mark)
8184 if (!elf_gc_mark (info, group_sec, gc_mark_hook))
8187 /* Look through the section relocs. */
8189 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
8191 Elf_Internal_Rela *relstart, *rel, *relend;
8192 Elf_Internal_Shdr *symtab_hdr;
8193 struct elf_link_hash_entry **sym_hashes;
8196 bfd *input_bfd = sec->owner;
8197 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
8198 Elf_Internal_Sym *isym = NULL;
8201 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8202 sym_hashes = elf_sym_hashes (input_bfd);
8204 /* Read the local symbols. */
8205 if (elf_bad_symtab (input_bfd))
8207 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
8211 extsymoff = nlocsyms = symtab_hdr->sh_info;
8213 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
8214 if (isym == NULL && nlocsyms != 0)
8216 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
8222 /* Read the relocations. */
8223 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
8225 if (relstart == NULL)
8230 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8232 if (bed->s->arch_size == 32)
8237 for (rel = relstart; rel < relend; rel++)
8239 unsigned long r_symndx;
8241 struct elf_link_hash_entry *h;
8243 r_symndx = rel->r_info >> r_sym_shift;
8247 if (r_symndx >= nlocsyms
8248 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
8250 h = sym_hashes[r_symndx - extsymoff];
8251 while (h->root.type == bfd_link_hash_indirect
8252 || h->root.type == bfd_link_hash_warning)
8253 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8254 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
8258 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
8261 if (rsec && !rsec->gc_mark)
8263 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
8265 else if (!elf_gc_mark (info, rsec, gc_mark_hook))
8274 if (elf_section_data (sec)->relocs != relstart)
8277 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
8279 if (! info->keep_memory)
8282 symtab_hdr->contents = (unsigned char *) isym;
8289 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8292 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *idxptr)
8296 if (h->root.type == bfd_link_hash_warning)
8297 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8299 if (h->dynindx != -1
8300 && ((h->root.type != bfd_link_hash_defined
8301 && h->root.type != bfd_link_hash_defweak)
8302 || h->root.u.def.section->gc_mark))
8303 h->dynindx = (*idx)++;
8308 /* The sweep phase of garbage collection. Remove all garbage sections. */
8310 typedef bfd_boolean (*gc_sweep_hook_fn)
8311 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
8314 elf_gc_sweep (struct bfd_link_info *info, gc_sweep_hook_fn gc_sweep_hook)
8318 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8322 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8325 for (o = sub->sections; o != NULL; o = o->next)
8327 /* Keep special sections. Keep .debug sections. */
8328 if ((o->flags & SEC_LINKER_CREATED)
8329 || (o->flags & SEC_DEBUGGING))
8335 /* Skip sweeping sections already excluded. */
8336 if (o->flags & SEC_EXCLUDE)
8339 /* Since this is early in the link process, it is simple
8340 to remove a section from the output. */
8341 o->flags |= SEC_EXCLUDE;
8343 /* But we also have to update some of the relocation
8344 info we collected before. */
8346 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
8348 Elf_Internal_Rela *internal_relocs;
8352 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
8354 if (internal_relocs == NULL)
8357 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
8359 if (elf_section_data (o)->relocs != internal_relocs)
8360 free (internal_relocs);
8368 /* Remove the symbols that were in the swept sections from the dynamic
8369 symbol table. GCFIXME: Anyone know how to get them out of the
8370 static symbol table as well? */
8374 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, &i);
8376 elf_hash_table (info)->dynsymcount = i;
8382 /* Propagate collected vtable information. This is called through
8383 elf_link_hash_traverse. */
8386 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
8388 if (h->root.type == bfd_link_hash_warning)
8389 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8391 /* Those that are not vtables. */
8392 if (h->vtable_parent == NULL)
8395 /* Those vtables that do not have parents, we cannot merge. */
8396 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
8399 /* If we've already been done, exit. */
8400 if (h->vtable_entries_used && h->vtable_entries_used[-1])
8403 /* Make sure the parent's table is up to date. */
8404 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
8406 if (h->vtable_entries_used == NULL)
8408 /* None of this table's entries were referenced. Re-use the
8410 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
8411 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
8416 bfd_boolean *cu, *pu;
8418 /* Or the parent's entries into ours. */
8419 cu = h->vtable_entries_used;
8421 pu = h->vtable_parent->vtable_entries_used;
8424 const struct elf_backend_data *bed;
8425 unsigned int log_file_align;
8427 bed = get_elf_backend_data (h->root.u.def.section->owner);
8428 log_file_align = bed->s->log_file_align;
8429 n = h->vtable_parent->vtable_entries_size >> log_file_align;
8444 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
8447 bfd_vma hstart, hend;
8448 Elf_Internal_Rela *relstart, *relend, *rel;
8449 const struct elf_backend_data *bed;
8450 unsigned int log_file_align;
8452 if (h->root.type == bfd_link_hash_warning)
8453 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8455 /* Take care of both those symbols that do not describe vtables as
8456 well as those that are not loaded. */
8457 if (h->vtable_parent == NULL)
8460 BFD_ASSERT (h->root.type == bfd_link_hash_defined
8461 || h->root.type == bfd_link_hash_defweak);
8463 sec = h->root.u.def.section;
8464 hstart = h->root.u.def.value;
8465 hend = hstart + h->size;
8467 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
8469 return *(bfd_boolean *) okp = FALSE;
8470 bed = get_elf_backend_data (sec->owner);
8471 log_file_align = bed->s->log_file_align;
8473 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8475 for (rel = relstart; rel < relend; ++rel)
8476 if (rel->r_offset >= hstart && rel->r_offset < hend)
8478 /* If the entry is in use, do nothing. */
8479 if (h->vtable_entries_used
8480 && (rel->r_offset - hstart) < h->vtable_entries_size)
8482 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
8483 if (h->vtable_entries_used[entry])
8486 /* Otherwise, kill it. */
8487 rel->r_offset = rel->r_info = rel->r_addend = 0;
8493 /* Mark sections containing dynamically referenced symbols. This is called
8494 through elf_link_hash_traverse. */
8497 elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h,
8498 void *okp ATTRIBUTE_UNUSED)
8500 if (h->root.type == bfd_link_hash_warning)
8501 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8503 if ((h->root.type == bfd_link_hash_defined
8504 || h->root.type == bfd_link_hash_defweak)
8505 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC))
8506 h->root.u.def.section->flags |= SEC_KEEP;
8511 /* Do mark and sweep of unused sections. */
8514 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
8516 bfd_boolean ok = TRUE;
8518 asection * (*gc_mark_hook)
8519 (asection *, struct bfd_link_info *, Elf_Internal_Rela *,
8520 struct elf_link_hash_entry *h, Elf_Internal_Sym *);
8522 if (!get_elf_backend_data (abfd)->can_gc_sections
8523 || info->relocatable
8524 || info->emitrelocations
8526 || !is_elf_hash_table (info->hash))
8528 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
8532 /* Apply transitive closure to the vtable entry usage info. */
8533 elf_link_hash_traverse (elf_hash_table (info),
8534 elf_gc_propagate_vtable_entries_used,
8539 /* Kill the vtable relocations that were not used. */
8540 elf_link_hash_traverse (elf_hash_table (info),
8541 elf_gc_smash_unused_vtentry_relocs,
8546 /* Mark dynamically referenced symbols. */
8547 if (elf_hash_table (info)->dynamic_sections_created)
8548 elf_link_hash_traverse (elf_hash_table (info),
8549 elf_gc_mark_dynamic_ref_symbol,
8554 /* Grovel through relocs to find out who stays ... */
8555 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
8556 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8560 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8563 for (o = sub->sections; o != NULL; o = o->next)
8565 if (o->flags & SEC_KEEP)
8567 /* _bfd_elf_discard_section_eh_frame knows how to discard
8568 orphaned FDEs so don't mark sections referenced by the
8569 EH frame section. */
8570 if (strcmp (o->name, ".eh_frame") == 0)
8572 else if (!elf_gc_mark (info, o, gc_mark_hook))
8578 /* ... and mark SEC_EXCLUDE for those that go. */
8579 if (!elf_gc_sweep (info, get_elf_backend_data (abfd)->gc_sweep_hook))
8585 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8588 bfd_elf_gc_record_vtinherit (bfd *abfd,
8590 struct elf_link_hash_entry *h,
8593 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
8594 struct elf_link_hash_entry **search, *child;
8595 bfd_size_type extsymcount;
8596 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8599 /* The sh_info field of the symtab header tells us where the
8600 external symbols start. We don't care about the local symbols at
8602 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
8603 if (!elf_bad_symtab (abfd))
8604 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
8606 sym_hashes = elf_sym_hashes (abfd);
8607 sym_hashes_end = sym_hashes + extsymcount;
8609 /* Hunt down the child symbol, which is in this section at the same
8610 offset as the relocation. */
8611 for (search = sym_hashes; search != sym_hashes_end; ++search)
8613 if ((child = *search) != NULL
8614 && (child->root.type == bfd_link_hash_defined
8615 || child->root.type == bfd_link_hash_defweak)
8616 && child->root.u.def.section == sec
8617 && child->root.u.def.value == offset)
8621 sec_name = bfd_get_section_ident (sec);
8622 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
8623 bfd_archive_filename (abfd),
8624 sec_name ? sec_name : sec->name,
8625 (unsigned long) offset);
8626 bfd_set_error (bfd_error_invalid_operation);
8632 /* This *should* only be the absolute section. It could potentially
8633 be that someone has defined a non-global vtable though, which
8634 would be bad. It isn't worth paging in the local symbols to be
8635 sure though; that case should simply be handled by the assembler. */
8637 child->vtable_parent = (struct elf_link_hash_entry *) -1;
8640 child->vtable_parent = h;
8645 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8648 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
8649 asection *sec ATTRIBUTE_UNUSED,
8650 struct elf_link_hash_entry *h,
8653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8654 unsigned int log_file_align = bed->s->log_file_align;
8656 if (addend >= h->vtable_entries_size)
8658 size_t size, bytes, file_align;
8659 bfd_boolean *ptr = h->vtable_entries_used;
8661 /* While the symbol is undefined, we have to be prepared to handle
8663 file_align = 1 << log_file_align;
8664 if (h->root.type == bfd_link_hash_undefined)
8665 size = addend + file_align;
8671 /* Oops! We've got a reference past the defined end of
8672 the table. This is probably a bug -- shall we warn? */
8673 size = addend + file_align;
8676 size = (size + file_align - 1) & -file_align;
8678 /* Allocate one extra entry for use as a "done" flag for the
8679 consolidation pass. */
8680 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
8684 ptr = bfd_realloc (ptr - 1, bytes);
8690 oldbytes = (((h->vtable_entries_size >> log_file_align) + 1)
8691 * sizeof (bfd_boolean));
8692 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
8696 ptr = bfd_zmalloc (bytes);
8701 /* And arrange for that done flag to be at index -1. */
8702 h->vtable_entries_used = ptr + 1;
8703 h->vtable_entries_size = size;
8706 h->vtable_entries_used[addend >> log_file_align] = TRUE;
8711 struct alloc_got_off_arg {
8713 unsigned int got_elt_size;
8716 /* We need a special top-level link routine to convert got reference counts
8717 to real got offsets. */
8720 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
8722 struct alloc_got_off_arg *gofarg = arg;
8724 if (h->root.type == bfd_link_hash_warning)
8725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8727 if (h->got.refcount > 0)
8729 h->got.offset = gofarg->gotoff;
8730 gofarg->gotoff += gofarg->got_elt_size;
8733 h->got.offset = (bfd_vma) -1;
8738 /* And an accompanying bit to work out final got entry offsets once
8739 we're done. Should be called from final_link. */
8742 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
8743 struct bfd_link_info *info)
8746 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8748 unsigned int got_elt_size = bed->s->arch_size / 8;
8749 struct alloc_got_off_arg gofarg;
8751 if (! is_elf_hash_table (info->hash))
8754 /* The GOT offset is relative to the .got section, but the GOT header is
8755 put into the .got.plt section, if the backend uses it. */
8756 if (bed->want_got_plt)
8759 gotoff = bed->got_header_size;
8761 /* Do the local .got entries first. */
8762 for (i = info->input_bfds; i; i = i->link_next)
8764 bfd_signed_vma *local_got;
8765 bfd_size_type j, locsymcount;
8766 Elf_Internal_Shdr *symtab_hdr;
8768 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
8771 local_got = elf_local_got_refcounts (i);
8775 symtab_hdr = &elf_tdata (i)->symtab_hdr;
8776 if (elf_bad_symtab (i))
8777 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8779 locsymcount = symtab_hdr->sh_info;
8781 for (j = 0; j < locsymcount; ++j)
8783 if (local_got[j] > 0)
8785 local_got[j] = gotoff;
8786 gotoff += got_elt_size;
8789 local_got[j] = (bfd_vma) -1;
8793 /* Then the global .got entries. .plt refcounts are handled by
8794 adjust_dynamic_symbol */
8795 gofarg.gotoff = gotoff;
8796 gofarg.got_elt_size = got_elt_size;
8797 elf_link_hash_traverse (elf_hash_table (info),
8798 elf_gc_allocate_got_offsets,
8803 /* Many folk need no more in the way of final link than this, once
8804 got entry reference counting is enabled. */
8807 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
8809 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
8812 /* Invoke the regular ELF backend linker to do all the work. */
8813 return bfd_elf_final_link (abfd, info);
8817 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
8819 struct elf_reloc_cookie *rcookie = cookie;
8821 if (rcookie->bad_symtab)
8822 rcookie->rel = rcookie->rels;
8824 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
8826 unsigned long r_symndx;
8828 if (! rcookie->bad_symtab)
8829 if (rcookie->rel->r_offset > offset)
8831 if (rcookie->rel->r_offset != offset)
8834 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
8835 if (r_symndx == SHN_UNDEF)
8838 if (r_symndx >= rcookie->locsymcount
8839 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
8841 struct elf_link_hash_entry *h;
8843 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
8845 while (h->root.type == bfd_link_hash_indirect
8846 || h->root.type == bfd_link_hash_warning)
8847 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8849 if ((h->root.type == bfd_link_hash_defined
8850 || h->root.type == bfd_link_hash_defweak)
8851 && elf_discarded_section (h->root.u.def.section))
8858 /* It's not a relocation against a global symbol,
8859 but it could be a relocation against a local
8860 symbol for a discarded section. */
8862 Elf_Internal_Sym *isym;
8864 /* Need to: get the symbol; get the section. */
8865 isym = &rcookie->locsyms[r_symndx];
8866 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8868 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
8869 if (isec != NULL && elf_discarded_section (isec))
8878 /* Discard unneeded references to discarded sections.
8879 Returns TRUE if any section's size was changed. */
8880 /* This function assumes that the relocations are in sorted order,
8881 which is true for all known assemblers. */
8884 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
8886 struct elf_reloc_cookie cookie;
8887 asection *stab, *eh;
8888 Elf_Internal_Shdr *symtab_hdr;
8889 const struct elf_backend_data *bed;
8892 bfd_boolean ret = FALSE;
8894 if (info->traditional_format
8895 || !is_elf_hash_table (info->hash))
8898 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
8900 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
8903 bed = get_elf_backend_data (abfd);
8905 if ((abfd->flags & DYNAMIC) != 0)
8908 eh = bfd_get_section_by_name (abfd, ".eh_frame");
8909 if (info->relocatable
8912 || bfd_is_abs_section (eh->output_section))))
8915 stab = bfd_get_section_by_name (abfd, ".stab");
8918 || bfd_is_abs_section (stab->output_section)
8919 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
8924 && bed->elf_backend_discard_info == NULL)
8927 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8929 cookie.sym_hashes = elf_sym_hashes (abfd);
8930 cookie.bad_symtab = elf_bad_symtab (abfd);
8931 if (cookie.bad_symtab)
8933 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8934 cookie.extsymoff = 0;
8938 cookie.locsymcount = symtab_hdr->sh_info;
8939 cookie.extsymoff = symtab_hdr->sh_info;
8942 if (bed->s->arch_size == 32)
8943 cookie.r_sym_shift = 8;
8945 cookie.r_sym_shift = 32;
8947 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
8948 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
8950 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8951 cookie.locsymcount, 0,
8953 if (cookie.locsyms == NULL)
8960 count = stab->reloc_count;
8962 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
8964 if (cookie.rels != NULL)
8966 cookie.rel = cookie.rels;
8967 cookie.relend = cookie.rels;
8968 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8969 if (_bfd_discard_section_stabs (abfd, stab,
8970 elf_section_data (stab)->sec_info,
8971 bfd_elf_reloc_symbol_deleted_p,
8974 if (elf_section_data (stab)->relocs != cookie.rels)
8982 count = eh->reloc_count;
8984 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
8986 cookie.rel = cookie.rels;
8987 cookie.relend = cookie.rels;
8988 if (cookie.rels != NULL)
8989 cookie.relend += count * bed->s->int_rels_per_ext_rel;
8991 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
8992 bfd_elf_reloc_symbol_deleted_p,
8996 if (cookie.rels != NULL
8997 && elf_section_data (eh)->relocs != cookie.rels)
9001 if (bed->elf_backend_discard_info != NULL
9002 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
9005 if (cookie.locsyms != NULL
9006 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
9008 if (! info->keep_memory)
9009 free (cookie.locsyms);
9011 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
9015 if (info->eh_frame_hdr
9016 && !info->relocatable
9017 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))