1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
39 struct elf_info_failed
41 struct bfd_link_info *info;
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
48 struct elf_find_verdep_info
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
54 /* Whether we had a failure. */
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
69 struct elf_link_hash_entry *h;
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
90 Elf_Internal_Sym *isym;
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
96 && discard ? discarded_section (isec) : 1)
102 /* Define a symbol in a dynamic linkage section. */
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
158 flags = bed->dynamic_sec_flags;
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
176 if (bed->want_got_plt)
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
189 if (bed->want_got_sym)
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
205 /* Create a strtab to hold the dynamic symbol names. */
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
209 struct elf_link_hash_table *hash_table;
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
229 hash_table->dynobj = abfd;
232 if (hash_table->dynstr == NULL)
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
256 if (! is_elf_hash_table (info->hash))
259 if (elf_hash_table (info)->dynamic_sections_created)
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
268 flags = bed->dynamic_sec_flags;
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
291 || ! bfd_set_section_alignment (abfd, s, 1))
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
305 elf_hash_table (info)->dynsym = s;
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
338 if (info->emit_gnu_hash)
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
366 /* Create dynamic sections when linking against a dynamic object. */
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
400 if (bed->want_plt_sym)
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
418 if (! _bfd_elf_create_got_section (abfd, info))
421 if (bed->want_dynbss)
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (bed->want_dynrelro)
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
458 if (bfd_link_executable (info))
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
469 if (bed->want_dynrelro)
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
479 htab->sreldynrelro = s;
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
499 if (h->dynindx == -1)
501 struct elf_strtab_hash *dynstr;
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
518 if (!elf_hash_table (info)->is_relocatable_executable)
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
529 dynstr = elf_hash_table (info)->dynstr;
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 /* We don't put any version information in the dynamic string
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555 if (indx == (size_t) -1)
557 h->dynstr_index = indx;
563 /* Mark a symbol dynamic. */
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
602 if (!is_elf_hash_table (info->hash))
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
613 if (h->versioned == unknown)
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
622 h->versioned = versioned;
626 switch (h->root.type)
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
672 h->root.type = bfd_link_hash_undefined;
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
681 h->verinfo.verdef = NULL;
683 /* Make sure this symbol is not garbage collected. */
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
698 if (!bfd_link_relocatable (info)
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
745 if (! is_elf_hash_table (info->hash))
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
762 bfd_release (input_bfd, entry);
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
785 dynstr = elf_hash_table (info)->dynstr;
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
797 entry->isym.st_name = dynstr_index;
799 eht = elf_hash_table (info);
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
807 /* Whatever binding the symbol had before, it's now local. */
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
811 /* The dynindx will be set at the end of size_dynamic_sections. */
816 /* Return the dynindex of a local dynamic symbol. */
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
823 struct elf_link_local_dynamic_entry *e;
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
831 /* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
839 size_t *count = (size_t *) data;
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
858 size_t *count = (size_t *) data;
860 if (!h->forced_local)
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
869 /* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
876 struct elf_link_hash_table *htab;
879 switch (elf_section_data (p)->this_hdr.sh_type)
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
897 /* There shouldn't be section relative relocations
898 against any other section. */
904 /* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
915 unsigned long dynsymcount = 0;
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
928 elf_section_data (p)->dynindx = 0;
930 *section_sym_count = dynsymcount;
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
936 if (elf_hash_table (info)->dynlocal)
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
954 elf_hash_table (info)->dynsymcount = dynsymcount;
958 /* Merge st_other field. */
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
989 /* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1006 Elf_Internal_Sym *sym,
1009 struct elf_link_hash_entry **sym_hash,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1034 bind = ELF_ST_BIND (sym->st_info);
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1045 bed = get_elf_backend_data (abfd);
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1054 if (h->versioned == unknown)
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1059 h->versioned = versioned;
1062 if (new_version[0] == '\0')
1066 h->versioned = unversioned;
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1096 /* OLD_VERSION is the symbol version of the existing
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1121 switch (h->root.type)
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1144 if (poldbfd && *poldbfd == NULL)
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1152 *pold_weak = oldweak;
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1178 if (bfd_is_und_section (sec))
1180 if (bind != STB_WEAK)
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1188 /* Update the existing symbol only if they match. */
1191 hi->dynamic_def = 1;
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1199 if (h->root.type == bfd_link_hash_new)
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1245 if (!(newfunc && oldfunc)
1246 && ELF_ST_TYPE (sym->st_info) != h->type
1247 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1248 && h->type != STT_NOTYPE
1249 && (newdef || bfd_is_com_section (sec))
1250 && (olddef || h->root.type == bfd_link_hash_common))
1252 /* If creating a default indirect symbol ("foo" or "foo@") from
1253 a dynamic versioned definition ("foo@@") skip doing so if
1254 there is an existing regular definition with a different
1255 type. We don't want, for example, a "time" variable in the
1256 executable overriding a "time" function in a shared library. */
1264 /* When adding a symbol from a regular object file after we have
1265 created indirect symbols, undo the indirection and any
1272 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1273 h->forced_local = 0;
1277 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1279 h->root.type = bfd_link_hash_undefined;
1280 h->root.u.undef.abfd = abfd;
1284 h->root.type = bfd_link_hash_new;
1285 h->root.u.undef.abfd = NULL;
1291 /* Check TLS symbols. We don't check undefined symbols introduced
1292 by "ld -u" which have no type (and oldbfd NULL), and we don't
1293 check symbols from plugins because they also have no type. */
1295 && (oldbfd->flags & BFD_PLUGIN) == 0
1296 && (abfd->flags & BFD_PLUGIN) == 0
1297 && ELF_ST_TYPE (sym->st_info) != h->type
1298 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1301 bfd_boolean ntdef, tdef;
1302 asection *ntsec, *tsec;
1304 if (h->type == STT_TLS)
1325 /* xgettext:c-format */
1326 (_("%s: TLS definition in %B section %A "
1327 "mismatches non-TLS definition in %B section %A"),
1328 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1329 else if (!tdef && !ntdef)
1331 /* xgettext:c-format */
1332 (_("%s: TLS reference in %B "
1333 "mismatches non-TLS reference in %B"),
1334 h->root.root.string, tbfd, ntbfd);
1337 /* xgettext:c-format */
1338 (_("%s: TLS definition in %B section %A "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, tsec, ntbfd);
1343 /* xgettext:c-format */
1344 (_("%s: TLS reference in %B "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, ntbfd, ntsec);
1348 bfd_set_error (bfd_error_bad_value);
1352 /* If the old symbol has non-default visibility, we ignore the new
1353 definition from a dynamic object. */
1355 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1356 && !bfd_is_und_section (sec))
1359 /* Make sure this symbol is dynamic. */
1361 hi->ref_dynamic = 1;
1362 /* A protected symbol has external availability. Make sure it is
1363 recorded as dynamic.
1365 FIXME: Should we check type and size for protected symbol? */
1366 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1367 return bfd_elf_link_record_dynamic_symbol (info, h);
1372 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1375 /* If the new symbol with non-default visibility comes from a
1376 relocatable file and the old definition comes from a dynamic
1377 object, we remove the old definition. */
1378 if (hi->root.type == bfd_link_hash_indirect)
1380 /* Handle the case where the old dynamic definition is
1381 default versioned. We need to copy the symbol info from
1382 the symbol with default version to the normal one if it
1383 was referenced before. */
1386 hi->root.type = h->root.type;
1387 h->root.type = bfd_link_hash_indirect;
1388 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1390 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1391 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1393 /* If the new symbol is hidden or internal, completely undo
1394 any dynamic link state. */
1395 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1396 h->forced_local = 0;
1403 /* FIXME: Should we check type and size for protected symbol? */
1413 /* If the old symbol was undefined before, then it will still be
1414 on the undefs list. If the new symbol is undefined or
1415 common, we can't make it bfd_link_hash_new here, because new
1416 undefined or common symbols will be added to the undefs list
1417 by _bfd_generic_link_add_one_symbol. Symbols may not be
1418 added twice to the undefs list. Also, if the new symbol is
1419 undefweak then we don't want to lose the strong undef. */
1420 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1422 h->root.type = bfd_link_hash_undefined;
1423 h->root.u.undef.abfd = abfd;
1427 h->root.type = bfd_link_hash_new;
1428 h->root.u.undef.abfd = NULL;
1431 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 /* If the new symbol is hidden or internal, completely undo
1434 any dynamic link state. */
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 h->forced_local = 0;
1442 /* FIXME: Should we check type and size for protected symbol? */
1448 /* If a new weak symbol definition comes from a regular file and the
1449 old symbol comes from a dynamic library, we treat the new one as
1450 strong. Similarly, an old weak symbol definition from a regular
1451 file is treated as strong when the new symbol comes from a dynamic
1452 library. Further, an old weak symbol from a dynamic library is
1453 treated as strong if the new symbol is from a dynamic library.
1454 This reflects the way glibc's ld.so works.
1456 Do this before setting *type_change_ok or *size_change_ok so that
1457 we warn properly when dynamic library symbols are overridden. */
1459 if (newdef && !newdyn && olddyn)
1461 if (olddef && newdyn)
1464 /* Allow changes between different types of function symbol. */
1465 if (newfunc && oldfunc)
1466 *type_change_ok = TRUE;
1468 /* It's OK to change the type if either the existing symbol or the
1469 new symbol is weak. A type change is also OK if the old symbol
1470 is undefined and the new symbol is defined. */
1475 && h->root.type == bfd_link_hash_undefined))
1476 *type_change_ok = TRUE;
1478 /* It's OK to change the size if either the existing symbol or the
1479 new symbol is weak, or if the old symbol is undefined. */
1482 || h->root.type == bfd_link_hash_undefined)
1483 *size_change_ok = TRUE;
1485 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1486 symbol, respectively, appears to be a common symbol in a dynamic
1487 object. If a symbol appears in an uninitialized section, and is
1488 not weak, and is not a function, then it may be a common symbol
1489 which was resolved when the dynamic object was created. We want
1490 to treat such symbols specially, because they raise special
1491 considerations when setting the symbol size: if the symbol
1492 appears as a common symbol in a regular object, and the size in
1493 the regular object is larger, we must make sure that we use the
1494 larger size. This problematic case can always be avoided in C,
1495 but it must be handled correctly when using Fortran shared
1498 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1499 likewise for OLDDYNCOMMON and OLDDEF.
1501 Note that this test is just a heuristic, and that it is quite
1502 possible to have an uninitialized symbol in a shared object which
1503 is really a definition, rather than a common symbol. This could
1504 lead to some minor confusion when the symbol really is a common
1505 symbol in some regular object. However, I think it will be
1511 && (sec->flags & SEC_ALLOC) != 0
1512 && (sec->flags & SEC_LOAD) == 0
1515 newdyncommon = TRUE;
1517 newdyncommon = FALSE;
1521 && h->root.type == bfd_link_hash_defined
1523 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1524 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1527 olddyncommon = TRUE;
1529 olddyncommon = FALSE;
1531 /* We now know everything about the old and new symbols. We ask the
1532 backend to check if we can merge them. */
1533 if (bed->merge_symbol != NULL)
1535 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1540 /* If both the old and the new symbols look like common symbols in a
1541 dynamic object, set the size of the symbol to the larger of the
1546 && sym->st_size != h->size)
1548 /* Since we think we have two common symbols, issue a multiple
1549 common warning if desired. Note that we only warn if the
1550 size is different. If the size is the same, we simply let
1551 the old symbol override the new one as normally happens with
1552 symbols defined in dynamic objects. */
1554 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1555 bfd_link_hash_common, sym->st_size);
1556 if (sym->st_size > h->size)
1557 h->size = sym->st_size;
1559 *size_change_ok = TRUE;
1562 /* If we are looking at a dynamic object, and we have found a
1563 definition, we need to see if the symbol was already defined by
1564 some other object. If so, we want to use the existing
1565 definition, and we do not want to report a multiple symbol
1566 definition error; we do this by clobbering *PSEC to be
1567 bfd_und_section_ptr.
1569 We treat a common symbol as a definition if the symbol in the
1570 shared library is a function, since common symbols always
1571 represent variables; this can cause confusion in principle, but
1572 any such confusion would seem to indicate an erroneous program or
1573 shared library. We also permit a common symbol in a regular
1574 object to override a weak symbol in a shared object. */
1579 || (h->root.type == bfd_link_hash_common
1580 && (newweak || newfunc))))
1584 newdyncommon = FALSE;
1586 *psec = sec = bfd_und_section_ptr;
1587 *size_change_ok = TRUE;
1589 /* If we get here when the old symbol is a common symbol, then
1590 we are explicitly letting it override a weak symbol or
1591 function in a dynamic object, and we don't want to warn about
1592 a type change. If the old symbol is a defined symbol, a type
1593 change warning may still be appropriate. */
1595 if (h->root.type == bfd_link_hash_common)
1596 *type_change_ok = TRUE;
1599 /* Handle the special case of an old common symbol merging with a
1600 new symbol which looks like a common symbol in a shared object.
1601 We change *PSEC and *PVALUE to make the new symbol look like a
1602 common symbol, and let _bfd_generic_link_add_one_symbol do the
1606 && h->root.type == bfd_link_hash_common)
1610 newdyncommon = FALSE;
1611 *pvalue = sym->st_size;
1612 *psec = sec = bed->common_section (oldsec);
1613 *size_change_ok = TRUE;
1616 /* Skip weak definitions of symbols that are already defined. */
1617 if (newdef && olddef && newweak)
1619 /* Don't skip new non-IR weak syms. */
1620 if (!(oldbfd != NULL
1621 && (oldbfd->flags & BFD_PLUGIN) != 0
1622 && (abfd->flags & BFD_PLUGIN) == 0))
1628 /* Merge st_other. If the symbol already has a dynamic index,
1629 but visibility says it should not be visible, turn it into a
1631 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1632 if (h->dynindx != -1)
1633 switch (ELF_ST_VISIBILITY (h->other))
1637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1642 /* If the old symbol is from a dynamic object, and the new symbol is
1643 a definition which is not from a dynamic object, then the new
1644 symbol overrides the old symbol. Symbols from regular files
1645 always take precedence over symbols from dynamic objects, even if
1646 they are defined after the dynamic object in the link.
1648 As above, we again permit a common symbol in a regular object to
1649 override a definition in a shared object if the shared object
1650 symbol is a function or is weak. */
1655 || (bfd_is_com_section (sec)
1656 && (oldweak || oldfunc)))
1661 /* Change the hash table entry to undefined, and let
1662 _bfd_generic_link_add_one_symbol do the right thing with the
1665 h->root.type = bfd_link_hash_undefined;
1666 h->root.u.undef.abfd = h->root.u.def.section->owner;
1667 *size_change_ok = TRUE;
1670 olddyncommon = FALSE;
1672 /* We again permit a type change when a common symbol may be
1673 overriding a function. */
1675 if (bfd_is_com_section (sec))
1679 /* If a common symbol overrides a function, make sure
1680 that it isn't defined dynamically nor has type
1683 h->type = STT_NOTYPE;
1685 *type_change_ok = TRUE;
1688 if (hi->root.type == bfd_link_hash_indirect)
1691 /* This union may have been set to be non-NULL when this symbol
1692 was seen in a dynamic object. We must force the union to be
1693 NULL, so that it is correct for a regular symbol. */
1694 h->verinfo.vertree = NULL;
1697 /* Handle the special case of a new common symbol merging with an
1698 old symbol that looks like it might be a common symbol defined in
1699 a shared object. Note that we have already handled the case in
1700 which a new common symbol should simply override the definition
1701 in the shared library. */
1704 && bfd_is_com_section (sec)
1707 /* It would be best if we could set the hash table entry to a
1708 common symbol, but we don't know what to use for the section
1709 or the alignment. */
1710 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1711 bfd_link_hash_common, sym->st_size);
1713 /* If the presumed common symbol in the dynamic object is
1714 larger, pretend that the new symbol has its size. */
1716 if (h->size > *pvalue)
1719 /* We need to remember the alignment required by the symbol
1720 in the dynamic object. */
1721 BFD_ASSERT (pold_alignment);
1722 *pold_alignment = h->root.u.def.section->alignment_power;
1725 olddyncommon = FALSE;
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1730 *size_change_ok = TRUE;
1731 *type_change_ok = TRUE;
1733 if (hi->root.type == bfd_link_hash_indirect)
1736 h->verinfo.vertree = NULL;
1741 /* Handle the case where we had a versioned symbol in a dynamic
1742 library and now find a definition in a normal object. In this
1743 case, we make the versioned symbol point to the normal one. */
1744 flip->root.type = h->root.type;
1745 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1746 h->root.type = bfd_link_hash_indirect;
1747 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1748 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1752 flip->ref_dynamic = 1;
1759 /* This function is called to create an indirect symbol from the
1760 default for the symbol with the default version if needed. The
1761 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1762 set DYNSYM if the new indirect symbol is dynamic. */
1765 _bfd_elf_add_default_symbol (bfd *abfd,
1766 struct bfd_link_info *info,
1767 struct elf_link_hash_entry *h,
1769 Elf_Internal_Sym *sym,
1773 bfd_boolean *dynsym)
1775 bfd_boolean type_change_ok;
1776 bfd_boolean size_change_ok;
1779 struct elf_link_hash_entry *hi;
1780 struct bfd_link_hash_entry *bh;
1781 const struct elf_backend_data *bed;
1782 bfd_boolean collect;
1783 bfd_boolean dynamic;
1784 bfd_boolean override;
1786 size_t len, shortlen;
1788 bfd_boolean matched;
1790 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1793 /* If this symbol has a version, and it is the default version, we
1794 create an indirect symbol from the default name to the fully
1795 decorated name. This will cause external references which do not
1796 specify a version to be bound to this version of the symbol. */
1797 p = strchr (name, ELF_VER_CHR);
1798 if (h->versioned == unknown)
1802 h->versioned = unversioned;
1807 if (p[1] != ELF_VER_CHR)
1809 h->versioned = versioned_hidden;
1813 h->versioned = versioned;
1818 /* PR ld/19073: We may see an unversioned definition after the
1824 bed = get_elf_backend_data (abfd);
1825 collect = bed->collect;
1826 dynamic = (abfd->flags & DYNAMIC) != 0;
1828 shortlen = p - name;
1829 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1830 if (shortname == NULL)
1832 memcpy (shortname, name, shortlen);
1833 shortname[shortlen] = '\0';
1835 /* We are going to create a new symbol. Merge it with any existing
1836 symbol with this name. For the purposes of the merge, act as
1837 though we were defining the symbol we just defined, although we
1838 actually going to define an indirect symbol. */
1839 type_change_ok = FALSE;
1840 size_change_ok = FALSE;
1843 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1844 &hi, poldbfd, NULL, NULL, &skip, &override,
1845 &type_change_ok, &size_change_ok, &matched))
1851 if (hi->def_regular)
1853 /* If the undecorated symbol will have a version added by a
1854 script different to H, then don't indirect to/from the
1855 undecorated symbol. This isn't ideal because we may not yet
1856 have seen symbol versions, if given by a script on the
1857 command line rather than via --version-script. */
1858 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1863 = bfd_find_version_for_sym (info->version_info,
1864 hi->root.root.string, &hide);
1865 if (hi->verinfo.vertree != NULL && hide)
1867 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1871 if (hi->verinfo.vertree != NULL
1872 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1878 /* Add the default symbol if not performing a relocatable link. */
1879 if (! bfd_link_relocatable (info))
1882 if (! (_bfd_generic_link_add_one_symbol
1883 (info, abfd, shortname, BSF_INDIRECT,
1884 bfd_ind_section_ptr,
1885 0, name, FALSE, collect, &bh)))
1887 hi = (struct elf_link_hash_entry *) bh;
1892 /* In this case the symbol named SHORTNAME is overriding the
1893 indirect symbol we want to add. We were planning on making
1894 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1895 is the name without a version. NAME is the fully versioned
1896 name, and it is the default version.
1898 Overriding means that we already saw a definition for the
1899 symbol SHORTNAME in a regular object, and it is overriding
1900 the symbol defined in the dynamic object.
1902 When this happens, we actually want to change NAME, the
1903 symbol we just added, to refer to SHORTNAME. This will cause
1904 references to NAME in the shared object to become references
1905 to SHORTNAME in the regular object. This is what we expect
1906 when we override a function in a shared object: that the
1907 references in the shared object will be mapped to the
1908 definition in the regular object. */
1910 while (hi->root.type == bfd_link_hash_indirect
1911 || hi->root.type == bfd_link_hash_warning)
1912 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1914 h->root.type = bfd_link_hash_indirect;
1915 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1919 hi->ref_dynamic = 1;
1923 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1928 /* Now set HI to H, so that the following code will set the
1929 other fields correctly. */
1933 /* Check if HI is a warning symbol. */
1934 if (hi->root.type == bfd_link_hash_warning)
1935 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1937 /* If there is a duplicate definition somewhere, then HI may not
1938 point to an indirect symbol. We will have reported an error to
1939 the user in that case. */
1941 if (hi->root.type == bfd_link_hash_indirect)
1943 struct elf_link_hash_entry *ht;
1945 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1948 /* A reference to the SHORTNAME symbol from a dynamic library
1949 will be satisfied by the versioned symbol at runtime. In
1950 effect, we have a reference to the versioned symbol. */
1951 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1952 hi->dynamic_def |= ht->dynamic_def;
1954 /* See if the new flags lead us to realize that the symbol must
1960 if (! bfd_link_executable (info)
1967 if (hi->ref_regular)
1973 /* We also need to define an indirection from the nondefault version
1977 len = strlen (name);
1978 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (shortname == NULL)
1981 memcpy (shortname, name, shortlen);
1982 memcpy (shortname + shortlen, p + 1, len - shortlen);
1984 /* Once again, merge with any existing symbol. */
1985 type_change_ok = FALSE;
1986 size_change_ok = FALSE;
1988 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1989 &hi, poldbfd, NULL, NULL, &skip, &override,
1990 &type_change_ok, &size_change_ok, &matched))
1998 /* Here SHORTNAME is a versioned name, so we don't expect to see
1999 the type of override we do in the case above unless it is
2000 overridden by a versioned definition. */
2001 if (hi->root.type != bfd_link_hash_defined
2002 && hi->root.type != bfd_link_hash_defweak)
2004 /* xgettext:c-format */
2005 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2011 if (! (_bfd_generic_link_add_one_symbol
2012 (info, abfd, shortname, BSF_INDIRECT,
2013 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2015 hi = (struct elf_link_hash_entry *) bh;
2017 /* If there is a duplicate definition somewhere, then HI may not
2018 point to an indirect symbol. We will have reported an error
2019 to the user in that case. */
2021 if (hi->root.type == bfd_link_hash_indirect)
2023 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2024 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2025 hi->dynamic_def |= h->dynamic_def;
2027 /* See if the new flags lead us to realize that the symbol
2033 if (! bfd_link_executable (info)
2039 if (hi->ref_regular)
2049 /* This routine is used to export all defined symbols into the dynamic
2050 symbol table. It is called via elf_link_hash_traverse. */
2053 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2055 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2057 /* Ignore indirect symbols. These are added by the versioning code. */
2058 if (h->root.type == bfd_link_hash_indirect)
2061 /* Ignore this if we won't export it. */
2062 if (!eif->info->export_dynamic && !h->dynamic)
2065 if (h->dynindx == -1
2066 && (h->def_regular || h->ref_regular)
2067 && ! bfd_hide_sym_by_version (eif->info->version_info,
2068 h->root.root.string))
2070 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2080 /* Look through the symbols which are defined in other shared
2081 libraries and referenced here. Update the list of version
2082 dependencies. This will be put into the .gnu.version_r section.
2083 This function is called via elf_link_hash_traverse. */
2086 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2089 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2090 Elf_Internal_Verneed *t;
2091 Elf_Internal_Vernaux *a;
2094 /* We only care about symbols defined in shared objects with version
2099 || h->verinfo.verdef == NULL
2100 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2101 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2104 /* See if we already know about this version. */
2105 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2109 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2112 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2113 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2119 /* This is a new version. Add it to tree we are building. */
2124 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2127 rinfo->failed = TRUE;
2131 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2132 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2133 elf_tdata (rinfo->info->output_bfd)->verref = t;
2137 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2140 rinfo->failed = TRUE;
2144 /* Note that we are copying a string pointer here, and testing it
2145 above. If bfd_elf_string_from_elf_section is ever changed to
2146 discard the string data when low in memory, this will have to be
2148 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2150 a->vna_flags = h->verinfo.verdef->vd_flags;
2151 a->vna_nextptr = t->vn_auxptr;
2153 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2156 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2163 /* Figure out appropriate versions for all the symbols. We may not
2164 have the version number script until we have read all of the input
2165 files, so until that point we don't know which symbols should be
2166 local. This function is called via elf_link_hash_traverse. */
2169 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2171 struct elf_info_failed *sinfo;
2172 struct bfd_link_info *info;
2173 const struct elf_backend_data *bed;
2174 struct elf_info_failed eif;
2177 sinfo = (struct elf_info_failed *) data;
2180 /* Fix the symbol flags. */
2183 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2186 sinfo->failed = TRUE;
2190 /* We only need version numbers for symbols defined in regular
2192 if (!h->def_regular)
2195 bed = get_elf_backend_data (info->output_bfd);
2196 p = strchr (h->root.root.string, ELF_VER_CHR);
2197 if (p != NULL && h->verinfo.vertree == NULL)
2199 struct bfd_elf_version_tree *t;
2202 if (*p == ELF_VER_CHR)
2205 /* If there is no version string, we can just return out. */
2209 /* Look for the version. If we find it, it is no longer weak. */
2210 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2212 if (strcmp (t->name, p) == 0)
2216 struct bfd_elf_version_expr *d;
2218 len = p - h->root.root.string;
2219 alc = (char *) bfd_malloc (len);
2222 sinfo->failed = TRUE;
2225 memcpy (alc, h->root.root.string, len - 1);
2226 alc[len - 1] = '\0';
2227 if (alc[len - 2] == ELF_VER_CHR)
2228 alc[len - 2] = '\0';
2230 h->verinfo.vertree = t;
2234 if (t->globals.list != NULL)
2235 d = (*t->match) (&t->globals, NULL, alc);
2237 /* See if there is anything to force this symbol to
2239 if (d == NULL && t->locals.list != NULL)
2241 d = (*t->match) (&t->locals, NULL, alc);
2244 && ! info->export_dynamic)
2245 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2253 /* If we are building an application, we need to create a
2254 version node for this version. */
2255 if (t == NULL && bfd_link_executable (info))
2257 struct bfd_elf_version_tree **pp;
2260 /* If we aren't going to export this symbol, we don't need
2261 to worry about it. */
2262 if (h->dynindx == -1)
2265 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2269 sinfo->failed = TRUE;
2274 t->name_indx = (unsigned int) -1;
2278 /* Don't count anonymous version tag. */
2279 if (sinfo->info->version_info != NULL
2280 && sinfo->info->version_info->vernum == 0)
2282 for (pp = &sinfo->info->version_info;
2286 t->vernum = version_index;
2290 h->verinfo.vertree = t;
2294 /* We could not find the version for a symbol when
2295 generating a shared archive. Return an error. */
2297 /* xgettext:c-format */
2298 (_("%B: version node not found for symbol %s"),
2299 info->output_bfd, h->root.root.string);
2300 bfd_set_error (bfd_error_bad_value);
2301 sinfo->failed = TRUE;
2306 /* If we don't have a version for this symbol, see if we can find
2308 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2313 = bfd_find_version_for_sym (sinfo->info->version_info,
2314 h->root.root.string, &hide);
2315 if (h->verinfo.vertree != NULL && hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2322 /* Read and swap the relocs from the section indicated by SHDR. This
2323 may be either a REL or a RELA section. The relocations are
2324 translated into RELA relocations and stored in INTERNAL_RELOCS,
2325 which should have already been allocated to contain enough space.
2326 The EXTERNAL_RELOCS are a buffer where the external form of the
2327 relocations should be stored.
2329 Returns FALSE if something goes wrong. */
2332 elf_link_read_relocs_from_section (bfd *abfd,
2334 Elf_Internal_Shdr *shdr,
2335 void *external_relocs,
2336 Elf_Internal_Rela *internal_relocs)
2338 const struct elf_backend_data *bed;
2339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2340 const bfd_byte *erela;
2341 const bfd_byte *erelaend;
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Shdr *symtab_hdr;
2346 /* Position ourselves at the start of the section. */
2347 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2350 /* Read the relocations. */
2351 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2357 bed = get_elf_backend_data (abfd);
2359 /* Convert the external relocations to the internal format. */
2360 if (shdr->sh_entsize == bed->s->sizeof_rel)
2361 swap_in = bed->s->swap_reloc_in;
2362 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2363 swap_in = bed->s->swap_reloca_in;
2366 bfd_set_error (bfd_error_wrong_format);
2370 erela = (const bfd_byte *) external_relocs;
2371 erelaend = erela + shdr->sh_size;
2372 irela = internal_relocs;
2373 while (erela < erelaend)
2377 (*swap_in) (abfd, erela, irela);
2378 r_symndx = ELF32_R_SYM (irela->r_info);
2379 if (bed->s->arch_size == 64)
2383 if ((size_t) r_symndx >= nsyms)
2386 /* xgettext:c-format */
2387 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2388 " for offset 0x%lx in section `%A'"),
2389 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2390 irela->r_offset, sec);
2391 bfd_set_error (bfd_error_bad_value);
2395 else if (r_symndx != STN_UNDEF)
2398 /* xgettext:c-format */
2399 (_("%B: non-zero symbol index (0x%lx)"
2400 " for offset 0x%lx in section `%A'"
2401 " when the object file has no symbol table"),
2402 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2403 irela->r_offset, sec);
2404 bfd_set_error (bfd_error_bad_value);
2407 irela += bed->s->int_rels_per_ext_rel;
2408 erela += shdr->sh_entsize;
2414 /* Read and swap the relocs for a section O. They may have been
2415 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2416 not NULL, they are used as buffers to read into. They are known to
2417 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2418 the return value is allocated using either malloc or bfd_alloc,
2419 according to the KEEP_MEMORY argument. If O has two relocation
2420 sections (both REL and RELA relocations), then the REL_HDR
2421 relocations will appear first in INTERNAL_RELOCS, followed by the
2422 RELA_HDR relocations. */
2425 _bfd_elf_link_read_relocs (bfd *abfd,
2427 void *external_relocs,
2428 Elf_Internal_Rela *internal_relocs,
2429 bfd_boolean keep_memory)
2431 void *alloc1 = NULL;
2432 Elf_Internal_Rela *alloc2 = NULL;
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 struct bfd_elf_section_data *esdo = elf_section_data (o);
2435 Elf_Internal_Rela *internal_rela_relocs;
2437 if (esdo->relocs != NULL)
2438 return esdo->relocs;
2440 if (o->reloc_count == 0)
2443 if (internal_relocs == NULL)
2447 size = o->reloc_count;
2448 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2450 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2452 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2453 if (internal_relocs == NULL)
2457 if (external_relocs == NULL)
2459 bfd_size_type size = 0;
2462 size += esdo->rel.hdr->sh_size;
2464 size += esdo->rela.hdr->sh_size;
2466 alloc1 = bfd_malloc (size);
2469 external_relocs = alloc1;
2472 internal_rela_relocs = internal_relocs;
2475 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2479 external_relocs = (((bfd_byte *) external_relocs)
2480 + esdo->rel.hdr->sh_size);
2481 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2482 * bed->s->int_rels_per_ext_rel);
2486 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2488 internal_rela_relocs)))
2491 /* Cache the results for next time, if we can. */
2493 esdo->relocs = internal_relocs;
2498 /* Don't free alloc2, since if it was allocated we are passing it
2499 back (under the name of internal_relocs). */
2501 return internal_relocs;
2509 bfd_release (abfd, alloc2);
2516 /* Compute the size of, and allocate space for, REL_HDR which is the
2517 section header for a section containing relocations for O. */
2520 _bfd_elf_link_size_reloc_section (bfd *abfd,
2521 struct bfd_elf_section_reloc_data *reldata)
2523 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2525 /* That allows us to calculate the size of the section. */
2526 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2528 /* The contents field must last into write_object_contents, so we
2529 allocate it with bfd_alloc rather than malloc. Also since we
2530 cannot be sure that the contents will actually be filled in,
2531 we zero the allocated space. */
2532 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2533 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2536 if (reldata->hashes == NULL && reldata->count)
2538 struct elf_link_hash_entry **p;
2540 p = ((struct elf_link_hash_entry **)
2541 bfd_zmalloc (reldata->count * sizeof (*p)));
2545 reldata->hashes = p;
2551 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2552 originated from the section given by INPUT_REL_HDR) to the
2556 _bfd_elf_link_output_relocs (bfd *output_bfd,
2557 asection *input_section,
2558 Elf_Internal_Shdr *input_rel_hdr,
2559 Elf_Internal_Rela *internal_relocs,
2560 struct elf_link_hash_entry **rel_hash
2563 Elf_Internal_Rela *irela;
2564 Elf_Internal_Rela *irelaend;
2566 struct bfd_elf_section_reloc_data *output_reldata;
2567 asection *output_section;
2568 const struct elf_backend_data *bed;
2569 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2570 struct bfd_elf_section_data *esdo;
2572 output_section = input_section->output_section;
2574 bed = get_elf_backend_data (output_bfd);
2575 esdo = elf_section_data (output_section);
2576 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2578 output_reldata = &esdo->rel;
2579 swap_out = bed->s->swap_reloc_out;
2581 else if (esdo->rela.hdr
2582 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2584 output_reldata = &esdo->rela;
2585 swap_out = bed->s->swap_reloca_out;
2590 /* xgettext:c-format */
2591 (_("%B: relocation size mismatch in %B section %A"),
2592 output_bfd, input_section->owner, input_section);
2593 bfd_set_error (bfd_error_wrong_format);
2597 erel = output_reldata->hdr->contents;
2598 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2599 irela = internal_relocs;
2600 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2601 * bed->s->int_rels_per_ext_rel);
2602 while (irela < irelaend)
2604 (*swap_out) (output_bfd, irela, erel);
2605 irela += bed->s->int_rels_per_ext_rel;
2606 erel += input_rel_hdr->sh_entsize;
2609 /* Bump the counter, so that we know where to add the next set of
2611 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2616 /* Make weak undefined symbols in PIE dynamic. */
2619 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2620 struct elf_link_hash_entry *h)
2622 if (bfd_link_pie (info)
2624 && h->root.type == bfd_link_hash_undefweak)
2625 return bfd_elf_link_record_dynamic_symbol (info, h);
2630 /* Fix up the flags for a symbol. This handles various cases which
2631 can only be fixed after all the input files are seen. This is
2632 currently called by both adjust_dynamic_symbol and
2633 assign_sym_version, which is unnecessary but perhaps more robust in
2634 the face of future changes. */
2637 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2638 struct elf_info_failed *eif)
2640 const struct elf_backend_data *bed;
2642 /* If this symbol was mentioned in a non-ELF file, try to set
2643 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2644 permit a non-ELF file to correctly refer to a symbol defined in
2645 an ELF dynamic object. */
2648 while (h->root.type == bfd_link_hash_indirect)
2649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2651 if (h->root.type != bfd_link_hash_defined
2652 && h->root.type != bfd_link_hash_defweak)
2655 h->ref_regular_nonweak = 1;
2659 if (h->root.u.def.section->owner != NULL
2660 && (bfd_get_flavour (h->root.u.def.section->owner)
2661 == bfd_target_elf_flavour))
2664 h->ref_regular_nonweak = 1;
2670 if (h->dynindx == -1
2674 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2683 /* Unfortunately, NON_ELF is only correct if the symbol
2684 was first seen in a non-ELF file. Fortunately, if the symbol
2685 was first seen in an ELF file, we're probably OK unless the
2686 symbol was defined in a non-ELF file. Catch that case here.
2687 FIXME: We're still in trouble if the symbol was first seen in
2688 a dynamic object, and then later in a non-ELF regular object. */
2689 if ((h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2692 && (h->root.u.def.section->owner != NULL
2693 ? (bfd_get_flavour (h->root.u.def.section->owner)
2694 != bfd_target_elf_flavour)
2695 : (bfd_is_abs_section (h->root.u.def.section)
2696 && !h->def_dynamic)))
2700 /* Backend specific symbol fixup. */
2701 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2702 if (bed->elf_backend_fixup_symbol
2703 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2706 /* If this is a final link, and the symbol was defined as a common
2707 symbol in a regular object file, and there was no definition in
2708 any dynamic object, then the linker will have allocated space for
2709 the symbol in a common section but the DEF_REGULAR
2710 flag will not have been set. */
2711 if (h->root.type == bfd_link_hash_defined
2715 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2718 /* If a weak undefined symbol has non-default visibility, we also
2719 hide it from the dynamic linker. */
2720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2721 && h->root.type == bfd_link_hash_undefweak)
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2724 /* A hidden versioned symbol in executable should be forced local if
2725 it is is locally defined, not referenced by shared library and not
2727 else if (bfd_link_executable (eif->info)
2728 && h->versioned == versioned_hidden
2729 && !eif->info->export_dynamic
2733 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2735 /* If -Bsymbolic was used (which means to bind references to global
2736 symbols to the definition within the shared object), and this
2737 symbol was defined in a regular object, then it actually doesn't
2738 need a PLT entry. Likewise, if the symbol has non-default
2739 visibility. If the symbol has hidden or internal visibility, we
2740 will force it local. */
2741 else if (h->needs_plt
2742 && bfd_link_pic (eif->info)
2743 && is_elf_hash_table (eif->info->hash)
2744 && (SYMBOLIC_BIND (eif->info, h)
2745 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2748 bfd_boolean force_local;
2750 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2751 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2755 /* If this is a weak defined symbol in a dynamic object, and we know
2756 the real definition in the dynamic object, copy interesting flags
2757 over to the real definition. */
2758 if (h->u.weakdef != NULL)
2760 /* If the real definition is defined by a regular object file,
2761 don't do anything special. See the longer description in
2762 _bfd_elf_adjust_dynamic_symbol, below. */
2763 if (h->u.weakdef->def_regular)
2764 h->u.weakdef = NULL;
2767 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2769 while (h->root.type == bfd_link_hash_indirect)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2772 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2773 || h->root.type == bfd_link_hash_defweak);
2774 BFD_ASSERT (weakdef->def_dynamic);
2775 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2776 || weakdef->root.type == bfd_link_hash_defweak);
2777 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2784 /* Make the backend pick a good value for a dynamic symbol. This is
2785 called via elf_link_hash_traverse, and also calls itself
2789 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2793 const struct elf_backend_data *bed;
2795 if (! is_elf_hash_table (eif->info->hash))
2798 /* Ignore indirect symbols. These are added by the versioning code. */
2799 if (h->root.type == bfd_link_hash_indirect)
2802 /* Fix the symbol flags. */
2803 if (! _bfd_elf_fix_symbol_flags (h, eif))
2806 if (h->root.type == bfd_link_hash_undefweak)
2808 if (eif->info->dynamic_undefined_weak == 0)
2809 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2810 else if (eif->info->dynamic_undefined_weak > 0
2812 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2813 && !bfd_hide_sym_by_version (eif->info->version_info,
2814 h->root.root.string))
2816 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2824 /* If this symbol does not require a PLT entry, and it is not
2825 defined by a dynamic object, or is not referenced by a regular
2826 object, ignore it. We do have to handle a weak defined symbol,
2827 even if no regular object refers to it, if we decided to add it
2828 to the dynamic symbol table. FIXME: Do we normally need to worry
2829 about symbols which are defined by one dynamic object and
2830 referenced by another one? */
2832 && h->type != STT_GNU_IFUNC
2836 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2838 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2842 /* If we've already adjusted this symbol, don't do it again. This
2843 can happen via a recursive call. */
2844 if (h->dynamic_adjusted)
2847 /* Don't look at this symbol again. Note that we must set this
2848 after checking the above conditions, because we may look at a
2849 symbol once, decide not to do anything, and then get called
2850 recursively later after REF_REGULAR is set below. */
2851 h->dynamic_adjusted = 1;
2853 /* If this is a weak definition, and we know a real definition, and
2854 the real symbol is not itself defined by a regular object file,
2855 then get a good value for the real definition. We handle the
2856 real symbol first, for the convenience of the backend routine.
2858 Note that there is a confusing case here. If the real definition
2859 is defined by a regular object file, we don't get the real symbol
2860 from the dynamic object, but we do get the weak symbol. If the
2861 processor backend uses a COPY reloc, then if some routine in the
2862 dynamic object changes the real symbol, we will not see that
2863 change in the corresponding weak symbol. This is the way other
2864 ELF linkers work as well, and seems to be a result of the shared
2867 I will clarify this issue. Most SVR4 shared libraries define the
2868 variable _timezone and define timezone as a weak synonym. The
2869 tzset call changes _timezone. If you write
2870 extern int timezone;
2872 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2873 you might expect that, since timezone is a synonym for _timezone,
2874 the same number will print both times. However, if the processor
2875 backend uses a COPY reloc, then actually timezone will be copied
2876 into your process image, and, since you define _timezone
2877 yourself, _timezone will not. Thus timezone and _timezone will
2878 wind up at different memory locations. The tzset call will set
2879 _timezone, leaving timezone unchanged. */
2881 if (h->u.weakdef != NULL)
2883 /* If we get to this point, there is an implicit reference to
2884 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2885 h->u.weakdef->ref_regular = 1;
2887 /* Ensure that the backend adjust_dynamic_symbol function sees
2888 H->U.WEAKDEF before H by recursively calling ourselves. */
2889 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2893 /* If a symbol has no type and no size and does not require a PLT
2894 entry, then we are probably about to do the wrong thing here: we
2895 are probably going to create a COPY reloc for an empty object.
2896 This case can arise when a shared object is built with assembly
2897 code, and the assembly code fails to set the symbol type. */
2899 && h->type == STT_NOTYPE
2902 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2903 h->root.root.string);
2905 dynobj = elf_hash_table (eif->info)->dynobj;
2906 bed = get_elf_backend_data (dynobj);
2908 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2917 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2921 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2922 struct elf_link_hash_entry *h,
2925 unsigned int power_of_two;
2927 asection *sec = h->root.u.def.section;
2929 /* The section aligment of definition is the maximum alignment
2930 requirement of symbols defined in the section. Since we don't
2931 know the symbol alignment requirement, we start with the
2932 maximum alignment and check low bits of the symbol address
2933 for the minimum alignment. */
2934 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2935 mask = ((bfd_vma) 1 << power_of_two) - 1;
2936 while ((h->root.u.def.value & mask) != 0)
2942 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2945 /* Adjust the section alignment if needed. */
2946 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2951 /* We make sure that the symbol will be aligned properly. */
2952 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2954 /* Define the symbol as being at this point in DYNBSS. */
2955 h->root.u.def.section = dynbss;
2956 h->root.u.def.value = dynbss->size;
2958 /* Increment the size of DYNBSS to make room for the symbol. */
2959 dynbss->size += h->size;
2961 /* No error if extern_protected_data is true. */
2962 if (h->protected_def
2963 && (!info->extern_protected_data
2964 || (info->extern_protected_data < 0
2965 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2966 info->callbacks->einfo
2967 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2968 h->root.root.string);
2973 /* Adjust all external symbols pointing into SEC_MERGE sections
2974 to reflect the object merging within the sections. */
2977 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2981 if ((h->root.type == bfd_link_hash_defined
2982 || h->root.type == bfd_link_hash_defweak)
2983 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2984 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2986 bfd *output_bfd = (bfd *) data;
2988 h->root.u.def.value =
2989 _bfd_merged_section_offset (output_bfd,
2990 &h->root.u.def.section,
2991 elf_section_data (sec)->sec_info,
2992 h->root.u.def.value);
2998 /* Returns false if the symbol referred to by H should be considered
2999 to resolve local to the current module, and true if it should be
3000 considered to bind dynamically. */
3003 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3004 struct bfd_link_info *info,
3005 bfd_boolean not_local_protected)
3007 bfd_boolean binding_stays_local_p;
3008 const struct elf_backend_data *bed;
3009 struct elf_link_hash_table *hash_table;
3014 while (h->root.type == bfd_link_hash_indirect
3015 || h->root.type == bfd_link_hash_warning)
3016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3018 /* If it was forced local, then clearly it's not dynamic. */
3019 if (h->dynindx == -1)
3021 if (h->forced_local)
3024 /* Identify the cases where name binding rules say that a
3025 visible symbol resolves locally. */
3026 binding_stays_local_p = (bfd_link_executable (info)
3027 || SYMBOLIC_BIND (info, h));
3029 switch (ELF_ST_VISIBILITY (h->other))
3036 hash_table = elf_hash_table (info);
3037 if (!is_elf_hash_table (hash_table))
3040 bed = get_elf_backend_data (hash_table->dynobj);
3042 /* Proper resolution for function pointer equality may require
3043 that these symbols perhaps be resolved dynamically, even though
3044 we should be resolving them to the current module. */
3045 if (!not_local_protected || !bed->is_function_type (h->type))
3046 binding_stays_local_p = TRUE;
3053 /* If it isn't defined locally, then clearly it's dynamic. */
3054 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3057 /* Otherwise, the symbol is dynamic if binding rules don't tell
3058 us that it remains local. */
3059 return !binding_stays_local_p;
3062 /* Return true if the symbol referred to by H should be considered
3063 to resolve local to the current module, and false otherwise. Differs
3064 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3065 undefined symbols. The two functions are virtually identical except
3066 for the place where dynindx == -1 is tested. If that test is true,
3067 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3068 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3070 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3071 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3072 treatment of undefined weak symbols. For those that do not make
3073 undefined weak symbols dynamic, both functions may return false. */
3076 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3077 struct bfd_link_info *info,
3078 bfd_boolean local_protected)
3080 const struct elf_backend_data *bed;
3081 struct elf_link_hash_table *hash_table;
3083 /* If it's a local sym, of course we resolve locally. */
3087 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3088 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3089 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3092 /* Forced local symbols resolve locally. */
3093 if (h->forced_local)
3096 /* Common symbols that become definitions don't get the DEF_REGULAR
3097 flag set, so test it first, and don't bail out. */
3098 if (ELF_COMMON_DEF_P (h))
3100 /* If we don't have a definition in a regular file, then we can't
3101 resolve locally. The sym is either undefined or dynamic. */
3102 else if (!h->def_regular)
3105 /* Non-dynamic symbols resolve locally. */
3106 if (h->dynindx == -1)
3109 /* At this point, we know the symbol is defined and dynamic. In an
3110 executable it must resolve locally, likewise when building symbolic
3111 shared libraries. */
3112 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3115 /* Now deal with defined dynamic symbols in shared libraries. Ones
3116 with default visibility might not resolve locally. */
3117 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3120 hash_table = elf_hash_table (info);
3121 if (!is_elf_hash_table (hash_table))
3124 bed = get_elf_backend_data (hash_table->dynobj);
3126 /* If extern_protected_data is false, STV_PROTECTED non-function
3127 symbols are local. */
3128 if ((!info->extern_protected_data
3129 || (info->extern_protected_data < 0
3130 && !bed->extern_protected_data))
3131 && !bed->is_function_type (h->type))
3134 /* Function pointer equality tests may require that STV_PROTECTED
3135 symbols be treated as dynamic symbols. If the address of a
3136 function not defined in an executable is set to that function's
3137 plt entry in the executable, then the address of the function in
3138 a shared library must also be the plt entry in the executable. */
3139 return local_protected;
3142 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3143 aligned. Returns the first TLS output section. */
3145 struct bfd_section *
3146 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3148 struct bfd_section *sec, *tls;
3149 unsigned int align = 0;
3151 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3152 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3156 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3157 if (sec->alignment_power > align)
3158 align = sec->alignment_power;
3160 elf_hash_table (info)->tls_sec = tls;
3162 /* Ensure the alignment of the first section is the largest alignment,
3163 so that the tls segment starts aligned. */
3165 tls->alignment_power = align;
3170 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3172 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3173 Elf_Internal_Sym *sym)
3175 const struct elf_backend_data *bed;
3177 /* Local symbols do not count, but target specific ones might. */
3178 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3179 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3182 bed = get_elf_backend_data (abfd);
3183 /* Function symbols do not count. */
3184 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3187 /* If the section is undefined, then so is the symbol. */
3188 if (sym->st_shndx == SHN_UNDEF)
3191 /* If the symbol is defined in the common section, then
3192 it is a common definition and so does not count. */
3193 if (bed->common_definition (sym))
3196 /* If the symbol is in a target specific section then we
3197 must rely upon the backend to tell us what it is. */
3198 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3199 /* FIXME - this function is not coded yet:
3201 return _bfd_is_global_symbol_definition (abfd, sym);
3203 Instead for now assume that the definition is not global,
3204 Even if this is wrong, at least the linker will behave
3205 in the same way that it used to do. */
3211 /* Search the symbol table of the archive element of the archive ABFD
3212 whose archive map contains a mention of SYMDEF, and determine if
3213 the symbol is defined in this element. */
3215 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3217 Elf_Internal_Shdr * hdr;
3221 Elf_Internal_Sym *isymbuf;
3222 Elf_Internal_Sym *isym;
3223 Elf_Internal_Sym *isymend;
3226 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3230 if (! bfd_check_format (abfd, bfd_object))
3233 /* Select the appropriate symbol table. If we don't know if the
3234 object file is an IR object, give linker LTO plugin a chance to
3235 get the correct symbol table. */
3236 if (abfd->plugin_format == bfd_plugin_yes
3237 #if BFD_SUPPORTS_PLUGINS
3238 || (abfd->plugin_format == bfd_plugin_unknown
3239 && bfd_link_plugin_object_p (abfd))
3243 /* Use the IR symbol table if the object has been claimed by
3245 abfd = abfd->plugin_dummy_bfd;
3246 hdr = &elf_tdata (abfd)->symtab_hdr;
3248 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3249 hdr = &elf_tdata (abfd)->symtab_hdr;
3251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3253 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3255 /* The sh_info field of the symtab header tells us where the
3256 external symbols start. We don't care about the local symbols. */
3257 if (elf_bad_symtab (abfd))
3259 extsymcount = symcount;
3264 extsymcount = symcount - hdr->sh_info;
3265 extsymoff = hdr->sh_info;
3268 if (extsymcount == 0)
3271 /* Read in the symbol table. */
3272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3274 if (isymbuf == NULL)
3277 /* Scan the symbol table looking for SYMDEF. */
3279 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3283 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3288 if (strcmp (name, symdef->name) == 0)
3290 result = is_global_data_symbol_definition (abfd, isym);
3300 /* Add an entry to the .dynamic table. */
3303 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3307 struct elf_link_hash_table *hash_table;
3308 const struct elf_backend_data *bed;
3310 bfd_size_type newsize;
3311 bfd_byte *newcontents;
3312 Elf_Internal_Dyn dyn;
3314 hash_table = elf_hash_table (info);
3315 if (! is_elf_hash_table (hash_table))
3318 bed = get_elf_backend_data (hash_table->dynobj);
3319 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3320 BFD_ASSERT (s != NULL);
3322 newsize = s->size + bed->s->sizeof_dyn;
3323 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3324 if (newcontents == NULL)
3328 dyn.d_un.d_val = val;
3329 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3332 s->contents = newcontents;
3337 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3338 otherwise just check whether one already exists. Returns -1 on error,
3339 1 if a DT_NEEDED tag already exists, and 0 on success. */
3342 elf_add_dt_needed_tag (bfd *abfd,
3343 struct bfd_link_info *info,
3347 struct elf_link_hash_table *hash_table;
3350 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3353 hash_table = elf_hash_table (info);
3354 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3355 if (strindex == (size_t) -1)
3358 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3361 const struct elf_backend_data *bed;
3364 bed = get_elf_backend_data (hash_table->dynobj);
3365 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3367 for (extdyn = sdyn->contents;
3368 extdyn < sdyn->contents + sdyn->size;
3369 extdyn += bed->s->sizeof_dyn)
3371 Elf_Internal_Dyn dyn;
3373 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3374 if (dyn.d_tag == DT_NEEDED
3375 && dyn.d_un.d_val == strindex)
3377 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3385 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3388 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3392 /* We were just checking for existence of the tag. */
3393 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3398 /* Return true if SONAME is on the needed list between NEEDED and STOP
3399 (or the end of list if STOP is NULL), and needed by a library that
3403 on_needed_list (const char *soname,
3404 struct bfd_link_needed_list *needed,
3405 struct bfd_link_needed_list *stop)
3407 struct bfd_link_needed_list *look;
3408 for (look = needed; look != stop; look = look->next)
3409 if (strcmp (soname, look->name) == 0
3410 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3411 /* If needed by a library that itself is not directly
3412 needed, recursively check whether that library is
3413 indirectly needed. Since we add DT_NEEDED entries to
3414 the end of the list, library dependencies appear after
3415 the library. Therefore search prior to the current
3416 LOOK, preventing possible infinite recursion. */
3417 || on_needed_list (elf_dt_name (look->by), needed, look)))
3423 /* Sort symbol by value, section, and size. */
3425 elf_sort_symbol (const void *arg1, const void *arg2)
3427 const struct elf_link_hash_entry *h1;
3428 const struct elf_link_hash_entry *h2;
3429 bfd_signed_vma vdiff;
3431 h1 = *(const struct elf_link_hash_entry **) arg1;
3432 h2 = *(const struct elf_link_hash_entry **) arg2;
3433 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3435 return vdiff > 0 ? 1 : -1;
3438 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3440 return sdiff > 0 ? 1 : -1;
3442 vdiff = h1->size - h2->size;
3443 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3446 /* This function is used to adjust offsets into .dynstr for
3447 dynamic symbols. This is called via elf_link_hash_traverse. */
3450 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3452 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3454 if (h->dynindx != -1)
3455 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3459 /* Assign string offsets in .dynstr, update all structures referencing
3463 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3465 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3466 struct elf_link_local_dynamic_entry *entry;
3467 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3468 bfd *dynobj = hash_table->dynobj;
3471 const struct elf_backend_data *bed;
3474 _bfd_elf_strtab_finalize (dynstr);
3475 size = _bfd_elf_strtab_size (dynstr);
3477 bed = get_elf_backend_data (dynobj);
3478 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3479 BFD_ASSERT (sdyn != NULL);
3481 /* Update all .dynamic entries referencing .dynstr strings. */
3482 for (extdyn = sdyn->contents;
3483 extdyn < sdyn->contents + sdyn->size;
3484 extdyn += bed->s->sizeof_dyn)
3486 Elf_Internal_Dyn dyn;
3488 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3492 dyn.d_un.d_val = size;
3502 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3507 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3510 /* Now update local dynamic symbols. */
3511 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3512 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3513 entry->isym.st_name);
3515 /* And the rest of dynamic symbols. */
3516 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3518 /* Adjust version definitions. */
3519 if (elf_tdata (output_bfd)->cverdefs)
3524 Elf_Internal_Verdef def;
3525 Elf_Internal_Verdaux defaux;
3527 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3531 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3533 p += sizeof (Elf_External_Verdef);
3534 if (def.vd_aux != sizeof (Elf_External_Verdef))
3536 for (i = 0; i < def.vd_cnt; ++i)
3538 _bfd_elf_swap_verdaux_in (output_bfd,
3539 (Elf_External_Verdaux *) p, &defaux);
3540 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3542 _bfd_elf_swap_verdaux_out (output_bfd,
3543 &defaux, (Elf_External_Verdaux *) p);
3544 p += sizeof (Elf_External_Verdaux);
3547 while (def.vd_next);
3550 /* Adjust version references. */
3551 if (elf_tdata (output_bfd)->verref)
3556 Elf_Internal_Verneed need;
3557 Elf_Internal_Vernaux needaux;
3559 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3563 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3565 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3566 _bfd_elf_swap_verneed_out (output_bfd, &need,
3567 (Elf_External_Verneed *) p);
3568 p += sizeof (Elf_External_Verneed);
3569 for (i = 0; i < need.vn_cnt; ++i)
3571 _bfd_elf_swap_vernaux_in (output_bfd,
3572 (Elf_External_Vernaux *) p, &needaux);
3573 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3575 _bfd_elf_swap_vernaux_out (output_bfd,
3577 (Elf_External_Vernaux *) p);
3578 p += sizeof (Elf_External_Vernaux);
3581 while (need.vn_next);
3587 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3588 The default is to only match when the INPUT and OUTPUT are exactly
3592 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3593 const bfd_target *output)
3595 return input == output;
3598 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3599 This version is used when different targets for the same architecture
3600 are virtually identical. */
3603 _bfd_elf_relocs_compatible (const bfd_target *input,
3604 const bfd_target *output)
3606 const struct elf_backend_data *obed, *ibed;
3608 if (input == output)
3611 ibed = xvec_get_elf_backend_data (input);
3612 obed = xvec_get_elf_backend_data (output);
3614 if (ibed->arch != obed->arch)
3617 /* If both backends are using this function, deem them compatible. */
3618 return ibed->relocs_compatible == obed->relocs_compatible;
3621 /* Make a special call to the linker "notice" function to tell it that
3622 we are about to handle an as-needed lib, or have finished
3623 processing the lib. */
3626 _bfd_elf_notice_as_needed (bfd *ibfd,
3627 struct bfd_link_info *info,
3628 enum notice_asneeded_action act)
3630 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3633 /* Check relocations an ELF object file. */
3636 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3639 struct elf_link_hash_table *htab = elf_hash_table (info);
3641 /* If this object is the same format as the output object, and it is
3642 not a shared library, then let the backend look through the
3645 This is required to build global offset table entries and to
3646 arrange for dynamic relocs. It is not required for the
3647 particular common case of linking non PIC code, even when linking
3648 against shared libraries, but unfortunately there is no way of
3649 knowing whether an object file has been compiled PIC or not.
3650 Looking through the relocs is not particularly time consuming.
3651 The problem is that we must either (1) keep the relocs in memory,
3652 which causes the linker to require additional runtime memory or
3653 (2) read the relocs twice from the input file, which wastes time.
3654 This would be a good case for using mmap.
3656 I have no idea how to handle linking PIC code into a file of a
3657 different format. It probably can't be done. */
3658 if ((abfd->flags & DYNAMIC) == 0
3659 && is_elf_hash_table (htab)
3660 && bed->check_relocs != NULL
3661 && elf_object_id (abfd) == elf_hash_table_id (htab)
3662 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3666 for (o = abfd->sections; o != NULL; o = o->next)
3668 Elf_Internal_Rela *internal_relocs;
3671 /* Don't check relocations in excluded sections. */
3672 if ((o->flags & SEC_RELOC) == 0
3673 || (o->flags & SEC_EXCLUDE) != 0
3674 || o->reloc_count == 0
3675 || ((info->strip == strip_all || info->strip == strip_debugger)
3676 && (o->flags & SEC_DEBUGGING) != 0)
3677 || bfd_is_abs_section (o->output_section))
3680 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3682 if (internal_relocs == NULL)
3685 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3687 if (elf_section_data (o)->relocs != internal_relocs)
3688 free (internal_relocs);
3698 /* Add symbols from an ELF object file to the linker hash table. */
3701 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3703 Elf_Internal_Ehdr *ehdr;
3704 Elf_Internal_Shdr *hdr;
3708 struct elf_link_hash_entry **sym_hash;
3709 bfd_boolean dynamic;
3710 Elf_External_Versym *extversym = NULL;
3711 Elf_External_Versym *ever;
3712 struct elf_link_hash_entry *weaks;
3713 struct elf_link_hash_entry **nondeflt_vers = NULL;
3714 size_t nondeflt_vers_cnt = 0;
3715 Elf_Internal_Sym *isymbuf = NULL;
3716 Elf_Internal_Sym *isym;
3717 Elf_Internal_Sym *isymend;
3718 const struct elf_backend_data *bed;
3719 bfd_boolean add_needed;
3720 struct elf_link_hash_table *htab;
3722 void *alloc_mark = NULL;
3723 struct bfd_hash_entry **old_table = NULL;
3724 unsigned int old_size = 0;
3725 unsigned int old_count = 0;
3726 void *old_tab = NULL;
3728 struct bfd_link_hash_entry *old_undefs = NULL;
3729 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3730 void *old_strtab = NULL;
3733 bfd_boolean just_syms;
3735 htab = elf_hash_table (info);
3736 bed = get_elf_backend_data (abfd);
3738 if ((abfd->flags & DYNAMIC) == 0)
3744 /* You can't use -r against a dynamic object. Also, there's no
3745 hope of using a dynamic object which does not exactly match
3746 the format of the output file. */
3747 if (bfd_link_relocatable (info)
3748 || !is_elf_hash_table (htab)
3749 || info->output_bfd->xvec != abfd->xvec)
3751 if (bfd_link_relocatable (info))
3752 bfd_set_error (bfd_error_invalid_operation);
3754 bfd_set_error (bfd_error_wrong_format);
3759 ehdr = elf_elfheader (abfd);
3760 if (info->warn_alternate_em
3761 && bed->elf_machine_code != ehdr->e_machine
3762 && ((bed->elf_machine_alt1 != 0
3763 && ehdr->e_machine == bed->elf_machine_alt1)
3764 || (bed->elf_machine_alt2 != 0
3765 && ehdr->e_machine == bed->elf_machine_alt2)))
3766 info->callbacks->einfo
3767 /* xgettext:c-format */
3768 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3769 ehdr->e_machine, abfd, bed->elf_machine_code);
3771 /* As a GNU extension, any input sections which are named
3772 .gnu.warning.SYMBOL are treated as warning symbols for the given
3773 symbol. This differs from .gnu.warning sections, which generate
3774 warnings when they are included in an output file. */
3775 /* PR 12761: Also generate this warning when building shared libraries. */
3776 for (s = abfd->sections; s != NULL; s = s->next)
3780 name = bfd_get_section_name (abfd, s);
3781 if (CONST_STRNEQ (name, ".gnu.warning."))
3786 name += sizeof ".gnu.warning." - 1;
3788 /* If this is a shared object, then look up the symbol
3789 in the hash table. If it is there, and it is already
3790 been defined, then we will not be using the entry
3791 from this shared object, so we don't need to warn.
3792 FIXME: If we see the definition in a regular object
3793 later on, we will warn, but we shouldn't. The only
3794 fix is to keep track of what warnings we are supposed
3795 to emit, and then handle them all at the end of the
3799 struct elf_link_hash_entry *h;
3801 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3803 /* FIXME: What about bfd_link_hash_common? */
3805 && (h->root.type == bfd_link_hash_defined
3806 || h->root.type == bfd_link_hash_defweak))
3811 msg = (char *) bfd_alloc (abfd, sz + 1);
3815 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3820 if (! (_bfd_generic_link_add_one_symbol
3821 (info, abfd, name, BSF_WARNING, s, 0, msg,
3822 FALSE, bed->collect, NULL)))
3825 if (bfd_link_executable (info))
3827 /* Clobber the section size so that the warning does
3828 not get copied into the output file. */
3831 /* Also set SEC_EXCLUDE, so that symbols defined in
3832 the warning section don't get copied to the output. */
3833 s->flags |= SEC_EXCLUDE;
3838 just_syms = ((s = abfd->sections) != NULL
3839 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3844 /* If we are creating a shared library, create all the dynamic
3845 sections immediately. We need to attach them to something,
3846 so we attach them to this BFD, provided it is the right
3847 format and is not from ld --just-symbols. Always create the
3848 dynamic sections for -E/--dynamic-list. FIXME: If there
3849 are no input BFD's of the same format as the output, we can't
3850 make a shared library. */
3852 && (bfd_link_pic (info)
3853 || (!bfd_link_relocatable (info)
3855 && (info->export_dynamic || info->dynamic)))
3856 && is_elf_hash_table (htab)
3857 && info->output_bfd->xvec == abfd->xvec
3858 && !htab->dynamic_sections_created)
3860 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3864 else if (!is_elf_hash_table (htab))
3868 const char *soname = NULL;
3870 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3871 const Elf_Internal_Phdr *phdr;
3874 /* ld --just-symbols and dynamic objects don't mix very well.
3875 ld shouldn't allow it. */
3879 /* If this dynamic lib was specified on the command line with
3880 --as-needed in effect, then we don't want to add a DT_NEEDED
3881 tag unless the lib is actually used. Similary for libs brought
3882 in by another lib's DT_NEEDED. When --no-add-needed is used
3883 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3884 any dynamic library in DT_NEEDED tags in the dynamic lib at
3886 add_needed = (elf_dyn_lib_class (abfd)
3887 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3888 | DYN_NO_NEEDED)) == 0;
3890 s = bfd_get_section_by_name (abfd, ".dynamic");
3895 unsigned int elfsec;
3896 unsigned long shlink;
3898 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3905 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3906 if (elfsec == SHN_BAD)
3907 goto error_free_dyn;
3908 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3910 for (extdyn = dynbuf;
3911 extdyn < dynbuf + s->size;
3912 extdyn += bed->s->sizeof_dyn)
3914 Elf_Internal_Dyn dyn;
3916 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3917 if (dyn.d_tag == DT_SONAME)
3919 unsigned int tagv = dyn.d_un.d_val;
3920 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3922 goto error_free_dyn;
3924 if (dyn.d_tag == DT_NEEDED)
3926 struct bfd_link_needed_list *n, **pn;
3928 unsigned int tagv = dyn.d_un.d_val;
3930 amt = sizeof (struct bfd_link_needed_list);
3931 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3932 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3933 if (n == NULL || fnm == NULL)
3934 goto error_free_dyn;
3935 amt = strlen (fnm) + 1;
3936 anm = (char *) bfd_alloc (abfd, amt);
3938 goto error_free_dyn;
3939 memcpy (anm, fnm, amt);
3943 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3947 if (dyn.d_tag == DT_RUNPATH)
3949 struct bfd_link_needed_list *n, **pn;
3951 unsigned int tagv = dyn.d_un.d_val;
3953 amt = sizeof (struct bfd_link_needed_list);
3954 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3955 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3956 if (n == NULL || fnm == NULL)
3957 goto error_free_dyn;
3958 amt = strlen (fnm) + 1;
3959 anm = (char *) bfd_alloc (abfd, amt);
3961 goto error_free_dyn;
3962 memcpy (anm, fnm, amt);
3966 for (pn = & runpath;
3972 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3973 if (!runpath && dyn.d_tag == DT_RPATH)
3975 struct bfd_link_needed_list *n, **pn;
3977 unsigned int tagv = dyn.d_un.d_val;
3979 amt = sizeof (struct bfd_link_needed_list);
3980 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3981 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3982 if (n == NULL || fnm == NULL)
3983 goto error_free_dyn;
3984 amt = strlen (fnm) + 1;
3985 anm = (char *) bfd_alloc (abfd, amt);
3987 goto error_free_dyn;
3988 memcpy (anm, fnm, amt);
3998 if (dyn.d_tag == DT_AUDIT)
4000 unsigned int tagv = dyn.d_un.d_val;
4001 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4008 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4009 frees all more recently bfd_alloc'd blocks as well. */
4015 struct bfd_link_needed_list **pn;
4016 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4021 /* If we have a PT_GNU_RELRO program header, mark as read-only
4022 all sections contained fully therein. This makes relro
4023 shared library sections appear as they will at run-time. */
4024 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4025 while (--phdr >= elf_tdata (abfd)->phdr)
4026 if (phdr->p_type == PT_GNU_RELRO)
4028 for (s = abfd->sections; s != NULL; s = s->next)
4029 if ((s->flags & SEC_ALLOC) != 0
4030 && s->vma >= phdr->p_vaddr
4031 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4032 s->flags |= SEC_READONLY;
4036 /* We do not want to include any of the sections in a dynamic
4037 object in the output file. We hack by simply clobbering the
4038 list of sections in the BFD. This could be handled more
4039 cleanly by, say, a new section flag; the existing
4040 SEC_NEVER_LOAD flag is not the one we want, because that one
4041 still implies that the section takes up space in the output
4043 bfd_section_list_clear (abfd);
4045 /* Find the name to use in a DT_NEEDED entry that refers to this
4046 object. If the object has a DT_SONAME entry, we use it.
4047 Otherwise, if the generic linker stuck something in
4048 elf_dt_name, we use that. Otherwise, we just use the file
4050 if (soname == NULL || *soname == '\0')
4052 soname = elf_dt_name (abfd);
4053 if (soname == NULL || *soname == '\0')
4054 soname = bfd_get_filename (abfd);
4057 /* Save the SONAME because sometimes the linker emulation code
4058 will need to know it. */
4059 elf_dt_name (abfd) = soname;
4061 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4065 /* If we have already included this dynamic object in the
4066 link, just ignore it. There is no reason to include a
4067 particular dynamic object more than once. */
4071 /* Save the DT_AUDIT entry for the linker emulation code. */
4072 elf_dt_audit (abfd) = audit;
4075 /* If this is a dynamic object, we always link against the .dynsym
4076 symbol table, not the .symtab symbol table. The dynamic linker
4077 will only see the .dynsym symbol table, so there is no reason to
4078 look at .symtab for a dynamic object. */
4080 if (! dynamic || elf_dynsymtab (abfd) == 0)
4081 hdr = &elf_tdata (abfd)->symtab_hdr;
4083 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4085 symcount = hdr->sh_size / bed->s->sizeof_sym;
4087 /* The sh_info field of the symtab header tells us where the
4088 external symbols start. We don't care about the local symbols at
4090 if (elf_bad_symtab (abfd))
4092 extsymcount = symcount;
4097 extsymcount = symcount - hdr->sh_info;
4098 extsymoff = hdr->sh_info;
4101 sym_hash = elf_sym_hashes (abfd);
4102 if (extsymcount != 0)
4104 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4106 if (isymbuf == NULL)
4109 if (sym_hash == NULL)
4111 /* We store a pointer to the hash table entry for each
4114 amt *= sizeof (struct elf_link_hash_entry *);
4115 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4116 if (sym_hash == NULL)
4117 goto error_free_sym;
4118 elf_sym_hashes (abfd) = sym_hash;
4124 /* Read in any version definitions. */
4125 if (!_bfd_elf_slurp_version_tables (abfd,
4126 info->default_imported_symver))
4127 goto error_free_sym;
4129 /* Read in the symbol versions, but don't bother to convert them
4130 to internal format. */
4131 if (elf_dynversym (abfd) != 0)
4133 Elf_Internal_Shdr *versymhdr;
4135 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4136 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4137 if (extversym == NULL)
4138 goto error_free_sym;
4139 amt = versymhdr->sh_size;
4140 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4141 || bfd_bread (extversym, amt, abfd) != amt)
4142 goto error_free_vers;
4146 /* If we are loading an as-needed shared lib, save the symbol table
4147 state before we start adding symbols. If the lib turns out
4148 to be unneeded, restore the state. */
4149 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4154 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4156 struct bfd_hash_entry *p;
4157 struct elf_link_hash_entry *h;
4159 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4161 h = (struct elf_link_hash_entry *) p;
4162 entsize += htab->root.table.entsize;
4163 if (h->root.type == bfd_link_hash_warning)
4164 entsize += htab->root.table.entsize;
4168 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4169 old_tab = bfd_malloc (tabsize + entsize);
4170 if (old_tab == NULL)
4171 goto error_free_vers;
4173 /* Remember the current objalloc pointer, so that all mem for
4174 symbols added can later be reclaimed. */
4175 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4176 if (alloc_mark == NULL)
4177 goto error_free_vers;
4179 /* Make a special call to the linker "notice" function to
4180 tell it that we are about to handle an as-needed lib. */
4181 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4182 goto error_free_vers;
4184 /* Clone the symbol table. Remember some pointers into the
4185 symbol table, and dynamic symbol count. */
4186 old_ent = (char *) old_tab + tabsize;
4187 memcpy (old_tab, htab->root.table.table, tabsize);
4188 old_undefs = htab->root.undefs;
4189 old_undefs_tail = htab->root.undefs_tail;
4190 old_table = htab->root.table.table;
4191 old_size = htab->root.table.size;
4192 old_count = htab->root.table.count;
4193 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4194 if (old_strtab == NULL)
4195 goto error_free_vers;
4197 for (i = 0; i < htab->root.table.size; i++)
4199 struct bfd_hash_entry *p;
4200 struct elf_link_hash_entry *h;
4202 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4204 memcpy (old_ent, p, htab->root.table.entsize);
4205 old_ent = (char *) old_ent + htab->root.table.entsize;
4206 h = (struct elf_link_hash_entry *) p;
4207 if (h->root.type == bfd_link_hash_warning)
4209 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4210 old_ent = (char *) old_ent + htab->root.table.entsize;
4217 ever = extversym != NULL ? extversym + extsymoff : NULL;
4218 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4220 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4224 asection *sec, *new_sec;
4227 struct elf_link_hash_entry *h;
4228 struct elf_link_hash_entry *hi;
4229 bfd_boolean definition;
4230 bfd_boolean size_change_ok;
4231 bfd_boolean type_change_ok;
4232 bfd_boolean new_weakdef;
4233 bfd_boolean new_weak;
4234 bfd_boolean old_weak;
4235 bfd_boolean override;
4237 bfd_boolean discarded;
4238 unsigned int old_alignment;
4240 bfd_boolean matched;
4244 flags = BSF_NO_FLAGS;
4246 value = isym->st_value;
4247 common = bed->common_definition (isym);
4250 bind = ELF_ST_BIND (isym->st_info);
4254 /* This should be impossible, since ELF requires that all
4255 global symbols follow all local symbols, and that sh_info
4256 point to the first global symbol. Unfortunately, Irix 5
4261 if (isym->st_shndx != SHN_UNDEF && !common)
4269 case STB_GNU_UNIQUE:
4270 flags = BSF_GNU_UNIQUE;
4274 /* Leave it up to the processor backend. */
4278 if (isym->st_shndx == SHN_UNDEF)
4279 sec = bfd_und_section_ptr;
4280 else if (isym->st_shndx == SHN_ABS)
4281 sec = bfd_abs_section_ptr;
4282 else if (isym->st_shndx == SHN_COMMON)
4284 sec = bfd_com_section_ptr;
4285 /* What ELF calls the size we call the value. What ELF
4286 calls the value we call the alignment. */
4287 value = isym->st_size;
4291 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4293 sec = bfd_abs_section_ptr;
4294 else if (discarded_section (sec))
4296 /* Symbols from discarded section are undefined. We keep
4298 sec = bfd_und_section_ptr;
4300 isym->st_shndx = SHN_UNDEF;
4302 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4306 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4309 goto error_free_vers;
4311 if (isym->st_shndx == SHN_COMMON
4312 && (abfd->flags & BFD_PLUGIN) != 0)
4314 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4318 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4320 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4322 goto error_free_vers;
4326 else if (isym->st_shndx == SHN_COMMON
4327 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4328 && !bfd_link_relocatable (info))
4330 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4334 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4335 | SEC_LINKER_CREATED);
4336 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4338 goto error_free_vers;
4342 else if (bed->elf_add_symbol_hook)
4344 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4346 goto error_free_vers;
4348 /* The hook function sets the name to NULL if this symbol
4349 should be skipped for some reason. */
4354 /* Sanity check that all possibilities were handled. */
4357 bfd_set_error (bfd_error_bad_value);
4358 goto error_free_vers;
4361 /* Silently discard TLS symbols from --just-syms. There's
4362 no way to combine a static TLS block with a new TLS block
4363 for this executable. */
4364 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4365 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4368 if (bfd_is_und_section (sec)
4369 || bfd_is_com_section (sec))
4374 size_change_ok = FALSE;
4375 type_change_ok = bed->type_change_ok;
4382 if (is_elf_hash_table (htab))
4384 Elf_Internal_Versym iver;
4385 unsigned int vernum = 0;
4390 if (info->default_imported_symver)
4391 /* Use the default symbol version created earlier. */
4392 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4397 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4399 vernum = iver.vs_vers & VERSYM_VERSION;
4401 /* If this is a hidden symbol, or if it is not version
4402 1, we append the version name to the symbol name.
4403 However, we do not modify a non-hidden absolute symbol
4404 if it is not a function, because it might be the version
4405 symbol itself. FIXME: What if it isn't? */
4406 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4408 && (!bfd_is_abs_section (sec)
4409 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4412 size_t namelen, verlen, newlen;
4415 if (isym->st_shndx != SHN_UNDEF)
4417 if (vernum > elf_tdata (abfd)->cverdefs)
4419 else if (vernum > 1)
4421 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4428 /* xgettext:c-format */
4429 (_("%B: %s: invalid version %u (max %d)"),
4431 elf_tdata (abfd)->cverdefs);
4432 bfd_set_error (bfd_error_bad_value);
4433 goto error_free_vers;
4438 /* We cannot simply test for the number of
4439 entries in the VERNEED section since the
4440 numbers for the needed versions do not start
4442 Elf_Internal_Verneed *t;
4445 for (t = elf_tdata (abfd)->verref;
4449 Elf_Internal_Vernaux *a;
4451 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4453 if (a->vna_other == vernum)
4455 verstr = a->vna_nodename;
4465 /* xgettext:c-format */
4466 (_("%B: %s: invalid needed version %d"),
4467 abfd, name, vernum);
4468 bfd_set_error (bfd_error_bad_value);
4469 goto error_free_vers;
4473 namelen = strlen (name);
4474 verlen = strlen (verstr);
4475 newlen = namelen + verlen + 2;
4476 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4477 && isym->st_shndx != SHN_UNDEF)
4480 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4481 if (newname == NULL)
4482 goto error_free_vers;
4483 memcpy (newname, name, namelen);
4484 p = newname + namelen;
4486 /* If this is a defined non-hidden version symbol,
4487 we add another @ to the name. This indicates the
4488 default version of the symbol. */
4489 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4490 && isym->st_shndx != SHN_UNDEF)
4492 memcpy (p, verstr, verlen + 1);
4497 /* If this symbol has default visibility and the user has
4498 requested we not re-export it, then mark it as hidden. */
4499 if (!bfd_is_und_section (sec)
4502 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4503 isym->st_other = (STV_HIDDEN
4504 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4506 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4507 sym_hash, &old_bfd, &old_weak,
4508 &old_alignment, &skip, &override,
4509 &type_change_ok, &size_change_ok,
4511 goto error_free_vers;
4516 /* Override a definition only if the new symbol matches the
4518 if (override && matched)
4522 while (h->root.type == bfd_link_hash_indirect
4523 || h->root.type == bfd_link_hash_warning)
4524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 if (elf_tdata (abfd)->verdef != NULL
4529 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4532 if (! (_bfd_generic_link_add_one_symbol
4533 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4534 (struct bfd_link_hash_entry **) sym_hash)))
4535 goto error_free_vers;
4537 if ((flags & BSF_GNU_UNIQUE)
4538 && (abfd->flags & DYNAMIC) == 0
4539 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4540 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4543 /* We need to make sure that indirect symbol dynamic flags are
4546 while (h->root.type == bfd_link_hash_indirect
4547 || h->root.type == bfd_link_hash_warning)
4548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4550 /* Setting the index to -3 tells elf_link_output_extsym that
4551 this symbol is defined in a discarded section. */
4557 new_weak = (flags & BSF_WEAK) != 0;
4558 new_weakdef = FALSE;
4562 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4563 && is_elf_hash_table (htab)
4564 && h->u.weakdef == NULL)
4566 /* Keep a list of all weak defined non function symbols from
4567 a dynamic object, using the weakdef field. Later in this
4568 function we will set the weakdef field to the correct
4569 value. We only put non-function symbols from dynamic
4570 objects on this list, because that happens to be the only
4571 time we need to know the normal symbol corresponding to a
4572 weak symbol, and the information is time consuming to
4573 figure out. If the weakdef field is not already NULL,
4574 then this symbol was already defined by some previous
4575 dynamic object, and we will be using that previous
4576 definition anyhow. */
4578 h->u.weakdef = weaks;
4583 /* Set the alignment of a common symbol. */
4584 if ((common || bfd_is_com_section (sec))
4585 && h->root.type == bfd_link_hash_common)
4590 align = bfd_log2 (isym->st_value);
4593 /* The new symbol is a common symbol in a shared object.
4594 We need to get the alignment from the section. */
4595 align = new_sec->alignment_power;
4597 if (align > old_alignment)
4598 h->root.u.c.p->alignment_power = align;
4600 h->root.u.c.p->alignment_power = old_alignment;
4603 if (is_elf_hash_table (htab))
4605 /* Set a flag in the hash table entry indicating the type of
4606 reference or definition we just found. A dynamic symbol
4607 is one which is referenced or defined by both a regular
4608 object and a shared object. */
4609 bfd_boolean dynsym = FALSE;
4611 /* Plugin symbols aren't normal. Don't set def_regular or
4612 ref_regular for them, or make them dynamic. */
4613 if ((abfd->flags & BFD_PLUGIN) != 0)
4620 if (bind != STB_WEAK)
4621 h->ref_regular_nonweak = 1;
4633 /* If the indirect symbol has been forced local, don't
4634 make the real symbol dynamic. */
4635 if ((h == hi || !hi->forced_local)
4636 && (bfd_link_dll (info)
4646 hi->ref_dynamic = 1;
4651 hi->def_dynamic = 1;
4654 /* If the indirect symbol has been forced local, don't
4655 make the real symbol dynamic. */
4656 if ((h == hi || !hi->forced_local)
4659 || (h->u.weakdef != NULL
4661 && h->u.weakdef->dynindx != -1)))
4665 /* Check to see if we need to add an indirect symbol for
4666 the default name. */
4668 || (!override && h->root.type == bfd_link_hash_common))
4669 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4670 sec, value, &old_bfd, &dynsym))
4671 goto error_free_vers;
4673 /* Check the alignment when a common symbol is involved. This
4674 can change when a common symbol is overridden by a normal
4675 definition or a common symbol is ignored due to the old
4676 normal definition. We need to make sure the maximum
4677 alignment is maintained. */
4678 if ((old_alignment || common)
4679 && h->root.type != bfd_link_hash_common)
4681 unsigned int common_align;
4682 unsigned int normal_align;
4683 unsigned int symbol_align;
4687 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4688 || h->root.type == bfd_link_hash_defweak);
4690 symbol_align = ffs (h->root.u.def.value) - 1;
4691 if (h->root.u.def.section->owner != NULL
4692 && (h->root.u.def.section->owner->flags
4693 & (DYNAMIC | BFD_PLUGIN)) == 0)
4695 normal_align = h->root.u.def.section->alignment_power;
4696 if (normal_align > symbol_align)
4697 normal_align = symbol_align;
4700 normal_align = symbol_align;
4704 common_align = old_alignment;
4705 common_bfd = old_bfd;
4710 common_align = bfd_log2 (isym->st_value);
4712 normal_bfd = old_bfd;
4715 if (normal_align < common_align)
4717 /* PR binutils/2735 */
4718 if (normal_bfd == NULL)
4720 /* xgettext:c-format */
4721 (_("Warning: alignment %u of common symbol `%s' in %B is"
4722 " greater than the alignment (%u) of its section %A"),
4723 1 << common_align, name, common_bfd,
4724 1 << normal_align, h->root.u.def.section);
4727 /* xgettext:c-format */
4728 (_("Warning: alignment %u of symbol `%s' in %B"
4729 " is smaller than %u in %B"),
4730 1 << normal_align, name, normal_bfd,
4731 1 << common_align, common_bfd);
4735 /* Remember the symbol size if it isn't undefined. */
4736 if (isym->st_size != 0
4737 && isym->st_shndx != SHN_UNDEF
4738 && (definition || h->size == 0))
4741 && h->size != isym->st_size
4742 && ! size_change_ok)
4744 /* xgettext:c-format */
4745 (_("Warning: size of symbol `%s' changed"
4746 " from %lu in %B to %lu in %B"),
4747 name, (unsigned long) h->size, old_bfd,
4748 (unsigned long) isym->st_size, abfd);
4750 h->size = isym->st_size;
4753 /* If this is a common symbol, then we always want H->SIZE
4754 to be the size of the common symbol. The code just above
4755 won't fix the size if a common symbol becomes larger. We
4756 don't warn about a size change here, because that is
4757 covered by --warn-common. Allow changes between different
4759 if (h->root.type == bfd_link_hash_common)
4760 h->size = h->root.u.c.size;
4762 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4763 && ((definition && !new_weak)
4764 || (old_weak && h->root.type == bfd_link_hash_common)
4765 || h->type == STT_NOTYPE))
4767 unsigned int type = ELF_ST_TYPE (isym->st_info);
4769 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4771 if (type == STT_GNU_IFUNC
4772 && (abfd->flags & DYNAMIC) != 0)
4775 if (h->type != type)
4777 if (h->type != STT_NOTYPE && ! type_change_ok)
4778 /* xgettext:c-format */
4780 (_("Warning: type of symbol `%s' changed"
4781 " from %d to %d in %B"),
4782 name, h->type, type, abfd);
4788 /* Merge st_other field. */
4789 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4791 /* We don't want to make debug symbol dynamic. */
4793 && (sec->flags & SEC_DEBUGGING)
4794 && !bfd_link_relocatable (info))
4797 /* Nor should we make plugin symbols dynamic. */
4798 if ((abfd->flags & BFD_PLUGIN) != 0)
4803 h->target_internal = isym->st_target_internal;
4804 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4807 if (definition && !dynamic)
4809 char *p = strchr (name, ELF_VER_CHR);
4810 if (p != NULL && p[1] != ELF_VER_CHR)
4812 /* Queue non-default versions so that .symver x, x@FOO
4813 aliases can be checked. */
4816 amt = ((isymend - isym + 1)
4817 * sizeof (struct elf_link_hash_entry *));
4819 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4821 goto error_free_vers;
4823 nondeflt_vers[nondeflt_vers_cnt++] = h;
4827 if (dynsym && h->dynindx == -1)
4829 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4830 goto error_free_vers;
4831 if (h->u.weakdef != NULL
4833 && h->u.weakdef->dynindx == -1)
4835 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4836 goto error_free_vers;
4839 else if (h->dynindx != -1)
4840 /* If the symbol already has a dynamic index, but
4841 visibility says it should not be visible, turn it into
4843 switch (ELF_ST_VISIBILITY (h->other))
4847 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4852 /* Don't add DT_NEEDED for references from the dummy bfd nor
4853 for unmatched symbol. */
4858 && h->ref_regular_nonweak
4860 || (old_bfd->flags & BFD_PLUGIN) == 0))
4861 || (h->ref_dynamic_nonweak
4862 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4863 && !on_needed_list (elf_dt_name (abfd),
4864 htab->needed, NULL))))
4867 const char *soname = elf_dt_name (abfd);
4869 info->callbacks->minfo ("%!", soname, old_bfd,
4870 h->root.root.string);
4872 /* A symbol from a library loaded via DT_NEEDED of some
4873 other library is referenced by a regular object.
4874 Add a DT_NEEDED entry for it. Issue an error if
4875 --no-add-needed is used and the reference was not
4878 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4881 /* xgettext:c-format */
4882 (_("%B: undefined reference to symbol '%s'"),
4884 bfd_set_error (bfd_error_missing_dso);
4885 goto error_free_vers;
4888 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4889 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4892 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4894 goto error_free_vers;
4896 BFD_ASSERT (ret == 0);
4901 if (extversym != NULL)
4907 if (isymbuf != NULL)
4913 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4917 /* Restore the symbol table. */
4918 old_ent = (char *) old_tab + tabsize;
4919 memset (elf_sym_hashes (abfd), 0,
4920 extsymcount * sizeof (struct elf_link_hash_entry *));
4921 htab->root.table.table = old_table;
4922 htab->root.table.size = old_size;
4923 htab->root.table.count = old_count;
4924 memcpy (htab->root.table.table, old_tab, tabsize);
4925 htab->root.undefs = old_undefs;
4926 htab->root.undefs_tail = old_undefs_tail;
4927 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4930 for (i = 0; i < htab->root.table.size; i++)
4932 struct bfd_hash_entry *p;
4933 struct elf_link_hash_entry *h;
4935 unsigned int alignment_power;
4936 unsigned int dynamic_ref_after_ir_def;
4938 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4940 h = (struct elf_link_hash_entry *) p;
4941 if (h->root.type == bfd_link_hash_warning)
4942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4944 /* Preserve the maximum alignment and size for common
4945 symbols even if this dynamic lib isn't on DT_NEEDED
4946 since it can still be loaded at run time by another
4948 if (h->root.type == bfd_link_hash_common)
4950 size = h->root.u.c.size;
4951 alignment_power = h->root.u.c.p->alignment_power;
4956 alignment_power = 0;
4958 /* Preserve dynamic_ref_after_ir_def so that this symbol
4959 will be exported when the dynamic lib becomes needed
4960 in the second pass. */
4961 dynamic_ref_after_ir_def = h->root.dynamic_ref_after_ir_def;
4962 memcpy (p, old_ent, htab->root.table.entsize);
4963 old_ent = (char *) old_ent + htab->root.table.entsize;
4964 h = (struct elf_link_hash_entry *) p;
4965 if (h->root.type == bfd_link_hash_warning)
4967 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4968 old_ent = (char *) old_ent + htab->root.table.entsize;
4969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4971 if (h->root.type == bfd_link_hash_common)
4973 if (size > h->root.u.c.size)
4974 h->root.u.c.size = size;
4975 if (alignment_power > h->root.u.c.p->alignment_power)
4976 h->root.u.c.p->alignment_power = alignment_power;
4978 h->root.dynamic_ref_after_ir_def = dynamic_ref_after_ir_def;
4982 /* Make a special call to the linker "notice" function to
4983 tell it that symbols added for crefs may need to be removed. */
4984 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4985 goto error_free_vers;
4988 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4990 if (nondeflt_vers != NULL)
4991 free (nondeflt_vers);
4995 if (old_tab != NULL)
4997 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4998 goto error_free_vers;
5003 /* Now that all the symbols from this input file are created, if
5004 not performing a relocatable link, handle .symver foo, foo@BAR
5005 such that any relocs against foo become foo@BAR. */
5006 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5010 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5012 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5013 char *shortname, *p;
5015 p = strchr (h->root.root.string, ELF_VER_CHR);
5017 || (h->root.type != bfd_link_hash_defined
5018 && h->root.type != bfd_link_hash_defweak))
5021 amt = p - h->root.root.string;
5022 shortname = (char *) bfd_malloc (amt + 1);
5024 goto error_free_vers;
5025 memcpy (shortname, h->root.root.string, amt);
5026 shortname[amt] = '\0';
5028 hi = (struct elf_link_hash_entry *)
5029 bfd_link_hash_lookup (&htab->root, shortname,
5030 FALSE, FALSE, FALSE);
5032 && hi->root.type == h->root.type
5033 && hi->root.u.def.value == h->root.u.def.value
5034 && hi->root.u.def.section == h->root.u.def.section)
5036 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5037 hi->root.type = bfd_link_hash_indirect;
5038 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5039 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5040 sym_hash = elf_sym_hashes (abfd);
5042 for (symidx = 0; symidx < extsymcount; ++symidx)
5043 if (sym_hash[symidx] == hi)
5045 sym_hash[symidx] = h;
5051 free (nondeflt_vers);
5052 nondeflt_vers = NULL;
5055 /* Now set the weakdefs field correctly for all the weak defined
5056 symbols we found. The only way to do this is to search all the
5057 symbols. Since we only need the information for non functions in
5058 dynamic objects, that's the only time we actually put anything on
5059 the list WEAKS. We need this information so that if a regular
5060 object refers to a symbol defined weakly in a dynamic object, the
5061 real symbol in the dynamic object is also put in the dynamic
5062 symbols; we also must arrange for both symbols to point to the
5063 same memory location. We could handle the general case of symbol
5064 aliasing, but a general symbol alias can only be generated in
5065 assembler code, handling it correctly would be very time
5066 consuming, and other ELF linkers don't handle general aliasing
5070 struct elf_link_hash_entry **hpp;
5071 struct elf_link_hash_entry **hppend;
5072 struct elf_link_hash_entry **sorted_sym_hash;
5073 struct elf_link_hash_entry *h;
5076 /* Since we have to search the whole symbol list for each weak
5077 defined symbol, search time for N weak defined symbols will be
5078 O(N^2). Binary search will cut it down to O(NlogN). */
5080 amt *= sizeof (struct elf_link_hash_entry *);
5081 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5082 if (sorted_sym_hash == NULL)
5084 sym_hash = sorted_sym_hash;
5085 hpp = elf_sym_hashes (abfd);
5086 hppend = hpp + extsymcount;
5088 for (; hpp < hppend; hpp++)
5092 && h->root.type == bfd_link_hash_defined
5093 && !bed->is_function_type (h->type))
5101 qsort (sorted_sym_hash, sym_count,
5102 sizeof (struct elf_link_hash_entry *),
5105 while (weaks != NULL)
5107 struct elf_link_hash_entry *hlook;
5110 size_t i, j, idx = 0;
5113 weaks = hlook->u.weakdef;
5114 hlook->u.weakdef = NULL;
5116 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5117 || hlook->root.type == bfd_link_hash_defweak
5118 || hlook->root.type == bfd_link_hash_common
5119 || hlook->root.type == bfd_link_hash_indirect);
5120 slook = hlook->root.u.def.section;
5121 vlook = hlook->root.u.def.value;
5127 bfd_signed_vma vdiff;
5129 h = sorted_sym_hash[idx];
5130 vdiff = vlook - h->root.u.def.value;
5137 int sdiff = slook->id - h->root.u.def.section->id;
5147 /* We didn't find a value/section match. */
5151 /* With multiple aliases, or when the weak symbol is already
5152 strongly defined, we have multiple matching symbols and
5153 the binary search above may land on any of them. Step
5154 one past the matching symbol(s). */
5157 h = sorted_sym_hash[idx];
5158 if (h->root.u.def.section != slook
5159 || h->root.u.def.value != vlook)
5163 /* Now look back over the aliases. Since we sorted by size
5164 as well as value and section, we'll choose the one with
5165 the largest size. */
5168 h = sorted_sym_hash[idx];
5170 /* Stop if value or section doesn't match. */
5171 if (h->root.u.def.section != slook
5172 || h->root.u.def.value != vlook)
5174 else if (h != hlook)
5176 hlook->u.weakdef = h;
5178 /* If the weak definition is in the list of dynamic
5179 symbols, make sure the real definition is put
5181 if (hlook->dynindx != -1 && h->dynindx == -1)
5183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5186 free (sorted_sym_hash);
5191 /* If the real definition is in the list of dynamic
5192 symbols, make sure the weak definition is put
5193 there as well. If we don't do this, then the
5194 dynamic loader might not merge the entries for the
5195 real definition and the weak definition. */
5196 if (h->dynindx != -1 && hlook->dynindx == -1)
5198 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5199 goto err_free_sym_hash;
5206 free (sorted_sym_hash);
5209 if (bed->check_directives
5210 && !(*bed->check_directives) (abfd, info))
5213 if (!info->check_relocs_after_open_input
5214 && !_bfd_elf_link_check_relocs (abfd, info))
5217 /* If this is a non-traditional link, try to optimize the handling
5218 of the .stab/.stabstr sections. */
5220 && ! info->traditional_format
5221 && is_elf_hash_table (htab)
5222 && (info->strip != strip_all && info->strip != strip_debugger))
5226 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5227 if (stabstr != NULL)
5229 bfd_size_type string_offset = 0;
5232 for (stab = abfd->sections; stab; stab = stab->next)
5233 if (CONST_STRNEQ (stab->name, ".stab")
5234 && (!stab->name[5] ||
5235 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5236 && (stab->flags & SEC_MERGE) == 0
5237 && !bfd_is_abs_section (stab->output_section))
5239 struct bfd_elf_section_data *secdata;
5241 secdata = elf_section_data (stab);
5242 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5243 stabstr, &secdata->sec_info,
5246 if (secdata->sec_info)
5247 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5252 if (is_elf_hash_table (htab) && add_needed)
5254 /* Add this bfd to the loaded list. */
5255 struct elf_link_loaded_list *n;
5257 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5261 n->next = htab->loaded;
5268 if (old_tab != NULL)
5270 if (old_strtab != NULL)
5272 if (nondeflt_vers != NULL)
5273 free (nondeflt_vers);
5274 if (extversym != NULL)
5277 if (isymbuf != NULL)
5283 /* Return the linker hash table entry of a symbol that might be
5284 satisfied by an archive symbol. Return -1 on error. */
5286 struct elf_link_hash_entry *
5287 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5288 struct bfd_link_info *info,
5291 struct elf_link_hash_entry *h;
5295 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5299 /* If this is a default version (the name contains @@), look up the
5300 symbol again with only one `@' as well as without the version.
5301 The effect is that references to the symbol with and without the
5302 version will be matched by the default symbol in the archive. */
5304 p = strchr (name, ELF_VER_CHR);
5305 if (p == NULL || p[1] != ELF_VER_CHR)
5308 /* First check with only one `@'. */
5309 len = strlen (name);
5310 copy = (char *) bfd_alloc (abfd, len);
5312 return (struct elf_link_hash_entry *) 0 - 1;
5314 first = p - name + 1;
5315 memcpy (copy, name, first);
5316 memcpy (copy + first, name + first + 1, len - first);
5318 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5321 /* We also need to check references to the symbol without the
5323 copy[first - 1] = '\0';
5324 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5325 FALSE, FALSE, TRUE);
5328 bfd_release (abfd, copy);
5332 /* Add symbols from an ELF archive file to the linker hash table. We
5333 don't use _bfd_generic_link_add_archive_symbols because we need to
5334 handle versioned symbols.
5336 Fortunately, ELF archive handling is simpler than that done by
5337 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5338 oddities. In ELF, if we find a symbol in the archive map, and the
5339 symbol is currently undefined, we know that we must pull in that
5342 Unfortunately, we do have to make multiple passes over the symbol
5343 table until nothing further is resolved. */
5346 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5349 unsigned char *included = NULL;
5353 const struct elf_backend_data *bed;
5354 struct elf_link_hash_entry * (*archive_symbol_lookup)
5355 (bfd *, struct bfd_link_info *, const char *);
5357 if (! bfd_has_map (abfd))
5359 /* An empty archive is a special case. */
5360 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5362 bfd_set_error (bfd_error_no_armap);
5366 /* Keep track of all symbols we know to be already defined, and all
5367 files we know to be already included. This is to speed up the
5368 second and subsequent passes. */
5369 c = bfd_ardata (abfd)->symdef_count;
5373 amt *= sizeof (*included);
5374 included = (unsigned char *) bfd_zmalloc (amt);
5375 if (included == NULL)
5378 symdefs = bfd_ardata (abfd)->symdefs;
5379 bed = get_elf_backend_data (abfd);
5380 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5393 symdefend = symdef + c;
5394 for (i = 0; symdef < symdefend; symdef++, i++)
5396 struct elf_link_hash_entry *h;
5398 struct bfd_link_hash_entry *undefs_tail;
5403 if (symdef->file_offset == last)
5409 h = archive_symbol_lookup (abfd, info, symdef->name);
5410 if (h == (struct elf_link_hash_entry *) 0 - 1)
5416 if (h->root.type == bfd_link_hash_common)
5418 /* We currently have a common symbol. The archive map contains
5419 a reference to this symbol, so we may want to include it. We
5420 only want to include it however, if this archive element
5421 contains a definition of the symbol, not just another common
5424 Unfortunately some archivers (including GNU ar) will put
5425 declarations of common symbols into their archive maps, as
5426 well as real definitions, so we cannot just go by the archive
5427 map alone. Instead we must read in the element's symbol
5428 table and check that to see what kind of symbol definition
5430 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5433 else if (h->root.type != bfd_link_hash_undefined)
5435 if (h->root.type != bfd_link_hash_undefweak)
5436 /* Symbol must be defined. Don't check it again. */
5441 /* We need to include this archive member. */
5442 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5443 if (element == NULL)
5446 if (! bfd_check_format (element, bfd_object))
5449 undefs_tail = info->hash->undefs_tail;
5451 if (!(*info->callbacks
5452 ->add_archive_element) (info, element, symdef->name, &element))
5454 if (!bfd_link_add_symbols (element, info))
5457 /* If there are any new undefined symbols, we need to make
5458 another pass through the archive in order to see whether
5459 they can be defined. FIXME: This isn't perfect, because
5460 common symbols wind up on undefs_tail and because an
5461 undefined symbol which is defined later on in this pass
5462 does not require another pass. This isn't a bug, but it
5463 does make the code less efficient than it could be. */
5464 if (undefs_tail != info->hash->undefs_tail)
5467 /* Look backward to mark all symbols from this object file
5468 which we have already seen in this pass. */
5472 included[mark] = TRUE;
5477 while (symdefs[mark].file_offset == symdef->file_offset);
5479 /* We mark subsequent symbols from this object file as we go
5480 on through the loop. */
5481 last = symdef->file_offset;
5491 if (included != NULL)
5496 /* Given an ELF BFD, add symbols to the global hash table as
5500 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5502 switch (bfd_get_format (abfd))
5505 return elf_link_add_object_symbols (abfd, info);
5507 return elf_link_add_archive_symbols (abfd, info);
5509 bfd_set_error (bfd_error_wrong_format);
5514 struct hash_codes_info
5516 unsigned long *hashcodes;
5520 /* This function will be called though elf_link_hash_traverse to store
5521 all hash value of the exported symbols in an array. */
5524 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5526 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5531 /* Ignore indirect symbols. These are added by the versioning code. */
5532 if (h->dynindx == -1)
5535 name = h->root.root.string;
5536 if (h->versioned >= versioned)
5538 char *p = strchr (name, ELF_VER_CHR);
5541 alc = (char *) bfd_malloc (p - name + 1);
5547 memcpy (alc, name, p - name);
5548 alc[p - name] = '\0';
5553 /* Compute the hash value. */
5554 ha = bfd_elf_hash (name);
5556 /* Store the found hash value in the array given as the argument. */
5557 *(inf->hashcodes)++ = ha;
5559 /* And store it in the struct so that we can put it in the hash table
5561 h->u.elf_hash_value = ha;
5569 struct collect_gnu_hash_codes
5572 const struct elf_backend_data *bed;
5573 unsigned long int nsyms;
5574 unsigned long int maskbits;
5575 unsigned long int *hashcodes;
5576 unsigned long int *hashval;
5577 unsigned long int *indx;
5578 unsigned long int *counts;
5581 long int min_dynindx;
5582 unsigned long int bucketcount;
5583 unsigned long int symindx;
5584 long int local_indx;
5585 long int shift1, shift2;
5586 unsigned long int mask;
5590 /* This function will be called though elf_link_hash_traverse to store
5591 all hash value of the exported symbols in an array. */
5594 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5596 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5601 /* Ignore indirect symbols. These are added by the versioning code. */
5602 if (h->dynindx == -1)
5605 /* Ignore also local symbols and undefined symbols. */
5606 if (! (*s->bed->elf_hash_symbol) (h))
5609 name = h->root.root.string;
5610 if (h->versioned >= versioned)
5612 char *p = strchr (name, ELF_VER_CHR);
5615 alc = (char *) bfd_malloc (p - name + 1);
5621 memcpy (alc, name, p - name);
5622 alc[p - name] = '\0';
5627 /* Compute the hash value. */
5628 ha = bfd_elf_gnu_hash (name);
5630 /* Store the found hash value in the array for compute_bucket_count,
5631 and also for .dynsym reordering purposes. */
5632 s->hashcodes[s->nsyms] = ha;
5633 s->hashval[h->dynindx] = ha;
5635 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5636 s->min_dynindx = h->dynindx;
5644 /* This function will be called though elf_link_hash_traverse to do
5645 final dynaminc symbol renumbering. */
5648 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5650 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5651 unsigned long int bucket;
5652 unsigned long int val;
5654 /* Ignore indirect symbols. */
5655 if (h->dynindx == -1)
5658 /* Ignore also local symbols and undefined symbols. */
5659 if (! (*s->bed->elf_hash_symbol) (h))
5661 if (h->dynindx >= s->min_dynindx)
5662 h->dynindx = s->local_indx++;
5666 bucket = s->hashval[h->dynindx] % s->bucketcount;
5667 val = (s->hashval[h->dynindx] >> s->shift1)
5668 & ((s->maskbits >> s->shift1) - 1);
5669 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5671 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5672 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5673 if (s->counts[bucket] == 1)
5674 /* Last element terminates the chain. */
5676 bfd_put_32 (s->output_bfd, val,
5677 s->contents + (s->indx[bucket] - s->symindx) * 4);
5678 --s->counts[bucket];
5679 h->dynindx = s->indx[bucket]++;
5683 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5686 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5688 return !(h->forced_local
5689 || h->root.type == bfd_link_hash_undefined
5690 || h->root.type == bfd_link_hash_undefweak
5691 || ((h->root.type == bfd_link_hash_defined
5692 || h->root.type == bfd_link_hash_defweak)
5693 && h->root.u.def.section->output_section == NULL));
5696 /* Array used to determine the number of hash table buckets to use
5697 based on the number of symbols there are. If there are fewer than
5698 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5699 fewer than 37 we use 17 buckets, and so forth. We never use more
5700 than 32771 buckets. */
5702 static const size_t elf_buckets[] =
5704 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5708 /* Compute bucket count for hashing table. We do not use a static set
5709 of possible tables sizes anymore. Instead we determine for all
5710 possible reasonable sizes of the table the outcome (i.e., the
5711 number of collisions etc) and choose the best solution. The
5712 weighting functions are not too simple to allow the table to grow
5713 without bounds. Instead one of the weighting factors is the size.
5714 Therefore the result is always a good payoff between few collisions
5715 (= short chain lengths) and table size. */
5717 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5718 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5719 unsigned long int nsyms,
5722 size_t best_size = 0;
5723 unsigned long int i;
5725 /* We have a problem here. The following code to optimize the table
5726 size requires an integer type with more the 32 bits. If
5727 BFD_HOST_U_64_BIT is set we know about such a type. */
5728 #ifdef BFD_HOST_U_64_BIT
5733 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5734 bfd *dynobj = elf_hash_table (info)->dynobj;
5735 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5736 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5737 unsigned long int *counts;
5739 unsigned int no_improvement_count = 0;
5741 /* Possible optimization parameters: if we have NSYMS symbols we say
5742 that the hashing table must at least have NSYMS/4 and at most
5744 minsize = nsyms / 4;
5747 best_size = maxsize = nsyms * 2;
5752 if ((best_size & 31) == 0)
5756 /* Create array where we count the collisions in. We must use bfd_malloc
5757 since the size could be large. */
5759 amt *= sizeof (unsigned long int);
5760 counts = (unsigned long int *) bfd_malloc (amt);
5764 /* Compute the "optimal" size for the hash table. The criteria is a
5765 minimal chain length. The minor criteria is (of course) the size
5767 for (i = minsize; i < maxsize; ++i)
5769 /* Walk through the array of hashcodes and count the collisions. */
5770 BFD_HOST_U_64_BIT max;
5771 unsigned long int j;
5772 unsigned long int fact;
5774 if (gnu_hash && (i & 31) == 0)
5777 memset (counts, '\0', i * sizeof (unsigned long int));
5779 /* Determine how often each hash bucket is used. */
5780 for (j = 0; j < nsyms; ++j)
5781 ++counts[hashcodes[j] % i];
5783 /* For the weight function we need some information about the
5784 pagesize on the target. This is information need not be 100%
5785 accurate. Since this information is not available (so far) we
5786 define it here to a reasonable default value. If it is crucial
5787 to have a better value some day simply define this value. */
5788 # ifndef BFD_TARGET_PAGESIZE
5789 # define BFD_TARGET_PAGESIZE (4096)
5792 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5794 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5797 /* Variant 1: optimize for short chains. We add the squares
5798 of all the chain lengths (which favors many small chain
5799 over a few long chains). */
5800 for (j = 0; j < i; ++j)
5801 max += counts[j] * counts[j];
5803 /* This adds penalties for the overall size of the table. */
5804 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5807 /* Variant 2: Optimize a lot more for small table. Here we
5808 also add squares of the size but we also add penalties for
5809 empty slots (the +1 term). */
5810 for (j = 0; j < i; ++j)
5811 max += (1 + counts[j]) * (1 + counts[j]);
5813 /* The overall size of the table is considered, but not as
5814 strong as in variant 1, where it is squared. */
5815 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5819 /* Compare with current best results. */
5820 if (max < best_chlen)
5824 no_improvement_count = 0;
5826 /* PR 11843: Avoid futile long searches for the best bucket size
5827 when there are a large number of symbols. */
5828 else if (++no_improvement_count == 100)
5835 #endif /* defined (BFD_HOST_U_64_BIT) */
5837 /* This is the fallback solution if no 64bit type is available or if we
5838 are not supposed to spend much time on optimizations. We select the
5839 bucket count using a fixed set of numbers. */
5840 for (i = 0; elf_buckets[i] != 0; i++)
5842 best_size = elf_buckets[i];
5843 if (nsyms < elf_buckets[i + 1])
5846 if (gnu_hash && best_size < 2)
5853 /* Size any SHT_GROUP section for ld -r. */
5856 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5860 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5861 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5862 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5867 /* Set a default stack segment size. The value in INFO wins. If it
5868 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5869 undefined it is initialized. */
5872 bfd_elf_stack_segment_size (bfd *output_bfd,
5873 struct bfd_link_info *info,
5874 const char *legacy_symbol,
5875 bfd_vma default_size)
5877 struct elf_link_hash_entry *h = NULL;
5879 /* Look for legacy symbol. */
5881 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5882 FALSE, FALSE, FALSE);
5883 if (h && (h->root.type == bfd_link_hash_defined
5884 || h->root.type == bfd_link_hash_defweak)
5886 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5888 /* The symbol has no type if specified on the command line. */
5889 h->type = STT_OBJECT;
5890 if (info->stacksize)
5891 /* xgettext:c-format */
5892 _bfd_error_handler (_("%B: stack size specified and %s set"),
5893 output_bfd, legacy_symbol);
5894 else if (h->root.u.def.section != bfd_abs_section_ptr)
5895 /* xgettext:c-format */
5896 _bfd_error_handler (_("%B: %s not absolute"),
5897 output_bfd, legacy_symbol);
5899 info->stacksize = h->root.u.def.value;
5902 if (!info->stacksize)
5903 /* If the user didn't set a size, or explicitly inhibit the
5904 size, set it now. */
5905 info->stacksize = default_size;
5907 /* Provide the legacy symbol, if it is referenced. */
5908 if (h && (h->root.type == bfd_link_hash_undefined
5909 || h->root.type == bfd_link_hash_undefweak))
5911 struct bfd_link_hash_entry *bh = NULL;
5913 if (!(_bfd_generic_link_add_one_symbol
5914 (info, output_bfd, legacy_symbol,
5915 BSF_GLOBAL, bfd_abs_section_ptr,
5916 info->stacksize >= 0 ? info->stacksize : 0,
5917 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5920 h = (struct elf_link_hash_entry *) bh;
5922 h->type = STT_OBJECT;
5928 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5930 struct elf_gc_sweep_symbol_info
5932 struct bfd_link_info *info;
5933 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5938 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5941 && (((h->root.type == bfd_link_hash_defined
5942 || h->root.type == bfd_link_hash_defweak)
5943 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5944 && h->root.u.def.section->gc_mark))
5945 || h->root.type == bfd_link_hash_undefined
5946 || h->root.type == bfd_link_hash_undefweak))
5948 struct elf_gc_sweep_symbol_info *inf;
5950 inf = (struct elf_gc_sweep_symbol_info *) data;
5951 (*inf->hide_symbol) (inf->info, h, TRUE);
5954 h->ref_regular_nonweak = 0;
5960 /* Set up the sizes and contents of the ELF dynamic sections. This is
5961 called by the ELF linker emulation before_allocation routine. We
5962 must set the sizes of the sections before the linker sets the
5963 addresses of the various sections. */
5966 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5969 const char *filter_shlib,
5971 const char *depaudit,
5972 const char * const *auxiliary_filters,
5973 struct bfd_link_info *info,
5974 asection **sinterpptr)
5977 const struct elf_backend_data *bed;
5981 if (!is_elf_hash_table (info->hash))
5984 dynobj = elf_hash_table (info)->dynobj;
5986 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5988 struct bfd_elf_version_tree *verdefs;
5989 struct elf_info_failed asvinfo;
5990 struct bfd_elf_version_tree *t;
5991 struct bfd_elf_version_expr *d;
5992 struct elf_info_failed eif;
5993 bfd_boolean all_defined;
6000 /* If we are supposed to export all symbols into the dynamic symbol
6001 table (this is not the normal case), then do so. */
6002 if (info->export_dynamic
6003 || (bfd_link_executable (info) && info->dynamic))
6005 elf_link_hash_traverse (elf_hash_table (info),
6006 _bfd_elf_export_symbol,
6014 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6016 if (soname_indx == (size_t) -1
6017 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6021 soname_indx = (size_t) -1;
6023 /* Make all global versions with definition. */
6024 for (t = info->version_info; t != NULL; t = t->next)
6025 for (d = t->globals.list; d != NULL; d = d->next)
6026 if (!d->symver && d->literal)
6028 const char *verstr, *name;
6029 size_t namelen, verlen, newlen;
6030 char *newname, *p, leading_char;
6031 struct elf_link_hash_entry *newh;
6033 leading_char = bfd_get_symbol_leading_char (output_bfd);
6035 namelen = strlen (name) + (leading_char != '\0');
6037 verlen = strlen (verstr);
6038 newlen = namelen + verlen + 3;
6040 newname = (char *) bfd_malloc (newlen);
6041 if (newname == NULL)
6043 newname[0] = leading_char;
6044 memcpy (newname + (leading_char != '\0'), name, namelen);
6046 /* Check the hidden versioned definition. */
6047 p = newname + namelen;
6049 memcpy (p, verstr, verlen + 1);
6050 newh = elf_link_hash_lookup (elf_hash_table (info),
6051 newname, FALSE, FALSE,
6054 || (newh->root.type != bfd_link_hash_defined
6055 && newh->root.type != bfd_link_hash_defweak))
6057 /* Check the default versioned definition. */
6059 memcpy (p, verstr, verlen + 1);
6060 newh = elf_link_hash_lookup (elf_hash_table (info),
6061 newname, FALSE, FALSE,
6066 /* Mark this version if there is a definition and it is
6067 not defined in a shared object. */
6069 && !newh->def_dynamic
6070 && (newh->root.type == bfd_link_hash_defined
6071 || newh->root.type == bfd_link_hash_defweak))
6075 /* Attach all the symbols to their version information. */
6076 asvinfo.info = info;
6077 asvinfo.failed = FALSE;
6079 elf_link_hash_traverse (elf_hash_table (info),
6080 _bfd_elf_link_assign_sym_version,
6085 if (!info->allow_undefined_version)
6087 /* Check if all global versions have a definition. */
6089 for (t = info->version_info; t != NULL; t = t->next)
6090 for (d = t->globals.list; d != NULL; d = d->next)
6091 if (d->literal && !d->symver && !d->script)
6094 (_("%s: undefined version: %s"),
6095 d->pattern, t->name);
6096 all_defined = FALSE;
6101 bfd_set_error (bfd_error_bad_value);
6106 /* Set up the version definition section. */
6107 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6108 BFD_ASSERT (s != NULL);
6110 /* We may have created additional version definitions if we are
6111 just linking a regular application. */
6112 verdefs = info->version_info;
6114 /* Skip anonymous version tag. */
6115 if (verdefs != NULL && verdefs->vernum == 0)
6116 verdefs = verdefs->next;
6118 if (verdefs == NULL && !info->create_default_symver)
6119 s->flags |= SEC_EXCLUDE;
6125 Elf_Internal_Verdef def;
6126 Elf_Internal_Verdaux defaux;
6127 struct bfd_link_hash_entry *bh;
6128 struct elf_link_hash_entry *h;
6134 /* Make space for the base version. */
6135 size += sizeof (Elf_External_Verdef);
6136 size += sizeof (Elf_External_Verdaux);
6139 /* Make space for the default version. */
6140 if (info->create_default_symver)
6142 size += sizeof (Elf_External_Verdef);
6146 for (t = verdefs; t != NULL; t = t->next)
6148 struct bfd_elf_version_deps *n;
6150 /* Don't emit base version twice. */
6154 size += sizeof (Elf_External_Verdef);
6155 size += sizeof (Elf_External_Verdaux);
6158 for (n = t->deps; n != NULL; n = n->next)
6159 size += sizeof (Elf_External_Verdaux);
6163 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6164 if (s->contents == NULL && s->size != 0)
6167 /* Fill in the version definition section. */
6171 def.vd_version = VER_DEF_CURRENT;
6172 def.vd_flags = VER_FLG_BASE;
6175 if (info->create_default_symver)
6177 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6178 def.vd_next = sizeof (Elf_External_Verdef);
6182 def.vd_aux = sizeof (Elf_External_Verdef);
6183 def.vd_next = (sizeof (Elf_External_Verdef)
6184 + sizeof (Elf_External_Verdaux));
6187 if (soname_indx != (size_t) -1)
6189 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6191 def.vd_hash = bfd_elf_hash (soname);
6192 defaux.vda_name = soname_indx;
6199 name = lbasename (output_bfd->filename);
6200 def.vd_hash = bfd_elf_hash (name);
6201 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6203 if (indx == (size_t) -1)
6205 defaux.vda_name = indx;
6207 defaux.vda_next = 0;
6209 _bfd_elf_swap_verdef_out (output_bfd, &def,
6210 (Elf_External_Verdef *) p);
6211 p += sizeof (Elf_External_Verdef);
6212 if (info->create_default_symver)
6214 /* Add a symbol representing this version. */
6216 if (! (_bfd_generic_link_add_one_symbol
6217 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6219 get_elf_backend_data (dynobj)->collect, &bh)))
6221 h = (struct elf_link_hash_entry *) bh;
6224 h->type = STT_OBJECT;
6225 h->verinfo.vertree = NULL;
6227 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6230 /* Create a duplicate of the base version with the same
6231 aux block, but different flags. */
6234 def.vd_aux = sizeof (Elf_External_Verdef);
6236 def.vd_next = (sizeof (Elf_External_Verdef)
6237 + sizeof (Elf_External_Verdaux));
6240 _bfd_elf_swap_verdef_out (output_bfd, &def,
6241 (Elf_External_Verdef *) p);
6242 p += sizeof (Elf_External_Verdef);
6244 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6245 (Elf_External_Verdaux *) p);
6246 p += sizeof (Elf_External_Verdaux);
6248 for (t = verdefs; t != NULL; t = t->next)
6251 struct bfd_elf_version_deps *n;
6253 /* Don't emit the base version twice. */
6258 for (n = t->deps; n != NULL; n = n->next)
6261 /* Add a symbol representing this version. */
6263 if (! (_bfd_generic_link_add_one_symbol
6264 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6266 get_elf_backend_data (dynobj)->collect, &bh)))
6268 h = (struct elf_link_hash_entry *) bh;
6271 h->type = STT_OBJECT;
6272 h->verinfo.vertree = t;
6274 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6277 def.vd_version = VER_DEF_CURRENT;
6279 if (t->globals.list == NULL
6280 && t->locals.list == NULL
6282 def.vd_flags |= VER_FLG_WEAK;
6283 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6284 def.vd_cnt = cdeps + 1;
6285 def.vd_hash = bfd_elf_hash (t->name);
6286 def.vd_aux = sizeof (Elf_External_Verdef);
6289 /* If a basever node is next, it *must* be the last node in
6290 the chain, otherwise Verdef construction breaks. */
6291 if (t->next != NULL && t->next->vernum == 0)
6292 BFD_ASSERT (t->next->next == NULL);
6294 if (t->next != NULL && t->next->vernum != 0)
6295 def.vd_next = (sizeof (Elf_External_Verdef)
6296 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6298 _bfd_elf_swap_verdef_out (output_bfd, &def,
6299 (Elf_External_Verdef *) p);
6300 p += sizeof (Elf_External_Verdef);
6302 defaux.vda_name = h->dynstr_index;
6303 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6305 defaux.vda_next = 0;
6306 if (t->deps != NULL)
6307 defaux.vda_next = sizeof (Elf_External_Verdaux);
6308 t->name_indx = defaux.vda_name;
6310 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6311 (Elf_External_Verdaux *) p);
6312 p += sizeof (Elf_External_Verdaux);
6314 for (n = t->deps; n != NULL; n = n->next)
6316 if (n->version_needed == NULL)
6318 /* This can happen if there was an error in the
6320 defaux.vda_name = 0;
6324 defaux.vda_name = n->version_needed->name_indx;
6325 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6328 if (n->next == NULL)
6329 defaux.vda_next = 0;
6331 defaux.vda_next = sizeof (Elf_External_Verdaux);
6333 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6334 (Elf_External_Verdaux *) p);
6335 p += sizeof (Elf_External_Verdaux);
6339 elf_tdata (output_bfd)->cverdefs = cdefs;
6342 /* Work out the size of the version reference section. */
6344 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6345 BFD_ASSERT (s != NULL);
6347 struct elf_find_verdep_info sinfo;
6350 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6351 if (sinfo.vers == 0)
6353 sinfo.failed = FALSE;
6355 elf_link_hash_traverse (elf_hash_table (info),
6356 _bfd_elf_link_find_version_dependencies,
6361 if (elf_tdata (output_bfd)->verref == NULL)
6362 s->flags |= SEC_EXCLUDE;
6365 Elf_Internal_Verneed *vn;
6370 /* Build the version dependency section. */
6373 for (vn = elf_tdata (output_bfd)->verref;
6375 vn = vn->vn_nextref)
6377 Elf_Internal_Vernaux *a;
6379 size += sizeof (Elf_External_Verneed);
6381 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6382 size += sizeof (Elf_External_Vernaux);
6386 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6387 if (s->contents == NULL)
6391 for (vn = elf_tdata (output_bfd)->verref;
6393 vn = vn->vn_nextref)
6396 Elf_Internal_Vernaux *a;
6400 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6403 vn->vn_version = VER_NEED_CURRENT;
6405 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6406 elf_dt_name (vn->vn_bfd) != NULL
6407 ? elf_dt_name (vn->vn_bfd)
6408 : lbasename (vn->vn_bfd->filename),
6410 if (indx == (size_t) -1)
6413 vn->vn_aux = sizeof (Elf_External_Verneed);
6414 if (vn->vn_nextref == NULL)
6417 vn->vn_next = (sizeof (Elf_External_Verneed)
6418 + caux * sizeof (Elf_External_Vernaux));
6420 _bfd_elf_swap_verneed_out (output_bfd, vn,
6421 (Elf_External_Verneed *) p);
6422 p += sizeof (Elf_External_Verneed);
6424 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6426 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6427 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6428 a->vna_nodename, FALSE);
6429 if (indx == (size_t) -1)
6432 if (a->vna_nextptr == NULL)
6435 a->vna_next = sizeof (Elf_External_Vernaux);
6437 _bfd_elf_swap_vernaux_out (output_bfd, a,
6438 (Elf_External_Vernaux *) p);
6439 p += sizeof (Elf_External_Vernaux);
6443 elf_tdata (output_bfd)->cverrefs = crefs;
6448 bed = get_elf_backend_data (output_bfd);
6450 if (info->gc_sections && bed->can_gc_sections)
6452 struct elf_gc_sweep_symbol_info sweep_info;
6453 unsigned long section_sym_count;
6455 /* Remove the symbols that were in the swept sections from the
6456 dynamic symbol table. GCFIXME: Anyone know how to get them
6457 out of the static symbol table as well? */
6458 sweep_info.info = info;
6459 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6460 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6463 /* We need to reassign dynsym indices now that symbols may have
6464 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6465 for the details of the conditions used here. */
6466 if (elf_hash_table (info)->dynamic_sections_created
6467 || bed->always_renumber_dynsyms)
6468 _bfd_elf_link_renumber_dynsyms (output_bfd, info, §ion_sym_count);
6471 /* Any syms created from now on start with -1 in
6472 got.refcount/offset and plt.refcount/offset. */
6473 elf_hash_table (info)->init_got_refcount
6474 = elf_hash_table (info)->init_got_offset;
6475 elf_hash_table (info)->init_plt_refcount
6476 = elf_hash_table (info)->init_plt_offset;
6478 if (bfd_link_relocatable (info)
6479 && !_bfd_elf_size_group_sections (info))
6482 /* The backend may have to create some sections regardless of whether
6483 we're dynamic or not. */
6484 if (bed->elf_backend_always_size_sections
6485 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6488 /* Determine any GNU_STACK segment requirements, after the backend
6489 has had a chance to set a default segment size. */
6490 if (info->execstack)
6491 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6492 else if (info->noexecstack)
6493 elf_stack_flags (output_bfd) = PF_R | PF_W;
6497 asection *notesec = NULL;
6500 for (inputobj = info->input_bfds;
6502 inputobj = inputobj->link.next)
6507 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6509 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6512 if (s->flags & SEC_CODE)
6516 else if (bed->default_execstack)
6519 if (notesec || info->stacksize > 0)
6520 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6521 if (notesec && exec && bfd_link_relocatable (info)
6522 && notesec->output_section != bfd_abs_section_ptr)
6523 notesec->output_section->flags |= SEC_CODE;
6526 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6528 struct elf_info_failed eif;
6529 struct elf_link_hash_entry *h;
6533 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6534 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6538 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6540 info->flags |= DF_SYMBOLIC;
6548 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6550 if (indx == (size_t) -1)
6553 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6554 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6558 if (filter_shlib != NULL)
6562 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6563 filter_shlib, TRUE);
6564 if (indx == (size_t) -1
6565 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6569 if (auxiliary_filters != NULL)
6571 const char * const *p;
6573 for (p = auxiliary_filters; *p != NULL; p++)
6577 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6579 if (indx == (size_t) -1
6580 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6589 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6591 if (indx == (size_t) -1
6592 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6596 if (depaudit != NULL)
6600 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6602 if (indx == (size_t) -1
6603 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6610 /* Find all symbols which were defined in a dynamic object and make
6611 the backend pick a reasonable value for them. */
6612 elf_link_hash_traverse (elf_hash_table (info),
6613 _bfd_elf_adjust_dynamic_symbol,
6618 /* Add some entries to the .dynamic section. We fill in some of the
6619 values later, in bfd_elf_final_link, but we must add the entries
6620 now so that we know the final size of the .dynamic section. */
6622 /* If there are initialization and/or finalization functions to
6623 call then add the corresponding DT_INIT/DT_FINI entries. */
6624 h = (info->init_function
6625 ? elf_link_hash_lookup (elf_hash_table (info),
6626 info->init_function, FALSE,
6633 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6636 h = (info->fini_function
6637 ? elf_link_hash_lookup (elf_hash_table (info),
6638 info->fini_function, FALSE,
6645 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6649 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6650 if (s != NULL && s->linker_has_input)
6652 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6653 if (! bfd_link_executable (info))
6658 for (sub = info->input_bfds; sub != NULL;
6659 sub = sub->link.next)
6660 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6661 for (o = sub->sections; o != NULL; o = o->next)
6662 if (elf_section_data (o)->this_hdr.sh_type
6663 == SHT_PREINIT_ARRAY)
6666 (_("%B: .preinit_array section is not allowed in DSO"),
6671 bfd_set_error (bfd_error_nonrepresentable_section);
6675 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6676 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6679 s = bfd_get_section_by_name (output_bfd, ".init_array");
6680 if (s != NULL && s->linker_has_input)
6682 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6683 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6686 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6687 if (s != NULL && s->linker_has_input)
6689 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6690 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6694 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6695 /* If .dynstr is excluded from the link, we don't want any of
6696 these tags. Strictly, we should be checking each section
6697 individually; This quick check covers for the case where
6698 someone does a /DISCARD/ : { *(*) }. */
6699 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6701 bfd_size_type strsize;
6703 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6704 if ((info->emit_hash
6705 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6706 || (info->emit_gnu_hash
6707 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6708 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6709 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6710 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6711 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6712 bed->s->sizeof_sym))
6717 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6720 /* The backend must work out the sizes of all the other dynamic
6723 && bed->elf_backend_size_dynamic_sections != NULL
6724 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6727 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6729 unsigned long section_sym_count;
6731 if (elf_tdata (output_bfd)->cverdefs)
6733 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6735 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6736 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6740 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6742 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6745 else if (info->flags & DF_BIND_NOW)
6747 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6753 if (bfd_link_executable (info))
6754 info->flags_1 &= ~ (DF_1_INITFIRST
6757 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6761 if (elf_tdata (output_bfd)->cverrefs)
6763 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6765 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6766 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6770 if ((elf_tdata (output_bfd)->cverrefs == 0
6771 && elf_tdata (output_bfd)->cverdefs == 0)
6772 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6773 §ion_sym_count) == 0)
6777 s = bfd_get_linker_section (dynobj, ".gnu.version");
6778 s->flags |= SEC_EXCLUDE;
6784 /* Find the first non-excluded output section. We'll use its
6785 section symbol for some emitted relocs. */
6787 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6791 for (s = output_bfd->sections; s != NULL; s = s->next)
6792 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6793 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6795 elf_hash_table (info)->text_index_section = s;
6800 /* Find two non-excluded output sections, one for code, one for data.
6801 We'll use their section symbols for some emitted relocs. */
6803 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6807 /* Data first, since setting text_index_section changes
6808 _bfd_elf_link_omit_section_dynsym. */
6809 for (s = output_bfd->sections; s != NULL; s = s->next)
6810 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6811 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6813 elf_hash_table (info)->data_index_section = s;
6817 for (s = output_bfd->sections; s != NULL; s = s->next)
6818 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6819 == (SEC_ALLOC | SEC_READONLY))
6820 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6822 elf_hash_table (info)->text_index_section = s;
6826 if (elf_hash_table (info)->text_index_section == NULL)
6827 elf_hash_table (info)->text_index_section
6828 = elf_hash_table (info)->data_index_section;
6832 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6834 const struct elf_backend_data *bed;
6835 unsigned long section_sym_count;
6836 bfd_size_type dynsymcount;
6838 if (!is_elf_hash_table (info->hash))
6841 bed = get_elf_backend_data (output_bfd);
6842 (*bed->elf_backend_init_index_section) (output_bfd, info);
6844 /* Assign dynsym indices. In a shared library we generate a section
6845 symbol for each output section, which come first. Next come all
6846 of the back-end allocated local dynamic syms, followed by the rest
6847 of the global symbols.
6849 This is usually not needed for static binaries, however backends
6850 can request to always do it, e.g. the MIPS backend uses dynamic
6851 symbol counts to lay out GOT, which will be produced in the
6852 presence of GOT relocations even in static binaries (holding fixed
6853 data in that case, to satisfy those relocations). */
6855 if (elf_hash_table (info)->dynamic_sections_created
6856 || bed->always_renumber_dynsyms)
6857 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6858 §ion_sym_count);
6860 if (elf_hash_table (info)->dynamic_sections_created)
6864 unsigned int dtagcount;
6866 dynobj = elf_hash_table (info)->dynobj;
6868 /* Work out the size of the symbol version section. */
6869 s = bfd_get_linker_section (dynobj, ".gnu.version");
6870 BFD_ASSERT (s != NULL);
6871 if ((s->flags & SEC_EXCLUDE) == 0)
6873 s->size = dynsymcount * sizeof (Elf_External_Versym);
6874 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6875 if (s->contents == NULL)
6878 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6882 /* Set the size of the .dynsym and .hash sections. We counted
6883 the number of dynamic symbols in elf_link_add_object_symbols.
6884 We will build the contents of .dynsym and .hash when we build
6885 the final symbol table, because until then we do not know the
6886 correct value to give the symbols. We built the .dynstr
6887 section as we went along in elf_link_add_object_symbols. */
6888 s = elf_hash_table (info)->dynsym;
6889 BFD_ASSERT (s != NULL);
6890 s->size = dynsymcount * bed->s->sizeof_sym;
6892 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6893 if (s->contents == NULL)
6896 /* The first entry in .dynsym is a dummy symbol. Clear all the
6897 section syms, in case we don't output them all. */
6898 ++section_sym_count;
6899 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6901 elf_hash_table (info)->bucketcount = 0;
6903 /* Compute the size of the hashing table. As a side effect this
6904 computes the hash values for all the names we export. */
6905 if (info->emit_hash)
6907 unsigned long int *hashcodes;
6908 struct hash_codes_info hashinf;
6910 unsigned long int nsyms;
6912 size_t hash_entry_size;
6914 /* Compute the hash values for all exported symbols. At the same
6915 time store the values in an array so that we could use them for
6917 amt = dynsymcount * sizeof (unsigned long int);
6918 hashcodes = (unsigned long int *) bfd_malloc (amt);
6919 if (hashcodes == NULL)
6921 hashinf.hashcodes = hashcodes;
6922 hashinf.error = FALSE;
6924 /* Put all hash values in HASHCODES. */
6925 elf_link_hash_traverse (elf_hash_table (info),
6926 elf_collect_hash_codes, &hashinf);
6933 nsyms = hashinf.hashcodes - hashcodes;
6935 = compute_bucket_count (info, hashcodes, nsyms, 0);
6938 if (bucketcount == 0)
6941 elf_hash_table (info)->bucketcount = bucketcount;
6943 s = bfd_get_linker_section (dynobj, ".hash");
6944 BFD_ASSERT (s != NULL);
6945 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6946 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6947 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6948 if (s->contents == NULL)
6951 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6952 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6953 s->contents + hash_entry_size);
6956 if (info->emit_gnu_hash)
6959 unsigned char *contents;
6960 struct collect_gnu_hash_codes cinfo;
6964 memset (&cinfo, 0, sizeof (cinfo));
6966 /* Compute the hash values for all exported symbols. At the same
6967 time store the values in an array so that we could use them for
6969 amt = dynsymcount * 2 * sizeof (unsigned long int);
6970 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6971 if (cinfo.hashcodes == NULL)
6974 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6975 cinfo.min_dynindx = -1;
6976 cinfo.output_bfd = output_bfd;
6979 /* Put all hash values in HASHCODES. */
6980 elf_link_hash_traverse (elf_hash_table (info),
6981 elf_collect_gnu_hash_codes, &cinfo);
6984 free (cinfo.hashcodes);
6989 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6991 if (bucketcount == 0)
6993 free (cinfo.hashcodes);
6997 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6998 BFD_ASSERT (s != NULL);
7000 if (cinfo.nsyms == 0)
7002 /* Empty .gnu.hash section is special. */
7003 BFD_ASSERT (cinfo.min_dynindx == -1);
7004 free (cinfo.hashcodes);
7005 s->size = 5 * 4 + bed->s->arch_size / 8;
7006 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7007 if (contents == NULL)
7009 s->contents = contents;
7010 /* 1 empty bucket. */
7011 bfd_put_32 (output_bfd, 1, contents);
7012 /* SYMIDX above the special symbol 0. */
7013 bfd_put_32 (output_bfd, 1, contents + 4);
7014 /* Just one word for bitmask. */
7015 bfd_put_32 (output_bfd, 1, contents + 8);
7016 /* Only hash fn bloom filter. */
7017 bfd_put_32 (output_bfd, 0, contents + 12);
7018 /* No hashes are valid - empty bitmask. */
7019 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7020 /* No hashes in the only bucket. */
7021 bfd_put_32 (output_bfd, 0,
7022 contents + 16 + bed->s->arch_size / 8);
7026 unsigned long int maskwords, maskbitslog2, x;
7027 BFD_ASSERT (cinfo.min_dynindx != -1);
7031 while ((x >>= 1) != 0)
7033 if (maskbitslog2 < 3)
7035 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7036 maskbitslog2 = maskbitslog2 + 3;
7038 maskbitslog2 = maskbitslog2 + 2;
7039 if (bed->s->arch_size == 64)
7041 if (maskbitslog2 == 5)
7047 cinfo.mask = (1 << cinfo.shift1) - 1;
7048 cinfo.shift2 = maskbitslog2;
7049 cinfo.maskbits = 1 << maskbitslog2;
7050 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7051 amt = bucketcount * sizeof (unsigned long int) * 2;
7052 amt += maskwords * sizeof (bfd_vma);
7053 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7054 if (cinfo.bitmask == NULL)
7056 free (cinfo.hashcodes);
7060 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7061 cinfo.indx = cinfo.counts + bucketcount;
7062 cinfo.symindx = dynsymcount - cinfo.nsyms;
7063 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7065 /* Determine how often each hash bucket is used. */
7066 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7067 for (i = 0; i < cinfo.nsyms; ++i)
7068 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7070 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7071 if (cinfo.counts[i] != 0)
7073 cinfo.indx[i] = cnt;
7074 cnt += cinfo.counts[i];
7076 BFD_ASSERT (cnt == dynsymcount);
7077 cinfo.bucketcount = bucketcount;
7078 cinfo.local_indx = cinfo.min_dynindx;
7080 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7081 s->size += cinfo.maskbits / 8;
7082 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7083 if (contents == NULL)
7085 free (cinfo.bitmask);
7086 free (cinfo.hashcodes);
7090 s->contents = contents;
7091 bfd_put_32 (output_bfd, bucketcount, contents);
7092 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7093 bfd_put_32 (output_bfd, maskwords, contents + 8);
7094 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7095 contents += 16 + cinfo.maskbits / 8;
7097 for (i = 0; i < bucketcount; ++i)
7099 if (cinfo.counts[i] == 0)
7100 bfd_put_32 (output_bfd, 0, contents);
7102 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7106 cinfo.contents = contents;
7108 /* Renumber dynamic symbols, populate .gnu.hash section. */
7109 elf_link_hash_traverse (elf_hash_table (info),
7110 elf_renumber_gnu_hash_syms, &cinfo);
7112 contents = s->contents + 16;
7113 for (i = 0; i < maskwords; ++i)
7115 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7117 contents += bed->s->arch_size / 8;
7120 free (cinfo.bitmask);
7121 free (cinfo.hashcodes);
7125 s = bfd_get_linker_section (dynobj, ".dynstr");
7126 BFD_ASSERT (s != NULL);
7128 elf_finalize_dynstr (output_bfd, info);
7130 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7132 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7133 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7140 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7143 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7146 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7147 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7150 /* Finish SHF_MERGE section merging. */
7153 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7158 if (!is_elf_hash_table (info->hash))
7161 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7162 if ((ibfd->flags & DYNAMIC) == 0
7163 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7164 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7165 == get_elf_backend_data (obfd)->s->elfclass))
7166 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7167 if ((sec->flags & SEC_MERGE) != 0
7168 && !bfd_is_abs_section (sec->output_section))
7170 struct bfd_elf_section_data *secdata;
7172 secdata = elf_section_data (sec);
7173 if (! _bfd_add_merge_section (obfd,
7174 &elf_hash_table (info)->merge_info,
7175 sec, &secdata->sec_info))
7177 else if (secdata->sec_info)
7178 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7181 if (elf_hash_table (info)->merge_info != NULL)
7182 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7183 merge_sections_remove_hook);
7187 /* Create an entry in an ELF linker hash table. */
7189 struct bfd_hash_entry *
7190 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7191 struct bfd_hash_table *table,
7194 /* Allocate the structure if it has not already been allocated by a
7198 entry = (struct bfd_hash_entry *)
7199 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7204 /* Call the allocation method of the superclass. */
7205 entry = _bfd_link_hash_newfunc (entry, table, string);
7208 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7209 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7211 /* Set local fields. */
7214 ret->got = htab->init_got_refcount;
7215 ret->plt = htab->init_plt_refcount;
7216 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7217 - offsetof (struct elf_link_hash_entry, size)));
7218 /* Assume that we have been called by a non-ELF symbol reader.
7219 This flag is then reset by the code which reads an ELF input
7220 file. This ensures that a symbol created by a non-ELF symbol
7221 reader will have the flag set correctly. */
7228 /* Copy data from an indirect symbol to its direct symbol, hiding the
7229 old indirect symbol. Also used for copying flags to a weakdef. */
7232 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7233 struct elf_link_hash_entry *dir,
7234 struct elf_link_hash_entry *ind)
7236 struct elf_link_hash_table *htab;
7238 /* Copy down any references that we may have already seen to the
7239 symbol which just became indirect. */
7241 if (dir->versioned != versioned_hidden)
7242 dir->ref_dynamic |= ind->ref_dynamic;
7243 dir->ref_regular |= ind->ref_regular;
7244 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7245 dir->non_got_ref |= ind->non_got_ref;
7246 dir->needs_plt |= ind->needs_plt;
7247 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7249 if (ind->root.type != bfd_link_hash_indirect)
7252 /* Copy over the global and procedure linkage table refcount entries.
7253 These may have been already set up by a check_relocs routine. */
7254 htab = elf_hash_table (info);
7255 if (ind->got.refcount > htab->init_got_refcount.refcount)
7257 if (dir->got.refcount < 0)
7258 dir->got.refcount = 0;
7259 dir->got.refcount += ind->got.refcount;
7260 ind->got.refcount = htab->init_got_refcount.refcount;
7263 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7265 if (dir->plt.refcount < 0)
7266 dir->plt.refcount = 0;
7267 dir->plt.refcount += ind->plt.refcount;
7268 ind->plt.refcount = htab->init_plt_refcount.refcount;
7271 if (ind->dynindx != -1)
7273 if (dir->dynindx != -1)
7274 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7275 dir->dynindx = ind->dynindx;
7276 dir->dynstr_index = ind->dynstr_index;
7278 ind->dynstr_index = 0;
7283 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7284 struct elf_link_hash_entry *h,
7285 bfd_boolean force_local)
7287 /* STT_GNU_IFUNC symbol must go through PLT. */
7288 if (h->type != STT_GNU_IFUNC)
7290 h->plt = elf_hash_table (info)->init_plt_offset;
7295 h->forced_local = 1;
7296 if (h->dynindx != -1)
7299 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7305 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7309 _bfd_elf_link_hash_table_init
7310 (struct elf_link_hash_table *table,
7312 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7313 struct bfd_hash_table *,
7315 unsigned int entsize,
7316 enum elf_target_id target_id)
7319 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7321 table->init_got_refcount.refcount = can_refcount - 1;
7322 table->init_plt_refcount.refcount = can_refcount - 1;
7323 table->init_got_offset.offset = -(bfd_vma) 1;
7324 table->init_plt_offset.offset = -(bfd_vma) 1;
7325 /* The first dynamic symbol is a dummy. */
7326 table->dynsymcount = 1;
7328 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7330 table->root.type = bfd_link_elf_hash_table;
7331 table->hash_table_id = target_id;
7336 /* Create an ELF linker hash table. */
7338 struct bfd_link_hash_table *
7339 _bfd_elf_link_hash_table_create (bfd *abfd)
7341 struct elf_link_hash_table *ret;
7342 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7344 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7348 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7349 sizeof (struct elf_link_hash_entry),
7355 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7360 /* Destroy an ELF linker hash table. */
7363 _bfd_elf_link_hash_table_free (bfd *obfd)
7365 struct elf_link_hash_table *htab;
7367 htab = (struct elf_link_hash_table *) obfd->link.hash;
7368 if (htab->dynstr != NULL)
7369 _bfd_elf_strtab_free (htab->dynstr);
7370 _bfd_merge_sections_free (htab->merge_info);
7371 _bfd_generic_link_hash_table_free (obfd);
7374 /* This is a hook for the ELF emulation code in the generic linker to
7375 tell the backend linker what file name to use for the DT_NEEDED
7376 entry for a dynamic object. */
7379 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7381 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7382 && bfd_get_format (abfd) == bfd_object)
7383 elf_dt_name (abfd) = name;
7387 bfd_elf_get_dyn_lib_class (bfd *abfd)
7390 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7391 && bfd_get_format (abfd) == bfd_object)
7392 lib_class = elf_dyn_lib_class (abfd);
7399 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7401 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7402 && bfd_get_format (abfd) == bfd_object)
7403 elf_dyn_lib_class (abfd) = lib_class;
7406 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7407 the linker ELF emulation code. */
7409 struct bfd_link_needed_list *
7410 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7411 struct bfd_link_info *info)
7413 if (! is_elf_hash_table (info->hash))
7415 return elf_hash_table (info)->needed;
7418 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7419 hook for the linker ELF emulation code. */
7421 struct bfd_link_needed_list *
7422 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7423 struct bfd_link_info *info)
7425 if (! is_elf_hash_table (info->hash))
7427 return elf_hash_table (info)->runpath;
7430 /* Get the name actually used for a dynamic object for a link. This
7431 is the SONAME entry if there is one. Otherwise, it is the string
7432 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7435 bfd_elf_get_dt_soname (bfd *abfd)
7437 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7438 && bfd_get_format (abfd) == bfd_object)
7439 return elf_dt_name (abfd);
7443 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7444 the ELF linker emulation code. */
7447 bfd_elf_get_bfd_needed_list (bfd *abfd,
7448 struct bfd_link_needed_list **pneeded)
7451 bfd_byte *dynbuf = NULL;
7452 unsigned int elfsec;
7453 unsigned long shlink;
7454 bfd_byte *extdyn, *extdynend;
7456 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7460 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7461 || bfd_get_format (abfd) != bfd_object)
7464 s = bfd_get_section_by_name (abfd, ".dynamic");
7465 if (s == NULL || s->size == 0)
7468 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7471 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7472 if (elfsec == SHN_BAD)
7475 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7477 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7478 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7481 extdynend = extdyn + s->size;
7482 for (; extdyn < extdynend; extdyn += extdynsize)
7484 Elf_Internal_Dyn dyn;
7486 (*swap_dyn_in) (abfd, extdyn, &dyn);
7488 if (dyn.d_tag == DT_NULL)
7491 if (dyn.d_tag == DT_NEEDED)
7494 struct bfd_link_needed_list *l;
7495 unsigned int tagv = dyn.d_un.d_val;
7498 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7503 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7524 struct elf_symbuf_symbol
7526 unsigned long st_name; /* Symbol name, index in string tbl */
7527 unsigned char st_info; /* Type and binding attributes */
7528 unsigned char st_other; /* Visibilty, and target specific */
7531 struct elf_symbuf_head
7533 struct elf_symbuf_symbol *ssym;
7535 unsigned int st_shndx;
7542 Elf_Internal_Sym *isym;
7543 struct elf_symbuf_symbol *ssym;
7548 /* Sort references to symbols by ascending section number. */
7551 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7553 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7554 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7556 return s1->st_shndx - s2->st_shndx;
7560 elf_sym_name_compare (const void *arg1, const void *arg2)
7562 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7563 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7564 return strcmp (s1->name, s2->name);
7567 static struct elf_symbuf_head *
7568 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7570 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7571 struct elf_symbuf_symbol *ssym;
7572 struct elf_symbuf_head *ssymbuf, *ssymhead;
7573 size_t i, shndx_count, total_size;
7575 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7579 for (ind = indbuf, i = 0; i < symcount; i++)
7580 if (isymbuf[i].st_shndx != SHN_UNDEF)
7581 *ind++ = &isymbuf[i];
7584 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7585 elf_sort_elf_symbol);
7588 if (indbufend > indbuf)
7589 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7590 if (ind[0]->st_shndx != ind[1]->st_shndx)
7593 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7594 + (indbufend - indbuf) * sizeof (*ssym));
7595 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7596 if (ssymbuf == NULL)
7602 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7603 ssymbuf->ssym = NULL;
7604 ssymbuf->count = shndx_count;
7605 ssymbuf->st_shndx = 0;
7606 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7608 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7611 ssymhead->ssym = ssym;
7612 ssymhead->count = 0;
7613 ssymhead->st_shndx = (*ind)->st_shndx;
7615 ssym->st_name = (*ind)->st_name;
7616 ssym->st_info = (*ind)->st_info;
7617 ssym->st_other = (*ind)->st_other;
7620 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7621 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7628 /* Check if 2 sections define the same set of local and global
7632 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7633 struct bfd_link_info *info)
7636 const struct elf_backend_data *bed1, *bed2;
7637 Elf_Internal_Shdr *hdr1, *hdr2;
7638 size_t symcount1, symcount2;
7639 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7640 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7641 Elf_Internal_Sym *isym, *isymend;
7642 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7643 size_t count1, count2, i;
7644 unsigned int shndx1, shndx2;
7650 /* Both sections have to be in ELF. */
7651 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7652 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7655 if (elf_section_type (sec1) != elf_section_type (sec2))
7658 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7659 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7660 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7663 bed1 = get_elf_backend_data (bfd1);
7664 bed2 = get_elf_backend_data (bfd2);
7665 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7666 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7667 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7668 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7670 if (symcount1 == 0 || symcount2 == 0)
7676 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7677 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7679 if (ssymbuf1 == NULL)
7681 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7683 if (isymbuf1 == NULL)
7686 if (!info->reduce_memory_overheads)
7687 elf_tdata (bfd1)->symbuf = ssymbuf1
7688 = elf_create_symbuf (symcount1, isymbuf1);
7691 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7693 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7695 if (isymbuf2 == NULL)
7698 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7699 elf_tdata (bfd2)->symbuf = ssymbuf2
7700 = elf_create_symbuf (symcount2, isymbuf2);
7703 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7705 /* Optimized faster version. */
7707 struct elf_symbol *symp;
7708 struct elf_symbuf_symbol *ssym, *ssymend;
7711 hi = ssymbuf1->count;
7716 mid = (lo + hi) / 2;
7717 if (shndx1 < ssymbuf1[mid].st_shndx)
7719 else if (shndx1 > ssymbuf1[mid].st_shndx)
7723 count1 = ssymbuf1[mid].count;
7730 hi = ssymbuf2->count;
7735 mid = (lo + hi) / 2;
7736 if (shndx2 < ssymbuf2[mid].st_shndx)
7738 else if (shndx2 > ssymbuf2[mid].st_shndx)
7742 count2 = ssymbuf2[mid].count;
7748 if (count1 == 0 || count2 == 0 || count1 != count2)
7752 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7754 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7755 if (symtable1 == NULL || symtable2 == NULL)
7759 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7760 ssym < ssymend; ssym++, symp++)
7762 symp->u.ssym = ssym;
7763 symp->name = bfd_elf_string_from_elf_section (bfd1,
7769 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7770 ssym < ssymend; ssym++, symp++)
7772 symp->u.ssym = ssym;
7773 symp->name = bfd_elf_string_from_elf_section (bfd2,
7778 /* Sort symbol by name. */
7779 qsort (symtable1, count1, sizeof (struct elf_symbol),
7780 elf_sym_name_compare);
7781 qsort (symtable2, count1, sizeof (struct elf_symbol),
7782 elf_sym_name_compare);
7784 for (i = 0; i < count1; i++)
7785 /* Two symbols must have the same binding, type and name. */
7786 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7787 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7788 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7795 symtable1 = (struct elf_symbol *)
7796 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7797 symtable2 = (struct elf_symbol *)
7798 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7799 if (symtable1 == NULL || symtable2 == NULL)
7802 /* Count definitions in the section. */
7804 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7805 if (isym->st_shndx == shndx1)
7806 symtable1[count1++].u.isym = isym;
7809 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7810 if (isym->st_shndx == shndx2)
7811 symtable2[count2++].u.isym = isym;
7813 if (count1 == 0 || count2 == 0 || count1 != count2)
7816 for (i = 0; i < count1; i++)
7818 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7819 symtable1[i].u.isym->st_name);
7821 for (i = 0; i < count2; i++)
7823 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7824 symtable2[i].u.isym->st_name);
7826 /* Sort symbol by name. */
7827 qsort (symtable1, count1, sizeof (struct elf_symbol),
7828 elf_sym_name_compare);
7829 qsort (symtable2, count1, sizeof (struct elf_symbol),
7830 elf_sym_name_compare);
7832 for (i = 0; i < count1; i++)
7833 /* Two symbols must have the same binding, type and name. */
7834 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7835 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7836 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7854 /* Return TRUE if 2 section types are compatible. */
7857 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7858 bfd *bbfd, const asection *bsec)
7862 || abfd->xvec->flavour != bfd_target_elf_flavour
7863 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7866 return elf_section_type (asec) == elf_section_type (bsec);
7869 /* Final phase of ELF linker. */
7871 /* A structure we use to avoid passing large numbers of arguments. */
7873 struct elf_final_link_info
7875 /* General link information. */
7876 struct bfd_link_info *info;
7879 /* Symbol string table. */
7880 struct elf_strtab_hash *symstrtab;
7881 /* .hash section. */
7883 /* symbol version section (.gnu.version). */
7884 asection *symver_sec;
7885 /* Buffer large enough to hold contents of any section. */
7887 /* Buffer large enough to hold external relocs of any section. */
7888 void *external_relocs;
7889 /* Buffer large enough to hold internal relocs of any section. */
7890 Elf_Internal_Rela *internal_relocs;
7891 /* Buffer large enough to hold external local symbols of any input
7893 bfd_byte *external_syms;
7894 /* And a buffer for symbol section indices. */
7895 Elf_External_Sym_Shndx *locsym_shndx;
7896 /* Buffer large enough to hold internal local symbols of any input
7898 Elf_Internal_Sym *internal_syms;
7899 /* Array large enough to hold a symbol index for each local symbol
7900 of any input BFD. */
7902 /* Array large enough to hold a section pointer for each local
7903 symbol of any input BFD. */
7904 asection **sections;
7905 /* Buffer for SHT_SYMTAB_SHNDX section. */
7906 Elf_External_Sym_Shndx *symshndxbuf;
7907 /* Number of STT_FILE syms seen. */
7908 size_t filesym_count;
7911 /* This struct is used to pass information to elf_link_output_extsym. */
7913 struct elf_outext_info
7916 bfd_boolean localsyms;
7917 bfd_boolean file_sym_done;
7918 struct elf_final_link_info *flinfo;
7922 /* Support for evaluating a complex relocation.
7924 Complex relocations are generalized, self-describing relocations. The
7925 implementation of them consists of two parts: complex symbols, and the
7926 relocations themselves.
7928 The relocations are use a reserved elf-wide relocation type code (R_RELC
7929 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7930 information (start bit, end bit, word width, etc) into the addend. This
7931 information is extracted from CGEN-generated operand tables within gas.
7933 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7934 internal) representing prefix-notation expressions, including but not
7935 limited to those sorts of expressions normally encoded as addends in the
7936 addend field. The symbol mangling format is:
7939 | <unary-operator> ':' <node>
7940 | <binary-operator> ':' <node> ':' <node>
7943 <literal> := 's' <digits=N> ':' <N character symbol name>
7944 | 'S' <digits=N> ':' <N character section name>
7948 <binary-operator> := as in C
7949 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7952 set_symbol_value (bfd *bfd_with_globals,
7953 Elf_Internal_Sym *isymbuf,
7958 struct elf_link_hash_entry **sym_hashes;
7959 struct elf_link_hash_entry *h;
7960 size_t extsymoff = locsymcount;
7962 if (symidx < locsymcount)
7964 Elf_Internal_Sym *sym;
7966 sym = isymbuf + symidx;
7967 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7969 /* It is a local symbol: move it to the
7970 "absolute" section and give it a value. */
7971 sym->st_shndx = SHN_ABS;
7972 sym->st_value = val;
7975 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7979 /* It is a global symbol: set its link type
7980 to "defined" and give it a value. */
7982 sym_hashes = elf_sym_hashes (bfd_with_globals);
7983 h = sym_hashes [symidx - extsymoff];
7984 while (h->root.type == bfd_link_hash_indirect
7985 || h->root.type == bfd_link_hash_warning)
7986 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7987 h->root.type = bfd_link_hash_defined;
7988 h->root.u.def.value = val;
7989 h->root.u.def.section = bfd_abs_section_ptr;
7993 resolve_symbol (const char *name,
7995 struct elf_final_link_info *flinfo,
7997 Elf_Internal_Sym *isymbuf,
8000 Elf_Internal_Sym *sym;
8001 struct bfd_link_hash_entry *global_entry;
8002 const char *candidate = NULL;
8003 Elf_Internal_Shdr *symtab_hdr;
8006 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8008 for (i = 0; i < locsymcount; ++ i)
8012 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8015 candidate = bfd_elf_string_from_elf_section (input_bfd,
8016 symtab_hdr->sh_link,
8019 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8020 name, candidate, (unsigned long) sym->st_value);
8022 if (candidate && strcmp (candidate, name) == 0)
8024 asection *sec = flinfo->sections [i];
8026 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8027 *result += sec->output_offset + sec->output_section->vma;
8029 printf ("Found symbol with value %8.8lx\n",
8030 (unsigned long) *result);
8036 /* Hmm, haven't found it yet. perhaps it is a global. */
8037 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8038 FALSE, FALSE, TRUE);
8042 if (global_entry->type == bfd_link_hash_defined
8043 || global_entry->type == bfd_link_hash_defweak)
8045 *result = (global_entry->u.def.value
8046 + global_entry->u.def.section->output_section->vma
8047 + global_entry->u.def.section->output_offset);
8049 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8050 global_entry->root.string, (unsigned long) *result);
8058 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8059 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8060 names like "foo.end" which is the end address of section "foo". */
8063 resolve_section (const char *name,
8071 for (curr = sections; curr; curr = curr->next)
8072 if (strcmp (curr->name, name) == 0)
8074 *result = curr->vma;
8078 /* Hmm. still haven't found it. try pseudo-section names. */
8079 /* FIXME: This could be coded more efficiently... */
8080 for (curr = sections; curr; curr = curr->next)
8082 len = strlen (curr->name);
8083 if (len > strlen (name))
8086 if (strncmp (curr->name, name, len) == 0)
8088 if (strncmp (".end", name + len, 4) == 0)
8090 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8094 /* Insert more pseudo-section names here, if you like. */
8102 undefined_reference (const char *reftype, const char *name)
8104 /* xgettext:c-format */
8105 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8110 eval_symbol (bfd_vma *result,
8113 struct elf_final_link_info *flinfo,
8115 Elf_Internal_Sym *isymbuf,
8124 const char *sym = *symp;
8126 bfd_boolean symbol_is_section = FALSE;
8131 if (len < 1 || len > sizeof (symbuf))
8133 bfd_set_error (bfd_error_invalid_operation);
8146 *result = strtoul (sym, (char **) symp, 16);
8150 symbol_is_section = TRUE;
8154 symlen = strtol (sym, (char **) symp, 10);
8155 sym = *symp + 1; /* Skip the trailing ':'. */
8157 if (symend < sym || symlen + 1 > sizeof (symbuf))
8159 bfd_set_error (bfd_error_invalid_operation);
8163 memcpy (symbuf, sym, symlen);
8164 symbuf[symlen] = '\0';
8165 *symp = sym + symlen;
8167 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8168 the symbol as a section, or vice-versa. so we're pretty liberal in our
8169 interpretation here; section means "try section first", not "must be a
8170 section", and likewise with symbol. */
8172 if (symbol_is_section)
8174 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8175 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8176 isymbuf, locsymcount))
8178 undefined_reference ("section", symbuf);
8184 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8185 isymbuf, locsymcount)
8186 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8189 undefined_reference ("symbol", symbuf);
8196 /* All that remains are operators. */
8198 #define UNARY_OP(op) \
8199 if (strncmp (sym, #op, strlen (#op)) == 0) \
8201 sym += strlen (#op); \
8205 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8206 isymbuf, locsymcount, signed_p)) \
8209 *result = op ((bfd_signed_vma) a); \
8215 #define BINARY_OP(op) \
8216 if (strncmp (sym, #op, strlen (#op)) == 0) \
8218 sym += strlen (#op); \
8222 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8223 isymbuf, locsymcount, signed_p)) \
8226 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8227 isymbuf, locsymcount, signed_p)) \
8230 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8260 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8261 bfd_set_error (bfd_error_invalid_operation);
8267 put_value (bfd_vma size,
8268 unsigned long chunksz,
8273 location += (size - chunksz);
8275 for (; size; size -= chunksz, location -= chunksz)
8280 bfd_put_8 (input_bfd, x, location);
8284 bfd_put_16 (input_bfd, x, location);
8288 bfd_put_32 (input_bfd, x, location);
8289 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8295 bfd_put_64 (input_bfd, x, location);
8296 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8309 get_value (bfd_vma size,
8310 unsigned long chunksz,
8317 /* Sanity checks. */
8318 BFD_ASSERT (chunksz <= sizeof (x)
8321 && (size % chunksz) == 0
8322 && input_bfd != NULL
8323 && location != NULL);
8325 if (chunksz == sizeof (x))
8327 BFD_ASSERT (size == chunksz);
8329 /* Make sure that we do not perform an undefined shift operation.
8330 We know that size == chunksz so there will only be one iteration
8331 of the loop below. */
8335 shift = 8 * chunksz;
8337 for (; size; size -= chunksz, location += chunksz)
8342 x = (x << shift) | bfd_get_8 (input_bfd, location);
8345 x = (x << shift) | bfd_get_16 (input_bfd, location);
8348 x = (x << shift) | bfd_get_32 (input_bfd, location);
8352 x = (x << shift) | bfd_get_64 (input_bfd, location);
8363 decode_complex_addend (unsigned long *start, /* in bits */
8364 unsigned long *oplen, /* in bits */
8365 unsigned long *len, /* in bits */
8366 unsigned long *wordsz, /* in bytes */
8367 unsigned long *chunksz, /* in bytes */
8368 unsigned long *lsb0_p,
8369 unsigned long *signed_p,
8370 unsigned long *trunc_p,
8371 unsigned long encoded)
8373 * start = encoded & 0x3F;
8374 * len = (encoded >> 6) & 0x3F;
8375 * oplen = (encoded >> 12) & 0x3F;
8376 * wordsz = (encoded >> 18) & 0xF;
8377 * chunksz = (encoded >> 22) & 0xF;
8378 * lsb0_p = (encoded >> 27) & 1;
8379 * signed_p = (encoded >> 28) & 1;
8380 * trunc_p = (encoded >> 29) & 1;
8383 bfd_reloc_status_type
8384 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8385 asection *input_section ATTRIBUTE_UNUSED,
8387 Elf_Internal_Rela *rel,
8390 bfd_vma shift, x, mask;
8391 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8392 bfd_reloc_status_type r;
8394 /* Perform this reloc, since it is complex.
8395 (this is not to say that it necessarily refers to a complex
8396 symbol; merely that it is a self-describing CGEN based reloc.
8397 i.e. the addend has the complete reloc information (bit start, end,
8398 word size, etc) encoded within it.). */
8400 decode_complex_addend (&start, &oplen, &len, &wordsz,
8401 &chunksz, &lsb0_p, &signed_p,
8402 &trunc_p, rel->r_addend);
8404 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8407 shift = (start + 1) - len;
8409 shift = (8 * wordsz) - (start + len);
8411 x = get_value (wordsz, chunksz, input_bfd,
8412 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8415 printf ("Doing complex reloc: "
8416 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8417 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8418 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8419 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8420 oplen, (unsigned long) x, (unsigned long) mask,
8421 (unsigned long) relocation);
8426 /* Now do an overflow check. */
8427 r = bfd_check_overflow ((signed_p
8428 ? complain_overflow_signed
8429 : complain_overflow_unsigned),
8430 len, 0, (8 * wordsz),
8434 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8437 printf (" relocation: %8.8lx\n"
8438 " shifted mask: %8.8lx\n"
8439 " shifted/masked reloc: %8.8lx\n"
8440 " result: %8.8lx\n",
8441 (unsigned long) relocation, (unsigned long) (mask << shift),
8442 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8444 put_value (wordsz, chunksz, input_bfd, x,
8445 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8449 /* Functions to read r_offset from external (target order) reloc
8450 entry. Faster than bfd_getl32 et al, because we let the compiler
8451 know the value is aligned. */
8454 ext32l_r_offset (const void *p)
8461 const union aligned32 *a
8462 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8464 uint32_t aval = ( (uint32_t) a->c[0]
8465 | (uint32_t) a->c[1] << 8
8466 | (uint32_t) a->c[2] << 16
8467 | (uint32_t) a->c[3] << 24);
8472 ext32b_r_offset (const void *p)
8479 const union aligned32 *a
8480 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8482 uint32_t aval = ( (uint32_t) a->c[0] << 24
8483 | (uint32_t) a->c[1] << 16
8484 | (uint32_t) a->c[2] << 8
8485 | (uint32_t) a->c[3]);
8489 #ifdef BFD_HOST_64_BIT
8491 ext64l_r_offset (const void *p)
8498 const union aligned64 *a
8499 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8501 uint64_t aval = ( (uint64_t) a->c[0]
8502 | (uint64_t) a->c[1] << 8
8503 | (uint64_t) a->c[2] << 16
8504 | (uint64_t) a->c[3] << 24
8505 | (uint64_t) a->c[4] << 32
8506 | (uint64_t) a->c[5] << 40
8507 | (uint64_t) a->c[6] << 48
8508 | (uint64_t) a->c[7] << 56);
8513 ext64b_r_offset (const void *p)
8520 const union aligned64 *a
8521 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8523 uint64_t aval = ( (uint64_t) a->c[0] << 56
8524 | (uint64_t) a->c[1] << 48
8525 | (uint64_t) a->c[2] << 40
8526 | (uint64_t) a->c[3] << 32
8527 | (uint64_t) a->c[4] << 24
8528 | (uint64_t) a->c[5] << 16
8529 | (uint64_t) a->c[6] << 8
8530 | (uint64_t) a->c[7]);
8535 /* When performing a relocatable link, the input relocations are
8536 preserved. But, if they reference global symbols, the indices
8537 referenced must be updated. Update all the relocations found in
8541 elf_link_adjust_relocs (bfd *abfd,
8543 struct bfd_elf_section_reloc_data *reldata,
8547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8549 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8550 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8551 bfd_vma r_type_mask;
8553 unsigned int count = reldata->count;
8554 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8556 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8558 swap_in = bed->s->swap_reloc_in;
8559 swap_out = bed->s->swap_reloc_out;
8561 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8563 swap_in = bed->s->swap_reloca_in;
8564 swap_out = bed->s->swap_reloca_out;
8569 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8572 if (bed->s->arch_size == 32)
8579 r_type_mask = 0xffffffff;
8583 erela = reldata->hdr->contents;
8584 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8586 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8589 if (*rel_hash == NULL)
8592 BFD_ASSERT ((*rel_hash)->indx >= 0);
8594 (*swap_in) (abfd, erela, irela);
8595 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8596 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8597 | (irela[j].r_info & r_type_mask));
8598 (*swap_out) (abfd, irela, erela);
8601 if (bed->elf_backend_update_relocs)
8602 (*bed->elf_backend_update_relocs) (sec, reldata);
8604 if (sort && count != 0)
8606 bfd_vma (*ext_r_off) (const void *);
8609 bfd_byte *base, *end, *p, *loc;
8610 bfd_byte *buf = NULL;
8612 if (bed->s->arch_size == 32)
8614 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8615 ext_r_off = ext32l_r_offset;
8616 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8617 ext_r_off = ext32b_r_offset;
8623 #ifdef BFD_HOST_64_BIT
8624 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8625 ext_r_off = ext64l_r_offset;
8626 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8627 ext_r_off = ext64b_r_offset;
8633 /* Must use a stable sort here. A modified insertion sort,
8634 since the relocs are mostly sorted already. */
8635 elt_size = reldata->hdr->sh_entsize;
8636 base = reldata->hdr->contents;
8637 end = base + count * elt_size;
8638 if (elt_size > sizeof (Elf64_External_Rela))
8641 /* Ensure the first element is lowest. This acts as a sentinel,
8642 speeding the main loop below. */
8643 r_off = (*ext_r_off) (base);
8644 for (p = loc = base; (p += elt_size) < end; )
8646 bfd_vma r_off2 = (*ext_r_off) (p);
8655 /* Don't just swap *base and *loc as that changes the order
8656 of the original base[0] and base[1] if they happen to
8657 have the same r_offset. */
8658 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8659 memcpy (onebuf, loc, elt_size);
8660 memmove (base + elt_size, base, loc - base);
8661 memcpy (base, onebuf, elt_size);
8664 for (p = base + elt_size; (p += elt_size) < end; )
8666 /* base to p is sorted, *p is next to insert. */
8667 r_off = (*ext_r_off) (p);
8668 /* Search the sorted region for location to insert. */
8670 while (r_off < (*ext_r_off) (loc))
8675 /* Chances are there is a run of relocs to insert here,
8676 from one of more input files. Files are not always
8677 linked in order due to the way elf_link_input_bfd is
8678 called. See pr17666. */
8679 size_t sortlen = p - loc;
8680 bfd_vma r_off2 = (*ext_r_off) (loc);
8681 size_t runlen = elt_size;
8682 size_t buf_size = 96 * 1024;
8683 while (p + runlen < end
8684 && (sortlen <= buf_size
8685 || runlen + elt_size <= buf_size)
8686 && r_off2 > (*ext_r_off) (p + runlen))
8690 buf = bfd_malloc (buf_size);
8694 if (runlen < sortlen)
8696 memcpy (buf, p, runlen);
8697 memmove (loc + runlen, loc, sortlen);
8698 memcpy (loc, buf, runlen);
8702 memcpy (buf, loc, sortlen);
8703 memmove (loc, p, runlen);
8704 memcpy (loc + runlen, buf, sortlen);
8706 p += runlen - elt_size;
8709 /* Hashes are no longer valid. */
8710 free (reldata->hashes);
8711 reldata->hashes = NULL;
8717 struct elf_link_sort_rela
8723 enum elf_reloc_type_class type;
8724 /* We use this as an array of size int_rels_per_ext_rel. */
8725 Elf_Internal_Rela rela[1];
8729 elf_link_sort_cmp1 (const void *A, const void *B)
8731 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8732 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8733 int relativea, relativeb;
8735 relativea = a->type == reloc_class_relative;
8736 relativeb = b->type == reloc_class_relative;
8738 if (relativea < relativeb)
8740 if (relativea > relativeb)
8742 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8744 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8746 if (a->rela->r_offset < b->rela->r_offset)
8748 if (a->rela->r_offset > b->rela->r_offset)
8754 elf_link_sort_cmp2 (const void *A, const void *B)
8756 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8757 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8759 if (a->type < b->type)
8761 if (a->type > b->type)
8763 if (a->u.offset < b->u.offset)
8765 if (a->u.offset > b->u.offset)
8767 if (a->rela->r_offset < b->rela->r_offset)
8769 if (a->rela->r_offset > b->rela->r_offset)
8775 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8777 asection *dynamic_relocs;
8780 bfd_size_type count, size;
8781 size_t i, ret, sort_elt, ext_size;
8782 bfd_byte *sort, *s_non_relative, *p;
8783 struct elf_link_sort_rela *sq;
8784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8785 int i2e = bed->s->int_rels_per_ext_rel;
8786 unsigned int opb = bfd_octets_per_byte (abfd);
8787 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8788 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8789 struct bfd_link_order *lo;
8791 bfd_boolean use_rela;
8793 /* Find a dynamic reloc section. */
8794 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8795 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8796 if (rela_dyn != NULL && rela_dyn->size > 0
8797 && rel_dyn != NULL && rel_dyn->size > 0)
8799 bfd_boolean use_rela_initialised = FALSE;
8801 /* This is just here to stop gcc from complaining.
8802 Its initialization checking code is not perfect. */
8805 /* Both sections are present. Examine the sizes
8806 of the indirect sections to help us choose. */
8807 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8808 if (lo->type == bfd_indirect_link_order)
8810 asection *o = lo->u.indirect.section;
8812 if ((o->size % bed->s->sizeof_rela) == 0)
8814 if ((o->size % bed->s->sizeof_rel) == 0)
8815 /* Section size is divisible by both rel and rela sizes.
8816 It is of no help to us. */
8820 /* Section size is only divisible by rela. */
8821 if (use_rela_initialised && (use_rela == FALSE))
8823 _bfd_error_handler (_("%B: Unable to sort relocs - "
8824 "they are in more than one size"),
8826 bfd_set_error (bfd_error_invalid_operation);
8832 use_rela_initialised = TRUE;
8836 else if ((o->size % bed->s->sizeof_rel) == 0)
8838 /* Section size is only divisible by rel. */
8839 if (use_rela_initialised && (use_rela == TRUE))
8841 _bfd_error_handler (_("%B: Unable to sort relocs - "
8842 "they are in more than one size"),
8844 bfd_set_error (bfd_error_invalid_operation);
8850 use_rela_initialised = TRUE;
8855 /* The section size is not divisible by either -
8856 something is wrong. */
8857 _bfd_error_handler (_("%B: Unable to sort relocs - "
8858 "they are of an unknown size"), abfd);
8859 bfd_set_error (bfd_error_invalid_operation);
8864 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8865 if (lo->type == bfd_indirect_link_order)
8867 asection *o = lo->u.indirect.section;
8869 if ((o->size % bed->s->sizeof_rela) == 0)
8871 if ((o->size % bed->s->sizeof_rel) == 0)
8872 /* Section size is divisible by both rel and rela sizes.
8873 It is of no help to us. */
8877 /* Section size is only divisible by rela. */
8878 if (use_rela_initialised && (use_rela == FALSE))
8880 _bfd_error_handler (_("%B: Unable to sort relocs - "
8881 "they are in more than one size"),
8883 bfd_set_error (bfd_error_invalid_operation);
8889 use_rela_initialised = TRUE;
8893 else if ((o->size % bed->s->sizeof_rel) == 0)
8895 /* Section size is only divisible by rel. */
8896 if (use_rela_initialised && (use_rela == TRUE))
8898 _bfd_error_handler (_("%B: Unable to sort relocs - "
8899 "they are in more than one size"),
8901 bfd_set_error (bfd_error_invalid_operation);
8907 use_rela_initialised = TRUE;
8912 /* The section size is not divisible by either -
8913 something is wrong. */
8914 _bfd_error_handler (_("%B: Unable to sort relocs - "
8915 "they are of an unknown size"), abfd);
8916 bfd_set_error (bfd_error_invalid_operation);
8921 if (! use_rela_initialised)
8925 else if (rela_dyn != NULL && rela_dyn->size > 0)
8927 else if (rel_dyn != NULL && rel_dyn->size > 0)
8934 dynamic_relocs = rela_dyn;
8935 ext_size = bed->s->sizeof_rela;
8936 swap_in = bed->s->swap_reloca_in;
8937 swap_out = bed->s->swap_reloca_out;
8941 dynamic_relocs = rel_dyn;
8942 ext_size = bed->s->sizeof_rel;
8943 swap_in = bed->s->swap_reloc_in;
8944 swap_out = bed->s->swap_reloc_out;
8948 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8949 if (lo->type == bfd_indirect_link_order)
8950 size += lo->u.indirect.section->size;
8952 if (size != dynamic_relocs->size)
8955 sort_elt = (sizeof (struct elf_link_sort_rela)
8956 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8958 count = dynamic_relocs->size / ext_size;
8961 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8965 (*info->callbacks->warning)
8966 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8970 if (bed->s->arch_size == 32)
8971 r_sym_mask = ~(bfd_vma) 0xff;
8973 r_sym_mask = ~(bfd_vma) 0xffffffff;
8975 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8976 if (lo->type == bfd_indirect_link_order)
8978 bfd_byte *erel, *erelend;
8979 asection *o = lo->u.indirect.section;
8981 if (o->contents == NULL && o->size != 0)
8983 /* This is a reloc section that is being handled as a normal
8984 section. See bfd_section_from_shdr. We can't combine
8985 relocs in this case. */
8990 erelend = o->contents + o->size;
8991 p = sort + o->output_offset * opb / ext_size * sort_elt;
8993 while (erel < erelend)
8995 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8997 (*swap_in) (abfd, erel, s->rela);
8998 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8999 s->u.sym_mask = r_sym_mask;
9005 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9007 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9009 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9010 if (s->type != reloc_class_relative)
9016 sq = (struct elf_link_sort_rela *) s_non_relative;
9017 for (; i < count; i++, p += sort_elt)
9019 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9020 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9022 sp->u.offset = sq->rela->r_offset;
9025 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9027 struct elf_link_hash_table *htab = elf_hash_table (info);
9028 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9030 /* We have plt relocs in .rela.dyn. */
9031 sq = (struct elf_link_sort_rela *) sort;
9032 for (i = 0; i < count; i++)
9033 if (sq[count - i - 1].type != reloc_class_plt)
9035 if (i != 0 && htab->srelplt->size == i * ext_size)
9037 struct bfd_link_order **plo;
9038 /* Put srelplt link_order last. This is so the output_offset
9039 set in the next loop is correct for DT_JMPREL. */
9040 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9041 if ((*plo)->type == bfd_indirect_link_order
9042 && (*plo)->u.indirect.section == htab->srelplt)
9048 plo = &(*plo)->next;
9051 dynamic_relocs->map_tail.link_order = lo;
9056 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9057 if (lo->type == bfd_indirect_link_order)
9059 bfd_byte *erel, *erelend;
9060 asection *o = lo->u.indirect.section;
9063 erelend = o->contents + o->size;
9064 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9065 while (erel < erelend)
9067 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9068 (*swap_out) (abfd, s->rela, erel);
9075 *psec = dynamic_relocs;
9079 /* Add a symbol to the output symbol string table. */
9082 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9084 Elf_Internal_Sym *elfsym,
9085 asection *input_sec,
9086 struct elf_link_hash_entry *h)
9088 int (*output_symbol_hook)
9089 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9090 struct elf_link_hash_entry *);
9091 struct elf_link_hash_table *hash_table;
9092 const struct elf_backend_data *bed;
9093 bfd_size_type strtabsize;
9095 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9097 bed = get_elf_backend_data (flinfo->output_bfd);
9098 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9099 if (output_symbol_hook != NULL)
9101 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9108 || (input_sec->flags & SEC_EXCLUDE))
9109 elfsym->st_name = (unsigned long) -1;
9112 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9113 to get the final offset for st_name. */
9115 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9117 if (elfsym->st_name == (unsigned long) -1)
9121 hash_table = elf_hash_table (flinfo->info);
9122 strtabsize = hash_table->strtabsize;
9123 if (strtabsize <= hash_table->strtabcount)
9125 strtabsize += strtabsize;
9126 hash_table->strtabsize = strtabsize;
9127 strtabsize *= sizeof (*hash_table->strtab);
9129 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9131 if (hash_table->strtab == NULL)
9134 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9135 hash_table->strtab[hash_table->strtabcount].dest_index
9136 = hash_table->strtabcount;
9137 hash_table->strtab[hash_table->strtabcount].destshndx_index
9138 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9140 bfd_get_symcount (flinfo->output_bfd) += 1;
9141 hash_table->strtabcount += 1;
9146 /* Swap symbols out to the symbol table and flush the output symbols to
9150 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9152 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9155 const struct elf_backend_data *bed;
9157 Elf_Internal_Shdr *hdr;
9161 if (!hash_table->strtabcount)
9164 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9166 bed = get_elf_backend_data (flinfo->output_bfd);
9168 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9169 symbuf = (bfd_byte *) bfd_malloc (amt);
9173 if (flinfo->symshndxbuf)
9175 amt = sizeof (Elf_External_Sym_Shndx);
9176 amt *= bfd_get_symcount (flinfo->output_bfd);
9177 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9178 if (flinfo->symshndxbuf == NULL)
9185 for (i = 0; i < hash_table->strtabcount; i++)
9187 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9188 if (elfsym->sym.st_name == (unsigned long) -1)
9189 elfsym->sym.st_name = 0;
9192 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9193 elfsym->sym.st_name);
9194 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9195 ((bfd_byte *) symbuf
9196 + (elfsym->dest_index
9197 * bed->s->sizeof_sym)),
9198 (flinfo->symshndxbuf
9199 + elfsym->destshndx_index));
9202 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9203 pos = hdr->sh_offset + hdr->sh_size;
9204 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9205 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9206 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9208 hdr->sh_size += amt;
9216 free (hash_table->strtab);
9217 hash_table->strtab = NULL;
9222 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9225 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9227 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9228 && sym->st_shndx < SHN_LORESERVE)
9230 /* The gABI doesn't support dynamic symbols in output sections
9233 /* xgettext:c-format */
9234 (_("%B: Too many sections: %d (>= %d)"),
9235 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9236 bfd_set_error (bfd_error_nonrepresentable_section);
9242 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9243 allowing an unsatisfied unversioned symbol in the DSO to match a
9244 versioned symbol that would normally require an explicit version.
9245 We also handle the case that a DSO references a hidden symbol
9246 which may be satisfied by a versioned symbol in another DSO. */
9249 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9250 const struct elf_backend_data *bed,
9251 struct elf_link_hash_entry *h)
9254 struct elf_link_loaded_list *loaded;
9256 if (!is_elf_hash_table (info->hash))
9259 /* Check indirect symbol. */
9260 while (h->root.type == bfd_link_hash_indirect)
9261 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9263 switch (h->root.type)
9269 case bfd_link_hash_undefined:
9270 case bfd_link_hash_undefweak:
9271 abfd = h->root.u.undef.abfd;
9273 || (abfd->flags & DYNAMIC) == 0
9274 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9278 case bfd_link_hash_defined:
9279 case bfd_link_hash_defweak:
9280 abfd = h->root.u.def.section->owner;
9283 case bfd_link_hash_common:
9284 abfd = h->root.u.c.p->section->owner;
9287 BFD_ASSERT (abfd != NULL);
9289 for (loaded = elf_hash_table (info)->loaded;
9291 loaded = loaded->next)
9294 Elf_Internal_Shdr *hdr;
9298 Elf_Internal_Shdr *versymhdr;
9299 Elf_Internal_Sym *isym;
9300 Elf_Internal_Sym *isymend;
9301 Elf_Internal_Sym *isymbuf;
9302 Elf_External_Versym *ever;
9303 Elf_External_Versym *extversym;
9305 input = loaded->abfd;
9307 /* We check each DSO for a possible hidden versioned definition. */
9309 || (input->flags & DYNAMIC) == 0
9310 || elf_dynversym (input) == 0)
9313 hdr = &elf_tdata (input)->dynsymtab_hdr;
9315 symcount = hdr->sh_size / bed->s->sizeof_sym;
9316 if (elf_bad_symtab (input))
9318 extsymcount = symcount;
9323 extsymcount = symcount - hdr->sh_info;
9324 extsymoff = hdr->sh_info;
9327 if (extsymcount == 0)
9330 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9332 if (isymbuf == NULL)
9335 /* Read in any version definitions. */
9336 versymhdr = &elf_tdata (input)->dynversym_hdr;
9337 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9338 if (extversym == NULL)
9341 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9342 || (bfd_bread (extversym, versymhdr->sh_size, input)
9343 != versymhdr->sh_size))
9351 ever = extversym + extsymoff;
9352 isymend = isymbuf + extsymcount;
9353 for (isym = isymbuf; isym < isymend; isym++, ever++)
9356 Elf_Internal_Versym iver;
9357 unsigned short version_index;
9359 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9360 || isym->st_shndx == SHN_UNDEF)
9363 name = bfd_elf_string_from_elf_section (input,
9366 if (strcmp (name, h->root.root.string) != 0)
9369 _bfd_elf_swap_versym_in (input, ever, &iver);
9371 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9373 && h->forced_local))
9375 /* If we have a non-hidden versioned sym, then it should
9376 have provided a definition for the undefined sym unless
9377 it is defined in a non-shared object and forced local.
9382 version_index = iver.vs_vers & VERSYM_VERSION;
9383 if (version_index == 1 || version_index == 2)
9385 /* This is the base or first version. We can use it. */
9399 /* Convert ELF common symbol TYPE. */
9402 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9404 /* Commom symbol can only appear in relocatable link. */
9405 if (!bfd_link_relocatable (info))
9407 switch (info->elf_stt_common)
9411 case elf_stt_common:
9414 case no_elf_stt_common:
9421 /* Add an external symbol to the symbol table. This is called from
9422 the hash table traversal routine. When generating a shared object,
9423 we go through the symbol table twice. The first time we output
9424 anything that might have been forced to local scope in a version
9425 script. The second time we output the symbols that are still
9429 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9431 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9432 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9433 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9435 Elf_Internal_Sym sym;
9436 asection *input_sec;
9437 const struct elf_backend_data *bed;
9442 if (h->root.type == bfd_link_hash_warning)
9444 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9445 if (h->root.type == bfd_link_hash_new)
9449 /* Decide whether to output this symbol in this pass. */
9450 if (eoinfo->localsyms)
9452 if (!h->forced_local)
9457 if (h->forced_local)
9461 bed = get_elf_backend_data (flinfo->output_bfd);
9463 if (h->root.type == bfd_link_hash_undefined)
9465 /* If we have an undefined symbol reference here then it must have
9466 come from a shared library that is being linked in. (Undefined
9467 references in regular files have already been handled unless
9468 they are in unreferenced sections which are removed by garbage
9470 bfd_boolean ignore_undef = FALSE;
9472 /* Some symbols may be special in that the fact that they're
9473 undefined can be safely ignored - let backend determine that. */
9474 if (bed->elf_backend_ignore_undef_symbol)
9475 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9477 /* If we are reporting errors for this situation then do so now. */
9480 && (!h->ref_regular || flinfo->info->gc_sections)
9481 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9482 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9483 (*flinfo->info->callbacks->undefined_symbol)
9484 (flinfo->info, h->root.root.string,
9485 h->ref_regular ? NULL : h->root.u.undef.abfd,
9487 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9489 /* Strip a global symbol defined in a discarded section. */
9494 /* We should also warn if a forced local symbol is referenced from
9495 shared libraries. */
9496 if (bfd_link_executable (flinfo->info)
9501 && h->ref_dynamic_nonweak
9502 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9506 struct elf_link_hash_entry *hi = h;
9508 /* Check indirect symbol. */
9509 while (hi->root.type == bfd_link_hash_indirect)
9510 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9512 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9513 /* xgettext:c-format */
9514 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9515 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9516 /* xgettext:c-format */
9517 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9519 /* xgettext:c-format */
9520 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9521 def_bfd = flinfo->output_bfd;
9522 if (hi->root.u.def.section != bfd_abs_section_ptr)
9523 def_bfd = hi->root.u.def.section->owner;
9524 _bfd_error_handler (msg, flinfo->output_bfd,
9525 h->root.root.string, def_bfd);
9526 bfd_set_error (bfd_error_bad_value);
9527 eoinfo->failed = TRUE;
9531 /* We don't want to output symbols that have never been mentioned by
9532 a regular file, or that we have been told to strip. However, if
9533 h->indx is set to -2, the symbol is used by a reloc and we must
9538 else if ((h->def_dynamic
9540 || h->root.type == bfd_link_hash_new)
9544 else if (flinfo->info->strip == strip_all)
9546 else if (flinfo->info->strip == strip_some
9547 && bfd_hash_lookup (flinfo->info->keep_hash,
9548 h->root.root.string, FALSE, FALSE) == NULL)
9550 else if ((h->root.type == bfd_link_hash_defined
9551 || h->root.type == bfd_link_hash_defweak)
9552 && ((flinfo->info->strip_discarded
9553 && discarded_section (h->root.u.def.section))
9554 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9555 && h->root.u.def.section->owner != NULL
9556 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9558 else if ((h->root.type == bfd_link_hash_undefined
9559 || h->root.type == bfd_link_hash_undefweak)
9560 && h->root.u.undef.abfd != NULL
9561 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9566 /* If we're stripping it, and it's not a dynamic symbol, there's
9567 nothing else to do. However, if it is a forced local symbol or
9568 an ifunc symbol we need to give the backend finish_dynamic_symbol
9569 function a chance to make it dynamic. */
9572 && type != STT_GNU_IFUNC
9573 && !h->forced_local)
9577 sym.st_size = h->size;
9578 sym.st_other = h->other;
9579 switch (h->root.type)
9582 case bfd_link_hash_new:
9583 case bfd_link_hash_warning:
9587 case bfd_link_hash_undefined:
9588 case bfd_link_hash_undefweak:
9589 input_sec = bfd_und_section_ptr;
9590 sym.st_shndx = SHN_UNDEF;
9593 case bfd_link_hash_defined:
9594 case bfd_link_hash_defweak:
9596 input_sec = h->root.u.def.section;
9597 if (input_sec->output_section != NULL)
9600 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9601 input_sec->output_section);
9602 if (sym.st_shndx == SHN_BAD)
9605 /* xgettext:c-format */
9606 (_("%B: could not find output section %A for input section %A"),
9607 flinfo->output_bfd, input_sec->output_section, input_sec);
9608 bfd_set_error (bfd_error_nonrepresentable_section);
9609 eoinfo->failed = TRUE;
9613 /* ELF symbols in relocatable files are section relative,
9614 but in nonrelocatable files they are virtual
9616 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9617 if (!bfd_link_relocatable (flinfo->info))
9619 sym.st_value += input_sec->output_section->vma;
9620 if (h->type == STT_TLS)
9622 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9623 if (tls_sec != NULL)
9624 sym.st_value -= tls_sec->vma;
9630 BFD_ASSERT (input_sec->owner == NULL
9631 || (input_sec->owner->flags & DYNAMIC) != 0);
9632 sym.st_shndx = SHN_UNDEF;
9633 input_sec = bfd_und_section_ptr;
9638 case bfd_link_hash_common:
9639 input_sec = h->root.u.c.p->section;
9640 sym.st_shndx = bed->common_section_index (input_sec);
9641 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9644 case bfd_link_hash_indirect:
9645 /* These symbols are created by symbol versioning. They point
9646 to the decorated version of the name. For example, if the
9647 symbol foo@@GNU_1.2 is the default, which should be used when
9648 foo is used with no version, then we add an indirect symbol
9649 foo which points to foo@@GNU_1.2. We ignore these symbols,
9650 since the indirected symbol is already in the hash table. */
9654 if (type == STT_COMMON || type == STT_OBJECT)
9655 switch (h->root.type)
9657 case bfd_link_hash_common:
9658 type = elf_link_convert_common_type (flinfo->info, type);
9660 case bfd_link_hash_defined:
9661 case bfd_link_hash_defweak:
9662 if (bed->common_definition (&sym))
9663 type = elf_link_convert_common_type (flinfo->info, type);
9667 case bfd_link_hash_undefined:
9668 case bfd_link_hash_undefweak:
9674 if (h->forced_local)
9676 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9677 /* Turn off visibility on local symbol. */
9678 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9680 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9681 else if (h->unique_global && h->def_regular)
9682 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9683 else if (h->root.type == bfd_link_hash_undefweak
9684 || h->root.type == bfd_link_hash_defweak)
9685 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9687 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9688 sym.st_target_internal = h->target_internal;
9690 /* Give the processor backend a chance to tweak the symbol value,
9691 and also to finish up anything that needs to be done for this
9692 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9693 forced local syms when non-shared is due to a historical quirk.
9694 STT_GNU_IFUNC symbol must go through PLT. */
9695 if ((h->type == STT_GNU_IFUNC
9697 && !bfd_link_relocatable (flinfo->info))
9698 || ((h->dynindx != -1
9700 && ((bfd_link_pic (flinfo->info)
9701 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9702 || h->root.type != bfd_link_hash_undefweak))
9703 || !h->forced_local)
9704 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9706 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9707 (flinfo->output_bfd, flinfo->info, h, &sym)))
9709 eoinfo->failed = TRUE;
9714 /* If we are marking the symbol as undefined, and there are no
9715 non-weak references to this symbol from a regular object, then
9716 mark the symbol as weak undefined; if there are non-weak
9717 references, mark the symbol as strong. We can't do this earlier,
9718 because it might not be marked as undefined until the
9719 finish_dynamic_symbol routine gets through with it. */
9720 if (sym.st_shndx == SHN_UNDEF
9722 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9723 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9726 type = ELF_ST_TYPE (sym.st_info);
9728 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9729 if (type == STT_GNU_IFUNC)
9732 if (h->ref_regular_nonweak)
9733 bindtype = STB_GLOBAL;
9735 bindtype = STB_WEAK;
9736 sym.st_info = ELF_ST_INFO (bindtype, type);
9739 /* If this is a symbol defined in a dynamic library, don't use the
9740 symbol size from the dynamic library. Relinking an executable
9741 against a new library may introduce gratuitous changes in the
9742 executable's symbols if we keep the size. */
9743 if (sym.st_shndx == SHN_UNDEF
9748 /* If a non-weak symbol with non-default visibility is not defined
9749 locally, it is a fatal error. */
9750 if (!bfd_link_relocatable (flinfo->info)
9751 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9752 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9753 && h->root.type == bfd_link_hash_undefined
9758 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9759 /* xgettext:c-format */
9760 msg = _("%B: protected symbol `%s' isn't defined");
9761 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9762 /* xgettext:c-format */
9763 msg = _("%B: internal symbol `%s' isn't defined");
9765 /* xgettext:c-format */
9766 msg = _("%B: hidden symbol `%s' isn't defined");
9767 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9768 bfd_set_error (bfd_error_bad_value);
9769 eoinfo->failed = TRUE;
9773 /* If this symbol should be put in the .dynsym section, then put it
9774 there now. We already know the symbol index. We also fill in
9775 the entry in the .hash section. */
9776 if (elf_hash_table (flinfo->info)->dynsym != NULL
9778 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9782 /* Since there is no version information in the dynamic string,
9783 if there is no version info in symbol version section, we will
9784 have a run-time problem if not linking executable, referenced
9785 by shared library, or not bound locally. */
9786 if (h->verinfo.verdef == NULL
9787 && (!bfd_link_executable (flinfo->info)
9789 || !h->def_regular))
9791 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9793 if (p && p [1] != '\0')
9796 /* xgettext:c-format */
9797 (_("%B: No symbol version section for versioned symbol `%s'"),
9798 flinfo->output_bfd, h->root.root.string);
9799 eoinfo->failed = TRUE;
9804 sym.st_name = h->dynstr_index;
9805 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9806 + h->dynindx * bed->s->sizeof_sym);
9807 if (!check_dynsym (flinfo->output_bfd, &sym))
9809 eoinfo->failed = TRUE;
9812 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9814 if (flinfo->hash_sec != NULL)
9816 size_t hash_entry_size;
9817 bfd_byte *bucketpos;
9822 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9823 bucket = h->u.elf_hash_value % bucketcount;
9826 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9827 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9828 + (bucket + 2) * hash_entry_size);
9829 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9830 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9832 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9833 ((bfd_byte *) flinfo->hash_sec->contents
9834 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9837 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9839 Elf_Internal_Versym iversym;
9840 Elf_External_Versym *eversym;
9842 if (!h->def_regular)
9844 if (h->verinfo.verdef == NULL
9845 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9846 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9847 iversym.vs_vers = 0;
9849 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9853 if (h->verinfo.vertree == NULL)
9854 iversym.vs_vers = 1;
9856 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9857 if (flinfo->info->create_default_symver)
9861 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9863 if (h->versioned == versioned_hidden && h->def_regular)
9864 iversym.vs_vers |= VERSYM_HIDDEN;
9866 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9867 eversym += h->dynindx;
9868 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9872 /* If the symbol is undefined, and we didn't output it to .dynsym,
9873 strip it from .symtab too. Obviously we can't do this for
9874 relocatable output or when needed for --emit-relocs. */
9875 else if (input_sec == bfd_und_section_ptr
9877 && !bfd_link_relocatable (flinfo->info))
9879 /* Also strip others that we couldn't earlier due to dynamic symbol
9883 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9886 /* Output a FILE symbol so that following locals are not associated
9887 with the wrong input file. We need one for forced local symbols
9888 if we've seen more than one FILE symbol or when we have exactly
9889 one FILE symbol but global symbols are present in a file other
9890 than the one with the FILE symbol. We also need one if linker
9891 defined symbols are present. In practice these conditions are
9892 always met, so just emit the FILE symbol unconditionally. */
9893 if (eoinfo->localsyms
9894 && !eoinfo->file_sym_done
9895 && eoinfo->flinfo->filesym_count != 0)
9897 Elf_Internal_Sym fsym;
9899 memset (&fsym, 0, sizeof (fsym));
9900 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9901 fsym.st_shndx = SHN_ABS;
9902 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9903 bfd_und_section_ptr, NULL))
9906 eoinfo->file_sym_done = TRUE;
9909 indx = bfd_get_symcount (flinfo->output_bfd);
9910 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9914 eoinfo->failed = TRUE;
9919 else if (h->indx == -2)
9925 /* Return TRUE if special handling is done for relocs in SEC against
9926 symbols defined in discarded sections. */
9929 elf_section_ignore_discarded_relocs (asection *sec)
9931 const struct elf_backend_data *bed;
9933 switch (sec->sec_info_type)
9935 case SEC_INFO_TYPE_STABS:
9936 case SEC_INFO_TYPE_EH_FRAME:
9937 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9943 bed = get_elf_backend_data (sec->owner);
9944 if (bed->elf_backend_ignore_discarded_relocs != NULL
9945 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9951 /* Return a mask saying how ld should treat relocations in SEC against
9952 symbols defined in discarded sections. If this function returns
9953 COMPLAIN set, ld will issue a warning message. If this function
9954 returns PRETEND set, and the discarded section was link-once and the
9955 same size as the kept link-once section, ld will pretend that the
9956 symbol was actually defined in the kept section. Otherwise ld will
9957 zero the reloc (at least that is the intent, but some cooperation by
9958 the target dependent code is needed, particularly for REL targets). */
9961 _bfd_elf_default_action_discarded (asection *sec)
9963 if (sec->flags & SEC_DEBUGGING)
9966 if (strcmp (".eh_frame", sec->name) == 0)
9969 if (strcmp (".gcc_except_table", sec->name) == 0)
9972 return COMPLAIN | PRETEND;
9975 /* Find a match between a section and a member of a section group. */
9978 match_group_member (asection *sec, asection *group,
9979 struct bfd_link_info *info)
9981 asection *first = elf_next_in_group (group);
9982 asection *s = first;
9986 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9989 s = elf_next_in_group (s);
9997 /* Check if the kept section of a discarded section SEC can be used
9998 to replace it. Return the replacement if it is OK. Otherwise return
10002 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10006 kept = sec->kept_section;
10009 if ((kept->flags & SEC_GROUP) != 0)
10010 kept = match_group_member (sec, kept, info);
10012 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10013 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10015 sec->kept_section = kept;
10020 /* Link an input file into the linker output file. This function
10021 handles all the sections and relocations of the input file at once.
10022 This is so that we only have to read the local symbols once, and
10023 don't have to keep them in memory. */
10026 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10028 int (*relocate_section)
10029 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10030 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10032 Elf_Internal_Shdr *symtab_hdr;
10033 size_t locsymcount;
10035 Elf_Internal_Sym *isymbuf;
10036 Elf_Internal_Sym *isym;
10037 Elf_Internal_Sym *isymend;
10039 asection **ppsection;
10041 const struct elf_backend_data *bed;
10042 struct elf_link_hash_entry **sym_hashes;
10043 bfd_size_type address_size;
10044 bfd_vma r_type_mask;
10046 bfd_boolean have_file_sym = FALSE;
10048 output_bfd = flinfo->output_bfd;
10049 bed = get_elf_backend_data (output_bfd);
10050 relocate_section = bed->elf_backend_relocate_section;
10052 /* If this is a dynamic object, we don't want to do anything here:
10053 we don't want the local symbols, and we don't want the section
10055 if ((input_bfd->flags & DYNAMIC) != 0)
10058 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10059 if (elf_bad_symtab (input_bfd))
10061 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10066 locsymcount = symtab_hdr->sh_info;
10067 extsymoff = symtab_hdr->sh_info;
10070 /* Read the local symbols. */
10071 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10072 if (isymbuf == NULL && locsymcount != 0)
10074 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10075 flinfo->internal_syms,
10076 flinfo->external_syms,
10077 flinfo->locsym_shndx);
10078 if (isymbuf == NULL)
10082 /* Find local symbol sections and adjust values of symbols in
10083 SEC_MERGE sections. Write out those local symbols we know are
10084 going into the output file. */
10085 isymend = isymbuf + locsymcount;
10086 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10088 isym++, pindex++, ppsection++)
10092 Elf_Internal_Sym osym;
10098 if (elf_bad_symtab (input_bfd))
10100 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10107 if (isym->st_shndx == SHN_UNDEF)
10108 isec = bfd_und_section_ptr;
10109 else if (isym->st_shndx == SHN_ABS)
10110 isec = bfd_abs_section_ptr;
10111 else if (isym->st_shndx == SHN_COMMON)
10112 isec = bfd_com_section_ptr;
10115 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10118 /* Don't attempt to output symbols with st_shnx in the
10119 reserved range other than SHN_ABS and SHN_COMMON. */
10123 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10124 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10126 _bfd_merged_section_offset (output_bfd, &isec,
10127 elf_section_data (isec)->sec_info,
10133 /* Don't output the first, undefined, symbol. In fact, don't
10134 output any undefined local symbol. */
10135 if (isec == bfd_und_section_ptr)
10138 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10140 /* We never output section symbols. Instead, we use the
10141 section symbol of the corresponding section in the output
10146 /* If we are stripping all symbols, we don't want to output this
10148 if (flinfo->info->strip == strip_all)
10151 /* If we are discarding all local symbols, we don't want to
10152 output this one. If we are generating a relocatable output
10153 file, then some of the local symbols may be required by
10154 relocs; we output them below as we discover that they are
10156 if (flinfo->info->discard == discard_all)
10159 /* If this symbol is defined in a section which we are
10160 discarding, we don't need to keep it. */
10161 if (isym->st_shndx != SHN_UNDEF
10162 && isym->st_shndx < SHN_LORESERVE
10163 && bfd_section_removed_from_list (output_bfd,
10164 isec->output_section))
10167 /* Get the name of the symbol. */
10168 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10173 /* See if we are discarding symbols with this name. */
10174 if ((flinfo->info->strip == strip_some
10175 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10177 || (((flinfo->info->discard == discard_sec_merge
10178 && (isec->flags & SEC_MERGE)
10179 && !bfd_link_relocatable (flinfo->info))
10180 || flinfo->info->discard == discard_l)
10181 && bfd_is_local_label_name (input_bfd, name)))
10184 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10186 if (input_bfd->lto_output)
10187 /* -flto puts a temp file name here. This means builds
10188 are not reproducible. Discard the symbol. */
10190 have_file_sym = TRUE;
10191 flinfo->filesym_count += 1;
10193 if (!have_file_sym)
10195 /* In the absence of debug info, bfd_find_nearest_line uses
10196 FILE symbols to determine the source file for local
10197 function symbols. Provide a FILE symbol here if input
10198 files lack such, so that their symbols won't be
10199 associated with a previous input file. It's not the
10200 source file, but the best we can do. */
10201 have_file_sym = TRUE;
10202 flinfo->filesym_count += 1;
10203 memset (&osym, 0, sizeof (osym));
10204 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10205 osym.st_shndx = SHN_ABS;
10206 if (!elf_link_output_symstrtab (flinfo,
10207 (input_bfd->lto_output ? NULL
10208 : input_bfd->filename),
10209 &osym, bfd_abs_section_ptr,
10216 /* Adjust the section index for the output file. */
10217 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10218 isec->output_section);
10219 if (osym.st_shndx == SHN_BAD)
10222 /* ELF symbols in relocatable files are section relative, but
10223 in executable files they are virtual addresses. Note that
10224 this code assumes that all ELF sections have an associated
10225 BFD section with a reasonable value for output_offset; below
10226 we assume that they also have a reasonable value for
10227 output_section. Any special sections must be set up to meet
10228 these requirements. */
10229 osym.st_value += isec->output_offset;
10230 if (!bfd_link_relocatable (flinfo->info))
10232 osym.st_value += isec->output_section->vma;
10233 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10235 /* STT_TLS symbols are relative to PT_TLS segment base. */
10236 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10237 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10241 indx = bfd_get_symcount (output_bfd);
10242 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10249 if (bed->s->arch_size == 32)
10251 r_type_mask = 0xff;
10257 r_type_mask = 0xffffffff;
10262 /* Relocate the contents of each section. */
10263 sym_hashes = elf_sym_hashes (input_bfd);
10264 for (o = input_bfd->sections; o != NULL; o = o->next)
10266 bfd_byte *contents;
10268 if (! o->linker_mark)
10270 /* This section was omitted from the link. */
10274 if (bfd_link_relocatable (flinfo->info)
10275 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10277 /* Deal with the group signature symbol. */
10278 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10279 unsigned long symndx = sec_data->this_hdr.sh_info;
10280 asection *osec = o->output_section;
10282 if (symndx >= locsymcount
10283 || (elf_bad_symtab (input_bfd)
10284 && flinfo->sections[symndx] == NULL))
10286 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10287 while (h->root.type == bfd_link_hash_indirect
10288 || h->root.type == bfd_link_hash_warning)
10289 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10290 /* Arrange for symbol to be output. */
10292 elf_section_data (osec)->this_hdr.sh_info = -2;
10294 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10296 /* We'll use the output section target_index. */
10297 asection *sec = flinfo->sections[symndx]->output_section;
10298 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10302 if (flinfo->indices[symndx] == -1)
10304 /* Otherwise output the local symbol now. */
10305 Elf_Internal_Sym sym = isymbuf[symndx];
10306 asection *sec = flinfo->sections[symndx]->output_section;
10311 name = bfd_elf_string_from_elf_section (input_bfd,
10312 symtab_hdr->sh_link,
10317 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10319 if (sym.st_shndx == SHN_BAD)
10322 sym.st_value += o->output_offset;
10324 indx = bfd_get_symcount (output_bfd);
10325 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10330 flinfo->indices[symndx] = indx;
10334 elf_section_data (osec)->this_hdr.sh_info
10335 = flinfo->indices[symndx];
10339 if ((o->flags & SEC_HAS_CONTENTS) == 0
10340 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10343 if ((o->flags & SEC_LINKER_CREATED) != 0)
10345 /* Section was created by _bfd_elf_link_create_dynamic_sections
10350 /* Get the contents of the section. They have been cached by a
10351 relaxation routine. Note that o is a section in an input
10352 file, so the contents field will not have been set by any of
10353 the routines which work on output files. */
10354 if (elf_section_data (o)->this_hdr.contents != NULL)
10356 contents = elf_section_data (o)->this_hdr.contents;
10357 if (bed->caches_rawsize
10359 && o->rawsize < o->size)
10361 memcpy (flinfo->contents, contents, o->rawsize);
10362 contents = flinfo->contents;
10367 contents = flinfo->contents;
10368 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10372 if ((o->flags & SEC_RELOC) != 0)
10374 Elf_Internal_Rela *internal_relocs;
10375 Elf_Internal_Rela *rel, *relend;
10376 int action_discarded;
10379 /* Get the swapped relocs. */
10381 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10382 flinfo->internal_relocs, FALSE);
10383 if (internal_relocs == NULL
10384 && o->reloc_count > 0)
10387 /* We need to reverse-copy input .ctors/.dtors sections if
10388 they are placed in .init_array/.finit_array for output. */
10389 if (o->size > address_size
10390 && ((strncmp (o->name, ".ctors", 6) == 0
10391 && strcmp (o->output_section->name,
10392 ".init_array") == 0)
10393 || (strncmp (o->name, ".dtors", 6) == 0
10394 && strcmp (o->output_section->name,
10395 ".fini_array") == 0))
10396 && (o->name[6] == 0 || o->name[6] == '.'))
10398 if (o->size != o->reloc_count * address_size)
10401 /* xgettext:c-format */
10402 (_("error: %B: size of section %A is not "
10403 "multiple of address size"),
10405 bfd_set_error (bfd_error_on_input);
10408 o->flags |= SEC_ELF_REVERSE_COPY;
10411 action_discarded = -1;
10412 if (!elf_section_ignore_discarded_relocs (o))
10413 action_discarded = (*bed->action_discarded) (o);
10415 /* Run through the relocs evaluating complex reloc symbols and
10416 looking for relocs against symbols from discarded sections
10417 or section symbols from removed link-once sections.
10418 Complain about relocs against discarded sections. Zero
10419 relocs against removed link-once sections. */
10421 rel = internal_relocs;
10422 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10423 for ( ; rel < relend; rel++)
10425 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10426 unsigned int s_type;
10427 asection **ps, *sec;
10428 struct elf_link_hash_entry *h = NULL;
10429 const char *sym_name;
10431 if (r_symndx == STN_UNDEF)
10434 if (r_symndx >= locsymcount
10435 || (elf_bad_symtab (input_bfd)
10436 && flinfo->sections[r_symndx] == NULL))
10438 h = sym_hashes[r_symndx - extsymoff];
10440 /* Badly formatted input files can contain relocs that
10441 reference non-existant symbols. Check here so that
10442 we do not seg fault. */
10447 sprintf_vma (buffer, rel->r_info);
10449 /* xgettext:c-format */
10450 (_("error: %B contains a reloc (0x%s) for section %A "
10451 "that references a non-existent global symbol"),
10452 input_bfd, buffer, o);
10453 bfd_set_error (bfd_error_bad_value);
10457 while (h->root.type == bfd_link_hash_indirect
10458 || h->root.type == bfd_link_hash_warning)
10459 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10463 /* If a plugin symbol is referenced from a non-IR file,
10464 mark the symbol as undefined. Note that the
10465 linker may attach linker created dynamic sections
10466 to the plugin bfd. Symbols defined in linker
10467 created sections are not plugin symbols. */
10468 if (h->root.non_ir_ref
10469 && (h->root.type == bfd_link_hash_defined
10470 || h->root.type == bfd_link_hash_defweak)
10471 && (h->root.u.def.section->flags
10472 & SEC_LINKER_CREATED) == 0
10473 && h->root.u.def.section->owner != NULL
10474 && (h->root.u.def.section->owner->flags
10475 & BFD_PLUGIN) != 0)
10477 h->root.type = bfd_link_hash_undefined;
10478 h->root.u.undef.abfd = h->root.u.def.section->owner;
10482 if (h->root.type == bfd_link_hash_defined
10483 || h->root.type == bfd_link_hash_defweak)
10484 ps = &h->root.u.def.section;
10486 sym_name = h->root.root.string;
10490 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10492 s_type = ELF_ST_TYPE (sym->st_info);
10493 ps = &flinfo->sections[r_symndx];
10494 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10498 if ((s_type == STT_RELC || s_type == STT_SRELC)
10499 && !bfd_link_relocatable (flinfo->info))
10502 bfd_vma dot = (rel->r_offset
10503 + o->output_offset + o->output_section->vma);
10505 printf ("Encountered a complex symbol!");
10506 printf (" (input_bfd %s, section %s, reloc %ld\n",
10507 input_bfd->filename, o->name,
10508 (long) (rel - internal_relocs));
10509 printf (" symbol: idx %8.8lx, name %s\n",
10510 r_symndx, sym_name);
10511 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10512 (unsigned long) rel->r_info,
10513 (unsigned long) rel->r_offset);
10515 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10516 isymbuf, locsymcount, s_type == STT_SRELC))
10519 /* Symbol evaluated OK. Update to absolute value. */
10520 set_symbol_value (input_bfd, isymbuf, locsymcount,
10525 if (action_discarded != -1 && ps != NULL)
10527 /* Complain if the definition comes from a
10528 discarded section. */
10529 if ((sec = *ps) != NULL && discarded_section (sec))
10531 BFD_ASSERT (r_symndx != STN_UNDEF);
10532 if (action_discarded & COMPLAIN)
10533 (*flinfo->info->callbacks->einfo)
10534 /* xgettext:c-format */
10535 (_("%X`%s' referenced in section `%A' of %B: "
10536 "defined in discarded section `%A' of %B\n"),
10537 sym_name, o, input_bfd, sec, sec->owner);
10539 /* Try to do the best we can to support buggy old
10540 versions of gcc. Pretend that the symbol is
10541 really defined in the kept linkonce section.
10542 FIXME: This is quite broken. Modifying the
10543 symbol here means we will be changing all later
10544 uses of the symbol, not just in this section. */
10545 if (action_discarded & PRETEND)
10549 kept = _bfd_elf_check_kept_section (sec,
10561 /* Relocate the section by invoking a back end routine.
10563 The back end routine is responsible for adjusting the
10564 section contents as necessary, and (if using Rela relocs
10565 and generating a relocatable output file) adjusting the
10566 reloc addend as necessary.
10568 The back end routine does not have to worry about setting
10569 the reloc address or the reloc symbol index.
10571 The back end routine is given a pointer to the swapped in
10572 internal symbols, and can access the hash table entries
10573 for the external symbols via elf_sym_hashes (input_bfd).
10575 When generating relocatable output, the back end routine
10576 must handle STB_LOCAL/STT_SECTION symbols specially. The
10577 output symbol is going to be a section symbol
10578 corresponding to the output section, which will require
10579 the addend to be adjusted. */
10581 ret = (*relocate_section) (output_bfd, flinfo->info,
10582 input_bfd, o, contents,
10590 || bfd_link_relocatable (flinfo->info)
10591 || flinfo->info->emitrelocations)
10593 Elf_Internal_Rela *irela;
10594 Elf_Internal_Rela *irelaend, *irelamid;
10595 bfd_vma last_offset;
10596 struct elf_link_hash_entry **rel_hash;
10597 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10598 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10599 unsigned int next_erel;
10600 bfd_boolean rela_normal;
10601 struct bfd_elf_section_data *esdi, *esdo;
10603 esdi = elf_section_data (o);
10604 esdo = elf_section_data (o->output_section);
10605 rela_normal = FALSE;
10607 /* Adjust the reloc addresses and symbol indices. */
10609 irela = internal_relocs;
10610 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10611 rel_hash = esdo->rel.hashes + esdo->rel.count;
10612 /* We start processing the REL relocs, if any. When we reach
10613 IRELAMID in the loop, we switch to the RELA relocs. */
10615 if (esdi->rel.hdr != NULL)
10616 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10617 * bed->s->int_rels_per_ext_rel);
10618 rel_hash_list = rel_hash;
10619 rela_hash_list = NULL;
10620 last_offset = o->output_offset;
10621 if (!bfd_link_relocatable (flinfo->info))
10622 last_offset += o->output_section->vma;
10623 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10625 unsigned long r_symndx;
10627 Elf_Internal_Sym sym;
10629 if (next_erel == bed->s->int_rels_per_ext_rel)
10635 if (irela == irelamid)
10637 rel_hash = esdo->rela.hashes + esdo->rela.count;
10638 rela_hash_list = rel_hash;
10639 rela_normal = bed->rela_normal;
10642 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10645 if (irela->r_offset >= (bfd_vma) -2)
10647 /* This is a reloc for a deleted entry or somesuch.
10648 Turn it into an R_*_NONE reloc, at the same
10649 offset as the last reloc. elf_eh_frame.c and
10650 bfd_elf_discard_info rely on reloc offsets
10652 irela->r_offset = last_offset;
10654 irela->r_addend = 0;
10658 irela->r_offset += o->output_offset;
10660 /* Relocs in an executable have to be virtual addresses. */
10661 if (!bfd_link_relocatable (flinfo->info))
10662 irela->r_offset += o->output_section->vma;
10664 last_offset = irela->r_offset;
10666 r_symndx = irela->r_info >> r_sym_shift;
10667 if (r_symndx == STN_UNDEF)
10670 if (r_symndx >= locsymcount
10671 || (elf_bad_symtab (input_bfd)
10672 && flinfo->sections[r_symndx] == NULL))
10674 struct elf_link_hash_entry *rh;
10675 unsigned long indx;
10677 /* This is a reloc against a global symbol. We
10678 have not yet output all the local symbols, so
10679 we do not know the symbol index of any global
10680 symbol. We set the rel_hash entry for this
10681 reloc to point to the global hash table entry
10682 for this symbol. The symbol index is then
10683 set at the end of bfd_elf_final_link. */
10684 indx = r_symndx - extsymoff;
10685 rh = elf_sym_hashes (input_bfd)[indx];
10686 while (rh->root.type == bfd_link_hash_indirect
10687 || rh->root.type == bfd_link_hash_warning)
10688 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10690 /* Setting the index to -2 tells
10691 elf_link_output_extsym that this symbol is
10692 used by a reloc. */
10693 BFD_ASSERT (rh->indx < 0);
10701 /* This is a reloc against a local symbol. */
10704 sym = isymbuf[r_symndx];
10705 sec = flinfo->sections[r_symndx];
10706 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10708 /* I suppose the backend ought to fill in the
10709 section of any STT_SECTION symbol against a
10710 processor specific section. */
10711 r_symndx = STN_UNDEF;
10712 if (bfd_is_abs_section (sec))
10714 else if (sec == NULL || sec->owner == NULL)
10716 bfd_set_error (bfd_error_bad_value);
10721 asection *osec = sec->output_section;
10723 /* If we have discarded a section, the output
10724 section will be the absolute section. In
10725 case of discarded SEC_MERGE sections, use
10726 the kept section. relocate_section should
10727 have already handled discarded linkonce
10729 if (bfd_is_abs_section (osec)
10730 && sec->kept_section != NULL
10731 && sec->kept_section->output_section != NULL)
10733 osec = sec->kept_section->output_section;
10734 irela->r_addend -= osec->vma;
10737 if (!bfd_is_abs_section (osec))
10739 r_symndx = osec->target_index;
10740 if (r_symndx == STN_UNDEF)
10742 irela->r_addend += osec->vma;
10743 osec = _bfd_nearby_section (output_bfd, osec,
10745 irela->r_addend -= osec->vma;
10746 r_symndx = osec->target_index;
10751 /* Adjust the addend according to where the
10752 section winds up in the output section. */
10754 irela->r_addend += sec->output_offset;
10758 if (flinfo->indices[r_symndx] == -1)
10760 unsigned long shlink;
10765 if (flinfo->info->strip == strip_all)
10767 /* You can't do ld -r -s. */
10768 bfd_set_error (bfd_error_invalid_operation);
10772 /* This symbol was skipped earlier, but
10773 since it is needed by a reloc, we
10774 must output it now. */
10775 shlink = symtab_hdr->sh_link;
10776 name = (bfd_elf_string_from_elf_section
10777 (input_bfd, shlink, sym.st_name));
10781 osec = sec->output_section;
10783 _bfd_elf_section_from_bfd_section (output_bfd,
10785 if (sym.st_shndx == SHN_BAD)
10788 sym.st_value += sec->output_offset;
10789 if (!bfd_link_relocatable (flinfo->info))
10791 sym.st_value += osec->vma;
10792 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10794 /* STT_TLS symbols are relative to PT_TLS
10796 BFD_ASSERT (elf_hash_table (flinfo->info)
10797 ->tls_sec != NULL);
10798 sym.st_value -= (elf_hash_table (flinfo->info)
10803 indx = bfd_get_symcount (output_bfd);
10804 ret = elf_link_output_symstrtab (flinfo, name,
10810 flinfo->indices[r_symndx] = indx;
10815 r_symndx = flinfo->indices[r_symndx];
10818 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10819 | (irela->r_info & r_type_mask));
10822 /* Swap out the relocs. */
10823 input_rel_hdr = esdi->rel.hdr;
10824 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10826 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10831 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10832 * bed->s->int_rels_per_ext_rel);
10833 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10836 input_rela_hdr = esdi->rela.hdr;
10837 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10839 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10848 /* Write out the modified section contents. */
10849 if (bed->elf_backend_write_section
10850 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10853 /* Section written out. */
10855 else switch (o->sec_info_type)
10857 case SEC_INFO_TYPE_STABS:
10858 if (! (_bfd_write_section_stabs
10860 &elf_hash_table (flinfo->info)->stab_info,
10861 o, &elf_section_data (o)->sec_info, contents)))
10864 case SEC_INFO_TYPE_MERGE:
10865 if (! _bfd_write_merged_section (output_bfd, o,
10866 elf_section_data (o)->sec_info))
10869 case SEC_INFO_TYPE_EH_FRAME:
10871 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10876 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10878 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10886 if (! (o->flags & SEC_EXCLUDE))
10888 file_ptr offset = (file_ptr) o->output_offset;
10889 bfd_size_type todo = o->size;
10891 offset *= bfd_octets_per_byte (output_bfd);
10893 if ((o->flags & SEC_ELF_REVERSE_COPY))
10895 /* Reverse-copy input section to output. */
10898 todo -= address_size;
10899 if (! bfd_set_section_contents (output_bfd,
10907 offset += address_size;
10911 else if (! bfd_set_section_contents (output_bfd,
10925 /* Generate a reloc when linking an ELF file. This is a reloc
10926 requested by the linker, and does not come from any input file. This
10927 is used to build constructor and destructor tables when linking
10931 elf_reloc_link_order (bfd *output_bfd,
10932 struct bfd_link_info *info,
10933 asection *output_section,
10934 struct bfd_link_order *link_order)
10936 reloc_howto_type *howto;
10940 struct bfd_elf_section_reloc_data *reldata;
10941 struct elf_link_hash_entry **rel_hash_ptr;
10942 Elf_Internal_Shdr *rel_hdr;
10943 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10944 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10947 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10949 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10952 bfd_set_error (bfd_error_bad_value);
10956 addend = link_order->u.reloc.p->addend;
10959 reldata = &esdo->rel;
10960 else if (esdo->rela.hdr)
10961 reldata = &esdo->rela;
10968 /* Figure out the symbol index. */
10969 rel_hash_ptr = reldata->hashes + reldata->count;
10970 if (link_order->type == bfd_section_reloc_link_order)
10972 indx = link_order->u.reloc.p->u.section->target_index;
10973 BFD_ASSERT (indx != 0);
10974 *rel_hash_ptr = NULL;
10978 struct elf_link_hash_entry *h;
10980 /* Treat a reloc against a defined symbol as though it were
10981 actually against the section. */
10982 h = ((struct elf_link_hash_entry *)
10983 bfd_wrapped_link_hash_lookup (output_bfd, info,
10984 link_order->u.reloc.p->u.name,
10985 FALSE, FALSE, TRUE));
10987 && (h->root.type == bfd_link_hash_defined
10988 || h->root.type == bfd_link_hash_defweak))
10992 section = h->root.u.def.section;
10993 indx = section->output_section->target_index;
10994 *rel_hash_ptr = NULL;
10995 /* It seems that we ought to add the symbol value to the
10996 addend here, but in practice it has already been added
10997 because it was passed to constructor_callback. */
10998 addend += section->output_section->vma + section->output_offset;
11000 else if (h != NULL)
11002 /* Setting the index to -2 tells elf_link_output_extsym that
11003 this symbol is used by a reloc. */
11010 (*info->callbacks->unattached_reloc)
11011 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11016 /* If this is an inplace reloc, we must write the addend into the
11018 if (howto->partial_inplace && addend != 0)
11020 bfd_size_type size;
11021 bfd_reloc_status_type rstat;
11024 const char *sym_name;
11026 size = (bfd_size_type) bfd_get_reloc_size (howto);
11027 buf = (bfd_byte *) bfd_zmalloc (size);
11028 if (buf == NULL && size != 0)
11030 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11037 case bfd_reloc_outofrange:
11040 case bfd_reloc_overflow:
11041 if (link_order->type == bfd_section_reloc_link_order)
11042 sym_name = bfd_section_name (output_bfd,
11043 link_order->u.reloc.p->u.section);
11045 sym_name = link_order->u.reloc.p->u.name;
11046 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11047 howto->name, addend, NULL, NULL,
11052 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11054 * bfd_octets_per_byte (output_bfd),
11061 /* The address of a reloc is relative to the section in a
11062 relocatable file, and is a virtual address in an executable
11064 offset = link_order->offset;
11065 if (! bfd_link_relocatable (info))
11066 offset += output_section->vma;
11068 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11070 irel[i].r_offset = offset;
11071 irel[i].r_info = 0;
11072 irel[i].r_addend = 0;
11074 if (bed->s->arch_size == 32)
11075 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11077 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11079 rel_hdr = reldata->hdr;
11080 erel = rel_hdr->contents;
11081 if (rel_hdr->sh_type == SHT_REL)
11083 erel += reldata->count * bed->s->sizeof_rel;
11084 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11088 irel[0].r_addend = addend;
11089 erel += reldata->count * bed->s->sizeof_rela;
11090 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11099 /* Get the output vma of the section pointed to by the sh_link field. */
11102 elf_get_linked_section_vma (struct bfd_link_order *p)
11104 Elf_Internal_Shdr **elf_shdrp;
11108 s = p->u.indirect.section;
11109 elf_shdrp = elf_elfsections (s->owner);
11110 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11111 elfsec = elf_shdrp[elfsec]->sh_link;
11113 The Intel C compiler generates SHT_IA_64_UNWIND with
11114 SHF_LINK_ORDER. But it doesn't set the sh_link or
11115 sh_info fields. Hence we could get the situation
11116 where elfsec is 0. */
11119 const struct elf_backend_data *bed
11120 = get_elf_backend_data (s->owner);
11121 if (bed->link_order_error_handler)
11122 bed->link_order_error_handler
11123 /* xgettext:c-format */
11124 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11129 s = elf_shdrp[elfsec]->bfd_section;
11130 return s->output_section->vma + s->output_offset;
11135 /* Compare two sections based on the locations of the sections they are
11136 linked to. Used by elf_fixup_link_order. */
11139 compare_link_order (const void * a, const void * b)
11144 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11145 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11148 return apos > bpos;
11152 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11153 order as their linked sections. Returns false if this could not be done
11154 because an output section includes both ordered and unordered
11155 sections. Ideally we'd do this in the linker proper. */
11158 elf_fixup_link_order (bfd *abfd, asection *o)
11160 int seen_linkorder;
11163 struct bfd_link_order *p;
11165 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11167 struct bfd_link_order **sections;
11168 asection *s, *other_sec, *linkorder_sec;
11172 linkorder_sec = NULL;
11174 seen_linkorder = 0;
11175 for (p = o->map_head.link_order; p != NULL; p = p->next)
11177 if (p->type == bfd_indirect_link_order)
11179 s = p->u.indirect.section;
11181 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11182 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11183 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11184 && elfsec < elf_numsections (sub)
11185 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11186 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11200 if (seen_other && seen_linkorder)
11202 if (other_sec && linkorder_sec)
11204 /* xgettext:c-format */
11205 (_("%A has both ordered [`%A' in %B] "
11206 "and unordered [`%A' in %B] sections"),
11207 o, linkorder_sec, linkorder_sec->owner,
11208 other_sec, other_sec->owner);
11211 (_("%A has both ordered and unordered sections"), o);
11212 bfd_set_error (bfd_error_bad_value);
11217 if (!seen_linkorder)
11220 sections = (struct bfd_link_order **)
11221 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11222 if (sections == NULL)
11224 seen_linkorder = 0;
11226 for (p = o->map_head.link_order; p != NULL; p = p->next)
11228 sections[seen_linkorder++] = p;
11230 /* Sort the input sections in the order of their linked section. */
11231 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11232 compare_link_order);
11234 /* Change the offsets of the sections. */
11236 for (n = 0; n < seen_linkorder; n++)
11238 s = sections[n]->u.indirect.section;
11239 offset &= ~(bfd_vma) 0 << s->alignment_power;
11240 s->output_offset = offset / bfd_octets_per_byte (abfd);
11241 sections[n]->offset = offset;
11242 offset += sections[n]->size;
11249 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11250 Returns TRUE upon success, FALSE otherwise. */
11253 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11255 bfd_boolean ret = FALSE;
11257 const struct elf_backend_data *bed;
11259 enum bfd_architecture arch;
11261 asymbol **sympp = NULL;
11265 elf_symbol_type *osymbuf;
11267 implib_bfd = info->out_implib_bfd;
11268 bed = get_elf_backend_data (abfd);
11270 if (!bfd_set_format (implib_bfd, bfd_object))
11273 flags = bfd_get_file_flags (abfd);
11274 flags &= ~HAS_RELOC;
11275 if (!bfd_set_start_address (implib_bfd, 0)
11276 || !bfd_set_file_flags (implib_bfd, flags))
11279 /* Copy architecture of output file to import library file. */
11280 arch = bfd_get_arch (abfd);
11281 mach = bfd_get_mach (abfd);
11282 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11283 && (abfd->target_defaulted
11284 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11287 /* Get symbol table size. */
11288 symsize = bfd_get_symtab_upper_bound (abfd);
11292 /* Read in the symbol table. */
11293 sympp = (asymbol **) xmalloc (symsize);
11294 symcount = bfd_canonicalize_symtab (abfd, sympp);
11298 /* Allow the BFD backend to copy any private header data it
11299 understands from the output BFD to the import library BFD. */
11300 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11303 /* Filter symbols to appear in the import library. */
11304 if (bed->elf_backend_filter_implib_symbols)
11305 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11308 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11311 bfd_set_error (bfd_error_no_symbols);
11312 _bfd_error_handler (_("%B: no symbol found for import library"),
11318 /* Make symbols absolute. */
11319 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11320 sizeof (*osymbuf));
11321 for (src_count = 0; src_count < symcount; src_count++)
11323 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11324 sizeof (*osymbuf));
11325 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11326 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11327 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11328 osymbuf[src_count].internal_elf_sym.st_value =
11329 osymbuf[src_count].symbol.value;
11330 sympp[src_count] = &osymbuf[src_count].symbol;
11333 bfd_set_symtab (implib_bfd, sympp, symcount);
11335 /* Allow the BFD backend to copy any private data it understands
11336 from the output BFD to the import library BFD. This is done last
11337 to permit the routine to look at the filtered symbol table. */
11338 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11341 if (!bfd_close (implib_bfd))
11352 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11356 if (flinfo->symstrtab != NULL)
11357 _bfd_elf_strtab_free (flinfo->symstrtab);
11358 if (flinfo->contents != NULL)
11359 free (flinfo->contents);
11360 if (flinfo->external_relocs != NULL)
11361 free (flinfo->external_relocs);
11362 if (flinfo->internal_relocs != NULL)
11363 free (flinfo->internal_relocs);
11364 if (flinfo->external_syms != NULL)
11365 free (flinfo->external_syms);
11366 if (flinfo->locsym_shndx != NULL)
11367 free (flinfo->locsym_shndx);
11368 if (flinfo->internal_syms != NULL)
11369 free (flinfo->internal_syms);
11370 if (flinfo->indices != NULL)
11371 free (flinfo->indices);
11372 if (flinfo->sections != NULL)
11373 free (flinfo->sections);
11374 if (flinfo->symshndxbuf != NULL)
11375 free (flinfo->symshndxbuf);
11376 for (o = obfd->sections; o != NULL; o = o->next)
11378 struct bfd_elf_section_data *esdo = elf_section_data (o);
11379 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11380 free (esdo->rel.hashes);
11381 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11382 free (esdo->rela.hashes);
11386 /* Do the final step of an ELF link. */
11389 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11391 bfd_boolean dynamic;
11392 bfd_boolean emit_relocs;
11394 struct elf_final_link_info flinfo;
11396 struct bfd_link_order *p;
11398 bfd_size_type max_contents_size;
11399 bfd_size_type max_external_reloc_size;
11400 bfd_size_type max_internal_reloc_count;
11401 bfd_size_type max_sym_count;
11402 bfd_size_type max_sym_shndx_count;
11403 Elf_Internal_Sym elfsym;
11405 Elf_Internal_Shdr *symtab_hdr;
11406 Elf_Internal_Shdr *symtab_shndx_hdr;
11407 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11408 struct elf_outext_info eoinfo;
11409 bfd_boolean merged;
11410 size_t relativecount = 0;
11411 asection *reldyn = 0;
11413 asection *attr_section = NULL;
11414 bfd_vma attr_size = 0;
11415 const char *std_attrs_section;
11416 struct elf_link_hash_table *htab = elf_hash_table (info);
11418 if (!is_elf_hash_table (htab))
11421 if (bfd_link_pic (info))
11422 abfd->flags |= DYNAMIC;
11424 dynamic = htab->dynamic_sections_created;
11425 dynobj = htab->dynobj;
11427 emit_relocs = (bfd_link_relocatable (info)
11428 || info->emitrelocations);
11430 flinfo.info = info;
11431 flinfo.output_bfd = abfd;
11432 flinfo.symstrtab = _bfd_elf_strtab_init ();
11433 if (flinfo.symstrtab == NULL)
11438 flinfo.hash_sec = NULL;
11439 flinfo.symver_sec = NULL;
11443 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11444 /* Note that dynsym_sec can be NULL (on VMS). */
11445 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11446 /* Note that it is OK if symver_sec is NULL. */
11449 flinfo.contents = NULL;
11450 flinfo.external_relocs = NULL;
11451 flinfo.internal_relocs = NULL;
11452 flinfo.external_syms = NULL;
11453 flinfo.locsym_shndx = NULL;
11454 flinfo.internal_syms = NULL;
11455 flinfo.indices = NULL;
11456 flinfo.sections = NULL;
11457 flinfo.symshndxbuf = NULL;
11458 flinfo.filesym_count = 0;
11460 /* The object attributes have been merged. Remove the input
11461 sections from the link, and set the contents of the output
11463 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11464 for (o = abfd->sections; o != NULL; o = o->next)
11466 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11467 || strcmp (o->name, ".gnu.attributes") == 0)
11469 for (p = o->map_head.link_order; p != NULL; p = p->next)
11471 asection *input_section;
11473 if (p->type != bfd_indirect_link_order)
11475 input_section = p->u.indirect.section;
11476 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11477 elf_link_input_bfd ignores this section. */
11478 input_section->flags &= ~SEC_HAS_CONTENTS;
11481 attr_size = bfd_elf_obj_attr_size (abfd);
11484 bfd_set_section_size (abfd, o, attr_size);
11486 /* Skip this section later on. */
11487 o->map_head.link_order = NULL;
11490 o->flags |= SEC_EXCLUDE;
11494 /* Count up the number of relocations we will output for each output
11495 section, so that we know the sizes of the reloc sections. We
11496 also figure out some maximum sizes. */
11497 max_contents_size = 0;
11498 max_external_reloc_size = 0;
11499 max_internal_reloc_count = 0;
11501 max_sym_shndx_count = 0;
11503 for (o = abfd->sections; o != NULL; o = o->next)
11505 struct bfd_elf_section_data *esdo = elf_section_data (o);
11506 o->reloc_count = 0;
11508 for (p = o->map_head.link_order; p != NULL; p = p->next)
11510 unsigned int reloc_count = 0;
11511 unsigned int additional_reloc_count = 0;
11512 struct bfd_elf_section_data *esdi = NULL;
11514 if (p->type == bfd_section_reloc_link_order
11515 || p->type == bfd_symbol_reloc_link_order)
11517 else if (p->type == bfd_indirect_link_order)
11521 sec = p->u.indirect.section;
11523 /* Mark all sections which are to be included in the
11524 link. This will normally be every section. We need
11525 to do this so that we can identify any sections which
11526 the linker has decided to not include. */
11527 sec->linker_mark = TRUE;
11529 if (sec->flags & SEC_MERGE)
11532 if (sec->rawsize > max_contents_size)
11533 max_contents_size = sec->rawsize;
11534 if (sec->size > max_contents_size)
11535 max_contents_size = sec->size;
11537 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11538 && (sec->owner->flags & DYNAMIC) == 0)
11542 /* We are interested in just local symbols, not all
11544 if (elf_bad_symtab (sec->owner))
11545 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11546 / bed->s->sizeof_sym);
11548 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11550 if (sym_count > max_sym_count)
11551 max_sym_count = sym_count;
11553 if (sym_count > max_sym_shndx_count
11554 && elf_symtab_shndx_list (sec->owner) != NULL)
11555 max_sym_shndx_count = sym_count;
11557 if (esdo->this_hdr.sh_type == SHT_REL
11558 || esdo->this_hdr.sh_type == SHT_RELA)
11559 /* Some backends use reloc_count in relocation sections
11560 to count particular types of relocs. Of course,
11561 reloc sections themselves can't have relocations. */
11563 else if (emit_relocs)
11565 reloc_count = sec->reloc_count;
11566 if (bed->elf_backend_count_additional_relocs)
11569 c = (*bed->elf_backend_count_additional_relocs) (sec);
11570 additional_reloc_count += c;
11573 else if (bed->elf_backend_count_relocs)
11574 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11576 esdi = elf_section_data (sec);
11578 if ((sec->flags & SEC_RELOC) != 0)
11580 size_t ext_size = 0;
11582 if (esdi->rel.hdr != NULL)
11583 ext_size = esdi->rel.hdr->sh_size;
11584 if (esdi->rela.hdr != NULL)
11585 ext_size += esdi->rela.hdr->sh_size;
11587 if (ext_size > max_external_reloc_size)
11588 max_external_reloc_size = ext_size;
11589 if (sec->reloc_count > max_internal_reloc_count)
11590 max_internal_reloc_count = sec->reloc_count;
11595 if (reloc_count == 0)
11598 reloc_count += additional_reloc_count;
11599 o->reloc_count += reloc_count;
11601 if (p->type == bfd_indirect_link_order && emit_relocs)
11605 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11606 esdo->rel.count += additional_reloc_count;
11608 if (esdi->rela.hdr)
11610 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11611 esdo->rela.count += additional_reloc_count;
11617 esdo->rela.count += reloc_count;
11619 esdo->rel.count += reloc_count;
11623 if (o->reloc_count > 0)
11624 o->flags |= SEC_RELOC;
11627 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11628 set it (this is probably a bug) and if it is set
11629 assign_section_numbers will create a reloc section. */
11630 o->flags &=~ SEC_RELOC;
11633 /* If the SEC_ALLOC flag is not set, force the section VMA to
11634 zero. This is done in elf_fake_sections as well, but forcing
11635 the VMA to 0 here will ensure that relocs against these
11636 sections are handled correctly. */
11637 if ((o->flags & SEC_ALLOC) == 0
11638 && ! o->user_set_vma)
11642 if (! bfd_link_relocatable (info) && merged)
11643 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11645 /* Figure out the file positions for everything but the symbol table
11646 and the relocs. We set symcount to force assign_section_numbers
11647 to create a symbol table. */
11648 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11649 BFD_ASSERT (! abfd->output_has_begun);
11650 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11653 /* Set sizes, and assign file positions for reloc sections. */
11654 for (o = abfd->sections; o != NULL; o = o->next)
11656 struct bfd_elf_section_data *esdo = elf_section_data (o);
11657 if ((o->flags & SEC_RELOC) != 0)
11660 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11664 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11668 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11669 to count upwards while actually outputting the relocations. */
11670 esdo->rel.count = 0;
11671 esdo->rela.count = 0;
11673 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11675 /* Cache the section contents so that they can be compressed
11676 later. Use bfd_malloc since it will be freed by
11677 bfd_compress_section_contents. */
11678 unsigned char *contents = esdo->this_hdr.contents;
11679 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11682 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11683 if (contents == NULL)
11685 esdo->this_hdr.contents = contents;
11689 /* We have now assigned file positions for all the sections except
11690 .symtab, .strtab, and non-loaded reloc sections. We start the
11691 .symtab section at the current file position, and write directly
11692 to it. We build the .strtab section in memory. */
11693 bfd_get_symcount (abfd) = 0;
11694 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11695 /* sh_name is set in prep_headers. */
11696 symtab_hdr->sh_type = SHT_SYMTAB;
11697 /* sh_flags, sh_addr and sh_size all start off zero. */
11698 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11699 /* sh_link is set in assign_section_numbers. */
11700 /* sh_info is set below. */
11701 /* sh_offset is set just below. */
11702 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11704 if (max_sym_count < 20)
11705 max_sym_count = 20;
11706 htab->strtabsize = max_sym_count;
11707 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11708 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11709 if (htab->strtab == NULL)
11711 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11713 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11714 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11716 if (info->strip != strip_all || emit_relocs)
11718 file_ptr off = elf_next_file_pos (abfd);
11720 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11722 /* Note that at this point elf_next_file_pos (abfd) is
11723 incorrect. We do not yet know the size of the .symtab section.
11724 We correct next_file_pos below, after we do know the size. */
11726 /* Start writing out the symbol table. The first symbol is always a
11728 elfsym.st_value = 0;
11729 elfsym.st_size = 0;
11730 elfsym.st_info = 0;
11731 elfsym.st_other = 0;
11732 elfsym.st_shndx = SHN_UNDEF;
11733 elfsym.st_target_internal = 0;
11734 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11735 bfd_und_section_ptr, NULL) != 1)
11738 /* Output a symbol for each section. We output these even if we are
11739 discarding local symbols, since they are used for relocs. These
11740 symbols have no names. We store the index of each one in the
11741 index field of the section, so that we can find it again when
11742 outputting relocs. */
11744 elfsym.st_size = 0;
11745 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11746 elfsym.st_other = 0;
11747 elfsym.st_value = 0;
11748 elfsym.st_target_internal = 0;
11749 for (i = 1; i < elf_numsections (abfd); i++)
11751 o = bfd_section_from_elf_index (abfd, i);
11754 o->target_index = bfd_get_symcount (abfd);
11755 elfsym.st_shndx = i;
11756 if (!bfd_link_relocatable (info))
11757 elfsym.st_value = o->vma;
11758 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11765 /* Allocate some memory to hold information read in from the input
11767 if (max_contents_size != 0)
11769 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11770 if (flinfo.contents == NULL)
11774 if (max_external_reloc_size != 0)
11776 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11777 if (flinfo.external_relocs == NULL)
11781 if (max_internal_reloc_count != 0)
11783 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11784 amt *= sizeof (Elf_Internal_Rela);
11785 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11786 if (flinfo.internal_relocs == NULL)
11790 if (max_sym_count != 0)
11792 amt = max_sym_count * bed->s->sizeof_sym;
11793 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11794 if (flinfo.external_syms == NULL)
11797 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11798 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11799 if (flinfo.internal_syms == NULL)
11802 amt = max_sym_count * sizeof (long);
11803 flinfo.indices = (long int *) bfd_malloc (amt);
11804 if (flinfo.indices == NULL)
11807 amt = max_sym_count * sizeof (asection *);
11808 flinfo.sections = (asection **) bfd_malloc (amt);
11809 if (flinfo.sections == NULL)
11813 if (max_sym_shndx_count != 0)
11815 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11816 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11817 if (flinfo.locsym_shndx == NULL)
11823 bfd_vma base, end = 0;
11826 for (sec = htab->tls_sec;
11827 sec && (sec->flags & SEC_THREAD_LOCAL);
11830 bfd_size_type size = sec->size;
11833 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11835 struct bfd_link_order *ord = sec->map_tail.link_order;
11838 size = ord->offset + ord->size;
11840 end = sec->vma + size;
11842 base = htab->tls_sec->vma;
11843 /* Only align end of TLS section if static TLS doesn't have special
11844 alignment requirements. */
11845 if (bed->static_tls_alignment == 1)
11846 end = align_power (end, htab->tls_sec->alignment_power);
11847 htab->tls_size = end - base;
11850 /* Reorder SHF_LINK_ORDER sections. */
11851 for (o = abfd->sections; o != NULL; o = o->next)
11853 if (!elf_fixup_link_order (abfd, o))
11857 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11860 /* Since ELF permits relocations to be against local symbols, we
11861 must have the local symbols available when we do the relocations.
11862 Since we would rather only read the local symbols once, and we
11863 would rather not keep them in memory, we handle all the
11864 relocations for a single input file at the same time.
11866 Unfortunately, there is no way to know the total number of local
11867 symbols until we have seen all of them, and the local symbol
11868 indices precede the global symbol indices. This means that when
11869 we are generating relocatable output, and we see a reloc against
11870 a global symbol, we can not know the symbol index until we have
11871 finished examining all the local symbols to see which ones we are
11872 going to output. To deal with this, we keep the relocations in
11873 memory, and don't output them until the end of the link. This is
11874 an unfortunate waste of memory, but I don't see a good way around
11875 it. Fortunately, it only happens when performing a relocatable
11876 link, which is not the common case. FIXME: If keep_memory is set
11877 we could write the relocs out and then read them again; I don't
11878 know how bad the memory loss will be. */
11880 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11881 sub->output_has_begun = FALSE;
11882 for (o = abfd->sections; o != NULL; o = o->next)
11884 for (p = o->map_head.link_order; p != NULL; p = p->next)
11886 if (p->type == bfd_indirect_link_order
11887 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11888 == bfd_target_elf_flavour)
11889 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11891 if (! sub->output_has_begun)
11893 if (! elf_link_input_bfd (&flinfo, sub))
11895 sub->output_has_begun = TRUE;
11898 else if (p->type == bfd_section_reloc_link_order
11899 || p->type == bfd_symbol_reloc_link_order)
11901 if (! elf_reloc_link_order (abfd, info, o, p))
11906 if (! _bfd_default_link_order (abfd, info, o, p))
11908 if (p->type == bfd_indirect_link_order
11909 && (bfd_get_flavour (sub)
11910 == bfd_target_elf_flavour)
11911 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11912 != bed->s->elfclass))
11914 const char *iclass, *oclass;
11916 switch (bed->s->elfclass)
11918 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11919 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11920 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11924 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11926 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11927 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11928 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11932 bfd_set_error (bfd_error_wrong_format);
11934 /* xgettext:c-format */
11935 (_("%B: file class %s incompatible with %s"),
11936 sub, iclass, oclass);
11945 /* Free symbol buffer if needed. */
11946 if (!info->reduce_memory_overheads)
11948 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11949 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11950 && elf_tdata (sub)->symbuf)
11952 free (elf_tdata (sub)->symbuf);
11953 elf_tdata (sub)->symbuf = NULL;
11957 /* Output any global symbols that got converted to local in a
11958 version script or due to symbol visibility. We do this in a
11959 separate step since ELF requires all local symbols to appear
11960 prior to any global symbols. FIXME: We should only do this if
11961 some global symbols were, in fact, converted to become local.
11962 FIXME: Will this work correctly with the Irix 5 linker? */
11963 eoinfo.failed = FALSE;
11964 eoinfo.flinfo = &flinfo;
11965 eoinfo.localsyms = TRUE;
11966 eoinfo.file_sym_done = FALSE;
11967 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11971 /* If backend needs to output some local symbols not present in the hash
11972 table, do it now. */
11973 if (bed->elf_backend_output_arch_local_syms
11974 && (info->strip != strip_all || emit_relocs))
11976 typedef int (*out_sym_func)
11977 (void *, const char *, Elf_Internal_Sym *, asection *,
11978 struct elf_link_hash_entry *);
11980 if (! ((*bed->elf_backend_output_arch_local_syms)
11981 (abfd, info, &flinfo,
11982 (out_sym_func) elf_link_output_symstrtab)))
11986 /* That wrote out all the local symbols. Finish up the symbol table
11987 with the global symbols. Even if we want to strip everything we
11988 can, we still need to deal with those global symbols that got
11989 converted to local in a version script. */
11991 /* The sh_info field records the index of the first non local symbol. */
11992 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11995 && htab->dynsym != NULL
11996 && htab->dynsym->output_section != bfd_abs_section_ptr)
11998 Elf_Internal_Sym sym;
11999 bfd_byte *dynsym = htab->dynsym->contents;
12001 o = htab->dynsym->output_section;
12002 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12004 /* Write out the section symbols for the output sections. */
12005 if (bfd_link_pic (info)
12006 || htab->is_relocatable_executable)
12012 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12014 sym.st_target_internal = 0;
12016 for (s = abfd->sections; s != NULL; s = s->next)
12022 dynindx = elf_section_data (s)->dynindx;
12025 indx = elf_section_data (s)->this_idx;
12026 BFD_ASSERT (indx > 0);
12027 sym.st_shndx = indx;
12028 if (! check_dynsym (abfd, &sym))
12030 sym.st_value = s->vma;
12031 dest = dynsym + dynindx * bed->s->sizeof_sym;
12032 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12036 /* Write out the local dynsyms. */
12037 if (htab->dynlocal)
12039 struct elf_link_local_dynamic_entry *e;
12040 for (e = htab->dynlocal; e ; e = e->next)
12045 /* Copy the internal symbol and turn off visibility.
12046 Note that we saved a word of storage and overwrote
12047 the original st_name with the dynstr_index. */
12049 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12051 s = bfd_section_from_elf_index (e->input_bfd,
12056 elf_section_data (s->output_section)->this_idx;
12057 if (! check_dynsym (abfd, &sym))
12059 sym.st_value = (s->output_section->vma
12061 + e->isym.st_value);
12064 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12065 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12070 /* We get the global symbols from the hash table. */
12071 eoinfo.failed = FALSE;
12072 eoinfo.localsyms = FALSE;
12073 eoinfo.flinfo = &flinfo;
12074 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12078 /* If backend needs to output some symbols not present in the hash
12079 table, do it now. */
12080 if (bed->elf_backend_output_arch_syms
12081 && (info->strip != strip_all || emit_relocs))
12083 typedef int (*out_sym_func)
12084 (void *, const char *, Elf_Internal_Sym *, asection *,
12085 struct elf_link_hash_entry *);
12087 if (! ((*bed->elf_backend_output_arch_syms)
12088 (abfd, info, &flinfo,
12089 (out_sym_func) elf_link_output_symstrtab)))
12093 /* Finalize the .strtab section. */
12094 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12096 /* Swap out the .strtab section. */
12097 if (!elf_link_swap_symbols_out (&flinfo))
12100 /* Now we know the size of the symtab section. */
12101 if (bfd_get_symcount (abfd) > 0)
12103 /* Finish up and write out the symbol string table (.strtab)
12105 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12106 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12108 if (elf_symtab_shndx_list (abfd))
12110 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12112 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12114 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12115 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12116 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12117 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12118 symtab_shndx_hdr->sh_size = amt;
12120 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12123 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12124 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12129 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12130 /* sh_name was set in prep_headers. */
12131 symstrtab_hdr->sh_type = SHT_STRTAB;
12132 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12133 symstrtab_hdr->sh_addr = 0;
12134 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12135 symstrtab_hdr->sh_entsize = 0;
12136 symstrtab_hdr->sh_link = 0;
12137 symstrtab_hdr->sh_info = 0;
12138 /* sh_offset is set just below. */
12139 symstrtab_hdr->sh_addralign = 1;
12141 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12143 elf_next_file_pos (abfd) = off;
12145 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12146 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12150 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12152 _bfd_error_handler (_("%B: failed to generate import library"),
12153 info->out_implib_bfd);
12157 /* Adjust the relocs to have the correct symbol indices. */
12158 for (o = abfd->sections; o != NULL; o = o->next)
12160 struct bfd_elf_section_data *esdo = elf_section_data (o);
12162 if ((o->flags & SEC_RELOC) == 0)
12165 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12166 if (esdo->rel.hdr != NULL
12167 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12169 if (esdo->rela.hdr != NULL
12170 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12173 /* Set the reloc_count field to 0 to prevent write_relocs from
12174 trying to swap the relocs out itself. */
12175 o->reloc_count = 0;
12178 if (dynamic && info->combreloc && dynobj != NULL)
12179 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12181 /* If we are linking against a dynamic object, or generating a
12182 shared library, finish up the dynamic linking information. */
12185 bfd_byte *dyncon, *dynconend;
12187 /* Fix up .dynamic entries. */
12188 o = bfd_get_linker_section (dynobj, ".dynamic");
12189 BFD_ASSERT (o != NULL);
12191 dyncon = o->contents;
12192 dynconend = o->contents + o->size;
12193 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12195 Elf_Internal_Dyn dyn;
12198 bfd_size_type sh_size;
12201 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12208 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12210 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12212 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12213 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12216 dyn.d_un.d_val = relativecount;
12223 name = info->init_function;
12226 name = info->fini_function;
12229 struct elf_link_hash_entry *h;
12231 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12233 && (h->root.type == bfd_link_hash_defined
12234 || h->root.type == bfd_link_hash_defweak))
12236 dyn.d_un.d_ptr = h->root.u.def.value;
12237 o = h->root.u.def.section;
12238 if (o->output_section != NULL)
12239 dyn.d_un.d_ptr += (o->output_section->vma
12240 + o->output_offset);
12243 /* The symbol is imported from another shared
12244 library and does not apply to this one. */
12245 dyn.d_un.d_ptr = 0;
12252 case DT_PREINIT_ARRAYSZ:
12253 name = ".preinit_array";
12255 case DT_INIT_ARRAYSZ:
12256 name = ".init_array";
12258 case DT_FINI_ARRAYSZ:
12259 name = ".fini_array";
12261 o = bfd_get_section_by_name (abfd, name);
12265 (_("could not find section %s"), name);
12270 (_("warning: %s section has zero size"), name);
12271 dyn.d_un.d_val = o->size;
12274 case DT_PREINIT_ARRAY:
12275 name = ".preinit_array";
12277 case DT_INIT_ARRAY:
12278 name = ".init_array";
12280 case DT_FINI_ARRAY:
12281 name = ".fini_array";
12283 o = bfd_get_section_by_name (abfd, name);
12290 name = ".gnu.hash";
12299 name = ".gnu.version_d";
12302 name = ".gnu.version_r";
12305 name = ".gnu.version";
12307 o = bfd_get_linker_section (dynobj, name);
12312 (_("could not find section %s"), name);
12315 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12318 (_("warning: section '%s' is being made into a note"), name);
12319 bfd_set_error (bfd_error_nonrepresentable_section);
12322 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12329 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12335 for (i = 1; i < elf_numsections (abfd); i++)
12337 Elf_Internal_Shdr *hdr;
12339 hdr = elf_elfsections (abfd)[i];
12340 if (hdr->sh_type == type
12341 && (hdr->sh_flags & SHF_ALLOC) != 0)
12343 sh_size += hdr->sh_size;
12345 || sh_addr > hdr->sh_addr)
12346 sh_addr = hdr->sh_addr;
12350 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12352 /* Don't count procedure linkage table relocs in the
12353 overall reloc count. */
12354 sh_size -= htab->srelplt->size;
12356 /* If the size is zero, make the address zero too.
12357 This is to avoid a glibc bug. If the backend
12358 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12359 zero, then we'll put DT_RELA at the end of
12360 DT_JMPREL. glibc will interpret the end of
12361 DT_RELA matching the end of DT_JMPREL as the
12362 case where DT_RELA includes DT_JMPREL, and for
12363 LD_BIND_NOW will decide that processing DT_RELA
12364 will process the PLT relocs too. Net result:
12365 No PLT relocs applied. */
12368 /* If .rela.plt is the first .rela section, exclude
12369 it from DT_RELA. */
12370 else if (sh_addr == (htab->srelplt->output_section->vma
12371 + htab->srelplt->output_offset))
12372 sh_addr += htab->srelplt->size;
12375 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12376 dyn.d_un.d_val = sh_size;
12378 dyn.d_un.d_ptr = sh_addr;
12381 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12385 /* If we have created any dynamic sections, then output them. */
12386 if (dynobj != NULL)
12388 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12391 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12392 if (((info->warn_shared_textrel && bfd_link_pic (info))
12393 || info->error_textrel)
12394 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12396 bfd_byte *dyncon, *dynconend;
12398 dyncon = o->contents;
12399 dynconend = o->contents + o->size;
12400 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12402 Elf_Internal_Dyn dyn;
12404 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12406 if (dyn.d_tag == DT_TEXTREL)
12408 if (info->error_textrel)
12409 info->callbacks->einfo
12410 (_("%P%X: read-only segment has dynamic relocations.\n"));
12412 info->callbacks->einfo
12413 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12419 for (o = dynobj->sections; o != NULL; o = o->next)
12421 if ((o->flags & SEC_HAS_CONTENTS) == 0
12423 || o->output_section == bfd_abs_section_ptr)
12425 if ((o->flags & SEC_LINKER_CREATED) == 0)
12427 /* At this point, we are only interested in sections
12428 created by _bfd_elf_link_create_dynamic_sections. */
12431 if (htab->stab_info.stabstr == o)
12433 if (htab->eh_info.hdr_sec == o)
12435 if (strcmp (o->name, ".dynstr") != 0)
12437 if (! bfd_set_section_contents (abfd, o->output_section,
12439 (file_ptr) o->output_offset
12440 * bfd_octets_per_byte (abfd),
12446 /* The contents of the .dynstr section are actually in a
12450 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12451 if (bfd_seek (abfd, off, SEEK_SET) != 0
12452 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12458 if (bfd_link_relocatable (info))
12460 bfd_boolean failed = FALSE;
12462 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12467 /* If we have optimized stabs strings, output them. */
12468 if (htab->stab_info.stabstr != NULL)
12470 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12474 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12477 elf_final_link_free (abfd, &flinfo);
12479 elf_linker (abfd) = TRUE;
12483 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12484 if (contents == NULL)
12485 return FALSE; /* Bail out and fail. */
12486 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12487 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12494 elf_final_link_free (abfd, &flinfo);
12498 /* Initialize COOKIE for input bfd ABFD. */
12501 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12502 struct bfd_link_info *info, bfd *abfd)
12504 Elf_Internal_Shdr *symtab_hdr;
12505 const struct elf_backend_data *bed;
12507 bed = get_elf_backend_data (abfd);
12508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12510 cookie->abfd = abfd;
12511 cookie->sym_hashes = elf_sym_hashes (abfd);
12512 cookie->bad_symtab = elf_bad_symtab (abfd);
12513 if (cookie->bad_symtab)
12515 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12516 cookie->extsymoff = 0;
12520 cookie->locsymcount = symtab_hdr->sh_info;
12521 cookie->extsymoff = symtab_hdr->sh_info;
12524 if (bed->s->arch_size == 32)
12525 cookie->r_sym_shift = 8;
12527 cookie->r_sym_shift = 32;
12529 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12530 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12532 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12533 cookie->locsymcount, 0,
12535 if (cookie->locsyms == NULL)
12537 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12540 if (info->keep_memory)
12541 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12546 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12549 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12551 Elf_Internal_Shdr *symtab_hdr;
12553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12554 if (cookie->locsyms != NULL
12555 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12556 free (cookie->locsyms);
12559 /* Initialize the relocation information in COOKIE for input section SEC
12560 of input bfd ABFD. */
12563 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12564 struct bfd_link_info *info, bfd *abfd,
12567 const struct elf_backend_data *bed;
12569 if (sec->reloc_count == 0)
12571 cookie->rels = NULL;
12572 cookie->relend = NULL;
12576 bed = get_elf_backend_data (abfd);
12578 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12579 info->keep_memory);
12580 if (cookie->rels == NULL)
12582 cookie->rel = cookie->rels;
12583 cookie->relend = (cookie->rels
12584 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12586 cookie->rel = cookie->rels;
12590 /* Free the memory allocated by init_reloc_cookie_rels,
12594 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12597 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12598 free (cookie->rels);
12601 /* Initialize the whole of COOKIE for input section SEC. */
12604 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12605 struct bfd_link_info *info,
12608 if (!init_reloc_cookie (cookie, info, sec->owner))
12610 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12615 fini_reloc_cookie (cookie, sec->owner);
12620 /* Free the memory allocated by init_reloc_cookie_for_section,
12624 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12627 fini_reloc_cookie_rels (cookie, sec);
12628 fini_reloc_cookie (cookie, sec->owner);
12631 /* Garbage collect unused sections. */
12633 /* Default gc_mark_hook. */
12636 _bfd_elf_gc_mark_hook (asection *sec,
12637 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12638 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12639 struct elf_link_hash_entry *h,
12640 Elf_Internal_Sym *sym)
12644 switch (h->root.type)
12646 case bfd_link_hash_defined:
12647 case bfd_link_hash_defweak:
12648 return h->root.u.def.section;
12650 case bfd_link_hash_common:
12651 return h->root.u.c.p->section;
12658 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12663 /* For undefined __start_<name> and __stop_<name> symbols, return the
12664 first input section matching <name>. Return NULL otherwise. */
12667 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12668 struct elf_link_hash_entry *h)
12671 const char *sec_name;
12673 if (h->root.type != bfd_link_hash_undefined
12674 && h->root.type != bfd_link_hash_undefweak)
12677 s = h->root.u.undef.section;
12680 if (s == (asection *) 0 - 1)
12686 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12687 sec_name = h->root.root.string + 8;
12688 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12689 sec_name = h->root.root.string + 7;
12691 if (sec_name != NULL && *sec_name != '\0')
12695 for (i = info->input_bfds; i != NULL; i = i->link.next)
12697 s = bfd_get_section_by_name (i, sec_name);
12700 h->root.u.undef.section = s;
12707 h->root.u.undef.section = (asection *) 0 - 1;
12712 /* COOKIE->rel describes a relocation against section SEC, which is
12713 a section we've decided to keep. Return the section that contains
12714 the relocation symbol, or NULL if no section contains it. */
12717 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12718 elf_gc_mark_hook_fn gc_mark_hook,
12719 struct elf_reloc_cookie *cookie,
12720 bfd_boolean *start_stop)
12722 unsigned long r_symndx;
12723 struct elf_link_hash_entry *h;
12725 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12726 if (r_symndx == STN_UNDEF)
12729 if (r_symndx >= cookie->locsymcount
12730 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12732 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12735 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12739 while (h->root.type == bfd_link_hash_indirect
12740 || h->root.type == bfd_link_hash_warning)
12741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12743 /* If this symbol is weak and there is a non-weak definition, we
12744 keep the non-weak definition because many backends put
12745 dynamic reloc info on the non-weak definition for code
12746 handling copy relocs. */
12747 if (h->u.weakdef != NULL)
12748 h->u.weakdef->mark = 1;
12750 if (start_stop != NULL)
12752 /* To work around a glibc bug, mark all XXX input sections
12753 when there is an as yet undefined reference to __start_XXX
12754 or __stop_XXX symbols. The linker will later define such
12755 symbols for orphan input sections that have a name
12756 representable as a C identifier. */
12757 asection *s = _bfd_elf_is_start_stop (info, h);
12761 *start_stop = !s->gc_mark;
12766 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12769 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12770 &cookie->locsyms[r_symndx]);
12773 /* COOKIE->rel describes a relocation against section SEC, which is
12774 a section we've decided to keep. Mark the section that contains
12775 the relocation symbol. */
12778 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12780 elf_gc_mark_hook_fn gc_mark_hook,
12781 struct elf_reloc_cookie *cookie)
12784 bfd_boolean start_stop = FALSE;
12786 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12787 while (rsec != NULL)
12789 if (!rsec->gc_mark)
12791 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12792 || (rsec->owner->flags & DYNAMIC) != 0)
12794 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12799 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12804 /* The mark phase of garbage collection. For a given section, mark
12805 it and any sections in this section's group, and all the sections
12806 which define symbols to which it refers. */
12809 _bfd_elf_gc_mark (struct bfd_link_info *info,
12811 elf_gc_mark_hook_fn gc_mark_hook)
12814 asection *group_sec, *eh_frame;
12818 /* Mark all the sections in the group. */
12819 group_sec = elf_section_data (sec)->next_in_group;
12820 if (group_sec && !group_sec->gc_mark)
12821 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12824 /* Look through the section relocs. */
12826 eh_frame = elf_eh_frame_section (sec->owner);
12827 if ((sec->flags & SEC_RELOC) != 0
12828 && sec->reloc_count > 0
12829 && sec != eh_frame)
12831 struct elf_reloc_cookie cookie;
12833 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12837 for (; cookie.rel < cookie.relend; cookie.rel++)
12838 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12843 fini_reloc_cookie_for_section (&cookie, sec);
12847 if (ret && eh_frame && elf_fde_list (sec))
12849 struct elf_reloc_cookie cookie;
12851 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12855 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12856 gc_mark_hook, &cookie))
12858 fini_reloc_cookie_for_section (&cookie, eh_frame);
12862 eh_frame = elf_section_eh_frame_entry (sec);
12863 if (ret && eh_frame && !eh_frame->gc_mark)
12864 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12870 /* Scan and mark sections in a special or debug section group. */
12873 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12875 /* Point to first section of section group. */
12877 /* Used to iterate the section group. */
12880 bfd_boolean is_special_grp = TRUE;
12881 bfd_boolean is_debug_grp = TRUE;
12883 /* First scan to see if group contains any section other than debug
12884 and special section. */
12885 ssec = msec = elf_next_in_group (grp);
12888 if ((msec->flags & SEC_DEBUGGING) == 0)
12889 is_debug_grp = FALSE;
12891 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12892 is_special_grp = FALSE;
12894 msec = elf_next_in_group (msec);
12896 while (msec != ssec);
12898 /* If this is a pure debug section group or pure special section group,
12899 keep all sections in this group. */
12900 if (is_debug_grp || is_special_grp)
12905 msec = elf_next_in_group (msec);
12907 while (msec != ssec);
12911 /* Keep debug and special sections. */
12914 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12915 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12919 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12922 bfd_boolean some_kept;
12923 bfd_boolean debug_frag_seen;
12925 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12928 /* Ensure all linker created sections are kept,
12929 see if any other section is already marked,
12930 and note if we have any fragmented debug sections. */
12931 debug_frag_seen = some_kept = FALSE;
12932 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12934 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12936 else if (isec->gc_mark)
12939 if (debug_frag_seen == FALSE
12940 && (isec->flags & SEC_DEBUGGING)
12941 && CONST_STRNEQ (isec->name, ".debug_line."))
12942 debug_frag_seen = TRUE;
12945 /* If no section in this file will be kept, then we can
12946 toss out the debug and special sections. */
12950 /* Keep debug and special sections like .comment when they are
12951 not part of a group. Also keep section groups that contain
12952 just debug sections or special sections. */
12953 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12955 if ((isec->flags & SEC_GROUP) != 0)
12956 _bfd_elf_gc_mark_debug_special_section_group (isec);
12957 else if (((isec->flags & SEC_DEBUGGING) != 0
12958 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12959 && elf_next_in_group (isec) == NULL)
12963 if (! debug_frag_seen)
12966 /* Look for CODE sections which are going to be discarded,
12967 and find and discard any fragmented debug sections which
12968 are associated with that code section. */
12969 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12970 if ((isec->flags & SEC_CODE) != 0
12971 && isec->gc_mark == 0)
12976 ilen = strlen (isec->name);
12978 /* Association is determined by the name of the debug section
12979 containing the name of the code section as a suffix. For
12980 example .debug_line.text.foo is a debug section associated
12982 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12986 if (dsec->gc_mark == 0
12987 || (dsec->flags & SEC_DEBUGGING) == 0)
12990 dlen = strlen (dsec->name);
12993 && strncmp (dsec->name + (dlen - ilen),
12994 isec->name, ilen) == 0)
13004 /* The sweep phase of garbage collection. Remove all garbage sections. */
13006 typedef bfd_boolean (*gc_sweep_hook_fn)
13007 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13010 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13013 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13014 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13016 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13020 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13021 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13024 for (o = sub->sections; o != NULL; o = o->next)
13026 /* When any section in a section group is kept, we keep all
13027 sections in the section group. If the first member of
13028 the section group is excluded, we will also exclude the
13030 if (o->flags & SEC_GROUP)
13032 asection *first = elf_next_in_group (o);
13033 o->gc_mark = first->gc_mark;
13039 /* Skip sweeping sections already excluded. */
13040 if (o->flags & SEC_EXCLUDE)
13043 /* Since this is early in the link process, it is simple
13044 to remove a section from the output. */
13045 o->flags |= SEC_EXCLUDE;
13047 if (info->print_gc_sections && o->size != 0)
13048 /* xgettext:c-format */
13049 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13052 /* But we also have to update some of the relocation
13053 info we collected before. */
13055 && (o->flags & SEC_RELOC) != 0
13056 && o->reloc_count != 0
13057 && !((info->strip == strip_all || info->strip == strip_debugger)
13058 && (o->flags & SEC_DEBUGGING) != 0)
13059 && !bfd_is_abs_section (o->output_section))
13061 Elf_Internal_Rela *internal_relocs;
13065 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13066 info->keep_memory);
13067 if (internal_relocs == NULL)
13070 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13072 if (elf_section_data (o)->relocs != internal_relocs)
13073 free (internal_relocs);
13084 /* Propagate collected vtable information. This is called through
13085 elf_link_hash_traverse. */
13088 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13090 /* Those that are not vtables. */
13091 if (h->vtable == NULL || h->vtable->parent == NULL)
13094 /* Those vtables that do not have parents, we cannot merge. */
13095 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13098 /* If we've already been done, exit. */
13099 if (h->vtable->used && h->vtable->used[-1])
13102 /* Make sure the parent's table is up to date. */
13103 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13105 if (h->vtable->used == NULL)
13107 /* None of this table's entries were referenced. Re-use the
13109 h->vtable->used = h->vtable->parent->vtable->used;
13110 h->vtable->size = h->vtable->parent->vtable->size;
13115 bfd_boolean *cu, *pu;
13117 /* Or the parent's entries into ours. */
13118 cu = h->vtable->used;
13120 pu = h->vtable->parent->vtable->used;
13123 const struct elf_backend_data *bed;
13124 unsigned int log_file_align;
13126 bed = get_elf_backend_data (h->root.u.def.section->owner);
13127 log_file_align = bed->s->log_file_align;
13128 n = h->vtable->parent->vtable->size >> log_file_align;
13143 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13146 bfd_vma hstart, hend;
13147 Elf_Internal_Rela *relstart, *relend, *rel;
13148 const struct elf_backend_data *bed;
13149 unsigned int log_file_align;
13151 /* Take care of both those symbols that do not describe vtables as
13152 well as those that are not loaded. */
13153 if (h->vtable == NULL || h->vtable->parent == NULL)
13156 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13157 || h->root.type == bfd_link_hash_defweak);
13159 sec = h->root.u.def.section;
13160 hstart = h->root.u.def.value;
13161 hend = hstart + h->size;
13163 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13165 return *(bfd_boolean *) okp = FALSE;
13166 bed = get_elf_backend_data (sec->owner);
13167 log_file_align = bed->s->log_file_align;
13169 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13171 for (rel = relstart; rel < relend; ++rel)
13172 if (rel->r_offset >= hstart && rel->r_offset < hend)
13174 /* If the entry is in use, do nothing. */
13175 if (h->vtable->used
13176 && (rel->r_offset - hstart) < h->vtable->size)
13178 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13179 if (h->vtable->used[entry])
13182 /* Otherwise, kill it. */
13183 rel->r_offset = rel->r_info = rel->r_addend = 0;
13189 /* Mark sections containing dynamically referenced symbols. When
13190 building shared libraries, we must assume that any visible symbol is
13194 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13196 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13197 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13199 if ((h->root.type == bfd_link_hash_defined
13200 || h->root.type == bfd_link_hash_defweak)
13202 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13203 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13204 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13205 && (!bfd_link_executable (info)
13206 || info->gc_keep_exported
13207 || info->export_dynamic
13210 && (*d->match) (&d->head, NULL, h->root.root.string)))
13211 && (h->versioned >= versioned
13212 || !bfd_hide_sym_by_version (info->version_info,
13213 h->root.root.string)))))
13214 h->root.u.def.section->flags |= SEC_KEEP;
13219 /* Keep all sections containing symbols undefined on the command-line,
13220 and the section containing the entry symbol. */
13223 _bfd_elf_gc_keep (struct bfd_link_info *info)
13225 struct bfd_sym_chain *sym;
13227 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13229 struct elf_link_hash_entry *h;
13231 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13232 FALSE, FALSE, FALSE);
13235 && (h->root.type == bfd_link_hash_defined
13236 || h->root.type == bfd_link_hash_defweak)
13237 && !bfd_is_abs_section (h->root.u.def.section)
13238 && !bfd_is_und_section (h->root.u.def.section))
13239 h->root.u.def.section->flags |= SEC_KEEP;
13244 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13245 struct bfd_link_info *info)
13247 bfd *ibfd = info->input_bfds;
13249 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13252 struct elf_reloc_cookie cookie;
13254 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13257 if (!init_reloc_cookie (&cookie, info, ibfd))
13260 for (sec = ibfd->sections; sec; sec = sec->next)
13262 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13263 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13265 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13266 fini_reloc_cookie_rels (&cookie, sec);
13273 /* Do mark and sweep of unused sections. */
13276 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13278 bfd_boolean ok = TRUE;
13280 elf_gc_mark_hook_fn gc_mark_hook;
13281 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13282 struct elf_link_hash_table *htab;
13284 if (!bed->can_gc_sections
13285 || !is_elf_hash_table (info->hash))
13287 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13291 bed->gc_keep (info);
13292 htab = elf_hash_table (info);
13294 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13295 at the .eh_frame section if we can mark the FDEs individually. */
13296 for (sub = info->input_bfds;
13297 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13298 sub = sub->link.next)
13301 struct elf_reloc_cookie cookie;
13303 sec = bfd_get_section_by_name (sub, ".eh_frame");
13304 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13306 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13307 if (elf_section_data (sec)->sec_info
13308 && (sec->flags & SEC_LINKER_CREATED) == 0)
13309 elf_eh_frame_section (sub) = sec;
13310 fini_reloc_cookie_for_section (&cookie, sec);
13311 sec = bfd_get_next_section_by_name (NULL, sec);
13315 /* Apply transitive closure to the vtable entry usage info. */
13316 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13320 /* Kill the vtable relocations that were not used. */
13321 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13325 /* Mark dynamically referenced symbols. */
13326 if (htab->dynamic_sections_created || info->gc_keep_exported)
13327 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13329 /* Grovel through relocs to find out who stays ... */
13330 gc_mark_hook = bed->gc_mark_hook;
13331 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13335 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13336 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13339 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13340 Also treat note sections as a root, if the section is not part
13342 for (o = sub->sections; o != NULL; o = o->next)
13344 && (o->flags & SEC_EXCLUDE) == 0
13345 && ((o->flags & SEC_KEEP) != 0
13346 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13347 && elf_next_in_group (o) == NULL )))
13349 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13354 /* Allow the backend to mark additional target specific sections. */
13355 bed->gc_mark_extra_sections (info, gc_mark_hook);
13357 /* ... and mark SEC_EXCLUDE for those that go. */
13358 return elf_gc_sweep (abfd, info);
13361 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13364 bfd_elf_gc_record_vtinherit (bfd *abfd,
13366 struct elf_link_hash_entry *h,
13369 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13370 struct elf_link_hash_entry **search, *child;
13371 size_t extsymcount;
13372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13374 /* The sh_info field of the symtab header tells us where the
13375 external symbols start. We don't care about the local symbols at
13377 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13378 if (!elf_bad_symtab (abfd))
13379 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13381 sym_hashes = elf_sym_hashes (abfd);
13382 sym_hashes_end = sym_hashes + extsymcount;
13384 /* Hunt down the child symbol, which is in this section at the same
13385 offset as the relocation. */
13386 for (search = sym_hashes; search != sym_hashes_end; ++search)
13388 if ((child = *search) != NULL
13389 && (child->root.type == bfd_link_hash_defined
13390 || child->root.type == bfd_link_hash_defweak)
13391 && child->root.u.def.section == sec
13392 && child->root.u.def.value == offset)
13396 /* xgettext:c-format */
13397 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13398 abfd, sec, (unsigned long) offset);
13399 bfd_set_error (bfd_error_invalid_operation);
13403 if (!child->vtable)
13405 child->vtable = ((struct elf_link_virtual_table_entry *)
13406 bfd_zalloc (abfd, sizeof (*child->vtable)));
13407 if (!child->vtable)
13412 /* This *should* only be the absolute section. It could potentially
13413 be that someone has defined a non-global vtable though, which
13414 would be bad. It isn't worth paging in the local symbols to be
13415 sure though; that case should simply be handled by the assembler. */
13417 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13420 child->vtable->parent = h;
13425 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13428 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13429 asection *sec ATTRIBUTE_UNUSED,
13430 struct elf_link_hash_entry *h,
13433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13434 unsigned int log_file_align = bed->s->log_file_align;
13438 h->vtable = ((struct elf_link_virtual_table_entry *)
13439 bfd_zalloc (abfd, sizeof (*h->vtable)));
13444 if (addend >= h->vtable->size)
13446 size_t size, bytes, file_align;
13447 bfd_boolean *ptr = h->vtable->used;
13449 /* While the symbol is undefined, we have to be prepared to handle
13451 file_align = 1 << log_file_align;
13452 if (h->root.type == bfd_link_hash_undefined)
13453 size = addend + file_align;
13457 if (addend >= size)
13459 /* Oops! We've got a reference past the defined end of
13460 the table. This is probably a bug -- shall we warn? */
13461 size = addend + file_align;
13464 size = (size + file_align - 1) & -file_align;
13466 /* Allocate one extra entry for use as a "done" flag for the
13467 consolidation pass. */
13468 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13472 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13478 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13479 * sizeof (bfd_boolean));
13480 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13484 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13489 /* And arrange for that done flag to be at index -1. */
13490 h->vtable->used = ptr + 1;
13491 h->vtable->size = size;
13494 h->vtable->used[addend >> log_file_align] = TRUE;
13499 /* Map an ELF section header flag to its corresponding string. */
13503 flagword flag_value;
13504 } elf_flags_to_name_table;
13506 static elf_flags_to_name_table elf_flags_to_names [] =
13508 { "SHF_WRITE", SHF_WRITE },
13509 { "SHF_ALLOC", SHF_ALLOC },
13510 { "SHF_EXECINSTR", SHF_EXECINSTR },
13511 { "SHF_MERGE", SHF_MERGE },
13512 { "SHF_STRINGS", SHF_STRINGS },
13513 { "SHF_INFO_LINK", SHF_INFO_LINK},
13514 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13515 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13516 { "SHF_GROUP", SHF_GROUP },
13517 { "SHF_TLS", SHF_TLS },
13518 { "SHF_MASKOS", SHF_MASKOS },
13519 { "SHF_EXCLUDE", SHF_EXCLUDE },
13522 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13524 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13525 struct flag_info *flaginfo,
13528 const bfd_vma sh_flags = elf_section_flags (section);
13530 if (!flaginfo->flags_initialized)
13532 bfd *obfd = info->output_bfd;
13533 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13534 struct flag_info_list *tf = flaginfo->flag_list;
13536 int without_hex = 0;
13538 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13541 flagword (*lookup) (char *);
13543 lookup = bed->elf_backend_lookup_section_flags_hook;
13544 if (lookup != NULL)
13546 flagword hexval = (*lookup) ((char *) tf->name);
13550 if (tf->with == with_flags)
13551 with_hex |= hexval;
13552 else if (tf->with == without_flags)
13553 without_hex |= hexval;
13558 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13560 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13562 if (tf->with == with_flags)
13563 with_hex |= elf_flags_to_names[i].flag_value;
13564 else if (tf->with == without_flags)
13565 without_hex |= elf_flags_to_names[i].flag_value;
13572 info->callbacks->einfo
13573 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13577 flaginfo->flags_initialized = TRUE;
13578 flaginfo->only_with_flags |= with_hex;
13579 flaginfo->not_with_flags |= without_hex;
13582 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13585 if ((flaginfo->not_with_flags & sh_flags) != 0)
13591 struct alloc_got_off_arg {
13593 struct bfd_link_info *info;
13596 /* We need a special top-level link routine to convert got reference counts
13597 to real got offsets. */
13600 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13602 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13603 bfd *obfd = gofarg->info->output_bfd;
13604 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13606 if (h->got.refcount > 0)
13608 h->got.offset = gofarg->gotoff;
13609 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13612 h->got.offset = (bfd_vma) -1;
13617 /* And an accompanying bit to work out final got entry offsets once
13618 we're done. Should be called from final_link. */
13621 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13622 struct bfd_link_info *info)
13625 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13627 struct alloc_got_off_arg gofarg;
13629 BFD_ASSERT (abfd == info->output_bfd);
13631 if (! is_elf_hash_table (info->hash))
13634 /* The GOT offset is relative to the .got section, but the GOT header is
13635 put into the .got.plt section, if the backend uses it. */
13636 if (bed->want_got_plt)
13639 gotoff = bed->got_header_size;
13641 /* Do the local .got entries first. */
13642 for (i = info->input_bfds; i; i = i->link.next)
13644 bfd_signed_vma *local_got;
13645 size_t j, locsymcount;
13646 Elf_Internal_Shdr *symtab_hdr;
13648 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13651 local_got = elf_local_got_refcounts (i);
13655 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13656 if (elf_bad_symtab (i))
13657 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13659 locsymcount = symtab_hdr->sh_info;
13661 for (j = 0; j < locsymcount; ++j)
13663 if (local_got[j] > 0)
13665 local_got[j] = gotoff;
13666 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13669 local_got[j] = (bfd_vma) -1;
13673 /* Then the global .got entries. .plt refcounts are handled by
13674 adjust_dynamic_symbol */
13675 gofarg.gotoff = gotoff;
13676 gofarg.info = info;
13677 elf_link_hash_traverse (elf_hash_table (info),
13678 elf_gc_allocate_got_offsets,
13683 /* Many folk need no more in the way of final link than this, once
13684 got entry reference counting is enabled. */
13687 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13689 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13692 /* Invoke the regular ELF backend linker to do all the work. */
13693 return bfd_elf_final_link (abfd, info);
13697 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13699 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13701 if (rcookie->bad_symtab)
13702 rcookie->rel = rcookie->rels;
13704 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13706 unsigned long r_symndx;
13708 if (! rcookie->bad_symtab)
13709 if (rcookie->rel->r_offset > offset)
13711 if (rcookie->rel->r_offset != offset)
13714 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13715 if (r_symndx == STN_UNDEF)
13718 if (r_symndx >= rcookie->locsymcount
13719 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13721 struct elf_link_hash_entry *h;
13723 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13725 while (h->root.type == bfd_link_hash_indirect
13726 || h->root.type == bfd_link_hash_warning)
13727 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13729 if ((h->root.type == bfd_link_hash_defined
13730 || h->root.type == bfd_link_hash_defweak)
13731 && (h->root.u.def.section->owner != rcookie->abfd
13732 || h->root.u.def.section->kept_section != NULL
13733 || discarded_section (h->root.u.def.section)))
13738 /* It's not a relocation against a global symbol,
13739 but it could be a relocation against a local
13740 symbol for a discarded section. */
13742 Elf_Internal_Sym *isym;
13744 /* Need to: get the symbol; get the section. */
13745 isym = &rcookie->locsyms[r_symndx];
13746 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13748 && (isec->kept_section != NULL
13749 || discarded_section (isec)))
13757 /* Discard unneeded references to discarded sections.
13758 Returns -1 on error, 1 if any section's size was changed, 0 if
13759 nothing changed. This function assumes that the relocations are in
13760 sorted order, which is true for all known assemblers. */
13763 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13765 struct elf_reloc_cookie cookie;
13770 if (info->traditional_format
13771 || !is_elf_hash_table (info->hash))
13774 o = bfd_get_section_by_name (output_bfd, ".stab");
13779 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13782 || i->reloc_count == 0
13783 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13787 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13790 if (!init_reloc_cookie_for_section (&cookie, info, i))
13793 if (_bfd_discard_section_stabs (abfd, i,
13794 elf_section_data (i)->sec_info,
13795 bfd_elf_reloc_symbol_deleted_p,
13799 fini_reloc_cookie_for_section (&cookie, i);
13804 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13805 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13810 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13816 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13819 if (!init_reloc_cookie_for_section (&cookie, info, i))
13822 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13823 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13824 bfd_elf_reloc_symbol_deleted_p,
13828 fini_reloc_cookie_for_section (&cookie, i);
13832 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13834 const struct elf_backend_data *bed;
13836 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13839 bed = get_elf_backend_data (abfd);
13841 if (bed->elf_backend_discard_info != NULL)
13843 if (!init_reloc_cookie (&cookie, info, abfd))
13846 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13849 fini_reloc_cookie (&cookie, abfd);
13853 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13854 _bfd_elf_end_eh_frame_parsing (info);
13856 if (info->eh_frame_hdr_type
13857 && !bfd_link_relocatable (info)
13858 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13865 _bfd_elf_section_already_linked (bfd *abfd,
13867 struct bfd_link_info *info)
13870 const char *name, *key;
13871 struct bfd_section_already_linked *l;
13872 struct bfd_section_already_linked_hash_entry *already_linked_list;
13874 if (sec->output_section == bfd_abs_section_ptr)
13877 flags = sec->flags;
13879 /* Return if it isn't a linkonce section. A comdat group section
13880 also has SEC_LINK_ONCE set. */
13881 if ((flags & SEC_LINK_ONCE) == 0)
13884 /* Don't put group member sections on our list of already linked
13885 sections. They are handled as a group via their group section. */
13886 if (elf_sec_group (sec) != NULL)
13889 /* For a SHT_GROUP section, use the group signature as the key. */
13891 if ((flags & SEC_GROUP) != 0
13892 && elf_next_in_group (sec) != NULL
13893 && elf_group_name (elf_next_in_group (sec)) != NULL)
13894 key = elf_group_name (elf_next_in_group (sec));
13897 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13898 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13899 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13902 /* Must be a user linkonce section that doesn't follow gcc's
13903 naming convention. In this case we won't be matching
13904 single member groups. */
13908 already_linked_list = bfd_section_already_linked_table_lookup (key);
13910 for (l = already_linked_list->entry; l != NULL; l = l->next)
13912 /* We may have 2 different types of sections on the list: group
13913 sections with a signature of <key> (<key> is some string),
13914 and linkonce sections named .gnu.linkonce.<type>.<key>.
13915 Match like sections. LTO plugin sections are an exception.
13916 They are always named .gnu.linkonce.t.<key> and match either
13917 type of section. */
13918 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13919 && ((flags & SEC_GROUP) != 0
13920 || strcmp (name, l->sec->name) == 0))
13921 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13923 /* The section has already been linked. See if we should
13924 issue a warning. */
13925 if (!_bfd_handle_already_linked (sec, l, info))
13928 if (flags & SEC_GROUP)
13930 asection *first = elf_next_in_group (sec);
13931 asection *s = first;
13935 s->output_section = bfd_abs_section_ptr;
13936 /* Record which group discards it. */
13937 s->kept_section = l->sec;
13938 s = elf_next_in_group (s);
13939 /* These lists are circular. */
13949 /* A single member comdat group section may be discarded by a
13950 linkonce section and vice versa. */
13951 if ((flags & SEC_GROUP) != 0)
13953 asection *first = elf_next_in_group (sec);
13955 if (first != NULL && elf_next_in_group (first) == first)
13956 /* Check this single member group against linkonce sections. */
13957 for (l = already_linked_list->entry; l != NULL; l = l->next)
13958 if ((l->sec->flags & SEC_GROUP) == 0
13959 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13961 first->output_section = bfd_abs_section_ptr;
13962 first->kept_section = l->sec;
13963 sec->output_section = bfd_abs_section_ptr;
13968 /* Check this linkonce section against single member groups. */
13969 for (l = already_linked_list->entry; l != NULL; l = l->next)
13970 if (l->sec->flags & SEC_GROUP)
13972 asection *first = elf_next_in_group (l->sec);
13975 && elf_next_in_group (first) == first
13976 && bfd_elf_match_symbols_in_sections (first, sec, info))
13978 sec->output_section = bfd_abs_section_ptr;
13979 sec->kept_section = first;
13984 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13985 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13986 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13987 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13988 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13989 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13990 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13991 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13992 The reverse order cannot happen as there is never a bfd with only the
13993 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13994 matter as here were are looking only for cross-bfd sections. */
13996 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13997 for (l = already_linked_list->entry; l != NULL; l = l->next)
13998 if ((l->sec->flags & SEC_GROUP) == 0
13999 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14001 if (abfd != l->sec->owner)
14002 sec->output_section = bfd_abs_section_ptr;
14006 /* This is the first section with this name. Record it. */
14007 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14008 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14009 return sec->output_section == bfd_abs_section_ptr;
14013 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14015 return sym->st_shndx == SHN_COMMON;
14019 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14025 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14027 return bfd_com_section_ptr;
14031 _bfd_elf_default_got_elt_size (bfd *abfd,
14032 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14033 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14034 bfd *ibfd ATTRIBUTE_UNUSED,
14035 unsigned long symndx ATTRIBUTE_UNUSED)
14037 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14038 return bed->s->arch_size / 8;
14041 /* Routines to support the creation of dynamic relocs. */
14043 /* Returns the name of the dynamic reloc section associated with SEC. */
14045 static const char *
14046 get_dynamic_reloc_section_name (bfd * abfd,
14048 bfd_boolean is_rela)
14051 const char *old_name = bfd_get_section_name (NULL, sec);
14052 const char *prefix = is_rela ? ".rela" : ".rel";
14054 if (old_name == NULL)
14057 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14058 sprintf (name, "%s%s", prefix, old_name);
14063 /* Returns the dynamic reloc section associated with SEC.
14064 If necessary compute the name of the dynamic reloc section based
14065 on SEC's name (looked up in ABFD's string table) and the setting
14069 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14071 bfd_boolean is_rela)
14073 asection * reloc_sec = elf_section_data (sec)->sreloc;
14075 if (reloc_sec == NULL)
14077 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14081 reloc_sec = bfd_get_linker_section (abfd, name);
14083 if (reloc_sec != NULL)
14084 elf_section_data (sec)->sreloc = reloc_sec;
14091 /* Returns the dynamic reloc section associated with SEC. If the
14092 section does not exist it is created and attached to the DYNOBJ
14093 bfd and stored in the SRELOC field of SEC's elf_section_data
14096 ALIGNMENT is the alignment for the newly created section and
14097 IS_RELA defines whether the name should be .rela.<SEC's name>
14098 or .rel.<SEC's name>. The section name is looked up in the
14099 string table associated with ABFD. */
14102 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14104 unsigned int alignment,
14106 bfd_boolean is_rela)
14108 asection * reloc_sec = elf_section_data (sec)->sreloc;
14110 if (reloc_sec == NULL)
14112 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14117 reloc_sec = bfd_get_linker_section (dynobj, name);
14119 if (reloc_sec == NULL)
14121 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14122 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14123 if ((sec->flags & SEC_ALLOC) != 0)
14124 flags |= SEC_ALLOC | SEC_LOAD;
14126 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14127 if (reloc_sec != NULL)
14129 /* _bfd_elf_get_sec_type_attr chooses a section type by
14130 name. Override as it may be wrong, eg. for a user
14131 section named "auto" we'll get ".relauto" which is
14132 seen to be a .rela section. */
14133 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14134 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14139 elf_section_data (sec)->sreloc = reloc_sec;
14145 /* Copy the ELF symbol type and other attributes for a linker script
14146 assignment from HSRC to HDEST. Generally this should be treated as
14147 if we found a strong non-dynamic definition for HDEST (except that
14148 ld ignores multiple definition errors). */
14150 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14151 struct bfd_link_hash_entry *hdest,
14152 struct bfd_link_hash_entry *hsrc)
14154 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14155 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14156 Elf_Internal_Sym isym;
14158 ehdest->type = ehsrc->type;
14159 ehdest->target_internal = ehsrc->target_internal;
14161 isym.st_other = ehsrc->other;
14162 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14165 /* Append a RELA relocation REL to section S in BFD. */
14168 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14170 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14171 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14172 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14173 bed->s->swap_reloca_out (abfd, rel, loc);
14176 /* Append a REL relocation REL to section S in BFD. */
14179 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14182 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14183 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14184 bed->s->swap_reloc_out (abfd, rel, loc);