1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
191 if (! is_elf_hash_table (info->hash))
194 if (elf_hash_table (info)->dynamic_sections_created)
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
203 flags = bed->dynamic_sec_flags;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
209 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
226 || ! bfd_set_section_alignment (abfd, s, 1))
229 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
235 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
241 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
246 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
262 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
263 flags | SEC_READONLY);
265 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
267 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270 if (info->emit_gnu_hash)
272 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
273 flags | SEC_READONLY);
275 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed->s->arch_size == 64)
281 elf_section_data (s)->this_hdr.sh_entsize = 0;
283 elf_section_data (s)->this_hdr.sh_entsize = 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed->elf_backend_create_dynamic_sections == NULL
290 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293 elf_hash_table (info)->dynamic_sections_created = TRUE;
298 /* Create dynamic sections when linking against a dynamic object. */
301 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
303 flagword flags, pltflags;
304 struct elf_link_hash_entry *h;
306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
307 struct elf_link_hash_table *htab = elf_hash_table (info);
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags = bed->dynamic_sec_flags;
314 if (bed->plt_not_loaded)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
320 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
321 if (bed->plt_readonly)
322 pltflags |= SEC_READONLY;
324 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
326 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 if (bed->want_plt_sym)
334 h = _bfd_elf_define_linkage_sym (abfd, info, s,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info)->hplt = h;
341 s = bfd_make_section_anyway_with_flags (abfd,
342 (bed->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags | SEC_READONLY);
346 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
350 if (! _bfd_elf_create_got_section (abfd, info))
353 if (bed->want_dynbss)
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
362 (SEC_ALLOC | SEC_LINKER_CREATED));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s = bfd_make_section_anyway_with_flags (abfd,
380 (bed->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags | SEC_READONLY);
384 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
402 struct elf_link_hash_entry *h)
404 if (h->dynindx == -1)
406 struct elf_strtab_hash *dynstr;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h->other))
419 if (h->root.type != bfd_link_hash_undefined
420 && h->root.type != bfd_link_hash_undefweak)
423 if (!elf_hash_table (info)->is_relocatable_executable)
431 h->dynindx = elf_hash_table (info)->dynsymcount;
432 ++elf_hash_table (info)->dynsymcount;
434 dynstr = elf_hash_table (info)->dynstr;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name = h->root.root.string;
446 p = strchr (name, ELF_VER_CHR);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
460 if (indx == (bfd_size_type) -1)
462 h->dynstr_index = indx;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
472 struct elf_link_hash_entry *h,
473 Elf_Internal_Sym *sym)
475 struct bfd_elf_dynamic_list *d = info->dynamic_list;
477 /* It may be called more than once on the same H. */
478 if(h->dynamic || info->relocatable)
481 if ((info->dynamic_data
482 && (h->type == STT_OBJECT
484 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
486 && h->root.type == bfd_link_hash_new
487 && (*d->match) (&d->head, NULL, h->root.root.string)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd *output_bfd,
496 struct bfd_link_info *info,
501 struct elf_link_hash_entry *h, *hv;
502 struct elf_link_hash_table *htab;
503 const struct elf_backend_data *bed;
505 if (!is_elf_hash_table (info->hash))
508 htab = elf_hash_table (info);
509 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
513 switch (h->root.type)
515 case bfd_link_hash_defined:
516 case bfd_link_hash_defweak:
517 case bfd_link_hash_common:
519 case bfd_link_hash_undefweak:
520 case bfd_link_hash_undefined:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h->root.type = bfd_link_hash_new;
525 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
526 bfd_link_repair_undef_list (&htab->root);
528 case bfd_link_hash_new:
529 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532 case bfd_link_hash_indirect:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed = get_elf_backend_data (output_bfd);
537 while (hv->root.type == bfd_link_hash_indirect
538 || hv->root.type == bfd_link_hash_warning)
539 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
540 /* We don't need to update h->root.u since linker will set them
542 h->root.type = bfd_link_hash_undefined;
543 hv->root.type = bfd_link_hash_indirect;
544 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
545 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
547 case bfd_link_hash_warning:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h->root.type = bfd_link_hash_undefined;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h->verinfo.verdef = NULL;
572 if (provide && hidden)
574 bed = get_elf_backend_data (output_bfd);
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info->relocatable
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
628 if (! is_elf_hash_table (info->hash))
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
645 bfd_release (input_bfd, entry);
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
668 dynstr = elf_hash_table (info)->dynstr;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
680 entry->isym.st_name = dynstr_index;
682 eht = elf_hash_table (info);
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 struct elf_link_local_dynamic_entry *e;
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
722 size_t *count = (size_t *) data;
727 if (h->dynindx != -1)
728 h->dynindx = ++(*count);
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
741 size_t *count = (size_t *) data;
743 if (!h->forced_local)
746 if (h->dynindx != -1)
747 h->dynindx = ++(*count);
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
755 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
756 struct bfd_link_info *info,
759 struct elf_link_hash_table *htab;
761 switch (elf_section_data (p)->this_hdr.sh_type)
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
768 htab = elf_hash_table (info);
769 if (p == htab->tls_sec)
772 if (htab->text_index_section != NULL)
773 return p != htab->text_index_section && p != htab->data_index_section;
775 if (strcmp (p->name, ".got") == 0
776 || strcmp (p->name, ".got.plt") == 0
777 || strcmp (p->name, ".plt") == 0)
781 if (htab->dynobj != NULL
782 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
783 && (ip->flags & SEC_LINKER_CREATED)
784 && ip->output_section == p)
789 /* There shouldn't be section relative relocations
790 against any other section. */
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
803 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
804 struct bfd_link_info *info,
805 unsigned long *section_sym_count)
807 unsigned long dynsymcount = 0;
809 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
811 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
813 for (p = output_bfd->sections; p ; p = p->next)
814 if ((p->flags & SEC_EXCLUDE) == 0
815 && (p->flags & SEC_ALLOC) != 0
816 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
817 elf_section_data (p)->dynindx = ++dynsymcount;
819 elf_section_data (p)->dynindx = 0;
821 *section_sym_count = dynsymcount;
823 elf_link_hash_traverse (elf_hash_table (info),
824 elf_link_renumber_local_hash_table_dynsyms,
827 if (elf_hash_table (info)->dynlocal)
829 struct elf_link_local_dynamic_entry *p;
830 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
831 p->dynindx = ++dynsymcount;
834 elf_link_hash_traverse (elf_hash_table (info),
835 elf_link_renumber_hash_table_dynsyms,
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount != 0)
844 elf_hash_table (info)->dynsymcount = dynsymcount;
848 /* Merge st_other field. */
851 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
852 Elf_Internal_Sym *isym, bfd_boolean definition,
855 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed->elf_backend_merge_symbol_attribute)
861 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
869 || (abfd->my_archive && abfd->my_archive->no_export))
870 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
871 isym->st_other = (STV_HIDDEN
872 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
874 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
876 unsigned char hvis, symvis, other, nvis;
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other = h->other & ~ELF_ST_VISIBILITY (-1);
882 /* Combine visibilities, using the most constraining one. */
883 hvis = ELF_ST_VISIBILITY (h->other);
884 symvis = ELF_ST_VISIBILITY (isym->st_other);
890 nvis = hvis < symvis ? hvis : symvis;
892 h->other = other | nvis;
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
909 _bfd_elf_merge_symbol (bfd *abfd,
910 struct bfd_link_info *info,
912 Elf_Internal_Sym *sym,
915 unsigned int *pold_alignment,
916 struct elf_link_hash_entry **sym_hash,
918 bfd_boolean *override,
919 bfd_boolean *type_change_ok,
920 bfd_boolean *size_change_ok)
922 asection *sec, *oldsec;
923 struct elf_link_hash_entry *h;
924 struct elf_link_hash_entry *flip;
927 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
928 bfd_boolean newweak, oldweak, newfunc, oldfunc;
929 const struct elf_backend_data *bed;
935 bind = ELF_ST_BIND (sym->st_info);
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
940 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
946 if (! bfd_is_und_section (sec))
947 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
949 h = ((struct elf_link_hash_entry *)
950 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
955 bed = get_elf_backend_data (abfd);
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
962 /* For merging, we only care about real symbols. */
964 while (h->root.type == bfd_link_hash_indirect
965 || h->root.type == bfd_link_hash_warning)
966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
971 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
977 if (h->root.type == bfd_link_hash_new)
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
986 switch (h->root.type)
993 case bfd_link_hash_undefined:
994 case bfd_link_hash_undefweak:
995 oldbfd = h->root.u.undef.abfd;
999 case bfd_link_hash_defined:
1000 case bfd_link_hash_defweak:
1001 oldbfd = h->root.u.def.section->owner;
1002 oldsec = h->root.u.def.section;
1005 case bfd_link_hash_common:
1006 oldbfd = h->root.u.c.p->section->owner;
1007 oldsec = h->root.u.c.p->section;
1011 /* Differentiate strong and weak symbols. */
1012 newweak = bind == STB_WEAK;
1013 oldweak = (h->root.type == bfd_link_hash_defweak
1014 || h->root.type == bfd_link_hash_undefweak);
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1023 && (newweak || oldweak)
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1067 && !info->export_dynamic
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1084 *type_change_ok = TRUE;
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 else if (oldbfd != NULL
1089 && ELF_ST_TYPE (sym->st_info) != h->type
1090 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1093 bfd_boolean ntdef, tdef;
1094 asection *ntsec, *tsec;
1096 if (h->type == STT_TLS)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1119 else if (!tdef && !ntdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd, ntbfd, h->root.root.string);
1124 (*_bfd_error_handler)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd, tsec, ntbfd, h->root.root.string);
1128 (*_bfd_error_handler)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd, ntbfd, ntsec, h->root.root.string);
1132 bfd_set_error (bfd_error_bad_value);
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn && !h->dynamic_def)
1141 if (!bfd_is_und_section (sec))
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h->ref_dynamic)
1150 if (bind == STB_WEAK)
1151 h->dynamic_weak = 1;
1153 else if (bind != STB_WEAK)
1154 h->dynamic_weak = 0;
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1161 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1162 && !bfd_is_und_section (sec))
1165 /* Make sure this symbol is dynamic. */
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1172 return bfd_elf_link_record_dynamic_symbol (info, h);
1177 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1191 struct elf_link_hash_entry *vh = *sym_hash;
1193 vh->root.type = h->root.type;
1194 h->root.type = bfd_link_hash_indirect;
1195 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1200 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1201 vh->dynamic_def = 1;
1202 vh->ref_dynamic = 1;
1206 h->root.type = vh->root.type;
1207 vh->ref_dynamic = 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1219 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1220 && bfd_is_und_section (sec))
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1228 h->root.type = bfd_link_hash_undefined;
1229 h->root.u.undef.abfd = abfd;
1233 h->root.type = bfd_link_hash_new;
1234 h->root.u.undef.abfd = NULL;
1242 /* FIXME: Should we check type and size for protected symbol? */
1248 if (bind == STB_GNU_UNIQUE)
1249 h->unique_global = 1;
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1262 if (newdef && !newdyn && olddyn)
1264 if (olddef && newdyn)
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc && oldfunc)
1269 *type_change_ok = TRUE;
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1278 && h->root.type == bfd_link_hash_undefined))
1279 *type_change_ok = TRUE;
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1285 || h->root.type == bfd_link_hash_undefined)
1286 *size_change_ok = TRUE;
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1314 && (sec->flags & SEC_ALLOC) != 0
1315 && (sec->flags & SEC_LOAD) == 0
1318 newdyncommon = TRUE;
1320 newdyncommon = FALSE;
1324 && h->root.type == bfd_link_hash_defined
1326 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1327 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1330 olddyncommon = TRUE;
1332 olddyncommon = FALSE;
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed->merge_symbol
1337 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1338 pold_alignment, skip, override,
1339 type_change_ok, size_change_ok,
1340 &newdyn, &newdef, &newdyncommon, &newweak,
1342 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1352 && sym->st_size != h->size)
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1360 if (! ((*info->callbacks->multiple_common)
1361 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1364 if (sym->st_size > h->size)
1365 h->size = sym->st_size;
1367 *size_change_ok = TRUE;
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1387 || (h->root.type == bfd_link_hash_common
1388 && (newweak || newfunc))))
1392 newdyncommon = FALSE;
1394 *psec = sec = bfd_und_section_ptr;
1395 *size_change_ok = TRUE;
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1403 if (h->root.type == bfd_link_hash_common)
1404 *type_change_ok = TRUE;
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 && h->root.type == bfd_link_hash_common)
1418 newdyncommon = FALSE;
1419 *pvalue = sym->st_size;
1420 *psec = sec = bed->common_section (oldsec);
1421 *size_change_ok = TRUE;
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef && olddef && newweak)
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd != NULL
1429 && (oldbfd->flags & BFD_PLUGIN) != 0
1430 && (abfd->flags & BFD_PLUGIN) == 0))
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1475 olddyncommon = FALSE;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec))
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1488 h->type = STT_NOTYPE;
1490 *type_change_ok = TRUE;
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1509 && bfd_is_com_section (sec)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1522 if (h->size > *pvalue)
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment);
1528 *pold_alignment = h->root.u.def.section->alignment_power;
1531 olddyncommon = FALSE;
1533 h->root.type = bfd_link_hash_undefined;
1534 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536 *size_change_ok = TRUE;
1537 *type_change_ok = TRUE;
1539 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1542 h->verinfo.vertree = NULL;
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip->root.type = h->root.type;
1551 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1552 h->root.type = bfd_link_hash_indirect;
1553 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1554 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1558 flip->ref_dynamic = 1;
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1571 _bfd_elf_add_default_symbol (bfd *abfd,
1572 struct bfd_link_info *info,
1573 struct elf_link_hash_entry *h,
1575 Elf_Internal_Sym *sym,
1578 bfd_boolean *dynsym,
1579 bfd_boolean override)
1581 bfd_boolean type_change_ok;
1582 bfd_boolean size_change_ok;
1585 struct elf_link_hash_entry *hi;
1586 struct bfd_link_hash_entry *bh;
1587 const struct elf_backend_data *bed;
1588 bfd_boolean collect;
1589 bfd_boolean dynamic;
1591 size_t len, shortlen;
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p = strchr (name, ELF_VER_CHR);
1599 if (p == NULL || p[1] != ELF_VER_CHR)
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1608 BFD_ASSERT (hi != NULL);
1611 while (hi->root.type == bfd_link_hash_indirect
1612 || hi->root.type == bfd_link_hash_warning)
1614 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1620 bed = get_elf_backend_data (abfd);
1621 collect = bed->collect;
1622 dynamic = (abfd->flags & DYNAMIC) != 0;
1624 shortlen = p - name;
1625 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1626 if (shortname == NULL)
1628 memcpy (shortname, name, shortlen);
1629 shortname[shortlen] = '\0';
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1651 0, name, FALSE, collect, &bh)))
1653 hi = (struct elf_link_hash_entry *) bh;
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1675 while (hi->root.type == bfd_link_hash_indirect
1676 || hi->root.type == bfd_link_hash_warning)
1677 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1679 h->root.type = bfd_link_hash_indirect;
1680 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1684 hi->ref_dynamic = 1;
1688 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1698 /* Check if HI is a warning symbol. */
1699 if (hi->root.type == bfd_link_hash_warning)
1700 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1706 if (hi->root.type == bfd_link_hash_indirect)
1708 struct elf_link_hash_entry *ht;
1710 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1711 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1713 /* See if the new flags lead us to realize that the symbol must
1719 if (! info->executable
1725 if (hi->ref_regular)
1731 /* We also need to define an indirection from the nondefault version
1735 len = strlen (name);
1736 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1737 if (shortname == NULL)
1739 memcpy (shortname, name, shortlen);
1740 memcpy (shortname + shortlen, p + 1, len - shortlen);
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok = FALSE;
1744 size_change_ok = FALSE;
1746 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1747 NULL, &hi, &skip, &override,
1748 &type_change_ok, &size_change_ok))
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi->root.type != bfd_link_hash_defined
1760 && hi->root.type != bfd_link_hash_defweak)
1761 (*_bfd_error_handler)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info, abfd, shortname, BSF_INDIRECT,
1770 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1772 hi = (struct elf_link_hash_entry *) bh;
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1778 if (hi->root.type == bfd_link_hash_indirect)
1780 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1782 /* See if the new flags lead us to realize that the symbol
1788 if (! info->executable
1794 if (hi->ref_regular)
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h->root.type == bfd_link_hash_indirect)
1816 /* Ignore this if we won't export it. */
1817 if (!eif->info->export_dynamic && !h->dynamic)
1820 if (h->dynindx == -1
1821 && (h->def_regular || h->ref_regular)
1822 && ! bfd_hide_sym_by_version (eif->info->version_info,
1823 h->root.root.string))
1825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1844 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1845 Elf_Internal_Verneed *t;
1846 Elf_Internal_Vernaux *a;
1849 /* We only care about symbols defined in shared objects with version
1854 || h->verinfo.verdef == NULL)
1857 /* See if we already know about this version. */
1858 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1862 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1865 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1866 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1872 /* This is a new version. Add it to tree we are building. */
1877 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1880 rinfo->failed = TRUE;
1884 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1885 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1886 elf_tdata (rinfo->info->output_bfd)->verref = t;
1890 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1893 rinfo->failed = TRUE;
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1901 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1903 a->vna_flags = h->verinfo.verdef->vd_flags;
1904 a->vna_nextptr = t->vn_auxptr;
1906 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1909 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1924 struct elf_info_failed *sinfo;
1925 struct bfd_link_info *info;
1926 const struct elf_backend_data *bed;
1927 struct elf_info_failed eif;
1931 sinfo = (struct elf_info_failed *) data;
1934 /* Fix the symbol flags. */
1937 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1940 sinfo->failed = TRUE;
1944 /* We only need version numbers for symbols defined in regular
1946 if (!h->def_regular)
1949 bed = get_elf_backend_data (info->output_bfd);
1950 p = strchr (h->root.root.string, ELF_VER_CHR);
1951 if (p != NULL && h->verinfo.vertree == NULL)
1953 struct bfd_elf_version_tree *t;
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1961 if (*p == ELF_VER_CHR)
1967 /* If there is no version string, we can just return out. */
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1978 if (strcmp (t->name, p) == 0)
1982 struct bfd_elf_version_expr *d;
1984 len = p - h->root.root.string;
1985 alc = (char *) bfd_malloc (len);
1988 sinfo->failed = TRUE;
1991 memcpy (alc, h->root.root.string, len - 1);
1992 alc[len - 1] = '\0';
1993 if (alc[len - 2] == ELF_VER_CHR)
1994 alc[len - 2] = '\0';
1996 h->verinfo.vertree = t;
2000 if (t->globals.list != NULL)
2001 d = (*t->match) (&t->globals, NULL, alc);
2003 /* See if there is anything to force this symbol to
2005 if (d == NULL && t->locals.list != NULL)
2007 d = (*t->match) (&t->locals, NULL, alc);
2010 && ! info->export_dynamic)
2011 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t == NULL && info->executable)
2023 struct bfd_elf_version_tree **pp;
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h->dynindx == -1)
2032 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2035 sinfo->failed = TRUE;
2040 t->name_indx = (unsigned int) -1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo->info->version_info != NULL
2046 && sinfo->info->version_info->vernum == 0)
2048 for (pp = &sinfo->info->version_info;
2052 t->vernum = version_index;
2056 h->verinfo.vertree = t;
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler)
2063 (_("%B: version node not found for symbol %s"),
2064 info->output_bfd, h->root.root.string);
2065 bfd_set_error (bfd_error_bad_value);
2066 sinfo->failed = TRUE;
2074 /* If we don't have a version for this symbol, see if we can find
2076 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2081 = bfd_find_version_for_sym (sinfo->info->version_info,
2082 h->root.root.string, &hide);
2083 if (h->verinfo.vertree != NULL && hide)
2084 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2097 Returns FALSE if something goes wrong. */
2100 elf_link_read_relocs_from_section (bfd *abfd,
2102 Elf_Internal_Shdr *shdr,
2103 void *external_relocs,
2104 Elf_Internal_Rela *internal_relocs)
2106 const struct elf_backend_data *bed;
2107 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2108 const bfd_byte *erela;
2109 const bfd_byte *erelaend;
2110 Elf_Internal_Rela *irela;
2111 Elf_Internal_Shdr *symtab_hdr;
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2123 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2125 bed = get_elf_backend_data (abfd);
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr->sh_entsize == bed->s->sizeof_rel)
2129 swap_in = bed->s->swap_reloc_in;
2130 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2131 swap_in = bed->s->swap_reloca_in;
2134 bfd_set_error (bfd_error_wrong_format);
2138 erela = (const bfd_byte *) external_relocs;
2139 erelaend = erela + shdr->sh_size;
2140 irela = internal_relocs;
2141 while (erela < erelaend)
2145 (*swap_in) (abfd, erela, irela);
2146 r_symndx = ELF32_R_SYM (irela->r_info);
2147 if (bed->s->arch_size == 64)
2151 if ((size_t) r_symndx >= nsyms)
2153 (*_bfd_error_handler)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2157 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2158 bfd_set_error (bfd_error_bad_value);
2162 else if (r_symndx != STN_UNDEF)
2164 (*_bfd_error_handler)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2168 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2169 bfd_set_error (bfd_error_bad_value);
2172 irela += bed->s->int_rels_per_ext_rel;
2173 erela += shdr->sh_entsize;
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2190 _bfd_elf_link_read_relocs (bfd *abfd,
2192 void *external_relocs,
2193 Elf_Internal_Rela *internal_relocs,
2194 bfd_boolean keep_memory)
2196 void *alloc1 = NULL;
2197 Elf_Internal_Rela *alloc2 = NULL;
2198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2199 struct bfd_elf_section_data *esdo = elf_section_data (o);
2200 Elf_Internal_Rela *internal_rela_relocs;
2202 if (esdo->relocs != NULL)
2203 return esdo->relocs;
2205 if (o->reloc_count == 0)
2208 if (internal_relocs == NULL)
2212 size = o->reloc_count;
2213 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2215 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2217 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2218 if (internal_relocs == NULL)
2222 if (external_relocs == NULL)
2224 bfd_size_type size = 0;
2227 size += esdo->rel.hdr->sh_size;
2229 size += esdo->rela.hdr->sh_size;
2231 alloc1 = bfd_malloc (size);
2234 external_relocs = alloc1;
2237 internal_rela_relocs = internal_relocs;
2240 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2244 external_relocs = (((bfd_byte *) external_relocs)
2245 + esdo->rel.hdr->sh_size);
2246 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2247 * bed->s->int_rels_per_ext_rel);
2251 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2253 internal_rela_relocs)))
2256 /* Cache the results for next time, if we can. */
2258 esdo->relocs = internal_relocs;
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2266 return internal_relocs;
2274 bfd_release (abfd, alloc2);
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2285 _bfd_elf_link_size_reloc_section (bfd *abfd,
2286 struct bfd_elf_section_reloc_data *reldata)
2288 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2298 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2301 if (reldata->hashes == NULL && reldata->count)
2303 struct elf_link_hash_entry **p;
2305 p = (struct elf_link_hash_entry **)
2306 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2310 reldata->hashes = p;
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2321 _bfd_elf_link_output_relocs (bfd *output_bfd,
2322 asection *input_section,
2323 Elf_Internal_Shdr *input_rel_hdr,
2324 Elf_Internal_Rela *internal_relocs,
2325 struct elf_link_hash_entry **rel_hash
2328 Elf_Internal_Rela *irela;
2329 Elf_Internal_Rela *irelaend;
2331 struct bfd_elf_section_reloc_data *output_reldata;
2332 asection *output_section;
2333 const struct elf_backend_data *bed;
2334 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2335 struct bfd_elf_section_data *esdo;
2337 output_section = input_section->output_section;
2339 bed = get_elf_backend_data (output_bfd);
2340 esdo = elf_section_data (output_section);
2341 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2343 output_reldata = &esdo->rel;
2344 swap_out = bed->s->swap_reloc_out;
2346 else if (esdo->rela.hdr
2347 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2349 output_reldata = &esdo->rela;
2350 swap_out = bed->s->swap_reloca_out;
2354 (*_bfd_error_handler)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd, input_section->owner, input_section);
2357 bfd_set_error (bfd_error_wrong_format);
2361 erel = output_reldata->hdr->contents;
2362 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2363 irela = internal_relocs;
2364 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2365 * bed->s->int_rels_per_ext_rel);
2366 while (irela < irelaend)
2368 (*swap_out) (output_bfd, irela, erel);
2369 irela += bed->s->int_rels_per_ext_rel;
2370 erel += input_rel_hdr->sh_entsize;
2373 /* Bump the counter, so that we know where to add the next set of
2375 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2380 /* Make weak undefined symbols in PIE dynamic. */
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2384 struct elf_link_hash_entry *h)
2388 && h->root.type == bfd_link_hash_undefweak)
2389 return bfd_elf_link_record_dynamic_symbol (info, h);
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2402 struct elf_info_failed *eif)
2404 const struct elf_backend_data *bed;
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2412 while (h->root.type == bfd_link_hash_indirect)
2413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2415 if (h->root.type != bfd_link_hash_defined
2416 && h->root.type != bfd_link_hash_defweak)
2419 h->ref_regular_nonweak = 1;
2423 if (h->root.u.def.section->owner != NULL
2424 && (bfd_get_flavour (h->root.u.def.section->owner)
2425 == bfd_target_elf_flavour))
2428 h->ref_regular_nonweak = 1;
2434 if (h->dynindx == -1
2438 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h->root.type == bfd_link_hash_defined
2454 || h->root.type == bfd_link_hash_defweak)
2456 && (h->root.u.def.section->owner != NULL
2457 ? (bfd_get_flavour (h->root.u.def.section->owner)
2458 != bfd_target_elf_flavour)
2459 : (bfd_is_abs_section (h->root.u.def.section)
2460 && !h->def_dynamic)))
2464 /* Backend specific symbol fixup. */
2465 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2466 if (bed->elf_backend_fixup_symbol
2467 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h->root.type == bfd_link_hash_defined
2479 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2489 && eif->info->shared
2490 && is_elf_hash_table (eif->info->hash)
2491 && (SYMBOLIC_BIND (eif->info, h)
2492 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2495 bfd_boolean force_local;
2497 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2499 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2505 && h->root.type == bfd_link_hash_undefweak)
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h->u.weakdef != NULL)
2513 /* If the real definition is defined by a regular object file,
2514 don't do anything special. See the longer description in
2515 _bfd_elf_adjust_dynamic_symbol, below. */
2516 if (h->u.weakdef->def_regular)
2517 h->u.weakdef = NULL;
2520 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2522 while (h->root.type == bfd_link_hash_indirect)
2523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2525 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2526 || h->root.type == bfd_link_hash_defweak);
2527 BFD_ASSERT (weakdef->def_dynamic);
2528 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2529 || weakdef->root.type == bfd_link_hash_defweak);
2530 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2537 /* Make the backend pick a good value for a dynamic symbol. This is
2538 called via elf_link_hash_traverse, and also calls itself
2542 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2544 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2546 const struct elf_backend_data *bed;
2548 if (! is_elf_hash_table (eif->info->hash))
2551 /* Ignore indirect symbols. These are added by the versioning code. */
2552 if (h->root.type == bfd_link_hash_indirect)
2555 /* Fix the symbol flags. */
2556 if (! _bfd_elf_fix_symbol_flags (h, eif))
2559 /* If this symbol does not require a PLT entry, and it is not
2560 defined by a dynamic object, or is not referenced by a regular
2561 object, ignore it. We do have to handle a weak defined symbol,
2562 even if no regular object refers to it, if we decided to add it
2563 to the dynamic symbol table. FIXME: Do we normally need to worry
2564 about symbols which are defined by one dynamic object and
2565 referenced by another one? */
2567 && h->type != STT_GNU_IFUNC
2571 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2573 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2577 /* If we've already adjusted this symbol, don't do it again. This
2578 can happen via a recursive call. */
2579 if (h->dynamic_adjusted)
2582 /* Don't look at this symbol again. Note that we must set this
2583 after checking the above conditions, because we may look at a
2584 symbol once, decide not to do anything, and then get called
2585 recursively later after REF_REGULAR is set below. */
2586 h->dynamic_adjusted = 1;
2588 /* If this is a weak definition, and we know a real definition, and
2589 the real symbol is not itself defined by a regular object file,
2590 then get a good value for the real definition. We handle the
2591 real symbol first, for the convenience of the backend routine.
2593 Note that there is a confusing case here. If the real definition
2594 is defined by a regular object file, we don't get the real symbol
2595 from the dynamic object, but we do get the weak symbol. If the
2596 processor backend uses a COPY reloc, then if some routine in the
2597 dynamic object changes the real symbol, we will not see that
2598 change in the corresponding weak symbol. This is the way other
2599 ELF linkers work as well, and seems to be a result of the shared
2602 I will clarify this issue. Most SVR4 shared libraries define the
2603 variable _timezone and define timezone as a weak synonym. The
2604 tzset call changes _timezone. If you write
2605 extern int timezone;
2607 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2608 you might expect that, since timezone is a synonym for _timezone,
2609 the same number will print both times. However, if the processor
2610 backend uses a COPY reloc, then actually timezone will be copied
2611 into your process image, and, since you define _timezone
2612 yourself, _timezone will not. Thus timezone and _timezone will
2613 wind up at different memory locations. The tzset call will set
2614 _timezone, leaving timezone unchanged. */
2616 if (h->u.weakdef != NULL)
2618 /* If we get to this point, there is an implicit reference to
2619 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2620 h->u.weakdef->ref_regular = 1;
2622 /* Ensure that the backend adjust_dynamic_symbol function sees
2623 H->U.WEAKDEF before H by recursively calling ourselves. */
2624 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2628 /* If a symbol has no type and no size and does not require a PLT
2629 entry, then we are probably about to do the wrong thing here: we
2630 are probably going to create a COPY reloc for an empty object.
2631 This case can arise when a shared object is built with assembly
2632 code, and the assembly code fails to set the symbol type. */
2634 && h->type == STT_NOTYPE
2636 (*_bfd_error_handler)
2637 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2638 h->root.root.string);
2640 dynobj = elf_hash_table (eif->info)->dynobj;
2641 bed = get_elf_backend_data (dynobj);
2643 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2652 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2656 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2659 unsigned int power_of_two;
2661 asection *sec = h->root.u.def.section;
2663 /* The section aligment of definition is the maximum alignment
2664 requirement of symbols defined in the section. Since we don't
2665 know the symbol alignment requirement, we start with the
2666 maximum alignment and check low bits of the symbol address
2667 for the minimum alignment. */
2668 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2669 mask = ((bfd_vma) 1 << power_of_two) - 1;
2670 while ((h->root.u.def.value & mask) != 0)
2676 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2679 /* Adjust the section alignment if needed. */
2680 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2685 /* We make sure that the symbol will be aligned properly. */
2686 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2688 /* Define the symbol as being at this point in DYNBSS. */
2689 h->root.u.def.section = dynbss;
2690 h->root.u.def.value = dynbss->size;
2692 /* Increment the size of DYNBSS to make room for the symbol. */
2693 dynbss->size += h->size;
2698 /* Adjust all external symbols pointing into SEC_MERGE sections
2699 to reflect the object merging within the sections. */
2702 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2706 if ((h->root.type == bfd_link_hash_defined
2707 || h->root.type == bfd_link_hash_defweak)
2708 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2709 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2711 bfd *output_bfd = (bfd *) data;
2713 h->root.u.def.value =
2714 _bfd_merged_section_offset (output_bfd,
2715 &h->root.u.def.section,
2716 elf_section_data (sec)->sec_info,
2717 h->root.u.def.value);
2723 /* Returns false if the symbol referred to by H should be considered
2724 to resolve local to the current module, and true if it should be
2725 considered to bind dynamically. */
2728 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2729 struct bfd_link_info *info,
2730 bfd_boolean not_local_protected)
2732 bfd_boolean binding_stays_local_p;
2733 const struct elf_backend_data *bed;
2734 struct elf_link_hash_table *hash_table;
2739 while (h->root.type == bfd_link_hash_indirect
2740 || h->root.type == bfd_link_hash_warning)
2741 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2743 /* If it was forced local, then clearly it's not dynamic. */
2744 if (h->dynindx == -1)
2746 if (h->forced_local)
2749 /* Identify the cases where name binding rules say that a
2750 visible symbol resolves locally. */
2751 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2753 switch (ELF_ST_VISIBILITY (h->other))
2760 hash_table = elf_hash_table (info);
2761 if (!is_elf_hash_table (hash_table))
2764 bed = get_elf_backend_data (hash_table->dynobj);
2766 /* Proper resolution for function pointer equality may require
2767 that these symbols perhaps be resolved dynamically, even though
2768 we should be resolving them to the current module. */
2769 if (!not_local_protected || !bed->is_function_type (h->type))
2770 binding_stays_local_p = TRUE;
2777 /* If it isn't defined locally, then clearly it's dynamic. */
2778 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2781 /* Otherwise, the symbol is dynamic if binding rules don't tell
2782 us that it remains local. */
2783 return !binding_stays_local_p;
2786 /* Return true if the symbol referred to by H should be considered
2787 to resolve local to the current module, and false otherwise. Differs
2788 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2789 undefined symbols. The two functions are virtually identical except
2790 for the place where forced_local and dynindx == -1 are tested. If
2791 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2792 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2793 the symbol is local only for defined symbols.
2794 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2795 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2796 treatment of undefined weak symbols. For those that do not make
2797 undefined weak symbols dynamic, both functions may return false. */
2800 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2801 struct bfd_link_info *info,
2802 bfd_boolean local_protected)
2804 const struct elf_backend_data *bed;
2805 struct elf_link_hash_table *hash_table;
2807 /* If it's a local sym, of course we resolve locally. */
2811 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2812 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2813 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2816 /* Common symbols that become definitions don't get the DEF_REGULAR
2817 flag set, so test it first, and don't bail out. */
2818 if (ELF_COMMON_DEF_P (h))
2820 /* If we don't have a definition in a regular file, then we can't
2821 resolve locally. The sym is either undefined or dynamic. */
2822 else if (!h->def_regular)
2825 /* Forced local symbols resolve locally. */
2826 if (h->forced_local)
2829 /* As do non-dynamic symbols. */
2830 if (h->dynindx == -1)
2833 /* At this point, we know the symbol is defined and dynamic. In an
2834 executable it must resolve locally, likewise when building symbolic
2835 shared libraries. */
2836 if (info->executable || SYMBOLIC_BIND (info, h))
2839 /* Now deal with defined dynamic symbols in shared libraries. Ones
2840 with default visibility might not resolve locally. */
2841 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2844 hash_table = elf_hash_table (info);
2845 if (!is_elf_hash_table (hash_table))
2848 bed = get_elf_backend_data (hash_table->dynobj);
2850 /* STV_PROTECTED non-function symbols are local. */
2851 if (!bed->is_function_type (h->type))
2854 /* Function pointer equality tests may require that STV_PROTECTED
2855 symbols be treated as dynamic symbols. If the address of a
2856 function not defined in an executable is set to that function's
2857 plt entry in the executable, then the address of the function in
2858 a shared library must also be the plt entry in the executable. */
2859 return local_protected;
2862 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2863 aligned. Returns the first TLS output section. */
2865 struct bfd_section *
2866 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2868 struct bfd_section *sec, *tls;
2869 unsigned int align = 0;
2871 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2872 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2876 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2877 if (sec->alignment_power > align)
2878 align = sec->alignment_power;
2880 elf_hash_table (info)->tls_sec = tls;
2882 /* Ensure the alignment of the first section is the largest alignment,
2883 so that the tls segment starts aligned. */
2885 tls->alignment_power = align;
2890 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2892 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2893 Elf_Internal_Sym *sym)
2895 const struct elf_backend_data *bed;
2897 /* Local symbols do not count, but target specific ones might. */
2898 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2899 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2902 bed = get_elf_backend_data (abfd);
2903 /* Function symbols do not count. */
2904 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2907 /* If the section is undefined, then so is the symbol. */
2908 if (sym->st_shndx == SHN_UNDEF)
2911 /* If the symbol is defined in the common section, then
2912 it is a common definition and so does not count. */
2913 if (bed->common_definition (sym))
2916 /* If the symbol is in a target specific section then we
2917 must rely upon the backend to tell us what it is. */
2918 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2919 /* FIXME - this function is not coded yet:
2921 return _bfd_is_global_symbol_definition (abfd, sym);
2923 Instead for now assume that the definition is not global,
2924 Even if this is wrong, at least the linker will behave
2925 in the same way that it used to do. */
2931 /* Search the symbol table of the archive element of the archive ABFD
2932 whose archive map contains a mention of SYMDEF, and determine if
2933 the symbol is defined in this element. */
2935 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2937 Elf_Internal_Shdr * hdr;
2938 bfd_size_type symcount;
2939 bfd_size_type extsymcount;
2940 bfd_size_type extsymoff;
2941 Elf_Internal_Sym *isymbuf;
2942 Elf_Internal_Sym *isym;
2943 Elf_Internal_Sym *isymend;
2946 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2950 if (! bfd_check_format (abfd, bfd_object))
2953 /* If we have already included the element containing this symbol in the
2954 link then we do not need to include it again. Just claim that any symbol
2955 it contains is not a definition, so that our caller will not decide to
2956 (re)include this element. */
2957 if (abfd->archive_pass)
2960 /* Select the appropriate symbol table. */
2961 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2962 hdr = &elf_tdata (abfd)->symtab_hdr;
2964 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2966 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2968 /* The sh_info field of the symtab header tells us where the
2969 external symbols start. We don't care about the local symbols. */
2970 if (elf_bad_symtab (abfd))
2972 extsymcount = symcount;
2977 extsymcount = symcount - hdr->sh_info;
2978 extsymoff = hdr->sh_info;
2981 if (extsymcount == 0)
2984 /* Read in the symbol table. */
2985 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2987 if (isymbuf == NULL)
2990 /* Scan the symbol table looking for SYMDEF. */
2992 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2996 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3001 if (strcmp (name, symdef->name) == 0)
3003 result = is_global_data_symbol_definition (abfd, isym);
3013 /* Add an entry to the .dynamic table. */
3016 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3020 struct elf_link_hash_table *hash_table;
3021 const struct elf_backend_data *bed;
3023 bfd_size_type newsize;
3024 bfd_byte *newcontents;
3025 Elf_Internal_Dyn dyn;
3027 hash_table = elf_hash_table (info);
3028 if (! is_elf_hash_table (hash_table))
3031 bed = get_elf_backend_data (hash_table->dynobj);
3032 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3033 BFD_ASSERT (s != NULL);
3035 newsize = s->size + bed->s->sizeof_dyn;
3036 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3037 if (newcontents == NULL)
3041 dyn.d_un.d_val = val;
3042 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3045 s->contents = newcontents;
3050 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3051 otherwise just check whether one already exists. Returns -1 on error,
3052 1 if a DT_NEEDED tag already exists, and 0 on success. */
3055 elf_add_dt_needed_tag (bfd *abfd,
3056 struct bfd_link_info *info,
3060 struct elf_link_hash_table *hash_table;
3061 bfd_size_type oldsize;
3062 bfd_size_type strindex;
3064 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3067 hash_table = elf_hash_table (info);
3068 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3069 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3070 if (strindex == (bfd_size_type) -1)
3073 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3076 const struct elf_backend_data *bed;
3079 bed = get_elf_backend_data (hash_table->dynobj);
3080 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3082 for (extdyn = sdyn->contents;
3083 extdyn < sdyn->contents + sdyn->size;
3084 extdyn += bed->s->sizeof_dyn)
3086 Elf_Internal_Dyn dyn;
3088 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3089 if (dyn.d_tag == DT_NEEDED
3090 && dyn.d_un.d_val == strindex)
3092 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3100 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3103 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3107 /* We were just checking for existence of the tag. */
3108 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3114 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3116 for (; needed != NULL; needed = needed->next)
3117 if (strcmp (soname, needed->name) == 0)
3123 /* Sort symbol by value and section. */
3125 elf_sort_symbol (const void *arg1, const void *arg2)
3127 const struct elf_link_hash_entry *h1;
3128 const struct elf_link_hash_entry *h2;
3129 bfd_signed_vma vdiff;
3131 h1 = *(const struct elf_link_hash_entry **) arg1;
3132 h2 = *(const struct elf_link_hash_entry **) arg2;
3133 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3135 return vdiff > 0 ? 1 : -1;
3138 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3140 return sdiff > 0 ? 1 : -1;
3145 /* This function is used to adjust offsets into .dynstr for
3146 dynamic symbols. This is called via elf_link_hash_traverse. */
3149 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3151 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3153 if (h->dynindx != -1)
3154 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3158 /* Assign string offsets in .dynstr, update all structures referencing
3162 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3164 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3165 struct elf_link_local_dynamic_entry *entry;
3166 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3167 bfd *dynobj = hash_table->dynobj;
3170 const struct elf_backend_data *bed;
3173 _bfd_elf_strtab_finalize (dynstr);
3174 size = _bfd_elf_strtab_size (dynstr);
3176 bed = get_elf_backend_data (dynobj);
3177 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3178 BFD_ASSERT (sdyn != NULL);
3180 /* Update all .dynamic entries referencing .dynstr strings. */
3181 for (extdyn = sdyn->contents;
3182 extdyn < sdyn->contents + sdyn->size;
3183 extdyn += bed->s->sizeof_dyn)
3185 Elf_Internal_Dyn dyn;
3187 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3191 dyn.d_un.d_val = size;
3201 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3206 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3209 /* Now update local dynamic symbols. */
3210 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3211 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3212 entry->isym.st_name);
3214 /* And the rest of dynamic symbols. */
3215 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3217 /* Adjust version definitions. */
3218 if (elf_tdata (output_bfd)->cverdefs)
3223 Elf_Internal_Verdef def;
3224 Elf_Internal_Verdaux defaux;
3226 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3230 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3232 p += sizeof (Elf_External_Verdef);
3233 if (def.vd_aux != sizeof (Elf_External_Verdef))
3235 for (i = 0; i < def.vd_cnt; ++i)
3237 _bfd_elf_swap_verdaux_in (output_bfd,
3238 (Elf_External_Verdaux *) p, &defaux);
3239 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3241 _bfd_elf_swap_verdaux_out (output_bfd,
3242 &defaux, (Elf_External_Verdaux *) p);
3243 p += sizeof (Elf_External_Verdaux);
3246 while (def.vd_next);
3249 /* Adjust version references. */
3250 if (elf_tdata (output_bfd)->verref)
3255 Elf_Internal_Verneed need;
3256 Elf_Internal_Vernaux needaux;
3258 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3262 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3264 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3265 _bfd_elf_swap_verneed_out (output_bfd, &need,
3266 (Elf_External_Verneed *) p);
3267 p += sizeof (Elf_External_Verneed);
3268 for (i = 0; i < need.vn_cnt; ++i)
3270 _bfd_elf_swap_vernaux_in (output_bfd,
3271 (Elf_External_Vernaux *) p, &needaux);
3272 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3274 _bfd_elf_swap_vernaux_out (output_bfd,
3276 (Elf_External_Vernaux *) p);
3277 p += sizeof (Elf_External_Vernaux);
3280 while (need.vn_next);
3286 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3287 The default is to only match when the INPUT and OUTPUT are exactly
3291 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3292 const bfd_target *output)
3294 return input == output;
3297 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3298 This version is used when different targets for the same architecture
3299 are virtually identical. */
3302 _bfd_elf_relocs_compatible (const bfd_target *input,
3303 const bfd_target *output)
3305 const struct elf_backend_data *obed, *ibed;
3307 if (input == output)
3310 ibed = xvec_get_elf_backend_data (input);
3311 obed = xvec_get_elf_backend_data (output);
3313 if (ibed->arch != obed->arch)
3316 /* If both backends are using this function, deem them compatible. */
3317 return ibed->relocs_compatible == obed->relocs_compatible;
3320 /* Add symbols from an ELF object file to the linker hash table. */
3323 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3325 Elf_Internal_Ehdr *ehdr;
3326 Elf_Internal_Shdr *hdr;
3327 bfd_size_type symcount;
3328 bfd_size_type extsymcount;
3329 bfd_size_type extsymoff;
3330 struct elf_link_hash_entry **sym_hash;
3331 bfd_boolean dynamic;
3332 Elf_External_Versym *extversym = NULL;
3333 Elf_External_Versym *ever;
3334 struct elf_link_hash_entry *weaks;
3335 struct elf_link_hash_entry **nondeflt_vers = NULL;
3336 bfd_size_type nondeflt_vers_cnt = 0;
3337 Elf_Internal_Sym *isymbuf = NULL;
3338 Elf_Internal_Sym *isym;
3339 Elf_Internal_Sym *isymend;
3340 const struct elf_backend_data *bed;
3341 bfd_boolean add_needed;
3342 struct elf_link_hash_table *htab;
3344 void *alloc_mark = NULL;
3345 struct bfd_hash_entry **old_table = NULL;
3346 unsigned int old_size = 0;
3347 unsigned int old_count = 0;
3348 void *old_tab = NULL;
3351 struct bfd_link_hash_entry *old_undefs = NULL;
3352 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3353 long old_dynsymcount = 0;
3355 size_t hashsize = 0;
3357 htab = elf_hash_table (info);
3358 bed = get_elf_backend_data (abfd);
3360 if ((abfd->flags & DYNAMIC) == 0)
3366 /* You can't use -r against a dynamic object. Also, there's no
3367 hope of using a dynamic object which does not exactly match
3368 the format of the output file. */
3369 if (info->relocatable
3370 || !is_elf_hash_table (htab)
3371 || info->output_bfd->xvec != abfd->xvec)
3373 if (info->relocatable)
3374 bfd_set_error (bfd_error_invalid_operation);
3376 bfd_set_error (bfd_error_wrong_format);
3381 ehdr = elf_elfheader (abfd);
3382 if (info->warn_alternate_em
3383 && bed->elf_machine_code != ehdr->e_machine
3384 && ((bed->elf_machine_alt1 != 0
3385 && ehdr->e_machine == bed->elf_machine_alt1)
3386 || (bed->elf_machine_alt2 != 0
3387 && ehdr->e_machine == bed->elf_machine_alt2)))
3388 info->callbacks->einfo
3389 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3390 ehdr->e_machine, abfd, bed->elf_machine_code);
3392 /* As a GNU extension, any input sections which are named
3393 .gnu.warning.SYMBOL are treated as warning symbols for the given
3394 symbol. This differs from .gnu.warning sections, which generate
3395 warnings when they are included in an output file. */
3396 /* PR 12761: Also generate this warning when building shared libraries. */
3397 if (info->executable || info->shared)
3401 for (s = abfd->sections; s != NULL; s = s->next)
3405 name = bfd_get_section_name (abfd, s);
3406 if (CONST_STRNEQ (name, ".gnu.warning."))
3411 name += sizeof ".gnu.warning." - 1;
3413 /* If this is a shared object, then look up the symbol
3414 in the hash table. If it is there, and it is already
3415 been defined, then we will not be using the entry
3416 from this shared object, so we don't need to warn.
3417 FIXME: If we see the definition in a regular object
3418 later on, we will warn, but we shouldn't. The only
3419 fix is to keep track of what warnings we are supposed
3420 to emit, and then handle them all at the end of the
3424 struct elf_link_hash_entry *h;
3426 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3428 /* FIXME: What about bfd_link_hash_common? */
3430 && (h->root.type == bfd_link_hash_defined
3431 || h->root.type == bfd_link_hash_defweak))
3433 /* We don't want to issue this warning. Clobber
3434 the section size so that the warning does not
3435 get copied into the output file. */
3442 msg = (char *) bfd_alloc (abfd, sz + 1);
3446 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3451 if (! (_bfd_generic_link_add_one_symbol
3452 (info, abfd, name, BSF_WARNING, s, 0, msg,
3453 FALSE, bed->collect, NULL)))
3456 if (! info->relocatable)
3458 /* Clobber the section size so that the warning does
3459 not get copied into the output file. */
3462 /* Also set SEC_EXCLUDE, so that symbols defined in
3463 the warning section don't get copied to the output. */
3464 s->flags |= SEC_EXCLUDE;
3473 /* If we are creating a shared library, create all the dynamic
3474 sections immediately. We need to attach them to something,
3475 so we attach them to this BFD, provided it is the right
3476 format. FIXME: If there are no input BFD's of the same
3477 format as the output, we can't make a shared library. */
3479 && is_elf_hash_table (htab)
3480 && info->output_bfd->xvec == abfd->xvec
3481 && !htab->dynamic_sections_created)
3483 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3487 else if (!is_elf_hash_table (htab))
3492 const char *soname = NULL;
3494 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3497 /* ld --just-symbols and dynamic objects don't mix very well.
3498 ld shouldn't allow it. */
3499 if ((s = abfd->sections) != NULL
3500 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3503 /* If this dynamic lib was specified on the command line with
3504 --as-needed in effect, then we don't want to add a DT_NEEDED
3505 tag unless the lib is actually used. Similary for libs brought
3506 in by another lib's DT_NEEDED. When --no-add-needed is used
3507 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3508 any dynamic library in DT_NEEDED tags in the dynamic lib at
3510 add_needed = (elf_dyn_lib_class (abfd)
3511 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3512 | DYN_NO_NEEDED)) == 0;
3514 s = bfd_get_section_by_name (abfd, ".dynamic");
3519 unsigned int elfsec;
3520 unsigned long shlink;
3522 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3529 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3530 if (elfsec == SHN_BAD)
3531 goto error_free_dyn;
3532 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3534 for (extdyn = dynbuf;
3535 extdyn < dynbuf + s->size;
3536 extdyn += bed->s->sizeof_dyn)
3538 Elf_Internal_Dyn dyn;
3540 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3541 if (dyn.d_tag == DT_SONAME)
3543 unsigned int tagv = dyn.d_un.d_val;
3544 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3546 goto error_free_dyn;
3548 if (dyn.d_tag == DT_NEEDED)
3550 struct bfd_link_needed_list *n, **pn;
3552 unsigned int tagv = dyn.d_un.d_val;
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = (char *) bfd_alloc (abfd, amt);
3562 goto error_free_dyn;
3563 memcpy (anm, fnm, amt);
3567 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3571 if (dyn.d_tag == DT_RUNPATH)
3573 struct bfd_link_needed_list *n, **pn;
3575 unsigned int tagv = dyn.d_un.d_val;
3577 amt = sizeof (struct bfd_link_needed_list);
3578 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3579 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3580 if (n == NULL || fnm == NULL)
3581 goto error_free_dyn;
3582 amt = strlen (fnm) + 1;
3583 anm = (char *) bfd_alloc (abfd, amt);
3585 goto error_free_dyn;
3586 memcpy (anm, fnm, amt);
3590 for (pn = & runpath;
3596 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3597 if (!runpath && dyn.d_tag == DT_RPATH)
3599 struct bfd_link_needed_list *n, **pn;
3601 unsigned int tagv = dyn.d_un.d_val;
3603 amt = sizeof (struct bfd_link_needed_list);
3604 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3605 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3606 if (n == NULL || fnm == NULL)
3607 goto error_free_dyn;
3608 amt = strlen (fnm) + 1;
3609 anm = (char *) bfd_alloc (abfd, amt);
3611 goto error_free_dyn;
3612 memcpy (anm, fnm, amt);
3622 if (dyn.d_tag == DT_AUDIT)
3624 unsigned int tagv = dyn.d_un.d_val;
3625 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3632 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3633 frees all more recently bfd_alloc'd blocks as well. */
3639 struct bfd_link_needed_list **pn;
3640 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3645 /* We do not want to include any of the sections in a dynamic
3646 object in the output file. We hack by simply clobbering the
3647 list of sections in the BFD. This could be handled more
3648 cleanly by, say, a new section flag; the existing
3649 SEC_NEVER_LOAD flag is not the one we want, because that one
3650 still implies that the section takes up space in the output
3652 bfd_section_list_clear (abfd);
3654 /* Find the name to use in a DT_NEEDED entry that refers to this
3655 object. If the object has a DT_SONAME entry, we use it.
3656 Otherwise, if the generic linker stuck something in
3657 elf_dt_name, we use that. Otherwise, we just use the file
3659 if (soname == NULL || *soname == '\0')
3661 soname = elf_dt_name (abfd);
3662 if (soname == NULL || *soname == '\0')
3663 soname = bfd_get_filename (abfd);
3666 /* Save the SONAME because sometimes the linker emulation code
3667 will need to know it. */
3668 elf_dt_name (abfd) = soname;
3670 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3674 /* If we have already included this dynamic object in the
3675 link, just ignore it. There is no reason to include a
3676 particular dynamic object more than once. */
3680 /* Save the DT_AUDIT entry for the linker emulation code. */
3681 elf_dt_audit (abfd) = audit;
3684 /* If this is a dynamic object, we always link against the .dynsym
3685 symbol table, not the .symtab symbol table. The dynamic linker
3686 will only see the .dynsym symbol table, so there is no reason to
3687 look at .symtab for a dynamic object. */
3689 if (! dynamic || elf_dynsymtab (abfd) == 0)
3690 hdr = &elf_tdata (abfd)->symtab_hdr;
3692 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3694 symcount = hdr->sh_size / bed->s->sizeof_sym;
3696 /* The sh_info field of the symtab header tells us where the
3697 external symbols start. We don't care about the local symbols at
3699 if (elf_bad_symtab (abfd))
3701 extsymcount = symcount;
3706 extsymcount = symcount - hdr->sh_info;
3707 extsymoff = hdr->sh_info;
3711 if (extsymcount != 0)
3713 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3715 if (isymbuf == NULL)
3718 /* We store a pointer to the hash table entry for each external
3720 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3721 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3722 if (sym_hash == NULL)
3723 goto error_free_sym;
3724 elf_sym_hashes (abfd) = sym_hash;
3729 /* Read in any version definitions. */
3730 if (!_bfd_elf_slurp_version_tables (abfd,
3731 info->default_imported_symver))
3732 goto error_free_sym;
3734 /* Read in the symbol versions, but don't bother to convert them
3735 to internal format. */
3736 if (elf_dynversym (abfd) != 0)
3738 Elf_Internal_Shdr *versymhdr;
3740 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3741 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3742 if (extversym == NULL)
3743 goto error_free_sym;
3744 amt = versymhdr->sh_size;
3745 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3746 || bfd_bread (extversym, amt, abfd) != amt)
3747 goto error_free_vers;
3751 /* If we are loading an as-needed shared lib, save the symbol table
3752 state before we start adding symbols. If the lib turns out
3753 to be unneeded, restore the state. */
3754 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3759 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3761 struct bfd_hash_entry *p;
3762 struct elf_link_hash_entry *h;
3764 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3766 h = (struct elf_link_hash_entry *) p;
3767 entsize += htab->root.table.entsize;
3768 if (h->root.type == bfd_link_hash_warning)
3769 entsize += htab->root.table.entsize;
3773 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3774 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3775 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3776 if (old_tab == NULL)
3777 goto error_free_vers;
3779 /* Remember the current objalloc pointer, so that all mem for
3780 symbols added can later be reclaimed. */
3781 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3782 if (alloc_mark == NULL)
3783 goto error_free_vers;
3785 /* Make a special call to the linker "notice" function to
3786 tell it that we are about to handle an as-needed lib. */
3787 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3788 notice_as_needed, 0, NULL))
3789 goto error_free_vers;
3791 /* Clone the symbol table and sym hashes. Remember some
3792 pointers into the symbol table, and dynamic symbol count. */
3793 old_hash = (char *) old_tab + tabsize;
3794 old_ent = (char *) old_hash + hashsize;
3795 memcpy (old_tab, htab->root.table.table, tabsize);
3796 memcpy (old_hash, sym_hash, hashsize);
3797 old_undefs = htab->root.undefs;
3798 old_undefs_tail = htab->root.undefs_tail;
3799 old_table = htab->root.table.table;
3800 old_size = htab->root.table.size;
3801 old_count = htab->root.table.count;
3802 old_dynsymcount = htab->dynsymcount;
3804 for (i = 0; i < htab->root.table.size; i++)
3806 struct bfd_hash_entry *p;
3807 struct elf_link_hash_entry *h;
3809 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3811 memcpy (old_ent, p, htab->root.table.entsize);
3812 old_ent = (char *) old_ent + htab->root.table.entsize;
3813 h = (struct elf_link_hash_entry *) p;
3814 if (h->root.type == bfd_link_hash_warning)
3816 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3817 old_ent = (char *) old_ent + htab->root.table.entsize;
3824 ever = extversym != NULL ? extversym + extsymoff : NULL;
3825 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3827 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3831 asection *sec, *new_sec;
3834 struct elf_link_hash_entry *h;
3835 bfd_boolean definition;
3836 bfd_boolean size_change_ok;
3837 bfd_boolean type_change_ok;
3838 bfd_boolean new_weakdef;
3839 bfd_boolean override;
3841 unsigned int old_alignment;
3843 bfd * undef_bfd = NULL;
3847 flags = BSF_NO_FLAGS;
3849 value = isym->st_value;
3851 common = bed->common_definition (isym);
3853 bind = ELF_ST_BIND (isym->st_info);
3857 /* This should be impossible, since ELF requires that all
3858 global symbols follow all local symbols, and that sh_info
3859 point to the first global symbol. Unfortunately, Irix 5
3864 if (isym->st_shndx != SHN_UNDEF && !common)
3872 case STB_GNU_UNIQUE:
3873 flags = BSF_GNU_UNIQUE;
3877 /* Leave it up to the processor backend. */
3881 if (isym->st_shndx == SHN_UNDEF)
3882 sec = bfd_und_section_ptr;
3883 else if (isym->st_shndx == SHN_ABS)
3884 sec = bfd_abs_section_ptr;
3885 else if (isym->st_shndx == SHN_COMMON)
3887 sec = bfd_com_section_ptr;
3888 /* What ELF calls the size we call the value. What ELF
3889 calls the value we call the alignment. */
3890 value = isym->st_size;
3894 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3896 sec = bfd_abs_section_ptr;
3897 else if (elf_discarded_section (sec))
3899 /* Symbols from discarded section are undefined. We keep
3901 sec = bfd_und_section_ptr;
3902 isym->st_shndx = SHN_UNDEF;
3904 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3908 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3911 goto error_free_vers;
3913 if (isym->st_shndx == SHN_COMMON
3914 && (abfd->flags & BFD_PLUGIN) != 0)
3916 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3920 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3922 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3924 goto error_free_vers;
3928 else if (isym->st_shndx == SHN_COMMON
3929 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3930 && !info->relocatable)
3932 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3936 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3937 | SEC_LINKER_CREATED);
3938 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3940 goto error_free_vers;
3944 else if (bed->elf_add_symbol_hook)
3946 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3948 goto error_free_vers;
3950 /* The hook function sets the name to NULL if this symbol
3951 should be skipped for some reason. */
3956 /* Sanity check that all possibilities were handled. */
3959 bfd_set_error (bfd_error_bad_value);
3960 goto error_free_vers;
3963 if (bfd_is_und_section (sec)
3964 || bfd_is_com_section (sec))
3969 size_change_ok = FALSE;
3970 type_change_ok = bed->type_change_ok;
3975 if (is_elf_hash_table (htab))
3977 Elf_Internal_Versym iver;
3978 unsigned int vernum = 0;
3981 /* If this is a definition of a symbol which was previously
3982 referenced in a non-weak manner then make a note of the bfd
3983 that contained the reference. This is used if we need to
3984 refer to the source of the reference later on. */
3985 if (! bfd_is_und_section (sec))
3987 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
3990 && h->root.type == bfd_link_hash_undefined
3991 && h->root.u.undef.abfd)
3992 undef_bfd = h->root.u.undef.abfd;
3997 if (info->default_imported_symver)
3998 /* Use the default symbol version created earlier. */
3999 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4004 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4006 vernum = iver.vs_vers & VERSYM_VERSION;
4008 /* If this is a hidden symbol, or if it is not version
4009 1, we append the version name to the symbol name.
4010 However, we do not modify a non-hidden absolute symbol
4011 if it is not a function, because it might be the version
4012 symbol itself. FIXME: What if it isn't? */
4013 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4015 && (!bfd_is_abs_section (sec)
4016 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4019 size_t namelen, verlen, newlen;
4022 if (isym->st_shndx != SHN_UNDEF)
4024 if (vernum > elf_tdata (abfd)->cverdefs)
4026 else if (vernum > 1)
4028 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4034 (*_bfd_error_handler)
4035 (_("%B: %s: invalid version %u (max %d)"),
4037 elf_tdata (abfd)->cverdefs);
4038 bfd_set_error (bfd_error_bad_value);
4039 goto error_free_vers;
4044 /* We cannot simply test for the number of
4045 entries in the VERNEED section since the
4046 numbers for the needed versions do not start
4048 Elf_Internal_Verneed *t;
4051 for (t = elf_tdata (abfd)->verref;
4055 Elf_Internal_Vernaux *a;
4057 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4059 if (a->vna_other == vernum)
4061 verstr = a->vna_nodename;
4070 (*_bfd_error_handler)
4071 (_("%B: %s: invalid needed version %d"),
4072 abfd, name, vernum);
4073 bfd_set_error (bfd_error_bad_value);
4074 goto error_free_vers;
4078 namelen = strlen (name);
4079 verlen = strlen (verstr);
4080 newlen = namelen + verlen + 2;
4081 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4082 && isym->st_shndx != SHN_UNDEF)
4085 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4086 if (newname == NULL)
4087 goto error_free_vers;
4088 memcpy (newname, name, namelen);
4089 p = newname + namelen;
4091 /* If this is a defined non-hidden version symbol,
4092 we add another @ to the name. This indicates the
4093 default version of the symbol. */
4094 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4095 && isym->st_shndx != SHN_UNDEF)
4097 memcpy (p, verstr, verlen + 1);
4102 /* If necessary, make a second attempt to locate the bfd
4103 containing an unresolved, non-weak reference to the
4105 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4107 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4110 && h->root.type == bfd_link_hash_undefined
4111 && h->root.u.undef.abfd)
4112 undef_bfd = h->root.u.undef.abfd;
4115 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4116 &value, &old_alignment,
4117 sym_hash, &skip, &override,
4118 &type_change_ok, &size_change_ok))
4119 goto error_free_vers;
4128 while (h->root.type == bfd_link_hash_indirect
4129 || h->root.type == bfd_link_hash_warning)
4130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4132 /* Remember the old alignment if this is a common symbol, so
4133 that we don't reduce the alignment later on. We can't
4134 check later, because _bfd_generic_link_add_one_symbol
4135 will set a default for the alignment which we want to
4136 override. We also remember the old bfd where the existing
4137 definition comes from. */
4138 switch (h->root.type)
4143 case bfd_link_hash_defined:
4144 case bfd_link_hash_defweak:
4145 old_bfd = h->root.u.def.section->owner;
4148 case bfd_link_hash_common:
4149 old_bfd = h->root.u.c.p->section->owner;
4150 old_alignment = h->root.u.c.p->alignment_power;
4154 if (elf_tdata (abfd)->verdef != NULL
4158 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4161 if (! (_bfd_generic_link_add_one_symbol
4162 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4163 (struct bfd_link_hash_entry **) sym_hash)))
4164 goto error_free_vers;
4167 while (h->root.type == bfd_link_hash_indirect
4168 || h->root.type == bfd_link_hash_warning)
4169 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4172 if (is_elf_hash_table (htab))
4173 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4175 new_weakdef = FALSE;
4178 && (flags & BSF_WEAK) != 0
4179 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4180 && is_elf_hash_table (htab)
4181 && h->u.weakdef == NULL)
4183 /* Keep a list of all weak defined non function symbols from
4184 a dynamic object, using the weakdef field. Later in this
4185 function we will set the weakdef field to the correct
4186 value. We only put non-function symbols from dynamic
4187 objects on this list, because that happens to be the only
4188 time we need to know the normal symbol corresponding to a
4189 weak symbol, and the information is time consuming to
4190 figure out. If the weakdef field is not already NULL,
4191 then this symbol was already defined by some previous
4192 dynamic object, and we will be using that previous
4193 definition anyhow. */
4195 h->u.weakdef = weaks;
4200 /* Set the alignment of a common symbol. */
4201 if ((common || bfd_is_com_section (sec))
4202 && h->root.type == bfd_link_hash_common)
4207 align = bfd_log2 (isym->st_value);
4210 /* The new symbol is a common symbol in a shared object.
4211 We need to get the alignment from the section. */
4212 align = new_sec->alignment_power;
4214 if (align > old_alignment)
4215 h->root.u.c.p->alignment_power = align;
4217 h->root.u.c.p->alignment_power = old_alignment;
4220 if (is_elf_hash_table (htab))
4224 /* Check the alignment when a common symbol is involved. This
4225 can change when a common symbol is overridden by a normal
4226 definition or a common symbol is ignored due to the old
4227 normal definition. We need to make sure the maximum
4228 alignment is maintained. */
4229 if ((old_alignment || common)
4230 && h->root.type != bfd_link_hash_common)
4232 unsigned int common_align;
4233 unsigned int normal_align;
4234 unsigned int symbol_align;
4238 symbol_align = ffs (h->root.u.def.value) - 1;
4239 if (h->root.u.def.section->owner != NULL
4240 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4242 normal_align = h->root.u.def.section->alignment_power;
4243 if (normal_align > symbol_align)
4244 normal_align = symbol_align;
4247 normal_align = symbol_align;
4251 common_align = old_alignment;
4252 common_bfd = old_bfd;
4257 common_align = bfd_log2 (isym->st_value);
4259 normal_bfd = old_bfd;
4262 if (normal_align < common_align)
4264 /* PR binutils/2735 */
4265 if (normal_bfd == NULL)
4266 (*_bfd_error_handler)
4267 (_("Warning: alignment %u of common symbol `%s' in %B"
4268 " is greater than the alignment (%u) of its section %A"),
4269 common_bfd, h->root.u.def.section,
4270 1 << common_align, name, 1 << normal_align);
4272 (*_bfd_error_handler)
4273 (_("Warning: alignment %u of symbol `%s' in %B"
4274 " is smaller than %u in %B"),
4275 normal_bfd, common_bfd,
4276 1 << normal_align, name, 1 << common_align);
4280 /* Remember the symbol size if it isn't undefined. */
4281 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4282 && (definition || h->size == 0))
4285 && h->size != isym->st_size
4286 && ! size_change_ok)
4287 (*_bfd_error_handler)
4288 (_("Warning: size of symbol `%s' changed"
4289 " from %lu in %B to %lu in %B"),
4291 name, (unsigned long) h->size,
4292 (unsigned long) isym->st_size);
4294 h->size = isym->st_size;
4297 /* If this is a common symbol, then we always want H->SIZE
4298 to be the size of the common symbol. The code just above
4299 won't fix the size if a common symbol becomes larger. We
4300 don't warn about a size change here, because that is
4301 covered by --warn-common. Allow changed between different
4303 if (h->root.type == bfd_link_hash_common)
4304 h->size = h->root.u.c.size;
4306 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4307 && (definition || h->type == STT_NOTYPE))
4309 unsigned int type = ELF_ST_TYPE (isym->st_info);
4311 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4313 if (type == STT_GNU_IFUNC
4314 && (abfd->flags & DYNAMIC) != 0)
4317 if (h->type != type)
4319 if (h->type != STT_NOTYPE && ! type_change_ok)
4320 (*_bfd_error_handler)
4321 (_("Warning: type of symbol `%s' changed"
4322 " from %d to %d in %B"),
4323 abfd, name, h->type, type);
4329 /* Merge st_other field. */
4330 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4332 /* Set a flag in the hash table entry indicating the type of
4333 reference or definition we just found. Keep a count of
4334 the number of dynamic symbols we find. A dynamic symbol
4335 is one which is referenced or defined by both a regular
4336 object and a shared object. */
4343 if (bind != STB_WEAK)
4344 h->ref_regular_nonweak = 1;
4355 if (! info->executable
4371 || (h->u.weakdef != NULL
4373 && h->u.weakdef->dynindx != -1))
4377 /* We don't want to make debug symbol dynamic. */
4378 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4381 /* Nor should we make plugin symbols dynamic. */
4382 if ((abfd->flags & BFD_PLUGIN) != 0)
4386 h->target_internal = isym->st_target_internal;
4388 /* Check to see if we need to add an indirect symbol for
4389 the default name. */
4390 if (definition || h->root.type == bfd_link_hash_common)
4391 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4392 &sec, &value, &dynsym,
4394 goto error_free_vers;
4396 if (definition && !dynamic)
4398 char *p = strchr (name, ELF_VER_CHR);
4399 if (p != NULL && p[1] != ELF_VER_CHR)
4401 /* Queue non-default versions so that .symver x, x@FOO
4402 aliases can be checked. */
4405 amt = ((isymend - isym + 1)
4406 * sizeof (struct elf_link_hash_entry *));
4408 (struct elf_link_hash_entry **) bfd_malloc (amt);
4410 goto error_free_vers;
4412 nondeflt_vers[nondeflt_vers_cnt++] = h;
4416 if (dynsym && h->dynindx == -1)
4418 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4419 goto error_free_vers;
4420 if (h->u.weakdef != NULL
4422 && h->u.weakdef->dynindx == -1)
4424 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4425 goto error_free_vers;
4428 else if (dynsym && h->dynindx != -1)
4429 /* If the symbol already has a dynamic index, but
4430 visibility says it should not be visible, turn it into
4432 switch (ELF_ST_VISIBILITY (h->other))
4436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4446 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4447 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4450 const char *soname = elf_dt_name (abfd);
4452 /* A symbol from a library loaded via DT_NEEDED of some
4453 other library is referenced by a regular object.
4454 Add a DT_NEEDED entry for it. Issue an error if
4455 --no-add-needed is used and the reference was not
4457 if (undef_bfd != NULL
4458 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4460 (*_bfd_error_handler)
4461 (_("%B: undefined reference to symbol '%s'"),
4463 (*_bfd_error_handler)
4464 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4466 bfd_set_error (bfd_error_invalid_operation);
4467 goto error_free_vers;
4470 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4471 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4474 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4476 goto error_free_vers;
4478 BFD_ASSERT (ret == 0);
4483 if (extversym != NULL)
4489 if (isymbuf != NULL)
4495 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4499 /* Restore the symbol table. */
4500 if (bed->as_needed_cleanup)
4501 (*bed->as_needed_cleanup) (abfd, info);
4502 old_hash = (char *) old_tab + tabsize;
4503 old_ent = (char *) old_hash + hashsize;
4504 sym_hash = elf_sym_hashes (abfd);
4505 htab->root.table.table = old_table;
4506 htab->root.table.size = old_size;
4507 htab->root.table.count = old_count;
4508 memcpy (htab->root.table.table, old_tab, tabsize);
4509 memcpy (sym_hash, old_hash, hashsize);
4510 htab->root.undefs = old_undefs;
4511 htab->root.undefs_tail = old_undefs_tail;
4512 for (i = 0; i < htab->root.table.size; i++)
4514 struct bfd_hash_entry *p;
4515 struct elf_link_hash_entry *h;
4517 unsigned int alignment_power;
4519 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4521 h = (struct elf_link_hash_entry *) p;
4522 if (h->root.type == bfd_link_hash_warning)
4523 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4524 if (h->dynindx >= old_dynsymcount)
4525 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4527 /* Preserve the maximum alignment and size for common
4528 symbols even if this dynamic lib isn't on DT_NEEDED
4529 since it can still be loaded at the run-time by another
4531 if (h->root.type == bfd_link_hash_common)
4533 size = h->root.u.c.size;
4534 alignment_power = h->root.u.c.p->alignment_power;
4539 alignment_power = 0;
4541 memcpy (p, old_ent, htab->root.table.entsize);
4542 old_ent = (char *) old_ent + htab->root.table.entsize;
4543 h = (struct elf_link_hash_entry *) p;
4544 if (h->root.type == bfd_link_hash_warning)
4546 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4547 old_ent = (char *) old_ent + htab->root.table.entsize;
4549 else if (h->root.type == bfd_link_hash_common)
4551 if (size > h->root.u.c.size)
4552 h->root.u.c.size = size;
4553 if (alignment_power > h->root.u.c.p->alignment_power)
4554 h->root.u.c.p->alignment_power = alignment_power;
4559 /* Make a special call to the linker "notice" function to
4560 tell it that symbols added for crefs may need to be removed. */
4561 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4562 notice_not_needed, 0, NULL))
4563 goto error_free_vers;
4566 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4568 if (nondeflt_vers != NULL)
4569 free (nondeflt_vers);
4573 if (old_tab != NULL)
4575 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4576 notice_needed, 0, NULL))
4577 goto error_free_vers;
4582 /* Now that all the symbols from this input file are created, handle
4583 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4584 if (nondeflt_vers != NULL)
4586 bfd_size_type cnt, symidx;
4588 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4590 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4591 char *shortname, *p;
4593 p = strchr (h->root.root.string, ELF_VER_CHR);
4595 || (h->root.type != bfd_link_hash_defined
4596 && h->root.type != bfd_link_hash_defweak))
4599 amt = p - h->root.root.string;
4600 shortname = (char *) bfd_malloc (amt + 1);
4602 goto error_free_vers;
4603 memcpy (shortname, h->root.root.string, amt);
4604 shortname[amt] = '\0';
4606 hi = (struct elf_link_hash_entry *)
4607 bfd_link_hash_lookup (&htab->root, shortname,
4608 FALSE, FALSE, FALSE);
4610 && hi->root.type == h->root.type
4611 && hi->root.u.def.value == h->root.u.def.value
4612 && hi->root.u.def.section == h->root.u.def.section)
4614 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4615 hi->root.type = bfd_link_hash_indirect;
4616 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4617 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4618 sym_hash = elf_sym_hashes (abfd);
4620 for (symidx = 0; symidx < extsymcount; ++symidx)
4621 if (sym_hash[symidx] == hi)
4623 sym_hash[symidx] = h;
4629 free (nondeflt_vers);
4630 nondeflt_vers = NULL;
4633 /* Now set the weakdefs field correctly for all the weak defined
4634 symbols we found. The only way to do this is to search all the
4635 symbols. Since we only need the information for non functions in
4636 dynamic objects, that's the only time we actually put anything on
4637 the list WEAKS. We need this information so that if a regular
4638 object refers to a symbol defined weakly in a dynamic object, the
4639 real symbol in the dynamic object is also put in the dynamic
4640 symbols; we also must arrange for both symbols to point to the
4641 same memory location. We could handle the general case of symbol
4642 aliasing, but a general symbol alias can only be generated in
4643 assembler code, handling it correctly would be very time
4644 consuming, and other ELF linkers don't handle general aliasing
4648 struct elf_link_hash_entry **hpp;
4649 struct elf_link_hash_entry **hppend;
4650 struct elf_link_hash_entry **sorted_sym_hash;
4651 struct elf_link_hash_entry *h;
4654 /* Since we have to search the whole symbol list for each weak
4655 defined symbol, search time for N weak defined symbols will be
4656 O(N^2). Binary search will cut it down to O(NlogN). */
4657 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4658 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4659 if (sorted_sym_hash == NULL)
4661 sym_hash = sorted_sym_hash;
4662 hpp = elf_sym_hashes (abfd);
4663 hppend = hpp + extsymcount;
4665 for (; hpp < hppend; hpp++)
4669 && h->root.type == bfd_link_hash_defined
4670 && !bed->is_function_type (h->type))
4678 qsort (sorted_sym_hash, sym_count,
4679 sizeof (struct elf_link_hash_entry *),
4682 while (weaks != NULL)
4684 struct elf_link_hash_entry *hlook;
4691 weaks = hlook->u.weakdef;
4692 hlook->u.weakdef = NULL;
4694 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4695 || hlook->root.type == bfd_link_hash_defweak
4696 || hlook->root.type == bfd_link_hash_common
4697 || hlook->root.type == bfd_link_hash_indirect);
4698 slook = hlook->root.u.def.section;
4699 vlook = hlook->root.u.def.value;
4706 bfd_signed_vma vdiff;
4708 h = sorted_sym_hash [idx];
4709 vdiff = vlook - h->root.u.def.value;
4716 long sdiff = slook->id - h->root.u.def.section->id;
4729 /* We didn't find a value/section match. */
4733 for (i = ilook; i < sym_count; i++)
4735 h = sorted_sym_hash [i];
4737 /* Stop if value or section doesn't match. */
4738 if (h->root.u.def.value != vlook
4739 || h->root.u.def.section != slook)
4741 else if (h != hlook)
4743 hlook->u.weakdef = h;
4745 /* If the weak definition is in the list of dynamic
4746 symbols, make sure the real definition is put
4748 if (hlook->dynindx != -1 && h->dynindx == -1)
4750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4753 free (sorted_sym_hash);
4758 /* If the real definition is in the list of dynamic
4759 symbols, make sure the weak definition is put
4760 there as well. If we don't do this, then the
4761 dynamic loader might not merge the entries for the
4762 real definition and the weak definition. */
4763 if (h->dynindx != -1 && hlook->dynindx == -1)
4765 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4766 goto err_free_sym_hash;
4773 free (sorted_sym_hash);
4776 if (bed->check_directives
4777 && !(*bed->check_directives) (abfd, info))
4780 /* If this object is the same format as the output object, and it is
4781 not a shared library, then let the backend look through the
4784 This is required to build global offset table entries and to
4785 arrange for dynamic relocs. It is not required for the
4786 particular common case of linking non PIC code, even when linking
4787 against shared libraries, but unfortunately there is no way of
4788 knowing whether an object file has been compiled PIC or not.
4789 Looking through the relocs is not particularly time consuming.
4790 The problem is that we must either (1) keep the relocs in memory,
4791 which causes the linker to require additional runtime memory or
4792 (2) read the relocs twice from the input file, which wastes time.
4793 This would be a good case for using mmap.
4795 I have no idea how to handle linking PIC code into a file of a
4796 different format. It probably can't be done. */
4798 && is_elf_hash_table (htab)
4799 && bed->check_relocs != NULL
4800 && elf_object_id (abfd) == elf_hash_table_id (htab)
4801 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4805 for (o = abfd->sections; o != NULL; o = o->next)
4807 Elf_Internal_Rela *internal_relocs;
4810 if ((o->flags & SEC_RELOC) == 0
4811 || o->reloc_count == 0
4812 || ((info->strip == strip_all || info->strip == strip_debugger)
4813 && (o->flags & SEC_DEBUGGING) != 0)
4814 || bfd_is_abs_section (o->output_section))
4817 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4819 if (internal_relocs == NULL)
4822 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4824 if (elf_section_data (o)->relocs != internal_relocs)
4825 free (internal_relocs);
4832 /* If this is a non-traditional link, try to optimize the handling
4833 of the .stab/.stabstr sections. */
4835 && ! info->traditional_format
4836 && is_elf_hash_table (htab)
4837 && (info->strip != strip_all && info->strip != strip_debugger))
4841 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4842 if (stabstr != NULL)
4844 bfd_size_type string_offset = 0;
4847 for (stab = abfd->sections; stab; stab = stab->next)
4848 if (CONST_STRNEQ (stab->name, ".stab")
4849 && (!stab->name[5] ||
4850 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4851 && (stab->flags & SEC_MERGE) == 0
4852 && !bfd_is_abs_section (stab->output_section))
4854 struct bfd_elf_section_data *secdata;
4856 secdata = elf_section_data (stab);
4857 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4858 stabstr, &secdata->sec_info,
4861 if (secdata->sec_info)
4862 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4867 if (is_elf_hash_table (htab) && add_needed)
4869 /* Add this bfd to the loaded list. */
4870 struct elf_link_loaded_list *n;
4872 n = (struct elf_link_loaded_list *)
4873 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4877 n->next = htab->loaded;
4884 if (old_tab != NULL)
4886 if (nondeflt_vers != NULL)
4887 free (nondeflt_vers);
4888 if (extversym != NULL)
4891 if (isymbuf != NULL)
4897 /* Return the linker hash table entry of a symbol that might be
4898 satisfied by an archive symbol. Return -1 on error. */
4900 struct elf_link_hash_entry *
4901 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4902 struct bfd_link_info *info,
4905 struct elf_link_hash_entry *h;
4909 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4913 /* If this is a default version (the name contains @@), look up the
4914 symbol again with only one `@' as well as without the version.
4915 The effect is that references to the symbol with and without the
4916 version will be matched by the default symbol in the archive. */
4918 p = strchr (name, ELF_VER_CHR);
4919 if (p == NULL || p[1] != ELF_VER_CHR)
4922 /* First check with only one `@'. */
4923 len = strlen (name);
4924 copy = (char *) bfd_alloc (abfd, len);
4926 return (struct elf_link_hash_entry *) 0 - 1;
4928 first = p - name + 1;
4929 memcpy (copy, name, first);
4930 memcpy (copy + first, name + first + 1, len - first);
4932 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4935 /* We also need to check references to the symbol without the
4937 copy[first - 1] = '\0';
4938 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4939 FALSE, FALSE, TRUE);
4942 bfd_release (abfd, copy);
4946 /* Add symbols from an ELF archive file to the linker hash table. We
4947 don't use _bfd_generic_link_add_archive_symbols because of a
4948 problem which arises on UnixWare. The UnixWare libc.so is an
4949 archive which includes an entry libc.so.1 which defines a bunch of
4950 symbols. The libc.so archive also includes a number of other
4951 object files, which also define symbols, some of which are the same
4952 as those defined in libc.so.1. Correct linking requires that we
4953 consider each object file in turn, and include it if it defines any
4954 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4955 this; it looks through the list of undefined symbols, and includes
4956 any object file which defines them. When this algorithm is used on
4957 UnixWare, it winds up pulling in libc.so.1 early and defining a
4958 bunch of symbols. This means that some of the other objects in the
4959 archive are not included in the link, which is incorrect since they
4960 precede libc.so.1 in the archive.
4962 Fortunately, ELF archive handling is simpler than that done by
4963 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4964 oddities. In ELF, if we find a symbol in the archive map, and the
4965 symbol is currently undefined, we know that we must pull in that
4968 Unfortunately, we do have to make multiple passes over the symbol
4969 table until nothing further is resolved. */
4972 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4975 bfd_boolean *defined = NULL;
4976 bfd_boolean *included = NULL;
4980 const struct elf_backend_data *bed;
4981 struct elf_link_hash_entry * (*archive_symbol_lookup)
4982 (bfd *, struct bfd_link_info *, const char *);
4984 if (! bfd_has_map (abfd))
4986 /* An empty archive is a special case. */
4987 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4989 bfd_set_error (bfd_error_no_armap);
4993 /* Keep track of all symbols we know to be already defined, and all
4994 files we know to be already included. This is to speed up the
4995 second and subsequent passes. */
4996 c = bfd_ardata (abfd)->symdef_count;
5000 amt *= sizeof (bfd_boolean);
5001 defined = (bfd_boolean *) bfd_zmalloc (amt);
5002 included = (bfd_boolean *) bfd_zmalloc (amt);
5003 if (defined == NULL || included == NULL)
5006 symdefs = bfd_ardata (abfd)->symdefs;
5007 bed = get_elf_backend_data (abfd);
5008 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5021 symdefend = symdef + c;
5022 for (i = 0; symdef < symdefend; symdef++, i++)
5024 struct elf_link_hash_entry *h;
5026 struct bfd_link_hash_entry *undefs_tail;
5029 if (defined[i] || included[i])
5031 if (symdef->file_offset == last)
5037 h = archive_symbol_lookup (abfd, info, symdef->name);
5038 if (h == (struct elf_link_hash_entry *) 0 - 1)
5044 if (h->root.type == bfd_link_hash_common)
5046 /* We currently have a common symbol. The archive map contains
5047 a reference to this symbol, so we may want to include it. We
5048 only want to include it however, if this archive element
5049 contains a definition of the symbol, not just another common
5052 Unfortunately some archivers (including GNU ar) will put
5053 declarations of common symbols into their archive maps, as
5054 well as real definitions, so we cannot just go by the archive
5055 map alone. Instead we must read in the element's symbol
5056 table and check that to see what kind of symbol definition
5058 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5061 else if (h->root.type != bfd_link_hash_undefined)
5063 if (h->root.type != bfd_link_hash_undefweak)
5068 /* We need to include this archive member. */
5069 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5070 if (element == NULL)
5073 if (! bfd_check_format (element, bfd_object))
5076 /* Doublecheck that we have not included this object
5077 already--it should be impossible, but there may be
5078 something wrong with the archive. */
5079 if (element->archive_pass != 0)
5081 bfd_set_error (bfd_error_bad_value);
5084 element->archive_pass = 1;
5086 undefs_tail = info->hash->undefs_tail;
5088 if (!(*info->callbacks
5089 ->add_archive_element) (info, element, symdef->name, &element))
5091 if (!bfd_link_add_symbols (element, info))
5094 /* If there are any new undefined symbols, we need to make
5095 another pass through the archive in order to see whether
5096 they can be defined. FIXME: This isn't perfect, because
5097 common symbols wind up on undefs_tail and because an
5098 undefined symbol which is defined later on in this pass
5099 does not require another pass. This isn't a bug, but it
5100 does make the code less efficient than it could be. */
5101 if (undefs_tail != info->hash->undefs_tail)
5104 /* Look backward to mark all symbols from this object file
5105 which we have already seen in this pass. */
5109 included[mark] = TRUE;
5114 while (symdefs[mark].file_offset == symdef->file_offset);
5116 /* We mark subsequent symbols from this object file as we go
5117 on through the loop. */
5118 last = symdef->file_offset;
5129 if (defined != NULL)
5131 if (included != NULL)
5136 /* Given an ELF BFD, add symbols to the global hash table as
5140 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5142 switch (bfd_get_format (abfd))
5145 return elf_link_add_object_symbols (abfd, info);
5147 return elf_link_add_archive_symbols (abfd, info);
5149 bfd_set_error (bfd_error_wrong_format);
5154 struct hash_codes_info
5156 unsigned long *hashcodes;
5160 /* This function will be called though elf_link_hash_traverse to store
5161 all hash value of the exported symbols in an array. */
5164 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5166 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5172 /* Ignore indirect symbols. These are added by the versioning code. */
5173 if (h->dynindx == -1)
5176 name = h->root.root.string;
5177 p = strchr (name, ELF_VER_CHR);
5180 alc = (char *) bfd_malloc (p - name + 1);
5186 memcpy (alc, name, p - name);
5187 alc[p - name] = '\0';
5191 /* Compute the hash value. */
5192 ha = bfd_elf_hash (name);
5194 /* Store the found hash value in the array given as the argument. */
5195 *(inf->hashcodes)++ = ha;
5197 /* And store it in the struct so that we can put it in the hash table
5199 h->u.elf_hash_value = ha;
5207 struct collect_gnu_hash_codes
5210 const struct elf_backend_data *bed;
5211 unsigned long int nsyms;
5212 unsigned long int maskbits;
5213 unsigned long int *hashcodes;
5214 unsigned long int *hashval;
5215 unsigned long int *indx;
5216 unsigned long int *counts;
5219 long int min_dynindx;
5220 unsigned long int bucketcount;
5221 unsigned long int symindx;
5222 long int local_indx;
5223 long int shift1, shift2;
5224 unsigned long int mask;
5228 /* This function will be called though elf_link_hash_traverse to store
5229 all hash value of the exported symbols in an array. */
5232 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5234 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5240 /* Ignore indirect symbols. These are added by the versioning code. */
5241 if (h->dynindx == -1)
5244 /* Ignore also local symbols and undefined symbols. */
5245 if (! (*s->bed->elf_hash_symbol) (h))
5248 name = h->root.root.string;
5249 p = strchr (name, ELF_VER_CHR);
5252 alc = (char *) bfd_malloc (p - name + 1);
5258 memcpy (alc, name, p - name);
5259 alc[p - name] = '\0';
5263 /* Compute the hash value. */
5264 ha = bfd_elf_gnu_hash (name);
5266 /* Store the found hash value in the array for compute_bucket_count,
5267 and also for .dynsym reordering purposes. */
5268 s->hashcodes[s->nsyms] = ha;
5269 s->hashval[h->dynindx] = ha;
5271 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5272 s->min_dynindx = h->dynindx;
5280 /* This function will be called though elf_link_hash_traverse to do
5281 final dynaminc symbol renumbering. */
5284 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5286 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5287 unsigned long int bucket;
5288 unsigned long int val;
5290 /* Ignore indirect symbols. */
5291 if (h->dynindx == -1)
5294 /* Ignore also local symbols and undefined symbols. */
5295 if (! (*s->bed->elf_hash_symbol) (h))
5297 if (h->dynindx >= s->min_dynindx)
5298 h->dynindx = s->local_indx++;
5302 bucket = s->hashval[h->dynindx] % s->bucketcount;
5303 val = (s->hashval[h->dynindx] >> s->shift1)
5304 & ((s->maskbits >> s->shift1) - 1);
5305 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5307 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5308 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5309 if (s->counts[bucket] == 1)
5310 /* Last element terminates the chain. */
5312 bfd_put_32 (s->output_bfd, val,
5313 s->contents + (s->indx[bucket] - s->symindx) * 4);
5314 --s->counts[bucket];
5315 h->dynindx = s->indx[bucket]++;
5319 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5322 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5324 return !(h->forced_local
5325 || h->root.type == bfd_link_hash_undefined
5326 || h->root.type == bfd_link_hash_undefweak
5327 || ((h->root.type == bfd_link_hash_defined
5328 || h->root.type == bfd_link_hash_defweak)
5329 && h->root.u.def.section->output_section == NULL));
5332 /* Array used to determine the number of hash table buckets to use
5333 based on the number of symbols there are. If there are fewer than
5334 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5335 fewer than 37 we use 17 buckets, and so forth. We never use more
5336 than 32771 buckets. */
5338 static const size_t elf_buckets[] =
5340 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5344 /* Compute bucket count for hashing table. We do not use a static set
5345 of possible tables sizes anymore. Instead we determine for all
5346 possible reasonable sizes of the table the outcome (i.e., the
5347 number of collisions etc) and choose the best solution. The
5348 weighting functions are not too simple to allow the table to grow
5349 without bounds. Instead one of the weighting factors is the size.
5350 Therefore the result is always a good payoff between few collisions
5351 (= short chain lengths) and table size. */
5353 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5354 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5355 unsigned long int nsyms,
5358 size_t best_size = 0;
5359 unsigned long int i;
5361 /* We have a problem here. The following code to optimize the table
5362 size requires an integer type with more the 32 bits. If
5363 BFD_HOST_U_64_BIT is set we know about such a type. */
5364 #ifdef BFD_HOST_U_64_BIT
5369 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5370 bfd *dynobj = elf_hash_table (info)->dynobj;
5371 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5372 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5373 unsigned long int *counts;
5375 unsigned int no_improvement_count = 0;
5377 /* Possible optimization parameters: if we have NSYMS symbols we say
5378 that the hashing table must at least have NSYMS/4 and at most
5380 minsize = nsyms / 4;
5383 best_size = maxsize = nsyms * 2;
5388 if ((best_size & 31) == 0)
5392 /* Create array where we count the collisions in. We must use bfd_malloc
5393 since the size could be large. */
5395 amt *= sizeof (unsigned long int);
5396 counts = (unsigned long int *) bfd_malloc (amt);
5400 /* Compute the "optimal" size for the hash table. The criteria is a
5401 minimal chain length. The minor criteria is (of course) the size
5403 for (i = minsize; i < maxsize; ++i)
5405 /* Walk through the array of hashcodes and count the collisions. */
5406 BFD_HOST_U_64_BIT max;
5407 unsigned long int j;
5408 unsigned long int fact;
5410 if (gnu_hash && (i & 31) == 0)
5413 memset (counts, '\0', i * sizeof (unsigned long int));
5415 /* Determine how often each hash bucket is used. */
5416 for (j = 0; j < nsyms; ++j)
5417 ++counts[hashcodes[j] % i];
5419 /* For the weight function we need some information about the
5420 pagesize on the target. This is information need not be 100%
5421 accurate. Since this information is not available (so far) we
5422 define it here to a reasonable default value. If it is crucial
5423 to have a better value some day simply define this value. */
5424 # ifndef BFD_TARGET_PAGESIZE
5425 # define BFD_TARGET_PAGESIZE (4096)
5428 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5430 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5433 /* Variant 1: optimize for short chains. We add the squares
5434 of all the chain lengths (which favors many small chain
5435 over a few long chains). */
5436 for (j = 0; j < i; ++j)
5437 max += counts[j] * counts[j];
5439 /* This adds penalties for the overall size of the table. */
5440 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5443 /* Variant 2: Optimize a lot more for small table. Here we
5444 also add squares of the size but we also add penalties for
5445 empty slots (the +1 term). */
5446 for (j = 0; j < i; ++j)
5447 max += (1 + counts[j]) * (1 + counts[j]);
5449 /* The overall size of the table is considered, but not as
5450 strong as in variant 1, where it is squared. */
5451 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5455 /* Compare with current best results. */
5456 if (max < best_chlen)
5460 no_improvement_count = 0;
5462 /* PR 11843: Avoid futile long searches for the best bucket size
5463 when there are a large number of symbols. */
5464 else if (++no_improvement_count == 100)
5471 #endif /* defined (BFD_HOST_U_64_BIT) */
5473 /* This is the fallback solution if no 64bit type is available or if we
5474 are not supposed to spend much time on optimizations. We select the
5475 bucket count using a fixed set of numbers. */
5476 for (i = 0; elf_buckets[i] != 0; i++)
5478 best_size = elf_buckets[i];
5479 if (nsyms < elf_buckets[i + 1])
5482 if (gnu_hash && best_size < 2)
5489 /* Size any SHT_GROUP section for ld -r. */
5492 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5496 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5497 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5498 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5503 /* Set up the sizes and contents of the ELF dynamic sections. This is
5504 called by the ELF linker emulation before_allocation routine. We
5505 must set the sizes of the sections before the linker sets the
5506 addresses of the various sections. */
5509 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5512 const char *filter_shlib,
5514 const char *depaudit,
5515 const char * const *auxiliary_filters,
5516 struct bfd_link_info *info,
5517 asection **sinterpptr)
5519 bfd_size_type soname_indx;
5521 const struct elf_backend_data *bed;
5522 struct elf_info_failed asvinfo;
5526 soname_indx = (bfd_size_type) -1;
5528 if (!is_elf_hash_table (info->hash))
5531 bed = get_elf_backend_data (output_bfd);
5532 if (info->execstack)
5533 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5534 else if (info->noexecstack)
5535 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5539 asection *notesec = NULL;
5542 for (inputobj = info->input_bfds;
5544 inputobj = inputobj->link_next)
5549 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5551 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5554 if (s->flags & SEC_CODE)
5558 else if (bed->default_execstack)
5563 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5564 if (exec && info->relocatable
5565 && notesec->output_section != bfd_abs_section_ptr)
5566 notesec->output_section->flags |= SEC_CODE;
5570 /* Any syms created from now on start with -1 in
5571 got.refcount/offset and plt.refcount/offset. */
5572 elf_hash_table (info)->init_got_refcount
5573 = elf_hash_table (info)->init_got_offset;
5574 elf_hash_table (info)->init_plt_refcount
5575 = elf_hash_table (info)->init_plt_offset;
5577 if (info->relocatable
5578 && !_bfd_elf_size_group_sections (info))
5581 /* The backend may have to create some sections regardless of whether
5582 we're dynamic or not. */
5583 if (bed->elf_backend_always_size_sections
5584 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5587 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5590 dynobj = elf_hash_table (info)->dynobj;
5592 /* If there were no dynamic objects in the link, there is nothing to
5597 if (elf_hash_table (info)->dynamic_sections_created)
5599 struct elf_info_failed eif;
5600 struct elf_link_hash_entry *h;
5602 struct bfd_elf_version_tree *t;
5603 struct bfd_elf_version_expr *d;
5605 bfd_boolean all_defined;
5607 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5608 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5612 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5614 if (soname_indx == (bfd_size_type) -1
5615 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5621 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5623 info->flags |= DF_SYMBOLIC;
5630 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5632 if (indx == (bfd_size_type) -1
5633 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5636 if (info->new_dtags)
5638 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5639 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5644 if (filter_shlib != NULL)
5648 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5649 filter_shlib, TRUE);
5650 if (indx == (bfd_size_type) -1
5651 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5655 if (auxiliary_filters != NULL)
5657 const char * const *p;
5659 for (p = auxiliary_filters; *p != NULL; p++)
5663 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5665 if (indx == (bfd_size_type) -1
5666 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5675 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5677 if (indx == (bfd_size_type) -1
5678 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5682 if (depaudit != NULL)
5686 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5688 if (indx == (bfd_size_type) -1
5689 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5696 /* If we are supposed to export all symbols into the dynamic symbol
5697 table (this is not the normal case), then do so. */
5698 if (info->export_dynamic
5699 || (info->executable && info->dynamic))
5701 elf_link_hash_traverse (elf_hash_table (info),
5702 _bfd_elf_export_symbol,
5708 /* Make all global versions with definition. */
5709 for (t = info->version_info; t != NULL; t = t->next)
5710 for (d = t->globals.list; d != NULL; d = d->next)
5711 if (!d->symver && d->literal)
5713 const char *verstr, *name;
5714 size_t namelen, verlen, newlen;
5715 char *newname, *p, leading_char;
5716 struct elf_link_hash_entry *newh;
5718 leading_char = bfd_get_symbol_leading_char (output_bfd);
5720 namelen = strlen (name) + (leading_char != '\0');
5722 verlen = strlen (verstr);
5723 newlen = namelen + verlen + 3;
5725 newname = (char *) bfd_malloc (newlen);
5726 if (newname == NULL)
5728 newname[0] = leading_char;
5729 memcpy (newname + (leading_char != '\0'), name, namelen);
5731 /* Check the hidden versioned definition. */
5732 p = newname + namelen;
5734 memcpy (p, verstr, verlen + 1);
5735 newh = elf_link_hash_lookup (elf_hash_table (info),
5736 newname, FALSE, FALSE,
5739 || (newh->root.type != bfd_link_hash_defined
5740 && newh->root.type != bfd_link_hash_defweak))
5742 /* Check the default versioned definition. */
5744 memcpy (p, verstr, verlen + 1);
5745 newh = elf_link_hash_lookup (elf_hash_table (info),
5746 newname, FALSE, FALSE,
5751 /* Mark this version if there is a definition and it is
5752 not defined in a shared object. */
5754 && !newh->def_dynamic
5755 && (newh->root.type == bfd_link_hash_defined
5756 || newh->root.type == bfd_link_hash_defweak))
5760 /* Attach all the symbols to their version information. */
5761 asvinfo.info = info;
5762 asvinfo.failed = FALSE;
5764 elf_link_hash_traverse (elf_hash_table (info),
5765 _bfd_elf_link_assign_sym_version,
5770 if (!info->allow_undefined_version)
5772 /* Check if all global versions have a definition. */
5774 for (t = info->version_info; t != NULL; t = t->next)
5775 for (d = t->globals.list; d != NULL; d = d->next)
5776 if (d->literal && !d->symver && !d->script)
5778 (*_bfd_error_handler)
5779 (_("%s: undefined version: %s"),
5780 d->pattern, t->name);
5781 all_defined = FALSE;
5786 bfd_set_error (bfd_error_bad_value);
5791 /* Find all symbols which were defined in a dynamic object and make
5792 the backend pick a reasonable value for them. */
5793 elf_link_hash_traverse (elf_hash_table (info),
5794 _bfd_elf_adjust_dynamic_symbol,
5799 /* Add some entries to the .dynamic section. We fill in some of the
5800 values later, in bfd_elf_final_link, but we must add the entries
5801 now so that we know the final size of the .dynamic section. */
5803 /* If there are initialization and/or finalization functions to
5804 call then add the corresponding DT_INIT/DT_FINI entries. */
5805 h = (info->init_function
5806 ? elf_link_hash_lookup (elf_hash_table (info),
5807 info->init_function, FALSE,
5814 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5817 h = (info->fini_function
5818 ? elf_link_hash_lookup (elf_hash_table (info),
5819 info->fini_function, FALSE,
5826 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5830 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5831 if (s != NULL && s->linker_has_input)
5833 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5834 if (! info->executable)
5839 for (sub = info->input_bfds; sub != NULL;
5840 sub = sub->link_next)
5841 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5842 for (o = sub->sections; o != NULL; o = o->next)
5843 if (elf_section_data (o)->this_hdr.sh_type
5844 == SHT_PREINIT_ARRAY)
5846 (*_bfd_error_handler)
5847 (_("%B: .preinit_array section is not allowed in DSO"),
5852 bfd_set_error (bfd_error_nonrepresentable_section);
5856 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5860 s = bfd_get_section_by_name (output_bfd, ".init_array");
5861 if (s != NULL && s->linker_has_input)
5863 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5864 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5867 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5868 if (s != NULL && s->linker_has_input)
5870 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5871 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5875 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5876 /* If .dynstr is excluded from the link, we don't want any of
5877 these tags. Strictly, we should be checking each section
5878 individually; This quick check covers for the case where
5879 someone does a /DISCARD/ : { *(*) }. */
5880 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5882 bfd_size_type strsize;
5884 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5885 if ((info->emit_hash
5886 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5887 || (info->emit_gnu_hash
5888 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5889 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5890 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5891 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5892 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5893 bed->s->sizeof_sym))
5898 /* The backend must work out the sizes of all the other dynamic
5900 if (bed->elf_backend_size_dynamic_sections
5901 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5904 if (elf_hash_table (info)->dynamic_sections_created)
5906 unsigned long section_sym_count;
5907 struct bfd_elf_version_tree *verdefs;
5910 /* Set up the version definition section. */
5911 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5912 BFD_ASSERT (s != NULL);
5914 /* We may have created additional version definitions if we are
5915 just linking a regular application. */
5916 verdefs = info->version_info;
5918 /* Skip anonymous version tag. */
5919 if (verdefs != NULL && verdefs->vernum == 0)
5920 verdefs = verdefs->next;
5922 if (verdefs == NULL && !info->create_default_symver)
5923 s->flags |= SEC_EXCLUDE;
5928 struct bfd_elf_version_tree *t;
5930 Elf_Internal_Verdef def;
5931 Elf_Internal_Verdaux defaux;
5932 struct bfd_link_hash_entry *bh;
5933 struct elf_link_hash_entry *h;
5939 /* Make space for the base version. */
5940 size += sizeof (Elf_External_Verdef);
5941 size += sizeof (Elf_External_Verdaux);
5944 /* Make space for the default version. */
5945 if (info->create_default_symver)
5947 size += sizeof (Elf_External_Verdef);
5951 for (t = verdefs; t != NULL; t = t->next)
5953 struct bfd_elf_version_deps *n;
5955 /* Don't emit base version twice. */
5959 size += sizeof (Elf_External_Verdef);
5960 size += sizeof (Elf_External_Verdaux);
5963 for (n = t->deps; n != NULL; n = n->next)
5964 size += sizeof (Elf_External_Verdaux);
5968 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5969 if (s->contents == NULL && s->size != 0)
5972 /* Fill in the version definition section. */
5976 def.vd_version = VER_DEF_CURRENT;
5977 def.vd_flags = VER_FLG_BASE;
5980 if (info->create_default_symver)
5982 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5983 def.vd_next = sizeof (Elf_External_Verdef);
5987 def.vd_aux = sizeof (Elf_External_Verdef);
5988 def.vd_next = (sizeof (Elf_External_Verdef)
5989 + sizeof (Elf_External_Verdaux));
5992 if (soname_indx != (bfd_size_type) -1)
5994 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5996 def.vd_hash = bfd_elf_hash (soname);
5997 defaux.vda_name = soname_indx;
6004 name = lbasename (output_bfd->filename);
6005 def.vd_hash = bfd_elf_hash (name);
6006 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6008 if (indx == (bfd_size_type) -1)
6010 defaux.vda_name = indx;
6012 defaux.vda_next = 0;
6014 _bfd_elf_swap_verdef_out (output_bfd, &def,
6015 (Elf_External_Verdef *) p);
6016 p += sizeof (Elf_External_Verdef);
6017 if (info->create_default_symver)
6019 /* Add a symbol representing this version. */
6021 if (! (_bfd_generic_link_add_one_symbol
6022 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6024 get_elf_backend_data (dynobj)->collect, &bh)))
6026 h = (struct elf_link_hash_entry *) bh;
6029 h->type = STT_OBJECT;
6030 h->verinfo.vertree = NULL;
6032 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6035 /* Create a duplicate of the base version with the same
6036 aux block, but different flags. */
6039 def.vd_aux = sizeof (Elf_External_Verdef);
6041 def.vd_next = (sizeof (Elf_External_Verdef)
6042 + sizeof (Elf_External_Verdaux));
6045 _bfd_elf_swap_verdef_out (output_bfd, &def,
6046 (Elf_External_Verdef *) p);
6047 p += sizeof (Elf_External_Verdef);
6049 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6050 (Elf_External_Verdaux *) p);
6051 p += sizeof (Elf_External_Verdaux);
6053 for (t = verdefs; t != NULL; t = t->next)
6056 struct bfd_elf_version_deps *n;
6058 /* Don't emit the base version twice. */
6063 for (n = t->deps; n != NULL; n = n->next)
6066 /* Add a symbol representing this version. */
6068 if (! (_bfd_generic_link_add_one_symbol
6069 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6071 get_elf_backend_data (dynobj)->collect, &bh)))
6073 h = (struct elf_link_hash_entry *) bh;
6076 h->type = STT_OBJECT;
6077 h->verinfo.vertree = t;
6079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6082 def.vd_version = VER_DEF_CURRENT;
6084 if (t->globals.list == NULL
6085 && t->locals.list == NULL
6087 def.vd_flags |= VER_FLG_WEAK;
6088 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6089 def.vd_cnt = cdeps + 1;
6090 def.vd_hash = bfd_elf_hash (t->name);
6091 def.vd_aux = sizeof (Elf_External_Verdef);
6094 /* If a basever node is next, it *must* be the last node in
6095 the chain, otherwise Verdef construction breaks. */
6096 if (t->next != NULL && t->next->vernum == 0)
6097 BFD_ASSERT (t->next->next == NULL);
6099 if (t->next != NULL && t->next->vernum != 0)
6100 def.vd_next = (sizeof (Elf_External_Verdef)
6101 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6103 _bfd_elf_swap_verdef_out (output_bfd, &def,
6104 (Elf_External_Verdef *) p);
6105 p += sizeof (Elf_External_Verdef);
6107 defaux.vda_name = h->dynstr_index;
6108 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6110 defaux.vda_next = 0;
6111 if (t->deps != NULL)
6112 defaux.vda_next = sizeof (Elf_External_Verdaux);
6113 t->name_indx = defaux.vda_name;
6115 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6116 (Elf_External_Verdaux *) p);
6117 p += sizeof (Elf_External_Verdaux);
6119 for (n = t->deps; n != NULL; n = n->next)
6121 if (n->version_needed == NULL)
6123 /* This can happen if there was an error in the
6125 defaux.vda_name = 0;
6129 defaux.vda_name = n->version_needed->name_indx;
6130 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6133 if (n->next == NULL)
6134 defaux.vda_next = 0;
6136 defaux.vda_next = sizeof (Elf_External_Verdaux);
6138 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6139 (Elf_External_Verdaux *) p);
6140 p += sizeof (Elf_External_Verdaux);
6144 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6145 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6148 elf_tdata (output_bfd)->cverdefs = cdefs;
6151 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6153 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6156 else if (info->flags & DF_BIND_NOW)
6158 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6164 if (info->executable)
6165 info->flags_1 &= ~ (DF_1_INITFIRST
6168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6172 /* Work out the size of the version reference section. */
6174 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6175 BFD_ASSERT (s != NULL);
6177 struct elf_find_verdep_info sinfo;
6180 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6181 if (sinfo.vers == 0)
6183 sinfo.failed = FALSE;
6185 elf_link_hash_traverse (elf_hash_table (info),
6186 _bfd_elf_link_find_version_dependencies,
6191 if (elf_tdata (output_bfd)->verref == NULL)
6192 s->flags |= SEC_EXCLUDE;
6195 Elf_Internal_Verneed *t;
6200 /* Build the version dependency section. */
6203 for (t = elf_tdata (output_bfd)->verref;
6207 Elf_Internal_Vernaux *a;
6209 size += sizeof (Elf_External_Verneed);
6211 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6212 size += sizeof (Elf_External_Vernaux);
6216 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6217 if (s->contents == NULL)
6221 for (t = elf_tdata (output_bfd)->verref;
6226 Elf_Internal_Vernaux *a;
6230 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6233 t->vn_version = VER_NEED_CURRENT;
6235 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6236 elf_dt_name (t->vn_bfd) != NULL
6237 ? elf_dt_name (t->vn_bfd)
6238 : lbasename (t->vn_bfd->filename),
6240 if (indx == (bfd_size_type) -1)
6243 t->vn_aux = sizeof (Elf_External_Verneed);
6244 if (t->vn_nextref == NULL)
6247 t->vn_next = (sizeof (Elf_External_Verneed)
6248 + caux * sizeof (Elf_External_Vernaux));
6250 _bfd_elf_swap_verneed_out (output_bfd, t,
6251 (Elf_External_Verneed *) p);
6252 p += sizeof (Elf_External_Verneed);
6254 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6256 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6257 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6258 a->vna_nodename, FALSE);
6259 if (indx == (bfd_size_type) -1)
6262 if (a->vna_nextptr == NULL)
6265 a->vna_next = sizeof (Elf_External_Vernaux);
6267 _bfd_elf_swap_vernaux_out (output_bfd, a,
6268 (Elf_External_Vernaux *) p);
6269 p += sizeof (Elf_External_Vernaux);
6273 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6274 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6277 elf_tdata (output_bfd)->cverrefs = crefs;
6281 if ((elf_tdata (output_bfd)->cverrefs == 0
6282 && elf_tdata (output_bfd)->cverdefs == 0)
6283 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6284 §ion_sym_count) == 0)
6286 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6287 s->flags |= SEC_EXCLUDE;
6293 /* Find the first non-excluded output section. We'll use its
6294 section symbol for some emitted relocs. */
6296 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6300 for (s = output_bfd->sections; s != NULL; s = s->next)
6301 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6302 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6304 elf_hash_table (info)->text_index_section = s;
6309 /* Find two non-excluded output sections, one for code, one for data.
6310 We'll use their section symbols for some emitted relocs. */
6312 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6316 /* Data first, since setting text_index_section changes
6317 _bfd_elf_link_omit_section_dynsym. */
6318 for (s = output_bfd->sections; s != NULL; s = s->next)
6319 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6320 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6322 elf_hash_table (info)->data_index_section = s;
6326 for (s = output_bfd->sections; s != NULL; s = s->next)
6327 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6328 == (SEC_ALLOC | SEC_READONLY))
6329 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6331 elf_hash_table (info)->text_index_section = s;
6335 if (elf_hash_table (info)->text_index_section == NULL)
6336 elf_hash_table (info)->text_index_section
6337 = elf_hash_table (info)->data_index_section;
6341 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6343 const struct elf_backend_data *bed;
6345 if (!is_elf_hash_table (info->hash))
6348 bed = get_elf_backend_data (output_bfd);
6349 (*bed->elf_backend_init_index_section) (output_bfd, info);
6351 if (elf_hash_table (info)->dynamic_sections_created)
6355 bfd_size_type dynsymcount;
6356 unsigned long section_sym_count;
6357 unsigned int dtagcount;
6359 dynobj = elf_hash_table (info)->dynobj;
6361 /* Assign dynsym indicies. In a shared library we generate a
6362 section symbol for each output section, which come first.
6363 Next come all of the back-end allocated local dynamic syms,
6364 followed by the rest of the global symbols. */
6366 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6367 §ion_sym_count);
6369 /* Work out the size of the symbol version section. */
6370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6371 BFD_ASSERT (s != NULL);
6372 if (dynsymcount != 0
6373 && (s->flags & SEC_EXCLUDE) == 0)
6375 s->size = dynsymcount * sizeof (Elf_External_Versym);
6376 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6377 if (s->contents == NULL)
6380 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6384 /* Set the size of the .dynsym and .hash sections. We counted
6385 the number of dynamic symbols in elf_link_add_object_symbols.
6386 We will build the contents of .dynsym and .hash when we build
6387 the final symbol table, because until then we do not know the
6388 correct value to give the symbols. We built the .dynstr
6389 section as we went along in elf_link_add_object_symbols. */
6390 s = bfd_get_section_by_name (dynobj, ".dynsym");
6391 BFD_ASSERT (s != NULL);
6392 s->size = dynsymcount * bed->s->sizeof_sym;
6394 if (dynsymcount != 0)
6396 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6397 if (s->contents == NULL)
6400 /* The first entry in .dynsym is a dummy symbol.
6401 Clear all the section syms, in case we don't output them all. */
6402 ++section_sym_count;
6403 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6406 elf_hash_table (info)->bucketcount = 0;
6408 /* Compute the size of the hashing table. As a side effect this
6409 computes the hash values for all the names we export. */
6410 if (info->emit_hash)
6412 unsigned long int *hashcodes;
6413 struct hash_codes_info hashinf;
6415 unsigned long int nsyms;
6417 size_t hash_entry_size;
6419 /* Compute the hash values for all exported symbols. At the same
6420 time store the values in an array so that we could use them for
6422 amt = dynsymcount * sizeof (unsigned long int);
6423 hashcodes = (unsigned long int *) bfd_malloc (amt);
6424 if (hashcodes == NULL)
6426 hashinf.hashcodes = hashcodes;
6427 hashinf.error = FALSE;
6429 /* Put all hash values in HASHCODES. */
6430 elf_link_hash_traverse (elf_hash_table (info),
6431 elf_collect_hash_codes, &hashinf);
6438 nsyms = hashinf.hashcodes - hashcodes;
6440 = compute_bucket_count (info, hashcodes, nsyms, 0);
6443 if (bucketcount == 0)
6446 elf_hash_table (info)->bucketcount = bucketcount;
6448 s = bfd_get_section_by_name (dynobj, ".hash");
6449 BFD_ASSERT (s != NULL);
6450 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6451 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6452 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6453 if (s->contents == NULL)
6456 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6457 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6458 s->contents + hash_entry_size);
6461 if (info->emit_gnu_hash)
6464 unsigned char *contents;
6465 struct collect_gnu_hash_codes cinfo;
6469 memset (&cinfo, 0, sizeof (cinfo));
6471 /* Compute the hash values for all exported symbols. At the same
6472 time store the values in an array so that we could use them for
6474 amt = dynsymcount * 2 * sizeof (unsigned long int);
6475 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6476 if (cinfo.hashcodes == NULL)
6479 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6480 cinfo.min_dynindx = -1;
6481 cinfo.output_bfd = output_bfd;
6484 /* Put all hash values in HASHCODES. */
6485 elf_link_hash_traverse (elf_hash_table (info),
6486 elf_collect_gnu_hash_codes, &cinfo);
6489 free (cinfo.hashcodes);
6494 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6496 if (bucketcount == 0)
6498 free (cinfo.hashcodes);
6502 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6503 BFD_ASSERT (s != NULL);
6505 if (cinfo.nsyms == 0)
6507 /* Empty .gnu.hash section is special. */
6508 BFD_ASSERT (cinfo.min_dynindx == -1);
6509 free (cinfo.hashcodes);
6510 s->size = 5 * 4 + bed->s->arch_size / 8;
6511 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6512 if (contents == NULL)
6514 s->contents = contents;
6515 /* 1 empty bucket. */
6516 bfd_put_32 (output_bfd, 1, contents);
6517 /* SYMIDX above the special symbol 0. */
6518 bfd_put_32 (output_bfd, 1, contents + 4);
6519 /* Just one word for bitmask. */
6520 bfd_put_32 (output_bfd, 1, contents + 8);
6521 /* Only hash fn bloom filter. */
6522 bfd_put_32 (output_bfd, 0, contents + 12);
6523 /* No hashes are valid - empty bitmask. */
6524 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6525 /* No hashes in the only bucket. */
6526 bfd_put_32 (output_bfd, 0,
6527 contents + 16 + bed->s->arch_size / 8);
6531 unsigned long int maskwords, maskbitslog2, x;
6532 BFD_ASSERT (cinfo.min_dynindx != -1);
6536 while ((x >>= 1) != 0)
6538 if (maskbitslog2 < 3)
6540 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6541 maskbitslog2 = maskbitslog2 + 3;
6543 maskbitslog2 = maskbitslog2 + 2;
6544 if (bed->s->arch_size == 64)
6546 if (maskbitslog2 == 5)
6552 cinfo.mask = (1 << cinfo.shift1) - 1;
6553 cinfo.shift2 = maskbitslog2;
6554 cinfo.maskbits = 1 << maskbitslog2;
6555 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6556 amt = bucketcount * sizeof (unsigned long int) * 2;
6557 amt += maskwords * sizeof (bfd_vma);
6558 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6559 if (cinfo.bitmask == NULL)
6561 free (cinfo.hashcodes);
6565 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6566 cinfo.indx = cinfo.counts + bucketcount;
6567 cinfo.symindx = dynsymcount - cinfo.nsyms;
6568 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6570 /* Determine how often each hash bucket is used. */
6571 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6572 for (i = 0; i < cinfo.nsyms; ++i)
6573 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6575 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6576 if (cinfo.counts[i] != 0)
6578 cinfo.indx[i] = cnt;
6579 cnt += cinfo.counts[i];
6581 BFD_ASSERT (cnt == dynsymcount);
6582 cinfo.bucketcount = bucketcount;
6583 cinfo.local_indx = cinfo.min_dynindx;
6585 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6586 s->size += cinfo.maskbits / 8;
6587 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6588 if (contents == NULL)
6590 free (cinfo.bitmask);
6591 free (cinfo.hashcodes);
6595 s->contents = contents;
6596 bfd_put_32 (output_bfd, bucketcount, contents);
6597 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6598 bfd_put_32 (output_bfd, maskwords, contents + 8);
6599 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6600 contents += 16 + cinfo.maskbits / 8;
6602 for (i = 0; i < bucketcount; ++i)
6604 if (cinfo.counts[i] == 0)
6605 bfd_put_32 (output_bfd, 0, contents);
6607 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6611 cinfo.contents = contents;
6613 /* Renumber dynamic symbols, populate .gnu.hash section. */
6614 elf_link_hash_traverse (elf_hash_table (info),
6615 elf_renumber_gnu_hash_syms, &cinfo);
6617 contents = s->contents + 16;
6618 for (i = 0; i < maskwords; ++i)
6620 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6622 contents += bed->s->arch_size / 8;
6625 free (cinfo.bitmask);
6626 free (cinfo.hashcodes);
6630 s = bfd_get_section_by_name (dynobj, ".dynstr");
6631 BFD_ASSERT (s != NULL);
6633 elf_finalize_dynstr (output_bfd, info);
6635 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6637 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6645 /* Indicate that we are only retrieving symbol values from this
6649 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6651 if (is_elf_hash_table (info->hash))
6652 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6653 _bfd_generic_link_just_syms (sec, info);
6656 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6659 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6662 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6663 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6666 /* Finish SHF_MERGE section merging. */
6669 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6674 if (!is_elf_hash_table (info->hash))
6677 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6678 if ((ibfd->flags & DYNAMIC) == 0)
6679 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6680 if ((sec->flags & SEC_MERGE) != 0
6681 && !bfd_is_abs_section (sec->output_section))
6683 struct bfd_elf_section_data *secdata;
6685 secdata = elf_section_data (sec);
6686 if (! _bfd_add_merge_section (abfd,
6687 &elf_hash_table (info)->merge_info,
6688 sec, &secdata->sec_info))
6690 else if (secdata->sec_info)
6691 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6694 if (elf_hash_table (info)->merge_info != NULL)
6695 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6696 merge_sections_remove_hook);
6700 /* Create an entry in an ELF linker hash table. */
6702 struct bfd_hash_entry *
6703 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6704 struct bfd_hash_table *table,
6707 /* Allocate the structure if it has not already been allocated by a
6711 entry = (struct bfd_hash_entry *)
6712 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6717 /* Call the allocation method of the superclass. */
6718 entry = _bfd_link_hash_newfunc (entry, table, string);
6721 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6722 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6724 /* Set local fields. */
6727 ret->got = htab->init_got_refcount;
6728 ret->plt = htab->init_plt_refcount;
6729 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6730 - offsetof (struct elf_link_hash_entry, size)));
6731 /* Assume that we have been called by a non-ELF symbol reader.
6732 This flag is then reset by the code which reads an ELF input
6733 file. This ensures that a symbol created by a non-ELF symbol
6734 reader will have the flag set correctly. */
6741 /* Copy data from an indirect symbol to its direct symbol, hiding the
6742 old indirect symbol. Also used for copying flags to a weakdef. */
6745 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6746 struct elf_link_hash_entry *dir,
6747 struct elf_link_hash_entry *ind)
6749 struct elf_link_hash_table *htab;
6751 /* Copy down any references that we may have already seen to the
6752 symbol which just became indirect. */
6754 dir->ref_dynamic |= ind->ref_dynamic;
6755 dir->ref_regular |= ind->ref_regular;
6756 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6757 dir->non_got_ref |= ind->non_got_ref;
6758 dir->needs_plt |= ind->needs_plt;
6759 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6761 if (ind->root.type != bfd_link_hash_indirect)
6764 /* Copy over the global and procedure linkage table refcount entries.
6765 These may have been already set up by a check_relocs routine. */
6766 htab = elf_hash_table (info);
6767 if (ind->got.refcount > htab->init_got_refcount.refcount)
6769 if (dir->got.refcount < 0)
6770 dir->got.refcount = 0;
6771 dir->got.refcount += ind->got.refcount;
6772 ind->got.refcount = htab->init_got_refcount.refcount;
6775 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6777 if (dir->plt.refcount < 0)
6778 dir->plt.refcount = 0;
6779 dir->plt.refcount += ind->plt.refcount;
6780 ind->plt.refcount = htab->init_plt_refcount.refcount;
6783 if (ind->dynindx != -1)
6785 if (dir->dynindx != -1)
6786 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6787 dir->dynindx = ind->dynindx;
6788 dir->dynstr_index = ind->dynstr_index;
6790 ind->dynstr_index = 0;
6795 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6796 struct elf_link_hash_entry *h,
6797 bfd_boolean force_local)
6799 /* STT_GNU_IFUNC symbol must go through PLT. */
6800 if (h->type != STT_GNU_IFUNC)
6802 h->plt = elf_hash_table (info)->init_plt_offset;
6807 h->forced_local = 1;
6808 if (h->dynindx != -1)
6811 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6817 /* Initialize an ELF linker hash table. */
6820 _bfd_elf_link_hash_table_init
6821 (struct elf_link_hash_table *table,
6823 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6824 struct bfd_hash_table *,
6826 unsigned int entsize,
6827 enum elf_target_id target_id)
6830 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6832 memset (table, 0, sizeof * table);
6833 table->init_got_refcount.refcount = can_refcount - 1;
6834 table->init_plt_refcount.refcount = can_refcount - 1;
6835 table->init_got_offset.offset = -(bfd_vma) 1;
6836 table->init_plt_offset.offset = -(bfd_vma) 1;
6837 /* The first dynamic symbol is a dummy. */
6838 table->dynsymcount = 1;
6840 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6842 table->root.type = bfd_link_elf_hash_table;
6843 table->hash_table_id = target_id;
6848 /* Create an ELF linker hash table. */
6850 struct bfd_link_hash_table *
6851 _bfd_elf_link_hash_table_create (bfd *abfd)
6853 struct elf_link_hash_table *ret;
6854 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6856 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6860 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6861 sizeof (struct elf_link_hash_entry),
6871 /* This is a hook for the ELF emulation code in the generic linker to
6872 tell the backend linker what file name to use for the DT_NEEDED
6873 entry for a dynamic object. */
6876 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6878 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6879 && bfd_get_format (abfd) == bfd_object)
6880 elf_dt_name (abfd) = name;
6884 bfd_elf_get_dyn_lib_class (bfd *abfd)
6887 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6888 && bfd_get_format (abfd) == bfd_object)
6889 lib_class = elf_dyn_lib_class (abfd);
6896 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6898 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6899 && bfd_get_format (abfd) == bfd_object)
6900 elf_dyn_lib_class (abfd) = lib_class;
6903 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6904 the linker ELF emulation code. */
6906 struct bfd_link_needed_list *
6907 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6908 struct bfd_link_info *info)
6910 if (! is_elf_hash_table (info->hash))
6912 return elf_hash_table (info)->needed;
6915 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6916 hook for the linker ELF emulation code. */
6918 struct bfd_link_needed_list *
6919 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6920 struct bfd_link_info *info)
6922 if (! is_elf_hash_table (info->hash))
6924 return elf_hash_table (info)->runpath;
6927 /* Get the name actually used for a dynamic object for a link. This
6928 is the SONAME entry if there is one. Otherwise, it is the string
6929 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6932 bfd_elf_get_dt_soname (bfd *abfd)
6934 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6935 && bfd_get_format (abfd) == bfd_object)
6936 return elf_dt_name (abfd);
6940 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6941 the ELF linker emulation code. */
6944 bfd_elf_get_bfd_needed_list (bfd *abfd,
6945 struct bfd_link_needed_list **pneeded)
6948 bfd_byte *dynbuf = NULL;
6949 unsigned int elfsec;
6950 unsigned long shlink;
6951 bfd_byte *extdyn, *extdynend;
6953 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6957 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6958 || bfd_get_format (abfd) != bfd_object)
6961 s = bfd_get_section_by_name (abfd, ".dynamic");
6962 if (s == NULL || s->size == 0)
6965 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6968 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6969 if (elfsec == SHN_BAD)
6972 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6974 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6975 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6978 extdynend = extdyn + s->size;
6979 for (; extdyn < extdynend; extdyn += extdynsize)
6981 Elf_Internal_Dyn dyn;
6983 (*swap_dyn_in) (abfd, extdyn, &dyn);
6985 if (dyn.d_tag == DT_NULL)
6988 if (dyn.d_tag == DT_NEEDED)
6991 struct bfd_link_needed_list *l;
6992 unsigned int tagv = dyn.d_un.d_val;
6995 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7000 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7021 struct elf_symbuf_symbol
7023 unsigned long st_name; /* Symbol name, index in string tbl */
7024 unsigned char st_info; /* Type and binding attributes */
7025 unsigned char st_other; /* Visibilty, and target specific */
7028 struct elf_symbuf_head
7030 struct elf_symbuf_symbol *ssym;
7031 bfd_size_type count;
7032 unsigned int st_shndx;
7039 Elf_Internal_Sym *isym;
7040 struct elf_symbuf_symbol *ssym;
7045 /* Sort references to symbols by ascending section number. */
7048 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7050 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7051 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7053 return s1->st_shndx - s2->st_shndx;
7057 elf_sym_name_compare (const void *arg1, const void *arg2)
7059 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7060 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7061 return strcmp (s1->name, s2->name);
7064 static struct elf_symbuf_head *
7065 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7067 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7068 struct elf_symbuf_symbol *ssym;
7069 struct elf_symbuf_head *ssymbuf, *ssymhead;
7070 bfd_size_type i, shndx_count, total_size;
7072 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7076 for (ind = indbuf, i = 0; i < symcount; i++)
7077 if (isymbuf[i].st_shndx != SHN_UNDEF)
7078 *ind++ = &isymbuf[i];
7081 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7082 elf_sort_elf_symbol);
7085 if (indbufend > indbuf)
7086 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7087 if (ind[0]->st_shndx != ind[1]->st_shndx)
7090 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7091 + (indbufend - indbuf) * sizeof (*ssym));
7092 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7093 if (ssymbuf == NULL)
7099 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7100 ssymbuf->ssym = NULL;
7101 ssymbuf->count = shndx_count;
7102 ssymbuf->st_shndx = 0;
7103 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7105 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7108 ssymhead->ssym = ssym;
7109 ssymhead->count = 0;
7110 ssymhead->st_shndx = (*ind)->st_shndx;
7112 ssym->st_name = (*ind)->st_name;
7113 ssym->st_info = (*ind)->st_info;
7114 ssym->st_other = (*ind)->st_other;
7117 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7118 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7125 /* Check if 2 sections define the same set of local and global
7129 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7130 struct bfd_link_info *info)
7133 const struct elf_backend_data *bed1, *bed2;
7134 Elf_Internal_Shdr *hdr1, *hdr2;
7135 bfd_size_type symcount1, symcount2;
7136 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7137 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7138 Elf_Internal_Sym *isym, *isymend;
7139 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7140 bfd_size_type count1, count2, i;
7141 unsigned int shndx1, shndx2;
7147 /* Both sections have to be in ELF. */
7148 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7149 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7152 if (elf_section_type (sec1) != elf_section_type (sec2))
7155 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7156 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7157 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7160 bed1 = get_elf_backend_data (bfd1);
7161 bed2 = get_elf_backend_data (bfd2);
7162 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7163 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7164 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7165 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7167 if (symcount1 == 0 || symcount2 == 0)
7173 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7174 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7176 if (ssymbuf1 == NULL)
7178 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7180 if (isymbuf1 == NULL)
7183 if (!info->reduce_memory_overheads)
7184 elf_tdata (bfd1)->symbuf = ssymbuf1
7185 = elf_create_symbuf (symcount1, isymbuf1);
7188 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7190 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7192 if (isymbuf2 == NULL)
7195 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7196 elf_tdata (bfd2)->symbuf = ssymbuf2
7197 = elf_create_symbuf (symcount2, isymbuf2);
7200 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7202 /* Optimized faster version. */
7203 bfd_size_type lo, hi, mid;
7204 struct elf_symbol *symp;
7205 struct elf_symbuf_symbol *ssym, *ssymend;
7208 hi = ssymbuf1->count;
7213 mid = (lo + hi) / 2;
7214 if (shndx1 < ssymbuf1[mid].st_shndx)
7216 else if (shndx1 > ssymbuf1[mid].st_shndx)
7220 count1 = ssymbuf1[mid].count;
7227 hi = ssymbuf2->count;
7232 mid = (lo + hi) / 2;
7233 if (shndx2 < ssymbuf2[mid].st_shndx)
7235 else if (shndx2 > ssymbuf2[mid].st_shndx)
7239 count2 = ssymbuf2[mid].count;
7245 if (count1 == 0 || count2 == 0 || count1 != count2)
7248 symtable1 = (struct elf_symbol *)
7249 bfd_malloc (count1 * sizeof (struct elf_symbol));
7250 symtable2 = (struct elf_symbol *)
7251 bfd_malloc (count2 * sizeof (struct elf_symbol));
7252 if (symtable1 == NULL || symtable2 == NULL)
7256 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7257 ssym < ssymend; ssym++, symp++)
7259 symp->u.ssym = ssym;
7260 symp->name = bfd_elf_string_from_elf_section (bfd1,
7266 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7267 ssym < ssymend; ssym++, symp++)
7269 symp->u.ssym = ssym;
7270 symp->name = bfd_elf_string_from_elf_section (bfd2,
7275 /* Sort symbol by name. */
7276 qsort (symtable1, count1, sizeof (struct elf_symbol),
7277 elf_sym_name_compare);
7278 qsort (symtable2, count1, sizeof (struct elf_symbol),
7279 elf_sym_name_compare);
7281 for (i = 0; i < count1; i++)
7282 /* Two symbols must have the same binding, type and name. */
7283 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7284 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7285 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7292 symtable1 = (struct elf_symbol *)
7293 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7294 symtable2 = (struct elf_symbol *)
7295 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7296 if (symtable1 == NULL || symtable2 == NULL)
7299 /* Count definitions in the section. */
7301 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7302 if (isym->st_shndx == shndx1)
7303 symtable1[count1++].u.isym = isym;
7306 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7307 if (isym->st_shndx == shndx2)
7308 symtable2[count2++].u.isym = isym;
7310 if (count1 == 0 || count2 == 0 || count1 != count2)
7313 for (i = 0; i < count1; i++)
7315 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7316 symtable1[i].u.isym->st_name);
7318 for (i = 0; i < count2; i++)
7320 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7321 symtable2[i].u.isym->st_name);
7323 /* Sort symbol by name. */
7324 qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 elf_sym_name_compare);
7326 qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 elf_sym_name_compare);
7329 for (i = 0; i < count1; i++)
7330 /* Two symbols must have the same binding, type and name. */
7331 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7332 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7333 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7351 /* Return TRUE if 2 section types are compatible. */
7354 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7355 bfd *bbfd, const asection *bsec)
7359 || abfd->xvec->flavour != bfd_target_elf_flavour
7360 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7363 return elf_section_type (asec) == elf_section_type (bsec);
7366 /* Final phase of ELF linker. */
7368 /* A structure we use to avoid passing large numbers of arguments. */
7370 struct elf_final_link_info
7372 /* General link information. */
7373 struct bfd_link_info *info;
7376 /* Symbol string table. */
7377 struct bfd_strtab_hash *symstrtab;
7378 /* .dynsym section. */
7379 asection *dynsym_sec;
7380 /* .hash section. */
7382 /* symbol version section (.gnu.version). */
7383 asection *symver_sec;
7384 /* Buffer large enough to hold contents of any section. */
7386 /* Buffer large enough to hold external relocs of any section. */
7387 void *external_relocs;
7388 /* Buffer large enough to hold internal relocs of any section. */
7389 Elf_Internal_Rela *internal_relocs;
7390 /* Buffer large enough to hold external local symbols of any input
7392 bfd_byte *external_syms;
7393 /* And a buffer for symbol section indices. */
7394 Elf_External_Sym_Shndx *locsym_shndx;
7395 /* Buffer large enough to hold internal local symbols of any input
7397 Elf_Internal_Sym *internal_syms;
7398 /* Array large enough to hold a symbol index for each local symbol
7399 of any input BFD. */
7401 /* Array large enough to hold a section pointer for each local
7402 symbol of any input BFD. */
7403 asection **sections;
7404 /* Buffer to hold swapped out symbols. */
7406 /* And one for symbol section indices. */
7407 Elf_External_Sym_Shndx *symshndxbuf;
7408 /* Number of swapped out symbols in buffer. */
7409 size_t symbuf_count;
7410 /* Number of symbols which fit in symbuf. */
7412 /* And same for symshndxbuf. */
7413 size_t shndxbuf_size;
7416 /* This struct is used to pass information to elf_link_output_extsym. */
7418 struct elf_outext_info
7421 bfd_boolean localsyms;
7422 struct elf_final_link_info *finfo;
7426 /* Support for evaluating a complex relocation.
7428 Complex relocations are generalized, self-describing relocations. The
7429 implementation of them consists of two parts: complex symbols, and the
7430 relocations themselves.
7432 The relocations are use a reserved elf-wide relocation type code (R_RELC
7433 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7434 information (start bit, end bit, word width, etc) into the addend. This
7435 information is extracted from CGEN-generated operand tables within gas.
7437 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7438 internal) representing prefix-notation expressions, including but not
7439 limited to those sorts of expressions normally encoded as addends in the
7440 addend field. The symbol mangling format is:
7443 | <unary-operator> ':' <node>
7444 | <binary-operator> ':' <node> ':' <node>
7447 <literal> := 's' <digits=N> ':' <N character symbol name>
7448 | 'S' <digits=N> ':' <N character section name>
7452 <binary-operator> := as in C
7453 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7456 set_symbol_value (bfd *bfd_with_globals,
7457 Elf_Internal_Sym *isymbuf,
7462 struct elf_link_hash_entry **sym_hashes;
7463 struct elf_link_hash_entry *h;
7464 size_t extsymoff = locsymcount;
7466 if (symidx < locsymcount)
7468 Elf_Internal_Sym *sym;
7470 sym = isymbuf + symidx;
7471 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7473 /* It is a local symbol: move it to the
7474 "absolute" section and give it a value. */
7475 sym->st_shndx = SHN_ABS;
7476 sym->st_value = val;
7479 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7483 /* It is a global symbol: set its link type
7484 to "defined" and give it a value. */
7486 sym_hashes = elf_sym_hashes (bfd_with_globals);
7487 h = sym_hashes [symidx - extsymoff];
7488 while (h->root.type == bfd_link_hash_indirect
7489 || h->root.type == bfd_link_hash_warning)
7490 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7491 h->root.type = bfd_link_hash_defined;
7492 h->root.u.def.value = val;
7493 h->root.u.def.section = bfd_abs_section_ptr;
7497 resolve_symbol (const char *name,
7499 struct elf_final_link_info *finfo,
7501 Elf_Internal_Sym *isymbuf,
7504 Elf_Internal_Sym *sym;
7505 struct bfd_link_hash_entry *global_entry;
7506 const char *candidate = NULL;
7507 Elf_Internal_Shdr *symtab_hdr;
7510 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7512 for (i = 0; i < locsymcount; ++ i)
7516 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7519 candidate = bfd_elf_string_from_elf_section (input_bfd,
7520 symtab_hdr->sh_link,
7523 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7524 name, candidate, (unsigned long) sym->st_value);
7526 if (candidate && strcmp (candidate, name) == 0)
7528 asection *sec = finfo->sections [i];
7530 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7531 *result += sec->output_offset + sec->output_section->vma;
7533 printf ("Found symbol with value %8.8lx\n",
7534 (unsigned long) *result);
7540 /* Hmm, haven't found it yet. perhaps it is a global. */
7541 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7542 FALSE, FALSE, TRUE);
7546 if (global_entry->type == bfd_link_hash_defined
7547 || global_entry->type == bfd_link_hash_defweak)
7549 *result = (global_entry->u.def.value
7550 + global_entry->u.def.section->output_section->vma
7551 + global_entry->u.def.section->output_offset);
7553 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7554 global_entry->root.string, (unsigned long) *result);
7563 resolve_section (const char *name,
7570 for (curr = sections; curr; curr = curr->next)
7571 if (strcmp (curr->name, name) == 0)
7573 *result = curr->vma;
7577 /* Hmm. still haven't found it. try pseudo-section names. */
7578 for (curr = sections; curr; curr = curr->next)
7580 len = strlen (curr->name);
7581 if (len > strlen (name))
7584 if (strncmp (curr->name, name, len) == 0)
7586 if (strncmp (".end", name + len, 4) == 0)
7588 *result = curr->vma + curr->size;
7592 /* Insert more pseudo-section names here, if you like. */
7600 undefined_reference (const char *reftype, const char *name)
7602 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7607 eval_symbol (bfd_vma *result,
7610 struct elf_final_link_info *finfo,
7612 Elf_Internal_Sym *isymbuf,
7621 const char *sym = *symp;
7623 bfd_boolean symbol_is_section = FALSE;
7628 if (len < 1 || len > sizeof (symbuf))
7630 bfd_set_error (bfd_error_invalid_operation);
7643 *result = strtoul (sym, (char **) symp, 16);
7647 symbol_is_section = TRUE;
7650 symlen = strtol (sym, (char **) symp, 10);
7651 sym = *symp + 1; /* Skip the trailing ':'. */
7653 if (symend < sym || symlen + 1 > sizeof (symbuf))
7655 bfd_set_error (bfd_error_invalid_operation);
7659 memcpy (symbuf, sym, symlen);
7660 symbuf[symlen] = '\0';
7661 *symp = sym + symlen;
7663 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7664 the symbol as a section, or vice-versa. so we're pretty liberal in our
7665 interpretation here; section means "try section first", not "must be a
7666 section", and likewise with symbol. */
7668 if (symbol_is_section)
7670 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7671 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7672 isymbuf, locsymcount))
7674 undefined_reference ("section", symbuf);
7680 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7681 isymbuf, locsymcount)
7682 && !resolve_section (symbuf, finfo->output_bfd->sections,
7685 undefined_reference ("symbol", symbuf);
7692 /* All that remains are operators. */
7694 #define UNARY_OP(op) \
7695 if (strncmp (sym, #op, strlen (#op)) == 0) \
7697 sym += strlen (#op); \
7701 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7702 isymbuf, locsymcount, signed_p)) \
7705 *result = op ((bfd_signed_vma) a); \
7711 #define BINARY_OP(op) \
7712 if (strncmp (sym, #op, strlen (#op)) == 0) \
7714 sym += strlen (#op); \
7718 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7719 isymbuf, locsymcount, signed_p)) \
7722 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7723 isymbuf, locsymcount, signed_p)) \
7726 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7756 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7757 bfd_set_error (bfd_error_invalid_operation);
7763 put_value (bfd_vma size,
7764 unsigned long chunksz,
7769 location += (size - chunksz);
7771 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7779 bfd_put_8 (input_bfd, x, location);
7782 bfd_put_16 (input_bfd, x, location);
7785 bfd_put_32 (input_bfd, x, location);
7789 bfd_put_64 (input_bfd, x, location);
7799 get_value (bfd_vma size,
7800 unsigned long chunksz,
7806 for (; size; size -= chunksz, location += chunksz)
7814 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7817 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7820 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7824 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7835 decode_complex_addend (unsigned long *start, /* in bits */
7836 unsigned long *oplen, /* in bits */
7837 unsigned long *len, /* in bits */
7838 unsigned long *wordsz, /* in bytes */
7839 unsigned long *chunksz, /* in bytes */
7840 unsigned long *lsb0_p,
7841 unsigned long *signed_p,
7842 unsigned long *trunc_p,
7843 unsigned long encoded)
7845 * start = encoded & 0x3F;
7846 * len = (encoded >> 6) & 0x3F;
7847 * oplen = (encoded >> 12) & 0x3F;
7848 * wordsz = (encoded >> 18) & 0xF;
7849 * chunksz = (encoded >> 22) & 0xF;
7850 * lsb0_p = (encoded >> 27) & 1;
7851 * signed_p = (encoded >> 28) & 1;
7852 * trunc_p = (encoded >> 29) & 1;
7855 bfd_reloc_status_type
7856 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7857 asection *input_section ATTRIBUTE_UNUSED,
7859 Elf_Internal_Rela *rel,
7862 bfd_vma shift, x, mask;
7863 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7864 bfd_reloc_status_type r;
7866 /* Perform this reloc, since it is complex.
7867 (this is not to say that it necessarily refers to a complex
7868 symbol; merely that it is a self-describing CGEN based reloc.
7869 i.e. the addend has the complete reloc information (bit start, end,
7870 word size, etc) encoded within it.). */
7872 decode_complex_addend (&start, &oplen, &len, &wordsz,
7873 &chunksz, &lsb0_p, &signed_p,
7874 &trunc_p, rel->r_addend);
7876 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7879 shift = (start + 1) - len;
7881 shift = (8 * wordsz) - (start + len);
7883 /* FIXME: octets_per_byte. */
7884 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7887 printf ("Doing complex reloc: "
7888 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7889 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7890 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7891 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7892 oplen, (unsigned long) x, (unsigned long) mask,
7893 (unsigned long) relocation);
7898 /* Now do an overflow check. */
7899 r = bfd_check_overflow ((signed_p
7900 ? complain_overflow_signed
7901 : complain_overflow_unsigned),
7902 len, 0, (8 * wordsz),
7906 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7909 printf (" relocation: %8.8lx\n"
7910 " shifted mask: %8.8lx\n"
7911 " shifted/masked reloc: %8.8lx\n"
7912 " result: %8.8lx\n",
7913 (unsigned long) relocation, (unsigned long) (mask << shift),
7914 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7916 /* FIXME: octets_per_byte. */
7917 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7921 /* When performing a relocatable link, the input relocations are
7922 preserved. But, if they reference global symbols, the indices
7923 referenced must be updated. Update all the relocations found in
7927 elf_link_adjust_relocs (bfd *abfd,
7928 struct bfd_elf_section_reloc_data *reldata)
7931 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7933 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7934 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7935 bfd_vma r_type_mask;
7937 unsigned int count = reldata->count;
7938 struct elf_link_hash_entry **rel_hash = reldata->hashes;
7940 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
7942 swap_in = bed->s->swap_reloc_in;
7943 swap_out = bed->s->swap_reloc_out;
7945 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
7947 swap_in = bed->s->swap_reloca_in;
7948 swap_out = bed->s->swap_reloca_out;
7953 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7956 if (bed->s->arch_size == 32)
7963 r_type_mask = 0xffffffff;
7967 erela = reldata->hdr->contents;
7968 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
7970 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7973 if (*rel_hash == NULL)
7976 BFD_ASSERT ((*rel_hash)->indx >= 0);
7978 (*swap_in) (abfd, erela, irela);
7979 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7980 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7981 | (irela[j].r_info & r_type_mask));
7982 (*swap_out) (abfd, irela, erela);
7986 struct elf_link_sort_rela
7992 enum elf_reloc_type_class type;
7993 /* We use this as an array of size int_rels_per_ext_rel. */
7994 Elf_Internal_Rela rela[1];
7998 elf_link_sort_cmp1 (const void *A, const void *B)
8000 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8001 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8002 int relativea, relativeb;
8004 relativea = a->type == reloc_class_relative;
8005 relativeb = b->type == reloc_class_relative;
8007 if (relativea < relativeb)
8009 if (relativea > relativeb)
8011 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8013 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8015 if (a->rela->r_offset < b->rela->r_offset)
8017 if (a->rela->r_offset > b->rela->r_offset)
8023 elf_link_sort_cmp2 (const void *A, const void *B)
8025 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8026 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8029 if (a->u.offset < b->u.offset)
8031 if (a->u.offset > b->u.offset)
8033 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8034 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8039 if (a->rela->r_offset < b->rela->r_offset)
8041 if (a->rela->r_offset > b->rela->r_offset)
8047 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8049 asection *dynamic_relocs;
8052 bfd_size_type count, size;
8053 size_t i, ret, sort_elt, ext_size;
8054 bfd_byte *sort, *s_non_relative, *p;
8055 struct elf_link_sort_rela *sq;
8056 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8057 int i2e = bed->s->int_rels_per_ext_rel;
8058 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8059 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8060 struct bfd_link_order *lo;
8062 bfd_boolean use_rela;
8064 /* Find a dynamic reloc section. */
8065 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8066 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8067 if (rela_dyn != NULL && rela_dyn->size > 0
8068 && rel_dyn != NULL && rel_dyn->size > 0)
8070 bfd_boolean use_rela_initialised = FALSE;
8072 /* This is just here to stop gcc from complaining.
8073 It's initialization checking code is not perfect. */
8076 /* Both sections are present. Examine the sizes
8077 of the indirect sections to help us choose. */
8078 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8079 if (lo->type == bfd_indirect_link_order)
8081 asection *o = lo->u.indirect.section;
8083 if ((o->size % bed->s->sizeof_rela) == 0)
8085 if ((o->size % bed->s->sizeof_rel) == 0)
8086 /* Section size is divisible by both rel and rela sizes.
8087 It is of no help to us. */
8091 /* Section size is only divisible by rela. */
8092 if (use_rela_initialised && (use_rela == FALSE))
8095 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8096 bfd_set_error (bfd_error_invalid_operation);
8102 use_rela_initialised = TRUE;
8106 else if ((o->size % bed->s->sizeof_rel) == 0)
8108 /* Section size is only divisible by rel. */
8109 if (use_rela_initialised && (use_rela == TRUE))
8112 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8113 bfd_set_error (bfd_error_invalid_operation);
8119 use_rela_initialised = TRUE;
8124 /* The section size is not divisible by either - something is wrong. */
8126 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8127 bfd_set_error (bfd_error_invalid_operation);
8132 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8133 if (lo->type == bfd_indirect_link_order)
8135 asection *o = lo->u.indirect.section;
8137 if ((o->size % bed->s->sizeof_rela) == 0)
8139 if ((o->size % bed->s->sizeof_rel) == 0)
8140 /* Section size is divisible by both rel and rela sizes.
8141 It is of no help to us. */
8145 /* Section size is only divisible by rela. */
8146 if (use_rela_initialised && (use_rela == FALSE))
8149 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8150 bfd_set_error (bfd_error_invalid_operation);
8156 use_rela_initialised = TRUE;
8160 else if ((o->size % bed->s->sizeof_rel) == 0)
8162 /* Section size is only divisible by rel. */
8163 if (use_rela_initialised && (use_rela == TRUE))
8166 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8167 bfd_set_error (bfd_error_invalid_operation);
8173 use_rela_initialised = TRUE;
8178 /* The section size is not divisible by either - something is wrong. */
8180 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8181 bfd_set_error (bfd_error_invalid_operation);
8186 if (! use_rela_initialised)
8190 else if (rela_dyn != NULL && rela_dyn->size > 0)
8192 else if (rel_dyn != NULL && rel_dyn->size > 0)
8199 dynamic_relocs = rela_dyn;
8200 ext_size = bed->s->sizeof_rela;
8201 swap_in = bed->s->swap_reloca_in;
8202 swap_out = bed->s->swap_reloca_out;
8206 dynamic_relocs = rel_dyn;
8207 ext_size = bed->s->sizeof_rel;
8208 swap_in = bed->s->swap_reloc_in;
8209 swap_out = bed->s->swap_reloc_out;
8213 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8214 if (lo->type == bfd_indirect_link_order)
8215 size += lo->u.indirect.section->size;
8217 if (size != dynamic_relocs->size)
8220 sort_elt = (sizeof (struct elf_link_sort_rela)
8221 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8223 count = dynamic_relocs->size / ext_size;
8226 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8230 (*info->callbacks->warning)
8231 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8235 if (bed->s->arch_size == 32)
8236 r_sym_mask = ~(bfd_vma) 0xff;
8238 r_sym_mask = ~(bfd_vma) 0xffffffff;
8240 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8241 if (lo->type == bfd_indirect_link_order)
8243 bfd_byte *erel, *erelend;
8244 asection *o = lo->u.indirect.section;
8246 if (o->contents == NULL && o->size != 0)
8248 /* This is a reloc section that is being handled as a normal
8249 section. See bfd_section_from_shdr. We can't combine
8250 relocs in this case. */
8255 erelend = o->contents + o->size;
8256 /* FIXME: octets_per_byte. */
8257 p = sort + o->output_offset / ext_size * sort_elt;
8259 while (erel < erelend)
8261 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8263 (*swap_in) (abfd, erel, s->rela);
8264 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8265 s->u.sym_mask = r_sym_mask;
8271 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8273 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8275 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8276 if (s->type != reloc_class_relative)
8282 sq = (struct elf_link_sort_rela *) s_non_relative;
8283 for (; i < count; i++, p += sort_elt)
8285 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8286 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8288 sp->u.offset = sq->rela->r_offset;
8291 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8293 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8294 if (lo->type == bfd_indirect_link_order)
8296 bfd_byte *erel, *erelend;
8297 asection *o = lo->u.indirect.section;
8300 erelend = o->contents + o->size;
8301 /* FIXME: octets_per_byte. */
8302 p = sort + o->output_offset / ext_size * sort_elt;
8303 while (erel < erelend)
8305 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8306 (*swap_out) (abfd, s->rela, erel);
8313 *psec = dynamic_relocs;
8317 /* Flush the output symbols to the file. */
8320 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8321 const struct elf_backend_data *bed)
8323 if (finfo->symbuf_count > 0)
8325 Elf_Internal_Shdr *hdr;
8329 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8330 pos = hdr->sh_offset + hdr->sh_size;
8331 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8332 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8333 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8336 hdr->sh_size += amt;
8337 finfo->symbuf_count = 0;
8343 /* Add a symbol to the output symbol table. */
8346 elf_link_output_sym (struct elf_final_link_info *finfo,
8348 Elf_Internal_Sym *elfsym,
8349 asection *input_sec,
8350 struct elf_link_hash_entry *h)
8353 Elf_External_Sym_Shndx *destshndx;
8354 int (*output_symbol_hook)
8355 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8356 struct elf_link_hash_entry *);
8357 const struct elf_backend_data *bed;
8359 bed = get_elf_backend_data (finfo->output_bfd);
8360 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8361 if (output_symbol_hook != NULL)
8363 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8368 if (name == NULL || *name == '\0')
8369 elfsym->st_name = 0;
8370 else if (input_sec->flags & SEC_EXCLUDE)
8371 elfsym->st_name = 0;
8374 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8376 if (elfsym->st_name == (unsigned long) -1)
8380 if (finfo->symbuf_count >= finfo->symbuf_size)
8382 if (! elf_link_flush_output_syms (finfo, bed))
8386 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8387 destshndx = finfo->symshndxbuf;
8388 if (destshndx != NULL)
8390 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8394 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8395 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8397 if (destshndx == NULL)
8399 finfo->symshndxbuf = destshndx;
8400 memset ((char *) destshndx + amt, 0, amt);
8401 finfo->shndxbuf_size *= 2;
8403 destshndx += bfd_get_symcount (finfo->output_bfd);
8406 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8407 finfo->symbuf_count += 1;
8408 bfd_get_symcount (finfo->output_bfd) += 1;
8413 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8416 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8418 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8419 && sym->st_shndx < SHN_LORESERVE)
8421 /* The gABI doesn't support dynamic symbols in output sections
8423 (*_bfd_error_handler)
8424 (_("%B: Too many sections: %d (>= %d)"),
8425 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8426 bfd_set_error (bfd_error_nonrepresentable_section);
8432 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8433 allowing an unsatisfied unversioned symbol in the DSO to match a
8434 versioned symbol that would normally require an explicit version.
8435 We also handle the case that a DSO references a hidden symbol
8436 which may be satisfied by a versioned symbol in another DSO. */
8439 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8440 const struct elf_backend_data *bed,
8441 struct elf_link_hash_entry *h)
8444 struct elf_link_loaded_list *loaded;
8446 if (!is_elf_hash_table (info->hash))
8449 switch (h->root.type)
8455 case bfd_link_hash_undefined:
8456 case bfd_link_hash_undefweak:
8457 abfd = h->root.u.undef.abfd;
8458 if ((abfd->flags & DYNAMIC) == 0
8459 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8463 case bfd_link_hash_defined:
8464 case bfd_link_hash_defweak:
8465 abfd = h->root.u.def.section->owner;
8468 case bfd_link_hash_common:
8469 abfd = h->root.u.c.p->section->owner;
8472 BFD_ASSERT (abfd != NULL);
8474 for (loaded = elf_hash_table (info)->loaded;
8476 loaded = loaded->next)
8479 Elf_Internal_Shdr *hdr;
8480 bfd_size_type symcount;
8481 bfd_size_type extsymcount;
8482 bfd_size_type extsymoff;
8483 Elf_Internal_Shdr *versymhdr;
8484 Elf_Internal_Sym *isym;
8485 Elf_Internal_Sym *isymend;
8486 Elf_Internal_Sym *isymbuf;
8487 Elf_External_Versym *ever;
8488 Elf_External_Versym *extversym;
8490 input = loaded->abfd;
8492 /* We check each DSO for a possible hidden versioned definition. */
8494 || (input->flags & DYNAMIC) == 0
8495 || elf_dynversym (input) == 0)
8498 hdr = &elf_tdata (input)->dynsymtab_hdr;
8500 symcount = hdr->sh_size / bed->s->sizeof_sym;
8501 if (elf_bad_symtab (input))
8503 extsymcount = symcount;
8508 extsymcount = symcount - hdr->sh_info;
8509 extsymoff = hdr->sh_info;
8512 if (extsymcount == 0)
8515 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8517 if (isymbuf == NULL)
8520 /* Read in any version definitions. */
8521 versymhdr = &elf_tdata (input)->dynversym_hdr;
8522 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8523 if (extversym == NULL)
8526 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8527 || (bfd_bread (extversym, versymhdr->sh_size, input)
8528 != versymhdr->sh_size))
8536 ever = extversym + extsymoff;
8537 isymend = isymbuf + extsymcount;
8538 for (isym = isymbuf; isym < isymend; isym++, ever++)
8541 Elf_Internal_Versym iver;
8542 unsigned short version_index;
8544 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8545 || isym->st_shndx == SHN_UNDEF)
8548 name = bfd_elf_string_from_elf_section (input,
8551 if (strcmp (name, h->root.root.string) != 0)
8554 _bfd_elf_swap_versym_in (input, ever, &iver);
8556 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8558 && h->forced_local))
8560 /* If we have a non-hidden versioned sym, then it should
8561 have provided a definition for the undefined sym unless
8562 it is defined in a non-shared object and forced local.
8567 version_index = iver.vs_vers & VERSYM_VERSION;
8568 if (version_index == 1 || version_index == 2)
8570 /* This is the base or first version. We can use it. */
8584 /* Add an external symbol to the symbol table. This is called from
8585 the hash table traversal routine. When generating a shared object,
8586 we go through the symbol table twice. The first time we output
8587 anything that might have been forced to local scope in a version
8588 script. The second time we output the symbols that are still
8592 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8594 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8595 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8596 struct elf_final_link_info *finfo = eoinfo->finfo;
8598 Elf_Internal_Sym sym;
8599 asection *input_sec;
8600 const struct elf_backend_data *bed;
8604 if (h->root.type == bfd_link_hash_warning)
8606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8607 if (h->root.type == bfd_link_hash_new)
8611 /* Decide whether to output this symbol in this pass. */
8612 if (eoinfo->localsyms)
8614 if (!h->forced_local)
8619 if (h->forced_local)
8623 bed = get_elf_backend_data (finfo->output_bfd);
8625 if (h->root.type == bfd_link_hash_undefined)
8627 /* If we have an undefined symbol reference here then it must have
8628 come from a shared library that is being linked in. (Undefined
8629 references in regular files have already been handled unless
8630 they are in unreferenced sections which are removed by garbage
8632 bfd_boolean ignore_undef = FALSE;
8634 /* Some symbols may be special in that the fact that they're
8635 undefined can be safely ignored - let backend determine that. */
8636 if (bed->elf_backend_ignore_undef_symbol)
8637 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8639 /* If we are reporting errors for this situation then do so now. */
8642 && (!h->ref_regular || finfo->info->gc_sections)
8643 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8644 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8646 if (! (finfo->info->callbacks->undefined_symbol
8647 (finfo->info, h->root.root.string,
8648 h->ref_regular ? NULL : h->root.u.undef.abfd,
8649 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8651 bfd_set_error (bfd_error_bad_value);
8652 eoinfo->failed = TRUE;
8658 /* We should also warn if a forced local symbol is referenced from
8659 shared libraries. */
8660 if (!finfo->info->relocatable
8661 && finfo->info->executable
8667 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8672 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8673 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8674 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8675 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8677 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8678 def_bfd = finfo->output_bfd;
8679 if (h->root.u.def.section != bfd_abs_section_ptr)
8680 def_bfd = h->root.u.def.section->owner;
8681 (*_bfd_error_handler) (msg, finfo->output_bfd, def_bfd,
8682 h->root.root.string);
8683 bfd_set_error (bfd_error_bad_value);
8684 eoinfo->failed = TRUE;
8688 /* We don't want to output symbols that have never been mentioned by
8689 a regular file, or that we have been told to strip. However, if
8690 h->indx is set to -2, the symbol is used by a reloc and we must
8694 else if ((h->def_dynamic
8696 || h->root.type == bfd_link_hash_new)
8700 else if (finfo->info->strip == strip_all)
8702 else if (finfo->info->strip == strip_some
8703 && bfd_hash_lookup (finfo->info->keep_hash,
8704 h->root.root.string, FALSE, FALSE) == NULL)
8706 else if ((h->root.type == bfd_link_hash_defined
8707 || h->root.type == bfd_link_hash_defweak)
8708 && ((finfo->info->strip_discarded
8709 && elf_discarded_section (h->root.u.def.section))
8710 || (h->root.u.def.section->owner != NULL
8711 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8713 else if ((h->root.type == bfd_link_hash_undefined
8714 || h->root.type == bfd_link_hash_undefweak)
8715 && h->root.u.undef.abfd != NULL
8716 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8721 /* If we're stripping it, and it's not a dynamic symbol, there's
8722 nothing else to do unless it is a forced local symbol or a
8723 STT_GNU_IFUNC symbol. */
8726 && h->type != STT_GNU_IFUNC
8727 && !h->forced_local)
8731 sym.st_size = h->size;
8732 sym.st_other = h->other;
8733 if (h->forced_local)
8735 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8736 /* Turn off visibility on local symbol. */
8737 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8739 else if (h->unique_global)
8740 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8741 else if (h->root.type == bfd_link_hash_undefweak
8742 || h->root.type == bfd_link_hash_defweak)
8743 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8745 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8746 sym.st_target_internal = h->target_internal;
8748 switch (h->root.type)
8751 case bfd_link_hash_new:
8752 case bfd_link_hash_warning:
8756 case bfd_link_hash_undefined:
8757 case bfd_link_hash_undefweak:
8758 input_sec = bfd_und_section_ptr;
8759 sym.st_shndx = SHN_UNDEF;
8762 case bfd_link_hash_defined:
8763 case bfd_link_hash_defweak:
8765 input_sec = h->root.u.def.section;
8766 if (input_sec->output_section != NULL)
8769 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8770 input_sec->output_section);
8771 if (sym.st_shndx == SHN_BAD)
8773 (*_bfd_error_handler)
8774 (_("%B: could not find output section %A for input section %A"),
8775 finfo->output_bfd, input_sec->output_section, input_sec);
8776 bfd_set_error (bfd_error_nonrepresentable_section);
8777 eoinfo->failed = TRUE;
8781 /* ELF symbols in relocatable files are section relative,
8782 but in nonrelocatable files they are virtual
8784 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8785 if (! finfo->info->relocatable)
8787 sym.st_value += input_sec->output_section->vma;
8788 if (h->type == STT_TLS)
8790 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8791 if (tls_sec != NULL)
8792 sym.st_value -= tls_sec->vma;
8795 /* The TLS section may have been garbage collected. */
8796 BFD_ASSERT (finfo->info->gc_sections
8797 && !input_sec->gc_mark);
8804 BFD_ASSERT (input_sec->owner == NULL
8805 || (input_sec->owner->flags & DYNAMIC) != 0);
8806 sym.st_shndx = SHN_UNDEF;
8807 input_sec = bfd_und_section_ptr;
8812 case bfd_link_hash_common:
8813 input_sec = h->root.u.c.p->section;
8814 sym.st_shndx = bed->common_section_index (input_sec);
8815 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8818 case bfd_link_hash_indirect:
8819 /* These symbols are created by symbol versioning. They point
8820 to the decorated version of the name. For example, if the
8821 symbol foo@@GNU_1.2 is the default, which should be used when
8822 foo is used with no version, then we add an indirect symbol
8823 foo which points to foo@@GNU_1.2. We ignore these symbols,
8824 since the indirected symbol is already in the hash table. */
8828 /* Give the processor backend a chance to tweak the symbol value,
8829 and also to finish up anything that needs to be done for this
8830 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8831 forced local syms when non-shared is due to a historical quirk.
8832 STT_GNU_IFUNC symbol must go through PLT. */
8833 if ((h->type == STT_GNU_IFUNC
8835 && !finfo->info->relocatable)
8836 || ((h->dynindx != -1
8838 && ((finfo->info->shared
8839 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8840 || h->root.type != bfd_link_hash_undefweak))
8841 || !h->forced_local)
8842 && elf_hash_table (finfo->info)->dynamic_sections_created))
8844 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8845 (finfo->output_bfd, finfo->info, h, &sym)))
8847 eoinfo->failed = TRUE;
8852 /* If we are marking the symbol as undefined, and there are no
8853 non-weak references to this symbol from a regular object, then
8854 mark the symbol as weak undefined; if there are non-weak
8855 references, mark the symbol as strong. We can't do this earlier,
8856 because it might not be marked as undefined until the
8857 finish_dynamic_symbol routine gets through with it. */
8858 if (sym.st_shndx == SHN_UNDEF
8860 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8861 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8864 unsigned int type = ELF_ST_TYPE (sym.st_info);
8866 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8867 if (type == STT_GNU_IFUNC)
8870 if (h->ref_regular_nonweak)
8871 bindtype = STB_GLOBAL;
8873 bindtype = STB_WEAK;
8874 sym.st_info = ELF_ST_INFO (bindtype, type);
8877 /* If this is a symbol defined in a dynamic library, don't use the
8878 symbol size from the dynamic library. Relinking an executable
8879 against a new library may introduce gratuitous changes in the
8880 executable's symbols if we keep the size. */
8881 if (sym.st_shndx == SHN_UNDEF
8886 /* If a non-weak symbol with non-default visibility is not defined
8887 locally, it is a fatal error. */
8888 if (! finfo->info->relocatable
8889 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8890 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8891 && h->root.type == bfd_link_hash_undefined
8896 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
8897 msg = _("%B: protected symbol `%s' isn't defined");
8898 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
8899 msg = _("%B: internal symbol `%s' isn't defined");
8901 msg = _("%B: hidden symbol `%s' isn't defined");
8902 (*_bfd_error_handler) (msg, finfo->output_bfd, h->root.root.string);
8903 bfd_set_error (bfd_error_bad_value);
8904 eoinfo->failed = TRUE;
8908 /* If this symbol should be put in the .dynsym section, then put it
8909 there now. We already know the symbol index. We also fill in
8910 the entry in the .hash section. */
8911 if (finfo->dynsym_sec != NULL
8913 && elf_hash_table (finfo->info)->dynamic_sections_created)
8917 sym.st_name = h->dynstr_index;
8918 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8919 if (! check_dynsym (finfo->output_bfd, &sym))
8921 eoinfo->failed = TRUE;
8924 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8926 if (finfo->hash_sec != NULL)
8928 size_t hash_entry_size;
8929 bfd_byte *bucketpos;
8934 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8935 bucket = h->u.elf_hash_value % bucketcount;
8938 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8939 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8940 + (bucket + 2) * hash_entry_size);
8941 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8942 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8943 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8944 ((bfd_byte *) finfo->hash_sec->contents
8945 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8948 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8950 Elf_Internal_Versym iversym;
8951 Elf_External_Versym *eversym;
8953 if (!h->def_regular)
8955 if (h->verinfo.verdef == NULL)
8956 iversym.vs_vers = 0;
8958 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8962 if (h->verinfo.vertree == NULL)
8963 iversym.vs_vers = 1;
8965 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8966 if (finfo->info->create_default_symver)
8971 iversym.vs_vers |= VERSYM_HIDDEN;
8973 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8974 eversym += h->dynindx;
8975 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8979 /* If we're stripping it, then it was just a dynamic symbol, and
8980 there's nothing else to do. */
8981 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8984 indx = bfd_get_symcount (finfo->output_bfd);
8985 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8988 eoinfo->failed = TRUE;
8993 else if (h->indx == -2)
8999 /* Return TRUE if special handling is done for relocs in SEC against
9000 symbols defined in discarded sections. */
9003 elf_section_ignore_discarded_relocs (asection *sec)
9005 const struct elf_backend_data *bed;
9007 switch (sec->sec_info_type)
9009 case ELF_INFO_TYPE_STABS:
9010 case ELF_INFO_TYPE_EH_FRAME:
9016 bed = get_elf_backend_data (sec->owner);
9017 if (bed->elf_backend_ignore_discarded_relocs != NULL
9018 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9024 /* Return a mask saying how ld should treat relocations in SEC against
9025 symbols defined in discarded sections. If this function returns
9026 COMPLAIN set, ld will issue a warning message. If this function
9027 returns PRETEND set, and the discarded section was link-once and the
9028 same size as the kept link-once section, ld will pretend that the
9029 symbol was actually defined in the kept section. Otherwise ld will
9030 zero the reloc (at least that is the intent, but some cooperation by
9031 the target dependent code is needed, particularly for REL targets). */
9034 _bfd_elf_default_action_discarded (asection *sec)
9036 if (sec->flags & SEC_DEBUGGING)
9039 if (strcmp (".eh_frame", sec->name) == 0)
9042 if (strcmp (".gcc_except_table", sec->name) == 0)
9045 return COMPLAIN | PRETEND;
9048 /* Find a match between a section and a member of a section group. */
9051 match_group_member (asection *sec, asection *group,
9052 struct bfd_link_info *info)
9054 asection *first = elf_next_in_group (group);
9055 asection *s = first;
9059 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9062 s = elf_next_in_group (s);
9070 /* Check if the kept section of a discarded section SEC can be used
9071 to replace it. Return the replacement if it is OK. Otherwise return
9075 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9079 kept = sec->kept_section;
9082 if ((kept->flags & SEC_GROUP) != 0)
9083 kept = match_group_member (sec, kept, info);
9085 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9086 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9088 sec->kept_section = kept;
9093 /* Link an input file into the linker output file. This function
9094 handles all the sections and relocations of the input file at once.
9095 This is so that we only have to read the local symbols once, and
9096 don't have to keep them in memory. */
9099 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9101 int (*relocate_section)
9102 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9103 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9105 Elf_Internal_Shdr *symtab_hdr;
9108 Elf_Internal_Sym *isymbuf;
9109 Elf_Internal_Sym *isym;
9110 Elf_Internal_Sym *isymend;
9112 asection **ppsection;
9114 const struct elf_backend_data *bed;
9115 struct elf_link_hash_entry **sym_hashes;
9116 bfd_size_type address_size;
9117 bfd_vma r_type_mask;
9120 output_bfd = finfo->output_bfd;
9121 bed = get_elf_backend_data (output_bfd);
9122 relocate_section = bed->elf_backend_relocate_section;
9124 /* If this is a dynamic object, we don't want to do anything here:
9125 we don't want the local symbols, and we don't want the section
9127 if ((input_bfd->flags & DYNAMIC) != 0)
9130 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9131 if (elf_bad_symtab (input_bfd))
9133 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9138 locsymcount = symtab_hdr->sh_info;
9139 extsymoff = symtab_hdr->sh_info;
9142 /* Read the local symbols. */
9143 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9144 if (isymbuf == NULL && locsymcount != 0)
9146 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9147 finfo->internal_syms,
9148 finfo->external_syms,
9149 finfo->locsym_shndx);
9150 if (isymbuf == NULL)
9154 /* Find local symbol sections and adjust values of symbols in
9155 SEC_MERGE sections. Write out those local symbols we know are
9156 going into the output file. */
9157 isymend = isymbuf + locsymcount;
9158 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9160 isym++, pindex++, ppsection++)
9164 Elf_Internal_Sym osym;
9170 if (elf_bad_symtab (input_bfd))
9172 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9179 if (isym->st_shndx == SHN_UNDEF)
9180 isec = bfd_und_section_ptr;
9181 else if (isym->st_shndx == SHN_ABS)
9182 isec = bfd_abs_section_ptr;
9183 else if (isym->st_shndx == SHN_COMMON)
9184 isec = bfd_com_section_ptr;
9187 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9190 /* Don't attempt to output symbols with st_shnx in the
9191 reserved range other than SHN_ABS and SHN_COMMON. */
9195 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9196 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9198 _bfd_merged_section_offset (output_bfd, &isec,
9199 elf_section_data (isec)->sec_info,
9205 /* Don't output the first, undefined, symbol. */
9206 if (ppsection == finfo->sections)
9209 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9211 /* We never output section symbols. Instead, we use the
9212 section symbol of the corresponding section in the output
9217 /* If we are stripping all symbols, we don't want to output this
9219 if (finfo->info->strip == strip_all)
9222 /* If we are discarding all local symbols, we don't want to
9223 output this one. If we are generating a relocatable output
9224 file, then some of the local symbols may be required by
9225 relocs; we output them below as we discover that they are
9227 if (finfo->info->discard == discard_all)
9230 /* If this symbol is defined in a section which we are
9231 discarding, we don't need to keep it. */
9232 if (isym->st_shndx != SHN_UNDEF
9233 && isym->st_shndx < SHN_LORESERVE
9234 && bfd_section_removed_from_list (output_bfd,
9235 isec->output_section))
9238 /* Get the name of the symbol. */
9239 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9244 /* See if we are discarding symbols with this name. */
9245 if ((finfo->info->strip == strip_some
9246 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9248 || (((finfo->info->discard == discard_sec_merge
9249 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9250 || finfo->info->discard == discard_l)
9251 && bfd_is_local_label_name (input_bfd, name)))
9256 /* Adjust the section index for the output file. */
9257 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9258 isec->output_section);
9259 if (osym.st_shndx == SHN_BAD)
9262 /* ELF symbols in relocatable files are section relative, but
9263 in executable files they are virtual addresses. Note that
9264 this code assumes that all ELF sections have an associated
9265 BFD section with a reasonable value for output_offset; below
9266 we assume that they also have a reasonable value for
9267 output_section. Any special sections must be set up to meet
9268 these requirements. */
9269 osym.st_value += isec->output_offset;
9270 if (! finfo->info->relocatable)
9272 osym.st_value += isec->output_section->vma;
9273 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9275 /* STT_TLS symbols are relative to PT_TLS segment base. */
9276 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9277 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9281 indx = bfd_get_symcount (output_bfd);
9282 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9289 if (bed->s->arch_size == 32)
9297 r_type_mask = 0xffffffff;
9302 /* Relocate the contents of each section. */
9303 sym_hashes = elf_sym_hashes (input_bfd);
9304 for (o = input_bfd->sections; o != NULL; o = o->next)
9308 if (! o->linker_mark)
9310 /* This section was omitted from the link. */
9314 if (finfo->info->relocatable
9315 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9317 /* Deal with the group signature symbol. */
9318 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9319 unsigned long symndx = sec_data->this_hdr.sh_info;
9320 asection *osec = o->output_section;
9322 if (symndx >= locsymcount
9323 || (elf_bad_symtab (input_bfd)
9324 && finfo->sections[symndx] == NULL))
9326 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9327 while (h->root.type == bfd_link_hash_indirect
9328 || h->root.type == bfd_link_hash_warning)
9329 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9330 /* Arrange for symbol to be output. */
9332 elf_section_data (osec)->this_hdr.sh_info = -2;
9334 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9336 /* We'll use the output section target_index. */
9337 asection *sec = finfo->sections[symndx]->output_section;
9338 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9342 if (finfo->indices[symndx] == -1)
9344 /* Otherwise output the local symbol now. */
9345 Elf_Internal_Sym sym = isymbuf[symndx];
9346 asection *sec = finfo->sections[symndx]->output_section;
9351 name = bfd_elf_string_from_elf_section (input_bfd,
9352 symtab_hdr->sh_link,
9357 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9359 if (sym.st_shndx == SHN_BAD)
9362 sym.st_value += o->output_offset;
9364 indx = bfd_get_symcount (output_bfd);
9365 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9369 finfo->indices[symndx] = indx;
9373 elf_section_data (osec)->this_hdr.sh_info
9374 = finfo->indices[symndx];
9378 if ((o->flags & SEC_HAS_CONTENTS) == 0
9379 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9382 if ((o->flags & SEC_LINKER_CREATED) != 0)
9384 /* Section was created by _bfd_elf_link_create_dynamic_sections
9389 /* Get the contents of the section. They have been cached by a
9390 relaxation routine. Note that o is a section in an input
9391 file, so the contents field will not have been set by any of
9392 the routines which work on output files. */
9393 if (elf_section_data (o)->this_hdr.contents != NULL)
9394 contents = elf_section_data (o)->this_hdr.contents;
9397 contents = finfo->contents;
9398 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9402 if ((o->flags & SEC_RELOC) != 0)
9404 Elf_Internal_Rela *internal_relocs;
9405 Elf_Internal_Rela *rel, *relend;
9406 int action_discarded;
9409 /* Get the swapped relocs. */
9411 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9412 finfo->internal_relocs, FALSE);
9413 if (internal_relocs == NULL
9414 && o->reloc_count > 0)
9417 /* We need to reverse-copy input .ctors/.dtors sections if
9418 they are placed in .init_array/.finit_array for output. */
9419 if (o->size > address_size
9420 && ((strncmp (o->name, ".ctors", 6) == 0
9421 && strcmp (o->output_section->name,
9422 ".init_array") == 0)
9423 || (strncmp (o->name, ".dtors", 6) == 0
9424 && strcmp (o->output_section->name,
9425 ".fini_array") == 0))
9426 && (o->name[6] == 0 || o->name[6] == '.'))
9428 if (o->size != o->reloc_count * address_size)
9430 (*_bfd_error_handler)
9431 (_("error: %B: size of section %A is not "
9432 "multiple of address size"),
9434 bfd_set_error (bfd_error_on_input);
9437 o->flags |= SEC_ELF_REVERSE_COPY;
9440 action_discarded = -1;
9441 if (!elf_section_ignore_discarded_relocs (o))
9442 action_discarded = (*bed->action_discarded) (o);
9444 /* Run through the relocs evaluating complex reloc symbols and
9445 looking for relocs against symbols from discarded sections
9446 or section symbols from removed link-once sections.
9447 Complain about relocs against discarded sections. Zero
9448 relocs against removed link-once sections. */
9450 rel = internal_relocs;
9451 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9452 for ( ; rel < relend; rel++)
9454 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9455 unsigned int s_type;
9456 asection **ps, *sec;
9457 struct elf_link_hash_entry *h = NULL;
9458 const char *sym_name;
9460 if (r_symndx == STN_UNDEF)
9463 if (r_symndx >= locsymcount
9464 || (elf_bad_symtab (input_bfd)
9465 && finfo->sections[r_symndx] == NULL))
9467 h = sym_hashes[r_symndx - extsymoff];
9469 /* Badly formatted input files can contain relocs that
9470 reference non-existant symbols. Check here so that
9471 we do not seg fault. */
9476 sprintf_vma (buffer, rel->r_info);
9477 (*_bfd_error_handler)
9478 (_("error: %B contains a reloc (0x%s) for section %A "
9479 "that references a non-existent global symbol"),
9480 input_bfd, o, buffer);
9481 bfd_set_error (bfd_error_bad_value);
9485 while (h->root.type == bfd_link_hash_indirect
9486 || h->root.type == bfd_link_hash_warning)
9487 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9492 if (h->root.type == bfd_link_hash_defined
9493 || h->root.type == bfd_link_hash_defweak)
9494 ps = &h->root.u.def.section;
9496 sym_name = h->root.root.string;
9500 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9502 s_type = ELF_ST_TYPE (sym->st_info);
9503 ps = &finfo->sections[r_symndx];
9504 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9508 if ((s_type == STT_RELC || s_type == STT_SRELC)
9509 && !finfo->info->relocatable)
9512 bfd_vma dot = (rel->r_offset
9513 + o->output_offset + o->output_section->vma);
9515 printf ("Encountered a complex symbol!");
9516 printf (" (input_bfd %s, section %s, reloc %ld\n",
9517 input_bfd->filename, o->name,
9518 (long) (rel - internal_relocs));
9519 printf (" symbol: idx %8.8lx, name %s\n",
9520 r_symndx, sym_name);
9521 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9522 (unsigned long) rel->r_info,
9523 (unsigned long) rel->r_offset);
9525 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9526 isymbuf, locsymcount, s_type == STT_SRELC))
9529 /* Symbol evaluated OK. Update to absolute value. */
9530 set_symbol_value (input_bfd, isymbuf, locsymcount,
9535 if (action_discarded != -1 && ps != NULL)
9537 /* Complain if the definition comes from a
9538 discarded section. */
9539 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9541 BFD_ASSERT (r_symndx != STN_UNDEF);
9542 if (action_discarded & COMPLAIN)
9543 (*finfo->info->callbacks->einfo)
9544 (_("%X`%s' referenced in section `%A' of %B: "
9545 "defined in discarded section `%A' of %B\n"),
9546 sym_name, o, input_bfd, sec, sec->owner);
9548 /* Try to do the best we can to support buggy old
9549 versions of gcc. Pretend that the symbol is
9550 really defined in the kept linkonce section.
9551 FIXME: This is quite broken. Modifying the
9552 symbol here means we will be changing all later
9553 uses of the symbol, not just in this section. */
9554 if (action_discarded & PRETEND)
9558 kept = _bfd_elf_check_kept_section (sec,
9570 /* Relocate the section by invoking a back end routine.
9572 The back end routine is responsible for adjusting the
9573 section contents as necessary, and (if using Rela relocs
9574 and generating a relocatable output file) adjusting the
9575 reloc addend as necessary.
9577 The back end routine does not have to worry about setting
9578 the reloc address or the reloc symbol index.
9580 The back end routine is given a pointer to the swapped in
9581 internal symbols, and can access the hash table entries
9582 for the external symbols via elf_sym_hashes (input_bfd).
9584 When generating relocatable output, the back end routine
9585 must handle STB_LOCAL/STT_SECTION symbols specially. The
9586 output symbol is going to be a section symbol
9587 corresponding to the output section, which will require
9588 the addend to be adjusted. */
9590 ret = (*relocate_section) (output_bfd, finfo->info,
9591 input_bfd, o, contents,
9599 || finfo->info->relocatable
9600 || finfo->info->emitrelocations)
9602 Elf_Internal_Rela *irela;
9603 Elf_Internal_Rela *irelaend, *irelamid;
9604 bfd_vma last_offset;
9605 struct elf_link_hash_entry **rel_hash;
9606 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9607 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9608 unsigned int next_erel;
9609 bfd_boolean rela_normal;
9610 struct bfd_elf_section_data *esdi, *esdo;
9612 esdi = elf_section_data (o);
9613 esdo = elf_section_data (o->output_section);
9614 rela_normal = FALSE;
9616 /* Adjust the reloc addresses and symbol indices. */
9618 irela = internal_relocs;
9619 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9620 rel_hash = esdo->rel.hashes + esdo->rel.count;
9621 /* We start processing the REL relocs, if any. When we reach
9622 IRELAMID in the loop, we switch to the RELA relocs. */
9624 if (esdi->rel.hdr != NULL)
9625 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9626 * bed->s->int_rels_per_ext_rel);
9627 rel_hash_list = rel_hash;
9628 rela_hash_list = NULL;
9629 last_offset = o->output_offset;
9630 if (!finfo->info->relocatable)
9631 last_offset += o->output_section->vma;
9632 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9634 unsigned long r_symndx;
9636 Elf_Internal_Sym sym;
9638 if (next_erel == bed->s->int_rels_per_ext_rel)
9644 if (irela == irelamid)
9646 rel_hash = esdo->rela.hashes + esdo->rela.count;
9647 rela_hash_list = rel_hash;
9648 rela_normal = bed->rela_normal;
9651 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9654 if (irela->r_offset >= (bfd_vma) -2)
9656 /* This is a reloc for a deleted entry or somesuch.
9657 Turn it into an R_*_NONE reloc, at the same
9658 offset as the last reloc. elf_eh_frame.c and
9659 bfd_elf_discard_info rely on reloc offsets
9661 irela->r_offset = last_offset;
9663 irela->r_addend = 0;
9667 irela->r_offset += o->output_offset;
9669 /* Relocs in an executable have to be virtual addresses. */
9670 if (!finfo->info->relocatable)
9671 irela->r_offset += o->output_section->vma;
9673 last_offset = irela->r_offset;
9675 r_symndx = irela->r_info >> r_sym_shift;
9676 if (r_symndx == STN_UNDEF)
9679 if (r_symndx >= locsymcount
9680 || (elf_bad_symtab (input_bfd)
9681 && finfo->sections[r_symndx] == NULL))
9683 struct elf_link_hash_entry *rh;
9686 /* This is a reloc against a global symbol. We
9687 have not yet output all the local symbols, so
9688 we do not know the symbol index of any global
9689 symbol. We set the rel_hash entry for this
9690 reloc to point to the global hash table entry
9691 for this symbol. The symbol index is then
9692 set at the end of bfd_elf_final_link. */
9693 indx = r_symndx - extsymoff;
9694 rh = elf_sym_hashes (input_bfd)[indx];
9695 while (rh->root.type == bfd_link_hash_indirect
9696 || rh->root.type == bfd_link_hash_warning)
9697 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9699 /* Setting the index to -2 tells
9700 elf_link_output_extsym that this symbol is
9702 BFD_ASSERT (rh->indx < 0);
9710 /* This is a reloc against a local symbol. */
9713 sym = isymbuf[r_symndx];
9714 sec = finfo->sections[r_symndx];
9715 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9717 /* I suppose the backend ought to fill in the
9718 section of any STT_SECTION symbol against a
9719 processor specific section. */
9720 r_symndx = STN_UNDEF;
9721 if (bfd_is_abs_section (sec))
9723 else if (sec == NULL || sec->owner == NULL)
9725 bfd_set_error (bfd_error_bad_value);
9730 asection *osec = sec->output_section;
9732 /* If we have discarded a section, the output
9733 section will be the absolute section. In
9734 case of discarded SEC_MERGE sections, use
9735 the kept section. relocate_section should
9736 have already handled discarded linkonce
9738 if (bfd_is_abs_section (osec)
9739 && sec->kept_section != NULL
9740 && sec->kept_section->output_section != NULL)
9742 osec = sec->kept_section->output_section;
9743 irela->r_addend -= osec->vma;
9746 if (!bfd_is_abs_section (osec))
9748 r_symndx = osec->target_index;
9749 if (r_symndx == STN_UNDEF)
9751 irela->r_addend += osec->vma;
9752 osec = _bfd_nearby_section (output_bfd, osec,
9754 irela->r_addend -= osec->vma;
9755 r_symndx = osec->target_index;
9760 /* Adjust the addend according to where the
9761 section winds up in the output section. */
9763 irela->r_addend += sec->output_offset;
9767 if (finfo->indices[r_symndx] == -1)
9769 unsigned long shlink;
9774 if (finfo->info->strip == strip_all)
9776 /* You can't do ld -r -s. */
9777 bfd_set_error (bfd_error_invalid_operation);
9781 /* This symbol was skipped earlier, but
9782 since it is needed by a reloc, we
9783 must output it now. */
9784 shlink = symtab_hdr->sh_link;
9785 name = (bfd_elf_string_from_elf_section
9786 (input_bfd, shlink, sym.st_name));
9790 osec = sec->output_section;
9792 _bfd_elf_section_from_bfd_section (output_bfd,
9794 if (sym.st_shndx == SHN_BAD)
9797 sym.st_value += sec->output_offset;
9798 if (! finfo->info->relocatable)
9800 sym.st_value += osec->vma;
9801 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9803 /* STT_TLS symbols are relative to PT_TLS
9805 BFD_ASSERT (elf_hash_table (finfo->info)
9807 sym.st_value -= (elf_hash_table (finfo->info)
9812 indx = bfd_get_symcount (output_bfd);
9813 ret = elf_link_output_sym (finfo, name, &sym, sec,
9818 finfo->indices[r_symndx] = indx;
9823 r_symndx = finfo->indices[r_symndx];
9826 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9827 | (irela->r_info & r_type_mask));
9830 /* Swap out the relocs. */
9831 input_rel_hdr = esdi->rel.hdr;
9832 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9834 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9839 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9840 * bed->s->int_rels_per_ext_rel);
9841 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9844 input_rela_hdr = esdi->rela.hdr;
9845 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
9847 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9856 /* Write out the modified section contents. */
9857 if (bed->elf_backend_write_section
9858 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9861 /* Section written out. */
9863 else switch (o->sec_info_type)
9865 case ELF_INFO_TYPE_STABS:
9866 if (! (_bfd_write_section_stabs
9868 &elf_hash_table (finfo->info)->stab_info,
9869 o, &elf_section_data (o)->sec_info, contents)))
9872 case ELF_INFO_TYPE_MERGE:
9873 if (! _bfd_write_merged_section (output_bfd, o,
9874 elf_section_data (o)->sec_info))
9877 case ELF_INFO_TYPE_EH_FRAME:
9879 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9886 /* FIXME: octets_per_byte. */
9887 if (! (o->flags & SEC_EXCLUDE))
9889 file_ptr offset = (file_ptr) o->output_offset;
9890 bfd_size_type todo = o->size;
9891 if ((o->flags & SEC_ELF_REVERSE_COPY))
9893 /* Reverse-copy input section to output. */
9896 todo -= address_size;
9897 if (! bfd_set_section_contents (output_bfd,
9905 offset += address_size;
9909 else if (! bfd_set_section_contents (output_bfd,
9923 /* Generate a reloc when linking an ELF file. This is a reloc
9924 requested by the linker, and does not come from any input file. This
9925 is used to build constructor and destructor tables when linking
9929 elf_reloc_link_order (bfd *output_bfd,
9930 struct bfd_link_info *info,
9931 asection *output_section,
9932 struct bfd_link_order *link_order)
9934 reloc_howto_type *howto;
9938 struct bfd_elf_section_reloc_data *reldata;
9939 struct elf_link_hash_entry **rel_hash_ptr;
9940 Elf_Internal_Shdr *rel_hdr;
9941 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9942 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9945 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
9947 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9950 bfd_set_error (bfd_error_bad_value);
9954 addend = link_order->u.reloc.p->addend;
9957 reldata = &esdo->rel;
9958 else if (esdo->rela.hdr)
9959 reldata = &esdo->rela;
9966 /* Figure out the symbol index. */
9967 rel_hash_ptr = reldata->hashes + reldata->count;
9968 if (link_order->type == bfd_section_reloc_link_order)
9970 indx = link_order->u.reloc.p->u.section->target_index;
9971 BFD_ASSERT (indx != 0);
9972 *rel_hash_ptr = NULL;
9976 struct elf_link_hash_entry *h;
9978 /* Treat a reloc against a defined symbol as though it were
9979 actually against the section. */
9980 h = ((struct elf_link_hash_entry *)
9981 bfd_wrapped_link_hash_lookup (output_bfd, info,
9982 link_order->u.reloc.p->u.name,
9983 FALSE, FALSE, TRUE));
9985 && (h->root.type == bfd_link_hash_defined
9986 || h->root.type == bfd_link_hash_defweak))
9990 section = h->root.u.def.section;
9991 indx = section->output_section->target_index;
9992 *rel_hash_ptr = NULL;
9993 /* It seems that we ought to add the symbol value to the
9994 addend here, but in practice it has already been added
9995 because it was passed to constructor_callback. */
9996 addend += section->output_section->vma + section->output_offset;
10000 /* Setting the index to -2 tells elf_link_output_extsym that
10001 this symbol is used by a reloc. */
10008 if (! ((*info->callbacks->unattached_reloc)
10009 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10015 /* If this is an inplace reloc, we must write the addend into the
10017 if (howto->partial_inplace && addend != 0)
10019 bfd_size_type size;
10020 bfd_reloc_status_type rstat;
10023 const char *sym_name;
10025 size = (bfd_size_type) bfd_get_reloc_size (howto);
10026 buf = (bfd_byte *) bfd_zmalloc (size);
10029 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10036 case bfd_reloc_outofrange:
10039 case bfd_reloc_overflow:
10040 if (link_order->type == bfd_section_reloc_link_order)
10041 sym_name = bfd_section_name (output_bfd,
10042 link_order->u.reloc.p->u.section);
10044 sym_name = link_order->u.reloc.p->u.name;
10045 if (! ((*info->callbacks->reloc_overflow)
10046 (info, NULL, sym_name, howto->name, addend, NULL,
10047 NULL, (bfd_vma) 0)))
10054 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10055 link_order->offset, size);
10061 /* The address of a reloc is relative to the section in a
10062 relocatable file, and is a virtual address in an executable
10064 offset = link_order->offset;
10065 if (! info->relocatable)
10066 offset += output_section->vma;
10068 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10070 irel[i].r_offset = offset;
10071 irel[i].r_info = 0;
10072 irel[i].r_addend = 0;
10074 if (bed->s->arch_size == 32)
10075 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10077 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10079 rel_hdr = reldata->hdr;
10080 erel = rel_hdr->contents;
10081 if (rel_hdr->sh_type == SHT_REL)
10083 erel += reldata->count * bed->s->sizeof_rel;
10084 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10088 irel[0].r_addend = addend;
10089 erel += reldata->count * bed->s->sizeof_rela;
10090 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10099 /* Get the output vma of the section pointed to by the sh_link field. */
10102 elf_get_linked_section_vma (struct bfd_link_order *p)
10104 Elf_Internal_Shdr **elf_shdrp;
10108 s = p->u.indirect.section;
10109 elf_shdrp = elf_elfsections (s->owner);
10110 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10111 elfsec = elf_shdrp[elfsec]->sh_link;
10113 The Intel C compiler generates SHT_IA_64_UNWIND with
10114 SHF_LINK_ORDER. But it doesn't set the sh_link or
10115 sh_info fields. Hence we could get the situation
10116 where elfsec is 0. */
10119 const struct elf_backend_data *bed
10120 = get_elf_backend_data (s->owner);
10121 if (bed->link_order_error_handler)
10122 bed->link_order_error_handler
10123 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10128 s = elf_shdrp[elfsec]->bfd_section;
10129 return s->output_section->vma + s->output_offset;
10134 /* Compare two sections based on the locations of the sections they are
10135 linked to. Used by elf_fixup_link_order. */
10138 compare_link_order (const void * a, const void * b)
10143 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10144 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10147 return apos > bpos;
10151 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10152 order as their linked sections. Returns false if this could not be done
10153 because an output section includes both ordered and unordered
10154 sections. Ideally we'd do this in the linker proper. */
10157 elf_fixup_link_order (bfd *abfd, asection *o)
10159 int seen_linkorder;
10162 struct bfd_link_order *p;
10164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10166 struct bfd_link_order **sections;
10167 asection *s, *other_sec, *linkorder_sec;
10171 linkorder_sec = NULL;
10173 seen_linkorder = 0;
10174 for (p = o->map_head.link_order; p != NULL; p = p->next)
10176 if (p->type == bfd_indirect_link_order)
10178 s = p->u.indirect.section;
10180 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10181 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10182 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10183 && elfsec < elf_numsections (sub)
10184 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10185 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10199 if (seen_other && seen_linkorder)
10201 if (other_sec && linkorder_sec)
10202 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10204 linkorder_sec->owner, other_sec,
10207 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10209 bfd_set_error (bfd_error_bad_value);
10214 if (!seen_linkorder)
10217 sections = (struct bfd_link_order **)
10218 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10219 if (sections == NULL)
10221 seen_linkorder = 0;
10223 for (p = o->map_head.link_order; p != NULL; p = p->next)
10225 sections[seen_linkorder++] = p;
10227 /* Sort the input sections in the order of their linked section. */
10228 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10229 compare_link_order);
10231 /* Change the offsets of the sections. */
10233 for (n = 0; n < seen_linkorder; n++)
10235 s = sections[n]->u.indirect.section;
10236 offset &= ~(bfd_vma) 0 << s->alignment_power;
10237 s->output_offset = offset;
10238 sections[n]->offset = offset;
10239 /* FIXME: octets_per_byte. */
10240 offset += sections[n]->size;
10248 /* Do the final step of an ELF link. */
10251 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10253 bfd_boolean dynamic;
10254 bfd_boolean emit_relocs;
10256 struct elf_final_link_info finfo;
10258 struct bfd_link_order *p;
10260 bfd_size_type max_contents_size;
10261 bfd_size_type max_external_reloc_size;
10262 bfd_size_type max_internal_reloc_count;
10263 bfd_size_type max_sym_count;
10264 bfd_size_type max_sym_shndx_count;
10266 Elf_Internal_Sym elfsym;
10268 Elf_Internal_Shdr *symtab_hdr;
10269 Elf_Internal_Shdr *symtab_shndx_hdr;
10270 Elf_Internal_Shdr *symstrtab_hdr;
10271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10272 struct elf_outext_info eoinfo;
10273 bfd_boolean merged;
10274 size_t relativecount = 0;
10275 asection *reldyn = 0;
10277 asection *attr_section = NULL;
10278 bfd_vma attr_size = 0;
10279 const char *std_attrs_section;
10281 if (! is_elf_hash_table (info->hash))
10285 abfd->flags |= DYNAMIC;
10287 dynamic = elf_hash_table (info)->dynamic_sections_created;
10288 dynobj = elf_hash_table (info)->dynobj;
10290 emit_relocs = (info->relocatable
10291 || info->emitrelocations);
10294 finfo.output_bfd = abfd;
10295 finfo.symstrtab = _bfd_elf_stringtab_init ();
10296 if (finfo.symstrtab == NULL)
10301 finfo.dynsym_sec = NULL;
10302 finfo.hash_sec = NULL;
10303 finfo.symver_sec = NULL;
10307 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10308 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10309 /* Note that dynsym_sec can be NULL (on VMS). */
10310 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10311 /* Note that it is OK if symver_sec is NULL. */
10314 finfo.contents = NULL;
10315 finfo.external_relocs = NULL;
10316 finfo.internal_relocs = NULL;
10317 finfo.external_syms = NULL;
10318 finfo.locsym_shndx = NULL;
10319 finfo.internal_syms = NULL;
10320 finfo.indices = NULL;
10321 finfo.sections = NULL;
10322 finfo.symbuf = NULL;
10323 finfo.symshndxbuf = NULL;
10324 finfo.symbuf_count = 0;
10325 finfo.shndxbuf_size = 0;
10327 /* The object attributes have been merged. Remove the input
10328 sections from the link, and set the contents of the output
10330 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10331 for (o = abfd->sections; o != NULL; o = o->next)
10333 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10334 || strcmp (o->name, ".gnu.attributes") == 0)
10336 for (p = o->map_head.link_order; p != NULL; p = p->next)
10338 asection *input_section;
10340 if (p->type != bfd_indirect_link_order)
10342 input_section = p->u.indirect.section;
10343 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10344 elf_link_input_bfd ignores this section. */
10345 input_section->flags &= ~SEC_HAS_CONTENTS;
10348 attr_size = bfd_elf_obj_attr_size (abfd);
10351 bfd_set_section_size (abfd, o, attr_size);
10353 /* Skip this section later on. */
10354 o->map_head.link_order = NULL;
10357 o->flags |= SEC_EXCLUDE;
10361 /* Count up the number of relocations we will output for each output
10362 section, so that we know the sizes of the reloc sections. We
10363 also figure out some maximum sizes. */
10364 max_contents_size = 0;
10365 max_external_reloc_size = 0;
10366 max_internal_reloc_count = 0;
10368 max_sym_shndx_count = 0;
10370 for (o = abfd->sections; o != NULL; o = o->next)
10372 struct bfd_elf_section_data *esdo = elf_section_data (o);
10373 o->reloc_count = 0;
10375 for (p = o->map_head.link_order; p != NULL; p = p->next)
10377 unsigned int reloc_count = 0;
10378 struct bfd_elf_section_data *esdi = NULL;
10380 if (p->type == bfd_section_reloc_link_order
10381 || p->type == bfd_symbol_reloc_link_order)
10383 else if (p->type == bfd_indirect_link_order)
10387 sec = p->u.indirect.section;
10388 esdi = elf_section_data (sec);
10390 /* Mark all sections which are to be included in the
10391 link. This will normally be every section. We need
10392 to do this so that we can identify any sections which
10393 the linker has decided to not include. */
10394 sec->linker_mark = TRUE;
10396 if (sec->flags & SEC_MERGE)
10399 if (info->relocatable || info->emitrelocations)
10400 reloc_count = sec->reloc_count;
10401 else if (bed->elf_backend_count_relocs)
10402 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10404 if (sec->rawsize > max_contents_size)
10405 max_contents_size = sec->rawsize;
10406 if (sec->size > max_contents_size)
10407 max_contents_size = sec->size;
10409 /* We are interested in just local symbols, not all
10411 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10412 && (sec->owner->flags & DYNAMIC) == 0)
10416 if (elf_bad_symtab (sec->owner))
10417 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10418 / bed->s->sizeof_sym);
10420 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10422 if (sym_count > max_sym_count)
10423 max_sym_count = sym_count;
10425 if (sym_count > max_sym_shndx_count
10426 && elf_symtab_shndx (sec->owner) != 0)
10427 max_sym_shndx_count = sym_count;
10429 if ((sec->flags & SEC_RELOC) != 0)
10431 size_t ext_size = 0;
10433 if (esdi->rel.hdr != NULL)
10434 ext_size = esdi->rel.hdr->sh_size;
10435 if (esdi->rela.hdr != NULL)
10436 ext_size += esdi->rela.hdr->sh_size;
10438 if (ext_size > max_external_reloc_size)
10439 max_external_reloc_size = ext_size;
10440 if (sec->reloc_count > max_internal_reloc_count)
10441 max_internal_reloc_count = sec->reloc_count;
10446 if (reloc_count == 0)
10449 o->reloc_count += reloc_count;
10451 if (p->type == bfd_indirect_link_order
10452 && (info->relocatable || info->emitrelocations))
10455 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10456 if (esdi->rela.hdr)
10457 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10462 esdo->rela.count += reloc_count;
10464 esdo->rel.count += reloc_count;
10468 if (o->reloc_count > 0)
10469 o->flags |= SEC_RELOC;
10472 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10473 set it (this is probably a bug) and if it is set
10474 assign_section_numbers will create a reloc section. */
10475 o->flags &=~ SEC_RELOC;
10478 /* If the SEC_ALLOC flag is not set, force the section VMA to
10479 zero. This is done in elf_fake_sections as well, but forcing
10480 the VMA to 0 here will ensure that relocs against these
10481 sections are handled correctly. */
10482 if ((o->flags & SEC_ALLOC) == 0
10483 && ! o->user_set_vma)
10487 if (! info->relocatable && merged)
10488 elf_link_hash_traverse (elf_hash_table (info),
10489 _bfd_elf_link_sec_merge_syms, abfd);
10491 /* Figure out the file positions for everything but the symbol table
10492 and the relocs. We set symcount to force assign_section_numbers
10493 to create a symbol table. */
10494 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10495 BFD_ASSERT (! abfd->output_has_begun);
10496 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10499 /* Set sizes, and assign file positions for reloc sections. */
10500 for (o = abfd->sections; o != NULL; o = o->next)
10502 struct bfd_elf_section_data *esdo = elf_section_data (o);
10503 if ((o->flags & SEC_RELOC) != 0)
10506 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10510 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10514 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10515 to count upwards while actually outputting the relocations. */
10516 esdo->rel.count = 0;
10517 esdo->rela.count = 0;
10520 _bfd_elf_assign_file_positions_for_relocs (abfd);
10522 /* We have now assigned file positions for all the sections except
10523 .symtab and .strtab. We start the .symtab section at the current
10524 file position, and write directly to it. We build the .strtab
10525 section in memory. */
10526 bfd_get_symcount (abfd) = 0;
10527 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10528 /* sh_name is set in prep_headers. */
10529 symtab_hdr->sh_type = SHT_SYMTAB;
10530 /* sh_flags, sh_addr and sh_size all start off zero. */
10531 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10532 /* sh_link is set in assign_section_numbers. */
10533 /* sh_info is set below. */
10534 /* sh_offset is set just below. */
10535 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10537 off = elf_tdata (abfd)->next_file_pos;
10538 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10540 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10541 incorrect. We do not yet know the size of the .symtab section.
10542 We correct next_file_pos below, after we do know the size. */
10544 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10545 continuously seeking to the right position in the file. */
10546 if (! info->keep_memory || max_sym_count < 20)
10547 finfo.symbuf_size = 20;
10549 finfo.symbuf_size = max_sym_count;
10550 amt = finfo.symbuf_size;
10551 amt *= bed->s->sizeof_sym;
10552 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10553 if (finfo.symbuf == NULL)
10555 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10557 /* Wild guess at number of output symbols. realloc'd as needed. */
10558 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10559 finfo.shndxbuf_size = amt;
10560 amt *= sizeof (Elf_External_Sym_Shndx);
10561 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10562 if (finfo.symshndxbuf == NULL)
10566 /* Start writing out the symbol table. The first symbol is always a
10568 if (info->strip != strip_all
10571 elfsym.st_value = 0;
10572 elfsym.st_size = 0;
10573 elfsym.st_info = 0;
10574 elfsym.st_other = 0;
10575 elfsym.st_shndx = SHN_UNDEF;
10576 elfsym.st_target_internal = 0;
10577 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10582 /* Output a symbol for each section. We output these even if we are
10583 discarding local symbols, since they are used for relocs. These
10584 symbols have no names. We store the index of each one in the
10585 index field of the section, so that we can find it again when
10586 outputting relocs. */
10587 if (info->strip != strip_all
10590 elfsym.st_size = 0;
10591 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10592 elfsym.st_other = 0;
10593 elfsym.st_value = 0;
10594 elfsym.st_target_internal = 0;
10595 for (i = 1; i < elf_numsections (abfd); i++)
10597 o = bfd_section_from_elf_index (abfd, i);
10600 o->target_index = bfd_get_symcount (abfd);
10601 elfsym.st_shndx = i;
10602 if (!info->relocatable)
10603 elfsym.st_value = o->vma;
10604 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10610 /* Allocate some memory to hold information read in from the input
10612 if (max_contents_size != 0)
10614 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10615 if (finfo.contents == NULL)
10619 if (max_external_reloc_size != 0)
10621 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10622 if (finfo.external_relocs == NULL)
10626 if (max_internal_reloc_count != 0)
10628 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10629 amt *= sizeof (Elf_Internal_Rela);
10630 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10631 if (finfo.internal_relocs == NULL)
10635 if (max_sym_count != 0)
10637 amt = max_sym_count * bed->s->sizeof_sym;
10638 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10639 if (finfo.external_syms == NULL)
10642 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10643 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10644 if (finfo.internal_syms == NULL)
10647 amt = max_sym_count * sizeof (long);
10648 finfo.indices = (long int *) bfd_malloc (amt);
10649 if (finfo.indices == NULL)
10652 amt = max_sym_count * sizeof (asection *);
10653 finfo.sections = (asection **) bfd_malloc (amt);
10654 if (finfo.sections == NULL)
10658 if (max_sym_shndx_count != 0)
10660 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10661 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10662 if (finfo.locsym_shndx == NULL)
10666 if (elf_hash_table (info)->tls_sec)
10668 bfd_vma base, end = 0;
10671 for (sec = elf_hash_table (info)->tls_sec;
10672 sec && (sec->flags & SEC_THREAD_LOCAL);
10675 bfd_size_type size = sec->size;
10678 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10680 struct bfd_link_order *ord = sec->map_tail.link_order;
10683 size = ord->offset + ord->size;
10685 end = sec->vma + size;
10687 base = elf_hash_table (info)->tls_sec->vma;
10688 /* Only align end of TLS section if static TLS doesn't have special
10689 alignment requirements. */
10690 if (bed->static_tls_alignment == 1)
10691 end = align_power (end,
10692 elf_hash_table (info)->tls_sec->alignment_power);
10693 elf_hash_table (info)->tls_size = end - base;
10696 /* Reorder SHF_LINK_ORDER sections. */
10697 for (o = abfd->sections; o != NULL; o = o->next)
10699 if (!elf_fixup_link_order (abfd, o))
10703 /* Since ELF permits relocations to be against local symbols, we
10704 must have the local symbols available when we do the relocations.
10705 Since we would rather only read the local symbols once, and we
10706 would rather not keep them in memory, we handle all the
10707 relocations for a single input file at the same time.
10709 Unfortunately, there is no way to know the total number of local
10710 symbols until we have seen all of them, and the local symbol
10711 indices precede the global symbol indices. This means that when
10712 we are generating relocatable output, and we see a reloc against
10713 a global symbol, we can not know the symbol index until we have
10714 finished examining all the local symbols to see which ones we are
10715 going to output. To deal with this, we keep the relocations in
10716 memory, and don't output them until the end of the link. This is
10717 an unfortunate waste of memory, but I don't see a good way around
10718 it. Fortunately, it only happens when performing a relocatable
10719 link, which is not the common case. FIXME: If keep_memory is set
10720 we could write the relocs out and then read them again; I don't
10721 know how bad the memory loss will be. */
10723 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10724 sub->output_has_begun = FALSE;
10725 for (o = abfd->sections; o != NULL; o = o->next)
10727 for (p = o->map_head.link_order; p != NULL; p = p->next)
10729 if (p->type == bfd_indirect_link_order
10730 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10731 == bfd_target_elf_flavour)
10732 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10734 if (! sub->output_has_begun)
10736 if (! elf_link_input_bfd (&finfo, sub))
10738 sub->output_has_begun = TRUE;
10741 else if (p->type == bfd_section_reloc_link_order
10742 || p->type == bfd_symbol_reloc_link_order)
10744 if (! elf_reloc_link_order (abfd, info, o, p))
10749 if (! _bfd_default_link_order (abfd, info, o, p))
10751 if (p->type == bfd_indirect_link_order
10752 && (bfd_get_flavour (sub)
10753 == bfd_target_elf_flavour)
10754 && (elf_elfheader (sub)->e_ident[EI_CLASS]
10755 != bed->s->elfclass))
10757 const char *iclass, *oclass;
10759 if (bed->s->elfclass == ELFCLASS64)
10761 iclass = "ELFCLASS32";
10762 oclass = "ELFCLASS64";
10766 iclass = "ELFCLASS64";
10767 oclass = "ELFCLASS32";
10770 bfd_set_error (bfd_error_wrong_format);
10771 (*_bfd_error_handler)
10772 (_("%B: file class %s incompatible with %s"),
10773 sub, iclass, oclass);
10782 /* Free symbol buffer if needed. */
10783 if (!info->reduce_memory_overheads)
10785 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10786 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10787 && elf_tdata (sub)->symbuf)
10789 free (elf_tdata (sub)->symbuf);
10790 elf_tdata (sub)->symbuf = NULL;
10794 /* Output any global symbols that got converted to local in a
10795 version script or due to symbol visibility. We do this in a
10796 separate step since ELF requires all local symbols to appear
10797 prior to any global symbols. FIXME: We should only do this if
10798 some global symbols were, in fact, converted to become local.
10799 FIXME: Will this work correctly with the Irix 5 linker? */
10800 eoinfo.failed = FALSE;
10801 eoinfo.finfo = &finfo;
10802 eoinfo.localsyms = TRUE;
10803 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10807 /* If backend needs to output some local symbols not present in the hash
10808 table, do it now. */
10809 if (bed->elf_backend_output_arch_local_syms)
10811 typedef int (*out_sym_func)
10812 (void *, const char *, Elf_Internal_Sym *, asection *,
10813 struct elf_link_hash_entry *);
10815 if (! ((*bed->elf_backend_output_arch_local_syms)
10816 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10820 /* That wrote out all the local symbols. Finish up the symbol table
10821 with the global symbols. Even if we want to strip everything we
10822 can, we still need to deal with those global symbols that got
10823 converted to local in a version script. */
10825 /* The sh_info field records the index of the first non local symbol. */
10826 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10829 && finfo.dynsym_sec != NULL
10830 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10832 Elf_Internal_Sym sym;
10833 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10834 long last_local = 0;
10836 /* Write out the section symbols for the output sections. */
10837 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10843 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10845 sym.st_target_internal = 0;
10847 for (s = abfd->sections; s != NULL; s = s->next)
10853 dynindx = elf_section_data (s)->dynindx;
10856 indx = elf_section_data (s)->this_idx;
10857 BFD_ASSERT (indx > 0);
10858 sym.st_shndx = indx;
10859 if (! check_dynsym (abfd, &sym))
10861 sym.st_value = s->vma;
10862 dest = dynsym + dynindx * bed->s->sizeof_sym;
10863 if (last_local < dynindx)
10864 last_local = dynindx;
10865 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10869 /* Write out the local dynsyms. */
10870 if (elf_hash_table (info)->dynlocal)
10872 struct elf_link_local_dynamic_entry *e;
10873 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10878 /* Copy the internal symbol and turn off visibility.
10879 Note that we saved a word of storage and overwrote
10880 the original st_name with the dynstr_index. */
10882 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10884 s = bfd_section_from_elf_index (e->input_bfd,
10889 elf_section_data (s->output_section)->this_idx;
10890 if (! check_dynsym (abfd, &sym))
10892 sym.st_value = (s->output_section->vma
10894 + e->isym.st_value);
10897 if (last_local < e->dynindx)
10898 last_local = e->dynindx;
10900 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10901 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10905 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10909 /* We get the global symbols from the hash table. */
10910 eoinfo.failed = FALSE;
10911 eoinfo.localsyms = FALSE;
10912 eoinfo.finfo = &finfo;
10913 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
10917 /* If backend needs to output some symbols not present in the hash
10918 table, do it now. */
10919 if (bed->elf_backend_output_arch_syms)
10921 typedef int (*out_sym_func)
10922 (void *, const char *, Elf_Internal_Sym *, asection *,
10923 struct elf_link_hash_entry *);
10925 if (! ((*bed->elf_backend_output_arch_syms)
10926 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10930 /* Flush all symbols to the file. */
10931 if (! elf_link_flush_output_syms (&finfo, bed))
10934 /* Now we know the size of the symtab section. */
10935 off += symtab_hdr->sh_size;
10937 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10938 if (symtab_shndx_hdr->sh_name != 0)
10940 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10941 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10942 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10943 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10944 symtab_shndx_hdr->sh_size = amt;
10946 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10949 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10950 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10955 /* Finish up and write out the symbol string table (.strtab)
10957 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10958 /* sh_name was set in prep_headers. */
10959 symstrtab_hdr->sh_type = SHT_STRTAB;
10960 symstrtab_hdr->sh_flags = 0;
10961 symstrtab_hdr->sh_addr = 0;
10962 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10963 symstrtab_hdr->sh_entsize = 0;
10964 symstrtab_hdr->sh_link = 0;
10965 symstrtab_hdr->sh_info = 0;
10966 /* sh_offset is set just below. */
10967 symstrtab_hdr->sh_addralign = 1;
10969 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10970 elf_tdata (abfd)->next_file_pos = off;
10972 if (bfd_get_symcount (abfd) > 0)
10974 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10975 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10979 /* Adjust the relocs to have the correct symbol indices. */
10980 for (o = abfd->sections; o != NULL; o = o->next)
10982 struct bfd_elf_section_data *esdo = elf_section_data (o);
10983 if ((o->flags & SEC_RELOC) == 0)
10986 if (esdo->rel.hdr != NULL)
10987 elf_link_adjust_relocs (abfd, &esdo->rel);
10988 if (esdo->rela.hdr != NULL)
10989 elf_link_adjust_relocs (abfd, &esdo->rela);
10991 /* Set the reloc_count field to 0 to prevent write_relocs from
10992 trying to swap the relocs out itself. */
10993 o->reloc_count = 0;
10996 if (dynamic && info->combreloc && dynobj != NULL)
10997 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10999 /* If we are linking against a dynamic object, or generating a
11000 shared library, finish up the dynamic linking information. */
11003 bfd_byte *dyncon, *dynconend;
11005 /* Fix up .dynamic entries. */
11006 o = bfd_get_section_by_name (dynobj, ".dynamic");
11007 BFD_ASSERT (o != NULL);
11009 dyncon = o->contents;
11010 dynconend = o->contents + o->size;
11011 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11013 Elf_Internal_Dyn dyn;
11017 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11024 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11026 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11028 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11029 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11032 dyn.d_un.d_val = relativecount;
11039 name = info->init_function;
11042 name = info->fini_function;
11045 struct elf_link_hash_entry *h;
11047 h = elf_link_hash_lookup (elf_hash_table (info), name,
11048 FALSE, FALSE, TRUE);
11050 && (h->root.type == bfd_link_hash_defined
11051 || h->root.type == bfd_link_hash_defweak))
11053 dyn.d_un.d_ptr = h->root.u.def.value;
11054 o = h->root.u.def.section;
11055 if (o->output_section != NULL)
11056 dyn.d_un.d_ptr += (o->output_section->vma
11057 + o->output_offset);
11060 /* The symbol is imported from another shared
11061 library and does not apply to this one. */
11062 dyn.d_un.d_ptr = 0;
11069 case DT_PREINIT_ARRAYSZ:
11070 name = ".preinit_array";
11072 case DT_INIT_ARRAYSZ:
11073 name = ".init_array";
11075 case DT_FINI_ARRAYSZ:
11076 name = ".fini_array";
11078 o = bfd_get_section_by_name (abfd, name);
11081 (*_bfd_error_handler)
11082 (_("%B: could not find output section %s"), abfd, name);
11086 (*_bfd_error_handler)
11087 (_("warning: %s section has zero size"), name);
11088 dyn.d_un.d_val = o->size;
11091 case DT_PREINIT_ARRAY:
11092 name = ".preinit_array";
11094 case DT_INIT_ARRAY:
11095 name = ".init_array";
11097 case DT_FINI_ARRAY:
11098 name = ".fini_array";
11105 name = ".gnu.hash";
11114 name = ".gnu.version_d";
11117 name = ".gnu.version_r";
11120 name = ".gnu.version";
11122 o = bfd_get_section_by_name (abfd, name);
11125 (*_bfd_error_handler)
11126 (_("%B: could not find output section %s"), abfd, name);
11129 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11131 (*_bfd_error_handler)
11132 (_("warning: section '%s' is being made into a note"), name);
11133 bfd_set_error (bfd_error_nonrepresentable_section);
11136 dyn.d_un.d_ptr = o->vma;
11143 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11147 dyn.d_un.d_val = 0;
11148 dyn.d_un.d_ptr = 0;
11149 for (i = 1; i < elf_numsections (abfd); i++)
11151 Elf_Internal_Shdr *hdr;
11153 hdr = elf_elfsections (abfd)[i];
11154 if (hdr->sh_type == type
11155 && (hdr->sh_flags & SHF_ALLOC) != 0)
11157 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11158 dyn.d_un.d_val += hdr->sh_size;
11161 if (dyn.d_un.d_ptr == 0
11162 || hdr->sh_addr < dyn.d_un.d_ptr)
11163 dyn.d_un.d_ptr = hdr->sh_addr;
11169 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11173 /* If we have created any dynamic sections, then output them. */
11174 if (dynobj != NULL)
11176 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11179 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11180 if (((info->warn_shared_textrel && info->shared)
11181 || info->error_textrel)
11182 && (o = bfd_get_section_by_name (dynobj, ".dynamic")) != NULL)
11184 bfd_byte *dyncon, *dynconend;
11186 dyncon = o->contents;
11187 dynconend = o->contents + o->size;
11188 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11190 Elf_Internal_Dyn dyn;
11192 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11194 if (dyn.d_tag == DT_TEXTREL)
11196 if (info->error_textrel)
11197 info->callbacks->einfo
11198 (_("%P%X: read-only segment has dynamic relocations.\n"));
11200 info->callbacks->einfo
11201 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11207 for (o = dynobj->sections; o != NULL; o = o->next)
11209 if ((o->flags & SEC_HAS_CONTENTS) == 0
11211 || o->output_section == bfd_abs_section_ptr)
11213 if ((o->flags & SEC_LINKER_CREATED) == 0)
11215 /* At this point, we are only interested in sections
11216 created by _bfd_elf_link_create_dynamic_sections. */
11219 if (elf_hash_table (info)->stab_info.stabstr == o)
11221 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11223 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11225 && (strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0))
11227 /* FIXME: octets_per_byte. */
11228 if (! bfd_set_section_contents (abfd, o->output_section,
11230 (file_ptr) o->output_offset,
11236 /* The contents of the .dynstr section are actually in a
11238 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11239 if (bfd_seek (abfd, off, SEEK_SET) != 0
11240 || ! _bfd_elf_strtab_emit (abfd,
11241 elf_hash_table (info)->dynstr))
11247 if (info->relocatable)
11249 bfd_boolean failed = FALSE;
11251 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11256 /* If we have optimized stabs strings, output them. */
11257 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11259 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11263 if (info->eh_frame_hdr)
11265 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11269 if (finfo.symstrtab != NULL)
11270 _bfd_stringtab_free (finfo.symstrtab);
11271 if (finfo.contents != NULL)
11272 free (finfo.contents);
11273 if (finfo.external_relocs != NULL)
11274 free (finfo.external_relocs);
11275 if (finfo.internal_relocs != NULL)
11276 free (finfo.internal_relocs);
11277 if (finfo.external_syms != NULL)
11278 free (finfo.external_syms);
11279 if (finfo.locsym_shndx != NULL)
11280 free (finfo.locsym_shndx);
11281 if (finfo.internal_syms != NULL)
11282 free (finfo.internal_syms);
11283 if (finfo.indices != NULL)
11284 free (finfo.indices);
11285 if (finfo.sections != NULL)
11286 free (finfo.sections);
11287 if (finfo.symbuf != NULL)
11288 free (finfo.symbuf);
11289 if (finfo.symshndxbuf != NULL)
11290 free (finfo.symshndxbuf);
11291 for (o = abfd->sections; o != NULL; o = o->next)
11293 struct bfd_elf_section_data *esdo = elf_section_data (o);
11294 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11295 free (esdo->rel.hashes);
11296 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11297 free (esdo->rela.hashes);
11300 elf_tdata (abfd)->linker = TRUE;
11304 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11305 if (contents == NULL)
11306 return FALSE; /* Bail out and fail. */
11307 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11308 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11315 if (finfo.symstrtab != NULL)
11316 _bfd_stringtab_free (finfo.symstrtab);
11317 if (finfo.contents != NULL)
11318 free (finfo.contents);
11319 if (finfo.external_relocs != NULL)
11320 free (finfo.external_relocs);
11321 if (finfo.internal_relocs != NULL)
11322 free (finfo.internal_relocs);
11323 if (finfo.external_syms != NULL)
11324 free (finfo.external_syms);
11325 if (finfo.locsym_shndx != NULL)
11326 free (finfo.locsym_shndx);
11327 if (finfo.internal_syms != NULL)
11328 free (finfo.internal_syms);
11329 if (finfo.indices != NULL)
11330 free (finfo.indices);
11331 if (finfo.sections != NULL)
11332 free (finfo.sections);
11333 if (finfo.symbuf != NULL)
11334 free (finfo.symbuf);
11335 if (finfo.symshndxbuf != NULL)
11336 free (finfo.symshndxbuf);
11337 for (o = abfd->sections; o != NULL; o = o->next)
11339 struct bfd_elf_section_data *esdo = elf_section_data (o);
11340 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11341 free (esdo->rel.hashes);
11342 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11343 free (esdo->rela.hashes);
11349 /* Initialize COOKIE for input bfd ABFD. */
11352 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11353 struct bfd_link_info *info, bfd *abfd)
11355 Elf_Internal_Shdr *symtab_hdr;
11356 const struct elf_backend_data *bed;
11358 bed = get_elf_backend_data (abfd);
11359 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11361 cookie->abfd = abfd;
11362 cookie->sym_hashes = elf_sym_hashes (abfd);
11363 cookie->bad_symtab = elf_bad_symtab (abfd);
11364 if (cookie->bad_symtab)
11366 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11367 cookie->extsymoff = 0;
11371 cookie->locsymcount = symtab_hdr->sh_info;
11372 cookie->extsymoff = symtab_hdr->sh_info;
11375 if (bed->s->arch_size == 32)
11376 cookie->r_sym_shift = 8;
11378 cookie->r_sym_shift = 32;
11380 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11381 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11383 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11384 cookie->locsymcount, 0,
11386 if (cookie->locsyms == NULL)
11388 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11391 if (info->keep_memory)
11392 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11397 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11400 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11402 Elf_Internal_Shdr *symtab_hdr;
11404 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11405 if (cookie->locsyms != NULL
11406 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11407 free (cookie->locsyms);
11410 /* Initialize the relocation information in COOKIE for input section SEC
11411 of input bfd ABFD. */
11414 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11415 struct bfd_link_info *info, bfd *abfd,
11418 const struct elf_backend_data *bed;
11420 if (sec->reloc_count == 0)
11422 cookie->rels = NULL;
11423 cookie->relend = NULL;
11427 bed = get_elf_backend_data (abfd);
11429 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11430 info->keep_memory);
11431 if (cookie->rels == NULL)
11433 cookie->rel = cookie->rels;
11434 cookie->relend = (cookie->rels
11435 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11437 cookie->rel = cookie->rels;
11441 /* Free the memory allocated by init_reloc_cookie_rels,
11445 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11448 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11449 free (cookie->rels);
11452 /* Initialize the whole of COOKIE for input section SEC. */
11455 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11456 struct bfd_link_info *info,
11459 if (!init_reloc_cookie (cookie, info, sec->owner))
11461 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11466 fini_reloc_cookie (cookie, sec->owner);
11471 /* Free the memory allocated by init_reloc_cookie_for_section,
11475 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11478 fini_reloc_cookie_rels (cookie, sec);
11479 fini_reloc_cookie (cookie, sec->owner);
11482 /* Garbage collect unused sections. */
11484 /* Default gc_mark_hook. */
11487 _bfd_elf_gc_mark_hook (asection *sec,
11488 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11489 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11490 struct elf_link_hash_entry *h,
11491 Elf_Internal_Sym *sym)
11493 const char *sec_name;
11497 switch (h->root.type)
11499 case bfd_link_hash_defined:
11500 case bfd_link_hash_defweak:
11501 return h->root.u.def.section;
11503 case bfd_link_hash_common:
11504 return h->root.u.c.p->section;
11506 case bfd_link_hash_undefined:
11507 case bfd_link_hash_undefweak:
11508 /* To work around a glibc bug, keep all XXX input sections
11509 when there is an as yet undefined reference to __start_XXX
11510 or __stop_XXX symbols. The linker will later define such
11511 symbols for orphan input sections that have a name
11512 representable as a C identifier. */
11513 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11514 sec_name = h->root.root.string + 8;
11515 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11516 sec_name = h->root.root.string + 7;
11520 if (sec_name && *sec_name != '\0')
11524 for (i = info->input_bfds; i; i = i->link_next)
11526 sec = bfd_get_section_by_name (i, sec_name);
11528 sec->flags |= SEC_KEEP;
11538 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11543 /* COOKIE->rel describes a relocation against section SEC, which is
11544 a section we've decided to keep. Return the section that contains
11545 the relocation symbol, or NULL if no section contains it. */
11548 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11549 elf_gc_mark_hook_fn gc_mark_hook,
11550 struct elf_reloc_cookie *cookie)
11552 unsigned long r_symndx;
11553 struct elf_link_hash_entry *h;
11555 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11556 if (r_symndx == STN_UNDEF)
11559 if (r_symndx >= cookie->locsymcount
11560 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11562 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11563 while (h->root.type == bfd_link_hash_indirect
11564 || h->root.type == bfd_link_hash_warning)
11565 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11567 /* If this symbol is weak and there is a non-weak definition, we
11568 keep the non-weak definition because many backends put
11569 dynamic reloc info on the non-weak definition for code
11570 handling copy relocs. */
11571 if (h->u.weakdef != NULL)
11572 h->u.weakdef->mark = 1;
11573 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11576 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11577 &cookie->locsyms[r_symndx]);
11580 /* COOKIE->rel describes a relocation against section SEC, which is
11581 a section we've decided to keep. Mark the section that contains
11582 the relocation symbol. */
11585 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11587 elf_gc_mark_hook_fn gc_mark_hook,
11588 struct elf_reloc_cookie *cookie)
11592 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11593 if (rsec && !rsec->gc_mark)
11595 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11596 || (rsec->owner->flags & DYNAMIC) != 0)
11598 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11604 /* The mark phase of garbage collection. For a given section, mark
11605 it and any sections in this section's group, and all the sections
11606 which define symbols to which it refers. */
11609 _bfd_elf_gc_mark (struct bfd_link_info *info,
11611 elf_gc_mark_hook_fn gc_mark_hook)
11614 asection *group_sec, *eh_frame;
11618 /* Mark all the sections in the group. */
11619 group_sec = elf_section_data (sec)->next_in_group;
11620 if (group_sec && !group_sec->gc_mark)
11621 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11624 /* Look through the section relocs. */
11626 eh_frame = elf_eh_frame_section (sec->owner);
11627 if ((sec->flags & SEC_RELOC) != 0
11628 && sec->reloc_count > 0
11629 && sec != eh_frame)
11631 struct elf_reloc_cookie cookie;
11633 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11637 for (; cookie.rel < cookie.relend; cookie.rel++)
11638 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11643 fini_reloc_cookie_for_section (&cookie, sec);
11647 if (ret && eh_frame && elf_fde_list (sec))
11649 struct elf_reloc_cookie cookie;
11651 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11655 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11656 gc_mark_hook, &cookie))
11658 fini_reloc_cookie_for_section (&cookie, eh_frame);
11665 /* Keep debug and special sections. */
11668 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11669 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11673 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11676 bfd_boolean some_kept;
11678 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11681 /* Ensure all linker created sections are kept, and see whether
11682 any other section is already marked. */
11684 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11686 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11688 else if (isec->gc_mark)
11692 /* If no section in this file will be kept, then we can
11693 toss out debug sections. */
11697 /* Keep debug and special sections like .comment when they are
11698 not part of a group, or when we have single-member groups. */
11699 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11700 if ((elf_next_in_group (isec) == NULL
11701 || elf_next_in_group (isec) == isec)
11702 && ((isec->flags & SEC_DEBUGGING) != 0
11703 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11709 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11711 struct elf_gc_sweep_symbol_info
11713 struct bfd_link_info *info;
11714 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11719 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11722 && (((h->root.type == bfd_link_hash_defined
11723 || h->root.type == bfd_link_hash_defweak)
11724 && !(h->def_regular
11725 && h->root.u.def.section->gc_mark))
11726 || h->root.type == bfd_link_hash_undefined
11727 || h->root.type == bfd_link_hash_undefweak))
11729 struct elf_gc_sweep_symbol_info *inf;
11731 inf = (struct elf_gc_sweep_symbol_info *) data;
11732 (*inf->hide_symbol) (inf->info, h, TRUE);
11733 h->def_regular = 0;
11734 h->ref_regular = 0;
11735 h->ref_regular_nonweak = 0;
11741 /* The sweep phase of garbage collection. Remove all garbage sections. */
11743 typedef bfd_boolean (*gc_sweep_hook_fn)
11744 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11747 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11751 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11752 unsigned long section_sym_count;
11753 struct elf_gc_sweep_symbol_info sweep_info;
11755 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11759 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11762 for (o = sub->sections; o != NULL; o = o->next)
11764 /* When any section in a section group is kept, we keep all
11765 sections in the section group. If the first member of
11766 the section group is excluded, we will also exclude the
11768 if (o->flags & SEC_GROUP)
11770 asection *first = elf_next_in_group (o);
11771 o->gc_mark = first->gc_mark;
11777 /* Skip sweeping sections already excluded. */
11778 if (o->flags & SEC_EXCLUDE)
11781 /* Since this is early in the link process, it is simple
11782 to remove a section from the output. */
11783 o->flags |= SEC_EXCLUDE;
11785 if (info->print_gc_sections && o->size != 0)
11786 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11788 /* But we also have to update some of the relocation
11789 info we collected before. */
11791 && (o->flags & SEC_RELOC) != 0
11792 && o->reloc_count > 0
11793 && !bfd_is_abs_section (o->output_section))
11795 Elf_Internal_Rela *internal_relocs;
11799 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11800 info->keep_memory);
11801 if (internal_relocs == NULL)
11804 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11806 if (elf_section_data (o)->relocs != internal_relocs)
11807 free (internal_relocs);
11815 /* Remove the symbols that were in the swept sections from the dynamic
11816 symbol table. GCFIXME: Anyone know how to get them out of the
11817 static symbol table as well? */
11818 sweep_info.info = info;
11819 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11820 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11823 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
11827 /* Propagate collected vtable information. This is called through
11828 elf_link_hash_traverse. */
11831 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11833 /* Those that are not vtables. */
11834 if (h->vtable == NULL || h->vtable->parent == NULL)
11837 /* Those vtables that do not have parents, we cannot merge. */
11838 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11841 /* If we've already been done, exit. */
11842 if (h->vtable->used && h->vtable->used[-1])
11845 /* Make sure the parent's table is up to date. */
11846 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11848 if (h->vtable->used == NULL)
11850 /* None of this table's entries were referenced. Re-use the
11852 h->vtable->used = h->vtable->parent->vtable->used;
11853 h->vtable->size = h->vtable->parent->vtable->size;
11858 bfd_boolean *cu, *pu;
11860 /* Or the parent's entries into ours. */
11861 cu = h->vtable->used;
11863 pu = h->vtable->parent->vtable->used;
11866 const struct elf_backend_data *bed;
11867 unsigned int log_file_align;
11869 bed = get_elf_backend_data (h->root.u.def.section->owner);
11870 log_file_align = bed->s->log_file_align;
11871 n = h->vtable->parent->vtable->size >> log_file_align;
11886 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11889 bfd_vma hstart, hend;
11890 Elf_Internal_Rela *relstart, *relend, *rel;
11891 const struct elf_backend_data *bed;
11892 unsigned int log_file_align;
11894 /* Take care of both those symbols that do not describe vtables as
11895 well as those that are not loaded. */
11896 if (h->vtable == NULL || h->vtable->parent == NULL)
11899 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11900 || h->root.type == bfd_link_hash_defweak);
11902 sec = h->root.u.def.section;
11903 hstart = h->root.u.def.value;
11904 hend = hstart + h->size;
11906 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11908 return *(bfd_boolean *) okp = FALSE;
11909 bed = get_elf_backend_data (sec->owner);
11910 log_file_align = bed->s->log_file_align;
11912 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11914 for (rel = relstart; rel < relend; ++rel)
11915 if (rel->r_offset >= hstart && rel->r_offset < hend)
11917 /* If the entry is in use, do nothing. */
11918 if (h->vtable->used
11919 && (rel->r_offset - hstart) < h->vtable->size)
11921 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11922 if (h->vtable->used[entry])
11925 /* Otherwise, kill it. */
11926 rel->r_offset = rel->r_info = rel->r_addend = 0;
11932 /* Mark sections containing dynamically referenced symbols. When
11933 building shared libraries, we must assume that any visible symbol is
11937 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11939 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11941 if ((h->root.type == bfd_link_hash_defined
11942 || h->root.type == bfd_link_hash_defweak)
11944 || ((!info->executable || info->export_dynamic)
11946 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11947 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
11948 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
11949 || !bfd_hide_sym_by_version (info->version_info,
11950 h->root.root.string)))))
11951 h->root.u.def.section->flags |= SEC_KEEP;
11956 /* Keep all sections containing symbols undefined on the command-line,
11957 and the section containing the entry symbol. */
11960 _bfd_elf_gc_keep (struct bfd_link_info *info)
11962 struct bfd_sym_chain *sym;
11964 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11966 struct elf_link_hash_entry *h;
11968 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11969 FALSE, FALSE, FALSE);
11972 && (h->root.type == bfd_link_hash_defined
11973 || h->root.type == bfd_link_hash_defweak)
11974 && !bfd_is_abs_section (h->root.u.def.section))
11975 h->root.u.def.section->flags |= SEC_KEEP;
11979 /* Do mark and sweep of unused sections. */
11982 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11984 bfd_boolean ok = TRUE;
11986 elf_gc_mark_hook_fn gc_mark_hook;
11987 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11989 if (!bed->can_gc_sections
11990 || !is_elf_hash_table (info->hash))
11992 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11996 bed->gc_keep (info);
11998 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11999 at the .eh_frame section if we can mark the FDEs individually. */
12000 _bfd_elf_begin_eh_frame_parsing (info);
12001 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12004 struct elf_reloc_cookie cookie;
12006 sec = bfd_get_section_by_name (sub, ".eh_frame");
12007 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12009 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12010 if (elf_section_data (sec)->sec_info)
12011 elf_eh_frame_section (sub) = sec;
12012 fini_reloc_cookie_for_section (&cookie, sec);
12015 _bfd_elf_end_eh_frame_parsing (info);
12017 /* Apply transitive closure to the vtable entry usage info. */
12018 elf_link_hash_traverse (elf_hash_table (info),
12019 elf_gc_propagate_vtable_entries_used,
12024 /* Kill the vtable relocations that were not used. */
12025 elf_link_hash_traverse (elf_hash_table (info),
12026 elf_gc_smash_unused_vtentry_relocs,
12031 /* Mark dynamically referenced symbols. */
12032 if (elf_hash_table (info)->dynamic_sections_created)
12033 elf_link_hash_traverse (elf_hash_table (info),
12034 bed->gc_mark_dynamic_ref,
12037 /* Grovel through relocs to find out who stays ... */
12038 gc_mark_hook = bed->gc_mark_hook;
12039 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12043 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12046 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12047 Also treat note sections as a root, if the section is not part
12049 for (o = sub->sections; o != NULL; o = o->next)
12051 && (o->flags & SEC_EXCLUDE) == 0
12052 && ((o->flags & SEC_KEEP) != 0
12053 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12054 && elf_next_in_group (o) == NULL )))
12056 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12061 /* Allow the backend to mark additional target specific sections. */
12062 bed->gc_mark_extra_sections (info, gc_mark_hook);
12064 /* ... and mark SEC_EXCLUDE for those that go. */
12065 return elf_gc_sweep (abfd, info);
12068 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12071 bfd_elf_gc_record_vtinherit (bfd *abfd,
12073 struct elf_link_hash_entry *h,
12076 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12077 struct elf_link_hash_entry **search, *child;
12078 bfd_size_type extsymcount;
12079 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12081 /* The sh_info field of the symtab header tells us where the
12082 external symbols start. We don't care about the local symbols at
12084 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12085 if (!elf_bad_symtab (abfd))
12086 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12088 sym_hashes = elf_sym_hashes (abfd);
12089 sym_hashes_end = sym_hashes + extsymcount;
12091 /* Hunt down the child symbol, which is in this section at the same
12092 offset as the relocation. */
12093 for (search = sym_hashes; search != sym_hashes_end; ++search)
12095 if ((child = *search) != NULL
12096 && (child->root.type == bfd_link_hash_defined
12097 || child->root.type == bfd_link_hash_defweak)
12098 && child->root.u.def.section == sec
12099 && child->root.u.def.value == offset)
12103 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12104 abfd, sec, (unsigned long) offset);
12105 bfd_set_error (bfd_error_invalid_operation);
12109 if (!child->vtable)
12111 child->vtable = (struct elf_link_virtual_table_entry *)
12112 bfd_zalloc (abfd, sizeof (*child->vtable));
12113 if (!child->vtable)
12118 /* This *should* only be the absolute section. It could potentially
12119 be that someone has defined a non-global vtable though, which
12120 would be bad. It isn't worth paging in the local symbols to be
12121 sure though; that case should simply be handled by the assembler. */
12123 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12126 child->vtable->parent = h;
12131 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12134 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12135 asection *sec ATTRIBUTE_UNUSED,
12136 struct elf_link_hash_entry *h,
12139 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12140 unsigned int log_file_align = bed->s->log_file_align;
12144 h->vtable = (struct elf_link_virtual_table_entry *)
12145 bfd_zalloc (abfd, sizeof (*h->vtable));
12150 if (addend >= h->vtable->size)
12152 size_t size, bytes, file_align;
12153 bfd_boolean *ptr = h->vtable->used;
12155 /* While the symbol is undefined, we have to be prepared to handle
12157 file_align = 1 << log_file_align;
12158 if (h->root.type == bfd_link_hash_undefined)
12159 size = addend + file_align;
12163 if (addend >= size)
12165 /* Oops! We've got a reference past the defined end of
12166 the table. This is probably a bug -- shall we warn? */
12167 size = addend + file_align;
12170 size = (size + file_align - 1) & -file_align;
12172 /* Allocate one extra entry for use as a "done" flag for the
12173 consolidation pass. */
12174 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12178 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12184 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12185 * sizeof (bfd_boolean));
12186 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12190 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12195 /* And arrange for that done flag to be at index -1. */
12196 h->vtable->used = ptr + 1;
12197 h->vtable->size = size;
12200 h->vtable->used[addend >> log_file_align] = TRUE;
12205 /* Map an ELF section header flag to its corresponding string. */
12209 flagword flag_value;
12210 } elf_flags_to_name_table;
12212 static elf_flags_to_name_table elf_flags_to_names [] =
12214 { "SHF_WRITE", SHF_WRITE },
12215 { "SHF_ALLOC", SHF_ALLOC },
12216 { "SHF_EXECINSTR", SHF_EXECINSTR },
12217 { "SHF_MERGE", SHF_MERGE },
12218 { "SHF_STRINGS", SHF_STRINGS },
12219 { "SHF_INFO_LINK", SHF_INFO_LINK},
12220 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12221 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12222 { "SHF_GROUP", SHF_GROUP },
12223 { "SHF_TLS", SHF_TLS },
12224 { "SHF_MASKOS", SHF_MASKOS },
12225 { "SHF_EXCLUDE", SHF_EXCLUDE },
12229 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12230 struct flag_info *finfo)
12232 bfd *output_bfd = info->output_bfd;
12233 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
12234 struct flag_info_list *tf = finfo->flag_list;
12236 int without_hex = 0;
12238 for (tf = finfo->flag_list; tf != NULL; tf = tf->next)
12241 if (bed->elf_backend_lookup_section_flags_hook)
12244 (*bed->elf_backend_lookup_section_flags_hook) ((char *) tf->name);
12248 if (tf->with == with_flags)
12249 with_hex |= hexval;
12250 else if (tf->with == without_flags)
12251 without_hex |= hexval;
12256 for (i = 0; i < 12; i++)
12258 if (!strcmp (tf->name, elf_flags_to_names[i].flag_name))
12260 if (tf->with == with_flags)
12261 with_hex |= elf_flags_to_names[i].flag_value;
12262 else if (tf->with == without_flags)
12263 without_hex |= elf_flags_to_names[i].flag_value;
12268 if (tf->valid == FALSE)
12270 info->callbacks->einfo
12271 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12275 finfo->flags_initialized = TRUE;
12276 finfo->only_with_flags |= with_hex;
12277 finfo->not_with_flags |= without_hex;
12282 struct alloc_got_off_arg {
12284 struct bfd_link_info *info;
12287 /* We need a special top-level link routine to convert got reference counts
12288 to real got offsets. */
12291 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12293 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12294 bfd *obfd = gofarg->info->output_bfd;
12295 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12297 if (h->got.refcount > 0)
12299 h->got.offset = gofarg->gotoff;
12300 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12303 h->got.offset = (bfd_vma) -1;
12308 /* And an accompanying bit to work out final got entry offsets once
12309 we're done. Should be called from final_link. */
12312 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12313 struct bfd_link_info *info)
12316 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12318 struct alloc_got_off_arg gofarg;
12320 BFD_ASSERT (abfd == info->output_bfd);
12322 if (! is_elf_hash_table (info->hash))
12325 /* The GOT offset is relative to the .got section, but the GOT header is
12326 put into the .got.plt section, if the backend uses it. */
12327 if (bed->want_got_plt)
12330 gotoff = bed->got_header_size;
12332 /* Do the local .got entries first. */
12333 for (i = info->input_bfds; i; i = i->link_next)
12335 bfd_signed_vma *local_got;
12336 bfd_size_type j, locsymcount;
12337 Elf_Internal_Shdr *symtab_hdr;
12339 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12342 local_got = elf_local_got_refcounts (i);
12346 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12347 if (elf_bad_symtab (i))
12348 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12350 locsymcount = symtab_hdr->sh_info;
12352 for (j = 0; j < locsymcount; ++j)
12354 if (local_got[j] > 0)
12356 local_got[j] = gotoff;
12357 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12360 local_got[j] = (bfd_vma) -1;
12364 /* Then the global .got entries. .plt refcounts are handled by
12365 adjust_dynamic_symbol */
12366 gofarg.gotoff = gotoff;
12367 gofarg.info = info;
12368 elf_link_hash_traverse (elf_hash_table (info),
12369 elf_gc_allocate_got_offsets,
12374 /* Many folk need no more in the way of final link than this, once
12375 got entry reference counting is enabled. */
12378 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12380 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12383 /* Invoke the regular ELF backend linker to do all the work. */
12384 return bfd_elf_final_link (abfd, info);
12388 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12390 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12392 if (rcookie->bad_symtab)
12393 rcookie->rel = rcookie->rels;
12395 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12397 unsigned long r_symndx;
12399 if (! rcookie->bad_symtab)
12400 if (rcookie->rel->r_offset > offset)
12402 if (rcookie->rel->r_offset != offset)
12405 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12406 if (r_symndx == STN_UNDEF)
12409 if (r_symndx >= rcookie->locsymcount
12410 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12412 struct elf_link_hash_entry *h;
12414 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12416 while (h->root.type == bfd_link_hash_indirect
12417 || h->root.type == bfd_link_hash_warning)
12418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12420 if ((h->root.type == bfd_link_hash_defined
12421 || h->root.type == bfd_link_hash_defweak)
12422 && elf_discarded_section (h->root.u.def.section))
12429 /* It's not a relocation against a global symbol,
12430 but it could be a relocation against a local
12431 symbol for a discarded section. */
12433 Elf_Internal_Sym *isym;
12435 /* Need to: get the symbol; get the section. */
12436 isym = &rcookie->locsyms[r_symndx];
12437 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12438 if (isec != NULL && elf_discarded_section (isec))
12446 /* Discard unneeded references to discarded sections.
12447 Returns TRUE if any section's size was changed. */
12448 /* This function assumes that the relocations are in sorted order,
12449 which is true for all known assemblers. */
12452 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12454 struct elf_reloc_cookie cookie;
12455 asection *stab, *eh;
12456 const struct elf_backend_data *bed;
12458 bfd_boolean ret = FALSE;
12460 if (info->traditional_format
12461 || !is_elf_hash_table (info->hash))
12464 _bfd_elf_begin_eh_frame_parsing (info);
12465 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12467 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12470 bed = get_elf_backend_data (abfd);
12472 if ((abfd->flags & DYNAMIC) != 0)
12476 if (!info->relocatable)
12478 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12481 || bfd_is_abs_section (eh->output_section)))
12485 stab = bfd_get_section_by_name (abfd, ".stab");
12487 && (stab->size == 0
12488 || bfd_is_abs_section (stab->output_section)
12489 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12494 && bed->elf_backend_discard_info == NULL)
12497 if (!init_reloc_cookie (&cookie, info, abfd))
12501 && stab->reloc_count > 0
12502 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12504 if (_bfd_discard_section_stabs (abfd, stab,
12505 elf_section_data (stab)->sec_info,
12506 bfd_elf_reloc_symbol_deleted_p,
12509 fini_reloc_cookie_rels (&cookie, stab);
12513 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12515 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12516 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12517 bfd_elf_reloc_symbol_deleted_p,
12520 fini_reloc_cookie_rels (&cookie, eh);
12523 if (bed->elf_backend_discard_info != NULL
12524 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12527 fini_reloc_cookie (&cookie, abfd);
12529 _bfd_elf_end_eh_frame_parsing (info);
12531 if (info->eh_frame_hdr
12532 && !info->relocatable
12533 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12540 _bfd_elf_section_already_linked (bfd *abfd,
12542 struct bfd_link_info *info)
12545 const char *name, *key;
12546 struct bfd_section_already_linked *l;
12547 struct bfd_section_already_linked_hash_entry *already_linked_list;
12549 if (sec->output_section == bfd_abs_section_ptr)
12552 flags = sec->flags;
12554 /* Return if it isn't a linkonce section. A comdat group section
12555 also has SEC_LINK_ONCE set. */
12556 if ((flags & SEC_LINK_ONCE) == 0)
12559 /* Don't put group member sections on our list of already linked
12560 sections. They are handled as a group via their group section. */
12561 if (elf_sec_group (sec) != NULL)
12564 /* For a SHT_GROUP section, use the group signature as the key. */
12566 if ((flags & SEC_GROUP) != 0
12567 && elf_next_in_group (sec) != NULL
12568 && elf_group_name (elf_next_in_group (sec)) != NULL)
12569 key = elf_group_name (elf_next_in_group (sec));
12572 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12573 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12574 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12577 /* Must be a user linkonce section that doesn't follow gcc's
12578 naming convention. In this case we won't be matching
12579 single member groups. */
12583 already_linked_list = bfd_section_already_linked_table_lookup (key);
12585 for (l = already_linked_list->entry; l != NULL; l = l->next)
12587 /* We may have 2 different types of sections on the list: group
12588 sections with a signature of <key> (<key> is some string),
12589 and linkonce sections named .gnu.linkonce.<type>.<key>.
12590 Match like sections. LTO plugin sections are an exception.
12591 They are always named .gnu.linkonce.t.<key> and match either
12592 type of section. */
12593 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12594 && ((flags & SEC_GROUP) != 0
12595 || strcmp (name, l->sec->name) == 0))
12596 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12598 /* The section has already been linked. See if we should
12599 issue a warning. */
12600 if (!_bfd_handle_already_linked (sec, l, info))
12603 if (flags & SEC_GROUP)
12605 asection *first = elf_next_in_group (sec);
12606 asection *s = first;
12610 s->output_section = bfd_abs_section_ptr;
12611 /* Record which group discards it. */
12612 s->kept_section = l->sec;
12613 s = elf_next_in_group (s);
12614 /* These lists are circular. */
12624 /* A single member comdat group section may be discarded by a
12625 linkonce section and vice versa. */
12626 if ((flags & SEC_GROUP) != 0)
12628 asection *first = elf_next_in_group (sec);
12630 if (first != NULL && elf_next_in_group (first) == first)
12631 /* Check this single member group against linkonce sections. */
12632 for (l = already_linked_list->entry; l != NULL; l = l->next)
12633 if ((l->sec->flags & SEC_GROUP) == 0
12634 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12636 first->output_section = bfd_abs_section_ptr;
12637 first->kept_section = l->sec;
12638 sec->output_section = bfd_abs_section_ptr;
12643 /* Check this linkonce section against single member groups. */
12644 for (l = already_linked_list->entry; l != NULL; l = l->next)
12645 if (l->sec->flags & SEC_GROUP)
12647 asection *first = elf_next_in_group (l->sec);
12650 && elf_next_in_group (first) == first
12651 && bfd_elf_match_symbols_in_sections (first, sec, info))
12653 sec->output_section = bfd_abs_section_ptr;
12654 sec->kept_section = first;
12659 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12660 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12661 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12662 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12663 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12664 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12665 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12666 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12667 The reverse order cannot happen as there is never a bfd with only the
12668 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12669 matter as here were are looking only for cross-bfd sections. */
12671 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12672 for (l = already_linked_list->entry; l != NULL; l = l->next)
12673 if ((l->sec->flags & SEC_GROUP) == 0
12674 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12676 if (abfd != l->sec->owner)
12677 sec->output_section = bfd_abs_section_ptr;
12681 /* This is the first section with this name. Record it. */
12682 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12683 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12684 return sec->output_section == bfd_abs_section_ptr;
12688 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12690 return sym->st_shndx == SHN_COMMON;
12694 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12700 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12702 return bfd_com_section_ptr;
12706 _bfd_elf_default_got_elt_size (bfd *abfd,
12707 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12708 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12709 bfd *ibfd ATTRIBUTE_UNUSED,
12710 unsigned long symndx ATTRIBUTE_UNUSED)
12712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12713 return bed->s->arch_size / 8;
12716 /* Routines to support the creation of dynamic relocs. */
12718 /* Returns the name of the dynamic reloc section associated with SEC. */
12720 static const char *
12721 get_dynamic_reloc_section_name (bfd * abfd,
12723 bfd_boolean is_rela)
12726 const char *old_name = bfd_get_section_name (NULL, sec);
12727 const char *prefix = is_rela ? ".rela" : ".rel";
12729 if (old_name == NULL)
12732 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12733 sprintf (name, "%s%s", prefix, old_name);
12738 /* Returns the dynamic reloc section associated with SEC.
12739 If necessary compute the name of the dynamic reloc section based
12740 on SEC's name (looked up in ABFD's string table) and the setting
12744 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12746 bfd_boolean is_rela)
12748 asection * reloc_sec = elf_section_data (sec)->sreloc;
12750 if (reloc_sec == NULL)
12752 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12756 reloc_sec = bfd_get_section_by_name (abfd, name);
12758 if (reloc_sec != NULL)
12759 elf_section_data (sec)->sreloc = reloc_sec;
12766 /* Returns the dynamic reloc section associated with SEC. If the
12767 section does not exist it is created and attached to the DYNOBJ
12768 bfd and stored in the SRELOC field of SEC's elf_section_data
12771 ALIGNMENT is the alignment for the newly created section and
12772 IS_RELA defines whether the name should be .rela.<SEC's name>
12773 or .rel.<SEC's name>. The section name is looked up in the
12774 string table associated with ABFD. */
12777 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12779 unsigned int alignment,
12781 bfd_boolean is_rela)
12783 asection * reloc_sec = elf_section_data (sec)->sreloc;
12785 if (reloc_sec == NULL)
12787 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12792 reloc_sec = bfd_get_section_by_name (dynobj, name);
12794 if (reloc_sec == NULL)
12798 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12799 if ((sec->flags & SEC_ALLOC) != 0)
12800 flags |= SEC_ALLOC | SEC_LOAD;
12802 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12803 if (reloc_sec != NULL)
12805 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12810 elf_section_data (sec)->sreloc = reloc_sec;
12816 /* Copy the ELF symbol type associated with a linker hash entry. */
12818 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12819 struct bfd_link_hash_entry * hdest,
12820 struct bfd_link_hash_entry * hsrc)
12822 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12823 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12825 ehdest->type = ehsrc->type;
12826 ehdest->target_internal = ehsrc->target_internal;
12829 /* Append a RELA relocation REL to section S in BFD. */
12832 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12835 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
12836 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
12837 bed->s->swap_reloca_out (abfd, rel, loc);
12840 /* Append a REL relocation REL to section S in BFD. */
12843 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
12845 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12846 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
12847 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
12848 bed->s->swap_reloca_out (abfd, rel, loc);