1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info *info;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info *info;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry *, struct elf_info_failed *);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry *
61 _bfd_elf_define_linkage_sym (bfd *abfd,
62 struct bfd_link_info *info,
66 struct elf_link_hash_entry *h;
67 struct bfd_link_hash_entry *bh;
68 const struct elf_backend_data *bed;
70 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h->root.type = bfd_link_hash_new;
81 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 get_elf_backend_data (abfd)->collect,
86 h = (struct elf_link_hash_entry *) bh;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
106 /* This function may be called more than once. */
107 s = bfd_get_linker_section (abfd, ".got");
111 flags = bed->dynamic_sec_flags;
113 s = bfd_make_section_anyway_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
123 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
129 if (bed->want_got_plt)
131 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
142 if (bed->want_got_sym)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
162 struct elf_link_hash_table *hash_table;
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
168 if (hash_table->dynstr == NULL)
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
189 const struct elf_backend_data *bed;
190 struct elf_link_hash_entry *h;
192 if (! is_elf_hash_table (info->hash))
195 if (elf_hash_table (info)->dynamic_sections_created)
198 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
201 abfd = elf_hash_table (info)->dynobj;
202 bed = get_elf_backend_data (abfd);
204 flags = bed->dynamic_sec_flags;
206 /* A dynamically linked executable has a .interp section, but a
207 shared library does not. */
208 if (info->executable)
210 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
211 flags | SEC_READONLY);
216 /* Create sections to hold version informations. These are removed
217 if they are not needed. */
218 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
219 flags | SEC_READONLY);
221 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
224 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
225 flags | SEC_READONLY);
227 || ! bfd_set_section_alignment (abfd, s, 1))
230 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
231 flags | SEC_READONLY);
233 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
236 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
237 flags | SEC_READONLY);
239 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
242 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
243 flags | SEC_READONLY);
247 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
249 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
252 /* The special symbol _DYNAMIC is always set to the start of the
253 .dynamic section. We could set _DYNAMIC in a linker script, but we
254 only want to define it if we are, in fact, creating a .dynamic
255 section. We don't want to define it if there is no .dynamic
256 section, since on some ELF platforms the start up code examines it
257 to decide how to initialize the process. */
258 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
259 elf_hash_table (info)->hdynamic = h;
265 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
266 flags | SEC_READONLY);
268 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
270 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
273 if (info->emit_gnu_hash)
275 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
276 flags | SEC_READONLY);
278 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
280 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
281 4 32-bit words followed by variable count of 64-bit words, then
282 variable count of 32-bit words. */
283 if (bed->s->arch_size == 64)
284 elf_section_data (s)->this_hdr.sh_entsize = 0;
286 elf_section_data (s)->this_hdr.sh_entsize = 4;
289 /* Let the backend create the rest of the sections. This lets the
290 backend set the right flags. The backend will normally create
291 the .got and .plt sections. */
292 if (bed->elf_backend_create_dynamic_sections == NULL
293 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
296 elf_hash_table (info)->dynamic_sections_created = TRUE;
301 /* Create dynamic sections when linking against a dynamic object. */
304 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
306 flagword flags, pltflags;
307 struct elf_link_hash_entry *h;
309 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
310 struct elf_link_hash_table *htab = elf_hash_table (info);
312 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
313 .rel[a].bss sections. */
314 flags = bed->dynamic_sec_flags;
317 if (bed->plt_not_loaded)
318 /* We do not clear SEC_ALLOC here because we still want the OS to
319 allocate space for the section; it's just that there's nothing
320 to read in from the object file. */
321 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
323 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
324 if (bed->plt_readonly)
325 pltflags |= SEC_READONLY;
327 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
329 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
333 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
335 if (bed->want_plt_sym)
337 h = _bfd_elf_define_linkage_sym (abfd, info, s,
338 "_PROCEDURE_LINKAGE_TABLE_");
339 elf_hash_table (info)->hplt = h;
344 s = bfd_make_section_anyway_with_flags (abfd,
345 (bed->rela_plts_and_copies_p
346 ? ".rela.plt" : ".rel.plt"),
347 flags | SEC_READONLY);
349 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
353 if (! _bfd_elf_create_got_section (abfd, info))
356 if (bed->want_dynbss)
358 /* The .dynbss section is a place to put symbols which are defined
359 by dynamic objects, are referenced by regular objects, and are
360 not functions. We must allocate space for them in the process
361 image and use a R_*_COPY reloc to tell the dynamic linker to
362 initialize them at run time. The linker script puts the .dynbss
363 section into the .bss section of the final image. */
364 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
365 (SEC_ALLOC | SEC_LINKER_CREATED));
369 /* The .rel[a].bss section holds copy relocs. This section is not
370 normally needed. We need to create it here, though, so that the
371 linker will map it to an output section. We can't just create it
372 only if we need it, because we will not know whether we need it
373 until we have seen all the input files, and the first time the
374 main linker code calls BFD after examining all the input files
375 (size_dynamic_sections) the input sections have already been
376 mapped to the output sections. If the section turns out not to
377 be needed, we can discard it later. We will never need this
378 section when generating a shared object, since they do not use
382 s = bfd_make_section_anyway_with_flags (abfd,
383 (bed->rela_plts_and_copies_p
384 ? ".rela.bss" : ".rel.bss"),
385 flags | SEC_READONLY);
387 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
395 /* Record a new dynamic symbol. We record the dynamic symbols as we
396 read the input files, since we need to have a list of all of them
397 before we can determine the final sizes of the output sections.
398 Note that we may actually call this function even though we are not
399 going to output any dynamic symbols; in some cases we know that a
400 symbol should be in the dynamic symbol table, but only if there is
404 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
405 struct elf_link_hash_entry *h)
407 if (h->dynindx == -1)
409 struct elf_strtab_hash *dynstr;
414 /* XXX: The ABI draft says the linker must turn hidden and
415 internal symbols into STB_LOCAL symbols when producing the
416 DSO. However, if ld.so honors st_other in the dynamic table,
417 this would not be necessary. */
418 switch (ELF_ST_VISIBILITY (h->other))
422 if (h->root.type != bfd_link_hash_undefined
423 && h->root.type != bfd_link_hash_undefweak)
426 if (!elf_hash_table (info)->is_relocatable_executable)
434 h->dynindx = elf_hash_table (info)->dynsymcount;
435 ++elf_hash_table (info)->dynsymcount;
437 dynstr = elf_hash_table (info)->dynstr;
440 /* Create a strtab to hold the dynamic symbol names. */
441 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
446 /* We don't put any version information in the dynamic string
448 name = h->root.root.string;
449 p = strchr (name, ELF_VER_CHR);
451 /* We know that the p points into writable memory. In fact,
452 there are only a few symbols that have read-only names, being
453 those like _GLOBAL_OFFSET_TABLE_ that are created specially
454 by the backends. Most symbols will have names pointing into
455 an ELF string table read from a file, or to objalloc memory. */
458 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
463 if (indx == (bfd_size_type) -1)
465 h->dynstr_index = indx;
471 /* Mark a symbol dynamic. */
474 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
475 struct elf_link_hash_entry *h,
476 Elf_Internal_Sym *sym)
478 struct bfd_elf_dynamic_list *d = info->dynamic_list;
480 /* It may be called more than once on the same H. */
481 if(h->dynamic || info->relocatable)
484 if ((info->dynamic_data
485 && (h->type == STT_OBJECT
487 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
489 && h->root.type == bfd_link_hash_new
490 && (*d->match) (&d->head, NULL, h->root.root.string)))
494 /* Record an assignment to a symbol made by a linker script. We need
495 this in case some dynamic object refers to this symbol. */
498 bfd_elf_record_link_assignment (bfd *output_bfd,
499 struct bfd_link_info *info,
504 struct elf_link_hash_entry *h, *hv;
505 struct elf_link_hash_table *htab;
506 const struct elf_backend_data *bed;
508 if (!is_elf_hash_table (info->hash))
511 htab = elf_hash_table (info);
512 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
516 switch (h->root.type)
518 case bfd_link_hash_defined:
519 case bfd_link_hash_defweak:
520 case bfd_link_hash_common:
522 case bfd_link_hash_undefweak:
523 case bfd_link_hash_undefined:
524 /* Since we're defining the symbol, don't let it seem to have not
525 been defined. record_dynamic_symbol and size_dynamic_sections
526 may depend on this. */
527 h->root.type = bfd_link_hash_new;
528 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
529 bfd_link_repair_undef_list (&htab->root);
531 case bfd_link_hash_new:
532 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
535 case bfd_link_hash_indirect:
536 /* We had a versioned symbol in a dynamic library. We make the
537 the versioned symbol point to this one. */
538 bed = get_elf_backend_data (output_bfd);
540 while (hv->root.type == bfd_link_hash_indirect
541 || hv->root.type == bfd_link_hash_warning)
542 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
543 /* We don't need to update h->root.u since linker will set them
545 h->root.type = bfd_link_hash_undefined;
546 hv->root.type = bfd_link_hash_indirect;
547 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
548 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
550 case bfd_link_hash_warning:
555 /* If this symbol is being provided by the linker script, and it is
556 currently defined by a dynamic object, but not by a regular
557 object, then mark it as undefined so that the generic linker will
558 force the correct value. */
562 h->root.type = bfd_link_hash_undefined;
564 /* If this symbol is not being provided by the linker script, and it is
565 currently defined by a dynamic object, but not by a regular object,
566 then clear out any version information because the symbol will not be
567 associated with the dynamic object any more. */
571 h->verinfo.verdef = NULL;
577 bed = get_elf_backend_data (output_bfd);
578 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
582 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
584 if (!info->relocatable
586 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
593 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
596 if (! bfd_elf_link_record_dynamic_symbol (info, h))
599 /* If this is a weak defined symbol, and we know a corresponding
600 real symbol from the same dynamic object, make sure the real
601 symbol is also made into a dynamic symbol. */
602 if (h->u.weakdef != NULL
603 && h->u.weakdef->dynindx == -1)
605 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
613 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
614 success, and 2 on a failure caused by attempting to record a symbol
615 in a discarded section, eg. a discarded link-once section symbol. */
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
623 struct elf_link_local_dynamic_entry *entry;
624 struct elf_link_hash_table *eht;
625 struct elf_strtab_hash *dynstr;
626 unsigned long dynstr_index;
628 Elf_External_Sym_Shndx eshndx;
629 char esym[sizeof (Elf64_External_Sym)];
631 if (! is_elf_hash_table (info->hash))
634 /* See if the entry exists already. */
635 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
639 amt = sizeof (*entry);
640 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
644 /* Go find the symbol, so that we can find it's name. */
645 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 1, input_indx, &entry->isym, esym, &eshndx))
648 bfd_release (input_bfd, entry);
652 if (entry->isym.st_shndx != SHN_UNDEF
653 && entry->isym.st_shndx < SHN_LORESERVE)
657 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658 if (s == NULL || bfd_is_abs_section (s->output_section))
660 /* We can still bfd_release here as nothing has done another
661 bfd_alloc. We can't do this later in this function. */
662 bfd_release (input_bfd, entry);
667 name = (bfd_elf_string_from_elf_section
668 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 entry->isym.st_name));
671 dynstr = elf_hash_table (info)->dynstr;
674 /* Create a strtab to hold the dynamic symbol names. */
675 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
680 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681 if (dynstr_index == (unsigned long) -1)
683 entry->isym.st_name = dynstr_index;
685 eht = elf_hash_table (info);
687 entry->next = eht->dynlocal;
688 eht->dynlocal = entry;
689 entry->input_bfd = input_bfd;
690 entry->input_indx = input_indx;
693 /* Whatever binding the symbol had before, it's now local. */
695 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
697 /* The dynindx will be set at the end of size_dynamic_sections. */
702 /* Return the dynindex of a local dynamic symbol. */
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
709 struct elf_link_local_dynamic_entry *e;
711 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
717 /* This function is used to renumber the dynamic symbols, if some of
718 them are removed because they are marked as local. This is called
719 via elf_link_hash_traverse. */
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
725 size_t *count = (size_t *) data;
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
744 size_t *count = (size_t *) data;
746 if (!h->forced_local)
749 if (h->dynindx != -1)
750 h->dynindx = ++(*count);
755 /* Return true if the dynamic symbol for a given section should be
756 omitted when creating a shared library. */
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 struct bfd_link_info *info,
762 struct elf_link_hash_table *htab;
764 switch (elf_section_data (p)->this_hdr.sh_type)
768 /* If sh_type is yet undecided, assume it could be
769 SHT_PROGBITS/SHT_NOBITS. */
771 htab = elf_hash_table (info);
772 if (p == htab->tls_sec)
775 if (htab->text_index_section != NULL)
776 return p != htab->text_index_section && p != htab->data_index_section;
778 if (strcmp (p->name, ".got") == 0
779 || strcmp (p->name, ".got.plt") == 0
780 || strcmp (p->name, ".plt") == 0)
784 if (htab->dynobj != NULL
785 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 && ip->output_section == p)
791 /* There shouldn't be section relative relocations
792 against any other section. */
798 /* Assign dynsym indices. In a shared library we generate a section
799 symbol for each output section, which come first. Next come symbols
800 which have been forced to local binding. Then all of the back-end
801 allocated local dynamic syms, followed by the rest of the global
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 struct bfd_link_info *info,
807 unsigned long *section_sym_count)
809 unsigned long dynsymcount = 0;
811 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
813 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
815 for (p = output_bfd->sections; p ; p = p->next)
816 if ((p->flags & SEC_EXCLUDE) == 0
817 && (p->flags & SEC_ALLOC) != 0
818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 elf_section_data (p)->dynindx = ++dynsymcount;
821 elf_section_data (p)->dynindx = 0;
823 *section_sym_count = dynsymcount;
825 elf_link_hash_traverse (elf_hash_table (info),
826 elf_link_renumber_local_hash_table_dynsyms,
829 if (elf_hash_table (info)->dynlocal)
831 struct elf_link_local_dynamic_entry *p;
832 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 p->dynindx = ++dynsymcount;
836 elf_link_hash_traverse (elf_hash_table (info),
837 elf_link_renumber_hash_table_dynsyms,
840 /* There is an unused NULL entry at the head of the table which
841 we must account for in our count. Unless there weren't any
842 symbols, which means we'll have no table at all. */
843 if (dynsymcount != 0)
846 elf_hash_table (info)->dynsymcount = dynsymcount;
850 /* Merge st_other field. */
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 Elf_Internal_Sym *isym, bfd_boolean definition,
857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
859 /* If st_other has a processor-specific meaning, specific
860 code might be needed here. We never merge the visibility
861 attribute with the one from a dynamic object. */
862 if (bed->elf_backend_merge_symbol_attribute)
863 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
866 /* If this symbol has default visibility and the user has requested
867 we not re-export it, then mark it as hidden. */
871 || (abfd->my_archive && abfd->my_archive->no_export))
872 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873 isym->st_other = (STV_HIDDEN
874 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
876 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
878 unsigned char hvis, symvis, other, nvis;
880 /* Only merge the visibility. Leave the remainder of the
881 st_other field to elf_backend_merge_symbol_attribute. */
882 other = h->other & ~ELF_ST_VISIBILITY (-1);
884 /* Combine visibilities, using the most constraining one. */
885 hvis = ELF_ST_VISIBILITY (h->other);
886 symvis = ELF_ST_VISIBILITY (isym->st_other);
892 nvis = hvis < symvis ? hvis : symvis;
894 h->other = other | nvis;
898 /* This function is called when we want to define a new symbol. It
899 handles the various cases which arise when we find a definition in
900 a dynamic object, or when there is already a definition in a
901 dynamic object. The new symbol is described by NAME, SYM, PSEC,
902 and PVALUE. We set SYM_HASH to the hash table entry. We set
903 OVERRIDE if the old symbol is overriding a new definition. We set
904 TYPE_CHANGE_OK if it is OK for the type to change. We set
905 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
906 change, we mean that we shouldn't warn if the type or size does
907 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
908 object is overridden by a regular object. */
911 _bfd_elf_merge_symbol (bfd *abfd,
912 struct bfd_link_info *info,
914 Elf_Internal_Sym *sym,
917 bfd_boolean *pold_weak,
918 unsigned int *pold_alignment,
919 struct elf_link_hash_entry **sym_hash,
921 bfd_boolean *override,
922 bfd_boolean *type_change_ok,
923 bfd_boolean *size_change_ok)
925 asection *sec, *oldsec;
926 struct elf_link_hash_entry *h;
927 struct elf_link_hash_entry *hi;
928 struct elf_link_hash_entry *flip;
931 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
932 bfd_boolean newweak, oldweak, newfunc, oldfunc;
933 const struct elf_backend_data *bed;
939 bind = ELF_ST_BIND (sym->st_info);
941 if (! bfd_is_und_section (sec))
942 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
944 h = ((struct elf_link_hash_entry *)
945 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
950 bed = get_elf_backend_data (abfd);
952 /* This code is for coping with dynamic objects, and is only useful
953 if we are doing an ELF link. */
954 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
957 /* For merging, we only care about real symbols. But we need to make
958 sure that indirect symbol dynamic flags are updated. */
960 while (h->root.type == bfd_link_hash_indirect
961 || h->root.type == bfd_link_hash_warning)
962 h = (struct elf_link_hash_entry *) h->root.u.i.link;
964 /* We have to check it for every instance since the first few may be
965 references and not all compilers emit symbol type for undefined
967 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
969 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
970 respectively, is from a dynamic object. */
972 newdyn = (abfd->flags & DYNAMIC) != 0;
974 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
975 syms and defined syms in dynamic libraries respectively.
976 ref_dynamic on the other hand can be set for a symbol defined in
977 a dynamic library, and def_dynamic may not be set; When the
978 definition in a dynamic lib is overridden by a definition in the
979 executable use of the symbol in the dynamic lib becomes a
980 reference to the executable symbol. */
983 if (bfd_is_und_section (sec))
985 if (bind != STB_WEAK)
987 h->ref_dynamic_nonweak = 1;
988 hi->ref_dynamic_nonweak = 1;
998 /* If we just created the symbol, mark it as being an ELF symbol.
999 Other than that, there is nothing to do--there is no merge issue
1000 with a newly defined symbol--so we just return. */
1002 if (h->root.type == bfd_link_hash_new)
1008 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1011 switch (h->root.type)
1018 case bfd_link_hash_undefined:
1019 case bfd_link_hash_undefweak:
1020 oldbfd = h->root.u.undef.abfd;
1024 case bfd_link_hash_defined:
1025 case bfd_link_hash_defweak:
1026 oldbfd = h->root.u.def.section->owner;
1027 oldsec = h->root.u.def.section;
1030 case bfd_link_hash_common:
1031 oldbfd = h->root.u.c.p->section->owner;
1032 oldsec = h->root.u.c.p->section;
1036 /* Differentiate strong and weak symbols. */
1037 newweak = bind == STB_WEAK;
1038 oldweak = (h->root.type == bfd_link_hash_defweak
1039 || h->root.type == bfd_link_hash_undefweak);
1041 *pold_weak = oldweak;
1043 /* In cases involving weak versioned symbols, we may wind up trying
1044 to merge a symbol with itself. Catch that here, to avoid the
1045 confusion that results if we try to override a symbol with
1046 itself. The additional tests catch cases like
1047 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1048 dynamic object, which we do want to handle here. */
1050 && (newweak || oldweak)
1051 && ((abfd->flags & DYNAMIC) == 0
1052 || !h->def_regular))
1057 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1058 else if (oldsec != NULL)
1060 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1061 indices used by MIPS ELF. */
1062 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1065 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1066 respectively, appear to be a definition rather than reference. */
1068 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1070 olddef = (h->root.type != bfd_link_hash_undefined
1071 && h->root.type != bfd_link_hash_undefweak
1072 && h->root.type != bfd_link_hash_common);
1074 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1075 respectively, appear to be a function. */
1077 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1078 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1080 oldfunc = (h->type != STT_NOTYPE
1081 && bed->is_function_type (h->type));
1083 /* When we try to create a default indirect symbol from the dynamic
1084 definition with the default version, we skip it if its type and
1085 the type of existing regular definition mismatch. We only do it
1086 if the existing regular definition won't be dynamic. */
1087 if (pold_alignment == NULL
1089 && !info->export_dynamic
1094 && (olddef || h->root.type == bfd_link_hash_common)
1095 && ELF_ST_TYPE (sym->st_info) != h->type
1096 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1097 && h->type != STT_NOTYPE
1098 && !(newfunc && oldfunc))
1104 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1105 if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1106 *type_change_ok = TRUE;
1108 /* Check TLS symbol. We don't check undefined symbol introduced by
1110 else if (oldbfd != NULL
1111 && ELF_ST_TYPE (sym->st_info) != h->type
1112 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1115 bfd_boolean ntdef, tdef;
1116 asection *ntsec, *tsec;
1118 if (h->type == STT_TLS)
1138 (*_bfd_error_handler)
1139 (_("%s: TLS definition in %B section %A "
1140 "mismatches non-TLS definition in %B section %A"),
1141 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1142 else if (!tdef && !ntdef)
1143 (*_bfd_error_handler)
1144 (_("%s: TLS reference in %B "
1145 "mismatches non-TLS reference in %B"),
1146 tbfd, ntbfd, h->root.root.string);
1148 (*_bfd_error_handler)
1149 (_("%s: TLS definition in %B section %A "
1150 "mismatches non-TLS reference in %B"),
1151 tbfd, tsec, ntbfd, h->root.root.string);
1153 (*_bfd_error_handler)
1154 (_("%s: TLS reference in %B "
1155 "mismatches non-TLS definition in %B section %A"),
1156 tbfd, ntbfd, ntsec, h->root.root.string);
1158 bfd_set_error (bfd_error_bad_value);
1162 /* If the old symbol has non-default visibility, we ignore the new
1163 definition from a dynamic object. */
1165 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1166 && !bfd_is_und_section (sec))
1169 /* Make sure this symbol is dynamic. */
1171 hi->ref_dynamic = 1;
1172 /* A protected symbol has external availability. Make sure it is
1173 recorded as dynamic.
1175 FIXME: Should we check type and size for protected symbol? */
1176 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1177 return bfd_elf_link_record_dynamic_symbol (info, h);
1182 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1185 /* If the new symbol with non-default visibility comes from a
1186 relocatable file and the old definition comes from a dynamic
1187 object, we remove the old definition. */
1188 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1190 /* Handle the case where the old dynamic definition is
1191 default versioned. We need to copy the symbol info from
1192 the symbol with default version to the normal one if it
1193 was referenced before. */
1196 struct elf_link_hash_entry *vh = *sym_hash;
1198 vh->root.type = h->root.type;
1199 h->root.type = bfd_link_hash_indirect;
1200 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1202 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1203 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1205 /* If the new symbol is hidden or internal, completely undo
1206 any dynamic link state. */
1207 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1208 h->forced_local = 0;
1215 /* FIXME: Should we check type and size for protected symbol? */
1225 /* If the old symbol was undefined before, then it will still be
1226 on the undefs list. If the new symbol is undefined or
1227 common, we can't make it bfd_link_hash_new here, because new
1228 undefined or common symbols will be added to the undefs list
1229 by _bfd_generic_link_add_one_symbol. Symbols may not be
1230 added twice to the undefs list. Also, if the new symbol is
1231 undefweak then we don't want to lose the strong undef. */
1232 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1234 h->root.type = bfd_link_hash_undefined;
1235 h->root.u.undef.abfd = abfd;
1239 h->root.type = bfd_link_hash_new;
1240 h->root.u.undef.abfd = NULL;
1243 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1245 /* If the new symbol is hidden or internal, completely undo
1246 any dynamic link state. */
1247 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1248 h->forced_local = 0;
1254 /* FIXME: Should we check type and size for protected symbol? */
1260 /* If a new weak symbol definition comes from a regular file and the
1261 old symbol comes from a dynamic library, we treat the new one as
1262 strong. Similarly, an old weak symbol definition from a regular
1263 file is treated as strong when the new symbol comes from a dynamic
1264 library. Further, an old weak symbol from a dynamic library is
1265 treated as strong if the new symbol is from a dynamic library.
1266 This reflects the way glibc's ld.so works.
1268 Do this before setting *type_change_ok or *size_change_ok so that
1269 we warn properly when dynamic library symbols are overridden. */
1271 if (newdef && !newdyn && olddyn)
1273 if (olddef && newdyn)
1276 /* Allow changes between different types of function symbol. */
1277 if (newfunc && oldfunc)
1278 *type_change_ok = TRUE;
1280 /* It's OK to change the type if either the existing symbol or the
1281 new symbol is weak. A type change is also OK if the old symbol
1282 is undefined and the new symbol is defined. */
1287 && h->root.type == bfd_link_hash_undefined))
1288 *type_change_ok = TRUE;
1290 /* It's OK to change the size if either the existing symbol or the
1291 new symbol is weak, or if the old symbol is undefined. */
1294 || h->root.type == bfd_link_hash_undefined)
1295 *size_change_ok = TRUE;
1297 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1298 symbol, respectively, appears to be a common symbol in a dynamic
1299 object. If a symbol appears in an uninitialized section, and is
1300 not weak, and is not a function, then it may be a common symbol
1301 which was resolved when the dynamic object was created. We want
1302 to treat such symbols specially, because they raise special
1303 considerations when setting the symbol size: if the symbol
1304 appears as a common symbol in a regular object, and the size in
1305 the regular object is larger, we must make sure that we use the
1306 larger size. This problematic case can always be avoided in C,
1307 but it must be handled correctly when using Fortran shared
1310 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1311 likewise for OLDDYNCOMMON and OLDDEF.
1313 Note that this test is just a heuristic, and that it is quite
1314 possible to have an uninitialized symbol in a shared object which
1315 is really a definition, rather than a common symbol. This could
1316 lead to some minor confusion when the symbol really is a common
1317 symbol in some regular object. However, I think it will be
1323 && (sec->flags & SEC_ALLOC) != 0
1324 && (sec->flags & SEC_LOAD) == 0
1327 newdyncommon = TRUE;
1329 newdyncommon = FALSE;
1333 && h->root.type == bfd_link_hash_defined
1335 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1336 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1339 olddyncommon = TRUE;
1341 olddyncommon = FALSE;
1343 /* We now know everything about the old and new symbols. We ask the
1344 backend to check if we can merge them. */
1345 if (bed->merge_symbol != NULL)
1347 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1352 /* If both the old and the new symbols look like common symbols in a
1353 dynamic object, set the size of the symbol to the larger of the
1358 && sym->st_size != h->size)
1360 /* Since we think we have two common symbols, issue a multiple
1361 common warning if desired. Note that we only warn if the
1362 size is different. If the size is the same, we simply let
1363 the old symbol override the new one as normally happens with
1364 symbols defined in dynamic objects. */
1366 if (! ((*info->callbacks->multiple_common)
1367 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1370 if (sym->st_size > h->size)
1371 h->size = sym->st_size;
1373 *size_change_ok = TRUE;
1376 /* If we are looking at a dynamic object, and we have found a
1377 definition, we need to see if the symbol was already defined by
1378 some other object. If so, we want to use the existing
1379 definition, and we do not want to report a multiple symbol
1380 definition error; we do this by clobbering *PSEC to be
1381 bfd_und_section_ptr.
1383 We treat a common symbol as a definition if the symbol in the
1384 shared library is a function, since common symbols always
1385 represent variables; this can cause confusion in principle, but
1386 any such confusion would seem to indicate an erroneous program or
1387 shared library. We also permit a common symbol in a regular
1388 object to override a weak symbol in a shared object. */
1393 || (h->root.type == bfd_link_hash_common
1394 && (newweak || newfunc))))
1398 newdyncommon = FALSE;
1400 *psec = sec = bfd_und_section_ptr;
1401 *size_change_ok = TRUE;
1403 /* If we get here when the old symbol is a common symbol, then
1404 we are explicitly letting it override a weak symbol or
1405 function in a dynamic object, and we don't want to warn about
1406 a type change. If the old symbol is a defined symbol, a type
1407 change warning may still be appropriate. */
1409 if (h->root.type == bfd_link_hash_common)
1410 *type_change_ok = TRUE;
1413 /* Handle the special case of an old common symbol merging with a
1414 new symbol which looks like a common symbol in a shared object.
1415 We change *PSEC and *PVALUE to make the new symbol look like a
1416 common symbol, and let _bfd_generic_link_add_one_symbol do the
1420 && h->root.type == bfd_link_hash_common)
1424 newdyncommon = FALSE;
1425 *pvalue = sym->st_size;
1426 *psec = sec = bed->common_section (oldsec);
1427 *size_change_ok = TRUE;
1430 /* Skip weak definitions of symbols that are already defined. */
1431 if (newdef && olddef && newweak)
1433 /* Don't skip new non-IR weak syms. */
1434 if (!(oldbfd != NULL
1435 && (oldbfd->flags & BFD_PLUGIN) != 0
1436 && (abfd->flags & BFD_PLUGIN) == 0))
1439 /* Merge st_other. If the symbol already has a dynamic index,
1440 but visibility says it should not be visible, turn it into a
1442 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1443 if (h->dynindx != -1)
1444 switch (ELF_ST_VISIBILITY (h->other))
1448 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1453 /* If the old symbol is from a dynamic object, and the new symbol is
1454 a definition which is not from a dynamic object, then the new
1455 symbol overrides the old symbol. Symbols from regular files
1456 always take precedence over symbols from dynamic objects, even if
1457 they are defined after the dynamic object in the link.
1459 As above, we again permit a common symbol in a regular object to
1460 override a definition in a shared object if the shared object
1461 symbol is a function or is weak. */
1466 || (bfd_is_com_section (sec)
1467 && (oldweak || oldfunc)))
1472 /* Change the hash table entry to undefined, and let
1473 _bfd_generic_link_add_one_symbol do the right thing with the
1476 h->root.type = bfd_link_hash_undefined;
1477 h->root.u.undef.abfd = h->root.u.def.section->owner;
1478 *size_change_ok = TRUE;
1481 olddyncommon = FALSE;
1483 /* We again permit a type change when a common symbol may be
1484 overriding a function. */
1486 if (bfd_is_com_section (sec))
1490 /* If a common symbol overrides a function, make sure
1491 that it isn't defined dynamically nor has type
1494 h->type = STT_NOTYPE;
1496 *type_change_ok = TRUE;
1499 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1502 /* This union may have been set to be non-NULL when this symbol
1503 was seen in a dynamic object. We must force the union to be
1504 NULL, so that it is correct for a regular symbol. */
1505 h->verinfo.vertree = NULL;
1508 /* Handle the special case of a new common symbol merging with an
1509 old symbol that looks like it might be a common symbol defined in
1510 a shared object. Note that we have already handled the case in
1511 which a new common symbol should simply override the definition
1512 in the shared library. */
1515 && bfd_is_com_section (sec)
1518 /* It would be best if we could set the hash table entry to a
1519 common symbol, but we don't know what to use for the section
1520 or the alignment. */
1521 if (! ((*info->callbacks->multiple_common)
1522 (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1525 /* If the presumed common symbol in the dynamic object is
1526 larger, pretend that the new symbol has its size. */
1528 if (h->size > *pvalue)
1531 /* We need to remember the alignment required by the symbol
1532 in the dynamic object. */
1533 BFD_ASSERT (pold_alignment);
1534 *pold_alignment = h->root.u.def.section->alignment_power;
1537 olddyncommon = FALSE;
1539 h->root.type = bfd_link_hash_undefined;
1540 h->root.u.undef.abfd = h->root.u.def.section->owner;
1542 *size_change_ok = TRUE;
1543 *type_change_ok = TRUE;
1545 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1548 h->verinfo.vertree = NULL;
1553 /* Handle the case where we had a versioned symbol in a dynamic
1554 library and now find a definition in a normal object. In this
1555 case, we make the versioned symbol point to the normal one. */
1556 flip->root.type = h->root.type;
1557 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1558 h->root.type = bfd_link_hash_indirect;
1559 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1560 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1564 flip->ref_dynamic = 1;
1571 /* This function is called to create an indirect symbol from the
1572 default for the symbol with the default version if needed. The
1573 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1574 set DYNSYM if the new indirect symbol is dynamic. */
1577 _bfd_elf_add_default_symbol (bfd *abfd,
1578 struct bfd_link_info *info,
1579 struct elf_link_hash_entry *h,
1581 Elf_Internal_Sym *sym,
1584 bfd_boolean *dynsym,
1585 bfd_boolean override)
1587 bfd_boolean type_change_ok;
1588 bfd_boolean size_change_ok;
1591 struct elf_link_hash_entry *hi;
1592 struct bfd_link_hash_entry *bh;
1593 const struct elf_backend_data *bed;
1594 bfd_boolean collect;
1595 bfd_boolean dynamic;
1597 size_t len, shortlen;
1600 /* If this symbol has a version, and it is the default version, we
1601 create an indirect symbol from the default name to the fully
1602 decorated name. This will cause external references which do not
1603 specify a version to be bound to this version of the symbol. */
1604 p = strchr (name, ELF_VER_CHR);
1605 if (p == NULL || p[1] != ELF_VER_CHR)
1610 /* We are overridden by an old definition. We need to check if we
1611 need to create the indirect symbol from the default name. */
1612 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1614 BFD_ASSERT (hi != NULL);
1617 while (hi->root.type == bfd_link_hash_indirect
1618 || hi->root.type == bfd_link_hash_warning)
1620 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1626 bed = get_elf_backend_data (abfd);
1627 collect = bed->collect;
1628 dynamic = (abfd->flags & DYNAMIC) != 0;
1630 shortlen = p - name;
1631 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1632 if (shortname == NULL)
1634 memcpy (shortname, name, shortlen);
1635 shortname[shortlen] = '\0';
1637 /* We are going to create a new symbol. Merge it with any existing
1638 symbol with this name. For the purposes of the merge, act as
1639 though we were defining the symbol we just defined, although we
1640 actually going to define an indirect symbol. */
1641 type_change_ok = FALSE;
1642 size_change_ok = FALSE;
1644 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1645 NULL, NULL, &hi, &skip, &override,
1646 &type_change_ok, &size_change_ok))
1655 if (! (_bfd_generic_link_add_one_symbol
1656 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1657 0, name, FALSE, collect, &bh)))
1659 hi = (struct elf_link_hash_entry *) bh;
1663 /* In this case the symbol named SHORTNAME is overriding the
1664 indirect symbol we want to add. We were planning on making
1665 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1666 is the name without a version. NAME is the fully versioned
1667 name, and it is the default version.
1669 Overriding means that we already saw a definition for the
1670 symbol SHORTNAME in a regular object, and it is overriding
1671 the symbol defined in the dynamic object.
1673 When this happens, we actually want to change NAME, the
1674 symbol we just added, to refer to SHORTNAME. This will cause
1675 references to NAME in the shared object to become references
1676 to SHORTNAME in the regular object. This is what we expect
1677 when we override a function in a shared object: that the
1678 references in the shared object will be mapped to the
1679 definition in the regular object. */
1681 while (hi->root.type == bfd_link_hash_indirect
1682 || hi->root.type == bfd_link_hash_warning)
1683 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1685 h->root.type = bfd_link_hash_indirect;
1686 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1690 hi->ref_dynamic = 1;
1694 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1699 /* Now set HI to H, so that the following code will set the
1700 other fields correctly. */
1704 /* Check if HI is a warning symbol. */
1705 if (hi->root.type == bfd_link_hash_warning)
1706 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1708 /* If there is a duplicate definition somewhere, then HI may not
1709 point to an indirect symbol. We will have reported an error to
1710 the user in that case. */
1712 if (hi->root.type == bfd_link_hash_indirect)
1714 struct elf_link_hash_entry *ht;
1716 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1717 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1719 /* See if the new flags lead us to realize that the symbol must
1725 if (! info->executable
1732 if (hi->ref_regular)
1738 /* We also need to define an indirection from the nondefault version
1742 len = strlen (name);
1743 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1744 if (shortname == NULL)
1746 memcpy (shortname, name, shortlen);
1747 memcpy (shortname + shortlen, p + 1, len - shortlen);
1749 /* Once again, merge with any existing symbol. */
1750 type_change_ok = FALSE;
1751 size_change_ok = FALSE;
1753 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1754 NULL, NULL, &hi, &skip, &override,
1755 &type_change_ok, &size_change_ok))
1763 /* Here SHORTNAME is a versioned name, so we don't expect to see
1764 the type of override we do in the case above unless it is
1765 overridden by a versioned definition. */
1766 if (hi->root.type != bfd_link_hash_defined
1767 && hi->root.type != bfd_link_hash_defweak)
1768 (*_bfd_error_handler)
1769 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1775 if (! (_bfd_generic_link_add_one_symbol
1776 (info, abfd, shortname, BSF_INDIRECT,
1777 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1779 hi = (struct elf_link_hash_entry *) bh;
1781 /* If there is a duplicate definition somewhere, then HI may not
1782 point to an indirect symbol. We will have reported an error
1783 to the user in that case. */
1785 if (hi->root.type == bfd_link_hash_indirect)
1787 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1789 /* See if the new flags lead us to realize that the symbol
1795 if (! info->executable
1801 if (hi->ref_regular)
1811 /* This routine is used to export all defined symbols into the dynamic
1812 symbol table. It is called via elf_link_hash_traverse. */
1815 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1817 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1819 /* Ignore indirect symbols. These are added by the versioning code. */
1820 if (h->root.type == bfd_link_hash_indirect)
1823 /* Ignore this if we won't export it. */
1824 if (!eif->info->export_dynamic && !h->dynamic)
1827 if (h->dynindx == -1
1828 && (h->def_regular || h->ref_regular)
1829 && ! bfd_hide_sym_by_version (eif->info->version_info,
1830 h->root.root.string))
1832 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1842 /* Look through the symbols which are defined in other shared
1843 libraries and referenced here. Update the list of version
1844 dependencies. This will be put into the .gnu.version_r section.
1845 This function is called via elf_link_hash_traverse. */
1848 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1851 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1852 Elf_Internal_Verneed *t;
1853 Elf_Internal_Vernaux *a;
1856 /* We only care about symbols defined in shared objects with version
1861 || h->verinfo.verdef == NULL)
1864 /* See if we already know about this version. */
1865 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1869 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1872 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1873 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1879 /* This is a new version. Add it to tree we are building. */
1884 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1887 rinfo->failed = TRUE;
1891 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1892 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1893 elf_tdata (rinfo->info->output_bfd)->verref = t;
1897 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1900 rinfo->failed = TRUE;
1904 /* Note that we are copying a string pointer here, and testing it
1905 above. If bfd_elf_string_from_elf_section is ever changed to
1906 discard the string data when low in memory, this will have to be
1908 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1910 a->vna_flags = h->verinfo.verdef->vd_flags;
1911 a->vna_nextptr = t->vn_auxptr;
1913 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1916 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1923 /* Figure out appropriate versions for all the symbols. We may not
1924 have the version number script until we have read all of the input
1925 files, so until that point we don't know which symbols should be
1926 local. This function is called via elf_link_hash_traverse. */
1929 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1931 struct elf_info_failed *sinfo;
1932 struct bfd_link_info *info;
1933 const struct elf_backend_data *bed;
1934 struct elf_info_failed eif;
1938 sinfo = (struct elf_info_failed *) data;
1941 /* Fix the symbol flags. */
1944 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1947 sinfo->failed = TRUE;
1951 /* We only need version numbers for symbols defined in regular
1953 if (!h->def_regular)
1956 bed = get_elf_backend_data (info->output_bfd);
1957 p = strchr (h->root.root.string, ELF_VER_CHR);
1958 if (p != NULL && h->verinfo.vertree == NULL)
1960 struct bfd_elf_version_tree *t;
1965 /* There are two consecutive ELF_VER_CHR characters if this is
1966 not a hidden symbol. */
1968 if (*p == ELF_VER_CHR)
1974 /* If there is no version string, we can just return out. */
1982 /* Look for the version. If we find it, it is no longer weak. */
1983 for (t = sinfo->info->version_info; t != NULL; t = t->next)
1985 if (strcmp (t->name, p) == 0)
1989 struct bfd_elf_version_expr *d;
1991 len = p - h->root.root.string;
1992 alc = (char *) bfd_malloc (len);
1995 sinfo->failed = TRUE;
1998 memcpy (alc, h->root.root.string, len - 1);
1999 alc[len - 1] = '\0';
2000 if (alc[len - 2] == ELF_VER_CHR)
2001 alc[len - 2] = '\0';
2003 h->verinfo.vertree = t;
2007 if (t->globals.list != NULL)
2008 d = (*t->match) (&t->globals, NULL, alc);
2010 /* See if there is anything to force this symbol to
2012 if (d == NULL && t->locals.list != NULL)
2014 d = (*t->match) (&t->locals, NULL, alc);
2017 && ! info->export_dynamic)
2018 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2026 /* If we are building an application, we need to create a
2027 version node for this version. */
2028 if (t == NULL && info->executable)
2030 struct bfd_elf_version_tree **pp;
2033 /* If we aren't going to export this symbol, we don't need
2034 to worry about it. */
2035 if (h->dynindx == -1)
2039 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2042 sinfo->failed = TRUE;
2047 t->name_indx = (unsigned int) -1;
2051 /* Don't count anonymous version tag. */
2052 if (sinfo->info->version_info != NULL
2053 && sinfo->info->version_info->vernum == 0)
2055 for (pp = &sinfo->info->version_info;
2059 t->vernum = version_index;
2063 h->verinfo.vertree = t;
2067 /* We could not find the version for a symbol when
2068 generating a shared archive. Return an error. */
2069 (*_bfd_error_handler)
2070 (_("%B: version node not found for symbol %s"),
2071 info->output_bfd, h->root.root.string);
2072 bfd_set_error (bfd_error_bad_value);
2073 sinfo->failed = TRUE;
2081 /* If we don't have a version for this symbol, see if we can find
2083 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2088 = bfd_find_version_for_sym (sinfo->info->version_info,
2089 h->root.root.string, &hide);
2090 if (h->verinfo.vertree != NULL && hide)
2091 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2097 /* Read and swap the relocs from the section indicated by SHDR. This
2098 may be either a REL or a RELA section. The relocations are
2099 translated into RELA relocations and stored in INTERNAL_RELOCS,
2100 which should have already been allocated to contain enough space.
2101 The EXTERNAL_RELOCS are a buffer where the external form of the
2102 relocations should be stored.
2104 Returns FALSE if something goes wrong. */
2107 elf_link_read_relocs_from_section (bfd *abfd,
2109 Elf_Internal_Shdr *shdr,
2110 void *external_relocs,
2111 Elf_Internal_Rela *internal_relocs)
2113 const struct elf_backend_data *bed;
2114 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2115 const bfd_byte *erela;
2116 const bfd_byte *erelaend;
2117 Elf_Internal_Rela *irela;
2118 Elf_Internal_Shdr *symtab_hdr;
2121 /* Position ourselves at the start of the section. */
2122 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2125 /* Read the relocations. */
2126 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2129 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2130 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2132 bed = get_elf_backend_data (abfd);
2134 /* Convert the external relocations to the internal format. */
2135 if (shdr->sh_entsize == bed->s->sizeof_rel)
2136 swap_in = bed->s->swap_reloc_in;
2137 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2138 swap_in = bed->s->swap_reloca_in;
2141 bfd_set_error (bfd_error_wrong_format);
2145 erela = (const bfd_byte *) external_relocs;
2146 erelaend = erela + shdr->sh_size;
2147 irela = internal_relocs;
2148 while (erela < erelaend)
2152 (*swap_in) (abfd, erela, irela);
2153 r_symndx = ELF32_R_SYM (irela->r_info);
2154 if (bed->s->arch_size == 64)
2158 if ((size_t) r_symndx >= nsyms)
2160 (*_bfd_error_handler)
2161 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2162 " for offset 0x%lx in section `%A'"),
2164 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2165 bfd_set_error (bfd_error_bad_value);
2169 else if (r_symndx != STN_UNDEF)
2171 (*_bfd_error_handler)
2172 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2173 " when the object file has no symbol table"),
2175 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2176 bfd_set_error (bfd_error_bad_value);
2179 irela += bed->s->int_rels_per_ext_rel;
2180 erela += shdr->sh_entsize;
2186 /* Read and swap the relocs for a section O. They may have been
2187 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2188 not NULL, they are used as buffers to read into. They are known to
2189 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2190 the return value is allocated using either malloc or bfd_alloc,
2191 according to the KEEP_MEMORY argument. If O has two relocation
2192 sections (both REL and RELA relocations), then the REL_HDR
2193 relocations will appear first in INTERNAL_RELOCS, followed by the
2194 RELA_HDR relocations. */
2197 _bfd_elf_link_read_relocs (bfd *abfd,
2199 void *external_relocs,
2200 Elf_Internal_Rela *internal_relocs,
2201 bfd_boolean keep_memory)
2203 void *alloc1 = NULL;
2204 Elf_Internal_Rela *alloc2 = NULL;
2205 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2206 struct bfd_elf_section_data *esdo = elf_section_data (o);
2207 Elf_Internal_Rela *internal_rela_relocs;
2209 if (esdo->relocs != NULL)
2210 return esdo->relocs;
2212 if (o->reloc_count == 0)
2215 if (internal_relocs == NULL)
2219 size = o->reloc_count;
2220 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2222 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2224 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2225 if (internal_relocs == NULL)
2229 if (external_relocs == NULL)
2231 bfd_size_type size = 0;
2234 size += esdo->rel.hdr->sh_size;
2236 size += esdo->rela.hdr->sh_size;
2238 alloc1 = bfd_malloc (size);
2241 external_relocs = alloc1;
2244 internal_rela_relocs = internal_relocs;
2247 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2251 external_relocs = (((bfd_byte *) external_relocs)
2252 + esdo->rel.hdr->sh_size);
2253 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2254 * bed->s->int_rels_per_ext_rel);
2258 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2260 internal_rela_relocs)))
2263 /* Cache the results for next time, if we can. */
2265 esdo->relocs = internal_relocs;
2270 /* Don't free alloc2, since if it was allocated we are passing it
2271 back (under the name of internal_relocs). */
2273 return internal_relocs;
2281 bfd_release (abfd, alloc2);
2288 /* Compute the size of, and allocate space for, REL_HDR which is the
2289 section header for a section containing relocations for O. */
2292 _bfd_elf_link_size_reloc_section (bfd *abfd,
2293 struct bfd_elf_section_reloc_data *reldata)
2295 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2297 /* That allows us to calculate the size of the section. */
2298 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2300 /* The contents field must last into write_object_contents, so we
2301 allocate it with bfd_alloc rather than malloc. Also since we
2302 cannot be sure that the contents will actually be filled in,
2303 we zero the allocated space. */
2304 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2305 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2308 if (reldata->hashes == NULL && reldata->count)
2310 struct elf_link_hash_entry **p;
2312 p = (struct elf_link_hash_entry **)
2313 bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2317 reldata->hashes = p;
2323 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2324 originated from the section given by INPUT_REL_HDR) to the
2328 _bfd_elf_link_output_relocs (bfd *output_bfd,
2329 asection *input_section,
2330 Elf_Internal_Shdr *input_rel_hdr,
2331 Elf_Internal_Rela *internal_relocs,
2332 struct elf_link_hash_entry **rel_hash
2335 Elf_Internal_Rela *irela;
2336 Elf_Internal_Rela *irelaend;
2338 struct bfd_elf_section_reloc_data *output_reldata;
2339 asection *output_section;
2340 const struct elf_backend_data *bed;
2341 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2342 struct bfd_elf_section_data *esdo;
2344 output_section = input_section->output_section;
2346 bed = get_elf_backend_data (output_bfd);
2347 esdo = elf_section_data (output_section);
2348 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2350 output_reldata = &esdo->rel;
2351 swap_out = bed->s->swap_reloc_out;
2353 else if (esdo->rela.hdr
2354 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2356 output_reldata = &esdo->rela;
2357 swap_out = bed->s->swap_reloca_out;
2361 (*_bfd_error_handler)
2362 (_("%B: relocation size mismatch in %B section %A"),
2363 output_bfd, input_section->owner, input_section);
2364 bfd_set_error (bfd_error_wrong_format);
2368 erel = output_reldata->hdr->contents;
2369 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2370 irela = internal_relocs;
2371 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2372 * bed->s->int_rels_per_ext_rel);
2373 while (irela < irelaend)
2375 (*swap_out) (output_bfd, irela, erel);
2376 irela += bed->s->int_rels_per_ext_rel;
2377 erel += input_rel_hdr->sh_entsize;
2380 /* Bump the counter, so that we know where to add the next set of
2382 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2387 /* Make weak undefined symbols in PIE dynamic. */
2390 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2391 struct elf_link_hash_entry *h)
2395 && h->root.type == bfd_link_hash_undefweak)
2396 return bfd_elf_link_record_dynamic_symbol (info, h);
2401 /* Fix up the flags for a symbol. This handles various cases which
2402 can only be fixed after all the input files are seen. This is
2403 currently called by both adjust_dynamic_symbol and
2404 assign_sym_version, which is unnecessary but perhaps more robust in
2405 the face of future changes. */
2408 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2409 struct elf_info_failed *eif)
2411 const struct elf_backend_data *bed;
2413 /* If this symbol was mentioned in a non-ELF file, try to set
2414 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2415 permit a non-ELF file to correctly refer to a symbol defined in
2416 an ELF dynamic object. */
2419 while (h->root.type == bfd_link_hash_indirect)
2420 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2422 if (h->root.type != bfd_link_hash_defined
2423 && h->root.type != bfd_link_hash_defweak)
2426 h->ref_regular_nonweak = 1;
2430 if (h->root.u.def.section->owner != NULL
2431 && (bfd_get_flavour (h->root.u.def.section->owner)
2432 == bfd_target_elf_flavour))
2435 h->ref_regular_nonweak = 1;
2441 if (h->dynindx == -1
2445 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2454 /* Unfortunately, NON_ELF is only correct if the symbol
2455 was first seen in a non-ELF file. Fortunately, if the symbol
2456 was first seen in an ELF file, we're probably OK unless the
2457 symbol was defined in a non-ELF file. Catch that case here.
2458 FIXME: We're still in trouble if the symbol was first seen in
2459 a dynamic object, and then later in a non-ELF regular object. */
2460 if ((h->root.type == bfd_link_hash_defined
2461 || h->root.type == bfd_link_hash_defweak)
2463 && (h->root.u.def.section->owner != NULL
2464 ? (bfd_get_flavour (h->root.u.def.section->owner)
2465 != bfd_target_elf_flavour)
2466 : (bfd_is_abs_section (h->root.u.def.section)
2467 && !h->def_dynamic)))
2471 /* Backend specific symbol fixup. */
2472 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2473 if (bed->elf_backend_fixup_symbol
2474 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2477 /* If this is a final link, and the symbol was defined as a common
2478 symbol in a regular object file, and there was no definition in
2479 any dynamic object, then the linker will have allocated space for
2480 the symbol in a common section but the DEF_REGULAR
2481 flag will not have been set. */
2482 if (h->root.type == bfd_link_hash_defined
2486 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2489 /* If -Bsymbolic was used (which means to bind references to global
2490 symbols to the definition within the shared object), and this
2491 symbol was defined in a regular object, then it actually doesn't
2492 need a PLT entry. Likewise, if the symbol has non-default
2493 visibility. If the symbol has hidden or internal visibility, we
2494 will force it local. */
2496 && eif->info->shared
2497 && is_elf_hash_table (eif->info->hash)
2498 && (SYMBOLIC_BIND (eif->info, h)
2499 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2502 bfd_boolean force_local;
2504 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2505 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2506 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2509 /* If a weak undefined symbol has non-default visibility, we also
2510 hide it from the dynamic linker. */
2511 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2512 && h->root.type == bfd_link_hash_undefweak)
2513 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2515 /* If this is a weak defined symbol in a dynamic object, and we know
2516 the real definition in the dynamic object, copy interesting flags
2517 over to the real definition. */
2518 if (h->u.weakdef != NULL)
2520 /* If the real definition is defined by a regular object file,
2521 don't do anything special. See the longer description in
2522 _bfd_elf_adjust_dynamic_symbol, below. */
2523 if (h->u.weakdef->def_regular)
2524 h->u.weakdef = NULL;
2527 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2529 while (h->root.type == bfd_link_hash_indirect)
2530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2532 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2533 || h->root.type == bfd_link_hash_defweak);
2534 BFD_ASSERT (weakdef->def_dynamic);
2535 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2536 || weakdef->root.type == bfd_link_hash_defweak);
2537 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2544 /* Make the backend pick a good value for a dynamic symbol. This is
2545 called via elf_link_hash_traverse, and also calls itself
2549 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2551 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2553 const struct elf_backend_data *bed;
2555 if (! is_elf_hash_table (eif->info->hash))
2558 /* Ignore indirect symbols. These are added by the versioning code. */
2559 if (h->root.type == bfd_link_hash_indirect)
2562 /* Fix the symbol flags. */
2563 if (! _bfd_elf_fix_symbol_flags (h, eif))
2566 /* If this symbol does not require a PLT entry, and it is not
2567 defined by a dynamic object, or is not referenced by a regular
2568 object, ignore it. We do have to handle a weak defined symbol,
2569 even if no regular object refers to it, if we decided to add it
2570 to the dynamic symbol table. FIXME: Do we normally need to worry
2571 about symbols which are defined by one dynamic object and
2572 referenced by another one? */
2574 && h->type != STT_GNU_IFUNC
2578 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2580 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2584 /* If we've already adjusted this symbol, don't do it again. This
2585 can happen via a recursive call. */
2586 if (h->dynamic_adjusted)
2589 /* Don't look at this symbol again. Note that we must set this
2590 after checking the above conditions, because we may look at a
2591 symbol once, decide not to do anything, and then get called
2592 recursively later after REF_REGULAR is set below. */
2593 h->dynamic_adjusted = 1;
2595 /* If this is a weak definition, and we know a real definition, and
2596 the real symbol is not itself defined by a regular object file,
2597 then get a good value for the real definition. We handle the
2598 real symbol first, for the convenience of the backend routine.
2600 Note that there is a confusing case here. If the real definition
2601 is defined by a regular object file, we don't get the real symbol
2602 from the dynamic object, but we do get the weak symbol. If the
2603 processor backend uses a COPY reloc, then if some routine in the
2604 dynamic object changes the real symbol, we will not see that
2605 change in the corresponding weak symbol. This is the way other
2606 ELF linkers work as well, and seems to be a result of the shared
2609 I will clarify this issue. Most SVR4 shared libraries define the
2610 variable _timezone and define timezone as a weak synonym. The
2611 tzset call changes _timezone. If you write
2612 extern int timezone;
2614 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2615 you might expect that, since timezone is a synonym for _timezone,
2616 the same number will print both times. However, if the processor
2617 backend uses a COPY reloc, then actually timezone will be copied
2618 into your process image, and, since you define _timezone
2619 yourself, _timezone will not. Thus timezone and _timezone will
2620 wind up at different memory locations. The tzset call will set
2621 _timezone, leaving timezone unchanged. */
2623 if (h->u.weakdef != NULL)
2625 /* If we get to this point, there is an implicit reference to
2626 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2627 h->u.weakdef->ref_regular = 1;
2629 /* Ensure that the backend adjust_dynamic_symbol function sees
2630 H->U.WEAKDEF before H by recursively calling ourselves. */
2631 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2635 /* If a symbol has no type and no size and does not require a PLT
2636 entry, then we are probably about to do the wrong thing here: we
2637 are probably going to create a COPY reloc for an empty object.
2638 This case can arise when a shared object is built with assembly
2639 code, and the assembly code fails to set the symbol type. */
2641 && h->type == STT_NOTYPE
2643 (*_bfd_error_handler)
2644 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2645 h->root.root.string);
2647 dynobj = elf_hash_table (eif->info)->dynobj;
2648 bed = get_elf_backend_data (dynobj);
2650 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2659 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2663 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2666 unsigned int power_of_two;
2668 asection *sec = h->root.u.def.section;
2670 /* The section aligment of definition is the maximum alignment
2671 requirement of symbols defined in the section. Since we don't
2672 know the symbol alignment requirement, we start with the
2673 maximum alignment and check low bits of the symbol address
2674 for the minimum alignment. */
2675 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2676 mask = ((bfd_vma) 1 << power_of_two) - 1;
2677 while ((h->root.u.def.value & mask) != 0)
2683 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2686 /* Adjust the section alignment if needed. */
2687 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2692 /* We make sure that the symbol will be aligned properly. */
2693 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2695 /* Define the symbol as being at this point in DYNBSS. */
2696 h->root.u.def.section = dynbss;
2697 h->root.u.def.value = dynbss->size;
2699 /* Increment the size of DYNBSS to make room for the symbol. */
2700 dynbss->size += h->size;
2705 /* Adjust all external symbols pointing into SEC_MERGE sections
2706 to reflect the object merging within the sections. */
2709 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2713 if ((h->root.type == bfd_link_hash_defined
2714 || h->root.type == bfd_link_hash_defweak)
2715 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2716 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2718 bfd *output_bfd = (bfd *) data;
2720 h->root.u.def.value =
2721 _bfd_merged_section_offset (output_bfd,
2722 &h->root.u.def.section,
2723 elf_section_data (sec)->sec_info,
2724 h->root.u.def.value);
2730 /* Returns false if the symbol referred to by H should be considered
2731 to resolve local to the current module, and true if it should be
2732 considered to bind dynamically. */
2735 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2736 struct bfd_link_info *info,
2737 bfd_boolean not_local_protected)
2739 bfd_boolean binding_stays_local_p;
2740 const struct elf_backend_data *bed;
2741 struct elf_link_hash_table *hash_table;
2746 while (h->root.type == bfd_link_hash_indirect
2747 || h->root.type == bfd_link_hash_warning)
2748 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750 /* If it was forced local, then clearly it's not dynamic. */
2751 if (h->dynindx == -1)
2753 if (h->forced_local)
2756 /* Identify the cases where name binding rules say that a
2757 visible symbol resolves locally. */
2758 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2760 switch (ELF_ST_VISIBILITY (h->other))
2767 hash_table = elf_hash_table (info);
2768 if (!is_elf_hash_table (hash_table))
2771 bed = get_elf_backend_data (hash_table->dynobj);
2773 /* Proper resolution for function pointer equality may require
2774 that these symbols perhaps be resolved dynamically, even though
2775 we should be resolving them to the current module. */
2776 if (!not_local_protected || !bed->is_function_type (h->type))
2777 binding_stays_local_p = TRUE;
2784 /* If it isn't defined locally, then clearly it's dynamic. */
2785 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2788 /* Otherwise, the symbol is dynamic if binding rules don't tell
2789 us that it remains local. */
2790 return !binding_stays_local_p;
2793 /* Return true if the symbol referred to by H should be considered
2794 to resolve local to the current module, and false otherwise. Differs
2795 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2796 undefined symbols. The two functions are virtually identical except
2797 for the place where forced_local and dynindx == -1 are tested. If
2798 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2799 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2800 the symbol is local only for defined symbols.
2801 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2802 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2803 treatment of undefined weak symbols. For those that do not make
2804 undefined weak symbols dynamic, both functions may return false. */
2807 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2808 struct bfd_link_info *info,
2809 bfd_boolean local_protected)
2811 const struct elf_backend_data *bed;
2812 struct elf_link_hash_table *hash_table;
2814 /* If it's a local sym, of course we resolve locally. */
2818 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2819 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2820 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2823 /* Common symbols that become definitions don't get the DEF_REGULAR
2824 flag set, so test it first, and don't bail out. */
2825 if (ELF_COMMON_DEF_P (h))
2827 /* If we don't have a definition in a regular file, then we can't
2828 resolve locally. The sym is either undefined or dynamic. */
2829 else if (!h->def_regular)
2832 /* Forced local symbols resolve locally. */
2833 if (h->forced_local)
2836 /* As do non-dynamic symbols. */
2837 if (h->dynindx == -1)
2840 /* At this point, we know the symbol is defined and dynamic. In an
2841 executable it must resolve locally, likewise when building symbolic
2842 shared libraries. */
2843 if (info->executable || SYMBOLIC_BIND (info, h))
2846 /* Now deal with defined dynamic symbols in shared libraries. Ones
2847 with default visibility might not resolve locally. */
2848 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2851 hash_table = elf_hash_table (info);
2852 if (!is_elf_hash_table (hash_table))
2855 bed = get_elf_backend_data (hash_table->dynobj);
2857 /* STV_PROTECTED non-function symbols are local. */
2858 if (!bed->is_function_type (h->type))
2861 /* Function pointer equality tests may require that STV_PROTECTED
2862 symbols be treated as dynamic symbols. If the address of a
2863 function not defined in an executable is set to that function's
2864 plt entry in the executable, then the address of the function in
2865 a shared library must also be the plt entry in the executable. */
2866 return local_protected;
2869 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2870 aligned. Returns the first TLS output section. */
2872 struct bfd_section *
2873 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2875 struct bfd_section *sec, *tls;
2876 unsigned int align = 0;
2878 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2879 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2883 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2884 if (sec->alignment_power > align)
2885 align = sec->alignment_power;
2887 elf_hash_table (info)->tls_sec = tls;
2889 /* Ensure the alignment of the first section is the largest alignment,
2890 so that the tls segment starts aligned. */
2892 tls->alignment_power = align;
2897 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2899 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2900 Elf_Internal_Sym *sym)
2902 const struct elf_backend_data *bed;
2904 /* Local symbols do not count, but target specific ones might. */
2905 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2906 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2909 bed = get_elf_backend_data (abfd);
2910 /* Function symbols do not count. */
2911 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2914 /* If the section is undefined, then so is the symbol. */
2915 if (sym->st_shndx == SHN_UNDEF)
2918 /* If the symbol is defined in the common section, then
2919 it is a common definition and so does not count. */
2920 if (bed->common_definition (sym))
2923 /* If the symbol is in a target specific section then we
2924 must rely upon the backend to tell us what it is. */
2925 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2926 /* FIXME - this function is not coded yet:
2928 return _bfd_is_global_symbol_definition (abfd, sym);
2930 Instead for now assume that the definition is not global,
2931 Even if this is wrong, at least the linker will behave
2932 in the same way that it used to do. */
2938 /* Search the symbol table of the archive element of the archive ABFD
2939 whose archive map contains a mention of SYMDEF, and determine if
2940 the symbol is defined in this element. */
2942 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2944 Elf_Internal_Shdr * hdr;
2945 bfd_size_type symcount;
2946 bfd_size_type extsymcount;
2947 bfd_size_type extsymoff;
2948 Elf_Internal_Sym *isymbuf;
2949 Elf_Internal_Sym *isym;
2950 Elf_Internal_Sym *isymend;
2953 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2957 if (! bfd_check_format (abfd, bfd_object))
2960 /* If we have already included the element containing this symbol in the
2961 link then we do not need to include it again. Just claim that any symbol
2962 it contains is not a definition, so that our caller will not decide to
2963 (re)include this element. */
2964 if (abfd->archive_pass)
2967 /* Select the appropriate symbol table. */
2968 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2969 hdr = &elf_tdata (abfd)->symtab_hdr;
2971 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2973 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2975 /* The sh_info field of the symtab header tells us where the
2976 external symbols start. We don't care about the local symbols. */
2977 if (elf_bad_symtab (abfd))
2979 extsymcount = symcount;
2984 extsymcount = symcount - hdr->sh_info;
2985 extsymoff = hdr->sh_info;
2988 if (extsymcount == 0)
2991 /* Read in the symbol table. */
2992 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2994 if (isymbuf == NULL)
2997 /* Scan the symbol table looking for SYMDEF. */
2999 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3003 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3008 if (strcmp (name, symdef->name) == 0)
3010 result = is_global_data_symbol_definition (abfd, isym);
3020 /* Add an entry to the .dynamic table. */
3023 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3027 struct elf_link_hash_table *hash_table;
3028 const struct elf_backend_data *bed;
3030 bfd_size_type newsize;
3031 bfd_byte *newcontents;
3032 Elf_Internal_Dyn dyn;
3034 hash_table = elf_hash_table (info);
3035 if (! is_elf_hash_table (hash_table))
3038 bed = get_elf_backend_data (hash_table->dynobj);
3039 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3040 BFD_ASSERT (s != NULL);
3042 newsize = s->size + bed->s->sizeof_dyn;
3043 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3044 if (newcontents == NULL)
3048 dyn.d_un.d_val = val;
3049 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3052 s->contents = newcontents;
3057 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3058 otherwise just check whether one already exists. Returns -1 on error,
3059 1 if a DT_NEEDED tag already exists, and 0 on success. */
3062 elf_add_dt_needed_tag (bfd *abfd,
3063 struct bfd_link_info *info,
3067 struct elf_link_hash_table *hash_table;
3068 bfd_size_type strindex;
3070 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3073 hash_table = elf_hash_table (info);
3074 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3075 if (strindex == (bfd_size_type) -1)
3078 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3081 const struct elf_backend_data *bed;
3084 bed = get_elf_backend_data (hash_table->dynobj);
3085 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3087 for (extdyn = sdyn->contents;
3088 extdyn < sdyn->contents + sdyn->size;
3089 extdyn += bed->s->sizeof_dyn)
3091 Elf_Internal_Dyn dyn;
3093 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3094 if (dyn.d_tag == DT_NEEDED
3095 && dyn.d_un.d_val == strindex)
3097 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3105 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3108 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3112 /* We were just checking for existence of the tag. */
3113 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3119 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3121 for (; needed != NULL; needed = needed->next)
3122 if (strcmp (soname, needed->name) == 0)
3128 /* Sort symbol by value, section, and size. */
3130 elf_sort_symbol (const void *arg1, const void *arg2)
3132 const struct elf_link_hash_entry *h1;
3133 const struct elf_link_hash_entry *h2;
3134 bfd_signed_vma vdiff;
3136 h1 = *(const struct elf_link_hash_entry **) arg1;
3137 h2 = *(const struct elf_link_hash_entry **) arg2;
3138 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3140 return vdiff > 0 ? 1 : -1;
3143 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3145 return sdiff > 0 ? 1 : -1;
3147 vdiff = h1->size - h2->size;
3148 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3151 /* This function is used to adjust offsets into .dynstr for
3152 dynamic symbols. This is called via elf_link_hash_traverse. */
3155 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3157 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3159 if (h->dynindx != -1)
3160 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3164 /* Assign string offsets in .dynstr, update all structures referencing
3168 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3170 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3171 struct elf_link_local_dynamic_entry *entry;
3172 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3173 bfd *dynobj = hash_table->dynobj;
3176 const struct elf_backend_data *bed;
3179 _bfd_elf_strtab_finalize (dynstr);
3180 size = _bfd_elf_strtab_size (dynstr);
3182 bed = get_elf_backend_data (dynobj);
3183 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3184 BFD_ASSERT (sdyn != NULL);
3186 /* Update all .dynamic entries referencing .dynstr strings. */
3187 for (extdyn = sdyn->contents;
3188 extdyn < sdyn->contents + sdyn->size;
3189 extdyn += bed->s->sizeof_dyn)
3191 Elf_Internal_Dyn dyn;
3193 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3197 dyn.d_un.d_val = size;
3207 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3212 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3215 /* Now update local dynamic symbols. */
3216 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3217 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3218 entry->isym.st_name);
3220 /* And the rest of dynamic symbols. */
3221 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3223 /* Adjust version definitions. */
3224 if (elf_tdata (output_bfd)->cverdefs)
3229 Elf_Internal_Verdef def;
3230 Elf_Internal_Verdaux defaux;
3232 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3236 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3238 p += sizeof (Elf_External_Verdef);
3239 if (def.vd_aux != sizeof (Elf_External_Verdef))
3241 for (i = 0; i < def.vd_cnt; ++i)
3243 _bfd_elf_swap_verdaux_in (output_bfd,
3244 (Elf_External_Verdaux *) p, &defaux);
3245 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3247 _bfd_elf_swap_verdaux_out (output_bfd,
3248 &defaux, (Elf_External_Verdaux *) p);
3249 p += sizeof (Elf_External_Verdaux);
3252 while (def.vd_next);
3255 /* Adjust version references. */
3256 if (elf_tdata (output_bfd)->verref)
3261 Elf_Internal_Verneed need;
3262 Elf_Internal_Vernaux needaux;
3264 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3268 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3270 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3271 _bfd_elf_swap_verneed_out (output_bfd, &need,
3272 (Elf_External_Verneed *) p);
3273 p += sizeof (Elf_External_Verneed);
3274 for (i = 0; i < need.vn_cnt; ++i)
3276 _bfd_elf_swap_vernaux_in (output_bfd,
3277 (Elf_External_Vernaux *) p, &needaux);
3278 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3280 _bfd_elf_swap_vernaux_out (output_bfd,
3282 (Elf_External_Vernaux *) p);
3283 p += sizeof (Elf_External_Vernaux);
3286 while (need.vn_next);
3292 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3293 The default is to only match when the INPUT and OUTPUT are exactly
3297 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3298 const bfd_target *output)
3300 return input == output;
3303 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3304 This version is used when different targets for the same architecture
3305 are virtually identical. */
3308 _bfd_elf_relocs_compatible (const bfd_target *input,
3309 const bfd_target *output)
3311 const struct elf_backend_data *obed, *ibed;
3313 if (input == output)
3316 ibed = xvec_get_elf_backend_data (input);
3317 obed = xvec_get_elf_backend_data (output);
3319 if (ibed->arch != obed->arch)
3322 /* If both backends are using this function, deem them compatible. */
3323 return ibed->relocs_compatible == obed->relocs_compatible;
3326 /* Add symbols from an ELF object file to the linker hash table. */
3329 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3331 Elf_Internal_Ehdr *ehdr;
3332 Elf_Internal_Shdr *hdr;
3333 bfd_size_type symcount;
3334 bfd_size_type extsymcount;
3335 bfd_size_type extsymoff;
3336 struct elf_link_hash_entry **sym_hash;
3337 bfd_boolean dynamic;
3338 Elf_External_Versym *extversym = NULL;
3339 Elf_External_Versym *ever;
3340 struct elf_link_hash_entry *weaks;
3341 struct elf_link_hash_entry **nondeflt_vers = NULL;
3342 bfd_size_type nondeflt_vers_cnt = 0;
3343 Elf_Internal_Sym *isymbuf = NULL;
3344 Elf_Internal_Sym *isym;
3345 Elf_Internal_Sym *isymend;
3346 const struct elf_backend_data *bed;
3347 bfd_boolean add_needed;
3348 struct elf_link_hash_table *htab;
3350 void *alloc_mark = NULL;
3351 struct bfd_hash_entry **old_table = NULL;
3352 unsigned int old_size = 0;
3353 unsigned int old_count = 0;
3354 void *old_tab = NULL;
3357 struct bfd_link_hash_entry *old_undefs = NULL;
3358 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3359 long old_dynsymcount = 0;
3360 bfd_size_type old_dynstr_size = 0;
3362 size_t hashsize = 0;
3364 htab = elf_hash_table (info);
3365 bed = get_elf_backend_data (abfd);
3367 if ((abfd->flags & DYNAMIC) == 0)
3373 /* You can't use -r against a dynamic object. Also, there's no
3374 hope of using a dynamic object which does not exactly match
3375 the format of the output file. */
3376 if (info->relocatable
3377 || !is_elf_hash_table (htab)
3378 || info->output_bfd->xvec != abfd->xvec)
3380 if (info->relocatable)
3381 bfd_set_error (bfd_error_invalid_operation);
3383 bfd_set_error (bfd_error_wrong_format);
3388 ehdr = elf_elfheader (abfd);
3389 if (info->warn_alternate_em
3390 && bed->elf_machine_code != ehdr->e_machine
3391 && ((bed->elf_machine_alt1 != 0
3392 && ehdr->e_machine == bed->elf_machine_alt1)
3393 || (bed->elf_machine_alt2 != 0
3394 && ehdr->e_machine == bed->elf_machine_alt2)))
3395 info->callbacks->einfo
3396 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3397 ehdr->e_machine, abfd, bed->elf_machine_code);
3399 /* As a GNU extension, any input sections which are named
3400 .gnu.warning.SYMBOL are treated as warning symbols for the given
3401 symbol. This differs from .gnu.warning sections, which generate
3402 warnings when they are included in an output file. */
3403 /* PR 12761: Also generate this warning when building shared libraries. */
3404 if (info->executable || info->shared)
3408 for (s = abfd->sections; s != NULL; s = s->next)
3412 name = bfd_get_section_name (abfd, s);
3413 if (CONST_STRNEQ (name, ".gnu.warning."))
3418 name += sizeof ".gnu.warning." - 1;
3420 /* If this is a shared object, then look up the symbol
3421 in the hash table. If it is there, and it is already
3422 been defined, then we will not be using the entry
3423 from this shared object, so we don't need to warn.
3424 FIXME: If we see the definition in a regular object
3425 later on, we will warn, but we shouldn't. The only
3426 fix is to keep track of what warnings we are supposed
3427 to emit, and then handle them all at the end of the
3431 struct elf_link_hash_entry *h;
3433 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3435 /* FIXME: What about bfd_link_hash_common? */
3437 && (h->root.type == bfd_link_hash_defined
3438 || h->root.type == bfd_link_hash_defweak))
3440 /* We don't want to issue this warning. Clobber
3441 the section size so that the warning does not
3442 get copied into the output file. */
3449 msg = (char *) bfd_alloc (abfd, sz + 1);
3453 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3458 if (! (_bfd_generic_link_add_one_symbol
3459 (info, abfd, name, BSF_WARNING, s, 0, msg,
3460 FALSE, bed->collect, NULL)))
3463 if (! info->relocatable)
3465 /* Clobber the section size so that the warning does
3466 not get copied into the output file. */
3469 /* Also set SEC_EXCLUDE, so that symbols defined in
3470 the warning section don't get copied to the output. */
3471 s->flags |= SEC_EXCLUDE;
3480 /* If we are creating a shared library, create all the dynamic
3481 sections immediately. We need to attach them to something,
3482 so we attach them to this BFD, provided it is the right
3483 format. FIXME: If there are no input BFD's of the same
3484 format as the output, we can't make a shared library. */
3486 && is_elf_hash_table (htab)
3487 && info->output_bfd->xvec == abfd->xvec
3488 && !htab->dynamic_sections_created)
3490 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3494 else if (!is_elf_hash_table (htab))
3499 const char *soname = NULL;
3501 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3504 /* ld --just-symbols and dynamic objects don't mix very well.
3505 ld shouldn't allow it. */
3506 if ((s = abfd->sections) != NULL
3507 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3510 /* If this dynamic lib was specified on the command line with
3511 --as-needed in effect, then we don't want to add a DT_NEEDED
3512 tag unless the lib is actually used. Similary for libs brought
3513 in by another lib's DT_NEEDED. When --no-add-needed is used
3514 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3515 any dynamic library in DT_NEEDED tags in the dynamic lib at
3517 add_needed = (elf_dyn_lib_class (abfd)
3518 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3519 | DYN_NO_NEEDED)) == 0;
3521 s = bfd_get_section_by_name (abfd, ".dynamic");
3526 unsigned int elfsec;
3527 unsigned long shlink;
3529 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3536 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3537 if (elfsec == SHN_BAD)
3538 goto error_free_dyn;
3539 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3541 for (extdyn = dynbuf;
3542 extdyn < dynbuf + s->size;
3543 extdyn += bed->s->sizeof_dyn)
3545 Elf_Internal_Dyn dyn;
3547 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3548 if (dyn.d_tag == DT_SONAME)
3550 unsigned int tagv = dyn.d_un.d_val;
3551 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3553 goto error_free_dyn;
3555 if (dyn.d_tag == DT_NEEDED)
3557 struct bfd_link_needed_list *n, **pn;
3559 unsigned int tagv = dyn.d_un.d_val;
3561 amt = sizeof (struct bfd_link_needed_list);
3562 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3563 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3564 if (n == NULL || fnm == NULL)
3565 goto error_free_dyn;
3566 amt = strlen (fnm) + 1;
3567 anm = (char *) bfd_alloc (abfd, amt);
3569 goto error_free_dyn;
3570 memcpy (anm, fnm, amt);
3574 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3578 if (dyn.d_tag == DT_RUNPATH)
3580 struct bfd_link_needed_list *n, **pn;
3582 unsigned int tagv = dyn.d_un.d_val;
3584 amt = sizeof (struct bfd_link_needed_list);
3585 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3586 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3587 if (n == NULL || fnm == NULL)
3588 goto error_free_dyn;
3589 amt = strlen (fnm) + 1;
3590 anm = (char *) bfd_alloc (abfd, amt);
3592 goto error_free_dyn;
3593 memcpy (anm, fnm, amt);
3597 for (pn = & runpath;
3603 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3604 if (!runpath && dyn.d_tag == DT_RPATH)
3606 struct bfd_link_needed_list *n, **pn;
3608 unsigned int tagv = dyn.d_un.d_val;
3610 amt = sizeof (struct bfd_link_needed_list);
3611 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3612 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3613 if (n == NULL || fnm == NULL)
3614 goto error_free_dyn;
3615 amt = strlen (fnm) + 1;
3616 anm = (char *) bfd_alloc (abfd, amt);
3618 goto error_free_dyn;
3619 memcpy (anm, fnm, amt);
3629 if (dyn.d_tag == DT_AUDIT)
3631 unsigned int tagv = dyn.d_un.d_val;
3632 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3639 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3640 frees all more recently bfd_alloc'd blocks as well. */
3646 struct bfd_link_needed_list **pn;
3647 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3652 /* We do not want to include any of the sections in a dynamic
3653 object in the output file. We hack by simply clobbering the
3654 list of sections in the BFD. This could be handled more
3655 cleanly by, say, a new section flag; the existing
3656 SEC_NEVER_LOAD flag is not the one we want, because that one
3657 still implies that the section takes up space in the output
3659 bfd_section_list_clear (abfd);
3661 /* Find the name to use in a DT_NEEDED entry that refers to this
3662 object. If the object has a DT_SONAME entry, we use it.
3663 Otherwise, if the generic linker stuck something in
3664 elf_dt_name, we use that. Otherwise, we just use the file
3666 if (soname == NULL || *soname == '\0')
3668 soname = elf_dt_name (abfd);
3669 if (soname == NULL || *soname == '\0')
3670 soname = bfd_get_filename (abfd);
3673 /* Save the SONAME because sometimes the linker emulation code
3674 will need to know it. */
3675 elf_dt_name (abfd) = soname;
3677 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3681 /* If we have already included this dynamic object in the
3682 link, just ignore it. There is no reason to include a
3683 particular dynamic object more than once. */
3687 /* Save the DT_AUDIT entry for the linker emulation code. */
3688 elf_dt_audit (abfd) = audit;
3691 /* If this is a dynamic object, we always link against the .dynsym
3692 symbol table, not the .symtab symbol table. The dynamic linker
3693 will only see the .dynsym symbol table, so there is no reason to
3694 look at .symtab for a dynamic object. */
3696 if (! dynamic || elf_dynsymtab (abfd) == 0)
3697 hdr = &elf_tdata (abfd)->symtab_hdr;
3699 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3701 symcount = hdr->sh_size / bed->s->sizeof_sym;
3703 /* The sh_info field of the symtab header tells us where the
3704 external symbols start. We don't care about the local symbols at
3706 if (elf_bad_symtab (abfd))
3708 extsymcount = symcount;
3713 extsymcount = symcount - hdr->sh_info;
3714 extsymoff = hdr->sh_info;
3718 if (extsymcount != 0)
3720 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3722 if (isymbuf == NULL)
3725 /* We store a pointer to the hash table entry for each external
3727 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3728 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3729 if (sym_hash == NULL)
3730 goto error_free_sym;
3731 elf_sym_hashes (abfd) = sym_hash;
3736 /* Read in any version definitions. */
3737 if (!_bfd_elf_slurp_version_tables (abfd,
3738 info->default_imported_symver))
3739 goto error_free_sym;
3741 /* Read in the symbol versions, but don't bother to convert them
3742 to internal format. */
3743 if (elf_dynversym (abfd) != 0)
3745 Elf_Internal_Shdr *versymhdr;
3747 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3748 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3749 if (extversym == NULL)
3750 goto error_free_sym;
3751 amt = versymhdr->sh_size;
3752 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3753 || bfd_bread (extversym, amt, abfd) != amt)
3754 goto error_free_vers;
3758 /* If we are loading an as-needed shared lib, save the symbol table
3759 state before we start adding symbols. If the lib turns out
3760 to be unneeded, restore the state. */
3761 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3766 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3768 struct bfd_hash_entry *p;
3769 struct elf_link_hash_entry *h;
3771 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3773 h = (struct elf_link_hash_entry *) p;
3774 entsize += htab->root.table.entsize;
3775 if (h->root.type == bfd_link_hash_warning)
3776 entsize += htab->root.table.entsize;
3780 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3781 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3782 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3783 if (old_tab == NULL)
3784 goto error_free_vers;
3786 /* Remember the current objalloc pointer, so that all mem for
3787 symbols added can later be reclaimed. */
3788 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3789 if (alloc_mark == NULL)
3790 goto error_free_vers;
3792 /* Make a special call to the linker "notice" function to
3793 tell it that we are about to handle an as-needed lib. */
3794 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3795 notice_as_needed, 0, NULL))
3796 goto error_free_vers;
3798 /* Clone the symbol table and sym hashes. Remember some
3799 pointers into the symbol table, and dynamic symbol count. */
3800 old_hash = (char *) old_tab + tabsize;
3801 old_ent = (char *) old_hash + hashsize;
3802 memcpy (old_tab, htab->root.table.table, tabsize);
3803 memcpy (old_hash, sym_hash, hashsize);
3804 old_undefs = htab->root.undefs;
3805 old_undefs_tail = htab->root.undefs_tail;
3806 old_table = htab->root.table.table;
3807 old_size = htab->root.table.size;
3808 old_count = htab->root.table.count;
3809 old_dynsymcount = htab->dynsymcount;
3810 old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3812 for (i = 0; i < htab->root.table.size; i++)
3814 struct bfd_hash_entry *p;
3815 struct elf_link_hash_entry *h;
3817 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3819 memcpy (old_ent, p, htab->root.table.entsize);
3820 old_ent = (char *) old_ent + htab->root.table.entsize;
3821 h = (struct elf_link_hash_entry *) p;
3822 if (h->root.type == bfd_link_hash_warning)
3824 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3825 old_ent = (char *) old_ent + htab->root.table.entsize;
3832 ever = extversym != NULL ? extversym + extsymoff : NULL;
3833 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3835 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3839 asection *sec, *new_sec;
3842 struct elf_link_hash_entry *h;
3843 struct elf_link_hash_entry *hi;
3844 bfd_boolean definition;
3845 bfd_boolean size_change_ok;
3846 bfd_boolean type_change_ok;
3847 bfd_boolean new_weakdef;
3848 bfd_boolean new_weak;
3849 bfd_boolean old_weak;
3850 bfd_boolean override;
3852 unsigned int old_alignment;
3854 bfd * undef_bfd = NULL;
3858 flags = BSF_NO_FLAGS;
3860 value = isym->st_value;
3862 common = bed->common_definition (isym);
3864 bind = ELF_ST_BIND (isym->st_info);
3868 /* This should be impossible, since ELF requires that all
3869 global symbols follow all local symbols, and that sh_info
3870 point to the first global symbol. Unfortunately, Irix 5
3875 if (isym->st_shndx != SHN_UNDEF && !common)
3883 case STB_GNU_UNIQUE:
3884 flags = BSF_GNU_UNIQUE;
3888 /* Leave it up to the processor backend. */
3892 if (isym->st_shndx == SHN_UNDEF)
3893 sec = bfd_und_section_ptr;
3894 else if (isym->st_shndx == SHN_ABS)
3895 sec = bfd_abs_section_ptr;
3896 else if (isym->st_shndx == SHN_COMMON)
3898 sec = bfd_com_section_ptr;
3899 /* What ELF calls the size we call the value. What ELF
3900 calls the value we call the alignment. */
3901 value = isym->st_size;
3905 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3907 sec = bfd_abs_section_ptr;
3908 else if (discarded_section (sec))
3910 /* Symbols from discarded section are undefined. We keep
3912 sec = bfd_und_section_ptr;
3913 isym->st_shndx = SHN_UNDEF;
3915 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3919 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3922 goto error_free_vers;
3924 if (isym->st_shndx == SHN_COMMON
3925 && (abfd->flags & BFD_PLUGIN) != 0)
3927 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3931 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3933 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3935 goto error_free_vers;
3939 else if (isym->st_shndx == SHN_COMMON
3940 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3941 && !info->relocatable)
3943 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3947 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3948 | SEC_LINKER_CREATED);
3949 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3951 goto error_free_vers;
3955 else if (bed->elf_add_symbol_hook)
3957 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3959 goto error_free_vers;
3961 /* The hook function sets the name to NULL if this symbol
3962 should be skipped for some reason. */
3967 /* Sanity check that all possibilities were handled. */
3970 bfd_set_error (bfd_error_bad_value);
3971 goto error_free_vers;
3974 /* Silently discard TLS symbols from --just-syms. There's
3975 no way to combine a static TLS block with a new TLS block
3976 for this executable. */
3977 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3978 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3981 if (bfd_is_und_section (sec)
3982 || bfd_is_com_section (sec))
3987 size_change_ok = FALSE;
3988 type_change_ok = bed->type_change_ok;
3994 if (is_elf_hash_table (htab))
3996 Elf_Internal_Versym iver;
3997 unsigned int vernum = 0;
4000 /* If this is a definition of a symbol which was previously
4001 referenced, then make a note of the bfd that contained the
4002 reference. This is used if we need to refer to the source
4003 of the reference later on. */
4004 if (! bfd_is_und_section (sec))
4006 h = elf_link_hash_lookup (elf_hash_table (info), name,
4007 FALSE, FALSE, FALSE);
4010 && (h->root.type == bfd_link_hash_undefined
4011 || h->root.type == bfd_link_hash_undefweak)
4012 && h->root.u.undef.abfd)
4013 undef_bfd = h->root.u.undef.abfd;
4018 if (info->default_imported_symver)
4019 /* Use the default symbol version created earlier. */
4020 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4025 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4027 vernum = iver.vs_vers & VERSYM_VERSION;
4029 /* If this is a hidden symbol, or if it is not version
4030 1, we append the version name to the symbol name.
4031 However, we do not modify a non-hidden absolute symbol
4032 if it is not a function, because it might be the version
4033 symbol itself. FIXME: What if it isn't? */
4034 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4036 && (!bfd_is_abs_section (sec)
4037 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4040 size_t namelen, verlen, newlen;
4043 if (isym->st_shndx != SHN_UNDEF)
4045 if (vernum > elf_tdata (abfd)->cverdefs)
4047 else if (vernum > 1)
4049 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4055 (*_bfd_error_handler)
4056 (_("%B: %s: invalid version %u (max %d)"),
4058 elf_tdata (abfd)->cverdefs);
4059 bfd_set_error (bfd_error_bad_value);
4060 goto error_free_vers;
4065 /* We cannot simply test for the number of
4066 entries in the VERNEED section since the
4067 numbers for the needed versions do not start
4069 Elf_Internal_Verneed *t;
4072 for (t = elf_tdata (abfd)->verref;
4076 Elf_Internal_Vernaux *a;
4078 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4080 if (a->vna_other == vernum)
4082 verstr = a->vna_nodename;
4091 (*_bfd_error_handler)
4092 (_("%B: %s: invalid needed version %d"),
4093 abfd, name, vernum);
4094 bfd_set_error (bfd_error_bad_value);
4095 goto error_free_vers;
4099 namelen = strlen (name);
4100 verlen = strlen (verstr);
4101 newlen = namelen + verlen + 2;
4102 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4103 && isym->st_shndx != SHN_UNDEF)
4106 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4107 if (newname == NULL)
4108 goto error_free_vers;
4109 memcpy (newname, name, namelen);
4110 p = newname + namelen;
4112 /* If this is a defined non-hidden version symbol,
4113 we add another @ to the name. This indicates the
4114 default version of the symbol. */
4115 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4116 && isym->st_shndx != SHN_UNDEF)
4118 memcpy (p, verstr, verlen + 1);
4123 /* If necessary, make a second attempt to locate the bfd
4124 containing an unresolved reference to the current symbol. */
4125 if (! bfd_is_und_section (sec) && undef_bfd == NULL)
4127 h = elf_link_hash_lookup (elf_hash_table (info), name,
4128 FALSE, FALSE, FALSE);
4131 && (h->root.type == bfd_link_hash_undefined
4132 || h->root.type == bfd_link_hash_undefweak)
4133 && h->root.u.undef.abfd)
4134 undef_bfd = h->root.u.undef.abfd;
4137 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4138 &value, &old_weak, &old_alignment,
4139 sym_hash, &skip, &override,
4140 &type_change_ok, &size_change_ok))
4141 goto error_free_vers;
4150 while (h->root.type == bfd_link_hash_indirect
4151 || h->root.type == bfd_link_hash_warning)
4152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4154 /* Remember the old alignment if this is a common symbol, so
4155 that we don't reduce the alignment later on. We can't
4156 check later, because _bfd_generic_link_add_one_symbol
4157 will set a default for the alignment which we want to
4158 override. We also remember the old bfd where the existing
4159 definition comes from. */
4160 switch (h->root.type)
4165 case bfd_link_hash_defined:
4166 case bfd_link_hash_defweak:
4167 old_bfd = h->root.u.def.section->owner;
4170 case bfd_link_hash_common:
4171 old_bfd = h->root.u.c.p->section->owner;
4172 old_alignment = h->root.u.c.p->alignment_power;
4176 if (elf_tdata (abfd)->verdef != NULL
4179 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4182 if (! (_bfd_generic_link_add_one_symbol
4183 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4184 (struct bfd_link_hash_entry **) sym_hash)))
4185 goto error_free_vers;
4188 /* We need to make sure that indirect symbol dynamic flags are
4191 while (h->root.type == bfd_link_hash_indirect
4192 || h->root.type == bfd_link_hash_warning)
4193 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4197 new_weak = (flags & BSF_WEAK) != 0;
4198 new_weakdef = FALSE;
4202 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4203 && is_elf_hash_table (htab)
4204 && h->u.weakdef == NULL)
4206 /* Keep a list of all weak defined non function symbols from
4207 a dynamic object, using the weakdef field. Later in this
4208 function we will set the weakdef field to the correct
4209 value. We only put non-function symbols from dynamic
4210 objects on this list, because that happens to be the only
4211 time we need to know the normal symbol corresponding to a
4212 weak symbol, and the information is time consuming to
4213 figure out. If the weakdef field is not already NULL,
4214 then this symbol was already defined by some previous
4215 dynamic object, and we will be using that previous
4216 definition anyhow. */
4218 h->u.weakdef = weaks;
4223 /* Set the alignment of a common symbol. */
4224 if ((common || bfd_is_com_section (sec))
4225 && h->root.type == bfd_link_hash_common)
4230 align = bfd_log2 (isym->st_value);
4233 /* The new symbol is a common symbol in a shared object.
4234 We need to get the alignment from the section. */
4235 align = new_sec->alignment_power;
4237 if (align > old_alignment)
4238 h->root.u.c.p->alignment_power = align;
4240 h->root.u.c.p->alignment_power = old_alignment;
4243 if (is_elf_hash_table (htab))
4247 /* Check the alignment when a common symbol is involved. This
4248 can change when a common symbol is overridden by a normal
4249 definition or a common symbol is ignored due to the old
4250 normal definition. We need to make sure the maximum
4251 alignment is maintained. */
4252 if ((old_alignment || common)
4253 && h->root.type != bfd_link_hash_common)
4255 unsigned int common_align;
4256 unsigned int normal_align;
4257 unsigned int symbol_align;
4261 symbol_align = ffs (h->root.u.def.value) - 1;
4262 if (h->root.u.def.section->owner != NULL
4263 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4265 normal_align = h->root.u.def.section->alignment_power;
4266 if (normal_align > symbol_align)
4267 normal_align = symbol_align;
4270 normal_align = symbol_align;
4274 common_align = old_alignment;
4275 common_bfd = old_bfd;
4280 common_align = bfd_log2 (isym->st_value);
4282 normal_bfd = old_bfd;
4285 if (normal_align < common_align)
4287 /* PR binutils/2735 */
4288 if (normal_bfd == NULL)
4289 (*_bfd_error_handler)
4290 (_("Warning: alignment %u of common symbol `%s' in %B"
4291 " is greater than the alignment (%u) of its section %A"),
4292 common_bfd, h->root.u.def.section,
4293 1 << common_align, name, 1 << normal_align);
4295 (*_bfd_error_handler)
4296 (_("Warning: alignment %u of symbol `%s' in %B"
4297 " is smaller than %u in %B"),
4298 normal_bfd, common_bfd,
4299 1 << normal_align, name, 1 << common_align);
4303 /* Remember the symbol size if it isn't undefined. */
4304 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4305 && (definition || h->size == 0))
4308 && h->size != isym->st_size
4309 && ! size_change_ok)
4310 (*_bfd_error_handler)
4311 (_("Warning: size of symbol `%s' changed"
4312 " from %lu in %B to %lu in %B"),
4314 name, (unsigned long) h->size,
4315 (unsigned long) isym->st_size);
4317 h->size = isym->st_size;
4320 /* If this is a common symbol, then we always want H->SIZE
4321 to be the size of the common symbol. The code just above
4322 won't fix the size if a common symbol becomes larger. We
4323 don't warn about a size change here, because that is
4324 covered by --warn-common. Allow changed between different
4326 if (h->root.type == bfd_link_hash_common)
4327 h->size = h->root.u.c.size;
4329 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4330 && ((definition && !new_weak)
4331 || (old_weak && h->root.type == bfd_link_hash_common)
4332 || h->type == STT_NOTYPE))
4334 unsigned int type = ELF_ST_TYPE (isym->st_info);
4336 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4338 if (type == STT_GNU_IFUNC
4339 && (abfd->flags & DYNAMIC) != 0)
4342 if (h->type != type)
4344 if (h->type != STT_NOTYPE && ! type_change_ok)
4345 (*_bfd_error_handler)
4346 (_("Warning: type of symbol `%s' changed"
4347 " from %d to %d in %B"),
4348 abfd, name, h->type, type);
4354 /* Merge st_other field. */
4355 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4357 /* Set a flag in the hash table entry indicating the type of
4358 reference or definition we just found. Keep a count of
4359 the number of dynamic symbols we find. A dynamic symbol
4360 is one which is referenced or defined by both a regular
4361 object and a shared object. */
4364 /* Plugin symbols aren't normal. Don't set def_regular or
4365 ref_regular for them, nor make them dynamic. */
4366 if ((abfd->flags & BFD_PLUGIN) != 0)
4373 if (bind != STB_WEAK)
4374 h->ref_regular_nonweak = 1;
4386 /* If the indirect symbol has been forced local, don't
4387 make the real symbol dynamic. */
4388 if ((h == hi || !hi->forced_local)
4389 && (! info->executable
4399 hi->ref_dynamic = 1;
4404 hi->def_dynamic = 1;
4407 /* If the indirect symbol has been forced local, don't
4408 make the real symbol dynamic. */
4409 if ((h == hi || !hi->forced_local)
4412 || (h->u.weakdef != NULL
4414 && h->u.weakdef->dynindx != -1)))
4418 /* We don't want to make debug symbol dynamic. */
4419 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4424 h->target_internal = isym->st_target_internal;
4425 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4428 /* Check to see if we need to add an indirect symbol for
4429 the default name. */
4430 if (definition || h->root.type == bfd_link_hash_common)
4431 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4432 &sec, &value, &dynsym,
4434 goto error_free_vers;
4436 if (definition && !dynamic)
4438 char *p = strchr (name, ELF_VER_CHR);
4439 if (p != NULL && p[1] != ELF_VER_CHR)
4441 /* Queue non-default versions so that .symver x, x@FOO
4442 aliases can be checked. */
4445 amt = ((isymend - isym + 1)
4446 * sizeof (struct elf_link_hash_entry *));
4448 (struct elf_link_hash_entry **) bfd_malloc (amt);
4450 goto error_free_vers;
4452 nondeflt_vers[nondeflt_vers_cnt++] = h;
4456 if (dynsym && h->dynindx == -1)
4458 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4459 goto error_free_vers;
4460 if (h->u.weakdef != NULL
4462 && h->u.weakdef->dynindx == -1)
4464 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4465 goto error_free_vers;
4468 else if (dynsym && h->dynindx != -1)
4469 /* If the symbol already has a dynamic index, but
4470 visibility says it should not be visible, turn it into
4472 switch (ELF_ST_VISIBILITY (h->other))
4476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4481 /* Don't add DT_NEEDED for references from the dummy bfd. */
4485 && h->ref_regular_nonweak
4486 && (undef_bfd == NULL
4487 || (undef_bfd->flags & BFD_PLUGIN) == 0))
4488 || (h->ref_dynamic_nonweak
4489 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4490 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4493 const char *soname = elf_dt_name (abfd);
4495 /* A symbol from a library loaded via DT_NEEDED of some
4496 other library is referenced by a regular object.
4497 Add a DT_NEEDED entry for it. Issue an error if
4498 --no-add-needed is used and the reference was not
4500 if (undef_bfd != NULL
4501 && h->ref_regular_nonweak
4502 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4504 (*_bfd_error_handler)
4505 (_("%B: undefined reference to symbol '%s'"),
4507 (*_bfd_error_handler)
4508 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4510 bfd_set_error (bfd_error_invalid_operation);
4511 goto error_free_vers;
4514 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4515 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4518 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4520 goto error_free_vers;
4522 BFD_ASSERT (ret == 0);
4527 if (extversym != NULL)
4533 if (isymbuf != NULL)
4539 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4543 /* Restore the symbol table. */
4544 if (bed->as_needed_cleanup)
4545 (*bed->as_needed_cleanup) (abfd, info);
4546 old_hash = (char *) old_tab + tabsize;
4547 old_ent = (char *) old_hash + hashsize;
4548 sym_hash = elf_sym_hashes (abfd);
4549 htab->root.table.table = old_table;
4550 htab->root.table.size = old_size;
4551 htab->root.table.count = old_count;
4552 memcpy (htab->root.table.table, old_tab, tabsize);
4553 memcpy (sym_hash, old_hash, hashsize);
4554 htab->root.undefs = old_undefs;
4555 htab->root.undefs_tail = old_undefs_tail;
4556 _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4557 for (i = 0; i < htab->root.table.size; i++)
4559 struct bfd_hash_entry *p;
4560 struct elf_link_hash_entry *h;
4562 unsigned int alignment_power;
4564 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4566 h = (struct elf_link_hash_entry *) p;
4567 if (h->root.type == bfd_link_hash_warning)
4568 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4569 if (h->dynindx >= old_dynsymcount
4570 && h->dynstr_index < old_dynstr_size)
4571 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4573 /* Preserve the maximum alignment and size for common
4574 symbols even if this dynamic lib isn't on DT_NEEDED
4575 since it can still be loaded at run time by another
4577 if (h->root.type == bfd_link_hash_common)
4579 size = h->root.u.c.size;
4580 alignment_power = h->root.u.c.p->alignment_power;
4585 alignment_power = 0;
4587 memcpy (p, old_ent, htab->root.table.entsize);
4588 old_ent = (char *) old_ent + htab->root.table.entsize;
4589 h = (struct elf_link_hash_entry *) p;
4590 if (h->root.type == bfd_link_hash_warning)
4592 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4593 old_ent = (char *) old_ent + htab->root.table.entsize;
4594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4596 if (h->root.type == bfd_link_hash_common)
4598 if (size > h->root.u.c.size)
4599 h->root.u.c.size = size;
4600 if (alignment_power > h->root.u.c.p->alignment_power)
4601 h->root.u.c.p->alignment_power = alignment_power;
4606 /* Make a special call to the linker "notice" function to
4607 tell it that symbols added for crefs may need to be removed. */
4608 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4609 notice_not_needed, 0, NULL))
4610 goto error_free_vers;
4613 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4615 if (nondeflt_vers != NULL)
4616 free (nondeflt_vers);
4620 if (old_tab != NULL)
4622 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4623 notice_needed, 0, NULL))
4624 goto error_free_vers;
4629 /* Now that all the symbols from this input file are created, handle
4630 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4631 if (nondeflt_vers != NULL)
4633 bfd_size_type cnt, symidx;
4635 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4637 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4638 char *shortname, *p;
4640 p = strchr (h->root.root.string, ELF_VER_CHR);
4642 || (h->root.type != bfd_link_hash_defined
4643 && h->root.type != bfd_link_hash_defweak))
4646 amt = p - h->root.root.string;
4647 shortname = (char *) bfd_malloc (amt + 1);
4649 goto error_free_vers;
4650 memcpy (shortname, h->root.root.string, amt);
4651 shortname[amt] = '\0';
4653 hi = (struct elf_link_hash_entry *)
4654 bfd_link_hash_lookup (&htab->root, shortname,
4655 FALSE, FALSE, FALSE);
4657 && hi->root.type == h->root.type
4658 && hi->root.u.def.value == h->root.u.def.value
4659 && hi->root.u.def.section == h->root.u.def.section)
4661 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4662 hi->root.type = bfd_link_hash_indirect;
4663 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4664 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4665 sym_hash = elf_sym_hashes (abfd);
4667 for (symidx = 0; symidx < extsymcount; ++symidx)
4668 if (sym_hash[symidx] == hi)
4670 sym_hash[symidx] = h;
4676 free (nondeflt_vers);
4677 nondeflt_vers = NULL;
4680 /* Now set the weakdefs field correctly for all the weak defined
4681 symbols we found. The only way to do this is to search all the
4682 symbols. Since we only need the information for non functions in
4683 dynamic objects, that's the only time we actually put anything on
4684 the list WEAKS. We need this information so that if a regular
4685 object refers to a symbol defined weakly in a dynamic object, the
4686 real symbol in the dynamic object is also put in the dynamic
4687 symbols; we also must arrange for both symbols to point to the
4688 same memory location. We could handle the general case of symbol
4689 aliasing, but a general symbol alias can only be generated in
4690 assembler code, handling it correctly would be very time
4691 consuming, and other ELF linkers don't handle general aliasing
4695 struct elf_link_hash_entry **hpp;
4696 struct elf_link_hash_entry **hppend;
4697 struct elf_link_hash_entry **sorted_sym_hash;
4698 struct elf_link_hash_entry *h;
4701 /* Since we have to search the whole symbol list for each weak
4702 defined symbol, search time for N weak defined symbols will be
4703 O(N^2). Binary search will cut it down to O(NlogN). */
4704 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4705 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4706 if (sorted_sym_hash == NULL)
4708 sym_hash = sorted_sym_hash;
4709 hpp = elf_sym_hashes (abfd);
4710 hppend = hpp + extsymcount;
4712 for (; hpp < hppend; hpp++)
4716 && h->root.type == bfd_link_hash_defined
4717 && !bed->is_function_type (h->type))
4725 qsort (sorted_sym_hash, sym_count,
4726 sizeof (struct elf_link_hash_entry *),
4729 while (weaks != NULL)
4731 struct elf_link_hash_entry *hlook;
4737 weaks = hlook->u.weakdef;
4738 hlook->u.weakdef = NULL;
4740 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4741 || hlook->root.type == bfd_link_hash_defweak
4742 || hlook->root.type == bfd_link_hash_common
4743 || hlook->root.type == bfd_link_hash_indirect);
4744 slook = hlook->root.u.def.section;
4745 vlook = hlook->root.u.def.value;
4751 bfd_signed_vma vdiff;
4753 h = sorted_sym_hash[idx];
4754 vdiff = vlook - h->root.u.def.value;
4761 long sdiff = slook->id - h->root.u.def.section->id;
4771 /* We didn't find a value/section match. */
4775 /* With multiple aliases, or when the weak symbol is already
4776 strongly defined, we have multiple matching symbols and
4777 the binary search above may land on any of them. Step
4778 one past the matching symbol(s). */
4781 h = sorted_sym_hash[idx];
4782 if (h->root.u.def.section != slook
4783 || h->root.u.def.value != vlook)
4787 /* Now look back over the aliases. Since we sorted by size
4788 as well as value and section, we'll choose the one with
4789 the largest size. */
4792 h = sorted_sym_hash[idx];
4794 /* Stop if value or section doesn't match. */
4795 if (h->root.u.def.section != slook
4796 || h->root.u.def.value != vlook)
4798 else if (h != hlook)
4800 hlook->u.weakdef = h;
4802 /* If the weak definition is in the list of dynamic
4803 symbols, make sure the real definition is put
4805 if (hlook->dynindx != -1 && h->dynindx == -1)
4807 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4810 free (sorted_sym_hash);
4815 /* If the real definition is in the list of dynamic
4816 symbols, make sure the weak definition is put
4817 there as well. If we don't do this, then the
4818 dynamic loader might not merge the entries for the
4819 real definition and the weak definition. */
4820 if (h->dynindx != -1 && hlook->dynindx == -1)
4822 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4823 goto err_free_sym_hash;
4830 free (sorted_sym_hash);
4833 if (bed->check_directives
4834 && !(*bed->check_directives) (abfd, info))
4837 /* If this object is the same format as the output object, and it is
4838 not a shared library, then let the backend look through the
4841 This is required to build global offset table entries and to
4842 arrange for dynamic relocs. It is not required for the
4843 particular common case of linking non PIC code, even when linking
4844 against shared libraries, but unfortunately there is no way of
4845 knowing whether an object file has been compiled PIC or not.
4846 Looking through the relocs is not particularly time consuming.
4847 The problem is that we must either (1) keep the relocs in memory,
4848 which causes the linker to require additional runtime memory or
4849 (2) read the relocs twice from the input file, which wastes time.
4850 This would be a good case for using mmap.
4852 I have no idea how to handle linking PIC code into a file of a
4853 different format. It probably can't be done. */
4855 && is_elf_hash_table (htab)
4856 && bed->check_relocs != NULL
4857 && elf_object_id (abfd) == elf_hash_table_id (htab)
4858 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4862 for (o = abfd->sections; o != NULL; o = o->next)
4864 Elf_Internal_Rela *internal_relocs;
4867 if ((o->flags & SEC_RELOC) == 0
4868 || o->reloc_count == 0
4869 || ((info->strip == strip_all || info->strip == strip_debugger)
4870 && (o->flags & SEC_DEBUGGING) != 0)
4871 || bfd_is_abs_section (o->output_section))
4874 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4876 if (internal_relocs == NULL)
4879 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4881 if (elf_section_data (o)->relocs != internal_relocs)
4882 free (internal_relocs);
4889 /* If this is a non-traditional link, try to optimize the handling
4890 of the .stab/.stabstr sections. */
4892 && ! info->traditional_format
4893 && is_elf_hash_table (htab)
4894 && (info->strip != strip_all && info->strip != strip_debugger))
4898 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4899 if (stabstr != NULL)
4901 bfd_size_type string_offset = 0;
4904 for (stab = abfd->sections; stab; stab = stab->next)
4905 if (CONST_STRNEQ (stab->name, ".stab")
4906 && (!stab->name[5] ||
4907 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4908 && (stab->flags & SEC_MERGE) == 0
4909 && !bfd_is_abs_section (stab->output_section))
4911 struct bfd_elf_section_data *secdata;
4913 secdata = elf_section_data (stab);
4914 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4915 stabstr, &secdata->sec_info,
4918 if (secdata->sec_info)
4919 stab->sec_info_type = SEC_INFO_TYPE_STABS;
4924 if (is_elf_hash_table (htab) && add_needed)
4926 /* Add this bfd to the loaded list. */
4927 struct elf_link_loaded_list *n;
4929 n = (struct elf_link_loaded_list *)
4930 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4934 n->next = htab->loaded;
4941 if (old_tab != NULL)
4943 if (nondeflt_vers != NULL)
4944 free (nondeflt_vers);
4945 if (extversym != NULL)
4948 if (isymbuf != NULL)
4954 /* Return the linker hash table entry of a symbol that might be
4955 satisfied by an archive symbol. Return -1 on error. */
4957 struct elf_link_hash_entry *
4958 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4959 struct bfd_link_info *info,
4962 struct elf_link_hash_entry *h;
4966 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4970 /* If this is a default version (the name contains @@), look up the
4971 symbol again with only one `@' as well as without the version.
4972 The effect is that references to the symbol with and without the
4973 version will be matched by the default symbol in the archive. */
4975 p = strchr (name, ELF_VER_CHR);
4976 if (p == NULL || p[1] != ELF_VER_CHR)
4979 /* First check with only one `@'. */
4980 len = strlen (name);
4981 copy = (char *) bfd_alloc (abfd, len);
4983 return (struct elf_link_hash_entry *) 0 - 1;
4985 first = p - name + 1;
4986 memcpy (copy, name, first);
4987 memcpy (copy + first, name + first + 1, len - first);
4989 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4992 /* We also need to check references to the symbol without the
4994 copy[first - 1] = '\0';
4995 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4996 FALSE, FALSE, TRUE);
4999 bfd_release (abfd, copy);
5003 /* Add symbols from an ELF archive file to the linker hash table. We
5004 don't use _bfd_generic_link_add_archive_symbols because of a
5005 problem which arises on UnixWare. The UnixWare libc.so is an
5006 archive which includes an entry libc.so.1 which defines a bunch of
5007 symbols. The libc.so archive also includes a number of other
5008 object files, which also define symbols, some of which are the same
5009 as those defined in libc.so.1. Correct linking requires that we
5010 consider each object file in turn, and include it if it defines any
5011 symbols we need. _bfd_generic_link_add_archive_symbols does not do
5012 this; it looks through the list of undefined symbols, and includes
5013 any object file which defines them. When this algorithm is used on
5014 UnixWare, it winds up pulling in libc.so.1 early and defining a
5015 bunch of symbols. This means that some of the other objects in the
5016 archive are not included in the link, which is incorrect since they
5017 precede libc.so.1 in the archive.
5019 Fortunately, ELF archive handling is simpler than that done by
5020 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5021 oddities. In ELF, if we find a symbol in the archive map, and the
5022 symbol is currently undefined, we know that we must pull in that
5025 Unfortunately, we do have to make multiple passes over the symbol
5026 table until nothing further is resolved. */
5029 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5032 bfd_boolean *defined = NULL;
5033 bfd_boolean *included = NULL;
5037 const struct elf_backend_data *bed;
5038 struct elf_link_hash_entry * (*archive_symbol_lookup)
5039 (bfd *, struct bfd_link_info *, const char *);
5041 if (! bfd_has_map (abfd))
5043 /* An empty archive is a special case. */
5044 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5046 bfd_set_error (bfd_error_no_armap);
5050 /* Keep track of all symbols we know to be already defined, and all
5051 files we know to be already included. This is to speed up the
5052 second and subsequent passes. */
5053 c = bfd_ardata (abfd)->symdef_count;
5057 amt *= sizeof (bfd_boolean);
5058 defined = (bfd_boolean *) bfd_zmalloc (amt);
5059 included = (bfd_boolean *) bfd_zmalloc (amt);
5060 if (defined == NULL || included == NULL)
5063 symdefs = bfd_ardata (abfd)->symdefs;
5064 bed = get_elf_backend_data (abfd);
5065 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5078 symdefend = symdef + c;
5079 for (i = 0; symdef < symdefend; symdef++, i++)
5081 struct elf_link_hash_entry *h;
5083 struct bfd_link_hash_entry *undefs_tail;
5086 if (defined[i] || included[i])
5088 if (symdef->file_offset == last)
5094 h = archive_symbol_lookup (abfd, info, symdef->name);
5095 if (h == (struct elf_link_hash_entry *) 0 - 1)
5101 if (h->root.type == bfd_link_hash_common)
5103 /* We currently have a common symbol. The archive map contains
5104 a reference to this symbol, so we may want to include it. We
5105 only want to include it however, if this archive element
5106 contains a definition of the symbol, not just another common
5109 Unfortunately some archivers (including GNU ar) will put
5110 declarations of common symbols into their archive maps, as
5111 well as real definitions, so we cannot just go by the archive
5112 map alone. Instead we must read in the element's symbol
5113 table and check that to see what kind of symbol definition
5115 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5118 else if (h->root.type != bfd_link_hash_undefined)
5120 if (h->root.type != bfd_link_hash_undefweak)
5125 /* We need to include this archive member. */
5126 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5127 if (element == NULL)
5130 if (! bfd_check_format (element, bfd_object))
5133 /* Doublecheck that we have not included this object
5134 already--it should be impossible, but there may be
5135 something wrong with the archive. */
5136 if (element->archive_pass != 0)
5138 bfd_set_error (bfd_error_bad_value);
5141 element->archive_pass = 1;
5143 undefs_tail = info->hash->undefs_tail;
5145 if (!(*info->callbacks
5146 ->add_archive_element) (info, element, symdef->name, &element))
5148 if (!bfd_link_add_symbols (element, info))
5151 /* If there are any new undefined symbols, we need to make
5152 another pass through the archive in order to see whether
5153 they can be defined. FIXME: This isn't perfect, because
5154 common symbols wind up on undefs_tail and because an
5155 undefined symbol which is defined later on in this pass
5156 does not require another pass. This isn't a bug, but it
5157 does make the code less efficient than it could be. */
5158 if (undefs_tail != info->hash->undefs_tail)
5161 /* Look backward to mark all symbols from this object file
5162 which we have already seen in this pass. */
5166 included[mark] = TRUE;
5171 while (symdefs[mark].file_offset == symdef->file_offset);
5173 /* We mark subsequent symbols from this object file as we go
5174 on through the loop. */
5175 last = symdef->file_offset;
5186 if (defined != NULL)
5188 if (included != NULL)
5193 /* Given an ELF BFD, add symbols to the global hash table as
5197 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5199 switch (bfd_get_format (abfd))
5202 return elf_link_add_object_symbols (abfd, info);
5204 return elf_link_add_archive_symbols (abfd, info);
5206 bfd_set_error (bfd_error_wrong_format);
5211 struct hash_codes_info
5213 unsigned long *hashcodes;
5217 /* This function will be called though elf_link_hash_traverse to store
5218 all hash value of the exported symbols in an array. */
5221 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5223 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5229 /* Ignore indirect symbols. These are added by the versioning code. */
5230 if (h->dynindx == -1)
5233 name = h->root.root.string;
5234 p = strchr (name, ELF_VER_CHR);
5237 alc = (char *) bfd_malloc (p - name + 1);
5243 memcpy (alc, name, p - name);
5244 alc[p - name] = '\0';
5248 /* Compute the hash value. */
5249 ha = bfd_elf_hash (name);
5251 /* Store the found hash value in the array given as the argument. */
5252 *(inf->hashcodes)++ = ha;
5254 /* And store it in the struct so that we can put it in the hash table
5256 h->u.elf_hash_value = ha;
5264 struct collect_gnu_hash_codes
5267 const struct elf_backend_data *bed;
5268 unsigned long int nsyms;
5269 unsigned long int maskbits;
5270 unsigned long int *hashcodes;
5271 unsigned long int *hashval;
5272 unsigned long int *indx;
5273 unsigned long int *counts;
5276 long int min_dynindx;
5277 unsigned long int bucketcount;
5278 unsigned long int symindx;
5279 long int local_indx;
5280 long int shift1, shift2;
5281 unsigned long int mask;
5285 /* This function will be called though elf_link_hash_traverse to store
5286 all hash value of the exported symbols in an array. */
5289 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5291 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5297 /* Ignore indirect symbols. These are added by the versioning code. */
5298 if (h->dynindx == -1)
5301 /* Ignore also local symbols and undefined symbols. */
5302 if (! (*s->bed->elf_hash_symbol) (h))
5305 name = h->root.root.string;
5306 p = strchr (name, ELF_VER_CHR);
5309 alc = (char *) bfd_malloc (p - name + 1);
5315 memcpy (alc, name, p - name);
5316 alc[p - name] = '\0';
5320 /* Compute the hash value. */
5321 ha = bfd_elf_gnu_hash (name);
5323 /* Store the found hash value in the array for compute_bucket_count,
5324 and also for .dynsym reordering purposes. */
5325 s->hashcodes[s->nsyms] = ha;
5326 s->hashval[h->dynindx] = ha;
5328 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5329 s->min_dynindx = h->dynindx;
5337 /* This function will be called though elf_link_hash_traverse to do
5338 final dynaminc symbol renumbering. */
5341 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5343 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5344 unsigned long int bucket;
5345 unsigned long int val;
5347 /* Ignore indirect symbols. */
5348 if (h->dynindx == -1)
5351 /* Ignore also local symbols and undefined symbols. */
5352 if (! (*s->bed->elf_hash_symbol) (h))
5354 if (h->dynindx >= s->min_dynindx)
5355 h->dynindx = s->local_indx++;
5359 bucket = s->hashval[h->dynindx] % s->bucketcount;
5360 val = (s->hashval[h->dynindx] >> s->shift1)
5361 & ((s->maskbits >> s->shift1) - 1);
5362 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5364 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5365 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5366 if (s->counts[bucket] == 1)
5367 /* Last element terminates the chain. */
5369 bfd_put_32 (s->output_bfd, val,
5370 s->contents + (s->indx[bucket] - s->symindx) * 4);
5371 --s->counts[bucket];
5372 h->dynindx = s->indx[bucket]++;
5376 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5379 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5381 return !(h->forced_local
5382 || h->root.type == bfd_link_hash_undefined
5383 || h->root.type == bfd_link_hash_undefweak
5384 || ((h->root.type == bfd_link_hash_defined
5385 || h->root.type == bfd_link_hash_defweak)
5386 && h->root.u.def.section->output_section == NULL));
5389 /* Array used to determine the number of hash table buckets to use
5390 based on the number of symbols there are. If there are fewer than
5391 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5392 fewer than 37 we use 17 buckets, and so forth. We never use more
5393 than 32771 buckets. */
5395 static const size_t elf_buckets[] =
5397 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5401 /* Compute bucket count for hashing table. We do not use a static set
5402 of possible tables sizes anymore. Instead we determine for all
5403 possible reasonable sizes of the table the outcome (i.e., the
5404 number of collisions etc) and choose the best solution. The
5405 weighting functions are not too simple to allow the table to grow
5406 without bounds. Instead one of the weighting factors is the size.
5407 Therefore the result is always a good payoff between few collisions
5408 (= short chain lengths) and table size. */
5410 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5411 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5412 unsigned long int nsyms,
5415 size_t best_size = 0;
5416 unsigned long int i;
5418 /* We have a problem here. The following code to optimize the table
5419 size requires an integer type with more the 32 bits. If
5420 BFD_HOST_U_64_BIT is set we know about such a type. */
5421 #ifdef BFD_HOST_U_64_BIT
5426 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5427 bfd *dynobj = elf_hash_table (info)->dynobj;
5428 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5429 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5430 unsigned long int *counts;
5432 unsigned int no_improvement_count = 0;
5434 /* Possible optimization parameters: if we have NSYMS symbols we say
5435 that the hashing table must at least have NSYMS/4 and at most
5437 minsize = nsyms / 4;
5440 best_size = maxsize = nsyms * 2;
5445 if ((best_size & 31) == 0)
5449 /* Create array where we count the collisions in. We must use bfd_malloc
5450 since the size could be large. */
5452 amt *= sizeof (unsigned long int);
5453 counts = (unsigned long int *) bfd_malloc (amt);
5457 /* Compute the "optimal" size for the hash table. The criteria is a
5458 minimal chain length. The minor criteria is (of course) the size
5460 for (i = minsize; i < maxsize; ++i)
5462 /* Walk through the array of hashcodes and count the collisions. */
5463 BFD_HOST_U_64_BIT max;
5464 unsigned long int j;
5465 unsigned long int fact;
5467 if (gnu_hash && (i & 31) == 0)
5470 memset (counts, '\0', i * sizeof (unsigned long int));
5472 /* Determine how often each hash bucket is used. */
5473 for (j = 0; j < nsyms; ++j)
5474 ++counts[hashcodes[j] % i];
5476 /* For the weight function we need some information about the
5477 pagesize on the target. This is information need not be 100%
5478 accurate. Since this information is not available (so far) we
5479 define it here to a reasonable default value. If it is crucial
5480 to have a better value some day simply define this value. */
5481 # ifndef BFD_TARGET_PAGESIZE
5482 # define BFD_TARGET_PAGESIZE (4096)
5485 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5487 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5490 /* Variant 1: optimize for short chains. We add the squares
5491 of all the chain lengths (which favors many small chain
5492 over a few long chains). */
5493 for (j = 0; j < i; ++j)
5494 max += counts[j] * counts[j];
5496 /* This adds penalties for the overall size of the table. */
5497 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5500 /* Variant 2: Optimize a lot more for small table. Here we
5501 also add squares of the size but we also add penalties for
5502 empty slots (the +1 term). */
5503 for (j = 0; j < i; ++j)
5504 max += (1 + counts[j]) * (1 + counts[j]);
5506 /* The overall size of the table is considered, but not as
5507 strong as in variant 1, where it is squared. */
5508 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5512 /* Compare with current best results. */
5513 if (max < best_chlen)
5517 no_improvement_count = 0;
5519 /* PR 11843: Avoid futile long searches for the best bucket size
5520 when there are a large number of symbols. */
5521 else if (++no_improvement_count == 100)
5528 #endif /* defined (BFD_HOST_U_64_BIT) */
5530 /* This is the fallback solution if no 64bit type is available or if we
5531 are not supposed to spend much time on optimizations. We select the
5532 bucket count using a fixed set of numbers. */
5533 for (i = 0; elf_buckets[i] != 0; i++)
5535 best_size = elf_buckets[i];
5536 if (nsyms < elf_buckets[i + 1])
5539 if (gnu_hash && best_size < 2)
5546 /* Size any SHT_GROUP section for ld -r. */
5549 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5553 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5554 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5555 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5560 /* Set a default stack segment size. The value in INFO wins. If it
5561 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5562 undefined it is initialized. */
5565 bfd_elf_stack_segment_size (bfd *output_bfd,
5566 struct bfd_link_info *info,
5567 const char *legacy_symbol,
5568 bfd_vma default_size)
5570 struct elf_link_hash_entry *h = NULL;
5572 /* Look for legacy symbol. */
5574 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5575 FALSE, FALSE, FALSE);
5576 if (h && (h->root.type == bfd_link_hash_defined
5577 || h->root.type == bfd_link_hash_defweak)
5579 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5581 /* The symbol has no type if specified on the command line. */
5582 h->type = STT_OBJECT;
5583 if (info->stacksize)
5584 (*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5585 output_bfd, legacy_symbol);
5586 else if (h->root.u.def.section != bfd_abs_section_ptr)
5587 (*_bfd_error_handler) (_("%B: %s not absolute"),
5588 output_bfd, legacy_symbol);
5590 info->stacksize = h->root.u.def.value;
5593 if (!info->stacksize)
5594 /* If the user didn't set a size, or explicitly inhibit the
5595 size, set it now. */
5596 info->stacksize = default_size;
5598 /* Provide the legacy symbol, if it is referenced. */
5599 if (h && (h->root.type == bfd_link_hash_undefined
5600 || h->root.type == bfd_link_hash_undefweak))
5602 struct bfd_link_hash_entry *bh = NULL;
5604 if (!(_bfd_generic_link_add_one_symbol
5605 (info, output_bfd, legacy_symbol,
5606 BSF_GLOBAL, bfd_abs_section_ptr,
5607 info->stacksize >= 0 ? info->stacksize : 0,
5608 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5611 h = (struct elf_link_hash_entry *) bh;
5613 h->type = STT_OBJECT;
5619 /* Set up the sizes and contents of the ELF dynamic sections. This is
5620 called by the ELF linker emulation before_allocation routine. We
5621 must set the sizes of the sections before the linker sets the
5622 addresses of the various sections. */
5625 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5628 const char *filter_shlib,
5630 const char *depaudit,
5631 const char * const *auxiliary_filters,
5632 struct bfd_link_info *info,
5633 asection **sinterpptr)
5635 bfd_size_type soname_indx;
5637 const struct elf_backend_data *bed;
5638 struct elf_info_failed asvinfo;
5642 soname_indx = (bfd_size_type) -1;
5644 if (!is_elf_hash_table (info->hash))
5647 bed = get_elf_backend_data (output_bfd);
5649 /* Any syms created from now on start with -1 in
5650 got.refcount/offset and plt.refcount/offset. */
5651 elf_hash_table (info)->init_got_refcount
5652 = elf_hash_table (info)->init_got_offset;
5653 elf_hash_table (info)->init_plt_refcount
5654 = elf_hash_table (info)->init_plt_offset;
5656 if (info->relocatable
5657 && !_bfd_elf_size_group_sections (info))
5660 /* The backend may have to create some sections regardless of whether
5661 we're dynamic or not. */
5662 if (bed->elf_backend_always_size_sections
5663 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5666 /* Determine any GNU_STACK segment requirements, after the backend
5667 has had a chance to set a default segment size. */
5668 if (info->execstack)
5669 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5670 else if (info->noexecstack)
5671 elf_stack_flags (output_bfd) = PF_R | PF_W;
5675 asection *notesec = NULL;
5678 for (inputobj = info->input_bfds;
5680 inputobj = inputobj->link_next)
5685 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5687 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5690 if (s->flags & SEC_CODE)
5694 else if (bed->default_execstack)
5697 if (notesec || info->stacksize > 0)
5698 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5699 if (notesec && exec && info->relocatable
5700 && notesec->output_section != bfd_abs_section_ptr)
5701 notesec->output_section->flags |= SEC_CODE;
5704 dynobj = elf_hash_table (info)->dynobj;
5706 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5708 struct elf_info_failed eif;
5709 struct elf_link_hash_entry *h;
5711 struct bfd_elf_version_tree *t;
5712 struct bfd_elf_version_expr *d;
5714 bfd_boolean all_defined;
5716 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5717 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5721 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5723 if (soname_indx == (bfd_size_type) -1
5724 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5730 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5732 info->flags |= DF_SYMBOLIC;
5740 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5742 if (indx == (bfd_size_type) -1)
5745 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5746 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5750 if (filter_shlib != NULL)
5754 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5755 filter_shlib, TRUE);
5756 if (indx == (bfd_size_type) -1
5757 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5761 if (auxiliary_filters != NULL)
5763 const char * const *p;
5765 for (p = auxiliary_filters; *p != NULL; p++)
5769 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5771 if (indx == (bfd_size_type) -1
5772 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5781 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5783 if (indx == (bfd_size_type) -1
5784 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5788 if (depaudit != NULL)
5792 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5794 if (indx == (bfd_size_type) -1
5795 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5802 /* If we are supposed to export all symbols into the dynamic symbol
5803 table (this is not the normal case), then do so. */
5804 if (info->export_dynamic
5805 || (info->executable && info->dynamic))
5807 elf_link_hash_traverse (elf_hash_table (info),
5808 _bfd_elf_export_symbol,
5814 /* Make all global versions with definition. */
5815 for (t = info->version_info; t != NULL; t = t->next)
5816 for (d = t->globals.list; d != NULL; d = d->next)
5817 if (!d->symver && d->literal)
5819 const char *verstr, *name;
5820 size_t namelen, verlen, newlen;
5821 char *newname, *p, leading_char;
5822 struct elf_link_hash_entry *newh;
5824 leading_char = bfd_get_symbol_leading_char (output_bfd);
5826 namelen = strlen (name) + (leading_char != '\0');
5828 verlen = strlen (verstr);
5829 newlen = namelen + verlen + 3;
5831 newname = (char *) bfd_malloc (newlen);
5832 if (newname == NULL)
5834 newname[0] = leading_char;
5835 memcpy (newname + (leading_char != '\0'), name, namelen);
5837 /* Check the hidden versioned definition. */
5838 p = newname + namelen;
5840 memcpy (p, verstr, verlen + 1);
5841 newh = elf_link_hash_lookup (elf_hash_table (info),
5842 newname, FALSE, FALSE,
5845 || (newh->root.type != bfd_link_hash_defined
5846 && newh->root.type != bfd_link_hash_defweak))
5848 /* Check the default versioned definition. */
5850 memcpy (p, verstr, verlen + 1);
5851 newh = elf_link_hash_lookup (elf_hash_table (info),
5852 newname, FALSE, FALSE,
5857 /* Mark this version if there is a definition and it is
5858 not defined in a shared object. */
5860 && !newh->def_dynamic
5861 && (newh->root.type == bfd_link_hash_defined
5862 || newh->root.type == bfd_link_hash_defweak))
5866 /* Attach all the symbols to their version information. */
5867 asvinfo.info = info;
5868 asvinfo.failed = FALSE;
5870 elf_link_hash_traverse (elf_hash_table (info),
5871 _bfd_elf_link_assign_sym_version,
5876 if (!info->allow_undefined_version)
5878 /* Check if all global versions have a definition. */
5880 for (t = info->version_info; t != NULL; t = t->next)
5881 for (d = t->globals.list; d != NULL; d = d->next)
5882 if (d->literal && !d->symver && !d->script)
5884 (*_bfd_error_handler)
5885 (_("%s: undefined version: %s"),
5886 d->pattern, t->name);
5887 all_defined = FALSE;
5892 bfd_set_error (bfd_error_bad_value);
5897 /* Find all symbols which were defined in a dynamic object and make
5898 the backend pick a reasonable value for them. */
5899 elf_link_hash_traverse (elf_hash_table (info),
5900 _bfd_elf_adjust_dynamic_symbol,
5905 /* Add some entries to the .dynamic section. We fill in some of the
5906 values later, in bfd_elf_final_link, but we must add the entries
5907 now so that we know the final size of the .dynamic section. */
5909 /* If there are initialization and/or finalization functions to
5910 call then add the corresponding DT_INIT/DT_FINI entries. */
5911 h = (info->init_function
5912 ? elf_link_hash_lookup (elf_hash_table (info),
5913 info->init_function, FALSE,
5920 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5923 h = (info->fini_function
5924 ? elf_link_hash_lookup (elf_hash_table (info),
5925 info->fini_function, FALSE,
5932 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5936 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5937 if (s != NULL && s->linker_has_input)
5939 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5940 if (! info->executable)
5945 for (sub = info->input_bfds; sub != NULL;
5946 sub = sub->link_next)
5947 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5948 for (o = sub->sections; o != NULL; o = o->next)
5949 if (elf_section_data (o)->this_hdr.sh_type
5950 == SHT_PREINIT_ARRAY)
5952 (*_bfd_error_handler)
5953 (_("%B: .preinit_array section is not allowed in DSO"),
5958 bfd_set_error (bfd_error_nonrepresentable_section);
5962 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5963 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5966 s = bfd_get_section_by_name (output_bfd, ".init_array");
5967 if (s != NULL && s->linker_has_input)
5969 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5970 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5973 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5974 if (s != NULL && s->linker_has_input)
5976 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5977 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5981 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5982 /* If .dynstr is excluded from the link, we don't want any of
5983 these tags. Strictly, we should be checking each section
5984 individually; This quick check covers for the case where
5985 someone does a /DISCARD/ : { *(*) }. */
5986 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5988 bfd_size_type strsize;
5990 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5991 if ((info->emit_hash
5992 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5993 || (info->emit_gnu_hash
5994 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5995 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5996 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5997 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5998 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5999 bed->s->sizeof_sym))
6004 /* The backend must work out the sizes of all the other dynamic
6007 && bed->elf_backend_size_dynamic_sections != NULL
6008 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6011 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6014 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6016 unsigned long section_sym_count;
6017 struct bfd_elf_version_tree *verdefs;
6020 /* Set up the version definition section. */
6021 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6022 BFD_ASSERT (s != NULL);
6024 /* We may have created additional version definitions if we are
6025 just linking a regular application. */
6026 verdefs = info->version_info;
6028 /* Skip anonymous version tag. */
6029 if (verdefs != NULL && verdefs->vernum == 0)
6030 verdefs = verdefs->next;
6032 if (verdefs == NULL && !info->create_default_symver)
6033 s->flags |= SEC_EXCLUDE;
6038 struct bfd_elf_version_tree *t;
6040 Elf_Internal_Verdef def;
6041 Elf_Internal_Verdaux defaux;
6042 struct bfd_link_hash_entry *bh;
6043 struct elf_link_hash_entry *h;
6049 /* Make space for the base version. */
6050 size += sizeof (Elf_External_Verdef);
6051 size += sizeof (Elf_External_Verdaux);
6054 /* Make space for the default version. */
6055 if (info->create_default_symver)
6057 size += sizeof (Elf_External_Verdef);
6061 for (t = verdefs; t != NULL; t = t->next)
6063 struct bfd_elf_version_deps *n;
6065 /* Don't emit base version twice. */
6069 size += sizeof (Elf_External_Verdef);
6070 size += sizeof (Elf_External_Verdaux);
6073 for (n = t->deps; n != NULL; n = n->next)
6074 size += sizeof (Elf_External_Verdaux);
6078 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6079 if (s->contents == NULL && s->size != 0)
6082 /* Fill in the version definition section. */
6086 def.vd_version = VER_DEF_CURRENT;
6087 def.vd_flags = VER_FLG_BASE;
6090 if (info->create_default_symver)
6092 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6093 def.vd_next = sizeof (Elf_External_Verdef);
6097 def.vd_aux = sizeof (Elf_External_Verdef);
6098 def.vd_next = (sizeof (Elf_External_Verdef)
6099 + sizeof (Elf_External_Verdaux));
6102 if (soname_indx != (bfd_size_type) -1)
6104 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6106 def.vd_hash = bfd_elf_hash (soname);
6107 defaux.vda_name = soname_indx;
6114 name = lbasename (output_bfd->filename);
6115 def.vd_hash = bfd_elf_hash (name);
6116 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6118 if (indx == (bfd_size_type) -1)
6120 defaux.vda_name = indx;
6122 defaux.vda_next = 0;
6124 _bfd_elf_swap_verdef_out (output_bfd, &def,
6125 (Elf_External_Verdef *) p);
6126 p += sizeof (Elf_External_Verdef);
6127 if (info->create_default_symver)
6129 /* Add a symbol representing this version. */
6131 if (! (_bfd_generic_link_add_one_symbol
6132 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6134 get_elf_backend_data (dynobj)->collect, &bh)))
6136 h = (struct elf_link_hash_entry *) bh;
6139 h->type = STT_OBJECT;
6140 h->verinfo.vertree = NULL;
6142 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6145 /* Create a duplicate of the base version with the same
6146 aux block, but different flags. */
6149 def.vd_aux = sizeof (Elf_External_Verdef);
6151 def.vd_next = (sizeof (Elf_External_Verdef)
6152 + sizeof (Elf_External_Verdaux));
6155 _bfd_elf_swap_verdef_out (output_bfd, &def,
6156 (Elf_External_Verdef *) p);
6157 p += sizeof (Elf_External_Verdef);
6159 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6160 (Elf_External_Verdaux *) p);
6161 p += sizeof (Elf_External_Verdaux);
6163 for (t = verdefs; t != NULL; t = t->next)
6166 struct bfd_elf_version_deps *n;
6168 /* Don't emit the base version twice. */
6173 for (n = t->deps; n != NULL; n = n->next)
6176 /* Add a symbol representing this version. */
6178 if (! (_bfd_generic_link_add_one_symbol
6179 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6181 get_elf_backend_data (dynobj)->collect, &bh)))
6183 h = (struct elf_link_hash_entry *) bh;
6186 h->type = STT_OBJECT;
6187 h->verinfo.vertree = t;
6189 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6192 def.vd_version = VER_DEF_CURRENT;
6194 if (t->globals.list == NULL
6195 && t->locals.list == NULL
6197 def.vd_flags |= VER_FLG_WEAK;
6198 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6199 def.vd_cnt = cdeps + 1;
6200 def.vd_hash = bfd_elf_hash (t->name);
6201 def.vd_aux = sizeof (Elf_External_Verdef);
6204 /* If a basever node is next, it *must* be the last node in
6205 the chain, otherwise Verdef construction breaks. */
6206 if (t->next != NULL && t->next->vernum == 0)
6207 BFD_ASSERT (t->next->next == NULL);
6209 if (t->next != NULL && t->next->vernum != 0)
6210 def.vd_next = (sizeof (Elf_External_Verdef)
6211 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6213 _bfd_elf_swap_verdef_out (output_bfd, &def,
6214 (Elf_External_Verdef *) p);
6215 p += sizeof (Elf_External_Verdef);
6217 defaux.vda_name = h->dynstr_index;
6218 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6220 defaux.vda_next = 0;
6221 if (t->deps != NULL)
6222 defaux.vda_next = sizeof (Elf_External_Verdaux);
6223 t->name_indx = defaux.vda_name;
6225 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6226 (Elf_External_Verdaux *) p);
6227 p += sizeof (Elf_External_Verdaux);
6229 for (n = t->deps; n != NULL; n = n->next)
6231 if (n->version_needed == NULL)
6233 /* This can happen if there was an error in the
6235 defaux.vda_name = 0;
6239 defaux.vda_name = n->version_needed->name_indx;
6240 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6243 if (n->next == NULL)
6244 defaux.vda_next = 0;
6246 defaux.vda_next = sizeof (Elf_External_Verdaux);
6248 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6249 (Elf_External_Verdaux *) p);
6250 p += sizeof (Elf_External_Verdaux);
6254 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6255 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6258 elf_tdata (output_bfd)->cverdefs = cdefs;
6261 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6263 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6266 else if (info->flags & DF_BIND_NOW)
6268 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6274 if (info->executable)
6275 info->flags_1 &= ~ (DF_1_INITFIRST
6278 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6282 /* Work out the size of the version reference section. */
6284 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6285 BFD_ASSERT (s != NULL);
6287 struct elf_find_verdep_info sinfo;
6290 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6291 if (sinfo.vers == 0)
6293 sinfo.failed = FALSE;
6295 elf_link_hash_traverse (elf_hash_table (info),
6296 _bfd_elf_link_find_version_dependencies,
6301 if (elf_tdata (output_bfd)->verref == NULL)
6302 s->flags |= SEC_EXCLUDE;
6305 Elf_Internal_Verneed *t;
6310 /* Build the version dependency section. */
6313 for (t = elf_tdata (output_bfd)->verref;
6317 Elf_Internal_Vernaux *a;
6319 size += sizeof (Elf_External_Verneed);
6321 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6322 size += sizeof (Elf_External_Vernaux);
6326 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6327 if (s->contents == NULL)
6331 for (t = elf_tdata (output_bfd)->verref;
6336 Elf_Internal_Vernaux *a;
6340 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6343 t->vn_version = VER_NEED_CURRENT;
6345 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6346 elf_dt_name (t->vn_bfd) != NULL
6347 ? elf_dt_name (t->vn_bfd)
6348 : lbasename (t->vn_bfd->filename),
6350 if (indx == (bfd_size_type) -1)
6353 t->vn_aux = sizeof (Elf_External_Verneed);
6354 if (t->vn_nextref == NULL)
6357 t->vn_next = (sizeof (Elf_External_Verneed)
6358 + caux * sizeof (Elf_External_Vernaux));
6360 _bfd_elf_swap_verneed_out (output_bfd, t,
6361 (Elf_External_Verneed *) p);
6362 p += sizeof (Elf_External_Verneed);
6364 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6366 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6367 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6368 a->vna_nodename, FALSE);
6369 if (indx == (bfd_size_type) -1)
6372 if (a->vna_nextptr == NULL)
6375 a->vna_next = sizeof (Elf_External_Vernaux);
6377 _bfd_elf_swap_vernaux_out (output_bfd, a,
6378 (Elf_External_Vernaux *) p);
6379 p += sizeof (Elf_External_Vernaux);
6383 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6384 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6387 elf_tdata (output_bfd)->cverrefs = crefs;
6391 if ((elf_tdata (output_bfd)->cverrefs == 0
6392 && elf_tdata (output_bfd)->cverdefs == 0)
6393 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6394 §ion_sym_count) == 0)
6396 s = bfd_get_linker_section (dynobj, ".gnu.version");
6397 s->flags |= SEC_EXCLUDE;
6403 /* Find the first non-excluded output section. We'll use its
6404 section symbol for some emitted relocs. */
6406 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6410 for (s = output_bfd->sections; s != NULL; s = s->next)
6411 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6412 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6414 elf_hash_table (info)->text_index_section = s;
6419 /* Find two non-excluded output sections, one for code, one for data.
6420 We'll use their section symbols for some emitted relocs. */
6422 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6426 /* Data first, since setting text_index_section changes
6427 _bfd_elf_link_omit_section_dynsym. */
6428 for (s = output_bfd->sections; s != NULL; s = s->next)
6429 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6430 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6432 elf_hash_table (info)->data_index_section = s;
6436 for (s = output_bfd->sections; s != NULL; s = s->next)
6437 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6438 == (SEC_ALLOC | SEC_READONLY))
6439 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6441 elf_hash_table (info)->text_index_section = s;
6445 if (elf_hash_table (info)->text_index_section == NULL)
6446 elf_hash_table (info)->text_index_section
6447 = elf_hash_table (info)->data_index_section;
6451 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6453 const struct elf_backend_data *bed;
6455 if (!is_elf_hash_table (info->hash))
6458 bed = get_elf_backend_data (output_bfd);
6459 (*bed->elf_backend_init_index_section) (output_bfd, info);
6461 if (elf_hash_table (info)->dynamic_sections_created)
6465 bfd_size_type dynsymcount;
6466 unsigned long section_sym_count;
6467 unsigned int dtagcount;
6469 dynobj = elf_hash_table (info)->dynobj;
6471 /* Assign dynsym indicies. In a shared library we generate a
6472 section symbol for each output section, which come first.
6473 Next come all of the back-end allocated local dynamic syms,
6474 followed by the rest of the global symbols. */
6476 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6477 §ion_sym_count);
6479 /* Work out the size of the symbol version section. */
6480 s = bfd_get_linker_section (dynobj, ".gnu.version");
6481 BFD_ASSERT (s != NULL);
6482 if (dynsymcount != 0
6483 && (s->flags & SEC_EXCLUDE) == 0)
6485 s->size = dynsymcount * sizeof (Elf_External_Versym);
6486 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6487 if (s->contents == NULL)
6490 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6494 /* Set the size of the .dynsym and .hash sections. We counted
6495 the number of dynamic symbols in elf_link_add_object_symbols.
6496 We will build the contents of .dynsym and .hash when we build
6497 the final symbol table, because until then we do not know the
6498 correct value to give the symbols. We built the .dynstr
6499 section as we went along in elf_link_add_object_symbols. */
6500 s = bfd_get_linker_section (dynobj, ".dynsym");
6501 BFD_ASSERT (s != NULL);
6502 s->size = dynsymcount * bed->s->sizeof_sym;
6504 if (dynsymcount != 0)
6506 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6507 if (s->contents == NULL)
6510 /* The first entry in .dynsym is a dummy symbol.
6511 Clear all the section syms, in case we don't output them all. */
6512 ++section_sym_count;
6513 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6516 elf_hash_table (info)->bucketcount = 0;
6518 /* Compute the size of the hashing table. As a side effect this
6519 computes the hash values for all the names we export. */
6520 if (info->emit_hash)
6522 unsigned long int *hashcodes;
6523 struct hash_codes_info hashinf;
6525 unsigned long int nsyms;
6527 size_t hash_entry_size;
6529 /* Compute the hash values for all exported symbols. At the same
6530 time store the values in an array so that we could use them for
6532 amt = dynsymcount * sizeof (unsigned long int);
6533 hashcodes = (unsigned long int *) bfd_malloc (amt);
6534 if (hashcodes == NULL)
6536 hashinf.hashcodes = hashcodes;
6537 hashinf.error = FALSE;
6539 /* Put all hash values in HASHCODES. */
6540 elf_link_hash_traverse (elf_hash_table (info),
6541 elf_collect_hash_codes, &hashinf);
6548 nsyms = hashinf.hashcodes - hashcodes;
6550 = compute_bucket_count (info, hashcodes, nsyms, 0);
6553 if (bucketcount == 0)
6556 elf_hash_table (info)->bucketcount = bucketcount;
6558 s = bfd_get_linker_section (dynobj, ".hash");
6559 BFD_ASSERT (s != NULL);
6560 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6561 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6562 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6563 if (s->contents == NULL)
6566 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6567 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6568 s->contents + hash_entry_size);
6571 if (info->emit_gnu_hash)
6574 unsigned char *contents;
6575 struct collect_gnu_hash_codes cinfo;
6579 memset (&cinfo, 0, sizeof (cinfo));
6581 /* Compute the hash values for all exported symbols. At the same
6582 time store the values in an array so that we could use them for
6584 amt = dynsymcount * 2 * sizeof (unsigned long int);
6585 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6586 if (cinfo.hashcodes == NULL)
6589 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6590 cinfo.min_dynindx = -1;
6591 cinfo.output_bfd = output_bfd;
6594 /* Put all hash values in HASHCODES. */
6595 elf_link_hash_traverse (elf_hash_table (info),
6596 elf_collect_gnu_hash_codes, &cinfo);
6599 free (cinfo.hashcodes);
6604 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6606 if (bucketcount == 0)
6608 free (cinfo.hashcodes);
6612 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6613 BFD_ASSERT (s != NULL);
6615 if (cinfo.nsyms == 0)
6617 /* Empty .gnu.hash section is special. */
6618 BFD_ASSERT (cinfo.min_dynindx == -1);
6619 free (cinfo.hashcodes);
6620 s->size = 5 * 4 + bed->s->arch_size / 8;
6621 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6622 if (contents == NULL)
6624 s->contents = contents;
6625 /* 1 empty bucket. */
6626 bfd_put_32 (output_bfd, 1, contents);
6627 /* SYMIDX above the special symbol 0. */
6628 bfd_put_32 (output_bfd, 1, contents + 4);
6629 /* Just one word for bitmask. */
6630 bfd_put_32 (output_bfd, 1, contents + 8);
6631 /* Only hash fn bloom filter. */
6632 bfd_put_32 (output_bfd, 0, contents + 12);
6633 /* No hashes are valid - empty bitmask. */
6634 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6635 /* No hashes in the only bucket. */
6636 bfd_put_32 (output_bfd, 0,
6637 contents + 16 + bed->s->arch_size / 8);
6641 unsigned long int maskwords, maskbitslog2, x;
6642 BFD_ASSERT (cinfo.min_dynindx != -1);
6646 while ((x >>= 1) != 0)
6648 if (maskbitslog2 < 3)
6650 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6651 maskbitslog2 = maskbitslog2 + 3;
6653 maskbitslog2 = maskbitslog2 + 2;
6654 if (bed->s->arch_size == 64)
6656 if (maskbitslog2 == 5)
6662 cinfo.mask = (1 << cinfo.shift1) - 1;
6663 cinfo.shift2 = maskbitslog2;
6664 cinfo.maskbits = 1 << maskbitslog2;
6665 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6666 amt = bucketcount * sizeof (unsigned long int) * 2;
6667 amt += maskwords * sizeof (bfd_vma);
6668 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6669 if (cinfo.bitmask == NULL)
6671 free (cinfo.hashcodes);
6675 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6676 cinfo.indx = cinfo.counts + bucketcount;
6677 cinfo.symindx = dynsymcount - cinfo.nsyms;
6678 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6680 /* Determine how often each hash bucket is used. */
6681 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6682 for (i = 0; i < cinfo.nsyms; ++i)
6683 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6685 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6686 if (cinfo.counts[i] != 0)
6688 cinfo.indx[i] = cnt;
6689 cnt += cinfo.counts[i];
6691 BFD_ASSERT (cnt == dynsymcount);
6692 cinfo.bucketcount = bucketcount;
6693 cinfo.local_indx = cinfo.min_dynindx;
6695 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6696 s->size += cinfo.maskbits / 8;
6697 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6698 if (contents == NULL)
6700 free (cinfo.bitmask);
6701 free (cinfo.hashcodes);
6705 s->contents = contents;
6706 bfd_put_32 (output_bfd, bucketcount, contents);
6707 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6708 bfd_put_32 (output_bfd, maskwords, contents + 8);
6709 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6710 contents += 16 + cinfo.maskbits / 8;
6712 for (i = 0; i < bucketcount; ++i)
6714 if (cinfo.counts[i] == 0)
6715 bfd_put_32 (output_bfd, 0, contents);
6717 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6721 cinfo.contents = contents;
6723 /* Renumber dynamic symbols, populate .gnu.hash section. */
6724 elf_link_hash_traverse (elf_hash_table (info),
6725 elf_renumber_gnu_hash_syms, &cinfo);
6727 contents = s->contents + 16;
6728 for (i = 0; i < maskwords; ++i)
6730 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6732 contents += bed->s->arch_size / 8;
6735 free (cinfo.bitmask);
6736 free (cinfo.hashcodes);
6740 s = bfd_get_linker_section (dynobj, ".dynstr");
6741 BFD_ASSERT (s != NULL);
6743 elf_finalize_dynstr (output_bfd, info);
6745 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6747 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6748 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6755 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6758 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6761 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6762 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6765 /* Finish SHF_MERGE section merging. */
6768 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6773 if (!is_elf_hash_table (info->hash))
6776 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6777 if ((ibfd->flags & DYNAMIC) == 0)
6778 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6779 if ((sec->flags & SEC_MERGE) != 0
6780 && !bfd_is_abs_section (sec->output_section))
6782 struct bfd_elf_section_data *secdata;
6784 secdata = elf_section_data (sec);
6785 if (! _bfd_add_merge_section (abfd,
6786 &elf_hash_table (info)->merge_info,
6787 sec, &secdata->sec_info))
6789 else if (secdata->sec_info)
6790 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6793 if (elf_hash_table (info)->merge_info != NULL)
6794 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6795 merge_sections_remove_hook);
6799 /* Create an entry in an ELF linker hash table. */
6801 struct bfd_hash_entry *
6802 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6803 struct bfd_hash_table *table,
6806 /* Allocate the structure if it has not already been allocated by a
6810 entry = (struct bfd_hash_entry *)
6811 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6816 /* Call the allocation method of the superclass. */
6817 entry = _bfd_link_hash_newfunc (entry, table, string);
6820 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6821 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6823 /* Set local fields. */
6826 ret->got = htab->init_got_refcount;
6827 ret->plt = htab->init_plt_refcount;
6828 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6829 - offsetof (struct elf_link_hash_entry, size)));
6830 /* Assume that we have been called by a non-ELF symbol reader.
6831 This flag is then reset by the code which reads an ELF input
6832 file. This ensures that a symbol created by a non-ELF symbol
6833 reader will have the flag set correctly. */
6840 /* Copy data from an indirect symbol to its direct symbol, hiding the
6841 old indirect symbol. Also used for copying flags to a weakdef. */
6844 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6845 struct elf_link_hash_entry *dir,
6846 struct elf_link_hash_entry *ind)
6848 struct elf_link_hash_table *htab;
6850 /* Copy down any references that we may have already seen to the
6851 symbol which just became indirect. */
6853 dir->ref_dynamic |= ind->ref_dynamic;
6854 dir->ref_regular |= ind->ref_regular;
6855 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6856 dir->non_got_ref |= ind->non_got_ref;
6857 dir->needs_plt |= ind->needs_plt;
6858 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6860 if (ind->root.type != bfd_link_hash_indirect)
6863 /* Copy over the global and procedure linkage table refcount entries.
6864 These may have been already set up by a check_relocs routine. */
6865 htab = elf_hash_table (info);
6866 if (ind->got.refcount > htab->init_got_refcount.refcount)
6868 if (dir->got.refcount < 0)
6869 dir->got.refcount = 0;
6870 dir->got.refcount += ind->got.refcount;
6871 ind->got.refcount = htab->init_got_refcount.refcount;
6874 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6876 if (dir->plt.refcount < 0)
6877 dir->plt.refcount = 0;
6878 dir->plt.refcount += ind->plt.refcount;
6879 ind->plt.refcount = htab->init_plt_refcount.refcount;
6882 if (ind->dynindx != -1)
6884 if (dir->dynindx != -1)
6885 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6886 dir->dynindx = ind->dynindx;
6887 dir->dynstr_index = ind->dynstr_index;
6889 ind->dynstr_index = 0;
6894 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6895 struct elf_link_hash_entry *h,
6896 bfd_boolean force_local)
6898 /* STT_GNU_IFUNC symbol must go through PLT. */
6899 if (h->type != STT_GNU_IFUNC)
6901 h->plt = elf_hash_table (info)->init_plt_offset;
6906 h->forced_local = 1;
6907 if (h->dynindx != -1)
6910 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6916 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
6920 _bfd_elf_link_hash_table_init
6921 (struct elf_link_hash_table *table,
6923 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6924 struct bfd_hash_table *,
6926 unsigned int entsize,
6927 enum elf_target_id target_id)
6930 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6932 table->init_got_refcount.refcount = can_refcount - 1;
6933 table->init_plt_refcount.refcount = can_refcount - 1;
6934 table->init_got_offset.offset = -(bfd_vma) 1;
6935 table->init_plt_offset.offset = -(bfd_vma) 1;
6936 /* The first dynamic symbol is a dummy. */
6937 table->dynsymcount = 1;
6939 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6941 table->root.type = bfd_link_elf_hash_table;
6942 table->hash_table_id = target_id;
6947 /* Create an ELF linker hash table. */
6949 struct bfd_link_hash_table *
6950 _bfd_elf_link_hash_table_create (bfd *abfd)
6952 struct elf_link_hash_table *ret;
6953 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6955 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6959 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6960 sizeof (struct elf_link_hash_entry),
6970 /* Destroy an ELF linker hash table. */
6973 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6975 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6976 if (htab->dynstr != NULL)
6977 _bfd_elf_strtab_free (htab->dynstr);
6978 _bfd_merge_sections_free (htab->merge_info);
6979 _bfd_generic_link_hash_table_free (hash);
6982 /* This is a hook for the ELF emulation code in the generic linker to
6983 tell the backend linker what file name to use for the DT_NEEDED
6984 entry for a dynamic object. */
6987 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6989 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6990 && bfd_get_format (abfd) == bfd_object)
6991 elf_dt_name (abfd) = name;
6995 bfd_elf_get_dyn_lib_class (bfd *abfd)
6998 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6999 && bfd_get_format (abfd) == bfd_object)
7000 lib_class = elf_dyn_lib_class (abfd);
7007 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7009 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7010 && bfd_get_format (abfd) == bfd_object)
7011 elf_dyn_lib_class (abfd) = lib_class;
7014 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7015 the linker ELF emulation code. */
7017 struct bfd_link_needed_list *
7018 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7019 struct bfd_link_info *info)
7021 if (! is_elf_hash_table (info->hash))
7023 return elf_hash_table (info)->needed;
7026 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7027 hook for the linker ELF emulation code. */
7029 struct bfd_link_needed_list *
7030 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7031 struct bfd_link_info *info)
7033 if (! is_elf_hash_table (info->hash))
7035 return elf_hash_table (info)->runpath;
7038 /* Get the name actually used for a dynamic object for a link. This
7039 is the SONAME entry if there is one. Otherwise, it is the string
7040 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7043 bfd_elf_get_dt_soname (bfd *abfd)
7045 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7046 && bfd_get_format (abfd) == bfd_object)
7047 return elf_dt_name (abfd);
7051 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7052 the ELF linker emulation code. */
7055 bfd_elf_get_bfd_needed_list (bfd *abfd,
7056 struct bfd_link_needed_list **pneeded)
7059 bfd_byte *dynbuf = NULL;
7060 unsigned int elfsec;
7061 unsigned long shlink;
7062 bfd_byte *extdyn, *extdynend;
7064 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7068 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7069 || bfd_get_format (abfd) != bfd_object)
7072 s = bfd_get_section_by_name (abfd, ".dynamic");
7073 if (s == NULL || s->size == 0)
7076 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7079 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7080 if (elfsec == SHN_BAD)
7083 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7085 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7086 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7089 extdynend = extdyn + s->size;
7090 for (; extdyn < extdynend; extdyn += extdynsize)
7092 Elf_Internal_Dyn dyn;
7094 (*swap_dyn_in) (abfd, extdyn, &dyn);
7096 if (dyn.d_tag == DT_NULL)
7099 if (dyn.d_tag == DT_NEEDED)
7102 struct bfd_link_needed_list *l;
7103 unsigned int tagv = dyn.d_un.d_val;
7106 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7111 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7132 struct elf_symbuf_symbol
7134 unsigned long st_name; /* Symbol name, index in string tbl */
7135 unsigned char st_info; /* Type and binding attributes */
7136 unsigned char st_other; /* Visibilty, and target specific */
7139 struct elf_symbuf_head
7141 struct elf_symbuf_symbol *ssym;
7142 bfd_size_type count;
7143 unsigned int st_shndx;
7150 Elf_Internal_Sym *isym;
7151 struct elf_symbuf_symbol *ssym;
7156 /* Sort references to symbols by ascending section number. */
7159 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7161 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7162 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7164 return s1->st_shndx - s2->st_shndx;
7168 elf_sym_name_compare (const void *arg1, const void *arg2)
7170 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7171 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7172 return strcmp (s1->name, s2->name);
7175 static struct elf_symbuf_head *
7176 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7178 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7179 struct elf_symbuf_symbol *ssym;
7180 struct elf_symbuf_head *ssymbuf, *ssymhead;
7181 bfd_size_type i, shndx_count, total_size;
7183 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7187 for (ind = indbuf, i = 0; i < symcount; i++)
7188 if (isymbuf[i].st_shndx != SHN_UNDEF)
7189 *ind++ = &isymbuf[i];
7192 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7193 elf_sort_elf_symbol);
7196 if (indbufend > indbuf)
7197 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7198 if (ind[0]->st_shndx != ind[1]->st_shndx)
7201 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7202 + (indbufend - indbuf) * sizeof (*ssym));
7203 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7204 if (ssymbuf == NULL)
7210 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7211 ssymbuf->ssym = NULL;
7212 ssymbuf->count = shndx_count;
7213 ssymbuf->st_shndx = 0;
7214 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7216 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7219 ssymhead->ssym = ssym;
7220 ssymhead->count = 0;
7221 ssymhead->st_shndx = (*ind)->st_shndx;
7223 ssym->st_name = (*ind)->st_name;
7224 ssym->st_info = (*ind)->st_info;
7225 ssym->st_other = (*ind)->st_other;
7228 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7229 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7236 /* Check if 2 sections define the same set of local and global
7240 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7241 struct bfd_link_info *info)
7244 const struct elf_backend_data *bed1, *bed2;
7245 Elf_Internal_Shdr *hdr1, *hdr2;
7246 bfd_size_type symcount1, symcount2;
7247 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7248 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7249 Elf_Internal_Sym *isym, *isymend;
7250 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7251 bfd_size_type count1, count2, i;
7252 unsigned int shndx1, shndx2;
7258 /* Both sections have to be in ELF. */
7259 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7260 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7263 if (elf_section_type (sec1) != elf_section_type (sec2))
7266 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7267 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7268 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7271 bed1 = get_elf_backend_data (bfd1);
7272 bed2 = get_elf_backend_data (bfd2);
7273 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7274 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7275 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7276 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7278 if (symcount1 == 0 || symcount2 == 0)
7284 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7285 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7287 if (ssymbuf1 == NULL)
7289 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7291 if (isymbuf1 == NULL)
7294 if (!info->reduce_memory_overheads)
7295 elf_tdata (bfd1)->symbuf = ssymbuf1
7296 = elf_create_symbuf (symcount1, isymbuf1);
7299 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7301 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7303 if (isymbuf2 == NULL)
7306 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7307 elf_tdata (bfd2)->symbuf = ssymbuf2
7308 = elf_create_symbuf (symcount2, isymbuf2);
7311 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7313 /* Optimized faster version. */
7314 bfd_size_type lo, hi, mid;
7315 struct elf_symbol *symp;
7316 struct elf_symbuf_symbol *ssym, *ssymend;
7319 hi = ssymbuf1->count;
7324 mid = (lo + hi) / 2;
7325 if (shndx1 < ssymbuf1[mid].st_shndx)
7327 else if (shndx1 > ssymbuf1[mid].st_shndx)
7331 count1 = ssymbuf1[mid].count;
7338 hi = ssymbuf2->count;
7343 mid = (lo + hi) / 2;
7344 if (shndx2 < ssymbuf2[mid].st_shndx)
7346 else if (shndx2 > ssymbuf2[mid].st_shndx)
7350 count2 = ssymbuf2[mid].count;
7356 if (count1 == 0 || count2 == 0 || count1 != count2)
7359 symtable1 = (struct elf_symbol *)
7360 bfd_malloc (count1 * sizeof (struct elf_symbol));
7361 symtable2 = (struct elf_symbol *)
7362 bfd_malloc (count2 * sizeof (struct elf_symbol));
7363 if (symtable1 == NULL || symtable2 == NULL)
7367 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7368 ssym < ssymend; ssym++, symp++)
7370 symp->u.ssym = ssym;
7371 symp->name = bfd_elf_string_from_elf_section (bfd1,
7377 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7378 ssym < ssymend; ssym++, symp++)
7380 symp->u.ssym = ssym;
7381 symp->name = bfd_elf_string_from_elf_section (bfd2,
7386 /* Sort symbol by name. */
7387 qsort (symtable1, count1, sizeof (struct elf_symbol),
7388 elf_sym_name_compare);
7389 qsort (symtable2, count1, sizeof (struct elf_symbol),
7390 elf_sym_name_compare);
7392 for (i = 0; i < count1; i++)
7393 /* Two symbols must have the same binding, type and name. */
7394 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7395 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7396 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7403 symtable1 = (struct elf_symbol *)
7404 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7405 symtable2 = (struct elf_symbol *)
7406 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7407 if (symtable1 == NULL || symtable2 == NULL)
7410 /* Count definitions in the section. */
7412 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7413 if (isym->st_shndx == shndx1)
7414 symtable1[count1++].u.isym = isym;
7417 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7418 if (isym->st_shndx == shndx2)
7419 symtable2[count2++].u.isym = isym;
7421 if (count1 == 0 || count2 == 0 || count1 != count2)
7424 for (i = 0; i < count1; i++)
7426 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7427 symtable1[i].u.isym->st_name);
7429 for (i = 0; i < count2; i++)
7431 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7432 symtable2[i].u.isym->st_name);
7434 /* Sort symbol by name. */
7435 qsort (symtable1, count1, sizeof (struct elf_symbol),
7436 elf_sym_name_compare);
7437 qsort (symtable2, count1, sizeof (struct elf_symbol),
7438 elf_sym_name_compare);
7440 for (i = 0; i < count1; i++)
7441 /* Two symbols must have the same binding, type and name. */
7442 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7443 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7444 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7462 /* Return TRUE if 2 section types are compatible. */
7465 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7466 bfd *bbfd, const asection *bsec)
7470 || abfd->xvec->flavour != bfd_target_elf_flavour
7471 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7474 return elf_section_type (asec) == elf_section_type (bsec);
7477 /* Final phase of ELF linker. */
7479 /* A structure we use to avoid passing large numbers of arguments. */
7481 struct elf_final_link_info
7483 /* General link information. */
7484 struct bfd_link_info *info;
7487 /* Symbol string table. */
7488 struct bfd_strtab_hash *symstrtab;
7489 /* .dynsym section. */
7490 asection *dynsym_sec;
7491 /* .hash section. */
7493 /* symbol version section (.gnu.version). */
7494 asection *symver_sec;
7495 /* Buffer large enough to hold contents of any section. */
7497 /* Buffer large enough to hold external relocs of any section. */
7498 void *external_relocs;
7499 /* Buffer large enough to hold internal relocs of any section. */
7500 Elf_Internal_Rela *internal_relocs;
7501 /* Buffer large enough to hold external local symbols of any input
7503 bfd_byte *external_syms;
7504 /* And a buffer for symbol section indices. */
7505 Elf_External_Sym_Shndx *locsym_shndx;
7506 /* Buffer large enough to hold internal local symbols of any input
7508 Elf_Internal_Sym *internal_syms;
7509 /* Array large enough to hold a symbol index for each local symbol
7510 of any input BFD. */
7512 /* Array large enough to hold a section pointer for each local
7513 symbol of any input BFD. */
7514 asection **sections;
7515 /* Buffer to hold swapped out symbols. */
7517 /* And one for symbol section indices. */
7518 Elf_External_Sym_Shndx *symshndxbuf;
7519 /* Number of swapped out symbols in buffer. */
7520 size_t symbuf_count;
7521 /* Number of symbols which fit in symbuf. */
7523 /* And same for symshndxbuf. */
7524 size_t shndxbuf_size;
7525 /* Number of STT_FILE syms seen. */
7526 size_t filesym_count;
7529 /* This struct is used to pass information to elf_link_output_extsym. */
7531 struct elf_outext_info
7534 bfd_boolean localsyms;
7535 bfd_boolean need_second_pass;
7536 bfd_boolean second_pass;
7537 struct elf_final_link_info *flinfo;
7541 /* Support for evaluating a complex relocation.
7543 Complex relocations are generalized, self-describing relocations. The
7544 implementation of them consists of two parts: complex symbols, and the
7545 relocations themselves.
7547 The relocations are use a reserved elf-wide relocation type code (R_RELC
7548 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7549 information (start bit, end bit, word width, etc) into the addend. This
7550 information is extracted from CGEN-generated operand tables within gas.
7552 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7553 internal) representing prefix-notation expressions, including but not
7554 limited to those sorts of expressions normally encoded as addends in the
7555 addend field. The symbol mangling format is:
7558 | <unary-operator> ':' <node>
7559 | <binary-operator> ':' <node> ':' <node>
7562 <literal> := 's' <digits=N> ':' <N character symbol name>
7563 | 'S' <digits=N> ':' <N character section name>
7567 <binary-operator> := as in C
7568 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7571 set_symbol_value (bfd *bfd_with_globals,
7572 Elf_Internal_Sym *isymbuf,
7577 struct elf_link_hash_entry **sym_hashes;
7578 struct elf_link_hash_entry *h;
7579 size_t extsymoff = locsymcount;
7581 if (symidx < locsymcount)
7583 Elf_Internal_Sym *sym;
7585 sym = isymbuf + symidx;
7586 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7588 /* It is a local symbol: move it to the
7589 "absolute" section and give it a value. */
7590 sym->st_shndx = SHN_ABS;
7591 sym->st_value = val;
7594 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7598 /* It is a global symbol: set its link type
7599 to "defined" and give it a value. */
7601 sym_hashes = elf_sym_hashes (bfd_with_globals);
7602 h = sym_hashes [symidx - extsymoff];
7603 while (h->root.type == bfd_link_hash_indirect
7604 || h->root.type == bfd_link_hash_warning)
7605 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7606 h->root.type = bfd_link_hash_defined;
7607 h->root.u.def.value = val;
7608 h->root.u.def.section = bfd_abs_section_ptr;
7612 resolve_symbol (const char *name,
7614 struct elf_final_link_info *flinfo,
7616 Elf_Internal_Sym *isymbuf,
7619 Elf_Internal_Sym *sym;
7620 struct bfd_link_hash_entry *global_entry;
7621 const char *candidate = NULL;
7622 Elf_Internal_Shdr *symtab_hdr;
7625 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7627 for (i = 0; i < locsymcount; ++ i)
7631 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7634 candidate = bfd_elf_string_from_elf_section (input_bfd,
7635 symtab_hdr->sh_link,
7638 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7639 name, candidate, (unsigned long) sym->st_value);
7641 if (candidate && strcmp (candidate, name) == 0)
7643 asection *sec = flinfo->sections [i];
7645 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7646 *result += sec->output_offset + sec->output_section->vma;
7648 printf ("Found symbol with value %8.8lx\n",
7649 (unsigned long) *result);
7655 /* Hmm, haven't found it yet. perhaps it is a global. */
7656 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7657 FALSE, FALSE, TRUE);
7661 if (global_entry->type == bfd_link_hash_defined
7662 || global_entry->type == bfd_link_hash_defweak)
7664 *result = (global_entry->u.def.value
7665 + global_entry->u.def.section->output_section->vma
7666 + global_entry->u.def.section->output_offset);
7668 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7669 global_entry->root.string, (unsigned long) *result);
7678 resolve_section (const char *name,
7685 for (curr = sections; curr; curr = curr->next)
7686 if (strcmp (curr->name, name) == 0)
7688 *result = curr->vma;
7692 /* Hmm. still haven't found it. try pseudo-section names. */
7693 for (curr = sections; curr; curr = curr->next)
7695 len = strlen (curr->name);
7696 if (len > strlen (name))
7699 if (strncmp (curr->name, name, len) == 0)
7701 if (strncmp (".end", name + len, 4) == 0)
7703 *result = curr->vma + curr->size;
7707 /* Insert more pseudo-section names here, if you like. */
7715 undefined_reference (const char *reftype, const char *name)
7717 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7722 eval_symbol (bfd_vma *result,
7725 struct elf_final_link_info *flinfo,
7727 Elf_Internal_Sym *isymbuf,
7736 const char *sym = *symp;
7738 bfd_boolean symbol_is_section = FALSE;
7743 if (len < 1 || len > sizeof (symbuf))
7745 bfd_set_error (bfd_error_invalid_operation);
7758 *result = strtoul (sym, (char **) symp, 16);
7762 symbol_is_section = TRUE;
7765 symlen = strtol (sym, (char **) symp, 10);
7766 sym = *symp + 1; /* Skip the trailing ':'. */
7768 if (symend < sym || symlen + 1 > sizeof (symbuf))
7770 bfd_set_error (bfd_error_invalid_operation);
7774 memcpy (symbuf, sym, symlen);
7775 symbuf[symlen] = '\0';
7776 *symp = sym + symlen;
7778 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7779 the symbol as a section, or vice-versa. so we're pretty liberal in our
7780 interpretation here; section means "try section first", not "must be a
7781 section", and likewise with symbol. */
7783 if (symbol_is_section)
7785 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7786 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7787 isymbuf, locsymcount))
7789 undefined_reference ("section", symbuf);
7795 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7796 isymbuf, locsymcount)
7797 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7800 undefined_reference ("symbol", symbuf);
7807 /* All that remains are operators. */
7809 #define UNARY_OP(op) \
7810 if (strncmp (sym, #op, strlen (#op)) == 0) \
7812 sym += strlen (#op); \
7816 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7817 isymbuf, locsymcount, signed_p)) \
7820 *result = op ((bfd_signed_vma) a); \
7826 #define BINARY_OP(op) \
7827 if (strncmp (sym, #op, strlen (#op)) == 0) \
7829 sym += strlen (#op); \
7833 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7834 isymbuf, locsymcount, signed_p)) \
7837 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
7838 isymbuf, locsymcount, signed_p)) \
7841 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7871 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7872 bfd_set_error (bfd_error_invalid_operation);
7878 put_value (bfd_vma size,
7879 unsigned long chunksz,
7884 location += (size - chunksz);
7886 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7894 bfd_put_8 (input_bfd, x, location);
7897 bfd_put_16 (input_bfd, x, location);
7900 bfd_put_32 (input_bfd, x, location);
7904 bfd_put_64 (input_bfd, x, location);
7914 get_value (bfd_vma size,
7915 unsigned long chunksz,
7922 /* Sanity checks. */
7923 BFD_ASSERT (chunksz <= sizeof (x)
7926 && (size % chunksz) == 0
7927 && input_bfd != NULL
7928 && location != NULL);
7930 if (chunksz == sizeof (x))
7932 BFD_ASSERT (size == chunksz);
7934 /* Make sure that we do not perform an undefined shift operation.
7935 We know that size == chunksz so there will only be one iteration
7936 of the loop below. */
7940 shift = 8 * chunksz;
7942 for (; size; size -= chunksz, location += chunksz)
7947 x = (x << shift) | bfd_get_8 (input_bfd, location);
7950 x = (x << shift) | bfd_get_16 (input_bfd, location);
7953 x = (x << shift) | bfd_get_32 (input_bfd, location);
7957 x = (x << shift) | bfd_get_64 (input_bfd, location);
7968 decode_complex_addend (unsigned long *start, /* in bits */
7969 unsigned long *oplen, /* in bits */
7970 unsigned long *len, /* in bits */
7971 unsigned long *wordsz, /* in bytes */
7972 unsigned long *chunksz, /* in bytes */
7973 unsigned long *lsb0_p,
7974 unsigned long *signed_p,
7975 unsigned long *trunc_p,
7976 unsigned long encoded)
7978 * start = encoded & 0x3F;
7979 * len = (encoded >> 6) & 0x3F;
7980 * oplen = (encoded >> 12) & 0x3F;
7981 * wordsz = (encoded >> 18) & 0xF;
7982 * chunksz = (encoded >> 22) & 0xF;
7983 * lsb0_p = (encoded >> 27) & 1;
7984 * signed_p = (encoded >> 28) & 1;
7985 * trunc_p = (encoded >> 29) & 1;
7988 bfd_reloc_status_type
7989 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7990 asection *input_section ATTRIBUTE_UNUSED,
7992 Elf_Internal_Rela *rel,
7995 bfd_vma shift, x, mask;
7996 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7997 bfd_reloc_status_type r;
7999 /* Perform this reloc, since it is complex.
8000 (this is not to say that it necessarily refers to a complex
8001 symbol; merely that it is a self-describing CGEN based reloc.
8002 i.e. the addend has the complete reloc information (bit start, end,
8003 word size, etc) encoded within it.). */
8005 decode_complex_addend (&start, &oplen, &len, &wordsz,
8006 &chunksz, &lsb0_p, &signed_p,
8007 &trunc_p, rel->r_addend);
8009 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8012 shift = (start + 1) - len;
8014 shift = (8 * wordsz) - (start + len);
8016 /* FIXME: octets_per_byte. */
8017 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
8020 printf ("Doing complex reloc: "
8021 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8022 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8023 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8024 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8025 oplen, (unsigned long) x, (unsigned long) mask,
8026 (unsigned long) relocation);
8031 /* Now do an overflow check. */
8032 r = bfd_check_overflow ((signed_p
8033 ? complain_overflow_signed
8034 : complain_overflow_unsigned),
8035 len, 0, (8 * wordsz),
8039 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8042 printf (" relocation: %8.8lx\n"
8043 " shifted mask: %8.8lx\n"
8044 " shifted/masked reloc: %8.8lx\n"
8045 " result: %8.8lx\n",
8046 (unsigned long) relocation, (unsigned long) (mask << shift),
8047 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8049 /* FIXME: octets_per_byte. */
8050 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
8054 /* When performing a relocatable link, the input relocations are
8055 preserved. But, if they reference global symbols, the indices
8056 referenced must be updated. Update all the relocations found in
8060 elf_link_adjust_relocs (bfd *abfd,
8061 struct bfd_elf_section_reloc_data *reldata)
8064 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8066 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8067 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8068 bfd_vma r_type_mask;
8070 unsigned int count = reldata->count;
8071 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8073 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8075 swap_in = bed->s->swap_reloc_in;
8076 swap_out = bed->s->swap_reloc_out;
8078 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8080 swap_in = bed->s->swap_reloca_in;
8081 swap_out = bed->s->swap_reloca_out;
8086 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8089 if (bed->s->arch_size == 32)
8096 r_type_mask = 0xffffffff;
8100 erela = reldata->hdr->contents;
8101 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8103 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8106 if (*rel_hash == NULL)
8109 BFD_ASSERT ((*rel_hash)->indx >= 0);
8111 (*swap_in) (abfd, erela, irela);
8112 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8113 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8114 | (irela[j].r_info & r_type_mask));
8115 (*swap_out) (abfd, irela, erela);
8119 struct elf_link_sort_rela
8125 enum elf_reloc_type_class type;
8126 /* We use this as an array of size int_rels_per_ext_rel. */
8127 Elf_Internal_Rela rela[1];
8131 elf_link_sort_cmp1 (const void *A, const void *B)
8133 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8134 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8135 int relativea, relativeb;
8137 relativea = a->type == reloc_class_relative;
8138 relativeb = b->type == reloc_class_relative;
8140 if (relativea < relativeb)
8142 if (relativea > relativeb)
8144 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8146 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8148 if (a->rela->r_offset < b->rela->r_offset)
8150 if (a->rela->r_offset > b->rela->r_offset)
8156 elf_link_sort_cmp2 (const void *A, const void *B)
8158 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8159 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8162 if (a->u.offset < b->u.offset)
8164 if (a->u.offset > b->u.offset)
8166 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
8167 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
8172 if (a->rela->r_offset < b->rela->r_offset)
8174 if (a->rela->r_offset > b->rela->r_offset)
8180 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8182 asection *dynamic_relocs;
8185 bfd_size_type count, size;
8186 size_t i, ret, sort_elt, ext_size;
8187 bfd_byte *sort, *s_non_relative, *p;
8188 struct elf_link_sort_rela *sq;
8189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8190 int i2e = bed->s->int_rels_per_ext_rel;
8191 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8192 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8193 struct bfd_link_order *lo;
8195 bfd_boolean use_rela;
8197 /* Find a dynamic reloc section. */
8198 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8199 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8200 if (rela_dyn != NULL && rela_dyn->size > 0
8201 && rel_dyn != NULL && rel_dyn->size > 0)
8203 bfd_boolean use_rela_initialised = FALSE;
8205 /* This is just here to stop gcc from complaining.
8206 It's initialization checking code is not perfect. */
8209 /* Both sections are present. Examine the sizes
8210 of the indirect sections to help us choose. */
8211 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8212 if (lo->type == bfd_indirect_link_order)
8214 asection *o = lo->u.indirect.section;
8216 if ((o->size % bed->s->sizeof_rela) == 0)
8218 if ((o->size % bed->s->sizeof_rel) == 0)
8219 /* Section size is divisible by both rel and rela sizes.
8220 It is of no help to us. */
8224 /* Section size is only divisible by rela. */
8225 if (use_rela_initialised && (use_rela == FALSE))
8228 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8229 bfd_set_error (bfd_error_invalid_operation);
8235 use_rela_initialised = TRUE;
8239 else if ((o->size % bed->s->sizeof_rel) == 0)
8241 /* Section size is only divisible by rel. */
8242 if (use_rela_initialised && (use_rela == TRUE))
8245 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8246 bfd_set_error (bfd_error_invalid_operation);
8252 use_rela_initialised = TRUE;
8257 /* The section size is not divisible by either - something is wrong. */
8259 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8260 bfd_set_error (bfd_error_invalid_operation);
8265 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8266 if (lo->type == bfd_indirect_link_order)
8268 asection *o = lo->u.indirect.section;
8270 if ((o->size % bed->s->sizeof_rela) == 0)
8272 if ((o->size % bed->s->sizeof_rel) == 0)
8273 /* Section size is divisible by both rel and rela sizes.
8274 It is of no help to us. */
8278 /* Section size is only divisible by rela. */
8279 if (use_rela_initialised && (use_rela == FALSE))
8282 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8283 bfd_set_error (bfd_error_invalid_operation);
8289 use_rela_initialised = TRUE;
8293 else if ((o->size % bed->s->sizeof_rel) == 0)
8295 /* Section size is only divisible by rel. */
8296 if (use_rela_initialised && (use_rela == TRUE))
8299 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8300 bfd_set_error (bfd_error_invalid_operation);
8306 use_rela_initialised = TRUE;
8311 /* The section size is not divisible by either - something is wrong. */
8313 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8314 bfd_set_error (bfd_error_invalid_operation);
8319 if (! use_rela_initialised)
8323 else if (rela_dyn != NULL && rela_dyn->size > 0)
8325 else if (rel_dyn != NULL && rel_dyn->size > 0)
8332 dynamic_relocs = rela_dyn;
8333 ext_size = bed->s->sizeof_rela;
8334 swap_in = bed->s->swap_reloca_in;
8335 swap_out = bed->s->swap_reloca_out;
8339 dynamic_relocs = rel_dyn;
8340 ext_size = bed->s->sizeof_rel;
8341 swap_in = bed->s->swap_reloc_in;
8342 swap_out = bed->s->swap_reloc_out;
8346 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8347 if (lo->type == bfd_indirect_link_order)
8348 size += lo->u.indirect.section->size;
8350 if (size != dynamic_relocs->size)
8353 sort_elt = (sizeof (struct elf_link_sort_rela)
8354 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8356 count = dynamic_relocs->size / ext_size;
8359 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8363 (*info->callbacks->warning)
8364 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8368 if (bed->s->arch_size == 32)
8369 r_sym_mask = ~(bfd_vma) 0xff;
8371 r_sym_mask = ~(bfd_vma) 0xffffffff;
8373 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8374 if (lo->type == bfd_indirect_link_order)
8376 bfd_byte *erel, *erelend;
8377 asection *o = lo->u.indirect.section;
8379 if (o->contents == NULL && o->size != 0)
8381 /* This is a reloc section that is being handled as a normal
8382 section. See bfd_section_from_shdr. We can't combine
8383 relocs in this case. */
8388 erelend = o->contents + o->size;
8389 /* FIXME: octets_per_byte. */
8390 p = sort + o->output_offset / ext_size * sort_elt;
8392 while (erel < erelend)
8394 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8396 (*swap_in) (abfd, erel, s->rela);
8397 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8398 s->u.sym_mask = r_sym_mask;
8404 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8406 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8408 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8409 if (s->type != reloc_class_relative)
8415 sq = (struct elf_link_sort_rela *) s_non_relative;
8416 for (; i < count; i++, p += sort_elt)
8418 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8419 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8421 sp->u.offset = sq->rela->r_offset;
8424 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8426 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8427 if (lo->type == bfd_indirect_link_order)
8429 bfd_byte *erel, *erelend;
8430 asection *o = lo->u.indirect.section;
8433 erelend = o->contents + o->size;
8434 /* FIXME: octets_per_byte. */
8435 p = sort + o->output_offset / ext_size * sort_elt;
8436 while (erel < erelend)
8438 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8439 (*swap_out) (abfd, s->rela, erel);
8446 *psec = dynamic_relocs;
8450 /* Flush the output symbols to the file. */
8453 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8454 const struct elf_backend_data *bed)
8456 if (flinfo->symbuf_count > 0)
8458 Elf_Internal_Shdr *hdr;
8462 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8463 pos = hdr->sh_offset + hdr->sh_size;
8464 amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8465 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8466 || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8469 hdr->sh_size += amt;
8470 flinfo->symbuf_count = 0;
8476 /* Add a symbol to the output symbol table. */
8479 elf_link_output_sym (struct elf_final_link_info *flinfo,
8481 Elf_Internal_Sym *elfsym,
8482 asection *input_sec,
8483 struct elf_link_hash_entry *h)
8486 Elf_External_Sym_Shndx *destshndx;
8487 int (*output_symbol_hook)
8488 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8489 struct elf_link_hash_entry *);
8490 const struct elf_backend_data *bed;
8492 bed = get_elf_backend_data (flinfo->output_bfd);
8493 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8494 if (output_symbol_hook != NULL)
8496 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8501 if (name == NULL || *name == '\0')
8502 elfsym->st_name = 0;
8503 else if (input_sec->flags & SEC_EXCLUDE)
8504 elfsym->st_name = 0;
8507 elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8509 if (elfsym->st_name == (unsigned long) -1)
8513 if (flinfo->symbuf_count >= flinfo->symbuf_size)
8515 if (! elf_link_flush_output_syms (flinfo, bed))
8519 dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8520 destshndx = flinfo->symshndxbuf;
8521 if (destshndx != NULL)
8523 if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8527 amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8528 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8530 if (destshndx == NULL)
8532 flinfo->symshndxbuf = destshndx;
8533 memset ((char *) destshndx + amt, 0, amt);
8534 flinfo->shndxbuf_size *= 2;
8536 destshndx += bfd_get_symcount (flinfo->output_bfd);
8539 bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8540 flinfo->symbuf_count += 1;
8541 bfd_get_symcount (flinfo->output_bfd) += 1;
8546 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8549 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8551 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8552 && sym->st_shndx < SHN_LORESERVE)
8554 /* The gABI doesn't support dynamic symbols in output sections
8556 (*_bfd_error_handler)
8557 (_("%B: Too many sections: %d (>= %d)"),
8558 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8559 bfd_set_error (bfd_error_nonrepresentable_section);
8565 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8566 allowing an unsatisfied unversioned symbol in the DSO to match a
8567 versioned symbol that would normally require an explicit version.
8568 We also handle the case that a DSO references a hidden symbol
8569 which may be satisfied by a versioned symbol in another DSO. */
8572 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8573 const struct elf_backend_data *bed,
8574 struct elf_link_hash_entry *h)
8577 struct elf_link_loaded_list *loaded;
8579 if (!is_elf_hash_table (info->hash))
8582 /* Check indirect symbol. */
8583 while (h->root.type == bfd_link_hash_indirect)
8584 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8586 switch (h->root.type)
8592 case bfd_link_hash_undefined:
8593 case bfd_link_hash_undefweak:
8594 abfd = h->root.u.undef.abfd;
8595 if ((abfd->flags & DYNAMIC) == 0
8596 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8600 case bfd_link_hash_defined:
8601 case bfd_link_hash_defweak:
8602 abfd = h->root.u.def.section->owner;
8605 case bfd_link_hash_common:
8606 abfd = h->root.u.c.p->section->owner;
8609 BFD_ASSERT (abfd != NULL);
8611 for (loaded = elf_hash_table (info)->loaded;
8613 loaded = loaded->next)
8616 Elf_Internal_Shdr *hdr;
8617 bfd_size_type symcount;
8618 bfd_size_type extsymcount;
8619 bfd_size_type extsymoff;
8620 Elf_Internal_Shdr *versymhdr;
8621 Elf_Internal_Sym *isym;
8622 Elf_Internal_Sym *isymend;
8623 Elf_Internal_Sym *isymbuf;
8624 Elf_External_Versym *ever;
8625 Elf_External_Versym *extversym;
8627 input = loaded->abfd;
8629 /* We check each DSO for a possible hidden versioned definition. */
8631 || (input->flags & DYNAMIC) == 0
8632 || elf_dynversym (input) == 0)
8635 hdr = &elf_tdata (input)->dynsymtab_hdr;
8637 symcount = hdr->sh_size / bed->s->sizeof_sym;
8638 if (elf_bad_symtab (input))
8640 extsymcount = symcount;
8645 extsymcount = symcount - hdr->sh_info;
8646 extsymoff = hdr->sh_info;
8649 if (extsymcount == 0)
8652 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8654 if (isymbuf == NULL)
8657 /* Read in any version definitions. */
8658 versymhdr = &elf_tdata (input)->dynversym_hdr;
8659 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8660 if (extversym == NULL)
8663 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8664 || (bfd_bread (extversym, versymhdr->sh_size, input)
8665 != versymhdr->sh_size))
8673 ever = extversym + extsymoff;
8674 isymend = isymbuf + extsymcount;
8675 for (isym = isymbuf; isym < isymend; isym++, ever++)
8678 Elf_Internal_Versym iver;
8679 unsigned short version_index;
8681 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8682 || isym->st_shndx == SHN_UNDEF)
8685 name = bfd_elf_string_from_elf_section (input,
8688 if (strcmp (name, h->root.root.string) != 0)
8691 _bfd_elf_swap_versym_in (input, ever, &iver);
8693 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8695 && h->forced_local))
8697 /* If we have a non-hidden versioned sym, then it should
8698 have provided a definition for the undefined sym unless
8699 it is defined in a non-shared object and forced local.
8704 version_index = iver.vs_vers & VERSYM_VERSION;
8705 if (version_index == 1 || version_index == 2)
8707 /* This is the base or first version. We can use it. */
8721 /* Add an external symbol to the symbol table. This is called from
8722 the hash table traversal routine. When generating a shared object,
8723 we go through the symbol table twice. The first time we output
8724 anything that might have been forced to local scope in a version
8725 script. The second time we output the symbols that are still
8729 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8731 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8732 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8733 struct elf_final_link_info *flinfo = eoinfo->flinfo;
8735 Elf_Internal_Sym sym;
8736 asection *input_sec;
8737 const struct elf_backend_data *bed;
8741 if (h->root.type == bfd_link_hash_warning)
8743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8744 if (h->root.type == bfd_link_hash_new)
8748 /* Decide whether to output this symbol in this pass. */
8749 if (eoinfo->localsyms)
8751 if (!h->forced_local)
8753 if (eoinfo->second_pass
8754 && !((h->root.type == bfd_link_hash_defined
8755 || h->root.type == bfd_link_hash_defweak)
8756 && h->root.u.def.section->output_section != NULL))
8761 if (h->forced_local)
8765 bed = get_elf_backend_data (flinfo->output_bfd);
8767 if (h->root.type == bfd_link_hash_undefined)
8769 /* If we have an undefined symbol reference here then it must have
8770 come from a shared library that is being linked in. (Undefined
8771 references in regular files have already been handled unless
8772 they are in unreferenced sections which are removed by garbage
8774 bfd_boolean ignore_undef = FALSE;
8776 /* Some symbols may be special in that the fact that they're
8777 undefined can be safely ignored - let backend determine that. */
8778 if (bed->elf_backend_ignore_undef_symbol)
8779 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8781 /* If we are reporting errors for this situation then do so now. */
8784 && (!h->ref_regular || flinfo->info->gc_sections)
8785 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8786 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8788 if (!(flinfo->info->callbacks->undefined_symbol
8789 (flinfo->info, h->root.root.string,
8790 h->ref_regular ? NULL : h->root.u.undef.abfd,
8792 (flinfo->info->unresolved_syms_in_shared_libs
8793 == RM_GENERATE_ERROR))))
8795 bfd_set_error (bfd_error_bad_value);
8796 eoinfo->failed = TRUE;
8802 /* We should also warn if a forced local symbol is referenced from
8803 shared libraries. */
8804 if (!flinfo->info->relocatable
8805 && flinfo->info->executable
8810 && h->ref_dynamic_nonweak
8811 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8815 struct elf_link_hash_entry *hi = h;
8817 /* Check indirect symbol. */
8818 while (hi->root.type == bfd_link_hash_indirect)
8819 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8821 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8822 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8823 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8824 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8826 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8827 def_bfd = flinfo->output_bfd;
8828 if (hi->root.u.def.section != bfd_abs_section_ptr)
8829 def_bfd = hi->root.u.def.section->owner;
8830 (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8831 h->root.root.string);
8832 bfd_set_error (bfd_error_bad_value);
8833 eoinfo->failed = TRUE;
8837 /* We don't want to output symbols that have never been mentioned by
8838 a regular file, or that we have been told to strip. However, if
8839 h->indx is set to -2, the symbol is used by a reloc and we must
8843 else if ((h->def_dynamic
8845 || h->root.type == bfd_link_hash_new)
8849 else if (flinfo->info->strip == strip_all)
8851 else if (flinfo->info->strip == strip_some
8852 && bfd_hash_lookup (flinfo->info->keep_hash,
8853 h->root.root.string, FALSE, FALSE) == NULL)
8855 else if ((h->root.type == bfd_link_hash_defined
8856 || h->root.type == bfd_link_hash_defweak)
8857 && ((flinfo->info->strip_discarded
8858 && discarded_section (h->root.u.def.section))
8859 || (h->root.u.def.section->owner != NULL
8860 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8862 else if ((h->root.type == bfd_link_hash_undefined
8863 || h->root.type == bfd_link_hash_undefweak)
8864 && h->root.u.undef.abfd != NULL
8865 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8870 /* If we're stripping it, and it's not a dynamic symbol, there's
8871 nothing else to do unless it is a forced local symbol or a
8872 STT_GNU_IFUNC symbol. */
8875 && h->type != STT_GNU_IFUNC
8876 && !h->forced_local)
8880 sym.st_size = h->size;
8881 sym.st_other = h->other;
8882 if (h->forced_local)
8884 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8885 /* Turn off visibility on local symbol. */
8886 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8888 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
8889 else if (h->unique_global && h->def_regular)
8890 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8891 else if (h->root.type == bfd_link_hash_undefweak
8892 || h->root.type == bfd_link_hash_defweak)
8893 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8895 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8896 sym.st_target_internal = h->target_internal;
8898 switch (h->root.type)
8901 case bfd_link_hash_new:
8902 case bfd_link_hash_warning:
8906 case bfd_link_hash_undefined:
8907 case bfd_link_hash_undefweak:
8908 input_sec = bfd_und_section_ptr;
8909 sym.st_shndx = SHN_UNDEF;
8912 case bfd_link_hash_defined:
8913 case bfd_link_hash_defweak:
8915 input_sec = h->root.u.def.section;
8916 if (input_sec->output_section != NULL)
8918 if (eoinfo->localsyms && flinfo->filesym_count == 1)
8920 bfd_boolean second_pass_sym
8921 = (input_sec->owner == flinfo->output_bfd
8922 || input_sec->owner == NULL
8923 || (input_sec->flags & SEC_LINKER_CREATED) != 0
8924 || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8926 eoinfo->need_second_pass |= second_pass_sym;
8927 if (eoinfo->second_pass != second_pass_sym)
8932 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8933 input_sec->output_section);
8934 if (sym.st_shndx == SHN_BAD)
8936 (*_bfd_error_handler)
8937 (_("%B: could not find output section %A for input section %A"),
8938 flinfo->output_bfd, input_sec->output_section, input_sec);
8939 bfd_set_error (bfd_error_nonrepresentable_section);
8940 eoinfo->failed = TRUE;
8944 /* ELF symbols in relocatable files are section relative,
8945 but in nonrelocatable files they are virtual
8947 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8948 if (!flinfo->info->relocatable)
8950 sym.st_value += input_sec->output_section->vma;
8951 if (h->type == STT_TLS)
8953 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8954 if (tls_sec != NULL)
8955 sym.st_value -= tls_sec->vma;
8958 /* The TLS section may have been garbage collected. */
8959 BFD_ASSERT (flinfo->info->gc_sections
8960 && !input_sec->gc_mark);
8967 BFD_ASSERT (input_sec->owner == NULL
8968 || (input_sec->owner->flags & DYNAMIC) != 0);
8969 sym.st_shndx = SHN_UNDEF;
8970 input_sec = bfd_und_section_ptr;
8975 case bfd_link_hash_common:
8976 input_sec = h->root.u.c.p->section;
8977 sym.st_shndx = bed->common_section_index (input_sec);
8978 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8981 case bfd_link_hash_indirect:
8982 /* These symbols are created by symbol versioning. They point
8983 to the decorated version of the name. For example, if the
8984 symbol foo@@GNU_1.2 is the default, which should be used when
8985 foo is used with no version, then we add an indirect symbol
8986 foo which points to foo@@GNU_1.2. We ignore these symbols,
8987 since the indirected symbol is already in the hash table. */
8991 /* Give the processor backend a chance to tweak the symbol value,
8992 and also to finish up anything that needs to be done for this
8993 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8994 forced local syms when non-shared is due to a historical quirk.
8995 STT_GNU_IFUNC symbol must go through PLT. */
8996 if ((h->type == STT_GNU_IFUNC
8998 && !flinfo->info->relocatable)
8999 || ((h->dynindx != -1
9001 && ((flinfo->info->shared
9002 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9003 || h->root.type != bfd_link_hash_undefweak))
9004 || !h->forced_local)
9005 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9007 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9008 (flinfo->output_bfd, flinfo->info, h, &sym)))
9010 eoinfo->failed = TRUE;
9015 /* If we are marking the symbol as undefined, and there are no
9016 non-weak references to this symbol from a regular object, then
9017 mark the symbol as weak undefined; if there are non-weak
9018 references, mark the symbol as strong. We can't do this earlier,
9019 because it might not be marked as undefined until the
9020 finish_dynamic_symbol routine gets through with it. */
9021 if (sym.st_shndx == SHN_UNDEF
9023 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9024 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9027 unsigned int type = ELF_ST_TYPE (sym.st_info);
9029 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9030 if (type == STT_GNU_IFUNC)
9033 if (h->ref_regular_nonweak)
9034 bindtype = STB_GLOBAL;
9036 bindtype = STB_WEAK;
9037 sym.st_info = ELF_ST_INFO (bindtype, type);
9040 /* If this is a symbol defined in a dynamic library, don't use the
9041 symbol size from the dynamic library. Relinking an executable
9042 against a new library may introduce gratuitous changes in the
9043 executable's symbols if we keep the size. */
9044 if (sym.st_shndx == SHN_UNDEF
9049 /* If a non-weak symbol with non-default visibility is not defined
9050 locally, it is a fatal error. */
9051 if (!flinfo->info->relocatable
9052 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9053 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9054 && h->root.type == bfd_link_hash_undefined
9059 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9060 msg = _("%B: protected symbol `%s' isn't defined");
9061 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9062 msg = _("%B: internal symbol `%s' isn't defined");
9064 msg = _("%B: hidden symbol `%s' isn't defined");
9065 (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9066 bfd_set_error (bfd_error_bad_value);
9067 eoinfo->failed = TRUE;
9071 /* If this symbol should be put in the .dynsym section, then put it
9072 there now. We already know the symbol index. We also fill in
9073 the entry in the .hash section. */
9074 if (flinfo->dynsym_sec != NULL
9076 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9080 /* Since there is no version information in the dynamic string,
9081 if there is no version info in symbol version section, we will
9082 have a run-time problem. */
9083 if (h->verinfo.verdef == NULL)
9085 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9087 if (p && p [1] != '\0')
9089 (*_bfd_error_handler)
9090 (_("%B: No symbol version section for versioned symbol `%s'"),
9091 flinfo->output_bfd, h->root.root.string);
9092 eoinfo->failed = TRUE;
9097 sym.st_name = h->dynstr_index;
9098 esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9099 if (!check_dynsym (flinfo->output_bfd, &sym))
9101 eoinfo->failed = TRUE;
9104 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9106 if (flinfo->hash_sec != NULL)
9108 size_t hash_entry_size;
9109 bfd_byte *bucketpos;
9114 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9115 bucket = h->u.elf_hash_value % bucketcount;
9118 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9119 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9120 + (bucket + 2) * hash_entry_size);
9121 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9122 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9124 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9125 ((bfd_byte *) flinfo->hash_sec->contents
9126 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9129 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9131 Elf_Internal_Versym iversym;
9132 Elf_External_Versym *eversym;
9134 if (!h->def_regular)
9136 if (h->verinfo.verdef == NULL)
9137 iversym.vs_vers = 0;
9139 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9143 if (h->verinfo.vertree == NULL)
9144 iversym.vs_vers = 1;
9146 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9147 if (flinfo->info->create_default_symver)
9152 iversym.vs_vers |= VERSYM_HIDDEN;
9154 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9155 eversym += h->dynindx;
9156 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9160 /* If we're stripping it, then it was just a dynamic symbol, and
9161 there's nothing else to do. */
9162 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9165 indx = bfd_get_symcount (flinfo->output_bfd);
9166 ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9169 eoinfo->failed = TRUE;
9174 else if (h->indx == -2)
9180 /* Return TRUE if special handling is done for relocs in SEC against
9181 symbols defined in discarded sections. */
9184 elf_section_ignore_discarded_relocs (asection *sec)
9186 const struct elf_backend_data *bed;
9188 switch (sec->sec_info_type)
9190 case SEC_INFO_TYPE_STABS:
9191 case SEC_INFO_TYPE_EH_FRAME:
9197 bed = get_elf_backend_data (sec->owner);
9198 if (bed->elf_backend_ignore_discarded_relocs != NULL
9199 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9205 /* Return a mask saying how ld should treat relocations in SEC against
9206 symbols defined in discarded sections. If this function returns
9207 COMPLAIN set, ld will issue a warning message. If this function
9208 returns PRETEND set, and the discarded section was link-once and the
9209 same size as the kept link-once section, ld will pretend that the
9210 symbol was actually defined in the kept section. Otherwise ld will
9211 zero the reloc (at least that is the intent, but some cooperation by
9212 the target dependent code is needed, particularly for REL targets). */
9215 _bfd_elf_default_action_discarded (asection *sec)
9217 if (sec->flags & SEC_DEBUGGING)
9220 if (strcmp (".eh_frame", sec->name) == 0)
9223 if (strcmp (".gcc_except_table", sec->name) == 0)
9226 return COMPLAIN | PRETEND;
9229 /* Find a match between a section and a member of a section group. */
9232 match_group_member (asection *sec, asection *group,
9233 struct bfd_link_info *info)
9235 asection *first = elf_next_in_group (group);
9236 asection *s = first;
9240 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9243 s = elf_next_in_group (s);
9251 /* Check if the kept section of a discarded section SEC can be used
9252 to replace it. Return the replacement if it is OK. Otherwise return
9256 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9260 kept = sec->kept_section;
9263 if ((kept->flags & SEC_GROUP) != 0)
9264 kept = match_group_member (sec, kept, info);
9266 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9267 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9269 sec->kept_section = kept;
9274 /* Link an input file into the linker output file. This function
9275 handles all the sections and relocations of the input file at once.
9276 This is so that we only have to read the local symbols once, and
9277 don't have to keep them in memory. */
9280 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9282 int (*relocate_section)
9283 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9284 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9286 Elf_Internal_Shdr *symtab_hdr;
9289 Elf_Internal_Sym *isymbuf;
9290 Elf_Internal_Sym *isym;
9291 Elf_Internal_Sym *isymend;
9293 asection **ppsection;
9295 const struct elf_backend_data *bed;
9296 struct elf_link_hash_entry **sym_hashes;
9297 bfd_size_type address_size;
9298 bfd_vma r_type_mask;
9300 bfd_boolean have_file_sym = FALSE;
9302 output_bfd = flinfo->output_bfd;
9303 bed = get_elf_backend_data (output_bfd);
9304 relocate_section = bed->elf_backend_relocate_section;
9306 /* If this is a dynamic object, we don't want to do anything here:
9307 we don't want the local symbols, and we don't want the section
9309 if ((input_bfd->flags & DYNAMIC) != 0)
9312 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9313 if (elf_bad_symtab (input_bfd))
9315 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9320 locsymcount = symtab_hdr->sh_info;
9321 extsymoff = symtab_hdr->sh_info;
9324 /* Read the local symbols. */
9325 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9326 if (isymbuf == NULL && locsymcount != 0)
9328 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9329 flinfo->internal_syms,
9330 flinfo->external_syms,
9331 flinfo->locsym_shndx);
9332 if (isymbuf == NULL)
9336 /* Find local symbol sections and adjust values of symbols in
9337 SEC_MERGE sections. Write out those local symbols we know are
9338 going into the output file. */
9339 isymend = isymbuf + locsymcount;
9340 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9342 isym++, pindex++, ppsection++)
9346 Elf_Internal_Sym osym;
9352 if (elf_bad_symtab (input_bfd))
9354 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9361 if (isym->st_shndx == SHN_UNDEF)
9362 isec = bfd_und_section_ptr;
9363 else if (isym->st_shndx == SHN_ABS)
9364 isec = bfd_abs_section_ptr;
9365 else if (isym->st_shndx == SHN_COMMON)
9366 isec = bfd_com_section_ptr;
9369 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9372 /* Don't attempt to output symbols with st_shnx in the
9373 reserved range other than SHN_ABS and SHN_COMMON. */
9377 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9378 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9380 _bfd_merged_section_offset (output_bfd, &isec,
9381 elf_section_data (isec)->sec_info,
9387 /* Don't output the first, undefined, symbol. */
9388 if (ppsection == flinfo->sections)
9391 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9393 /* We never output section symbols. Instead, we use the
9394 section symbol of the corresponding section in the output
9399 /* If we are stripping all symbols, we don't want to output this
9401 if (flinfo->info->strip == strip_all)
9404 /* If we are discarding all local symbols, we don't want to
9405 output this one. If we are generating a relocatable output
9406 file, then some of the local symbols may be required by
9407 relocs; we output them below as we discover that they are
9409 if (flinfo->info->discard == discard_all)
9412 /* If this symbol is defined in a section which we are
9413 discarding, we don't need to keep it. */
9414 if (isym->st_shndx != SHN_UNDEF
9415 && isym->st_shndx < SHN_LORESERVE
9416 && bfd_section_removed_from_list (output_bfd,
9417 isec->output_section))
9420 /* Get the name of the symbol. */
9421 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9426 /* See if we are discarding symbols with this name. */
9427 if ((flinfo->info->strip == strip_some
9428 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9430 || (((flinfo->info->discard == discard_sec_merge
9431 && (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9432 || flinfo->info->discard == discard_l)
9433 && bfd_is_local_label_name (input_bfd, name)))
9436 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9438 have_file_sym = TRUE;
9439 flinfo->filesym_count += 1;
9443 /* In the absence of debug info, bfd_find_nearest_line uses
9444 FILE symbols to determine the source file for local
9445 function symbols. Provide a FILE symbol here if input
9446 files lack such, so that their symbols won't be
9447 associated with a previous input file. It's not the
9448 source file, but the best we can do. */
9449 have_file_sym = TRUE;
9450 flinfo->filesym_count += 1;
9451 memset (&osym, 0, sizeof (osym));
9452 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9453 osym.st_shndx = SHN_ABS;
9454 if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9455 bfd_abs_section_ptr, NULL))
9461 /* Adjust the section index for the output file. */
9462 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9463 isec->output_section);
9464 if (osym.st_shndx == SHN_BAD)
9467 /* ELF symbols in relocatable files are section relative, but
9468 in executable files they are virtual addresses. Note that
9469 this code assumes that all ELF sections have an associated
9470 BFD section with a reasonable value for output_offset; below
9471 we assume that they also have a reasonable value for
9472 output_section. Any special sections must be set up to meet
9473 these requirements. */
9474 osym.st_value += isec->output_offset;
9475 if (!flinfo->info->relocatable)
9477 osym.st_value += isec->output_section->vma;
9478 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9480 /* STT_TLS symbols are relative to PT_TLS segment base. */
9481 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9482 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9486 indx = bfd_get_symcount (output_bfd);
9487 ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9494 if (bed->s->arch_size == 32)
9502 r_type_mask = 0xffffffff;
9507 /* Relocate the contents of each section. */
9508 sym_hashes = elf_sym_hashes (input_bfd);
9509 for (o = input_bfd->sections; o != NULL; o = o->next)
9513 if (! o->linker_mark)
9515 /* This section was omitted from the link. */
9519 if (flinfo->info->relocatable
9520 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9522 /* Deal with the group signature symbol. */
9523 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9524 unsigned long symndx = sec_data->this_hdr.sh_info;
9525 asection *osec = o->output_section;
9527 if (symndx >= locsymcount
9528 || (elf_bad_symtab (input_bfd)
9529 && flinfo->sections[symndx] == NULL))
9531 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9532 while (h->root.type == bfd_link_hash_indirect
9533 || h->root.type == bfd_link_hash_warning)
9534 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9535 /* Arrange for symbol to be output. */
9537 elf_section_data (osec)->this_hdr.sh_info = -2;
9539 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9541 /* We'll use the output section target_index. */
9542 asection *sec = flinfo->sections[symndx]->output_section;
9543 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9547 if (flinfo->indices[symndx] == -1)
9549 /* Otherwise output the local symbol now. */
9550 Elf_Internal_Sym sym = isymbuf[symndx];
9551 asection *sec = flinfo->sections[symndx]->output_section;
9556 name = bfd_elf_string_from_elf_section (input_bfd,
9557 symtab_hdr->sh_link,
9562 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9564 if (sym.st_shndx == SHN_BAD)
9567 sym.st_value += o->output_offset;
9569 indx = bfd_get_symcount (output_bfd);
9570 ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9574 flinfo->indices[symndx] = indx;
9578 elf_section_data (osec)->this_hdr.sh_info
9579 = flinfo->indices[symndx];
9583 if ((o->flags & SEC_HAS_CONTENTS) == 0
9584 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9587 if ((o->flags & SEC_LINKER_CREATED) != 0)
9589 /* Section was created by _bfd_elf_link_create_dynamic_sections
9594 /* Get the contents of the section. They have been cached by a
9595 relaxation routine. Note that o is a section in an input
9596 file, so the contents field will not have been set by any of
9597 the routines which work on output files. */
9598 if (elf_section_data (o)->this_hdr.contents != NULL)
9599 contents = elf_section_data (o)->this_hdr.contents;
9602 contents = flinfo->contents;
9603 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9607 if ((o->flags & SEC_RELOC) != 0)
9609 Elf_Internal_Rela *internal_relocs;
9610 Elf_Internal_Rela *rel, *relend;
9611 int action_discarded;
9614 /* Get the swapped relocs. */
9616 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9617 flinfo->internal_relocs, FALSE);
9618 if (internal_relocs == NULL
9619 && o->reloc_count > 0)
9622 /* We need to reverse-copy input .ctors/.dtors sections if
9623 they are placed in .init_array/.finit_array for output. */
9624 if (o->size > address_size
9625 && ((strncmp (o->name, ".ctors", 6) == 0
9626 && strcmp (o->output_section->name,
9627 ".init_array") == 0)
9628 || (strncmp (o->name, ".dtors", 6) == 0
9629 && strcmp (o->output_section->name,
9630 ".fini_array") == 0))
9631 && (o->name[6] == 0 || o->name[6] == '.'))
9633 if (o->size != o->reloc_count * address_size)
9635 (*_bfd_error_handler)
9636 (_("error: %B: size of section %A is not "
9637 "multiple of address size"),
9639 bfd_set_error (bfd_error_on_input);
9642 o->flags |= SEC_ELF_REVERSE_COPY;
9645 action_discarded = -1;
9646 if (!elf_section_ignore_discarded_relocs (o))
9647 action_discarded = (*bed->action_discarded) (o);
9649 /* Run through the relocs evaluating complex reloc symbols and
9650 looking for relocs against symbols from discarded sections
9651 or section symbols from removed link-once sections.
9652 Complain about relocs against discarded sections. Zero
9653 relocs against removed link-once sections. */
9655 rel = internal_relocs;
9656 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9657 for ( ; rel < relend; rel++)
9659 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9660 unsigned int s_type;
9661 asection **ps, *sec;
9662 struct elf_link_hash_entry *h = NULL;
9663 const char *sym_name;
9665 if (r_symndx == STN_UNDEF)
9668 if (r_symndx >= locsymcount
9669 || (elf_bad_symtab (input_bfd)
9670 && flinfo->sections[r_symndx] == NULL))
9672 h = sym_hashes[r_symndx - extsymoff];
9674 /* Badly formatted input files can contain relocs that
9675 reference non-existant symbols. Check here so that
9676 we do not seg fault. */
9681 sprintf_vma (buffer, rel->r_info);
9682 (*_bfd_error_handler)
9683 (_("error: %B contains a reloc (0x%s) for section %A "
9684 "that references a non-existent global symbol"),
9685 input_bfd, o, buffer);
9686 bfd_set_error (bfd_error_bad_value);
9690 while (h->root.type == bfd_link_hash_indirect
9691 || h->root.type == bfd_link_hash_warning)
9692 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9697 if (h->root.type == bfd_link_hash_defined
9698 || h->root.type == bfd_link_hash_defweak)
9699 ps = &h->root.u.def.section;
9701 sym_name = h->root.root.string;
9705 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9707 s_type = ELF_ST_TYPE (sym->st_info);
9708 ps = &flinfo->sections[r_symndx];
9709 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9713 if ((s_type == STT_RELC || s_type == STT_SRELC)
9714 && !flinfo->info->relocatable)
9717 bfd_vma dot = (rel->r_offset
9718 + o->output_offset + o->output_section->vma);
9720 printf ("Encountered a complex symbol!");
9721 printf (" (input_bfd %s, section %s, reloc %ld\n",
9722 input_bfd->filename, o->name,
9723 (long) (rel - internal_relocs));
9724 printf (" symbol: idx %8.8lx, name %s\n",
9725 r_symndx, sym_name);
9726 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9727 (unsigned long) rel->r_info,
9728 (unsigned long) rel->r_offset);
9730 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9731 isymbuf, locsymcount, s_type == STT_SRELC))
9734 /* Symbol evaluated OK. Update to absolute value. */
9735 set_symbol_value (input_bfd, isymbuf, locsymcount,
9740 if (action_discarded != -1 && ps != NULL)
9742 /* Complain if the definition comes from a
9743 discarded section. */
9744 if ((sec = *ps) != NULL && discarded_section (sec))
9746 BFD_ASSERT (r_symndx != STN_UNDEF);
9747 if (action_discarded & COMPLAIN)
9748 (*flinfo->info->callbacks->einfo)
9749 (_("%X`%s' referenced in section `%A' of %B: "
9750 "defined in discarded section `%A' of %B\n"),
9751 sym_name, o, input_bfd, sec, sec->owner);
9753 /* Try to do the best we can to support buggy old
9754 versions of gcc. Pretend that the symbol is
9755 really defined in the kept linkonce section.
9756 FIXME: This is quite broken. Modifying the
9757 symbol here means we will be changing all later
9758 uses of the symbol, not just in this section. */
9759 if (action_discarded & PRETEND)
9763 kept = _bfd_elf_check_kept_section (sec,
9775 /* Relocate the section by invoking a back end routine.
9777 The back end routine is responsible for adjusting the
9778 section contents as necessary, and (if using Rela relocs
9779 and generating a relocatable output file) adjusting the
9780 reloc addend as necessary.
9782 The back end routine does not have to worry about setting
9783 the reloc address or the reloc symbol index.
9785 The back end routine is given a pointer to the swapped in
9786 internal symbols, and can access the hash table entries
9787 for the external symbols via elf_sym_hashes (input_bfd).
9789 When generating relocatable output, the back end routine
9790 must handle STB_LOCAL/STT_SECTION symbols specially. The
9791 output symbol is going to be a section symbol
9792 corresponding to the output section, which will require
9793 the addend to be adjusted. */
9795 ret = (*relocate_section) (output_bfd, flinfo->info,
9796 input_bfd, o, contents,
9804 || flinfo->info->relocatable
9805 || flinfo->info->emitrelocations)
9807 Elf_Internal_Rela *irela;
9808 Elf_Internal_Rela *irelaend, *irelamid;
9809 bfd_vma last_offset;
9810 struct elf_link_hash_entry **rel_hash;
9811 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9812 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9813 unsigned int next_erel;
9814 bfd_boolean rela_normal;
9815 struct bfd_elf_section_data *esdi, *esdo;
9817 esdi = elf_section_data (o);
9818 esdo = elf_section_data (o->output_section);
9819 rela_normal = FALSE;
9821 /* Adjust the reloc addresses and symbol indices. */
9823 irela = internal_relocs;
9824 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9825 rel_hash = esdo->rel.hashes + esdo->rel.count;
9826 /* We start processing the REL relocs, if any. When we reach
9827 IRELAMID in the loop, we switch to the RELA relocs. */
9829 if (esdi->rel.hdr != NULL)
9830 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9831 * bed->s->int_rels_per_ext_rel);
9832 rel_hash_list = rel_hash;
9833 rela_hash_list = NULL;
9834 last_offset = o->output_offset;
9835 if (!flinfo->info->relocatable)
9836 last_offset += o->output_section->vma;
9837 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9839 unsigned long r_symndx;
9841 Elf_Internal_Sym sym;
9843 if (next_erel == bed->s->int_rels_per_ext_rel)
9849 if (irela == irelamid)
9851 rel_hash = esdo->rela.hashes + esdo->rela.count;
9852 rela_hash_list = rel_hash;
9853 rela_normal = bed->rela_normal;
9856 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9859 if (irela->r_offset >= (bfd_vma) -2)
9861 /* This is a reloc for a deleted entry or somesuch.
9862 Turn it into an R_*_NONE reloc, at the same
9863 offset as the last reloc. elf_eh_frame.c and
9864 bfd_elf_discard_info rely on reloc offsets
9866 irela->r_offset = last_offset;
9868 irela->r_addend = 0;
9872 irela->r_offset += o->output_offset;
9874 /* Relocs in an executable have to be virtual addresses. */
9875 if (!flinfo->info->relocatable)
9876 irela->r_offset += o->output_section->vma;
9878 last_offset = irela->r_offset;
9880 r_symndx = irela->r_info >> r_sym_shift;
9881 if (r_symndx == STN_UNDEF)
9884 if (r_symndx >= locsymcount
9885 || (elf_bad_symtab (input_bfd)
9886 && flinfo->sections[r_symndx] == NULL))
9888 struct elf_link_hash_entry *rh;
9891 /* This is a reloc against a global symbol. We
9892 have not yet output all the local symbols, so
9893 we do not know the symbol index of any global
9894 symbol. We set the rel_hash entry for this
9895 reloc to point to the global hash table entry
9896 for this symbol. The symbol index is then
9897 set at the end of bfd_elf_final_link. */
9898 indx = r_symndx - extsymoff;
9899 rh = elf_sym_hashes (input_bfd)[indx];
9900 while (rh->root.type == bfd_link_hash_indirect
9901 || rh->root.type == bfd_link_hash_warning)
9902 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9904 /* Setting the index to -2 tells
9905 elf_link_output_extsym that this symbol is
9907 BFD_ASSERT (rh->indx < 0);
9915 /* This is a reloc against a local symbol. */
9918 sym = isymbuf[r_symndx];
9919 sec = flinfo->sections[r_symndx];
9920 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9922 /* I suppose the backend ought to fill in the
9923 section of any STT_SECTION symbol against a
9924 processor specific section. */
9925 r_symndx = STN_UNDEF;
9926 if (bfd_is_abs_section (sec))
9928 else if (sec == NULL || sec->owner == NULL)
9930 bfd_set_error (bfd_error_bad_value);
9935 asection *osec = sec->output_section;
9937 /* If we have discarded a section, the output
9938 section will be the absolute section. In
9939 case of discarded SEC_MERGE sections, use
9940 the kept section. relocate_section should
9941 have already handled discarded linkonce
9943 if (bfd_is_abs_section (osec)
9944 && sec->kept_section != NULL
9945 && sec->kept_section->output_section != NULL)
9947 osec = sec->kept_section->output_section;
9948 irela->r_addend -= osec->vma;
9951 if (!bfd_is_abs_section (osec))
9953 r_symndx = osec->target_index;
9954 if (r_symndx == STN_UNDEF)
9956 irela->r_addend += osec->vma;
9957 osec = _bfd_nearby_section (output_bfd, osec,
9959 irela->r_addend -= osec->vma;
9960 r_symndx = osec->target_index;
9965 /* Adjust the addend according to where the
9966 section winds up in the output section. */
9968 irela->r_addend += sec->output_offset;
9972 if (flinfo->indices[r_symndx] == -1)
9974 unsigned long shlink;
9979 if (flinfo->info->strip == strip_all)
9981 /* You can't do ld -r -s. */
9982 bfd_set_error (bfd_error_invalid_operation);
9986 /* This symbol was skipped earlier, but
9987 since it is needed by a reloc, we
9988 must output it now. */
9989 shlink = symtab_hdr->sh_link;
9990 name = (bfd_elf_string_from_elf_section
9991 (input_bfd, shlink, sym.st_name));
9995 osec = sec->output_section;
9997 _bfd_elf_section_from_bfd_section (output_bfd,
9999 if (sym.st_shndx == SHN_BAD)
10002 sym.st_value += sec->output_offset;
10003 if (!flinfo->info->relocatable)
10005 sym.st_value += osec->vma;
10006 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10008 /* STT_TLS symbols are relative to PT_TLS
10010 BFD_ASSERT (elf_hash_table (flinfo->info)
10011 ->tls_sec != NULL);
10012 sym.st_value -= (elf_hash_table (flinfo->info)
10017 indx = bfd_get_symcount (output_bfd);
10018 ret = elf_link_output_sym (flinfo, name, &sym, sec,
10023 flinfo->indices[r_symndx] = indx;
10028 r_symndx = flinfo->indices[r_symndx];
10031 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10032 | (irela->r_info & r_type_mask));
10035 /* Swap out the relocs. */
10036 input_rel_hdr = esdi->rel.hdr;
10037 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10039 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10044 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10045 * bed->s->int_rels_per_ext_rel);
10046 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10049 input_rela_hdr = esdi->rela.hdr;
10050 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10052 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10061 /* Write out the modified section contents. */
10062 if (bed->elf_backend_write_section
10063 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10066 /* Section written out. */
10068 else switch (o->sec_info_type)
10070 case SEC_INFO_TYPE_STABS:
10071 if (! (_bfd_write_section_stabs
10073 &elf_hash_table (flinfo->info)->stab_info,
10074 o, &elf_section_data (o)->sec_info, contents)))
10077 case SEC_INFO_TYPE_MERGE:
10078 if (! _bfd_write_merged_section (output_bfd, o,
10079 elf_section_data (o)->sec_info))
10082 case SEC_INFO_TYPE_EH_FRAME:
10084 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10091 /* FIXME: octets_per_byte. */
10092 if (! (o->flags & SEC_EXCLUDE))
10094 file_ptr offset = (file_ptr) o->output_offset;
10095 bfd_size_type todo = o->size;
10096 if ((o->flags & SEC_ELF_REVERSE_COPY))
10098 /* Reverse-copy input section to output. */
10101 todo -= address_size;
10102 if (! bfd_set_section_contents (output_bfd,
10110 offset += address_size;
10114 else if (! bfd_set_section_contents (output_bfd,
10128 /* Generate a reloc when linking an ELF file. This is a reloc
10129 requested by the linker, and does not come from any input file. This
10130 is used to build constructor and destructor tables when linking
10134 elf_reloc_link_order (bfd *output_bfd,
10135 struct bfd_link_info *info,
10136 asection *output_section,
10137 struct bfd_link_order *link_order)
10139 reloc_howto_type *howto;
10143 struct bfd_elf_section_reloc_data *reldata;
10144 struct elf_link_hash_entry **rel_hash_ptr;
10145 Elf_Internal_Shdr *rel_hdr;
10146 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10147 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10150 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10152 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10155 bfd_set_error (bfd_error_bad_value);
10159 addend = link_order->u.reloc.p->addend;
10162 reldata = &esdo->rel;
10163 else if (esdo->rela.hdr)
10164 reldata = &esdo->rela;
10171 /* Figure out the symbol index. */
10172 rel_hash_ptr = reldata->hashes + reldata->count;
10173 if (link_order->type == bfd_section_reloc_link_order)
10175 indx = link_order->u.reloc.p->u.section->target_index;
10176 BFD_ASSERT (indx != 0);
10177 *rel_hash_ptr = NULL;
10181 struct elf_link_hash_entry *h;
10183 /* Treat a reloc against a defined symbol as though it were
10184 actually against the section. */
10185 h = ((struct elf_link_hash_entry *)
10186 bfd_wrapped_link_hash_lookup (output_bfd, info,
10187 link_order->u.reloc.p->u.name,
10188 FALSE, FALSE, TRUE));
10190 && (h->root.type == bfd_link_hash_defined
10191 || h->root.type == bfd_link_hash_defweak))
10195 section = h->root.u.def.section;
10196 indx = section->output_section->target_index;
10197 *rel_hash_ptr = NULL;
10198 /* It seems that we ought to add the symbol value to the
10199 addend here, but in practice it has already been added
10200 because it was passed to constructor_callback. */
10201 addend += section->output_section->vma + section->output_offset;
10203 else if (h != NULL)
10205 /* Setting the index to -2 tells elf_link_output_extsym that
10206 this symbol is used by a reloc. */
10213 if (! ((*info->callbacks->unattached_reloc)
10214 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10220 /* If this is an inplace reloc, we must write the addend into the
10222 if (howto->partial_inplace && addend != 0)
10224 bfd_size_type size;
10225 bfd_reloc_status_type rstat;
10228 const char *sym_name;
10230 size = (bfd_size_type) bfd_get_reloc_size (howto);
10231 buf = (bfd_byte *) bfd_zmalloc (size);
10234 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10241 case bfd_reloc_outofrange:
10244 case bfd_reloc_overflow:
10245 if (link_order->type == bfd_section_reloc_link_order)
10246 sym_name = bfd_section_name (output_bfd,
10247 link_order->u.reloc.p->u.section);
10249 sym_name = link_order->u.reloc.p->u.name;
10250 if (! ((*info->callbacks->reloc_overflow)
10251 (info, NULL, sym_name, howto->name, addend, NULL,
10252 NULL, (bfd_vma) 0)))
10259 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10260 link_order->offset, size);
10266 /* The address of a reloc is relative to the section in a
10267 relocatable file, and is a virtual address in an executable
10269 offset = link_order->offset;
10270 if (! info->relocatable)
10271 offset += output_section->vma;
10273 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10275 irel[i].r_offset = offset;
10276 irel[i].r_info = 0;
10277 irel[i].r_addend = 0;
10279 if (bed->s->arch_size == 32)
10280 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10282 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10284 rel_hdr = reldata->hdr;
10285 erel = rel_hdr->contents;
10286 if (rel_hdr->sh_type == SHT_REL)
10288 erel += reldata->count * bed->s->sizeof_rel;
10289 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10293 irel[0].r_addend = addend;
10294 erel += reldata->count * bed->s->sizeof_rela;
10295 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10304 /* Get the output vma of the section pointed to by the sh_link field. */
10307 elf_get_linked_section_vma (struct bfd_link_order *p)
10309 Elf_Internal_Shdr **elf_shdrp;
10313 s = p->u.indirect.section;
10314 elf_shdrp = elf_elfsections (s->owner);
10315 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10316 elfsec = elf_shdrp[elfsec]->sh_link;
10318 The Intel C compiler generates SHT_IA_64_UNWIND with
10319 SHF_LINK_ORDER. But it doesn't set the sh_link or
10320 sh_info fields. Hence we could get the situation
10321 where elfsec is 0. */
10324 const struct elf_backend_data *bed
10325 = get_elf_backend_data (s->owner);
10326 if (bed->link_order_error_handler)
10327 bed->link_order_error_handler
10328 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10333 s = elf_shdrp[elfsec]->bfd_section;
10334 return s->output_section->vma + s->output_offset;
10339 /* Compare two sections based on the locations of the sections they are
10340 linked to. Used by elf_fixup_link_order. */
10343 compare_link_order (const void * a, const void * b)
10348 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10349 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10352 return apos > bpos;
10356 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10357 order as their linked sections. Returns false if this could not be done
10358 because an output section includes both ordered and unordered
10359 sections. Ideally we'd do this in the linker proper. */
10362 elf_fixup_link_order (bfd *abfd, asection *o)
10364 int seen_linkorder;
10367 struct bfd_link_order *p;
10369 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10371 struct bfd_link_order **sections;
10372 asection *s, *other_sec, *linkorder_sec;
10376 linkorder_sec = NULL;
10378 seen_linkorder = 0;
10379 for (p = o->map_head.link_order; p != NULL; p = p->next)
10381 if (p->type == bfd_indirect_link_order)
10383 s = p->u.indirect.section;
10385 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10386 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10387 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10388 && elfsec < elf_numsections (sub)
10389 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10390 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10404 if (seen_other && seen_linkorder)
10406 if (other_sec && linkorder_sec)
10407 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10409 linkorder_sec->owner, other_sec,
10412 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10414 bfd_set_error (bfd_error_bad_value);
10419 if (!seen_linkorder)
10422 sections = (struct bfd_link_order **)
10423 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10424 if (sections == NULL)
10426 seen_linkorder = 0;
10428 for (p = o->map_head.link_order; p != NULL; p = p->next)
10430 sections[seen_linkorder++] = p;
10432 /* Sort the input sections in the order of their linked section. */
10433 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10434 compare_link_order);
10436 /* Change the offsets of the sections. */
10438 for (n = 0; n < seen_linkorder; n++)
10440 s = sections[n]->u.indirect.section;
10441 offset &= ~(bfd_vma) 0 << s->alignment_power;
10442 s->output_offset = offset;
10443 sections[n]->offset = offset;
10444 /* FIXME: octets_per_byte. */
10445 offset += sections[n]->size;
10453 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10457 if (flinfo->symstrtab != NULL)
10458 _bfd_stringtab_free (flinfo->symstrtab);
10459 if (flinfo->contents != NULL)
10460 free (flinfo->contents);
10461 if (flinfo->external_relocs != NULL)
10462 free (flinfo->external_relocs);
10463 if (flinfo->internal_relocs != NULL)
10464 free (flinfo->internal_relocs);
10465 if (flinfo->external_syms != NULL)
10466 free (flinfo->external_syms);
10467 if (flinfo->locsym_shndx != NULL)
10468 free (flinfo->locsym_shndx);
10469 if (flinfo->internal_syms != NULL)
10470 free (flinfo->internal_syms);
10471 if (flinfo->indices != NULL)
10472 free (flinfo->indices);
10473 if (flinfo->sections != NULL)
10474 free (flinfo->sections);
10475 if (flinfo->symbuf != NULL)
10476 free (flinfo->symbuf);
10477 if (flinfo->symshndxbuf != NULL)
10478 free (flinfo->symshndxbuf);
10479 for (o = obfd->sections; o != NULL; o = o->next)
10481 struct bfd_elf_section_data *esdo = elf_section_data (o);
10482 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10483 free (esdo->rel.hashes);
10484 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10485 free (esdo->rela.hashes);
10489 /* Do the final step of an ELF link. */
10492 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10494 bfd_boolean dynamic;
10495 bfd_boolean emit_relocs;
10497 struct elf_final_link_info flinfo;
10499 struct bfd_link_order *p;
10501 bfd_size_type max_contents_size;
10502 bfd_size_type max_external_reloc_size;
10503 bfd_size_type max_internal_reloc_count;
10504 bfd_size_type max_sym_count;
10505 bfd_size_type max_sym_shndx_count;
10507 Elf_Internal_Sym elfsym;
10509 Elf_Internal_Shdr *symtab_hdr;
10510 Elf_Internal_Shdr *symtab_shndx_hdr;
10511 Elf_Internal_Shdr *symstrtab_hdr;
10512 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10513 struct elf_outext_info eoinfo;
10514 bfd_boolean merged;
10515 size_t relativecount = 0;
10516 asection *reldyn = 0;
10518 asection *attr_section = NULL;
10519 bfd_vma attr_size = 0;
10520 const char *std_attrs_section;
10522 if (! is_elf_hash_table (info->hash))
10526 abfd->flags |= DYNAMIC;
10528 dynamic = elf_hash_table (info)->dynamic_sections_created;
10529 dynobj = elf_hash_table (info)->dynobj;
10531 emit_relocs = (info->relocatable
10532 || info->emitrelocations);
10534 flinfo.info = info;
10535 flinfo.output_bfd = abfd;
10536 flinfo.symstrtab = _bfd_elf_stringtab_init ();
10537 if (flinfo.symstrtab == NULL)
10542 flinfo.dynsym_sec = NULL;
10543 flinfo.hash_sec = NULL;
10544 flinfo.symver_sec = NULL;
10548 flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10549 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10550 /* Note that dynsym_sec can be NULL (on VMS). */
10551 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10552 /* Note that it is OK if symver_sec is NULL. */
10555 flinfo.contents = NULL;
10556 flinfo.external_relocs = NULL;
10557 flinfo.internal_relocs = NULL;
10558 flinfo.external_syms = NULL;
10559 flinfo.locsym_shndx = NULL;
10560 flinfo.internal_syms = NULL;
10561 flinfo.indices = NULL;
10562 flinfo.sections = NULL;
10563 flinfo.symbuf = NULL;
10564 flinfo.symshndxbuf = NULL;
10565 flinfo.symbuf_count = 0;
10566 flinfo.shndxbuf_size = 0;
10567 flinfo.filesym_count = 0;
10569 /* The object attributes have been merged. Remove the input
10570 sections from the link, and set the contents of the output
10572 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10573 for (o = abfd->sections; o != NULL; o = o->next)
10575 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10576 || strcmp (o->name, ".gnu.attributes") == 0)
10578 for (p = o->map_head.link_order; p != NULL; p = p->next)
10580 asection *input_section;
10582 if (p->type != bfd_indirect_link_order)
10584 input_section = p->u.indirect.section;
10585 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10586 elf_link_input_bfd ignores this section. */
10587 input_section->flags &= ~SEC_HAS_CONTENTS;
10590 attr_size = bfd_elf_obj_attr_size (abfd);
10593 bfd_set_section_size (abfd, o, attr_size);
10595 /* Skip this section later on. */
10596 o->map_head.link_order = NULL;
10599 o->flags |= SEC_EXCLUDE;
10603 /* Count up the number of relocations we will output for each output
10604 section, so that we know the sizes of the reloc sections. We
10605 also figure out some maximum sizes. */
10606 max_contents_size = 0;
10607 max_external_reloc_size = 0;
10608 max_internal_reloc_count = 0;
10610 max_sym_shndx_count = 0;
10612 for (o = abfd->sections; o != NULL; o = o->next)
10614 struct bfd_elf_section_data *esdo = elf_section_data (o);
10615 o->reloc_count = 0;
10617 for (p = o->map_head.link_order; p != NULL; p = p->next)
10619 unsigned int reloc_count = 0;
10620 struct bfd_elf_section_data *esdi = NULL;
10622 if (p->type == bfd_section_reloc_link_order
10623 || p->type == bfd_symbol_reloc_link_order)
10625 else if (p->type == bfd_indirect_link_order)
10629 sec = p->u.indirect.section;
10630 esdi = elf_section_data (sec);
10632 /* Mark all sections which are to be included in the
10633 link. This will normally be every section. We need
10634 to do this so that we can identify any sections which
10635 the linker has decided to not include. */
10636 sec->linker_mark = TRUE;
10638 if (sec->flags & SEC_MERGE)
10641 if (esdo->this_hdr.sh_type == SHT_REL
10642 || esdo->this_hdr.sh_type == SHT_RELA)
10643 /* Some backends use reloc_count in relocation sections
10644 to count particular types of relocs. Of course,
10645 reloc sections themselves can't have relocations. */
10647 else if (info->relocatable || info->emitrelocations)
10648 reloc_count = sec->reloc_count;
10649 else if (bed->elf_backend_count_relocs)
10650 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10652 if (sec->rawsize > max_contents_size)
10653 max_contents_size = sec->rawsize;
10654 if (sec->size > max_contents_size)
10655 max_contents_size = sec->size;
10657 /* We are interested in just local symbols, not all
10659 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10660 && (sec->owner->flags & DYNAMIC) == 0)
10664 if (elf_bad_symtab (sec->owner))
10665 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10666 / bed->s->sizeof_sym);
10668 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10670 if (sym_count > max_sym_count)
10671 max_sym_count = sym_count;
10673 if (sym_count > max_sym_shndx_count
10674 && elf_symtab_shndx (sec->owner) != 0)
10675 max_sym_shndx_count = sym_count;
10677 if ((sec->flags & SEC_RELOC) != 0)
10679 size_t ext_size = 0;
10681 if (esdi->rel.hdr != NULL)
10682 ext_size = esdi->rel.hdr->sh_size;
10683 if (esdi->rela.hdr != NULL)
10684 ext_size += esdi->rela.hdr->sh_size;
10686 if (ext_size > max_external_reloc_size)
10687 max_external_reloc_size = ext_size;
10688 if (sec->reloc_count > max_internal_reloc_count)
10689 max_internal_reloc_count = sec->reloc_count;
10694 if (reloc_count == 0)
10697 o->reloc_count += reloc_count;
10699 if (p->type == bfd_indirect_link_order
10700 && (info->relocatable || info->emitrelocations))
10703 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10704 if (esdi->rela.hdr)
10705 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10710 esdo->rela.count += reloc_count;
10712 esdo->rel.count += reloc_count;
10716 if (o->reloc_count > 0)
10717 o->flags |= SEC_RELOC;
10720 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10721 set it (this is probably a bug) and if it is set
10722 assign_section_numbers will create a reloc section. */
10723 o->flags &=~ SEC_RELOC;
10726 /* If the SEC_ALLOC flag is not set, force the section VMA to
10727 zero. This is done in elf_fake_sections as well, but forcing
10728 the VMA to 0 here will ensure that relocs against these
10729 sections are handled correctly. */
10730 if ((o->flags & SEC_ALLOC) == 0
10731 && ! o->user_set_vma)
10735 if (! info->relocatable && merged)
10736 elf_link_hash_traverse (elf_hash_table (info),
10737 _bfd_elf_link_sec_merge_syms, abfd);
10739 /* Figure out the file positions for everything but the symbol table
10740 and the relocs. We set symcount to force assign_section_numbers
10741 to create a symbol table. */
10742 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10743 BFD_ASSERT (! abfd->output_has_begun);
10744 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10747 /* Set sizes, and assign file positions for reloc sections. */
10748 for (o = abfd->sections; o != NULL; o = o->next)
10750 struct bfd_elf_section_data *esdo = elf_section_data (o);
10751 if ((o->flags & SEC_RELOC) != 0)
10754 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10758 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10762 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10763 to count upwards while actually outputting the relocations. */
10764 esdo->rel.count = 0;
10765 esdo->rela.count = 0;
10768 _bfd_elf_assign_file_positions_for_relocs (abfd);
10770 /* We have now assigned file positions for all the sections except
10771 .symtab and .strtab. We start the .symtab section at the current
10772 file position, and write directly to it. We build the .strtab
10773 section in memory. */
10774 bfd_get_symcount (abfd) = 0;
10775 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10776 /* sh_name is set in prep_headers. */
10777 symtab_hdr->sh_type = SHT_SYMTAB;
10778 /* sh_flags, sh_addr and sh_size all start off zero. */
10779 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10780 /* sh_link is set in assign_section_numbers. */
10781 /* sh_info is set below. */
10782 /* sh_offset is set just below. */
10783 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10785 off = elf_next_file_pos (abfd);
10786 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10788 /* Note that at this point elf_next_file_pos (abfd) is
10789 incorrect. We do not yet know the size of the .symtab section.
10790 We correct next_file_pos below, after we do know the size. */
10792 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10793 continuously seeking to the right position in the file. */
10794 if (! info->keep_memory || max_sym_count < 20)
10795 flinfo.symbuf_size = 20;
10797 flinfo.symbuf_size = max_sym_count;
10798 amt = flinfo.symbuf_size;
10799 amt *= bed->s->sizeof_sym;
10800 flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10801 if (flinfo.symbuf == NULL)
10803 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10805 /* Wild guess at number of output symbols. realloc'd as needed. */
10806 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10807 flinfo.shndxbuf_size = amt;
10808 amt *= sizeof (Elf_External_Sym_Shndx);
10809 flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10810 if (flinfo.symshndxbuf == NULL)
10814 /* Start writing out the symbol table. The first symbol is always a
10816 if (info->strip != strip_all
10819 elfsym.st_value = 0;
10820 elfsym.st_size = 0;
10821 elfsym.st_info = 0;
10822 elfsym.st_other = 0;
10823 elfsym.st_shndx = SHN_UNDEF;
10824 elfsym.st_target_internal = 0;
10825 if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10830 /* Output a symbol for each section. We output these even if we are
10831 discarding local symbols, since they are used for relocs. These
10832 symbols have no names. We store the index of each one in the
10833 index field of the section, so that we can find it again when
10834 outputting relocs. */
10835 if (info->strip != strip_all
10838 elfsym.st_size = 0;
10839 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10840 elfsym.st_other = 0;
10841 elfsym.st_value = 0;
10842 elfsym.st_target_internal = 0;
10843 for (i = 1; i < elf_numsections (abfd); i++)
10845 o = bfd_section_from_elf_index (abfd, i);
10848 o->target_index = bfd_get_symcount (abfd);
10849 elfsym.st_shndx = i;
10850 if (!info->relocatable)
10851 elfsym.st_value = o->vma;
10852 if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10858 /* Allocate some memory to hold information read in from the input
10860 if (max_contents_size != 0)
10862 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10863 if (flinfo.contents == NULL)
10867 if (max_external_reloc_size != 0)
10869 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10870 if (flinfo.external_relocs == NULL)
10874 if (max_internal_reloc_count != 0)
10876 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10877 amt *= sizeof (Elf_Internal_Rela);
10878 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10879 if (flinfo.internal_relocs == NULL)
10883 if (max_sym_count != 0)
10885 amt = max_sym_count * bed->s->sizeof_sym;
10886 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10887 if (flinfo.external_syms == NULL)
10890 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10891 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10892 if (flinfo.internal_syms == NULL)
10895 amt = max_sym_count * sizeof (long);
10896 flinfo.indices = (long int *) bfd_malloc (amt);
10897 if (flinfo.indices == NULL)
10900 amt = max_sym_count * sizeof (asection *);
10901 flinfo.sections = (asection **) bfd_malloc (amt);
10902 if (flinfo.sections == NULL)
10906 if (max_sym_shndx_count != 0)
10908 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10909 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10910 if (flinfo.locsym_shndx == NULL)
10914 if (elf_hash_table (info)->tls_sec)
10916 bfd_vma base, end = 0;
10919 for (sec = elf_hash_table (info)->tls_sec;
10920 sec && (sec->flags & SEC_THREAD_LOCAL);
10923 bfd_size_type size = sec->size;
10926 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10928 struct bfd_link_order *ord = sec->map_tail.link_order;
10931 size = ord->offset + ord->size;
10933 end = sec->vma + size;
10935 base = elf_hash_table (info)->tls_sec->vma;
10936 /* Only align end of TLS section if static TLS doesn't have special
10937 alignment requirements. */
10938 if (bed->static_tls_alignment == 1)
10939 end = align_power (end,
10940 elf_hash_table (info)->tls_sec->alignment_power);
10941 elf_hash_table (info)->tls_size = end - base;
10944 /* Reorder SHF_LINK_ORDER sections. */
10945 for (o = abfd->sections; o != NULL; o = o->next)
10947 if (!elf_fixup_link_order (abfd, o))
10951 /* Since ELF permits relocations to be against local symbols, we
10952 must have the local symbols available when we do the relocations.
10953 Since we would rather only read the local symbols once, and we
10954 would rather not keep them in memory, we handle all the
10955 relocations for a single input file at the same time.
10957 Unfortunately, there is no way to know the total number of local
10958 symbols until we have seen all of them, and the local symbol
10959 indices precede the global symbol indices. This means that when
10960 we are generating relocatable output, and we see a reloc against
10961 a global symbol, we can not know the symbol index until we have
10962 finished examining all the local symbols to see which ones we are
10963 going to output. To deal with this, we keep the relocations in
10964 memory, and don't output them until the end of the link. This is
10965 an unfortunate waste of memory, but I don't see a good way around
10966 it. Fortunately, it only happens when performing a relocatable
10967 link, which is not the common case. FIXME: If keep_memory is set
10968 we could write the relocs out and then read them again; I don't
10969 know how bad the memory loss will be. */
10971 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10972 sub->output_has_begun = FALSE;
10973 for (o = abfd->sections; o != NULL; o = o->next)
10975 for (p = o->map_head.link_order; p != NULL; p = p->next)
10977 if (p->type == bfd_indirect_link_order
10978 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10979 == bfd_target_elf_flavour)
10980 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10982 if (! sub->output_has_begun)
10984 if (! elf_link_input_bfd (&flinfo, sub))
10986 sub->output_has_begun = TRUE;
10989 else if (p->type == bfd_section_reloc_link_order
10990 || p->type == bfd_symbol_reloc_link_order)
10992 if (! elf_reloc_link_order (abfd, info, o, p))
10997 if (! _bfd_default_link_order (abfd, info, o, p))
10999 if (p->type == bfd_indirect_link_order
11000 && (bfd_get_flavour (sub)
11001 == bfd_target_elf_flavour)
11002 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11003 != bed->s->elfclass))
11005 const char *iclass, *oclass;
11007 if (bed->s->elfclass == ELFCLASS64)
11009 iclass = "ELFCLASS32";
11010 oclass = "ELFCLASS64";
11014 iclass = "ELFCLASS64";
11015 oclass = "ELFCLASS32";
11018 bfd_set_error (bfd_error_wrong_format);
11019 (*_bfd_error_handler)
11020 (_("%B: file class %s incompatible with %s"),
11021 sub, iclass, oclass);
11030 /* Free symbol buffer if needed. */
11031 if (!info->reduce_memory_overheads)
11033 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11034 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11035 && elf_tdata (sub)->symbuf)
11037 free (elf_tdata (sub)->symbuf);
11038 elf_tdata (sub)->symbuf = NULL;
11042 /* Output a FILE symbol so that following locals are not associated
11043 with the wrong input file. */
11044 memset (&elfsym, 0, sizeof (elfsym));
11045 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11046 elfsym.st_shndx = SHN_ABS;
11048 if (flinfo.filesym_count > 1
11049 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11050 bfd_und_section_ptr, NULL))
11053 /* Output any global symbols that got converted to local in a
11054 version script or due to symbol visibility. We do this in a
11055 separate step since ELF requires all local symbols to appear
11056 prior to any global symbols. FIXME: We should only do this if
11057 some global symbols were, in fact, converted to become local.
11058 FIXME: Will this work correctly with the Irix 5 linker? */
11059 eoinfo.failed = FALSE;
11060 eoinfo.flinfo = &flinfo;
11061 eoinfo.localsyms = TRUE;
11062 eoinfo.need_second_pass = FALSE;
11063 eoinfo.second_pass = FALSE;
11064 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11068 if (flinfo.filesym_count == 1
11069 && !elf_link_output_sym (&flinfo, NULL, &elfsym,
11070 bfd_und_section_ptr, NULL))
11073 if (eoinfo.need_second_pass)
11075 eoinfo.second_pass = TRUE;
11076 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11081 /* If backend needs to output some local symbols not present in the hash
11082 table, do it now. */
11083 if (bed->elf_backend_output_arch_local_syms)
11085 typedef int (*out_sym_func)
11086 (void *, const char *, Elf_Internal_Sym *, asection *,
11087 struct elf_link_hash_entry *);
11089 if (! ((*bed->elf_backend_output_arch_local_syms)
11090 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11094 /* That wrote out all the local symbols. Finish up the symbol table
11095 with the global symbols. Even if we want to strip everything we
11096 can, we still need to deal with those global symbols that got
11097 converted to local in a version script. */
11099 /* The sh_info field records the index of the first non local symbol. */
11100 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11103 && flinfo.dynsym_sec != NULL
11104 && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11106 Elf_Internal_Sym sym;
11107 bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11108 long last_local = 0;
11110 /* Write out the section symbols for the output sections. */
11111 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11117 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11119 sym.st_target_internal = 0;
11121 for (s = abfd->sections; s != NULL; s = s->next)
11127 dynindx = elf_section_data (s)->dynindx;
11130 indx = elf_section_data (s)->this_idx;
11131 BFD_ASSERT (indx > 0);
11132 sym.st_shndx = indx;
11133 if (! check_dynsym (abfd, &sym))
11135 sym.st_value = s->vma;
11136 dest = dynsym + dynindx * bed->s->sizeof_sym;
11137 if (last_local < dynindx)
11138 last_local = dynindx;
11139 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11143 /* Write out the local dynsyms. */
11144 if (elf_hash_table (info)->dynlocal)
11146 struct elf_link_local_dynamic_entry *e;
11147 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11152 /* Copy the internal symbol and turn off visibility.
11153 Note that we saved a word of storage and overwrote
11154 the original st_name with the dynstr_index. */
11156 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11158 s = bfd_section_from_elf_index (e->input_bfd,
11163 elf_section_data (s->output_section)->this_idx;
11164 if (! check_dynsym (abfd, &sym))
11166 sym.st_value = (s->output_section->vma
11168 + e->isym.st_value);
11171 if (last_local < e->dynindx)
11172 last_local = e->dynindx;
11174 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11175 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11179 elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11183 /* We get the global symbols from the hash table. */
11184 eoinfo.failed = FALSE;
11185 eoinfo.localsyms = FALSE;
11186 eoinfo.flinfo = &flinfo;
11187 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11191 /* If backend needs to output some symbols not present in the hash
11192 table, do it now. */
11193 if (bed->elf_backend_output_arch_syms)
11195 typedef int (*out_sym_func)
11196 (void *, const char *, Elf_Internal_Sym *, asection *,
11197 struct elf_link_hash_entry *);
11199 if (! ((*bed->elf_backend_output_arch_syms)
11200 (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11204 /* Flush all symbols to the file. */
11205 if (! elf_link_flush_output_syms (&flinfo, bed))
11208 /* Now we know the size of the symtab section. */
11209 off += symtab_hdr->sh_size;
11211 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11212 if (symtab_shndx_hdr->sh_name != 0)
11214 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11215 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11216 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11217 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11218 symtab_shndx_hdr->sh_size = amt;
11220 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11223 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11224 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11229 /* Finish up and write out the symbol string table (.strtab)
11231 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11232 /* sh_name was set in prep_headers. */
11233 symstrtab_hdr->sh_type = SHT_STRTAB;
11234 symstrtab_hdr->sh_flags = 0;
11235 symstrtab_hdr->sh_addr = 0;
11236 symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11237 symstrtab_hdr->sh_entsize = 0;
11238 symstrtab_hdr->sh_link = 0;
11239 symstrtab_hdr->sh_info = 0;
11240 /* sh_offset is set just below. */
11241 symstrtab_hdr->sh_addralign = 1;
11243 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11244 elf_next_file_pos (abfd) = off;
11246 if (bfd_get_symcount (abfd) > 0)
11248 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11249 || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11253 /* Adjust the relocs to have the correct symbol indices. */
11254 for (o = abfd->sections; o != NULL; o = o->next)
11256 struct bfd_elf_section_data *esdo = elf_section_data (o);
11257 if ((o->flags & SEC_RELOC) == 0)
11260 if (esdo->rel.hdr != NULL)
11261 elf_link_adjust_relocs (abfd, &esdo->rel);
11262 if (esdo->rela.hdr != NULL)
11263 elf_link_adjust_relocs (abfd, &esdo->rela);
11265 /* Set the reloc_count field to 0 to prevent write_relocs from
11266 trying to swap the relocs out itself. */
11267 o->reloc_count = 0;
11270 if (dynamic && info->combreloc && dynobj != NULL)
11271 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11273 /* If we are linking against a dynamic object, or generating a
11274 shared library, finish up the dynamic linking information. */
11277 bfd_byte *dyncon, *dynconend;
11279 /* Fix up .dynamic entries. */
11280 o = bfd_get_linker_section (dynobj, ".dynamic");
11281 BFD_ASSERT (o != NULL);
11283 dyncon = o->contents;
11284 dynconend = o->contents + o->size;
11285 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11287 Elf_Internal_Dyn dyn;
11291 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11298 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11300 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11302 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11303 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11306 dyn.d_un.d_val = relativecount;
11313 name = info->init_function;
11316 name = info->fini_function;
11319 struct elf_link_hash_entry *h;
11321 h = elf_link_hash_lookup (elf_hash_table (info), name,
11322 FALSE, FALSE, TRUE);
11324 && (h->root.type == bfd_link_hash_defined
11325 || h->root.type == bfd_link_hash_defweak))
11327 dyn.d_un.d_ptr = h->root.u.def.value;
11328 o = h->root.u.def.section;
11329 if (o->output_section != NULL)
11330 dyn.d_un.d_ptr += (o->output_section->vma
11331 + o->output_offset);
11334 /* The symbol is imported from another shared
11335 library and does not apply to this one. */
11336 dyn.d_un.d_ptr = 0;
11343 case DT_PREINIT_ARRAYSZ:
11344 name = ".preinit_array";
11346 case DT_INIT_ARRAYSZ:
11347 name = ".init_array";
11349 case DT_FINI_ARRAYSZ:
11350 name = ".fini_array";
11352 o = bfd_get_section_by_name (abfd, name);
11355 (*_bfd_error_handler)
11356 (_("%B: could not find output section %s"), abfd, name);
11360 (*_bfd_error_handler)
11361 (_("warning: %s section has zero size"), name);
11362 dyn.d_un.d_val = o->size;
11365 case DT_PREINIT_ARRAY:
11366 name = ".preinit_array";
11368 case DT_INIT_ARRAY:
11369 name = ".init_array";
11371 case DT_FINI_ARRAY:
11372 name = ".fini_array";
11379 name = ".gnu.hash";
11388 name = ".gnu.version_d";
11391 name = ".gnu.version_r";
11394 name = ".gnu.version";
11396 o = bfd_get_section_by_name (abfd, name);
11399 (*_bfd_error_handler)
11400 (_("%B: could not find output section %s"), abfd, name);
11403 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11405 (*_bfd_error_handler)
11406 (_("warning: section '%s' is being made into a note"), name);
11407 bfd_set_error (bfd_error_nonrepresentable_section);
11410 dyn.d_un.d_ptr = o->vma;
11417 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11421 dyn.d_un.d_val = 0;
11422 dyn.d_un.d_ptr = 0;
11423 for (i = 1; i < elf_numsections (abfd); i++)
11425 Elf_Internal_Shdr *hdr;
11427 hdr = elf_elfsections (abfd)[i];
11428 if (hdr->sh_type == type
11429 && (hdr->sh_flags & SHF_ALLOC) != 0)
11431 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11432 dyn.d_un.d_val += hdr->sh_size;
11435 if (dyn.d_un.d_ptr == 0
11436 || hdr->sh_addr < dyn.d_un.d_ptr)
11437 dyn.d_un.d_ptr = hdr->sh_addr;
11443 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11447 /* If we have created any dynamic sections, then output them. */
11448 if (dynobj != NULL)
11450 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11453 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11454 if (((info->warn_shared_textrel && info->shared)
11455 || info->error_textrel)
11456 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11458 bfd_byte *dyncon, *dynconend;
11460 dyncon = o->contents;
11461 dynconend = o->contents + o->size;
11462 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11464 Elf_Internal_Dyn dyn;
11466 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11468 if (dyn.d_tag == DT_TEXTREL)
11470 if (info->error_textrel)
11471 info->callbacks->einfo
11472 (_("%P%X: read-only segment has dynamic relocations.\n"));
11474 info->callbacks->einfo
11475 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11481 for (o = dynobj->sections; o != NULL; o = o->next)
11483 if ((o->flags & SEC_HAS_CONTENTS) == 0
11485 || o->output_section == bfd_abs_section_ptr)
11487 if ((o->flags & SEC_LINKER_CREATED) == 0)
11489 /* At this point, we are only interested in sections
11490 created by _bfd_elf_link_create_dynamic_sections. */
11493 if (elf_hash_table (info)->stab_info.stabstr == o)
11495 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11497 if (strcmp (o->name, ".dynstr") != 0)
11499 /* FIXME: octets_per_byte. */
11500 if (! bfd_set_section_contents (abfd, o->output_section,
11502 (file_ptr) o->output_offset,
11508 /* The contents of the .dynstr section are actually in a
11510 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11511 if (bfd_seek (abfd, off, SEEK_SET) != 0
11512 || ! _bfd_elf_strtab_emit (abfd,
11513 elf_hash_table (info)->dynstr))
11519 if (info->relocatable)
11521 bfd_boolean failed = FALSE;
11523 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11528 /* If we have optimized stabs strings, output them. */
11529 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11531 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11535 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11538 elf_final_link_free (abfd, &flinfo);
11540 elf_linker (abfd) = TRUE;
11544 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11545 if (contents == NULL)
11546 return FALSE; /* Bail out and fail. */
11547 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11548 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11555 elf_final_link_free (abfd, &flinfo);
11559 /* Initialize COOKIE for input bfd ABFD. */
11562 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11563 struct bfd_link_info *info, bfd *abfd)
11565 Elf_Internal_Shdr *symtab_hdr;
11566 const struct elf_backend_data *bed;
11568 bed = get_elf_backend_data (abfd);
11569 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11571 cookie->abfd = abfd;
11572 cookie->sym_hashes = elf_sym_hashes (abfd);
11573 cookie->bad_symtab = elf_bad_symtab (abfd);
11574 if (cookie->bad_symtab)
11576 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11577 cookie->extsymoff = 0;
11581 cookie->locsymcount = symtab_hdr->sh_info;
11582 cookie->extsymoff = symtab_hdr->sh_info;
11585 if (bed->s->arch_size == 32)
11586 cookie->r_sym_shift = 8;
11588 cookie->r_sym_shift = 32;
11590 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11591 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11593 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11594 cookie->locsymcount, 0,
11596 if (cookie->locsyms == NULL)
11598 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11601 if (info->keep_memory)
11602 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11607 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11610 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11612 Elf_Internal_Shdr *symtab_hdr;
11614 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11615 if (cookie->locsyms != NULL
11616 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11617 free (cookie->locsyms);
11620 /* Initialize the relocation information in COOKIE for input section SEC
11621 of input bfd ABFD. */
11624 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11625 struct bfd_link_info *info, bfd *abfd,
11628 const struct elf_backend_data *bed;
11630 if (sec->reloc_count == 0)
11632 cookie->rels = NULL;
11633 cookie->relend = NULL;
11637 bed = get_elf_backend_data (abfd);
11639 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11640 info->keep_memory);
11641 if (cookie->rels == NULL)
11643 cookie->rel = cookie->rels;
11644 cookie->relend = (cookie->rels
11645 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11647 cookie->rel = cookie->rels;
11651 /* Free the memory allocated by init_reloc_cookie_rels,
11655 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11658 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11659 free (cookie->rels);
11662 /* Initialize the whole of COOKIE for input section SEC. */
11665 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11666 struct bfd_link_info *info,
11669 if (!init_reloc_cookie (cookie, info, sec->owner))
11671 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11676 fini_reloc_cookie (cookie, sec->owner);
11681 /* Free the memory allocated by init_reloc_cookie_for_section,
11685 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11688 fini_reloc_cookie_rels (cookie, sec);
11689 fini_reloc_cookie (cookie, sec->owner);
11692 /* Garbage collect unused sections. */
11694 /* Default gc_mark_hook. */
11697 _bfd_elf_gc_mark_hook (asection *sec,
11698 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11699 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11700 struct elf_link_hash_entry *h,
11701 Elf_Internal_Sym *sym)
11703 const char *sec_name;
11707 switch (h->root.type)
11709 case bfd_link_hash_defined:
11710 case bfd_link_hash_defweak:
11711 return h->root.u.def.section;
11713 case bfd_link_hash_common:
11714 return h->root.u.c.p->section;
11716 case bfd_link_hash_undefined:
11717 case bfd_link_hash_undefweak:
11718 /* To work around a glibc bug, keep all XXX input sections
11719 when there is an as yet undefined reference to __start_XXX
11720 or __stop_XXX symbols. The linker will later define such
11721 symbols for orphan input sections that have a name
11722 representable as a C identifier. */
11723 if (strncmp (h->root.root.string, "__start_", 8) == 0)
11724 sec_name = h->root.root.string + 8;
11725 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11726 sec_name = h->root.root.string + 7;
11730 if (sec_name && *sec_name != '\0')
11734 for (i = info->input_bfds; i; i = i->link_next)
11736 sec = bfd_get_section_by_name (i, sec_name);
11738 sec->flags |= SEC_KEEP;
11748 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11753 /* COOKIE->rel describes a relocation against section SEC, which is
11754 a section we've decided to keep. Return the section that contains
11755 the relocation symbol, or NULL if no section contains it. */
11758 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11759 elf_gc_mark_hook_fn gc_mark_hook,
11760 struct elf_reloc_cookie *cookie)
11762 unsigned long r_symndx;
11763 struct elf_link_hash_entry *h;
11765 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11766 if (r_symndx == STN_UNDEF)
11769 if (r_symndx >= cookie->locsymcount
11770 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11772 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11773 while (h->root.type == bfd_link_hash_indirect
11774 || h->root.type == bfd_link_hash_warning)
11775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11777 /* If this symbol is weak and there is a non-weak definition, we
11778 keep the non-weak definition because many backends put
11779 dynamic reloc info on the non-weak definition for code
11780 handling copy relocs. */
11781 if (h->u.weakdef != NULL)
11782 h->u.weakdef->mark = 1;
11783 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11786 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11787 &cookie->locsyms[r_symndx]);
11790 /* COOKIE->rel describes a relocation against section SEC, which is
11791 a section we've decided to keep. Mark the section that contains
11792 the relocation symbol. */
11795 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11797 elf_gc_mark_hook_fn gc_mark_hook,
11798 struct elf_reloc_cookie *cookie)
11802 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11803 if (rsec && !rsec->gc_mark)
11805 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11806 || (rsec->owner->flags & DYNAMIC) != 0)
11808 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11814 /* The mark phase of garbage collection. For a given section, mark
11815 it and any sections in this section's group, and all the sections
11816 which define symbols to which it refers. */
11819 _bfd_elf_gc_mark (struct bfd_link_info *info,
11821 elf_gc_mark_hook_fn gc_mark_hook)
11824 asection *group_sec, *eh_frame;
11828 /* Mark all the sections in the group. */
11829 group_sec = elf_section_data (sec)->next_in_group;
11830 if (group_sec && !group_sec->gc_mark)
11831 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11834 /* Look through the section relocs. */
11836 eh_frame = elf_eh_frame_section (sec->owner);
11837 if ((sec->flags & SEC_RELOC) != 0
11838 && sec->reloc_count > 0
11839 && sec != eh_frame)
11841 struct elf_reloc_cookie cookie;
11843 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11847 for (; cookie.rel < cookie.relend; cookie.rel++)
11848 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11853 fini_reloc_cookie_for_section (&cookie, sec);
11857 if (ret && eh_frame && elf_fde_list (sec))
11859 struct elf_reloc_cookie cookie;
11861 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11865 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11866 gc_mark_hook, &cookie))
11868 fini_reloc_cookie_for_section (&cookie, eh_frame);
11875 /* Keep debug and special sections. */
11878 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11879 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11883 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11886 bfd_boolean some_kept;
11888 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11891 /* Ensure all linker created sections are kept, and see whether
11892 any other section is already marked. */
11894 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11896 if ((isec->flags & SEC_LINKER_CREATED) != 0)
11898 else if (isec->gc_mark)
11902 /* If no section in this file will be kept, then we can
11903 toss out debug sections. */
11907 /* Keep debug and special sections like .comment when they are
11908 not part of a group, or when we have single-member groups. */
11909 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11910 if ((elf_next_in_group (isec) == NULL
11911 || elf_next_in_group (isec) == isec)
11912 && ((isec->flags & SEC_DEBUGGING) != 0
11913 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11919 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11921 struct elf_gc_sweep_symbol_info
11923 struct bfd_link_info *info;
11924 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11929 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11932 && (((h->root.type == bfd_link_hash_defined
11933 || h->root.type == bfd_link_hash_defweak)
11934 && !(h->def_regular
11935 && h->root.u.def.section->gc_mark))
11936 || h->root.type == bfd_link_hash_undefined
11937 || h->root.type == bfd_link_hash_undefweak))
11939 struct elf_gc_sweep_symbol_info *inf;
11941 inf = (struct elf_gc_sweep_symbol_info *) data;
11942 (*inf->hide_symbol) (inf->info, h, TRUE);
11943 h->def_regular = 0;
11944 h->ref_regular = 0;
11945 h->ref_regular_nonweak = 0;
11951 /* The sweep phase of garbage collection. Remove all garbage sections. */
11953 typedef bfd_boolean (*gc_sweep_hook_fn)
11954 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11957 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11960 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11961 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11962 unsigned long section_sym_count;
11963 struct elf_gc_sweep_symbol_info sweep_info;
11965 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11969 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11972 for (o = sub->sections; o != NULL; o = o->next)
11974 /* When any section in a section group is kept, we keep all
11975 sections in the section group. If the first member of
11976 the section group is excluded, we will also exclude the
11978 if (o->flags & SEC_GROUP)
11980 asection *first = elf_next_in_group (o);
11981 o->gc_mark = first->gc_mark;
11987 /* Skip sweeping sections already excluded. */
11988 if (o->flags & SEC_EXCLUDE)
11991 /* Since this is early in the link process, it is simple
11992 to remove a section from the output. */
11993 o->flags |= SEC_EXCLUDE;
11995 if (info->print_gc_sections && o->size != 0)
11996 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11998 /* But we also have to update some of the relocation
11999 info we collected before. */
12001 && (o->flags & SEC_RELOC) != 0
12002 && o->reloc_count > 0
12003 && !bfd_is_abs_section (o->output_section))
12005 Elf_Internal_Rela *internal_relocs;
12009 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12010 info->keep_memory);
12011 if (internal_relocs == NULL)
12014 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12016 if (elf_section_data (o)->relocs != internal_relocs)
12017 free (internal_relocs);
12025 /* Remove the symbols that were in the swept sections from the dynamic
12026 symbol table. GCFIXME: Anyone know how to get them out of the
12027 static symbol table as well? */
12028 sweep_info.info = info;
12029 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12030 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12033 _bfd_elf_link_renumber_dynsyms (abfd, info, §ion_sym_count);
12037 /* Propagate collected vtable information. This is called through
12038 elf_link_hash_traverse. */
12041 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12043 /* Those that are not vtables. */
12044 if (h->vtable == NULL || h->vtable->parent == NULL)
12047 /* Those vtables that do not have parents, we cannot merge. */
12048 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12051 /* If we've already been done, exit. */
12052 if (h->vtable->used && h->vtable->used[-1])
12055 /* Make sure the parent's table is up to date. */
12056 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12058 if (h->vtable->used == NULL)
12060 /* None of this table's entries were referenced. Re-use the
12062 h->vtable->used = h->vtable->parent->vtable->used;
12063 h->vtable->size = h->vtable->parent->vtable->size;
12068 bfd_boolean *cu, *pu;
12070 /* Or the parent's entries into ours. */
12071 cu = h->vtable->used;
12073 pu = h->vtable->parent->vtable->used;
12076 const struct elf_backend_data *bed;
12077 unsigned int log_file_align;
12079 bed = get_elf_backend_data (h->root.u.def.section->owner);
12080 log_file_align = bed->s->log_file_align;
12081 n = h->vtable->parent->vtable->size >> log_file_align;
12096 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12099 bfd_vma hstart, hend;
12100 Elf_Internal_Rela *relstart, *relend, *rel;
12101 const struct elf_backend_data *bed;
12102 unsigned int log_file_align;
12104 /* Take care of both those symbols that do not describe vtables as
12105 well as those that are not loaded. */
12106 if (h->vtable == NULL || h->vtable->parent == NULL)
12109 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12110 || h->root.type == bfd_link_hash_defweak);
12112 sec = h->root.u.def.section;
12113 hstart = h->root.u.def.value;
12114 hend = hstart + h->size;
12116 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12118 return *(bfd_boolean *) okp = FALSE;
12119 bed = get_elf_backend_data (sec->owner);
12120 log_file_align = bed->s->log_file_align;
12122 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12124 for (rel = relstart; rel < relend; ++rel)
12125 if (rel->r_offset >= hstart && rel->r_offset < hend)
12127 /* If the entry is in use, do nothing. */
12128 if (h->vtable->used
12129 && (rel->r_offset - hstart) < h->vtable->size)
12131 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12132 if (h->vtable->used[entry])
12135 /* Otherwise, kill it. */
12136 rel->r_offset = rel->r_info = rel->r_addend = 0;
12142 /* Mark sections containing dynamically referenced symbols. When
12143 building shared libraries, we must assume that any visible symbol is
12147 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12149 struct bfd_link_info *info = (struct bfd_link_info *) inf;
12151 if ((h->root.type == bfd_link_hash_defined
12152 || h->root.type == bfd_link_hash_defweak)
12154 || ((!info->executable || info->export_dynamic)
12156 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12157 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12158 && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12159 || !bfd_hide_sym_by_version (info->version_info,
12160 h->root.root.string)))))
12161 h->root.u.def.section->flags |= SEC_KEEP;
12166 /* Keep all sections containing symbols undefined on the command-line,
12167 and the section containing the entry symbol. */
12170 _bfd_elf_gc_keep (struct bfd_link_info *info)
12172 struct bfd_sym_chain *sym;
12174 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12176 struct elf_link_hash_entry *h;
12178 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12179 FALSE, FALSE, FALSE);
12182 && (h->root.type == bfd_link_hash_defined
12183 || h->root.type == bfd_link_hash_defweak)
12184 && !bfd_is_abs_section (h->root.u.def.section))
12185 h->root.u.def.section->flags |= SEC_KEEP;
12189 /* Do mark and sweep of unused sections. */
12192 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12194 bfd_boolean ok = TRUE;
12196 elf_gc_mark_hook_fn gc_mark_hook;
12197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12199 if (!bed->can_gc_sections
12200 || !is_elf_hash_table (info->hash))
12202 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12206 bed->gc_keep (info);
12208 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12209 at the .eh_frame section if we can mark the FDEs individually. */
12210 _bfd_elf_begin_eh_frame_parsing (info);
12211 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12214 struct elf_reloc_cookie cookie;
12216 sec = bfd_get_section_by_name (sub, ".eh_frame");
12217 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12219 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12220 if (elf_section_data (sec)->sec_info
12221 && (sec->flags & SEC_LINKER_CREATED) == 0)
12222 elf_eh_frame_section (sub) = sec;
12223 fini_reloc_cookie_for_section (&cookie, sec);
12224 sec = bfd_get_next_section_by_name (sec);
12227 _bfd_elf_end_eh_frame_parsing (info);
12229 /* Apply transitive closure to the vtable entry usage info. */
12230 elf_link_hash_traverse (elf_hash_table (info),
12231 elf_gc_propagate_vtable_entries_used,
12236 /* Kill the vtable relocations that were not used. */
12237 elf_link_hash_traverse (elf_hash_table (info),
12238 elf_gc_smash_unused_vtentry_relocs,
12243 /* Mark dynamically referenced symbols. */
12244 if (elf_hash_table (info)->dynamic_sections_created)
12245 elf_link_hash_traverse (elf_hash_table (info),
12246 bed->gc_mark_dynamic_ref,
12249 /* Grovel through relocs to find out who stays ... */
12250 gc_mark_hook = bed->gc_mark_hook;
12251 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12255 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12258 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12259 Also treat note sections as a root, if the section is not part
12261 for (o = sub->sections; o != NULL; o = o->next)
12263 && (o->flags & SEC_EXCLUDE) == 0
12264 && ((o->flags & SEC_KEEP) != 0
12265 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12266 && elf_next_in_group (o) == NULL )))
12268 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12273 /* Allow the backend to mark additional target specific sections. */
12274 bed->gc_mark_extra_sections (info, gc_mark_hook);
12276 /* ... and mark SEC_EXCLUDE for those that go. */
12277 return elf_gc_sweep (abfd, info);
12280 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12283 bfd_elf_gc_record_vtinherit (bfd *abfd,
12285 struct elf_link_hash_entry *h,
12288 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12289 struct elf_link_hash_entry **search, *child;
12290 bfd_size_type extsymcount;
12291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12293 /* The sh_info field of the symtab header tells us where the
12294 external symbols start. We don't care about the local symbols at
12296 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12297 if (!elf_bad_symtab (abfd))
12298 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12300 sym_hashes = elf_sym_hashes (abfd);
12301 sym_hashes_end = sym_hashes + extsymcount;
12303 /* Hunt down the child symbol, which is in this section at the same
12304 offset as the relocation. */
12305 for (search = sym_hashes; search != sym_hashes_end; ++search)
12307 if ((child = *search) != NULL
12308 && (child->root.type == bfd_link_hash_defined
12309 || child->root.type == bfd_link_hash_defweak)
12310 && child->root.u.def.section == sec
12311 && child->root.u.def.value == offset)
12315 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12316 abfd, sec, (unsigned long) offset);
12317 bfd_set_error (bfd_error_invalid_operation);
12321 if (!child->vtable)
12323 child->vtable = (struct elf_link_virtual_table_entry *)
12324 bfd_zalloc (abfd, sizeof (*child->vtable));
12325 if (!child->vtable)
12330 /* This *should* only be the absolute section. It could potentially
12331 be that someone has defined a non-global vtable though, which
12332 would be bad. It isn't worth paging in the local symbols to be
12333 sure though; that case should simply be handled by the assembler. */
12335 child->vtable->parent = (struct elf_link_hash_entry *) -1;
12338 child->vtable->parent = h;
12343 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12346 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12347 asection *sec ATTRIBUTE_UNUSED,
12348 struct elf_link_hash_entry *h,
12351 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12352 unsigned int log_file_align = bed->s->log_file_align;
12356 h->vtable = (struct elf_link_virtual_table_entry *)
12357 bfd_zalloc (abfd, sizeof (*h->vtable));
12362 if (addend >= h->vtable->size)
12364 size_t size, bytes, file_align;
12365 bfd_boolean *ptr = h->vtable->used;
12367 /* While the symbol is undefined, we have to be prepared to handle
12369 file_align = 1 << log_file_align;
12370 if (h->root.type == bfd_link_hash_undefined)
12371 size = addend + file_align;
12375 if (addend >= size)
12377 /* Oops! We've got a reference past the defined end of
12378 the table. This is probably a bug -- shall we warn? */
12379 size = addend + file_align;
12382 size = (size + file_align - 1) & -file_align;
12384 /* Allocate one extra entry for use as a "done" flag for the
12385 consolidation pass. */
12386 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12390 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12396 oldbytes = (((h->vtable->size >> log_file_align) + 1)
12397 * sizeof (bfd_boolean));
12398 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12402 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12407 /* And arrange for that done flag to be at index -1. */
12408 h->vtable->used = ptr + 1;
12409 h->vtable->size = size;
12412 h->vtable->used[addend >> log_file_align] = TRUE;
12417 /* Map an ELF section header flag to its corresponding string. */
12421 flagword flag_value;
12422 } elf_flags_to_name_table;
12424 static elf_flags_to_name_table elf_flags_to_names [] =
12426 { "SHF_WRITE", SHF_WRITE },
12427 { "SHF_ALLOC", SHF_ALLOC },
12428 { "SHF_EXECINSTR", SHF_EXECINSTR },
12429 { "SHF_MERGE", SHF_MERGE },
12430 { "SHF_STRINGS", SHF_STRINGS },
12431 { "SHF_INFO_LINK", SHF_INFO_LINK},
12432 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12433 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12434 { "SHF_GROUP", SHF_GROUP },
12435 { "SHF_TLS", SHF_TLS },
12436 { "SHF_MASKOS", SHF_MASKOS },
12437 { "SHF_EXCLUDE", SHF_EXCLUDE },
12440 /* Returns TRUE if the section is to be included, otherwise FALSE. */
12442 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12443 struct flag_info *flaginfo,
12446 const bfd_vma sh_flags = elf_section_flags (section);
12448 if (!flaginfo->flags_initialized)
12450 bfd *obfd = info->output_bfd;
12451 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12452 struct flag_info_list *tf = flaginfo->flag_list;
12454 int without_hex = 0;
12456 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12459 flagword (*lookup) (char *);
12461 lookup = bed->elf_backend_lookup_section_flags_hook;
12462 if (lookup != NULL)
12464 flagword hexval = (*lookup) ((char *) tf->name);
12468 if (tf->with == with_flags)
12469 with_hex |= hexval;
12470 else if (tf->with == without_flags)
12471 without_hex |= hexval;
12476 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12478 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12480 if (tf->with == with_flags)
12481 with_hex |= elf_flags_to_names[i].flag_value;
12482 else if (tf->with == without_flags)
12483 without_hex |= elf_flags_to_names[i].flag_value;
12490 info->callbacks->einfo
12491 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12495 flaginfo->flags_initialized = TRUE;
12496 flaginfo->only_with_flags |= with_hex;
12497 flaginfo->not_with_flags |= without_hex;
12500 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12503 if ((flaginfo->not_with_flags & sh_flags) != 0)
12509 struct alloc_got_off_arg {
12511 struct bfd_link_info *info;
12514 /* We need a special top-level link routine to convert got reference counts
12515 to real got offsets. */
12518 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12520 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12521 bfd *obfd = gofarg->info->output_bfd;
12522 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12524 if (h->got.refcount > 0)
12526 h->got.offset = gofarg->gotoff;
12527 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12530 h->got.offset = (bfd_vma) -1;
12535 /* And an accompanying bit to work out final got entry offsets once
12536 we're done. Should be called from final_link. */
12539 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12540 struct bfd_link_info *info)
12543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12545 struct alloc_got_off_arg gofarg;
12547 BFD_ASSERT (abfd == info->output_bfd);
12549 if (! is_elf_hash_table (info->hash))
12552 /* The GOT offset is relative to the .got section, but the GOT header is
12553 put into the .got.plt section, if the backend uses it. */
12554 if (bed->want_got_plt)
12557 gotoff = bed->got_header_size;
12559 /* Do the local .got entries first. */
12560 for (i = info->input_bfds; i; i = i->link_next)
12562 bfd_signed_vma *local_got;
12563 bfd_size_type j, locsymcount;
12564 Elf_Internal_Shdr *symtab_hdr;
12566 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12569 local_got = elf_local_got_refcounts (i);
12573 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12574 if (elf_bad_symtab (i))
12575 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12577 locsymcount = symtab_hdr->sh_info;
12579 for (j = 0; j < locsymcount; ++j)
12581 if (local_got[j] > 0)
12583 local_got[j] = gotoff;
12584 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12587 local_got[j] = (bfd_vma) -1;
12591 /* Then the global .got entries. .plt refcounts are handled by
12592 adjust_dynamic_symbol */
12593 gofarg.gotoff = gotoff;
12594 gofarg.info = info;
12595 elf_link_hash_traverse (elf_hash_table (info),
12596 elf_gc_allocate_got_offsets,
12601 /* Many folk need no more in the way of final link than this, once
12602 got entry reference counting is enabled. */
12605 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12607 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12610 /* Invoke the regular ELF backend linker to do all the work. */
12611 return bfd_elf_final_link (abfd, info);
12615 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12617 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12619 if (rcookie->bad_symtab)
12620 rcookie->rel = rcookie->rels;
12622 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12624 unsigned long r_symndx;
12626 if (! rcookie->bad_symtab)
12627 if (rcookie->rel->r_offset > offset)
12629 if (rcookie->rel->r_offset != offset)
12632 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12633 if (r_symndx == STN_UNDEF)
12636 if (r_symndx >= rcookie->locsymcount
12637 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12639 struct elf_link_hash_entry *h;
12641 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12643 while (h->root.type == bfd_link_hash_indirect
12644 || h->root.type == bfd_link_hash_warning)
12645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12647 if ((h->root.type == bfd_link_hash_defined
12648 || h->root.type == bfd_link_hash_defweak)
12649 && discarded_section (h->root.u.def.section))
12656 /* It's not a relocation against a global symbol,
12657 but it could be a relocation against a local
12658 symbol for a discarded section. */
12660 Elf_Internal_Sym *isym;
12662 /* Need to: get the symbol; get the section. */
12663 isym = &rcookie->locsyms[r_symndx];
12664 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12665 if (isec != NULL && discarded_section (isec))
12673 /* Discard unneeded references to discarded sections.
12674 Returns TRUE if any section's size was changed. */
12675 /* This function assumes that the relocations are in sorted order,
12676 which is true for all known assemblers. */
12679 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12681 struct elf_reloc_cookie cookie;
12682 asection *stab, *eh;
12683 const struct elf_backend_data *bed;
12685 bfd_boolean ret = FALSE;
12687 if (info->traditional_format
12688 || !is_elf_hash_table (info->hash))
12691 _bfd_elf_begin_eh_frame_parsing (info);
12692 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12694 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12697 bed = get_elf_backend_data (abfd);
12700 if (!info->relocatable)
12702 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12705 || bfd_is_abs_section (eh->output_section)))
12706 eh = bfd_get_next_section_by_name (eh);
12709 stab = bfd_get_section_by_name (abfd, ".stab");
12711 && (stab->size == 0
12712 || bfd_is_abs_section (stab->output_section)
12713 || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12718 && bed->elf_backend_discard_info == NULL)
12721 if (!init_reloc_cookie (&cookie, info, abfd))
12725 && stab->reloc_count > 0
12726 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12728 if (_bfd_discard_section_stabs (abfd, stab,
12729 elf_section_data (stab)->sec_info,
12730 bfd_elf_reloc_symbol_deleted_p,
12733 fini_reloc_cookie_rels (&cookie, stab);
12737 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12739 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12740 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12741 bfd_elf_reloc_symbol_deleted_p,
12744 fini_reloc_cookie_rels (&cookie, eh);
12745 eh = bfd_get_next_section_by_name (eh);
12748 if (bed->elf_backend_discard_info != NULL
12749 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12752 fini_reloc_cookie (&cookie, abfd);
12754 _bfd_elf_end_eh_frame_parsing (info);
12756 if (info->eh_frame_hdr
12757 && !info->relocatable
12758 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12765 _bfd_elf_section_already_linked (bfd *abfd,
12767 struct bfd_link_info *info)
12770 const char *name, *key;
12771 struct bfd_section_already_linked *l;
12772 struct bfd_section_already_linked_hash_entry *already_linked_list;
12774 if (sec->output_section == bfd_abs_section_ptr)
12777 flags = sec->flags;
12779 /* Return if it isn't a linkonce section. A comdat group section
12780 also has SEC_LINK_ONCE set. */
12781 if ((flags & SEC_LINK_ONCE) == 0)
12784 /* Don't put group member sections on our list of already linked
12785 sections. They are handled as a group via their group section. */
12786 if (elf_sec_group (sec) != NULL)
12789 /* For a SHT_GROUP section, use the group signature as the key. */
12791 if ((flags & SEC_GROUP) != 0
12792 && elf_next_in_group (sec) != NULL
12793 && elf_group_name (elf_next_in_group (sec)) != NULL)
12794 key = elf_group_name (elf_next_in_group (sec));
12797 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12798 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12799 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12802 /* Must be a user linkonce section that doesn't follow gcc's
12803 naming convention. In this case we won't be matching
12804 single member groups. */
12808 already_linked_list = bfd_section_already_linked_table_lookup (key);
12810 for (l = already_linked_list->entry; l != NULL; l = l->next)
12812 /* We may have 2 different types of sections on the list: group
12813 sections with a signature of <key> (<key> is some string),
12814 and linkonce sections named .gnu.linkonce.<type>.<key>.
12815 Match like sections. LTO plugin sections are an exception.
12816 They are always named .gnu.linkonce.t.<key> and match either
12817 type of section. */
12818 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12819 && ((flags & SEC_GROUP) != 0
12820 || strcmp (name, l->sec->name) == 0))
12821 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12823 /* The section has already been linked. See if we should
12824 issue a warning. */
12825 if (!_bfd_handle_already_linked (sec, l, info))
12828 if (flags & SEC_GROUP)
12830 asection *first = elf_next_in_group (sec);
12831 asection *s = first;
12835 s->output_section = bfd_abs_section_ptr;
12836 /* Record which group discards it. */
12837 s->kept_section = l->sec;
12838 s = elf_next_in_group (s);
12839 /* These lists are circular. */
12849 /* A single member comdat group section may be discarded by a
12850 linkonce section and vice versa. */
12851 if ((flags & SEC_GROUP) != 0)
12853 asection *first = elf_next_in_group (sec);
12855 if (first != NULL && elf_next_in_group (first) == first)
12856 /* Check this single member group against linkonce sections. */
12857 for (l = already_linked_list->entry; l != NULL; l = l->next)
12858 if ((l->sec->flags & SEC_GROUP) == 0
12859 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12861 first->output_section = bfd_abs_section_ptr;
12862 first->kept_section = l->sec;
12863 sec->output_section = bfd_abs_section_ptr;
12868 /* Check this linkonce section against single member groups. */
12869 for (l = already_linked_list->entry; l != NULL; l = l->next)
12870 if (l->sec->flags & SEC_GROUP)
12872 asection *first = elf_next_in_group (l->sec);
12875 && elf_next_in_group (first) == first
12876 && bfd_elf_match_symbols_in_sections (first, sec, info))
12878 sec->output_section = bfd_abs_section_ptr;
12879 sec->kept_section = first;
12884 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12885 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12886 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12887 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12888 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12889 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12890 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12891 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12892 The reverse order cannot happen as there is never a bfd with only the
12893 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12894 matter as here were are looking only for cross-bfd sections. */
12896 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12897 for (l = already_linked_list->entry; l != NULL; l = l->next)
12898 if ((l->sec->flags & SEC_GROUP) == 0
12899 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12901 if (abfd != l->sec->owner)
12902 sec->output_section = bfd_abs_section_ptr;
12906 /* This is the first section with this name. Record it. */
12907 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12908 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12909 return sec->output_section == bfd_abs_section_ptr;
12913 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12915 return sym->st_shndx == SHN_COMMON;
12919 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12925 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12927 return bfd_com_section_ptr;
12931 _bfd_elf_default_got_elt_size (bfd *abfd,
12932 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12933 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12934 bfd *ibfd ATTRIBUTE_UNUSED,
12935 unsigned long symndx ATTRIBUTE_UNUSED)
12937 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12938 return bed->s->arch_size / 8;
12941 /* Routines to support the creation of dynamic relocs. */
12943 /* Returns the name of the dynamic reloc section associated with SEC. */
12945 static const char *
12946 get_dynamic_reloc_section_name (bfd * abfd,
12948 bfd_boolean is_rela)
12951 const char *old_name = bfd_get_section_name (NULL, sec);
12952 const char *prefix = is_rela ? ".rela" : ".rel";
12954 if (old_name == NULL)
12957 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12958 sprintf (name, "%s%s", prefix, old_name);
12963 /* Returns the dynamic reloc section associated with SEC.
12964 If necessary compute the name of the dynamic reloc section based
12965 on SEC's name (looked up in ABFD's string table) and the setting
12969 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12971 bfd_boolean is_rela)
12973 asection * reloc_sec = elf_section_data (sec)->sreloc;
12975 if (reloc_sec == NULL)
12977 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12981 reloc_sec = bfd_get_linker_section (abfd, name);
12983 if (reloc_sec != NULL)
12984 elf_section_data (sec)->sreloc = reloc_sec;
12991 /* Returns the dynamic reloc section associated with SEC. If the
12992 section does not exist it is created and attached to the DYNOBJ
12993 bfd and stored in the SRELOC field of SEC's elf_section_data
12996 ALIGNMENT is the alignment for the newly created section and
12997 IS_RELA defines whether the name should be .rela.<SEC's name>
12998 or .rel.<SEC's name>. The section name is looked up in the
12999 string table associated with ABFD. */
13002 _bfd_elf_make_dynamic_reloc_section (asection * sec,
13004 unsigned int alignment,
13006 bfd_boolean is_rela)
13008 asection * reloc_sec = elf_section_data (sec)->sreloc;
13010 if (reloc_sec == NULL)
13012 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13017 reloc_sec = bfd_get_linker_section (dynobj, name);
13019 if (reloc_sec == NULL)
13021 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13022 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13023 if ((sec->flags & SEC_ALLOC) != 0)
13024 flags |= SEC_ALLOC | SEC_LOAD;
13026 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13027 if (reloc_sec != NULL)
13029 /* _bfd_elf_get_sec_type_attr chooses a section type by
13030 name. Override as it may be wrong, eg. for a user
13031 section named "auto" we'll get ".relauto" which is
13032 seen to be a .rela section. */
13033 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13034 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13039 elf_section_data (sec)->sreloc = reloc_sec;
13045 /* Copy the ELF symbol type associated with a linker hash entry. */
13047 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13048 struct bfd_link_hash_entry * hdest,
13049 struct bfd_link_hash_entry * hsrc)
13051 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13052 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13054 ehdest->type = ehsrc->type;
13055 ehdest->target_internal = ehsrc->target_internal;
13058 /* Append a RELA relocation REL to section S in BFD. */
13061 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13064 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13065 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13066 bed->s->swap_reloca_out (abfd, rel, loc);
13069 /* Append a REL relocation REL to section S in BFD. */
13072 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13074 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13075 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13076 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13077 bed->s->swap_reloc_out (abfd, rel, loc);